

By	Acodemy

©	Copyright	2015
All	rights	reserved.	No	portion	of	this	book	may	be	reproduced	–	mechanically,
electronically,	or	by	any	other	means,	including	photocopying	without	the	permission	of
the	publisher

LEARN	SQL	IN	A	DAY
The	Ultimate	Crash	Course	to	Learning	the

Basics	of	SQL	in	No	Time

Disclaimer
The	information	provided	in	this	book	is	designed	to	provide	helpful	information	on	the	subjects	discussed.	The	author’s
books	are	only	meant	to	provide	the	reader	with	the	basics	knowledge	of	a	certain	topic,	without	any	warranties
regarding	whether	the	student	will,	or	will	not,	be	able	to	incorporate	and	apply	all	the	information	provided.	Although
the	writer	will	make	his	best	effort	share	his	insights,	learning	is	a	difficult	task	and	each	person	needs	a	different
timeframe	to	fully	incorporate	a	new	topic.	This	book,	nor	any	of	the	author’s	books	constitute	a	promise	that	the	reader
will	learn	a	certain	topic	within	a	certain	timeframe.

Table	of	Contents
Chapter	1	–	Introduction	to	SQL

Chapter	2	–	Tables

Chapter	3	–	User	Variables

Chapter	4	–	Reading	Data

Chapter	5	–	Deleting	Data

Chapter	6	–	Changing	Data

Chapter	7	–	Adding	Data

Chapter	8	–	Joining	Tables

Chapter	9	–	Aggregating	Data

Chapter	10	–	Subqueries

Chapter	11	–	Cursors	and	Views

Chapter	12	–	Security	and	Users

Chapter	13	–	Applications	and	SQL

Chapter	14	–	Your	First	Web	Page

Chapter	1	–	Introduction	to	SQL
	

Chapter	Objective:	Understand	why	SQL	is	important,	why	you	need	to	know	it,	and
what	it’s	used	for.	This	chapter	is	mainly	an	introduction	to	SQL	and	its	purpose	in	web
programming	and	design.

	

	

Whether	you	want	to	just	own	a	website	or	get	into	the	nitty	gritty	of	web	design	and
programming,	you	will	undoubtedly	need	to	know	SQL.	Structured	Query	Language
(SQL)	is	the	language	of	databases.	There	are	different	flavors	of	the	language	depending
on	the	platform	that	you	use.	This	eBook	will	focus	on	the	MySQL	platform,	but	there	are
slight	differences	between	T-SQL	(Microsoft)	and	PL-SQL	(Oracle).	As	long	as	you	learn
one	platform,	you	can	intelligently	write	SQL	code	for	other	platforms.

	

Why	You	Need	to	Use	SQL?

	

In	the	1990s,	webmasters	could	use	just	static	HTML	page.	A	static	HTML	page	displays
information	to	the	viewer	without	changing	content.	If	you	had	a	list	of	products	to
display,	you	had	to	code	HTML	for	each	of	these	products	on	the	page.	If	you	added	a	new
product,	you	had	to	recode	the	page	to	add	your	new	product.	This	could	get	tedious	if	you
have	thousands	of	products.

	

SQL	lets	you	dynamically	create	web	pages.	You	can	have	1000	products	in	your
database,	and	SQL	allows	you	to	use	a	few	lines	of	code	to	display	it	on	the	page.	You
must	you	a	dynamic	language	on	your	server,	but	this	eBook	focuses	on	the	backend
database	SQL	language.

	

Currently,	most	dynamic	web	pages	use	some	form	of	SQL.	No	other	solution	offers	the
security,	performance,	and	resilience	of	a	SQL	platform.	You	could	use	a	list	of	products
in	a	file	and	upload	it	to	your	server,	but	this	method	does	not	have	the	security	and
performance	of	a	SQL	database.

	

For	this	reason,	you	need	SQL	if	you	want	to	manage	or	create	web	pages.	Understanding
web	programming	and	SQL	go	hand-in-hand.	You	can’t	code	a	dynamic	web	page	without
running	across	some	form	of	SQL.	For	programmers,	understanding	SQL	is	a	must-have
in	an	arsenal	of	coding	languages.	For	webmasters,	understanding	SQL	greatly	improves
their	understanding	of	the	way	their	website	is	managed.	Knowing	SQL	will	even	help
average	webmasters	who	know	a	little	bit	about	code	to	fix	their	own	problems	instead	of

relying	on	a	third-party.

	

Another	reason	to	know	SQL	is	troubleshooting	issues.	For	instance,	your	web	page	only
displays	100	products	out	of	1000	you’ve	stored	in	a	database.	To	troubleshoot	this	issue,
you	first	look	at	your	database	SQL	coding	to	understand	if	the	root	cause	is	indeed	caused
by	the	database	programming.

	

You	might	want	a	quick	report	on	the	performance	of	your	sales	funnel.	You	might	want	to
see	a	list	of	customers	and	their	associated	orders.	You	would	do	this	using	the	SQL
language	directly	in	your	database.	SQL	has	several	uses,	and	webmasters	should
understand	its	use	when	they	need	to	manage	a	customized	website.

	

What	is	SQL	Used	For?

	

SQL	is	used	to	make	your	website	dynamic.	We	briefly	mentioned	in	the	previous	section
why	you	would	use	SQL.	SQL	is	the	standard	for	dynamic	websites,	but	what	exactly	does
that	mean?

	

There	are	four	main	functions	of	the	SQL	language:	Read,	Write,	Update,	and	Delete.	It
seems	simple,	but	these	statements	can	get	advanced	as	your	website	and	database	grow.
Let’s	take	a	look	at	these	four	functions	and	see	what	they	are	used	for.

	

Read

	

You	can’t	do	much	with	a	database	if	you	can’t	read	the	data.	The	SELECT	statement	is
the	SQL	language’s	“read”	statement.	It	lets	you	retrieve	records	and	review	them.	Your
website	code	retrieves	records	to	display	them	to	the	end	user	(your	customers).		Any
report	uses	a	SELECT	statement	to	read	and	calculate	your	data.

	

Write

	

At	some	point,	you	need	to	write	data	to	your	database.	When	a	customer	signs	up	with	a
new	account,	you	write	the	customer’s	information	to	the	database	and	store	it	in	your
tables.	The	write	command	is	the	INSERT	statement	in	SQL.	The	INSERT	command
stores	data	in	your	tables,	so	you	can	read	it	later.

	

Update

	

What	happens	when	your	customer	accidentally	misspells	his	name?	You	need	to	allow
that	customer	to	change	the	information	stored	in	the	database.	You	do	this	using	the
UPDATE	statement.	This	statement	allows	you	and	your	website	users	to	change	the
stored	information	in	database	tables.

	

Delete

	

The	final	statement	in	the	SQL	language	is	the	DELETE	statement.	This	statement
removes	a	record	from	the	database.	You	must	consider	constraints,	which	we	will	explain
in	future	chapters,	or	you	risk	creating	orphaned	records.	Some	database	administrators
reject	the	idea	of	ever	deleting	records	in	your	database.	For	auditing	and	security	reasons,
it’s	generally	frowned	on	to	delete	records,	but	there	are	times	when	you	need	to	use	the
DELETE	statement	for	managing	your	records	and	information.

	

Put	these	four	statements	together,	and	you	have	everything	you	need	to	work	with	your
data.	It	might	seem	simple	for	such	a	huge,	complex	platform,	but	these	four	functions	are
all	you	need	to	work	with	a	SQL	platform.	Before	you	learn	the	language	or	build	your
site,	you	first	need	to	understand	which	platform	is	right	for	you.

	

Choosing	a	SQL	Platform

	

Several	database	systems	use	the	SQL	language.	A	SQL	database	is	the	foundation	and
work	horse	for	your	site.	Once	you	ingrain	a	platform	into	your	website,	you	are	stuck
with	this	platform.	It’s	very	costly	and	time-consuming	to	change	your	database	platform,
so	you	should	choose	the	system	that	works	best	for	you.	The	backend	language	you	use
has	a	lot	to	do	with	your	choices,	but	most	mainstream	languages	work	with	any	SQL
platform.	We’ll	cover	the	three	main	database	platforms,	but	you	have	several	others	to
choose	from	on	the	market.	If	you’re	a	new	business,	you	should	probably	stick	to	a	tried
and	true	platform.	Well-known	platforms	usually	have	better	support	from	communities
and	vendors.

	

MySQL

	

MySQL	is	the	platform	we’ll	focus	on	as	we	discuss	the	SQL	language.	MySQL	is	an
open-source	database	that	powers	several	big	companies.	It’s	also	the	main	database

platform	that	works	with	common	pre-packaged	solutions	such	as	WordPress.	MySQL	has
a	majority	of	the	database	market,	because	it’s	free	for	developers	and	website	owners,
and	it	has	a	great	support	community	where	anyone	can	ask	questions	and	get	help.
Corporations	that	need	a	higher	level	of	support	pay	for	a	subscription.	This	is	how	open-
source	platforms	such	as	MySQL	make	their	revenue.

	

SQL	Server

	

Microsoft	SQL	Server	is	a	main	database	platform	for	Windows	environments.	If	you
choose	to	write	a	website	based	in	a	Microsoft	language	such	as	C#	or	VB.NET,	you
would	probably	work	with	SQL	Server.	SQL	Server	integrates	with	Windows	and
Microsoft	technology	very	well,	and	its	T-SQL	language	is	what	powers	your	database
queries.	Microsoft	is	not	open-source,	and	this	platform	can	be	more	expensive	for	a
startup.	MySQL	and	SQL	Server	programmers	are	able	to	configure	and	work	with	each
database	since	many	of	the	commands	are	similar.

	

Oracle

	

The	Oracle	database	platform	has	been	around	for	decades.	It’s	usually	a	high-end,	high-
traffic	work	horse	for	bigger	companies.	Oracle	uses	the	PL-SQL	language,	which	is	much
more	different	than	other	languages.	If	you	work	with	Java	or	large	business
environments,	you	will	probably	run	into	an	Oracle	database.	Oracle	has	the	smallest
market	share	for	general	purpose	websites	because	of	its	price.

	

There	are	several	other	platforms	on	the	market	including	PostgreSQL,	MongoDB,	and
even	small	personal	systems	such	as	Access.	You	might	need	some	consulting	if	you	are
building	a	new	website,	but	most	developers	work	with	either	MySQL	or	SQL	Server.

	

How	is	SQL	Used	in	Business?

	

SQL	is	used	in	several	industries.	It’s	also	used	with	internal	systems.	If	you	own	a
business	or	work	with	any	type	of	website,	you’ll	probably	need	to	know	SQL.	You
already	know	that	SQL	is	used	to	create	dynamic	websites,	but	it’s	used	in	several	other
business	applications.

	

First,	if	you	need	to	build	an	internal	customer	relationship	management	system	(CRM),
you	need	to	work	with	SQL.	SQL	manages	each	customer	transaction,	customer	service

tickets,	and	order	and	shipping	management.	Data	is	stored	in	tables,	which	we	will	cover
in	chapter	2.	The	data	is	manipulated	and	retrieved	using	SQL.

	

You	also	need	SQL	for	reporting.	A	SQL	database	usually	runs	on	a	very	powerful
computer,	so	reports	should	be	fast.	For	bigger	companies,	a	separate	SQL	database	is
used	specifically	for	reporting,	so	large	reports	don’t	slow	down	the	main	production
database.

	

In	this	eBook,	we	will	cover	all	aspects	of	SQL	that	you	need	to	know	to	begin	developing
websites,	reports,	or	to	simply	query	your	database	for	data.	We	show	you	the	importance
of	tables	and	storing	your	data.	We	cover	the	four	main	functions	we	described	in	the
previous	sections.	You	will	learn	how	to	read,	write,	edit	and	delete	your	data.

	

One	final	note	about	SQL	and	MySQL:	MySQL	is	a	relational	database.	This	means	that
each	table	has	related	data	to	other	tables.	We	get	into	tables	and	relationships	in	the	next
chapter,	but	it’s	important	to	note	that	MySQL	does	not	just	store	data	in	an	unorganized
fashion.	You	must	create	tables	that	organize	data	in	a	way	that	allows	the	database	to
build	relationships	between	these	tables.

	

SQL	is	mostly	queries,	so	we	show	you	how	to	write	more	advanced	queries	by	joining
your	tables,	aggregating	data,	using	cursors	to	loop	through	data,	and	security	your
applications.	Our	final	chapters	give	you	a	small	introduction	to	coding	PHP	with	a
MySQL	database	backend.	You’ll	get	to	see	SQL	at	work	and	work	with	real-life
solutions.

	

	

Lab	Questions

	

1.	When	you	want	to	read	data	from	the	database,	what	command	do	you	use?

a.	SELECT

b.	UPDATE

c.	DELETE

d.	INSERT

Explanation:	the	SELECT	statement	is	the	read	statement	for	SQL	in	any	database	engine.

	

2.	What	open-source	database	platform	is	preferred	for	its	low	cost	and	free	availability

for	webmasters?

a.	Oracle

b.	SQL	Server

c.	MySQL

d.	IIS

Explanation:	MySQL	is	affordable	and	works	with	most	application	languages.

	

3.	When	you	want	to	add	a	record	to	the	database	tables,	what	SQL	command	do	you	use?

a.	SELECT

b.	UPDATE

c.	DELETE

d.	INSERT

Explanation:	the	INSERT	statement	adds	a	record	to	a	table.	It’s	a	write	command	when
you	set	up	SQL	permissions.

	

4.	When	you	want	to	delete	a	record	from	a	database,	what	SQL	command	do	you	use?

a.	SELECT

b.	UPDATE

c.	DELETE

d.	INSERT

Explanation:	the	DELETE	statement	removes	a	record	from	a	table.

	

5.	When	you	want	to	edit	the	data	in	a	table,	what	SQL	command	do	you	use?

a.	SELECT

b.	UPDATE

c.	DELETE

d.	INSERT

Explanation:	the	UPDATE	statement	is	used	to	edit	and	change	data	in	your	table	records.

Chapter	2	–	Tables
	

Chapter	Objective:	This	chapter	explains	the	relationship	between	data	and	tables.	Tables
are	storage	holders	for	your	data.	We	explain	tables	and	explain	how	to	conceptualize	how
they	store	data.

	

	

Tables	are	database	objects	that	store	your	data.	You	design	the	tables,	so	the	quality	of
your	database	design	depends	on	your	ability	to	understand	tables,	relationships,	and	data
integrity.	Poorly	designed	tables	can	greatly	reduce	performance	on	your	database,	so	it’s
important	to	understand	the	way	tables	work	and	how	you	should	create	them.

	

Understanding	a	Database	Table	Structure

	

The	best	way	to	understand	and	learn	a	table	design	is	to	think	of	a	table	as	a	large
spreadsheet.	Most	people	have	experience	with	spreadsheet	software	such	as	Excel,	and
knowing	this	software	will	help	you	as	you	learn	table	structure.

	

Think	of	how	a	spreadsheet	is	laid	out.	You	have	columns	and	rows,	and	where	these	two
items	intercept	is	called	a	field.	A	table	is	laid	out	with	the	same	type	of	structure.	You
create	column	names	when	you	create	your	tables.	For	instance,	if	you	need	to	store	a	list
of	customers,	you	would	create	a	“first_name”	and	“last_name”	column.	Notice	that	we
used	underscores	instead	of	spaces	in	the	table	name.	This	is	standard	for	naming
procedures.

	

Each	record	you	insert	creates	a	new	row.	Think	of	the	customer	table	example	again.	You
insert	a	new	customer	named	“James	Smith.”	“James”	inserts	into	the	first_name	column,
and	“Smith”	inserts	into	the	last_name	column.	Combined	these	two	fields	make	one
record	or	one	row.

	

Understanding	Primary	and	Foreign	Keys

	

As	you	understand	tables	and	relationships	better,	you’ll	get	to	read	table	data	more
efficiently.	Just	think	of	each	table	as	a	separate	spreadsheet.	The	main	difference	is	that
each	table	has	a	relationship	with	each	other.	We	mentioned	relational	data	in	the	previous
chapter,	and	we’ll	help	you	understand	its	structure	in	this	chapter.

	

Let’s	go	back	to	the	customer	example.	You	have	a	table	with	a	list	of	customers.	You
can’t	put	all	data	into	one	table.	You	need	to	create	tables	that	match	the	different
components	of	your	application.	Let’s	say	you	need	to	store	a	list	of	orders.	You	can’t
store	orders	as	one	record	with	your	customer,	because	multiple	orders	could	be	linked	to
one	customer.	When	you	can	have	multiple	records	for	one	matching	record,	you	break
out	your	table	to	a	second	table.	In	this	example,	we	want	to	make	an	Order	table.

	

However,	we	need	to	ensure	that	each	Order	table	record	can	be	linked	with	a	customer
record.	We	place	a	foreign	key	in	the	Order	table	to	link	a	customer	with	an	order.	Here	is
a	better	representation	of	the	Order	and	Customer	tables.

	

Customer

–––––––––-

customer_id,	first_name,	last_name

	

	

Order

––––––––––

order_id,	customer_id,	product_name

	

	

Notice	that	each	table	has	an	id	column.	This	column	is	an	autoincrementing	number	that
creates	a	unique	part	of	the	record.	MySQL	will	keep	track	of	autoincrementing	numbers,
so	you	don’t	need	to.	The	database	takes	the	last	record	and	increments	it	by	1.	The	result
is	that	you	have	a	unique	field	for	each	record,	which	is	what	you	need	to	identify	a
customer	or	an	order.

	

Notice	that	the	Order	table	has	the	customer_id	field.	This	is	the	link	we	spoke	about
earlier.	This	links	the	customer	with	the	order.	Your	entire	table	structure	and	layout	will
use	these	links	to	join	relationships	between	tables.

	

The	id	fields	are	the	primary	keys	for	the	table.	A	primary	key	must	be	a	unique	field	in
the	table.	We	used	an	autoincrementing	numeric	field,	so	the	value	is	always	unique	since
MySQL	automatically	increments	the	number.	When	you	learn	to	query	this	data,	you’ll
learn	that	this	field	will	let	you	uniquely	identify	the	record	as	you	update,	retrieve	or
delete	it.

	

The	customer_id	field	in	the	Order	table	is	considered	the	foreign	key.	The	primary-
foreign	key	relationship	is	what	makes	a	relational	database.	It’s	what	links	your	tables	to
the	primary	table.	The	foreign	key	usually	has	the	same	name	as	the	field	in	the	primary
table,	but	a	database	isn’t	always	built	that	way.	The	naming	scheme	usually	depends	on
the	database	designer	unless	certain	standards	are	given	to	the	developer.

	

Creating	Tables

	

Now	that	you	have	an	understanding	of	tables,	layout	and	relationships,	you	need	to	know
how	to	create	those	tables.	The	SQL	language	has	a	specific	statement	for	creating	tables.
The	statement	can	get	complex,	but	we	just	need	to	create	a	new	customer	table.	We’re
going	to	create	a	table	to	store	our	customers.	We	know	that	we	need	a	customer	first	and
last	name	and	an	id	to	store	the	unique,	autoincrementing	numeric	primary	key.

	

Take	a	look	at	the	following	SQL	statement:

	

CREATE	TABLE	Customer	(

customer_id	INT(6)	AUTO_INCREMENT	PRIMARY	KEY,

first_name	VARCHAR(30),

last_name	VARCHAR(30)

);

	

The	CREATE	TABLE	statement	defines	the	columns	for	your	table.	The	first	column	is	an
integer,	and	as	you	can	see	from	the	statement,	it’s	autoincrementing	and	set	as	the
primary	key.	The	next	two	statements	are	the	first	and	last	name	columns.	The	SQL
language	uses	the	VARCHAR	statement	to	indicate	that	the	column	should	hold	a	variable
string.	The	first	name	could	be	5	characters	or	it	could	be	30.	The	“30”	statement	tells	the
database	that	the	maximum	number	of	characters	that	the	column	can	hold	is	30
characters.	Make	sure	you	allow	the	column	to	have	plenty	of	characters	to	support	your
application.	If	you	enter	a	first	name	that’s	40	characters,	the	database	truncates	the	value
and	gives	your	application	a	warning.

	

You’ll	notice	in	all	of	our	example	SQL	statements	that	a	semicolon	is	used	at	the	end	of
the	statement.	You	need	this	character	to	indicate	to	MySQL	that	the	end	of	a	statement	is
reached.	With	SQL	Server	T-SQL,	you	do	not	need	to	include	the	semicolon.	This	is	one
minor	difference	between	SQL	platforms.

	

Let’s	create	an	Order	table	to	keep	track	of	customer	orders.	The	following	statement
creates	an	Order	table	for	your	table	design.

	

CREATE	TABLE	Order	(

order_id	INT(6)	AUTO_INCREMENT	PRIMARY	KEY,

customer_id	INT(6),

product_name	VARCHAR(30),

FOREIGN	KEY	(customer_id)	REFERENCES	Customer(customer_id)

);

	

Notice	that	we	again	create	a	primary	key	for	the	order_id	column,	and	then	we	have	the
customer_id	column	set	as	a	foreign	key.	To	create	a	constraint	between	the	primary	and
foreign	keys,	you	must	specify	which	column	is	the	foreign	key	and	what	it	references.

	

You	might	wonder	why	you	would	create	a	constraint	at	all.	A	constraint	links	tables,	but
it	also	stops	you	from	creating	orphaned	records.	For	instance,	suppose	you	have	2	orders
linked	to	1	customer.	You	decide	to	delete	the	customer	record.	The	Order	table	no	longer
has	a	customer	reference.	The	result	is	that	your	orders	are	referenced.	For	applications,
this	results	in	data	integrity	issues	and	usually	errors	in	your	application.	With	a	primary-
foreign	constraint	set	up,	you	are	not	able	to	delete	the	customer	without	first	deleting	the
order	records.	The	result	is	better	data	integrity	for	your	database.

	

Altering	Table	Structure

	

You	can’t	expect	to	build	a	table	perfectly	during	your	first	round	of	design.	Even	if	you
do,	future	enhancements	to	your	application	will	require	you	to	add	columns	to	the	table.
Whatever	changes	you	decide	to	make	to	your	table,	you’ll	need	to	use	the	ALTER
TABLE	statement.		This	statement	lets	you	make	changes	to	the	database	structure
whether	it’s	a	change	to	primary	or	foreign	keys,	changes	in	data	type	for	a	column	or
adding	a	new	column	–	you’ll	need	to	know	the	ALTER	TABLE	statement.

	

For	instance,	let’s	say	you	want	to	add	an	order_total	column	to	the	Order	table.	You
forgot	to	include	this	column	in	the	original	CREATE	TABLE	statement,	so	you	need	to
add	a	new	column.	The	following	SQL	statement	adds	your	new	column.

	

ALTER	TABLE	Order	ADD	order_total	decimal(4,2);

	

Notice	that	we	didn’t	need	to	redefine	the	columns	we	already	created	in	the	CREATE
TABLE	statement.	We	just	need	to	use	the	ALTER	TABLE	statement	with	the	ADD
statement	to	add	a	new	column.	Since	order	totals	usually	need	decimal	values,	we	set	the
value	to	decimal	to	include	precision	in	our	table	design.	The	“4”	value	tells	MySQL	that
the	value	can	be	up	to	four	digits,	and	the	“2”	indicates	that	MySQL	should	keep	a
precision	up	to	two	decimals.

	

Deleting	Tables

	

While	it’s	not	advisable,	you	sometimes	need	to	delete	tables.	In	typical	environments,
you	would	not	delete	a	table	unless	you	knew	beyond	a	shadow	of	a	doubt	that	you	do	not
reference	the	table	anywhere	in	your	application	or	database	commands.	As	your	database
grows,	you	can’t	guarantee	that	there	is	no	reference	at	all	to	a	table,	so	most	database
administrators	leave	tables	active	instead	of	deleting	them.	When	you	delete	a	table,	you
also	delete	the	data,	so	you	can	understand	why	this	might	be	a	problem.

	

Nonetheless,	you	should	still	understand	how	to	delete	a	table	in	case	you	need	to	rid	the
system	of	the	object.

	

When	you	need	to	delete	a	table,	you	use	the	DROP	TABLE	statement.	For	instance,
suppose	you	decide	to	delete	your	Order	table,	the	following	command	applies.

	

DROP	TABLE	Order;

	

That’s	it	–	your	table	is	gone	along	with	any	of	its	data.	If	you	change	your	mind,	you	need
to	restore	the	data	and	the	table	structure	from	your	database	backup.	This	can	be	time
consuming,	and	a	table	deleted	by	mistake	can	cripple	your	application.	Some	database
administrators	test	the	need	for	the	table	by	renaming	it.	If	something	goes	wrong	when
the	table	is	renamed,	then	you	rename	the	table	back	to	its	original	name.	In	both	ways,	it
can	be	a	critical	error	on	the	database	administrator’s	part,	so	always	delete	tables	with
care.

	

Chapter	Summary

	

Tables	are	the	main	storage	components	for	your	database.	Most	people	must	sit	down	and

map	out	tables	and	database	design.	This	will	save	you	time	when	you	need	several	tables
and	aren’t	sure	how	to	design	them.	Draw	your	design	on	a	whiteboard	or	on	paper,	and
then	use	the	CREATE	TABLE	and	ALTER	TABLE	statements	to	create	your	tables.	This
chapter	covered	the	basics,	but	it	can	take	weeks	to	design	a	large	repository	of	tables.

	

	

Lab	Questions

	

1.	You	decide	you	want	to	add	a	column	to	an	existing	table	named	Order.	You	want	to
add	a	new	column	named	order_estimate.	What	is	the	correct	statement?

A.	ALTER	TABLE	Order	ADD	order_estimate	decimal(4,2);

B.	ALTER	TABLE	Order	INSERT	order_total	decimal(4,2);

C.	CREATE	TABLE	Order	ADD	order_estimate	decimal(4,2);

D.	CREATE	TABLE	INSERT	order_estimate	decimal(4,2);

Explanation:	You	use	the	ALTER	TABLE	with	the	ADD	statement	to	add	a	new	column
to	the	table.

	

2.	You	decide	to	create	a	new	Product	table.	You	want	to	create	the	table	with	two
columns	named	product_id	and	product_name.	Write	the	correct	statement	to	create	the
table.

Answer:

CREATE	TABLE	Product	(

product_id	INT(6)	AUTO_INCREMENT	PRIMARY	KEY,

product_name	VARCHAR(30)

);

Explanation:	The	CREATE	TABLE	statement	creates	a	new	table	object.	You	must	define
your	columns	and	the	column	data	types	to	properly	set	up	the	statement.

	

3.	You	decide	you	want	to	delete	the	Product	table	you	just	created.	You	know	that	nothing
refers	to	the	Product	table,	so	you	confirm	that	you	can	delete	the	table.	Write	the	proper
delete	statement	for	a	table.

Answer:

DROP	TABLE	Product;

Explanation:	the	DROP	TABLE	statement	completely	deletes	both	the	table	structure	and
the	table	data.

Chapter	3	–	User	Variables
	

Chapter	Objective:	This	chapter	helps	you	understand	the	concepts	of	user	defined
variables,	which	are	variables	you	use	in	stored	procedures	and	customized	SQL	scripts.
After	reading	this	chapter,	readers	should	understand	how	to	create	variables	and	assign
values	for	SQL	scripts.

	

	

Just	like	any	other	programming	language,	SQL	gives	you	the	ability	to	create	your	own
variables.	These	variables	contain	values	that	you	assign	to	them.	Values	can	be	from	a
table,	statically	defined,	or	input	from	an	external	application.	They	are	named
“variables,”	because	they	can	contain	any	number	of	values.	What	a	variable	contains	is
completely	up	to	the	programmer.		The	only	restriction	you	have	is	the	data	type	used
when	you	define	the	user	variable,	which	we	will	also	discuss	in	this	chapter.

	

User	Defined	Variable	Basics

	

When	you	define	a	user	variable,	it’s	only	good	for	a	specific	session.	If	you’re	familiar
with	programming	concepts,	a	computer	assigns	a	user	defined	variable	a	chunk	of
memory	space	when	the	program	runs.	When	the	program	finishes,	the	memory	is
released.	The	same	is	true	for	user	variables	in	SQL.	When	your	stored	procedure	or	SQL
statement	runs,	the	user	variable	is	given	memory	space,	and	when	the	statements	are
finished,	the	memory	is	released.

	

This	is	an	important	factor,	because	you	won’t	be	able	to	retrieve	your	user	variable	values
after	the	SQL	statement	runs.

	

Another	important	basic	factor	is	how	variables	are	constructed.	Every	programming
language	has	its	own	standards	and	restrictions	when	naming	variables,	and	SQL	is	no
different.

	

First,	your	user	defined	variables	must	start	with	the	@	symbol.	This	tells	the	SQL
language	that	you’re	creating	a	variable.	System	variables	also	start	with	the	@	symbol,
but	a	good	user	interface	and	programming	environment	color	codes	these	variables,	so
you	can	quickly	see	the	difference.

	

Second,	a	user	variable	cannot	contain	all	special	characters.	The	only	special	characters

you	can	use	are	the	dollar	sign,	underscores	and	a	period.	For	the	most	part,	database
administrators	stick	to	alphanumeric	user	defined	variable	names	with	underscores	to
separate	words.	In	rare	cases	you	might	see	a	dollar	sign	or	a	period,	but	most	variables
are	alphanumeric.	You	can	use	any	letter	of	the	alphabet	and	any	number	in	your	variable
names.

	

There	is	one	exception	to	this	rule.	If	you	use	quotes	around	your	variable	names,	you	can
use	special	characters.	This	is	not	common	practice,	though,	since	it	adds	to	programming
complexity	and	means	any	time	the	variable	is	used,	you	must	ensure	that	it	uses	quotes.

	

Defining	User	Variables

	

With	naming	conventions	in	mind,	you	can	now	practice	creating	user	defined	variables.

	

Let’s	take	a	look	at	an	example.	Let’s	define	a	variable	for	our	customer’s	first	name.

	

SET	@first_name	=	‘john’;

SELECT	@first_name;

	

The	SET	statement	is	used	to	create	a	user	defined	variable	and	assign	it	a	value.	In	this
example,	a	@first_name	variable	is	created	and	assigned	the	value	‘john’.	Notice	the
semicolon	at	the	end	of	the	SET	statement.	The	semicolon	is	required	to	terminate	your
statements.	You	can	have	very	long	SQL	statements	that	need	more	than	one	line	on	your
screen	to	complete.	In	this	case,	the	SQL	compiler	would	know	when	the	multi-line
statement	is	finished	–	the	semicolon.	If	you	excluded	the	semicolon,	the	SQL	database
engine	will	give	you	an	error.	In	other	words,	always	remember	to	include	the	semicolon
at	the	end	of	your	SQL	statements.

	

With	the	SELECT	statement,	you	see	the	following	output.

	

@first_name

–––––––––––

john

	

You	might	ask	yourself	why	we	included	the	SELECT	statement	with	our	example.	You

can	define	a	user	variable	and	assign	it	a	variable,	but	SQL	doesn’t	automatically	display
the	value	back	to	you.	To	test	your	new	variable,	you	need	to	use	the	SELECT	statement.
We’ll	get	more	detailed	with	SELECT	statements	in	future	chapters.	For	this	chapter,
suffice	to	say	that	the	SELECT	statement	retrieves	values	and	displays	them	to	you.

	

You	don’t	need	to	define	a	variable	one-by-one.	You	can	also	choose	to	define	several
variables	at	once.	Take	a	look	at	the	following	user	variable	definition.

	

SET	@first_name	=	‘john’,	@last_name	=	‘smith’;

SELECT	@first_name,	@last_name;

	

Just	like	the	first	statement,	we	define	a	first	name	variable	for	our	customer.	In	this
statement,	however,	we	add	a	variable	for	the	customer’s	last	name.	You	can	define
multiple	user	variables	in	one	statement	by	just	separating	each	variable	using	a	comma.

	

The	above	statements	produce	the	following	output.

	

@first_name,	@last_name

–––––––––––––––—

john														smith

	

In	some	instances,	you	need	to	combine	multiple	user	variables	into	one.	When	you	do
this,	you	need	to	use	the	:=	assignment	variable.	If	you	attempt	to	use	the	equal	character
like	we	used	in	previous	examples,	the	SQL	engine	sees	this	as	a	comparison	operator
rather	than	an	assignment	operator.

	

Let’s	look	at	a	sample.

	

SET	@first_name	=	‘john’,	@last_name	=	‘smith’,	@full_name	:=	@first_name	+	‘	‘	+
@last_name;

SELECT	@first_name,	@last_name,	@full_name;

	

You	see	the	following	output.

	

@first_name,	@last_name,	@full_name

–––––––––––––––––––—

john														smith														john	smith

	

In	the	above	example,	we	still	have	the	first	and	last	name	variables.	We’ve	added	one
more	named	@full_name.	This	variable	contains	the	concatenation	of	the	first	and	last
name	with	a	space	in	between.		Notice	that	we	used	the	:=	assignment	operator.	You	need
this	operator	when	you’re	using	multiple	values	to	assign	values	to	one	variable	when	you
defined	your	variables.		Incidentally,	you	can	use	the	:=	assignment	operator	with	other
assignments.	The	following	SQL	statements	are	also	valid.

	

SET	@first_name	:=	‘john’,	@last_name	:=	‘smith’,	@full_name	:=	@first_name	+	‘	‘	+
@last_name;

SELECT	@first_name,	@last_name,	@full_name;

	

The	above	statements	produce	the	same	output	as	before.

	

@first_name,	@last_name,	@full_name

–––––––––––––––––––—

john														smith														john	smith

	

When	you	use	the	:=	assignment	operator,	you	ensure	that	SQL	is	always	assigning	values
to	variables	instead	of	using	a	comparison	operator.

	

We’ve	used	string	values	up	until	this	point,	so	let’s	take	a	look	at	some	numerical	values.
You	can	assign	numerical	values	to	your	user	defined	variables	too.	Let’s	take	a	look	at	an
example.

	

SET	@order_price	=	35.00;

SELECT	@order_price;

	

The	output	is	what	you	would	expect.	The	following	output	is	displayed.

	

@order_price

–––––––––––

35.00

	

You	can	also	add	values	and	display	them	for	your	application	or	on	your	screen.	The
following	is	another	example.

	

SET	@order_price	=	35,	@order_total	:=	@order_price	+	10.00;

SELECT	@order_price,	@order_total;

	

Notice	again	at	the	assignment	operators.	If	we	used	the	equal	sign	to	add	up	our	order
total,	the	SQL	engine	would	give	us	an	error.	The	following	output	is	shown	to	the	user.

	

@order_price,	@order_total

–––––––––––

35.00																												45.00

	

The	SQL	engine	knows	to	add	values	and	provide	45.00	as	the	output	instead	of
concatenating	strings	like	the	previous	string	values.	This	is	because	we	first	gave	our	user
variables	string	values,	and	then	we	gave	them	decimal	values.	It’s	important	to	keep	your
data	types	defined	to	avoid	any	errors	or	bugs	in	your	application.	If	you	attempt	to	add
incompatible	values	together	such	as	a	decimal	and	an	integer,	you	run	the	risk	of
introducing	bugs	to	your	system.

	

You	can	also	use	variables	to	assign	values	from	tables.	If	you	recall	from	the	previous
chapter,	we	discussed	table	structure.	Let’s	assume	we	have	a	customer	table	with	a	first
and	last	name	column.	We	want	to	extract	the	first	name	of	one	of	our	customers	in	this
table.	Again,	we’ll	discuss	the	SELECT	statement	soon,	but	let’s	take	a	look	at	how	we
extract	the	column	information	using	a	user	defined	variable.

	

SELECT	@first_name	:=	first_name	FROM	Customer	WHERE	customer_id	=	1;

SELECT	@first_name;

	

In	this	example,	the	first	name	for	customer	with	an	ID	of	1	is	stored	in	the	@first_name
variable.	The	result	is	the	following	data	set.

	

@first_name,

–––––––––––––––––––—

john													

	

The	output,	as	you	can	see,	is	just	the	same	as	if	you	had	statically	assigned	the	variable
value.

	

What	if	you	don’t	know	what	to	assign	to	a	variable?	The	SQL	language	uses	a	value
called	NULL.	The	NULL	value	can	be	stored	in	tables	and	variables.	If	you	attempt	to
retrieve	data	from	a	table	and	the	value	doesn’t	exist,	the	SQL	engine	automatically
assigns	the	value	of	NULL.	You	shouldn’t	consider	a	NULL	value	as	“nothing.”	The
NULL	value	is	indeed	a	value,	but	it’s	a	container	that	tells	your	applications	that	there	is
no	value	available.

	

Database	administrators	use	NULL	values	to	assign	variables	an	initial	value	when	they
don’t	know	what	to	assign	initially.	Let’s	take	a	look	at	an	example.

	

SET	@first_name	=	NULL;

SELECT	@first_name;

SELECT	@first_name	:=	first_name	FROM	Customer	WHERE	customer_id	=	1;

	

The	output	is	the	following.

	

@first_name

––––––––––

NULL

	

@first_name

––––––––––—

John

	

Notice	that	there	are	two	output	blocks.	That’s	because	we	have	two	SELECT	statements.
The	first	variable	assignment	is	set	to	NULL	because	we	don’t	know	what	to	use	as	a
value.	The	next	statement	pulls	the	variable	value	from	a	table	named	Customer.	The

value	assigned	is	the	first	name	of	a	customer	with	the	ID	of	1.	In	our	example,	the	first
name	is	John,	so	it’s	printed	to	the	output	screen.

	

These	highlights	are	the	basics	of	user	variables.	When	you	work	with	applications	and
reports,	you	will	run	into	several	user	variables.	You	will	need	to	create	user	variables	in
any	application,	because	you	can’t	use	static	variables	throughout	any	dynamic	interface.
These	user	variables	are	typically	used	when	you	take	input	from	a	user,	but	they	are	also
useful	when	you	need	to	extract	information	from	tables	and	return	them	to	an	application
or	report.

	

In	this	chapter,	we	gave	you	the	overview	and	a	basic	understanding	of	user	variables.
They	are	one	of	the	easier	concepts	to	understand,	but	they	are	important	factors	when
working	with	SQL	programming.	Remember	that	these	variables	are	only	available	in	one
session.	If	you	assign	a	variable	value	in	a	SQL	statement	and	later	come	back	for	that
variable	value,	the	SQL	engine	returns	NULL.	In	other	words,	you	can’t	run	one	of	these
SQL	statements	in	one	stored	procedure	and	then	retrieve	the	same	value	in	a	second
stored	procedure.	This	concept	can	be	difficult	for	new	developers	to	understand,	but	you
start	to	understand	once	you	get	more	practice.

	

Let’s	practice	some	of	what	we	just	learned	in	a	lab.

	

	

Lab	Questions

	

1.	When	you	assign	values	to	a	user	variable,	what	operator	should	you	use	to	avoid
confusion	and	errors	with	the	comparison	operator?

A.	=

B.	==

C.	:=

D.	!=

Explanation:	this	assignment	operator	leaves	no	errors	when	you	create	multiple	user
variables	and	their	values.

	

2.	You	decide	to	create	a	user	variable	for	a	product	name	to	later	insert	that	product	name
into	a	table.		Write	the	statement	that	would	create	a	variable	named	@product_table	and
assign	it	the	value	of	NULL.

SET	@product_name	=	NULL;

	

3.	You	want	to	read	a	value	you	just	assigned	to	a	variable	named	@product_name.	Write
your	SELECT	statement	to	retrieve	the	value	of	a	variable	and	display	it	on	your	screen.

SELECT	@product_name;

	

4.	What	character	is	used	to	terminate	all	SQL	statements?

A.	:

B.	;

C.	::

D.	@

Explanation:	use	the	exclamation	mark	to	terminate	your	SQL	statements.	You	can	use
multiple	lines	in	your	code,	and	SQL	understands	that	the	semicolon	is	the	end	of	the
statement.

Chapter	4	–	Reading	Data
	

Chapter	Objective:	Storing	data	in	your	tables	is	the	first	step	when	working	with
databases,	but	you	must	be	able	to	retrieve	and	read	the	data.	This	chapter	shows	you	how
to	read	the	data	you’ve	stored	in	your	SQL	tables.

	

	

With	an	understanding	of	tables	covered	in	chapter	2,	it’s	time	to	understand	how	to
retrieve	that	data	from	your	tables.	The	SQL	language	uses	the	SELECT	statement	to
retrieve	data.	You	saw	this	statement	in	the	previous	chapter	to	display	a	user	defined
variable	value.	You	use	the	same	statement	to	retrieve	and	review	table	data.

	

If	you	recall,	a	table	is	made	up	of	columns	and	rows.	The	columns	are	the	field	names	for
your	data	such	as	first	or	last	name.	The	rows	are	your	records.	If	you	have	10	customers
in	a	customer	table	that	lists	a	first	and	last	name,	you	have	10	records	and	2	columns.
Remember	to	view	your	tables	like	you	view	a	spreadsheet.

	

The	Basic	SELECT	Syntax

	

You	were	introduced	last	chapter	to	the	SELECT	statement.	Let’s	take	a	look	at	the
general	syntax.

	

SELECT	item;

	

That’s	the	only	requirement	for	a	SELECT	statement.	In	this	instance,	you	need	to	define
“item.”	In	the	previous	chapter,	this	item	was	a	user	variable.	In	this	chapter,	we’ll	focus
on	retrieving	data	from	tables,	so	you	need	more	in	your	SELECT	statement.

	

The	following	syntax	is	the	template	for	querying	tables.

	

SELECT	column_name	FROM	table;

	

In	this	statement,	we	identify	a	column	in	the	table	named	table.	Just	like	user	variables,
you	can	use	one	or	several	columns	when	you	retrieve	your	data.	Let’s	take	the	template
and	use	it	for	querying	our	customer	table.

	

The	following	statement	gets	the	first	name	of	all	customers	in	the	Customer	table.

	

SELECT	first_name	FROM	Customer;

	

Notice	that	first_name	does	not	have	the	@	symbol	prefixed.	This	is	because	the	table
column	is	not	a	user	variable,	and	only	user	variables	require	the	@	symbol.	In	this
example,	we	retrieve	all	first	name	values	from	the	Customer	table.	Let’s	assume	you	have
two	customers	in	the	table.	Take	a	look	at	the	output.

	

first_name

––––––––––-

John

Jane

	

You	have	two	records	and	returned	one	column	for	each	record.

	

SQL	gives	you	the	option	to	return	all	columns	for	a	specific	table.	The	asterisk	character
can	be	used	to	retrieve	all	columns	without	explicitly	telling	the	SQL	engine	what	columns
to	return.	It’s	not	recommended	for	performance	reasons,	but	you	should	know	how	to
perform	the	query	and	how	to	identify	it	if	you	ever	review	someone	else’s	SQL
statements.

	

Take	a	look	at	the	following	query.

	

SELECT	*	FROM	Customer;

	

In	the	above	statement,	we	tell	the	SQL	engine	to	return	all	columns.	Again,	it’s	not
recommended	by	useful	if	you	want	to	do	a	quick	check	on	your	data.	The	above	query
returns	the	following	output.

	

customer_id,	first_name,	last_name

––––––––––-

1														John														Smith

2														Jane														Johnson

	

With	the	asterisk	character,	we	now	know	that	the	Customer	table	contains	three	columns.
The	first	column	is	the	ID,	and	the	second	and	third	columns	are	the	customer	first	and	last
name.	If	you	add	another	column	to	a	table,	the	new	column	with	display	in	the	results
without	you	knowing	the	column	name.

	

We	will	avoid	using	the	asterisk	symbol	to	display	all	columns	in	a	query	result	set	since
it’s	not	recommended.

	

Filtering	Data

	

The	above	examples	showed	you	how	to	retrieve	records,	but	the	results	showed	all
records.	What	happens	when	your	table	grows	to	thousands	of	customers?	You	need	a	way
to	filter	only	customers	that	you	want	to	see.	You	do	this	using	the	WHERE	clause.	The
WHERE	clause	is	SQL’s	filter.

	

Let’s	start	with	a	simple	statement.	Let’s	get	all	customers	that	have	a	first	name	of	‘John’
using	the	WHERE	clause.	The	following	is	the	example	SQL	that	retrieves	results.

	

SELECT	first_name,	last_name	FROM	Customer	WHERE	first_name	=	‘john’;

	

You’ll	notice	the	SELECT	statement	syntax	template	we	mentioned	earlier.	The
customer’s	first	and	last	name	columns	are	returned.	The	difference	in	the	above	statement
is	that	only	a	subset	of	records	in	the	Customer	table	is	returned.	We	only	have	one	record
with	the	first	name	of	John.	The	following	result	set	is	displayed.

	

first_name,	last_name

–––––––––––––––

John														Smith

	

Notice	instead	of	showing	one	record,	SQL	only	returns	one.	That’s	the	magic	of	the
WHERE	clause	filter.	You’re	not	only	limited	to	just	one	filter	either.	You’re	able	to	use
several	statements	in	your	SELECT	query	to	filter	on	multiple	fields.	If	no	records	match,
the	SQL	engine	returns	no	records.

	

Let’s	take	a	look	at	what	happens	if	you	query	on	two	fields	and	no	records	are	returned.

	

SELECT	first_name,	last_name	FROM	Customer	WHERE	first_name	=	‘john’	and
customer_id	=	2;

	

The	“and”	keyword	separates	your	WHERE	clause	filters.	You	can	have	one	or	several
and	statements	for	your	WHERE	clause.	As	long	as	you	continue	to	use	the	and	clause,
the	SQL	engine	continues	to	add	more	filters	to	the	result	set.	In	the	above	statement,	the
SQL	statement	is	looking	for	customers	with	an	id	of	2	and	a	first	name	of	John.	If	you
recall	from	previous	SELECT	statements,	the	customer	with	the	first	name	of	John	has	an
ID	of	1.	That	means	nothing	matches	once	you	combine	both	WHERE	clause	filters.

	

The	following	is	your	result	set	displayed.

	

first_name,	last_name

––––––––––––––-

	

Notice	that	no	records	were	returned.	This	is	distinct	from	a	record	set	that	returns	NULL
values.	Remember,	NULL	is	a	value,	so	any	fields	that	contain	a	NULL	value	are	returned.

	

You	can	also	query	based	on	the	NULL	value.	Let’s	assume	that	our	John	customer	didn’t
input	his	last	name	when	he	signed	up	to	our	website.	You	allow	NULL	values	to	store	in
your	table,	so	the	last	name	is	filled	with	the	NULL	value	in	your	database	table.	You	want
to	find	out	how	many	of	your	customers	chose	not	to	input	a	last	name.	You	want	to	query
the	last	name	for	any	NULL	values.

	

The	following	SQL	statement	shows	you	how	to	filter	on	NULL	values.

	

SELECT	first_name,	last_name	FROM	Customer	WHERE	last_name	IS	NULL;

	

Notice	that	we	used	the	keywords	IS	NULL	in	the	statement	instead	of	the	equal	sign.
This	is	an	important	piece	of	information	when	working	with	database	table	information.
Note	that	NULL	never	equates	or	compares	to	any	other	value.	Using	the	equal	sign	in	this
instance	would	return	no	records	even	if	you	indeed	had	records	with	a	last	name	of
NULL.	The	SQL	language	uses	“IS	NULL”	or	“IS	NOT	NULL”	when	comparing	NUL

values.	The	first	phrase	returns	any	records	that	contain	NULL	values,	and	the	second
phrase	returns	any	records	the	do	not	have	a	NULL	value.	This	type	of	query	is	often	used
by	database	administrators	to	identify	any	missing	data,	especially	if	it’s	critical	for	an
application.

	

You	can	use	other	comparison	operators	to	search	a	SQL	database.	Let’s	say	you	want	to
query	your	Order	table	for	all	orders	that	are	greater	than	$10.	The	dollar	sign	isn’t	stored
in	the	database,	but	the	database	stores	a	decimal	value	of	10.00.	You	can	identify	which
orders	are	greater	than	10	using	the	greater	than	operator	or	>.

	

The	following	SQL	statement	searches	for	orders	with	a	total	amount	greater	than	10.

	

SELECT	order_id,	product_name	FROM	Order	WHERE	total	>	10;

	

The	result	could	look	like	the	following	if	the	result	returns	records.

	

order_id,	product_name

–––––––––––––—

33														My	Service

	

In	this	example,	you	have	an	order	with	the	ID	of	33	in	the	database.	Although	we	don’t
print	out	the	total	order	amount,	we	can	assume	that	the	order	total	amount	is	greater	than
10.

	

In	the	above	statement,	it’s	important	to	note	that	the	query	only	returns	values	that	are
more	than	10.	If	you	have	an	order	that	is	10.00,	it	does	not	return	the	record.	If	you	want
to	return	all	records	that	are	more	than	10	and	records	that	are	equal	to	10,	you	want	to	use
the	greater	than	or	equal	to	operation	or	>=.

	

Let’s	change	the	operator	in	our	order	query.

	

SELECT	order_id,	product_name	FROM	Order	WHERE	total	>=	10;

	

Let’s	assume	we	have	a	record	that	includes	a	10	order	total.	You	would	see	the	following
output.

	

order_id,	product_name

–––––––––––––—

33														My	Service

10														My	Other	Service

	

You	also	have	other	operators	you	can	choose	from.	You	can	use	less	than	<	or	less	than
and	equal	to.	<=.	These	two	operators	would	have	the	effect	that	you	would	imagine	–	all
records	that	are	less	than	or	less	than	and	equal	to	be	returned.

	

What	if	you	only	want	to	see	records	that	don’t	equal	a	specific	value?	For	instance,	you
want	all	records	that	don’t	have	an	order	total	of	10.	You	just	want	to	include	all	but	one
value	in	your	record	set.	You	can	use	the	“not	equal	to”	or	!=	operator.

	

Let’s	take	a	look	at	a	sample.

	

SELECT	order_id,	product_name	FROM	Order	WHERE	total	!=	10;

	

Instead	of	including	all	records	that	have	an	order	total	of	10,	you	now	exclude	all	of	these
records.	The	following	output	uses	are	data	from	previous	query	results.

	

order_id,	product_name

–––––––––––––—

33														My	Service

10														My	Discount	Offer

	

We	still	get	the	order	that	has	a	total	over	10,	but	now	we	see	another	record.	We	can
assume	from	the	previous	logic	that	order	ID	10	has	a	total	value	less	than	10	since	it	did
not	show	up	in	our	first	record	set.

	

As	you	work	with	SQL	and	any	database	engine,	you’ll	see	the	SELECT	statement	several
times	in	your	code.	You’ll	need	to	know	how	to	use	the	SELECT	statement	any	time	you
want	to	review	records,	and	applications	such	as	PHP	use	the	SELECT	statement
frequently	to	retrieve	data	to	display	to	your	users.

	

Practice	with	the	SELECT	statement	on	your	database	to	get	some	practice.	The	SELECT
statement	is	relatively	harmless	since	you	do	not	edit	any	data	when	you	run	the	query.	For
this	reason,	it’s	the	best	SQL	statement	to	use	for	beginners	just	getting	started	with	the
language.

	

Let’s	take	a	look	at	some	lab	questions	to	help	you	practice	with	SELECT	statements.

	

Lab	Questions

	

1.	You	want	to	find	customers	who	didn’t	enter	a	last	name.	Write	the	SQL	statement	that
would	find	all	customers	with	a	last	name	of	NULL.

SELECT	customer_id	FROM	Customers	WHERE	last_name	IS	NULL;

Explanation:	the	above	statement	returns	a	list	of	customers	where	the	last	name	is	set	as
NULL.	Notice	the	IS	NULL	syntax	and	not	the	equal	operator	used	for	NULL	values.

	

2.	You	want	to	find	all	orders	where	the	total	is	greater	than	$50.	You	don’t	want	to
include	$50	orders.	You	only	want	orders	that	are	greater	than	$50.	Write	the	SQL
statement	that	would	display	correct	results.

SELECT	order_id	FROM	Order	WHERE	order_total	>	50;

Explanation:	the	greater	than	sign	is	used	to	find	all	orders	greater	than	50.	If	you	wanted
to	get	orders	that	include	50	totals,	you	would	use	the	>=	operator.

	

3.	What	character	lets	you	return	all	columns	in	a	table	without	specifying	columns	to
return	in	a	SELECT	statement?

A.	*

B.	@

C.	#

D.	%

Explanation:	the	asterisk	symbol	lets	you	return	all	columns,	but	it’s	not	recommended	for
performance	reasons.

	

4.	You	want	to	review	all	orders	that	don’t	have	a	0	total	value.	Write	the	query	that	would
return	all	records	that	don’t	have	a	0	value.

SELECT	order_id,	product_name	FROM	Order	WHERE	total	!=	0;

	

The	above	query	gets	all	orders	that	don’t	have	a	total	of	0.	The	!=	operator	means	“does
not	equal.”

Chapter	5	–	Deleting	Data
	

Chapter	Objective:	This	chapter	covers	the	basics	of	removing	records	from	your
database	tables.	It’s	not	recommended,	but	you	should	still	know	how	to	delete	data.	This
chapter	covers	the	SQL	DELETE	statement.

	

	

While	you	want	to	avoid	deleting	data	in	your	database,	there	are	times	you	need	to
remove	records.	For	instance,	suppose	you	accidentally	import	duplicate	records	and	have
no	way	to	deactivate	them	unless	you	delete	them.	You	could	use	the	SQL	DELETE
statement	to	remove	records	from	your	tables.	You’ll	also	need	to	edit	stored	procedures
with	the	DELETE	statement,	so	it’s	an	important	part	of	SQL	that	you	should	know.

	

DELETE	Statement	Basics

	

Just	like	the	SELECT	statement	in	the	previous	statement,	the	DELETE	statement	also	has
a	basic	template.	While	reading	data	from	your	tables	is	relatively	harmless,	you	can	cause
serious	data	integrity	issues	when	you	accidentally	delete	records.	For	this	reason,	you
only	want	to	run	DELETE	statements	on	test	data	until	you	are	confident	it	can	be	moved
into	production.

	

The	following	SQL	syntax	is	the	very	basic	DELETE	statement	that	you	can	use	without
causing	an	error	in	your	SQL	engine.

	

DELETE	FROM	table;

	

Switch	out	“table”	with	your	own	table	and	that’s	all	it	takes	to	write	a	DELETE
statement.	The	problem	with	this	statement	is	that	you	essentially	remove	all	records	from
the	table.	You	have	no	filter	in	the	above	statement.	For	instance,	if	you	replaced	“table”
with	“Customer,”	you	would	delete	all	of	your	customer	records.	You	obviously	don’t
want	to	recover	accidentally	deleted	data.	You	bring	down	applications	and	can	cost	a
company	a	large	sum	of	money	in	lost	revenue.	For	this	reason,	you	always	use	a	filter	to
delete	your	data.

	

Just	like	the	SELECT	statement,	you	can	use	the	WHERE	clause	in	the	DELETE
statement	to	filter	the	records	you	remove	from	your	tables.

	

The	Importance	of	the	WHERE	Clause

	

Because	you	typically	don’t	want	to	remove	all	of	your	records	in	any	particular	table,	you
need	to	add	the	WHERE	clause	to	your	statements.	The	WHERE	clause	in	a	DELETE
statement	is	the	same	as	the	WHERE	clause	in	the	SELECT	statement	we	worked	with	in
the	last	chapter.

	

Let’s	take	a	look	at	an	example.

	

DELETE	FROM	Customer	WHERE	customer_id	=	1;

	

In	the	above	statement,	we	only	delete	the	customer	that	has	an	ID	of	1.

	

You	can	verify	that	that	statement	only	deleted	your	customer	by	using	a	SELECT
statement.	The	following	statement	should	now	return	no	records.

	

SELECT	*	FROM	Customer	WHERE	customer_id	=	1;

	

The	return	result	should	look	like	the	following.

	

customer_id,	first_name,	last_name

–––––––––––––––––—

	

As	you	can	see,	there	are	no	records	returned,	so	SQL	shows	you	an	empty	data	set.

	

In	most	cases,	you	want	to	delete	more	than	one	record.	You	need	to	delete	a	set	of
records.	For	instance,	suppose	you	no	longer	support	a	certain	product.	You	want	to	delete
the	product	from	your	database.	Note	that	there	are	other	ways	to	deactivate	products	in	a
table,	but	we’ll	use	this	example	just	to	give	you	an	idea	of	when	you	would	want	to	use
the	DELETE	statement.

	

Let’s	see	an	example	of	a	SQL	statement	that	deletes	a	product	named	“Product	A”	in	a
Product	table.

	

DELETE	FROM	Product	WHERE	product_name	=	‘Product	A’;

	

This	statement	deletes	all	records	with	the	product	named	Product	A.	SQL	should	tell	you
the	number	of	records	affected,	but	it	also	depends	on	your	SQL	platform.	You	can
determine	if	any	records	are	deleted	by	using	the	COUNT(*)	function.	We’ll	get	into	this
function	more	in	subsequent	chapters,	but	use	the	COUNT(*)	function	to	determine	if
records	are	deleted	if	your	SQL	platform	doesn’t	return	the	information.

	

Let’s	look	at	an	example.

	

SELECT	COUNT(*)	FROM	Product;

DELETE	FROM	Product	WHERE	product_name	=	‘Product	A’;

SELECT	COUNT(*)	FROM	Product;

	

The	output	should	look	something	like	the	following.

	

COUNT(*)

–––––––––––

5

	

COUNT(*)

–––––––––––

4

	

Notice	that	you	can	see	the	number	of	rows	in	your	Product	table	was	decremented	by	1.
You	can	safely	assume	that	your	Product	table	had	only	one	product	named	Product	A	and
it	was	successfully	deleted.

	

You	can	use	other	operators	to	remove	data	from	your	tables.	Suppose	that	you	don’t	want
log	files	in	your	database	that	are	older	than	a	specific	date.	You	can	use	the	DELETE
statement	with	a	WHERE	clause	filter	to	delete	these	old	logs	and	free	up	disk	space	on
your	database	server.

	

Let’s	take	a	look	at	an	example.

	

SELECT	COUNT(*)	FROM	Log;

DELETE	FROM	Log	WHERE	log_date	>=	‘2001-01-01’	and	log_date	<=	‘2001-12-31’;

SELECT	COUNT(*)	FROM	Log;

	

We	set	up	a	counter	to	see	the	table	row	count	before	and	after	the	DELETE	statement	to
identify	if	any	records	were	deleted.	Notice	that	we	used	the	greater	than	or	equal	to	and
less	than	or	equal	to	operators.	We	haven’t	looked	at	dates	in	SQL	yet.	Notice	the	date
format.	You’ll	need	to	use	the	right	date	format	when	you	work	with	MySQL.

	

In	this	example,	all	records	in	2001	are	deleted	from	the	Log	table.	If	any	records	are
deleted	from	the	table,	the	COUNT(*)	statement	lets	us	know	since	it	does	a	count	before
and	after	the	statements	are	run.

	

One	common	reason	to	use	the	DELETE	statement	is	to	remove	duplicate	records	from
database	tables.	Let’s	assume	that	you	have	a	list	of	customers	in	an	external	table.	These
customers	represent	a	list	of	duplicate	customers	that	you	want	to	delete	from	your	main
Customer	table.	You	can	use	the	EXIST	clause,	which	is	a	type	of	operator	that	identifies
when	a	record	exists	in	another	location.	You	can	use	the	EXIST	statement	with	any	of	the
main	four	SQL	statements.	We’ll	show	you	how	to	use	it	with	the	DELETE	statement.

	

Let’s	take	a	look	at	an	example.

	

DELETE	FROM	Customer

WHERE	EXISTS

		(SELECT	duplicates.customer_id

FROM	duplicates

);

	

In	the	above	statement	retrieves	a	list	of	customer	IDs	from	a	table	named	“duplicates.”	If
the	ID	exists	in	the	main	Customer	table,	it’s	deleted	from	the	main	Customer	table.	This
is	just	one	reason	that	database	administrators	use	the	DELETE	statement.

	

Of	course,	when	you	have	a	major	deletion	for	a	table,	you	should	always	first	run	the
statement	on	a	backup	table	or	another	test	database	that	mirrors	your	production	server.

This	ensures	that	you	don’t	accidentally	delete	huge	amounts	of	records	on	a	production
database.

	

Constraints	and	Orphaned	Records

	

We	mentioned	briefly	about	primary	and	foreign	key	constraints	in	previous	chapters.	The
DELETE	function	is	closely	entwined	with	these	constraints.	In	this	section,	we’ll	explain
exactly	why	constraints	are	important	for	fully	functional,	well	designed	databases.

	

Let’s	assume	that	you	have	two	tables	named	Order	and	Customer.	You	link	the	two	tables
using	a	foreign	key	that’s	located	in	the	Order	table.	It	takes	some	time	to	understand	how
constraints	work,	but	think	of	your	tables	as	linked	spreadsheets.	The	customer	ID	is
located	in	the	Order	table	to	link	the	customer	to	the	order.	You	can	have	several	orders	for
each	customer,	so	you	could	have	one	or	several	records	in	the	Order	table	with	a	linked
customer	ID.

	

When	you	set	up	this	type	of	relationship,	you	create	a	primary	key	(the	customer	ID	in
the	Customer	table)	and	foreign	key	(the	customer	ID	in	the	Order	table)	relationship.	The
MySQL	database	engine,	which	is	our	main	focus,	is	a	relational	database,	so	it	will	keep
data	integrity	intact	when	you	create	these	primary-foreign	key	relationships.

	

Let’s	go	back	to	the	DELETE	statement.	What	happens	when	you	delete	a	customer	from
a	table,	but	the	customer	has	several	orders	in	the	Order	table?	You	create	an	issue	called
orphaned	records.	You	no	longer	have	a	customer	associated	with	an	order.	What	happens
is	that	your	application	or	even	other	database	procedures	expect	to	find	a	customer	for
each	order.	The	result	can	be	major	bugs	in	your	application,	you	can	lose	data,	or	your
database	procedures	can’t	run.	Multiple	issues	can	occur,	so	the	SQL	database	(as	long	as
it’s	a	relational	database)	will	stop	you	from	deleting	records	with	a	primary-foreign	key
relationship.

	

To	get	past	the	situation,	you	must	first	delete	the	foreign	key	record,	and	then	delete	the
primary	key	record.	In	this	example,	you	want	to	first	delete	the	Order	table	records,	and
then	delete	the	customer	in	the	Customer	table.

	

For	instance,	let’s	assume	that	you	want	to	delete	a	customer	with	the	ID	of	1.	You	would
first	delete	the	records	in	the	Order	table	with	the	same	customer	ID.

	

Let’s	take	a	look	at	an	example.

	

SELECT	COUNT(*)	FROM	Order;

DELETE	FROM	Order	WHERE	customer_id	=	1;

SELECT	COUNT(*)	FROM	Order;

DELETE	FROM	Customer	WHERE	customer_id	=	1;

	

We	only	run	the	COUNT(*)	statement	on	the	Order	table,	because	we	expect	to	have
several	records	deleted	before	the	customer	is	removed.	This	statement	ensures	that	we
delete	the	order	records	before	we	delete	the	customer.	You	can	highlight	each	statement
individually	in	any	SQL	interface	and	run	only	one	statement,	verify	the	table	data,	and
then	run	the	second	statement	afterwards.	If	you	use	the	MySQL	command	line,	you	can
just	type	each	statement	and	run	after	you	type	it.

	

If	you	didn’t	run	the	first	Order	table	delete	query,	you	would	receive	an	error	from	the
SQL	engine.

	

Difference	Between	DELETE	and	TRUNCATE

	

If	you	have	several	records	to	delete,	the	DELETE	statement	can	reduce	the	performance
of	your	database.	The	TRUNCATE	statement	lets	you	delete	all	records	in	your	table.	This
is	an	advantage	if	you	have	a	table	that	you	want	to	complete	wipe.	For	instance,	you	can
make	backups	of	your	current	log	table	and	want	to	delete	the	data	in	the	current	log	table
to	free	up	space	on	the	database	server.

	

A	good	rule	to	remember	is	to	use	the	DELETE	statement	when	you	want	to	delete	several
records,	but	you	need	to	roll	back	statements	or	performance	is	not	an	issue.	If	you	want	to
delete	all	of	your	records	without	the	ability	to	roll	back	from	database	logs,	you	can	use
the	TRUNCATE	statement.	This	statement	runs	much	faster.

	

The	following	SQL	code	is	an	example	of	the	TRUNCATE	statement.

	

TRUNCATE	TABLE	Log;

	

In	the	above	statement,	the	SQL	engine	removes	all	records	in	the	Log	table.	If	you	make

a	mistake,	you	must	restore	the	data	from	a	backup.

	

This	chapter	reviewed	the	DELETE	function	and	how	you	can	remove	records	from	your
tables.	Use	it	wisely,	but	you	will	run	across	other	code	or	the	need	to	use	the	DELETE
statement	at	some	point	in	your	career.

	

Lab	Questions

	

1.	You	want	to	delete	all	records	in	a	Log	table	for	the	year	2011.	Write	the	SQL	statement
that	deletes	records	only	if	they	were	created	in	2011.

DELETE	FROM	Log	WHERE	create_date	>=	‘2011-01-01’	and	log_date	<=	‘2011-12-
31’;

Explanation:	the	above	statement	deletes	only	the	records	that	were	created	in	2011.

	

2.	If	you	want	to	delete	a	set	of	records	that	exist	in	an	external	table,	what	SQL	statement
do	you	use?

a.	IF

b.	IS	NULL

c.	EXIST

d.	FOUND

Explanation:	The	EXIST	statement	lets	you	create	a	subquery	that	finds	records	in	an
external	database	to	remove	them.

	

3.	You	want	to	delete	all	records	from	the	Log	table.	You	want	to	do	this	with	the	best
performance.	Write	the	SQL	statement.

TRUNCATE	TABLE	Log;

Explanation:	the	TRUNCATE	statement	is	the	best	for	performance,	and	it	deletes	all
records	from	the	table.

Chapter	6	–	Changing	Data
	

Chapter	Objective:	At	some	point,	the	administrator	needs	to	change	or	edit	data	in	a
table.	This	chapter	covers	the	SQL	UPDATE	statement,	which	edits	data	in	a	table.

	

We’ve	covered	how	to	read	your	data	and	delete	it,	so	now	it’s	time	to	learn	how	to	edit
data.	Editing	data	is	just	as	sensitive	of	a	task	as	deleting	data.	While	data	isn’t	completely
removed	from	the	table,	you	can	update	your	data	to	completely	inaccurate	information.
This	leads	to	data	integrity	issues	and	usually	a	restore	of	your	information	from	a	backup.
We’ll	discuss	how	to	properly	update	your	table’s	data	and	keep	data	integrity.
	

The	SQL	UPDATE	Statement

	

To	change	your	data,	you	use	the	SQL	UPDATE	statement.	The	following	code	is	the
template	for	updating	your	information.

	

UPDATE	table	SET	column	=	‘data’;

	

The	above	statement	is	the	very	basic	template	you	use	to	avoid	from	receiving	an	error
from	bad	syntax.	Notice	that	there	is	no	WHERE	clause.	We’ll	get	into	the	WHERE
clause	in	the	next	section,	but	you	should	know	that	this	statement	alone	changes	all	data
in	your	table.	For	instance,	if	the	column	is	named	“first_name”	and	you	set	the	value	to
‘data’	without	the	WHERE	clause,	all	of	your	customer’s	first	names	are	set	to	the	value
‘data.’	This	is	a	critical	point	to	remember	when	designing	your	UPDATE	statements.

	

Let’s	take	a	look	at	some	better	examples	and	put	the	UPDATE	statement	to	practice.	For
instance,	suppose	your	customer	accidentally	spelled	his	first	name	wrong.	He	wants	to
update	his	first	name	to	the	correctly	spelled	name.	You	would	write	an	UPDATE
statement	for	the	application	where	the	customer	updates	his	information.

	

The	following	is	an	example	of	how	you	would	change	a	customer’s	first	name.

	

UPDATE	Customer

SET	first_name	=	‘john’

WHERE	customer_id	=	1;

	

Let’s	go	over	the	above	statement	to	better	understand	it.	The	first	line	is	the	actual
UPDATE	keyword,	and	the	table’s	name	is	Customer.	The	Customer	table	must	exist,	or
the	SQL	engine	gives	you	an	error.

	

The	next	line	is	the	column	you	want	to	change.	You	only	need	to	use	the	SET	statement
once	when	you	want	to	change	multiple	column	values.	In	this	example,	we	are	only
changing	the	customer’s	first	name,	so	we	only	have	one	column	listed.	The	first_name
column’s	data	is	set	to	‘john’.	Even	though	we	know	that	the	customer	spelled	his	name
wrong,	we	don’t	care	what	the	previous	value	is	in	the	table.	We	change	the	data	without
checking	the	previous	value.	You	can	add	extra	checks	and	balances	in	SQL	to	ensure	that
the	value	is	incorrect	before	you	change	it,	but	the	UPDATE	statement	itself	does	not
check	for	previous	values	when	editing	your	table’s	data.

	

The	last	part	of	the	statement	is	the	WHERE	statement.	You’ll	recall	from	the	previous
chapters	that	the	WHERE	clause	is	used	to	filter	data.	Just	like	the	DELETE	statement,
you	need	to	filter	the	records	that	you	edit.	In	this	example,	we	only	change	the	customer
with	an	ID	of	1.	This	statement	assumes	that	the	customer_id	column	is	the	primary	key,
so	it	is	always	unique.	A	primary	key	can	never	contain	a	duplicate	value,	so	it’s	a	safe
way	to	update	data	without	accidentally	changing	multiple	records.

	

We	mentioned	that	you	can	change	multiple	records	at	the	same	time	with	multiple
columns.	In	the	previous	example,	we	used	the	primary	key,	so	we	know	that	only	one
record	is	updated.	Let’s	assume	that	you	need	to	change	multiple	order	records.	You	have
a	product	name	that	you’ve	changed,	and	you	want	to	change	the	name	in	the	Order	table.

	

Let’s	take	a	look	at	the	example	SQL	statement.

	

UPDATE	Order

SET	product_name	=	‘Product	B’,	update_date	=	‘2015-08-21’

WHERE	product_name	=	‘Product	A’;

	

You’ll	recognize	that	the	same	UPDATE	statement	is	used	in	the	first	SQL	line	as	we	used
in	the	previous	example.	This	time,	we’re	updating	the	Order	table,	so	we	specify	the
Order	table	name.

	

The	next	SQL	line	is	where	we	specify	the	columns	that	we	want	to	edit.	In	this	case,
we’re	editing	the	product’s	name	and	the	date	that	we	updated	the	record.	We	haven’t

discussed	audit	fields,	but	most	tables	have	a	field	that	lets	the	database	administrator
know	the	last	time	the	record	was	updated.	In	this	example,	our	audit	field	is
“update_date.”	You	set	these	values	each	time	you	change	any	value	in	the	record.	We	set
the	value	to	August	21,	2015.	We	also	set	the	product	name	from	Product	A	to	Product	B.
We	know	that	the	previous	value	is	Product	A,	because	we’re	running	our	UPDATE
statement’s	WHERE	clause	based	on	the	previous	product	name.

	

To	sum	up	this	statement	in	words,	the	statement	says	to	change	a	product’s	name	to
Product	B	where	the	current	product’s	name	is	Product	A.	This	is	how	you	identify
previous	values	in	a	table	and	only	change	data	based	on	the	previous	value.	This
statement	also	assumes	that	you’re	changing	multiple	records,	because	you	probably	have
more	than	one	order	with	a	specific	product	named	Product	A.

	

Changing	Your	Data	with	External	Table	Data

	

While	there	are	plenty	of	times	that	you’ll	need	to	set	up	custom	SQL	statements	with
statically	assigned	values,	you	sometimes	need	to	update	your	data	from	an	external	table.
For	instance,	you	might	have	a	list	of	customers	in	a	temporary	table,	and	this	table	has
more	accurate	information	than	your	current	customer	table.	You	want	to	update	the	data
from	the	external	table	to	your	current	Customer	table,	which	can	be	done	using	the	SQL
UPDATE	statement.

	

To	perform	this	query,	it’s	a	bit	more	advanced.	Take	a	look	at	the	following	query.

	

UPDATE	Customer

SET	first_name	=	(SELECT	first_name	FROM	temptable	WHERE	Customer.customer_id
=	temptable.customer_id)

	

Notice	that	we	didn’t	use	a	WHERE	clause	in	the	above	statement.	We	have	a	temporary
table	named	temptable	that	contains	a	list	of	customers	that	we	want	to	update.	Therefore,
we	only	edit	the	customers	that	are	contained	in	the	temporary	table.

	

As	you	can	see,	we	have	the	standard	UPDATE	and	SET	statements.	The	difference
between	this	statement	and	the	previous	one	is	that	we	use	the	first	name	value	in	the
temptable	to	update	the	value	in	the	main	Customer	table.	This	is	often	used	when	the
database	administrator	has	an	external	list	of	values	that	must	be	imported	into	the	system.
For	instance,	during	an	acquisition,	the	database	administrator	imports	a	number	of
customers	from	an	external	database.

	

But	how	does	the	database	know	which	value	to	update	from	which	field	in	the	external
table.	Notice	in	the	subquery	that	there	is	a	WHERE	clause	that	links	the	two	tables.	We’ll
get	into	joining	tables	in	future	chapters,	but	this	subquery	does	a	link	between	the	two
tables	using	the	customer’s	ID.	The	customer_id	columns	in	both	tables	presumably	have
the	same	customer	IDs.	When	the	first	query	pulls	data	from	the	temptable,	it	does	a
match	with	the	customer’s	ID	and	uses	the	first_name	column	to	update	your	Customer
data.

	

Updating	Data	from	User	Variables

	

We	discussed	user	variables	in	chapter	3.	For	most	situations,	you’ll	need	to	update	your
data	using	a	user	variable.	The	variable’s	value	is	usually	sent	but	the	application	as	input
from	your	user,	but	sometimes	database	administrators	work	with	external	data	that	is	then
input	as	user	variable	values	into	their	stored	procedures.

	

In	these	examples,	we’ll	assume	that	you’re	sending	data	from	an	application.	For
instance,	let’s	go	back	to	the	previous	section’s	example	where	your	customer	needs	to
update	data.	Since	the	customer	isn’t	using	static	data	in	your	SQL	statements,	you	create
a	user	variable	that	contains	the	input	value	from	your	customer.

	

Let’s	use	the	same	example	that	we	used	in	the	first	section.	Let’s	change	the	query	to
reflect	the	user	variable.

	

UPDATE	Customer

SET	first_name	=	@input

WHERE	customer_id	=	@customerid;

	

We	used	two	user	variables	in	the	above	statement.	The	first	one	is	named	@input.
Whatever	value	is	contained	in	the	@input	variable	is	stored	in	your	database.	Just	like	the
static	string	‘john,’	if	your	stored	procedure	is	sent	the	value	of	‘john’	and	it’s	stored	in	the
user	variable,	the	UPDATE	statement	changes	the	first_name	column	value	to	‘john’.	Your
application	must	ensure	that	the	right	information	is	passed	to	ensure	that	the	change	in
data	is	accurate.

	

The	next	user	variable	is	used	to	determine	which	customer	you	want	to	update.	When	you
work	with	user	variables	and	dynamic	data,	you	pass	the	information	you	want	to	use	to

update	your	current	tables	and	a	user	variable	that	defines	the	records	you	want	to	update.
In	this	case,	the	SQL	statement	assumes	that	you’re	passing	a	customer	first	name	and	the
customer	ID	to	determine	which	record	to	change.	In	this	case,	only	one	record	is	updated,
which	is	what	you	want	when	you	change	customer	information.

	

Just	like	previous	examples,	you	can	also	change	data	in	multiple	columns	using	user
variables.	Using	the	same	customer	example,	let’s	update	the	customer’s	first	and	last
name.	The	following	SQL	statement	is	an	example	of	how	you	would	perform	a	multi-
column	update.

	

UPDATE	Customer

SET	first_name	=	@fname,	last_name	=	@lname

WHERE	customer_id	=	@customerid;

	

In	the	above	example,	we	changed	the	user	variable	names	to	more	accurately	define
which	user	variables	contain	the	right	data.	This	is	also	important	in	real	world	situations,
so	you	can	quickly	review	a	SQL	statement	and	intuitively	understand	what	data	each
variable	contains.

	

This	chapter	gave	you	an	overview	on	editing	data.	Just	like	the	DELETE	statement,	some
administrators	don’t	allow	programmers	to	delete	data.	Instead,	programmers	are	forced	to
create	a	new	record	and	deactivate	the	updated	record.	This	is	one	option	for	properly
dealing	with	audits	and	keeping	a	backup	of	any	data	changed.

	

However,	at	some	point,	you’ll	need	to	update	data	whether	it’s	from	an	import	mistake	or
just	allowing	an	application	to	change	the	data	in	your	database.	This	chapter	gave	you	the
fundamentals	that	will	help	you	create	more	complex	UPDATE	statements.

	

Lab	Questions

	

1.	You	have	an	application	that	must	be	able	to	edit	a	customer’s	last	name.	You	want	to
set	up	a	query	with	a	user	defined	variable	to	update	the	customer	record.	Write	the	SQL
statement	that	updates	your	customer	last	name	using	a	user	variable.

UPDATE	Customer

SET	last_name	=	@lname

WHERE	customer_id	=	@id;

Explanation:	the	lname	variable	contains	the	customer	last	name,	and	the	id	variable
contains	the	customer’s	ID.

	

2.	You	want	to	update	all	records	with	the	same	value	in	a	temp	table.	The	temp	table’s
name	is	temptable	and	the	column	is	temp_col.	Write	the	UPDATE	statement	that	updates
all	records.

UPDATE	temptable

SET	tem_col	=	‘temp’;

Explanation:	the	UPDATE	statement	has	no	WHERE	clause,	so	all	records	are	updated
with	the	value	‘temp’.

	

3.	You	have	an	external	table	of	orders	that	you	need	to	import	into	your	current	database.
You	just	want	to	update	the	product	name	from	the	external	table.	Write	the	statement	that
updates	your	current	Order	table	with	product	name.

UPDATE	Order

SET	product_name	=	(SELECT	product_name	FROM	temptable	WHERE	Order.order_id
=	temptable.order_id);

Explanation:	the	SQL	engine	updates	the	Order	table’s	product_name	column	with	the
data	linked	in	the	temporary	table	named	temptable.

Chapter	7	–	Adding	Data
	

Chapter	Objective:	We’ve	covered	deleting,	editing,	and	reading	data	from	a	database.
This	chapter	covers	the	INSERT	statement	and	how	to	add	data	to	your	database	tables.

	

	

The	final	SQL	statement	that	we	haven’t	covered	is	the	INSERT	statement.	This	is	the
statement	that	adds	new	records	to	your	database	tables.	For	instance,	when	you	get	a	new
customer,	you	want	to	add	a	new	record	to	your	Customer	table.	Each	time	the	customer
orders	new	products,	you	use	the	INSERT	statement	to	add	a	new	order	to	your	Order
table.	This	chapter	covers	how	you	can	add	data	to	your	tables	using	various	methods	and
logic.

	

The	INSERT	Statement

	

The	INSERT	statement	requires	much	more	than	the	previous	statements	we’ve	covered.
Let’s	take	a	look	at	the	basic	template	for	an	INSERT	statement.

	

INSERT	INTO	table	(column)	VALUES	(value);

	

INSERT	INTO	is	the	first	part	of	the	statement	always	required	by	the	SQL	engine.	The
“table”	keyword	should	be	changed	to	the	table	you	want	to	work	with.	For	instance,	if
you	want	to	insert	a	new	customer	record,	you	need	to	insert	into	the	Customer	table.

	

The	column	section	is	used	to	define	the	columns	you	want	to	populate.	You	don’t	always
need	to	populate	all	columns	in	a	table.	If	you	have	default	values	and	allow	NULL	values
into	your	table,	you	can	just	identify	the	columns	that	are	required	to	create	a	record.	You
separate	each	column	with	a	comma	in	your	list.

	

The	VALUES	keyword	is	also	required	with	the	list	of	values	in	the	parenthesis.	One	thing
to	note	is	that	the	number	of	values	must	match	the	number	of	columns	you	list	in	the
column	list.	If	you	don’t	have	the	same	number	of	values	as	the	column	list,	the	SQL
engine	returns	an	error.	Another	issue	to	note	is	that	you	must	have	values	in	the	same
order	as	you	have	in	the	column	list.	If	you	accidentally	transpose	any	values,	you	will
accidentally	store	the	wrong	data	in	the	wrong	field.

	

Now	let’s	take	a	look	at	an	actual	example.	Let’s	insert	a	new	customer	into	our	Customer
table.

	

INSERT	INTO	Customer	(first_name,	last_name)	VALUES	(‘john’,	‘smith’);

	

Notice	that	the	above	statement	follows	the	template	we	posted	earlier.	The	first	and	last
name	columns	are	listed	in	the	first	parenthesis	with	each	column	separated	by	a	column.
The	second	list	is	the	values	you	want	to	insert.	We	are	inserting	a	new	customer	with	a
first	and	last	name	of	john	smith.	If	you	accidentally	transposed	those	two	values,	“smith”
would	be	inserted	in	the	first	name	column	and	“john”	would	be	inserted	into	the	first
name	column.	This	is	important	to	remember	when	you	set	values.

	

The	above	statement	inserts	data	using	static	values.	Notice	that	we	didn’t	include	the
customer	ID	in	our	list	of	values.	The	customer	ID	is	an	auto-incrementing	numeric	value
that	automatically	inserts	a	new	customer	ID	each	time	a	new	ID	is	set.	This	means	that
you	don’t	set	the	customer	ID.	Instead,	you	let	the	database	do	it.	This	type	of	strategy
ensures	that	you	never	have	a	duplicate	primary	key	when	you	insert	your	new	data.	You
might	want	to	manage	primary	keys	yourself,	but	some	database	designers	make	it	easier
to	manage	by	simply	using	an	auto-incrementing	primary	key	that	will	never	accidentally
use	a	duplicate	value.	Since	you	always	want	your	customers	to	have	a	unique	ID,	this	is
sometimes	the	better	way	to	manage	records.	If	you	have	two	customers	with	the	same	ID,
you	could	accidentally	give	information	to	the	wrong	customer,	which	can	be	a	privacy
concern.

	

Just	like	previous	chapters,	you	probably	want	to	insert	data	into	your	tables	using	user
defined	variables.	For	instance,	a	new	customer	signs	up	on	your	web	page.	The	customer
wants	to	send	information	to	your	database	to	sign	up	and	purchase	product.	You	do	this
using	user	defined	variables	sent	to	the	application	and	use	the	INSERT	statement	to	add
the	new	customer	record	to	your	Customer	table.

	

Let’s	take	a	look	at	an	example.

	

INSERT	INTO	Customer	(first_name,	last_name)	VALUES	(@firstname,	@lastname);

	

In	the	above	statement,	we	still	assume	the	database	will	automatically	insert	the	primary
key	customer	ID	field	into	the	table.	The	difference	is	that	we	used	a	user	defined	variable
to	insert	data.	If	the	user	defined	variable	does	not	have	any	assigned	data,	the	SQL	engine
will	attempt	to	insert	NULL	into	the	field	value.	For	this	reason,	it’s	best	to	allow	NULL

values	into	your	database	tables.

	

Inserting	Data	from	Another	Table

	

We	discussed	updating	data	from	a	separate	table	in	a	previous	chapter.	You	will	run	into
times	when	you	need	to	update	or	insert	new	data	into	your	database	from	external	sources
such	as	external	tables.	The	tables	could	come	from	acquisitions,	or	maybe	you	ran	into	a
data	integrity	issue	and	need	to	import	data	from	a	backup	table.	Whatever	your	reason,
you	can	use	the	SQL	language	to	pretty	easily	import	data	into	your	database	without
creating	and	running	complex	SQL	statements.

	

Let’s	use	the	same	example	as	the	Customer	table	example	from	the	previous	chapter.
Instead	of	updating	data,	you	want	to	insert	new	records	into	your	database.	You	have	an
external	temporary	table	named	temptable.	You	want	to	import	the	customers	listed	in	the
temptable.	We’ll	also	assume	that	the	temptable	has	the	same	structure	as	the	Customer
table	since	this	course	is	for	beginners.

	

Let’s	take	a	look	at	an	example.

	

INSERT	INTO	Customer	(first_name,	last_name)

SELECT	first_name,	last_name	FROM	temptable;

	

Notice	that	we	didn’t	use	the	VALUES	keyword.	We	don’t	use	it	when	you	pull	data	from
an	external	table.	Instead,	we	just	use	a	SELECT	statement	to	pull	records	from	the
external	temporary	table.	In	this	example,	we	extract	every	record	in	the	table	and	insert	it
into	the	Customer	table.	Notice	that	the	columns	are	the	same	as	the	columns	in	the	main
Customer	table.

	

You	also	have	the	option	to	filter	the	records	that	you	want	to	import.	For	instance,
suppose	you	only	want	to	import	customers	in	the	temporary	table	that	were	created	at	a
specific	date.	You	can	add	the	WHERE	clause	to	your	SELECT	query	to	filter	the	records
that	are	inserted	into	your	table.

	

Let’s	take	a	look	at	an	example.

	

INSERT	INTO	Customer	(first_name,	last_name)

SELECT	first_name,	last_name	FROM	temptable

WHERE	create_date	>=	‘2012-08-31’;

	

In	the	above	example,	only	customer	records	created	after	August	31,	2012	are	inserted
into	your	Customer	table.	This	is	useful	when	you	have	several	records	that	you	don’t
need	inserted	into	your	tables.	It’s	a	way	to	take	a	large	data	dump	and	still	use	it	to
transform	your	data	from	one	table	to	another.

	

What	happens	when	you	just	want	to	take	a	snapshot	of	a	temporary	table	with	several
columns?	For	instance,	you	could	have	a	table	of	customers	and	the	table	contains	dozens
of	columns.	While	this	isn’t	a	very	well	designed	table,	it	can	happen	when	you	have	a
CSV	file	that	you’ve	recently	imported	into	your	database.

	

If	you	want	to	just	create	a	copy	of	your	database	and	don’t	want	to	specify	columns	the
target	and	source	tables	must	be	exactly	the	same.	Any	changes	in	the	column	structure
and	the	database	won’t	understand	how	to	import	the	tables	and	match	the	different
columns.

	

Let’s	take	a	look	at	an	example	in	the	following	SQL	statement.

	

INSERT	INTO	Customer

SELECT	first_name,	last_name	FROM	temptable;

	

In	the	above	example,	notice	that	there	are	not	columns	specified,	but	the	columns	are	the
same	in	the	temporary	table	as	they	are	in	the	target	table.	This	allows	the	SQL	database	to
match	up	the	appropriate	column	for	both	the	source	and	the	destination.

	

Autoincrementing	Fields	and	Default	Values

	

In	most	cases,	you	won’t	insert	all	data	columns	into	your	database	tables	when	you	use	an
INSERT	statement.	You	use	default	values	to	automatically	set	the	field	value,	so	you
don’t	need	to	specify	it	each	time.	For	instance,	your	customer	could	enter	a	first	and	last
name,	but	you	might	want	to	allow	the	customer	to	enter	their	address	at	another	time.
When	the	customer	signs	up	on	your	website,	you	don’t	capture	the	address	information,
so	you	have	no	value	for	the	address	field	in	your	table.	You	do	this	using	default	values.
A	default	value	is	set	when	you	design	your	tables.

	

If	you	recall,	we	discussed	how	to	create	tables.	The	NOT	NULL	specification	was	used
for	primary	keys,	because	these	keys	can’t	contain	NULL	values.	However,	we	specified
NULL	for	other	columns.

	

Let’s	do	a	select	statement	on	the	information	we	just	entered	into	our	Customer	table.	We
didn’t	specify	an	address,	so	what	happens	to	the	column	when	we	specify	just	the	first
and	last	name?

	

SELECT	*	FROM	Customer;

	

The	output	should	look	like	the	following.

	

customer_id,	first_name,	last_name,	address

–––––––––––––––––––––––

1														Jane														Jones														NULL

2														John														Smith														NULL

	

Notice	our	new	John	Smith	record	that	we	created.	The	address	is	set	to	NULL.	This	is
because	we	did	not	specify	a	value	and	we	allowed	NULL	values	in	our	address	column.
If	you	didn’t	allow	NULL	values,	the	SQL	engine	would	return	an	error.

	

Also	notice	that	the	customer	has	an	ID	even	though	we	didn’t	manually	set	one.	This	is
because	our	Customer	table	is	set	up	to	automatically	take	the	last	record	in	the	database
table,	increment	it	by	1,	and	then	insert	the	new	value	into	the	Customer	table	record.	We
know	that	each	record	inserted	with	have	a	unique	ID.

	

This	chapter	covered	the	basics	of	inserting	new	records	into	your	tables.	The	INSERT
statement	is	probably	the	second	most	common	statement	that	you’ll	write	after	the
SELECT	statement.

	

Lab	Questions

	

1.	You	need	to	insert	a	record	into	your	Order	table.	The	table	has	two	columns	named
product_name	and	total_order_cost.	Write	the	SQL	statement	that	inserts	a	new	record

into	the	Order	table.

INSERT	INTO	Order	(product_name,	total_order_cost)	VALUES	(‘Product	Name’,
10.00);

Explanation:	We	used	the	simple	INSERT	statement	to	add	the	record.	Notice	that	numeric
values	are	not	enclosed	by	tick	marks.

	

2.	You	want	to	insert	a	new	customer	record	into	your	Customer	table.	You	want	to	use
user	defined	variables.	Write	the	SQL	statement	that	inserts	a	new	record.	Assume	the
Customer	table	has	two	columns	named	first_name	and	last_name.

INSERT	INTO	Customer	(first_name,	last_name)	VALUES	(@firstname,	@lastname);

Explanation:	Instead	of	using	static	values,	the	user	defined	variables	are	used	to	insert
data.

	

3.	What	is	the	name	of	a	field	that	you	can	use	for	primary	keys	to	ensure	that	each	field
has	a	unique	value?

a.	NULL

b.	NULL	values

c.	Integer

d.	Autoincrement

Explanation:	An	autoincrement	field	increments	the	last	number	from	a	previous	record	to
ensure	that	you	always	get	a	unique	value	for	your	primary	keys.

Chapter	8	–	Joining	Tables
	

Chapter	Objective:	It’s	not	enough	to	just	read	data	from	1	table.	Most	applications
require	data	from	multiple	relational	tables.	This	chapter	explains	how	to	use	the	JOIN
statement	to	select	from	multiple	linked	tables.

	

	

We	covered	the	SELECT	statement	in	previous	chapters.	You	use	the	SELECT	statement
to	read	data	from	your	tables.	We	also	covered	primary	and	foreign	key	relationships.	You
need	these	relationships	to	link	tables.	This	chapter	will	help	you	understand	how	to	join
tables	on	primary	and	foreign	keys	to	create	larger,	more	complex	data	sets.	Joining	two
tables	together	is	much	more	efficient	than	reading	multiple	tables	separately,	and	you’ll
find	that	you	join	your	tables	much	more	frequently	than	just	querying	one	table	in	a
relational	database.

	

An	Overview	of	Joining	Tables

	

In	previous	chapters,	we	used	several	different	SELECT	statements	to	review	data	from	a
table.	Let’s	use	the	same	example	of	customers	and	orders.	You	have	two	tables	that	list
your	customers,	and	for	each	customer	one	or	more	records	could	exist	in	the	orders	table.
You	could	do	a	select	on	the	Customer	table	and	get	a	customer	ID,	and	then	you	could	do
a	second	SELECT	statement	on	the	Order	table	and	get	a	list	of	orders.	As	you	can
imagine,	if	you	must	do	this	with	several	tables,	it	can	greatly	reduce	the	performance	of
your	applications.

	

This	is	where	a	JOIN	statement	comes	in	handy.	The	JOIN	statement	lets	you	combined
the	results	of	the	customer	and	orders	and	display	one	data	set	result.	This	not	only	gives
you	one	data	set	for	all	queries,	but	it	also	reduces	the	amount	of	queries	on	the	database
server.	When	you	have	thousands	of	people	using	your	database,	poorly	optimized	queries
and	stored	procedures	result	in	sluggishness	of	your	database	server	and	your	application.
This	costs	companies	money,	so	your	goal	as	a	database	programmer	or	administrator	is	to
make	your	SQL	statements	as	efficient	as	possible.

	

The	Inner	Join	Statement

	

The	first	JOIN	statement	you	need	to	know	is	the	INNER	JOIN.	There	is	some	logic	and
understanding	you	have	to	know	before	you	start	running	join	statements.	An	INNER
JOIN	basically	says	“join	these	two	tables	together	and	only	give	me	records	that	have	a

match	in	both	tables.”	For	instance,	if	you	have	a	customer	with	no	orders,	an	INNER
JOIN	statement	excludes	the	customer	because	there	is	no	match	between	the	two	tables.
With	this	type	of	join	statement,	you	have	no	null	records	with	unmatched	links.

	

Let’s	take	a	look	at	an	example	using	the	Customer	and	Order	tables.

	

SELECT	c.first_name,	c.last_name,	o.order_id,	o.product_name

FROM	Customer	AS	c

INNER	JOIN	Order	AS	o	ON	c.customer_id	=	o.customer_id

WHERE	c.customer_id	=	1;

	

You’ll	notice	that	this	statement	is	much	longer	and	more	complex	than	previous	SELECT
statements	we’ve	used.		Let’s	dissect	the	statement	and	review	it	further.

	

The	fist	line	is	the	standard	SELECT	syntax	that	defines	that	we	want	to	read	data	and
return	the	customer’s	first	and	last	name.	We	also	return	some	order	information	to	review
the	customer’s	list	of	orders.

	

The	next	line	defines	the	first	table	we’re	querying.	We	added	the	AS	statement.	The	AS
statement	lets	us	create	aliases	for	tables.	Aliases	are	shorthand	notations	for	specific
tables.	Once	you	define	the	alias,	you	must	use	it	throughout	your	SQL	statements.	Aliases
make	it	easier	to	type	long	SQL	statements,	and	they	make	shorter	statements	that	are
easier	to	read	when	an	administrator	reviews	the	code.

	

The	third	line	of	code	is	the	INNER	JOIN	statement.	We’re	joining	on	the	customer_id
column,	which	as	we	mentioned	before	is	the	primary	and	foreign	key	relationship.	The
customer_id	column	should	be	unique	for	the	Customer	table,	but	it	could	be	used	in
multiple	records	in	the	Order	table.	For	this	reason,	if	you	have	multiple	orders	in	the
Order	table,	the	data	set	returns	the	customer	information	for	each	Order,	so	it	looks	like
duplicate	records.	When	you	review	the	data,	just	remember	that	the	data	set	does	not
represent	the	number	of	times	the	record	is	in	the	table.

	

Let’s	assume	that	there	are	two	orders	in	the	Order	table	for	customer	ID	1.	Let’s	take	a
look	at	what	the	record	set	looks	like.

	

first_name,	last_name,	order_id,	product_name

–––––––––––––––––––––––––—

John														smith														1														Product	A

John														smith														2														Product	B

	

Notice	that	the	customer’s	name	is	listed	twice.	That’s	because	the	records	returned	are	for
two	orders	for	the	same	customer.	The	order_id	and	the	product	name	are	both	different.
This	indicates	that	there	are	two	orders	in	your	Order	table.

	

What	happens	if	there	are	no	orders	in	the	Order	table?	No	records	are	returned.	As	a
matter	of	fact,	you	get	a	completely	empty	data	set	even	though	the	customer	does	exist	in
the	Customer	table.	The	INNER	JOIN	statement	only	returns	records	where	both	tables
have	records	for	a	specific	relationship.

	

When	you	work	with	the	JOIN	statement,	you	have	to	remember	these	SQL	quirks	to
ensure	that	you	receive	an	accurate	data	set.	When	you	only	have	a	few	records	to	work
with,	it’s	easy	to	do	a	quick	review	of	the	information	and	determine	if	you’ve	worked
with	the	right	JOIN	statement	and	logic.	However,	when	you	work	with	thousands	of
records,	you	might	accidentally	retrieve	and	work	with	the	wrong	data.	If	you	join	on	the
wrong	relationship,	use	the	wrong	WHERE	filter	clause	or	use	the	wrong	alias	in	your
statements,	you	can	create	a	data	set	that	returns	the	wrong	information.	This	is	mostly
important	when	you	work	with	reports	that	require	accuracy	but	you’re	unable	to	review
data	before	it’s	published	publicly.

	

The	LEFT	JOIN	Statement

	

We	worked	with	a	data	set	that	returned	only	data	for	customers	with	orders,	but	what	if
you	want	a	list	of	customers	and	then	any	connecting	orders.	What	if	you	want	to	review	a
customer	even	if	they	don’t	have	an	order?	The	INNER	JOIN	statement	removes
customers	with	no	orders,	but	you	have	the	option	of	working	with	the	LEFT	JOIN
statement.	The	LEFT	JOIN	statement	basically	states	“give	me	all	records	from	the	left
table	and	any	records	that	match	on	the	right	table.”	Think	of	the	Customer	table	as	the
left	table,	and	the	Order	table	as	the	right	table.

	

The	LEFT	JOIN	statement	often	gives	you	a	larger	record	set,	so	you	don’t	want	to	use	it
if	you	don’t	need	it.	It’s	better	to	use	the	INNER	JOIN	statement	when	you	don’t	need	all
records	from	one	table,	because	large	record	sets	can	slow	the	database	and	your
application.

	

Let’s	take	a	look	at	an	example	query	using	the	same	Customer	and	Order	tables	we
previously	used	for	the	INNER	JOIN	query.

	

SELECT	c.first_name,	c.last_name,	o.order_id,	o.product_name

FROM	Customer	AS	c

LEFT	JOIN	Order	AS	o	ON	c.customer_id	=	o.customer_id

WHERE	c.customer_id	=	1;

	

Notice	that	we	used	the	exact	same	query	except	we	traded	the	INNER	JOIN	for	a	LEFT
JOIN.	We	still	use	aliases	and	we	still	query	for	only	orders	that	exist	for	customer	ID	1.
Let’s	assume,	though,	that	customer	1	has	no	orders.	If	you	recall,	we	said	that	with	an
INNER	JOIN,	the	data	set	would	be	empty.	Let’s	see	what	happens	with	a	LEFT	JOIN.

	

Here	is	an	example	of	our	data	output.

	

first_name,	last_name,	order_id,	product_name

–––––––––––––––––––––––––—

John														smith														NULL														NULL

	

Notice	that	we	don’t	have	an	empty	data	set,	but	the	order	information	returned	is	NULL.
The	data	set	also	contains	only	one	record.	We	have	only	one	customer	with	an	ID	of	1,	so
only	one	record	is	returned,	but	we	have	no	order	records.	Unlike	the	INNER	JOIN
statement,	the	LEFT	JOIN	statement	returns	all	records	from	the	left	table	(Customer)	and
displays	NULL	if	no	records	exist	on	the	right	table	(Orders).	If	you	had	orders	for	the
customer,	the	record	set	would	return	the	same	list	as	the	INNER	JOIN	query.

	

This	is	a	distinct	difference,	and	as	you	can	guess,	just	changing	to	the	wrong	type	of
JOIN	statement	greatly	influences	the	records	you	return.	If	we	needed	a	report	that	listed
all	customers	with	any	of	their	orders	and	used	the	INNER	JOIN	statement,	the	report
would	have	the	wrong	number	of	customers.	With	the	LEFT	JOIN	statement,	we	get	the
right	number	of	customers	with	any	orders	associated	with	the	customer.

	

The	RIGHT	JOIN	Statement

	

The	RIGHT	JOIN	statement	is	similar	to	the	LEFT	JOIN.	The	only	difference	is	that	the

RIGHT	JOIN	statement	says	“give	me	all	records	on	the	right	table	and	any	matches	on
the	left	table.”	In	our	example,	instead	of	taking	all	records	from	the	Customer	table,	the
SQL	engine	is	instructed	to	take	all	records	from	the	right	table	(Orders)	and	return	any
results.	Since	every	order	needs	a	customer,	you	would	get	a	record	for	each	order	that	you
retrieve.	However,	this	would	be	a	good	way	to	determine	if	you	have	orphaned	records
on	a	table	that	doesn’t	have	the	proper	constraints.

	

Let’s	take	a	look	at	an	example	using	the	same	query	to	give	us	an	understanding	of	the
data	results.

	

SELECT	c.first_name,	c.last_name,	o.order_id,	o.product_name

FROM	Customer	AS	c

RIGHT	JOIN	Order	AS	o	ON	c.customer_id	=	o.customer_id

WHERE	c.customer_id	=	1;

	

Again,	we’ve	only	changed	the	JOIN	statement	and	nothing	else.	Let’s	take	a	look	at	the
data	results.

	

first_name,	last_name,	order_id,	product_name

–––––––––––––––––––––––––—

John														smith														1														Product	A

John														smith														2														Product	B

	

Notice	that	our	result	set	is	the	same	as	the	INNER	JOIN.	Let’s	take	away	the	WHERE
clause	filter	and	look	at	the	data	set	again.

	

Here	is	the	query.

	

SELECT	c.first_name,	c.last_name,	o.order_id,	o.product_name

FROM	Customer	AS	c

RIGHT	JOIN	Order	AS	o	ON	c.customer_id	=	o.customer_id

	

Let’s	take	a	look	at	the	results.

	

first_name,	last_name,	order_id,	product_name

–––––––––––––––––––––––––—

John														smith														1														Product	A

John														smith														2														Product	B

NULL														NULL														3														Product	A

	

Notice	we	have	all	records	from	the	Order	table,	but	there	is	a	NULL	value	for	the
customer	information	for	order	3.	Since	we’re	supposed	to	have	a	constraint,	it	looks	like
we	forgot	to	restrict	deletion	of	a	customer	if	the	customer	has	an	order.	The	result	is	that
we	have	an	order	with	no	customer	linked	to	it,	and	this	is	what	we	use	the	RIGHT	JOIN
statement	for.

	

These	are	the	main	three	JOIN	statements	you’ll	need	to	know	when	you	work	with
multiple	relational	tables.	It	takes	some	practice	to	get	used	to	the	right	results,	so	let’s
look	at	some	lab	questions.

	

Lab	Questions

	

1.	You	need	to	query	for	all	of	your	customers	and	orders.	You	want	to	get	a	count	of	all
customers	and	any	related	orders	even	if	they	don’t	have	one.	Write	the	SQL	query	that
accomplishes	this.

SELECT	c.first_name,	c.last_name,	o.order_id,	o.product_name

FROM	Customer	AS	c

LEFT	JOIN	Order	AS	o	ON	c.customer_id	=	o.customer_id;

Explanation:	You	use	the	LEFT	JOIN	to	get	all	customers	on	the	left	table	and	then	join	to
the	right	table,	which	is	the	Order	table.

	

2.	You	want	to	query	customers	with	an	order.	You	want	to	filter	out	any	customers	that
don’t	have	an	order.	Write	the	SQL	statement	that	gets	this	data	set.

SELECT	c.first_name,	c.last_name,	o.order_id,	o.product_name

FROM	Customer	AS	c

INNER	JOIN	Order	AS	o	ON	c.customer_id	=	o.customer_id

Explanation:	the	INNER	JOIN	statement	filters	out	any	records	where	there	is	not	a
match.

	

3.	What	SQL	keyword	is	used	to	create	an	alias	for	a	table	name	in	your	queries?

a.	ALIAS

b.	AS

c.	AT

d.	ALSO

Explanation:	The	AS	keyword	lets	you	create	shorthand	names	for	your	table	names	as
you	query	them.

Chapter	9	–	Aggregating	Data
	

Chapter	Objective:	SQL	has	several	functions	that	let	you	automatically	aggregate,
average,	or	add	up	values	in	your	tables.	This	chapter	covers	the	main	SQL	functions	for
working	with	large	sets	of	data.

	

	

SQL	lets	you	automate	several	common	math	commands.	For	instance,	if	you	want	to	see
the	total	amount	of	sales	for	the	day,	you	can	use	the	internal	SQL	function	named	SUM.
You	can	also	average,	count,	and	identify	maximum	and	minimum	values.	There	are
several	internal	functions	that	help	reduce	programming	time	and	effort	and	do	the
procedure	for	you.	This	chapter	covers	these	main	functions	to	make	your	SQL
programming	life	easier.

	

The	COUNT	Function

	

We’ll	start	off	with	the	easiest	of	all	the	aggregate	functions.	The	COUNT	function	simply
counts	the	number	of	records	returned.	For	instance,	maybe	you	just	want	a	count	of	the
total	customers	in	your	Customer	table	to	give	you	an	idea	of	the	number	of	customers
you’ve	acquired.	Maybe	you	want	to	get	a	count	of	orders	between	certain	dates	to
identify	the	number	of	orders	you’ve	received.	Both	of	these	examples	use	the	COUNT
function.

	

Let’s	take	a	look	at	an	example.

	

SELECT	COUNT(*)	FROM	Customer;

	

The	above	statement	counts	all	records	in	your	customer	table.	You	might	have	duplicate
records,	but	you	can	get	a	general	idea	of	the	number	of	customers	you’ve	acquired	from
your	website	or	application.

	

Maybe	you	want	to	get	a	list	of	customers	that	signed	up	at	a	certain	time.	This	would
require	the	WHERE	clause.	Instead	of	counting	all	records	in	a	table,	using	the	WHERE
clause	will	give	you	a	count	of	the	number	of	customers	who	signed	up	at	a	specific	date.
Let’s	look	at	an	example.

	

SELECT	COUNT(*)	FROM	Customer

WHERE	create_date	>=	‘2015-08-01’	and	create_date	<=	‘2015-08-31’;

	

As	you	can	see,	the	query	only	returns	a	count	for	customers	who	signed	up	in	August
2015.	This	too	is	useful	when	you	want	to	see	the	progression	of	your	website	or	business.
This	type	of	query	is	often	used	in	reporting.

	

The	SUM	Function

	

The	SUM	function	is	the	answer	to	any	aggregation	that	you	need	to	sum.	For	instance,
suppose	you	need	to	add	up	all	order	totals	for	a	specific	date.	You	could	take	each	record
one	by	one	and	add	up	the	results,	but	you	can	use	the	SUM	function	instead.	The	SUM
function	lets	you	add	up	totals	and	makes	it	easy	to	get	these	values.	One	note	about	the
SUM	function	is	that	it	ignores	NULL	values.	Any	NULL	values	are	ignored,	so	you	can
view	a	NULL	value	as	0	although	it	only	works	with	this	function	and	not	others.

	

Let’s	take	a	look	at	an	example.

	

SELECT	SUM(order_total)	FROM	Order

WHERE	create_date	>=	‘2015-08-01’	and	create_date	<=	‘2015-08-31’;

	

The	SUM	function	adds	up	all	order_total	values	between	the	two	dates	indicated	and
provides	you	with	the	output.

	

Suppose	you	want	to	SUM	up	values	for	each	specific	customer.	This	introduces	the
necessity	of	the	GROUP	BY	clause.	This	clause	groups	records	by	the	specified	field,	so
you	can	get	output	for	a	specific	group.

	

Let’s	take	a	look	at	an	example.

	

SELECT	SUM(order_total)	AS	total,	customer_id	FROM	Order

WHERE	create_date	>=	‘2015-08-01’	and	create_date	<=	‘2015-08-31’

GROUP	BY	customer_id;

	

We	added	some	statements	to	the	SQL	code.	We	gave	an	alias	to	the	total,	so	we	can	more
easily	identify	the	column	that	contains	the	summed	data.	We	then	specify	the	customer_id
column.	We	want	to	group	a	total	amount	by	the	customer_id	field,	so	we	then	have	the
amount	a	customer	spent	for	each	customer	ID.

	

Let’s	take	a	look	at	the	output	for	the	above	query.

	

total,	customer_id

––––––––––––––––

44.00														1

43.00														2

	

The	above	output	gives	you	the	totals	for	customers	1	and	2.	You	can	combine	this
statement	with	the	COUNT	statement	to	also	identify	the	number	of	orders.	For	instance,
you	know	that	customer	1	had	a	total	of	44.00	in	order	costs,	but	how	many	orders	is	that?
You	don’t	know	the	number	of	orders	that	make	up	the	$44.00.	Let’s	combine	the	COUNT
function	with	the	SUM	function	to	identify	the	number	of	orders.

	

SELECT	SUM(order_total)	AS	total,	COUNT(order_total)	AS	order_count,	customer_id
FROM	Order

WHERE	create_date	>=	‘2015-08-01’	and	create_date	<=	‘2015-08-31’

GROUP	BY	customer_id;

	

Now	let’s	take	a	look	at	the	results.

	

total,	order_count,	customer_id

––––––––––––––––

44.00														2														1

43.00														3														2

	

Now	we	have	a	more	accurate	report.	We	know	that	customer	1	made	two	orders	that	total
up	to	$44.00.	You’ve	just	written	your	first	basic	report	that	could	be	useful	for	the
website	owner.	Remember	that	whenever	you	need	to	group	data,	which	is	common	when
you	need	to	do	aggregating	functions,	you	always	need	to	use	the	GROUP	BY	statement.

	

The	AVG	Function

	

The	AVG	function	is	a	bit	trickier	than	the	SUM	function.	The	AVG	does	as	the	name
suggests	–	it	averages	a	group	of	records.	However,	when	you	could	identify	an	ignored
NULL	value	as	a	0,	which	the	AVG	function	the	record	is	ignored.	This	means	that	if	your
record	set	has	4	records	but	one	has	a	NULL	value,	the	AVG	function	adds	up	only	3
records	and	uses	that	3	records	as	the	averaging	denominator	in	the	calculation.

	

Let’s	take	a	look	at	the	AVG	function	SQL	sample.

	

SELECT	AVG(order_total)	AS	total,		customer_id	FROM	Order

WHERE	create_date	>=	‘2015-08-01’	and	create_date	<=	‘2015-08-31’

GROUP	BY	customer_id;

	

We	again	group	our	data	using	the	customer	ID.	We	use	the	same	query	except	for	the
AVG	function.	Let’s	take	a	look	at	the	sample	data.

	

total,		customer_id

––––––––––––––––

12.00																												1

13.00																												2

	

Now	we	have	the	average	amount	spent	from	each	of	your	customers.	But	what	if	you
want	to	include	values	that	are	NULL?	You	need	to	turn	the	NULL	value	to	a	0	for	the
query.		We	can	use	the	IFNULL	function.	The	IFNULL	function	changes	a	value	when	it’s
NULL.	It’s	not	changed	permanently	in	your	tables.	Instead,	the	IFNULL	function
changes	the	value	just	for	the	query.	Therefore,	if	we	need	to	know	the	average	of
customer	orders	even	if	the	customer	spent	no	money,	we	include	the	IFNULL	function.

	

Let’s	take	a	look	at	an	example.

	

SELECT	AVG(IFNULL(order_total,	0))	AS	total,		customer_id	FROM	Order

WHERE	create_date	>=	‘2015-08-01’	and	create_date	<=	‘2015-08-31’

GROUP	BY	customer_id;

	

Now	we	have	the	IFNULL	included	to	switch	a	NULL	value	to	0	for	the	calculation.	Now
the	SQL	statement	will	have	a	more	accurate	average.	Let’s	take	a	look	at	the	results	and
its	changes.

	

total,		customer_id

––––––––––––––––

4.00																												1

13.00																												2

	

Since	our	average	went	down	for	customer	ID	1,	we	know	that	this	customer	has	some
orders	with	a	0	sum	total.	This	is	beneficial	when	you	have	several	records	that	average	in
your	queries,	but	you	can’t	identify	which	ones	return	NULL	values.	Now	you	know	that
you	have	NULL	values	in	your	data	set.

	

The	MIN	and	MAX	Functions

	

The	final	two	aggregate	functions	that	you	need	to	know	are	the	MIN	and	MAX	functions.
These	two	functions	find	the	highest	and	lowest	values	in	a	data	set.	For	instance,	you
might	want	to	know	your	biggest	order	for	the	month,	or	maybe	you	just	want	to	know	the
last	customer	ID	that	was	entered	into	your	database.	Maybe	you	want	to	know	the
smallest	order	amount	as	well.	All	of	these	values	can	be	found	using	the	MIN	and	MAX
functions.

	

Let’s	use	the	same	query	we’ve	been	using.	We	want	to	know	the	total	of	all	orders	for	the
month	of	August,	be	we	also	want	to	know	the	maximum	order	value	within	the	record
set.

	

Take	a	look	at	the	following	SQL	statement.

	

SELECT	SUM(order_total,	0)	AS	total,		MAX(order_total)	as	max,	customer_id	FROM
Order

WHERE	create_date	>=	‘2015-08-01’	and	create_date	<=	‘2015-08-31’

GROUP	BY	customer_id;

	

Notice	that	we	removed	the	AVG	function	and	replaced	it	with	the	SUM	function.	We
want	to	know	the	summation	of	all	of	our	orders,	so	we	want	to	use	the	SUM	function.	We
added	the	MAX	function.	This	function	will	tell	us	what	the	maximum	order	is	for	each
customer.	And	finally,	remember	that	we	always	need	the	GROUP	BY	statement	to	ensure
that	the	SQL	database	doesn’t	return	an	error	to	our	output	and	it	properly	groups	each
total	by	the	customer	ID.

	

Now	let’s	take	a	look	at	the	output.	The	following	data	set	is	returned	from	our	MySQL
database.

	

total,	max,	customer_id

––––––––––––––––

44.00														10														1

13.00														11														2

	

Now	we	know	the	maximum	order	total	for	each	customer.	Customer	1	had	a	maximum
order	of	10	and	a	total	of	44.00,	and	customer	2	had	a	maximum	order	total	of	11	with	a
total	of	13.

	

Now	let’s	do	the	opposite.	Suppose	you	want	to	know	the	smallest	order	in	a	customer’s
order	history.	You	use	the	MIN	function	to	find	the	smallest	value	in	a	grouped	set.		Let’s
take	a	look	at	an	example.

	

SELECT	SUM(order_total,	0)	AS	total,		MIN(order_total)	as	min,	customer_id	FROM
Order

WHERE	create_date	>=	‘2015-08-01’	and	create_date	<=	‘2015-08-31’

GROUP	BY	customer_id;

	

Notice	that	we	have	the	same	SELECT	statement.	The	only	difference	between	this
statement	and	the	previous	one	is	the	use	of	the	MIN	function.	Now	we’re	finding	the
smallest	order	total	for	each	customer.

	

Let’s	take	a	look	at	an	example	of	the	data	set	returned	by	SQL.

	

total,	min,	customer_id

––––––––––––––––

44.00														4														1

13.00														3														2

	

Now	we	know	that	customer	1	has	a	minimum	order	total	of	4,	and	customer	2	has	a
minimum	order	value	of	3.	From	the	totaled	values,	we	know	that	these	orders	aren’t	the
only	orders	for	the	customer,	so	we	can	assume	that	each	of	these	customers	has	more	than
one	order.	If	the	minimum	or	maximum	returned	values	were	the	same	as	the	total	value,
then	the	customer	could	presumably	only	have	one	order.	This	is	the	type	of	extrapolation
you’ll	need	to	make	when	you	review	data	sets	from	your	SQL	queries.

	

That’s	it!	Those	are	the	main	aggregate	functions	in	SQL.	SQL	has	several	different
internal	functions,	but	these	are	the	most	common	for	database	administrators	and
programmers.	Let’s	take	a	look	at	some	lab	questions	for	you	to	write	some	statements	on
your	own.

	

Lab	Questions

	

1.	You	want	to	get	the	total	order	for	all	records	created	in	August.	You	don’t	want	to
group	them.	You	just	want	the	total	number	of	orders	for	a	gross	revenue	estimate.	Write
the	SQL	query	that	gives	you	the	right	value.

SELECT	SUM(order_total)	FROM	Order

WHERE	create_date	>=	‘2015-08-01’	and	create_date	<=	‘2015-08-31’;

Explanation:	this	query	sums	up	all	records	for	the	month	of	August.

	

2.	What	statement	must	you	use	if	you	want	to	group	records?

a.	ORDER	BY

b.	FILTER	BY

c.	GROUP	BY

d.	TOTAL

Explanation:	the	GROUP	BY	function	should	be	added	to	the	end	of	any	SQL	statement
that	requires	grouping	by	a	specific	field.

	

3.	You	want	to	get	an	average	for	each	customer	in	your	Order	table.	Write	the	query	that
gets	an	average	order	total	for	each	customer	for	the	month	of	August.

SELECT	AVG(order_total)	AS	total,		customer_id	FROM	Order

WHERE	create_date	>=	‘2015-08-01’	and	create_date	<=	‘2015-08-31’

GROUP	BY	customer_id;

Explanation:	Remember	that	the	average	function	removes	and	disregards	any	records
with	NULL	values.

Chapter	10	–	Subqueries
	

Chapter	Objective:	Subqueries	are	SELECT	statements	used	to	refine	a	filtered	list	of
results.	You	use	subqueries	to	query	a	separate	table	for	a	list	of	results	included	within
your	main	query.	The	objective	for	this	chapter	is	to	write	subqueries	for	our	SELECT
statements.

	

	

We	had	one	small	example	of	a	subquery	in	the	previous	chapter	that	covered	the
UPDATE	statement.	This	chapter	is	dedicated	to	SQL	subqueries,	which	are	usually
implemented	in	SELECT	statements.	They	are	sometimes	considered	more	advanced
programming	techniques	in	SQL,	but	it’s	important	to	understand	how	they	work	as	you’ll
probably	find	yourself	working	with	them	in	most	applications,	even	if	you	do	minimal
SQL	programming	on	the	database	side.

	

Subqueries	are	basically	a	“query	within	a	query.”	They	query	a	secondary	table,	return
results,	and	then	your	outer,	main	query	retrieves	results	from	the	subquery.	The	subquery
can	be	used	as	filter	in	the	WHERE	clause	or	a	way	to	retrieve	a	field	from	a	secondary
table	in	the	list	of	columns	you	want	to	retrieve.

	

One	thing	to	note	with	a	subquery	is	that	they	are	not	an	efficient	way	to	query	database
results.	Most	database	administrators	require	developers	to	change	any	subqueries	into
more	efficient	table	joins,	which	we	covered	in	the	previous	chapter.	There	are	some	rare
occasions	that	you	still	need	to	use	them,	which	is	why	we	are	covering	them	in	this
ebook.

	

Sub	SELECT	Queries

	

We	covered	a	sub	SELECT	query	in	a	previous	chapter	with	an	UPDATE	statement.	The
UPDATE	statement	changed	the	values	of	specific	columns	with	a	value	returned	from	a
sub	SELECT	query.	A	sub	SELECT	query	can	be	used	in	any	of	the	four	main	statements
that	we’ve	covered.	We’ll	focus	mostly	on	SELECT	statements,	because	they	are	easier	to
test	without	accidentally	destroying	your	data.

	

Let’s	take	a	look	at	an	example	query	that	uses	a	sub	SELECT	statement.

	

SELECT	first_name,	last_name,

(SELECT	order_id	FROM	Order	where	Order.customer_id	=	c.customer_id	LIMIT	1)	AS
orderid

FROM	Customer	AS	c

WHERE	c.customer_id	=	1;

	

While	the	above	query	isn’t	the	most	efficient	compared	to	a	query	that	uses	the	JOIN
statement,	it’s	sometimes	used	in	more	complex	statements.	We’re	using	this	query	to	help
you	understand	subqueries	without	diving	into	more	complex	statements	that	could	be	too
difficult	for	a	beginner	to	understand.

	

Let’s	dissect	the	above	query	to	help	you	understand	how	it	works.	The	first	line	of	code	is
the	typical	SELECT	statement	with	the	first	and	last	name	defined	as	the	columns	we	want
to	review.	The	next	line	of	code	is	the	subquery	that	you	might	recognize.	The	subquery
retrieves	an	order	that	matches	the	customer’s	ID	number.	You’ll	notice	that	we	had	to
prefix	the	column	filters	in	the	subquery.	Without	doing	this,	the	SQL	engine	doesn’t
know	which	customer_id	column	to	use	–	the	main	query	or	the	subquery.	With	this
definition,	we	know	that	the	MySQL	database	engine	will	use	the	customer_id	column
from	the	right	tables	as	we’ve	defined	them.

	

You’ll	notice	a	new	SQL	statement	added	to	the	subquery.	LIMIT	is	the	SQL	keyword
used	to	define	the	number	of	records	returned	from	a	query.	You	can	use	the	LIMIT
statement	in	both	the	main	query	and	the	subquery.	The	LIMIT	statement	in	this	subquery
is	important	or	the	SQL	engine	will	return	an	error	to	your	program.		The	reason	SQL
returns	an	error	is	because	you	could	possibly	have	several	orders	that	match	a	customer
ID.	If	you	can	visualize	it,	multiple	returned	orders	would	produce	multiple	results	for	one
record	in	your	main	query.	This	creates	a	problem	for	SQL	and	returns	an	error.	Therefore,
whenever	you	use	subqueries	in	this	type	of	way,	you	should	always	limit	the	returned
value	to	1	to	avoid	errors	from	your	SQL	engine.

	

We	also	alias	the	subquery.	When	a	value	is	returned	from	the	subquery,	if	we	don’t	set	a
subquery	alias,	SQL	picks	a	default	for	us.	We	want	to	know	exactly	what	column	is
returned,	so	we	set	the	subquery	alias	as	orderid	to	make	the	data	set	results	clearer.

	

The	next	part	of	the	main	query	should	be	familiar	to	you.	It	determines	that	you	want	to
return	records	from	the	Customer	table,	and	we	set	an	alias	named	c	for	the	table.	This	c
alias	is	used	in	the	subquery	to	ensure	that	the	SQL	engine	knows	to	query	from	the	right
table	using	the	appropriate	column.

	

Let’s	take	a	look	at	the	example	data	set	returned	from	the	above	query.

	

first_name,	last_name,	orderid

–––––––––––––––––––

John														Smith																												1

	

In	the	above	sample	record	set,	you’ll	see	that	we	get	similar	results	as	we	received	in
previous	chapters	that	discussed	joining	our	tables	together.	The	customer	with	the	name
John	Smith	is	associated	with	the	order	ID	of	1.	The	subquery	used	the	associated	link	to
return	the	right	value	for	John’s	order.

	

Another	issue	to	note	when	you	use	subquery	values.	Always	remember	that	the	inner
subquery	runs	first,	and	then	the	main	query	runs.	This	means	that	if	your	subquery	returns
a	million	records	but	the	main	outer	query	only	returns	a	few	records,	the	procedure	is
actually	very	inefficient.	This	can	slow	down	your	database	performance.	Remember	to
keep	your	subqueries	to	a	minimum	in	your	database	code	to	avoid	this	type	of	pitfall
where	subqueries	return	too	many	records.

	

The	IN	Statement

	

The	IN	statement	is	a	common	way	to	use	subqueries	to	filter	a	main	query	results	using
the	WHERE	clause	filters.	As	you	know,	the	WHERE	clause	filters	a	main	query’s	result.
You	can	use	a	subquery	in	your	WHERE	clause	to	filter	out	results	returned	from	an
external	table.

	

Let’s	take	a	look	at	a	sample	query	with	a	subquery	to	identify	how	the	IN	statement
works.	We’ll	use	our	standard	Order	and	Customer	table	as	an	example,	but	most	queries
that	use	subqueries	can	be	more	complex.

	

Here	is	an	example	query.

	

SELECT	first_name,	last_name

FROM	Customer	AS	c

WHERE	c.customer_id	=	1

And

c.customer_id	in	(SELECT	customer_id	FROM	Order);

	

Notice	that	we	moved	the	subquery	from	the	main	part	of	the	statement	and	changed	it	a
little	bit.	The	subquery	no	longer	links	the	Customer	table	and	it	has	no	limit.	The	way	this
query	returns	results	is	to	first	query	all	customer	IDs	from	the	Order	table.	Then,	the	main
query	runs.	If	the	customer	ID	is	found	in	the	Order	table,	then	the	customer	is	returned.

	

Let’s	take	a	look	at	the	results.

	

first_name,	last_name

–––––––––––––––––––

John														Smith																											

Jane															Smith

	

We	have	two	records	displayed	in	the	record	set.	This	tells	us	that	both	John	and	Jane	have
orders	in	the	Order	table,	because	the	IN	statement	only	displays	records	that	were
actually	found	in	the	subquery	table.

	

Again	note	that	all	records	in	the	subquery	are	returned	first	and	then	the	main	query	is
executed.	If	you	have	a	million	records	in	the	Order	table,	this	means	that	the	database
would	first	have	to	process	results	for	a	million	records,	then	use	the	main	query	to	filter
these	millions	of	records.	This	is	an	inefficient	use	of	database	resources.	A	better	way	to
query	this	table	would	be	to	use	a	JOIN	statement	to	JOIN	tables	and	then	use	the
WHERE	clause	to	filter	results.	You	will,	however,	run	into	this	type	of	querying	when
you	work	with	other	people’s	SQL	code.

	

You’ll	also	note	that	we	didn’t	use	the	LIMIT	function	with	this	subquery.	That’s	because
we	need	to	return	all	customer	ID	records	from	the	Order	table	to	allow	the	main	query	to
find	each	customer	ID	in	the	list.	Since	we	don’t	want	just	one	record	but	all	order	records
that	contain	a	customer	ID	should	be	used	to	match	all	customers	with	all	orders.

	

The	NOT	IN	Statement

	

We	used	the	IN	statement	in	the	previous	section.	We	used	a	subquery	to	find	records	that
are	in	a	separate	table.	With	the	NOT	IN	statement,	we	can	find	a	list	of	records	in	a	table
and	exclude	them	from	the	main	query.	While	the	previous	section	displayed	a	list	of

customers	that	were	in	the	Order	table,	we	now	want	to	exclude	any	customer	that	is	in	the
Order	table.	You	would	do	this,	for	instance,	if	you	wanted	to	find	all	customers	that	do
not	have	an	order.	If	the	customer	is	in	the	Order	table,	you	know	that	the	customer	has	an
order.	If	the	customer	ID	is	not	in	the	Order	table,	the	customer	doesn’t	have	an	order.
Since	the	NOT	IN	statement	is	used	to	find	IDs	that	are	not	in	the	Order	table,	this	is	a
way	to	find	these	customers.

	

Let’s	take	a	look	at	an	example.

	

SELECT	first_name,	last_name

FROM	Customer	AS	c

WHERE	c.customer_id	=	1

And

c.customer_id	NOT	IN	(SELECT	customer_id	FROM	Order);

	

Notice	that	the	query	is	exactly	the	same	as	the	previous	query	that	used	the	IN	statement.
The	difference	with	this	new	query	is	that	we	use	the	NOT	IN	statement	instead	of	just	IN.
The	NOT	IN	logic	is	exactly	the	opposite	as	the	IN	statement.

	

Let’s	take	a	look	at	the	results	for	the	above	query.

	

first_name,	last_name

–––––––––––––––––––

	

Notice	that	we	have	a	completely	empty	data	set.	Since	the	logic	is	exactly	the	opposite,
we	know	that	the	results	should	be	exactly	the	opposite	when	we	run	the	statement.	The
query	basically	says	“give	me	all	records	in	the	Customer	table	that	are	not	found	in	the
Order	table.”	Since	we	found	both	of	our	customers	in	the	first	statement,	we	know	that
both	of	our	customers	have	orders.	The	NOT	IN	statement	only	displays	a	customer	if	the
ID	is	NOT	found	in	the	Order	table.	Therefore,	the	database	returns	no	records	since	the
customer	was	indeed	found	in	the	Order	table.

	

That’s	all	there	is	to	a	subquery.	You	won’t	see	them	too	much	in	the	database
administration	and	programming	world,	but	you	will	run	into	them	as	you	work	on	more
complex	queries	from	other	coders.	Remember	to	use	JOIN	statements	when	you	can
instead	of	subqueries,	and	test	your	statements	to	ensure	that	each	query	is	optimized

before	you	upload	and	deploy	inefficient	queries	that	take	too	many	resources	on	your
database	server.

	

Lab	Questions

	

1.	You	want	to	return	all	customers	that	are	found	in	the	Customer	table.	You	want	to	use
the	IN	statement	to	find	customer	IDs	in	the	Order	table	and	found	in	the	Customer	table
to	identify	customers	with	an	order.	Write	the	SQL	statement	to	do	this.

SELECT	first_name,	last_name

FROM	Order	AS	o

WHERE	o.customer_id	=	1

And

o.customer_id	in	(SELECT	customer_id	FROM	Customer);

Explanation:	This	statement	is	a	bit	different	than	the	chapter’s	example.	This	statement
gets	all	customers	in	the	Order	table	and	gets	any	customers	in	the	Customer	table	to
identify	if	your	customer	has	an	order.

	

2.	What	should	you	use	with	a	subquery	that	is	used	to	return	a	column	in	your	main
query?

a.	LIMIT

b.	ADD

c.	SUM

d.	TOP

Explanation:	The	LIMIT	statement	returns	a	set	number	of	records	from	a	subquery.

	

3.	Take	the	SQL	query	you	wrote	for	the	first	lab	question	and	reverse	its	logic.	Write	the
query	that	finds	customers	that	don’t	have	an	order.

SELECT	first_name,	last_name

FROM	Order	AS	o

WHERE	o.customer_id	=	1

And

o.customer_id	NOT	IN	(SELECT	customer_id	FROM	Customer);

Explanation:	the	NOT	IN	statement	reverses	your	logic	when	you	use	the	IN	statement.

Chapter	11	–	Cursors	and	Views
	

Chapter	Objective:	Cursors	are	the	SQL	versions	of	loops	in	programming.	Views	are
used	to	build	a	virtual	table	from	a	pre-defined	query.	This	chapter’s	objective	is	to	help
you	understand	how	to	work	with	cursor	loops	and	view	objects.

	

	

If	you’re	familiar	with	any	type	of	programming	language,	you’ll	understand	the	loop
concept.	A	loop	is	a	block	of	code	that	continuously	runs	the	same	commands	until	a
certain	condition	is	met.	The	condition	is	your	choice	as	long	as	the	logic	is	right.	If	you
have	incorrect	logic	in	your	code,	you	can	create	what	is	called	an	infinite	loop.

	

We’ll	also	discuss	views.	Views	are	predefined	result	sets	that	come	from	a	query.	The
difference	between	a	view	and	a	regular	query	is	that	a	view	can’t	have	dynamic	values.
For	instance,	if	you	want	to	perform	queries	on	a	list	of	orders	from	a	specific	date,	you
would	define	those	dates	and	then	use	the	view	in	the	same	way	you’d	use	a	table.

	

We’ll	discuss	both	of	these	concepts	in	the	next	sections.

	

Cursors

	

Cursors	are	a	bit	more	advanced	than	standard	SQL	queries.	We’ve	discussed	several
concepts	that	you	will	run	into	any	time	you	work	with	SQL.	Cursors	can	put	a	huge	strain
on	server	resources,	so	they	are	generally	avoided	by	database	administrators.	This	doesn’t
mean	that	they	are	never	used,	but	they	are	used	sparingly	to	avoid	any	resource	intensive
activity	that	could	otherwise	reduce	performance	on	the	server.

	

There	are	some	times	that	you	won’t	be	able	to	avoid	using	a	cursor.	You	might	also	need
to	identify	performance	issues	with	other	coder	cursors.	For	this	reason,	it’s	important	to
understand	how	cursors	work,	and	you	should	know	how	to	script	one	yourself.

	

A	cursor	takes	several	lines	of	SQL	code.	Let’s	take	each	SQL	statement	line	by	line,	so
we	can	explain	how	they	work.

	

Let’s	take	a	look	at	the	first	statement	for	a	cursor.

	

DECLARE	mycursor	CURSOR	FOR

SELECT	customer_id	FROM	Order;

	

You’ll	recognize	the	DECLARE	statement.	This	statement	declares	the	cursor	within	the
SQL	database	and	tells	the	database	server	to	allocate	resources	for	it.	Cursors	take	huge
amounts	of	memory	to	process	if	the	data	set	is	large,	so	this	is	why	you	must	remember	to
use	cursors	only	if	it’s	necessary.

	

The	CURSOR	FOR	statement	leads	into	the	SELECT	statement.	Every	cursor	must	be
associated	with	a	SELECT	statement.	Think	of	the	SELECT	statement	as	a	way	to	load
the	cursor	with	the	necessary	values	it	needs	to	loop	through	records.	As	you	can	see,	we
retrieve	all	customer	ID	fields	from	the	Order	table.	We	only	have	a	couple	of	records	in
the	Order	table,	but	if	this	was	an	active	table,	you	could	have	millions	of	records.	Imagine
the	memory	needed	to	keep	track	of	millions	of	records?	This	is	why	you	must	optimize
your	cursors	with	the	right	memory	management.

	

The	final	point	in	the	previous	statement	is	to	take	note	of	the	cursor	name,	because	we’ll
need	it	as	we	loop	through	cursor	records.	In	this	example,	we	named	the	cursor	mycursor.

	

Here	is	the	next	line	of	cursor	code	for	our	database.

	

OPEN	mycursor;

	

The	above	statement	is	short,	but	it’s	important.	This	statement	tells	the	SQL	database
engine	to	open	the	cursor	and	load	the	records	from	the	SELECT	statement.

	

Now	we	need	to	fetch	the	records	and	place	them	into	variables.	Take	a	look	at	the
following	line	of	code.

	

FETCH	mycursor	INTO	mycustomerid;

	

Again,	this	statement	is	short,	but	it’s	an	important	part	of	the	cursor	process.	We	specify
that	we	want	to	fetch	records	from	the	cursor	named	mycursor.	We	then	place	these
records	into	a	list	of	variables.	Because	we	only	retrieved	records	with	one	column	each,
we	only	need	to	use	one	variable.	However,	if	we	had	several	returned	columns	from	the
SELECT	statement,	we’d	need	to	create	a	list	of	variables	each	separated	by	a	comma.	In

other	words,	for	each	column	in	your	SELECT	statement,	you	must	have	a	custom
variable	used	in	the	FETCH	statement.

	

Once	you	have	these	three	statements	set	up,	you	can	now	use	your	own	custom	logic	and
SQL	code	to	manipulate	and	work	with	the	data.

	

Just	as	an	example,	let’s	just	print	the	customer’s	name.	We	have	the	customer	ID	from	the
Order	table,	so	we	need	to	create	a	user	variable	and	use	it	to	contain	each	customer	name
as	we	loop	through	records.	Here’s	an	example	of	how	we	can	do	this.

	

SET@customer	=	NULL;

SELECT	@customer	:=	first_name	FROM	Customer	WHERE	customer_id	=
mycustomerid;

SELECT	@customer;

	

This	statement	is	similar	to	what	we	covered	in	chapter	3.	A	user	variable	named
@customer	is	created.	We	then	use	this	variable	to	contain	the	customer’s	first	name.	The
mycustomerid	variable	set	in	our	FETCH	statement	contains	the	value	for	each	customer
ID	each	time	you	loop.	This	block	of	code	just	retrieves	the	customer’s	first	name	and
prints	the	output	to	the	SQL	console.	In	most	instances,	you’ll	want	to	manipulate	values
and	return	the	results	to	an	application	or	insert	the	data	into	your	tables.

	

After	you	are	finished	looping	through	your	list	of	values,	you	need	to	close	the	cursor.
The	following	statement	closes	your	cursor	and	frees	up	resources.

	

CLOSE	mycursor;

	

You	can	also	declare	an	error	handler	for	cursors.	For	instance,	suppose	you	skip	records
and	your	loop	ends	unexpectedly	early.	When	this	happens,	your	SQL	database	engine
returns	an	error.	To	avoid	the	issue,	you	just	need	to	add	the	following	line	of	code	to	your
program.

	

DECLARE	CONTINUE	HANDLER	FOR	NOT	FOUND	SET	finished	=	1;

	

That’s	it!	If	your	cursor	runs	into	an	issue,	it	aborts	and	continues	with	the	rest	of	your
statements.

	

This	example	was	a	simple	cursor,	but	you	can	get	much	more	complex	and	work	with
much	more	advanced	logic	within	cursors,	which	is	another	reason	most	database
administrators	prefer	for	them	to	be	avoided.

	

Views

	

Now	that	you	understand	cursors,	you	can	move	on	to	views.	Views	are	much	different
than	cursors,	but	they	also	provide	a	way	for	you	to	work	with	large	sets	of	data	that	are
otherwise	too	complex	for	a	simple	SELECT	statement.

	

Views	have	a	different	logic	behind	why	you	want	to	use	them.	For	instance,	suppose	your
application	frequently	retrieves	a	list	of	customers	and	any	related	orders.	Every	time	you
write	a	SQL	procedure,	you	have	to	recreate	the	SELECT	statement	that	performs	the	join
between	the	two	statements.	Each	time	SQL	needs	to	run	this	statement,	it	uses	memory
and	CPU	resources.	You	want	to	optimize	and	streamline	your	SQL	code,	which	you	can
do	if	you	implement	a	view.

	

A	view	takes	the	place	of	frequently	used	stored	procedures	or	SQL	statements.	Let’s	use
the	example	of	our	customers	and	orders	that	we’ve	used	throughout	this	ebook.	We
continuously	perform	searches	for	customers	and	their	related	orders.	Let’s	take	a	look	at
the	query.

	

SELECT	c.first_name,	c.last_name,	o.order_id

FROM	Customer	AS	c

JOIN	Order	AS	o	on	c.customer_id	=	o.customer_id;

	

We	didn’t	add	a	WHERE	clause	to	the	statement,	because	we	can’t	add	dynamic	values	to
the	SELECT	statement	for	a	view.	We	just	need	a	full	list	of	values	returned	from	the
SELECT	query,	and	then	we	can	work	to	filter	these	values	once	we	create	the	view.

	

The	above	statement	queries	the	database	for	a	list	of	customers	and	orders,	but	it’s	not	a
view.	Let’s	use	the	query	to	create	a	view.	The	code	to	do	this	is	below.

	

CREATE	VIEW	Customer_Orders	AS

SELECT	c.first_name,	c.last_name,	o.order_id

FROM	Customer	AS	c

JOIN	Order	AS	o	on	c.customer_id	=	o.customer_id;

	

You’ll	notice	that	we	have	the	same	SELECT	query	we	used	earlier.	The	difference	is	that
we	added	the	CREATE	VIEW	to	the	beginning	of	the	statement.	We	then	gave	the	view	a
name.	The	name	should	describe	the	view.	In	this	case,	we	have	a	view	that	gives	us	the
customer’s	information	and	orders,	so	we	name	it	Customer_Orders.

	

With	the	view	created,	you	can	use	it	in	the	same	way	you	use	a	table.	Let’s	take	a	look	at
an	example.

	

SELECT	*	FROM	Customer_Orders;

	

The	results	look	like	the	following	data	set.

	

first_name,	last_name,	order_id

––––––––––––––––––––

John														Smith														1

Jane														Smith															2

	

From	our	previous	examples,	we	know	that	this	is	all	customers	with	an	order.	What	if	we
only	want	one	customer?	We	can	use	the	view	just	like	a	table,	so	we	can	use	the	WHERE
clause	with	the	query	we	used	previously.	Let’s	take	a	look	at	an	example.

	

SELECT	*	FROM	Customer_Orders

WHERE	customer_id	=	1;

	

Now	the	data	set	returned	is	the	following.

	

first_name,	last_name,	order_id

––––––––––––––––––––

John														Smith														1

	

With	the	data	set	above,	we	know	that	a	customer	with	the	ID	of	1	is	John	Smith.	John	has
1	order	with	an	ID	of	1.

	

You	can	use	views	in	all	the	same	ways	as	you	use	a	table.	You	can	join	records,	perform
complex	SELECT	statements,	and	you	can	even	use	them	in	your	cursors.

	

There	is	one	thing	you	can’t	do	with	a	view.	You	can’t	update	records	in	a	view	like	you
can	with	a	regular	query.	For	instance,	if	you	return	a	list	of	customer	records	and	you
want	to	manually	change	values	in	your	SQL	interface,	you	won’t	be	able	to	change	them.
You’ll	need	to	run	your	changes	on	the	actual	data	instead	of	the	view.	Remember	views
are	a	virtual	table	that	represents	a	list	of	data	queries	that	you	use	often.

	

Once	you	get	some	practice	with	views	and	cursors,	you’ll	be	able	to	write	them	without
reference.	Just	remember	that	both	views	and	cursors	are	related	to	SELECT	statements.
You	need	to	identify	the	data	you	need	to	consolidate	in	both	cases	and	use	that	statement
to	load	both	objects.	This	is	sometimes	the	hard	part	when	you	need	to	manage	data	across
several	tables.

	

Lab	Questions

	

1.	You	want	to	create	a	cursor	that	retrieves	a	list	of	customers.	Write	the	first	two	SQL
statements	needed	to	create	the	cursor.

DECLARE	mycursor	CURSOR	FOR

SELECT	customer_id	FROM	Customer;

OPEN	CURSOR	mycursor;

Explanation:	The	first	statement	declares	the	cursor	and	names	it	mycursor.	The	next
statement	actually	opens	the	cursor	for	use	in	your	loop.

	

2.	Using	the	above	example,	write	the	next	SQL	statement	that	defines	variables	for	the
cursor.

FETCH	mycursor	INTO	mycustomerid;

Explanation:	the	FETCH	statement	gets	a	list	of	columns	and	assigns	each	column	a
variable	in	the	INTO	section	of	the	statement.

	

3.	You	want	to	create	a	view	that	lists	all	customers	and	their	associated	orders.	Write	the
SQL	statement	that	accomplishes	this.

CREATE	VIEW	Customer_Orders	AS

SELECT	c.first_name,	c.last_name,	o.order_id

FROM	Customer	AS	c

JOIN	Order	AS	o	on	c.customer_id	=	o.customer_id;

Explanation:	the	above	statement	creates	a	view	named	Customer_Orders	that	retrieves
customers	and	joins	the	Order	table	to	the	list	of	data.

Chapter	12	–	Security	and	Users
	

Chapter	Objective:	Security	should	be	one	of	the	most	important	factors	when	working
with	database	design.	This	chapter	explains	security	and	how	to	set	up	users	to	protect
data	from	unauthorized	access.

	

	

Good	security	is	what	separates	your	private	data	from	being	seen	by	the	public.	Hackers
consistently	want	to	gain	access	to	a	database	server	to	steal	data.	Even	spam	hackers	use
database	access	to	print	content	to	your	site	without	your	knowledge.	When	you	design
your	tables,	you	also	need	to	design	security	for	your	website.		This	chapter	will	show	you
how	to	create	users	and	permissions,	and	we’ll	give	you	tips	on	what	you	should	do	with
your	newly	installed	database	layout.

	

Reviewing	Current	Security

	

Before	you	begin	working	with	security	and	permissions,	you	need	to	review	the	way	the
database	is	set	up.	MySQL	has	a	default	security	setup	when	you	first	install	it.

	

Let’s	take	a	look	at	what	you	should	do	before	you	work	with	security	and	granting
privileges.	You	first	want	to	review	a	list	of	hosts	and	user	names	already	installed	on	the
machine.	Take	a	look	at	the	following	SQL	statement.

	

SELECT	host,	user,	password	FROM	mysql.user;

	

The	above	statement	gets	a	list	of	host,	users	and	passwords	from	the	system	user	table.	Of
course,	you	won’t	be	able	to	see	the	passwords	in	plain	text.	The	passwords	are
automatically	encrypted	using	SQL’s	own	internal	engine.

	

You	should	see	output	similar	to	the	below.

	

host										user	password																																	

+––––—+––+––––––––––––––-

localhost					root																																											

server.local		root																																											

127.0.0.1					root																																										

localhost	

	

Notice	your	server	has	three	host	names:	localhost,	server.local	and	127.0.0.1.	The	root
user	is	associated	with	all	three	of	these	host	names.	You’ll	need	these	host	names	when
you	attempt	to	log	in	to	the	database	server.	Most	administrators	work	with	localhost,	and
then	they	assign	user	names	to	localhost	for	applications.

	

The	root	user	name	is	the	main	administrator	account	that	gives	users	full	access	to	all
database	settings	and	security.	In	other	words,	you	want	to	keep	the	root	password
extremely	secure,	and	you	don’t	want	to	give	it	to	very	many	people	within	the	company.
If	you	work	with	the	MySQL	database,	the	root	user	will	probably	give	you	a	separate
user	name	and	password	to	work	with	your	own	list	of	permissions.

	

One	thing	to	note	is	that	the	root	user	name	should	never	have	an	easy	password	or	a	blank
password.	Always	assign	a	value	to	the	root	user’s	password,	or	you	make	it	extremely
easy	for	a	third-party	to	gain	access	to	the	database.

	

Creating	Users

	

Now	that	you’ve	viewed	a	list	of	users,	you	can	determine	what	users	you	need	to	create
for	your	database.	In	the	above	example,	you	just	have	the	root	user.	This	is	common	with
a	newly	installed	version	of	MySQL.	Note	that	other	databases	use	different	naming
conventions	and	features	when	assigning	users	to	databases,	but	we’re	going	to	focus	on
MySQL	and	creating	and	assigning	permissions	on	MySQL.

	

Before	you	create	a	new	user,	you	should	understand	what	privileges	are	needed.	The	most
common	reason	you’ll	need	to	create	a	new	user	is	for	an	application.	Maybe	the
application	uses	a	specific	database,	so	you	need	to	create	a	new	user	specific	for	the
application	and	give	the	user	privileges	only	to	the	application’s	relevant	database.	This
means	that	if	someone	gets	access	to	the	user	name,	they	only	have	access	to	the
application’s	database	and	not	the	entire	server.

	

Let’s	take	a	look	at	the	SQL	needed	to	create	a	new	user.

	

CREATE	USER	‘myuser’	@	‘localhost’	IDENTIFIED	BY	‘password’;

	

You’ll	notice	a	few	customized	values	in	the	above	statement.	The	CREATE	USER	phrase
is	specific	to	MySQL,	and	you	need	to	type	this	part	to	create	a	user.	The	myuser	is	the
name	given	to	your	user.	The	application	and	any	users	logging	into	the	database	server
need	this	name.

	

If	you	aren’t	used	to	the	way	MySQL	sets	up	users	and	access,	the	localhost	part	could	be
confusing.	Since	the	localhost	host	name	means	the	local	server,	your	user	can	only	log	in
to	the	database	server	named	“localhost.”	Localhost	is	an	internal	name	that	means	“the
local	server.”	This	means	that	the	user	named	myuser@localhost	will	always	log	in	to	the
local	database,	and	mysuser	won’t	have	access	to	any	other	database	servers.	In	the	list	of
other	host	names,	you	can	also	give	myuser	access	to	other	host	names,	but	it’s	not
recommended	especially	if	you’re	creating	a	user	specifically	for	a	database	application.

	

The	IDENTIFIED	BY	is	then	used	to	create	a	password	for	the	user.	In	this	example,	the
password	of	“password”	is	used,	but	you	would	not	want	to	use	this	value	since	it’s	easily
hacked.	The	MySQL	database	engine	automatically	encrypts	this	value	and	stores	it	in	the
system	database.	You	always	want	to	use	SQL’s	encryption	algorithms	and	store	encrypted
values	in	your	tables.	Plain	text	passwords	put	your	users	at	risk	in	case	the	database	is
every	hacked.

	

Granting	User	Privileges

	

You	created	a	user	named	myuser,	but	the	user	still	has	access	to	nothing.	If	the	user	was
to	log	in	to	the	database	server,	they	would	not	be	able	to	query	tables,	create	tables,	delete
data	and	tables	or	even	review	table	architecture.	For	a	user	to	be	able	to	view	these
different	database	objects,	you	need	to	grant	the	user	privileges.	MySQL	has	a	GRANT
keyword	that	allows	you	to	grant	users	privileges.	There	are	several	privileges	you	can
grant,	and	they	all	have	a	different	level	of	security	risks.

	

The	basic	privileges	you	need	to	grant	to	a	database	application	user	is	the	read	and	write
access	to	records.	The	application	needs	to	retrieve	data	to	read	it,	and	it	needs	to	use	the
UPDATE	statement	to	change	data.	You	need	to	specify	to	the	MySQL	database	that	the
user	can	execute	these	statements	on	the	database.

	

Let’s	take	a	look	at	a	sample	MySQL	statement	that	you	would	use	to	grant	access
privileges	to	an	application	database	user.	Let’s	first	take	a	look	at	the	basic	template
command.

	

GRANT	privileges	ON	object	TO	user;

	

The	GRANT,	ON,	and	TO	keywords	are	specific	to	MySQL	and	necessary	when	you
create	the	statement.	The	“privileges”	section	is	the	list	of	privileges	you	want	to	grant.
Each	privilege	should	be	separated	by	a	comma.	The	“object”	section	indicates	the
database	object	you	want	to	give	the	user	permissions	to.	For	instance,	if	it’s	a	table,	you
would	use	the	table	name.	If	you	want	to	give	the	user	access	to	the	entire	database,	you
specify	the	entire	database	object.	You	can	give	users	object-level	permissions,	which
makes	your	database	much	more	secure	from	hackers.

	

Let’s	say	you	want	to	grant	read,	update	and	delete	for	a	user	named	myuser.	The
following	MySQL	command	is	how	you	would	grant	permissions	to	your	Customer	table.

	

GRANT	SELECT,	UPDATE,	DELETE	ON	Customer	TO	myuser	@	localhost;

	

The	above	statement	gives	the	myuser@localhost	user	access	to	read	and	write	on	the
Customer	table.

	

Let’s	say	you	want	to	get	even	more	granular	on	your	privileges.	You	can	give	specific
access	to	columns	within	your	table.	For	instance,	you	might	want	to	only	allow	a	user	to
read	a	customer’s	first	name	in	the	Customer	table.	You	have	social	security	numbers	in
the	table,	so	you	want	to	exclude	this	from	the	user’s	privileges.

	

The	following	SQL	statement	gives	your	user	specific	access	to	the	customer’s	first	name
column	only.

	

GRANT	SELECT	ON	Customer.first_name	TO	myuser	@	localhost;

	

The	Customer’s	first	name	column	is	only	accessible	as	a	SELECT	statement	to	myuser.
This	type	of	security	is	much	more	tedious	for	a	database	administrator	to	set	up,	but	it’s
much	more	security	for	your	database	tables.

	

Let’s	say	you	want	to	give	a	user	access	to	all	privileges.	Remember	that	creating	users
and	providing	users	with	access	to	objects	are	also	privileges.	Keep	this	in	mind	when	you
give	all	access	privileges	to	a	particular	user.

	

Take	a	look	at	the	following	query	to	see	how	you	can	grant	access	to	all	objects	for	a	user
named	myuser.

	

GRANT	ALL	PRIVILEGES	ON	Customer	TO	myuser	@	localhost;

	

The	above	statement	gives	all	privileges	to	your	user.	You	can	also	give	access	to	all
database	objects	instead	of	specifying	each	one	by	one.	The	following	statement	gives	a
user	named	myuser	access	to	all	database	objects	with	all	possible	privileges.

	

GRANT	ALL	PRIVILEGES	ON	*.*	TO	myuser	@	localhost;

	

One	thing	to	remember	after	you	add	permissions	or	change	any	of	the	security	on	your
database:	you	must	flush	privileges	and	reload	them.	This	can	be	done	with	one	simple
statement	on	the	database	server.	The	following	statement	shows	you	how	to	flush	and
reload	MySQL	privileges.

	

FLUSH	PRIVILEGES;

	

Once	you	run	the	above	statement,	any	permission	changes	are	active	including	any	new
users	and	privileges	recently	created.

	

Revoking	Privileges

	

Whether	an	employee	leaves	the	company	or	you	realize	that	you	gave	too	much
permissions	for	a	specific	user,	there	are	times	when	you’ll	need	to	revoke	privileges	for	a
user.	The	SQL	language	gives	you	the	ability	to	revoke	or	remove	privileges	on	your
database.

	

For	instance,	suppose	that	you	didn’t	want	to	give	a	user	DELETE	permissions	on	the
database.	You’ve	already	flushed	and	reloaded	permissions,	but	you	want	to	change
permissions	and	remove	the	DELETE	option.	The	following	SQL	statement	revokes
privileges	for	a	user.

	

REVOKE	DELETE	ON	Customer	FROM	myuser	@	localhost;

	

That’s	it.	You’ve	now	removed	the	DELETE	permission	from	the	myuser	user.

	

You	can	also	choose	to	completely	delete	a	user.	This	is	beneficial	when	a	database
administrator	leaves	the	company.	You	should	ensure	that	the	user	name	isn’t	being	used
by	an	application	in	any	way	before	you	remove	the	user.	However,	deleting	the	user	helps
secure	your	database	after	the	user	no	longer	needs	any	permissions	to	tables	or	data.

	

The	following	command	removes	a	user	from	the	database.

	

DROP	USER	myuser	@	localhost;

	

That’s	it.	The	user	is	gone	and	can	no	longer	log	in	to	your	database.

	

This	chapter	showed	you	how	to	create	users	and	grant	them	permission	to	different
database	objects.	Security	is	important	if	you	want	to	properly	protect	your	business
information.

	

Lab	Questions

	

1.	You	determine	that	you	need	to	create	a	user	named	myuser	for	your	localhost	database.
Write	the	SQL	statement	to	create	the	user.

CREATE	USER	‘myuser’	@	‘localhost’	IDENTIFIED	BY	‘password’;

Explanation:	This	statement	creates	a	user	with	an	associated	password	for	localhost.

	

2.	You	want	to	allow	a	user	to	retrieve	data	from	a	table	named	Order.	Write	the	SQL
statement	that	gives	the	user	named	myuser	access.

GRANT	SELECT	ON	Order	TO	myuser	@	localhost;

Explanation:	the	above	statement	gives	the	user	myuser	SELECT	permissions	on	the
Order	table.

	

3.	What	command	do	you	use	after	you	are	finished	changing	permissions?

a.	ADD

b.	FLUSH	PRIVILEGES

c.	ADD	PRIVILEGES

d.	REBOOT

Explanation:	use	the	FLUSH	PRIVILEGES	command	to	reload	privileges	after	you’re
finished	with	your	configurations.

Chapter	13	–	Applications	and	SQL
	

Chapter	Objective:	Databases	are	used	for	dynamic	page	content	in	a	cloud	application.
This	chapter	shows	users	how	to	use	the	basics	such	as	connecting	to	a	database	and
querying	the	database	from	PHP.

	

	

With	some	background	information	and	understanding	of	SQL,	you	can	then	move
forward	with	your	first	web	page	and	application	development.	The	next	chapter	focuses
more	on	a	website	and	PHP	with	SQL.	In	this	chapter,	we	will	get	you	started	with	linking
your	PHP	pages	with	your	MySQL	database.	MySQL	works	seamlessly	with	PHP,	so	it
doesn’t	take	much	to	set	up	the	system.	As	long	as	you	have	Apache	installed	on	your
development	machine,	you	can	get	started.

	

PHP	and	SQL

	

As	we	already	said,	PHP	and	SQL	are	both	compatible	without	much	hassle.	The	most
common	environment	used	for	PHP	and	SQL	is	called	LAMP.	LAMP	stands	for	Linux,
Apache,	MySQL	and	PHP.	This	means	that	the	most	common	way	to	set	up	a	new	SQL
application	is	to	use	the	Linux	operating	system	with	MySQL	and	Apache	installed.	With
these	two	applications	installed,	you	can	run	PHP	applications.

	

One	thing	to	note	is	the	programming	environment.	With	Apache	you	can	run	PHP	files	on
a	web	server,	but	you	still	need	a	place	to	type	your	code.	There	are	several	different
environments	available.	Some	environments	mix	HTML	and	layouts	with	PHP	such	as
Dreamweaver.	You	can	use	something	as	simple	as	Notepad++	for	creating	PHP	files.
Whatever	you	use,	make	sure	you	save	any	PHP	files	with	the	.php	extension	to	ensure
that	your	web	server	recognizes	the	file	as	an	executable	on	the	web	server	and	not	a	static
HTML	page.

	

Set	Up	the	Database	User

	

Before	you	make	a	connection	to	the	database	from	a	PHP	application,	you	want	to	ensure
that	you	have	a	user	set	up	on	the	MySQL	database	server.	We	covered	how	to	create	users
and	add	privileges	on	the	database	in	chapter	12,	but	let’s	go	over	what	you	need	before
you	start	working	with	PHP	and	SQL.

	

First,	you	need	to	ensure	that	the	MySQL	database	is	on	the	same	development	desktop
that	you	are	using	for	your	PHP	and	Apache	setup.	While	this	isn’t	a	requirement	in	the
real-world,	it	will	make	troubleshooting	and	user	permissions	much	easier.	We	will	use	the
localhost	host	name	in	our	examples,	which	means	that	when	PHP	attempts	to	connect	to
the	database,	it	uses	the	local	server	where	Apache	is	running.	If	you	decide	to	put
MySQL	on	a	different	server,	you’ll	need	to	replace	the	localhost	host	name	with	your
own	MySQL	database	server’s	IP	address	or	host	name.

	

For	our	example,	let’s	first	create	a	user	named	myuser	using	the	CREATE	USER	and
GRANT	SQL	statement	on	the	database.

	

Here	is	the	syntax	for	creating	a	new	user	on	your	MySQL	database	server.

	

CREATE	USER	‘myuser’	@	‘localhost’	IDENTIFIED	BY	‘password’;

GRANT	SELECT,	UPDATE,	DELETE	ON	Customer	TO	myuser	@	localhost;

GRANT	SELECT,	UPDATE,	DELETE	ON	Order	TO	myuser	@	localhost;

	

If	you	recall	from	the	first	chapter,	the	first	SQL	statement	creates	a	user	named	myuser,
and	the	user	is	given	a	password	with	the	value	of	“password.”	This	is,	of	course,	not	a
viable	password	in	the	real	world,	but	it’s	fine	for	a	developer	password	that	isn’t	available
on	the	Internet.

	

The	second	line	of	code	gives	the	user	access	to	your	Customer	table.		The	second
GRANT	statement	gives	the	myuser	user	access	to	the	Order	table.	Since	these	are	the	two
basic	tables	we’ve	created	and	used	throughout	the	lesson,	we’re	going	to	use	these	two
tables	in	our	application.

	

Remember,	you	first	need	to	flush	privileges	on	the	database	before	they	take	effect.	After
you	run	the	above	statements	on	your	SQL	server,	type	and	run	the	following	command.

	

FLUSH	PRIVILEGES;

	

After	you	run	this	command,	the	user	can	now	log	in	to	the	SQL	server.	You	can	verify	by
doing	a	SELECT	on	the	MySQL	system	table.	Type	and	run	the	following	command	to
confirm	that	the	new	user	named	myuser	is	located	in	the	list	of	users.

	

SELECT	host,	user,	password	FROM	mysql.user;

	

If	you	recall	from	the	previous	chapter,	the	above	statement	lists	all	users	in	your	database.
You	want	to	ensure	that	myuser	@	localhost	is	located	in	the	list	of	users.	Once	confirmed,
you	should	not	have	any	issues	when	you	attempt	to	connect	from	your	PHP	application.

	

Once	these	statements	are	run	on	the	database	server,	you	can	now	connect	to	the	database
from	your	PHP	application.

	

Connecting	to	Your	SQL	Database

	

Now	it’s	time	to	switch	to	PHP	code	instead	of	SQL.	Open	your	PHP	programming
environment	such	as	Notepad++	for	this	next	part.	We	need	to	create	a	file	that	connects	to
the	SQL	database.	This	file	can	be	used	throughout	your	entire	application	as	the
connection	string	for	your	database.	These	files	are	typically	called	includes	when	you’re
programming	PHP	pages.

	

First,	you	must	enclose	your	include	file	with	the	PHP	declarative	statement.	The	enclosed
statement	tells	the	Apache	server	that	you	want	to	run	backend,	server	side	code	instead	of
processing	the	PHP	code	as	a	static	file.	The	following	code	must	encapsulate	all	of	your
PHP	code	for	your	include	page	works	on	your	server.

	

<	?

//	your	PHP	statements	go	here

?	>

	

With	the	above	code	in	place,	you	can	connect	to	your	database.	We’ll	go	line	by	line	to
explain	how	the	process	works.

	

The	first	line	of	code	sets	your	user	name.	Take	a	look	at	the	following	PHP	statement.

	

$username	=	“myuser”;

	

Notice	that	we	use	a	dollar	sign	to	indicate	to	the	PHP	language	that	we	want	to	create	a
variable.	Remember	that	SQL	uses	the	@	character	to	indicate	that	you’re	creating	a	user

defined	variable.	This	is	one	difference	between	PHP	and	SQL.	Notice,	though,	that	we
terminate	the	PHP	statement	in	the	same	way	we	do	with	the	SQL	language.	We	terminate
the	statement	with	a	semicolon.

	

In	this	example,	we	use	the	username	variable	to	hold	the	user	name	for	the	database.

	

We	have	the	user	name	variable,	so	now	we	need	a	password	variable.	Add	the	following
PHP	statement	to	your	code.

	

$password=“password”;

	

This	is	the	same	password	that	we	used	when	we	created	the	myuser	user.	The	format	is
the	same,	because	we	just	want	to	store	a	string	value	to	a	PHP	variable.	Note	that	this
value	is	not	encrypted,	so	you	want	to	keep	your	database	PHP	connection	file	secure	from
hackers.

	

The	next	variable	we	need	is	the	database	name.	This	tells	the	SQL	engine	what	database
it	needs	to	query	when	you	make	a	call	to	the	database	system.

	

$database=“database”;

	

Again,	the	format	is	the	same	since	we	just	want	to	store	the	database	name	as	a	string
value	in	PHP.

	

The	next	statement	is	different	than	the	previous	three.	The	next	statement	is	the	actual
connection	to	the	database.	This	is	an	internal	PHP	function,	so	you	don’t	need	to	perform
any	complex	connection	queries	in	PHP.	PHP	has	this	function	already	written	with	its
internal	system,	so	this	is	why	working	with	MySQL	and	PHP	is	very	convenient
especially	for	new	programmers.

	

Take	a	look	at	the	following	PHP	statement.

	

mysql_connect(localhost,$user,$password);

	

The	mysql_connect	function	takes	three	parameters.	The	first	one	is	localhost.	Remember

that	your	myuser	user	is	specific	to	localhost.	The	localhost	host	name	tells	the	PHP
engine	to	use	the	localhost	database,	which	is	the	database	on	the	local	machine.	You’ll
see	that	we	use	the	user	name	and	password	variable	in	the	function.	This	is	needed	so	that
the	PHP	engine	can	connect	to	the	database	without	receiving	an	error.

	

With	the	connection	set,	now	we	can	query	the	database.	We’ll	use	a	simple	query	for	this
example,	but	you	can	create	any	one	of	the	complex	queries	we’ve	worked	with	in
previous	chapters	to	query	the	SQL	server.

	

The	following	variable	contains	a	simple	SELECT	statement.

	

$query	=	“SELECT	first_name,	last_name	FROM	Customer;”;

	

With	this	query	created,	we	use	another	internal	PHP	statement	to	send	the	query	to	the
database.

	

mysql_query($query);

	

That’s	all	it	takes	to	query	the	database	server.	This	one	function	is	inherited	in	PHP,	so
you	don’t	need	to	create	any	complex	code.	Just	create	the	PHP	string	that	contains	the
query	and	send	it	to	the	server	with	the	above	function.	We’ll	get	into	parsing	this
information	in	the	next	chapter.

	

If	there	is	any	error	with	your	user	name	and	password,	the	original	connect	function
should	give	you	an	error.		The	SQL	function	gives	you	a	true	or	false	response	that	you
can	use	to	detect	if	the	connection	was	rejected.	To	add	to	your	error	handling,	you	can
add	a	message	to	your	code	that’s	returned	to	the	user	when	they	attempt	to	connect
through	your	application.

	

Let’s	take	a	look	at	the	code	for	error	handling.

	

$connected	=	mysql_connect(localhost,$user,$password);

if	(!$connected)	{

echo	“We	could	not	connect	to	the	server.	Please	try	again.”;

}

	

You’ll	notice	that	we	still	used	the	mysql_connect	function,	but	this	time	we	return	a
value.	The	value	returned	is	true	if	the	connection	is	successful,	and	it	returns	false	if	the
connection	fails.	If	you	attempt	to	use	the	connection	even	after	a	failure,	your	code	will
fail.	The	above	code	is	what	is	called	error	handling	and	sending	a	friendly	message	to	the
user.	If	the	mysql_connect	function	returns	false,	then	the	next	statement	sends	a	message
to	your	user	to	ensure	that	they	understand	an	error	occurred.

	

The	final	part	of	connection	to	a	SQL	server	is	to	close	the	connection	when	you’re
finished.	This	is	an	important	part	of	programming	SQL	applications,	because	closing	the
connection	frees	up	your	web	server’s	resources.	If	you	have	too	many	SQL	connections
open,	the	web	server	returns	an	error	to	your	viewers.

	

After	you	complete	your	queries	in	PHP,	it’s	time	to	close	the	connection.	Use	the
following	code	at	the	end	of	your	PHP	code.

	

mysql_close();

	

Some	programmers	include	this	statement	at	the	very	end	of	each	page	in	a	separate
include	statement.	You	can	use	it	in	each	page	or	make	a	separate	include	that	is	added	to
the	end	of	each	of	your	web	pages.

	

This	chapter	showed	you	how	to	connect	to	a	MySQL	database	in	PHP.	We	also	covered
queries,	but	you	still	need	to	parse	and	show	data	to	a	web	page.	The	next,	final	chapter
covers	your	first	“Hello	World”	web	page.

	

Lab	Questions

	

1.	You	want	to	query	the	local	host	from	a	PHP	application.	Write	the	PHP	function	that
makes	the	connection	to	a	SQL	database	with	a	user	name	and	password.

mysql_connect(localhost,$user,$password);

Explanation:	The	above	statement	connects	to	local	host	with	the	user	name	and	password
contained	in	the	appropriate	variables.

	

2.	You’ve	created	a	query	in	a	variable	named	$query.	Write	the	function	that	sends	the
query	to	the	database.

mysql_query($query);

Explanation:	this	PHP	function	sends	the	query	to	the	server	and	returns	the	results.

	

3.	Once	you’ve	finished	querying	the	database,	write	the	function	you	need	to	free	up
database	and	web	server	resources.

mysql_close();

Explanation:	this	close	method	frees	up	resources	and	should	be	used	with	each	of	your
PHP	pages	that	use	SQL.

Chapter	14	–	Your	First	Web	Page
	

Chapter	Objective:	This	chapter	combines	the	knowledge	of	all	previous	chapters	and
gives	you	a	hands	on	sample	of	writing	your	own	web	page.		The	objective	is	to
understand	how	PHP	and	SQL	work	together	to	display	results.

	

	

You’ve	seen	several	SQL	functions,	logic	and	design.	We	also	discussed	connecting	to
your	SQL	server.	Now,	it’s	time	to	put	all	of	the	SQL	coding	into	a	practical	example.	It’s
common	in	the	world	of	programming	to	show	examples	using	the	phrase	“Hello	World.”
Hello	World	is	the	common	phrase	given	to	someone’s	first	program,	because	the	idea	is
to	give	new	programmers	some	hands	on	experience	with	writing	a	statement	to	the
screen.	In	this	case,	we’re	going	to	write	Hello	World	to	the	user’s	browser.

	

Using	PHP	to	Connect	to	the	Database

	

The	last	chapter	was	dedicated	to	connecting	to	a	SQL	server,	but	it	helps	to	step	through
the	entire	process	again.	We’ll	summarize	the	previous	chapter	to	give	you	a	refresher	on
connecting	to	the	database.	Remember	that	you	need	to	set	up	a	user	name	and	password
on	your	SQL	server,	and	PHP	has	its	own	internal	functions	to	connect	and	query	to	the
database.	You	should	also	remember	to	close	the	connection	once	you’re	finished	with
querying.

	

Let’s	take	a	look	at	the	code.	This	should	be	in	an	include	fire	at	the	top	of	your	PHP	page.

	

<	?

$username	=	“myuser”;

$password=“password”;

$database=“database”;

$connected	=	mysql_connect(localhost,$user,$password);

if	(!$connected)	{

echo	“We	could	not	connect	to	the	server.	Please	try	again.”;

}

	

?	>

	

The	above	code	sets	up	the	user	name	and	password	and	connects	to	the	localhost	database
server.	Remember	that	the	localhost	database	server	is	the	database	engine	running	on	the
same	machine	as	the	web	server.	While	this	is	not	common	on	larger	websites,	it’s
common	for	development	environments.	If	you	have	a	separate	SQL	server	on	another
machine,	you	need	to	replace	localhost	with	the	name	of	the	MySQL	database	server	or	its
IP	address.

	

In	the	above	example,	we’ve	also	added	some	error	handling,	so	if	the	database	fails	or	the
user	no	longer	has	access,	a	message	is	returned	to	the	user	without	crashing	your	website.

	

Querying	the	Database

	

With	our	database	connection	set	up,	we	now	need	to	query	the	database	for	information.
In	the	previous	sample,	we	decided	to	query	the	Customer	table	for	a	list	of	customers.	We
return	the	first	and	last	name	of	the	customer.

	

Let’s	take	a	look	at	the	code	again	to	query	the	Customer	table.

	

$query	=	“SELECT	first_name,	last_name	FROM	Customer;”;

	

You’ll	recognize	the	SELECT	statement	in	the	above	string	variable.	We	used	the	same
SELECT	statement	in	the	previous	chapter	as	well	as	the	SELECT	chapter	where	we
showed	you	how	to	read	data	from	a	database.

	

The	above	PHP	code	just	creates	the	query,	but	it	doesn’t	actually	query	the	database.	We
need	to	use	the	PHP	internal	function	that	queries	the	database.		The	mysql_query	function
does	just	that	–	it	sends	the	query	to	the	MySQL	database.

	

Let’s	take	a	look	at	the	code.

	

$result	=	mysql_query($query);

	

The	above	statement	does	the	actual	querying	on	the	database.	If	the	query	is	written
without	any	syntax	errors	or	mistakes,	you’ll	receive	a	list	of	customers	from	the	MySQL

database	in	what	is	called	a	record	set.

	

The	difference	between	the	previous	chapter	and	this	one	is	that	we	now	store	results	in	a
variable	named	“result.”	All	records	are	stored	in	an	array	as	long	as	we	have	records	to
display.	If	there	are	no	records	to	display,	the	$result	variable	has	no	records,	and	you
won’t	be	able	to	loop	through	them.

	

Displaying	Data	to	Users

	

Now	that	you	have	your	database	connection	and	the	query	needed	to	get	a	list	of
customers,	you	need	to	set	up	your	HTML	page.	PHP	works	with	HTML	to	display	results
from	your	tables.	You	need	to	place	your	PHP	with	HTML.	The	HTML	code	formats	the
data	for	your	users.	We	will	use	a	very	simple	HTML	page	to	display	data.

	

To	set	up	your	HTML,	use	the	following	code.	Make	sure	you	place	this	code	outside	of
your	encapsulating	<?	?>	PHP	directives.	PHP	will	throw	an	error	otherwise.	The
following	code	creates	a	basic	HTML	template	for	you	to	use.

	

<html>

<head>

<title>My	First	Page</title>

</head>

<body>

Customers	

	

<?

	

?>

</body>

</html>

	

Notice	that	we	inserted	the	PHP	directives	within	the	HTML’s	body	tag.	All	of	your
printed	text	should	be	within	the	body	tags	in	HTML.	You	can	use	any	logic	for	your	list
of	customers.	For	this	example,	we’ll	list	each	customer	line	by	line.

	

Let’s	add	some	PHP	code	to	the	example.

	

<html>

<head>

<title>My	First	Page</title>

</head>

<body>

Customers	

	

<?

$rows=mysql_numrows($result);

$i=0;

while	($i	<	$	rows)	{

	

//SQL	logic	here

	

$i++;

}

?>

</body>

</html>

	

We’ve	added	quite	a	bit	of	code	in	the	body	tag.	None	of	this	code	prints	any	data	to	the
web	browser,	but	it’s	important	to	understand	the	logic	in	this	code.

	

The	first	PHP	code	gets	the	number	of	rows	and	assigns	the	value	to	$rows.	Our	Customer
table	only	has	2	customers,	so	there	should	only	be	two	rows	returned.	If	your	Customer
table	has	50	customers	stored,	you	will	have	a	row	variable	with	the	value	of	50.

	

You	might	wonder	why	we	need	this	value.	This	value	is	to	loop	through	each	record.	The
logic	is	that	we	have	2	rows,	so	we	will	loop	through	both	of	those	records	to	retrieve	the
user’s	name.	To	successfully	loop	through	a	list	of	records,	we	first	need	to	identify	the

number	of	records	we	have.	If	you	excluded	this	logic,	your	PHP	code	will	go	through
what	is	called	an	infinite	loop.	An	infinite	loop	occurs	when	the	PHP	code	continues	to
loop	through	records	without	the	condition	ever	being	met.	Remember	the	cursor	logic?
We	looped	through	each	record.	The	“while”	loop	in	the	above	code	does	the	same	thing,
except	the	PHP	code	is	much	different.

	

The	while	loop	has	a	condition	set.	This	condition	is	what	avoids	an	infinite	loop	in	your
PHP	pages.	An	infinite	loop	crashes	your	pages	and	could	crash	your	web	server.	In	this
condition,	it	says	that	once	the	$i	variable	is	the	same	as	the	value	in	$rows,	exit	the	loop.
You’ll	see	that	the	$i	variable	is	incremented	at	each	loop,	so	your	while	loop	only	loops	1
time.

	

Since	our	while	loop	doesn’t	really	do	anything	except	loop	through	records,	let’s	include
the	logic	that	prints	the	customer’s	first	name	to	the	browser.

	

Here	is	the	code	with	the	loop	logic	included.

	

<html>

<head>

<title>My	First	Page</title>

</head>

<body>

Customers	

<?

$rows=mysql_numrows($result);

$i=0;

while	($i	<	$	rows)	{

	

$first=mysql_result($result,$i,“first_name”);

echo	$first.	“
”;

	

$i++;

}

?>

</body>

</html>

	

We	added	two	more	lines	of	code	in	our	PHP	loop.	The	first	command	uses	the	internal
PHP	mysql_results	function,	which	is	used	to	retrieve	data	from	your	data	results.	The
function	takes	three	parameters.	The	first	one	is	the	result	set	array.	The	next	one	is	the	$i
variable.	This	variable	tells	PHP	which	array	index	to	pull.	Since	the	first	array	index	is	0,
the	first	record	is	pulled.	When	the	loop	increments	the	$i	variable,	the	next	array	index	is
used,	which	is	1.	Remember	that	arrays	start	at	index	0,	so	an	array	with	two	records	has
values	at	index	0	and	1.	This	is	one	of	the	more	difficult	concepts	for	new	programs	to
learn.

	

The	echo	statement	is	used	to	print	a	value	to	the	browser.	This	statement	just	prints	the
value	contained	in	the	$first	variable.	Since	the	$first	variable	continuously	changes	as	the
array	index	is	changed,	this	value	is	different	for	each	loop.

	

The	following	is	printed	to	your	browser.

	

Customers

John

Jane

	

Notice	that	the	names	are	placed	on	their	own	line.	This	is	because	we	added	a	“
”
character	to	the	end	of	each	name.	If	we	didn’t	add	the	break	character	to	each	line,	you
would	get	a	line	of	names	without	any	carriage	returns.	This	is	another	point	to	remember
when	you’re	working	with	PHP	and	SQL	data	in	a	result	set	array.

	

Sending	Data	to	the	Server

	

We	know	how	to	retrieve	data,	but	maybe	we	want	to	insert	a	new	customer	into	the
Customer	table.	We	do	this	with	an	HTML	form.	Let’s	take	a	look	at	the	code	to	create	a
form.

	

<html>

<head>

<title>My	First	Page</title>

</head>

<body>

Enter	your	first	name	

<form	action=“insert.php”	method=“post”>

First	Name:	<input	type=“text”	name=“first”>

<input	type=“Submit”>

</form>

</body>

</html>

	

This	form	just	asks	the	user	for	the	first	name.	When	the	user	clicks	the	submit	button,	you
then	need	to	retrieve	the	data	with	PHP	and	insert	the	new	customer	into	the	Customer
table.	Let’s	look	at	some	example	PHP	code.

	

$first	=	$_POST[‘first’];

$query	=	“INSERT	INTO	Customer	(first_name)	VALUES	(”,’”.$first.”’)”;

mysql_query($query);

echo	“Thank	you”;

	

Notice	that	the	first	variable	from	the	form	is	then	retrieved	and	placed	into	a	variable
named	$firm.	We	used	the	same	PHP	functions	we	used	earlier	to	send	a	query	to	the
database,	but	we	have	no	results	returned	when	the	database	is	simply	inserting	data	into	a
table.	Because	we	don’t	return	results	with	an	INSERT	statement,	we	don’t	need	to	assign
a	return	variable	to	the	mysql_query	function.

	

Put	this	code	together	and	you	have	a	form	that	submits	to	the	page,	inserts	the	record	into
the	database,	and	displays	a	thank	you	message	to	the	customer.

	

You’ve	just	written	your	first	program	in	PHP	and	SQL.	These	two	languages	put	together
allow	you	to	make	complex	applications	for	your	website.	Just	remember	to	keep	security
as	one	of	the	most	important	parts	of	your	database	design	when	your	application	is	open
to	the	public.	At	this	point,	you’ve	learned	all	the	basic	functionality	of	SQL	and	PHP
code.

	

Lab	Questions

	

1.	You	want	to	get	the	number	of	rows	returned	from	a	SELECT	query	on	the	SQL
database.	Write	the	PHP	code	that	returns	the	number	of	rows	to	a	$rows	variable.

$rows=mysql_numrows($result);

Explanation:	in	our	example,	only	2	records	are	returned,	but	you	can	have	0	or	millions
of	rows	stored	in	a	data	set.

	

2.	You	need	to	create	a	while	loop	to	iterate	through	each	row	in	your	PHP	code.	Write	the
while	statement	you	would	use.

while	($i	<	$	rows)	{

$i++;

}

Explanation:	it’s	assumed	that	$i	is	set	to	0	to	start	the	loop,	and	then	the	loop	continues	to
run	until	$i	equals	the	number	of	rows.

	

3.	What	PHP	command	prints	data	to	the	browser	window?

a.	echo

b.	print

c.	send

d.	post

Explanation:	the	echo	statement	prints	data	to	the	browser	window	including	HTML	to
format	the	data.

Conclusion
	

This	book	has	found	you	because	you	have	the	ultimate	potential.

	

It	may	be	easy	to	think	and	feel	that	you	are	limited	but	the	truth	is	you	are	more	than
what	you	have	assumed	you	are.	We	have	been	there.	We	have	been	in	such	a	situation:
when	giving	up	or	settling	with	what	is	comfortable	feels	like	the	best	choice.	Luckily,	the
heart	which	is	the	dwelling	place	for	passion	has	told	us	otherwise.

	

It	was	in	2014	when	our	team	was	created.	Our	compass	was	this	–	the	dream	of	coming
up	with	books	that	can	spread	knowledge	and	education	about	programming.	The	goal
was	to	reach	as	many	people	across	the	world.	For	them	to	learn	how	to	program	and	in
the	process,		find	solutions,	perform	mathematical	calculations,	show	graphics	and	images,
process	and	store	data	and	much	more.	Our	whole	journey	to	make	such	dream	come	true
has	been	very	pivotal	in	our	individual	lives.	We	believe	that	a	dream	shared	becomes	a
reality.

	

We	want	you	to	be	part	of	this	journey,	of	this	wonderful	reality.	We	want	to	make
learning	programming	easy	and	fun	for	you.	In	addition,	we	want	to	open	your	eyes	to	the
truth	that	programming	can	be	a	start-off	point	for	more	beautiful	things	in	your	life.

	

Programming	may	have	this	usual	stereotype	of	being	too	geeky	and	too	stressful.	We
would	like	to	tell	you	that	nowadays,	we	enjoy	this	lifestyle:	surf-program-read-write-eat.
How	amazing	is	that?	If	you	enjoy	this	kind	of	life,	we	assure	you	that	nothing	is
impossible	and	that	like	us,	you	can	also	make	programming	a	stepping	stone	to	unlock
your	potential	to	solve	problems,	maximize	solutions,	and	enjoy	the	life	that	you	truly
deserve.

	

This	book	has	found	you	because	you	are	at	the	brink	of	everything	fantastic!

	

Thanks	for	reading!

	

You	can	be	interested	in:	“Python:	Learn	Python	In	A	DAY!	-	The	Ultimate	Crash	Course
to	Learning	the	Basics	of	Python	In	No	Time”

http://www.amazon.com/Python-Ultimate-Learning-Development-Beginners-ebook/dp/B00ZOAPQFA/ref=sr_1_11?s=digital-text&ie=UTF8&qid=1441576265&sr=1-11&keywords=Python

Here	is	our	full	library:	http://amzn.to/1HPABQI

To	your	success,

Acodemy.

	

http://www.amazon.com/Python-Ultimate-Learning-Development-Beginners-ebook/dp/B00ZOAPQFA/ref=sr_1_11?s=digital-text&ie=UTF8&qid=1441576265&sr=1-11&keywords=Python
http://www.amazon.com/Acodemy/e/B00TQ910KU/ref=sr_tc_2_0?qid=1434474148&sr=1-2-ent

	Chapter 2 – Tables
	Chapter 3 – User Variables
	Chapter 4 – Reading Data
	Chapter 5 – Deleting Data
	Chapter 6 – Changing Data
	Chapter 7 – Adding Data
	Chapter 8 – Joining Tables
	Chapter 9 – Aggregating Data
	Chapter 10 – Subqueries
	Chapter 11 – Cursors and Views
	Chapter 12 – Security and Users
	Chapter 13 – Applications and SQL
	Chapter 14 – Your First Web Page

