

Table	of	contents
1.	Why	an	ebook	on	the	Windows	Command	Line?
	
2.	Make	an	example	directory
	
3.	A	little	exercise:	open	the	Windows	Command	Prompt	window	and	go	to	the
example	directory
3.1	The	prompt
3.2	Moving	into	a	(sub)directory
	
4.	Pattern-matching
	
5.	Command	‘DIR’	and	Glob	patterns
	
6.	The	‘COPY’	command	and	Glob	patterns
6.1	Copy	files	from	the	current	directory	into	a	subdirectory
6.2	Copy	files	from	the	current	directory	into	a	subdirectory	in	binary	mode
6.3	Combine	ASCII-files	and	put	the	result	into	a	subdirectory
6.4	Combine	binary	files	and	put	the	result	into	a	subdirectory
6.5	Are	the	files	copied	correctly?
6.6	Copy	a	selection	of	files	with	the	‘FOR’	loop
	
7.	The	‘DEL’	command	and	Glob	patterns
7.1	Delete	files	from	the	current	directory
7.2	Delete	files	from	the	subdirectory	‘my	Doc’	-1
7.3	Delete	files	from	the	subdirectory	‘my	Doc’	-2
7.3.1	An	alternative
7.3.2	ROBOCOPY
	
8.	Passing	multiple	commands
	
9.	The	‘REN’	or	‘RENAME’	command
9.1	Change	subdirectory	name
9.2	Change	file	extensions
9.3	Modify	filenames	from	the	current	directory:	basic	examples
9.4	Truncate	a	filename	by	using	‘?’
9.5	Modify	filenames	in	the	subdirectory	‘my	Doc’:	basic	example
	
10.	More	complex	replacements
10.1	Add	a	prefix	to	filenames	with	the	same	characters	at	the	beginning
10.2	Add	a	prefix	to	filenames	with	the	same	extensions
10.3	Add	a	suffix	at	the	end	of	filenames	with	the	same	extensions
10.4	Substitute	a	character	in	a	specific	position

	
11.	The	command	‘FORFILES’
11.1	Add	a	prefix	to	filenames
11.2	Add	a	suffix	to	filenames
11.3	Modifying	filenames	in	the	current	directory	and	its	subdirectories
11.4	Select	files	on	a	date
11.5	List	files	and	export	the	list	to	a	file
	
12.	Batch	files
12.1	Add	a	sequential	number	to	filenames:	prefix
12.2	Add	a	sequential	number	to	filenames:	suffix
12.3	Add	a	sequential	number	as	suffix	to	filenames	in	sorted	order
12.4	Command	line	parameters	batch	files
	
13.	Tips	and	tricks
13.1	Make	files	read-only
13.2	Remove	read-only	attribute
13.3	Show	read-only	files
13.4	(un)Hiding	a	file
13.5	Secure	file	deletion
13.6	Copy	from	the	Windows	Command	Prompt	to	the	Clipboard
13.7	Copy	output	command	to	the	Clipboard
13.8	Save	output	command	to	a	file
13.9	‘TASKLIST’	and	‘TASKKILL’
13.10	Use	functions	keys
	
14.	Command	Prompt	replacement
	
15.	Help
	
16.	Why	use	the	Windows	Command	Line?
	
17.	Colophon
	
18.	Notes

1.	Why	an	ebook	on	the	Windows	Command	Line?

Since	I’m	a	Linux	user	for	some	years,	I	love	working	with	the	Linux	Command	Line	(1)
and	for	good	reason:	many	administrative	tasks	can	be	done	with	ease.	While	also	working
on	Windows,	I’ve	to	admit	that	I	use	the	Command	Line	less	often.	However,	I	discovered
that	the	Windows	Command	Line	with	its	simple	syntax	offers	a	lot	of	interesting	ways	to
automate	monotonous	and	repetitive	tasks.	In	Linux,	I	use	the	command	line	for	basic
actions	like

copy,	rename,	move,	or	delete	files
create,	rename	or	delete	(sub)directories
navigate	from	one	directory	to	another

The	same	actions	could	be	done	rather	easily	with	the	Windows	Command	Line.

2.	Make	an	example	directory

To	learn	the	most	of	this	ebook,	you	should	make	an	example	directory	‘test’	on	a	drive	(in
my	case	drive	D:	but	any	other	will	work	as	well	of	course)	and	a	subdirectory	‘my	Doc’.
Put	then	some	files	into	these	directories.	For	now,	you	can	do	this	your	own	way,	without
using	the	Windows	Command	Line.	So	select	a	drive	and	create

a.	the	directory	‘test’
b.	the	subdirectory	‘test\my	Doc’	(with	a	space	in	the	subdirectory	name)

and	put

c.	some	(empty)	files	into	the	directory	‘test’	
d.	and	some	files	into	‘test\my	Doc’

My	D:\test	contains	the	following	eight	files:	‘file1.txt’,	‘file2.dat’,	‘file2.txt’,	‘file3.txt’,
‘pic001.jpg’,	‘pic002.jpg’,	‘musicBach.mp3’	and	‘musicBrahms.mp3’.

I	placed	two	files	‘doc	1.rtf’	(with	space!)	and	‘doc2.rtf’	(without	space)	into	D:\test\my
Doc.

Remember	that	the	words	‘current	directory’	in	the	following	text	refer	to	D:\test.

3.	A	little	exercise:	open	the	Windows	Command	Prompt
window	and	go	to	the	example	directory.

Open	the	Windows	Command	Prompt	window	by	following	these	steps:

a.	Click	Start
b.	Type	in	the	Search	(or	just	start	typing):	CMD	and	press	Enter.

You	should	now	see	the	Windows	Command	Prompt	window,	a	window	with	the	so	called
prompt	like	C:\>	(see	3.1).	To	be	more	precise:	invoking	CMD	(better	known	as
CMD.exe)	opened	this	Windows	Command	Prompt	window.

But	there	is	more:	the	commands	you’ll	type	at	the	prompt,	will	be	interpreted	by	the	same
CMD.exe.	So,	remember	CMD.exe	as	the	Windows	Command	(line)	Interpreter,	as	a	type
of	Windows	shell.

3.1	The	prompt

The	Windows	Command	Prompt	window	displays	the	so	called	prompt	like	C:\>	or
C:\Users\UserName>	or	in	my	case	K:\>

Suppose	you	see	C:\>.	Type	at	this	prompt
D:

and	press	‘Enter’.	The	result	will	be	the	prompt	D:\>	(only	if	you	have	a	D:	partition;
otherwise	skip	this).

Suppose	the	prompt	is	C:\Users\UserName>.	Type	at	the	prompt
CD	..

('CD'	space	two	dots)	and	press	‘Enter’.	The	prompt	will	be	changed	into	C:\Users>.	Do
this	again	and	the	prompt	will	be	C:\>

Again,	in	this	text	I’ll	use	drive	D:

And	for	readability	reasons,	I	use	uppercase	commands,	e.g.	'CD'	instead	of	'cd'.
Lowercase	commands	will	do	the	same.

3.2	Moving	into	a	(sub)directory

To	move	into	a	directory,	use	the	'CD'	command.	So	to	move	into	the	example	directory
‘test’,	type	at	the	prompt	D:\>
CD	test

and	press	‘Enter’.	The	prompt	D:\test>	will	be	displayed.

To	move	into	the	subdirectory	‘my	Doc’,	type	at	the	prompt	D:\test>
CD	my	Doc

and	press	‘Enter’.	You’ll	see	the	prompt	D:\test\my	Doc>

To	return	to	the	directory	‘test’	again,	type	at	the	prompt	D:\test\my	Doc>	the	command
CD	..

and	press	‘Enter’.	The	prompt	D:\test>	appears	again.

This	will	do	for	now.	Next	I’ll	show	you	techniques	to	batch	modify	‘names’	after	having
explained	something	about	pattern-matching.

4.	Pattern-matching

The	Windows	Command	Interpreter	or	Windows	shell	has	a	pattern-matching	feature	that
makes	operating	on	large	numbers	of	‘names’	easy.	Notice	that	‘names’	refer	to
pathnames,	filenames,	extensions,	directories	etc.	The	wildcard	patterns	(also	called	Glob
patterns	or	globby	patterns)	are	defined	by	two	characters:	the	character	*	(asterisk,	star)
and	the	character	?	(question	mark).	Both	have	a	special	meaning	to	the	Windows	shell.

*	matches	zero	or	more	of	any	characters
?	matches	any	single	character

When	these	characters	are	found,	the	shell	will	try	to	match	these	characters	against	the
‘names’,	e.g.	filenames	in	a	directory.

A	few	examples:

????.txt	will	accept	all	files	with	the	extension	'.txt'	that	have	filenames	of	four
characters	long	such	as

1234.txt
abcd.txt
A-01.txt

So	to	match	pic001.jpg,	pic002.jpg	from	our	example	directory,	you	could	use	pic00?.jpg
or	pic???.jpg

To	get	all	the	filenames	with	an	undefined	name	length,	you	have	to	use	the	wildcard	*:	it
will	accept	all	filenames	regardless	how	many	characters	they	have.

.	refers	to	all	files.	
*.txt	refers	to	all	files	that	have	the	extension	'.txt'.	
abc.txt	refers	to	all	files	with	the	extension	'.txt'	that	have	the	string	'abc'	in	the
filename.

To	match	the	two	example	audio	files	musicBach.mp3	and	musicBrahms.mp3,	you	could
use	(among	others)	music*.mp3	or	m*.mp3	or	*.mp3

5.	Command	‘DIR’	and	Glob	patterns

Glob	patterns	can	be	used	as	parameters	of	a	command.

Example:

the	'DIR'	command	lists	all	files	in	a	directory.
the	'DIR'	command	with	the	parameter	*.txt	shows	only	files	with	the	extension
'.txt'

Type	at	the	prompt	(in	my	case:	D:\test>)
DIR

and	press	‘Enter’.	The	output	contains	-among	other	things-	all	the	files	in	the	current
directory,	the	entry	of	the	subdirectory	‘my	Doc’	inclusive.

22-01-2016		11:06				<DIR>										.

22-01-2016		11:06				<DIR>										..

22-01-2016		11:06				<DIR>										my	Doc

22-01-2016		11:07																	1	file1.txt

22-01-2016		11:07																	1	file2.dat

22-01-2016		11:07																	1	file2.txt

22-01-2016		11:07																	1	file3.txt

23-01-2016		12:18																85	pic001.jpg

23-01-2016		12:18															123	pic002.jpg

25-01-2016		19:34													5.852	musicBach.mp3

25-01-2016		19:40													7.966	musicBrahms.mp3

Type	at	the	prompt
DIR	*.txt

and	press	‘Enter’.	The	result	is	a	list	of	all	files	with	the	extension	'.txt'.

We	investigate	more	Glob	patterns	and	possibilities	with	the	command	'COPY'.

By	the	way,	notice	that	the	'DIR'	command	has	useful	switches,	e.g.	/OS	(Order	by	Size),
/OE	(Order	by	Extension)	and	/OD	(Order	by	Date).	So,	the	command
DIR	/OD

-after	pressing	‘Enter’-	lists	all	files	by	date.	To	learn	more	about	the	'DIR'	command,
type	at	the	prompt
DIR	/?

and	press	‘Enter’.

Reading	notes	for	this	ebook

1.	 The	instruction	‘Press	Enter’	will	be	shortened	to	[ENTER].
2.	 The	instructions	‘type	at	the	prompt’	will	be	shortened	to	‘type’	and	each	command

will	start	with	the	prompt:	D:\test>

6.	The	‘COPY’	command	and	Glob	patterns

Before	giving	examples	of	the	'COPY'	command,	some	words	on	TAB	completion.	Type:
D:\test>CD	my	Doc	[ENTER]

This	command	-as	we	have	seen-	results	in	the	prompt

D:\test\my	Doc>

To	avoid	much	typing,	use	TAB	completion.	Type:
D:\test\my	Doc>CD	..	[ENTER]

The	prompt	will	be	D:\test>	again.	Type	now:
D:\test>CD	my

and	press	TAB.	The	result	is:
D:\test>CD	my	Doc

Press	Enter	and	you’ll	see	the	prompt

D:\test\my	Doc>

If	your	command	does	not	work,	try	to	surround	names	with	space(s)	by	double
quotation	marks	(double	apostrophes).

So	if	this	command
D:\test>CD	my	Doc	[ENTER]

does	not	work,	try
D:\test>CD	"my	Doc"	[ENTER]

To	be	sure,	I’ll	use	in	this	ebook	the	double	quotation	marks	in	case	of	names	with
space(s).

6.1	Copy	files	from	the	current	directory	into	a	subdirectory

To	copy	‘file1.txt’	from	our	example	directory	into	the	subdirectory	‘my	Doc’,	we	could
type
D:\test>COPY	file1.txt	"my	Doc"	[ENTER]

To	copy	the	files	‘file1.txt’,	‘file2.dat’,	‘file2.txt’	and	‘file3.txt’	to	‘my	Doc’,	use	Glob
patterns:
D:\test>COPY	file?.*	"my	Doc"	[ENTER]

where	the	question	mark	?	refers	to	the	number	1,	2	and	3	and	the	pattern	'.*'	matches	all
extensions.

6.2	Copy	files	from	the	current	directory	into	a	subdirectory
in	binary	mode

The	default	copy	behavior	treats	files	as	ASCII-files,	as	lines	of	text	(with	end-of-line
characters,	end-of-files	etc.).	The	command
D:\test>COPY	*.jpg	"my	Doc"	[ENTER]

will	copy	the	image	files	with	extension	‘.jpg’	into	the	subdirectory	‘my	Doc’.	However,
loading	those	images	into	an	image	viewer	will	probably	give	errors.	To	avoid	this,	you
should	use	the	binary	mode:	in	this	case	the	files	are	copied	byte	for	byte.	Simply	add	the
switch	'/B'	to	the	'COPY'	command:
D:\test>COPY	/B	*.jpg	"my	Doc"	[ENTER]

6.3	Combine	ASCII-files	and	put	the	result	into	a
subdirectory

Study	the	following	command:
D:\test>COPY	/A	file?.*	"my	Doc"\combinedText.txt	[ENTER]

The	text	files	‘file1.txt’,	‘file2.txt’,	‘file2.dat’	and	‘file3.txt’	are	concatenated.	The	switch
'/A'	refers	to	the	ASCII-mode,	with	'/B'	you	switch	to	the	binary	mode.

6.4	Combine	binary	files	and	put	the	result	into	a
subdirectory

To	combine	(‘concatenate’)	two	MP3	files	(binary	files!)	from	the	current	directory	and
copy	the	result	to	“my	Doc”,	type:
D:\test>COPY	/B	*.mp3	"my	Doc"\CombinedBin.mp3	[ENTER]

The	CombinedBin.mp3	contains	now	both	mp3	files	from	the	current	directory.

6.5	Are	the	files	copied	correctly?

Add	the	switch	'/V'	to	the	'COPY'	command	to	verify	that	the	new	files	were	written
correctly.

6.6	Copy	a	selection	of	files	with	the	‘FOR’	loop

To	copy	a	set	of	files	that	cannot	be	matched	with	Glob	patterns	easily,	use	the	'FOR'
command.

The	'FOR'	syntax	is	quite	easy:
FOR	%variable	IN	(set)	DO	command	[command	parameters]

Study	the	next	loop:
D:\test>FOR	%i	IN	(file1.txt	file2.dat)	DO	COPY	/A	/V	%i	"my	Doc"	[ENTER]

(set)	is	replaced	by	a	list	of	two	files,	that	are	separated	by	a	space:	(file1.txt	file2.dat).
The	variable	%i	takes	these	list	values:	first	%i	has	the	value	‘file1.txt’	and	then	‘file2.dat’.

If	'ROBOCOPY'	is	available	to	you	(check	by	typing	'ROBOCOPY	/?'	at	the	prompt	and
pressing	Enter),	then	you	could	avoid	the	'FOR'	loop:
D:\test>ROBOCOPY	D:\test	"D:\test\my	Doc"	file1.txt	file2.dat	[ENTER]

To	copy	all	text	files	from	the	current	directory	and	all	subdirectories,	use	the	switch	'/R'
and	'*.txt'.
D:\test>FOR	/R	%i	IN	(*.txt)	DO	COPY	/A	/V	%i	D:\tmp	[ENTER]

(you	have	to	make	the	target	directory	‘tmp’	first!)

With	'ROBOCOPY':
D:\test>ROBOCOPY	/S	D:\test	D:\tmp	*.txt	[ENTER]

With	the	switch	'/S',	the	'.txt'	files	from	subdirectories	will	be	copied	also.

If	D:\tmp	does	not	exist,	'ROBOCOPY'	will	create	the	directory!

'ROBOCOPY'	has	many	possibilities.	To	give	a	last	example:
D:\test>ROBOCOPY	/S	/E	D:\test	D:\tmp	[ENTER]

copies	all	files	and	subdirectories	('/S'),	empty	ones	inclusive	('/E')!

7.	The	‘DEL’	command	and	Glob	patterns

Use	the	'DEL'	command	to	delete	data.	Warning:	handle	the	'DEL'	command	with	care.
And	you	should	use	Glob	patterns	cautiously	with	the	'DEL'	command.	In	special	cases,
the	shell	will	ask	you	to	confirm	a	deletion.	But	do	not	rely	on	this!

Tip:	sometimes	you	could	use	the	switch	'/P'	that	prompts	you	for	confirmation	before
deleting	a	file.	Of	course,	this	is	not	what	you	want	when	deleting	many	files.

7.1	Delete	files	from	the	current	directory

To	delete	or	erase	file1.txt,	file2.txt,	file2.dat	and	file3.txt	from	our	example	directory
D:\test,	we	could	type:
D:\test>DEL	file?.*	[ENTER]

(as	we	saw	earlier)

Another	example:	the	command
D:\test>DEL	*.jpg	[ENTER]

will	delete	all	image	files	with	extension	'.jpg'	from	our	example	directory.

To	delete	also	files	with	the	attribute	read-only,	you	have	to	add	the	switch	'/F'	as	a
parameter	to	the	'DEL'	command.
D:\test>DEL	/F	*.jpg	[ENTER]

7.2	Delete	files	from	the	subdirectory	‘my	Doc’	-1

The	command
D:\test>CD	"my	Doc"	[ENTER]

results	in	the	prompt
D:\test\my	Doc>

To	erase	all	files	in	the	subdirectory	‘my	Doc’,	type
D:\test\my	Doc>DEL	*	[ENTER]

The	character	*	refers	to	all	files	in	the	subdirectory	‘my	Doc’.

7.3	Delete	files	from	the	subdirectory	‘my	Doc’	-2

The	steps	in	the	last	example	'CD	"my	Doc"'	and	'DEL	*'	could	be	combined	into	one
line	of	code:
D:\test>CD	"my	Doc"	&	DEL	*	[ENTER]

or	shorter
D:\test>CD	m*	&	DEL	*	[ENTER]

where	'm*'	refers	to	the	subdirectory	‘my	Doc’.

Notice	that	this	code	does	not	work	if	another	subdirectory	with	the	first	letter	‘m’	exists,
e.g.	myBackup.

7.3.1	An	alternative

The	last	examples	consisted	of	several	steps,	that	are	combined.	In	case	of	'DEL',	there	is
an	easier	alternative:
D:\test>DEL	"my	Doc"*	[ENTER]

or	still	shorter
D:\test>DEL	"my	Doc"	[ENTER]

Notice	that	the	subdirectory	will	not	be	erased;	only	the	files	will	be	deleted.
D:\test>RD	"my	Doc"	/S	[ENTER]

will	erase	the	subdirectory	‘my	Doc’	and	all	its	files	('RD'	is	an	abbreviation	of	Remove
Directory;	for	also	deleting	subdirectories,	the	switch	'/S'	is	necessary).

7.3.2	ROBOCOPY

'ROBOCOPY'	is	very	efficient	in	deleting	files	and	(sub)directories.

With	the	switches	'/MOV	/S	/E'	you	copy	the	files	from	the	source	to	the	destination	and
after	copying	you	delete	the	source	files.
D:\test>ROBOCOPY	/MOV	/S	/E	D:\test	D:\test_backup	[ENTER]

With	the	/MOVE	switch,	you	can	delete	both	files	and	directories.	Be	careful	with	this
command!

Before	studying	the	'REN'	command	in	depth	(chapter	9),	which	will	show	you	the	power
of	the	command	line,	we	first	have	a	closer	look	at	the	combining	of	commands.

8.	Passing	multiple	commands

In	7.3	we	used	the	character	'&'	to	execute	two	commands	in	a	single	line.
D:\test>CD	"my	Doc"	&	DEL	*	[ENTER]

The	shell	runs	the	first	command	('CD')	and	then	-unconditionally-	the	second	command
('DEL').	‘Unconditionally’	means	regardless	the	result	of	the	'CD'	command.	So,	this	can
be	tricky.	Better	is	to	use	two	other	passing	methods	with	the	conditional	processing
symbols	‘&&’	and	‘||’.
D:\test>CD	"my	Doc"	&&	DEL	*	[ENTER]

Instead	of	'&'	we	use	'&&'.	It	means	that	the	shell	runs	the	first	command	('CD').	And
only	if	the	first	command	completed	successfully,	it	runs	the	second	command	('DEL').	So
the	following	code	will	not	run:
D:\test>CD	"my	DirNonExist"	&&	DEL	*	[ENTER]

The	third	passing	method	uses	‘||’.
D:\test>CD	"my	DirNonExist"	||	DEL	*	[ENTER]

The	shell	will	run	the	second	command	only	if	the	first	command	fails.	In	this	example	it
means	that	all	files	of	D:\test	will	be	deleted!	So	handle	with	care!

9.	The	‘REN’	or	‘RENAME’	command

To	start,	the	'REN'	command	has	a	bug:	in	special	cases	files	get	renamed	twice	(or	even
three	times).	We	avoid	this	by	a	trick	(see	chapter	10).

9.1	Change	subdirectory	name

Perform	this	command:
D:\test>REN	"my	Doc"	"my	Doc	Backup"	[ENTER]

Type
D:\test>DIR	[ENTER]

and	you’ll	see	that	the	subdirectory	‘my	Doc	Backup’	exists	and	‘my	Doc’	doesn’t.

Remember	that	it	is	a	good	idea	to	surround	‘names’	with	space(s)	by	double	quotation
marks	(double	apostrophes).

An	alternative	command	is:
D:\test>MOVE	"my	Doc"	"my	Doc	Backup"	[ENTER]

9.2	Change	file	extensions

A	simple	example:	change	the	extension	'.txt'	into	'.dat'
D:\test>REN	file3.txt	file3.dat	[ENTER]

In	case	of	a	bulk	rename,	you	should	use
D:\test>REN	*.txt	*.dat	[ENTER]

It	means	that	all	files	with	the	extension	'.txt'	will	get	the	extension	'.dat'.

To	change	the	extension	of	every	(!)	file,	use
D:\test>REN	*	*.txt	[ENTER]

9.3	Modify	filenames	from	the	current	directory:	basic
examples

To	change	the	filename	‘file1.txt’	into	‘file1_1.txt’,	type:
D:\test>REN	file1.txt	file1_1.txt	[ENTER]

The	'.txt'	files	in	our	example	directory	have	the	filenames:	‘file1.txt’,	‘file2.txt’	and
‘file3.txt’.	To	uppercase	the	first	letter	‘f’	of	these	filenames:
D:\test>REN	f*.txt	F*.txt	[ENTER]

Swap	the	parameters	to	lowercase	the	first	character	of	a	filename.

Use	the	wildcard	?	to	change	the	first	letter	of	filenames	with	the	extension	'.txt'.
D:\test>REN	?*.txt	T*.txt	[ENTER]

So	‘file1.txt’	will	be	renamed	into	‘Tile1.txt’.

Use	the	wildcard	??	for	the	change	of	the	first	two	letters	of	filenames	with	the	extension
'.txt':
D:\test>REN	??*.txt	Ta*.txt	[ENTER]

So	‘file1.txt’	will	be	renamed	into	‘Tale1.txt’.

Change	the	second	letter	of	filenames	with	the	extension	'.txt':
D:\test>REN	?i*.txt	?a*.txt	[ENTER]

So	‘file1.txt’	will	be	renamed	into	‘fale1.txt’.

Notice	that
D:\test>REN	*i*.txt	*a*.txt

with	an	*	at	the	beginning	of	the	pattern	will	not	work.	To	replace	the	letter	‘i’	by	an	‘a’
regardless	its	position,	we	have	to	use	the	'FOR'	loop	(Chapter	10).

9.4	Truncate	a	filename	by	using	‘?’

The	command
D:\test>REN	???*.txt	???.txt	[ENTER]

truncates	the	filename	of	all	'.txt'	files	to	the	first	three	characters	(three	question	marks
???).	So:	‘1_file.txt’	will	be	‘1_f.txt’.

9.5	Modify	filenames	in	the	subdirectory	‘my	Doc’:	basic
example

To	rename	‘doc	1.rtf’	to	‘doc_1.rtf’	in	subdirectory	‘my	Doc’:
D:\test>CD	"my	Doc"	[ENTER]

D:\test\my	Doc>REN	"doc	1.rtf"	doc_1.rtf	[ENTER]

Of	course,	this	can	be	done	in	one	command	as	well:
D:\test>CD	"my	Doc"	&	REN	"doc	1.rtf"	doc_1.rtf	[ENTER]

or
D:\test>REN	"my	Doc"\"doc	1.rtf"	doc_1.rtf	[ENTER]

10.	More	complex	replacements

To	replace	a	character	regardless	of	its	position,	to	add	a	prefix	or	to	add	a	suffix,	we	could
use	the	'FOR'	loop.

It’s	recommended	to	add	the	command	'LFNFOR	On'	to	enable	Long	file	name	support:
LFNFOR	On	&	FOR	%i	IN	(set)	DO	command	[command	parameters]

For	brevity,	we	omit	'LFNFOR	On'	in	the	next	examples.

10.1	Add	a	prefix	to	filenames	with	the	same	characters	at
the	beginning

D:\test>FOR	%i	IN	(file*.txt)	DO	REN	%i	prefix_%i	[ENTER]

The	result	is	that	e.g.	‘file1.txt’	is	renamed	to	‘prefix_file1.txt’.

The	command
D:\test>FOR	%i	IN	(file*.*)	DO	REN	%i	prefix_%i	[ENTER]

also	renames	‘file2.dat’	to	‘prefix_file2.dat’.

10.2	Add	a	prefix	to	filenames	with	the	same	extensions

The	command
D:\test>FOR	%i	IN	(*.txt)	DO	REN	%i	prefix_%i	[ENTER]

makes	the	'REN'	bug	visible.	In	case	of	our	three	example	files	with	filenames	‘file1.txt’,
‘file2.txt’	and	‘file3.txt’,	the	result	will	be:

prefix_file2.txt
prefix_file3.txt
prefix_prefix_file1.txt

To	avoid	the	last	incorrect	filename,	we	use	a	little	trick:
D:\test>FOR	%i	IN	(*.txt)	DO	REN	%i	prefix_%i.tmp	&	REN	*.txt.tmp	*.

[ENTER]

What	does	it	do?	‘file1.txt’	will	be	renamed	to	‘prefix_file1.txt.tmp’,	‘file2.txt’	to
‘prefix_file2.txt.tmp’	etc.	The	command	'REN	*.txt.tmp	*.'	renames	all	extensions
'.txt.tmp'	back	to	'.txt'.

In	chapter	11	we’ll	use	the	alternative	command	'FORFILES'.

10.3	Add	a	suffix	to	filenames	with	the	same	extensions

Here	we	can	avoid	a	'FOR'	loop:
D:\test>REN	*.txt	?????_suffix.txt.tmp	&	REN	*.txt.tmp	*.	[ENTER]

The	number	of	?	equals	the	maximum	number	of	characters	of	the	original	filename.	So,
‘file1.txt’	will	be	renamed	into	‘file1_suffix.txt’.

In	case	of	renaming	file1.txt,	file222.txt	and	file33333.txt,	the	number	of	?	characters
equals	the	number	of	characters	of	the	longest	filename:	file33333,	i.e.	9	characters.
D:\test>REN	*.txt	?????????_suffix.txt.tmp	&	REN	*.txt.tmp	*.	[ENTER]

So,	‘file1.txt’	will	be	renamed	into	‘file1_suffix.txt’,	‘file222.txt’	into	‘file222_suffix.txt’
and	‘file33333.txt’	into	‘file33333_suffix.txt’.

In	chapter	11	we’ll	use	the	alternative	command	'FORFILES'.

10.4	Substitute	a	character	in	a	specific	position

To	substitute	a	character	in	the	1st	and	3rd	positions	prior	to	the	extension	'.txt',	type:
D:\test>REN	*.txt	F?L*.txt	[ENTER]

So	‘file1.txt’	will	be	renamed	in	‘FiLe1.txt’	and	‘temp.txt’	into	‘FeLmp.txt’.

A	2nd	or	3rd	character	will	be	added	if	these	characters	don’t	exist:	the	file	‘1.txt’	will	be
changed	into	‘FLL.txt’.

11.	The	command	‘FORFILES’

A	very	useful	command	for	batch	processing	is	'FORFILES'.	It	executes	a	command	on
each	file	that	is	selected.	An	interesting	feature	is	that	you	are	able	to	select	files	on	a
timestamp.

The	complete	syntax	is:
FORFILES	[/P	Path]	[/M	SearchMask]	[/S]	[/C	Command]	[/D	[+	|	-]	{date	|

dd}]

which	is	really	puzzling.	So	let’s	extract	what	we	need.
FORFILES	[/P	Path]	[/M	SearchMask]	[/C	Command]

where	'[/P	Path]'	refers	to	the	Path	to	search.	If	we	use	the	default,	i.e.	the	current
directory,	the	syntax	will	be	still	easier	to	understand:
FORFILES	[/M	SearchMask]	[/C	Command]

With	'[/M	SearchMask]',	you	specify	a	search	mask	for	selecting	files.	The	default	is	*.*
and	refers	to	all	files.

The	command	parameter	'[/C	command]'	is	used	to	execute	some	command	on	each	file.
The	default	is	"cmd	/c	echo	@file"	(with	double	quotes!)	where	'@file'	is	the	name	of
the	file.	Several	command	variables	can	be	used	in	the	command	string.	The	most
important	commands	for	now	are:

'@file':	the	name	of	the	file
'@fname':	the	filename	without	extension
'@ext':	only	the	extension	of	the	file

Let’s	have	a	look	at	some	examples.

11.1	Add	a	prefix	to	filenames

Type:
D:\test>FORFILES	/M	*.txt	/C	"cmd	/c	REN	@file	PREFIX_@file"	[ENTER]

All	text	files	will	now	have	a	filename	that	starts	with	“PREFIX_”.

11.2	Add	a	suffix	to	filenames

Type:
D:\test>FORFILES	/M	*.txt	/C	"cmd	/c	REN	@file	@fname_SUFFIX@ext"	[ENTER]

All	text	files	will	have	now	a	filename	that	ends	with	“_SUFFIX”.

11.3	Modifying	filenames	in	the	current	directory	and	its
subdirectories

Do	you	also	want	to	change	the	filenames	in	subdirectories?	Just	add	the	'/S'	parameter
to	the	command.

So	to	extend	filenames	of	text	files	in	the	current	directory	and	its	subdirectories	with	a
suffix,	type:
D:\test>FORFILES	/S	/M	*.txt	/C	"cmd	/c	rename	@file	@fname_SUFFIX@ext"

[ENTER]

11.4	Select	files	on	a	date

Adding	'/D	-dd'	to	the	'FORFILES'	command	makes	it	possible	to	select	files	older	than
'dd'	days	(basis:	the	current	date).	A	valid	'dd'	number	of	days	can	be	any	number	in	the
range	of	0	to	32768(=89	years).

Make	first	a	subdirectory	‘backup’:
D:\test>MD	backup	[ENTER]

To	backup	all	text	files	in	the	current	directory	that	were	created/modified	more	than	three
days	ago,	type:
D:\test>FORFILES	/M	*.txt	/C	"cmd	/c	COPY	@file	D:\test\backup"	/D	-3

[ENTER]

Or	before	a	specific	date:
D:\test>FORFILES	/M	*.txt	/C	"cmd	/c	COPY	@file	D:\test\backup"	/D

-01/01/2016	[ENTER]

(Maybe	you	have	to	adapt	the	date	format,	e.g	01-01-2016)

To	backup	all	text	files	in	the	current	directory	created/modified	after	1st	January	2016,
type
D:\test>FORFILES	/M	*.txt	/C	"cmd	/c	COPY	@file	D:\test\backup"	/D

+01/01/2016	[ENTER]

(with	the	plus	sign	before	the	date.	The	‘+’	could	be	omitted	because	it	is	default).

11.5	List	files	and	export	the	list	to	a	file

The	switch	'/D'	can	be	put	anywhere	in	the	command,	that	can	be	fine	for	readability.
Example:	to	select	all	files	in	the	current	directory	that	were	created/modified	more	than	a
day	ago	and	export	the	result	to	a	file,	type:
D:\test>FORFILES	/M	*.*	/D	-1	/C	"cmd	/C	ECHO	@file"	>	D:\test\result.txt

[ENTER]

12.	Batch	files

If	a	command	line	is	too	long,	it	will	be	difficult	to	read	and	to	understand.	In	this	case,
you	should	use	a	batch	file.	Some	examples.

12.1	Add	a	sequential	number	to	filenames:	prefix

Open	Notepad,	enter	the	following	code	and	save	the	file	to	‘number1.bat’	(in	directory
‘test’)

@echo	off

setlocal	EnableDelayedExpansion

SET	i=0

FOR	/f	"usebackq	tokens="	%%f	in	(*.txt)	DO	(

				SET	/a	i+=1

				REN	"%%f"	"!i!%%f.tmp"

)

REN	*.tmp	*.

To	run	this	file,	type	at	the	prompt	the	filename	‘number1.bat’	and	press	Enter.
D:>\test\number1.bat	[ENTER]

Some	explanations:

a.	The	command	@echo	off	means:	‘do	not	display	the	commands	in	this	file	on	the
screen’
b.	setlocal	EnableDelayedExpansion:	the	value	of	variables	that	are	modified	inside	the
'FOR'	command	are	taken	by	enclosing	their	names	in	exclamation-marks.	Otherwise,
variable	i	will	always	has	the	value	0	(in	this	case:	‘SET	i=0’).
c.	For	filenames	with	spaces,	add	"usebackq	tokens=".
d.	A	variable	in	a	batch	file	is	represented	by	%%variable	(instead	of	%variable).	So	with
two	percent	signs	instead	of	one.

12.2	Add	a	sequential	number	to	filenames:	suffix

Open	Notepad,	enter	the	following	code	and	save	the	file	to	‘number2.bat’	(in	directory
‘test’)

@echo	off

setlocal	EnableDelayedExpansion

SET	i=0

FOR	/f	"usebackq	tokens="	%%f	in	(*.txt)	DO	(

				SET	/a	i+=1

				REN	"%%f"	"%%~nf!i!.tmp"

)

REN	*.tmp	*.txt

To	run	this	file,	type	at	the	prompt	the	filename	‘number2.bat’	and	press	Enter.
D:>\test\number2.bat	[ENTER]

Explanation:

%%~nf	expands	%%f	to	a	filename	only.	For	more	info,	enter	FOR	/?	at	the	prompt.
For	filenames	with	spaces,	add	"usebackq	tokens=".

12.3	Add	a	sequential	number	as	suffix	to	filenames	in	sorted
order

Open	Notepad,	enter	the	following	code	and	save	the	file	to	‘number3.bat’	(in	directory
‘test’)

@echo	off

setlocal	EnableDelayedExpansion

SET	i=0

FOR	/f	"usebackq	tokens="	%%f	in	(DIR	"*.txt"	/B	/O:N)	DO	(

				SET	/a	i+=1

				REN	"%%f"	"%%~nf!i!.tmp"

)

REN	*.tmp	*.txt

To	run	this	file,	type	at	the	prompt	the	filename	‘number3.bat’	and	press	Enter.
D:>\test\number3.bat	[ENTER]

Explanation:
the	command	'DIR	/B'	results	in	a	sorted	bare	list	of	files,	sorted	by	the	switch	'/O:N'.

12.4	Command	line	parameters	batch	files

Batch	files	are	handy	tools.	However,	they	can	have	security	issues,	e.g.	when	using
command	line	arguments.	I	recommend	to	read	:

www.robvanderwoude.com/battech_inputvalidation_commandline.php

The	website	www.robvanderwoude.com	gives	a	lot	of	information,	including	a	tutorial	on
batch	files.

http://www.robvanderwoude.com/battech_inputvalidation_commandline.php
http://www.robvanderwoude.com

13.	Tips	and	tricks

Last	but	not	least:	in	the	next	chapters,	I’ll	give	you	some	useful	tips	and	tricks.

13.1	Make	files	read-only

To	set	the	file	attribute	to	read-only	(as	the	name	suggests:	the	file	can	be	read	from,	but
not	written	to),	use	the	command	'ATTRIB':
D:\test>ATTRIB	+r	"my	Doc"\doc2.rtf	[ENTER]

Notice	the	parameter	'+r'	(plus	sign).	Of	course,	with	Glob	patterns	you	can	easily
change	more	than	one	file.	In	the	next	example	all	files	with	the	extension	'.rtf'	in
subdirectory	‘my	Doc’	are	made	read-only:
D:\test>ATTRIB	+r	"my	Doc"*.rtf	[ENTER]

13.2	Remove	read-only	attribute

To	remove	the	read-only	attribute	of	files,	use	the	command	'ATTRIB'	with	parameter	‘-r‘
(minus	sign)	:
D:\test>ATTRIB	-r	"my	Doc"*.rtf	[ENTER]

13.3	Show	read-only	files

Use	the	'DIR'	command	with	the	switch	'/A:R'	to	show	read-only	files:
D:\test>DIR	/A:R	[ENTER]

13.4	(un)Hiding	a	file

To	hide	a	file	in	the	subdirectory	‘my	Doc’	with	the	command	'ATTRIB'	and	parameter
‘+h’	(plus	sign):
D:\test>ATTRIB	+h	"my	Doc"\file1.txt	[ENTER]

To	unhide	a	file:
D:\test>ATTRIB	-h	"my	Doc"\file1.txt	[ENTER]

So	'ATTRIB'	and	parameter	‘-h’	(minus	sign)

Delete	all	hidden	files	(Is	this	really	a	clever	action?	Never	use	this	command	unless	you
are	sure	what	you	do!):
DEL	/A:H	"my	Doc"*.txt	[ENTER]

You	can	also	hide	a	directory	with	the	'ATTRIB'	command!

13.5	Secure	file	deletion

In	Linux,	I	use	the	‘shred’	command	to	delete	files	permanently.	Via	the	Windows
Command	Line	you	can	also	do	some	secure	file	deletion:	firstly	you	turn	an	existing	file
into	a	zero-byte	file,	secondly	you	delete	the	file	via	the	'DEL'	command	and	thirdly	you
run	the	'CIPHER'	command:
D:\test>TYPE	nul	>file1.txt	&&	DEL	file1.txt	[ENTER]

(Use	the	'FOR'	command	to	delete	more	than	one	file).

After	deleting	your	files,	you	run	the	'CIPHER'	command	that	will	overwrite	deleted	files,
i.e.	free	disk	space,	maybe	freeing	up	some	extra	disk	space.
D:\test>CIPHER	/w:D:\test	[ENTER]

In	one	command	line:
D:\test>TYPE	nul	>file1.txt	&&	DEL	file1.txt	&&	CIPHER	/w:D:\test	[ENTER]

An	alternative	is	the	command	line	tool	SDelete:
https://technet.microsoft.com/en-us/sysinternals/bb897443

Tip:	run
D:\test>CIPHER	/?	[ENTER]

for	lots	of	information	on	the	'CIPHER'	command!

https://technet.microsoft.com/en-us/sysinternals/bb897443

13.6	Copy	from	the	Windows	Command	Prompt	to	the
Clipboard

If	you	enable	QuickEdit	Mode,	you	can	copy	text	from	the	Windows	Command	Prompt
and	paste	it	in	a	document	e.g.	Notepad.	To	enable	Quickedit	Mode,

a.	do	a	right-mouse	click	on	the	title	bar:	a	dialog	pops	up
b.	select	Properties
c.	check	the	‘QuickEdit	Mode’	box
d.	close	the	dialog

Select	some	text	by	dragging	a	box	around	your	text	and	do	a	right-mouse	click	(or	press
Enter):	the	text	is	copied	to	the	Clipboard.	With	CTRL+V	you	can	paste	the	text	into	e.g.
Notepad.

13.7	Copy	output	command	to	the	Clipboard

To	copy	the	output	of	a	command	to	the	Clipboard,	type:
D:\test>DIR	|	CLIP	[ENTER]

(notice	that	this	will	not	work	on	XP)

13.8	Save	output	command	to	a	file

For	your	convenience,	here	the	command	again	to	save	the	output	of	a	command	into	a
file	using	the	redirection	operator	>
D:\test>DIR	>	result.txt	[ENTER]

13.9	‘TASKLIST’	and	‘TASKKILL’

To	end	one	or	more	processes	by	the	command	'TASKKILL',	you	need	a	process	id	(PID)
or	a	so	called	‘imagename’.	To	get	this	information,	you	have	to	run	'TASKLIST'.
Example:	start	notepad	and	type:
D:\test>TASKLIST	[ENTER]

In	my	case,	notepad.exe	(notice	the	column	name:	‘imagename’)	has	process	id	4324.	You
can	end	this	process	in	two	ways.	The	first	way	is	with	the	switch	/IM	and	‘imagename’	as
command	parameter:
D:\test>TASKKILL	/IM	notepad.exe	[ENTER]

The	second	way	has	the	switch	/PID	and	the	process	id	as	parameter:
D:\test>TASKKILL	/PID	4324	[ENTER]

In	both	cases,	multiple	processes	can	be	killed.	In	case	of	/IM	you	can	use	Glob	patterns.

The	command
D:\test>TASKLIST	|	FIND	"cmd"	[ENTER]

displays	the	PID	of	your	CMD-window	in	the	second	column.

Notice	that	home	editions	of	Windows	do	not	have	'TASKKILL'.	You	should	use	'TSKILL'
instead.

13.10	Use	functions	keys

The	most	popular	function	keys	in	the	Windows	Command	Line	window	for	me	are:

F3:	it	pastes	the	last	command	(see	also	the	explanation	of	F8)
F7:	it	shows	a	list	of	previous	commands:	select	a	command	and	press	Enter	in	order	to
run	the	selected	command.
F8:	press	F8	one	or	more	times	for	pasting	commands	from	your	command	history;	this
can	also	be	done	by	up	and	down	arrow	keys.

14.	Command	Prompt	replacement

ConEmu	is	an	interesting	alternative	for	the	Windows’	built-in	Command	Prompt.	It	had	a
lot	of	options	and	is	highly	customizable	(do	a	right-mouse	click	on	the	title	bar	of
ConEmu).

Download	the	.7z	file	from
https://conemu.github.io/

unpack	it	into	any	directory	and	double-click	the	ConEmu.exe	or	ConEmu64.exe	with	the
left	mouse	button.

https://conemu.github.io/

15.	Help

All	commands	are	documented	on	the	web	(2)	but	also	offline.	Type	at	the	prompt	a
command	with	the	switch	/?

If	you	type
D:\test>CD	/?	[ENTER]

you’ll	get	information	on	the	command	'CD'.

To	find	which	commands	are	available,	type:
D:\test>HELP	[ENTER]

16.	Why	use	the	Windows	Command	Line?

Is	it	necessary	to	use	Windows	Command	Line	or	batch	scripts?	It	depends.	There	are
several	tasks	that	can	be	done	better	with	the	Windows	Command	Line	than	within
Windows	Explorer.

However,	if	your	tasks	are	rather	complex,	I	would	recommend	learning	a	programming
language	like	C	or	newLisp.

Or	if	you	like	a	very	user-friendly	programming	software,	I	suggest	the	very	nice	RAD-
tool	with	a	relatively	easy	scripting	language:	Neobook	(www.neosoftware.com).	I	use
Neobook	for	many	years	now,	when	making	Windows	applications	(e.g.	my	MC
Musiceditor	-	www.mcmusiceditor.com).	Many	plugins	that	enhances	the	Neobook
applications,	are	available	as	well.	Of	course,	within	Neobook	you	can	run	Windows
commands	and	batch	files	as	we	have	seen	in	this	ebook.

So	give	Neobook	a	try,	if	you	will	develop	your	own	Windows	tools	(3).

http://www.neosoftware.com
https://www.mcmusiceditor.com

17.	Colophon

Copyright	2016	by	Reinier	Maliepaard

The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make	no
expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or
omissions.	No	liability	is	assumed	for	incidental	or	consequential	damages	in	connection
with	or	arising	out	of	the	use	of	the	information	or	programs	contained	herein.

The	text	of	this	ebook	was	put	in	separate	HTML-files,	that	were	converted	into	the
MOBI-format	with	the	KindleGen	command	line	tool	of	Amazon.

If	you	enjoyed	this	ebook,	please	write	a	review	on	Amazon.	If	you	would	like	to
comment,	send	an	email	to
reinier[dot]maliepaard[at]gmail[dot]com

Thanks	for	buying	this	ebook!

18.	Notes

(1)	Read	my	former	ebook	‘Switching	lanes:	heading	towards	Linux	(Knoppix)’,	available
on	amazon.com	
(2)	See	technet.microsoft.com/en-us/library/bb490890.aspx	and	also	ss64.com/nt	for	the
distinction	between	internal	and	external	commands.	
(3)	Neobook	applications	run	fine	with	Wine	under	Linux.

https://technet.microsoft.com/en-us/library/bb490890.aspx
http://ss64.com/nt/index.html

	Table of Contents
	1. Why an ebook on the Windows Command Line?
	2. Make an example directory
	3. A little exercise: open the Windows Command Prompt window and go to the example directory
	3.1 The prompt
	3.2 Moving into a (sub)directory
	4. Pattern-matching
	5. Command 'DIR' and Glob pattern
	6. The 'COPY' command and Glob patterns
	6.1 Copy files from the current directory into a subdirectory
	6.2 Copy files from the current directory into a subdirectory in binary mode
	6.3 Combine ASCII-files and put the result into a subdirectory
	6.4 Combine binary files and put the result into a subdirectory
	6.5 Are the files copied correctly?
	6.6 Copy a selection of files with the 'FOR' loop
	7. The 'DEL' command and Glob patterns
	7.1 Delete files from the current directory
	7.2 Delete files from the subdirectory 'my Doc' -1
	7.3 Delete files from the subdirectory 'my Doc' -2
	7.3.1 An alternative
	7.3.2 ROBOCOPY
	8. Passing multiple commands
	9. The 'REN' or 'RENAME' command
	9.1 Change subdirectory name
	9.2 Change file extensions
	9.3 Modify filenames from the current directory: basic examples
	9.4 Truncate a filename by using '?'
	9.5 Modify filenames in the subdirectory 'my Doc': basic example
	10. More complex replacements
	10.1 Add a prefix to filenames with the same characters at the beginning
	10.2 Add a prefix to filenames with the same extensions
	10.3 Add a suffix at the end of filenames with the same extensions
	10.4 Substitute a character in a specific position
	11. The command 'FORFILES'
	11.1 Add a prefix to filenames
	11.2 Add a suffix to filenames
	11.3 Modifying filenames in the current directory and its subdirectories
	11.4 Select files on a date
	11.5 List files and export the list to a file
	12. Batch files
	12.1 Add a sequential number to filenames: prefix
	12.2 Add a sequential number to filenames: suffix
	12.3 Add a sequential number as suffix to filenames in sorted order
	12.4 Command line parameters batch files
	13. Tips and tricks
	13.1 Make files read-only
	13.2 Remove read-only attribute
	13.3 Show read-only files
	13.4 (un)Hiding a file
	13.5 Secure file deletion
	13.6 Copy from the Windows Command Prompt to the Clipboard
	13.7 Copy output command to the Clipboard
	13.8 Save output command to a file
	13.9 'TASKLIST' and 'TASKKILL'
	13.10 Use functions keys
	14. Command Prompt replacement
	15. Help
	16. Why use the Windows Command Line?
	17. Colophon
	18. Notes

