

SQL Clearly
Explained

SQL Clearly
Explained

Third Edition

Jan L. Harrington

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

© 2010 ELSEVIER INC. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangements with organizations such
as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our
website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical
treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or
ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Harrington, Jan L.
 SQL clearly explained / Jan L. Harrington. -- 3rd ed.
 p. cm.
 Includes indexes.
 ISBN 978-0-12-375697-8
 1. SQL (Computer program language) I. Title.
 QA76.73.S67H37 2010
 005.13'3--dc22 2010009181

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Morgan Kaufmann publications,
visit our Web site at www mkp.com or www.elsevierdirect.com

Printed in the United States of America
10 11 12 13 14 5 4 3 2 1

xiii

Preface to the Third
Edition

If you have had any contact with a relational database, then it
is very likely that you have seen the letters “SQL.” SQL (Struc-
tured Query Language) is a computer language designed to
manipulate relational databases. You can use it to define a da-
tabase’s structure, to modify data, and to retrieve data.

This book has been written to give you an in-depth introduc-
tion to using SQL, providing a gentle but complete approach
to learning the language. You will learn not only SQL syntax,
but also how SQL works. Understanding the “how” as well as
the “what” will help you create SQL statements that execute as
quickly as possible.

The elements of the SQL language covered in the first four
parts of this book are based on those parts of the SQL standard
that are for use with pure relational databases. Part V covers
two non-relational extensions (XML and object-relational ca-
pabilities) that have been part of SQL since 2003. Virtually all
database management systems that support SQL will provide
the bulk of what you will find in Parts I–IV; implementations
of the features in Part V are less common and tend to vary
from the standard.

There have been some substantial enhancements to the SQL
standard since the second edition of this book, both in the

xiv Preface

relational core features and the non-relational features. These
features have been integrated throughout this third edition.

Organization of This Book
The five parts of this book take you from theory to practice:

◊ Part I: The theoretical material underlying relational
databases and SQL has been moved into two chapters
at the beginning of the book. In previous editions, the
material in Chapter 2 (relational algebra) was scattered
throughout the book. This organization should make it
easier to find. The third chapter in Part I provides an
overview of SQL environments.

◊ Part II: Part II covers interactive SQL retrieval. At first,
this might seem backwards. Why discuss retrieving data
before creating a database and getting data into that da-
tabase? There is actually a very good reason for this.

SQL presents someone trying to learn the language with
a bit of a catch-22. You need to know how to retrieve
data before you can modify it, because modifying data
means finding the data you want to change. On the
other hand, you need to be able to create a database and
enter some data before you have some data on which
you can perform retrievals. Like Yossarian trying to meet
with Major Major, it doesn’t seem that you can win!

The best alternative is to have someone who knows how
to do it create a sample database and load it with data
for you. Then you can learn to query that database and
carry those techniques over to modifying data. At that
point, you’ll have an understanding of SQL basics and
will be ready to learn to create databases.

Preface xv

◊ Part III: Part III discusses creating and managing data-
base structure. It also covers non-data elements in the
database environment, such as managing users/ user ac-
counts and transaction control.

◊ Part IV: When SQL-based database environments are
being developed, programmers and database adminis-
trators do a lot of work using a command-line interface.
There are, however, at least two reasons why SQL pro-
gramming is very common:

o The typical end-user should not (or cannot) work
directly from the SQL command line. We there-
fore create application programs to isolate them
from direct interaction with the SQL command
processor by writing application programs for
them to use.

o In many cases, there are actions the database should
perform in specific circumstances. We don’t want
to require users to remember to do these actions,
so we write blocks of program code that are stored
within the database to be executed automatically at
the appropriate time.

Part IV introduces several techniques for SQL program-
ming: embedded SQL (using a high-level host lan-
guage), dynamic SQL, and triggers/stored procedures.
These chapters teach you syntax of SQL programming
constructs, but do not teach programming.

◊ Part V: Part V discusses the non-relational extensions
that have been added to the SQL standard: XML and
object-relational capabilities. Just as Chapter 1 pres-
ents a brief introduction to the relational data model,
Chapter 18 covers object-oriented concepts, including
the differences between pure object-oriented databases

xvi Preface

and object-relational databases. Chapter 19 then looks
at SQL’s object-relational features.

Database Software
Much of today’s commercial database software is very ex-
pensive and requires expensive hardware on which to run. If
you are looking for a database management system for your
own use, you needn’t purchase anything should you choose
not to. There are at least two open-source products that will
run on reasonable hardware configurations: mySQL (http://
www. mysql.com) and PostgreSQL (http://www.postgresql.
org). Both are certainly used in commercial settings, but can
also function well as learning environments. Distributions are
available for Windows, Linux, and Mac OS X.

The SQL commands to create the sample database used in the
first four parts of this book and the SQL commands to insert
data into those tables can be downloaded from the Morgan
Kaufmann Web site.

Teaching Materials
If you are using this book as a college text (perhaps jointly with
its companion volume, Relational Database Design and Imple-
mentation Clearly Explained), you can find teaching support
materials on the Morgan Kaufmann Web site. These include
a sample syllabus, assignments (and where appropriate, solu-
tions), a project description, and exams.

Acknowledgements
Although an author spends a lot of time alone in front of the
computer, no book can come into being without the coopera-
tion and hard work of many people. It may be my name on

Preface xvii

the cover, but without the people at Morgan Kaufmann, you
wouldn’t be holding this book right now.

First I’d like to thank the editorial staff, Rick Adams (Senior
Acquisitions Editor) and Heather Scherer (Assistant Editor).
You’re a joy to work with (as always). Second, I am forever
grateful for the production staff, who have done everything
they can to make my life easier and to produce a great volume:
Anne McGee (Project Manager), Joanne Blank (Designer),
and Carol Lewis (Copyeditor).

I also can’t forget my support staff: my mother, my son, and
the four fur kids. (Now, if the kittens could just distinguish
between my leg and a scratching post, my world would be at
peace.)

1

3

You don’t need to be a database designer to use SQL success-
fully. However, you do need to know a bit about how rela-
tional databases are structured and how to manipulate those
structures. This chapter therefore will acquaint you with the
basic elements of the relational data model and its terminolo-
gy. We’ll finish by looking at the design of the sample database
used throughout this book.1

A database is a place where we store data, but there is more to
it than that: We also store information about the relationships
between pieces of data. The organization of a database is a logi-
cal concept rather than a physical one. Yes, there are files that
store the data in a database, but the physical structure of those
files usually isn’t a concern for those who use the data.

The software that organizes, stores, retrieves, and analyzes data-
base data is known as a database management system (DBMS).
It isolates the user from the physical data storage mechanisms
and structures and lets the user work with data in terms of the
logical structure of the data.

1 If you have been reading this book’s companion volume, Relational
Database Design and Implementation Clearly Explained, then you will be
familiar with the concepts presented in this chapter. You can therefore
skip to the last section of this chapter to review the design of the sample
database.

Schemas and
Entities

The Relational Data
Model

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50001-7

4 Chapter 1: The Relational Data Model

The overall logical plan of a database is known as a schema. A
schema has two types of elements:

◊ Entities: An entity is something about which we store
data, such as a customer or a product or an order for a
product. Entities are described by pieces of data known
as attributes. When we have a collection of data for all the
attributes of an entity, we say we have an occurrence of the
entity. Databases actually store occurrences of entities.
Schemas show us what entities will be in the database and
what attributes are used to represent those entities.

◊ Relationships: Relationships define how entities interact.
For example, a customer entity is typically related to many

Relational Data Model Origins
The theory of the relational data model was developed by Edgar
(E. F.) Codd and introduced to the world in a paper published in
1970.1 Codd continued to refine the model throughout his life,
in 1985 publishing 12 rules to which relational DBMSs should
adhere.2 At that time, no DBMS met the rules and some commer-
cially successful products met none of them. Eventually, Codd
wrote a book that contained 330 rules.3 He felt that DBMSs had
met most of the original 12 rules and he wanted to give develop-
ers something to strive for.

1 Codd, E.F. (1970). “A Relational MOdel for Large Shared Data Banks”,
Communications of the ACM, 13 (6): pp. 377–387.
2 Codd, E.F. (1985). “Is Your DBMS Really Relational?”, ComputerWorld,
14 October, and “Does Your DBMS Run By the Rules?” ComputerWorld, 21
October.
3 Codd, E.F. (1990). The Relational Model for Database Management, 2nd ed.
Addison Wesley.

 Relations and Tables 5

order entities. There are three types of relationships, all
of which we will discuss shortly.

The most important thing to keep in mind is that a schema
shows the logical plan for a database, what entities and rela-
tionships could possibly be stored. However, inside the real-
world database, we have many occurrences of many entities,
each represented by descriptive data. We may not have occur-
rences of every entity in the schema or we may have thousands
(even hundreds of thousands) of occurrences of entities.

A relational database takes its name from the structure used
to represent an entity: a two-dimensional table with special
characteristics taken from mathematical set theory, where such
a structure is known as a relation.2 To begin, let’s look at the
simple relation in Figure 1-1. At first glance, the relation looks
like any table, but unlike other tables you may have encoun-
tered (for example, rectangular areas of spreadsheets), it has
some very specific characteristics.

Cust. # First name Last name Phone
0001 Jane Doe (555) 555-1111
0002 John Doe (555) 555-2222
0003 Jane Smith (555) 555-3333
0004 John Smith (555) 555-4444

Figure 1-1: A simple customer relation

A relation is a two-dimensional table with no repeating groups.
That means that if you look at the intersection of a column
and a row, there will be only one value. What you see in Figure

2 Don’t let anyone try to convince you that a relational database is called
so because there are “relationships between files.” That is just plain wrong.

Relations and
Tables

Columns and Rows

6 The Relational Data Model

1-2 is certainly a table, but it isn’t a relation. Why? Because
there are multiple values in some of the rows in the Children
column. In contrast, Figure 1-1 is a legal relation.

Note: Although the official name of the two-dimensional “thing”
we have been discussing is “relation,” most people consider the
word “table” to be synonymous and we will use both terms inter-
changeably throughout this book.

A relation has a name that is unique within its schema. Each
column (or attribute) in a relation also has a name, but in this
case, the name needs to be unique only within the table. In
fact, as you will see shortly, there are times when you actually
want to have columns with the same names in multiple tables.

In a well-designed relational database, each table represents an
entity. We often document entities (and, as you will see, the
relationships among them) in a diagram known as an entity-
relationship diagram (ERD). There are many ways to draw
ERDs, each of which can convey just about the same informa-
tion. The particular style we’ll be using in this book is known
as the information engineering (IE) style. An entity is repre-
sented as a rectangle with its name in the top section and its
attributes in the bottom, as you see in Figure 1-3.

A relation is both column-order independent and row-order
independent. This mean that we can view the columns in any
order and the rows in any order without losing the meaning of

Cust. # First name Last name Phone Children
0001 Jane Doe (555) 555-1111 James, Mary, John
0002 John Doe (555) 555-2222 Peter
0003 Jane Smith (555) 555-3333 Liam, Sean, Collin
0004 John Smith (555) 555-4444 Amy, Anabel

Figure 1-2: A table that isn’t a relation

Chapter 1:

 Relations and Tables 7

the data. The assumption is, however, that all the data in one
row remain in that row.

Each column in a relation has a domain, an expression of the
legal values for that column. In some cases, a domain is very
specific. For example, if you are working with a column that
stores the sizes of T-shirts, the entire domain might consist of
the values S, M, L, XL, and XXL. Domains are more com-
monly, however, general data types, such as integer or date.3

Once you assign a domain to a column, the DBMS will en-
force that domain, rejecting any command that attempts to
enter a value into the column that isn’t from the domain. This
is an example of a constraint on a relation, a rule to which the
relation must adhere.

Each row in a relation must have a unique value that identi-
fies the row. This primary key is made up of the values in one
or more columns (the smallest number of columns needed to
enforce uniqueness). A table that stores information about an
order, for example, would probably use the order number as
its primary key.

People are particularly difficult to identify uniquely, so we often
assign each person in a table an arbitrary number. If you look
back at Figure 1-3, you will see that there is a customer_numb
attribute, representing a number that will be simply given to
each customer when a row for a new customer is entered into
the table. The IE diagramming method places an asterisk in
front of the column or columns that make up a primary key,
just as is done in Figure 1-3.

3 In fact, today’s major DBMSs do not provide direct support for true
relational domains. Nonetheless you will see that there are SQL constructs
that simulate domains.

Domains

Primary Keys

8 The Relational Data Model

Sometimes there is no single column that will uniquely iden-
tify each row in a table. As an example, consider the table in
Figure 1-4 (dependents), which lists employees’ dependent
children. We can’t use the employee number as the primary
key because customer numbers repeat for each child an em-
ployee has, and many employees have more than one child.
By the same token, the children’s names and birthdates aren’t
unique. The solution is to consider the values in two columns
as the primary key. In this case, the employee number and
the child’s name make the best primary key. Taken as a unit,
the two values are unique in every row. A primary key made
up of more than one column is known as a concatenated key.

Emp. # Child name Child birth date
0001 Sarah 1-15-2000
0002 John 2-12-1999
0002 Mary 6-6-2004
0002 John 4-15-2006
0003 Pamela 10-10-2004
0003 Paul 10-10-2004

Figure 1-4: A relation with a concatenated primary key

Figure 1-3: A UML etity

Chapter 1:

 Relations and Tables 9

Why are unique primary keys so important? Because they en-
sure that you can retrieve every piece of data that you put into
a database. If primary keys aren’t unique, a query will retrieve
one or more rows with a value you specify, but you can’t be cer-
tain which is the exact row you want unless you know some-
thing that identifies just that one row. In fact, you should be
able to retrieve any single data value knowing three things: the
name of the table, the name of the column, and the primary
key of the row.

As you will see later in this book, you specify a table’s primary
key when you define the table to the DBMS. The DBMS will
then enforce a constraint that requires unique primary key
values.

Note: It is actually possible to create a table that has no primary
key, but some DBMSs won’t let you put any data in it.

Sometimes you don’t put data in some columns of some rows
because you don’t know the appropriate data values. The empty
columns don’t contain a zero or a blank. Instead, they contain
a special indicator known as null, which means “unknown.”

There are two important implications of the presence of nulls
in a table. First, we can’t allow nulls as all or part of a primary
key. If there is only one row with null for a primary key, then
the property of unique primary key values is preserved. The
minute we introduce a second row with a null primary key,
however, the primary keys are no longer unique. A DBMS will
therefore ensure that all primary keys have values, a constraint
known as entity integrity.

Secondly, nulls can affect the result of queries. Assume, for
example, that you want to retrieve the names of all employees
who have a salary of more than $100,000. For all employees
that have a value in the salary column, the answer to “Is the
salary more than $100,000” will be either “yes” or “no.” But if

Nulls

10 Chapter 1: The Relational Data Model

the salary column contains null, the DBMS doesn’t know the
answer to the question; the result is “maybe.”

We say that a DBMS operates using three-valued logic: yes,
no, or maybe. The question that remains is what a DBMS
should do when the answer to the question it is asking is “may-
be.” Should it retrieve rows with null or leave them out? The
relational data model doesn’t specify exactly what a DBMS
should do, but does require the DBMS to act consistently—
either always retrieve rows with nulls or always leave them
out—and that the user be aware of what is happening. We’ll
deal with effect of nulls at various places throughout this book.

There are two primary types of tables with which you will be
working when you use SQL. The tables that contain data that
are stored in the database are known as base tables. However,
the DBMS also uses several types of temporary tables that only
exist in main memory. These are virtual tables and by defini-
tion they are not stored in the database. Most modern DBMS
use several types of virtual tables, including views, temporary
tables, and query result tables. If you want to keep the data in a
virtual table, then those data must be inserted into a base table.

Along with data describing entities, a database must somehow
represent relationships between entities. Prior to the relational
data model, databases used data structures embedded in the
data to show relationships. However, the relational data model
relies on it data to show relationships.

There are three types of relationships between entities that we
encounter in our database environments: one-to-one, one-to-
many, and many-to-many.

A one-to-one relationship exists between two entities when an
occurrence of entity A is related to zero or one occurrences of
entity B and an occurrence of entity B is related to zero or one
occurrences of entity A. Although the specific occurrences in-
volved in the relationship may change over time, there is never

Base versus Virtual
Tables

Representing
Relationships

Types of
Relationships

One-to-One Relationships

 Representing Relationships 11

more than one related occurrence at any given time. For ex-
ample, a car and its engine have unique serial numbers. At any
one time, an engine is installed in only one car; at the same
time, a car has only one engine. The engine may be in no car
or it can be moved from one car to another, but it can’t be in
more than one place at a time. By the same token, a car can
have no engine or one engine. The specific engine may change
over time but there is never more than one.4

We include a relationship in an ERD by drawing a line be-
tween the rectangles for two related entities. The line ends
identify the type of the relationship. In Figure 1-5 you can see
the way in which we would diagram the one-to-one relation-
ship between a car and its engine. The |0 at the end of the line
means “zero or one.”

If the relationship is required (mandatory), then the |0 at the
end of the line changes to || (one and only one). We use man-
datory relationships when we don’t want an occurrence of an
entity to be store in the database unless it is related to an oc-
currence of the entity at the other end of the relationship. For
example, if we didn’t want an engine in the database unless
that engine was in a car, the end of the line next to the car
entity would be ||.

True one-to-one relationships are very uncommon, but da-
tabase environments are full of one-to-many relationships.
When a one-to-many relationship exists between two entities,
one occurrence of entity A is related to zero, one, or more oc-
currences of entity B; each occurrence of entity B is related to
at most one occurrence of entity A. If, for example, we add car
owners to our car database, then there will be a one-to-many

4 Yes, there is at least one exception to the statement that a car has only
one engine: hybrids have a gasoline engine and an electric engine. There
are exceptions to just about every scenario in this book, so please take
them in the spirit in which they were intended: as examples.

One-to-many Relationships

12 The Relational Data Model

relationship between an owner and a car. At any time, a person
can own zero, one, or more cars and a car belongs to zero or
one owners.

Figure 1-5: A one-to-one relationship

In an ERD, the line between the related entities has |0 or ||
at one end, representing the zero, one, or more end of the
relationship (or one and only one in the case of a mandatory
relatioship). The end of the line at the “many” side of the re-
lationship is marked with >0 or >|, representing zero, one, or
more (or in the case of a mandatory relationship, one or more).
In Figure 1-6, the owner entity is at the “one” end of the rela-
tionship and the car entity is at the “many” end.

Chapter 1:

 Representing Relationships 13

Figure 1-6: Adding a one-to-many relationship

The third type of relationship between entities, a many-to-
many relationship, is also very common. When two entities are
related in that way, one occurrence of entity A can be related
to many occurrences of entity B (zero, one, or more) and one
occurrence of entity B can be related to many occurrences of
entity A. To demonstrate, let’s add an entity for a Web site to
the car database, indicating which cars are advertised on which
Web sites. A car can be advertised on many Web sites and a site
can advertise many cars.

The many-to-many relationship has been diagrammed in Fig-
ure 1-7. Notice that each end of the line connecting the Web
site and Car entities has the “many” symbol, >0.

Many-to-many
Relationships

14 The Relational Data Model

Figure 1-7: Adding a many-to-many relationship

While many-to-many relationships are common, they are also
a major problem: The relational data model cannot represent
them directly, which means that they must be removed from
the design and replaced with one-to-many relationships. In
Figure 1-8 we have introduced an entity called a Listing. It
represents one car being listed on one Web site.

Chapter 1:

 Representing Relationships 15

The listing entity is what we call a composite entity. It’s pur-
pose is to represent the relationship between two other entities.
Notice in Figure 1-8 that its primary key is the concatenation
of the primary key’s of its parent entities (car and Web site).

Figure 1-8: Removing many-to-many relationships

16 The Relational Data Model

If you look back at Figure 1-8, you’ll notice that some attri-
butes appear in more than one entity. For example, you can see
that the engine entity contains the VIN of the car into which
it is inserted. This is how a relational database shows data rela-
tionships. When VIN in the engine entity has a value, it rep-
resents the relationship with a specific occurrence of car. Any
attribute in an entity that is the same as the entire primary key
of another entity is known as a foreign key. Table 1-1 lists all
the foreign keys in the car database we have been developing.

Table
containing
the foreign
key

Foreign key
attributes

Table referenced by
foreign key

Engine VIN Car
Car engine_serial_numb

owner_numb
Engine
Owner

Listing URL
VIN

Web site
Car

Table 1-1: Foreign keys in the database design in Figure 1-8

A foreign key can be null. For example, if an engine isn’t in-
stalled in a car, then the VIN attribute in the Engine entity will
be null. However, foreign keys that are part of a primary key,
such as the URL and VIN attributes in the listing entity, must
have values to satisfy entity integrity.

When foreign keys are non-null, a matching primary key value
must exist in the table referenced by the foreign key. When a
car has an owner, for example, a row with the matching own-
er_numb must exist in the Owner table. Otherwise, it will be
impossible to find information about that owner. This prop-
erty is known as referential integrity: Every non-null foreign

Foreign Keys
and Referential
Integrity

Chapter 1:

 Representing Relationships 17

key value must reference an existing primary key value. As you
will see throughout this book, much of what you do with SQL
involves retrieving matching data using primary key–foreign
key relationships.

Foreign keys are not limited to single columns; they can be
concatenated, just like primary keys. As an example, consider a
part of the database design for a very small accounting firm in
Figure 1-9. Because the firm is so small, the database designer
decides that employee numbers aren’t necessary and instead
uses the accountants’ first and last names as the primary key
of the accountant table. The project table, used to gather data
about one accountant preparing one year’s tax returns for one
customer, uses the tax year and the customer number as its
primary key. However, it has three foreign keys. (We’ll get to
those in a moment.) The form table that stores data about the
forms that are part of a specific tax return uses the concatena-
tion of the form’s ID and the primary key of the project table
for its primary key.

A foreign key is the same as the complete primary key of an-
other table. Therefore, the acct_first_name attribute by itself
in the project table is not a foreign key; neither is the acc_
last_name attribute. If you concatenate them, however, then
they are the same as the primary key of the accountant table
and, in fact, this is the unit with which referential integrity
should be enforced.

Assume that “Jane Johnson” is working on customer 10100’s
2014 tax return. It’s not enough to ensure that “Jane” appears
somewhere in the first name column in the accountant table
and “Johnson” appears anywhere in the last name column
in the accountant table. There could be many people named
“Jane” and many with the last name of “Johnson.” What we
need to ensure is that there is one person named “Jane John-
son” in the accountant table, the concatenation of the two at-
tributes that make up the primary key.

18 The Relational Data Model

Figure 1-9: A part of a database design with concatenated foreign
keys

The same holds true for the concatenated foreign key in the
form table: the tax year and the customer number. A row with
a matching pair must exist in the project table before referen-
tial integrity is satisfied.

Users don’t necessarily work directly with base tables. Instead,
they use views, which present a subset of the database. A view
can be constructed from one or more tables and/or views, us-
ing one or more columns and one or more rows.

Views

Chapter 1:

 The Design of the Sample Database 19

Views are stored in the database as SQL query expressions.
Each has a name. When someone uses the name of the view,
either from the command line or in an application program,
the DBMS executes the query and assembles a virtual table in
main memory. The user can then see the view’s data, query the
view, and in some cases, use it for updates.

There are two main reasons for using views. First, they let you
store complex queries in the database. The user then doesn’t
need to type the entire query, but can use the view’s name. Sec-
ond, views provide a security mechanism. Users are prohibited
from accessing base tables directly but instead work with views
that present the portions of the database to which they should
have access.

Most of the sample queries throughout this book are taken
from a portion of a relational database that supports a rare
book dealer. You can find the ER diagram in Figure 1-10. The
rare book dealer handles rare fiction editions and some mod-
ern fiction. Because many of the books are one-of-a-kind, he
tracks each volume individually.

The portion of the database we will be using contains data on
customers and the volumes that they purchase. Notice, how-
ever, that it really takes three entities to describe a volume that
is sold. The work entity describes a text written by one author
with one title. A book is a specific published version of a work;
it is identified by an ISBN. A volume is one copy of a book.
This is the unit that is being sold.

Notice that many of the text attributes of a work/book/volume
are represented by numeric codes that act as foreign keys. For
example, a book has a work_id that connects it to the work. It
also has a publisher_id that connects to a table that contains
the text of publisher names. Why design the database this way?
Because it is very easy to make mistakes when typing text; data
that are repeated may become inconsistent, resulting in queries

The Design of
the Sample
Database

20 The Relational Data Model

Figure 1-10: The complete ERD for the rare book store database

Chapter 1:

 The Design of the Sample Database 21

that don’t retrieve all appropriate rows. Therefore, we store the
text just once and relate it to works/books/volumes using in-
teger codes.

The data that we will be using appear in Tables 1-2 through
1-9.5 With the exception of work authors and titles, the data
are fictional, made up just for use in this book.

publisher_id | publisher_name
--------------+-------------------------------
 1 | Wiley
 2 | Simon & Schuster
 3 | Macmillan
 4 | Tor
 5 | DAW

Table 1-2: Publisher

author_numb | author_last_first
-------------+-------------------------------
 1 | Bronte, Charlotte
 2 | Doyle, Sir Arthur Conan
 3 | Twain, Mark
 4 | Stevenson, Robert Louis
 5 | Rand, Ayn
 6 | Barrie, James
 7 | Ludlum, Robert
 8 | Barth, John
 9 | Herbert, Frank
 10 | Asimov, Isaac
 11 | Funke, Cornelia
 12 | Stephenson, Neal

Table 1-3: Author

5 Some column names have been abbreviated so the data will fit on the
printed page.

22 The Relational Data Model

condition_code | condition_description
----------------+-----------------------
 1 | New
 2 | Excellent
 3 | Fine
 4 | Good
 5 | Poor

Table 1-4: Condition codes

work_numb | author_numb | title
-----------+-------------+--
 1 | 1 | Jane Eyre
 2 | 1 | Villette
 3 | 2 | Hound of the Baskervilles
 4 | 2 | Lost World, The
 5 | 2 | Complete Sherlock Holmes
 7 | 3 | Prince and the Pauper
 8 | 3 | Tom Sawyer
 9 | 3 | Adventures of Huckleberry Finn, The
 6 | 3 | Connecticut Yankee in King Arthur’s Court, A
 13 | 5 | Fountainhead, The
 14 | 5 | Atlas Shrugged
 15 | 6 | Peter Pan
 10 | 7 | Bourne Identity, The
 11 | 7 | Matarese Circle, The
 12 | 7 | Bourne Supremacy, The
 16 | 4 | Kidnapped
 17 | 4 | Treasure Island
 18 | 8 | Sot Weed Factor, The
 19 | 8 | Lost in the Funhouse
 20 | 8 | Giles Goat Boy
 21 | 9 | Dune
 22 | 9 | Dune Messiah
 23 | 10 | Foundation
 24 | 10 | Last Foundation
 25 | 10 | I, Robot
 26 | 11 | Inkheart
 27 | 11 | Inkdeath
 28 | 12 | Anathem
 29 | 12 | Snow Crash
 30 | 5 | Anthem
 31 | 12 | Cryptonomicon

Table 1-5: Work

Chapter 1:

 The Design of the Sample Database 23

 isbn | work_numb | publisher_id | edition | binding | copyright_
 year
-------------------+-----------+--------------+-------------------+------------
 978-1-11111-111-1 | 1 | 1 | 2 | Board | 1857
 978-1-11111-112-1 | 1 | 1 | 1 | Board | 1847
 978-1-11111-113-1 | 2 | 4 | 1 | Board | 1842
 978-1-11111-114-1 | 3 | 4 | 1 | Board | 1801
 978-1-11111-115-1 | 3 | 4 | 10 | Leather | 1925
 978-1-11111-116-1 | 4 | 3 | 1 | Board | 1805
 978-1-11111-117-1 | 5 | 5 | 1 | Board | 1808
 978-1-11111-118-1 | 5 | 2 | 19 | Leather | 1956
 978-1-11111-120-1 | 8 | 4 | 5 | Board | 1906
 978-1-11111-119-1 | 6 | 2 | 3 | Board | 1956
 978-1-11111-121-1 | 8 | 1 | 12 | Leather | 1982
 978-1-11111-122-1 | 9 | 1 | 12 | Leather | 1982
 978-1-11111-123-1 | 11 | 2 | 1 | Board | 1998
 978-1-11111-124-1 | 12 | 2 | 1 | Board | 1989
 978-1-11111-125-1 | 13 | 2 | 3 | Board | 1965
 978-1-11111-126-1 | 13 | 2 | 9 | Leather | 2001
 978-1-11111-127-1 | 14 | 2 | 1 | Board | 1960
 978-1-11111-128-1 | 16 | 2 | 12 | Board | 1960
 978-1-11111-129-1 | 16 | 2 | 14 | Leather | 2002
 978-1-11111-130-1 | 17 | 3 | 6 | Leather | 1905
 978-1-11111-131-1 | 18 | 4 | 6 | Board | 1957
 978-1-11111-132-1 | 19 | 4 | 1 | Board | 1962
 978-1-11111-133-1 | 20 | 4 | 1 | Board | 1964
 978-1-11111-134-1 | 21 | 5 | 1 | Board | 1964
 978-1-11111-135-1 | 23 | 5 | 1 | Board | 1962
 978-1-11111-136-1 | 23 | 5 | 4 | Leather | 2001
 978-1-11111-137-1 | 24 | 5 | 4 | Leather | 2001
 978-1-11111-138-1 | 23 | 5 | 4 | Leather | 2001
 978-1-11111-139-1 | 25 | 5 | 4 | Leather | 2001
 978-1-11111-140-1 | 26 | 5 | 1 | Board | 2001
 978-1-11111-141-1 | 27 | 5 | 1 | Board | 2005
 978-1-11111-142-1 | 28 | 5 | 1 | Board | 2008
 978-1-11111-143-1 | 29 | 5 | 1 | Board | 1992
 978-1-11111-144-1 | 30 | 1 | 1 | Board | 1952
 978-1-11111-145-1 | 30 | 5 | 1 | Board | 2001
 978-1-11111-146-1 | 31 | 5 | 1 | Board | 1999

Table 1-6: Books

24 The Relational Data Model

in
ve

nt
or
y
|

is
bn

|
co
nd
it
io
n
|

da
te
_a
cq
ui
re
d

 |
 a
sk
in
g
|
se
ll

in
g

|
sa

le

_i
d

_c
od
e

 _
pr
ic
e

_p
ri

ce

_i

d
--

--
--

--
--
+-
--
--
--
--
--
--
--
--
--
--
+-
--
--
--
--
--
+-
--
--
--
--
--
--
--
--
--
-+
--
--
--
--
-+
--
--

--
--

-+
--

--
--

-

1
|
97
8-
1-
11
11
1-
11
1-
1
|

3
|
12
-J
UN
-1
2
00
:0
0:
00
 |

17
5.
00
 |
 1
75

.0
0

|

 1

2
|
97
8-
1-
11
11
1-
13
1-
1
|

4
|
23
-J
AN
-1
2
00
:0
0:
00
 |

 5
0.
00
 |

50

.0
0

|

 1

7
|
97
8-
1-
11
11
1-
13
7-
1
|

2
|
20
-J
UN
-1
2
00
:0
0:
00
 |

 8
0.
00
 |

|

3
|
97
8-
1-
11
11
1-
13
3-
1
|

2
|
05
-A
PR
-1
1
00
:0
0:
00
 |

30
0.
00
 |
 2
85

.0
0

|

 1

4
|
97
8-
1-
11
11
1-
14
2-
1
|

1
|
05
-A
PR
-1
1
00
:0
0:
00
 |

 2
5.
95
 |

25

.9
5

|

 2

5
|
97
8-
1-
11
11
1-
14
6-
1
|

1
|
05
-A
PR
-1
1
00
:0
0:
00
 |

 2
2.
95
 |

22

.9
5

|

 2

6
|
97
8-
1-
11
11
1-
14
4-
1
|

2
|
15
-M
AY
-1
2
00
:0
0:
00
 |

 8
0.
00
 |

76

.1
0

|

 2

8
|
97
8-
1-
11
11
1-
13
7-
1
|

3
|
20
-J
UN
-1
2
00
:0
0:
00
 |

 5
0.
00
 |

|

9
|
97
8-
1-
11
11
1-
13
6-
1
|

1
|
20
-D
EC
-1
1
00
:0
0:
00
 |

 7
5.
00
 |

|

 1
0
|
97
8-
1-
11
11
1-
13
6-
1
|

2
|
15
-D
EC
-1
1
00
:0
0:
00
 |

 5
0.
00
 |

|

 1
1
|
97
8-
1-
11
11
1-
14
3-
1
|

1
|
05
-A
PR
-1
2
00
:0
0:
00
 |

 2
5.
00
 |

25

.0
0

|

 3

 1
2
|
97
8-
1-
11
11
1-
13
2-
1
|

1
|
12
-J
UN
-1
2
00
:0
0:
00
 |

 1
5.
00
 |

15

.0
0

|

 3

 1
3
|
97
8-
1-
11
11
1-
13
3-
1
|

3
|
20
-A
PR
-1
2
00
:0
0:
00
 |

 1
8.
00
 |

18

.0
0

|

 3

 1
5
|
97
8-
1-
11
11
1-
12
1-
1
|

2
|
20
-A
PR
-1
2
00
:0
0:
00
 |

11
0.
00
 |
 1
10

.0
0

|

 5

 1
4
|
97
8-
1-
11
11
1-
12
1-
1
|

2
|
20
-A
PR
-1
2
00
:0
0:
00
 |

11
0.
00
 |
 1
10

.0
0

|

 4

 1
6
|
97
8-
1-
11
11
1-
12
1-
1
|

2
|
20
-A
PR
-1
2
00
:0
0:
00
 |

11
0.
00
 |

|

 1
7
|
97
8-
1-
11
11
1-
12
4-
1
|

2
|
12
-J
AN
-1
3
00
:0
0:
00
 |

 7
5.
00
 |

|

 1
8
|
97
8-
1-
11
11
1-
14
6-
1
|

1
|
11
-M
AY
-1
2
00
:0
0:
00
 |

 3
0.
00
 |

30

.0
0

|

 6

 1
9
|
97
8-
1-
11
11
1-
12
2-
1
|

2
|
06
-M
AY
-1
2
00
:0
0:
00
 |

 7
5.
00
 |

75

.0
0

|

 6

 2
0
|
97
8-
1-
11
11
1-
13
0-
1
|

2
|
20
-A
PR
-1
2
00
:0
0:
00
 |

15
0.
00
 |
 1
20

.0
0

|

 6

 2
1
|
97
8-
1-
11
11
1-
12
6-
1
|

2
|
20
-A
PR
-1
2
00
:0
0:
00
 |

 1
0.
00
 |
 1
10

.0
0

|

 6

 2
2
|
97
8-
1-
11
11
1-
13
9-
1
|

2
|
16
-M
AY
-1
2
00
:0
0:
00
 |

20
0.
00
 |
 1
70

.0
0

|

 6

 2
3
|
97
8-
1-
11
11
1-
12
5-
1
|

2
|
16
-M
AY
-1
2
00
:0
0:
00
 |

 4
5.
00
 |

45

.0
0

|

 7

 2
4
|
97
8-
1-
11
11
1-
13
1-
1
|

3
|
20
-A
PR
-1
2
00
:0
0:
00
 |

 3
5.
00
 |

35

.0
0

|

 7

 2
5
|
97
8-
1-
11
11
1-
12
6-
1
|

2
|
16
-N
OV
-1
2
00
:0
0:
00
 |

 7
5.
00
 |

75

.0
0

|

 8

 2
6
|
97
8-
1-
11
11
1-
13
3-
1
|

3
|
16
-N
OV
-1
2
00
:0
0:
00
 |

 3
5.
00
 |

55

.0
0

|

 8

 2
7
|
97
8-
1-
11
11
1-
14
1-
1
|

1
|
06
-N
OV
-1
2
00
:0
0:
00
 |

 2
4.
95
 |

|

 2
8
|
97
8-
1-
11
11
1-
14
1-
1
|

1
|
06
-N
OV
-1
2
00
:0
0:
00
 |

 2
4.
95
 |

|

 2
9
|
97
8-
1-
11
11
1-
14
1-
1
|

1
|
06
-N
OV
-1
2
00
:0
0:
00
 |

 2
4.
95
 |

|

 3
0
|
97
8-
1-
11
11
1-
14
5-
1
|

1
|
06
-N
OV
-1
2
00
:0
0:
00
 |

 2
7.
95
 |

|

 3
1
|
97
8-
1-
11
11
1-
14
5-
1
|

1
|
06
-N
OV
-1
2
00
:0
0:
00
 |

 2
7.
95
 |

|

 3
2
|
97
8-
1-
11
11
1-
14
5-
1
|

1
|
06
-N
OV
-1
2
00
:0
0:
00
 |

 2
7.
95
 |

|

 3
3
|
97
8-
1-
11
11
1-
13
9-
1
|

2
|
06
-O
CT
-1
2
00
:0
0:
00
 |

 7
5.
00
 |

50

.0
0

|

 9

 3
4
|
97
8-
1-
11
11
1-
13
3-
1
|

1
|
16
-N
OV
-1
2
00
:0
0:
00
 |

12
5.
00
 |
 1
25

.0
0

|

10

 3
5
|
97
8-
1-
11
11
1-
12
6-
1
|

1
|
06
-O
CT
-1
2
00
:0
0:
00
 |

 7
5.
00
 |

75

.0
0

|

11

Ta
bl

e
1

-7
:

Vo
lu

m
e

(c
on

ti
nu

ed
 o

n
ne

xt
 p

ag
e)

Chapter 1:

 The Design of the Sample Database 25

 3
6
|
97
8-
1-
11
11
1-
13
0-
1
|

3
|
06
-D
EC
-1
1
00
:0
0:
00
 |

50
.0
0
|
 5
0.

00
 |

 3
7
|
97
8-
1-
11
11
1-
13
6-
1
|

3
|
06
-D
EC
-1
1
00
:0
0:
00
 |

75
.0
0
|
 7
5.

00
 |

 1
1

 3
8
|
97
8-
1-
11
11
1-
13
0-
1
|

2
|
06
-A
PR
-1
2
00
:0
0:
00
 |
 2
00
.0
0
|
15
0.

00
 |

 1
2

 3
9
|
97
8-
1-
11
11
1-
13
2-
1
|

3
|
06
-A
PR
-1
2
00
:0
0:
00
 |

75
.0
0
|
 7
5.

00
 |

 1
2

 4
0
|
97
8-
1-
11
11
1-
12
9-
1
|

1
|
06
-A
PR
-1
2
00
:0
0:
00
 |

25
.9
5
|
 2
5.

95
 |

 1
3

 4
1
|
97
8-
1-
11
11
1-
14
1-
1
|

1
|
16
-M
AY
-1
2
00
:0
0:
00
 |

40
.0
0
|
 4
0.

00
 |

 1
4

 4
2
|
97
8-
1-
11
11
1-
14
1-
1
|

1
|
16
-M
AY
-1
2
00
:0
0:
00
 |

40
.0
0
|
 4
0.

00
 |

 1
4

 4
3
|
97
8-
1-
11
11
1-
13
2-
1
|

1
|
12
-N
OV
-1
2
00
:0
0:
00
 |

17
.9
5
|

 |

 4
4
|
97
8-
1-
11
11
1-
13
8-
1
|

1
|
12
-N
OV
-1
2
00
:0
0:
00
 |

75
.9
5
|

 |

 4
5
|
97
8-
1-
11
11
1-
13
8-
1
|

1
|
12
-N
OV
-1
2
00
:0
0:
00
 |

75
.9
5
|

 |

 4
6
|
97
8-
1-
11
11
1-
13
1-
1
|

3
|
12
-N
OV
-1
2
00
:0
0:
00
 |

15
.9
5
|

 |

 4
7
|
97
8-
1-
11
11
1-
14
0-
1
|

3
|
12
-N
OV
-1
2
00
:0
0:
00
 |

25
.9
5
|

 |

 4
8
|
97
8-
1-
11
11
1-
12
3-
1
|

2
|
16
-A
UG
-1
2
00
:0
0:
00
 |

24
.9
5
|

 |

 4
9
|
97
8-
1-
11
11
1-
12
7-
1
|

2
|
16
-A
UG
-1
2
00
:0
0:
00
 |

27
.9
5
|

 |

 5
0
|
97
8-
1-
11
11
1-
12
7-
1
|

2
|
06
-J
AN
-1
3
00
:0
0:
00
 |

50
.0
0
|
 5
0.

00
 |

 1
5

 5
1
|
97
8-
1-
11
11
1-
14
1-
1
|

2
|
06
-J
AN
-1
3
00
:0
0:
00
 |

50
.0
0
|
 5
0.

00
 |

 1
5

 5
2
|
97
8-
1-
11
11
1-
14
1-
1
|

2
|
06
-J
AN
-1
3
00
:0
0:
00
 |

50
.0
0
|
 5
0.

00
 |

 1
6

 5
3
|
97
8-
1-
11
11
1-
12
3-
1
|

2
|
06
-J
AN
-1
3
00
:0
0:
00
 |

40
.0
0
|
 4
0.

00
 |

 1
6

 5
4
|
97
8-
1-
11
11
1-
12
7-
1
|

2
|
06
-J
AN
-1
3
00
:0
0:
00
 |

40
.0
0
|
 4
0.

00
 |

 1
6

 5
5
|
97
8-
1-
11
11
1-
13
3-
1
|

2
|
06
-F
EB
-1
3
00
:0
0:
00
 |

60
.0
0
|
 6
0.

00
 |

 1
7

 5
6
|
97
8-
1-
11
11
1-
12
7-
1
|

2
|
16
-F
EB
-1
2
00
:0
0:
00
 |

40
.0
0
|
 4
0.

00
 |

 1
7

 5
7
|
97
8-
1-
11
11
1-
13
5-
1
|

2
|
16
-F
EB
-1
2
00
:0
0:
00
 |

40
.0
0
|
 4
0.

00
 |

 1
8

 5
9
|
97
8-
1-
11
11
1-
12
7-
1
|

2
|
25
-F
EB
-1
3
00
:0
0:
00
 |

35
.0
0
|
 3
5.

00
 |

 1
8

 5
8
|
97
8-
1-
11
11
1-
13
1-
1
|

2
|
16
-F
EB
-1
3
00
:0
0:
00
 |

25
.0
0
|
 2
5.

00
 |

 1
8

 6
0
|
97
8-
1-
11
11
1-
12
8-
1
|

2
|
16
-D
EC
-1
2
00
:0
0:
00
 |

50
.0
0
|
 4
5.

00
 |

 1
9

 6
1
|
97
8-
1-
11
11
1-
13
6-
1
|

3
|
22
-O
CT
-1
2
00
:0
0:
00
 |

50
.0
0
|
 5
0.

00
 |

 1
9

 6
2
|
97
8-
1-
11
11
1-
11
5-
1
|

2
|
22
-O
CT
-1
2
00
:0
0:
00
 |

75
.0
0
|
 7
5.

00
 |

 2
0

 6
3
|
97
8-
1-
11
11
1-
13
0-
1
|

2
|
16
-J
UL
-1
2
00
:0
0:
00
 |
 5
00
.0
0
|

 |

 6
4
|
97
8-
1-
11
11
1-
13
6-
1
|

2
|
06
-M
AR
-1
2
00
:0
0:
00
 |
 1
25
.0
0
|

 |

 6
5
|
97
8-
1-
11
11
1-
13
6-
1
|

2
|
06
-M
AR
-1
2
00
:0
0:
00
 |
 1
25
.0
0
|

 |

 6
6
|
97
8-
1-
11
11
1-
13
7-
1
|

2
|
06
-M
AR
-1
2
00
:0
0:
00
 |
 1
25
.0
0
|

 |

 6
7
|
97
8-
1-
11
11
1-
13
7-
1
|

2
|
06
-M
AR
-1
2
00
:0
0:
00
 |
 1
25
.0
0
|

 |

 6
8
|
97
8-
1-
11
11
1-
13
8-
1
|

2
|
06
-M
AR
-1
2
00
:0
0:
00
 |
 1
25
.0
0
|

 |

 6
9
|
97
8-
1-
11
11
1-
13
8-
1
|

2
|
06
-M
AR
-1
2
00
:0
0:
00
 |
 1
25
.0
0
|

 |

 7
0
|
97
8-
1-
11
11
1-
13
9-
1
|

2
|
06
-M
AR
-1
2
00
:0
0:
00
 |
 1
25
.0
0
|

 |

 7
1
|
97
8-
1-
11
11
1-
13
9-
1
|

2
|
06
-M
AR
-1
2
00
:0
0:
00
 |
 1
25
.0
0
|

 |

Ta
bl

e
1

-7
:

Vo
lu

m
e

(c
on

ti
nu

ed
)

26 The Relational Data Model

cu
st

 #
 |

 fi
rs
t_
 |
 l
as
t_

|

st
re
et

 |

ci
ty

 |
 s
ta
te
 |
 z
ip

_
|

co
nt

ac
t_

nu

mb

 n
am
e

 n
am
e

 p
ro
v.
 |
 p
os

t
|

ph
on

e
--

--
--

-+
--
--
--
-+
--
--
--
--
--
--
+-
--
--
--
--
--
--
--
--
--
--
--
-+
--
--
--
--
--
--
-+
--
--
--
--
--
+-

--
--

--
--

-+
--

1

|
Ja
ni
ce

 |
 J
on
es

|
12
5
Ce
nt
er
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y
|
11
11

1
|

51
8-

55
5-

11
11

2

|
Jo
n

 |
 J
on
es

|
25
 E
lm
 R
oa
d

 |
 N
ex
t
To
wn

 |
 N
J
|
18
88

8
|

20
9-

55
5-

22
22

3

|
Jo
hn

 |
 D
oe

|
82
1
El
m
St
re
et

 |
 N
ex
t
To
wn

 |
 N
J
|
18
88

8
|

20
9-

55
5-

33
33

4

|
Ja
ne

 |
 D
oe

|
85
2
Ma
in
 S
tr
ee
t

 |
 A
ny
to
wn

 |
 N
Y
|
11
11

1
|

51
8-

55
5-

44
44

5

|
Ja
ne

 |
 S
mi
th

|
19
19
 M
ai
n
St
re
et

 |
 N
ew
 V
il
la
ge
 |
 N
Y
|
13
33

3
|

51
8-

55
5-

55
55

6

|
Ja
ni
ce

 |
 S
mi
th

|
80
0
Ce
nt
er
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y
|
11
11

1
|

51
8-

55
5-

66
66

7

|
He
le
n

 |
 B
ro
wn

|
25
 F
ro
nt
 S
tr
ee
t

 |
 A
ny
to
wn

 |
 N
Y
|
11
11

1
|

51
8-

55
5-

77
77

8

|
He
le
n

 |
 J
er
ry

|
16
 M
ai
n
St
re
et

 |
 N
ew
to
wn

 |
 N
J
|
18
88

6
|

51
8-

55
5-

88
88

9

|
Ma
ry

 |
 C
ol
li
ns

|
30
1
Pi
ne
 R
oa
d,
 A
pt
.
12
 |
 N
ew
to
wn

 |
 N
J
|
18
88

6
|

51
8-

55
5-

99
99

 1
0

|
Pe
te
r

 |
 C
ol
li
ns

|
18
 M
ai
n
St
re
et

 |
 N
ew
to
wn

 |
 N
J
|
18
88

6
|

51
8-

55
5-

10
10

 1
1

|
Ed
na

 |
 H
ay
es

|
20
9
Ci
rc
le
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y
|
11
11

1
|

51
8-

55
5-

11
10

 1
2

|
Fr
an
kl
in
 |
 H
ay
es

|
61
5
Ci
rc
le
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y
|
11
11

1
|

51
8-

55
5-

12
12

 1
3

|
Pe
te
r

 |
 J
oh
ns
on

|
22
 R
os
e
Co
ur
t

 |
 N
ex
t
To
wn

 |
 N
J
|
18
88

8
|

20
9-

55
5-

12
12

 1
4

|
Pe
te
r

 |
 J
oh
ns
on

|
88
1
Fr
on
t
St
re
et

 |
 N
ex
t
To
wn

 |
 N
J
|
18
88

8
|

20
9-

55
5-

14
14

 1
5

|
Jo
hn

 |
 S
mi
th

|
88
1
Ma
no
r
La
ne

 |
 N
ex
t
To
wn

 |
 N
J
|
18
88

8
|

20
9-

55
5-

15
15

Ta
bl

e
1

-8
:

Cu
st

om
er

s

Chapter 1:

 The Design of the Sample Database 27

sa
le

_i
d

|
cu
st
om
er
_
|

sa
le
_d
at
e

 |
 s
al
e_
to
ta
l_
 |

 c
re
di
t_
ca
rd
_
nu
mb
 |
 e

xp
_

 |
 e

xp
_

nu
mb

 a
mt

 m

on
th

 y

ea
r

--
--

--
--

+-
--
--
--
--
--
+-
--
--
--
--
--
--
--
--
--
-+
--
--
--
--
--
--
-+
--
--
--
--
--
--
--
--
--
--
-+
--

--
--

--
+-

--
--

-

 3

 |

1
|
15
-J
UN
-1
3
00
:0
0:
00
 |

 5
8.
00
 |
 1
23
4
56
78
 9
10
1
11
21

|

10

 |

18

 4

 |

4
|
30
-J
UN
-1
3
00
:0
0:
00
 |

11
0.
00
 |
 1
23
4
56
78
 9
10
1
55
55

|

 7

 |

17

 5

 |

6
|
30
-J
UN
-1
3
00
:0
0:
00
 |

11
0.
00
 |
 1
23
4
56
78
 9
10
1
66
66

|

12

 |

17

 6

 |

 1
2
|
05
-J
UL
-1
3
00
:0
0:
00
 |

50
5.
00
 |
 1
23
4
56
78
 9
10
1
77
77

|

 7

 |

16

 7

 |

8
|
05
-J
UL
-1
3
00
:0
0:
00
 |

 8
0.
00
 |
 1
23
4
56
78
 9
10
1
88
88

|

 8

 |

16

 8

 |

5
|
07
-J
UL
-1
3
00
:0
0:
00
 |

 9
0.
00
 |
 1
23
4
56
78
 9
10
1
99
99

|

 9

 |

15

 9

 |

8
|
07
-J
UL
-1
3
00
:0
0:
00
 |

 5
0.
00
 |
 1
23
4
56
78
 9
10
1
88
88

|

 8

 |

16

10

 |

 1
1
|
10
-J
UL
-1
3
00
:0
0:
00
 |

12
5.
00
 |
 1
23
4
56
78
 9
10
1
10
10

|

11

 |

16

11

 |

9
|
10
-J
UL
-1
3
00
:0
0:
00
 |

20
0.
00
 |
 1
23
4
56
78
 9
10
1
09
09

|

11

 |

15

12

 |

 1
0
|
10
-J
UL
-1
3
00
:0
0:
00
 |

20
0.
00
 |
 1
23
4
56
78
 9
10
1
01
01

|

10

 |

15

13

 |

2
|
10
-J
UL
-1
3
00
:0
0:
00
 |

 2
5.
95
 |
 1
23
4
56
78
 9
10
1
22
22

|

 2

 |

15

14

 |

6
|
10
-J
UL
-1
3
00
:0
0:
00
 |

 8
0.
00
 |
 1
23
4
56
78
 9
10
1
66
66

|

12

 |

17

15

 |

 1
1
|
12
-J
UL
-1
3
00
:0
0:
00
 |

 7
5.
00
 |
 1
23
4
56
78
 9
10
1
12
31

|

11

 |

17

16

 |

2
|
25
-J
UL
-1
3
00
:0
0:
00
 |

13
0.
00
 |
 1
23
4
56
78
 9
10
1
22
22

|

 2

 |

15

17

 |

1
|
25
-J
UL
-1
3
00
:0
0:
00
 |

10
0.
00
 |
 1
23
4
56
78
 9
10
1
11
21

|

10

 |

18

18

 |

5
|
22
-A
UG
-1
3
00
:0
0:
00
 |

10
0.
00
 |
 1
23
4
56
78
 9
10
1
99
99

|

 9

 |

15

 2

 |

1
|
05
-J
UN
-1
3
00
:0
0:
00
 |

12
5.
00
 |
 1
23
4
56
78
 9
10
1
11
21

|

10

 |

18

 1

 |

1
|
29
-M
AY
-1
3
00
:0
0:
00
 |

51
0.
00
 |
 1
23
4
56
78
 9
10
1
11
21

|

10

 |

18

19

 |

6
|
01
-S
EP
-1
3
00
:0
0:
00
 |

 9
5.
00
 |
 1
23
4
56
78
 9
10
1
77
77

|

 7

 |

16

20

 |

2
|
01
-S
EP
-1
3
00
:0
0:
00
 |

 7
5.
00
 |
 1
23
4
56
78
 9
10
1
22
22

|

 2

 |

15

Ta
bl

e
1

-9
:

S
al

e

2

29

When we use SQL to manipulate data in a database, we are
actually using something known as the relational calculus, a
method for using a single command to instruct the DBMS
to perform one or more actions. The DBMS must then break
down the SQL command into a set of operations that it can
perform one after the other to produce the requested result.
These single operations are taken from the relational algebra.

Note: Don’t panic. Although both the relational calculus and the
relational algebra can be expressed in the notation of formal log-
ic, there is no need for us to do so. You won’t see anything remotely
like mathematic notation in this chapter.

In this chapter we will look at seven relational algebra opera-
tions. The first five—restrict,1 project, join, union, and dif-
ference—are fundamental to SQL operations. In fact, any
DBMS that supports them is said to be relationally complete.
The remaining operations (product and intersect) are useful
for helping us understand how SQL processes queries.

1 Restrict is a renaming of the operation that was originally called
“select.” However, because SQL’s main retrieval command is SELECT,
restrict was introduced by C. J. Date (one of today’s most respected
database design theorists) for the relational algebra operation to provide
clarity. It is used in this book to help avoid confusion.

Relational Algebra

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50002-9

30 Chapter 2: Relational Algebra

It is possible to use SQL without understanding much about re-
lational algebra. However, you will find it easier to formulate ef-
fective efficient queries if you have an understanding of what the
SQL syntax is asking the DBMS to do. There is often more than
one way to write a SQL command to obtain a specific result. The
commands will often differ in the underlying relational algebra
operations required to generate results and therefore may differ
significantly in performance.

Note: The bottom line is: You really do need to read this chapter.

The most important thing to understand about relational algebra
is that each operation does one thing. For example, one operation
extracts columns while another extracts rows. The DBMS must
do the operations one at a time, in a step-by-step sequence. We
therefore say that relational algebra is procedural. SQL, on the
other hand, lets us formulate our queries in a logical way with-
out necessarily specifying the order in which relational operations
should be performed. SQL is therefore non-procedural.

There is no official syntax for relational algebra. What you will see
in this chapter, however, is a relatively consistent way of express-
ing the operations without resorting to mathematical symbols. In
general each command has the following format:

OPERATION parameters FROM source_table_name(s)
GIVING result_table_name

The parameters vary depending on the specific operation. They
may specify a second table that is part of the operation, or they
may specify which attributes are to be included in the result.

The result of every relational algebra operation is another table. In
most cases the table will be a relation, but some operations—such
as the outer join—may have nulls in primary key columns (pre-
venting the table from having a unique primary key) and therefore

 Making Vertical Subsets: Project 31

will not be legal relations. The result tables are virtual tables that
can be used as input to another relational algebra operation.

A projection of a relation is a new relation created by copying
one or more the columns from the original relation into a new
table. As an example, consider Figure 2-1. The result table (ar-
bitrarily called Names_and_numbers) is a projection of the cus-
tomer relation with the attributes customer_numb, first_name,
and last_name.

Using the syntax for relational algebra, the projection in Figure
2-1 is written:

PROJECT customer_rows, first_name, last_name
FROM customer GIVING Names_and_numbers

The order of the columns in the result table is based on the
order in which the column names appear in the project state-
ment; the order in which they are defined in the source table
has no effect on the result. Rows appear in the order in which
they are stored in the source table; project does not include
sorting or ordering the data in any way. As with all relational
algebra operations, duplicate rows are removed.

Note: It is important to keep in mind that relational algebra is
first and foremost a set of theoretical operations. A DBMS may not
implement an operation the same way that it is described in the-
ory. For example, most DBMSs don’t remove duplicate rows from
result tables unless the user requests it explicitly. Why? Because to
remove duplicates the DBMS must sort the result table by every
column (so that duplicate rows will be next to one another) and
then scan the table from top to bottom looking for the duplicates.
This can be a very slow process if the result table is large.

Whenever you issue a SQL command that asks for specific col-
umns—just about every retrieval command—you are asking
the DBMS to perform the project operation. Project is a very

Making Vertical
Subsets:
Project

32 Chapter 2: Relational Algebra

cu
st
om
er
_
|
fi
rs
t_

 |
 l
as
t_

|

st
re
et

 |

ci
ty

 |
 s
ta
te
_

|
zi
p_

 |
 c
on
ta
ct
_

nu
mb

na
me

 n
am
e

 p
ro
vi
nc
e

po
st
co
de

 p
ho
n
e

--
--
--
--
--
+-
--
--
--
--
-+
--
--
--
--
--
+-
--
--
--
--
--
--
--
--
--
--
--
-+
--
--
--
--
--
--
-+
--
--
--
--
--
+-
--
--
--
--
-+
--
--
--
--
--
--
--

-

1
|
Ja
ni
ce

 |
 J
on
es

|
12
5
Ce
nt
er
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-1
11
1

2
|
Jo
n

 |
 J
on
es

|
25
 E
lm
 R
oa
d

 |
 N
ex
t
To
wn

 |
 N
J

|
18
88
8

 |
 2
09
-5
55
-2
22
2

3
|
Jo
hn

 |
 D
oe

|
82
1
El
m
St
re
et

 |
 N
ex
t
To
wn

 |
 N
J

|
18
88
8

 |
 2
09
-5
55
-3
33
3

4
|
Ja
ne

 |
 D
oe

|
85
2
Ma
in
 S
tr
ee
t

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-4
44
4

5
|
Ja
ne

 |
 S
mi
th

|
19
19
 M
ai
n
St
re
et

 |
 N
ew
 V
il
la
ge
 |
 N
Y

|
13
33
3

 |
 5
18
-5
55
-5
55
5

6
|
Ja
ni
ce

 |
 S
mi
th

|
80
0
Ce
nt
er
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-6
66
6

7
|
He
le
n

 |
 B
ro
wn

|
25
 F
ro
nt
 S
tr
ee
t

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-7
77
7

8
|
He
le
n

 |
 J
er
ry

|
16
 M
ai
n
St
re
et

 |
 N
ew
to
wn

 |
 N
J

|
18
88
6

 |
 5
18
-5
55
-8
88
8

9
|
Ma
ry

 |
 C
ol
li
ns

|
30
1
Pi
ne
 R
oa
d,
 A
pt
.
12
 |
 N
ew
to
wn

 |
 N
J

|
18
88
6

 |
 5
18
-5
55
-9
99
9

 1
0
|
Pe
te
r

 |
 C
ol
li
ns

|
18
 M
ai
n
St
re
et

 |
 N
ew
to
wn

 |
 N
J

|
18
88
6

 |
 5
18
-5
55
-1
01
0

 1
1
|
Ed
na

 |
 H
ay
es

|
20
9
Ci
rc
le
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-1
11
0

 1
2
|
Fr
an
kl
in
 |
 H
ay
es

|
61
5
Ci
rc
le
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-1
21
2

 1
3
|
Pe
te
r

 |
 J
oh
ns
on

|
22
 R
os
e
Co
ur
t

 |
 N
ex
t
To
wn

 |
 N
J

|
18
88
8

 |
 2
09
-5
55
-1
21
2

 1
4
|
Pe
te
r

 |
 J
oh
ns
on

|
88
1
Fr
on
t
St
re
et

 |
 N
ex
t
To
wn

 |
 N
J

|
18
88
8

 |
 2
09
-5
55
-1
41
4

cu
st
om
er
_

|
nu
mb

--
--
--
--
--
+-

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|

9

|

 1
0

|

 1
1

|

 1
2

|

 1
3

|

 1
4

|

fi
rs
t_

 |

na
me

--
--
--
--
-+
-

Ja
ni
ce

 |

Jo
n

 |

Jo
hn

 |

Ja
ne

 |

Ja
ne

 |

Ja
ni
ce

 |

He
le
n

 |

He
le
n

 |

Ma
ry

 |

Pe
te
r

 |

Ed
na

 |

Fr
an
kl
in
 |

Pe
te
r

 |

Pe
te
r

 |

la
st
_

|
na
me

--
--
--
--
+-

Jo
ne
s

|
Jo
ne
s

|
Do
e

|
Do
e

|
Sm
it
h

|
Sm
it
h

|
Br
ow
n

|
Je
rr
y

|
Co
ll
in
s

|
Co
ll
in
s

|
Ha
ye
s

|
Ha
ye
s

|
Jo
hn
so
n

|
Jo
hn
so
n

|

PR
OJ
EC
T
cu
st
om
er
_n
um
b,
 f
ir
st
_n
am
e,
 l
as
t_
na
me

FR
OM
 c
us
to
me
r
GI
VI
NG
 N
am
es
_a
nd
_n
um
be
rs

Fi
gu

re
 2

-1
:

Ta
ki

ng
 a

 p
ro

je
ct

io
n

 Making Horizontal Subsets: Restrict 33

fast operation because the DBMS does not need to evaluate
any of the data in the table.

There is one issue with project with which you need to be con-
cerned. A DBMS will project any columns that you request.
It makes no judgment as to whether the selected columns pro-
duce a meaningful result. For example, consider the following
operation:

PROJECT sale_total_amt, exp_month FROM sale
GIVING invalid

In theory, there is absolutely nothing wrong with this project.
However, it probably doesn’t mean much to associate a dollar
amount with a credit card expiration month. Notice in Figure
2-2 that because there is more than one sale with the same total
cost (for example, $110), the same sale value is associated with
more than one expiration month. We could create a concate-
nated primary key for the result table using both columns, but
that still wouldn’t make the resulting table meaningful in the
context of the database environment. There is no set of rules as
to what constitutes a meaningful projection. Judgments as to
the usefulness of projections depend solely on the meaning of
the data the database is trying to capture.

The restrict operation asks a DBMS to choose rows that meet
some logical criteria. As defined in the relational algebra, re-
strict copies rows from the source relation into a result table.
Restrict copies all attributes; it has no way to specify which
attributes should be included in the result table.

Restrict identifies which rows are to be included in the result
table with a logical expression known as a predicate. The opera-
tion therefore takes the following general form:

RESTRICT FROM source_table_name WHERE predicate
GIVING result_table_name

Making
Horizontal
Subsets:
Restrict

34 Chapter 2: Relational Algebra

PR
OJ

EC
T

sa
le

_t
ot

al
_a

mt
,

ex
p_

mo
nt

h
FR

OM
 s

al
e

GI
VI

NG
 i

nv
al

id

s
a
l
e
_
i
d

|

c
u
s
t
o
m
e
r
_
|

s
a
l
e
_
d
a
t
e

|

s
a
l
e
_
t
o
t
a
l
_
a
m
t

|

c
r
e
d
i
t
_
c
a
r
d
_
n
u
m
b

|

e
x
p
_
m
o
n
t
h

|

e
x
p
_
y
e
a
r

n
u
m
b

-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-

3

|

1

|

1
5
-
J
U
N
-
1
3

|

5
8
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

1
1
2
1

|

1
0

|

1
8

4

|

4

|

3
0
-
J
U
N
-
1
3

|

1
1
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

5
5
5
5

|

7

|

1
7

5

|

6

|

3
0
-
J
U
N
-
1
3

|

1
1
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

6
6
6
6

|

1
2

|

1
7

6

|

1
2

|

0
5
-
J
U
L
-
1
3

|

5
0
5
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

7
7
7
7

|

7

|

1
6

7

|

8

|

0
5
-
J
U
L
-
1
3

|

8
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

8
8
8
8

|

8

|

1
6

8

|

5

|

0
7
-
J
U
L
-
1
3

|

9
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

9
9
9
9

|

9

|

1
5

9

|

8

|

0
7
-
J
U
L
-
1
3

|

5
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

8
8
8
8

|

8

|

1
6

1
0

|

1
1

|

1
0
-
J
U
L
-
1
3

|

1
2
5
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

1
0
1
0

|

1
1

|

1
6

1
1

|

9

|

1
0
-
J
U
L
-
1
3

|

2
0
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

0
9
0
9

|

1
1

|

1
5

1
2

|

1
0

|

1
0
-
J
U
L
-
1
3

|

2
0
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

0
1
0
1

|

1
0

|

1
5

1
3

|

2

|

1
0
-
J
U
L
-
1
3

|

2
5
.
9
5

|

1
2
3
4

5
6
7
8

9
1
0
1

2
2
2
2

|

2

|

1
5

1
4

|

6

|

1
0
-
J
U
L
-
1
3

|

8
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

6
6
6
6

|

1
2

|

1
7

1
5

|

1
1

|

1
2
-
J
U
L
-
1
3

|

7
5
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

1
2
3
1

|

1
1

|

1
7

1
6

|

2

|

2
5
-
J
U
L
-
1
3

|

1
3
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

2
2
2
2

|

2

|

1
5

1
7

|

1

|

2
5
-
J
U
L
-
1
3

|

1
0
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

1
1
2
1

|

1
0

|

1
8

1
8

|

5

|

2
2
-
A
U
G
-
1
3

|

1
0
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

9
9
9
9

|

9

|

1
5

2

|

1

|

0
5
-
J
U
N
-
1
3

|

1
2
5
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

1
1
2
1

|

1
0

|

1
8

1

|

1

|

2
9
-
M
A
Y
-
1
3

|

5
1
0
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

1
1
2
1

|

1
0

|

1
8

1
9

|

6

|

0
1
-
S
E
P
-
1
3

|

9
5
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

7
7
7
7

|

7

|

1
6

2
0

|

2

|

0
1
-
S
E
P
-
1
3

|

7
5
.
0
0

|

1
2
3
4

5
6
7
8

9
1
0
1

2
2
2
2

|

2

|

1
5

 s
al
e_
to

ta
l_

am
t

 e
xp

_m
on

th

--
--
--
--

--
--

--
--

+-
--

--
--

--
--

58

.0
0

10

 1
10

.0
0

 7

 1
10

.0
0

12

 5
05

.0
0

 7

80

.0
0

 8

90

.0
0

 9

50

.0
0

 8

 1
25

.0
0

11

 2
00

.0
0

11

 2
00

.0
0

10

25

.9
5

 2

80

.0
0

12

75

.0
0

11

 1
30

.0
0

 2

 1
00

.0
0

10

 1
00

.0
0

 9

 1
25

.0
0

10

 5
10

.0
0

10

95

.0
0

 7

75

.0
0

 2

Fi
gu

re
 2

-2
:

A
n

in
va

lid
 p

ro
je

ct
io

n

 Choosing Columns and Rows: Restrict and Then Project 35

For example, suppose we want to retrieve data about custom-
ers who live in zipcode 11111. The operation might be ex-
pressed as

RESTRICT FROM customer WHERE zip_postcode =
‘11111’ GIVING one_zip

The result appears in Figure 2-3. The result table includes the
entire row for each customer that has a value of 11111 in the
zip_postcode column.

Note: There are many operators that can be used to create a restrict
predicate, some of which are unique to SQL. You will begin to
read about constructing predicates in Chapter 4.

As we said at the beginning of this chapter, most SQL queries
require more than one relational algebra operation. We might,
for example, want to see just the names of the customers that
live in zipcode 11111. Because such a query requires both a
restrict and a project, it takes two steps:

1. Restrict the rows to those with customers that live in
zipcode 1111.

2. Project the first and last name columns.

In some cases the order of the restrict and project may not
matter. However, in this particular example the restrict must
be performed first. Why? Because the project removes the col-
umn needed for the restrict predicate from the intermediate
result table, which would make it impossible to perform the
restrict.

It is up to a DBMS to determine the order in which it will
perform relational algebra operations to obtain a requested
result. A query optimizer takes care of making the decisions.
When more than one series of operations will generate the
same result, the query optimizer attempts to determine which

Choosing
Columns and
Rows: Restrict
and Then Project

36 Chapter 2: Relational Algebra

cu
st
om
er

_
|
fi
rs
t_

 |
 l
as
t_

|

st
re
et

 |

ci
ty

 |
 s
ta
te
_

|
zi
p_

 |
 c
on
ta
ct
_

nu
mb

na
me

 n
am
e

 p
ro
vi
nc
e

po
st
co
de

 p
ho
ne

--
--
--
--

--
+-
--
--
--
--
-+
--
--
--
--
--
+-
--

--
--
--
--
--
--
--
--
--
--
-+
--
--
--
--
--
--
-+
--
--
--
--
--
+-
--
--
--
--
-+
--
--
--
--
--
--
--
-

1
|
Ja
ni
ce

 |
 J
on
es

|
12

5
Ce
nt
er
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-1
11
1

2
|
Jo
n

 |
 J
on
es

|
25

 E
lm
 R
oa
d

 |
 N
ex
t
To
wn

 |
 N
J

|
18
88
8

 |
 2
09
-5
55
-2
22
2

3
|
Jo
hn

 |
 D
oe

|
82

1
El
m
St
re
et

 |
 N
ex
t
To
wn

 |
 N
J

|
18
88
8

 |
 2
09
-5
55
-3
33
3

4
|
Ja
ne

 |
 D
oe

|
85

2
Ma
in
 S
tr
ee
t

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-4
44
4

5
|
Ja
ne

 |
 S
mi
th

|
19

19
 M
ai
n
St
re
et

 |
 N
ew
 V
il
la
ge
 |
 N
Y

|
13
33
3

 |
 5
18
-5
55
-5
55
5

6
|
Ja
ni
ce

 |
 S
mi
th

|
80

0
Ce
nt
er
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-6
66
6

7
|
He
le
n

 |
 B
ro
wn

|
25

 F
ro
nt
 S
tr
ee
t

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-7
77
7

8
|
He
le
n

 |
 J
er
ry

|
16

 M
ai
n
St
re
et

 |
 N
ew
to
wn

 |
 N
J

|
18
88
6

 |
 5
18
-5
55
-8
88
8

9
|
Ma
ry

 |
 C
ol
li
ns

|
30

1
Pi
ne
 R
oa
d,
 A
pt
.
12
 |
 N
ew
to
wn

 |
 N
J

|
18
88
6

 |
 5
18
-5
55
-9
99
9

 1

0
|
Pe
te
r

 |
 C
ol
li
ns

|
18

 M
ai
n
St
re
et

 |
 N
ew
to
wn

 |
 N
J

|
18
88
6

 |
 5
18
-5
55
-1
01
0

 1

1
|
Ed
na

 |
 H
ay
es

|
20

9
Ci
rc
le
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-1
11
0

 1

2
|
Fr
an
kl
in
 |
 H
ay
es

|
61

5
Ci
rc
le
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-1
21
2

 1

3
|
Pe
te
r

 |
 J
oh
ns
on

|
22

 R
os
e
Co
ur
t

 |
 N
ex
t
To
wn

 |
 N
J

|
18
88
8

 |
 2
09
-5
55
-1
21
2

 1

4
|
Pe
te
r

 |
 J
oh
ns
on

|
88

1
Fr
on
t
St
re
et

 |
 N
ex
t
To
wn

 |
 N
J

|
18
88
8

 |
 2
09
-5
55
-1
41
4

RE
ST
RI
CT
 F
RO
M
cu
st
om
er
 W
HE
RE
 z
ip
_p
os
tc
od
e
=
‘1
11
11
’

GI
VI
NG
 o
ne
_z
ip

cu
st
om
er
_
|
fi
rs
t_

 |
 l
as
t_

|

st
re
et

 |

ci
ty

 |
 s
ta
te
_

|
zi
p_

 |
 c
on
ta
ct
_

nu
mb

na
me

 n
am
e

 p
ro
vi
nc
e

po
st
co
de

 p
ho
ne

--
--
--
--
--
+-
--
--
--
--
-+
--
--
--
--
--
+-
--

--
--
--
--
--
--
--
--
--
--
-+
--
--
--
--
--
--
-+
--
--
--
--
--
+-
--
--
--
--

-+
--
--
--
--
--
--
--
-

1
|
Ja
ni
ce

 |
 J
on
es

|
12

5
Ce
nt
er
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-1
11
1

4
|
Ja
ne

 |
 D
oe

|
85

2
Ma
in
 S
tr
ee
t

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-4
44
4

6
|
Ja
ni
ce

 |
 S
mi
th

|
80

0
Ce
nt
er
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-6
66
6

7
|
He
le
n

 |
 B
ro
wn

|
25

 F
ro
nt
 S
tr
ee
t

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-7
77
7

 1
1
|
Ed
na

 |
 H
ay
es

|
20

9
Ci
rc
le
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-1
11
0

 1
2
|
Fr
an
kl
in
 |
 H
ay
es

|
61

5
Ci
rc
le
 R
oa
d

 |
 A
ny
to
wn

 |
 N
Y

|
11
11
1

 |
 5
18
-5
55
-1
21
2

Fi
gu

re
 2

-3
:

 R
es

tr
ic

ti
ng

 ro
w

s
fr

om
 a

 re
la

ti
on

 Union 37

will provide the best performance and will then execute that
strategy.

Note: There is a major tradeoff for a DBMS when it comes to
query optimization. Picking the most efficient query strategy can
result in the shortest query execution time, but it is also possible
for the DBMS to spend so much time figuring out which strategy
is best that it consumes any performance advantage that might
be had by executing the best strategy. Therefore, the query strat-
egy used by a DBMS may not be the theoretically most efficient
strategy, but it is the most efficient strategy that can be identified
relatively quickly.

The union operation creates a new table by placing all rows
from two source tables into a single result table, placing the
rows on top of one another. As an example of how a union
works, assume that you have the two tables at the top of Figure
2-4. The operation

in_print_books UNION out_of_print_books GIVING
union_result

produces the result table at the bottom of Figure 2-4.

For a union operation to be possible, the two source tables
must be union compatible. In the relational algebra sense, this
means that their columns must be defined over the same do-
mains. The tables must have the same columns, but the col-
umns do not necessarily need to be in the same order or be the
same size.

In practice, however, the rules for union compatibility are
stricter. The two source tables on which the union is per-
formed must have columns with the same data types and sizes,
in the same order. As you will see, in SQL the two source tables
are actually virtual tables created by two independent retrieval
statements, which are then combined by the union operation.

Union

38 Chapter 2: Relational Algebra

 i
sb
n

au
th
or
_n
am
e

ti
tl
e

--
--
--
--
--
--
--
--
--
-+
--
--
--
--
--
--
--
--
+-
--
--
--
--
--
--
--
--
--
--
--
--
-

 0
-1
49
-3
85
7-
5

 C
la
rk
,
Ma
gg
ie

 H
or
ri
bl
e
Te
en
 Y
ea
rs
,
Th
e

 0
-1
53
-2
34
5-
0

 J
on
es
,
Ha
ro
ld

 M
y
Li
fe

 0
-1
54
-2
02
0-
X

 S
mi
th
,
Ka
th
ry
n

 A
ut
ob
io
gr
ap
hi
ca
l
Ta
le
s

 0
-3
81
-4
81
9-
X

 J
on
es
,
Ha
ro
ld

 M
y
Ch
il
dh
oo
d

 0
-3
91
-3
84
7-
2

 J
on
es
,
Ha
ro
ld

 G
ro
wi
ng
 U
p

 0
-4
56
-2
94
6-
0

 J
oh
ns
on
,
Ma
rk

 A
bo
ut
 M
e

is
bn

au
th
or
_n
am
e

 t
it
le

--
--
--
--
--
--
--
--
--
-+
--
--
--
--
--
--
--
--
+-
--
--
--
--
--
--
--
--
--
--
--
-

0-
15
3-
23
45
-0

 J
on
es
,
Ha
ro
ld

 M
y
Li
fe

0-
15
4-
20
20
-X

 S
mi
th
,
Ka
th
ry
n

 A
ut
ob
io
gr
ap
hi
ca
l
Ta
le
s

0-
45
6-
29
46
-0

 J
oh
ns
on
,
Ma
rk

 A
bo
ut
 M
e

 i
sb
n

au
th
or
_n
am
e

ti
tl
e

--
--
--
--
--
--
--
--
--
-+
--
--
--
--
--
--
--
-+
--
--
--
--
--
--
--
--
--
--
--
--
--

 0
-3
91
-3
84
7-
2

 J
on
es
,
Ha
ro
ld

 G
ro
wi
ng
 U
p

 0
-3
81
-4
81
9-
X

 J
on
es
,
Ha
ro
ld

 M
y
Ch
il
dh
oo
d

 0
-1
49
-3
85
7-
5

 C
la
rk
,
Ma
gg
ie

 H
or
ri
bl
e
Te
en
 Y
ea
rs
,
Th
e

in
_p
ri
nt
_b
oo
ks

ou
t_
of
_p
ri
nt
_b
oo
ks

in
_p
ri
nt
_b
oo
ks
 U
NI
ON
 o
ut
_o
f_
pr
in
t_
bo
ok
s
GI
VI
NG
 u
ni
on
_r
es
ul
t

Fi
gu

re
 2

-4
:

Th
ee

 u
ni

on
 o

pe
ra

ti
on

 Join 39

Join is arguably the most useful relational algebra operations
because it combines two tables into one, usually via a primary
key–foreign key relationship. Unfortunately, a join can also be
an enormous drain on database performance.

To help you understand how a join works, we will begin with
an example that has absolutely nothing to do with relations.
Assume that you have been given the task of creating manufac-
turing part assemblies by connecting two individual parts. The
parts are classified as either A parts or B parts.

There are many types of A parts (A1 through An, where n is the
total number of types of A parts) and many types of B parts
(B1 through Bn). Each B is to be matched to the A part with
the same number; conversely, an A part is to be matched to a
B part with the same number.

The assembly process requires four bins. One contains the A
parts, one contains the B parts, and one will hold the complet-
ed assemblies. The remaining bin will hold parts that cannot
be matched. (The unmatched parts bin is not strictly neces-
sary; it is simply for your convenience.)

You begin by extracting a part from the B bin. You look at the
part to determine the A part to which it should be connected.
Then, you search the A bin for the correct part. If you can find
a matching A part, you connect the two pieces and toss them
into the completed assemblies bin. If you cannot find a match-
ing A part, then you toss the unmatched B part into the bin
that holds unmatched B parts. You repeat this process until
the B bin is empty. Any unmatched A parts will be left in their
original location.

Note: You could just as easily have started with the bin containing
the A parts. The contents of the bin holding the completed assem-
blies will be the same.

Join

A Non-Database
Example

40 Chapter 2: Relational Algebra

As you might guess, the A bins and B bins are analogous to
tables that have a primary to foreign key relationships. This
matching of part numbers is very much like the matching of
data that occurs when you perform a join. The completed as-
sembly bin corresponds to the result table of the operation. As
you read about the operation of a join, keep in mind that the
parts that could not be matched were left out of the completed
assemblies bin.

In its most common form, a join forms new rows when data in
the two source tables match. Because we are looking for rows
with equal values, this type of join is known as an equi-join (or
a natural equi-join). It is also often called an inner join. As an
example, consider the join in Figure 2-5.

Notice that the customer_numb column is the primary key of
the customer_data table and that the same column is a for-
eign key in the sale_data table. The customer_numb column
in sale_data therefore serves to relate sales to the customers to
which they belong.

Assume that you want to see the names of the customers who
placed each order. To do so, you must join the two tables, cre-
ating combined rows wherever there is a matching customer_
numb. In database terminology, we are joining the two tables
over customer_numb. The result table, joined_table, can be
found at the bottom of Figure 2-5.

An equi-join can begin with either source table. (The result
should be the same regardless of the direction in which the join
is performed.) The join compares each row in one source table
with the rows in the second. For each row in the first source
table that matches data in the second source table in the col-
umn or columns over which the join is being performed, a new
row is placed in the result table.

The Equi-Join

 Join 41
cu
st
om

er
_d

at
a

JO
IN
 c
us
st
om
er
_d
at
a
TO
 s
al
e_
da
ta
 O
VE
R
cu
st
om
er
_n
um
b
GI
VI
NG
 j
oi

ne
d_
ta
bl
e

 c
us

to
me

r_
nu

mb

 f
ir

st
_n

am
e

 l
as

t_
na

me

--
--

--
--

--
--

--
-+

--
--

--
--

--
--

+-
--

--
--

--
--

 1

 J
an

ic
e

 J
on

es

 2

 J

on

 J

on
es

 3

 J
oh

n

 D
oe

 4

 J
an

e

 D
oe

 5

 J
an

e

 S
mi

th

 6

 J

an
ic

e

 S

mi
th

 7

 H
el

en

 B
ro

wn

 8

 H

el
en

 J

er
ry

 9

 M
ar

y

 C
ol

li
ns

10

 P
et

er

 C
ol

li
ns

11

 E
dn

a

 H
ay

es

12

 F

ra
nk

li
n

 H

ay
es

13

 P
et

er

 J
oh

ns
on

14

 P
et

er

 J
oh

ns
on

15

 J
oh

n

 S
mi

th

 s
al

e_
id

 c

us
to

me
r_

nu
mb

 s

al
e_

da
te

 s
al
e_
to
ta
l_
am
t

--
--

--
--

-+
--

--
--

--
--

--
--

-+
--

--
--

--
--

--
--

--
--

--
+-
--
--
--
--
--
--
--
-

 3

 1

 1

5-
JU

N-
13

 0
0:

00
:0

0

58
.0
0

 4

 4

 3

0-
JU

N-
13

 0
0:

00
:0

0

 1
10
.0
0

 5

 6

 3

0-
JU

N-
13

 0
0:

00
:0

0

 1
10
.0
0

 6

12

 0

5-
JU

L-
13

 0
0:

00
:0

0

 5
05
.0
0

 7

 8

 0

5-
JU

L-
13

 0
0:

00
:0

0

80
.0
0

 8

 5

 0

7-
JU

L-
13

 0
0:

00
:0

0

90
.0
0

 9

 8

 0

7-
JU

L-
13

 0
0:

00
:0

0

50
.0
0

10

11

 1

0-
JU

L-
13

 0
0:

00
:0

0

 1
25
.0
0

11

 9

 1

0-
JU

L-
13

 0
0:

00
:0

0

 2
00
.0
0

12

10

 1

0-
JU

L-
13

 0
0:

00
:0

0

 2
00
.0
0

13

 2

 1

0-
JU

L-
13

 0
0:

00
:0

0

25
.9
5

14

 6

 1

0-
JU

L-
13

 0
0:

00
:0

0

80
.0
0

15

11

 1

2-
JU

L-
13

 0
0:

00
:0

0

75
.0
0

16

 2

 2

5-
JU

L-
13

 0
0:

00
:0

0

 1
30
.0
0

17

 1

 2

5-
JU

L-
13

 0
0:

00
:0

0

 1
00
.0
0

18

 5

 2

2-
AU

G-
13

 0
0:

00
:0

0

 1
00
.0
0

 2

 1

 0

5-
JU

N-
13

 0
0:

00
:0

0

 1
25
.0
0

 1

 1

 2

9-
MA

Y-
13

 0
0:

00
:0

0

 5
10
.0
0

19

 6

 0

1-
SE

P-
13

 0
0:

00
:0

0

95
.0
0

20

 2

 0

1-
SE

P-
13

 0
0:

00
:0

0

75
.0
0

sa
le

_d
at

a

 c
us

to
me

r_
nu

mb

 f
ir

st
_n

am
e

 l
as

t_
na

me

 s
al

e_
id

 s

al
e_

da
te

 s

al
e_

to
ta

l_
am

t
--

--
--

--
--

--
--

-+
--

--
--

--
--

--
+-

--
--

--
--

--
+-

--
--

--
--

+-
--

--
--

--
--

--
--

--
--

-+
--

--
--

--
--

--
--

--

 1

 J

an
ic

e

 J

on
es

 3

 1
5-

JU
N-

13
 0

0:
00

:0
0

58

.0
0

 4

 J
an

e

 D
oe

 4

 3

0-
JU

N-
13

 0
0:

00
:0

0

 1

10
.0

0

 6

 J

an
ic

e

 S

mi
th

 5

 3
0-

JU
N-

13
 0

0:
00

:0
0

 1
10

.0
0

12

 F
ra

nk
li

n

 H
ay

es

 6

 0

5-
JU

L-
13

 0
0:

00
:0

0

 5

05
.0

0

 8

 H

el
en

 J

er
ry

 7

 0
5-

JU
L-

13
 0

0:
00

:0
0

80

.0
0

 5

 J
an

e

 S
mi

th

 8

 0

7-
JU

L-
13

 0
0:

00
:0

0

90
.0

0

 8

 H

el
en

 J

er
ry

 9

 0
7-

JU
L-

13
 0

0:
00

:0
0

50

.0
0

11

 E
dn

a

 H
ay

es

10

 1

0-
JU

L-
13

 0
0:

00
:0

0

 1

25
.0

0

 9

 M

ar
y

 C

ol
li

ns

11

 1
0-

JU
L-

13
 0

0:
00

:0
0

 2
00

.0
0

10

 P
et

er

 C
ol

li
ns

12

 1

0-
JU

L-
13

 0
0:

00
:0

0

 2

00
.0

0

 2

 J

on

 J

on
es

13

 1
0-

JU
L-

13
 0

0:
00

:0
0

25

.9
5

 6

 J
an

ic
e

 S
mi

th

14

 1

0-
JU

L-
13

 0
0:

00
:0

0

80
.0

0

11

 E

dn
a

 H

ay
es

15

 1
2-

JU
L-

13
 0

0:
00

:0
0

75

.0
0

 2

 J
on

 J
on

es

16

 2

5-
JU

L-
13

 0
0:

00
:0

0

 1

30
.0

0

 1

 J

an
ic

e

 J

on
es

17

 2
5-

JU
L-

13
 0

0:
00

:0
0

 1
00

.0
0

 5

 J
an

e

 S
mi

th

18

 2

2-
AU

G-
13

 0
0:

00
:0

0

 1

00
.0

0

 1

 J

an
ic

e

 J

on
es

 2

 0
5-

JU
N-

13
 0

0:
00

:0
0

 1
25

.0
0

 1

 J
an

ic
e

 J
on

es

 1

 2

9-
MA

Y-
13

 0
0:

00
:0

0

 5

10
.0

0

 6

 J

an
ic

e

 S

mi
th

19

 0
1-

SE
P-

13
 0

0:
00

:0
0

95

.0
0

 2

 J
on

 J
on

es

20

 0

1-
SE

P-
13

 0
0:

00
:0

0

75
.0

0

jo
in

ed
_t

ab
le

Fi
gu

re
 2

-5
:

A
n

eq
ui

-jo
in

42 Chapter 2: Relational Algebra

Assume that we are using the customer_data table as the first
source table, producing the result table in Figure 2-5 might
therefore proceed conceptually as follows:

1. Search sale_data for rows with a customer_numb of 1.
There are four matching rows in sale_data. Create four
new rows in the result table, placing the same custom-
er information in each row along with the data from
sale_data.

2. Search sale_data for rows with a customer_numb of 2.
Because there are three rows for customer 2 in sale_
data, add three rows to the result table.

3. Search sale_data for rows with a customer_numb of 3.
Because there are no matching rows in sale_data, do
not place a row in the result table.

4. Continue as established until all rows from customer_
data have been compared to sale_data.

If the customer_numb column does not appear in both tables,
then no row is placed in the result table. This behavior catego-
rizes this type of join as an inner join. (Yes, there is such a thing
as an outer join. You will read about it shortly.)

From a relational algebra point of view, a join can be imple-
mented using two other operations: product and restrict. As
you will see, this sequence of operations requires the manipu-
lation of a great deal of data and, if implemented by a DBMS,
can result in slow query performance. Many of today’s DBMSs
therefore use alternative techniques for processing joins. None-
theless, the concept of using product followed by restrict un-
derlies the original SQL join syntax.

The product operation (the mathematical Cartesian product)
makes every possible pairing of rows from two source tables.
The product of the tables in Figure 2-5 produces a result table

What’s Really Going
On: Product and
Restrict

 Join 43

with 300 rows (the 15 rows in customer_data times the 20 rows
in sale_data), the first 60 of which appear in Figure 2-6.

Note: Although 300 rows may not seem like a lot, consider the size
of a product table created from tables with 10,000 and 100,000
rows! The manipulation of a table of this size can tie up a lot of
disk I/O and CPU time.

Notice first that the customer_numb is included twice in the
result table, once from each source table. Second, notice that
in some rows, the customer_numb is the same. These are the
rows that would have been included in a join. We can therefore
apply a restrict predicate (a join condition) to the product table
to end up with same table provided by the join you saw earlier.
The predicate can be written:

customer.customer_numb = sale.customer_numb

The rows that are selected by this predicate from the first 60
rows in the product table appear in black in Figure 2-7; those
eliminated by the predicate are gray.

Note: The “dot notation” that you see in the preceding join condi-
tion is used throughout SQL. The table name is followed by a dot,
which is followed by the column name. This makes it possible to
have the same column name in more than one table and yet be
able to distinguish among them.

It is important that you keep in mind the implication of this
sequence to two relational algebra operations when you are
writing SQL joins. If you are using the traditional SQL syntax
for a join (the first join syntax we’ll be discussing) and you
forget the predicate for the join condition, you will end up
with a product. The product table contains bad information;
it implies facts that are not actually stored in the database. It
is therefore potentially harmful, in that a user who does not

44 Chapter 2: Relational Algebra

customer numb | first name | last name | sale id | customer numb | sale date | sale total amt
---------------+------------+-----------+---------+---------------+--------------------+----------------
 1 | Janice | Jones | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 2 | Jon | Jones | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 3 | John | Doe | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 4 | Jane | Doe | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 5 | Jane | Smith | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 6 | Janice | Smith | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 7 | Helen | Brown | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 8 | Helen | Jerry | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 9 | Mary | Collins | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 10 | Peter | Collins | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 11 | Edna | Hayes | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 12 | Franklin | Hayes | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 13 | Peter | Johnson | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 14 | Peter | Johnson | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 15 | John | Smith | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 1 | Janice | Jones | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 2 | Jon | Jones | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 3 | John | Doe | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 4 | Jane | Doe | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 5 | Jane | Smith | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 6 | Janice | Smith | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 7 | Helen | Brown | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 8 | Helen | Jerry | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 9 | Mary | Collins | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 10 | Peter | Collins | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 11 | Edna | Hayes | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 12 | Franklin | Hayes | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 13 | Peter | Johnson | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 14 | Peter | Johnson | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 15 | John | Smith | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 1 | Janice | Jones | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 2 | Jon | Jones | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 3 | John | Doe | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 4 | Jane | Doe | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 5 | Jane | Smith | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 6 | Janice | Smith | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 7 | Helen | Brown | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 8 | Helen | Jerry | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 9 | Mary | Collins | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 10 | Peter | Collins | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 11 | Edna | Hayes | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 12 | Franklin | Hayes | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 13 | Peter | Johnson | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 14 | Peter | Johnson | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 15 | John | Smith | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 1 | Janice | Jones | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 2 | Jon | Jones | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 3 | John | Doe | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 4 | Jane | Doe | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 5 | Jane | Smith | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 6 | Janice | Smith | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 7 | Helen | Brown | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 8 | Helen | Jerry | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 9 | Mary | Collins | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 10 | Peter | Collins | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 11 | Edna | Hayes | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 12 | Franklin | Hayes | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 13 | Peter | Johnson | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 14 | Peter | Johnson | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 15 | John | Smith | 6 | 12 | 05-JUL-13 00:00:00 | 505.00

Figure 2-6: The first 60 rows of a 300 row product table

 Join 45

understand how the result table came to be might assume that
it is correct and make business decision based on the bad data.

The joins you have seen so far have used a single-column pri-
mary key and a single-column foreign key. There is no reason,
however, that the values used in a join can’t be concatenated.
As an example, let’s look again at the accounting firm example
from Chapter 1. The design of the portion of the database that
we used was

accountant (acct_first_name, acct_last_name,
date_hired, office_ext)

customer (customer_numb, first_name,
last_name, street, city, state_province,
zip_postcode, contact_phone)

project (tax_year, customer_numb,
acct_first_name, acct_last_name)

form (tax_year, customer_numb, form_id,
is_complete)

Suppose we want to see all the forms and the year that the
forms were completed for the customer named Peter Jones by
the accountant named Edgar Smith. The sequence of relation-
al operations would go something like this:

1. Restrict from the customer table to find the single row
for Peter Jones. Because some customers have dupli-
cated names, the restrict predicate would probably con-
tain the name and the phone number.

2. Join the table created in Step 1 to the project table over
the customer number.

3. Restrict from the table created in Step 2 to find the
projects for Peter Jones that were handled by the ac-
countant Edgar Smith.

Equi-Joins over
Concatenated Keys

46 Chapter 2: Relational Algebra

customer numb | first name | last name | sale id | customer numb | sale date | sale total amt
---------------+------------+-----------+---------+---------------+--------------------+----------------
 1 | Janice | Jones | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 2 | Jon | Jones | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 3 | John | Doe | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 4 | Jane | Doe | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 5 | Jane | Smith | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 6 | Janice | Smith | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 7 | Helen | Brown | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 8 | Helen | Jerry | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 9 | Mary | Collins | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 10 | Peter | Collins | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 11 | Edna | Hayes | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 12 | Franklin | Hayes | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 13 | Peter | Johnson | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 14 | Peter | Johnson | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 15 | John | Smith | 3 | 1 | 15-JUN-13 00:00:00 | 58.00
 1 | Janice | Jones | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 2 | Jon | Jones | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 3 | John | Doe | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 4 | Jane | Doe | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 5 | Jane | Smith | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 6 | Janice | Smith | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 7 | Helen | Brown | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 8 | Helen | Jerry | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 9 | Mary | Collins | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 10 | Peter | Collins | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 11 | Edna | Hayes | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 12 | Franklin | Hayes | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 13 | Peter | Johnson | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 14 | Peter | Johnson | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 15 | John | Smith | 4 | 4 | 30-JUN-13 00:00:00 | 110.00
 1 | Janice | Jones | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 2 | Jon | Jones | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 3 | John | Doe | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 4 | Jane | Doe | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 5 | Jane | Smith | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 6 | Janice | Smith | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 7 | Helen | Brown | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 8 | Helen | Jerry | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 9 | Mary | Collins | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 10 | Peter | Collins | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 11 | Edna | Hayes | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 12 | Franklin | Hayes | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 13 | Peter | Johnson | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 14 | Peter | Johnson | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 15 | John | Smith | 5 | 6 | 30-JUN-13 00:00:00 | 110.00
 1 | Janice | Jones | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 2 | Jon | Jones | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 3 | John | Doe | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 4 | Jane | Doe | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 5 | Jane | Smith | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 6 | Janice | Smith | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 7 | Helen | Brown | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 8 | Helen | Jerry | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 9 | Mary | Collins | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 10 | Peter | Collins | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 11 | Edna | Hayes | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 12 | Franklin | Hayes | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 13 | Peter | Johnson | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 14 | Peter | Johnson | 6 | 12 | 05-JUL-13 00:00:00 | 505.00
 15 | John | Smith | 6 | 12 | 05-JUL-13 00:00:00 | 505.00

Figure 2-7: The four rows of the product in Figure 2-6 that are returned by the join condition in a restrict
predicate

 Join 47

4. Now we need to get the data about which forms appear
on the projects identified in Step 3. We therefore need
to join the table created in Step 3 to the form table.
The foreign key in the form table is the concatenation
of the tax year and customer number, which just hap-
pens to match the primary key of the project table. The
join is therefore over the concatenation of the tax year
and customer number rather than over the individual
values. When making its determination whether to in-
clude a row in the result table, the DBMS puts the tax
year and customer number together for each row and
treats the combined value as if it were one.

5. Project the tax year and form ID to present the specific
data requested in the query.

To see why treating a concatenated foreign key as a single unit
when comparing to a concatenated foreign key is required,
take a look at Figure 2-8. The two tables at the top of the illus-
tration are the original project and form tables created for this
example. We are interested in customer number 18 (our friend
Peter Jones), who has had projects handled by Edgar Smith in
2006 and 2007.

Result table (a) is what happens if you join the tables (without
restricting for customer 18) only over the tax year. This invalid
join expands the 10 row form table to 20 rows. The data imply
that the same customer had the same form prepared by more
than one accountant in the same year.

Result table (b) is the result of joining the two tables just over
the customer number. This time the invalid result table implies
that in some cases the same form was completed in two years.

48 Chapter 2: Relational Algebra

Figure 2-8: Joining using concatenated keys (continued on facing page)

tax year | customer numb | acct first name | acct last name
----------+---------------+-----------------+-----------------
 2006 | 12 | Jon | Johnson
 2007 | 18 | Edgar | Smith
 2006 | 18 | Edgar | Smith
 2007 | 6 | Edgar | Smith

tax year | custome
----------+-------
 2006 |
 2006 |
 2006 |
 2007 |
 2007 |
 2007 |
 2006 |
 2006 |
 2007 |
 2007 |

project form

tax year | customer numb | acct first name | acct last name | tax year | customer
----------+---------------+-----------------+-----------------+----------+----------
 2006 | 18 | Edgar | Smith | 2006 |
 2006 | 12 | Jon | Johnson | 2006 |
 2006 | 18 | Edgar | Smith | 2006 |
 2006 | 12 | Jon | Johnson | 2006 |
 2006 | 18 | Edgar | Smith | 2006 |
 2006 | 12 | Jon | Johnson | 2006 |
 2007 | 6 | Edgar | Smith | 2007 |
 2007 | 18 | Edgar | Smith | 2007 |
 2007 | 6 | Edgar | Smith | 2007 |
 2007 | 18 | Edgar | Smith | 2007 |
 2007 | 6 | Edgar | Smith | 2007 |
 2007 | 18 | Edgar | Smith | 2007 |
 2006 | 18 | Edgar | Smith | 2006 |
 2006 | 12 | Jon | Johnson | 2006 |
 2006 | 18 | Edgar | Smith | 2006 |
 2006 | 12 | Jon | Johnson | 2006 |
 2007 | 6 | Edgar | Smith | 2007 |
 2007 | 18 | Edgar | Smith | 2007 |
 2007 | 6 | Edgar | Smith | 2007 |
 2007 | 18 | Edgar | Smith | 2007 |

(a) project JOIN form OVER tax year GIVING invalid 1

The correct join appears in result table (c) in Figure 2-8. It has the correct 10 rows, one for
each form. Notice that both the tax year and customer number are the same in each row, as we
intended them to be.

Note: The examples you have seen so far involve two concatenated columns. There is no reason, how-
ever, that the concatenation cannot involve more than two columns if necessary.

 Join 49

Figure 2-8 (continued): Joining using concatenated keys

tax year | customer numb | acct first name | acct last name | tax year | customer numb | form id | is complete
----------+---------------+-----------------+-----------------+----------+---------------+---------+-------------
 2006 | 12 | Jon | Johnson | 2006 | 12 | 1040 | t
 2006 | 12 | Jon | Johnson | 2006 | 12 | Sch. A | t
 2006 | 12 | Jon | Johnson | 2006 | 12 | Sch. B | t
 2006 | 18 | Edgar | Smith | 2007 | 18 | 1040 | t
 2007 | 18 | Edgar | Smith | 2007 | 18 | 1040 | t
 2006 | 18 | Edgar | Smith | 2007 | 18 | Sch. A | t
 2007 | 18 | Edgar | Smith | 2007 | 18 | Sch. A | t
 2006 | 18 | Edgar | Smith | 2007 | 18 | Sch. B | t
 2007 | 18 | Edgar | Smith | 2007 | 18 | Sch. B | t
 2006 | 18 | Edgar | Smith | 2006 | 18 | 1040 | t
 2007 | 18 | Edgar | Smith | 2006 | 18 | 1040 | t
 2006 | 18 | Edgar | Smith | 2006 | 18 | Sch. A | t
 2007 | 18 | Edgar | Smith | 2006 | 18 | Sch. A | t
 2007 | 6 | Edgar | Smith | 2007 | 6 | 1040 | t
 2007 | 6 | Edgar | Smith | 2007 | 6 | Sch. A | t

(b) project JOIN form OVER tax year GIVING invalid 2

tax year | customer numb | acct first name | acct last name | tax year | customer numb | form id | is complete
----------+---------------+-----------------+-----------------+----------+---------------+---------+-------------
 2006 | 12 | Jon | Johnson | 2006 | 12 | 1040 | t
 2006 | 12 | Jon | Johnson | 2006 | 12 | Sch. A | t
 2006 | 12 | Jon | Johnson | 2006 | 12 | Sch. B | t
 2006 | 18 | Edgar | Smith | 2006 | 18 | 1040 | t
 2006 | 18 | Edgar | Smith | 2006 | 18 | Sch. A | t
 2007 | 18 | Edgar | Smith | 2007 | 18 | Sch. B | t
 2007 | 18 | Edgar | Smith | 2007 | 18 | 1040 | t
 2007 | 18 | Edgar | Smith | 2007 | 18 | Sch. A | t
 2007 | 6 | Edgar | Smith | 2007 | 6 | 1040 | t
 2007 | 6 | Edgar | Smith | 2007 | 6 | Sch. A | t

(c) project JOIN form OVER tax year + customer numb GIVING correct result

Θ-Joins
An equi-join is a specific example of a more general class of join known as a Θ-join (theta-join).
A Θ-join combines two tables on some condition, which may be equality or may be something
else. To make it easier to understand why you might want to join on something other than
equality and how such joins work, assume that you’re on vacation at a resort that offers both
biking and hiking. Each outing runs a half day, but the times at which the outings start and end
differ. The tables that hold the outing schedules appear in Figure 2-9. As you look at the data,
you’ll see that some ending and starting times overlap, which means that if you want to engage
in two outings on the same day, only some pairings of hiking and biking will work.

50 Chapter 2: Relational Algebra

To determine which pairs of outings you could do on the same
day, you need to find pairs of outings that satisfy either of the
following conditions:

hiking.end_time < biking.start_time

biking.end_time < hiking.start_time

A Θ-join over either of those conditions will do the trick, pro-
ducing the result tables in Figure 2-10. The top result table
contains pairs of outings where hiking is done first; the middle
result table contains pairs of outings where biking is done first.
If you want all the possibilities in the same table, a union op-
eration will combine them, as in the bottom result table. An-
other way to generate the combined table is to use a complex
join condition in the Θ-join:

hiking.end_time < biking.start_time OR
biking.end_time < hiking.start_time

Note: As with the more restrictive equi-join, the “start” table for
a Θ-join does not matter. The result will be the same either way.

An outer join (as opposed to the inner joins we have been con-
sidering so far) is a join that includes rows in a result table even
though there may not be a match between rows in the two
tables being joined. Wherever the DBMS can’t match rows, it

 tour_numb | start_time | end_time
-----------+------------+----------
 6 | 01:00:00 | 16:00:00
 8 | 09:00:00 | 11:30:00
 9 | 10:00:00 | 14:00:00
 10 | 09:00:00 | 12:00:00
 7 | 12:00:00 | 15:30:00

hiking biking

 tour_numb | start_time | end_time
-----------+------------+----------
 1 | 09:00:00 | 12:00:00
 2 | 09:00:00 | 11:30:00
 3 | 09:00:00 | 12:30:00
 4 | 12:00:00 | 15:00:00
 5 | 13:00:00 | 17:00:00

Figure 2-9: Source tables for the Θ-join examples

Outer Joins

 Join 51

Figure 2-10: The results of Θ-joins of the tables in Figure 2-9

places nulls in the columns for which no data exist. The result
may therefore not be a legal relation, because it may not have
a primary key. However, because the query’s result table is a
virtual table that is never stored in the database, having no
primary key does not present a data integrity problem.

Why might someone want to perform an outer join? An em-
ployee of the rare book store, for example, might want to see
the names of all customers along with the books ordered in the
last week. An inner join of customer to sale would eliminate
those customers who had not purchased anything during the
previous week. However, an outer join will include all custom-
ers, placing nulls in the sale data columns for the customers
who have not ordered. An outer join therefore not only shows
you matching data but also tells you where matching data do
not exist.

There are really three types of outer join, which vary depend-
ing the table or tables from which you want to include rows
that have no matches.

 tour_numb | start_time | end_time | tour_numb | start_time | end_time
-----------+------------+----------+-----------+------------+----------
 4 | 12:00:00 | 15:00:00 | 8 | 09:00:00 | 11:30:00
 5 | 13:00:00 | 17:00:00 | 8 | 09:00:00 | 11:30:00
 5 | 13:00:00 | 17:00:00 | 10 | 09:00:00 | 12:00:00

hiking JOIN biking OVER hiking.end_time < biking.start_time GIVING hiking_first

hiking JOIN biking OVER biking.end_time < hiking.start_time gIVING biking_first

i ing OIN b i g OVER iking nd time < iki g st

 tour_numb | start_time | end_time | tour_numb | start_time | end_time
-----------+------------+----------+-----------+------------+----------
 2 | 09:00:00 | 11:30:00 | 7 | 12:00:00 | 15:30:00

 t _ mb | st rt m | d im r b | t
--- --- --+ ---- -- ---+- -- - --+--- -- --+ --
 4 | 1 00:00 1 00:00 |
 0 |
 | 7 0
 7 | 12: :00 | 15 30 0 09

52 Chapter 2: Relational Algebra

The left outer join includes all rows from the first table in the
join expression

Table1 LEFT OUTER JOIN table2 GIVING
result_table

For example, if we use the data from the tables in Figure 2-5
and perform the left outer join as

customer LEFT OUTER JOIN sale GIVING
left_outer_join_result

then the result will appear as in Figure 2-11: There is a row for
every row in customer. For the rows that don’t have orders, the
columns that come from sale have been filled with nulls.

The right outer join is the precise opposite of the left outer
join. It includes all rows from the table on the right of the
outer join operator. If you perform

customer RIGHT OUTER JOIN sale GIVING
right_outer_join_result

using the data from Figure 2-5, the result will be the same as
an inner join of the two tables. This occurs because there are
no rows in sale that don’t appear in customer. However, if you
reverse the order of the tables, as in

sale RIGHT OUTER JOIN customer GIVING
right_outer_join_result

you end up with the same data as Figure 2-11.

As you have just read, outer joins are directional: the result
depends on the order of the tables in the command. (This is
in direct contrast to an inner join, which produces the same
result regardless of the order of the tables.) Assuming that you
are performing an outer join on two tables that have a primary
key–foreign key relationship, then the result of left and right
outer joins on those tables is predictable (see Table 2-1). Refer-
ential integrity ensures that no rows from a table containing a

The Left Outer Join

The Right Outer Join

Choosing a Right versus
Left Outer Join

 Join 53

cu
st

om
er
_n

um
b

|
fi

rs
t_

na
me

 |
 l

as
t_
na
me
 |
 s
al
e_
id
 |
 c
us
to
me
r_
nu
mb
 |

 s
al
e_
da
te

|
sa
le
_t
ot
al
_a
mt

--
--

--
--
--

--
--

-+
--

--
--

--
--

--
+-

--
--

--
--
--
+-
--
--
--
--
+-
--
--
--
--
--
--
--
+-
--
--
--
--
--
--
--
--
--
-+
--
--
--
--
--
--
--
--

1

|
Ja

ni
ce

 |
 J

on
es

 |

 1
 |

 1
 |
 2
9-
MA
Y-
13
 0
0:
00
:0
0
|

51
0.
00

1

|
Ja

ni
ce

 |
 J

on
es

 |

 2
 |

 1
 |
 0
5-
JU
N-
13
 0
0:
00
:0
0
|

12
5.
00

1

|
Ja

ni
ce

 |
 J

on
es

 |

17
 |

 1
 |
 2
5-
JU
L-
13
 0
0:
00
:0
0
|

10
0.
00

1

|
Ja

ni
ce

 |
 J

on
es

 |

 3
 |

 1
 |
 1
5-
JU
N-
13
 0
0:
00
:0
0
|

 5
8.
00

2

|
Jo

n

 |
 J

on
es

 |

20
 |

 2
 |
 0
1-
SE
P-
13
 0
0:
00
:0
0
|

 7
5.
00

2

|
Jo

n

 |
 J

on
es

 |

16
 |

 2
 |
 2
5-
JU
L-
13
 0
0:
00
:0
0
|

13
0.
00

2

|
Jo

n

 |
 J

on
es

 |

13
 |

 2
 |
 1
0-
JU
L-
13
 0
0:
00
:0
0
|

 2
5.
95

3

|
Jo

hn

 |
 D

oe

 |

nu
ll
 |

nu
ll
 |

 n
ul
l
|

nu
ll

4

|
Ja

ne

 |
 D

oe

 |

 4
 |

 4
 |
 3
0-
JU
N-
13
 0
0:
00
:0
0
|

11
0.
00

5

|
Ja

ne

 |
 S

mi
th

 |

18
 |

 5
 |
 2
2-
AU
G-
13
 0
0:
00
:0
0
|

10
0.
00

5

|
Ja

ne

 |
 S

mi
th

 |

 8
 |

 5
 |
 0
7-
JU
L-
13
 0
0:
00
:0
0
|

 9
0.
00

6

|
Ja

ni
ce

 |
 S

mi
th

 |

19
 |

 6
 |
 0
1-
SE
P-
13
 0
0:
00
:0
0
|

 9
5.
00

6

|
Ja

ni
ce

 |
 S

mi
th

 |

14
 |

 6
 |
 1
0-
JU
L-
13
 0
0:
00
:0
0
|

 8
0.
00

6

|
Ja

ni
ce

 |
 S

mi
th

 |

 5
 |

 6
 |
 3
0-
JU
N-
13
 0
0:
00
:0
0
|

11
0.
00

7

|
He

le
n

 |
 B

ro
wn

 |

nu
ll
 |

nu
ll
 |

 n
ul
l
|

nu
ll

8

|
He

le
n

 |
 J

er
ry

 |

 9
 |

 8
 |
 0
7-
JU
L-
13
 0
0:
00
:0
0
|

 5
0.
00

8

|
He

le
n

 |
 J

er
ry

 |

 7
 |

 8
 |
 0
5-
JU
L-
13
 0
0:
00
:0
0
|

 8
0.
00

9

|
Ma

ry

 |
 C

ol
li
ns

 |

11
 |

 9
 |
 1
0-
JU
L-
13
 0
0:
00
:0
0
|

20
0.
00

 1
0

|
Pe

te
r

 |
 C

ol
li
ns

 |

12
 |

10
 |
 1
0-
JU
L-
13
 0
0:
00
:0
0
|

20
0.
00

 1
1

|
Ed

na

 |
 H

ay
es

 |

15
 |

11
 |
 1
2-
JU
L-
13
 0
0:
00
:0
0
|

 7
5.
00

 1
1

|
Ed

na

 |
 H

ay
es

 |

10
 |

11
 |
 1
0-
JU
L-
13
 0
0:
00
:0
0
|

12
5.
00

 1
2

|
Fr

an
kl

in

 |
 H

ay
es

 |

 6
 |

12
 |
 0
5-
JU
L-
13
 0
0:
00
:0
0
|

50
5.
00

 1
3

|
Pe

te
r

 |
 J

oh
ns
on

 |

nu
ll
 |

nu
ll
 |

 n
ul
l
|

nu
ll

 1
4

|
Pe

te
r

 |
 J

oh
ns
on

 |

nu
ll
 |

nu
ll
 |

 n
ul
l
|

nu
ll

 1
5

|
Jo

hn

 |
 S

mi
th

 |

nu
ll
 |

nu
ll
 |

 n
ul
l
|

nu
ll

Fi
gu

re
 2

-1
1

:
Th

e
re

su
lt

 o
f a

 le
ft

 o
ut

er
 jo

in

54 Chapter 2: Relational Algebra

foreign key will ever be omitted from a join with the table that
contains the referenced primary key. Therefore, a left outer join
where the foreign key table is on the left of the operator and a
right outer join where the foreign key table is on the right of
the operator are no different from an inner join.

When choosing between a left and a right outer join, you
therefore need to pay attention to which table will appear on
which side of the operator. If the outer join is to produce a
result different from that of an inner join, then the table con-
taining the primary key must appear on the side that matches
the name of the operator.

A full outer join includes all rows from both tables, filling in
rows with nulls where necessary. If the two tables have a pri-
mary key–foreign key relationship, then the result will be the
same as that of either a left outer join when the primary key
table is on the left of the operator or a right outer join when
the primary key table is on the right side of the operator. In the
case of the full outer join, it does not matter on which side of
the operator the primary key table appears; all rows from the
primary key table will be retained.

To this point, all of the joins you have seen have involved
tables with a primary key–foreign key relationship. These are

Valid versus Invalid
Joins

Table 2-1 The effect of left and right outer joins on tables with a primary key–foreign key relationship

Outer Join Format Outer Join Result
primary_key_table LEFT OUTER JOIN foreign_key_table All rows from primary key

table retained
foreign_key_table LEFT OUTER JOIN primary_key_table Same as inner join
primary_key_table RIGHT OUTER JOIN foreign_key_table Same as inner join
foreign_key_table RIGHT OUTER JOIN primary_key_table All rows from primary key

table retained

The Full Outer Join

 Join 55

the most typical types of join and always produce valid re-
sult tables. In contrast, most joins between tables that do not
have a primary key–foreign key relationship are not valid. This
means that the result tables contain information that is not
represented in the database, conveying misinformation to the
user. Invalid joins are therefore far more dangerous than mean-
ingless projections.

As an example, let’s temporarily add a table to the rare book
store database. The purpose of the table is to indicate the
source from which the store acquired a volume. Over time, the
same book (different volumes) may come from more than one
source. The table has the following structure:

book_sources (isbn, source_name)

Someone looking at this table and the book table might con-
clude that because the two tables have a matching column
(isbn) it makes sense to join the tables to find out the source
of every volume that the store has ever had in inventory. Un-
fortunately, this is not the information that the result table will
contain.

To keep the result table to a reasonable length, we’ll work with
an abbreviated book_sources table that doesn’t contain sources
for all volumes (Figure 2-12). Let’s assume that we go ahead
and join the tables over the ISBN. The result table (without
columns that aren’t of interest to the join itself) can be found
in Figure 2-13.

If the store has ever obtained volumes with the same ISBN
from different sources, there will be multiple rows for that
ISBN in the book_sources table. Although this doesn’t give us a
great deal of meaningful information, in and of itself the table
is valid. However, when we look at the result of the join with
the volume table, the data in the result table contradict what
is in book_sources. For example, the first two rows in the re-
sult table have the same inventory ID number, yet come from

56 Chapter 2: Relational Algebra

different sources. How can the same volume come from two
places? That is physically impossible. This invalid join there-
fore implies facts that simply cannot be true.

The reason this join is invalid is that the two columns over
which the join is performed are not in a primary key–foreign
key relationship. In fact, in both tables the isbn column is a
foreign key that references the primary key of the book table.

Are joins between tables that do not have a primary key–for-
eign key relationship ever valid? On occasion, they are, in par-
ticular if you are joining two tables with the same primary key.
You will see an example of this type of join when we discuss
joining a table to itself when a predicate requires that multiple
rows exist before any are placed in a result table.

For another example, assume that you want to create a table to
store data about your employees:

 isbn | source_name
-------------------+---------------------
 978-1-11111-111-1 | Tom Anderson
 978-1-11111-111-1 | Church rummage sale
 978-1-11111-118-1 | South Street Market
 978-1-11111-118-1 | Church rummage sale
 978-1-11111-118-1 | Betty Jones
 978-1-11111-120-1 | Tom Anderson
 978-1-11111-120-1 | Betty Jones
 978-1-11111-126-1 | Church rummage sale
 978-1-11111-126-1 | Betty Jones
 978-1-11111-125-1 | Tom Anderson
 978-1-11111-125-1 | South Street Market
 978-1-11111-125-1 | Hendersons
 978-1-11111-125-1 | Neverland Books
 978-1-11111-130-1 | Tom Anderson
 978-1-11111-130-1 | Hendersons

Figure 2-12: The book_sources table

 Join 57

employees (id_numb, first_name, last_name,
department, job_title, salary, hire_date)

Some of the employees are managers. For those individuals,
you also want to store data about the project they are currently
managing and the date they began managing that project. (A
manager handles only one project at a time.) You could add
the columns to the employees table and let them contain nulls
for employees who are not managers. An alternative is to create
a second table just for the managers:

managers (id_numb, current_project,
project_start_date)

When you want to see all the information about a manager,
you must join the two tables over the id_numb column. The

Figure 2-13: An invalid join result

 inventory_id | isbn | sale_id | source_name
--------------+-------------------+---------+---------------------
 1 | 978-1-11111-111-1 | 1 | Church rummage sale
 1 | 978-1-11111-111-1 | 1 | Tom Anderson
 20 | 978-1-11111-130-1 | 6 | Hendersons
 20 | 978-1-11111-130-1 | 6 | Tom Anderson
 21 | 978-1-11111-126-1 | 6 | Betty Jones
 21 | 978-1-11111-126-1 | 6 | Church rummage sale
 23 | 978-1-11111-125-1 | 7 | Neverland Books
 23 | 978-1-11111-125-1 | 7 | Hendersons
 23 | 978-1-11111-125-1 | 7 | South Street Market
 23 | 978-1-11111-125-1 | 7 | Tom Anderson
 25 | 978-1-11111-126-1 | 8 | Betty Jones
 25 | 978-1-11111-126-1 | 8 | Church rummage sale
 35 | 978-1-11111-126-1 | 11 | Betty Jones
 35 | 978-1-11111-126-1 | 11 | Church rummage sale
 36 | 978-1-11111-130-1 | 11 | Hendersons
 36 | 978-1-11111-130-1 | 11 | Tom Anderson
 38 | 978-1-11111-130-1 | 12 | Hendersons
 38 | 978-1-11111-130-1 | 12 | Tom Anderson
 63 | 978-1-11111-130-1 | | Hendersons
 63 | 978-1-11111-130-1 | | Tom Anderson

58 Chapter 2: Relational Algebra

result table will contain rows only for the manager because
employees without rows in the managers table will be left out
of the join. There will be no spurious rows such as those we got
when we joined the volume and book_sources tables. This join
therefore is valid.

Note: Although the id_numb column in the managers table
technically is not a foreign key referencing employees, most data-
bases using such a design would nonetheless include a constraint
that forced the presence of a matching row in employees for every
manager.

The bottom line is that you need to be very careful when per-
forming joins between tables that do not have a primary key–
foreign key relationship. Although such joins are not always
invalid, in most cases they will be.

Among the most powerful database queries are those phrased
in the negative, such as “show me all the customers who have
not purchased from us in the past year.” This type of query is
particularly tricky because it asking for data that are not in the
database. The rare book store has data about customers who
have purchased, but not those who have not. The only way to
perform such a query is to request the DBMS to use the dif-
ference operation.

Difference retrieves all rows that are in one table but not in
another. For example, if you have a table that contains all your
products and another that contains products that have been
purchased the expression—

all_products MINUS products_that_have_been_
purchased GIVING not_purchased

—is the products that have not been purchased. When you re-
move the products that have been purchased from all products,
what are left are the products that have not been purchased.

Difference

 Intersect 59

The difference operation looks at entire rows when it makes
the decision whether to include a row in the result table. This
means that the two source tables must be union compatible.
Assume that the all_products table has two columns—prod_
numb and product_name—and the products_that_have_been_
purchased table also has two columns—prod_numb and order_
numb. Because they don’t have the same columns, the tables
aren’t union-compatible.

As you can see from Figure 2-14, this means that a DBMS
must first perform two projections to generate the union-com-
patible tables before it can perform the difference. In this case,
the operation needs to retain the product number. Once the
projections into union-compatible tables exist, the DBMS can
perform the difference.

As mentioned earlier in this chapter, to be considered rela-
tionally complete a DBMS must support restrict, project, join,
union, and difference. Virtually every query can be satisfied
using a sequence of those five operations. However, one other
operation is usually included in the relational algebra specifica-
tion: intersect.

In one sense, the intersect operation is the opposite of union.
Union produces a result containing all rows that appear in ei-
ther relation, while intersect produces a result containing all
rows that appear in both relations. Intersection can therefore
only be performed on two union-compatible relations.

Assume, for example, that the rare book store receives data
listing volumes in a private collection that are being offered for
sale. We can find out which volumes are already in the store’s
inventory using an intersect operation:

books_in_inventory INTERSECT books_for_sale
GIVING already_have

Intersect

60 Chapter 2: Relational Algebra

 prod numb | product name
+

 1 | black pen, medium tip
 2 | red pen, medium tip
 3 | black pen, fine tip
 4 | red pen, fine tip
 5 | yellow highlighter
 6 | pink highlighter
 7 | #10 envelope
 8 | staples, 5000 count
 9 | cello tape, 1/2"
 10 | 4 port USB hub
 11 | 4 port gigabit switch
 12 | 8 port gigabit switch
 13 | wireless access point
 14 | 6 foot patch cable
 15 | 12 foot patch cable

 prod numb | order numb
+

 1 | 6
 1 | 12
 1 | 20
 3 | 6
 3 | 15
 4 | 2
 4 | 11
 4 | 6
 5 | 1
 5 | 11
 5 | 12
 5 | 19
 8 | 3
 8 | 11
 8 | 6
 8 | 17
 9 | 6
 9 | 12
 9 | 13
 10 | 2
 10 | 6
 10 | 7
 10 | 12
 11 | 6
 11 | 7
 11 | 8
 11 | 16
 12 | 6
 12 | 9
 12 | 16
 12 | 20
 13 | 19
 13 | 20
 14 | 3
 14 | 4
 14 | 12
 14 | 15
 15 | 3
 15 | 5
 15 | 6
 15 | 18

 prod numb

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 prod numb

 1
 1
 1
 3
 3
 4
 4
 4
 5
 5
 5
 5
 8
 8
 8
 8
 9
 9
 9
 10
 10
 10
 10
 11
 11
 11
 11
 12
 12
 12
 12
 13
 13
 14
 14
 14
 14
 15
 15
 15
 15

 prod numb

 2
 6
 7

PROJECT prod numb
FROM product list
GIVING all numbs

PROJECT prod numb
FROM products sold
GIVING sold numbs

all numbs MINUS sold numbs
GIVING unsold

Figure 2-14: The difference operation

 Divide 61

As you can see in Figure 2-15, the first step in the process is
to use the project operation to create union-compatible opera-
tions. Then an intersect will provide the required result. (Col-
umns that are not a part of the operation have been omitted so
that the tables will fit on the book page.)

Note: A join over the concatenation of all the columns in the two
tables produces the same result as an intersect.

An eighth relational algebra operation—divide—is often in-
cluded with the operations you have seen in this chapter. It
can be used for queries that need to have multiple rows in the
same source table for a row to be included in the result table.
Assume, for example, that the rare book store wants a list of
sales on which two specific volumes have appeared.

There are many forms of the divide operation, all of which ex-
cept the simplest are extremely complex. To set up the simplest
form you need two relations, one with two columns (a binary
relation) and one with a single column (a unary relation). The
binary relation has a column that contains the values that will
be placed in the result of the query (in our example, a sale ID)
and a column for the values to be queried (in our example, the
ISBN of the volume). This relation is created by taking a pro-
jection from the source table (in this case, the volume table).

The unary relation has the column being queried (the ISBN).
It is loaded with a row for each value that must be matched in
the binary table. A sale ID will be placed in the result table for
all sales that contain ISBNs that match all of the values in the
unary table. If there are two ISBNs in the unary table, then
there must be a row for each of them with the same sale ID in
the binary table to include the sale ID in the result. If we were
to load the unary table with three ISBNs, then three matching
rows would be required.

Divide

62 Chapter 2: Relational Algebra

 isbn | asking price
+

 978 1 11111 136 1 | 125.00
 978 1 11111 141 1 | 50.00
 978 1 11111 136 1 | 50.00
 978 1 22222 101 1 | 75.00
 978 1 22222 110 1 | 85.00
 978 1 22222 120 1 | 50.00
 978 1 11111 139 1 | 100.00
 978 1 11111 123 1 | 125.00
 978 1 22222 160 1 | 30.00
 978 1 22222 106 1 | 125.00

 isbn

 978 1 11111 136 1
 978 1 11111 141 1
 978 1 11111 136 1
 978 1 22222 101 1
 978 1 22222 110 1
 978 1 22222 120 1
 978 1 11111 139 1
 978 1 11111 123 1
 978 1 22222 160 1
 978 1 22222 106 1

 inventory id | isbn | asking price | selling price |
+ + + +

 1 | 978 1 11111 111 1 | 175.00 | 175.00 |
 2 | 978 1 11111 131 1 | 50.00 | 50.00 |
 7 | 978 1 11111 137 1 | 80.00 | |
 3 | 978 1 11111 133 1 | 300.00 | 285.00 |
 4 | 978 1 11111 142 1 | 25.95 | 25.95 |
 5 | 978 1 11111 146 1 | 22.95 | 22.95 |
 6 | 978 1 11111 144 1 | 80.00 | 76.10 |
 8 | 978 1 11111 137 1 | 50.00 | |
 9 | 978 1 11111 136 1 | 75.00 | |
 10 | 978 1 11111 136 1 | 50.00 | |
 11 | 978 1 11111 143 1 | 25.00 | 25.00 |
 12 | 978 1 11111 132 1 | 15.00 | 15.00 |
 13 | 978 1 11111 133 1 | 18.00 | 18.00 |
 15 | 978 1 11111 121 1 | 110.00 | 110.00 |
 14 | 978 1 11111 121 1 | 110.00 | 110.00 |
 16 | 978 1 11111 121 1 | 110.00 | |
 17 | 978 1 11111 124 1 | 75.00 | |
 18 | 978 1 11111 146 1 | 30.00 | 30.00 |
 19 | 978 1 11111 122 1 | 75.00 | 75.00 |
 20 | 978 1 11111 130 1 | 150.00 | 120.00 |
 21 | 978 1 11111 126 1 | 110.00 | 110.00 |
 22 | 978 1 11111 139 1 | 200.00 | 170.00 |
 23 | 978 1 11111 125 1 | 45.00 | 45.00 |
 24 | 978 1 11111 131 1 | 35.00 | 35.00 |
 25 | 978 1 11111 126 1 | 75.00 | 75.00 |
 26 | 978 1 11111 133 1 | 35.00 | 55.00 |
 27 | 978 1 11111 141 1 | 24.95 | |
 28 | 978 1 11111 141 1 | 24.95 | |
 29 | 978 1 11111 141 1 | 24.95 | |
 30 | 978 1 11111 145 1 | 27.95 | |
 31 | 978 1 11111 145 1 | 27.95 | |
 32 | 978 1 11111 145 1 | 27.95 | |
 33 | 978 1 11111 139 1 | 75.00 | 50.00 |
 34 | 978 1 11111 133 1 | 125.00 | 125.00 |
 35 | 978 1 11111 126 1 | 75.00 | 75.00 |
 36 | 978 1 11111 130 1 | 50.00 | 50.00 |
 37 | 978 1 11111 136 1 | 75.00 | 75.00 |
 38 | 978 1 11111 130 1 | 200.00 | 150.00 |
 39 | 978 1 11111 132 1 | 75.00 | 75.00 |
 40 | 978 1 11111 129 1 | 25.95 | 25.95 |
 41 | 978 1 11111 141 1 | 40.00 | 40.00 |
 42 | 978 1 11111 141 1 | 40.00 | 40.00 |
 43 | 978 1 11111 132 1 | 17.95 | |
 44 | 978 1 11111 138 1 | 75.95 | |
 45 | 978 1 11111 138 1 | 75.95 | |
 46 | 978 1 11111 131 1 | 15.95 | |
 47 | 978 1 11111 140 1 | 25.95 | |
 48 | 978 1 11111 123 1 | 24.95 | |
 49 | 978 1 11111 127 1 | 27.95 | |
 50 | 978 1 11111 127 1 | 50.00 | 50.00 |
 51 | 978 1 11111 141 1 | 50.00 | 50.00 |
 52 | 978 1 11111 141 1 | 50.00 | 50.00 |
 53 | 978 1 11111 123 1 | 40.00 | 40.00 |
 54 | 978 1 11111 127 1 | 40.00 | 40.00 |
 55 | 978 1 11111 133 1 | 60.00 | 60.00 |
 56 | 978 1 11111 127 1 | 40.00 | 40.00 |
 57 | 978 1 11111 135 1 | 40.00 | 40.00 |
 59 | 978 1 11111 127 1 | 35.00 | 35.00 |
 58 | 978 1 11111 131 1 | 25.00 | 25.00 |
 60 | 978 1 11111 128 1 | 50.00 | 45.00 |
 61 | 978 1 11111 136 1 | 50.00 | 50.00 |
 62 | 978 1 11111 115 1 | 75.00 | 75.00 |
 63 | 978 1 11111 130 1 | 500.00 | |
 64 | 978 1 11111 136 1 | 125.00 | |
 65 | 978 1 11111 136 1 | 125.00 | |
 66 | 978 1 11111 137 1 | 125.00 | |
 67 | 978 1 11111 137 1 | 125.00 | |
 68 | 978 1 11111 138 1 | 125.00 | |
 69 | 978 1 11111 138 1 | 125.00 | |
 70 | 978 1 11111 139 1 | 125.00 | |
 71 | 978 1 11111 139 1 | 125.00 | |

 isbn

 978 1 11111 111 1
 978 1 11111 131 1
 978 1 11111 137 1
 978 1 11111 133 1
 978 1 11111 142 1
 978 1 11111 146 1
 978 1 11111 144 1
 978 1 11111 137 1
 978 1 11111 136 1
 978 1 11111 136 1
 978 1 11111 143 1
 978 1 11111 132 1
 978 1 11111 133 1
 978 1 11111 121 1
 978 1 11111 121 1
 978 1 11111 121 1
 978 1 11111 124 1
 978 1 11111 146 1
 978 1 11111 122 1
 978 1 11111 130 1
 978 1 11111 126 1
 978 1 11111 139 1
 978 1 11111 125 1
 978 1 11111 131 1
 978 1 11111 126 1
 978 1 11111 133 1
 978 1 11111 141 1
 978 1 11111 141 1
 978 1 11111 141 1
 978 1 11111 145 1
 978 1 11111 145 1
 978 1 11111 145 1
 978 1 11111 139 1
 978 1 11111 133 1
 978 1 11111 126 1
 978 1 11111 130 1
 978 1 11111 136 1
 978 1 11111 130 1
 978 1 11111 132 1
 978 1 11111 129 1
 978 1 11111 141 1
 978 1 11111 141 1
 978 1 11111 132 1
 978 1 11111 138 1
 978 1 11111 138 1
 978 1 11111 131 1
 978 1 11111 140 1
 978 1 11111 123 1
 978 1 11111 127 1
 978 1 11111 127 1
 978 1 11111 141 1
 978 1 11111 141 1
 978 1 11111 123 1
 978 1 11111 127 1
 978 1 11111 133 1
 978 1 11111 127 1
 978 1 11111 135 1
 978 1 11111 127 1
 978 1 11111 131 1
 978 1 11111 128 1
 978 1 11111 136 1
 978 1 11111 115 1
 978 1 11111 130 1
 978 1 11111 136 1
 978 1 11111 136 1
 978 1 11111 137 1
 978 1 11111 137 1
 978 1 11111 138 1
 978 1 11111 138 1
 978 1 11111 139 1
 978 1 11111 139 1

 isbn

 978 1 11111 123 1
 978 1 11111 136 1
 978 1 11111 139 1
 978 1 11111 141 1

PROJECT isbn
FROM volume
GIVING held isbns

PROJECT isbn
FROM for sale
GIVING for sale isbns

held isbns INTERSECT
 for sale isbns
GIVING already have

Figure 2-15: The intersect operation

 Divide 63

You can get the same result as a divide using multiple restricts
and joins. In our example, you would restrict the volume table
twice, once for the first ISBN and once for the second. Then
you would join the tables over the sale ID. Only those sales
that had rows in both of the tables being joined would end up
in the result table.

Because divide can be performed fairly easily with restrict and
join, DBMSs generally do not implement it directly.

3

65

SQL1 is a database manipulation language that has been im-
plemented by virtually every relational database management
system (DBMS) intended for multiple users, partly because it
has been accepted by ANSI (the American National Standards
Institute) and ISO (International Standards Organization) as a
standard query language for relational databases.

The chapter presents an overview of the environment in which
SQL exists. We will begin with a bit of SQL history, so you
will know where it came from and where it is heading. Next,
you will be introduced to the design of the database that is
used for sample queries throughout this book. Finally, you will
read about the way in which SQL commands are processed
and the software environments in which they function.

SQL was developed by IBM at its San Jose Research Labo-
ratory in the early 1970s. Presented at an ACM confer-
ence in 1974, the language was originally named SEQUEL

1 Whether you say “sequel” or “S-Q-L” depends on how long you’ve
been working with SQL. Those of us who have been working in this field
for longer than we’d like to admit often say “sequel,” which is what I do.
When I started using SQL, there was no other pronunciation. That is why
you’ll see “a SQL” (a sequel) rather than “an SQL” (an es-que-el) through-
out this book. Old habits die hard! However, many people do prefer the
acronym.

Introduction to SQL

A Bit of SQL
History

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50003-0

66 Chapter 3: Introduction to SQL

(Structured English Query Language) and pronounced “sequel.”
The language’s name was later shortened to SQL.

Although IBM authored SQL, the first SQL implementation was
provided by Oracle Corporation (then called Relational Software
Inc.). Early commercial implementations were concentrated on
midsized UNIX-based DBMSs, such as Oracle, Ingres, and In-
formix. IBM followed in 1981 with SQL/DS, the forerunner to
DB2, which debuted in 1983.

ANSI published the first SQL standard (SQL-86) in 1986. An
international version of the standard issued by ISO appeared
in 1987. A significant update to SQL-86 was released in 1989
(SQL-89). Virtually all relational DBMSs that you encounter to-
day support most of the 1989 standard.

In 1992, the standard was revised again (SQL-92), adding more
capabilities to the language. Because SQL-92 was a superset of
SQL-89, older database application programs ran under the new
standard with minimal modifications. In fact, until October
1996, DBMS vendors could submit their products to NIST (Na-
tional Institute for Standards and Technology) for verification of
SQL standard compliance. This testing and certification process
provided significant motivation for DBMS vendors to adhere to
the SQL standard. Although discontinuing standard compliance
testing saves vendors money, it also makes it easier for products to
diverge from the standard.

The SQL-92 standard was superseded by SQL:1999, which was
once again a superset of the preceding standard. The primary new
features of SQL:1999 supported the object-relational data model,
which is discussed in Chapters 18 and 19 of this book.

The SQL:1999 standard also adds extension to SQL to allow
methods/functions/procedures to be written in SQL or to be writ-
ten in another programming language such as C++ or Java and
then invoked from within another SQL statement. As a result,

 Conformance Levels 67

SQL becomes less “relational,” a trend decried by some rela-
tional purists.

Note: Regardless of where you come down on the relational theory
argument, you will need to live with the fact that the major com-
mercial DBMSs, such as Oracle and DB/2, have provided support
for the object-relational (or post-relational) data model for several
years now. The object-relational data model is a fact of life, al-
though there certainly is no rule that says that you must use those
features should you choose not to do so.

Even the full SQL:1999 standard does not turn SQL into a
complete, stand-alone programming language. In particular,
SQL lacks I/O statements. This makes perfect sense, since SQL
should be implementation and operating system independent.
However, the full SQL:1999 standard does include operations
such as selection and iteration that make it computationally
complete. These language features, which are more typical of
general-purpose programming languages, are used when writ-
ing stored procedures and triggers. (See Chapter 14.)

The SQL standard has been updated three times since the
appearance of SQL:1999 in versions named SQL:2003,
SQL:2006, and SQL:2008. As well as fleshing out the capa-
bilities of the core relational features and extending object-re-
lational support, these revisions have added support for XML
(Extended Markup Language). XML is a platform-indepen-
dent method for representing data using text files. SQL’s XML
features are introduced in Chapter 17.

This book is based on the more recent versions of the SQL
standard (SQL:2003 through SQL:2008). However, keep in
mind that SQL:2008 (or whatever version of the language you
are considering) is simply a standard, not a mandate. Various
DBMSs exhibit different levels of conformance to the standard.
In addition, the implementation of language features usually

Conformance
Levels

68 Chapter 3: Introduction to SQL

lags behind the standard. Therefore, although SQL:2008 may
be the latest version of the standard, no DBMS meets the en-
tire standard and most are based on earlier versions.2

Conformance to early versions of the standard (SQL-92 and
earlier) was measured by determining whether the portion of
the language required for a specific level of conformance was
supported. Each feature in the standard was identified by a
leveling rule, indicating at which conformance level it was re-
quired. At the time, there were three conformance levels:

◊ Full SQL-92 conformance: All features in the SQL-92
standard are supported.

◊ Intermediate SQL-92 conformance: All features re-
quired for intermediate conformance are supported.

◊ Entry SQL-92: conformance: All features required for
entry level conformance are supported.

In truth, most DBMSs were only entry level compliant and
some supported a few of the features at higher conformance
levels. The 2006 and 2008 standards define conformance in a
different way, however.

The standard itself is documented in nine parts (parts 1, 2, 3,
4, 9, 10, 11, 13, 14). Core conformance is defined as support-
ing the basic SQL features (Part 2, Core/Foundation) as well
as features for definition and information schemas (Part 11,
SQL/Schemata). A DBMS can claim conformance to any of
the remaining parts individually as long as the product meets
the conformance rules presented in the standard.

2 In one sense, the SQL standard is a moving target. Just as DBMSs
look like they’re going to catch up to the most recent standard, the stan-
dard is updated. DBMS developers scurry to implement new features and
as soon as they get close, the standard changes again.

 SQL Environments 69

In addition to language features specified in the standard,
there are some features from earlier standard that, although
not mentioned in the 2006 and 2008 standards, are widely
implemented. This includes, for example, support for indexes.
(See Chapter 10.)

There are two general ways in which you can issue a SQL com-
mand to a database:

◊ Interactive SQL, in which a user types a single com-
mand and sends it immediately to the database. The
result of an interactive query is a table in main memory
(a virtual table). In mainframe environments, each
user has one result table at a time, which is replaced
each time a new query is executed; PC environments
sometimes allow several. Result tables may not be legal
relations—because of nulls they may have no primary
key—but that is not a problem because they are not
part of the database but exist only in main memory.

◊ Embedded SQL, in which SQL statements are placed
in an application program. The interface presented to
the user may be form-based or command-line based.
Embedded SQL may be static, in which case the entire
command is specified at the time the program is writ-
ten. Alternatively, it may be dynamic, in which case
the program builds the statement using user input and
then submits it to the database.

The basic syntaxes of interactive SQL and the static embedded
SQL are very similar. We will therefore spend the first portion
of this book looking at interactive syntax and then turn to
adapting and extending that syntax for embedding it in a pro-
gram. Once you understand static embedded SQL syntax, you
will be ready to look at preparing dynamic SQL statements for
execution.

SQL
Environments

70 Chapter 3: Introduction to SQL

In addition to the two methods for writing SQL syntax, there
are also a number of graphic query builders. These provide a
way for a user who may not know the SQL language to “draw”
the elements of a query. Many of these programs are report
writers (for example, Crystal Reports3) and are not intended
for data modification or for maintaining the structure of a
database.

At the most general level, we can describe working with an
interactive SQL command processor in the following way:

◊ Type the SQL command.

◊ Send the command to the database and wait for the
result.

In this era of the graphic user interface (GUI), command line
environments like that in Figure 3-1 seem rather primitive.
Nonetheless, the SQL command line continues to provide ba-
sic access to relational databases and is used extensively when
developing a database.

A command line environment also provides support for ad
hoc queries, queries that arise at the spur of the moment and
are not likely to be issued with any frequency. Experienced
SQL users can usually work faster at the command line than
with any other type of SQL command processor.

The down side to the traditional command line environment
is that it is relatively unforgiving. If you make a typing error or
an error in the construction of a command, it may be difficult
to get the processor to recall the command so that it can be
edited and resubmitted to the database. In fact, you may have
no other editing capabilities except the backspace key.

3 For more information, see www.crystalreports.com.

Interactive
SQL Command
Processors

 SQL Environments 71

The SQL command examples that you will see throughout this
book were all tested in a command line environment. As you
are learning to create your own queries, this is, in most cases,
the environment in which you will be working.

There are actually two strategies used by GUI environments
to provide access to a SQL database. The first is to simply pro-
vide a window into which you can type a command, just as
you would do from the command line (for example, Figure
3-2). Such environments usually make it easier to edit the
command, supporting recall of the command and full-screen
editing features.

Note: The Windows “DOS prompt” is not a complete stand-alone
command processor. If you are using Windows, you will need some
type of application that provides a command line to interact with
your database. (Most database servers designed for a Windows en-
vironment provide such a tool, although third-party products are
also available, depending on the DBMS.) UNIX variants (such as

Figure 3-1: A typical SQL command line environment

GUI Environments

72 Chapter 3: Introduction to SQL

Figure 3-2: Typing a SQL command into a window

Linux and Mac OS X) provide complete command line environments
and in most cases, can interact directly with a database from any shell
prompt. (This assumes that the database server is running and that
the user has the right to access that database.)

The other strategy is to provide a “query builder,” an environment
in which the user is guided through the construction of the query

 Elements of a SQL Statement 73

(for example, Figure 3-3). The query builder presents the user
with lists of the legal command elements. Those lists change as
the query is built so that the user also constructs legal syntax.
The query builder type of SQL command environment makes
it much easier for many users to construct correct SQL state-
ments, but it is also slower than working directly at the com-
mand line.

Embedding SQL in a general-purpose programming language
presents an interesting challenge. The host languages (for ex-
ample, Java, C++, or COBOL) have compilers that don’t rec-
ognize SQL. The solution is to provide SQL support through
an application library that can be linked to a program. Pro-
gram source code is passed through a precompiler that changes
SQL commands into library routines. The modified source
code will then be acceptable to a host language compiler.

In addition to the problem of actually compiling an embedded
SQL program, there is a fundamental mismatch between SQL
and a general-purpose programming language: Programming
languages are designed to process data one row at a time while
SQL is designed to handle many rows at a time. As you will
see in Chapter 15, SQL includes some special elements so that
it can process one row at a time when a query has returned
multiple rows.

There are certainly many options for creating a SQL com-
mand. However, they are all made up of the same elements:

◊ Keywords: Each SQL command begins with a key-
word—such as SELECT, INSERT, or UPDATE—that
tells the command processor the type of operation that
is to be performed. The remainder of the keywords
precede the tables from which data are to be taken,
indicate specific operations that are to be performed on
the data, and so on.

The Embedded
SQL Dilemma

Elements of a
SQL Statement

74 Chapter 3: Introduction to SQL

◊ Tables: A SQL command includes the names of the
tables on which the command is to operate.

◊ Columns: A SQL command includes the names of the
columns that the command is to affect.

◊ Functions: A function is a small program that is built
into the SQL language. Each function does one thing.
For example, the AVG function computes the average
of numeric data values. You will see a number of SQL
functions discussed throughout this book.

Keywords and tables are required for all SQL commands. Col-
umns may be optional, depending on the type of operation
being preformed. Functions are never required for a legal SQL
statement, but in some cases may be essential to obtaining a
desired result.

Figure 3-3: A “query builder” environment

4

77

It may seem a bit backwards to talk about retrieval before creat-
ing a database or entering data, but much of SQL’s data modi-
fication syntax relies on finding data to be changed. You will
therefore find it easier to work with modification statements
if you are first familiar with retrieving data. We are therefore
going to assume that someone else has created a database and
loaded it with data for our use.

SQL has one command for retrieving data: SELECT. This is
nowhere as restrictive as it might seem. SELECT contains syn-
tax for choosing columns, choosing rows, combining tables,
grouping data, and performing some simple calculations. In
fact, a single SELECT statement can result in a DBMS per-
forming any or all of the relational algebra operations.

The basic syntax of the SELECT statement has the following
general structure:

SELECT column1, column2 …
FROM
table1, table2 …
WHERE predicate

The SELECT clause specifies the columns you want to see.
You specify the tables used in the query in the FROM clause.
The operational WHERE clause can contain a wide variety of
criteria that identify which rows you want to retrieve.

Simple SQL
Retrieval

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50004-2

78 Chapter 4: Simple SQL Retrieval

Note: Most SQL command processors are not case sensitive when it
comes to parts of a SQL statement. SQL keywords, table names, col-
umn names, and so on can be in any case you choose. However, most
DBMSs are case sensitive when it comes to matching data values.
Therefore, whenever you place a value in quotes for SQL to match,
you must match the case of the stored data. In this book, SQL key-
words will appear in uppercase letters; database components such as
column and table names will appear in lowercase letters.

In addition to these basic clauses, SELECT has many other syntax
options. Rather than attempt to summarize them all in a single
general statement, you will learn to build the parts of a SELECT
gradually throughout this and the next few chapters of this book.

Note: The SQL queries you see throughout the book are terminated by
a semi-colon (;). This is not part of the SQL standard, but is used by
many DBMSs so that you can type a command on multiple lines. The
SQL command processor doesn’t execute the query until it encounters
the semi-colon.

One of the characteristics of a relation is that you can view any
of the columns in any order you choose. SQL therefore lets you
specify the columns you want to see and the order in which you
want to see them, using the relational algebra project to produce
the final result table.

To retrieve all the columns in a table, viewing the columns in
the order in which they were defined when the table was created,
you can use an asterisk (*) rather than listing each column. For
example, to see all the works that the rare book store has handled,
you would use

SELECT *
FROM work;

Choosing
Columns

Retrieving All
Columns

 Choosing Columns 79

Because this query is requesting all rows in the table, there is
no WHERE clause. As you can see in Figure 4-1, the result
table labels each column with its name.

Note: The layout of the printed output of many SQL queries in
this book has been adjusted so that it will fit across the width of
the pages. When you actually view listings on the screen, each row

 work_numb | author_numb | title
-----------+-------------+--
 1 | 1 | Jane Eyre
 2 | 1 | Villette
 3 | 2 | Hound of the Baskervilles
 4 | 2 | Lost World, The
 5 | 2 | Complete Sherlock Holmes
 7 | 3 | Prince and the Pauper
 8 | 3 | Tom Sawyer
 9 | 3 | Adventures of Huckleberry Finn, The
 6 | 3 | Connecticut Yankee in King Arthur’s Court, A
 13 | 5 | Fountainhead, The
 14 | 5 | Atlas Shrugged
 15 | 6 | Peter Pan
 10 | 7 | Bourne Identity, The
 11 | 7 | Matarese Circle, The
 12 | 7 | Bourne Supremacy, The
 16 | 4 | Kidnapped
 17 | 4 | Treasure Island
 18 | 8 | Sot Weed Factor, The
 19 | 8 | Lost in the Funhouse
 20 | 8 | Giles Goat Boy
 21 | 9 | Dune
 22 | 9 | Dune Messiah
 23 | 10 | Foundation
 24 | 10 | Last Foundation
 25 | 10 | I, Robot
 26 | 11 | Inkheart
 27 | 11 | Inkdeath
 28 | 12 | Anathem
 29 | 12 | Snow Crash
 30 | 5 | Anthem
 31 | 12 | Cryptonomicon

Figure 4-1: Viewing all columns in a table

80 Chapter 4: Simple SQL Retrieval

will be in a single horizontal line. If a listing is too wide to fit on
the screen or a terminal program’s window, you will need to scroll.

Using the * operator to view all columns is a convenient short-
hand for interactive SQL when you want a quick overview of
data. However, it can be troublesome when used in embedded
SQL .If the columns in the table are changed. In particular, if
a column is added to the table and the application is not modi-
fied to handle the new column, then the application may not
work properly.

In most SQL queries, you will want to specify exactly which
column or columns you want retrieved. To specify columns,
you list them following SELECT in the order in which you
want to see them. For example, a query to view the names and
phone numbers of all of our store’s customers is written

SELECT first_name,last_name,contact_phone
FROM customer;

The result (see Figure 4-2) shows all rows in the table for just
the three columns specified in the query. The order of the col-
umns in the result table matches the order in which the col-
umns appeared after the SELECT keyword.

Unique primary keys ensure that relations have no duplicate
rows. However, when you view only a portion of the columns
in a table, you may end up with duplicates. For example, ex-
ecuting the following query produced the result in Figure 4-3:

SELET customer_numb, credit_card_numb
FROM sale;

Duplicates appear because the same customer uses the same
credit card umber for more than one purchase. Keep in mind
that although this table with duplicate rows is not a legal rela-
tion, that doesn’t present a problem for the database because it
is not stored in the database.

Retrieving Specific
Columns

Removing
Duplicates

 Choosing Columns 81

 first_name | last_name | contact_phone
------------+-----------+---------------
 Janice | Jones | 518-555-1111
 Jon | Jones | 209-555-2222
 John | Doe | 209-555-3333
 Jane | Doe | 518-555-4444
 Jane | Smith | 518-555-5555
 Janice | Smith | 518-555-6666
 Helen | Brown | 518-555-7777
 Helen | Jerry | 518-555-8888
 Mary | Collins | 518-555-9999
 Peter | Collins | 518-555-1010
 Edna | Hayes | 518-555-1110
 Franklin | Hayes | 518-555-1212
 Peter | Johnson | 209-555-1212
 Peter | Johnson | 209-555-1414
 John | Smith | 209-555-1515

Figure 4-2: Choosing specific columns

 customer_numb | credit_card_numb
---------------+----------------------
 1 | 1234 5678 9101 1121
 1 | 1234 5678 9101 1121
 1 | 1234 5678 9101 1121
 1 | 1234 5678 9101 1121
 2 | 1234 5678 9101 2222
 2 | 1234 5678 9101 2222
 2 | 1234 5678 9101 2222
 4 | 1234 5678 9101 5555
 5 | 1234 5678 9101 9999
 5 | 1234 5678 9101 9999
 6 | 1234 5678 9101 6666
 6 | 1234 5678 9101 7777
 6 | 1234 5678 9101 6666
 8 | 1234 5678 9101 8888
 8 | 1234 5678 9101 8888
 9 | 1234 5678 9101 0909
 10 | 1234 5678 9101 0101
 11 | 1234 5678 9101 1231
 11 | 1234 5678 9101 1010
 12 | 1234 5678 9101 7777

Figure 4-3: A result table with duplicate rows

82 Chapter 4: Simple SQL Retrieval

To remove duplicates from a result table, you insert the key-
word DISTINCT following SELECT:

SELECT DISTINCT customer_numb, credit_card_numb
FROM sale;

The result is a table without the duplicate rows (see Figure
4-4). Although a legal relation has no duplicate rows, most
DBMS vendors have implemented SQL so that it leaves the
duplicates. As you read in Chapter 2, the primary reason is
performance. To remove duplicates, a DBMS must sort the
result table by every column in the table. It must then scan
the table from top to bottom, looking at every “next” row to
identify duplicate rows that are next to one another. If a result
table is large, the sorting and scanning can significantly slow
down the query. It is therefore up to the user to decide whether
to request unique rows.

The order in which rows appear in the result table may not
be what you expect. In some cases, rows will appear in the or-
der in which they are physically stored. However, if the query
optimizer uses an index to process the query, then the rows
will appear in index key order. If you want row ordering to be

 customer_numb | credit_card_numb
---------------+----------------------
 1 | 1234 5678 9101 1121
 2 | 1234 5678 9101 2222
 4 | 1234 5678 9101 5555
 5 | 1234 5678 9101 9999
 6 | 1234 5678 9101 6666
 6 | 1234 5678 9101 7777
 8 | 1234 5678 9101 8888
 9 | 1234 5678 9101 0909
 10 | 1234 5678 9101 0101
 11 | 1234 5678 9101 1010
 11 | 1234 5678 9101 1231
 12 | 1234 5678 9101 7777

Figure 4-4: The result table in Figure 4-3 with the duplicates removed

Ordering the
Result Table

 Ordering the Result Table 83

consistent and predictable, you will need to specify how you
want the rows to appear.

When you want to control the order of rows in a result table
you add an ORDER BY clause to your SELECT statement.

For example, if you issue the query

SELECT *
FROM author;

you will see the unordered listing in Figure 4-5. Adding the
ORDER BY clause sorts the result in alphabetical order (see
Figure 4-6):

SELECT *
FROM author
ORDER BY author_last_first;

The keywords ORDER BY are followed by the column or col-
umns on which you want to sort the result table. When you
include more than one column, the first column represents the
outer sort, the next column a sort within it. For example, as-
sume that you issue the query

 author_numb | author_last_first
-------------+-----------------------------------
 1 | Bronte, Charlotte
 2 | Doyle, Sir Arthur Conan
 3 | Twain, Mark
 4 | Stevenson, Robert Louis
 5 | Rand, Ayn
 6 | Barrie, James
 7 | Ludlum, Robert
 8 | Barth, John
 9 | Herbert, Frank
 10 | Asimov, Isaac
 11 | Funke, Cornelia
 12 | Stephenson, Neal

Figure 4-5: An unordered result table

84 Chapter 4: Simple SQL Retrieval

SELECT zip_postcode, last_name, first_name
FROM customer
ORDER BY zip_postcode, last_name;

The result (see Figure 4-7) first orders by the zipcode and then
sorts by the customer’s last name within each zipcode. If we
reverse the order of the columns on which the output is to be
sorted, as in

SELECT zip_postcode, last_name, first_name
FROM customer
ORDER BY last_name, zip_postcode;

the output (see Figure 4-8) then sorts first by last name and
then by zipcode within each last name.

As well as viewing any columns from a relation, you can also
view any rows you want. We specify row selection criteria in a
SELECT statement’s WHERE clause.

In its simplest form, a WHERE clause contains a logical ex-
pression against which each row in a table is evaluated. If a row
meets the criteria in the expression, then it becomes a part of
the result table. If the row does not meet the criteria, then it

author_numb | author_last_first
------------+--------------------------------------

 10 | Asimov, Isaac
 6 | Barrie, James
 8 | Barth, John
 1 | Bronte, Charlotte
 2 | Doyle, Sir Arthur Conan
 11 | Funke, Cornelia
 9 | Herbert, Frank
 7 | Ludlum, Robert
 5 | Rand, Ayn
 12 | Stephenson, Neal
 4 | Stevenson, Robert Louis
 3 | Twain, Mark

Figure 4-6: The result table from Figure 4-6 sorted in alphabetical
order by author name

Choosing Rows

 Choosing Rows 85

zip_postcode | last_name | first_name
--------------+-----------+------------
 11111 | Brown | Helen
 11111 | Doe | Jane
 11111 | Hayes | Edna
 11111 | Hayes | Franklin
 11111 | Jones | Janice
 11111 | Smith | Janice
 13333 | Smith | Jane
 18886 | Collins | Mary
 18886 | Collins | Peter
 18886 | Jerry | Helen
 18888 | Doe | John
 18888 | Johnson | Peter
 18888 | Johnson | Peter
 18888 | Jones | Jon
 18888 | Smith | John

Figure 4-7: Sorting output by two columns

zip_postcode | last_name | first_name
--------------+-----------+------------
 11111 | Brown | Helen
 18886 | Collins | Peter
 18886 | Collins | Mary
 11111 | Doe | Jane
 18888 | Doe | John
 11111 | Hayes | Franklin
 11111 | Hayes | Edna
 18886 | Jerry | Helen
 18888 | Johnson | Peter
 18888 | Johnson | Peter
 11111 | Jones | Janice
 18888 | Jones | Jon
 11111 | Smith | Janice
 13333 | Smith | Jane
 18888 | Smith | John

Figure 4-8: Reversing the sort order of the query in Figure 4-8

is omitted. The trick to writing row selection criteria—one ex-
ample of the predicates to which you were introduced in Chap-
ter 2—is therefore knowing how to create logical expressions
against which data can be evaluated.

86 Chapter 4: Simple SQL Retrieval

As you read in Chapter 2, a logical expression that follows
WHERE is known as a predicate. It uses a variety of operators
to represent row selection criteria. If a row meets the criteria
in a predicate (in other words, the criteria evaluate as true),
then the row is included in the result table. If the row doesn’t
meet the criteria (the criteria evaluate as false), then the row is
excluded.

In Table 4-1 you can see the six operators used to express data
relationships.1 To write an expression using one of the opera-
tors, you surround it with two values. In database queries, such
expression have either a column name on one side and a literal
value on the other, as in

cost > 1.95

or column names on both sides:

numb_on_hand <= reorder_point

The first expression asks the question “Is the cost of the item
greater than 1.95?” The second asks “Is the number of items in
stock less than or equal to the reorder point?”

The way in which you enter literal values into a logical expres-
sion depends on the data type of the column to which you are
comparing the value:

◊ Numbers: Type numbers without any formatting. In
other words, leave out dollar signs, commas, and so on.
You should, however, put decimal points in the appro-
priate place in a number with a factional portion.

◊ Characters: Type characters surrounded by quotation
marks. Most DBMSs accept pairs of either single or

1 The symbol used for the “not equal to” operator varies from one
DBMS to another. Check the documentation that accompanies your
software to determine whether the “not equal to” operator is != or < >.

Predicates

Relationship Operators

 Choosing Rows 87

Table 4-1: The relationship operators

Operator Meaning Examples
= Equal to cost = 1.95

numb_in_stock = reorder_point
< Less than cost < 1.95

numb_in_stock < reorder_point
<= Less than or equal to cost <= 1.95

numb_in_stock <= reorder_point
> Greater than cost > 1.95

numb_in_stock > reorder_point
>= Greater than or equal to cost >= 1.95

numb_in_stock >= reorder_point
!= or < > Not equal to cost != 1.95

numb_in_stock != reorder_point

double quotes. If your characters include an apostrophe
(a single quote), then you should use double quotes.
Otherwise, use single quotes.

◊ Dates: Type dates in the format used to store them in
the database. This will vary from one DBMS to an-
other.

◊ Times: Type times in the format used to store them in
the database. This will vary from one DBMS to an-
other.

When you are using two column names, keep in mind that
the predicate is applied to each row in the table individually.
The DBMS substitutes the values stored in the columns in the
same row when making its evaluation of the criteria. You can
therefore use two column names when you need to examine
data that are stored in the same row but in different columns.

88 Chapter 4: Simple SQL Retrieval

However, you cannot use a simple logical expression to com-
pare the same column in two or more rows.

The DBMS also bases the way it evaluates data on the type of
data:

◊ Comparisons involving numeric data are based on
numerical order.

◊ Comparisons involving character data are based on
alphabetical order.

◊ Comparisons involving dates and times are based on
chronological order.

Sometimes a simple logical expression is not enough to iden-
tify the rows you want to retrieve; you need more than one cri-
terion. In that case, you can chain criteria together with logical
operators. For example, assume that you want to retrieve vol-
umes that you have in stock that cost more than $75 and that
are in excellent condition. The predicate you need is therefore
made up of two simple expressions:

condition_code = 2
asking_price > 75

A row must meet both of these criteria to be included in the
result table. You therefore connect the two expressions with
the logical operator AND into a single complex expression:

condition_code = 2 AND asking_price >75

Whenever you connect two simple expressions with AND, a
row must meet all of the conditions to be included in the
result.

You can use the AND operators to create a predicate that in-
cludes a range of dates. For example, if you want to find all
sales that were made in August and September of 2013, the
predicate would be written:

Logical Operators

 Choosing Rows 89

sale_date >= ‘01-Aug-2013’
 AND sale_date <= ’31-Sep-2013’

To be within the interval, a sale date must meet both individual
criteria.2

You will find a summary of the action of the AND operators
in Table 4-2. The labels in the columns and rows represent the
result of evaluating the single expressions on either side of the
AND. As you can see, the only way to get a true result for the
entire expression is for both simple expressions to be true.

If you want to create an expression from which a row needs to
meet only one condition, then you connect simple expressions
with the logical operator OR. For example, if you want to re-
trieve volumes that cot more than $125 or less than $50, you
would use the predicate
asking_price > 100 OR asking_price < 50

Whenever you connect two simple expressions with OR, a row
needs to meet only one of the conditions to be included in the
result of the query. When you want to create a predicate that
looks for dates outside an interval, you use the OR operator.
For example, to see sales that occurred prior to March 1, 2013
or after December 31, 2013, the predicate is written
sale_date < ’01-Mar-2013’
 OR sale_date > ’31-Dec-2013’

2 The date format used in the sample queries is a fairly generic one that
is recognized by most DBMSs. However, you should consult the docu-
mentation for your DBMS to determine exactly what will work with your
product.

Table 4-2: AND truth table

AND True False
True True False
False False False

90 Chapter 4: Simple SQL Retrieval

You can find a summary of the OR operation in Table 4-3.
Notice that the only way to get a false result is for both simple
expression surrounding OR to be false.

There is no limit to the number of simple expression you can
connect with AND and OR. For example, the following ex-
pression is legal:

condition_code >= 3
AND selling_price < asking_price
AND selling_price > 75

The logical operator NOT (or !) inverts the result of logical
expression. If a row meets the criteria in a predicate, then plac-
ing NOT in front of the criteria excludes the row from the
result. By the same token, if a row does not meet the criteria
in a predicate, then placing NOT in front of the expression
includes the row in the result. For example,

NOT (asking_price <= 50)

retrieves all rows where the cost is not less than or equal to
$50 (in other words, greater than $50). First the DBMS evalu-
ates the value in the asking_price column against the expres-
sion asking_price <= 50. If the row meets the criteria, then the
DBMS does nothing. If the row does not meet the criteria, it
includes the row in the result.

The parentheses in the preceding example group the expres-
sion to which NOT is to be applied. In the following example,
the NOT operator applies only to the expression asking_price
<= 50.

Table 4-3: OR truth table

OR True False
True True True
False True False

Negation

 Choosing Rows 91

NOT (asking_price <= 50)
AND selling_price < asking_price

NOT can be a bit tricky when it is applied to complex expres-
sions As an example, consider this expression:

NOT (asking_price <= 50
AND selling_price < asking_price)

Rows that have both an asking price of less than or equal to
$50 and a selling price that was less than the asking price will
meet the criteria within parentheses. However, the NOT op-
erator excludes them from the result. Those rows that have ei-
ther an asking price of more than $50 or a selling price greater
than or equal to the asking price will fail the criteria within the
parentheses, but will be included in the result by the NOT.
This means that the expression is actually the same as

asking_price > 50
OR selling_price >= asking_price

or

NOT (asking_price <= 50)
OR NOT (selling_price < asking_price)

When you create an expression with more than one logical op-
eration, the DBMS must decide on the order in which it will
process the simple expressions. Unless you tell it otherwise, a
DBMS uses a set of default rules of precedence. In general, a
DBMS evaluates simple expressions first, followed by the logi-
cal expression. When there is more than one operator of the
same type, evaluation proceeds from left to right.

As a first example, consider this expression:

asking_price < 50
OR condition_code = 2
selling_price > asking_price

If the asking price of a book is $25, its condition code is 3,
and the selling price was $20, the DBMS will exclude the row

Precedence and
Parentheses

92 Chapter 4: Simple SQL Retrieval

from the result. The first simple expression is true; the second
is false. An OR between the first two produces a true result
because at least one of the criteria is true. Then the DBMS per-
forms an AND between the true result of the first portion and
the result of the third simple expression (false). Because we are
combining a true result and a false result with AND, the over-
all result is false. The row is therefore excluded from the result.

We can change the order in which the DBMS evaluates the
logical operators, and coincidentally, the result of the expres-
sion, by using parentheses to group the expressions that are to
have higher precedence:

asking_price < 50 OR (condition_code = 2
AND selling_price > asking_price)

A DBMS gives highest precedence to the parts of the expres-
sion within parentheses. Using the same sample data from the
preceding paragraph, the expression within parentheses is false
(both simple expressions are false). However, the OR with the
first simple expression produces true, because the first simple
expression is true. Therefore, the row is included in the result.

SQL predicates can include a number of special operators that
make writing logical criteria easier. These include BETWEEN,
LIKE, IN, and IS NULL.

Note: There are additional operators that are used primarily with
subqueries, SELECT statements in which you embed one com-
plete SELECT within another. You will be introduced to them in
Chapter 5.

The BETWEEN operator simplifies writing predicates that
look for values that lie within an interval. Remember the ex-
ample you saw earlier in this chapter using AND to generate
a date interval? Using the BETWEEN operator, you could re-
write that predicate as

Special Operators

 Choosing Rows 93

sale_date BETWEEN ‘01-Aug-2013’
AND ’31-Sep-2013’

Any row with a sale date of August 1, 2013 through September
31, 2013 will be included in the result.

If you negate the BETWEEN operator, the DBMS returns all
rows that are outside the interval. For example,

sale_date NOT BETWEEN ‘01-Aug-2013’
AND ’31-Sep-2013’

retrieves all rows with dates prior to August 1, 2013 and after
September 31, 2013. It does not include the 01-Aug-2013 or
31-Sep-2013. NOT BETWEEN is therefore a shorthand for
the two simple expressions linked by OR that you saw earlier
in this chapter.

The LIKE operator provides a measure of character string pat-
tern matching by allowing you to use placeholders (wildcards)
for one or more characters. Although you may find that the
wildcards a different in your particular DBMS, in most case,
% stands for zero, one, or more characters and _ stands for
zero or one character.

The way in which the LIKE operator works is summarized in
Table 4-4. As you can see, you can combine the two wildcards
to produce a variety of begins with, ends with, and contains
expressions.

As with BETWEEN you can negate the LIKE operator:

last_name NOT LIKE ‘Sm%’

Rows that are like the pattern are therefore excluded from the
result.

One of the problems you may run into when using LIKE is
that you need to include the wildcard characters as part of your

LIKE

94 Chapter 4: Simple SQL Retrieval

data. For example, what can you do if you want rows that con-
tain ‘nd_by’? The expression you want is

column_name LIKE ‘%nd_by%’

The problem is that the DBMS will see the _ as a wildcard,
rather than as characters in your search string. The solution
was introduced in SQL-9s, providing you with the ability to
designate an escape character.

An escape character removes the special meaning of the char-
acter that follows. Because many programming languages use \
as the escape character, it is a logical choice for pattern match-
ing, although it can be any character that is not part of your
data. To establish the escape character, you add the keyword
ESCAPE, followed by the escape character, to your expression:

column_name LIKE ‘%nd_by%’ ESCAPE ‘\’

Table 4-4: Using the LIKE operator

Expression Meaning
LIKE ‘Sm%’ Begins with Sm
LIKE ‘%ith’ Ends with ith
LIKE ‘%ith%’ Contains ith
LIKE ‘Sm_’ Begins with Sm and is followed by at most one character
LIKE ‘_ith’ Ends with ith and is preceded by at most one character
LIKE ‘_ith_’ Contains ith and begins and ends with at most one additional character
LIKE ‘%ith_’ Contains ith, begins with any number of characters, and ends with at

most one additional character
LIKE ‘_ith%’ Contains ith, begins with at most one additional character, and ends

with any number of characters

 Choosing Rows 95

The IN operator compares the value in a column against a set
of values. IN returns true if the value is within the set. For
example, assume that a store employee is checking the selling
price of a book and wants to know if it is either $25, $50, or
$60. Using the IN operator, the expression would be written:

selling_price IN (25,50,60)

This is shorthand for

selling_price = 25 OR selling_price = 50
OR selling_price = 60

Therefore, any row whose price is one of those three values will
be included in the result. Conversely, if you write the predicate

selling_price NOT IN (25,50,60)

the DBMS will return the rows with pries other than those
in the set of values. The preceding expression is therefore the
same as

selling_price != 25 AND selling_price != 50
AND selling_price !=60

or

NOT (selling_price = 25 OR selling_price = 50
OR selling_price = 60)

Note: The most common use of IN and NOT IN is with a sub-
query, where the set of values to which data are compared are
generated by an embedded SELECT. You will learn about this in
Chapter 5.

As you know, null is a specific indicator in a database. Al-
though columns that contain nulls appear empty when you
view them, the database actually stores a value that represents
null so that an unknown value can be distinguished from, for
example, a string value containing a blank. As a user, however,

IN

IS NULL

96 Chapter 4: Simple SQL Retrieval

you will rarely know exactly what a DBMS is using internally
for null. This means that you need some special way to identify
null in a predicate so you can retrieve rows containing nulls.
That is where the IS NULL operator comes in.

For example, an expression to identify all rows for volumes
that have not been sold is written as

sale_date IS NULL

Conversely, to find all volumes that have been sold, you could
use

sale_date IS NOT NULL

To perform SQL queries that select specific rows, you place a
predicate after the SQL keyword WHERE. Depending on the
nature of the predicate, the intention of the query may be to
retrieve one or more rows. In this section you will therefore
see some SELECT examples that combine a variety of row
selection criteria. You will also see how those criteria are com-
bined in queries with column selection and with sorting of the
output.

A common type of SQL retrieval query uses a primary key
expression in its predicate to retrieve exactly one row. For ex-
ample, if someone at the rare book store wants to see the name
and telephone number of customer number 6, then the query
is written

SELECT first_name, last_name, contact_phone
FROM customer
WHERE customer_numb = 6;

The result is the single row requested by the predicate.

first_name | last_name | contact_phone
-----------+-----------+---------------
Janice | Smith | 518-555-6666

Performing Row
Selection Queries

Using a Primary Key
Expression to Retrieve One
Row

 Choosing Rows 97

If a table has a concatenated primary key, such as the employee
number and child name for the dependents table you saw in
Chapter 1, then a primary key expression needs to include a
complex predicate in which each column of the primary key
appears in its own simple logical expression. For example, if
you wanted to find the birthdate of employee number 0002’s
son John, you would use following query:

SELECT child_birth_date
FROM dependents
WHERE employee_number = ‘0002’
 AND child_name = ‘John’;

In this case, the result is simply

child_birth_date

2-Dec-1999

Although queries with primary key expressions are written
with the intention of retrieving only one row, more commonly
SQL queries are designed to retrieve multiple rows.

When you want to retrieve data based on a value in a single
column, you construct a predicate that includes just a simple
logical expression. For example, to see all the books ordered on
sale number 6, someone at the store would use

SELECT isbn
FROM volume
WHERE sale_id = 6;

The output (see Figure 4-9) displays a single column for rows
where the sale_id is six.

When you want to see rows that meet two or more simple
conditions, you use a complex predicate in which the simple
conditions are connected by AND or OR. For example, if
someone wanted to see the books on order number 6 that sold
for less than the asking price, the query would be written

Retrieving Multiple Rows

Using Simple Predicates

Using Complex Predicates

98 Chapter 4: Simple SQL Retrieval

SELECT isbn
FROM volume
WHERE sale_id = 6
 AND selling_price < asking_price;

Only two rows meet the criteria:

isbn

978-1-11111-130-1
978-1-11111-139-1

By the same token, if you wanted to see all sales that took place
prior to August 1, 2013 and for which the total amount of the
sale was less than $100, the query would be written

SELECT sale_id, sale_total_amt
FROM sale
WHERE sale_date < ‘1-Aug-2012’
 AND sale_total_amt < 100;

It produces the result in Figure 4-10.

Note: Don’t forget that the date format required by your DBMS
may be different from the one used in examples in this book.

Alternatively, if you needed information about all sales that
occurred prior to or on August 1, 2013 that totaled more than
100 along with sales that occurred after August 1, 2013 that
totaled less than 100, you would write the query

isbn

 978-1-11111-146-1
 978-1-11111-122-1
 978-1-11111-130-1
 978-1-11111-126-1
 978-1-11111-139-1

Figure 4-9: Displaying a single column from multiple rows using a

 Choosing Rows 99

SELECT sale_id, sale_date, sale_total_amt
FROM sale
WHERE (sale_date <= ‘1-Aug-2013’
 AND sale_total_amt > 100)
 OR (sale_date > ‘1-Aug-2013’
 AND sale_total_amt < 100);

Notice that although the AND operator has precedence over
OR and therefore the parentheses are not strictly necessary, the
predicate in this query includes parentheses for clarity. Extra
parentheses are never a problem—as long as you balance ev-
ery opening parenthesis with a closing parenthesis—and you
should feel free to use them whenever they help make it easier
to understand the meaning of a complex predicate. The result
of this query can be seen in Figure 4-11.

As an example of using one of the special predicate operators,
consider a query where someone wants to see all sales that oc-
curred between July 1, 2013 and August 31, 2013. The query
would be written

SELECT sale_id, sale_date, sale_total_amt
FROM sale
WHERE sale_date BETWEEN ‘1-Jul-2013’ AND ’31-
Aug-2013’;

It produces the output in Figure 4-12.

sale_id | sale_total_amt
---------+----------------
 3 | 58.00
 7 | 80.00
 8 | 90.00
 9 | 50.00
 13 | 25.95
 14 | 80.00
 15 | 75.00

Figure 4-10: Retrieving rows using a complex predicate including a
date

Using BETWEEN and NOT
BETWEEN

100 Chapter 4: Simple SQL Retrieval

The inverse query retrieves all orders not placed between July
1, 2013 and August 31, 2013 is written

SELECT sale_id, sale_date, sale_total_amt
FROM sale
WHERE sale_date NOT BETWEEN ‘1-Jul-2013’ AND
’31-Aug-2013’;

and produces the output in Figure 4-13.

sale_id | sale_date | sale_total_amt
---------+--------------------+----------------
 4 | 30-JUN-13 00:00:00 | 110.00
 5 | 30-JUN-13 00:00:00 | 110.00
 6 | 05-JUL-13 00:00:00 | 505.00
 10 | 10-JUL-13 00:00:00 | 125.00
 11 | 10-JUL-13 00:00:00 | 200.00
 12 | 10-JUL-13 00:00:00 | 200.00
 16 | 25-JUL-13 00:00:00 | 130.00
 2 | 05-JUN-13 00:00:00 | 125.00
 1 | 29-MAY-13 00:00:00 | 510.00
 19 | 01-SEP-13 00:00:00 | 95.00
 20 | 01-SEP-13 00:00:00 | 75.00

Figure 4-11: Using a complex predicate that includes multiple logical
operators

sale_id | sale_date | sale_total_amt
---------+--------------------+----------------
 6 | 05-JUL-13 00:00:00 | 505.00
 7 | 05-JUL-13 00:00:00 | 80.00
 8 | 07-JUL-13 00:00:00 | 90.00
 9 | 07-JUL-13 00:00:00 | 50.00
 10 | 10-JUL-13 00:00:00 | 125.00
 11 | 10-JUL-13 00:00:00 | 200.00
 12 | 10-JUL-13 00:00:00 | 200.00
 13 | 10-JUL-13 00:00:00 | 25.95
 14 | 10-JUL-13 00:00:00 | 80.00
 15 | 12-JUL-13 00:00:00 | 75.00
 16 | 25-JUL-13 00:00:00 | 130.00
 17 | 25-JUL-13 00:00:00 | 100.00
 18 | 22-AUG-13 00:00:00 | 100.00

Figure 4-12: Using BETWEEN to retrieve rows in a date range

 Nulls and Retrieval: Three-Valued Logic 101

If we want output that is easier to read, we might ask the
DBMS to sort the result by sale date:

SELECT sale_id, sale_date, sale_total_amt
FROM sale
WHERE sale_date NOT BETWEEN ‘1-Jul-2013’
 AND ’31-Aug-2013’
ORDER BY sale_date;

producing the result in Figure 4-14.

The predicates you have seen to this point omit one important
thing: the presence of nulls. What should a DBMS do when it
encounters a row that contains null rather than a known value?
As you read in Chapter 2, the relational data model doesn’t
have a specific rule as to what a DBMS should do, but it does
require that the DBMS act consistently when it encounters
nulls.

sale_id | sale_date | sale_total_amt
---------+--------------------+----------------
 3 | 15-JUN-13 00:00:00 | 58.00
 4 | 30-JUN-13 00:00:00 | 110.00
 5 | 30-JUN-13 00:00:00 | 110.00
 2 | 05-JUN-13 00:00:00 | 125.00
 1 | 29-MAY-13 00:00:00 | 510.00
 19 | 01-SEP-13 00:00:00 | 95.00
 20 | 01-SEP-13 00:00:00 | 75.00

Figure 4-13: Using NOT BETWEEN to retrieve rows outside a date
range

sale_id | sale_date | sale_total_amt
---------+--------------------+----------------
 1 | 29-MAY-13 00:00:00 | 510.00
 2 | 05-JUN-13 00:00:00 | 125.00
 3 | 15-JUN-13 00:00:00 | 58.00
 5 | 30-JUN-13 00:00:00 | 110.00
 4 | 30-JUN-13 00:00:00 | 110.00
 19 | 01-SEP-13 00:00:00 | 95.00
 20 | 01-SEP-13 00:00:00 | 75.00

Figure 4-14: Output sorted by date

Nulls and
Retrieval: Three-
Valued Logic

102 Chapter 4: Simple SQL Retrieval

Consider the following query as an example:

SELECT inventory_id, selling_price
FROM volume
WHERE selling_price < 100;

The result can be found in Figure 4-15. Notice that every row
in the result table has a value of selling price, which means that
rows for unsold items—those with null in the selling price col-
umn—are omitted. The DBMS can’t ascertain what the selling
price for unsold items will be: Maybe it will be less than $100
or maybe it will be greater than or equal to $100.

The policy of most DBMSs is to exclude rows with nulls from
the result. For rows with null in the selling price column, the
maybe answer to “Is selling price less than 100” becomes false.
This seems pretty straightforward, but what happens when you
have a complex logical expression of which one portion returns
maybe? The operation of AND, OR, and NOT must be ex-
panded to take into account that they may be operating on a
maybe.

The three-valued logic table for AND can be found in Table
4-5. Notice that something important hasn’t changed: The
only way to get a true result is for both simple expressions
linked by AND to be true. Given that most DBMSs exclude
rows where the predicate evaluates to maybe, the presence of
nulls in the data will not change what an end user sees.

The same is true when you look at the three-valued truth table
for OR (see Table 4-6). As long as one simple expression is
true, it does not matter whether the second returns true, false,
or maybe. The result will always be true.

If you negate an expression that returns maybe, the NOT op-
erator has no effect. In other words, NOT (MAYBE) is still
maybe.

 Nulls and Retrieval: Three-Valued Logic 103

inventory_id | selling_price
--------------+---------------
 2 | 50.00
 4 | 25.95
 5 | 22.95
 6 | 76.10
 11 | 25.00
 12 | 15.00
 13 | 18.00
 18 | 30.00
 19 | 75.00
 23 | 45.00
 24 | 35.00
 25 | 75.00
 26 | 55.00
 33 | 50.00
 35 | 75.00
 36 | 50.00
 37 | 75.00
 39 | 75.00
 40 | 25.95
 41 | 40.00
 42 | 40.00
 50 | 50.00
 51 | 50.00
 52 | 50.00
 53 | 40.00
 54 | 40.00
 55 | 60.00
 56 | 40.00
 57 | 40.00
 59 | 35.00
 58 | 25.00
 60 | 45.00
 61 | 50.00
 62 | 75.00

Figure 4-15: Retrieval based on a column that includes rows with nulls

To see the rows that return maybe, you need to add an ex-
pression to your query that uses the IS NULL operator. For
example, the easiest way to see which volumes have not been
sold is to write a query like:

104 Chapter 4: Simple SQL Retrieval

SELECT inventory_id, isbn, selling_price
FROM volume
WHERE selling_price is null;

The result can be found in Figure 4-16. Note that the selling
price column is empty in each row. (Remember that you typi-
cally can’t see any special value for null.) Notice also that the
rows in this result table are all those excluded from the query
in Figure 4-15.

Table 4-5: Three-valued AND truth table

AND True False Maybe
True True False Maybe
False False False False
Maybe Maybe False Maybe

Table 4-6: Three-valued OR truth table

OR True False Maybe
True True True True
False True False Maybe
Maybe True Maybe Maybe

Four-Valued Logic
Codd’s 330 rules for the relational data model include an en-
hancement to three-valued logic that he called four-valued
logic. In four-valued logic, there are actually two types of null:
“null and it doesn’t matter that it’s null” and “null and we’ve
really got a problem because it’s null.” For example, if a com-
pany sells internationally, then it probably has a column for

 Four-Valued Logic 105

inventory_id | isbn | selling_price
--------------+-------------------+---------------
 7 | 978-1-11111-137-1 |
 8 | 978-1-11111-137-1 |
 9 | 978-1-11111-136-1 |
 10 | 978-1-11111-136-1 |
 16 | 978-1-11111-121-1 |
 17 | 978-1-11111-124-1 |
 27 | 978-1-11111-141-1 |
 28 | 978-1-11111-141-1 |
 29 | 978-1-11111-141-1 |
 30 | 978-1-11111-145-1 |
 31 | 978-1-11111-145-1 |
 32 | 978-1-11111-145-1 |
 43 | 978-1-11111-132-1 |
 44 | 978-1-11111-138-1 |
 45 | 978-1-11111-138-1 |
 46 | 978-1-11111-131-1 |
 47 | 978-1-11111-140-1 |
 48 | 978-1-11111-123-1 |
 49 | 978-1-11111-127-1 |
 63 | 978-1-11111-130-1 |
 64 | 978-1-11111-136-1 |
 65 | 978-1-11111-136-1 |
 66 | 978-1-11111-137-1 |
 67 | 978-1-11111-137-1 |
 68 | 978-1-11111-138-1 |
 69 | 978-1-11111-138-1 |
 70 | 978-1-11111-139-1 |
 71 | 978-1-11111-139-1 |

Figure 4-16: Using IS NULL to retrieve rows containing nulls

the country of each customer. Because it is essential to know
a customer’s country, a null in the country column would fall
into the category of “null and we’ve really got a problem.” In
contrast, a missing value in a company name column would be
quite acceptable in a customer table for rows that represent-
ed individual customers. Then the null would be “null and it
doesn’t matter that it’s null.” Four-valued logic remains purely
theoretical, however, and isn’t implemented in DBMSs.

5

107

As you read in Chapter 1, logical relationships between entities
in a relational database are represented by matching primary
and foreign key values. Given that there are no permanent
connections between tables stored in the database, a DBMS
must provide some way for users to match primary and foreign
key values when needed using the join operation.

In this chapter you will be introduced to the syntax for in-
cluding a join in a SQL query. Throughout this chapter you
will also read about the impact joins have on database per-
formance. At the end you will see how subqueries (SELECTs
within SELECTs) can be used to avoid joins and, in some
cases, significantly decrease the time it takes for a DBMS to
complete a query.

There are two types of syntax you can use for requesting the
join of two tables. The first, which we have been calling the
“traditional” join syntax, is the only way to write a join in the
SQL standards through SQL-89. SQL-92 added a join syntax
that is both more flexible and easier to use.

The traditional SQL join syntax is based on the combination
of the product and restrict operations that you read about in
Chapter 2. It has the following general form:

SELECT columns
FROM table1, table2
WHERE table1.primary_key = table2.foreign_key

Retrieving Data
from More Than
One Table

SQL Syntax for
Inner Joins

Traditional SQL
Joins

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50005-4

108 Chapter 5: Retrieving Data from More Than One Table

Listing the tables to be joined after FROM requests the product.
The join condition in the WHERE clause’s predicate requests the
restrict that identifies the rows that are part of the joined tables.
Don’t forget that if you leave off the join condition in the predi-
cate, then the presence of the two tables after FROM simply gen-
erates a product table.

Note: If you really, really, really want a product, use the CROSS
JOIN operator in the FROM clause.

For example, assume that someone wanted to see all the orders
placed by a customer whose phone number is 518-555-1111. The
phone number is part of the customer table; the purchase informa-
tion is in the sale table. The two relations are related by the pres-
ence of the customer number in both (primary key of the custom-
er table; foreign key in sale). The query to satisfy the information
request therefore requires an equi-join of the two tables over the
customer number, the result of which can be seen in Figure 5-1:

SELECT first_name, last_name, sale_id, sale_date
FROM customer, sale
WHERE customer.customer_numb = sale.customer_numb
 AND contact_phone = ‘518-555-1111’;

There are two important things to notice about the preceding
query:

◊ The join is between a primary key in one table and a for-
eign key in another. As you will remember from Chapter

first_name | last_name | sale_id | sale_date
-----------+-----------+---------+-------------------
 Janice | Jones | 3 | 15-JUN-13 00:00:00
 Janice | Jones | 17 | 25-JUL-13 00:00:00
 Janice | Jones | 2 | 05-JUN-13 00:00:00
 Janice | Jones | 1 | 29-MAY-13 00:00:00

Figure 5-1: Output from a query containing an equi-join between a primary
key and a foreign key

 SQL Syntax for Inner Joins 109

2, equi-joins that don’t meet this pattern are frequently
invalid.

◊ Because the customer_numb column appears in more
than one table in the query, it must be qualified by the
name of the table from which it should be taken. To
add a qualifier, precede the name of a column by its
name, separating the two with a period.

Note: With some large DBMSs, you must also qualify the names of
tables you did not create with the user ID of the account that did
create the table. For example, if user ID DBA created the customer
table, then the full name of the customer number column would
be DBA.customer.customer_numb. Check your product documen-
tation to determine whether your DBMS is one of those that re-
quire the user ID qualifier.

How might a SQL query optimizer choose to process this
query? Although we cannot be certain because there is more
than one order of operations that will work, it is likely that
the restrict operation to choose the customer with a telephone
number of 518-555-1111 will be performed first. This cuts
down on the amount of data that needs to be manipulated for
the join. The second step probably will be the join operation,
because doing the project to select columns for display will
eliminate the column needed for the join.

The SQL-92 standard introduced an alternative join syntax
that is both simpler and more flexible than the traditional
join syntax. If you are performing a natural equi-join, there
are three variations of the syntax you can use, depending on
whether the column or columns over which you are joining
have the same name and whether you want to use all matching
columns in the join.

Note: Despite the length of time that has passed since the introduc-
tion of this revised join syntax, not all DBMSs support all three
varieties of the syntax. You will need to consult the documentation

SQL-92 Join
Syntax

110 Chapter 5: Retrieving Data from More Than One Table

of your particular product to determine exactly which syntax you
can use.

When the primary key and foreign key columns you are join-
ing have the same name and you want to use all matching col-
umns in the join condition, all you need to do is indicate that
you want to join the tables, using the following general syntax:

SELECT column(s)
FROM table1 NATURAL JOIN table2

The query we used as an example in the preceding section
could therefore be written as

SELECT first_name, last_name, sale_id,
 sale_date
FROM customer NATURAL JOIN sale
WHERE contact_phone = ‘518-555-1111’;

Note: Because the default is a natural equi-join, you will obtain
the same result if you simply use JOIN instead of NATURAL
JOIN.

The SQL command processor identifies all columns in the two
tables that have the same name and automatically performs the
join of those columns.

Note: If you are determined to obtain a product rather than a nat-
ural join, you can do it using the SQL-92 CROSS JOIN operator.

If you don’t want to use all matching columns in a join condi-
tion but the columns still have the same name, you specify the
names of the columns over which the join is to be made by
adding a USING clause:

SELECT column(s)
FROM table1 JOIN table2 USING (column)

Using this syntax, the sample query would be written

SELECT first_name, last_name, sale_id,

Joins over All Columns with
the Same Name

Joins over Selected
Columns

 SQL Syntax for Inner Joins 111

 sale_date
FROM customer JOIN sale USING (customer_numb)
WHERE contact_phone = ‘518-555-1111’;

When the columns over which you are joining table don’t have
the same name, then you must use a join condition similar to
that used in the traditional SQL join syntax:

SELECT column(s)
FROM table1 JOIN table2 ON join_condition

In this case, the sample query will appear as

SELECT first_name, last_name, sale_id,
 sale_date
FROM customer JOIN sale
ON customer.customer_numb = sale.customer_numb
WHERE contact_phone = ‘518-555-1111’;

All of the joins you have seen to this point have been performed
using a single matching column. However, on occasion you
may run into tables where you are dealing with concatenated
primary and foreign keys. As an example, we’ll return to the
four tables from the small accounting firm database that we
used in Chapter 2 when we discussed how joins over concat-
enated keys work:

accountant (acct_first_name, acct_last_name,
 date_hired, office_ext)

customer (customer numb, first_name, last_name,
street, city, state_province, zip_post-
code, contact_phone)

project (tax_year, customer_numb,
 acct_first_name, acct_last_name)

form (tax_year, customer_numb, form_id,
 is_complete)

To see which accountant worked on which forms during which
year, a query needs to join the project and form tables, which

Joins over Columns with
Different Names

Joining using
Concatenated Keys

112 Chapter 5: Retrieving Data from More Than One Table

are related by a concatenated primary key. The join condition
needed is

project.tax_year || project.customer_numb =
form.tax_year || form.customer_numb

The || operator represents concatenation in most SQL imple-
mentations. It instructs the SQL command processor to view
the two columns as if they were one and to base its comparison
on the concatenation rather than individual column values.

The following join condition produces the same result because
it pulls rows from a product table where both the customer ID
numbers and the tax years are the same:

project.tax_year = form.tax_year AND project.
customer_numb = form.customer_numb

You can therefore write a query using the traditional SQL join
syntax in two ways:

SELECT acct_first_name, acct_last_name,
 form.tax_year, form.form_ID
FROM project, form
WHERE project.tax_year
 || project.customer_numb = form.tax_year
 || form.customer_numb;

or

SELECT acct_first_name, acct_last_name,
 form.tax_year, form.form_ID
FROM project, form
project.tax_year = form.tax_year
 AND project.customer_numb =
 form.customer_numb;

If the columns have the same names in both tables and are the
only matching columns, then the SQL-92 syntax

SELECT acct_first_name, acct_last_name,
 form.tax_year, form.form_ID
FROM project JOIN form;

 SQL Syntax for Inner Joins 113

has the same effect as the preceding two queries.

When the columns have the same names but aren’t the only
matching columns, then you must specify the columns in a
USING clause:

SELECT acct_first_name, acct_last_name,
 form.tax_year, form.form_ID
FROM project JOIN form USING (tax_year,
 form_ID);

Alternatively, if the columns don’t have the same name, you
can use the complete join condition, just as you would if you
were using the traditional join syntax:

SELECT acct_first_name, acct_last_name,
 form.tax_year, form.form_ID
FROM project JOIN form ON project.tax_year
 || project.customer_numb = form.tax_year
 || form.customer_numb;

or

SELECT acct_first_name, acct_last_name,
 form.tax_year, form.form_ID
FROM project JOIN form
 ON project.tax_year = form.tax_year
 AND project.customer_numb =
 form.customer_numb;

Notice that in all forms of the query, the tax year and form ID
columns in the SELECT clause are qualified by a table name.
It really doesn’t matter form which the data are taken, but be-
cause the columns appear in both tables, the SQL command
processor needs to be told which pair of columns to use.

What if you need to join more than two tables in the same
query? For example, some at the rare book store might want to
see the names of the people who have purchased a volume with
the ISBN of 978-1-11111-146-1. The query that retrieves that
information must join volume to sale to find the sales on which

114 Chapter 5: Retrieving Data from More Than One Table

the volume was sold. Then the result of the first join must be
joined again to customer to gain access to the names.

Using the traditional join syntax, the query is written

SELECT first_name, last_name
FROM customer, sale, volume
WHERE volume.sale_id = sale.sale_id
 AND sale.customer_numb =
 customer.customer_numb
 AND isbn = ‘978-1-11111-136-1’;

With the simplest form of the SQL-92 syntax, the query
becomes

SELECT first_name, last_name
FROM customer JOIN sale JOIN volume
WHERE isbn = ‘978-1-11111-136-1’;

Both syntaxes produce the following result:

first_name | last_name
-----------+-----------
Mary | Collins
Janice | Smith

Keep in mind that the join operation can work on only two
tables at a time. If you need to join more than two tables, you
must join them in pairs. Therefore, a join of three tables re-
quires two joins, a join of four tables requires three joins, and
so on.

Although the SQL-92 syntax is certainly simpler than the tra-
ditional join syntax, it has another major benefit: It gives you
control over the order in which the joins are performed. With
the traditional join syntax, the query optimizer is in complete
control of the order of the joins. However, in SQL-92, the
joins are performed from left to right, following the order in
which the joins are placed in the FROM clause.

Joining More than
Two Tables

 SQL Syntax for Inner Joins 115

This means that you sometimes can affect the performance of a
query by varying the order in which the joins are performed.1
Remember that the less data the DBMS has to manipulate, the
faster a query will execute. Therefore, you want to perform the
most discriminatory joins first.

As an example, consider the sample query used in the previous
section. The volume table has the most rows, followed by sale
and then customer. However, the query also contains a highly
discriminatory restrict predicate that limits the rows from that
table. Therefore, it is highly likely that the DBMS will perform
the restrict on volume first. This means that the query is likely
to execute faster is you write it so that sale is joined with volume
first, given that this join will significantly limit the rows from
sale that need to be joined with customer.

In contrast, what would happen if there was no restrict predi-
cate in the query, and you wanted to retrieve the name of the
customer for ever book ordered in the database? The query
would appear as

SELECT first_name, last_name
FROM customer JOIN sale JOIN volume;

First, keep in mind that this type of query, which is asking for
large amounts of data, will rarely execute as quickly as one that
contains predicates to limit the number of rows. Nonetheless,
if will execute a bit fast if customers is joined to sale before join-
ing to volume. Why? Because the joins manipulate fewer rows
in that order.

Assume that there are 20 customers, 100 sales, and 300 vol-
umes sold. Every sold item in volume must have a matching

1 This holds true only if a DBMS has implemented the newer join
syntax according to the SQL standard. A DBMS may support the syntax
without its query optimizer using the order of tables in the FROM clause
to determine join order.

SQL-92 Syntax and
Multiple-Table Join
Performance

116 Chapter 5: Retrieving Data from More Than One Table

row in sale. Therefore, the result from that join will be at least
300 rows long. Those 300 rows must be joined to the 20 rows
in customer. However, if we reverse the order, then the 20 rows
in customer are joined to 100 rows in sale, producing a table of
100 rows, which can then be joined to volume. In either case,
we are stuck with a join of 100 rows to 300 rows, but when the
customer table is handled first, the other join is 20 to 100 rows,
rather than 20 to 300 rows.

One of the limitations of a restrict operation is that its predi-
cate is applied to only one row in a table at a time. This means
that a predicate such as

isbn = ‘0-131-4966-9’ AND isbn = ‘0-191-4923-8’

and the query

SELECT first_name, last_name
FROM customer JOIN sale JOIN volume
WHERE isbn = ‘978-1-11111-146-1’
 AND isbn = ‘978-1-11111-122-1’;

will always return 0 rows. No row can have more than one
value in the isbn column!

What the preceding query is actually trying to do is locate cus-
tomers who have purchased two specific books. This means
that there must be at least two rows for a customer’s purchases
in volume, one for each for each of the books in question.

Given that you cannot do this type of query with a simple
restrict predicate, how can you retrieve the data? The tech-
nique is to join the volume table to itself over the sale ID. The
result table will have two columns for the book’s ISBN, one
for each copy of the original table. Those rows that have both
the ISBNs that we want will finally be joined to the sale table
(over the sale ID) and customer (over customer number)tables
so that the query an project the customer’s name.

Finding Multiple
Rows in One
Table: Joining a
Table to Itself

 Finding Multiple Rows in One Table: Joining a Table to Itself 117

Before looking at the SQL syntax, however, let’s examine the
relational algebra of the joins so you can see exactly what is
happening. Assume that we are working with the subset of the
volume table in Figure 5-2. (The sale ID and the ISBN are the
only columns that affect the relational algebra; the rest have
been left off for simplicity.) Notice first that the result of our
sample query should display the first and last names of the
customer who made purchase number 6. (It is the only order
that contains both of the books in question.

The first step in the query is to join the table in Figure 5-7 to
itself over the sale ID, producing the result table in Figure 5-3.
The columns that come from the first copy have been labeled
T1; those that come from the second copy are labeled T2.

The two rows in black are those that have the ISBNs for which
we are searching. Therefore, we need to follow the join with a
restrict that says something like

WHERE isbn (from table 1) = ‘978-1-11111-146-1’
AND isbn (from table 2) =
 ‘978-1-11111-122-1’

The result will be a table with one row in it (the second of the
two black rows in Figure 5-3.)

At this point, the query can join the table to sale over the sale
ID to provide access to the customer number of the person
who made the purchase. The result of that second join can
then be joined to customer to obtain the customer’s name
(Franklin Hayes). Finally, the query projects the columns the
user wants to see.

The challenge facing a query that needs to work with multiple
copies of a single table is to tell the SQL command processor
to make the copies of the table. We do this by placing the name
of the table more than once on the FROM line, associating

Correlation Names

118 Chapter 5: Retrieving Data from More Than One Table

sale_id (T1)| isbn | sale_id (T2)| isbn
------------+-------------------+-------------+-------------------
 1 | 978-1-11111-111-1 | 1 | 978-1-11111-133-1
 1 | 978-1-11111-111-1 | 1 | 978-1-11111-131-1
 1 | 978-1-11111-111-1 | 1 | 978-1-11111-111-1
 1 | 978-1-11111-131-1 | 1 | 978-1-11111-133-1
 1 | 978-1-11111-131-1 | 1 | 978-1-11111-131-1
 1 | 978-1-11111-131-1 | 1 | 978-1-11111-111-1
 1 | 978-1-11111-133-1 | 1 | 978-1-11111-133-1
 1 | 978-1-11111-133-1 | 1 | 978-1-11111-131-1
 1 | 978-1-11111-133-1 | 1 | 978-1-11111-111-1
 2 | 978-1-11111-142-1 | 2 | 978-1-11111-144-1
 2 | 978-1-11111-142-1 | 2 | 978-1-11111-146-1
 2 | 978-1-11111-142-1 | 2 | 978-1-11111-142-1
 2 | 978-1-11111-146-1 | 2 | 978-1-11111-144-1
 2 | 978-1-11111-146-1 | 2 | 978-1-11111-146-1
 2 | 978-1-11111-146-1 | 2 | 978-1-11111-142-1
 2 | 978-1-11111-144-1 | 2 | 978-1-11111-144-1
 2 | 978-1-11111-144-1 | 2 | 978-1-11111-146-1

Figure 5-3: The result of joining the table in Figure 5-2 to itself (continued on next page)

 sale_id | isbn
---------+-------------------
 1 | 978-1-11111-111-1
 1 | 978-1-11111-133-1
 1 | 978-1-11111-131-1
 2 | 978-1-11111-142-1
 2 | 978-1-11111-144-1
 2 | 978-1-11111-146-1
 3 | 978-1-11111-133-1
 3 | 978-1-11111-132-1
 3 | 978-1-11111-143-1
 4 | 978-1-11111-121-1
 5 | 978-1-11111-121-1
 6 | 978-1-11111-139-1
 6 | 978-1-11111-146-1
 6 | 978-1-11111-122-1
 6 | 978-1-11111-130-1
 6 | 978-1-11111-126-1
 7 | 978-1-11111-125-1
 7 | 978-1-11111-131-1
 8 | 978-1-11111-126-1
 8 | 978-1-11111-133-1
 9 | 978-1-11111-139-1
 10 | 978-1-11111-133-1

Figure 5-2: A subset of the volume table

 Finding Multiple Rows in One Table: Joining a Table to Itself 119

 2 | 978-1-11111-144-1 | 2 | 978-1-11111-142-1
 3 | 978-1-11111-143-1 | 3 | 978-1-11111-133-1
 3 | 978-1-11111-143-1 | 3 | 978-1-11111-132-1
 3 | 978-1-11111-143-1 | 3 | 978-1-11111-143-1
 3 | 978-1-11111-132-1 | 3 | 978-1-11111-133-1
 3 | 978-1-11111-132-1 | 3 | 978-1-11111-132-1
 3 | 978-1-11111-132-1 | 3 | 978-1-11111-143-1
 3 | 978-1-11111-133-1 | 3 | 978-1-11111-133-1
 3 | 978-1-11111-133-1 | 3 | 978-1-11111-132-1
 3 | 978-1-11111-133-1 | 3 | 978-1-11111-143-1
 5 | 978-1-11111-121-1 | 5 | 978-1-11111-121-1
 4 | 978-1-11111-121-1 | 4 | 978-1-11111-121-1
 6 | 978-1-11111-146-1 | 6 | 978-1-11111-139-1
 6 | 978-1-11111-146-1 | 6 | 978-1-11111-126-1
 6 | 978-1-11111-146-1 | 6 | 978-1-11111-130-1
 6 | 978-1-11111-146-1 | 6 | 978-1-11111-122-1
 6 | 978-1-11111-146-1 | 6 | 978-1-11111-146-1
 6 | 978-1-11111-122-1 | 6 | 978-1-11111-139-1
 6 | 978-1-11111-122-1 | 6 | 978-1-11111-126-1
 6 | 978-1-11111-122-1 | 6 | 978-1-11111-130-1
 6 | 978-1-11111-122-1 | 6 | 978-1-11111-122-1
 6 | 978-1-11111-122-1 | 6 | 978-1-11111-146-1
 6 | 978-1-11111-130-1 | 6 | 978-1-11111-139-1
 6 | 978-1-11111-130-1 | 6 | 978-1-11111-126-1
 6 | 978-1-11111-130-1 | 6 | 978-1-11111-130-1
 6 | 978-1-11111-130-1 | 6 | 978-1-11111-122-1
 6 | 978-1-11111-130-1 | 6 | 978-1-11111-146-1
 6 | 978-1-11111-126-1 | 6 | 978-1-11111-139-1
 6 | 978-1-11111-126-1 | 6 | 978-1-11111-126-1
 6 | 978-1-11111-126-1 | 6 | 978-1-11111-130-1
 6 | 978-1-11111-126-1 | 6 | 978-1-11111-122-1
 6 | 978-1-11111-126-1 | 6 | 978-1-11111-146-1
 6 | 978-1-11111-139-1 | 6 | 978-1-11111-139-1
 6 | 978-1-11111-139-1 | 6 | 978-1-11111-126-1
 6 | 978-1-11111-139-1 | 6 | 978-1-11111-130-1
 6 | 978-1-11111-139-1 | 6 | 978-1-11111-122-1
 6 | 978-1-11111-139-1 | 6 | 978-1-11111-146-1
 7 | 978-1-11111-125-1 | 7 | 978-1-11111-131-1
 7 | 978-1-11111-125-1 | 7 | 978-1-11111-125-1
 7 | 978-1-11111-131-1 | 7 | 978-1-11111-131-1
 7 | 978-1-11111-131-1 | 7 | 978-1-11111-125-1
 8 | 978-1-11111-126-1 | 8 | 978-1-11111-133-1
 8 | 978-1-11111-126-1 | 8 | 978-1-11111-126-1
 8 | 978-1-11111-133-1 | 8 | 978-1-11111-133-1
 8 | 978-1-11111-133-1 | 8 | 978-1-11111-126-1
 9 | 978-1-11111-139-1 | 9 | 978-1-11111-139-1
 10 | 978-1-11111-133-1 | 10 | 978-1-11111-133-1

Figure 5-3 (continued): The result of joining the table in Figure 5-2 to itself

120 Chapter 5: Retrieving Data from More Than One Table

each instance of the name with a different alias. Such aliases for
table names are known as correlation names and take the syntax

FROM table_name AS correlation_name

For example, to instruct SQL to use two copies of the volume
table you might use

FROM volume AS T1, volume AS T2

The AS is optional. Therefore, the following syntax is also legal:

FROM volume T1, volume T2

In the other parts of the query, you refer to the two copies us-
ing the correlation names rather than the original table name.

Note: You can give any table a correlation name; its use is not re-
stricted to queries that work with multiple copies of a single table.
In fact, if a table name is difficult to type and appears several times
in a query, you can save yourself some typing and avoid problems
with typing errors by giving the table a short correlation name.

The query that performs the same-table join needs to specify
all of the relational algebra operations you read about in the
preceding section. It can be written using the traditional join
syntax as follows:

SELECT first_name, last_name
FROM volume T1, volume T2, sale, customer
WHERE T1.isbn = ‘978-1-11111-146-1’
 AND T2.isbn = ‘978-1-11111-122-1’
 AND T1.sale_id = T2.sale_id
 AND T1.sale_id = sale.sale_id
 AND sale.customer_numb =
 customer.customer_numb;

There is one very important thing to notice about this query.
Although our earlier discussion of the relational algebra indi-
cated that the same-table join would be performed first, fol-
lowed by a restrict and the other two joins, there is no way

Performing the
Same-Table Join

 Outer Joins 121

using the traditional syntax to indicate the joining of an inter-
mediate result table (in this case, the same-table join). There-
fore, the query syntax must join sale to either T1 or T2. None-
theless, it is likely that the query optimizer will determine that
performing the same-table join, followed by the restrict, is a
more efficient way to process the query than joining sale to T1
first.

If you use the SQL-92 join syntax, then you have some control
over the order in which the joins are performed:

SELECT first_name, last_name
FROM volume T1 JOIN volume T2
 ON (T1.sale_id = T2.sale_id)
 JOIN sale JOIN customer
WHERE T1.isbn = ‘978-1-11111-146-1’
 AND T2.isbn = ‘978-1-11111-122-1’;

The SQL command processor will process the multiple joins
in the FROM clause from left to right, ensuring that the same-
table join is performed first.

As you read in Chapter 2, an outer join is a join that includes
rows in a result table even though there may not be a match
between rows in the two tables being joined. Whenever the
DBMS can’t match rows, it places nulls in the columns for
which no data exist. The result may therefore not be a legal
relation, since it may not have a primary key. However, because
a query’s result table is a virtual table that is never stored in
the database, having no primary keys doesn’t present a data
integrity problem.

To perform an outer join using the SQL-92 syntax, you in-
dicate the type of join in the FROM clause. For example, to
perform a left outer join between the customer and sale tables
you could type

SELECT first_name, last_name, sale_id,
 sale_date
FROM customer LEFT OUTER JOIN sale;

Outer Joins

122 Chapter 5: Retrieving Data from More Than One Table

The result appears in Figure 5-4. Notice that five rows appear
to be empty in the sale_id and sale_date columns. These five
customers haven’t made any purchases. Therefore, the columns
in question are actually null. However, most DBMSs have no
visible indicator for null; it looks as if the values are blank. It is
the responsibility of the person viewing the result table to real-
ize that the empty spaces represent nulls rather than blanks.

The SQL-92 outer join syntax for joins has the same options
as the inner join syntax:

◊ If you use the syntax in the preceding example, the
DBMS will automatically perform the outer join on all
matching columns between the two tables.

◊ If you want to specify the columns over which the
outer join will be performed and the columns have the
same names in both tables, add a USING clause:

Matching More than Two Rows
You can extend the same table join technique you have just
read about to find as many rows in a table you need. Create
one copy of the table with a correlation name for the number
of rows the query needs to match in the FROM clause and join
those tables together. In the WHERE clause, use a predicate
that includes one restrict for each copy of the table. For exam-
ple, to retrieve data that have four specified rows in a table, you
need four copies of the table, three joins, and four expressions
in the restrict predicate. The general format of such a query is

SELECT column(s)
FROM table_name T1 JOIN table_name T2
 JOIN table_name T3 JOIN table_name T4
WHERE T1.column_name = value
 AND T2.column_name = value
 AND T3.column_name = value
 AND T4.column_name = value

 Matching More than Two Rows 123

SELECT first_name, last_name, sale_id,
 sale_date
FROM customer LEFT OUTER JOIN sale
 USING (customer_numb);

◊ If the columns over which you want to perform the
outer join do not have the same name, then append an
ON clause that contains the join condition:

SELECT first_name, last_name
FROM customer T1
 LEFT OUTER JOIN sale T2
 ON (T1.customer_numb =
 T2.customer_numb);

 first_name | last_name | sale_id | sale_date
------------+-----------+---------+-----------
 Janice | Jones | 1 | 29-MAY-13
 Janice | Jones | 2 | 05-JUN-13
 Janice | Jones | 17 | 25-JUL-13
 Janice | Jones | 3 | 15-JUN-13
 Jon | Jones | 20 | 01-SEP-13
 Jon | Jones | 16 | 25-JUL-13
 Jon | Jones | 13 | 10-JUL-13
 John | Doe | |
 Jane | Doe | 4 | 30-JUN-13
 Jane | Smith | 18 | 22-AUG-13
 Jane | Smith | 8 | 07-JUL-13
 Janice | Smith | 19 | 01-SEP-13
 Janice | Smith | 14 | 10-JUL-13
 Janice | Smith | 5 | 30-JUN-13
 Helen | Brown | |
 Helen | Jerry | 9 | 07-JUL-13
 Helen | Jerry | 7 | 05-JUL-13
 Mary | Collins | 11 | 10-JUL-13
 Peter | Collins | 12 | 10-JUL-13
 Edna | Hayes | 15 | 12-JUL-13
 Edna | Hayes | 10 | 10-JUL-13
 Franklin | Hayes | 6 | 05-JUL-13
 Peter | Johnson | |
 Peter | Johnson | |
 John | Smith | |

Figure 5-4: The result of an outer join

124 Chapter 5: Retrieving Data from More Than One Table

Note: The SQL standard also includes an operation known as the
UNION JOIN. It performs a FULL OUTER JOIN on two ta-
bles and then throw out the rows that match, placing all those that
don’t match in the result table. The UNION JOIN hasn’t been
widely implemented.

SQL standards from SQL-92 forward allow the table on which
a SELECT is performed to be a virtual table, rather than just a
base table. This means that a DBMS should allow a complete
SELECT (in other words, a subquery) to be used in a FROM
clause to prepare the table on which the remainder of the que-
ry will operate. Expressions that create tables for use in SQL
statements in this way are known as table constructors.

Note: When you join tables in the FROM clause you are actually
generating a source for a query on the fly. What is described in this
section is just an extension of that principle.

For example, the following query lists all volumes that were
purchased by customers 6 and 10:

SELECT isbn, first_name, last_name
FROM volume JOIN (SELECT first_name,
 last_name, sale_id
FROM sale JOIN customer
WHERE customer.customer_numb = 6
 OR customer.customer_numb = 10);

The results can be found in Figure 5-5. Notice that the row
selection is being performed in the subquery that is part of
the FROM clause. This forces the SQL command processor
to perform the subquery prior to performing the join in the
outer query. Although this query could certainly be written in
another way, using the subquery in the FROM clause gives a
programmer using a DBMS with a query optimizer that uses
the FROM clause order additional control over the order in
which the relational algebra operations are performed.

Table
Constructors in
Queries

 Avoiding Joins with Uncorrelated Subqueries 125

As we discussed earlier in this chapter, with some DBMSs
you can control the order in which joins are performed by
using the SQL-92 syntax and being careful with the order in
which you place joins in the FROM clause. However, there is
a type of SQL syntax—a subquery—that you can use with any
DBMS to obtain the same result but often avoid performing a
join altogether.2

A subquery (or subselect) is a complete SELECT statement
embedded within another SELECT. The result of the inner
SELECT becomes data used by the outer.

Note: Subqueries have other uses besides avoiding joins, which you
will see throughout the rest of this book.

A query containing a subquery has the following general form:

SELECT column(s)
FROM table
WHERE operator (SELECT column(s))
 FROM table
 WHERE …);

There are two general types of subqueries. In an uncorrelated
subquery, the SQL command processor is able to complete the

2 Even a subquery may not avoid joins. Some query optimizers actually
replace subqueries with joins when processing a query.

Avoiding
Joins with
Uncorrelated
Subqueries

 isbn | first_name | last_name
-------------------+------------+-----------
 978-1-11111-121-1 | Janice | Smith
 978-1-11111-130-1 | Peter | Collins
 978-1-11111-132-1 | Peter | Collins
 978-1-11111-141-1 | Janice | Smith
 978-1-11111-141-1 | Janice | Smith
 978-1-11111-128-1 | Janice | Smith
 978-1-11111-136-1 | Janice | Smith

Figure 5-5: Using a table constructor in a query’s FROM clause

126 Chapter 5: Retrieving Data from More Than One Table

Using the IN
Operator

processing of the inner SELECT before moving to the outer.
However, in a correlated subquery, the SQL command pro-
cessor cannot complete the inner query without information
from the outer. Correlated subqueries usually require that the
inner SELECT be performed more than once and therefore
can execute relatively slowly. The same is not true for uncorre-
lated subqueries, which can be used to replace join syntax and
therefore may produce faster performance.

Note: You will see examples of correlated subqueries beginning in
Chapter 6.

As a first example, consider the following query

SELECT sale_date, customer_numb
FROM sale JOIN volume
WHERE isbn = ‘978-1-11111-136-1’;

which produces the following output:

 sale_date | customer_numb
--------------------+---------------
 10-JUL-13 00:00:00 | 9
 01-SEP-13 00:00:00 | 6

We can rewrite the query using subquery syntax as

SELECT sale_date, customer_numb
FROM sale
WHERE sale_id IN (SELECT sale_id
 FROM volume
 WHERE isbn = ‘978-1-11111-136-1’);

The inner SELECT retrieves data from the volume table and
produces a set of sale IDs. The outer SELECT then retrieves
data from sale where the sale ID is in the set of values retrieved
by the subquery.

The use of the IN operator is actually exactly the same as the
use you read about in Chapter 4. The only difference is that

 Table Constructors in Queries 127

rather than placing the set of values in parentheses as literals,
the set is generated by a SELECT.

When processing this query, the DBMS never joins the two
tables. It performs the inner SELECT first and then uses the
result table from that query when processing the outer SE-
LECT. In the case in which the two tables are very large, this
can significantly speed up processing the query.

Note: You can also use NOT IN with subqueries. This is a very
powerful syntax that you will read about in Chapter 6.

Like IN, the ANY operator searches a set of values. In its sim-
plest form, ANY is equivalent to IN:

SELECT sale_date, customer_numb
FROM sale
WHERE sale_id = ANY (SELECT sale_id
 FROM volume
 WHERE isbn = ‘978-1-11111-136-1’);

This syntax tell the DBMS to retrieve rows from sale where the
sale ID is “equal to any” of those retrieved by the SELECT in
the subquery.

What sets ANY apart from IN is that the = can be replaced
with any other relationship operator (for example, < and >).
For example, you could use it to create a query that asked for
all customers who had purchased a book with a price greater
than the average cost of a book. Because queries of this type
require the use of SQL summary functions, we will leave their
discussion until Chapter 7.

The SELECT that you use as a subquery can have a subquery.
In fact, if you want to rewrite a query that joins more than
two tables, you will need to nest subqueries in this way. As an
example, consider the following query that you saw earlier in
this chapter:

Using the ANY
Operator

Nesting Subqueries

128 Chapter 5: Retrieving Data from More Than One Table

SELECT first_name, last_name
FROM customer, sale, volume
WHERE volume.sale_id = sale.sale_id
 AND sale.customer_numb =
 customer.customer_numb
 AND isbn = ‘978-1-11111-136-1’;

It can be rewritten as

SELECT first_name, last_name
FROM customer
WHERE customer_numb IN
 (SELECT customer_numb
 FROM sale
 WHERE sale_id = ANY
 (SELECT sale_id
 FROM volume
 WHERE isbn = ‘978-1-11111-136-1’));

Note that each subquery is surrounded completely by paren-
theses. The end of the query therefore contains two closing
parentheses next to each other. The rightmost) closes the outer
subquery; the) to its left closes the inner subquery.

The DBMS processes the innermost subquery first, returning
a set of sale IDs that contains the sales on which the ISBN
in question appears. The idle SELECT (the outer subquery)
returns a set of customer numbers for rows where the sale ID
is any of those in the set returned by the innermost subquery.
Finally, the outer query displays information about customers
whose customer numbers are in the set produced by the outer
subquery.

In general, the larger the tables in question (in other words, the
more rows they have), the more performance benefit you will
see if you assemble queries using subqueries rather than joins.
How many levels deep can you nest subqueries? There is no
theoretical limit. However, once a query becomes more than
a few levels deep, it may become hard to keep track of what is
occurring.

 Table Constructors in Queries 129

The same-table join that you read about earlier in this chapter
can also be replaced with subqueries. As you will remember,
that query required a join between sale and customer to obtain
the customer name, a join between sale and volume, and a join
of the volume table to itself to find all sales that contained two
desired ISBNs. Because there were three joins in the original
query, the rewrite will require one nested subquery for each
join.

SELECT last_name, first_name
FROM customer
WHERE customer_numb IN
 (SELECT customer_numb
 FROM sale
 WHERE sale_id IN
 (SELECT sale_id
 FROM volume
 WHERE isbn = ‘978-1-11111-146-1’
 AND sale_id IN
 (SELECT sale_id
 FROM volume
 WHERE isbn =
 ‘978-1-11111-122-1’)));

The innermost subquery retrieves a set of sale IDs for the rows
on which an ISBN of ‘978-1-11111-122-1’ appears. The next
level subquery above it retrieves rows from volume where the
sale ID appears in the set retrieved by the innermost subquery
and where the ISBN is ‘978-1-11111-146-1’. These two sub-
queries therefore replace the same-table join.

The set of sale IDs is then used by the outermost subquery to
obtain a set of customer numbers for the sales whose numbers
appear in the result set of the two innermost subqueries. Fi-
nally, the outer query displays customer information for the
customers whose number are part of the outermost subquery’s
result set.

Notice that the two innermost subqueries are based on the
same table. To process this query, the DBMS makes two passes

Replacing a Same-
Table Join with
Subqueries

130 Chapter 5: Retrieving Data from More Than One Table

through the volume table—one for each subquery—rather
than joining a copy of the table to itself. When a table is very
large, this syntax can significantly speed up performance be-
cause the DBMS does not need to create and manipulate a
duplicate copy of the large table in main memory.

6

131

To this point, the queries you have read about combine and
extract data from relations in relatively straightforward ways.
However, there are additional operations you can perform on
relations that, for example, answer questions such as “show me
that data that are not …” or “show me the combination of data
that are …”. In this chapter you will read about the implemen-
tation of additional relational algebra operations in SQL that
will perform such queries as well as performing calculations
and using functions that you can use to obtain information
about the data you retrieve.

Union is one of the few relational algebra operations whose
name can be used in a SQL query. When you want to use a
union, you write two individual SELECT statements, joined
by the keyword UNION:

SELECT column(s)
FROM table(s)
WHERE predicate
UNION
SELECT column(s)
FROM table(s)
WHERE predicate

The columns retrieved by the two SELECT must have the same
data types and sizes and be in the same order For example,
the following is legal as long as the customer numbers are the

Advanced Retrieval
Operations

Union

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50006-6

132 Chapter 6: Advanced Retrieval Operations

same data type (for example, integer) and the customer names
are the same data type and length (for example, 30-character
strings):

SELECT customer_numb, customer_first,
 customer_last
FROM some_table
UNION
SELECT cust_no, first_name, last_name
FROM some_other_table

Notice that the source tables of the two SELECTS don’t need
to be the same, nor do the columns need to have the same
names. However, the following is not legal:

SELECT customer_first, customer_last
FROM some_table
UNION
SELECT cust_no, cust_phone
FROM some_table

Although both SELECTs are taken from the same table, and
the two base tables are therefore union compatible, the result
tables returned by the two SELECTs are not union compat-
ible and the union therefore cannot be performed. The cust_no
column has a domain of INT and therefore doesn’t match the
CHAR domain of the customer_first column.

A typical use of UNION in interactive SQL is a replacement
for a predicate with an OR. As an example, consider this query:

SELECT first_name, last_name
FROM customer JOIN sale JOIN volume
WHERE isbn = ‘978-1-11111-128-1’
UNION
SELECT first_name, last_name
FROM customer JOIN sale JOIN volume
WHERE isbn = ‘978-1-11111-143-1’;

Performing Union
Using the Same
Source Tables

 Union 133

It produces the following output

first_name | last_name
-----------+-----------
Janice | Jones
Janice | Smith

The DBMS processes the query by performing the two SE-
LECTs. It then combines the two individual result tables into
one, eliminating duplicate rows. To remove the duplicates, the
DBMS sorts the result table by every column in the table and
then scans it for matching rows placed next to one another.
(That is why the rows in the result are in alphabetical order
by the author’s first name.) The information returned by the
preceding query is the same as the following:

SELECT first_name, last_name
FROM customer JOIN sale JOIN volume
WHERE isbn = ‘978-1-11111-128-1’
 OR isbn = ‘978-1-11111-143-1’;

However, there are two major differences. First, when you use
the complex predicate that contains OR, most DBMSs retain
the duplicate rows. In contrast, the query with the UNION
operator removes them automatically.

The second difference is in how the queries are processed. The
query that performs a union make two passes through the vol-
ume table, one for each of the individual SELECTs, making
only a single comparison with the ISBN value in each row.
The query that uses the OR in its predicate makes only one
pass through the table but must make two comparison when
testing most rows.1

1 Some query optimizers do not behave in this way. You will need to
check with either a DBA or a system programmer (someone who knows a
great deal about your DBMS) to find out for certain.

134 Chapter 6: Advanced Retrieval Operations

Which query will execute faster? If you include a DISTINCT
in the query with an OR predicate, then it will return the same
result as the query that performs a union. However, if you are
using a DBMS that does not remove duplicates automatically
and you can live with the duplicate rows, then the query with
the OR predicate will be faster.

Note: If you want a union to retain all rows—including the du-
plicates—use UNION ALL instead of UNION.

Another common use of UNION is to pull together data from
different source tables into a single result table. Suppose, for
example, we wanted to obtain a list of books published by
Wiley and books that have been purchased by customer num-
ber 11. A query to obtain this data can be written as

SELECT author_last_first, title
FROM work, book, author, publisher
WHERE work.author_numb = author.author_numb
AND work.work_numb = book.work_numb
AND book.publisher_id = publisher.publisher_id
AND publisher_name = ‘Wiley’
UNION
SELECT author_last_first, title
FROM work, book, author, sale, volume
WHERE customer_numb = 11
AND work.author_numb = author.author_numb
AND work.work_numb = book.work_numb
AND book.isbn = volume.isbn
AND volume.sale_id = sale.sale_id;

To proess this query, the result of which appear in Figure 6-1,
the DBMS performs each separate SELECT and then com-
bines the individual result tables.

Performing Union
using Different
Source Tables

 Union 135

The SQL-92 standard introduced an alternative means of mak-
ing two tables union compatible: the CORRESPONDING
BY clause. This syntax can be used when the two source tables
have some columns by the names. However, the two source
tables need not have completely the same structure.

To use CORRESPONDING BY, you SELECT * from each of
the source tables but then indicate the columns to be used for
the union in the CORRESPONDING BY clause:

SELECT *
FROM table1
WHERE predicate
UNION CORRESPONDING BY (columns_for_union)
SELECT *
FROM table2
WHERE predicate

For example, the query to retrieve the names of all customers
who had ordered two specific books could be rewritten

SELECT *
FROM volume JOIN sale JOIN customer
WHERE isbn = ‘978-1-11111-128-1’
UNION CORRESPONDING BY (first_name, last_name)
SELECT *
FROM volume JOIN sale JOIN customer
WHERE isbn = ‘978-1-11111-128-1’;

Alternative SQL-
92 Union Syntax

 author_last_first | title
---------------------------------+-----------------------------------
 Barth, John | Giles Goat Boy
 Bronte, Charlotte | Jane Eyre
 Funke, Cornelia | Inkdeath
 Rand, Ayn | Anthem
 Rand, Ayn | Atlas Shrugged
 Twain, Mark | Adventures of Huckleberry Finn, The
 Twain, Mark | Tom Sawyer

Figure 6-1: The result of a union between result tables coming from different source tables

136 Chapter 6: Advanced Retrieval Operations

To process this query, the DBMS performs the two SELECTs,
returning all columns in the tables. However, when the time
comes to perform the union, it throws away all columns except
those in the parentheses following BY.

Among the most powerful database queries are those phrased
in the negative, such as “show me all the customers who have
no made a purchase in the past year.” This type of query is
particularly tricky because it is asking for data that are not in
the database. (The bookstore has data about customers who
have purchased, but not those who have not.) The only way to
perform such a query is to request the DBMS to use the dif-
ference operation.

The traditional way to perform a query that requires a differ-
ence is to use subquery syntax with the NOT IN operator. To
do so, the query takes the following general format:

SELECT column(s)
FROM table(s)
WHERE column NOT IN (SELECT column
 FROM table(s)
 WHERE predicate)

The outer query retrieves a list of all things of interest; the
subquery retrieves those that meet the necessary criteria. The
NOT IN operator then acts to include all those from the list
of all things that are not in the set of values returned by the
subquery.

As a first example, consider the query that retrieves all books
that are not in stock (no rows exist in volume):

SELECT title
FROM book, work
WHERE book.work_numb = work.work_numb
AND isbn NOT IN (SELECT isbn
 FROM volume);

Negative
Queries

Traditional SQL
Negative Queries

 Negative Queries 137

The outer query selects those rows in books (the list of all
things) whose ISBNs are not in volume (the list of things that
are). The result in Figure 6-2 contains the nine books that do
not appear at least once in the volume table.

As a second example, we will retrieve the titles of all books for
which we don’t have a new copy in stock, the result of which
can be found in Figure 6-3:

SELECT title
FROM work, book
WHERE work.work_numb = book.work_numb
AND book.isbn NOT IN (SELECT isbn
 FROM volume
 WHERE condition_code = 1);

In this case, the subquery contains a restrict predicate in its
WHERE clause, limiting the rows retrieved by the subquery
to new volumes (those with a condition code value of 1). The
outer query then copies a book to the result table if the ISBN
is not in the result of the subquery.

Notice that in both of the sample queries there is no explicit
syntax to make the two tables union compatible, something
required by the relational algebra difference operation. Howev-
er, the outer query’s WHERE clause contains a predicate that

title

 Jane Eyre
 Villette
 Hound of the Baskervilles
 Lost World, The
 Complete Sherlock Holmes
 Complete Sherlock Holmes
 Tom Sawyer
 Connecticut Yankee in King Arthur’s Court, A
 Dune

Figure 6-2: The result of the first SELECT that uses a NOT IN sub-
query

138 Chapter 6: Advanced Retrieval Operations

compares a column taken from the result of the outer query
with the same column taken from the result of the subquery.
These two columns represent the union compatible tables.

As a final example, consider a query that retrieves the names
of all customers who have not made a purchase after 1-Aug-
2013. When you are putting together a query of this type,
your first thought might be to write the query as follows:

SELECT first_name, last_name
FROM customer JOIN sale
WHERE sale_date < ‘1-Aug-2013’;

title | isbn
--+------------------
 Jane Eyre | 978-1-11111-111-1
 Jane Eyre | 978-1-11111-112-1
 Villette | 978-1-11111-113-1
 Hound of the Baskervilles | 978-1-11111-114-1
 Hound of the Baskervilles | 978-1-11111-115-1
 Lost World, The | 978-1-11111-116-1
 Complete Sherlock Holmes | 978-1-11111-117-1
 Complete Sherlock Holmes | 978-1-11111-118-1
 Tom Sawyer | 978-1-11111-120-1
 Connecticut Yankee in King Arthur’s Court, A | 978-1-11111-119-1
 Tom Sawyer | 978-1-11111-121-1
 Adventures of Huckleberry Finn, The | 978-1-11111-122-1
 Matarese Circle, The | 978-1-11111-123-1
 Bourne Supremacy, The | 978-1-11111-124-1
 Fountainhead, The | 978-1-11111-125-1
 Atlas Shrugged | 978-1-11111-127-1
 Kidnapped | 978-1-11111-128-1
 Treasure Island | 978-1-11111-130-1
 Sot Weed Factor, The | 978-1-11111-131-1
 Dune | 978-1-11111-134-1
 Foundation | 978-1-11111-135-1
 Last Foundation | 978-1-11111-137-1
 I, Robot | 978-1-11111-139-1
 Inkheart | 978-1-11111-140-1
 Anthem | 978-1-11111-144-1

Figure 6-3: The result of the second SELECT that uses a NOT IN subquery

 Negative Queries 139

This query, however, won’t work as you intend. First of all, the
join eliminates all customers who have no purchases in the
sale table, even though they should be included in the result.
Second, the retrieval predicate identifies those customers who
placed orders prior to 1-Aug-2013 but says nothing about who
may or may not have made a purchase after that date. Custom-
ers may have made a purchase prior to 1-Aug-2013, on 1-Aug-
2013, after 1-Aug-2013, or any combination of the preceding.

The typical way to perform this query correctly is to use a dif-
ference: the difference between all customers and those who
have made a purchase after 1-Aug-2013. The query—the result
of which can be found in Figure 6-4—appears as follows:

SELECT first_name, last_name
FROM customer
WHERE customer_numb NOT IN
 (SELECT customer_numb
 FROM sale
 WHERE sale_date >= ‘1-Aug-2013’)

first_name | last_name
------------+-----------
 Janice | Jones
 John | Doe
 Jane | Doe
 Helen | Brown
 Helen | Jerry
 Mary | Collins
 Peter | Collins
 Edna | Hayes
 Franklin | Hayes
 Peter | Johnson
 Peter | Johnson
 John | Smith

Figure 6-4: The result of the third query using a NOT IN subquery

140 Chapter 6: Advanced Retrieval Operations

The SQL-92 standard added an operator—EXCEPT—that
performs a difference operation directly between two union
compatible tables. Queries using EXCEPT look very much
like a union:

SELECT first_name, last_name
FROM customer
EXCEPT
SELECT first_name, last_name
FROM customer, sale
WHERE customer.customer_numb =
 sale.customer_numb
 AND sale_date >= ‘1-Aug-2013’;

or

SELECT *
FROM customer
EXCEPT CORRESPONDING BY (first_name, last_name)
SELECT *
FROM customer, sale
WHERE customer.customer_numb =
 sale.customer_numb
 AND sale_date >= ‘1-Aug-2013’;

Using the first syntax you include two complete SELECT state-
ments that are joined by the keyword EXCEPT. The SELECTs
must return union compatible tables. The first SELECT re-
trieves a list of all things (in this example, all customers); the
second retrieves the things that are (in this example, custom-
ers with sales after 1-Aug-2013). The EXCEPT operator then
removes all rows from the first table that appear in the second.

The second syntax retrieves all columns from both sources but
uses the CORRESPONDING BY clause to project the col-
umns to make the two tables union compatible.

The EXISTS operator check the number of rows returned by a
subquery. If the subquery contains one or more rows, then the
result is true and a row is placed in the result table; otherwise,
the result is false and no row is added to the result table.

Negative Queries
using the EXCEPT
Operator

The EXISTS
Operator

 The EXISTS Operator 141

For example, suppose the online bookstore wants to see the
titles of books that have been sold. To write the query using
EXISTS, you would use

SELECT title
FROM book t1, work
WHERE t1.work_numb = work.work_numb
AND EXISTS (SELECT *
 FROM volume
 WHERE t1.isbn = volume.isbn
 AND selling_price > 0);

The preceding is a correlated subquery. Rather than completing
the entire subquery and then turning to the outer query, the
DBMS processes the query in the following manner:

1. Look at a row in book.

2. Use the ISBN from that row in the subquery’s WHERE
clause.

3. If the subquery finds at least one row in volume with
the same ISBN, place a row in the intermediate result
table. Otherwise, do nothing.

4. Repeat steps 1 through 3 for all rows in the book table.

5. Join the intermediate result table to work.

6. Project the title column.

The important thing to recognize here is that the DBMS re-
peats the subquery for every row in book. It is this repeated ex-
ecution of the subquery that makes this a correlated subquery.

Note: Depending on your DBMS, you may get better performance
using 1 instead of *. This holds true for DB2, and just might work
with others.

When you are using the EXISTS operator, it doesn’t matter
what follows SELECT in the subquery. EXISTS is merely

142 Chapter 6: Advanced Retrieval Operations

checking to determine whether any rows are present in the
subquery’s result table. Therefore, it is easiest simply to use *
rather than to specify individual columns.How will this query
perform? It will probably perform better than a query that
joins book and volume, especially if the two tables are large. If
you were to write the query using an IN subquery—

SELECT title
FROM work, book
WHERE work.work_numb = book.work_numb
AND isbn IN (SELECT isbn
 FROM volume);

—you would be using an uncorrelated subquery that returned
a set of ISBNs that the outer query searches. The more rows
returned by the uncorrelated subquery, the closer the perfor-
mance of the EXISTS and IN queries will be. However, if the
uncorrelated subquery returns only a few rows, it will prob-
ably perform better than the query containing the correlated
subquery.

INTERSECT operates on the results of two independent ta-
bles and must be performed on union compatible tables. In
most cases, the two source tables are each generated by a SE-
LECT. INTERSECT is the relational algebra intersect opera-
tion, which returns all rows the two tables have in common. It
is the exact opposite of EXCEPT,

As a first example, let’s prepare a query that lists all of the rare
book store’s customers except those who have made purchases
with a total cost of more than $500. One way to write this
query is

SELECT first_name, last_name
FROM customer
EXCEPT
SELECT first_name, last_name
FROM customer JOIN sale
WHERE sale_total_amt > 500;

The INTERSECT
Operator

 Performing Arithmetic 143

Note that those customers who have made multiple purchases,
some of which are less than $500 and some of which are great-
er than $500 will be excluded from the result.

If we replace the EXCEPT with an INTERSECT—

SELECT first_name, last_name
FROM customer
INTERSECT
SELECT first_name, last_name
FROM customer JOIN sale
WHERE sale_total_amt > 500;

—the query returns the names of those who have made a pur-
chase of over $500. As you can see in Figure 6-5, the query
results are quite different.

Although SQL is not a complete programming language, it
can perform some calculations. SQL recognizes simple arith-
metic expressions involving column names and literal values.
(When you are working with embedded SQL, you can also
use host language variables.) For example, if you wanted to
compute a discounted price for a volume, the computation
could be written

asking_price *.9

Performing
Arithmetic

Output from the query using EXCEPT Output from the query using INTERSECT
first_name | last_name
------------+-----------
 Edna | Hayes
 Helen | Jerry
 Jane | Doe
 Jane | Smith
 Janice | Smith
 Jon | Jones
 Mary | Collins
 Peter | Collins

first_name | last_name
------------+-----------
 Franklin | Hayes
 Janice | Jones

Figure 6-5: Output of queries using EXCEPT and INTERSECT

144 Chapter 6: Advanced Retrieval Operations

UNION vs. EXCEPT vs. INTERSET
One way to compare the operation of UNION, EXCEPT, and INTERSECT is to look at
graphic representations, as in Figure 6-6. Each circle represents a table of data; the dark areas
where the images overlap represent the rows returned by a query using the respective operation.
As you can see, INTERSECT returns the area of overlap, EXCEPT returns everything except
the overlap, and UNION returns everything.

Intersect

Union

Except

Figure 6-6: Operation of the SQL INTERSECT, EXCEPT, and UNION operators

 UNION vs. EXCEPT vs. INTERSET 145

You could then incorporate this into a query as

SELECT isbn, asking_price,
 asking_price * .9 AS discounted_price
FROM volume
WHERE sale_id = 6;

The result of the preceding query can be found in Figure 6-7.

SQL recognizes the arithmetic operators in Table 6-1. Com-
pared with a general-purpose programming language, this list
is fairly limited. For example, there are no operators for expo-
nentiation or modulo division. This means that if you need
more sophisticated arithmetic manipulations, you will prob-
ably need to use embedded SQL to retrieve the data into host
language variables, and perform the arithmetic using the host
programming language.

 isbn | asking_price | discounted_price
-------------------+--------------+-----------------
 978-1-11111-146-1 | 30.00 | 27.000
 978-1-11111-122-1 | 75.00 | 67.500
 978-1-11111-130-1 | 150.00 | 135.000
 978-1-11111-126-1 | 110.00 | 99.000
 978-1-11111-139-1 | 200.00 | 180.000

Figure 6-7: Output of a query that includes a computed column

Arithmetic
Operators

 Table 6-1: SQL arithmetic operations

Operator Meaning Example
+ Unary +: Preserve the sign of the value +balance

- Unary -: Change the sign of the value -balance

* Multiplication: Multiply two values balance * tax_rate

/ Division: Divide one value by another balance / numb_items

+ Addition: Add two values balance + new_charge

146 Chapter 6: Advanced Retrieval Operations

The rows in Table 6-1 appear in the general order of the opera-
tors’ precedence. (Both unary operators have the same prece-
dence, followed by multiplication and division. Addition and
subtraction have the lowest precedence.) This means when
multiple operations appear in the same expression, the DBMS
evaluates them according to their predetermined order. For ex-
ample, because the unary operators have the same precedence,
for the expression

-balance * tax_rate

the DBMS will first change the sign of the value in the bal-
ance column and then multiply it by the value in the tax_rate
column.

When more than one operator of the same precedence appears
in the same expression, they are evaluated from left to right.
Therefore, in the expression

balance + new_charges – payments

the DBMS will first add the new charges to the balance and
then subtract the payments from the sum.

Sometimes the default precedence can produced unexpected
results. Assume that you want to evaluate the expression

12 / 3 * 2

When the operators are evaluated from left to right, the DBMS
divides 12 by 3 and then multiplies the 4 by 2, producing an 8.
However, what if you really wanted to perform the multiplica-
tion first, followed by the division? (The result would be 2.)

To change the order of evaluation, you use parentheses to sur-
round the operations that should be performed first:

12 / (3 * 2)

Operator
Precedence

 String Manipulation 147

Just as it does when you use parentheses to change the order
of evaluation of logical operators, whenever the DBMS sees
a set of parentheses, it knows to evaluate what is inside the
parentheses first, regardless of the precedence of the operators.

Keep in mind that you can nest one set of parentheses within
another:

12 / (3 * (1 + 2))

In this example, the DBMS evaluates the innermost parenthe-
ses first (the addition), moves to the outer set of parentheses
(the multiplication), and finally evaluates the division.

There is no limit to how deep you can nest parentheses. How-
ever, be sure that each opening parenthesis is paired with a
closing parenthesis.

The SQL core standard contains one operator and several
functions for manipulating character strings.

As you saw in Chapter 2 when we were discussing joins using
concatenated foreign keys, the concatenation operator—||—
pastes one string on the end of another. It can be used for
format output as well as concatenate keys for searching. For
example, the rare book store could get an alphabetical list of
customer names formatted as last, first (see Figure 6-8) with:

SELECT last_name || ‘, ‘ || first_name
 AS cat_name
FROM customer
ORDER BY last_name, first_name;

Notice that the concatenation includes a literal string to place
the comma and space between the last and first names. The
concatenation operation knows nothing about normal Eng-
lish spacing; it simply places one string on the end of another.
Therefore, it is up to the user to include any necessary spacing
and punctuation.

Concatenation

String
Manipulation

148 Chapter 6: Advanced Retrieval Operations

When a DBMS evaluates a literal string against stored data, it
performs a case-sensitive search. This means that upper- and
lowercase letters are different: ‘JONES’ is not the same as
‘Jones.’ You can get around such problems using the UPPER
and LOWER functions to convert stored data to a single case.

For example, assume that someone at the rare book store is
not certain of the case in which customer names are stored. To
perform a case-insensitive search for customers with a specific
last name, the person could use

SELECT customer_numb, first_name, last_name
FROM customer
WHERE UPPER(last_name) = ‘SMITH’;

The result—

customer_numb | first_name | last_name
---------------+------------+-----------
 5 | Jane | Smith
 6 | Janice | Smith
 15 | John | Smith

cat_name

 Brown, Helen
 Collins, Mary
 Collins, Peter
 Doe, Jane
 Doe, John
 Hayes, Edna
 Hayes, Franklin
 Jerry, Helen
 Johnson, Peter
 Johnson, Peter
 Jones, Janice
 Jones, Jon
 Smith, Jane
 Smith, Janice
 Smith, John

Figure 6-8: The result of a concatenation

UPPER and LOWER

 String Manipulation 149

—includes rows for customers whose last names are made up
of the characters S-M-I-T-H, regardless of case. The UPPER
function converts the data stored in the database to uppercase
before making the comparison in the WHERE predicate. You
obtain the same effect by using LOWER instead of UPPER.

The TRIM function removes leading and/or trailing characters
from a string. The various syntaxes for this function and their
effects are summarized in Table 6-2.

You can place TRIM in any expression that contains a string.
For example, if you are using characters to store a serial num-
ber with leading 0s (for example, 0012), you can strip those 0s
when performing a search:

SELECT item_description
FROM items
WHERE TRIM (Leading ‘0’ FROM item_numb) = ‘25’

The SUBSTRING function extracts portions of a string. It has
the following general syntax:

SUBSTRING (source_string, FROM starting_posi-
tion FOR number_of_characters)

TRIM

Table 6-2: The various forms of the SQL TRIM function

Function Result Comments
TRIM (‘ word ‘) ‘word’ Default: removes both leading

and trailing blanks
TRIM (BOTH ‘ ‘ FROM ‘ word ‘) ‘word ’ Removes leading and trailing

blanks
TRIM (LEADING ‘ ‘ FROM ‘ word ‘) ‘word ’ Removes leading blanks
TRIM (TRAILING ‘ ‘ FROM ‘ word ‘) ‘ word’ Removes trailing blanks
TRIM (BOTH ‘*’ FROM ‘*word*’) ‘word’ Removes leading and trailing *

SUBSTRING

150 Chapter 6: Advanced Retrieval Operations

Mixed versus Single Case in Stored
Data
There is always the temptation to require that text data be
stored as all uppercase letters to avoid the need to use UPPER
and LOWER in queries. For the most part, this isn’t a good
idea. First, text in all uppercase is difficult to read. Consider
the following two lines of text:

WHICH IS EASIER TO READ? ALL CAPS OR MIXED
CASE?

Which is easier to read? All caps or mixed
case?

Our eyes have been trained to read mixed upper- and lower-
case letters. In English, for example, we use letter case cues to
locate the start of sentences and to identify proper nouns. Text
in all caps removes those cues, making the text more difficult
to read. The “sameness” of all uppercase also makes it more dif-
ficult to differentiate letters and thus to understand the words.

For example, if the rare book store wanted to extract the first
character of a customer’s first name, the function call would
be written

SUBSTRING (first_name FROM 1 FOR 1)

The substring being created begins at the first character of the
column and is one character long.

You could then incorporate this into a query with

SELECT SUBSTRING (first_name FROM 1 FOR 1)
 || ‘. ‘ || last_name AS whole_name
FROM customer;

 Date and Time Manipulation 151

The results can be found in Figure 6-9.

SQL DBMSs provide column data types for dates and times.
When you store data using these data types, you make it pos-
sible for SQL to perform chronological operations on those
values. You can, for example, subtract two dates to find out
the number of days between them or add an interval to a date
to advance the date a specified number of days. In this section
you will read about the types of date manipulations that SQL
provides along with a simple way to get current date and time
information from the computer.

The core SQL standard specifies four column data types that
relate to dates and times (jointly referred to as datetime data
types):

◊ DATE: A date only

◊ TIME: A time only

◊ TIMESTAMP: A combination of date and time

◊ INTERVAL: The interval between two of the preced-
ing data types

As you will see in the next two sections, these can be combined
in a variety of ways.

To help make date and time manipulations easier, SQL lets
you retrieve the current date and/or time with the following
three keywords:

◊ CURRENT_DATE: Returns the current system date

◊ CURRENT_TIME: Returns the current system time

◊ CURRENT_TIMESTAMP: Returns a combination of
the current system date and time

Date and Time
Manipulation

Date and Time
System Values

152 Chapter 6: Advanced Retrieval Operations

For example, to see all sales made on the current day, someone
at the rare book store uses the following query:

SELECT first_name, last_name, sale_id
FROM customer JOIN sale
WHERE sale_date = CURRENT_DATE;

You can also use these system date and time values when per-
forming data entry, as you will read about beginning in Chap-
ter 8.

SQL dates and times can participate in expressions that sup-
port queries such as “how many days/months/years in be-
tween?” and operations such as “add 30 days to the invoice
date.” The types of date and time manipulations available with
SQL are summarized in Table 6-3. Unfortunately, expressions
involving these operations aren’t as straightforward as they
might initially appear. When you work with date and time
intervals, you must also specify the portions of the date and/or
time that you want.

whole_name

 J. Jones
 J. Jones
 J. Doe
 J. Doe
 J. Smith
 J. Smith
 H. Brown
 H. Jerry
 M. Collins
 P. Collins
 E. Hayes
 F. Hayes
 P. Johnson
 P. Johnson
 J. Smith

Figure 6-9: Output of a query including the SUBSTRING function

Date and Time
Interval Operations

 Mixed versus Single Case in Stored Data 153

Each datetime column will include a selection of the following
fields:

◊ MILLENNIUM

◊ CENTURY

◊ DECADE

◊ YEAR

◊ QUARTER

◊ MONTH

◊ DAY

◊ HOUR

◊ MINUTE

◊ SECOND

◊ MILLISECONDS

◊ MICROSECONDS

Table 6-3: Datetime arithmetic

Expression Result
DATE ± integer DATE

DATE ± time_interval TIMESTAMP

DATE + time TIMESTAMP

INVERVAL ± INTERVAL INTERVAL

TIMESTAMP ± INTERVAL TIMESTAMP

TIME ± time_interval TIME

DATE – DATE integer

TIME – TIME INTERVAL

integer * INTERVAL INTERVAL

154 Chapter 6: Advanced Retrieval Operations

When you write an expression that includes an interval, you
can either indicate that you want the interval expressed in
one of those fields (for example, DAY for the number of days
between two dates) or specify a range of fields (for example,
YEAR TO MONTH to give you an interval in years and
months). The start field (the first field in the range) can be
only YEAR, DAY, HOUR, or MINUTE. The second field in
the range (the end field) must be a chronologically smaller unit
than the start field.

Note: There is one exception to the preceding rule. If the start field
is YEAR, then the end field must be MONTH.

To see the number of years between a customer’s orders and
the current date, someone at the rare book store might use

SELECT CURRENT_DATE – sale_date YEAR
FROM sale
WHERE customer_numb = 6;

To see the same interval expressed in years and months, the
query would be rewritten as

SELECT CURRENT_DATE – sale_date YEAR TO MONTH
FROM sale
WHERE customer_numb = 6;

To add 7 days to an order date to give a customer an approxi-
mate delivery date, someone at the rare book store would write
a query like

SELECT sale_date + INTERVAL ‘7’ DAY
FROM sale
WHERE sale_id = 12;

Notice that when you include an interval as a literal, you pre-
cede it with the keyword INTERVAL, put the interval’s value
in single quotes, and follow it with the datetime unit in which
the interval is expressed.

 Mixed versus Single Case in Stored Data 155

The SQL OVERLAPS operator is a special-purpose keyword
that returns true or false, depending on whether two date-
time intervals overlap. The operator has the following general
syntax:

SELECT (start_date1, end_date1)
OVERLAPS (start_date2, end_date2)

An expression such as

SELECT (DATE ’16-Aug-2013’, DATE ’31-Aug-2013’)
OVERLAPS
(DATE ’18-Aug-2013’, DATE ‘9-Sep-2013’);

produces the following result:

overlaps

t

Notice that the dates being compared are preceded by the key-
word DATE and surrounded by single quotes. Without the
specification of the type of data in the operation, SQL doesn’t
know how to interpret what is within the quotes.

The two dates and/or times that are used to specify an interval
can be either DATE/TIME/TIMESTAMP values or they can
be intervals For example, the following query checks to see
whether the second range of dates is within 90 days of the first
start date and returns false:

SELECT (DATE ’16-Aug-2013’, INTERVAL ’90 DAYS’)
OVERLAPS
(DATE ’12-Feb-2013’, DATE ‘4-Jun-2013’);

Note: Because the OVERLAPS operator returns a Boolean, it can
be used as the logical expression in a CASE statement.

OVERLAPS

156 Chapter 6: Advanced Retrieval Operations

The EXTRACT operator pulls out a part of a date and/or
time. It has the following general format:

EXTRACT (datetime_field FROM datetime_value)

For example, the query

SELECT EXTRACT (YEAR FROM CURRENT_DATE);

returns the current year.

In addition to the datetime fields you saw earlier in this sec-
tion, EXTRACT also can provide the day of the week (DOW)
and the day of the year (DOY).

The SQL CASE expression, much like a CASE in a general
purpose programming language, allows a SQL statement to
pick from among a variety of actions based on the truth of
logical expressions. Like arithmetic and string operations, the
CASE statement generates a value to be displayed and there-
fore is part of the SELECT clause.

The CASE expression has the following general syntax:

CASE
 WHEN logical condition THEN action
 WHEN logical condition THEN action
 :
 :
 ELSE default action
END

It fits within a SELECT statement with the structure found in
Figure 6-10.

The CASE does not necessarily need to be the last item in
the SELECT clause. The END keyword can be followed by a
comma and other columns or computed quantities.

EXTRACT

CASE
Expressions

 CASE Expressions 157

As an example, assume that the rare book store wants to offer
discounts to users based on the price of a book. The more the
asking price for the book, the greater the discount. To include
the discounted price in the output of a query, you could use

SELECT isbn, asking_price,
CASE
 WHEN asking_price < 50
 THEN asking_price * .95
 WHEN asking_price < 75
 THEN asking_price * .9
 WHEN asking_price < 100
 THEN asking_price * .8
 ELSE asking_price * .75
END
FROM volume;

The preceding query displays the ISBN and the asking price of
a book. It then evaluates the first CASE expression following
WHEN. If that condition is true, the query performs the com-
putation, displays the discounted price, and exits the CASE.
If the first condition is false, the query proceeds to the second
WHEN, and so on. If none of the conditions are true, the que-
ry executes the action following ELSE. (The ELSE is optional.)

SELECT column1, column2,
CASE
WHEN logical condition THEN action
 WHEN logical condition THEN action
 :
 :
 ELSE default action
END
FROM table(s)
WHERE predicate;

Figure 6-10: Using CASE within a SELECT statement

158 Chapter 6: Advanced Retrieval Operations

The first portion of the output of the example query appears
in Figure 6-11. Notice that the value returned by the CASE
construct appears in a column named case. You can, however,
rename the computed column just as you would rename any
other computed column by adding AS followed by the desired
name.

The output of the modified statement—

SELECT isbn, asking_price,
CASE
 WHEN asking_price < 50
 THEN asking_price * .95
 WHEN asking_price < 75
 THEN asking_price * .9
 WHEN asking_price < 100
 THEN asking_price * .8
 ELSE asking_price * .75
END AS discounted_price
FROM volume;

—can be found in Figure 6-12.

 CASE Expressions 159

 isbn | asking_price | case
-------------------+--------------+----------
 978-1-11111-111-1 | 175.00 | 131.2500
 978-1-11111-131-1 | 50.00 | 45.000
 978-1-11111-137-1 | 80.00 | 64.000
 978-1-11111-133-1 | 300.00 | 225.0000
 978-1-11111-142-1 | 25.95 | 2465.25
 978-1-11111-146-1 | 22.95 | 2180.25
 978-1-11111-144-1 | 80.00 | 64.000
 978-1-11111-137-1 | 50.00 | 45.000
 978-1-11111-136-1 | 75.00 | 60.000
 978-1-11111-136-1 | 50.00 | 45.000
 978-1-11111-143-1 | 25.00 | 2375.00
 978-1-11111-132-1 | 15.00 | 1425.00
 978-1-11111-133-1 | 18.00 | 1710.00
 978-1-11111-121-1 | 110.00 | 82.5000
 978-1-11111-121-1 | 110.00 | 82.5000
 978-1-11111-121-1 | 110.00 | 82.5000

Figure 6-11: Default output of a SELECT statement containing
CASE

 isbn | asking_price | discounted_price
-------------------+--------------+-----------------
 978-1-11111-111-1 | 175.00 | 131.2500
 978-1-11111-131-1 | 50.00 | 45.000
 978-1-11111-137-1 | 80.00 | 64.000
 978-1-11111-133-1 | 300.00 | 225.0000
 978-1-11111-142-1 | 25.95 | 2465.25
 978-1-11111-146-1 | 22.95 | 2180.25
 978-1-11111-144-1 | 80.00 | 64.000
 978-1-11111-137-1 | 50.00 | 45.000
 978-1-11111-136-1 | 75.00 | 60.000
 978-1-11111-136-1 | 50.00 | 45.000
 978-1-11111-143-1 | 25.00 | 2375.00
 978-1-11111-132-1 | 15.00 | 1425.00
 978-1-11111-133-1 | 18.00 | 1710.00
 978-1-11111-121-1 | 110.00 | 82.5000
 978-1-11111-121-1 | 110.00 | 82.5000
 978-1-11111-121-1 | 110.00 | 82.5000

Figure 6-12: CASE statement output using a renamed column for the
CASE value

7

161

The queries you have seen so far in this book for the most part
operate on one row at a time. However, SQL also includes
a variety of keywords and functions that work on groups of
rows—either an entire table or a subset of a table. In this chap-
ter you will read about what you can do to and with grouped
data.

Note: Many of the functions that you will be reading about in this
chapter are often referred to as SQL’s OLAP (Online Analytical
Processing) functions.

The basic SQL set, or aggregate, functions (summarized in Table
7-1) compute a variety of measures based on values in a col-
umn in multiple rows. The result of using one of these set
functions is a computed column that appears only in a result
table.

The basic syntax for a set function is

Function_name (input_argument)

You place the function call following SELECT, just as you
would an arithmetic calculation. What you use for an input
argument depends on which function you are using.

Working with Groups
of Rows

Set Functions

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50007-8

162 Chapter 7: Working with Groups of Rows

Table 7-1: SQL set functions

Function Meaning
Functions implemented by most DBMSs
COUNT Returns the number of rows
SUM Returns the total of the values in a column from a group of rows
AVG Returns the average of the values in a column from a group of rows
MIN Returns the minimum value in a column from among a group of

rows
MAX Returns the maximum value in a column from among a group of

rows
Less widely implemented functions
COVAR_POP Returns a population’s covariance
COVAR_SAMP Returns the covariance of a sample
REGR_AVGX Returns the average of an independent variable
REGR_AVGY Returns the average of a dependent variable
REGR_COUNT Returns the number of independent/dependent variable pairs

that remain in a population after any rows that have null in either
variable have been removed

REGR_INTERCEPT Returns the Y-intercept of a least-squares-fit linear equation
REGR_R2 Returns the square of the correlation coefficient R
REGR_SLOPE Returns the slope of a least-squares-fit linear equation
REGR_SXX Returns the sum of the squares of the values of an independent

variable
REGR_SXY Returns the product of pairs of independent and dependent

variable values
REGR_SYY Returns the sum of the square of the values of a dependent variable
STDDEV_POP Returns the standard deviation of a population
STDDEV_SAMP Returns the standard deviation of a sample
VAR_POP Returns the variance of a population
VAR_SAMP Returns the variance of a sample

 Set Functions 163

Note: For the most part, you can count on a SQL DBMS support-
ing COUNT, SUM, AVG, MIN, and MAX. In addition, many
DBMSs provide additional aggregate functions for measures such
as standard deviation and variance. Consult the DBMSs docu-
mentation for details.

The COUNT function is somewhat different from other SQL
set functions in that instead of making computations based on
data values, it counts the number of rows in a table. To use it,
you place COUNT (*) in your query. COUNT’s input argu-
ment is always an asterisk:

SELECT COUNT (*)
FROM volume;

The response appears as

count

 71

To count a subset of the rows in a table, you can apply a
WHERE predicate:

SELECT COUNT (*)
FROM volume
WHERE isbn = ‘978-1-11111-141-1’;

The result—

Count

 7

—tells you that the store has sold or has in stock seven books
with an ISBN of 978-1-11111-141-1. It does not tell you
how many copies of the book are in stock or how many were
purchased during any given sale because the query is simply
counting the number of rows in which the ISBN appears. It
does not take into account data in any other column.

COUNT

164 Chapter 7: Working with Groups of Rows

Alternatively, the store could determine the number distinct
items contained in a specific order with a query like

SELECT COUNT (*)
FROM volume
WHERE sale_id = 6;

When you use * as an input parameter to the COUNT func-
tion, the DBMS includes all rows. However, if you wish to
exclude rows that have nulls in a particular column, you can
use the name of the column as an input parameter. To find out
how many volumes are currently in stock, the rare book store
could use

SELECT COUNT (selling_price)
FROM volume;

If every row in the table has a value in the selling_date col-
umn, then COUNT (selling_date) is the same as COUNT
(*). However, if any rows contain null, then the count will
exclude those rows. There are 71 rows in the volume table.
However, the count returns a value of 43, indicating that 43
volumes have not been sold and therefore are in stock.

You can also use COUNT to determine how many unique
values appear in any given column by placing the keyword
DISTINCT in front of the column name used as an input
parameter. For example, to find out how many different books
appear in the volume table, the rare book store would use

SELECT COUNT (DISTINCT isbn)
FROM volume;

The result—27—is the number of unique ISBNs in the table.

If someone at the rare book store wanted to know the total
amount of an order so that value could be inserted into the
sale table, then the easiest way to obtain this value is to add up
the values in the selling_price column:

SUM

 Set Functions 165

SELECT SUM (selling_price)
FROM volume
WHERE sale_id = 6;

The result appears as

 sum

 505.00

In the preceding example, the input argument to the SUM
function was a single column. However, it can also be an arith-
metic operation. For example, to find the total of a sale if the
books are discounted 15 percent, the rare book store could use
the following query:

SELECT SUM (selling_price * .85)
FROM volume
WHERE sale_id = 6;

The result—

 sum

 429.2500

—is the total of the multiplication of the selling price times
the selling percentage after the discount.

If we needed to add tax to a sale, a query could then multiply
the result of the SUM by the tax rate:

SELECT SUM (selling_price * .85) * 1.0725
FROM volume
WEHRE sale_id = 6;

producing a final result of 429.2500.

Note: Rows that contain nulls in any column involved in a SUM
are excluded from the computation.

166 Chapter 7: Working with Groups of Rows

The AVG function computes the average value in a column.
For example, to find the average price of a book, someone at
the rare book store could use a query like

SELECT AVG (selling_price)
FROM volume;

The result is 68.2313953488372093 (approximately $68.23).

Note: Rows that contain nulls in any column involved in an AVG
are excluded from the computation.

The MIN and MAX functions return the minimum and maxi-
mum values in a column or expression. For example, to see
the maximum price of a book, someone at the rare book store
could use a query like

SELECT MAX (selling_price)
FROM volume;

The result is a single value: $205.00.

The MIN and MAX functions are not restricted to columns or
expression that return numeric values. If someone at the rare
book store wanted to seethe latest date on which a sale had
occurred, then

SELECT MAX (sale_date)
FROM volume;

returns the chronologically latest date (in our particular sam-
ple data, 01-Sep-13).

By the same token, if you use

SELECT MIN (last_name)
FROM customer;

you will receive the alphabetically first customer last name
(Brown).

AVG

MIN and MAX

 Changing Data Types: CAST 167

Set functions can also be used in WHERE predicates to gener-
ate values against which stored data can be compared. Assume,
for example, that someone at the rare book store wants to see
the titles and cost of all books that were sold that cost more
than the average cost of a book.

The strategy for preparing this query is to use a subquery that
returns the average cost of a sold book and to compare the cost
of each book in the volume table to that average:

SELECT title, selling_price
FROM work, book, volume
WHERE work.work_numb = book.work_numb
AND book.isbn = volume.isbn
AND selling_price > (SELECT AVG (selling_price)
 FROM volume);

Although it would seem logical that the DBMS would calcu-
late the average once and use the result of that single computa-
tion to compare to rows in the volume, that’s not what happens.
This is actually an uncorrelated subquery; the DBMS recalcu-
lates the average for every row in volume. As a result, a query
of this type will perform relatively slowly on large amounts of
data. You can find the result in Figure 7-1.

One of the problems with the output of the SUM and AVG
functions that you saw in the preceding section of this chapter
is that they give you no control over the precision (number of
places to the right of the decimal point) of the output. One
way to solve that problem is to change the data type of the
result to something that has the number of decimal places you
want using the CAST function.

CAST requires that you know a little something about SQL
data types. Although we will cover them in depth in Chapter
8, a brief summary can be found in Table 7-2.

Set Functions in
Predicates

Changing Data
Types: CAST

168 Chapter 7: Working with Groups of Rows

title | selling_price
--+---------------
 Jane Eyre | 175.00
 Giles Goat Boy | 285.00
 Anthem | 76.10
 Tom Sawyer | 110.00
 Tom Sawyer | 110.00
 Adventures of Huckleberry Finn, The | 75.00
 Treasure Island | 120.00
 Fountainhead, The | 110.00
 I, Robot | 170.00
 Fountainhead, The | 75.00
 Giles Goat Boy | 125.00
 Fountainhead, The | 75.00
 Foundation | 75.00
 Treasure Island | 150.00
 Lost in the Funhouse | 75.00
 Hound of the Baskervilles | 75.00

Figure 7-1: Output of a query that uses a set function in a subquery

Table 7-2: SQL data types for use with the CAST function

Data Type Arguments Explanation
DECIMAL (n, m) n: Total length of number, including

decimal point;
m: number of digits to the right of the
decimal point

A signed floating point
number

INT A signed integer
VARCHAR (n) n: Maximum number of characters

allowed
A text value that can be
as large as the number of
characters actually stored, up
to the maximum specified

CHAR (n) n: Maximum number of characters
allowed

A fixed-length character value

DATE A date
TIME A time
TIMESTAMP A combination date and time

value

 Grouping Queries 169

CAST has the general syntax

CAST (source_data AS new_data_type)

To restrict the output of the average price of books to a preci-
sion of 2, you could then use

CAST (AVG (selling_price) AS DECIMAL (10,2))

and incorporate it into a query using

SELECT CAST (AVG (selling_price) AS DECIMAL
(10,2))
FROM volume;

The preceding specifies that the result should be displayed as a
decimal number with a maximum of 10 characters (including
the decimal point) with two digits to the right of the decimal
point. The result is 68.23, a more meaningful currency value
than the original 68.2313953488372093.

CAST also can be used, for example, to convert a string of
characters into a date. The expression

CAST (’10-Aug-2013’ AS DATE)

returns a datetime value.

Valid conversions for commonly used data types are represent-
ed by the light gray boxes in Table 7-3. Those conversions that
may be possible if certain conditions are met are represented
by the dark gray boxes. In particular, if you are attempting to
convert a character string into a shorter string, the result will
be truncated.

SQL can group rows based on matching values in specified col-
umns and computer summary measures for each group. When
these grouping queries are combined with the set functions
that you saw earlier in this chapter, SQL can provide simple
reports without requiring any special programming.

Grouping
Queries

170 Chapter 7: Working with Groups of Rows

To form a group, you add a GROUP BY clause to a SELECT
statement, followed by the columns whose values are to be
used to form the groups. All rows whose values match on those
columns will be placed in the same group.

For example, if someone at the rare book store wants to see
how many copies of each book edition have been sold, he or
she can use a query like

SELECT isbn, COUNT(*)
FROM volume
GROUP BY isbn
ORDER BY isbn;

Table 7-3: Valid data type conversion for commonly used data types (light gray boxes are valid; dark gray
boxes may be valid)

Original
data type

New Data Type

Integer
or fixed
point

Floating
point

Variable
length
character

Fixed
length
character

Date Time Timestamp

Integer or
fixed point
Floating
point

Character
(fixed or
variable
length)
Date
Time
Timestamp

Forming Groups

 Grouping Queries 171

The query forms groups by matching ISBNs. It displays the
ISBN and the number of rows in each group (see Figure 7-2).

There is a major restriction that you must observe with a group-
ing query: You can display values only from columns that are
used to form the groups. As an example, assume that someone
at the rare book store wants to see the number of copies of each
title that have been sold. A working query could be written

 isbn | count
-------------------+-------
 978-1-11111-111-1 | 1
 978-1-11111-115-1 | 1
 978-1-11111-121-1 | 3
 978-1-11111-122-1 | 1
 978-1-11111-123-1 | 2
 978-1-11111-124-1 | 1
 978-1-11111-125-1 | 1
 978-1-11111-126-1 | 3
 978-1-11111-127-1 | 5
 978-1-11111-128-1 | 1
 978-1-11111-129-1 | 1
 978-1-11111-130-1 | 4
 978-1-11111-131-1 | 4
 978-1-11111-132-1 | 3
 978-1-11111-133-1 | 5
 978-1-11111-135-1 | 1
 978-1-11111-136-1 | 6
 978-1-11111-137-1 | 4
 978-1-11111-138-1 | 4
 978-1-11111-139-1 | 4
 978-1-11111-140-1 | 1
 978-1-11111-141-1 | 7
 978-1-11111-142-1 | 1
 978-1-11111-143-1 | 1
 978-1-11111-144-1 | 1
 978-1-11111-145-1 | 3
 978-1-11111-146-1 | 2

Figure 7-2: Counting the members of a group

172 Chapter 7: Working with Groups of Rows

SELECT title, COUNT (*)
FROM volume, book, work
WHERE volume.isbn = book.isbn
AND book.work_numb = work.work_numb
GROUP BY title
ORDER BY title;

The result appears in Figure 7-3. The problem with this ap-
proach is that titles may duplicate. Therefore, it would be
better to group by the work number. However, given the re-
striction as to what can be displayed, you wouldn’t be able to
display the title.

The solution is to make the DBMS do a bit of extra work:
Group by both the work number and the title. The DBMS will

 title | count
---+-------
 Adventures of Huckleberry Finn, The | 1
 Anathem | 1
 Anthem | 4
 Atlas Shrugged | 5
 Bourne Supremacy, The | 1
 Cryptonomicon | 2
 Foundation | 11
 Fountainhead, The | 4
 Giles Goat Boy | 5
 Hound of the Baskervilles | 1
 I, Robot | 4
 Inkdeath | 7
 Inkheart | 1
 Jane Eyre | 1
 Kidnapped | 2
 Last Foundation | 4
 Lost in the Funhouse | 3
 Matarese Circle, The | 2
 Snow Crash | 1
 Sot Weed Factor, The | 4
 Tom Sawyer | 3
 Treasure Island | 4

Figure 7-3: Grouping rows by book title

 Grouping Queries 173

then form groups that have the same values in both columns.
There is only one title per work number, so the result will be
the same as that in Figure 7-3 if there are no duplicated titles.
We therefore gain the ability to display the title when grouping
by the work number. The query could be written

SELECT work.work_numb title, COUNT (*)
FROM volume, book, work
WHERE volume.isbn = book.isbn
AND book.work_numb = work.work_numb
GROUP BY work_numb, title
ORDER BY title;

As you can see in Figure 7-4, the major difference between the
two results is the appearance of the work number column.

 work_numb | title | count
-----------+--+-------
 9 | Adventures of Huckleberry Finn, The | 1
 28 | Anathem | 1
 30 | Anthem | 4
 14 | Atlas Shrugged | 5
 12 | Bourne Supremacy, The | 1
 31 | Cryptonomicon | 2
 23 | Foundation | 11
 13 | Fountainhead, The | 4
 20 | Giles Goat Boy | 5
 3 | Hound of the Baskervilles | 1
 25 | I, Robot | 4
 27 | Inkdeath | 7
 26 | Inkheart | 1
 1 | Jane Eyre | 1
 16 | Kidnapped | 2
 24 | Last Foundation | 4
 19 | Lost in the Funhouse | 3
 11 | Matarese Circle, The | 2
 29 | Snow Crash | 1
 18 | Sot Weed Factor, The | 4
 8 | Tom Sawyer | 3
 17 | Treasure Island | 4

Figure 7-4: Grouped output using two grouping columns

174 Chapter 7: Working with Groups of Rows

You can use any of the set functions in a grouping query. For
example, someone at the rare book store could generate the
total cost of all sales with

SELECT sale_id, SUM (selling_price)
FROM volume
GROUP BY sale_id;

The result can be seen in Figure 7-5. Notice that the last line of
the result has nulls for both output values. This occurs because
those volumes that haven’t been sold have null for the sale ID
and selling price. If you wanted to clean up the output, remov-
ing rows with nulls, you could add a WHERE clause:

SELECT sale_id, SUM (selling_price)
FROM volume
WHERE NOT (sale_id IS NULL)
GROUP BY sale_id;

 sale_id | sum
---------+--------
 1 | 510.00
 2 | 125.00
 3 | 58.00
 4 | 110.00
 5 | 110.00
 6 | 505.00
 7 | 80.00
 8 | 130.00
 9 | 50.00
 10 | 125.00
 11 | 200.00
 12 | 225.00
 13 | 25.95
 14 | 80.00
 15 | 100.00
 16 | 130.00
 17 | 100.00
 18 | 100.00
 19 | 95.00
 20 | 75.00

Figure 7-5: The result of using a set function in a grouping query

 Grouping Queries 175

Including the title as part of the GROUP BY clause was a trick
to allow us to display the title in the result. However, more
commonly we use multiple columns to created nested groups.
For example, if someone at the rare book store wanted to see
the total cost of purchases made by each customer per day, the
query could be written

SELECT customer.customer_numb, sale_date,
 SUM (selling_price)
FROM customer, sale, volume
WHERE customer.customer_numb =
 sale.customer_numb
AND sale.sale_id = volume.sale_id
GROUP BY customer.customer_numb, sale_date;

Because the customer_numb column is listed first in the
GROUP BY clause, its values are used to create the outer
groupings. The DBMS then groups orders by date within cus-
tomer numbers. The default output (see Figure 7-6) is some-
what hard to interpret because the outer groupings are not in
order. However, if you add an ORDER BY clause to sort the
output by customer number, you can see the ordering by date
within each customer (see Figure 7-7).

The grouping queries you have seen to this point include all
the rows in the table. However, you can restrict the rows that
are included in grouped output using one of two strategies:

◊ Restrict the rows before groups are formed.

◊ Allow all groups to be formed and then restrict the
groups.

The first strategy is performed with the WHERE clause in the
same way we have been restricting rows to this point. The sec-
ond requires a HAVING clause, which contains a predicate
that applies to groups after they are formed.

Restricting Groups

176 Chapter 7: Working with Groups of Rows

 customer_numb | sale_date | sum
---------------+--------------------+--------
 1 | 15-JUN-13 00:00:00 | 58.00
 6 | 01-SEP-13 00:00:00 | 95.00
 2 | 01-SEP-13 00:00:00 | 75.00
 5 | 22-AUG-13 00:00:00 | 100.00
 2 | 25-JUL-13 00:00:00 | 130.00
 1 | 25-JUL-13 00:00:00 | 100.00
 8 | 07-JUL-13 00:00:00 | 50.00
 5 | 07-JUL-13 00:00:00 | 130.00
 12 | 05-JUL-13 00:00:00 | 505.00
 8 | 05-JUL-13 00:00:00 | 80.00
 6 | 10-JUL-13 00:00:00 | 80.00
 2 | 10-JUL-13 00:00:00 | 25.95
 6 | 30-JUN-13 00:00:00 | 110.00
 9 | 10-JUL-13 00:00:00 | 200.00
 10 | 10-JUL-13 00:00:00 | 225.00
 4 | 30-JUN-13 00:00:00 | 110.00
 11 | 10-JUL-13 00:00:00 | 125.00
 11 | 12-JUL-13 00:00:00 | 100.00
 1 | 05-JUN-13 00:00:00 | 125.00
 1 | 29-MAY-13 00:00:00 | 510.00

Figure 7-6: Group by two columns (default row order)

Assume, for example, that someone at the rare book store
wants to see the number of books ordered at each price over
$75. One way to write the query is to use a WHERE clause to
throw out rows with a selling price less than or equal to $75:

SELECT selling_price, count (*)
FROM volume
WHERE selling_price > 75
GROUP BY selling_price;

Alternatively, you could let the DBMS form the groups and
then throw out the groups that have a cost less than or equal to
$75 with a HAVING clause:

SELECT selling_price, count (*)
FROM volume
GROUP BY selling_price
HAVING selling_price > 75;

 Grouping Queries 177

The result in both cases is the same (see Figure 7-8). However,
the way in which the query is processing is different.

 selling_price | count
---------------+-------
 76.10 | 1
 110.00 | 3
 120.00 | 1
 125.00 | 1
 150.00 | 1
 170.00 | 1
 175.00 | 1
 285.00 | 1

Figure 7-8: Restrict groups to volumes that cost more than $75

 customer_numb | sale_date | sum
---------------+--------------------+--------
 1 | 29-MAY-13 00:00:00 | 510.00
 1 | 05-JUN-13 00:00:00 | 125.00
 1 | 15-JUN-13 00:00:00 | 58.00
 1 | 25-JUL-13 00:00:00 | 100.00
 2 | 10-JUL-13 00:00:00 | 25.95
 2 | 25-JUL-13 00:00:00 | 130.00
 2 | 01-SEP-13 00:00:00 | 75.00
 4 | 30-JUN-13 00:00:00 | 110.00
 5 | 07-JUL-13 00:00:00 | 130.00
 5 | 22-AUG-13 00:00:00 | 100.00
 6 | 30-JUN-13 00:00:00 | 110.00
 6 | 10-JUL-13 00:00:00 | 80.00
 6 | 01-SEP-13 00:00:00 | 95.00
 8 | 05-JUL-13 00:00:00 | 80.00
 8 | 07-JUL-13 00:00:00 | 50.00
 9 | 10-JUL-13 00:00:00 | 200.00
 10 | 10-JUL-13 00:00:00 | 225.00
 11 | 10-JUL-13 00:00:00 | 125.00
 11 | 12-JUL-13 00:00:00 | 100.00
 12 | 05-JUL-13 00:00:00 | 505.00

Figure 7-7: Grouping by two columns (rows sorted by outer grouping
column)

178 Chapter 7: Working with Groups of Rows

Grouping queries have two major drawbacks: They can’t show
you individual rows at the same time they show you compu-
tations made on groups of rows and you can’t see data from
non-grouping columns unless you resort to the group making
trick shown earlier. The more recent versions of the SQL stan-
dard (from SQL:2003 onward), however, include a new way
to compute aggregate functions yet display the individual rows
within each group: windowing. Each window (or partition) is
a group of rows that share some criteria, such as a customer
number. The window has a frame that “slides” to present to the
DBMS the rows that share the same value of the partitioning
criteria. Window functions are a special group of functions that
can act only on partitions.

Note: By default, a window frame includes all the rows as its par-
tition. However, as you will see shortly, that can be changed.

Let’s start with a simple example. Assume that someone at the
rare book store wants to see the volumes that were part of each
sale as well as the average cost of books for each sale. A grouping
query version wouldn’t be able to show the individual volumes
in a sale nor would it be able to display the ISBN or sale ID
unless those two values were added to the GROUP BY clause.
However, what if the query were written using windowing—

SELECT sale_id, isbn, CAST (AVG(selling_price)
OVER (PARTITION BY sale_id) as DECIMAL (7.2))
FROM volume
WHERE sale_id IS NOT NULL;

—it would produce the result in Figure 7-9. Notice that the
individual volumes from each sale are present and that the
rightmost column contains the average cost for the specific sale
on which a volume was sold. This mean that the avg column
in the result table is the same for all rows that come from a
given sale.

Windowing
and Window
Functions

 Windowing and Window Functions 179

The query itself includes two new keywords: OVER and PAR-
TITION BY. (The CAST is present to limit the display of
the average to a normal money display format and therefore
isn’t part of the windowing expression.) OVER indicates that
the rows need to be grouped in some way. PARTITION BY
indicates the criteria by which the rows are to be grouped. This
particular example computes the average for groups of rows
that are separated by their sale ID.

To help us explore more of what windowing can do, we’re go-
ing to need a sample table with some different types of data.
Figure 7-10 (a) shows you a table that describes sales represen-
tative and the value of product they have sold in specific quar-
ters. The names of the sales reps are stored in the table labeled
(b) in Figure 7-10.

Note: Every windowing query must have an ORDER clause,
but you can leave out the PARTITION BY clause—using only
OVER ()—if you want all the rows in the table to be in the same
partition.

When SQL processes a windowing query, it scans the rows in
the order they appear in the table. However, you control the
order in which rows are processed by adding an ORDER BY
clause to the PARTITION BY expression. As you will see, do-
ing so can alter the result, producing a “running” average or
sum.

Consider first a query similar to the first windowing example:

SELECT first_name, last_name, quarter, year,
 sales_amt, CAST (AVG (sales_amt OVER
 (PARTITION BY quarterly_sales.sales_id) AS
 DECIMAL (7,2))
FROM rep_names, quarterly_sales
WHERE rep_names.id = quarterly_sales.id;

Ordering the
Partitioning

180 Chapter 7: Working with Groups of Rows

 sale_id | isbn | avg
---------+-------------------+--------
 1 | 978-1-11111-111-1 | 170.00
 1 | 978-1-11111-131-1 | 170.00
 1 | 978-1-11111-133-1 | 170.00
 2 | 978-1-11111-142-1 | 41.67
 2 | 978-1-11111-146-1 | 41.67
 2 | 978-1-11111-144-1 | 41.67
 3 | 978-1-11111-143-1 | 42.00
 3 | 978-1-11111-132-1 | 42.00
 3 | 978-1-11111-133-1 | 42.00
 3 | 978-1-11111-121-1 | 42.00
 5 | 978-1-11111-121-1 | 110.00
 6 | 978-1-11111-146-1 | 101.00
 6 | 978-1-11111-122-1 | 101.00
 6 | 978-1-11111-130-1 | 101.00
 6 | 978-1-11111-126-1 | 101.00
 6 | 978-1-11111-139-1 | 101.00
 7 | 978-1-11111-125-1 | 40.00
 7 | 978-1-11111-131-1 | 40.00
 8 | 978-1-11111-126-1 | 65.00
 8 | 978-1-11111-133-1 | 65.00
 9 | 978-1-11111-139-1 | 50.00
 10 | 978-1-11111-133-1 | 125.00
 11 | 978-1-11111-126-1 | 66.67
 11 | 978-1-11111-130-1 | 66.67
 11 | 978-1-11111-136-1 | 66.67
 12 | 978-1-11111-130-1 | 112.50
 12 | 978-1-11111-132-1 | 112.50
 13 | 978-1-11111-129-1 | 25.95
 14 | 978-1-11111-141-1 | 40.00
 14 | 978-1-11111-141-1 | 40.00
 15 | 978-1-11111-127-1 | 50.00
 15 | 978-1-11111-141-1 | 50.00
 16 | 978-1-11111-141-1 | 43.33
 16 | 978-1-11111-123-1 | 43.33
 16 | 978-1-11111-127-1 | 43.33
 17 | 978-1-11111-133-1 | 50.00
 17 | 978-1-11111-127-1 | 50.00
 18 | 978-1-11111-135-1 | 33.33
 18 | 978-1-11111-131-1 | 33.33
 18 | 978-1-11111-127-1 | 33.33
 19 | 978-1-11111-128-1 | 47.50
 19 | 978-1-11111-136-1 | 47.50
 20 | 978-1-11111-115-1 | 75.00

Figure 7-9: Output of a simple query using windowing

 Windowing and Window Functions 181

(a)
quarterly_sales
id | quarter | year | sales_amt
----+---------+------+-----------
 1 | 1 | 2012 | 518.00
 1 | 2 | 2012 | 1009.00
 1 | 3 | 2012 | 1206.00
 1 | 4 | 2012 | 822.00
 1 | 1 | 2013 | 915.00
 1 | 2 | 2013 | 1100.00
 2 | 1 | 2012 | 789.00
 2 | 2 | 2012 | 1035.00
 2 | 3 | 2012 | 1235.00
 2 | 4 | 2012 | 1355.00
 2 | 1 | 2013 | 1380.00
 2 | 2 | 2013 | 1400.00
 3 | 3 | 2012 | 795.00
 3 | 4 | 2012 | 942.00
 3 | 1 | 2013 | 1012.00
 3 | 2 | 2013 | 1560.00
 4 | 1 | 2012 | 1444.00
 4 | 2 | 2012 | 1244.00
 4 | 3 | 2012 | 987.00
 4 | 4 | 2012 | 502.00
 5 | 1 | 2012 | 1200.00
 5 | 2 | 2012 | 1200.00
 5 | 3 | 2012 | 1200.00
 5 | 4 | 2012 | 1200.00
 5 | 1 | 2013 | 1200.00
 5 | 2 | 2013 | 1200.00
 6 | 1 | 2012 | 925.00
 6 | 2 | 2012 | 1125.00
 6 | 3 | 2012 | 1250.00
 6 | 4 | 2012 | 1387.00
 6 | 1 | 2013 | 1550.00
 6 | 2 | 2013 | 1790.00
 7 | 1 | 2013 | 2201.00
 7 | 2 | 2013 | 2580.00
 8 | 1 | 2013 | 1994.00
 8 | 2 | 2013 | 2121.00
 9 | 1 | 2013 | 502.00
 9 | 2 | 2013 | 387.00
 10 | 1 | 2013 | 918.00
 10 | 2 | 2013 | 1046.00

Figure 7-10: Quarterly sales tables for use in windowing examples
(continued on next page)

182 Chapter 7: Working with Groups of Rows

As you can see in Figure 7-11, the output is what you would
expect: Each line displays the average sales for the given sales
representative. The DBMS adds up the sales for all quarters for
the salesperson and divides by the number of quarters. How-
ever, if we add an ORDER BY clause to force processing in
quarter and year order, the results are quite different.

The query changes only a bit:

SELECT first_name, last_name, quarter, year,
 sales_amt, CAST (AVG (sales_amt
 OVER (PARTITION BY quarterly_sales.sales_id
ORDER BY year, quarter) AS DECIMAL (7,2))
FROM rep_names, quarterly_sales
WHERE rep_names.id = quarterly_sales.id;

However, in this case the ORDER BY clause forces the DBMS
to process the rows in year and quarter order. As you can see
in Figure 7-12, the average column is now a moving average.
What is actually happening is that the window frame is chang-
ing in the partition each time a row is scanned. The first row
in a partition is averaged by itself. Then the window frame

(b)

rep_names

 id | first_name | last_name
----+------------+-----------
 1 | John | Anderson
 2 | Jane | Anderson
 3 | Mike | Baker
 4 | Mary | Carson
 5 | Bill | Davis
 6 | Betty | Esteban
 7 | Jack | Fisher
 8 | Jen | Grant
 9 | Larry | Holmes
 10 | Lily | Imprego

Figure 7-10: (continued) Quarterly sales tables for use in windowing

 Windowing and Window Functions 183

 first_name | last_name | quarter | year | sales_amt | avg
------------+-----------+---------+------+-----------+---------
 John | Anderson | 1 | 2012 | 518.00 | 928.33
 John | Anderson | 1 | 2013 | 915.00 | 928.33
 John | Anderson | 2 | 2012 | 1009.00 | 928.33
 John | Anderson | 2 | 2013 | 1100.00 | 928.33
 John | Anderson | 3 | 2012 | 1206.00 | 928.33
 John | Anderson | 4 | 2012 | 822.00 | 928.33
 Jane | Anderson | 1 | 2012 | 789.00 | 1199.00
 Jane | Anderson | 1 | 2013 | 1380.00 | 1199.00
 Jane | Anderson | 2 | 2012 | 1035.00 | 1199.00
 Jane | Anderson | 2 | 2013 | 1400.00 | 1199.00
 Jane | Anderson | 3 | 2012 | 1235.00 | 1199.00
 Jane | Anderson | 4 | 2012 | 1355.00 | 1199.00
 Mike | Baker | 1 | 2013 | 1012.00 | 1077.25
 Mike | Baker | 2 | 2013 | 1560.00 | 1077.25
 Mike | Baker | 3 | 2012 | 795.00 | 1077.25
 Mike | Baker | 4 | 2012 | 942.00 | 1077.25
 Mary | Carson | 1 | 2012 | 1444.00 | 1044.25
 Mary | Carson | 2 | 2012 | 1244.00 | 1044.25
 Mary | Carson | 3 | 2012 | 987.00 | 1044.25
 Mary | Carson | 4 | 2012 | 502.00 | 1044.25
 Bill | Davis | 1 | 2012 | 1200.00 | 1200.00
 Bill | Davis | 1 | 2013 | 1200.00 | 1200.00
 Bill | Davis | 2 | 2012 | 1200.00 | 1200.00
 Bill | Davis | 2 | 2013 | 1200.00 | 1200.00
 Bill | Davis | 3 | 2012 | 1200.00 | 1200.00
 Bill | Davis | 4 | 2012 | 1200.00 | 1200.00
 Betty | Esteban | 1 | 2012 | 925.00 | 1337.83
 Betty | Esteban | 1 | 2013 | 1550.00 | 1337.83
 Betty | Esteban | 2 | 2012 | 1125.00 | 1337.83
 Betty | Esteban | 2 | 2013 | 1790.00 | 1337.83
 Betty | Esteban | 3 | 2012 | 1250.00 | 1337.83
 Betty | Esteban | 4 | 2012 | 1387.00 | 1337.83
 Jack | Fisher | 1 | 2013 | 2201.00 | 2390.50
 Jack | Fisher | 2 | 2013 | 2580.00 | 2390.50
 Jen | Grant | 1 | 2013 | 1994.00 | 2057.50
 Jen | Grant | 2 | 2013 | 2121.00 | 2057.50
 Larry | Holmes | 1 | 2013 | 502.00 | 444.50
 Larry | Holmes | 2 | 2013 | 387.00 | 444.50
 Lily | Imprego | 1 | 2013 | 918.00 | 982.00
 Lily | Imprego | 2 | 2013 | 1046.00 | 982.00

Figure 7-11: Computing the windowed average without ordering the rows

184 Chapter 7: Working with Groups of Rows

expands to include two rows and both are included in the av-
erage. This process repeats until all the rows in the partition
have been included in the average. Therefore, each line in the
output of this version of the query gives you the average at the
end of that quarter rather than for all quarters.

Note: If you replace the AVG in the preceding query with the
SUM function, you’ll get a running total of the sales made by each
sales representative.

If you don’t want a running sum or average, you can use a
frame clause to change the size of the window (which rows are
included). To suppress the cumulative average in Figure 7-12,
you would add ROWS BETWEEN UNBOUNDED PRE-
CEDING AND CURRENT ROW following the columns by
which the rows within the partition are to be ordered.

The window functions built into SQL perform actions that are
only meaningful on partitions. Many of them include ways to
rank data, something that is difficult to do otherwise. They can
also number rows and compute distribution percentages. In
this section we’ll look at some of the specific functions: what
they can do for you and how they work.

Note: Depending on your DBMS, you may find additional win-
dow functions available, some of which are not part of the SQL
standard.

The RANK function orders and numbers rows in a partition
based on the value in a particular column. It has the general
format

RANK () OVER (partition_specifications)

Specific Functions

RANK

 Windowing and Window Functions 185

 first_name | last_name | quarter | year | sales_amt | avg
------------+-----------+---------+------+-----------+---------
 John | Anderson | 1 | 2012 | 518.00 | 518.00
 John | Anderson | 2 | 2012 | 1009.00 | 763.50
 John | Anderson | 3 | 2012 | 1206.00 | 911.00
 John | Anderson | 4 | 2012 | 822.00 | 888.75
 John | Anderson | 1 | 2013 | 915.00 | 894.00
 John | Anderson | 2 | 2013 | 1100.00 | 928.33
 Jane | Anderson | 1 | 2012 | 789.00 | 789.00
 Jane | Anderson | 2 | 2012 | 1035.00 | 912.00
 Jane | Anderson | 3 | 2012 | 1235.00 | 1019.67
 Jane | Anderson | 4 | 2012 | 1355.00 | 1103.50
 Jane | Anderson | 1 | 2013 | 1380.00 | 1158.80
 Jane | Anderson | 2 | 2013 | 1400.00 | 1199.00
 Mike | Baker | 3 | 2012 | 795.00 | 795.00
 Mike | Baker | 4 | 2012 | 942.00 | 868.50
 Mike | Baker | 1 | 2013 | 1012.00 | 916.33
 Mike | Baker | 2 | 2013 | 1560.00 | 1077.25
 Mary | Carson | 1 | 2012 | 1444.00 | 1444.00
 Mary | Carson | 2 | 2012 | 1244.00 | 1344.00
 Mary | Carson | 3 | 2012 | 987.00 | 1225.00
 Mary | Carson | 4 | 2012 | 502.00 | 1044.25
 Bill | Davis | 1 | 2012 | 1200.00 | 1200.00
 Bill | Davis | 2 | 2012 | 1200.00 | 1200.00
 Bill | Davis | 3 | 2012 | 1200.00 | 1200.00
 Bill | Davis | 4 | 2012 | 1200.00 | 1200.00
 Bill | Davis | 1 | 2013 | 1200.00 | 1200.00
 Bill | Davis | 2 | 2013 | 1200.00 | 1200.00
 Betty | Esteban | 1 | 2012 | 925.00 | 925.00
 Betty | Esteban | 2 | 2012 | 1125.00 | 1025.00
 Betty | Esteban | 3 | 2012 | 1250.00 | 1100.00
 Betty | Esteban | 4 | 2012 | 1387.00 | 1171.75
 Betty | Esteban | 1 | 2013 | 1550.00 | 1247.40
 Betty | Esteban | 2 | 2013 | 1790.00 | 1337.83
 Jack | Fisher | 1 | 2013 | 2201.00 | 2201.00
 Jack | Fisher | 2 | 2013 | 2580.00 | 2390.50
 Jen | Grant | 1 | 2013 | 1994.00 | 1994.00
 Jen | Grant | 2 | 2013 | 2121.00 | 2057.50
 Larry | Holmes | 1 | 2013 | 502.00 | 502.00
 Larry | Holmes | 2 | 2013 | 387.00 | 444.50
 Lily | Imprego | 1 | 2013 | 918.00 | 918.00
 Lily | Imprego | 2 | 2013 | 1046.00 | 982.00

Figure 7-12: Computing the windowed average with row ordering

186 Chapter 7: Working with Groups of Rows

For example, if we wanted to see all the quarterly sales data
ranked for all the sales representatives, the query could look
like the following:

SELECT first_name, last_name quarter, year,
sales_amt, RANK () OVER (order by sales_amt
desc)
FROM rep_names, quarterly_sales
WHERE rep_names.id = quarterly_sales.id;

The output appears in Figure 7-13. Notice that because there is
no PARTITION BY clause in the query, all of the rows in the
table are part of a single ranking.

Alternatively, you could rank each sales representative’s sales
to identify the quarters in which each representative sold the
most. The query would be written

SELECT first_name, last_name, quarter, year,
sales_amt, RANK () OVER (PARTITION BY quarter-
ly_sales.id ORDER BY sales_amt DESC)

Table 7-4: Window frame clauses

Frame Clause Action
RANGE UNBOUNDED PRECEDING (default)
RANGE BETWEEN UNBOUNDED PRECEDING AND

CURRENT ROW

Include all rows within the current
partition through the current row, based on
the ordering specified in the ORDER BY
clause. If no ORDER BY clause, include
all rows. If there are duplicate rows, their
values are included only once.

RANGE BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING

ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING

Include all rows in the partition.

ROWS UNBOUNDED PRECEDING
ROWS BETWEEN UNBOUNDED PRECEDING AND

CURRENT ROW

Include all rows within the current
partition through the current row,
including duplicate rows.

 Windowing and Window Functions 187

 first_name | last_name | quarter | year | sales_amt | rank
------------+-----------+---------+------+-----------+------
 Jack | Fisher | 2 | 2013 | 2580.00 | 1
 Jack | Fisher | 1 | 2013 | 2201.00 | 2
 Jen | Grant | 2 | 2013 | 2121.00 | 3
 Jen | Grant | 1 | 2013 | 1994.00 | 4
 Betty | Esteban | 2 | 2013 | 1790.00 | 5
 Mike | Baker | 2 | 2013 | 1560.00 | 6
 Betty | Esteban | 1 | 2013 | 1550.00 | 7
 Mary | Carson | 1 | 2012 | 1444.00 | 8
 Jane | Anderson | 2 | 2013 | 1400.00 | 9
 Betty | Esteban | 4 | 2012 | 1387.00 | 10
 Jane | Anderson | 1 | 2013 | 1380.00 | 11
 Jane | Anderson | 4 | 2012 | 1355.00 | 12
 Betty | Esteban | 3 | 2012 | 1250.00 | 13
 Mary | Carson | 2 | 2012 | 1244.00 | 14
 Jane | Anderson | 3 | 2012 | 1235.00 | 15
 John | Anderson | 3 | 2012 | 1206.00 | 16
 Bill | Davis | 4 | 2012 | 1200.00 | 17
 Bill | Davis | 3 | 2012 | 1200.00 | 17
 Bill | Davis | 1 | 2013 | 1200.00 | 17
 Bill | Davis | 2 | 2013 | 1200.00 | 17
 Bill | Davis | 1 | 2012 | 1200.00 | 17
 Bill | Davis | 2 | 2012 | 1200.00 | 17
 Betty | Esteban | 2 | 2012 | 1125.00 | 23
 John | Anderson | 2 | 2013 | 1100.00 | 24
 Lily | Imprego | 2 | 2013 | 1046.00 | 25
 Jane | Anderson | 2 | 2012 | 1035.00 | 26
 Mike | Baker | 1 | 2013 | 1012.00 | 27
 John | Anderson | 2 | 2012 | 1009.00 | 28
 Mary | Carson | 3 | 2012 | 987.00 | 29
 Mike | Baker | 4 | 2012 | 942.00 | 30
 Betty | Esteban | 1 | 2012 | 925.00 | 31
 Lily | Imprego | 1 | 2013 | 918.00 | 32
 John | Anderson | 1 | 2013 | 915.00 | 33
 John | Anderson | 4 | 2012 | 822.00 | 34
 Mike | Baker | 3 | 2012 | 795.00 | 35
 Jane | Anderson | 1 | 2012 | 789.00 | 36
 John | Anderson | 1 | 2012 | 518.00 | 37
 Larry | Holmes | 1 | 2013 | 502.00 | 38
 Mary | Carson | 4 | 2012 | 502.00 | 38
 Larry | Holmes | 2 | 2013 | 387.00 | 40

Figure 7-13: Ranking all quarterly sales

188 Chapter 7: Working with Groups of Rows

first_name | last_name | quarter | year | sales_amt | rank
------------+-----------+---------+------+-----------+------
 John | Anderson | 3 | 2012 | 1206.00 | 1
 John | Anderson | 2 | 2013 | 1100.00 | 2
 John | Anderson | 2 | 2012 | 1009.00 | 3
 John | Anderson | 1 | 2013 | 915.00 | 4
 John | Anderson | 4 | 2012 | 822.00 | 5
 John | Anderson | 1 | 2012 | 518.00 | 6
 Jane | Anderson | 2 | 2013 | 1400.00 | 1
 Jane | Anderson | 1 | 2013 | 1380.00 | 2
 Jane | Anderson | 4 | 2012 | 1355.00 | 3
 Jane | Anderson | 3 | 2012 | 1235.00 | 4
 Jane | Anderson | 2 | 2012 | 1035.00 | 5
 Jane | Anderson | 1 | 2012 | 789.00 | 6
 Mike | Baker | 2 | 2013 | 1560.00 | 1
 Mike | Baker | 1 | 2013 | 1012.00 | 2
 Mike | Baker | 4 | 2012 | 942.00 | 3
 Mike | Baker | 3 | 2012 | 795.00 | 4
 Mary | Carson | 1 | 2012 | 1444.00 | 1
 Mary | Carson | 2 | 2012 | 1244.00 | 2
 Mary | Carson | 3 | 2012 | 987.00 | 3
 Mary | Carson | 4 | 2012 | 502.00 | 4
 Bill | Davis | 1 | 2012 | 1200.00 | 1
 Bill | Davis | 2 | 2012 | 1200.00 | 1
 Bill | Davis | 3 | 2012 | 1200.00 | 1
 Bill | Davis | 4 | 2012 | 1200.00 | 1
 Bill | Davis | 1 | 2013 | 1200.00 | 1
 Bill | Davis | 2 | 2013 | 1200.00 | 1
 Betty | Esteban | 2 | 2013 | 1790.00 | 1
 Betty | Esteban | 1 | 2013 | 1550.00 | 2
 Betty | Esteban | 4 | 2012 | 1387.00 | 3
 Betty | Esteban | 3 | 2012 | 1250.00 | 4
 Betty | Esteban | 2 | 2012 | 1125.00 | 5
 Betty | Esteban | 1 | 2012 | 925.00 | 6
 Jack | Fisher | 2 | 2013 | 2580.00 | 1
 Jack | Fisher | 1 | 2013 | 2201.00 | 2
 Jen | Grant | 2 | 2013 | 2121.00 | 1
 Jen | Grant | 1 | 2013 | 1994.00 | 2
 Larry | Holmes | 1 | 2013 | 502.00 | 1
 Larry | Holmes | 2 | 2013 | 387.00 | 2
 Lily | Imprego | 2 | 2013 | 1046.00 | 1
 Lily | Imprego | 1 | 2013 | 918.00 | 2

Figure 7-14: Ranking within partitions

 Windowing and Window Functions 189

FROM rep_names, quarterly_sales
WHERE rep_names.id = quarterly_sales.id;

The output can be found in Figure 7-14.

Note: When there are duplicate rows, the RANK function includes
only one of the duplicates. However, if you want to include the
duplicates, use DENSE_RANK instead of RANK.

The PERCENT_RANK function calculates the percentage
rank of each value in a partition relative to the other rows in
the partition. It works in the same way as RANK but rather
than returning a rank as an integer, it returns the percentage
point at which a given value occurs in the ranking.

Let’s repeat the query used to illustrate RANK, using PER-
CENT_RANK instead:

SELECT first_name, last_name, quarter, year,
sales_amt, PERCENT_RANK () OVER (PARTITION BY
quarterly_sales.id ORDER BY sales_amt DESC)
FROM rep_names, quarterly_sales
WHERE rep_names.id = quarterly_sales.id;

The output can be found in Figure 7-15. As you can see, the
result is exactly the same as the RANK result in Figure 7-14,
with the exception of the rightmost column, where the integer
ranks are replaced by percentage ranks.

The ROW_NUMBER function numbers the rows within a
partition. For example, to number the sales representatives in
alphabetical name order, the query could be

SELECT first_name, last_name ROW_NUMBER () OVER
(ORDER BY last_name, first_name) AS row_numb
FROM rep_names;

As you can see from Figure 7-16, the result includes all 10 sales
representatives, numbered and sorted by name (last name as
the outer sort).

PERCENT_RANK

ROW_NUMBER

190 Chapter 7: Working with Groups of Rows

Choosing Windowing or Grouping
for Ranking
Given the power and flexibility of SQL’s windowing capabili-
ties, is there any time that you should use grouping queries
instead? Actually, there just might be. Assume that you want
to rank all the sales representatives based on their total sales
rather than simply ranking within each person’s sales. Prob-
ably the easiest way to get that ordered result is to use a query
like the following:

SELECT id, SUM (sales_amt)
FROM quarterly_sales
GROUP BY id
ORDER BY SUM (sales_amt) DESC;

You get the following output:

 id | sum
----+--------
 6 | 8027.00
 5 | 7200.00
 2 | 7194.00
 1 | 5570.00
 7 | 4781.00
 3 | 4309.00
 4 | 4177.00
 8 | 4115.00
 10 | 1964.00
 9 | 889.00

The highest ranking total sales are at the top of the listing, the
lowest ranking sales at the bottom. The output certainly isn’t as
informative as the windowed output because you can’t include
the names of the sales representatives, but it does provide the
required information.

Yes, you could use a windowing function to generate the same
output, but it still needs to include the aggregate function
SUM to generate the totals for each sales representative:

 Choosing Windowing or Grouping for Ranking 191

Note: The SQL standard allows a named ROW_NUMBER result
to be placed in a WHERE clause to restrict the number of rows
in a query. However, not all DBMSs allows window functions in
WHERE clauses.

When we typically think of a cumulative distribution, we think
of something like that in Table 7-5, where the actual data val-
ues are gathered into ranges. SQL, however, can’t discern the
data grouping that we would like and therefore must consider
each value (whether it be an individual data row or a row of an
aggregate function result) as a line in the distribution.

The CUME_DIST function returns a value between 0 and 1,
which when multiplied by 100, gives you a percentage. Each
“range” in the distribution, however, is a single value. In other
words, the frequency of each group is always 1. As an example,
let’s create a cumulative frequency distribution of the total sales
made by each sales representative. The SQL can be written

SELECT id, SUM (sales_amt), 100 * (CUME_DIST()
OVER (ORDER BY SUM (sales_amt))) AS cume_dist
FROM quarterly_sales
GROUP BY id
ORDER BY cume_dist;

As you can see in Figure 7-17, each range is a group of 1.

SELECT id, SUM (SUM(sales_amt)) OVER (PARTITION
BY quarterly_sales.id)
FROM quarterly_sales
GROUP BY id
ORDER BY SUM (sales_amt) DESC;

It works, but it’s more code and the presence of the GROUP
BY clause still means that you can’t include the names unless
they are part of the grouping criteria. Using the GROUP BY
and the simple SUM function just seems easier.

CUME_DIST

192 Chapter 7: Working with Groups of Rows

first_name | last_name | quarter | year | sales_amt | percent_rank
-----------+-----------+---------+------+-----------+------------------
John | Anderson | 3 | 2012 | 1206.00 | 0
John | Anderson | 2 | 2013 | 1100.00 | 0.2
John | Anderson | 2 | 2012 | 1009.00 | 0.4
John | Anderson | 1 | 2013 | 915.00 | 0.6
John | Anderson | 4 | 2012 | 822.00 | 0.8
John | Anderson | 1 | 2012 | 518.00 | 1
Jane | Anderson | 2 | 2013 | 1400.00 | 0
Jane | Anderson | 1 | 2013 | 1380.00 | 0.2
Jane | Anderson | 4 | 2012 | 1355.00 | 0.4
Jane | Anderson | 3 | 2012 | 1235.00 | 0.6
Jane | Anderson | 2 | 2012 | 1035.00 | 0.8
Jane | Anderson | 1 | 2012 | 789.00 | 1
Mike | Baker | 2 | 2013 | 1560.00 | 0
Mike | Baker | 1 | 2013 | 1012.00 | 0.333333333333333
Mike | Baker | 4 | 2012 | 942.00 | 0.666666666666667
Mike | Baker | 3 | 2012 | 795.00 | 1
Mary | Carson | 1 | 2012 | 1444.00 | 0
Mary | Carson | 2 | 2012 | 1244.00 | 0.333333333333333
Mary | Carson | 3 | 2012 | 987.00 | 0.666666666666667
Mary | Carson | 4 | 2012 | 502.00 | 1
Bill | Davis | 1 | 2012 | 1200.00 | 0
Bill | Davis | 2 | 2012 | 1200.00 | 0
Bill | Davis | 3 | 2012 | 1200.00 | 0
Bill | Davis | 4 | 2012 | 1200.00 | 0
Bill | Davis | 1 | 2013 | 1200.00 | 0
Bill | Davis | 2 | 2013 | 1200.00 | 0
Betty | Esteban | 2 | 2013 | 1790.00 | 0
Betty | Esteban | 1 | 2013 | 1550.00 | 0.2
Betty | Esteban | 4 | 2012 | 1387.00 | 0.4
Betty | Esteban | 3 | 2012 | 1250.00 | 0.6
Betty | Esteban | 2 | 2012 | 1125.00 | 0.8
Betty | Esteban | 1 | 2012 | 925.00 | 1
Jack | Fisher | 2 | 2013 | 2580.00 | 0
Jack | Fisher | 1 | 2013 | 2201.00 | 1
Jen | Grant | 2 | 2013 | 2121.00 | 0
Jen | Grant | 1 | 2013 | 1994.00 | 1
Larry | Holmes | 1 | 2013 | 502.00 | 0
Larry | Holmes | 2 | 2013 | 387.00 | 1
Lily | Imprego | 2 | 2013 | 1046.00 | 0
Lily | Imprego | 1 | 2013 | 918.00 | 1

Figure 7-15: Percent ranking within partitions

 Choosing Windowing or Grouping for Ranking 193

 first_name | last_name | row_numb
------------+-----------+----------
 Jane | Anderson | 1
 John | Anderson | 2
 Mike | Baker | 3
 Mary | Carson | 4
 Bill | Davis | 5
 Betty | Esteban | 6
 Jack | Fisher | 7
 Jen | Grant | 8
 Larry | Holmes | 9
 Lily | Imprego | 10

Figure 7-16: Row numbering

 id | sum | cume_dist
----+---------+-----------
 9 | 889.00 | 10
 10 | 1964.00 | 20
 8 | 4115.00 | 30
 4 | 4177.00 | 40
 3 | 4309.00 | 50
 7 | 4781.00 | 60
 1 | 5570.00 | 70
 2 | 7194.00 | 80
 5 | 7200.00 | 90
 6 | 8027.00 | 100

Figure 7-17: A SQL-generated cumulative frequency distribution

Table 7-5: A cumulative frequency distribution

Sales amount Frequency Cumulative
Frequency

Cumulative
Percentage

$0–1999 2 2 20
$2000–3999 0 0 20
$4000–5999 5 7 70
$6000–7999 2 9 90
> $8000 1 10 100

194 Chapter 7: Working with Groups of Rows

NTILE breaks a distribution into a specified number of parti-
tions and indicates which rows are part of which group. SQL
keeps the numbers of rows in each group as equal as possible.
To see how this works, consider the following query:

SELECT id, SUM (sales_amt), NTILE(2)
 OVER (ORDER BY SUM (sales_amt) DESC) AS n2,
 NTILE(3) OVER (ORDER BY SUM
 (sales_amt DESC) as n3,
 NTILE(4) OVER (ORDER BY SUM (sales_amt
 DESC) as n4
FROM quarterly_sales
GROUP BY id;

For the result, see Figure 7-18. The columns labeled n2, n3,
and n4 contain the results of the NTILE calls. The highest
number in each of those columns corresponds to the number
of groups into which the data have been placed, which is the
same value used as an argument to the function call.

The SQL standard includes two inverse distribution func-
tions—PERCENTILE_CONT and PERCENTILE_DISC—
that are most commonly used to compute the median of a
distribution. PERCENTILE_CONT assumes that the

Inverse Distributions:
PERCENTILE_CONT and
PERCENTILE_DISC

NTILE

 id | sum | n2 | n3 | n4
----+---------+----+----+----
 6 | 8027.00 | 1 | 1 | 1
 5 | 7200.00 | 1 | 1 | 1
 2 | 7194.00 | 1 | 1 | 1
 1 | 5570.00 | 1 | 1 | 2
 7 | 4781.00 | 1 | 2 | 2
 3 | 4309.00 | 2 | 2 | 2
 4 | 4177.00 | 2 | 2 | 3
 8 | 4115.00 | 2 | 3 | 3
 10 | 1964.00 | 2 | 3 | 4
 9 | 889.00 | 2 | 3 | 4

Figure 7-18: Using the NTILE function to divide data into groups

 Choosing Windowing or Grouping for Ranking 195

distribution is continuous and interpolates the median as
needed. PERCENTILE_DISC, which assumes a discontinu-
ous distribution, chooses the median from existing data values.
Depending on the data themselves, the two functions may re-
turn different answers.

The functions have the following general format:

PERCENTILE_cont/disc (0.5)
 WITHIN GROUP (optional ordering
 clause)
 OVER (optional partition and ordering
 clauses)

If you replace the 0.5 following the name of the function with
another probability between 0 and 1, you will get the nth
percentile. For example, 0.9 returns the 90th percentile. Each
function examines the percent rank of the values in a partition
until it finds the one that is equal to or greater than whatever
fraction you’ve placed in parentheses.

When used without partitions, each function returns a single
value. For example,

SELECT PERCENTILE_CONT (0.5)
 WITHIN GROUP (ORDER BY SUM (sales_amt)
 DESC) AS continuous,
 PERCENTILE_DISC (0.5)
 WITHIN GROUP (ORDER BY SUM (sales_amt
 DESC) AS discontinuous
FROM quarterly_sales
GROUP BY id;

Given the sales data, both functions return the same value:
1200. (There are 40 values, and the two middle values are
1200. Even with interpolation the continuous median com-
putes to the same answer.)

196 Chapter 7: Working with Groups of Rows

If we partition the data by sales representative, then we can
compute the median for each sales representative:

SELECT first_name, last_name,
 PERCENTILE_CONT (0.5) WITHIN GROUP
 (ORDER BY SUM (sales_amt) DESC) OVER
 (PARTITION BY id) AS continuous,
 PERCENTILE_DISC (0.5) WITHIN GROUP
 (ORDER BY SUM (sales_amt DESC) OVER
 (PARTITION BY id) as discontinuous
FROM quarterly_sales JOIN rep_names
GROUP BY id
ORDER BY last_name, first_name;

As you can see in Figure 7-19, the result contains one row for
each sales representative, including both medians.

first_name | last_name | continuous | discontinuous
-----------+-----------+------------+--------------
John | Anderson | 962.0 | 915.0
Jane | Anderson | 1295.0 | 1235.0
Mike | Baker | 977.0 | 942.0
Mary | Carson | 1115.5 | 987.0
Bill | Davis | 1200.0 | 1200.0
Betty | Esteban | 1318.5 | 1250.0
Jack | Fisher | 2350.5 | 2201.0
Jen | Grant | 2057.5 | 1994.0
Larry | Holmes | 484.5 | 387.0
Lily | Imprego | 982.0 | 918.0

Figure 7-19: Continuous and discontinuous medians for partitioned
data

8

197

SQL includes three statements for modifying the data in tables
INSERT, UPDATE, and DELETE. Most of the time, appli-
cation programs provide forms-driven data modification, re-
moving the need for end users to issue SQL data modification
statements directly to the DBMS. (As you will see, this is a
good thing because using SQL data modification statements
is rather clumsy.) Nonetheless, if you are developing and test-
ing database elements and need to populate tables and modify
data, you will probably be working at the command line with
the SQL syntax.

Note: This chapter is where it will make sense that we covered
retrieval before data modification.

The SQL INSERT statement has two variations: one that in-
serts a single row into a table and a second that copies one or
more rows from another table.

To add one row to a table, you use the general syntax

INSERT INTO table_name VALUES (value_list)

In the preceding form, the value list contains one value for
every column in the table, in the order in which the columns
were created. For example, to insert a new row into the cus-
tomer table someone at the rare book store might use

Data Modification

Inserting One Row

Inserting Rows

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50008-X

198 Chapter 8: Data Modification

INSERT INTO customer VALUES
 (8,’Helen’,’Jerry’,’16 Main Street’,
 ’Newtown’,’NJ’,’18886’,’209-555-8888’);

There are two things to keep in mind when inserting data in this
way:

◊ The format of the values in the value list must match the
data types of the columns into which the data will be
placed. In the current example, the first column requires an
integer. The remaining columns all require characters and
therefore the values have been surrounded by single quotes.

◊ When you insert a row of data, the DBMS checks any in-
tegrity constraints that you have placed on the table. For
the preceding example, it will verify that the customer
number is unique and not null. If the constraints are not
met, you will receive an error message and the row will not
be added to the table.

If you do not want to insert data into every column of a table, you
can specify the columns into which data should be placed:

INSERT INTO table_name (column_list)
 VALUES (value_list)

There must be a one-to-one correspondence between the columns
in the column list and the values in the value list because the
DBMS matches them by their relative positions in the lists.

As an example, assume that someone at the rare book store wants
to insert a row into the book table but doesn’t know the binding
type. The SQL would then be written

INSERT INTO book (isbn, work_numb, publisher_id,
 edition, copyright_year)
 VALUES (‘978-1-11111-199-1’,16,2,12,1960);

There are five columns in the column list and therefore five values
in the value list. The first value in the list will be inserted into the

 Inserting Rows 199

isbn column, the second value into the work_numb column,
and so on. The column omitted from the lists—binding—will
remain null. You therefore must be sure to place values at least
in primary key columns. Otherwise, the DBMS will not per-
mit the insertion to occur.

Although it is not necessary to list column names when insert-
ing values for every column in a table, there is one good reason
to do so, especially when embedding the INSERT statement
in an application program. If the structure of the table chang-
es—if columns are added, deleted, or rearranged—then an
INSERT without column names will no longer work properly.
By always specifying column names, you can avoid unneces-
sary program modifications as your database changes to meet
your changing needs.

The SQL INSERT statement can also be used to copy one or
more rows from one table to another. The rows that will be
copied are specified with a SELECT, giving the statement the
following general syntax:

INSERT INTO table_name
 SELECT complete_SELECT_statement

The columns in the SELECT must match the columns of the
table. For the purposes of this example, we will add a simple
table to the rare book store database:

summary (isbn, how_many)

This table will contain summary information gathered from
the volume table. To add rows to the new table, the INSERT
statement can be written:

INSERT INTO summary
 SELECT isbn, COUNT (*)
 FROM volume
 GROUP BY isbn;

Copying Existing
Rows

200 Chapter 8: Data Modification

The result is 27 rows copied into the summary table, one for
each unique ISBN in the volume table.

Note: Should you store summary data like that placed in the table
created in the preceding example? The answer is “it depends.” If it
takes a long time to generate the summary data and you use the
data frequently, then storing it probably makes sense. But if you
can generate the summary data easily and quickly, then it is just
as easy not to store it and to create the data whenever it is needed
for output.

Placement of New Rows
Where do new rows go when you add them? That depends on
your DBMS. Typically, a DBMS maintains unique internal
identifiers for each row that is not accessible to users (some-
thing akin to the combination of a row number and a table
identifier) to provide information about the row’s physical
storage location. These identifiers continue to increase in value.

If you were to use the SELECT * syntax on a table, you would
see the rows in internal identifier order. At the beginning of a
table’s life, this order corresponds to the order in which rows
were added to the table. New rows appear to go at the “bot-
tom” of the table, after all existing rows. As rows are deleted
from the table, there will be gaps in the sequence of row identi-
fiers. However, the DBMS does not reuse them (to “fill in the
holes”) until it has used up all available identifiers. If a database
is very old, very large, and/or very active, the DBMS will run
out of new identifier and will then start to reuse those made
available by deleted rows. In that case, new rows may appear
anywhere in the table. Give that you can view rows in any or-
der by using the ORDER BY clause, it should make absolutely
no difference to an end user or an application program where
a new row is added.

 Updating Data 201

Although most of today’s end users modify existing data using
an on-screen form, the SQL statements to modify the data
must nonetheless be issued by the program providing the form.
For example, as someone at the rare book store adds volumes
to a sale, the volume table is updated with the selling price and
the sale ID. The selling_price is also added to the total amount
of the sale in the sale table.

The SQL UPDATE statement affects one or more rows in a
table, based on row selection criteria in a WHERE predicate.
UPDATE as the following general syntax:

UPDATE table_name
SET column1 = new_value, column2 = new_value, …
WHERE row_selection_predicate

If the WHERE predicate contains a primary key expression,
then the UPDATE will affect only one row. For example, to
change a customer’s address, the rare book store could use

UPDATE customer
SET street = ‘195 Main Street’
 city = ‘New Town’
 zip = ‘11111’
WHERE customer_numb = 5;

However, if the WHERE predicate identifies multiple rows,
each row that meets the criteria in the predicate will be modi-
fied. To raise all $50 prices to $55, someone at the rare book
store might write a query as

UPDATE books
SET asking_price = 55
WHERE asking_price = 50;

Notice that it is possible to modify the value in a column be-
ing used to identify rows. The DBMS will select the rows to be
modified before making any changes to them.

Updating Data

202 Chapter 8: Data Modification

If you leave the WHERE clause off an UPDATE, the same
modification will be applied to every row in the table. For ex-
ample, assume that we add a column for sales tax to the sale
table. Someone at the rare book store could use the following
statement to compute the tax for every sale:

UPDATE sale
SET sales_tax = sale_total_amt * 0.075;

The expression in the SET clause takes the current value in the
sale_total_amt column, multiplies it by the tax rate, and puts
it in the sales_tax column.

Like the UPDATE statement, the DELETE statement affects
one or more rows in a table based on row selection criteria in a
WHERE predicate. The general syntax for DELETE is

DELETE FROM table_name
WHERE row_selection_predicate

For example, if a customer decided to cancel an entire pur-
chase, then someone at the rare book store would use some-
thing like

DELETE FROM sale
WHERE customer_numb = 12 AND sale_date = ’05-
Jul-2013’;

Assuming that all purchases on the same date are considered
a single sale, the WHERE predicate identifies only one row.
Therefore, only one row is deleted.

When the criteria in a WHERE predicate identify multiple
rows, all those matching rows are removed. If someone at the
rare book store wanted to delete all sales for a specific cus-
tomer, then the SQL would be written

DELETE FROM sale
WHERE customer_numb = 6;

Deleting Rows

 Deleting Rows 203

In this case, there are multiple rows for customer number 6, all
of which will be deleted.

DELETE is a potentially dangerous operation. If you leave off
the WHERE clause—DELETE FROM sale—you will delete
every row in the table! (The table remains in the database with-
out any rows.)

The preceding examples of DELETE involve a table that has
a foreign key in another table (sale_id in volume) referenc-
ing it. It also has a foreign key of its own (customer_numb
referencing the primary key of customer). You can delete rows
containing foreign keys without any effect on the rest of the
database, but what happens when you attempt to delete rows
that do have foreign keys referencing them?

Note: The statement in the preceding paragraph refers to database
integrity issues and clearly misses the logical issue of the need to
decrement the total sale amount in the sale table whenever a vol-
ume is removed from the sale.

Assume, for example, that a customer cancels a purchase. Your
first thought might be to delete the row for that sale from the
sale table. There are, however, rows in the volume table that
reference that sale and if the row for the sale is removed from
sale, there will be no primary key for the rows in volume to
reference and referential integrity will be violated.

What actually happens in such a situation depends on what
was specified when the table containing the primary key being
referenced was created. There are four options for handling the
deletion of primary key rows that have foreign key rows that
reference them:

◊ SET NULL: The values of all foreign keys that reference
the deleted primary key row are set to null. This is the
option we want for our particular example. However,

Deletes and
Referential
Integrity

204 Chapter 8: Data Modification

nulls cannot be used when the foreign key is part of the
primary key of its own table.

◊ SET DEFAULT: The values of all foreign keys that ref-
erence the deleted primary key row are set to a default
value. This would not be a reasonable solution for our
example because we don’t want to set a generic sale ID.

◊ CASCADE: When the primary key row is deleted, all
foreign key rows that reference it are deleted as well.
This is something we definitely don’t want to do in our
example. Volumes need to stay in the database, sold or
unsold.

◊ NO ACTION: Disallow the deletion of a primary key
row if there are foreign key rows that reference it. This
alternative makes sense for the customer table because
we do not want to delete any customers who have pur-
chases in the sale table. By the same token, we would
probably use this option for the book table so that we
do not delete data about books that we may be likely to
purchase for the store.

The SQL:2003 standard introduced a very powerful and flex-
ible way to insert, update, or delete data using the MERGE
statement. MERGE includes a condition to be tested and al-
ternative sets of actions that are performed when the condition
is or is not met. The model behind this statement is the merg-
ing of a table of transactions into a master table.

MERGE has the following general syntax:

MERGE INTO target_table_name USING source_ta-
ble_name ON merge_condition
WHEN MATCHED THEN
 update/delete_specification
WHEN NOT MATCHED THEN
 insert specification

MERGE

 Deleting All Rows: TRUNCATE TABLE 205

Deleting All Rows: TRUNCATE
TABLE
The 2008 SQL standard introduces a new command—
TRUNCATE TABLE—that removes all rows from a table
more quickly than a DELETE without a WHERE clause. The
command’s general syntax is

TRUNCATE TABLE table_name

Like the DELETE without a WHERE clause, the table struc-
ture remains intact and in the data dictionary.

There are some limits to using the command:

◊ It cannot be used on a table that has foreign keys refer-
encing it.

◊ It cannot be used on a table on which indexed views are
based.

◊ It cannot activate a trigger.

Although DELETE and TRUNCATE TABLE seem to have
the same effect, they do work differently. DELETE removes
the rows one at a time and writes an entry into the database log
file for each row. In contrast, TRUNCATE TABLE deallocates
space in the database files, making the space formerly occupied
by the truncated table’s rows available for other use.

Note: Some DBMSs call MERGE functionality UPSERT.

Notice that when the merge condition is matched (in other
words, evaluates as true for a given row) an update and/or de-
lete is performed. When the condition is not matched, an insert

206 Chapter 8: Data Modification

is performed. Either the MATCHED or NOT MATCHED
clause is optional.

The target table is the table that will be affected by the chang-
es made by the statement. The source table—which can be a
base table or a virtual table generated by a SELECT—provides
the source of the table. To help you understand how MERGE
works, let’s use the classic model of applying transactions to a
master table. First, we need a transaction table:

transactions (sale id, inventory id,
selling_price, sale_date, customer_numb)

The transactions table contains information about the sale of
a single volume. (It really doesn’t contain all the necessary rows
for the sale table, but it will do for this example.) If a row for
the sale exists in the sale table, then the selling price of the vol-
ume should be added to existing sale total. However, if the sale
is not in the sale table, then a new row should be created and
the sale total set to the selling price of the volume. A MERGE
statement that will do the trick might be written as

MERGE INTO sale S USING transactions T
 ON (S.sale_id = T.sale_id)
WHEN MATCHED THEN
 UPDATE SET sale_total_amt =
 sale_total_amt + selling_price
WHEN NOT MATCHED
 INSERT (sale_id, customer_numb,
 sale_date, sale_total_amt)
 VALUES (T.sale_id, T.customer_numb,
 T.sale_date, T.selling_price);

The target table is sale; the source table is transactions. The
merge condition looks for a match between sale IDs. If a
match is found, then the UPDATE portion of the command
performs the modification of the sale_total_amt column. If
no match is found, then the insert occurs. Notice that the IN-
SERT portion of the command does not need a table name

 Deleting All Rows: TRUNCATE TABLE 207

because the table affected by the INSERT has already been
specified as the target table.

As we said earlier, the source table for a merge operation doesn’t
need to be a base table; it can be a virtual table created on the
fly using a SELECT. For example, assume that someone at the
rare book store needs to keep a table of total purchases made
by each customer. The following table can be used to hold
that data:

summary_stats (customer numb, year,
 total_purchases)

You can find the MERGE statement below. The statement as-
sembles the summary data using a SELECT that extracts the
year from the sale date and sums the sale amounts. Then, if a
summary row for a year already exists in summary_stats, the
MERGE adds the amount from the source table to what is
stored already in the target table. Otherwise, it adds a row to
the target table.

MERGE INTO summary_stats AS S USING
 (SELECT customer_numb,
 EXTRACT (YEAR FROM sale_date) AS Y,
 SUM (sale_total_amt AS M) AS T
 FROM sale
 GROUP BY customer_numb, Y)
ON (CAST(S.customer_numb AS CHAR (4)) ||
 CAST (S.year AS CHAR(4)) =
 CAST(T.customer_numb AS CHAR (4)) ||
 CAST (T.year AS CHAR(4)))
WHEN MATCHED
 UPDATE SET total_purchases = T.M
WHEN NOT MATCHED
 INSERT VALUES (customer_numb, Y, M);

As powerful as MERGE seems to be, the restriction of UP-
DATE/DELETE to the matched condition and INSERT to
the unmatched prevents it from being able to handle some
situations. For example, if someone at the rare book store

208 Chapter 8: Data Modification

wanted to archive all orders more than two years old, the pro-
cess would involve creating a row for each sale that didn’t ex-
ist in the archive table and then deleting the row from the
sale table. (We’re assuming that the delete cascades, removing
all rows from volume as well.) The problem is that the delete
needs to occur on the unmatched condition, which isn’t al-
lowed with the MERGE syntax.

9

211

As a complete data manipulation language, SQL contains
statements that let you create, modify, and delete structural
elements in a database. In this chapter we will begin the discus-
sion of a database’s structural elements by looking at schemas
and the permanent base tables that you create within them.
This discussion will be concluded in Chapter 10, which covers
additional structural elements such as views, temporary tables,
and indexes.

The actual file structure of a database is implementation de-
pendent, as is the procedure needed to create database files.
Therefore, the discussion in this chapter assumes that the nec-
essary database files are already in place.

The objects in a database maintained using SQL are arranged
in a hierarchy diagrammed in Figure 9-1.1 The smallest units
with which a database works—the columns and rows—appear
in the center. These in turn are grouped into tables and views.

The tables and views that constitute a single logical database
are collected into a schema. Multiple schemas are grouped into
catalogs, which can then be grouped into clusters. A catalog

1 Some DBMSs support a “create database” capabiity, which provides
an overall named unit for all the elements in a database. However, a “data-
base” isn’t a structural element in the SQL standard.

Schemas and Tables

Database
Object
Hierarchy

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50009-1

212 Chapter 9: Schemas and Tables

usually contains information describing all the schemas handled
by one DBMS. Catalog creation is implementation dependent
and therefore not part of the SQL standard.

Prior to SQL-92, clusters often represented database files, and the
clustering of objects into files was a way to increase database per-
formance. The current concept of a cluster, however, is a group
of catalogs that are accessible using the same connection to a da-
tabase server. None of the groupings of database objects in the
SQL standard are related to physical storage structures. If you
are working with a centralized mainframe DBMS, you may find
multiple catalogs stored in the same database file. However, on
smaller or distributed systems, you are just as likely to find one

Schemas

Ta

bles and Views

Columns
and rows

Figure 9-1: The SQL database object hierarchy

 Database Object Hierarchy 213

catalog or schema per database file or to find a catalog or sche-
ma split between multiple files.

Clusters, catalogs, and schemas are not required elements of
a database environment. In a small installation where there is
one collection of tables serving a single purpose, for example,
it may not even be necessary to create a schema to hold them.

The way in which you name and identify database objects is in
some measure dictated by the object hierarchy:

◊ Column names must be unique within the table.

◊ Table names must be unique within the schema.

◊ Schema names must be unique within their catalog.

◊ Catalog names must be unique within their cluster.

As you saw when you were reading about data retrieval, when
a column name appears in more than one table in a query, you
must specify the table from which a column should be taken
(even if it makes no difference which table is used). The gen-
eral form for specifying duplicate names is

table_name.column_name

If an installation has more than one schema, then you must
also indicate the schema in which a table resides:

schema_name.table_name.column_name

This naming convention means that two different schemas can
include tables with the same name.

By the same token, if an installation has multiple catalogs, you
will need to indicate the catalog from which an object comes

catalog_name.schema_name.table_name.column_name

Naming and
Identifying Objects

214 Chapter 9: Schemas and Tables

Note: The SQL standard refers to element names that use the dot
notation as “identifier chains.”

The names that you assign to database elements can include
the following:

◊ Letters

◊ Numbers

◊ Underscores (_)

Names can be up to 128 characters long. They are not case sen-
sitive. (In fact, many SQL command processors convert names
to all upper- or lowercase characters before submitting a SQL
statement to a DBMS for processing.)

Note: Some DBMSs also allow pound signs (#) and dollar signs
($) in element names, but neither is recognized by SQL queries so
their use should be avoided.

To a database designer, a schema represents the overall, logi-
cal design of a complete database. As far as SQL is concerned,
however, a schema is nothing more than a container for tables,
views, and other structural elements. It is up to the database
designer to place a meaningful group of elements within each
schema.

A schema is not required to create tables and views. In fact,
if you are installing a database for an environment in which
there is likely to be only one logical database, then you can just
as easily do without one. However, if more than one database
will be sharing the same DBMS and the same server, organiz-
ing database elements into schemas can greatly simplify the
maintenance of the individual databases.

To create a schema, you use the CREATE SCHEMA state-
ment. In its simplest form, it has the syntax

Schemas

 Schemas 215

CREATE SCHEMA schema_name

as in

CREATE SCHEMA rare_books;

By default, a schema belongs to the user who created it (the
user ID under which the schema was created). The owner of
the schema is the only user ID that can modify the schema un-
less the owner grants that ability to other users.

To assign a different owner to a schema, you add an AUTHO-
RIZATION clause

CREATE SCHEMA schema_name AUTHORIZATION owner_
user_ID

For example, to assign the rare book store schema to the user
ID DBA, someone could use

CREATE SCHEMA rare_books AUTHORIZATION dba;

When creating a schema, you can also create additional da-
tabase elements at the same time. To do so, you use braces to
group the CREATE statements for the other elements, as in

CREATE SCHEMA schema_name AUTHORIZATION owner_
user_ID
{
 other CREATE statements go here
}

This automatically assigns the elements within the braces to
the schema.

One of the nicest things about a relational database is that
you can add or delete database structure elements at any time.
There must therefore be a way to specify a current schema for

Creating a Schema

Identifying the
Schema You Want
to Use

216 Chapter 9: Schemas and Tables

new database elements after the schema has been created ini-
tially with the CREATE SCHEMA statement.

SET SCHEMA schema_name

To use SET SCHEMA, the user ID under which you are
working must have authorization to work with that schema.

Alternatively, you can qualify the name of a database element
with the name of the schema. For example, if you are creating
a table, then you would use something like:

CREATE TABLE schema_name.table_name

For DBMSs that do not support SET SCHEMA, this is the
only way to attach new database elements to a schema after the
schema has been created.

A domain is an expression of the permitted values for a column
in a relation. When you define a table, you assign each column
a data type (for example, character or integer) that provides a
broad domain. A DBMS will not store data that violate that
constraint.

The SQL-92 standard introduced the concept of user-defined
domains, which can be viewed as user-defined data types that
can be applied to columns in tables. (This means that you have
to create a domain before you can assign it to a column!)

Domains can be created as part of a CREATE SCHEMA state-
ment or, if your DBMS supports SET SCHEMA, at any time
after a schema has been defined.

To create a domain, you use the CREATE DOMAIN state-
ment, which has the following general syntax:

CREATE DOMAIN domain_name data_type
 CHECK constraint_name
 (expression_to_validate_values)

Domains

 Schemas 217

The CHECK clause is actually a generic way to express a con-
dition that data must meet. It can include a SELECT to vali-
date data against other data stored in the database or it can
include a logical expression. In that expression, the keyword
VALUE represents the data being checked. Naming the con-
straint is optional, but doing so makes it possible to access the
constraint if you want to remove it at some time in the future.

For example, if the rare book store database should validate the
price of a book, someone might create the following domain:

CREATE DOMAIN price NUMERIC (7,2)
CHECK price_check (VALUE >= 15);

After creating this domain, a column in a table can be given
the data type of PRICE. The DBMS will then check to be
certain that the value in that column is always greater than or
equal to 15. (We will leave a discussion of the data type used
in the preceding SQL statement until we cover creating tables
in the next section of this chapter.)

The domain mechanism is very flexible. Assume, for example,
that you want to ensure that telephone numbers are always
stored in the format XXX-XXX-XXXX. A domain to validate
that format might be created as

CREATE DOMAIN telephone CHAR (12)
 CHECK phone_format
 (SUBSTRING FROM 4 FOR 1 = ‘-‘) AND
 SUBSTRING (VALUE FROM 8 FOR 1 = ‘ ‘);

You can also use the CREATE DOMAIN statement to give a
column a default value. For example, the following statement
sets up a domain that holds either Y or N and defaults to Y.

CREATE DOMAIN char_boolean CHAR (1)
DEFAULT ‘Y’
 CHECK (UPPER(VALUE) = ‘Y’
 OR UPPER(VALUE) = ‘N’);

218 Chapter 9: Schemas and Tables

The most important structure within a relational database is
the table. Tables contain just about everything, including busi-
ness data and the data dictionary.

SQL divides its tables into three categories:

◊ Permanent base tables: Permanent base tables are tables
whose contents are stored in the database and remain
permanently in the database unless they are explicitly
deleted.

◊ Global temporary base tables: Global temporary base
tables are tables used for working storage that are
destroyed at the end of a SQL session. The definitions
of the tables are stored in the data dictionary, but their
data are not. The tables must be loaded with data each
time they are going to be used. Global temporary
tables can be used only by the current user, but they are
visible to an entire SQL session (either an application
program or a user working with an interactive facility.)

◊ Local temporary base tables: Local temporary base
tables are similar to global temporary tables. However,
they are visible only to the specific program module in
which they are created.

Note: Temporary base tables are subtly different from views, which
assemble their data by executing a SQL query. You will read more
about this difference and how temporary tables are created and
used in Chapter 10.

Most of the tables you will use will be permanent base tables.
You create them with the CREATE TABLE statement:

CREATE TABLE table_name
 (column1_name column1_data_type,
 column1_constraints,
 column2_name column2_data_type,
 column2_constraints, …
 table_constraints)

Tables

 Tables 219

The constraints on a table include declarations of primary and
foreign keys. The constraints on a column include whether
values in are mandatory as well as other constraints you may
decide to include in a CHECK clause.

Each column in a table must be given a data type. Although
data types are somewhat implementation dependent, you can
expect to find most of the following:

◊ INTEGER (abbreviated INT): A positive or negative
whole number. The number of bits occupied by the
value is implementation dependent. On today’s desk-
top computers, an integer is either 32 or 64 bits. Large
computers may use up to 128 bits for integers.

◊ SMALLINT: A positive or negative whole number.
A small integer is usually half the size of a standard
integer. Using small integers when you know you will
need to store only small values can save space in the
database.

◊ NUMERIC (or occasionally, NUMBER): A fixed-
point positive or negative number. A numeric value
has a whole number portion and a fractional portion.
When you create it, you must specify the total length
of the number (including the decimal point) and how
many of those digits will be to the right of the decimal
point (its precision). For example,

NUMERIC (6,2)

creates a number in the format XXX.XX. The DBMS
will store exactly two digits to the right of the deci-
mal point.

◊ DECIMAL: A fixed-point positive or negative num-
ber. A decimal is similar to a numeric value. However,
the DBMS may store more digits to the right of the

Column Data Types

220 Chapter 9: Schemas and Tables

decimal than you specify. Although there is no guaran-
tee that you will get the extra precision, its presence can
provide more accurate results in computations.

◊ REAL: A “single precision” floating point value. A
floating point number is expressed in the format

±X.XXXXX * 10YY

where YY is the power to which 10 is raised. Be-
cause of the way in which computers store floating
point numbers, a real number will never be an ex-
act representation of a value, but only a close ap-
proximation. The range of values that can be stored
is implementation dependent, although a common
range is ±1038. You therefore cannot specify a size
for a real number column.

◊ DOUBLE PRECISION (abbreviated DOUBLE): A
“double precision” floating point number. The range
and precision of double precision values are implemen-
tation dependent, but generally will be greater than
with single precision real numbers. For example, if the
single precision range is ±1038, then a typical double
precision range is ±10308.

◊ FLOAT: A floating point number for which you can
specify the precision. The DBMS will maintain at least
the precision that you specify. (It may be more.)

◊ BOOLEAN: A logical value that can take only the
values true and false.

◊ BIT: Storage for a fixed number of individual bits. You
must indicate the number of bits, as in

BIT (n)

where n is the number of bits. (If you do not include

 Tables 221

the number of bits, you will have room for only one
bit.)

◊ DATE: A date.

◊ TIME: A time.

◊ TIMESTAMP: The combination of a date and a time.

◊ CHARACTER (abbreviated CHAR): A fixed-length
space to hold a string of characters. When declaring a
CHAR column, you need to indicate the width of the
column:

CHAR (n)

where n is the amount of space that will be allocated
for the column in every row. Even if you store less
than n characters, the column will always take up n
bytes and the column will be padded with blanks to
fill up empty space. The maximum number of char-
acters allowed is implementation dependent.

◊ CHARACTER VARYING (abbreviated VARCHAR):
A variable length space to hold a string of characters.
You must indicate the maximum width of the col-
umn—

VARCHAR (n)

—but the DBMS stores only as many characters as
you insert, up to the maximum n. The overall maxi-
mum number of characters allowed is implementa-
tion dependent.

◊ INTERVAL: A date or time interval. An interval data
type is followed by a qualifier that specifies the unit of

222 Chapter 9: Schemas and Tables

the interval and optionally the number of digits. For
example,

INTERVAL YEAR
INTERVAL YEAR (n)
INTERVAL MONTH
INTERVAL MONTH (n)
INTERVAL YEAR TO MONTH
INTERVAL YEAR (n) TO MONTH
INTERVAL DAY
INTERVAL DAY (n)
INTERVAL DAY TO HOUR
INTERVAL DAY (n) TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY (n) TO MINUTE
INTERVAL MINUTE
INTERVAL MINUTE (n)

In the preceding examples, n specifies the number of
digits. When the interval covers more than one date/
time unit, such as YEAR TO MONTH, you can spec-
ify a size for only the first unit. Year/month intervals
can include years, months, or both. Time intervals
can include days, hours, minutes, and/or seconds.

◊ BLOB (Binary Large Object): Although not univer-
sal, the BLOB data type is supported by many cur-
rent DBMSs. It can be used to store elements such
as graphics. Unlike other data types, however, BLOB
columns cannot be searched because the contents are
an undifferentiated group of binary data.

In Figure 9-2 you will find the bare bones CREATE TABLE
statements for the rare book store database. These statements
include only column names and data types. SQL will create
tables from statements in this format, but because the tables
have no primary keys, some DBMSs will not let you enter
data.

 Tables 223

As you are defining columns, you can designate a default value
for individual columns. To indicate a default value, you add a
DEFAULT keyword to the column definition, followed by the
default value. For example, in the sale relation, it makes sense
to assign the current date to the sale_date column as a default.
The column declaration is therefore written

sale_date DATE DEFAULT CURRENT_DATE

Notice that this particular declaration is using the SQL value
CURRENT_DATE. However, you can place any value after
DEFAULT that is a valid instance of the column’s domain.

The values in primary key columns must be unique and not
null. In addition, there may be columns for which you want to
require a value. You can specify such columns by adding NOT
NULL after the column declaration. Since the staff of the rare
book store wants to ensure that an order date is always entered,
the complete declaration for the column in the sale table is

sale_date DATE NOT NULL DEFAULT CURRENT_DATE

To specify a table’s primary key, you add a PRIMARY KEY
clause to a CREATE TABLE statement. The keywords PRI-
MARY KEY are followed by the names of the primary key
column or columns, surrounded by parentheses. In the case of
a concatenated primary key, place all columns that are part of
the primary key within the parentheses.

In Figure 9-3 you will find the CREATE TABLE state-
ments for the rare book store database including primary key
declarations.

As you know, a foreign key is a column (or concatenation of
columns) that is exactly the same as the primary key of another
table. When a foreign key value matches a primary key value,
we know that there is a logical relationship between the data-
base objects represented by the matching rows.

Default Values

NOT NULL
Constraints

Primary Keys

Foreign Keys

224 Chapter 9: Schemas and Tables

CREATE TABLE publisher
(
 publisher_id int,
 publisher_name char (50),
);

CREATE TABLE sale
(
 sale_id int,
 customer_numb int,
 sale_date date,
 sale_total_amt decimal (8,2),
 credit_card_numb char (20),
 exp_month int,
 exp_year int,
);

CREATE TABLE customer
(
 customer_numb int,
 first_name varchar (30),
 last_name varchar (30),
 street varchar (50),
 city varchar (30),
 state_province char (2),
 zip_postcode char (10),
 contact_phone char (12),
);

CREATE TABLE condition_codes
(
 condition_code int,
 condition_description varchar (128),
);

Figure 9-2: Initial CREATE TABLE statements for the rare book store
database (continued on next page)

One of the major constraints on a relation is referential integ-
rity, which states that every nonnull foreign key must refer-
ence an existing primary key value. Early implementations of
SQL and early versions of the SQL standard did not include
support for foreign keys. Validation of referential integrity was

 Tables 225

CREATE TABLE volume
(
 inventory_id int,
 isbn char (17),
 condition_code int,
 date_acquired date,
 asking_price decimal (7,2),
 selling_price decimal (7,2),
 sale_id int,
);

CREATE TABLE work
(
 work_numb int,
 author_numb int,
 title char (50),
);

CREATE TABLE author
(
 author_numb int,
 author_last_first char (128),
);

CREATE TABLE book
(
 isbn char (17),
 work_numb int,
 publisher_id int,
 edition int,
 binding char (20),
 copyright_year char (4),
);

Figure 9-2 (continued): Initial CREATE TABLE statements for the
rare book store database

left up to application programmers. However, it is far better to
have foreign keys identified in the data dictionary and referen-
tial integrity enforced directly by a DBMS. Referential integ-
rity was therefore added to the SQL-89 standard.

226 Chapter 9: Schemas and Tables

Listing Table Structure
Although not part of the SQL standard, many DBMSs support a DESCRIBE command that
displays the structure of a table. (The standard SQL DESCRIBE returns information about a
prepared embedded SQL statement.) To use it, follow the keyword DESCRIBE with the name
of the table, as in

DESCRIBE customer

The result is a table showing the structure of the named table in a format similar to the following:

 Table “enterprisedb.customer”
 Column | Type | Modifiers
----------------+-----------------------+-----------
 customer_numb | integer | not null
 first_name | character varying(30) |
 last_name | character varying(30) |
 street | character varying(50) |
 city | character varying(30) |
 state_province | character(2) |
 zip_postcode | character(10) |
 contact_phone | character(12) |
Indexes:
 “pk_customer” PRIMARY KEY, btree (customer_numb)

To specify a foreign key for a table, you add a FOREIGN KEY
clause:

FOREIGN KEY foreign_key_name (foreign_key_col-
umns)
REFERENCES primary_key_table (primary_key_col-
umns)
ON UPDATE update_action
ON DELETE delete_action

The names of the foreign key columns follow the keywords
FOREIGN KEY. The REFERENCES clause contains the
name of the primary key table being referenced. If the primary
key columns are named in the PRIMARY KEY clause of their

 Listing Table Structure 227

CREATE TABLE publisher
(
 publisher_id int,
 publisher_name char (50),
 PRIMARY KEY (publisher_id)
);

CREATE TABLE condition_codes
(
 condition_code int,
 condition_description varchar (128),
 PRIMARY KEY (condition_code)
);

CREATE TABLE sale
(
 sale_id int,
 customer_numb int,
 sale_date date NOT NULL DEFAULT CURRENT_DATE,
 sale_total_amt decimal (8,2),
 credit_card_numb char (20),
 exp_month int,
 exp_year int,
 PRIMARY KEY (sale_id)
);

CREATE TABLE book
(
 isbn char (17),
 work_numb int,
 publisher_id int,
 edition int,
 binding char (20),
 copyright_year char (4),
 PRIMARY KEY (isbn)
);

CREATE TABLE work
(
 work_numb int,
 author_numb int,
 title char (50),
 PRIMARY KEY (work_numb)
);

Figure 9-3: CREATE TABLE statements for the rare book store data-
base including primary key declarations (continued on next page)

228 Chapter 9: Schemas and Tables

CREATE TABLE customer
(
 customer_numb int,
 first_name varchar (30),
 last_name varchar (30),
 street varchar (50),
 city varchar (30),
 state_province char (2),
 zip_postcode char (10),
 contact_phone char (12),
 PRIMARY KEY (customer_numb)
);

CREATE TABLE volume
(
 inventory_id int,
 isbn char (17),
 condition_code int,
 date_acquired date,
 asking_price decimal (7,2),
 selling_price decimal (7,2),
 sale_id int,
 PRIMARY KEY (inventory_id)
);

CREATE TABLE author
(
 author_numb int,
 author_last_first char (128),
 PRIMARY KEY (author_numb)
);

Figure 9-3 (continued): CREATE TABLE statements for the rare book
store database including primary key declarations

table, then you don’t need to list the column names. How-
ever, if the columns aren’t part of a PRIMARY KEY clause,
you must list the primary key columns in the REFERENCES
clause.

The final part of the FOREIGN KEY specification indi-
cates what should happen when a primary key value being

 Listing Table Structure 229

referenced by the foreign key is deleted or updated. There are
three options that apply to both updates and deletions and one
additional option for each:

◊ SET NULL: Replace the foreign key value with null.
This isn’t possible when the foreign key is part of the
primary key of its table.

◊ SET DEFAULT: Replace the foreign key value with the
column’s default value.

◊ CASCADE: Delete or update all foreign key rows.

◊ NO ACTION: On update, make no modification of
foreign key values.

◊ RESTRICT: Do not allow deletion of the primary key
value.

The complete declarations for the rare book store database
tables, which include foreign key constraints, can be found in
Figure 9-4. Notice that although there are no restrictions on
how to name foreign keys, the foreign keys in this database
have been named to indicate the tables involved. This makes
them easier to identify if you need to delete or modify a for-
eign key at a later date.

Note: The precise syntax allowed for foreign key declarations is
somewhat implementation dependent. For example, some DBMSs
do not support named foreign keys. You will need to check your
DBMS’s documentation to verify the exact syntax required.

The SQL Core standard provides some additional flexibility in
the definition of foreign keys, including the following:

◊ Rules for determining what occurs when all or part of a
foreign key is null. By default, if any part of a foreign
key is null, then the DBMS will accept it. If you add a

Additional Foreign Key
Options

230 Chapter 9: Schemas and Tables

CREATE TABLE publisher
(
 publisher_id int,
 publisher_name char (50),
 PRIMARY KEY (publisher_id)
);

CREATE TABLE sale
(
 sale_id int,
 customer_numb int,
 sale_date date NOT NULL DEFAULT CURRENT_DATE,
 sale_total_amt decimal (8,2),
 credit_card_numb char (20),
 exp_month int,
 exp_year int,
 PRIMARY KEY (sale_id),
 FOREIGN KEY fk_sale2customer (customer_numb)
 REFERENCES customer
 ON UPDATE CASCADE
 ON DELETE RESTRICT
);

CREATE TABLE customer
(
 customer_numb int,
 first_name varchar (30),
 last_name varchar (30),
 street varchar (50),
 city varchar (30),
 state_province char (2),
 zip_postcode char (10),
 contact_phone char (12),
 PRIMARY KEY (customer_numb)
);

CREATE TABLE condition_codes
(
 condition_code int,
 condition_description varchar (128),
 PRIMARY KEY (condition_codeO
);

Figure 9-4: Complete CREATE TABLE statements for the rare
book store database including primary and foreign key declarations
(continued on next page)

 Listing Table Structure 231

CREATE TABLE book
(
 isbn char (17),
 work_numb int,
 publisher_id int,
 edition int,
 binding char (20),
 copyright_year char (4),
 PRIMARY KEY (isbn),
 FOREIGN KEY fk_book2work (work_numb)
 REFERENCES work
 ON UPDATE CASCADE
 ON DELETE RESTICT
);

CREATE TABLE volume
(
 inventory_id int,
 isbn char (17),
 condition_code int,
 date_acquired date,
 asking_price decimal (7,2),
 selling_price decimal (7,2),
 sale_id int,
 PRIMARY KEY (inventory_id),
 FOREIGN KEY fk_volume2book (isbn)
 REFERENCES book
 ON UPDATE CASCADE
 ON DELETE RESTRICT,
 FOREIGN KEY fk_volume2condition (condition_code)
 REFERENCES condition_codes
 ON UPDATE CASCADE
 ON DELETE SET NULL
);

CREATE TABLE author
(
 author_numb int,
 author_last_first char (128),
 PRIMARY KEY (author_numb)
);

Figure 9-4 (continued): Complete CREATE TABLE statements
for the rare book store database including primary and foreign key
declarations (continued on next page)

232 Chapter 9: Schemas and Tables

CREATE TABLE work
(
 work_numb int,
 author_numb int,
 title char (50),
 PRIMARY KEY (work_numb),
 FOREIGN KEY fk_work2author (author_numb)
 REFERENCES author
 ON UPDATE CASCADE
 ON DELETE RESTRICT
);

Figure 9-4 (continued): Complete CREATE TABLE statements
for the rare book store database including primary and foreign key
declarations

MATCH PARTIAL to the foreign key definition and
part of a foreign key is null, then the nonnull portions
of the foreign key must match parts of an existing
foreign key. If you add MATCH FULL, a foreign key
must either be completely null or match an existing
primary key completely.

◊ Rules for determining the action to take when a prima-
ry key referenced by the foreign key is updated. If you
specify ON UPDATE CASCADE, then the DBMS
will automatically update the foreign key values when
the primary key values they reference are modified. (In
most cases, this will be the desired option because it
maintains the consistency of cross-references through-
out the database.) In addition, you can choose to ON
UPDATE SET NULL (set the foreign key values to
null), ON UPDATE SET DEFAULT (set the foreign
key values to their columns’ default value), or ON
UPDATE NO ACTION (do nothing).

Note: In a well-designed relational DBMS, primary key values
should never be modified. However, given that people persist in

 Assertions 233

using meaningful primary keys, you may want to be certain that
cross-references are maintained.

There are additional constraints that you can place on columns
in a table beyond primary and foreign key constraints. These
include requiring unique values and predicates in CHECK
clauses.

If you want to ensure that the values in a non-primary key
column are unique, you can use the UNIQUE keyword.
UNIQUE verifies that all nonnull values are unique. For ex-
ample, if you were storing social security numbers in an em-
ployees table that used an employee ID as the primary key, you
could also enforce unique social security numbers with

ssn CHAR (11) UNIQUE

The UNIQUE clause can also be placed at the end of a CRE-
ATE TABLE statement, along with the primary key and for-
eign key specifications. In that case, it takes the form

UNIQUE (column_names)

The CHECK clause to which you were introduced earlier in
this chapter in the Domains section can also be used with indi-
vidual columns to declare column-specific constraints. To add
a constraint, you place a CHECK clause after the column dec-
laration, using the keyword VALUE in a predicate to indicate
the value being checked. For example, to verify that a column
used to hold T-shirt sizes should be limited to S, M, L, XL,
XXL, and XXXL, you could write a CHECK clause as

CHECK (UPPER(VALUE) IN (‘S’,’M’,’L’,’XL’,’XXL’,
’XXXL’))

An assertion is a constraint that is applied to any or all tables
in a schema, rather than to a specific table. It can therefore be
based on more than one table or be used to verify that a table

Additional Column
Constraints

Requiring Unique Values

Check Clauses

Assertions

234 Chapter 9: Schemas and Tables

is not empty. Assertions exist as independent database objects
that can be created and dropped as needed.

To create an assertion you use the CREATE ASSERTION
command:

CREATE ASSERTION assertion_name
CHECK (logical_expression_for_validation)

For example, to ensure that the author table has at least one
row, someone at the rare book store could define the following
assertion:

CREATE ASSERTION validate_author
CHECK (SELECT COUNT(*) FROM author > 0);

Because an assertion is a database object, you remove one from
a schema just as you would any other database object:

DROP ASSERTION assertion_name

Most of today’s DBMSs check constraints whenever any mod-
ification is made to the contents of a table. The SQL standard,
however, gives users the ability to determine when constraints
are checked. Constraints may be not deferrable (the default),
in which case they are checked after each SQL statement. If
constraints are deferrable, they are checked at the end of a
transaction.

Note: If you are working in an interactive environment where
each statement is a distinct transaction, then deferring constraints
essentially has no effect.

There are several places where you can specify when constraints
are to be checked:

◊ When constraints are defined within a table definition.
In this case you can set constraints to INITIALLY DE-

Determining
When
Constraints Are
Checked

 Determining When Constraints Are Checked 235

FERRED or INITIALLY IMMEDIATE to determine
the initial setting for constraint checking. If you want
to prevent anyone from deferring constraints at a later
time, you can also specify that the constraints are NOT
DEFERRABLE. To allow constraints to be deferred at
a later time, you can specify them as DEFERRABLE.

◊ When you create a domain using CREATE DOMAIN,
you can indicate that domain checking should be INI-
TIALLY IMMEDIATE or INITIALLY DEFERRED.
In addition, you can prevent domain checking from
ever being deferred by adding NOT DEFERRABLE.
To allow deferring of domain checking at a later time,
specify DEFERRABLE.

◊ When you create an assertion using CREATE ASSER-
TION, you can indicate that the assertion checking
should be INITIALLY IMMEDIATE or INITIALLY
DEFERRED. In addition, you can prevent assertion
checking from ever being deferred by adding NOT
DEFERRABLE. To allow deferring of assertion check
at a later time, specify DEFERRABLE.

The point at which constraints defined as database objects
are checked can be altered with the SET CONSTRAINTS
MODE statement:

SET CONSTRAINTS MODE constraint_name DEFERRED

or

SET CONSTRAINTS MODE constraint_name IMMEDIATE

Of course, the preceding assume that the named constraint is
deferrable.

Changing the
Constraint Mode

236 Chapter 9: Schemas and Tables

Note: If you want to affect all the named constraints in the current
schema, use the keyword ALL instead of one or more constraint
names.

Because the SET CONSTRAINT MODE statement requires
a named constraint, it cannot be applied to constraints created
within a CREATE TABLE statement unless those constraints
have been named. This means that if you want to have control
over when the checking of such constraints occurs, you need
to add a CONSTRAINT clause to the table declaration so you
have somewhere to name a constraint.

As an example, consider the table declaration in Figure 9-5.
The addition of the CONSTRAINT clause allows both the
primary and foreign keys to be named, making them accessible
to a SET CONSTRAINTS MODE statement (although the
primary key has been specified as not deferrable.)

CREATE TABLE employee
(
 id_numb int,
 first vchar (20),
 last vchar (20),
 department_name vchar (20),
 CONSTRAINT pk_employee
 PRIMARY KEY (id_numb)
 INITIALLY IMMEDIATE NOT DEFERRABLE,
 CONSTRAINT fk_employee2dept
 FOREIGN KEY (department_name)
 REFERENCES departments (department_name)
 INITIALLY IMMEDIATE DEFERRABLE
);

Figure 9-5: A table declaration including constraints accessible to a
SET CONSTRAINTS MODE statement

10

237

A database is made up of more than just a schema and perma-
nent base tables. It can contain views, temporary tables, and
common table expressions (CTEs). It may also contain indexes,
which although no longer part of the SQL standard, are sup-
ported by most DBMSs for enforcing primary key constraints
and speeding retrieval performance.

A view is a virtual table that is produced by executing a SQL-
query. It is stored in the data dictionary as a named SELECT.
Whenever a SQL query contains the name of a view, the
DBMS executes the query associated with the view’s definition
to create its virtual result table. That table can the be used as a
source table by the remainder of the query in which its name
appears.

There are several important reasons for using views in a data-
base environment:

◊ Views provide a way to store commonly used complex
queries in the database. Users can use a simple query
such as

SELECT column1, column2, column3
FROM view_name

instead of typing a complex SQL statement.

◊ Views can help you tailor the database environment
to individual users, groups of users, or uses. You create

Views, Temporary
Tables, CTEs, and
Indexes

Why Use Views?

Views

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50010-8

238 Chapter 10: Views, Temporary Tables, CTEs, and Indexes

views that package the data needed by specific people or
for specific purposes, making it easier for those users to
access their data.

◊ Views can help maintain database security. Rather than
giving users access to entire base tables, you can create
views that provide users with exactly the data they need
to see. You then grant users access to the views but not to
the base tables. (A complete discussion of granting and
revoking access rights can be found later in this chapter.)

To create a view whose columns have the same name as the
columns in the base table(s) from which it is derived, you give
the view and name and include the SQL query that defines its
contents:

CREATE VIEW view_name AS
 SELECT …

For example, if someone at the rare book store wanted to cre-
ate a view that would contain data about only leather bound
books, the SQL is written

CREATE VIEW leather_bound AS
 SELECT author, title
 FROM author JOIN work JOIN book
 JOIN volume
 WHERE UPPER (binding) = ‘LEATHER’;

If you want to rename the columns in the view, you include
the new column names in the CREATE VIEW statement:

CREATE VIEW leather_bound
 (leather_author, leather_title) AS
 SELECT author, title
 FROM author JOIN work JOIN book
 JOIN volume
 WHERE UPPER (binding) = ‘LEATHER’;

Creating Views

 Views 239

The preceding statement will produce a view with two col-
umns named leather_author and leather_title. Notice if you
want to change even one column name, you must include all
column names in the parentheses following the name of the
view. The DBMS will match the columns following SELECT
with the view column names by their position in the list.

Views can be created from nearly any SQL query, including
those that perform joins, unions, and grouping. For example,
to simplify looking at sales figures, someone at the rare book
store might create a view like the following:

CREATE VIEW sales_summary AS
 SELECT customer_numb,
 SUM (sale_total_amt)
 AS total_purchases
 FROM sale
 GROUP BY customer_numb;

The view table will then contain grouped data along with a
computed column. The beauty of this view is that each time its
name is used, the sum will be computed again, ensuring that
the data remain up to date.

Note: Views cannot be created from queries that include local tem-
porary tables.

You use a view in a SQL SELECT just as you would a base ta-
ble. For example, to see the entire contents of the sales_sum-
mary view created in the preceding section, someone at the
rare book store could use the simple query

SELECT *
FROM sales_summary;

which produces the result table in Figure 10-1.

Querying Views

240 Chapter 10: Views, Temporary Tables, CTEs, and Indexes

 customer_numb | total_purchases
---------------+-----------------
 8 | 130.00
 4 | 110.00
 1 | 793.00
 5 | 190.00
 11 | 200.00
 12 | 505.00
 10 | 200.00
 9 | 200.00
 6 | 285.00
 2 | 230.95

Figure 10-1: The output of querying a view that includes grouping and
a calculated column

You can apply additional predicates to a view, as in the follow-
ing example that restricts rows by date:

SELECT *
FROM sales_summary
WHERE total_purchases >= 500;

This time, the result contains only two rows:

 customer_numb | total_purchases
---------------+-----------------
 1 | 793.00
 12 | 505.00

Theoretically, you should be able to perform INSERT, UP-
DATE, and DELETE on views as well as SELECT. However,
not all views are updatable (capable of being used for updat-
ing). Keep in mind that a view’s table exists only in main mem-
ory. If it is to be used for updates, then the DBMS must be
able to propagate the update back to the view’s base table(s).

The SQL:2006 places the following restrictions on updatability:

◊ The view must obtain its source data from tables and/
or views. The data cannot come from a virtual table de-

View Updatability
Issues

 Temporary Tables 241

fined by a SELECT that is part of the view’s query (no
table constructors).

◊ The view must not use UNION DISTINCT, EXCEPT
ALL, EXCEPT DISTINCT, or INTERSECT.

◊ Each updatable column in the view must correspond to
an updatable column in a source table; each non-up-
datable column in the view must correspond to a non-
updatable column in a source table.

If you have created a view based on another view, then the
underlying view must also be updatable. In addition, you will
be unable to insert rows into views that do not contain the
primary key columns of their base tables. (Doing so will vio-
late the base table’s primary key constraint.) Although updates
and deletes are possible when the primary key columns aren’t
present in a view, performing such modifications may have
unexpected results because you can’t be certain which rows will
be affected.1

A temporary table is a base table that is not stored in the da-
tabase, but instead exists only while the database session in
which it was created is active. At first glance, this may sound
like a view, but views and temporary tables are rather different:

◊ A view exists only for a single query. Each time you use
the name of a view, its table is recreated from existing
data.

◊ A temporary table exists for the entire database session
in which it was created.

1 Some current DBMSs support an INSTEAD OF trigger that lets you
create a procedure that updates the underlying table(s) of a view when the
view itself isn’t updatable. For example, such a procedure might generate
values where needed to complete a primary key. However, INSTEAD OF
triggers are not part of the SQL standard,

Temporary
Tables

242 Chapter 10: Views, Temporary Tables, CTEs, and Indexes

◊ A view is automatically populated with the data retrieve
by the query that defines it.

◊ You must add data to a temporary table with SQL IN-
SERT commands.

◊ Only views that meet the criteria for view updatability
can be used for data modification. When you use a view
for updating, the updates are permanently propagated
to the underlying base tables.

◊ Because temporary tables are base tables, all of them can
be updated. However, the updates are as temporary as
the table.

◊ Because the contents of a view are generated each time
the view’s name is used, a view’s data are almost always
current.

◊ The data in a temporary table reflect the state of the
database at the time the table was loaded with data. If
the data in table(s) from which the temporary table was
loaded are modified after the temporary table has re-
ceived its data, then the contents of the temporary table
may be out of sync with other parts of the database.

If the contents of a temporary table become outdated when
source data change, why use a temporary table at all? Wouldn’t
it be better simply to use a view whose contents are continually
regenerated? The answer lies in performance. It takes process-
ing time to create a view table. If you are going to use the data
only once during a database session, then a view will actually
perform better than a temporary table because you don’t need
to create a structure for it. However, if you are going to be
using the data repeatedly during a session, then a temporary
table provides better performance because it needs to be creat-
ed only once. The decision therefore results in a trade-off. Us-
ing a view repeatedly takes more time but provides continually

 Temporary Tables 243

updated data; using a temporary table repeatedly saves time,
but you run the risk that the table’s contents may be out of
date.

Creating a temporary table is very similar to creating a perma-
nent base table. You do, however, need to decide on the scope
of the table. A temporary table can be global, in which case it
is accessible to the entire application program that created it.
Alternatively, it can be local, in which case it is accessible only
to the program module in which it was created.

To create a global temporary table, you add the keyword
GLOBAL TEMPORARY to the CREATE TABLE statement:

CREATE GLOBAL TEMPORARY TABLE
 (remainder of CREATE statement)

For example, if someone at the rare book store was going to
use the sales summary information repeatedly, then he or she
might create the following temporary table instead of using a
view:

CREATE GLOBAL TEMPORARY TABLE sales_summary
 (customer_numb INT,
 total_purchases NUMERIC (7,2),
 PRIMARY KEY (customer_numb));

To create a local temporary table, you replace GLOBAL with
LOCAL:

CREATE LOCAL TEMPORARY TABLE sales_summary
 (customer_numb INT,
 total_purchases NUMERIC (7,2),
 PRIMARY KEY (customer_numb));

To place data in a temporary table, you use one or more SQL
INSERT statements. For example, to load the sales_summary
table created in the preceding section, you could use

Creating Temporary
Tables

Loading Temporary
Tables with Data

244 Chapter 10: Views, Temporary Tables, CTEs, and Indexes

INSERT INTO sales_summary
 SELECT customer_numb,
 sum (total_sale_amt)
 FROM sale
 GROUP BY customer numb;

You can now query and manipulate the sales_summary table
just as you would a permanent base table.

When you write embedded SQL you have control over the
amount of work that the DBMS considers to be a unit (a trans-
action). We will discuss transactions in depth in Chapter 13.
However, to understand what happens to the rows in a tem-
porary table, you do need to know that a transaction can end
in one of two ways: It can be committed (its changes made
permanent) or it can be rolled back (its changes undone).

By default, the rows in a temporary table are purged when-
ever a transaction is committed. You can, however, instruct
the DBMS to retain the rows by including ON COMMIT
PRESERVE ROWS to the end of the table creation statement:

INSERT INTO sales_summary
 SELECT customer_numb,
 sum (total_sale_amt)
 FROM sale
 GROUP BY customer numb
ON COMMIT PRESERVE ROWS;

Because a rollback returns the database to the state it was in
before the transaction began, a temporary table will also be
restored to its previous state (with or without rows).

A common table expression (CTE) is yet another way of extract-
ing a subset of a database for use in another query. CTEs are
like views in that they generate virtual tables. However, the
definitions of a CTE is not stored in the database and it must
be used immediately after it is defined.

Disposition of
Temporary Table
Rows

Common Table
Expressions
(CTEs)

 Common Table Expressions (CTEs) 245

To get started, let’s look at a very simple example. The general
format of a simple CTE is

WITH CTE_name (columns) AS
 (SELECT_statement_defining_table)
CTE_query

For example, a CTE and its query to view all of the rare book
store’s customers could be written

WITH customer_names (first, last) AS
 (SELECT first_name, last_name
 FROM customer)
SELECT *
FROM customer_names;

The result is a listing of the first and last names of the custom-
ers. This type of structure for a simple query really doesn’t buy
you much except that the CTE isn’t stored in the database like
a view and doesn’t require INSERT statements to populate it
like a temporary table. However, the major use of CTEs is for
recursive queries, queries that query themselves. (That may
sound a bit circular, and it is, intentionally.) The typical appli-
cation of a recursive query using a CTE is to process hierarchi-
cal data, data arranged in a tree structure. It will allow a single
query to access every element in the tree or to access subtrees
that begin somewhere other than the top of the tree.

As an example, let’s create a table that handles the descendants
of a single person (in this case, John). As you can see in Figure
10-2, each node in the tree has at most one parent and any
number of children. The numbers in the illustration represent
the ID of each person.

 Relational databases are notoriously bad at handling this type
of hierarchically structured data. The typical way to handle it
is to create a relation something like this:

246 Chapter 10: Views, Temporary Tables, CTEs, and Indexes

genealogy (person id, parent_id, person_name)

Each row in the table represents one node in the tree. For this
example, the table is populated with the 10 rows in Figure 10-
3. John, the node at the top of the tree, has no parent ID. The
parent_ID column in the other rows is filled with the person
ID of the node above in the tree. (The order of the rows in the
table is irrelevant.)

We can access every node in the tree by simply accessing ev-
ery row in the table. However, what can we do if we want to
process just the people who are Sam’s descendants? There is no
easy way with a typical SELECT to do that. However, a CTE
used recursively will identify just the rows we want.

The syntax of a recursive query is similar to the simple CTE
query with addition of the keyword RECURSIVE following
WITH. For our particular example, the query will be written:

John

Mary Sam

Gary

Liam Erin Peter

Helen Joy

Carol
�

�

�

�

� �

�

� �

�

Figure 10-2: A tree structure that can be represented in a relational
database and traversed with a recursive query

 Common Table Expressions (CTEs) 247

WITH RECURSIVE show_tree AS
 (SELECT
 FROM genealogy
 WHERE person_name = ‘Sam’
 UNION ALL
 SELECT g.*
 FROM genealogy as g, show_tree as st
 WHERE g.parent_id = st.person_id)
SELECT *
FROM show_tree
ORDER BY person_name;

The result is

 person_id | parent_id | person_name
-----------+-----------+-----------------------
 10 | 5 | Carol
 6 | 3 | Helen
 5 | 3 | Joy
 3 | 1 | Sam

The query that defines the CTE called show_tree has two parts.
The first is a simple SELECT that retrieves Sam’s row and
places it in the result table and in an intermediate table that
represents the current state of show_tree. The second SELECT
(below UNION ALL) is the recursive part. It will use the

 person_id | parent_id | person_name
-----------+-----------+---------------------------
 1 | | John
 2 | 1 | Mary
 3 | 1 | Sam
 4 | 2 | Gary
 5 | 3 | Joy
 6 | 3 | Helen
 7 | 4 | Liam
 8 | 4 | Erin
 9 | 4 | Peter
 10 | 5 | Carol

Figure 10-3: Sample data for use with a recursive query

248 Chapter 10: Views, Temporary Tables, CTEs, and Indexes

intermediate table in place of show_tree each time it executes
and add the results of each iteration to the result table. The re-
cursive portion will execute repeatedly until it returns no rows.

Here’s how the recursion will work in our example:

1. Join the intermediate result table to genealogy. Because
the intermediate result table contains just Sam’s row,
the join will match Helen and Joy.

2. Remove Sam from the intermediate table and insert
Helen and Joy.

3. Append Helen and Joy to the result table.

4. Join the intermediate table to genealogy. The only
match from the join will be Carol. (Helen has no chil-
dren and Joy has only one.)

5. Remove Helen and Joy from the intermediate table
and insert Carol.

6. Append Carol to the result table.

7. Join the intermediate table to genealogy. The result will
be no rows and the recursion stops.

CTEs cannot be reused; the declaration of the CTE isn’t saved.
Therefore they don’t buy you much for most queries. How-
ever, they are enormously useful if you are working with tree-
structured data. CTEs and recursion can also be helpful when
working with bill of materials data.

An index is a data structure that provides a fast access path to
rows in a table based on the values in one or more columns
(the index key). Because the DBMS can use a fast search tech-
nique to find the values rather than being forced to search each
row in an unordered table sequentially, data retrieval is often
much faster.

Indexes

 Indexes 249

The conceptual operation of an index is diagrammed in Figure
10-4. (The different weights of the lines have no significance
other than to make it easier for you to follow the crossed lines.)
In this illustration, you are looking at the work relation and an
index that provides fast access to the rows in the table based
on a book’s title.

The index itself contains an ordered list of keys (the book
titles) along with the locations of the associated rows in the
book table. The rows in the book table are in relatively random
order. However, because the index is in alphabetical order by
title, it can be searched quickly to locate a specific title. Then
the DBMS can use the information in the index to go directly
to the correct row or rows in the book table, thus avoiding a
slow sequential scan of the base table’s rows.

Once you have created an index, the DBMS’s query optimizer
will use the index whenever it determines that using the index
will speed up data retrieval. You never need to access the index
again yourself unless you want to delete it.

Index Book Table
Title A Title B’s data

 t
Title G’s data

 at

Title A’s data

Title H’s data

Ti le I’ d t
 t

Title C’s data

Title E’s data

Title B
Title C
Title D
Title E
Title F
Title G
Title H
Title I
Title J

Figure 10-4: The operation of an index to a relation

250 Chapter 10: Views, Temporary Tables, CTEs, and Indexes

When you create a primary key for a table, the DBMS either
automatically creates an index for that table using the primary
key column or columns as the index key or requires you to
create a unique index for the primary key. The first step in
inserting a new row into a table is therefore verification that
the index key (the primary key of the table) is unique to the
index. In fact, uniqueness is enforced by requiring the index
entries to be unique, rather than by actually searching the base
table. This is much faster than attempting to verify uniqueness
directly on the base table because the ordered index can be
searched much more rapidly than the unordered base tab

You have no choice as to whether the DBMS creates indexes
for your primary keys; you get them whether you want them or
not. In addition, you can create indexes to provide fast access
to any column or combination of columns you want. How-
ever, before you jump head first into creating indexes on every
column in every table, there are some trade-offs to consider:

◊ Indexes take up space in the database. Given that disk
space is relatively inexpensive today, this is usually not a
major drawback.

◊ When you insert, modify, or delete data in indexed col-
umns, the DBMS must update the index as well as the
base table. This may slow down data modification op-
erations, especially if the tables have a lot of rows.

◊ Indexes definitely speed up access to data.

The trade-off therefore is generally between update speed and
retrieval speed. A good rule of thumb is to create indexes for
foreign keys and for other columns that are used frequently
in WHERE clause predicates. If you find that update speed is
severely affected, you may choose at a later time to delete some
of the indexes you created.

Deciding Which
Indexes to Create

 How Much Faster? 251

How Much Faster?
How much faster can an index actually make searching? Some
simple examples will give you an idea. Assume that you have a
list of 10,000 names that are in random order. To search for a
specific name, the only technique available is to start with the
first name and read the names sequentially. On average, you
will need to check 5,000 names to find the one you want, and
if the name isn’t in the list or there are duplicates in the list,
you will need to look at all 10,000 names.

One way to speed things up would be to sort the list in al-
phabetical order. We could then use a technique known as a
binary search. The search starts by looking at the name in the
middle of the list. It will either be the middle name, or above
or below the middle name. Because the list is ordered, we can
determine which half of the list contains the name we’re trying
to find, which means that we can continue by searching just
that half. We repeat the process until we either find the name
we want or the portion of the list we are searching shrinks to
nothing (in which case, the name isn’t in the list). In the worst
case scenario—the name isn’t in the list—you will need to look
at only 15 or 16 names. When the name is in the list, the num-
ber of names you will need to look at will be less. This is sig-
nificantly fewer comparisons than with the sequential search!

DBMSs no longer use lists as the data structure for indexes.
Most use some type of hierarchical (tree) structure, similar to
the tree we used for the CTE example. The specifics of such
tree structures are very implementation dependent, but in gen-
eral they provide even better search performance than an or-
dered list.

252 Chapter 10: Views, Temporary Tables, CTEs, and Indexes

You create indexes with the CREATE INDEX statement:

CREATE INDEX index_name ON
 table_name (index_key_columns)

For example, to create an index on the author_last_first col-
umn in the author table, someone at the rare book store could
use

CREATE INDEX author_name
 ON author (author_first_last);

By default the index will allow duplicate entries and sort the
entries in ascending order. To require unique index entries,
add the keyword UNIQUE after CREATE:

CREATE UNIQUE INDEX author_name
 ON (author_first_last);

To sort in descending order, insert DESC after the column
whose sort order you to want to change. For example, some-
one at the rare book store might want to create an index on
sale_date in the sale relation in descending order so that the
most recent sales are first:

CREATE INDEX sale_date
 ON sale (sale_date DESC);

If you want to create an index on a concatenated key, you in-
clude all the columns that should be part of the index key in
the column list. For example, the following creates an index
organized by title and author number:

CREATE INDEX book_order ON book (title, author_
numb);

Creating Indexes

 How Much Faster? 253

Although you do not need to access an index directly unless
you want to delete it from the database, it helps to give indexes
names that tell you something about their keys. This makes
it easier to remember them should you need to get rid of the
indexes.

11

255

One of the benefits that relational DBMSs have over DBMSs
based on older data models is that the schema is easy to change.
As long as a table isn’t being used at the time you want to
modify it, its design can be changed without affecting other
tables in the database. (This is said with the caveat that the
presence of foreign key constraints may prevent some deletions
and modifications or cause other modifications to occur.) The
SQL statements that modify database structures are therefore
an important part of a database administrator’s arsenal. In this
chapter, we’ll look at the types of changes that can be made
and how to make them.

With the exception of tables, structural database elements are
largely unchangeable. When you want to modify them, you
must delete them from the database and create them from
scratch. In contrast, just about every characteristic of a table
can be modified without deleting the table using the ALTER
TABLE statement.

Note: DBMS support for the parts of ALTER TABLE varies con-
siderably. It is not unusual to find that all you can do is add a
column or increase the size of a character column, for example.
As always, you will need to consult the documentation for your
particular DBMS to see exactly what is available.

Keeping the Design
Up to Date

Modifying Tables

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50011-X

256 Chapter 11: Keeping the Design Up to Date

To add a new column to a table, you use the ALTER TABLE
statement with the following syntax:

ALTER TABLE table_name
ADD column_name column_data_type
 column_constraints

For example, if someone at the rare book store wanted to add a
telephone number to the publisher table, he or she would use

ALTER TABLE publisher
ADD publisher_phone CHAR (11);

To add more than one column at the same time, simply sepa-
rate the clauses for the new columns with commas:

ALTER TABLE publisher
ADD publisher_phone CHAR (11),
ADD publisher_street CHAR (30),
ADD publisher_city CHAR (30),
ADD publisher_state_prov CHAR (2),
ADD publisher_zip_postcode CHAR (12),
ADD publisher_country CHAR (10);

There is one caveat that goes along with adding columns: If
you have any application programs that use the SELECT *
syntax, then any new columns that you add to a table will be
included in the output of that query. The result may be either
the disclosure of data you wanted to keep secret or application
programs that no longer work properly. Because SQL allows
you to add columns to tables without restriction, you should
avoid using the SELECT * syntax in application programs.

You can add table constraints such as foreign keys at any time.
To do so, include the new constraint in the ADD clause of an
ALTER TABLE statement:

ALTER TABLE table_name
 ADD table_constraint

Adding New
Columns

Adding Table
Constraints

 Modifying Tables 257

Assume, for example, that someone at the rare book store
created a new table named regions and included all the two-
character U.S. state and Canadian province abbreviations. The
table would then need to add a reference from the customer
table:

ALTER TABLE customer
 ADD FOREIGN KEY customer2regions (state_
province)
 REFERENCES regions (region_name);

When you add a foreign key constraint to a table, the DBMS
verifies that all existing data in the table meet that constraint.
If they do not, the ALTER TABLE will fail.

If you have created a table without a primary key, you can add
one with

ALTER TABLE some_table
 ADD PRIMARY KEY (key_columns);

You modify columns by changing any characteristic of the col-
umn, including its type, size, and constraints:

◊ To replace a complete column definition, use an
ALTER clause with the current column and the new
column characteristics:

ALTER TABLE table_name
 ALTER COLUMN column_name
 TYPE new_data_type

◊ To add or change a default value only (without chang-
ing the data type or size of the column), include the
DEFAULT keyword:

ALTER TABLE table_name
 ALTER column_name
 SET DEFAULT new_default_value

Modifying Columns

258 Chapter 11: Keeping the Design Up to Date

◊ To switch between allowing nulls and not allowing
nulls without changing any other column characteris-
tics, add SET or DROP NOT NULL as appropriate:

ALTER TABLE table_name
 ALTER column_name SET NOT NULL

or

ALTER TABLE table_name
 MODIFY column_name DROP NOT NULL

When you change the data type of a column, the DBMS will
attempt to convert any existing values to the new data type. If
the current values cannot be converted, then the table modifi-
cation will not be performed. In general, most columns can be
converted to characters. However, conversions from a charac-
ter data type to numbers or datetimes require that existing data
represent legal values in the new data type.

You can delete parts of a table as needed:

◊ To delete a column, use a DROP clause in an ALTER
TABLE statement, followed by the name of the col-
umn to be deleted:

ALTER TABLE table_name
 DROP COLUMN column_name;

◊ To delete a table constraint such as a primary or foreign
key, use DROP CONSTRAINT:

ALTER TABLE table_name
 DROP CONSTRAINT constraint_name;

Although you can delete a table’s primary key, keep in
mind that if you do not add a new one, you may not be
able to modify the contents of the table.

Deleting Table
Elements

 Modifying Domains 259

◊ To remove a default value from a column use:

ALTER TABLE table_name
 DROP column_name DEFAULT;

You can rename both tables and columns:

◊ To rename a table, place the new table name after the
RENAME keyword:

ALTER TABLE current_table_name
 RENAME TO new_table_name

◊ To rename a column, include both the old and new
column names separated by the keyword TO:

ALTER TABLE table_name
 RENAME current_column_name
 TO new_column_name

If you have created custom domains, those domains can be
modified as needed. Keep in mind, however, that if the data
currently in the column don’t meet the criteria of the modified
domain, the modification may not be allowed. (Such behavior
is implementation dependent)

Domain modifications use the ALTER statement, much like
modifying tables:

◊ To change a domain’s default value, use

ALTER DOMAIN domain_name
 SET DEFAULT default_value

◊ To remove a domain’s default value, use

ALTER DOMAIN domain_name
 DROP DEFAULT

Renaming Table
Elements

Modifying
Domains

260 Chapter 11: Keeping the Design Up to Date

◊ To change a domain’s NULL or NOT NULL status,
use

ALTER DOMAIN domain_name
 SET NOT NULL

or

ALTER DOMAIN domain_name
 DROP NOT NULL

◊ To add a new constraint to the domain, use

ALTER DOMAIN domain_name
 ADD constraint_name
 domain_constraint_expression

◊ To remove a constraint from the domain, use

ALTER DOMAIN domain_name
 DROP constraint_name

To delete a structural element from a database, you drop the
element. For example, to delete a table, you would type

DROP TABLE table_name

Dropping a table is irreversible. In most cases, the DBMS will
not bother to ask “Are you sure?” but will immediately delete
the structure of the table and all of its data.

You can remove the following structural elements from a data-
base with the DROP statement:

◊ Tables

◊ Views

DROP VIEW view_name

Deleting
Database
Elements

 Deleting Database Elements 261

◊ Indexes

DROP INDEX index_name

◊ Domains

DROP DOMAIN domain_name

A DROP of a table or view will fail if the element being
dropped is currently in use by another user.

The action of a DBMS when you attempt to DROP a table
depends to some extent on whether the table contains primary
keys with foreign key references and what action was specified
when the table was created. If the action is RESTRICT, then
the DROP will fail. In contrast, for example, if the action is
CASCADE, related foreign key rows will be deleted from their
table(s) when the primary key table is dropped.

12

263

For many network and database administrators, security has
become an almost overwhelming concern. Relational DBMSs
have always had some measure of security separate from that
provided by networks. In this chapter we will look at some
examples of managing database user accounts as well as SQL’s
support for granting and revoking access rights.

Many multiuser DBMSs maintain user names and passwords
that are distinct from any authentication that may be imposed
by a network. A user must supply the DBMS’s authentication
information before being allowed to connect to the database.

Most DBMSs are shipped with only one or two authorized us-
ers (often DBA, SYSTEM, and/or ADMIN) that have access
to the entire database. All other users must be created by one
of these accounts or another account that has been given the
appropriate rights.

Although the specific syntax for creating and maintaining user
names and passwords is not a part of the SQL standard and
therefore implementation dependent, the syntax used by many
products is very similar.

Oracle and the two major open source DBMSs (mySQL and
Postgres) use some type of CREATE USER syntax. mySQL
has the simplest version:

Users and Access
Rights

Managing User
Accounts

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50012-1

264 Chapter 12: Users and Access Rights

CREATE USER user_name IDENTIFIED BY ‘password’

Oracle’s version uses the following pattern:

CREATE USER user_name
 IDENTIFIED BY password
 DEFAULT TABLESPACE tablespace_name
 QUOTA storage_space_allocation

The DEFAULT TABLESPACE and QUOTA clauses set the area
of the database the user will use for temporary storage and the
amount of temporary storage the user can fill.

Postgres varies the syntax slightly:

CREATE USER user_name
 PASSWORD ‘password’

Postgres also supports clauses to allow/disallow the creation of
databases and the creation of other users.

SQL Server uses yet another similar syntax:

CREATE LOGIN user_name
 WITH PASSWORD = ‘password’

In contrast, DB2 does not provide its own user names and pass-
words. Instead, it uses a person’s account with the operating sys-
tem. In other words, once a user is authenticated by the operating
system, DB2 requires no further account authorization. Access
rights to database elements are therefore linked to OS accounts
rather than to special DB2 accounts.1

Having a user ID does not necessarily give a user the right to
access the database. Although the details are implementation de-
pendent, you typically will find that the DBMS has extended the

1 For more information on DB2 security, see http://www.databasesecurity.
com/db2/db2cert2v8-a4.pdf.

 Granting and Revoking Access Rights 265

GRANT command—which we will discuss shortly—to sup-
port user-level access. For example,

GRANT CONNECT TO user_id

grants the user the right to connect to the database. Connect
rights, however, do not give the user the right to create data-
base elements or access existing database elements. The right to
create database elements usually must be granted by someone
with DBA rights, using a syntax similar to

GRANT RESOURCE TO user_id

Rights to database elements such as tables and views are given
using the SQL GRANT command (discussed in the next sec-
tion of this chapter).

DBA rights permit a user to grant connect and resource rights
to others, to create accounts, and access all database elements.
Any user ID with DBA rights also can assign them to another
user ID:

GRANT DBA TO user_name

Because DBA rights have such broad access, in most cases they
will be restricted to only one or two user IDs.

When you create an element of database structure, the user
name under which you are working becomes that element’s
owner. The owner has the right to do anything to that element;
all other users have no rights at all. This means that if tables
and views are going to accessible to other users, you must grant
them access rights.2

2 Some major DBMSs (for example, Oracle and DB2) also provide
support for multilevel security (MLS). An MLS scheme classifies data
into levels, such as top secret, secret, classified, and unclassified. Users are
then given clearance levels. A user can view data at or below his or her
clearance level and cannot change a classification level to anything less

Granting and
Revoking Access
Rights

266 Chapter 12: Users and Access Rights

There are six types of access rights that you can grant:

◊ SELECT: Allows a user to retrieve data from a table or
view.

◊ INSERT: Allows a user to insert new rows into a table
or updatable view. Permission may be granted to spe-
cific columns rather than the entire database element.

◊ UPDATE: Allows a user to modify rows in a table or
updatable view. Permission may be granted to specific
columns rather than the entire database element.

◊ DELETE: Allows a user to delete rows from a table or
updatable view.

◊ REFERENCES: Allows a user to reference a table as a
foreign key in a table he or she creates. Permission may
be granted to specific columns rather than the entire
table.

◊ EXECUTE: Allows the user to execute stored pro-
cedures. (You will read about stored procedures in
Chapter 14.)

◊ ALL PRIVILEGES: Gives a user all of the preceding
rights to a table or view.

By default, granting access rights to another user does not give
that user the ability to pass on those rights to others. If, how-
ever, you add a WITH GRANT OPTION clause, you give the
user the ability to grant the right that he or she has to another
user.

than the data’s current level. MLS is used in many government databases
and to satisfy government regulations surrounding data access.

Types of Access
Rights

 Granting and Revoking Access Rights 267

Access rights to tables and views are stored in the data dic-
tionary. Although the details of the data dictionary tables vary
from one DBMS to another, you will usually find access rights
split between two system tables named something like SYS-
TABLEPERM and SYSCOLPERM.3

The first table is used when access rights are granted to entire
tables or views; the second is used when rights are granted to
specific columns within a table or view.

A SYSTABLEPERM table has a structure similar to the
following:

Systableperm (table_id, grantee, grantor,
selectauth, insertauth, deleteauth,
updateauth, updatecols, referenceauth)

The columns represent

◊ TABLE_ID: An identifier for the table or view.

◊ GRANTEE: The user ID to which rights have been
granted.

◊ GRANTOR: The user ID granting the rights.

◊ SELECTAUTH: The grantee’s SELECT rights.

◊ INSERTAUTH: The grantee’s INSERT rights.

◊ DELETEAUTH: The grantee’s DELETE rights.

◊ UPDATEAUTH: The grantee’s UPDATE rights.

◊ UPDATECOLS; Indicates whether rights have been
granted to specific columns within the table or view.
When this value is Y (yes), the DBMS must also look

3 DB2, for example, uses AUTH (authorization) in its system authori-
zation tables rather than PERM.

Storing Access
Rights

268 Chapter 12: Users and Access Rights

in SYSCOLPERM to determine whether a user has the
rights to perform a specific action against the database.

◊ REFERENCEAUTH: The grantee’s REFERENCE
rights.

The columns that hold the access rights take one of three val-
ues: Y (yes), N (no), or G (yes with grant option).

Whenever a user makes a request to the DBMS to manipulate
data, the DBMS first consults the data dictionary to determine
whether the user has the rights to perform the requested action.
(SQL-based DBMSs are therefore said to be data dictionary
driven.) If the DBMS cannot find a row with a matching user
ID and table identifier, then the user has no rights at all to the
table or view. If a row with a matching user ID and table iden-
tifier exists, then the DBMS checks for the specific rights that
the user has to the table or view and—based on the presence
of Y, N, or G in the appropriate column—either permits or
disallows the requested database access.

To grant rights to another user, a user who either created the
database element (and therefore has all rights to it) or who has
GRANT rights issues a GRANT statement:

GRANT type_of_rights
ON table_or_view_name TO user_ID

For example, if the DBA of the rare book store wanted to allow
the accounting manager (who has a user ID of acctg_mgr) to
access the sales_summary view, the DBA would type:

GRANT SELECT
ON sales_summary TO acctg_mgr;

To allow the accounting manager to pass those rights on to
other users, the DBMS would need to add one line to the
SQL:

Granting Rights

 Granting and Revoking Access Rights 269

GRANT SELECT
ON sales_summary TO acctg_mgr
WITH GRANT OPTION;

If the DBA wanted to give some student interns limited rights
to some of the base tables, the GRANT might be written

GRANT SELECT, UPDATE (selling_price, sale_date)
ON volume TO intern1, intern2, intern3;

The preceding example grants SELECT rights to the entire
table but gives UPDATE rights only on two specific columns.
Notice also that you can grant multiple rights in the same
command as well as give the same group of rights to more
than one user. However, a single GRANT statement applies to
only one table or view.

In most cases, rights are granted to specific user IDs. You can,
however, make database elements accessible to anyone by
granting rights to the special user ID PUBLIC. For example,
the following statement gives every authorized user the rights
to see the sales_summary view:

GRANT SELECT
ON sales_summary TO PUBLIC;

To remove previously granted rights, you use the REVOKE
statement, whose syntax is almost opposite to that of GRANT:

REVOKE access_rights
ON table_or_view_name FROM user_ID

For example, if the rare book store’s summer interns have fin-
ished their work for the year, the DBA might want to remove
their access from the database:

REVOKE SELECT, UPDATE (selling_price, sale_
date)
ON volume FROM intern1, intern2, intern3;

Revoking Rights

270 Chapter 12: Users and Access Rights

If the user from which you are revoking rights has the GRANT
option for those rights, then you also need to make a decision
about what to do if the user has passed on those rights. In the
following case, the REVOKE will be disallowed if the account-
ing manager has passed on his or her rights:

REVOKE SELECT
ON sales_summary FROM acctg_mgr
RESTRICT;

In contrast, the syntax

REVOKE SELECT
ON sales_summary FROM acctg_mgr
CASCADE;

will remove the rights from the acctg_mgr ID along with any
user IDs to which the acctg_mgr granted rights.

Note: Some DBMSs also support a DENY command, which ex-
plicitly prohibits a user from performing a given action. It is not a
part of the SQL standard, however,

As the number of people working with a database grows, it
becomes difficult to keep track of which rights have been as-
signed to each individual user. SQL therefore lets you group
rights together and assign them as a unit called a role.

You create a role with the CREATE ROLE statement:

CREATE ROLE role_name

The DBA at the rare book store, for example, might create a
role for the summer interns:

CREATE ROLE interns;

Then the DBA assigns rights to the role:

GRANT SELECT, UPDATE (selling_price, sale_date)
ON volume TO interns;

Roles

 Granting and Revoking Access Rights 271

Finally, the role is then assigned to the users that should have
the rights that are grouped into the role:

GRANT interns TO intern1, intern2, intern3;

To revoke privileges that are part of a role, use

REMOVE role_name FROM user_ID

as in

REVOKE interns FROM intern1, intern2, intern;

A role is removed from the database with

DROP ROLE role_name

13

273

An end user can interact with a database either by issuing SQL
statements directly by typing them or by running an appli-
cation program in which SQL has been embedded. In either
case, the database must recognize the user as an authorized
database user, the user must connect to the database to estab-
lish a database session, and there must be control of the user’s
transactions. As an introduction, this chapter begins with a
discussion of the environment in which multiple users operate
and what a DBMS has to do to preserve data integrity when
multiple users attempt to modify the same data. The chapter
then turns to SQL specifics as a prelude to the discussion of
embedded SQL in Chapter 15.

A transaction is a unit of work submitted as a whole to a data-
base for processing. (A database session consists of one or more
transactions.) When more than one user of an application pro-
gram is interacting with the database at one time, we say that
their transactions are running concurrently. Concurrent trans-
actions can run in one of two ways:

◊ They may run serially, in which case one transaction
completes its work before the second begins.

◊ They may run interleaved, in which case the actions of
both transactions alternate.

Users, Sessions,
and Transaction
Control

The Concurrent
Use Data
Environment

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50013-3

274 Chapter 13: Users, Sessions, and Transaction Control

Ideally, the results of interleaved transaction execution should be
the same as that of serial execution (regardless of which trans-
action went first). If interleaved transaction execution produces
such a result, the transactions are said to be serializable.

Unfortunately, some very nasty thing can happen if no controls
are placed on interleaved execution. As an example, consider what
might happen at the rare book store when two customers call at
the same time and attempt to order the same volume (see Figure
13-1).

The staff member handling the first customer retrieves data about
the volume and notes that it has not been sold. A short time later,
a second customer calls and is handled by a second staff member,
who also queries the database and sees that the volume is avail-
able. After the second staff member’s query, the first customer
decides to purchase the volume and the first staff member updates
the database to indicate that the volume has been sold.

Moments later, the second customer also decides to purchase the
volume. As far as the second staff member and the second cus-
tomer are concerned, the volume is available. The second staff

Figure 13-1: A lost update

Time:

Volume available?:

Staff member 1

Staff member 2

Query database

Y NY

Query database

N

Sell volume;
update database

Sell volume
that has been
sold already

1 2 3 4

 The Concurrent Use Data Environment 275

member updates the database with the second customer’s pur-
chase, erasing the first customer’s purchase. It is likely that the
book will be sent to the second customer because no record of
the first customer’s purchase remains in the database.

This problem, known as a lost update, occurred because the
second staff member’s update was based on old data; the sec-
ond staff member did not see the first customer’s purchase and
therefore could not know that the book had already been sold.

The most common solution is to use locking, where transac-
tion receive control over database elements they are using to
prevent other transactions from updating and/or viewing the
same data. Transactions that modify data usually obtain exclu-
sive, or write, locks that prevent both viewing and modifica-
tion of data by other transactions while the locks are in place.

To see how locking solves the book purchasing problem, take
a look at Figure 13-2. This time, when the first staff mem-
ber retrieves data about the volume, the transaction receives a
lock on the book’s data that prevents the second staff member
from viewing the data. The second staff member’s transaction
is placed in a wait state by the DBMS until the transaction
holding the lock finishes and releases the lock. At this point,
the second staff member’s transaction can proceed, but when
it retrieves the data about the volume, the second staff member
sees that the volume has been sold and does not attempt to sell
it again.

The second customer is unhappy, but this is a far better situa-
tion than what might occur when the first customer discovers
that the book that he or she thought was purchased was actu-
ally sold to someone else (especially if the first customer’s credit
card was charged for the book!).

For locking to be effective, a transaction must hold all its locks
for the entire length of the transaction. Part of the process
that ends a transaction is therefore to release all of the locks,

276 Chapter 13: Users, Sessions, and Transaction Control

making the data held by the transaction available for other
transactions.

In the preceding example, you saw an exclusive lock used to
prevent both viewing and updating a part of the database.
DBMSs also place shared, or read, locks that allow many trans-
actions to view a part of the database but allow none to modify
it while a shared lock is in place. A DBMS will use a shared
lock instead of an exclusive lock whenever it can because a
shared lock allows more concurrent use of database resources.

In many cases, the DBMS will place a shared lock on data
when a transaction retrieves data and then upgrade that lock to
an exclusive lock only when the transaction issue a data modi-
fication command. This scheme, known as two-phase locking,
helps ensure that exclusive locks are held for as short a time as
possible and thus promotes the highest level of concurrent use.

The size of the database element on which a lock is placed (the
granularity of the lock) varies from one DBMS to another and
with the type of actions you are performing. It may be as large

Figure 13-2: Solving a lost update problem with locking

Time:

Volume available?:

Staff member 1

Staff member 2

Query database

Y Y N

Query database;
info is locked;
wait

N

Sell volume;
update database

Query completes;
note correctly that
volume has been
sold

1 2 3 4

WAIT

 The Concurrent Use Data Environment 277

as an entire disk page (as in early versions of DB2) or an entire
table, or it may be as small as a single row in a single table.
The smaller the granularity, the more “pieces” there are to lock
and the more concurrent use a database can support. However,
the DBMS must spent time maintaining locks and keeping
track of which transactions are waiting for locks. Therefore,
the smaller the granularity and the more locks in place, the
more processing time the DBMS must devote to locks rather
than data manipulation.

At first glance, it may seem that concurrency control is straight-
forward: Either you have serializable transactions or you don’t.
However, the SQL standard muddies the water a bit by allow-
ing you to specify that a transaction can read data modified
by another, uncommitted transaction. The degree to which a
transaction has access to such data is known as its isolation
level.

There are four isolation levels:

◊ SERIALIZABLE: A serializable transaction—the de-
fault isolation level—is fully isolated from other trans-
actions. It acts exactly as described in the preceding sec-
tion of this chapter.

◊ REPEATABLE READ: A repeatable read transaction
can read the same data more than once, retrieving rows
that satisfy a WHERE predicate. If another transaction
has inserted or updated rows and been committed be-
tween the first transaction’s reads, then the repeated read
of the data may return different rows than the first. De-
pending on the nature of the transaction, such behav-
ior may be desirable. This effect is known as a phantom
read.

◊ READ COMMITTED: A read committed transaction
can also read the same data more than once, but in this
case the read returns the same rows. However, the sec-

Muddying the
Waters: Isolation
Levels

278 Chapter 13: Users, Sessions, and Transaction Control

ond read may produce different values if the data have
been updated by another transaction that committed
between the first and second reads by the transaction in
question. Again, depending on the nature of the trans-
action, this may be something that you want. This effect
is known as a nonrepeatable read. Such transactions
also permit phantom reads.

◊ READ UNCOMMITTED: A read uncommitted
transaction can read the same data more than once and
read updates made to data by other uncommitted trans-
actions. The danger here is that the uncommitted trans-
action may be rolled back, voiding their updates. This
effect is known as a dirty read. Such transactions also
permit nonrepeatable reads and phantom reads.

As mentioned earlier, the default isolation level is SERIALIZ-
ABLE. To set a lower level, you use the SET TRANSACTION
command:

SET TRANSACTION
 ISOLATION LEVEL isolation_level

Choose the isolation level from one of the four just discussed,
as in

SET TRANSACTION
 ISOLATION LEVEL REPEATABLE READ;

To interact with a database, a user connects to it. When the
user is finished, he or she disconnects. The time between the
connection and disconnection is a database session.

To establish a connection to a database, you use the keyword
CONNECT. For example, to connect under a specific user
ID, a user or application would enter

CONNECT TO USER user_id

Database
Sessions and
Connections
SQL for Connecting
and Disconnecting

 Database Sessions and Connections 279

The SQL standard includes considerable flexibility in the
CONNECT command syntax. If the DBMS has its own way
of naming connections, then CONNECT may be enough. If
the DBMS requires you to name connections, then you might
use

CONNECT AS connection_identifier

You should consult your DBMS’s documentation for the spe-
cific syntax required for a database connection.

Note: The CONNECT command assumes that there is some im-
plementation-specific way to identify the database with which a
user will interact once connected and that the database specifica-
tion occurs before the user attempts to make a connection.

To terminate a connection you use the DISCONNECT com-
mand. If you specified a connection name, then the command
is written

DISCONNECT connection_identifier

If you took the default connection with a user name, then
DISCONNECT by itself is usually enough.

There are two possible strategies governing the length of a da-
tabase connection that come with their own set of trade-offs:

◊ An end user working with a SQL command processor
or an application program can connect to the database
at the beginning of work and stay connected until work
is completed. This eliminates the overhead of repeated
connections and disconnections but prevents another
user from taking advantage of the connection when the
connected user is idle. This strategy is therefore a prob-
lem if the number of concurrent users authorized for
your DBMS is considerably smaller than the number of
people who need to access the database.

Session Length
Considerations

280 Chapter 13: Users, Sessions, and Transaction Control

◊ An end user working with a SQL command processor
or an application program can connect to the database
just before a database interaction occurs and disconnect
immediately after completing the interaction. (Don’t
forget that temporary tables exist only during a single
database session.) This creates additional overhead for
processing the connection and disconnection. However,
it ties up the connection for the smallest amount of time
necessary and allows more people to access the database.

The bottom line is this: If your DBMS is authorized for the
same number of users as people who need to use the database,
then you can connect and stay connected. There’s no reason
not to. However, if you have more people than your software
will allow at any one time, you will get less variance in your re-
sponse times by connecting and disconnecting for each group
of database actions.

Most interactive SQL command processors consider each in-
dividual SQL command as a distinct transaction or give the
end user a way to “Save changes” after entering a series of com-
mands. However, when you are writing an embedded SQL
program, the length of a transaction is totally under your di-
rect control. You also have control over whether the transac-
tion can read and write data, or read only.

By default, transactions can both read and write data. Howev-
er, read-only transactions never require exclusive (write) locks
and therefore in most cases permit higher concurrent use of
a database. It therefore can be beneficial to indicate that a re-
trieval transaction is read only.

If you want a transaction that is read only, you can set that
property with the SET TRANSACTION command:

SET TRANSACTION READ ONLY;

Transaction
Control

Transaction Read/
Write Permissions

 Transaction Control 281

If you are also setting the transaction’s isolation level, you can
do so with the same command by separating the options with
commas, as in

SET TRANSACTION ISOLATION LEVEL READ COMMITTED,
READ ONLY;

Transactions end in one of two ways:

◊ If a transaction is committed, then any changes the trans-
action made to the database become permanent.

◊ If a transaction is rolled back, then any changes the
transaction made are undone, restoring the database to
the state it was in before the transaction began.

By definition, a committed transaction is never rolled back.
To be able to roll back a transaction, a DBMS needs a log
of every action taken by a transaction. This log, known more
formally as a before-image file, contains information about all
database transactions currently in progress. When a transac-
tion is committed, its records are purged from the log and the
vacated space is used for data about subsequent transactions.
When a transaction is rolled back, the DBMS starts at the
transaction’s last record in the log file and replaces each current
value with its old value from the log file. The process repeats,
moving forward in the log file, until the DBMS reaches the log
record that indicates the start of the transaction. At this point,
the log records can be purged.

Although early versions of the SQL standard did not include
any statement to start a transaction, the current Core specifica-
tions include a START TRANSACTION statement:

START TRANSACTION mode

The mode of a transaction can include its isolation level and
whether it is read only or read/write.

Transaction
Termination

Starting
Transactions

282 Chapter 13: Users, Sessions, and Transaction Control

Note: For those DBMSs that don’t support the START TRANS-
ACTION statement, a new transaction begins automatically
whenever there is no current transaction and a user or application
program issues a command that requires database action.

If you are using interactive SQL, you may request the end of a
transaction in any of the following ways:

◊ Using a GUI, clicking a “Save Changes” or “Execute
Command” button executes the command and, if the
command executes without error (in other words, vio-
lates no constraints), automatically commits the trans-
action.

◊ Working from the command line, adding a colon to ter-
minate the command and pressing Enter submits the
command for processing. The transaction is committed
automatically when it executes successfully.

◊ An application program makes its own decision whether
to commit or roll back a transaction based on an error
code returned by the DBMS. (You will read more about
these error codes in Chapter 15.) Once the decision has
been made, a program issues COMMIT or COMMIT
WORK to commit the transaction. To undo everything
done by a transaction, the program issues either ROLL-
BACK or ROLLBACK WORK.

One of the questions that always arises in a discussion of trans-
actions is how long they should be. In general, they should be
short, and there are two important reasons why:

◊ A transaction is the unit of recovery. When you perform
a rollback, you must undo the entire transaction, not
just part of it. You stand to lose a lot of processing if you
must roll back a long transaction.

Ending
Transactions

Transaction Length
Considerations

 Transaction Control 283

◊ As you read earlier in this chapter, for locking to be effec-
tive a transaction must hold all its locks until the trans-
action ends. Long transactions therefore tie up large
portions of the database, cutting down on the amount
of concurrent use the database can provide. Because all
locks are released when a transaction terminates, short-
er transactions maximize the number of users that can
share the same database elements.

Note: Locking is essential for data consistency and integrity when
multiple transactions are running concurrently. It is therefore not
an option to remove the locking mechanism.

Programmers often wonder if it is necessary to end a transac-
tion quickly if all the transaction is doing is retrieving data.
The answer is “yes,” because retrieval transactions lock data-
base elements. Although they typically allow other transac-
tions to view the locked data, they prevent update of the data.
Therefore, you should always commit a retrieval transaction
immediately after bringing the data from the database into a
query result table, freeing up the tables or views used for other
users to modify.

Note: There is rarely any reason to roll back a retrieval transaction.
The undo process just takes up processing time without affecting
the contents of the database.

14

287

Although SQL is not a complete programming language—it
lacks I/O statements—the standard does contain statements
that perform typical programming language functions such
as assignment, selection, and iteration for writing persistent
stored modules (PSMs). This chapter looks at creating program
routines and modules using those language elements and how
they are executed as either triggers or stored procedures.

Note: This chapter does not attempt to teach programming con-
cepts. To get the most out of it you should be familiar with a gen-
eral-purpose programming or scripting language such as COBOL,
C, C++, Java, JavaScript, or Perl.

Triggers are SQL program modules that are executed when a
specific data modification activity occurs. For example, a trig-
ger may be configured to execute whenever a row is inserted
into a table. Stored procedures are SQL program modules that
are invoked by an application program using the SQL CALL
command. Both triggers and stored procedures are stored as
part of a database.

Writing and
Executing SQL
Routines and
Modules—Triggers
and Stored
Procedures

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50014-5

288 Chapter 14: Writing and Executing SQL Routines and Modulesx

Note: Support for SQL programming varies considerably from one
DBMS to another. This chapter presents what is documented in
the SQL standard, but it is highly likely that what is available
with your DBMS will be different from what you see here, at least
to some degree. You should therefore use what is in this chapter as
a starting point for your DBMS’s SQL programming support and
verify the specifics with your software’s documentation.

The smallest unit of a SQL PSM is a routine. Typically a rou-
tine will perform a single action, such as updating a total or
inserting a row in a table. Routines are then gathered into
modules.

There are three types of routines:

◊ Procedures: Procedures are executed with the SQL
CALL statement. They do not return a value.

◊ Functions: Functions return a typed value and are used
within other SQL statements (in particular, SELECT).

◊ Methods: Methods are used by SQL’s object-relational
extensions. They are written using the same program-
ming elements as procedures and functions. Therefore,
their structure will be discussed in Chapter 19, but the
techniques for creating method bodies can be found in
this chapter.

To create a procedure, use the CREATE PROCEDURE
statement:

CREATE PROCEDURE
 procedure_name (input_parameters)
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN
 procedure_body
END

SQL
Programming
Elements

 SQL Programming Elements 289

Function creation must include the type of data being returned
and a RETURN statement:

CREATE FUNCTION
 function_name (input_parameters)
RETURNS return_data_type
LANGUAGE SQL
CONTAINS SQL
 function_body
RETURN return_value

Note: Functions that you write yourself are often called user-de-
fined functions (UDFs) to distinguish them from functions such
as SUM (sometimes called BIFs, for Built-In Functions) that are
part of the SQL language.

Notice that the two preceding structures include statements
that refer to the language and type of statements in the routine:

◊ LANGUAGE language_name: Indicates the program-
ming language used in the routine. In our examples, the
language is SQL. If the LANGUAGE clause is not pres-
ent, then the language defaults to SQL.

◊ Type of SQL statements contained in routine (one of
the following):

o CONTAINS SQL: Indicates that the routine in-
cludes SQL statements that do not retrieve or
modify data.

o READS SQL DATA: Indicates that the routine in-
cludes SQL statements that read data from a data-
base but that do not modify data.

o MODIFIES SQL DATA: Indicates that the rou-
tine modifies data using SQL commands. This also
implies that the routine may be retrieving data.

290 Chapter 14: Writing and Executing SQL Routines and Modulesx

The routine’s contents may include SQL data modification
statements (INSERT, UPDATE, and DELETE) along with
SQL control structures.

SQL modules are created with the CREATE MODULE
statement:

CREATE MODULE module_name
 module_contents
END MODULE

Like other SQL structural elements, routines, modules, and
the contents are stored in the current schema. To remove a
module or routine, you must therefore use

DROP ROUTINE routine_name

or

DROP MODULE module_name

Note: The interactive SELECT, which typically returns multiple
rows, is useful only for display of a result table. To manipulate the
data in a result table, you will need to use embedded SQL, which
retrieves data into a virtual table and then lets you process the rows
in that table one at a time. (Embedded SQL is discussed in Chap-
ter 15.) Dynamic SQL (Chapter 16) further extends program-
ming with SQL by letting the user enter search values at run time.

Within a module, SQL recognizes compound statements us-
ing BEGIN and END:

BEGIN
 one_or_more_executable_statements
END

As you might expect, compound statements can be nested as
needed.

SQL modules can maintain their own internal variables and
perform assignment. Variables must be declared before they
are used:

Variables and
Assignment

 SQL Programming Elements 291

DECLARE variable_name data_type

Once a variable has been declared, you assign values to it across
the assignment operator:

variable_name = value

For example, if you need to store a sales tax percentage, the
routine could contain

DECLARE tax_rate NUMBER (5,2);
tax_rate = 0.075;

Important note: Depending on the DBMS, the assignment opera-
tor may be = or :-. Check your documentation to be sure.

Important note: Some DBMSs require a special character at the
beginning of a variable name. For example, SQL Server requires
@. Once again, the only way to be certain is to consult your
DBMS’s documentation.

Both functions and procedures can accept input parameters. A
parameter list contains the names by which the parameters are
to be referenced within the body of the routine and a declara-
tion of their data types:

CREATE routine_type routine_name (
parameter_1 parameter_1_data_type,
parameter_2 parameter_2_data_type, …)

For example, to pass in a tax rate and a selling price to a func-
tion that computes sales tax, the function might be written

CREATE FUNCTION compute_tax
 (tax_rate NUMBER (6,3),
 selling_price NUMBER (7,2))
LANGUAGE SQL
RETURNS NUMBER
 RETURN selling_price * tax_rate;

Passing Parameters

292 Chapter 14: Writing and Executing SQL Routines and Modulesx

Note: Procedures can also use a parameter for output or for both
input and output.

Note: Some DBMSs require/allow you to specify whether a param-
eter is for input, output, or both. If you are working with one of
those implementations, each parameter in the parameter list must/
can be labeled with IN, OUT, or INOUT.

Variables declared within SQL functions and procedures are
local to the routine. Values passed in through a parameter list
are declared in the parameter list and therefore become local
variables. However, there are circumstances in which you may
want to use variables declared outside the function or proce-
dure (host language variables). In that case, there are two things
you need to do:

◊ Redeclare the host language variables using a SQL de-
clare section.

BEGIN SQL DECLARE SECTION;
 redeclaration of host language
 variables;
END SQL DECLARE SECTION;

◊ Place a colon in front of the name of each host language
variable whenever it is used in the body of the SQL rou-
tine.

You will see examples of these techniques in use with embed-
ded SQL in Chapter 15.

The SQL standard provides two selection structures: IF and
CASE. Both function essentially like the analogous elements
in general-purpose programming languages.

In its simplest form, the SQL IF construct has the following
structure:

IF boolean_expression THEN
 body_of_IF
END IF

Scope of Variables

Selection

IF

 SQL Programming Elements 293

Assume, for example, that the owner of the rare book store
wants to give a discount on a total purchase to customers who
order more than $100 on a single order. The code to do so
could be written

IF sale_total_amt >= 100 THEN
 sale_total_amt = sale_total_amt * .9;
END IF;

As you would expect, the IF statement can be extended with
ELSEIF and ELSE clauses:

IF boolean_expression THEN
 body_of_IF
ELSEIF boolean_expression THEN
 body_of_ELSEIF
:
ELSE
 body_of_ELSE
END OF

The ELSEIF clause is shorthand for the following:
IF boolean_expression THEN
 body_of_IF
ELSE
 IF boolean_expression THEN
 body_of_nested_IF
 END IF
END IF

A purchase from the rare book store that must be shipped is as-
sessed shipping charges based on the number of volumes in the
purchase. Assuming the number of volumes in the purchase is
stored in how_many, an IF construct to assign those shipping
charges might be written as
IF how_many <= 5 THEN
 shipping_charges = how_many * 2;
ELSEIF how_many <= 10 THEN
 shipping_charges = how_many * 1.5;
ELSE
 shipping_charges = how_many;
END IF

294 Chapter 14: Writing and Executing SQL Routines and Modulesx

Note: Obtaining the count of the number of volumes in a single
purchase requires embedded SQL, which is discussed in Chapter
15.

The SQL CASE expression comes in two forms, one with a
single condition and one with multiple conditions. (The syn-
taxes are essentially the same as the CASE statement that can
be used in a SELECT clause.) In its simplest form, it has the
general format:

CASE logical_expression
 WHEN value1 THEN executable_statement(s)
 WHEN value2 THEN executable_statement(s)
 WHEN value3 THEN executable_statement(s)
 :
 ELSE default
END CASE

For example, suppose T-shirt sizes are stored as integer codes
and you want to translate those sizes to words. The code could
be written

DECLARE text_size CHAR (10)
CASE size
 WHEN 1 THEN text_size = ‘Small’
 WHEN 2 THEN text_size = ‘Medium’
 WHEN 3 THEN text_size = ‘Large’
 WHEN 4 THEN text_size = ‘Extra Large’
END CASE

The multiple condition version is a bit more flexible:

CASE
 WHEN logical_expression1 THEN executable_
statement(s)
 WHEN logical_expression1 THEN executable_
statement(s)
 WHEN logical_expression1 THEN executable_
statement(s)
 :
 ELSE default
END CASE;

CASE

 SQL Programming Elements 295

Someone could use this second version to compute a book
discount based on selling price:

CASE
 WHEN asking_price < 50 THEN selling_price
= asking_price * .9
 WHEN asking_price < 100 THEN selling_price
= asking_price * .85
 WHEN asking_price < 150 THEN selling_price
= asking_price * .75
 ELSE selling_price = asking_price * .5
END CASE;

SQL has four statements that perform iteration—LOOP,
WHILE, REPEAT, and FOR—that work somewhat differ-
ently from similar statements in general-purpose program-
ming languages.

Note: The SQL FOR statement is not a general-purpose looping
construct. Instead, it is designed to work with embedded SQL code
that processes each row in a virtual table that has been created as
the result of a SELECT. We will therefore defer a discussion of
FOR until Chapter 15.

The LOOP statement is a simple construct that sets up an in-
finite loop:

loop_name: LOOP
 body_of_loop
END LOOP

The condition that terminates the loop and a command to exit
the loop must therefore be contained in the body of the loop.
A typical structure therefore would be

loop_name: LOOP
 body_of_loop
 IF termination_condition
 LEAVE loop_name
END LOOP

Iteration

LOOP

296 Chapter 14: Writing and Executing SQL Routines and Modulesx

Assume (for some unknown reason) that we want to total the
numbers from 1 through 100. We could do it with a LOOP
statement as follows:

DECLARE sum INT;
DECLARE count INT;
sum = 0;
count = 1;
sum_loop: LOOP
 sum = sum + count;
 count = count + 1;
 IF count > 100
 LEAVE sum_loop;
END LOOP;

Note: LEAVE can be used with any named looping construct.
However, it is essential only for a LOOP structure because there is
no other way to stop the iteration.

The SQL WHILE is very similar to what you will find as part
of a general-purpose programming language:

loop_name: WHILE boolean_expression DO
 body_of_loop
END WHILE

The loop name is optional.

As an example, assume that you wanted to continue to pur-
chase items until all of your funds were exhausted, but that
each time you purchased an item the price went up ten per-
cent. Each purchase is stored as a row in a table. Code to han-
dle that could be written as in Figure 14-1.

Note: Whenever a host language (in this case SQL) variable is used
in a SQL statement, it must be preceded by a colon, as in :price.

The SQL REPEAT statement is similar to the WHILE DO
statement in high-level languages where the test for termina-
tion/continuation of the loop is at the bottom of the loop. It
has the general format:

WHILE

REPEAT

 SQL Programming Elements 297

loop_name: REPEAT
 body_of_loop
UNTIL boolean_expression
END REPEAT

We could rewrite the example from the preceding section us-
ing a REPEAT in the following way:

DECLARE funds NUMBER (7,2);
funds = 1000.00;
DECLARE price NUMBER (5,2);
price = 29.95;

REPEAT
 INSERT INTO items_purchased
 VALUES (6, CURRENT_DATE, :price);
 funds = funds – price;
 price = price * 1.1;
UNTIL price > funds
END REPEAT;

One of the things you might decide to do with a stored pro-
cedure is simplify issuing a query or series of queries. For ex-
ample, suppose that the owner of the rare book store wants
to see the sales that were made each day along with the total
sales. A single interactive SQL command won’t produce both a

Example #1:
Interactive
Retrievals

DECLARE funds NUMBER (7,2);
funds = 1000.00;
DECLARE price NUMBER (5,2);
price = 29.95;

WHILE :funds > :price = DO
 INSERT INTO items_purchased
 VALUES (6, CURRENT_DATE, :price);
 funds = funds – price;
 price = price * 1.1;
END WHILE;

Figure 14-1: Using a WHILE loop to make repeated purchases

298 Chapter 14: Writing and Executing SQL Routines and Modulesx

listing of individual sales and a total. However, the two queries
in Figure 14-2 will do the trick. The user only needs to run the
procedure to see the needed data.

Note: Without embedded-SQL, we can only display data retrieved
by a SELECT. We can’t process the individual rows.

Procedures and functions can call other procedures and func-
tions. For this example, let’s assume that a column for the sales
tax has been added to the sale table and prepare a procedure
that populates the sale table and updates the volume table when
a purchase is made (Figure 14-3). The sell_it procedures uses
the compute_tax function you saw earlier in this chapter.

A trigger is a module that is attached to a single table and ex-
ecuted in response to one of the following events:

◊ INSERT (either before or after an insert occurs)

◊ UPDATE (either before or after a modify occurs)

◊ DELETE (either before or after a delete occurs)

“Before” triggers are run prior to checking constraints on the
table and prior to running INSERT, UPDATE, or DELETE

CREATE PROCEDURE daily_sales
LANGUAGE SQL
READS SQL DATA
BEGIN
 SELECT first_name, last_name, sale_total_amt
 FROM sale JOIN customer
 WHERE sale_date = CURRENT_DATE;
 SELECT SUM (sale_total_amt)
 FROM sale
 WHERE sale_date = CURRENT_DATE;
END

Figure 14-2 A SQL procedure that contains multiple SELECT state-
ments for display

Example #2:
Nested Modules

Executing
Modules as
Triggers

 Executing Modules as Triggers 299

command. “After” triggers work on the table after the IN-
SERT, UPDATE, or DELETE has been performed, using the
table as it has been changed by the command. A trigger can be
configured to run once for every row in the table or just once
for the entire table.

Note: It is possible to attach multiple triggers for the same event to
the same table. The order in which they execute is implementation
dependent. Some DBMSs execute them in alphabetical order by
name; others execute them chronologically, with the first created
being the first executed.

Before creating a trigger, you must create the function or pro-
cedure that is to be run. Once that is in place, you use the
CREATE TRIGGER statement to attach the trigger to its ta-
ble and specify when it should be run:

CREATE PROCEDURE sell_it (sale_numb INT, customer_id INT, book_id CHAR (17),
price_paid NUMBER (7,2), tax_rate NUMBER (6,3))
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN
 DECLARE tax;
 tax = compute_tax (tax_rate, price_paid);
 IF (SELECT COUNT(*) FROM volume WHERE sale_id = sale_numb) < 1 THEN
 INSERT INTO sale (:sale_id, :customer_numb, :sale_date, :sale_total_
amt, :sales_tax) VALUES (sale_numb, customer_id, CURRENT_DATE, :price_paid,
tax);
 END IF
 UPDATE volume
 SET selling_price = :price_paid,
 SET sale_id = :sale_numb;
END

CREATE FUNCTION compute_tax (tax_rate NUMBER (6,3), selling_price NUMBER (7,2))
LANGUAGE SQL
RETURNS NUMBER
 RETURN selling_price * tax_rate;

Figure 14-3: A SQL procedure that calls a user-defined function

300 Chapter 14: Writing and Executing SQL Routines and Modulesx

CREATE TRIGGER trigger_name when_to_execute
type_of_event
ON table_name row_or_table_specifier
EXECUTE PROCEDURE procedure_or_function_name

The when_to_execute value is either BEFORE or AFTER, the
type of event is INSERT, MODIFY, or DELETE, and the
row_or_table_specifier is either FOR EACH ROW or FOR
EACH STATEMENT.

For example, to trigger the procedure that updates the sale_to-
tal_amt in the sale table whenever a volume is sold, someone
at the rare book store could use

CREATE TRIGGER t_update_total AFTER UPDATE
ON volume FOR EACH STATEMENT
EXECUTE PROCEDURE p_update_total;

The trigger will then execute automatically whenever an up-
date is performed on the volume table.

You remove a trigger with the DROP TRIGGER statement:

DROP TRIGGER trigger_name

However, it can be a bit tedious to continually drop a trigger
when what you want to do is replace an existing trigger with a
new version. To simply replace an existing trigger, use

CREATE OR MODIFY TRIGGER trigger_name …

instead of simply CREATE TRIGGER.

Stored procedures are invoked with either the EXECUTE or
CALL statement:

EXECUTE procedure_name (parameter_list)

or

CALL procedure_name (parameter_list)

Executing
Modules
as Stored
Procedures

15

301

Although a knowledgeable SQL user can accomplish a great
deal with an interactive command processor, much interaction
with a database is through application programs that provide
a predictable interface for nontechnologically sophisticated
users. In this chapter you will read about the preparation of
programs that contain SQL statements and the special things
you must do to fit SQL within a host programming language.

SQL statements can be embedded in a wide variety of host
languages. Some are general-purpose programming languages
such as COBOL, C++, or Java. Others are special-purpose da-
tabase programming languages such as the PowerScript lan-
guage used by PowerBuilder or Oracle’s SQL/Plus, which con-
tains the SQL language elements discussed in Chapter 14 as
well as Oracle-specific extensions.

The way in which you handle source code depends on the type
of host language you are using: Special-purpose database lan-
guages such as PowerScript or extensions of the SQL language
(for example, SQL/Plus) need no special processing. Their
language translators recognize embedded SQL statements and
know what to do with them. However, general-purpose lan-
guage compilers are not written to recognize syntax that isn’t

Embedded SQL

The Embedded
SQL
Environment

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50015-7

302 Chapter 15: Embedded SQL

part of the original language. When a COBOL1 or C++ compiler
encounters a SQL statement, it generates an error.

The solution to the problem has several aspects:

◊ Support for SQL statements is provided by a set of program
library modules. The input parameters to the modules rep-
resent the portions of a SQL statement that are set by the
programmer.

◊ SQL statements embedded in a host language program are
translated by a precompiler into calls to routines in the SQL
library.

◊ The host language compiler can access the calls to library
routines and therefore can compile the output produced by
the precompiler.

◊ During the linking phase of program preparation, the li-
brary routines used to support SQL are linked to the ex-
ecutable file along with any other library used by the pro-
gram.

To make it easier for the precompiler to recognize SQL state-
ments, each one is preceded by EXEC SQL. The way in which
you terminate the statement varies from one language to another.
The typical terminators are summarized in Table 15-1. For the
examples in this book, we will use a semicolon as an embedded
SQL statement terminator.

1 Many people think COBOL is a dead language. While few new pro-
grams are being written, there are literally billions of lines of code for business
applications written in COBOL that are still in use. Maintaining these ap-
plications is becoming a major issue for many organizations because COBOL
programmers are starting to retire in large numbers and young programmers
haven’t learned the language.

 Java and JDBC 303

Java and JDBC
Java is an unusual language, in that it is pseudo-compiled.
(Language tokens are converted to machine code at runtime
by the Java virtual machine.) It also accesses databases in its
own way: using a library of routines (an API) known as Java
Database Connectivity, or JDBC. A JDBC driver provides the
interface between the JDBC library and the specific DBMS
being used.

JDBC does not require that Java programs be precompiled.
Instead, SQL commands are created as strings that are passed
as parameters to functions in the JDBC library. The process
for interacting with a database using JDBC goes something
like this:

1. Create a connection to the database.

2. Use the object returned in Step 1 to create an object
for a SQL statement.

3. Store each SQL command that will be used in a string
variable.

4. Use the object returned in Step 2 to execute one or
more SQL statements.

5. Close the statement object.

6. Close the database connection object.

If you will be using Java to write database applications, then
you will probably want to investigate JDBC. Many books have
been written about using it with a variety of DBMSs.

304 Chapter 15: Embedded SQL

General purpose programming languages require that you re-
declare any host language variables used in embedded SQL
statements.2 The declarations are bracketed between two SQL
statements, using the following format:

EXEC SQL BEGIN DECLARE SECTION;
 declarations go here
EXEC SQL END DECLARE SECTION;

The specifics of the variable declarations depend on the host
language being used. The syntax typically conforms to the host
language’s syntax for variable declarations.

As mentioned in Chapter 14, when you use a host language
variable in a SQL statement, you precede it by a colon so that
it is distinct from table, view, and column names. For example,
the following statement updates one row in the customer table
with a value stored in the variable da_new_phone, using a value

2 Some major DBMSs make the programmer’s life easier by providing
tools that generate host variables for each column in a table automatically
(for example, DB2’s DCLGEN).

Using Host
Language
Variables

Table 15-1: Embedded SQL statement terminators

Language Terminator
Ada Semicolon
C, C++ Semicolon
COBOL END-EXEC
Fortran None
MUMPS Close parenthesis
Pascal Semicolon
PL/1 Semicolon

 DBMS Return Codes 305

stored in the variable da_which_customer to identify the row
to be modified3:

EXEC SQL UPDATE customer
 SET contact_phone = :da_new_phone
 WHERE customer_numb = :da_which_customer;

This use of a colon applies both to general purpose program-
ming languages and to database application languages (even
those that don’t require a precompiler).

Note: The requirement for the colon in front of host language vari-
ables means that theoretically columns and host language variables
could have the same names. In practice, however, using the same
names can be confusing.

The host language variables that contain data for use in SQL
statements are known as dynamic parameters. The values that
are sent to the DBMS, for example, as part of a WHERE pred-
icate, are known as input parameters. The values that accept
data being returned by the DBMS, such as the data returned
by a SELECT, are known as output parameters.

When you are working with interactive SQL, error messages
appear on your screen. For example, if an INSERT command
violates a table constraint, the SQL command processor tells
you immediately. You then read the message and make any
necessary changes to your SQL to correct the problem. How-
ever, when SQL is embedded in a program, the end user has
no access to the SQL and therefore can’t make any corrections.
Technologically unsophisticated users also may become upset
when they see the usually cryptic DBMS errors appearing on
the screen. Programs in which SQL is embedded need to be
able to intercept the error codes returned by the DBMS and to
handle them before the errors reach the end user.

3 Keep in mind that this will work only if the value on which we are
searching is a primary key and thus uniquely identifies the row.

DBMS Return
Codes

306 Chapter 15: Embedded SQL

The SQL standard defines a status variable named SQL-
STATE, a five-character string. The first two characters repre-
sent the class of the error. The rightmost three characters are
the subclass, which provides further detail about the state of
the database. For example, 00000 means that the SQL state-
ment executed successfully. Other codes include a class of 22,
which indicates a data exception. The subclasses of class 22
include 003 (numeric value out of range) and 007 (invalid
datetime format). A complete listing of the SQLSTATE return
codes can be found in Appendix B.

In most cases, an application should check the contents of
SQLSTATE each time it executes a SQL statement. For ex-
ample, after performing the update example you saw in the
preceding section, a C++ program might do the following:

If (strcmp(SQLSTATE,’00000’) == 0)
 EXEC SQL COMMIT;
else
{
 // some error handling code goes here
}

When the WHERE predicate in a SELECT statement con-
tains a primary key expression, the result table will contain at
most one row. For such a query, all you need to do is specify
host language variables into which the SQL command proces-
sor can place the data it retrieves. You do this by adding an
INTO clause to the SELECT.

For example, if someone at the rare book store needed the
phone number of a specific customer, a program might include

EXEC SQL SELECT contact_phone
INTO :da_phone_numb
FROM customers
WHERE customer_numb = 12;

The INTO clause contains the keyword INTO followed by
the names of the host language variables in which data will

Retrieving a
Single Row

 Retrieving a Single Row 307

be placed. In the preceding example, data are being retrieved
from only one column and the INTO clause therefore con-
tains just a single variable name.

Note: Many programmers have naming conventions that make
working with host variables a bit easier. In this book, the names
of host language variables that hold data begin with da_; indica-
tor variables, to which you will be introduced in the next section,
begin with in_.

If you want to retrieve data from multiple columns, you must
provide one host language variable for each column, as in the
following:

EXEC SQL SELECT first_name, last_name,
 contact_phone
INTO :da_first, :da_last, :da_phone
FROM customer
WHERE customer_numb = 12;

The names of the host language variables are irrelevant. The
SQL command processor places data into them by position. In
other words, data from the first column following SELECT is
placed in the first variable following INTO, data from the sec-
ond column following SELECT is placed in the second vari-
able following INTO, and so on. Keep in mind that all host
language variables are preceded by colons to distinguish them
from the names of database elements.

After executing a SELECT that contains a primary key ex-
pression in its WHERE predicate, an embedded SQL program
should check to determine whether a row was retrieved. As-
suming we are using C or C++, the code might be written

if (strcmp(SQLSTATE,’00000’) ==)

{
 EXEC SQL COMMIT;
 // display or process data retrieved
)

308 Chapter 15: Embedded SQL

else
{
 EXEC SQL COMMIT;
 // display error message
}
// continue processing

There are three things to note about the COMMIT statement
in this code:

◊ The COMMIT must be issued after checking the SQL-
STATE. Otherwise, the COMMIT will change the val-
ue in SQLSTATE.

◊ There is no need to roll back a retrieval transaction, so
the code commits the transaction even if the retrieval
fails.

◊ The COMMIT could be placed after the IF construct.
However, depending on the length of the code that fol-
lows error checking, the transaction may stay open lon-
ger than necessary. Therefore, the repeated COMMIT
statement is an efficient choice in this situation.

The SQLSTATE variable is not the only way in which a
DBMS can communicate the results of a retrieval to an appli-
cation program. Each host variable into which you place data
can be associated with an indicator variable. When indicator
variables are present, the DBMS stores a 0 to indicate that a
data variable has valid data of a –1 to indicate that the row
contained a null in the specified column and that the contents
of the data variable are unchanged.

To use indicator variables, first declare host language variables
of an integer data type to hold the indicators. Then, follow each
data variable in the INTO clause with the keyword INDICA-
TOR and the name of the indicator variable. For example, to
use indicator variables with the customer data retrieval query:

Indicator Variables

 Retrieving Multiple Rows: Cursors 309

EXEC SQL SELECT first_name, last_name,
 contact_phone
INTO :da_first INDICATOR :in_first,
 :da_last INDICATOR :in_last,
 :da_phone INDICATOR :in_phone
FROM customer
WHERE customer_numb = 12;

You can then use host language syntax to check the contents
of each indicator variable to determine whether you have valid
data to process in each data variable.

Note: The INDICATOR keyword is optional. Therefore, the syn-
tax INTO :first :ifirst, :last :ilast, and so on is acceptable.

Indicator variables can also be useful for telling you when char-
acter values have been truncated. For example, assume that
the host language variable first has been declared to accept a
10-character string but that the database column first_name is
15 characters long. If the database column contains a full 15
characters, only the first 10 will be placed in the host language
variable. The indicator variable will contain 15, indicating the
size of the column (and the size to which the host language
variable should have been set).

SELECT statements that may return more than one row pres-
ent a bit of a problem when you embed them in a program.
Host language variables can hold only one value at a time and
the SQL command processor cannot work with host language
arrays. The solution provides you with a pointer (a cursor) to
a SQL result table that allows you to extract one row at a time
for processing.

The procedure for creating and working with a cursor is as
follows:

1. Declare the cursor by specifying the SQL SELECT to
be executed. This does not perform the retrieval.

Retrieving
Multiple Rows:
Cursors

310 Chapter 15: Embedded SQL

2. Open the cursor. This step actually executes the SE-
LECT and creates the result table in main memory.
It positions the cursor just above the first row in the
result table.

3. Fetch the next row in the result table and process the
data in some way.

4. Repeat step 3 until all rows in the result table have
been accessed and processed.

5. Close the cursor. This deletes the result table from main
memory but does not destroy the declaration. You can
therefore reopen an existing cursor, recreating the re-
sult table, and work with the data without redeclaring
the SELECT.

If you do not explicitly close a cursor, it will be closed au-
tomatically when the transaction terminates. (This is the de-
fault.) If, however, you want the cursor to remain open after
a COMMIT, then you add a WITH HOLD option to the
declaration.

Even if a cursor is held from one transaction to another, its re-
sult table will still be deleted at the end of the database session
in which it was created. To return that result table to the call-
ing routine, add a WITH RETURN option to the declaration.

Note: There is no way to “undeclare” a cursor. A cursor’s declara-
tion disappears when the program module in which it was created
terminates.

By default, a cursor fetches the “next” row in the result table.
However, you may also use a scrollable cursor to fetch the
“next,” “prior,” “first,” or “last” row. In addition, you can fetch
by specifying a row number in the result table or by giving an
offset from the current row. This in large measure eliminates

 Retrieving Multiple Rows: Cursors 311

the need to close and reopen the cursor to reposition the cursor
above its current location.

Declaring a cursor is similar to creating a view in that you
include a SQL statement that defines a virtual table. The DE-
CLARE statement has the following general format in its sim-
plest form:

DECLARE cursor_name CURSOR FOR
SELECT remainder_of_query

For example, assume that someone at the rare book store
wanted to prepare labels for a mailing to all its customers. The
program that prints mailing labels needs each customer’s name
and address from the database, which it can then format for
labels. A cursor to hold the data might be declared as

EXEC SQL DECLARE address_data CURSOR FOR
SELECT first_name, last_name, street, city,
state_province, zip_postcode
FROM customer;

The name of a cursor must be unique within the program
module in which it is created. A program can therefore ma-
nipulate an unlimited number of cursors at the same time.

One of the options available with a cursor is the ability to re-
trieve rows in other than the default “next” order. To enable
a scrolling cursor, you must indicate that you want scrolling
when you declare the cursor by adding the keyword SCROLL
after the cursor name:

EXEC SQL DECLARE address_data SCROLL CURSOR FOR
SELECT first_name, last_name, street,
 city, state_province, zip_postcode
FROM customer;

You will find more about using scrolling cursors a bit later in
this chapter when we talk about fetching rows.

Declaring a Cursor

Scrolling Cursors

312 Chapter 15: Embedded SQL

The data in a cursor are by default read only. However, if the
result table meets all updatability criteria, you can use the cur-
sor for data modification. (You will find more about the updat-
ability criteria in the Modification Using Cursors section later
in this chapter.)

To enable modification for a customer, add the keywords FOR
UPDATE at the end of the cursor’s declaration:

EXEC SQL DECLARE address_data SCROLL CURSOR FOR
SELECT first_name, last_name, street, city,
 state_province, zip_postcode
FROM customer
FOR UPDATE;

To restrict updates to specific columns, add the names of col-
umns following UPDATE:

EXEC SQL DECLARE address_data SCROLL CURSOR FOR
SELECT first_name, last_name, street, city,
 state_province, zip_postcode
FROM customer
FOR UPDATE street, city, state_province,
 zip_postcode;

Assume, for example, that a program for the rare book store
contains a module that computes the average price of books
and changes prices based on that average: If a book’s price is
more than 20 percent higher than the average, the price is dis-
counted 10 percent; if the price is only 10 percent higher, it is
discounted 5 percent.

A programmer codes the logic of the program in the following
way:

1. Declare and open a cursor that contains the inventory
IDs and asking prices for all volumes whose price is
greater than the average. The SELECT that generates
the result table is

Enabling Updates

Sensitivity

 Retrieving Multiple Rows: Cursors 313

SELECT inventory_id, asking_price
FROM volume
WHERE asking_price >
 (SELECT AVG (asking_price)
 FROM volume);

2. Fetch each row and modify its price.

The question at this point is: What happens in the result table
as data are modified? As prices are lowered, some rows will
no longer meet the criteria for inclusion in the table. More
important, the average retail price will drop. If this program is
to execute correctly, however, the contents of the result table
must remain fixed once the cursor has been opened.

The SQL standard therefore defines three types of cursors:

◊ Insensitive: The contents of the result table are fixed.

◊ Sensitive: The contents of the result table are updated
each time the table is modified.

◊ Indeterminate (asensitive): The effects of updates made
by the same transaction on the result table are left up to
each individual DBMS.

The default is indeterminate, which means that you cannot be
certain that the DBMS will not alter your result table before
you are through with it.

The solution is to request specifically that the cursor be
insensitive:

EXEC SQL DECLARE address_data SCROLL
 INSENSITIVE CURSOR FOR
SELECT first_name, last_name, street, city,
 state_province, zip_postcode
FROM customer
FOR UPDATE street, city, state_province,
 zip_postcode;

314 Chapter 15: Embedded SQL

To open a cursor, place the cursor’s name following the key-
word OPEN:

EXEC SQL OPEN address_data;

To retrieve the data from the next row in a result table, plac-
ing data into host language variables, you use the FETCH
statement:

FETCH FROM cursor_name
INTO host_language_variables

For example, to obtain a row of data from the list of customer
names and addresses, the rare book store’s program could use

EXEC SQL FETCH FROM address_data
INTO :da_first, :da_last, :da_street, :da_city,
 :da_state_province, :da_zip_postcode;

Notice that as always the host language variables are preceded
by colons to distinguish them from table, view, or column
names. In addition, the host language variables must match
the database columns as to data type. The FETCH will fail if,
for example, you attempt to place a string value into a numeric
variable.

If you want to fetch something other than the next row, you
can declare a scrolling cursor and specify the row by adding
the direction in which you want the cursor to move after the
keyword FETCH:

◊ To fetch the first row

EXEC SQL FETCH FIRST FROM
 address_data
INTO :da_first, :da_last, :da_street,
 :da_city, :da_state_province,
 :da_zip_postcode;

Opening a Cursor

Fetching Rows

 Retrieving Multiple Rows: Cursors 315

◊ To fetch the last row

EXEC SQL FETCH LAST FROM address_data
INTO :da_first, :da_last, :da_street,
 :da_city, :da_state_province,
 :da_zip_postcode;

◊ To fetch the prior row

EXEC SQL FETCH PRIOR FROM address_data
INTO :da_first, :da_last, :da_street,
 :da_city, :da_state_province,
 :da_zip_postcode;

◊ To fetch a row specified by its position (row number) in
the result table

EXEC SQL FETCH ABSOLUTE 12
FROM address_data
INTO :da_first, :da_last, :da_street,
 :da_city, :da_state_province,
 :da_zip_postcode;

The preceding fetches the twelfth row in
the result table.

◊ To fetch a row relative to and below the current position
of the cursor

EXEC SQL FETCH RELATIVE 5
FROM address_data
INTO :da_first, :da_last, :da_street,
 :da_city, :da_state_province,
 :da_zip_postcode;

The preceding fetches the row five rows be-
low the current position of the cursor (cur-
rent position + 5).

316 Chapter 15: Embedded SQL

◊ To fetch a row relative to and above the current position
of the cursor

EXEC SQL FETCH RELATIVE -5
FROM address_data
INTO :da_first, :da_last, :da_street,
 :da_city, :da_state_province,
 :da_zip_postcode;

The preceding fetches the row five rows
above the current position of the cursor
(current row – 5).

Note: If you use FETCH without an INTO clause, you will move
the cursor without retrieving any data.

If there is no row containing data at the position of the cursor,
the DBMS returns a “no data” error (SQLSTATE = ‘02000’).
The general strategy for processing a table of data is therefore to
create a loop that continues to fetch rows until a SQLSTATE
of something other than ‘00000’ occurs. Then you can test
to see whether you’ve simply finished processing or whether
some other problem has arisen. In C/C++, the code would
look something like Figure 15-1.

EXEC SQL FETCH FROM address data
INTO :da_first, :da_last, :da_street, :da_city, :da_state_province,
 :da_zip_postscode;
while (strcmp (SQLSTATE, “00000”) == 0)
{
 // Process one row’s data in appropriate way
 EXEC SQL FETCH FROM address data
 INTO :da_first, :da_last, :da_street, :da_city, :da_state_province,
 :da_zip_postscode;
)
if (strcmp (SQLSTATE, “0200000”) != 0
{
 // Display error message and/or do additional error checking
}
EXEC SQL COMMIT;

Figure 15-1: Using a host language loop to process all rows in an embedded SQL result table

 Embedded SQL Data Modification 317

Note: One common error that beginning programmers make is
to write loops that use a specific error code as a terminating val-
ue. This can result in an infinite loop if some other error condi-
tion arises. We therefore typically write loops to stop on any error
condition and then check to determine exactly which condition
occurred.

Note: You can use indicator variables in the INTO clause of a
FETCH statement, just as you do when executing a SELECT that
retrieves a single row.

To close a cursor, removing its result table from main memory,
use

CLOSE cursor_name

as in

EXEC SQL CLOSE address_data;

Although many of today’s database development environments
make it easy to create forms for data entry and modification,
all those forms do is collect data. There must be a program of
some type underlying the form to actually interact with the
database. For example, whenever a salesperson at the rare book
store makes a sale, a program must create the row in sale and
modify appropriate rows in volume.

Data modification can be performed using the SQL UPDATE
command to change one or more rows. In some cases, you can
use a cursor to identify which rows should be updated in the
underlying base tables.

To perform direct data modification using the SQL UPDATE
command, you simply include the command in your program.
For example, if the selling price of a purchased volume is stored
in the host language variable da_selling_price, the sale ID in

Closing a Cursor

Embedded
SQL Data
Modification

Direct Modification

318 Chapter 15: Embedded SQL

da_sale_id, and the volume’s inventory ID in da_inventory_id,
you could update volume with

EXEC SQL UPDATE volume
SET selling_price = :da_selling_price,
 sale_id = :da_sale_id
WHERE inventory_id = :da_inventory_id;

The preceding statement will update one row in the table be-
cause its WHERE predicate contains a primary key expres-
sion. To modify multiple rows, you use an UPDATE with a
WHERE predicate that identifies multiple rows, such as the
following, which increases the prices by two percent for vol-
umes with leather bindings:

EXEC SQL UPDATE volume
SET asking_price = asking_price * 1.02
WHERE isbn IN (SELECT isbn
 FROM book
 WHERE binding = “Leather’);

Indicator variables, which hold information about the result of
embedded SQL retrievals, can also be used when performing
embedded SQL modification. Their purpose is to indicate that
you want to store a null in a column. For example, assume that
the rare book store has a program that stores new rows in the
volume table. At the time a new row is inserted, there are no
values for the selling price or the sale ID; these columns should
be left null.

To do this, the program declares an indicator variable for each
column in the table. If the data variable hold a value to be
stored, the program sets the indicator variable to 0; if the col-
umn is to be left null, the program sets the indicator variable
to –1.

Sample pseudocode for performing this embedded INSERT
can be found in Figure 15-2.

Indicator Variables
and Data
Modification

 Direct Modification 319

// Data variables
// Initialize all strings to null, all numeric variables to 0
string da_isbn, da_date_acquired;
int da_inventory_id, da_condition_code;
float da_asking_price, da_selling_price, da_sale_id;

// Indicator variables
// Initialize all to 0 except selling price and sale ID
 int in_isbn = 0,
 in_date_acquired = 0,
 in_inventory_id = 0,
 in_condition_code = 0,
 in_asking_price = 0,
 in_selling_price = -1,
 in_sale_id = -1;

// Collect data from user, possibly using on-screen form
// Store data in data variables
// Check to see if anything other that selling price and sale ID
// have no value

if (da_inventory_id == 0 or da_isbn = 0)
{
 // Error handling goes here
 return;
}

if (strcmp(da_date_acquired),””) == 0) in_date_acquired = -1
if (da_condition_code == 0) in_condition_code = -1;
// ... continue checking each data variable and setting
// indcator variable if necessary

EXEC SQL INSERT INTO volume
 VALUES (:da_inventory_id INDICATOR :in_inventory_id,
 :da_isbn INDICATOR :in_isbn,
 :da_condition_code INDICATOR :in_condition_code,
 :da_date_acquired INDICATOR :in_date_acquired,
 :da_asking_price INDICATOR in_asking_price,
 :da_selling_price INDICATOR :in_selling_price,
 :da_sale_id INDICATOR :in_sale_id;

// Finish by checking SQLSTATE to see if insert worked to decide
// whether to commit or rollback

Figure 15-2: Using indicator variables to send nulls to a table

320 Chapter 15: Embedded SQL

The MATCH predicate is designed to be used with embedded
SQL modification to let you test referential integrity before
actually inserting data into tables. When included in an ap-
plication program, it can help identify potential data modifica-
tion errors.

For example, assume that a program written for the rare book
store has a function that inserts new books into the database.
The program wants to ensure that a work for the book exists in
the database before attempting to store the book. The applica-
tion program might therefore include the following query:

EXEC SQL SELECT work_numb
FROM work JOIN author
WHERE (:entered_author, :entered_title)
 MATCH (SELECT author_first_last, title
 FROM work JOIN author);

The subquery selects all the rows in the join of the work and
author tables and then matches the author and title columns
against the values entered by the user, both of which are stored
in host language variables. If the preceding query returns one
or more rows, then the author and title pair entered by the
customer exist in the author and work relations. However, if
the result table has no rows, then inserting the book into book
would produce a referential integrity violation and the insert
should not be performed.

If a program written for the rare book store wanted to verify a
primary key constraint, it could use a variation of the MATCH
predicate that requires unique values in the result table. For ex-
ample, to determine whether a work is already in the database,
the program could use

EXEC SQL SELECT work_numb
FROM work JOIN author
WHERE UNIQUE (:entered_author, :entered_title)
MATCH (SELECT author_first_last, title
 FROM work JOIN author);

Integrity Validation
with the MATCH
Predicate

 Direct Modification 321

By default, MATCH returns true if any value being tested is
null or, when there are no nulls in the value being tested, a row
exists in the result table that matches the values being tested.
You can, however, change the behavior of MATCH when nulls
are present:

◊ MATCH FULL is true if every value being tested is null
or, when there are no nulls in the values being tested,
a row exists in the result table that matches the values
being tested.

◊ MATCH PARTIAL is true if every value being tested is
null or a row exists in the result table that matches the
values being tested.

Note that you can combine UNIQUE with MATCH FULL
and MATCH PARTIAL.

Updates using cursors are a bit different from updating a view.
When you update a view, the UPDATE command acts di-
rectly on the view by using the view’s name. The update is then
passed back to the underlying base table(s) by the DBMS. In
contrast, using a cursor for updating means you update a base
table directly, but identify the row that you want to modify by
referring to the row to which the cursor currently is pointing.

To do the modification, you use FETCH without an INTO
clause to move the cursor to the row you want to update. Then
you can use an UPDATE command with a WHERE predicate
that specifies the row pointed to by the cursor. For example,
to change the address of the customer in row 15 of the ad-
dress_data cursor’s result table, a program for the rare book
store could include
EXEC SQL FETCH ABSOLUTE 15 FROM address_data;
EXEC SQL UPDATE cutomer
 SET street = ‘123 Main Street’,
 city = ‘New Home’
 state_province = ‘MA’,
 zip_postcode = ‘02111’
 WHERE CURRENT OF address data;

Modification Using
Cursors

322 Chapter 15: Embedded SQL

The clause CURRENT OF cursor_name instructs SQL to
work with the row in customer currently being pointed to by
the name cursor. If there is no valid corresponding row in the
customer table, the update will fail.

You can apply the technique of modifying the row pointed to
by a cursor to deletions as well as updates. To delete the current
row, you use

DELETE FROM table_name
 WHERE CURRENT OF cursor_name

The deletion will fail if the current row indicated by the cursor
isn’t a row in the table named in the DELETE. For example,

EXEC SQL DELETE FROM customers WHERE CURRENT OF
address_data;

will probably succeed, but

EXEC SQL DELETE FROM volume
 WHERE CURRENT OF address_data;

will certainly fail because the volume table isn’t part of the ad-
dress_data cursor (as declared in the preceding section of this
chapter).

Deletion Using
Cursors

16

323

The embedded SQL that you have seen to this point is “static,”
in that entire SQL commands have been specified within the
source code. However, there are often times when you don’t
know exactly what a command should look like until a pro-
gram is running.

Consider, for example, the screen in Figure 16-1. The user fills
in the fields on which he or she wishes to base a search of the
rare book store’s holdings. When the user clicks a Search but-
ton, the application program managing the window checks the
contents of the fields on the window and uses the data it finds
to create a SQL query.

The query’s WHERE predicate will differ depending on which
of the fields have values in them. It is therefore impossible to
specify the query completely within a program. This is where
dynamic SQL comes in.

The easiest way to work with dynamic SQL is the EXECUTE
IMMEDIATE statement. To use it, you store a SQL com-
mand in a host language string variable and then submit that
command for process:

EXEC SQL EXECUTE IMMEDIATE
 variable_containing_command

Dynamic SQL

Immediate
Execution

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50016-9

324 Chapter 16: Dynamic SQL

For example, assume that a user fills in a data entry form with
a customer number and the customer’s new address. A program
could process the update with code written something like the
pseudocode in Figure 16-2. Notice the painstaking way in which
the logic of the code examines the values the user entered and
builds a syntactically correct SQL UPDATE statement. By using
the dynamic SQL, the program can update just those columns for
which the user has supplied new data. (Columns whose fields on
the data entry are left empty aren’t added to the SQL statement.)

There are two major limitations to EXECUTE IMMEDIATE:

◊ The SQL command cannot contain input parameters or
output parameters. This means that you can’t use SELECT
or FETCH statements.

◊ To repeat the SQL statement, the DBMS has to perform
the entire immediate execution process again. You can’t save
the SQL statement, except as a string in a host language

Figure 16-1: A typical window for gathering information for a dynamic SQL query

 Immediate Execution 325

variable. This means that such statements execute more
slowly than static embedded SQL statements because
the SQL command processor must examine them for
syntax errors at runtime rather than during preprocess-
ing by a precompiler.

String theSQL;
theSQL = “UPDATE customer SET “;
Boolean needsComma = false;

If (valid_contents_in_street_field)
{
 theSQL = theSQL + “street = “ + contents_of_street_field;
 needsComma = true;
}
if (valid_contents_in_city_field)
{
 if (needsComma)
 theSQL = theSQL + “, “;
 theSQL = theSQL + “city = “ + contents_of_city_field;
 needsComma = true;
}
if (valid_contents_in_state_field)
{
 if (needsComma)
 theSQL = theSQL + “, “;
 the SQL = theSQL + “state_province = “ + contents_of_state_field;
 needsComma = true;
}
if (valid_contents_in_zip_field)
{
 if (needsComma)
 theSQL = theSQL + “, “;
 theSQL = theSQL + “zip_postcode = “ + contents_of_zip_filed;
}
EXEC SQL EXECUTE IMMEDIATE :theSQL;
If (strcmp (SQLCODE, “00000”)
 EXEC SQL COMMIT;
else
{
 EXEC SQL ROLLBACK;
 // Display appropriate error message
}

Figure 16-2: Pseudocode to process a dynamic SQL update

326 Chapter 16: Dynamic SQL

Each time you EXECUTE IMMEDIATE the same statement,
it must be scanned for syntax errors again. Therefore, if you
need to execute a dynamic SQL statement repeatedly, you will
get better performance if you can have the syntax checked
once and save the statement in some way.1

If you want to repeat a dynamic SQL statement or if you need
to use dynamic parameters (as you would to process the form
in Figure 16-1), you need to use a more involved technique for
preparing and executing your commands.

The processing for creating and using a repeatable dynamic
SQL statement is as follows:

1. Store the SQL statement in a host language string
variable using host language variables for the dynamic
parameters.

2. Allocate SQL descriptor areas.

3. Prepare the SQL statement. This process checks the
statement for syntax and assigns it a name by which it
can be referenced.

4. Describe one of the descriptor areas as input.

5. Set input parameters, associating each input parameter
with the input parameter descriptor.

6. (Required only when using a cursor) Declare the cursor.

7. (Required only when using a cursor) Open the cursor.

8. Describe another descriptor area as output.

1 A few DBMSs (for example, DB2 for Z/OS) get around this problem
by performing dynamic statement caching (DSC), where the DBMS saves
the syntax-scanned/prepared statement and retrieves it from the cache if
used again.

Dynamic SQL
with Dynamic
Parameters

 Dynamic SQL with Dynamic Parameters 327

9. Set output parameters, associating each output param-
eter with the output parameter descriptor.

10. (Required when not using a cursor) Execute the query.

11. (Required only when using a cursor) Fetch values into
the output descriptor area.

12. (Required only when using a cursor) Get the output
values from the descriptor area and process them in
some way.

13. Repeat steps 11 and 12 until the entire result table has
been processed.

14. Close the cursor.

15. If through with the statement, deallocate the descrip-
tor areas.

There are a few limitations to the use of dynamic parameters in
a statement of which you should be aware:

◊ You cannot use a dynamic parameter in a SELECT
clause.

◊ You cannot place a dynamic parameter on both sides of
a relationship operator such as <, >, or =.

◊ You cannot use a dynamic parameter as an argument in
a summary function.

◊ In general, you cannot compare a dynamic parameter
with itself. For example, you cannot use two dynamic
parameters with the BETWEEN operator.

Many dynamic queries generate result tables containing mul-
tiple rows. As an example, consider a query that retrieves a list
of the customers of the rare book store who live in a given area.

Dynamic
Parameters with
Cursors

328 Chapter 16: Dynamic SQL

The user could enter a city, a state/province, a zip/postcode, or
any combination of the three.

The first step in any dynamic SQL is to place the statement
into a host language string variable. Pseudocode to generate
the SQL query string for our example can be found in Figure
16-3.

You allocate a descriptor area with the ALLOCATE DE-
SCRIPTOR statement:

ALLOCATE DESCRIPTOR descriptor_name

For our example, the statements would look something like

EXEC SQL ALLOCATE DESCRIPTOR ‘input’;
EXEC SQL ALLOCATE DESCRIPTOR ‘output’;

The names of the descriptor areas are arbitrary. They can be
supplied as literals, as in the above example, or they may be
stored in host language string variables.

By default, the scope of a descriptor is local to the program
module in which it was created. You can add the keyword
GLOBAL after DESCRIPTOR, however, to create a global
descriptor area that is available to the entire program.

Unless you specify otherwise, a descriptor area is defined to
hold a maximum of 100 values. You can change that value by
adding a MAX clause:

EXEC SQL ALLOCATE DESCRIPTOR GLOBAL ‘input’
 MAX 10;

Preparing a dynamic SQL statement for execution allows the
DBMS to examine the statement for syntax errors and to per-
form query optimization. Once a query is prepared and stored
with a name, it can be reused while the program is still running.

Step 1: Creating the
Statement String

Step 2: Allocating the
Descriptor Areas

Step 3: Preparing the SQL
Statement

 Dynamic SQL with Dynamic Parameters 329

String theQuery;
Boolean hasWHERE = false;
String da_street = null, da_city = null, da_state_province = null, da_zip_
postcode = null;

// User enters search values into fields on screen form, which are
// then placed into the appropriate host language variables

theQuery = SELECT first, last, street, city, state_province, FROM customer “;
if (da_street IS NOT NULL)
{
 theQuery = theQuery + “WHERE street = :da_street“;
 hasWHERE = true;
}

if (da_city IS NOT NULL)
{
 if (!hasWHERE)
 theQuery = theQuery + “WHERE “;
 else
 theQuery = theQuery + “, “;
 theQuery = theQuery + “ city = :da_city”;
 hasWHERE = true;
}

if (da_state_province IS NOT NULL)
{
 if (!hasWHERE)
 theQuery = theQuery + “WHERE “;
 else
 theQuery = theQuery + “, “;
 theQuery = theQuery + “ state_province = :da_state_province”;
 hasWHERE = true;
}

if (da_zip_postcode IS NOT NULL)
{
 if (!hasWHERE)
 theQuery = theQuery + “WHERE “;
 else
 theQuery = theQuery + “, “;
 theQuery = theQuery + “ state_postcode = :da_state_postcode”;
}

Figure 16-3: Setting up a SQL query in a string for use with dynamic parameters

330 Chapter 16: Dynamic SQL

To prepare the statement for execution, use the PREPARE
command:

PREPARE statement_identifier FROM variable_
holding_command

The customer query command would be prepared with

EXEC SQL PREPARE sql_statement FROM :theQuery;

The DESCRIBE statement identifies a descriptor area as hold-
ing input or output parameters and associates it with a dy-
namic query. The statement has the following general form:

DESCRIBE INPUT/OUTPUT dynamic_statement_name
USING DESCRIPTOR descriptor_name

The two descriptor areas for the customer list program will be
written

EXEC SQL DESCRIBE INPUT sql_statement USING DE-
SCRIPTOR ‘input’;
EXEC SQL DESCRIBE OUTPUT sql_statement USING
DESCRIPTOR ‘output’;

Each parameter—input or output—must be associated with
an appropriate descriptor area. The SET DESCRIPTOR com-
mand needs four pieces of information for each parameter:

◊ A unique sequence number for the parameter. (You can
start at 1 and count upwards as you go.)

◊ The data type of the parameter, represented as an integer
code. (See Table 16-1 for the codes for commonly used
data types.)

◊ The length of the parameter.

◊ A variable to hold the parameter’s data.

Steps 4 and 8: Describing
Descriptor Areas

Step 5: Setting Input
Parameters

 Dynamic SQL with Dynamic Parameters 331

The SET DESCRIPTOR statement has the following general
syntax:

SET DESCRIPTOR descriptor_area_name
VALUE sequence_number
TYPE = type_code LENGTH = parameter_length
DATA = variable_holding_parameter data

The code needed to set the input parameters for the address list
query can be found in Figure 16-4.

In addition to what you have just seen, there are two other
descriptor characteristics that can be set:

◊ INDICATOR: Identifies the host language variable that
will hold an indicator value.

INDICATOR =
 :host_langauge_indicator_variable

Table 16-1: Selected SQL data type codes

Data type Type code
CHAR 1
VARCHAR 12
BLOB 30
BOOLEAN 16
DATE 9
DECIMAL 3
DOUBLE PRECISION 8
FLOAT 6
INT 4
INTERVAL 10
NUMERIC 2
REAL 7
SMALL INT 5

332 Chapter 16: Dynamic SQL

◊ TITLE: Identifies the table column name associated
with the parameter.

TITLE = column_name

Declaring a cursor for use with a dynamic SQL statement is
exactly the same as declaring a cursor for a static SQL state-
ment. The cursor for the address list program can therefore be
declared as

EXEC SQL DECLARE CURSOR addresses FOR theQuery;

Steps 6 and 7: Declaring
and Opening the Cursor

Int da_street_type = 12, da_street_length = 30, da_city_type = 12,
 da_city_length = 30, da_state_province_type = 1,
 da_stte_province_length = 2, da_zip_postcode_type = 12,
 da_zip_postcode_length = 12;

Int value_count = 1;

If (da_street IS NOT NULL)
{
 EXEC SQL SET DESCRIPTOR ‘input’ VALUE :value_count TYPE = :da_street_type
LENGTH = :da_street_length DATA = :da_street;
 value_count ++;
}
if (da_city IS NOT NULL)
{
 EXEC SQL SET DESCRIPTOR ‘input’ VALUE :value_count TYPE = :da_city_type
LENGTH = :da_city_length DATA = :da_city;
 value_count ++;
}
if (da_state_province IS NOT NULL)
{
 EXEC SQL SET DESCRIPTOR ‘input’ VALUE :value_count TYPE = :da_state_
province_type LENGTH = :da_state_province_length DATA = :da_state_province;
 value_count ++;
}
if (da_zip_postcod IS NOT NULL)
{
 EXEC SQL SET DESCRIPTOR ‘input’ VALUE :value_count TYPE = :da_zip_
postcode_type LENGTH = :da_zip_postcode_length DATA = :da_zip_postcode;
}

Figure 16-4: Setting input parameters for a dynamic SQL query

 Dynamic SQL with Dynamic Parameters 333

Note: You can declare a scrolling cursor for use with dynamic SQL.

The OPEN statement is similar to the static OPEN, but it also
needs to know which descriptor area to use:

EXEC SQL OPEN addresses USING DESCRIPTOR ‘in-
put’;

The only difference between the syntax for setting the input
and output parameters is that the output parameters are placed
in their own descriptor area. The code can be found in Figure
16-5.

Be sure that the output parameters have sequence numbers
that place them in the same order as the output columns in
the prepared SELECT statement. When you pull data from
the result table into the output descriptor area, the SQL com-
mand processor will retrieve the data based on those sequence
numbers. If they don’t match the order of the data, you won’t
end up with data in the correct host language variables.

Step 9: Setting the Output
Parameters

int da_first_type = 12, da_first_length = 15, da_last_type = 12,
 da_last_length = 15;
// remaining variables have already been declared

EXEC SQL SET DESCRIPTOR ‘output’ VALUE 1 TYPE = :da_first_type
 LENGTH = :da_first_type DATA = :da_frist;
EXEC SQL SET DESCRIPTOR ‘output’ VALUE 2 TYPE = :da_last_type
 LENGTH = :da_last_type DATA = :da_last;
EXEC SQL SET DESCRIPTOR ‘output’ VALUE 3 TYPE = :da_street_type
 LENGTH = :da_street_type DATA = :da_street;
EXEC SQL SET DESCRIPTOR ‘output’ VALUE 4 TYPE = :da_city_type
 LENGTH = :da_city_type DATA = :da_city;
EXEC SQL SET DESCRIPTOR ‘output’ VALUE 5 TYPE = :da_state_province_type
 LENGTH = :da_state_province_type DATA = :da_state_province;
EXEC SQL SET DESCRIPTOR ‘output’ VALUE 6 TYPE = :da_zip_postcode_type
 LENGTH = :da_zip_postcode_type DATA = :da_zip_postcode;

Figure 16-5: Setting output parameters for a dynamic SQL query

334 Chapter 16: Dynamic SQL

When you are using dynamic parameters, a FETCH creates a
result table in main memory, just as it does with static SQL.
Your code must then GET each parameter and pull it into
the descriptor area. The end result is that the data from a row
in the result table are available in the host language variables
identified as holding data, as seen in Figure 16-6.

To finish processing the dynamic SQL query, you will close the
cursor (if necessary)—

EXEC SQL CLOSE addresses;

—and deallocate the descriptor areas, freeing up the memory
they occupy:

EXEC SQL DEALLOCATE DESCRIPTOR ‘input’;
EXEC SQL DEALLOCATE DESCRIPTOR ‘output’;

As you saw at the beginning of this section, using dynamic
parameters is very similar regardless of whether you are us-
ing a cursor. In fact, executing a query that returns a single
row is much simpler. You can actually get away without using
descriptor areas, although if the descriptor areas have been cre-
ated, there is no reason you can’t use them.

Steps 11–13: Fetching
Rows and Getting the Data

Steps 14 and 15: Finishing
Up

Dynamic
Parameters
without a Cursor

EXEC SQL FETCH addresses INTO DESCRIPTOR ‘output’;
while (strcmp (SQLCODE = ‘00000’)
{
 EXEC SQL GET DESCRIPTOR ‘output’ VALUE 1 :da_first = DATA;
 EXEC SQL GET DESCRIPTOR ‘output’ VALUE 2 :da_last = DATA;
 EXEC SQL GET DESCRIPTOR ‘output’ VALUE 3 :da_street = DATA;
 EXEC SQL GET DESCRIPTOR ‘output’ VALUE 4 :da_city = DATA;
 EXEC SQL GET DESCRIPTOR ‘output’ VALUE 5 :da_state_province = DATA;
 EXEC SQL GET DESCRIPTOR ‘output’ VALUE 6 :da_zip_postcode = DATA;
 // process the data in some way
 EXEC SQL FETCH addresses INTO DESCRIPTOR ‘output’;
}

Figure 16-6: Fetching rows and getting data into host language variables

 Dynamic SQL with Dynamic Parameters 335

To execute a prepared statement that does not use either a cur-
sor or a descriptor area, use the EXECUTE command in its
simplest form:

EXECUTE statement_name
USING input_parameter_list
INTO output_parameter_list

The USING and INTO clauses are optional. However, you
must include a USING clause if your statement has input pa-
rameters and an INTO clause if your statement has output
parameters. The number and data types of the parameters in
each parameter list must be the same as the number and data
types of parameters in the query.

For example, assume that you have prepared the following
query with the name book_into:

SELECT author, title
FROM work JOIN book
WHERE isbn = :da_isbn;

This query has one input parameter (da_isbn) and two output
parameters (da_author) and (da_title). It can be executed with

EXEC SQL EXECUTE book_info
USING :da_isbn
INTO :da_author, :da_title;

Input parameters can be stored in host languages variables, as
in the preceding example, or they can be supplied as literals.

If your parameters have already been placed in a descriptor
area, then all you need to do to execute a statement that does
not use a cursor is to add the name(s) of the appropriate de-
scriptor area(s) to the EXECUTE statement:

EXEC SQL EXECUTE book_info
USING ‘input’
INTO ‘output’;

Statements without
Cursors or a Descriptor
Area

Statements without
Cursors but Using a
Descriptor Area

17

339

Extensible Markup Language (XML) is a way of representing
data and data relationships in text files. Because such UNI-
CODE text files have become widespread and are usually plat-
form independent, XML is being used heavily for data trans-
fer, especially between databases and the Web.

As you will see, XML shares some characteristics with HTML.
However, the two markup languages have very different goals.
HTML is designed to give instructions to a browser about how
to display a page. XML, in contrast, is designed to describe the
structure of data and to facilitate moving that data from one
place to another.

Relational databases can use XML in three ways:

◊ Import XML documents and store the data in one or
more relations: At this time, such functionality is not
provided within the SQL standard. In practice, it re-
quires program code that is specific to a particular
DBMS and therefore is beyond the scope of this book.

◊ Format data stored in relations as XML for output:
SQL/XML, which first appeared in the SQL:2003 stan-
dard, provides a group of functions for performing this
output. The standard also includes detailed instructions
for mapping SQL elements to XML.

XML Support

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50017-0

340 Chapter 17: XML Support

◊ Store entire XML documents (or portions of docu-
ments) in a column of type XML: SQL provides this
capability with the XML data type.

This chapter covers the basics of the structure of XML docu-
ments. It then looks at the major SQL/XML functions and the
XML data type.

XML is a markup language. In other words, you place special
coding in the text to identify data elements. It shares some
contents with HTML, but at the same time is both more and
less flexible. (As you will see, this is not a contradiction!)

Note: The following is not intended to be a complete primer on
XML. It will, however, give you more than enough background to
understand what SQL/XML can and cannot do.

XML data are organized in hierarchies. As an example, con-
sider the hierarchies diagrammed in Figure 17-1, both of
which are taken from the rare book store database. Notice
that it takes two hierarchies to represent the entire database
because a hierarchy does not allow a child element—an ele-
ment at the “many” end of a 1:M relationship—to have two
parent elements (elements at the “one” end of a 1:M relation-
ship). Therefore, we can represent the relationship between a
customer, a sale, and a volume or the relationship between
author, work, book, and volume, but not both within the same
hierarchy.

Parent elements may have more than one type of child entity.
As an example, consider the hierarchy in Figure 17-2. Each
department has many salespeople working for it. A salesperson
has many contacts (potential customers) but also makes many
sales. Each sale is for one or more customers and contains one
or more items. This entire hierarchy can be represented as a
whole in an XML document.

XML Basics

XML Structure

 XML Basics 341

Because of their hierarchical structure, XML documents are
said to be organized in tree structures. (You will discover later
in this chapter that this botanical terminology turns up in oth-
er places in XML.)

Each hierarchy has a root element, the top element in the
hierarchy. In Figure 17-1, there are two root elements—Au-
thor and Customer; Figure 17-2 has only one root element,
Department.

As well as having child elements, an element may have “attri-
butes.” An attribute is a single data value that describes an ele-
ment. For example, in Figure 17-2, a department might have
its name and the name of its manager as attributes. In contrast,

Attributes

Customer Work

Author

Sale Book

Volume Volume

Figure 17-1: Hierarchies for the rare book store database for use in
an XML document

342 Chapter 17: XML Support

salespeople and the data that describe them are represented as
child elements.

Attributes do have some limitations. First, they are single-val-
ued; elements can be multi-valued. Because they are a single
value attached to an element, attributes can’t be related to oth-
er attributes or elements. Attributes also make the structure
of the XML more difficult to modify should the underlying
structure of the data change.

Salesperson

Department

Sale Contact

Customer Item

Figure 17-2: A hierarchy that includes parent elements with multiple
child element types

 XML Basics 343

An XML document really has a very simple structure: It is
made up of nested pairs of tags. With the exception of the first
line in the file, that’s all there is to it. (If this were an e-mail
rather than a book, a smiley face would go here.)

Elements and their data are identified by tags in the text file.
These tags are similar to HTML tags but don’t come from a
fixed set of tags like those available for HTML. Each element
begins with an opening tag—

<element_name>

—and ends with a closing tab:

</element_name>

Unlike HTML, which has some tags that don’t come in pairs
(for example), all XML tags must be paired. Between its
tags, an element has either a data value or other elements. Nest-
ed elements may in turn have data values or other elements.

As mentioned earlier, XML elements may have attributes as
well as elements that are nested beneath them. An attribute is
a single occurrence of a value that describes an element. Their
values are placed within the element’s opening tag:

<element_name attribute_name =
 “attribute_value” …>

Attribute values must be quoted.

If you have a pair of tags that have attributes but no nested ele-
ments (an empty tag), then you can get away with combining
the two tags into one, placing the closing symbol (/) just before
the closing symbol (>):

<element_name element_data/>

XML Document
Structure

Tags

344 Chapter 17: XML Support

You can find a portion of an XML document that describes
some of the data for the hierarchy in Figure 17-2 in Figure
17-3.

Note: The indentation is not required and is included here to
make the code easier to read. In fact, the indentation and spacing
in some of the longer listings in this chapter have been changed in
the interest of space preservation. Nonetheless, the structures of the
documents have been maintained through the proper use of nested
tags.

Each XML document begins with a declaration (or prolog)
that identifies the version of XML being used and optionally a
character encoding scheme. The particular encoding specified
in Figure 17-3 identifies a Western European (and thus also
North American) scheme.

The declaration also optionally includes an attribute named
STANDALONE. When its value is “yes,” the document has
no external references needed to understand its content. If the
value is “no,” then an application processing the XML docu-
ment will need to consult outside resources to get complete
information for understanding the document. Although many
of the examples of declarations that you will see include this
attribute, in practice it is not widely used.

The declaration is followed by the opening tag for the root ele-
ment; the last line in the document is the closing tag for the
root element. In between the root element tags, the document
contains the elements describing the remainder of the data.

As you read about XML and XML documents, especially in
the context of interactions with databases, you will find refer-
ences to well-formed XML documents. An XML document is
well-formed if it meets all the XML syntax rules. Specifically,
that means that:

◊ It has one and only one root element.

Being “Well-Formed”

Declarations (Prologs)

 XML Basics 345

◊ Every element has a closing tag or is an empty element.

◊ Tags are case sensitive.

◊ All elements are nested properly.

◊ All attribute values are quoted.

<?xml version “1.0” encoding=”ISO-8859-1”?>
<department dept_name = “Hannover” manager_last_name = “Benson”
 manager_first_name = “James”>
 <salesperson>
 <first>John</first>
 <last>Doe</last>
 <ext>1234</ext>
 <sale>
 <sale_date>1-12-2012<sale_date>
 <sale_total>152</sale_total>
 <sale_numb>65</sale_numb>
 <customer>
 <cust_numb>12</cust_numb>
 </customer>
 <item>
 <item_numb>109</item_numb>
 <quantity>1</quantity>
 <sale_numb>65</sale_numb>
 </item>
 <item>
 <item_numb>85</item_numb>
 <quantity>1</quantity>
 <sale_numb>65</sale_numb>
 </item>
 </sale>
 <contact>
 <c_first>Mary</c_last>
 <c_last>Jones</c_last>
 <c_phone>555-525-1111</c_phone>
 </contact>
 <contact>
 <c_first>Sam</c_first>
 <c_last>Smith</c_last>
 <c_phone>555-999-1212</ c_phone >
 </contact>
 </salesperson>
</department>

Figure 17-3: A portion of an XML document

346 Chapter 17: XML Support

A well-formed XML document is much more likely to be ac-
ceptable by many different types of software running on many
different platforms.

To help validate the structure of an XML document, you can
create an XML schema, a special type of XML document that
contains definitions of document structure. An XML schema
also defines data types for elements and attributes. It can also
contain a number of domain constraints.

Note: XML schemas are a relatively recent addition to XML. The
older description of the structure of an XML file is a DTD (Docu-
ment Type Definition).

Unlike XML documents, XML schemas use predefined ele-
ment tags and element attributes. An example can be found
in Figure 17-4, which contains a schema that describes the
structure of the XML in Figure 17-3.

This schema contains the following elements:

◊ xs:schema: The root element.

◊ xs:element: A declaration of a root element. Each ele-
ment has a name and a data type. XML includes string,
integer, decimal, boolean, date, and time types.

◊ xs:complexType: A group of elements that contains mul-
tiple data types.

◊ xs:sequence (an indicator): A group of elements that must
appear in the order specified within the pair of sequence
tags.

◊ xs:all (an indicator): A group of elements that can appear
in any order specified within the pair of sequence tags.
Each element can appear only once within the group.

At the time this book was written, the SQL standard was
not designed to take advantage of SQL schemas for XML

XML Schemas

 XML Basics 347

validation. Should you need to determine whether an XML
document is well-formed, you will need to examine the docu-
ment using third-party software.

<?xml version = “1.0”?>
<xs:schema>
 <xs:complexType name = “department”>
 <xs:sequence>
 <xs:element name = “dept_name” type = “xs:string”/>
 <xs:element name = “manager_first_name” type = “xs:string”/>
 </xs:sequence>
 <xs:complexType name = “salesperson”>
 <xs:sequence>
 <xs:element name = “first” type = “xs:string”/>
 <xs:element name = “last” type = “xs:string”/>
 <xs:element name = “ext” type = “xs:string”/>
 </xs:sequence>
 <xs:complexType name = “sale” mixed = “true”>
 <xs:all>
 <xs:element name = “sale_date” type = “xs:date”/>
 <xs:element name = “sale_total” type = “xs:decimal”/>
 <xs:element name = “sale_numb” type = “xs:string”/>
 </xs:all name = “item” mixed = “true”>
 <xs:sequence>
 <xs:element name = “item_numb” type = “xs:integer”/>
 <xs:element name = “quantity” type = “xs:integer”/>
 <xs:element name = “sale_numb” type = “xs:string”/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name = “customer” mixed = “true”>
 <xs:element name = “cust_numb” type = “xs:integer”/>
 </xs:complexType>
 </xs:complexType>
 <xs:complexType name = “contact”>
 <xs:sequence>
 <xs:element name = “c_first” type = “xs:string”/>
 <xs:element name = “c_last” type = “xs:string”/>
 <xs:element name = “c_phone” type = “xs:string”/>
 </xs:sequence>
 </xs:complexType>
 </xs:complexType>
</xs:schema>

Figure 17-4: An XML schema that describes the XML document in Figure 17-3

348 Chapter 17: XML Support

SQL/XML, the extensions that provide XML support from
within the SQL language, entered the standard in 2003.

Note: XML standards now include a language called XQuery. It
is separate from SQL and appeals primarily to XML programmers
who need to interact with data stored in a relational database. In
contrast, SQL/XML tends to appeal to SQL programmers who
need to generate XML documents.

SQL/XML’s publishing functions extract data from tables
and produce XML. You can therefore use a series of the func-
tions—most usually within an embedded SQL application—
to generate an entire XML document.

XML documents can include any comments needed. The
XMLCOMMENT function has the general syntax:

XMLCOMMENT (source_string);

The source string can be a literal string or a string stored in a
host language variable. The SQL statement

SELECT XMLCOMMENT (‘High priced volumes’);

produces the output

xmlcomment

<!--High priced volumes-->

Notice that the output string is now surrounded by the XML
comment indicators.

The XMLPARSE function turns a string of text into XML. It
is particularly useful when you need to store a string of text in
a column of type XML. The function has the general format:

XMLPARSE (type_indicator content_string
whitespace_option)

XML Publishing
Functions

XMLCOMMENT

SQL/XML

 SQL/XML 349

The type indicator takes one of two values: DOCUMENT
(for a complete XML document) or CONTENT (for a small
chunk of XML that doesn’t represent an entire document).
Most of the time, the DOCUMENT type is used in an em-
bedded SQL program where an entire XML document can be
stored in a host language string variable.

The content string cannot be generated with a SELECT with-
in the XMLPARSE statement. The content string therefore
must be either a literal or a host language variable. There is
no reason, however, that the host language variable can’t be
loaded with a long string created by embedded SELECTs and/
or other host language string manipulations.

The whitespace option tells SQL what to do with any empty
space at the end of a string. Its value can be either STRIP
WHITESPACE or PRESERVE WHITESPACE.

As a simple example, consider the following:

SELECT XMLPARSE (CONTENT ‘Converting a literal
to XML’ STRIP WHITESPACE);

The output looks just like regular text because the interactive
SQL command processor strips off the XML tags before dis-
playing the result:

 xmlparse

Converting a literal to XML

The XMLROOT function is a bit of a misnomer. Its definition
says that it modifies an XML root node, but what it really does
is create or modify an XML declaration at the very beginning
of an XML document. The function has the following general
syntax:

XMLROOT (XML_value, VERSION version,
 STANDALONE standalone_property)

XMLPARSE

XMLROOT

350 Chapter 17: XML Support

The first parameter—xml_value—is the XML data for which
you will be creating or modifying the prolog. You can then set
its version (usually supplied as a literal string) and its stand-
alone property.

The standalone property indicates whether all declarations
needed for the XML document are contained within the doc-
ument or whether declarations are contained in an external
document. In most cases when you are using XML with a re-
lational database, the standalone property will be set to yes.

The following example adds the prolog at the beginning of the
XML, sets the version to 1.1 and the standalone property to
yes—

SELECT XMLROOT (XMLPARSE (CONTENT
‘<content>something</content>’),
 VERSION ‘1.1’, STANDALONE YES);

—and produces the output

 xmlroot

<?xml version=”1.1”
standalone=”yes”?><content>abc</content>

XMLELEMENT is one of two ways to generate content for an
XML document. It has the following general syntax:

XMLELEMENT (NAME name_of_element,
 XMLATTRIBUTES (attribute_value
 AS attribute_name, …), content…)

Each element has a name that becomes the element’s tag. At-
tributes are optional. The content may be

◊ A literal value (in quotes)

◊ Data from a database table

XMLELEMENT

 SQL/XML 351

◊ Another XML element, typically generated with an em-
bedded call to XMLELEMENT or XMLFOREST

As an example, let’s create some XML that contains data about
books (author, title, and ISBN):

SELECT XMLELEMENT (NAME “Books”,
 XMLELEMENT (NAME “Author”,
 author.author_last_first),
 XMLELEMENT (NAME “Title”,work.title),
 XMLELEMENT (name “ISBN”,book.isbn))
FROM author JOIN book JOIN work;

The function call is placed in a SELECT statement as one of
the values that SELECT should return. The FROM clause
identifies the tables from which data will be drawn. This par-
ticular example creates an XML element named Books. The
contents of the element include three other elements—Author,
Title, ISBN—each of which is created with an embedded call to
XMLELEMENT. The SQL statement produces one element
for each row retrieved by the query. In this case, the SELECT
has no WHERE clause and therefore generates an element for
every row in the joined table created by the FROM clause.

The output of this command can be found in Figure 17-5.
Note that the spacing of the output has been adjusted by put-
ting multiple tags on the same line so the output will take up
less space. This isn’t a problem because XML is text only; any
spacing between tags is purely cosmetic.

The XMLFOREST function can be used to create elements
that are part of a higher-level element. Its results are very sim-
ilar to XMLELEMENT, although its syntax can be simpler
than using multiple embedded XMLELEMENT calls. How-
ever, the result of XMLFOREST alone is not a valid XML
document. We therefore often wrap a call to XMLELEMENT
around XMLFOREST.

XMLFOREST

352 Chapter 17: XML Support

<Books> <Author>Bronte, Charlotte</Author>
 <Title>Jane Eyre</Title>
 <ISBN>978-1-11111-111-1</ISBN> </Books>
<Books> <Author>Bronte, Charlotte</Author>
 <Title>Jane Eyre</Title>
 <ISBN>978-1-11111-112-1</ISBN> </Books>
<Books> <Author>Bronte, Charlotte</Author>
 <Title>Villette</Title>
 <ISBN>978-1-11111-113-1</ISBN> </Books>
<Books> <Author>Doyle, Sir Arthur Conan</Author>
 <Title>Hound of the Baskervilles</Title>
 <ISBN>978-1-11111-114-1</ISBN> </Books>
<Books> <Author>Doyle, Sir Arthur Conan</Author>
 <Title>Hound of the Baskervilles</Title>
 <ISBN>978-1-11111-115-1</ISBN> </Books>
<Books> <Author>Doyle, Sir Arthur Conan</Author>
 <Title>Lost World, The</Title>
 <ISBN>978-1-11111-116-1</ISBN> </Books>
<Books> <Author>Doyle, Sir Arthur Conan</Author>
 <Title>Complete Sherlock Holmes</Title>
 <ISBN>978-1-11111-117-1</ISBN> </Books>
<Books> <Author>Doyle, Sir Arthur Conan</Author>
 <Title>Complete Sherlock Holmes</Title>
 <ISBN>978-1-11111-118-1</ISBN> </Books>
<Books> <Author>Twain, Mark</Author>
 <Title>Tom Sawyer</Title>
 <ISBN>978-1-11111-120-1</ISBN> </Books>
<Books> <Author>Twain, Mark</Author>
 <Title>Connecticut Yankee in King Arthur’s Court, A</Title>
 <ISBN>978-1-11111-119-1</ISBN> </Books>
<Books> <Author>Twain, Mark</Author>
 <Title>Tom Sawyer</Title>
 <ISBN>978-1-11111-121-1</ISBN> </Books>
<Books> <Author>Twain, Mark</Author>
 <Title>Adventures of Huckleberry Finn, The</Title>
 <ISBN>978-1-11111-122-1</ISBN> </Books>
<Books> <Author>Ludlum, Robert</Author>
 <Title>Matarese Circle, The</Title>
 <ISBN>978-1-11111-123-1</ISBN> </Books>
<Books> <Author>Ludlum, Robert</Author>
 <Title>Bourne Supremacy, The</Title>
 <ISBN>978-1-11111-124-1</ISBN> </Books>
<Books> <Author>Rand, Ayn</Author>
 <Title>Fountainhead, The</Title>
 <ISBN>978-1-11111-125-1</ISBN> </Books>

Figure 17-5: An XML fragment created with calls to XMLELEMENT (continued on next page)

 SQL/XML 353

<Books> <Author>Rand, Ayn</Author>
 <Title>Fountainhead, The</Title>
 <ISBN>978-1-11111-126-1</ISBN> </Books>
<Books> <Author>Rand, Ayn</Author>
 <Title>Atlas Shrugged</Title>
 <ISBN>978-1-11111-127-1</ISBN> </Books>
<Books> <Author>Stevenson, Robert Louis</Author>
 <Title>Kidnapped</Title>
 <ISBN>978-1-11111-128-1</ISBN> </Books>
<Books> <Author>Stevenson, Robert Louis</Author>
 <Title>Kidnapped</Title>
 <ISBN>978-1-11111-129-1</ISBN> </Books>
<Books> <Author>Stevenson, Robert Louis</Author>
 <Title>Treasure Island</Title>
 <ISBN>978-1-11111-130-1</ISBN> </Books>
<Books> <Author>Barth, John</Author>
 <Title>Sot Weed Factor, The</Title>
 <ISBN>978-1-11111-131-1</ISBN> </Books>
<Books> <Author>Barth, John</Author>
 <Title>Lost in the Funhouse</Title>
 <ISBN>978-1-11111-132-1</ISBN> </Books>
<Books> <Author>Barth, John</Author>
 <Title>Giles Goat Boy</Title>
 <ISBN>978-1-11111-133-1</ISBN> </Books>
<Books> <Author>Herbert, Frank</Author>
 <Title>Dune</Title>
 <ISBN>978-1-11111-134-1</ISBN> </Books>
<Books> <Author>Asimov, Isaac</Author>
 <Title>Foundation</Title>
 <ISBN>978-1-11111-135-1</ISBN> </Books>
<Books> <Author>Asimov, Isaac</Author>
 <Title>Foundation</Title>
 <ISBN>978-1-11111-136-1</ISBN> </Books>
<Books> <Author>Asimov, Isaac</Author>
 <Title>Last Foundation</Title>
 <ISBN>978-1-11111-137-1</ISBN> </Books>
<Books> <Author>Asimov, Isaac</Author>
 <Title>Foundation</Title>
 <ISBN>978-1-11111-138-1</ISBN> </Books>
<Books> <Author>Asimov, Isaac</Author>
 <Title>I, Robot</Title>
 <ISBN>978-1-11111-139-1</ISBN> </Books>
<Books> <Author>Funke, Cornelia</Author>
<Title>Inkheart</Title>
 <ISBN>978-1-11111-140-1</ISBN> </Books>

Figure 17-5 (continued): An XML fragment created with calls to XMLELEMENT (continued on next page)

354 Chapter 17: XML Support

By itself, XMLFOREST has the following general syntax:

XMLFROEST (content AS element_name, …)

As an example, assume that we want to create an XML element
for an inventory item, including the ISBN, asking price, and
selling price. One way to code the element would be as follows:

SELECT XMLELEMENT (NAME “Inventory_item”,
 XMLFOREST (volume.isbn, volume.asking_
price, volume.selling_price)) “Volumes”
FROM volume
WHERE selling_price > 75;

Notice that the external function call is to XMLELEMENT to
create the element named inventory_item. The content of the
element is produced by a single call to XMLFOREST, which
contains the three data values that are part of the inventory
item element. Because there is no AS clause, the function uses
the column names as the names of the data elements. You can
find the output of the sample query in Figure 17-6.

<Books> <Author>Funke, Cornelia</Author>
 <Title>Inkdeath</Title>
 <ISBN>978-1-11111-141-1</ISBN> </Books>
<Books> <Author>Stephenson, Neal</Author>
 <Title>Anathem</Title>
 <ISBN>978-1-11111-142-1</ISBN> </Books>
<Books> <Author>Stephenson, Neal</Author>
 <Title>Snow Crash</Title>
 <ISBN>978-1-11111-143-1</ISBN> </Books>
<Books> <Author>Rand, Ayn</Author>
 <Title>Anthem</Title>
 <ISBN>978-1-11111-144-1</ISBN> </Books>
<Books> <Author>Rand, Ayn</Author>
 <Title>Anthem</Title>
 <ISBN>978-1-11111-145-1</ISBN> </Books>
<Books> <Author>Stephenson, Neal</Author>
 <Title>Cryptonomicon</Title>
 <ISBN>978-1-11111-146-1</ISBN> </Books>

Figure 17-5 (continued): An XML fragment created with calls to XMLELEMENT

 SQL/XML 355

As you will remember from earlier in this chapter, an XML
element can have attributes, data values that are part of the ele-
ment tag. The XMLATTRIBUTES function is used to specify
those attributes. Like XMLFOREST, it is most commonly
used as part of an XMLELEMENT function call.

The function has the following general syntax:

XMLATTRIBUTES (value AS attribute_name)

If the attribute’s value is a column in a database table, then the
AS and the attribute name are optional. SQL will then use the
column name as the attribute name.

As an example, let’s create an XML element for books with
selling prices of more than $75, the results of which appear
in Figure 17-7. Notice that text values (e.g., the ISBN) are in
quotes.

SELECT XMLELEMENT (NAME “High_Priced”,
 XMLATTRIBUTES (volume.isbn AS ISBN),
 XMLELEMENT (NAME “Asking_price”, volume.
asking_price),
 XMLELEMENT (NAME “Selling_price”, volume.
selling_price))
FROM volume
WHERE selling_price > 75;

The XML functions we have been discussing generate frag-
ments of XML documents. To paste them together, you use
the XMLCONCAT function. It has a relatively simple general
syntax:

XMLCONCAT (XML_value, XML_value, …)

As an example, let’s put a comment in front each of the ele-
ments that contain data about books with high selling prices:

SELECT XMLCONCAT (XMLCOMMENT (‘This is a high-
priced book’),
 XMLELEMENT (NAME “High_Priced”,

XMLATTRIBUTES

XMLCONCAT

356 Chapter 17: XML Support

<Inventory_item>
 <isbn>978-1-11111-111-1</isbn>
 <asking_price>175.00</asking_price>
 <selling_price>175.00</selling_price> </Inventory_item>
<Inventory_item>
 <isbn>978-1-11111-133-1</isbn>
 <asking_price>300.00</asking_price>
 <selling_price>285.00</selling_price> </Inventory_item>
<Inventory_item>
 <isbn>978-1-11111-144-1</isbn>
 <asking_price>80.00</asking_price>
 <selling_price>76.10</selling_price> </Inventory_item>
<Inventory_item>
 <isbn>978-1-11111-121-1</isbn>
 <asking_price>110.00</asking_price>
 <selling_price>110.00</selling_price> </Inventory_item>
<Inventory_item>
 <isbn>978-1-11111-121-1</isbn>
 <asking_price>110.00</asking_price>
 <selling_price>110.00</selling_price> </Inventory_item>
<Inventory_item>
 <isbn>978-1-11111-130-1</isbn>
 <asking_price>150.00</asking_price>
 <selling_price>120.00</selling_price> </Inventory_item>
<Inventory_item>
 <isbn>978-1-11111-126-1</isbn>
 <asking_price>110.00</asking_price>
 <selling_price>110.00</selling_price> </Inventory_item>
<Inventory_item>
 <isbn>978-1-11111-139-1</isbn>
 <asking_price>200.00</asking_price>
 <selling_price>170.00</selling_price> </Inventory_item>
<Inventory_item>
 <isbn>978-1-11111-133-1</isbn>
 <asking_price>125.00</asking_price>
 <selling_price>125.00</selling_price> </Inventory_item>
<Inventory_item>
 <isbn>978-1-11111-130-1</isbn>
 <asking_price>200.00</asking_price>
 <selling_price>150.00</selling_price> </Inventory_item>

Figure 17-6 The results of using XMLFOREST to generate the contents of an XML attribute

 SQL/XML 357

<High_Priced isbn=”978-1-11111-111-1”>
 <Asking_price>175.00</Asking_price>
 <Selling_price>175.00</Selling_price>
</High_Priced>
<High_Priced isbn=”978-1-11111-133-1”>
 <Asking_price>300.00</Asking_price>
 <Selling_price>285.00</Selling_price>
</High_Priced>
<High_Priced isbn=”978-1-11111-144-1”>
 <Asking_price>80.00</Asking_price>
 <Selling_price>76.10</Selling_price>
</High_Priced>
<High_Priced isbn=”978-1-11111-121-1”>
 <Asking_price>110.00</Asking_price>
 <Selling_price>110.00</Selling_price>
</High_Priced>
<High_Priced isbn=”978-1-11111-121-1”>
 <Asking_price>110.00</Asking_price>
 <Selling_price>110.00</Selling_price>
</High_Priced>
<High_Priced isbn=”978-1-11111-130-1”>
 <Asking_price>150.00</Asking_price>
 <Selling_price>120.00</Selling_price></High_Priced>
<High_Priced isbn=”978-1-11111-126-1”>
 <Asking_price>110.00</Asking_price>
 <Selling_price>110.00</Selling_price>
</High_Priced>
<High_Priced isbn=”978-1-11111-139-1”>
 <Asking_price>200.00</Asking_price>
 <Selling_price>170.00</Selling_price>
</High_Priced>
<High_Priced isbn=”978-1-11111-133-1”>
 <Asking_price>125.00</Asking_price>
 <Selling_price>125.00</Selling_price>
</High_Priced>
<High_Priced isbn=”978-1-11111-130-1”>
 <Asking_price>200.00</Asking_price>
 <Selling_price>150.00</Selling_price>
</High_Priced>

Figure 17-7 The results of using XMLATTRIBUTES to add attributes to an XML element

358 Chapter 17: XML Support

 XMLATTRIBUTES (volume.isbn AS ISBN),
 XMLELEMENT (NAME “Asking_price”, vol-
ume.asking_price),
 XMLELEMENT (NAME “Selling_price”, vol-
ume.selling_price)))
FROM volume
WHERE selling_price > 75;

The results can be found in Figure 17-8. Line breaks have been
added to make the result readable. Note, however, that SQL
views each occurrence of the comment and the entire element
as a single string of text and therefore inserts a line break only
at the end of each element.

Note: The x0020 that appears frequently in the output is the
ASCII code for a blank.

You can declare a column in a table to be of type XML, just as
you would with any other data type:

CREATE TABLE xmlstuff
 (seq_numb INT,
 xml_text XML,
 PRIMARY KEY (seq_numb));

The XML column can then be used to store fragments of XML
or entire XML documents. However, doing so has several
drawbacks:

 xmlconcat

 <!--This is a high-priced book-->
 <High_x0020_Priced isbn=”978-1-11111-111-1”>
 <Asking_x0020_Price>175.00</Asking_x0020_Price>
 <Selling_x0020_Price>175.00</Selling_x0020_Price>
</High_x0020_Priced>
 <!--This is a high-priced book-->
 <High_x0020_Priced isbn=”978-1-11111-133-1”>
 <Asking_x0020_Price>300.00</Asking_x0020_Price>
 <Selling_x0020_Price>285.00</Selling_x0020_Price>

Figure 17-8: The result of using XMLCONCAT to concatenate XML fragments (continued on next page)

The XML Data
Type

 The XML Data Type 359

</High_x0020_Priced>
 <!--This is a high-priced book-->
 <High_x0020_Priced isbn=”978-1-11111-144-1”>
 <Asking_x0020_Price>80.00</Asking_x0020_Price>
 <Selling_x0020_Price>76.10</Selling_x0020_Price>
</High_x0020_Priced>
 <!--This is a high-priced book-->
 <High_x0020_Priced isbn=”978-1-11111-121-1”>
 <Asking_x0020_Price>110.00</Asking_x0020_Price>
 <Selling_x0020_Price>110.00</Selling_x0020_Price>
</High_x0020_Priced>
 <!--This is a high-priced book-->
 <High_x0020_Priced isbn=”978-1-11111-121-1”>
 <Asking_x0020_Price>110.00</Asking_x0020_Price>
 <Selling_x0020_Price>110.00</Selling_x0020_Price>
</High_x0020_Priced>
 <!--This is a high-priced book-->
 <High_x0020_Priced isbn=”978-1-11111-130-1”>
 <Asking_x0020_Price>150.00</Asking_x0020_Price>
 <Selling_x0020_Price>120.00</Selling_x0020_Price>
</High_x0020_Priced>
 <!--This is a high-priced book-->
 <High_x0020_Priced isbn=”978-1-11111-126-1”>
 <Asking_x0020_Price>110.00</Asking_x0020_Price>
 <Selling_x0020_Price>110.00</Selling_x0020_Price>
</High_x0020_Priced>
 <!--This is a high-priced book-->
 <High_x0020_Priced isbn=”978-1-11111-139-1”>
 <Asking_x0020_Price>200.00</Asking_x0020_Price>
 <Selling_x0020_Price>170.00</Selling_x0020_Price>
</High_x0020_Priced>
 <!--This is a high-priced book-->
 <High_x0020_Priced isbn=”978-1-11111-133-1”>
 <Asking_x0020_Price>125.00</Asking_x0020_Price>
 <Selling_x0020_Price>125.00</Selling_x0020_Price>
</High_x0020_Priced>
 <!--This is a high-priced book-->
 <High_x0020_Priced isbn=”978-1-11111-130-1”>
 <Asking_x0020_Price>200.00</Asking_x0020_Price>
 <Selling_x0020_Price>150.00</Selling_x0020_Price>
</High_x0020_Priced>

Figure 17-8 (continued): The result of using XMLCONCAT to concatenate XML fragments

360 Chapter 17: XML Support

◊ The contents of the column are not searchable.1

◊ The contents of the column cannot be used in predicates
that require comparison operators such as > or =.

◊ The column cannot be indexed.

For that reason, tables that have XML columns need at least a
unique sequence number to identify each row. You may also
want to include a table that assigns keywords to each docu-
ment so there is some type of search capability. Such a table
might be created with

CREATE TABLE keywords
 (seq_numb int,
 keyword char (30),
 PRIMARY KEY (seq_numb, keyword),
 FOREIGN KEY keywords2xmlstuff (seq_numb)
 REFERENCES xmlstuff);

As mentioned earlier in the discussion of XMLPARSE, you
need to use that function to convert text into XML to store in
an XML column. Because you can’t generate an input string
with a SELECT, the interactive INSERT is limited to XML
fragments:

INSERT INTO xmlstuff
 VALUES (1, XMLPARSE
 (CONTENT ‘This is a test’
 STRIP WHITESPACE);

For complete document input, you will generally be working
with an embedded SQL application.

If you want to look at the contents of an XML column, you
can use an interactive SELECT. SQL strips the XML tags for
output. The query

1 Some current DBMSs support XQuery, a SQL extension that can be
used to search XML data.

 The XML Data Type 361

SELECT * FROM xmlstuff;

produces

 sequ_numb | xml_text
-----------+----------------
 1 | this is a test

Note: You could store XML in a text column, tags and all. How-
ever, when you use an XML column, SQL will check the XML to
see that it is well-formed.

The XMLSERIALIZE function is essentially the opposite of
XMLPARSE: It takes the contents of an XML column and
converts it to a text string:

XMLSERIALIZE (type_indicator column_name AS
character_type)

For example,

SELECT XMLSERIALIZE
 (DOCUMENT xmltext AS VARCHAR (256))
 FROM sql_stuff
 WHERE seq_numb = 16;

would extract the document from the row with the sequence
number of 16, convert it to plain text (removing the tags) and
display it on the screen. Because SQL removes the tags from
interactive SELECT output, this function is particularly useful
in an embedded SQL program.

XMLSERIALIZE

18

363

The relational data model has been a mainstay of business data
processing for nearly 30 years. Nothing has superseded it in
the way the relational data model superseded the simple net-
work data model. However, a newer data model—the object-
oriented data model1—has come into use as an alternative for
some types of navigational data processing.

This chapter presents an overview of some object-oriented con-
cepts for readers who aren’t familiar with the object-oriented
paradigm. (Chapter 19 looks at the SQL standard’s support for
object-oriented structures.) If you have object-oriented pro-
gramming experience, then you can skip over the first parts of
this chapter and begin reading with the section Pure Object-
Oriented Databases.

The object-oriented paradigm was the brainchild of Dr. Kris-
ten Nygaard, a Norwegian who was attempting to write a
computer program to model the behavior of ships, tides, and
fjords. He found that the interactions were extremely complex
and realized that it would be easier to write the program if he

1 To be completely accurate, the relational data model is the only data
model that has a formal specification. The hierarchical data model and the
OO data model do not. The closest thing the simple network data model
has is the CODASYL specifications.

The Object-
Relational Data
Model

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50018-2

364 Chapter 18: The Object-Relational Data Model

separated the three types of program elements and let each one
model its own behavior against each of the others.

The object-oriented programming languages in use today (most
notably C++, Java, and SmallTalk) are a direct outgrowth of
Nygaard’s early work. The way in which objects are used in da-
tabases today is an extension of object-oriented programming.

Note: This is in direct contrast to the relational data model, which
was designed specifically to model data relationships, although
much of its theoretical foundations are found in mathematical set
theory.

To understand the role of objects in relational databases, you
must first understand the object-oriented paradigm as it is used
in object-oriented programming and pure object-oriented da-
tabases. The easiest way to do so is to begin with an example
that has absolutely nothing to do with programming at all.

Assume that you have a teenage daughter (or sister, whichever
is more appropriate) named Jane and that your family is go-
ing to take a long car trip. Like many teens, Jane is less than
thrilled about a trip with the family and in particular with
spending so much time with her 12-year-old brother. In self-
defense, Jane needs something to keep her brother busy so he
won’t bother her as she reads while her parents are driving.
She therefore decides to write up some instructions for playing
solitaire games for him.

The first set of instruction is for the most common solitaire
game, Klondike. As you can see in Figure 18-1, the deal in-
volves seven piles of cards of increasing depth, with the top
card turned over. The rest of the deck remains in the draw pile.
Jane decides to break the written instructions into two main
parts: information about the game and questions her brother
might ask. She therefore produces instructions that look some-
thing like Figure 18-2. She also attached the illustration of the
game’s deal.

Getting
Started:
Object-
Orientation
without
Computing

 Getting Started: Object-Orientation without Computing 365

Figure 18-1: The starting layout for Klondike

The next game she tackles is Canfield. Like Klondike, it is
played with one deck, but the deal and play are slightly dif-
ferent (see Figure 18-3). Jane uses the same pattern for the
instructions as she did for Klondike because it cuts down the
amount of writing she has to do (see Figure 18-4).

And finally, just to make sure her brother doesn’t get too bored,
Jane prepares instructions for Forty Thieves (see Figure 18-5).
This game uses decks of cards and plays in a very different way
from the other two games (see Figure 18-6). Nonetheless, pre-
paring the instructions for the third game is fairly easy because
she has the template for the instructions down pat.

After completing three sets of instructions, it becomes clear to
Jane that having the template for the instructions makes the
process extremely easy. Jane can use the template to organize
any number of sets of instructions for playing solitaire. All she
has to do is make a copy of the template and fill in the values
for the information about the game.

366 Chapter 18: The Object-Relational Data Model

Information about the book
 Name: Klondike
 Illustration: See next page
 Decks: One
 Dealing: Deal from left to right
 First pass: First card face up six cards down.
 Second pass: First card face up on top of pile #2, five
 cards down on remaining piles.
 Third pass: First card face up on top of pile #3; four
 cards down on remaining piles.
 …repeat pattern for total of seven passes.
 Place remaining cards in draw pile, face down.
 Playing: One or two cards can be turned from the draw pile
 at a time. As encountered, put aces above layout. Build up
 from aces in suits. Build down on the deal, opposite suit
 colors. Can move from the middle of a stack moving card
 and all cards built below it.
 Move only kings into empty spots on the layout.
 If turning one card, make only one pass through the draw
 Pile.
 If turning three cards, make as many passes as you like
 through the draw pile.
 Winning: All cards built on top of their aces.
Questions to Ask
 What is the name of the game?
 Read Name section.
 How many decks do I need?
 Read Decks section.
 What does the layout look like.
 Read Illustration section.
 How do I deal the game?
 Read Dealing section.
 How do I play the game?
 Read Playing section.
 How do I know when I’ve won?
 Read Winning section.

Figure 18-2: Instructions for playing Klondike

The object-oriented paradigm shares some characteristics with the
Entity-Relationship model used for database design. However,
OO extends the idea of relationships between entities by adding
actions that the entities can perform.

Basic OO
Concepts

 Basic OO Concepts 367

If someone were writing an object-oriented computer program
to manage the instructions for playing solitaire, each game
would be known as an object. It is a self-contained element
used by the program. It has things that it knows about itself:
its name, an illustration of the layout, the number of decks
needed to play, how to deal, how to play, and how to deter-
mine when the game is won. In object-oriented terms, the val-
ues that an object stores about itself are known as attributes or
variables or, occasionally, properties.

Each solitaire game object also has some things it knows how
to do: explain how to deal, explain how to play, explain how to
identify a win, and so on. In object-oriented programming ter-
minology, actions that objects know how to perform are called
methods, services, functions, procedures, or operations.

Note: It is unfortunate, but there is no single accepted terminology
for the object-oriented paradigm. Each programming language or
DBMS chooses which terms it will use. You therefore need to recog-
nize all of the terms that might be used to describe the same thing.

An object is very security-minded. It typically keeps the things
it knows about itself private and releases that information only

Figure 18-3: The starting deal for Canfield

Objects

368 Chapter 18: The Object-Relational Data Model

through a method whose purpose is to share data values (an
accessor method). For example, a user or program using one
of the game objects cannot access the contents of the Dealing
variable directly. Instead, the user or program must execute the
How Do I Deal the Game? method to see that data.

Objects also keep private the details of the procedures for the
things they know how to do, but they make it easy for some-
one to ask them to perform those actions. Users or programs

Information about the book
 Name: Canfield
 Illustration: See next page
 Decks: One
 Dealing: Deal four cards face up.
 Place one additional card above the first four as the
. starting card for building suits.
 The remaining cards stay in the draw pile.
 Playing: Turn one card at a time, going through the deck as many
 times as desired.
 Build down from deal, opposite suit colors.
 Can move cards from the middle of stack, moving card and
 all cards built below it.
 Place cards of the same value as the initial foundation
 card above the deal as encountered.
 Build up in suits from the foundation cards.
 Any card can be placed in any empty space in the deal.
 Winning: All cards built on top of the foundation cards.
Questions to Ask
 What is the name of the game?
 Read Name section.
 How many decks do I need?
 Read Decks section.
 What does the layout look like.
 Read Illustration section.
 How do I deal the game?
 Read Dealing section.
 How do I play the game?
 Read Playing section.
 How do I know when I’ve won?
 Read Winning section.

Figure 18-4: Instructions for playing Canfield

 Basic OO Concepts 369

cannot see what is inside the methods. They see only the result
of the method. This characteristic of objects is known as infor-
mation hiding or encapsulation.

An object presents a public interface to other objects that
might use it. This provides other objects with a way to ask
for data values or for actions to be performed. In the example
of the solitaire games, the questions that Jane’s little brother
can ask are a game’s public interface. The instructions below
each question represent the procedure to be used to answer
the question. A major benefit of data encapsulation is that as
long as the object’s public interface remains the same, you can
change the details of the object’s methods without needing to
inform any other objects that might be using those methods.
For example, the card game objects currently tell the user to
“read” the contents of an attribute. However, there is no reason
that the methods couldn’t be changed to tell the user to “print”
the contents of an attribute. The user would still access the
method in the same way, but the way in which the method
operates would be slightly different.

Figure 18-5: The starting layout for Forty Thieves

370 Chapter 18: The Object-Relational Data Model

An object requests data or an action by sending a message to
another object. For example, if you were writing a computer
program to manage the instructions for solitaire games, the
program (an object in its own right) could send a message to
the game object asking the game object to display the instruc-
tions for dealing the game. Because the actual procedures of
the method are hidden, your program would ask for the in-
struction display and then you would see the instructions on
the screen. However you would not need to worry about the
details of how the screen display was produced. That is the job

Information about the book
 Name: Forty Thieves
 Illustration: See next page
 Decks: Two
 Dealing: Make 10 piles of four cards, all face up.
 Jog cards so that the values of all cards can be seen.
 Remaining cards stay in the draw pile.
 Playing: Turn one card at a time.
 Make only one pass through the draw pile.
 Build down in suits.
 Only the top card of a stack can be moved.
 As aces are encountered, place at top of deal and build up
 in suits from the aces.
 Any card can be moved into any open space in the layout.
 Winning: All cards built on top of their aces.
Questions to Ask
 What is the name of the game?
 Read Name section.
 How many decks do I need?
 Read Decks section.
 What does the layout look like.
 Read Illustration section.
 How do I deal the game?
 Read Dealing section.
 How do I play the game?
 Read Playing section.
 How do I know when I’ve won?
 Read Winning section.

Figure 18-6: Instructions for playing Forty Thieves

 Basic OO Concepts 371

of the game object rather than the object that is asking the
game to do something.

An object-oriented program is made up of a collection of ob-
jects, each of which has attributes and methods. The objects
interact by sending messages to one another. The trick, of
course, is figuring out which objects a program needs and the
attributes and methods those objects should have.

The template on which the solitaire game instructions are
based is the same for each game. Without data it might be rep-
resented as in Figure 18-7. The nice thing about this template
is that it provides a consistent way of organizing all the charac-
teristics of a game. When you want to create the instructions
for another game, you make a copy of the template and “fill
in the blanks.” You write the data values for the attributes. The
procedures that make up the answers to the questions someone
might ask about the game have already been completed.

Information about the book
 Name:
 Illustration:
 Decks:
 Dealing:
 Playing:
 Winning:
Questions to Ask
 What is the name of the game?
 Read Name section.
 How many decks do I need?
 Read Decks section.
 What does the layout look like.
 Read Illustration section.
 How do I deal the game?
 Read Dealing section.
 How do I play the game?
 Read Playing section.
 How do I know when I’ve won?
 Read Winning section.

Figure 18-7: The solitaire game instruction template

Classes

372 Chapter 18: The Object-Relational Data Model

In object-oriented terminology, the template on which similar
objects like the solitaire game objects are based is known as a
class. When a program creates an object from a class, it pro-
vides data for the object’s variables. The object can then use the
methods that have been written for its class. All of the objects
created from the same class share the same procedures for their
methods. They also have the same types of data, but the values
for the data may differ, for example, just as the names of the
solitaire games are different.

A class is also a data type. In fact, a class is an implementation
of what is known as an abstract data type, which is just another
term for a user-defined data type. The implication of a class
being a data type is that you can use a class as the data type of
an attribute in a relation.

Suppose, for example, you were developing a class to handle
data about the employees in your organization. The attributes
of the class might include the employee ID, the first name,
the last name, and the address. The address itself is made up
of a street, city, state, and zip. Therefore, you would probably
create an address class with those attributes and then, rather
than duplicating those attributes in the employee class, simply
indicate that an object of the employee class will include an
object created from the address class to contain the employee’s
address.

There are three major types of classes used in an object-orient-
ed program:

◊ Control classes: Control classes neither manage data nor
have visible output. Instead, they control the opera-
tional flow of a program. For example, application classes
represent the programs themselves. In most cases, each
program creates only one object from an application
class. The application class’s job includes starting the ex-
ecution of the program, detecting menu selections (or

Types of Classes

 Basic OO Concepts 373

other user interface events), and executing the correct
program code to satisfy the user’s requests.

◊ Entity classes: Entity classes are used to create objects
that manage data. The solitaire game class, for example,
is an entity class. Classes for people, tangible objects,
and events (for example, business meetings) are entity
classes. Most object-oriented programs have at least one
entity class from which many objects are created. In fact,
in its simplest sense, the object-oriented data model is
built from the representation of relationships among ob-
jects created from entity classes.

◊ Interface classes: Interface classes handle the input and
output of information. For example, if you are work-
ing with a graphic user interface, then each window and
menu used by the program is an object created from an
interface class.

In an object-oriented program, entity classes do not do their
own input and output (I/O). Keyboard input is handled by
interface objects that collect data and send it to entity objects
for storage and processing. Screen and printed output is for-
matted by interface objects that get data for display from en-
tity objects. When entity object become part of a database, the
DBMS takes care of the file I/O; the rest of the I/O is handled
by application programs or DBMS utilities.

Why is it so important to keep data manipulation separate
from I/O? Wouldn’t it be simpler to let the entity object man-
age its own I/O? It might be simpler in the short run, but
if you decided to change a screen layout, you would need to
modify the entity class. If you keep them separate, then data
manipulation procedures are independent of data display. You
can change one without affecting the other. In a large program,
this not only can save you a lot of time, but also can help
you avoid programming errors. In a database environment, the

374 Chapter 18: The Object-Relational Data Model

separation of I/O and data storage becomes especially critical
because you do not want to modify data storage each time you
decide to modify the look and feel of a program.

Many object-oriented programs also use a fourth type of class:
a container class. Container classes exist to “contain,” or man-
age, multiple objects created from the same class. Because they
gather objects together, they are also known as aggregations. For
example, if you had a program that handled the instructions
for playing solitaire, then that program would probably have a
container class that organized all the individual card game ob-
jects. The container class would keep the objects in some order,
list them for you, and probably search through them as well.
Many pure object-oriented DBMSs require container classes,
known as extents, to provide access to all objects created from
the same class. However, as you will see, container classes are
not used when objects are integrated into a relational database.

Several types of methods are common to most classes, includ-
ing the following:

◊ Constructors: A constructor is a method that has the
same name as the class. It is executed whenever an object
is created from the class. A constructor therefore usually
contains instructions to initialize an object’s variables in
some way.

◊ Destructors: A destructor is a method that is executed
when an object is destroyed. Not all object-oriented
programming languages support destructors, which are
usually used to release system resources (for example,
main memory allocated by the object). Java in particular
does not use destructors.

◊ Accessors: An accessor, also known as a get method, re-
turns the value of a private attribute to another object.
This is the typical way in which external objects gain ac-
cess to encapsulated data.

Types of Methods

 Basic OO Concepts 375

◊ Mutators: A mutator, or set method, stores a new value
in an attribute. This is the typical way in which external
objects can modify encapsulated data.

The remaining methods defined for a class depend on the spe-
cific type of class and the specific behaviors it needs to perform.

One of the characteristics of a class is its ability to contain over-
loaded methods, methods that have the same name but require
different data to operate. Because the data are different, the
public interfaces of the methods are distinct.

As an example, assume that a human relations program has a
container class named AllEmployees that aggregates all objects
created from the Employee class. Programs that use the AllEm-
ployees class create one object from the class and then relate all
employee objects to the container using some form of program
data structure.

To make the container class useful, there must be some way
to locate specific employee objects. You might want to search
by the employee ID number, by first and last name, or by
telephone number. The AllEmployees class therefore contains
three methods named “find.” One of the three requires an
integer (the employee number) as input, the second requires
two strings (the first and last name), and the third requires a
single string (the phone number). Although the methods have
the same name, their public interfaces are different because
the combination of the name and the required input data is
distinct.

Many classes have overloaded constructors. One might accept
interactive input, another might read input from a file, and a
third might get its data by copying data from another object (a
copy constructor). For example, most object-oriented environ-
ments have a Date class that supports initializing a date object

Method Overloading

376 Chapter 18: The Object-Relational Data Model

with three integers (day, month, year), the current system date,
another Date object, and so on.

The benefit of method overloading is that the methods pres-
ent a consistent interface to the programmer. In the case of
our example of the AllEmployees container class, whenever a
programmer wants to locate an employee, he or she knows to
use a method named “find.” Then the programmer just uses
whichever of the three types of data he or she happens to have.
The object-oriented program locates the correct method by us-
ing the entire public interface (its signature), made up of the
name and the required input data.

The classes in an object-oriented environment aren’t always in-
dependent. The basic object-oriented paradigm has two major
ways to relate objects, distinct from any logical data relation-
ships that might be included in a pure object-oriented data-
base: inheritance and composition.

As a developer or database designer is working on an object-
oriented project, he or she may run into situations where there
is a need for similar—but not identical—classes. If these classes
are related in a general to specific manner, then the developer
can take advantage of one of the major features of the object-
oriented paradigm, known as inheritance.

To see how inheritance works, assume that you are writing a
program (or developing a database) to manage a pet shop. One
of the entity classes you will use is Animal, which will describe
the living creatures sold by the shop. The data that describe
objects created from the Animal class include the English and
Latin names of the animal, the animal’s age, and the animal’s
gender. However, the rest of the data depend on what type
of animal is being represented. For example, for reptiles, you
want to know the length of the animal, but for mammals, you
want to know the weight. And for fish, you don’t care about
the weight or length, but you do want to know the color. All

Class Relationships

Inheritance

Inheriting Attributes

 Basic OO Concepts 377

the animals sold by the pet shop share some data, yet have
pieces of data that are specific to certain subgroups.

You could diagram the relationship as in Figure 18-8. The Ani-
mal class provides the data common to all types of animals.
The subgroups—Mammals, Reptiles, and Fish—add the data
specific to themselves. They don’t need to repeat the common
data because they inherit them from animals. In other words,
Mammals, Reptiles, and Fish all include the four pieces of data
that are part of Animal.

If you look closely at Figure 18-8, you’ll notice that the lines
on the arrows go from the subgroups to Animal. This is actu-
ally contrary to what is happening: The data from Animal are
flowing down the lines into the subgroups. Unfortunately, the
direction of the arrows is dictated by convention, even though
it may seem counterintuitive.

Figure 18-8: The relationship of classes for an object-oriented environ-
ment for a pet shop

Animal

English Name
Latin Name
Birthdate
Gender

Reptile

Current length
Maximum length

Fish

Color

Mammal

Weight
Height at shoulder
Breed
Color

378 Chapter 18: The Object-Relational Data Model

In object-oriented terminology, the subgroups are known as
subclasses or derived classes. The Animal class is a superclass or
base class.

The trick to understanding inheritance is to remember that
subclasses represent a more specific occurrence of their super-
class. The relationships between a base class and its derived
classes therefore can be expressed using the phrase “is a”:

◊ A mammal is an animal.

◊ A reptile is an animal.

◊ A fish is an animal.

If the “is a” phrasing does not make sense in a given situation,
then you are not looking at inheritance. As an example, assume
that you are designing an object-oriented environment for the
rental of equipment at a ski rental shop. You create a class for
a generic merchandise item and then subclasses for the specific
types of items being rented, as in the top four rectangles in
Figure 18-9. Inheritance works properly here because skis are
a specific type of merchandise item, as well as boots and poles.

However, you run into trouble when you begin to consider the
specific items being rented and the customer doing the renting
(the renter). Although there is a logical database-style relation-
ship between a renter and an item being rented, inheritance
does not work because the “is a” test fails. A rented item is not
a renter!

The situation with merchandise items and rental inventory is
more complex. The Merchandise Item, Skis, Boots, and Poles
classes represent description of types of merchandise but not
physical inventory. For example, the ski shop may have many
pairs of one type of ski in inventory and many pairs of boots of
the same type, size, and width. Therefore, what is being rented
is individual inventory items, represented by the Item Rented

 Basic OO Concepts 379

class. A given inventory item is either skis, boots, or poles. It
can only be one, not all three as shown in Figure 18-9. There-
fore, an item rented is not a pair of skis, a pair of boots, or a
set of poles. (You also have the problem of having no class that
can store the size or length of an item.)

The solution to the problem is to create a separate rented item
class for each type of merchandise, as in Figure 18-10. When
you are looking at this diagram, be sure to pay attention to

Figure 18-9: Inheritance and no inheritance in an object-oriented environ-
ment for a ski equipment rental

Merchandise
Item

UPC code
Name
Model
Manufacturer

Boots Poles

Type

Skis

Type
Binding

Renter

Name
Address
Phone
Credit Card number

Item Rented

Inventory number
UPC code
Renter name
Date rented
Date due back
Fee

380 Chapter 18: The Object-Relational Data Model

Figure 18-10: Multiple inheritance in the data environment for a ski
shop

the direction of the arrows. The physical layout of the dia-
gram does not correspond to the direction of the inheritance.
Remember that, by convention, the arrows point from the
derived class to the base class.

The Ski Item class inherits information about the type of item
it is from the Skis class. It also inherits information about an

Renter

Name
Address
Phone
Credit Card number

Item Rented

Inventory number
UPC code
Renter name
Date rented
Date due back
Fee

Merchandise
Item

UPC code
Name
Model
Manufacturer

Boots Poles

Type

Skis

Type
Binding

Boot Item

Size
Width

Pole Item

Length

Ski Item

Length

 Basic OO Concepts 381

item being rented from the Item Rented class. A ski item “is
a” pair of skis; a ski item “is a” rented item as well. Now the
design of the classes passes the “is a” test for appropriate in-
heritance. (Note that it also gives you a class that can contain
information such as the length and size of a specific inventory
item.) The Renter class does not participate in the inheritance
hierarchy at all.

When a class inherits from more than one base class, you have
multiple inheritance. The extent to which multiple inheritance
is supported in programming languages and DBMSs varies
considerably from one product to another.

Not every class in an inheritance hierarchy is necessarily used
to create objects. For example, in Figure 18-10 it is unlikely
that any objects are ever created from the Merchandise Item or
Item Rented classes. These classes are present simply to provide
the common attributes and methods that their derived classes
share.

Such classes are known as abstract, or virtual, classes. In con-
trast, classes from which objects are created are known as con-
crete classes.

Note: Many computer scientists use the verb “instantiate” to mean
“creating an object from a class.” For example, you could say that
abstract classes are never instantiated. However, I find that term
rather contrived (although not quite as bad as saying “we will now
motivate the code” to mean “we will now explain the code”) and
prefer to use the more direct “create an object from a class.”

In general, methods are inherited by subclasses from their su-
perclass. A subclass can use its base class’s methods as its own.
However, in some cases it may not be possible to write a ge-
neric method that can be used by all subclasses. For example,
assume that the ski rental shop’s Merchandise Item class has
a method named printCatalogEntry, the intent of which is
to print a properly formatted entry for each distinct type of

Multiple Inheritance

Abstract Classes

Inheriting Methods:
Polymorphism

382 Chapter 18: The Object-Relational Data Model

merchandise item. The subclasses of Merchandise Item, how-
ever, have attributes not shared by all subclasses and the print-
CatalogEntry method therefore must work somewhat differ-
ently for each subclass.

To solve the problem, the ski rental shop can take advantage of
polymorphism, the ability to write different bodies for methods
of the same name that belong to classes in the same inheritance
hierarchy. The Merchandise Item class includes a prototype for
the printCatalogEntry method, indicating just the method’s
public interface. There is no body for the method, no speci-
fications of how the method is to perform its work (a virtual
method). Each subclass then redefines the method, adding the
program instructions necessary to execute the method.

The beauty of polymorphism is that a programmer can expect
methods of the same name and same type of output for all the
subclasses of the same base class. However, each subclass can
perform the method according to its own needs. Encapsulation
hides the details from all objects outside the class hierarchy.

Note: It is very easy to confuse polymorphism and overloading. Just
keep in mind that overloading applies to methods of the same class
that have the same name but different signatures, whereas polymor-
phism applies to several subclasses of the same base class that have
methods with the same signature but different implementations.

Inheritance can be described as a general–specific relationship.
In contrast, composition is a whole–part relationship. It speci-
fies that one class is a component of another and is often read
as “has a.”

To help you understand how composition can be used, let’s as-
sume that the ski rental shop wants to offer packages of items
for rent (skis, boots, and poles). The packages will come in
three qualities—good, better, and best—based on the retail
value of the items in the package.

Composition

 Basic OO Concepts 383

types of merchandise items, so the package class “has a” boot,
“has a” pole, and “has a” ski. An object created from this class
would be used to indicate which types of items could be rented
as a bundle. In contrast, the rented package class contains ac-
tual rental items and therefore indicates which specific inven-
tory items have been rented together.

Some pure object-oriented DBMSs take composition to the
extreme. They provide simple data types such as integers, real
numbers, characters, and Booleans. Everything else in the da-
tabase—even strings—is built by creating classes from these

Figure 18-11: Composition

Item Rented

Inventory number
UPC code
Renter name
Date rented
Date due back
Fee

Package

Rented
Package

Item

UPC code
Name
Model
Manufacturer

Boots Poles

Type

Skis

Type
Binding

Boot Item

Size
Width

Pole Item

Length

Ski Item

Length

As you can see in Figure 18-11, each package contains three

384 Chapter 18: The Object-Relational Data Model

simple data types and using those classes to build more com-
plex classes, and so on.

There are several reasons why the object-oriented paradigm has
become so pervasive in programming. Among the perceived
benefits are the following:

◊ An object-oriented program consists of modular units
that are independent of one another. These units can
therefore be reused in multiple programs, saving devel-
opment time. For example, if you have a well-debugged
employee class, you can use it in any of your business
programs that require data about employees.

◊ As long as a class’s public interface remains unchanged,
the internals of the class can be modified as needed
without requiring any changes to the programs that use
the class. This can significantly speed up program modi-
fication. It can also make program modification more
reliable, as it cuts down on many unexpected side effects
of program changes.

◊ An object-oriented program separates the user interface
from data handling, making it possible to modify one
independent of the other.

◊ Inheritance adds logical structure to a program by relat-
ing classes in a general to specific manner, making the
program easier to understand and therefore easier to
maintain.

There are some database environments—especially those in-
volving a great deal of inheritance—in which object-orienta-
tion is easier to implement than a relational design. To see why
this is so, let’s look at a hobby environment that just happens
to be one of the best examples of the situation in question that
I’ve ever encountered.

Benefits
of Object-
Orientation

Where Objects
Work Better Than
Relations

 Benefits of Object-Orientation 385

The database catalogs Yu-Gi-Oh cards (one of those animé re-
lated trading card games). The collector for whom this data-
base and its application were developed has thousands of cards,
some of which are duplicates. They are stored in three binders.
Within each binder there may be several sections; the pages are
numbered within each section.

There are three major types of cards: monsters, spells, and
traps. The monster card in Figure 18-12 is fairly typical. No-
tice that it has a title, an “attribute” at the top right, a “level”
(count the circles below the name), an “edition” (first, limited,
or other), a set designation, a type (and optionally two sub-
types), a description, attack points, and defense points. At the
bottom left, there may be a code number, which is missing
from some of the early cards.

A card with the same name may appear in many sets and the
same set may have more than one card of the same name. What
distinguishes them is their “rarity,” determined by how the title
is printed (black or white for common cards and silver or gold
for rare cards) and how the image is printed (standard color
printing or holofoil printing). There are a variety of combina-
tions of printing to generate common, rare, super rare, ultra
rare, and ultimate rare cards.

Note: If you want an interesting challenge before you see the rela-
tional design for this database, try to figure out the primary key
for a card!

Most cards can be used for game play, but some have been
banned from specific types of games. Others have caveats
(“rulings”) attached to them by the game’s governing board
that affect how the card can be used in a game.

Spell cards, which as you might expect can be used in the game
to cast spells, share a number of attributes with the monster
card, but don’t have things such as type and subtypes. The third
type of card, a trap, also shares some attributes with monsters,

386 Chapter 18: The Object-Relational Data Model

but is missing others and has a property that is unique to this
type of card. Spells also have properties, but the list of possible
properties differs between spells and traps.

You can find an entity-relationship diagram for the card data-
base in Figure 18-13. As you might have guessed, there is an
entity for the card, which has three subclasses, one for each
specific type of card. There are also many holdings for each
card.

To design the relational database, we create one relation for
each entity, including the superclass (in this example, Card)
and its subclasses (Monster card, Trap card, and Spell card).
With an object-oriented DBMS, we would create objects only
from the subclasses; no object would ever be created from the

Figure 18-12: A typical Yu-Gi-Oh monster card

 Benefits of Object-Orientation 387

superclass. The subclasses “inherit” the attributes of their par-
ent. For the relational database, we have to do that manually,
using some type of primary key–foreign key relationship to
connect the subclass tables to the parent table. Differences in
where cards of a given name appear and how they are printed
are handled by Holdings. Therefore, the design of the card da-
tabase looks like this:

Card (InternalCardNUMB, Attribute, Banned?,
CardDescription?, CardImage, CardName,
CardNumber, CardType, Count, Limit,
Ruling)

Figure 18-13: The ER diagram for the card database

388 Chapter 18: The Object-Relational Data Model

Monster card (InternalCardNumb, ATK, DEF,
Level, MonsterSubtype1, MonsterSubtype2,
MonsterType)

Trap card (InternalCardNumb, TrapType)

Spell card (InternalCardNumb, SpellType)

Holdings (InternalCardNumb, Code, Edition,
Holofoil?, NamePrint, NumberOwned, Binder,
Page, Section, Slot)

Why have both the trap and spell card relations if they have
exactly the same attributes? At the current time they could
certainly be maintained in one relation. However, there are
several reasons to keep them separate. First, there is no way
to guarantee that they will always have the same attributes. If
they are separated from the start, it will be easier to add attri-
butes to one or the other if needed at some later date.

Second, the major reason this type of design doesn’t perform as
well as it might is because the details about a card always need
to be looked up in another relation, joining on the internal
card number. If we keep spell and trap data separate, the rela-
tions will remain smaller and the joins will perform better.

Note: Here’s the answer to the primary key challenge: A Holding
actually represents one or more physical cards in the inventory.
It has a name (represented by the internal card number) and a
set designation. When cards of the same name are printed in dif-
ferent ways in the same set, they have different set designations.
Therefore, the concatenation of the internal card number and the
set designation uniquely identifies a card (although not a physical
card in the inventory, given that there may be duplicate cards in
the inventory). The only other alternative is to assign unique in-
ventory numbers to each physical card and to use them. For some
collectors, this may make sense, given that they would want to
track the condition of each and every card.

 Benefits of Object-Orientation 389

There is an alternative design for this type of database: Rather
than use one relation for each entity, create only a single rela-
tion in which many attributes may be null, depending on the
type of card. Such a relation might look like this:

Card (InternalCardNumb, Attribute, Banned?,
CardDescription, CardImage, CardName,
CardNumber, CardType, Count, Limit,
Ruling, ATK, DEF, Level, MonsterSubtype1,
MonsterSubtype2, MonsterType, TrapType,
spellType)

The CardType attribute indicates which of the type-specific
attributes should have data. For example, if CardType con-
tained “M” for Monster, you would expect to find data in the
ATK, DEF, and level attributes but not the spell type or trap
type. The supposed benefit of this design is that you avoid the
joins to combine the separate relations of the earlier design.
However, when a DBMS retrieves a row from this relation,
it pulls in the entire row, empty fields and all. Practically, in a
performance sense, you haven’t gained much and you’re stuck
with a design that can waste disk space.

Note: Personally, I prefer the multiple relation design because it’s
cleaner, wastes less space, and is much more flexible as the design
of the relations needs to change over time.

A pure object-oriented design for the same database would in-
clude the five entity classes, although the Card class would be
an abstract class. It would also include a class to aggregate all
objects created from subclasses of the Card class, letting users
handle all cards, regardless of type, as a single type of object.
The nature of these data—the major need for inheritance—
suggests that an object-oriented database may well perform
better than a relational database.

390 Chapter 18: The Object-Relational Data Model

A pure object-oriented database management system (OOD-
BMS) defines all of its data using object-oriented data struc-
tures. There are no tables, but only objects and groups of ob-
jects. There are no required primary keys nor any foreign keys.

An object-oriented database indicates relationships by requir-
ing each object to contain identifiers for the objects to which
it is related. To make this work, when an object is created it
is given a unique internal identifier. The user (a programmer
or someone working interactively) never sees this identifier. In
fact, it may be created from the information needed to locate
the object’s data in a physical database file.

Exactly which containers an object will have depends on the
types of relationships in which it is participating:

◊ 1:1: Each object will have an attribute that stores the
identifier for the object to which it is related.

◊ 1:M: The object at the “one” end of the relationship
will have a container for the identifiers of the objects to
which it is related. If the relationship is to support in-
verse access (“many-to-one”), each object at the “many”
end of the relationship will have an attribute to hold the
identifier of its parent object.

◊ M:M: A pure object-oriented database can represent a
M:M relationship directly, without the use of a relation-
ship object (a composite entity), something a relational
database cannot do. (An OO design may still need the
equivalent of a composite entity if it needs to store rela-
tionship data.) Each object will have a container for the
identifiers for objects at the other end of the relation-
ship.

The objects in an OO database are not required to have unique
keys (the equivalent of a primary key). However, most classes

Representing Data
Relationships

Pure Object-
Oriented
Databases

 Pure Object-Oriented Databases 391

are designed with a variable to hold a unique identifier to
ensure retrieval of each specific object.

Object-oriented databases are what we call navigational. This
means that access to related objects must follow the predefined
linkages created by the containers for related objects. For ex-
ample, to find all the purchases made by a customer, a pro-
gram in an object-oriented database environment would do
the following:

1. Find the customer object, perhaps using an aggregate
object that collects all the customer objects.

2. Retrieve the first related-object identifier from the cus-
tomer object.

3. Use the purchase object’s identifier to locate the pur-
chase object and process it as needed.

4. Retrieve the next related-object identifier from the cus-
tomer object.

5. Repeat steps 3 and 4 until all purchase objects have
been processed.

Relationships in a relational database are all two-way (inverse).
In other words it is possible to go from the entity at the “one”
end of a relationship to entities at the “many” end. It is also
possible to take a single entity at the “many” end of a relation-
ship and find its parent entity. However, not all OODBMSs
require inverse relationships. When the database developer
creates the schema, he or she must indicate which relationships
will be inverse and which will be one-way. One-way relation-
ships therefore mean that a relationship can be navigated in
only one direction.

Navigating the
Relationships

392 Chapter 18: The Object-Relational Data Model

The object-relational (OR) data model—which is sometimes
known as post-relational—is a combination of the relational
data model that we discussed in Chapter 1 and some of the
object-oriented concepts that—in the opinion of some data-
base theorists and users—make up for shortcomings in the re-
lational data model. The purpose of this discussion is to help
you understand how OR designs differ from both pure OO
designs and pure relational designs. With that in hand, you
will be able to understand the strengths and weaknesses of
SQL’s support for object-related structures that are discussed
in Chapter 19.

The style of ER diagramming that you saw in Chapter 1 (the
Information Engineering, or IE, approach) does not lend it-
self to the inclusion of objects because it has no way to rep-
resent a class. Therefore, when we add objects to a relational
database, we have to use another ERD style.

Although there are many techniques or object-oriented ERDs,
one of the most commonly used is the Unified Modeling Lan-
guage (UML). When used to depict a post-relational database
design, UML looks a great deal like the IE style, but indicates
relationships in a different way.

An example of an ER diagram using UML can be found in
Figure 18-14. This design is of a purely object-oriented data-
base and includes some elements that therefore won’t appear
in a hybrid design. It has been included here to give you an
overview of UML so that you can better understand the por-
tions of the modeling tool that we will be using in Chapter 19.

The basic features of UML include the following:

◊ A regular class is represented by a rectangle, divided into
three parts (name, attributes, procedures).

◊ An aggregate class (a metaclass in the diagram)—a class
that collects all objects of a given class—is represented

The Object-
Relational Data
Model

ER Diagrams for
Object-Relational
Designs

 The Object-Relational Data Model 393

by a rectangle containing its name and the rectangles of
the classes whose objects it aggregates. For example, in
Figure 18-14, the Product and Source classes are within
their aggregate classes, AllProducts and AllSources, re-
spectively.

◊ Relationships between entities are shown with lines with
plain ends. The cardinality of a relationship is represent-
ed as n, n..n, or n..*. For example, if the cardinality is 1,

Figure 18-14: An object-oriented database design using UML

394 Chapter 18: The Object-Relational Data Model

it is simply written as 1. If the cardinality is 0 or more,
it appears as 0..*; 1 or more appears as 1..*. Notice in
Figure 18-14 that there are several direct many-to-many
relationships, shown with 0..* at either end of the as-
sociation line.

◊ Inheritance is shown by a line with an open arrow point-
ing toward the base class. In Figure 18-14, the Footwear
and Headgear classes have such arrows pointing toward
Product.

◊ What we call composite entities in a relational database
are known as association classes. They are connected to
the relationship to which they apply with a dashed line.
As you can see in Figure 18-14, the MaterialSupplied
and MaterialUse classes are each connected to at least
one many-to-many relationship by the required dashed
line.

In addition to the basic features shown in Figure 18-14, UML
diagrams can include any of the following:

◊ An attribute can include information about its visibility
(public, protected, or private), data type, default value,
and domain. In Figure 18-15, for example, you can see
four classes and the data types of their attributes. Keep
in mind that in an object-oriented environment, data
types can be other classes. Therefore, the Source class
uses an object of the TelephoneNumber class for its pho-
neNumber attribute and an object of the Address class
for its sourceAddress attribute. In turn, source, Address,
and TelphoneNumber all contain attributes that are ob-
jects of the String class.

◊ Procedures (officially called operations by UML) can in-
clude their complete program signature and return data
type. If you look at Figure 18-15, for example, you can
see each operation’s name followed by the type of data

 The Object-Relational Data Model 395

it requires to perform its job (parameters). Together, the
procedure’s name and parameters make up the proce-
dure’s signature. If data are returned by the operation,
then the operation’s signature is followed by a colon and
the data type of the return value, which may be an object
of another class or a simple data type such as an integer.

◊ Solid arrows can be used at the end of associations to
indicate the direction in a relationship can be navigated.

Note: As mentioned earlier in this chapter, pure object-oriented
databases are navigational, meaning that traversal through the
database is limited to following predefined relationships. Because
of this characteristic, some theorists feel that the object-oriented
data model is a step backwards rather than forward and that the
relational data model continues to have significant advantages
over any navigational data model.

There are three possible ways to use the ar-
rows:

Figure 18-15: UML classes showing attribute data types

396 Chapter 18: The Object-Relational Data Model

o Use arrows on the ends of all associations where
navigation is possible. If an association has a plain
end, then navigation is not possible in that direc-
tion. This would indicate, for example, a relation-
ship between two objects that is not an inverse re-
lationship, where only one of the two objects in
a relationship contains the object identifier of a
related object.

o Show no arrows at all, as was done in Figure 18-15.
In that case, the diagram provides no information
about how the database can be navigated.

o Show no arrows on associations that can be navi-
gated in both directions, but use arrows on associa-
tions that can be navigated in only one direction.
The drawback to this approach is that you cannot
differentiate associations that can be navigated in
both directions from associations that cannot be
navigated at all.

◊ An association that ends in a filled diamond indicates a
whole–part relationship. For example, if you were repre-
senting a spreadsheet in a database, the relationship be-
tween the spreadsheet and its cells could be diagrammed
as in Figure 18-16. The filled diamond can also be used
to show aggregation instead of placing one object within
another as was done in Figure 18-14.

◊ When an association is between more than two objects,
UML uses a diamond to represent the relationship. If
an association is present, it will be connected to the dia-
mond, as in Figure 18-17. The four classes in the illus-
tration represent entities from a poetry reading society’s
database. A “reading” occurs when a single person reads
a single poem that was written by one or more poets.

 The Object-Relational Data Model 397

Figure 18-16: A UML representation of a whole–part relationship

Figure 18-17: The UML representation of a relationship between
more than two classes

398 Chapter 18: The Object-Relational Data Model

The association entity indicates when and where the
reading took place.

There is no accepted standard for the object-relational data
model. However, a commonly used model is based on the ele-
ments supported by recent SQL standards. As you will see,
these features violate many of the rules applied to relational
databases:

◊ A relational database should have no data structures oth-
er than tables. An OR database, however, allows an at-
tribute to support a reference to a row in another table.
These references are the internal object identifiers used
by OO databases described earlier in this chapter. An
OR database can use the relational concept of a primary
key–foreign key relationship to indicate entity relation-
ships. However, it is not required; references to rows can
be used instead. The advantage to using row references
rather than the relational method is improved perfor-
mance because the joins needed to follow data relation-
ships are unnecessary. The major drawback to using row
references is that the integrity of the relationships can’t
be verified by the DBMS; referential integrity requires
both primary and foreign key values.

◊ A relational database is limited to one value at the in-
tersection of a single column and row. An OR database,
however, can store more than one value in the same lo-
cation. The values can be an array of the same type of
data, a row of data (much like a table within a table), an
unordered collection of data of different data types, or
an entire object.

◊ Classes are implemented as user-defined data types
(UDTs). A new UDT may inherit from an existing
UDT, although multiple inheritance is not allowed. A
UDT will have default accessor and mutator methods

Features of the OR
Data Model

 The Object-Relational Data Model 399

as well as a default constructor, each of which can be
overridden by a database programmer. There is nothing
in the relational data model that prohibits UDTs. How-
ever, to be used in a relational database, a custom data
type must hold only a single value.

◊ UDTs may have methods defined with them. Methods
may be overloaded. Polymorphism is supported. Rela-
tional databases have no concept of storing procedures
with data.

19

401

The SQL:2003 standard introduced a variety of object-rela-
tional features. Although not all relational DBMSs support
this part of the standard, you will find at least some OR fea-
tures in most of today’s major DBMSs.

Note: There are some people who cling to the pure relational data
model like a lifeline. However, in practice there is nothing that
requires you to avoid SQL’s OR features. If those features can help
model your database environment, then those designing your da-
tabase shouldn’t be afraid to use them. Just be aware of the refer-
ential integrity issues that can arise when you store more than one
piece of data in a single column in a single row.

SQL provides four column data types for OR storage as well
as support for user-defined data types (UDTs). The SQL pro-
gramming constructs discussed in Chapter 14—along with ex-
tensions for accessing OO structures—are used to write meth-
ods for UDTs when they are needed.

Note: Some of the OR features covered in this chapter require pro-
gramming. As when we discussed triggers, stored procedures, and
embedded SQL, in those instances this chapter assumes that you
have programming experience.

Object-Relational
Support

©2010 Elsevier Inc. All rights reserved.
10.1016/B978-0-12-375697-8.50019-4

402 Chapter 19: Object-Relational Support

For some of the examples in this chapter we will be work-
ing with a classic home computer application: recipes. You can
find the ERD in Figure 19-1. (It has been designed to illustrate
OR concepts and therefore is probably missing elements that
would be part of a commercial application.)

The recipe class is an abstract class that stores data common to
all types of recipes. The six subclasses represents categories of
recipes, each of which has at least one unique attribute.

The ingredient, instruction, and ingredient_amount classes are
more traditional entities. A recipe has many instructions. Each
instruction uses zero, one, or more ingredients. The ingredi-
ent_amount class therefore stores relationship data: the amount
of a given ingredient used in a given instruction.

SQL’s OR features include three column data types for storing
multiple values: ROW, ARRAY, and MULTISET. You can use
these data types without using any of the other OR features (in
particular, typed tables to store objects). Because they do not
act as objects, these columns cannot have methods.

A column declared as a row type holds an entire row of data
(multiple pieces of data). This gives you the equivalent of a
table within a table. The contents of the row—called fields—
can be declared as built-in data types or UDTs.

As an example, we’ll create a table for customers of the rare
book store that stores the customer’s address in a single column
using the ROW data type:

CREATE TABLE customer
 (first_name CHAR (20),
 last_name CHAR (20),
 address ROW (street CHAR (50),
 city CHAR (30),
 state CHAR (2),
 zip CHAR (10),
 phone CHAR (12)));

An Additional
Sample
Database

SQL Data Types
for Object-
Relational

Row Type

 An Additional Sample Database 403

Notice that the ROW column is given a name, just as a single-
valued column. The data type is followed by the contents of
the row in parentheses. The row’s fields are declared in the same
way as any other SQL column (name followed by data type).

We use “dot” notation to access the individual fields in a col-
umn of type ROW. For example, to reference the street field
in the address column without qualifying the table name you
would use

address.street

When the SQL statement requires a table name (for example,
for use in a join or for display by a query in which the field
appears in multiple tables), you preference the field reference
with the table name, as in

customer.address.street

Figure 19-1: An object-relational ERD

404 Chapter 19: Object-Relational Support

Inserting values into a row column is only a bit different from
the traditional INSERT statement. Consider the following
example:

INSERT INTO customer VALUES
 (‘John’,’Doe’,
 ROW (‘123 Main
Street,’Anytown’,’ST’,’11224’),
 ‘555-111-2233’);

The data for the address column are preceded by the keyword
ROW. The values follow in parentheses.

An array is an ordered collection of elements. Like arrays used
in programming, they are declared to have a maximum num-
ber of elements of the same type. That type can be a simple
data type or a UDT. For example, we might want to store
order numbers as part of a customer’s data in a customer table:

CREATE TABLE customer
 (first CHAR (20),
 last CHAR (20),
 orders INT ARRAY[100],
 numb_orders INT,
 phone CHAR (12));

The array column is given a name and a data type, which are
followed by the keyword ARRAY and the maximum number
of elements the array should hold (the array’s cardinality), in
brackets. The array’s data type can be one of SQL’s built-in data
types or a UDT.

Access to values in an array is by the array’s index (its position
in the array order). Although you specify the maximum num-
ber of elements in an array counting from 1, array indexes be-
gin at 0. An array of 100 elements therefore has indexes from
0 to 99. The sample customer table above includes a column
(numb_orders) that stores the total number of elements in the
array. The last used index will be numb_orders – 1.

Array Type

 An Additional Sample Database 405

You can input multiple values into an array at one time when
you first insert a row:

INSERT INTO customer VALUES
 (‘John’,’Doe’,
 ARRAY (25,109,227,502,610),
 5,’555-111-2233’);

The keyword ARRAY precedes the values in parentheses.

You can also insert or modify a specific array element directly:

INSERT INTO customer (first, last, orders[0],
 numb_orders,phone)
 VALUES (‘John’,’Doe’,25,1,’555-111-2233’);

When you query a table and ask for display of an array column
by name, without an index, SQL displays the entire contents
of the array, as in:

SELECT orders
FROM customer
WHERE first = ‘John’ AND last = ‘Doe’;

Use an array index when you want to retrieve a single array
element. The query

SELECT orders [numb_orders – 1]
FROM customer
WHERE first = ‘John’ AND last = ‘Doe’;

displays the last order stored in the array.

Processing each element in an array requires programming (a
trigger, stored procedure, or embedded SQL). Declare a vari-
able to hold the array index, initialize it to 0, and increment
it by 1 each time an appropriate loop iterates—the same way
you would process all elements in an array using any high-level
programming language.

Note: Although many current DBMSs support arrays in columns,
not all automatically perform array bounds checking. In other

406 Chapter 19: Object-Relational Support

words, they do not necessarily validate that an array index is with-
in the maximum number specified when the table was created.
Check your software’s documentation to determine whether array
bounds constraints must be handled by an application program or
can be left up to the DBMS.

Restrictions of content and access notwithstanding, there are
two operations that you can perform on arrays:

◊ Comparisons: Two arrays can be compared (for exam-
ple, in a WHERE clause) if the two arrays are created
from data types that can be compared. When making
the comparison, SQL compares the elements in order.
Two arrays A and B therefore are equivalent if A[0] =
B[0], A[1] = B[1], and so on; all comparisons between
all the pairs of values in the array must be true. By the
same token, A > B if A[0] > B[0], throughout the arrays.

◊ Concatenation: Two arrays with compatible data types
(data types that can be converted into a single data type)
can be concatenated with the concatenation operator
(||). The result is another array, as in Figure 19-2. Notice
that the data from array A have been converted to real
numbers because SQL will always convert to the format
that has the highest precision.

A multiset is an unordered collection of elements of the same
type. The following table contains a multiset to hold multiple
phone numbers:

CREATE TABLE customer
 (first CHAR (20),
 last CHAR (20),
 orders INT ARRAY[100],
 phones CHAR (20) MULTISET);

You specify the contents of a multiset when you insert a row
into a table much like you do for an array. The only differ-

Multiset Type

Manipulating Arrays

 An Additional Sample Database 407

ence is the use of the keyword MULTISET to indicate that the
values in parentheses are intended as a single group:

INSERT INTO customer (first, last,
orders[0],numb_orders,phones)
 VALUES (‘John’,’Doe’,25,1, MULTISET (’555-
111-2233’,’555-222-1122’));

Because a multiset is unordered, you cannot access individual
elements by position as you do with array elements. You can,
however, display the entire contents of the multiset by using
its name in a query:

SELECT phones
FROM customer
WHERE first = ‘John’ AND last = ‘Doe’;

Updating a multiset is an all or nothing proposition. In other
words, you can’t pull one value out or put in a single value. An
UPDATE statement such as

(A) (B) (C)
16 96.05 16.00
52 295.82 52.00
109 303.00 109.00
85 || 105.88 = 85.00
33 22.16 33.00
203 111.23 203.00
384 88.22 384.00
23 45.99 23.00
 18.62 96.05
 35.88 295.82
 303.00
 105.88
 22.16
 111.23
 88.22
 45.99
 18.62
 35.88

Figure 19-2: Concatenating arrays

408 Chapter 19: Object-Relational Support

UPDATE customer
 SET phones =
 MULTISET (‘555-111-2233’,’555-333-1122’);

replaces the entire contents of the phones column.

As with arrays, there are a few operations that can be performed
on multisets with compatible data types:

◊ Multisets can be compared, just as arrays. Multisets A
and B will be true if they contain exactly the same ele-
ments.

◊ Union: The MULTISET UNION operator returns a
multiset that contains all elements in the participating
multisets. For example,

UPDATE some_table
 SET big_multiset = small_multiset1
MULTISET UNION small_multiset2

puts the two small multisets into the big multiset.

◊ Intersect: The MULTISET INTERSECT operator re-
turns all elements that two multisets have in common.
For example,

SELECT table1.multiset MULTISET INTER-
SECT table2.multiset
FROM table1 JOIN table2;

works on each row in the joined tables, returning the el-
ements that the multisets in each row have in common.

◊ Difference: The MULTISET EXCEPT operation re-
turns the difference between two multisets (all elements
they don’t have in common). The query

SELECT table1.multiset MULTISET EXCEPT
table2.multiset
FROM table1 JOIN table2;

Manipulating Multisets

 User-Defined Data Types and Typed Tables 409

functions exactly like the previous example but returns
elements from each row that the multisets don’t share.

The union, intersect, and difference operators have two op-
tions. If you include ALL after the operator, SQL includes
duplicate elements in the result. To exclude duplicates, use
DISTINCT.

The more classic SQL object-oriented features are built from
UDTs and typed tables. The UDT defines a class and the typed
table defines a place to store objects from that class. Even if you
choose not to use OR elements in a database, you may want to
use a UDT as a domain.

A user-defined data type is a structured, named group of at-
tributes of existing data types (either built-in types or other
UDTs). In its simplest form, the UDT has the following gen-
eral syntax:

CREATE TYPE type_name AS (column_definitions);

We could create a very simple type to hold a date, for example:

CREATE TYPE date_type AS
 (month int,
 day int,
 year int);

We could then specify date_type as the data type for a column
in a table:

CREATE TABLE people
 (first CHAR (20),
 last CHAR (20),
 birthdate date_type);

User-Defined
Data Types and
Typed Tables

UDTs as Domains

410 Chapter 19: Object-Relational Support

More commonly, we use a UDT to define a class. For example,
we could create a type for the Ingredient class with

CREATE TYPE ingredient_type AS OBJECT
 (ingredient_name CHAR (256),
 unit char (20),
 on_hand int);

Notice the AS OBJECT clause that has been inserted after
the UDT’s name. This indicates that rather than being used as
the domain for a value in a table, this class will be used as the
structure of a typed table.

Note: UDTs can have methods, just like a class created in an ob-
ject-oriented programming language. We’ll look at them at the end
of this chapter.

Once you have created a class as a UDT, you then use that
UDT to create a typed table:

CREATE TABLE table_name OF UDT_name
 REF IS reference_column_name (method_to_
generate_row_ID)

SQL creates a table with one column for each column in the
UDT on which the table is based along with a column for the
self-referencing object ID. There are three options for creating
the object ID of a row:

◊ The user generates the object ID (REF USING exist-
ing_data_type)

◊ The DBMS generates the object ID (REF IS identifier_
name SYSTEM GENERATED)

◊ The object ID comes from the values in a list of attri-
butes (REF FROM attribute_list)

Creating Typed
Tables Using UDTs

UDTs as Classes

 User-Defined Data Types and Typed Tables 411

You may want to use a primary key as a source for an object
ID. Although this makes sense logically, it also provides the
slowest retrieval performance.

By default, the object ID value is generated by the SQL com-
mand processor whenever a row is inserted into the typed ta-
ble, using the method that was specified when the table was
created. However, an insert operation can override the default
object ID, placing a user-specified value into the ID column.
Once created, the object ID cannot be modified.

To create the ingredient table, we could use

CREATE TABLE ingredient OF ingredient_type
 (REF IS ingredient_ID SYSTEM GENERATED);

Note: Only base tables or views can be typed tables. Temporary
tables cannot be created from UDTs.

One of the most important OO features added to the
SQL:2003 standard was support for inheritance. To create a
subtype (a subclass or derived class, if you will), you create a
UDT that is derived from another and then create a typed
table of that subtype.

As a start, let’s create the Recipe type that will be used as the
superclass for types of recipes:

CREATE TYPE recipe_type AS OBJECT
 (recipe_name CHAR (256),
 instruction_list instruction ARRAY[20],
 numb_servings INT)
 NOT INSTANTIABLE,
 NOT FINAL;

The two last lines in the preceding example convey important
information about this class. Recipe is an abstract class: Objects
will never be created from it directly. We add NOT INSTAN-
TIABLE to indicate this property.

Inheritance

412 Chapter 19: Object-Relational Support

Reference (REF)
Type

By default, a UDT has a finality of FINAL. It cannot be used
as the parent of a subtype. (In other words, nothing can inherit
from it.) Because we want to use this class as a superclass, we
must indicate that it is NOT FINAL.

To create the subtypes, we indicate the parent type preceded by
the keyword UNDER. The subtype declaration also includes
any attributes (and methods) that are not in the parent type
that need to be added to the subtype. For example, we could
create the Desert type with:

CREATE TYPE desert_type
 UNDER recipe_type (calories INT);

Because this type will be used to create objects and because no
other types will be derived from it, we can accept the defaults
of INSTIABLE and FINAL.

Note: As you have just seen, inheritance can operate on UDTs. It
can also be used with typed tables, where a typed table is created
UNDER another.

Once you have a typed table, you can store references to the
objects (in other words, the rows) in that table in a column of
type REF that is part of another type. For example, there is one
REF column in the recipe database: the attribute in the ingre-
dient_amount table (related_ingredient) that points to which
ingredient is related to each occurrence of ingredient_amount.

To set up the table that will store that reference, use the data
type REF for the appropriate column. For example,

CREATE TABLE ingredient_amount
 (related_ingredient REF ingredient_type
SCOPE IS ingredient,
 amount decimal (5,2));

 User-Defined Data Types and Typed Tables 413

Dereferencing for Data
Access

creates a table with a column that stores a reference to an in-
gredient. The SCOPE clause specifies the table or view that is
the source of the reference.

To insert a row into a table with a REF column, you must
include a SELECT in the INSERT statement that locates the
row whose reference is to be stored. As you would expect, the
object being referenced must exist in its own table before a
reference to it can be generated. We must therefore first insert
an ingredient into the ingredient table:

INSERT INTO ingredient VALUES
 (‘Unbleached flour,’ ‘cups’,25);

Then we can insert a referencing row into ingredient_amount:

INSERT INTO ingredient_amount
 (SELECT REF (i) FROM ingredient i
 WHERE i.ingredient_name =
 ‘Unbleached flour’)
 VALUES (2.5);

An application program that is using the recipe database as its
data store will need to use the reference stored in the ingredi-
ent_amount table to locate the name of the ingredient. The
DEREF function follows a reference back to the table being
referenced and returns data from the appropriate row. A query
to retrieve the name and amount of an ingredient used in a
recipe instruction could therefore be written:

SELECT
 DEREF(related_ingredient).ingredient_name,
 amount
FROM ingredient_amount
WHERE DEREF(related_instruction).recipe_name =
 ‘French toast’;

Note that the DEREF function accesses an entire row in the
referenced table. If you don’t specify otherwise, you will re-
trieve the values from every column in the referenced row. To

414 Chapter 19: Object-Relational Support

retrieve just the value of a single column, we use “dot” nota-
tion. The first portion—

DEREF(related_ingredient)

—actually performs the dereference. The portion to the right
of the dot specifies the column in the referenced row.

Some DBMSs provide a dereference operator (->) that can be
used in place of the DEREF function. The preceding query
might be written:

SELECT
 related_ingredient->ingredient_name, amount
FROM ingredient_amount;

The UDTs that we have seen to this point have attributes, but
not methods. It is certainly possible, however, to declare meth-
ods as part of a UDT and then to use SQL programming to
define the body of the methods. Like classes used by OO pro-
gramming languages such C++, SQL the body a method is
defined separately from the declaration of the UDT.

You declare a method after declaring the structure of a UDT.
For example, we could add a method to display the instruc-
tions of a recipe with

CREATE TYPE recipe_type AS OBJECT
 (recipe_name CHAR (256),
 instruction_list instruction ARRAY[20],
 numb_servings INT)
 NOT INSTANTIABLE,
 NOT FINAL
 METHOD show_instructions ();

This particular method does not return a value and the dec-
laration therefore does not include the optional RETURNS
clause. However, a method to compute the cost of a recipe (if
we were to include ingredient costs in the database) could be
declared as

Methods

 Methods 415

Defining Methods

Executing Methods

CREATE TYPE recipe_type AS OBJECT
 (recipe_name CHAR (256),
 instruction_list instruction ARRAY[20],
 numb_servings INT)
 NOT INSTANTIABLE,
 NOT FINAL
 METHOD show_instructions ()
 METHOD compute_cost ()
 RETURNS DECIMAL (5,2));

Methods can accept input parameters within the parentheses
following the method name. A method declared as

METHOD scale_recipe (IN numb_servings INT):

accepts an integer value as an input value. The parameter list
can also contain output parameters (OUT) and parameters
used for both input and output (INOUT).

As mentioned earlier, although methods are declared when
UDTs tables are declared, the bodies of methods are written
separately. To define a method, use the CREATE METHOD
statement:

CREATE METHOD method_name FOR UDT_name
BEGIN
 // body of method
END

A SQL-only method is written using the language constructs
discussed in Chapter 14.

Random programming note: Like the C++ and Java “this,” SQL
methods use SELF to refer to the object to which the method
belongs.

Executing a method uses the “dot” notation used in C++:

typed_table_name.method_name (parameter_list);

416 Chapter 19: Object-Relational Support

Such an expression can be, for example, included in an IN-
SERT statement to insert the method’s return value into a
column. It can also be included in another SQL method, trig-
ger, or stored procedure. Its return value can then be captured
across an assignment operator. Output parameters return their
values to the calling routine, where they can be used as needed.

Appendix

A

419

Abbreviation/
Acronym

Definition

1:1 One-to-one
1:M One-to-many
ANSI American National Standards Institute
API Application Program (or Programmer) Interface
ASCII American Standard Code for Information Interchange
CHAR Character
CLI Command-line interface
CTE Common table expression
DBA Database administrator or Database administration
DBMS Database management system
DTD Document type definition
ER Entity relationship
ERD Entity relationship diagram
FK or fk Foreign key
GUI Graphic user interface
HTML Hypertext markup language
IE Information Engineering
INT Integer

Common Acronyms
and Abbreviations

420 Appendix A: Common Acronyms and Abbreviations

ISO International Standards Organization
JDBC Java Database Connectivity
M:M Many-to-many
M:N Many-to-many
NIST National Institute for Standards and Technology
OO Object-oriented
OODBMS Object-oriented database management system
OOP Object-oriented programming
OR Object-relational
PK or pk Primary key
PSM Persistent stored modules
RDMBS Relational database management system
SQL Structured query language
UDF User-defined function
UDT User-defined type; user-defined data type
URI Uniform resource identifier
URL Uniform resource locator
UML Unified modeling language
VARCHAR Character varying
XML Extended (Extensible) Markup Language

Appendix

B

421

SQLSTATE Return
Codes

This appendix contains a numeric listing of the SQLSTATE re-
turn codes specified in the SQL standard (Table B-1). SQLSTATE
is a five-character string. The leftmost two characters represent the
error class; the rightmost three characters represent the subclass.
Because SQLSTATE is a string, an embedded SQL program will
need to use a substring function if it needs to separate the two
parts of the code.

422 Appendix B: SQLSTATE Return Codes

Table B-1: SQLSTATE return codes

Class Class definition Subclass Subclass definition
00 Successful completion 000 None
01 Warning 000 None

001 Cursor operation conflict

002 Disconnect error

003 Null value eliminated in set function

004 String data, right truncation

005 Insufficient item descriptor area

006 Privilege not revoked

007 Privilege not granted

008 Implicit zero-bit padding

009 Search expression too long for information
schema

00A Query expression too long for information
schema

00B Default value too long for information
schema

00C Result sets returned

00D Additional result sets returned

00E Attempt to return too many result sets

00F Statement too long for information schema

010 Column cannot be mapped (XML)

011 SQL-Java path too long for information
schema

02F Array data, right truncation

02 No data 000 None
001 No additional result sets returned

07 Dynamic SQL error 000 None
001 Using clause does not match dynamic

parameter
002 Using clause does not match target

specifications

 423

003 Cursor specification cannot be executed

004 Using clause required for dynamic
parameters

005 Prepared statement not a cursor
specification

006 Restricted data type attribute violation

007 Using clause required for result fields

008 Invalid descriptor count

009 Invalid descriptor index

00B Data type transform function violation

00C Undefined DATA value

00D Invalid DATA target

00E invalid LEVEL value

00F Invalid
DATETIME_INVERTVAL_CODE

08 Connection exception 000 None
001 SQL client unable to establish SQL

connection
002 Connection name in use

003 Connection does not exist

004 SQL server rejected establishment of SQL
connection

006 Connection failure

007 Transaction resolution unknown

09 Triggered action exception 000 None
0A Feature not supported 000 None

001 Multiple server transactions

0D Invalid target type specification 000 None
0E Invalid schema name list specification 000 None
0F Locator exception 000 None

001 Invalid specification

0K Resignal when handler not active 000 None
0L Invalid grantor 000 None

424 Appendix B: SQLSTATE Return Codes

0M Invalid SQL-invoked procedure
reference

000 None

0N SQL/XML mapping error 000 None
001 Unmappable XML name

002 Invalid XML character

0P Invalid role specification 000 None
0S Invalid transform group name

specification
000 None

0T Target table disagrees with cursor
specification

000 None

0U Attempt to assign to non-updatable
column

000 None

0V Attempt to assign to ordering column 000 None
0W Prohibited statement encountered

during trigger execution
000 None

0X Invalid foreign server specification 000 None
0Y Pass-through specific condition 000 None

001 Invalid cursor option

002 Invalid cursor allocation

0Z Diagnostics exception 001 Maximum number of stacked diagnostics
area exceeded

002 Stacked diagnostics accessed without active
hander

10 XQuery error 000 None
20 Case not found for CASE statement 000 None
21 Cardinality violation 000 None
22 Data exception 000 None

001 String data, right truncation

002 Null value, no indicator

003 Numeric value out of range

004 Null value not allowed

005 Error in assignment

006 Invalid interval fomat

007 Invalid datetime format

 425

008 Datetime field overflow

009 Invalid time zone displacement value

00B Escape character conflict

00C Invalid use of escape character

00D Invalid escape octet

00E Null value in array target

00F Zero-length character string

00G Most specific type mismatch

00H Sequence generator limit exceeded

00J Nonidentical notations with the same name
(XML)

00K Nonidentical unparsed entities with the
same name (XML)

00L Not an XML document

00M Invalid XML document

00N Invalid XML content

00P Interval value out of range

00Q Multiset value overflow

00R XML value overflow

00S Invalid XML comment

00T Invalid XML processing instruction

00U Not an XQuery document node

00V Invalid XQuery context item

00W XQuery serialization error

010 Invalid indicator parameter value

011 Substring error

012 Division by zero

015 Interval field overflow

017 Invalid data specified for datalink

018 Invalid character value for cast

019 Invalid escape character

426 Appendix B: SQLSTATE Return Codes

01A Null argument passed to datalink
constructor

01B Invalid regular expression

01C Null row not permitted in table

01D Datalink value exceeds maximum length

01E Invalid argument for natural logarithm

01F Invalid argument for power function

01G Invalid argument for width bucket function

01J XQuery sequence cannot be validated

01K XQuery document node cannot be
validated

01L No XML schema found

01M Element namespace not declared

01N Global element not declared

01P No XML element with the specified
QName

01Q No XML element with the specified
namespace

01R Validation failure

01S invalid XQuery regular expression

01T Invalid XQuery option flag

01U Attempt to replace a zero-length string

01V Invalid XQuery replacement string

021 Character not in repertoire

022 Indicator overflow

023 Invalid parameter value

024 Unterminated C string

025 Invalid escape sequence

026 String data, length mismatch

027 Trim error

029 Noncharacter in UCS string

02A Null value in field reference

 427

02D Null value substituted for mutator subject
parameter

02E Array element error

02F Array data, right truncation

02H Invalid sample size

23 Integrity constraints violation 000 None
001 Restrict violation

24 Invalid cursor state 000 None
25 Invalid transaction state 000 None

001 Active SQL transaction

002 Branch transaction already active

003 Inappropriate access mode for branch
transaction

004 Inappropriate isolation level for branch
transaction

005 No active SQL transaction for branch
transaction

006 Read-only SQL transaction

007 Schema and data statement mixing not
supported

008 Held cursor requires same isolation level

26 Invalid SQL statement name 000 None
27 Triggered data change violation 000 None
28 Invalid authorization specification 000 None
2A Syntax error or access rule violation in

direct SQL statement
000 None

2B Dependent privilege descriptors still
exist

000 None

2C Invalid character set name 000 None
2D Invalid transaction termination 000 None
2E Invalid connection name 000 None
2F SQL routine exception 000 None

002 Modifying SQL data not permitted

003 Prohibited SQL statement attempted

428 Appendix B: SQLSTATE Return Codes

004 Reading SQL data not permitted

005 Function executed but no return statement

2H Invalid collation name 000 None
30 Invalid SQL statement identifier 000 None
33 Invalid SQL descriptor name 000 None
34 Invalid cursor name 000 None
35 Invalid condition number 000 None
36 Cursor sensitivity exception 000 None

001 Request rejected

002 Request failed

37 Syntax error or access rule violation in
dynamic SQL statement

000 None

38 External routine exception 000 None
001 Containing SQL not permitted

002 Modifying SQL not permitted

003 Prohibited SQL statement attempted

004 Reading SQL data not permitted

39 External routine invocationexception 000 None
004 Null value not allowed

3B Savepoint exception 000 None
001 Invalid specification

002 Too many

3C Ambiguous cursor name 000 None
3D Invalid catalog name 000 None
3F Invalid schema name 000 None
40 Transaction rollback 000 None

001 Serialization failure

002 Integrity constraint violation

003 Statement completion unknown

42 Syntax error or access rule violation 000 None
44 With check option violation 000 None
45 Unhandled user defined exception 000 None
46 Java DDL 000 None

 429

001 Invalid URL

002 Invalid JAR name

003 Invalid class deletion

005 Invalid replacement

00A Attempt to replace uninstalled JAR

00B Attempt to remove uninstalled JAR

00C Invalid JAR removal

00D Invalid path

00E Self-referencing path

46 Java execution 000 None
102 Invalid JAR name in path

103 Unresolved class name

110 Unsupported feature

120 Invalid class declaration

121 Invalid column name

122 Invalid number of columns

130 Invalid profile state

HV FDW-specific condition 000 None
001 Memory allocation error

002 Dynamic parameter value needed

004 Invalid data type

005 Column name not found

006 Invalid data type descriptors

007 Invalid column name

008 Invalid column number

009 Invalid use of null pointer

00A Invalid string format

00B Invalid handle

00C Invalid option index

00D Invalid option name

00J Option name not found

430 Appendix B: SQLSTATE Return Codes

00K Reply handle

00L Unable to create execution

00M Unable to create reply

00N Unable to establish connection

00P No schemas

00Q Schema not found

00R Table not found

010 Function sequence error

014 Limit on number of handles exceeded

021 Inconsistent descriptor information

024 Invalid attribute value

090 Invalid string length or buffer length

091 Invalid descriptor field identifier

HW Datalink exception 000 None
001 External file not linked

002 External file already linked

003 Referenced file does not exist

004 Invalid write token

005 Invalid datalink construction

006 Invalid write permission for update

007 Referenced file not valid

HY CLI-specific condition 000 None
001 Memory allocation error

003 Invalid data type in application descriptor

004 Invalid data type

007 Associated statement is not prepared.

008 Operation canceled

009 Invalid use of null pointer

010 Function sequence error

011 Attribute cannot be set now

 431

012 Invalid transaction operation code

013 Memory management error

014 Limit on number of handles exceeded

017 Invalid use of automatically-allocated
descriptor handle

018 Server declined the cancelation request

019 Non-string data cannot be sent in pieces

020 Attempt to concatenate a null value

021 Inconsistent descriptor information

024 Invalid attribute value

055 Non-string data cannot be used with string
routine

090 Invalid string length or buffer length

091 Invalid descriptor field identifier

092 Invalid attribute identifier

093 Invalid datalink value

095 Invalid FunctionID specified

096 Invalid information type

097 Column type out of range

098 Scope out of range

099 Nullable type out of rage

103 Invalid retrieval code

104 Invalid LengthPrecision value

105 Invalid parameter mode

106 Invalid fetch orientation

107 Row value of range

109 Invalid cursor position

C00 Optional feature not implemented

Appendix

C

433

This appendix contains a summary of SQL syntax used
throughout this book. The first table (Table C.1) describes
SQL statements, arranged alphabetically command. The no-
tation is as follows:

◊ Keywords that must be typed exactly as they appear are
in uppercase characters, such as REFERENCES.

◊ Parts of commands that are determined by the user ap-
pear in italics and name the item that must be supplied,
such as table_name.

◊ Optional portions of a command are surrounded by
brackets ([and]).

◊ Portions of commands that form a single clause are
grouped within braces ({ and }).

◊ Sets of options from which you choose one or more are
separated by vertical lines (|).

◊ Portions of commands that may be repeated as needed
are followed by an ellipsis (…)

The second table (Table C.2) describes SQL built-in func-
tions discussed in this book, including input data types. In
Table C.3 you will find SQL operators covered in the text.

SQL Syntax
Summary

434 Appendix C: SQL Syntax Summary

Table C.1: SQL statements

Allocate space for a descriptor area for a dynamic SQL statement

ALLOCATE DESCRIPTOR descriptor_name
 [WITH MAX number_of_parameters]

Change the specifications of a domain

ALTER DOMAIN domain_name
 { SET DEFAULT default_value }
 | { DROP DEFAULT }
 | { ADD constraint_definition_clause }
 | { DROP CONSTRAINT constraint_name }

Change the specifications of a table

ALTER TABLE table_name
 { ADD [COLUMN] column_defintion }
 | { ALTER [COLUMN]
 {SET DEFAULT default_value }
 | { DROP DEFAULT }
 | { DROP [COLUMN] column_name RESTRICT | CASCADE }}
 | { ADD table_constraint_definition_clause }
 | { DROP CONSTRAINT constraint_name RESTRICT | CASCADE }

Declare host language variables for use in an embedded SQL statement

BEGIN DECLARE SECTION
 Declarations
END DECLARE SECTION

Close an embedded SQL cursor

CLOSE cursor_name

Commit a transaction, making its changes permanent

COMMIT [WORK]

Connect to a database, specify its cluster, catalog, and schema if necessary

CONNECT TO {cluster.catalog.schema.database_name
 { [AS connection_name] }
 { [USER user_name
 | DEFAULT] }}

 435

Create an assertion, a constraint that is not attached to a specific table

CREATE ASSERTION assertion_name
 CHECK (check_predicate)
 [{ INITIALLY DEFERRED } | { INITIALLY IMMEDIATE }]
 [DEFERRABLE | { NOT DEFERRABLE }]

Create a domain

CREATE DOMAIN domain_name
 [AS] data_type
 [DEFAULT default_value]
 CHECK (check_clause)
 { [INITIALLY DEFERRED] | [INITIALLY IMMEDIATE] }
 [DEFERRABLE | { NOT DEFERRABLE }]

Define a method for a UDT

CREATE METHOD method_name FOR UDT_name
BEGIN
 // body of method
END

Create an index

CREATE INDEX index_name ON table_name (index_key_column_list)

Note: Indexes are no longer part of the SQL standard, but are still supported by most relational
DBMSs.

Create a schema

CREATE SCHEMA { schema_name
 | AUTHORIZATION authorization_ID
 | schema_name AUTHORIZATION authorization_ID }

Create a table

CREATE [[GLOBAL | LOCAL] TEMPORARY] table_name
 ({ column_name { data_type | domain_name }} [column_size]
 [column_constraint …] , …
 [DEFAULT default_value]
 [table_constraint], …
 [ON COMMIT DELETE | PRESERVE ROWS])

436 Appendix C: SQL Syntax Summary

Create a user-defined data type (UDT)

CREATE TYPE type_name AS [OBJECT](column_definitions)
 [INSTANTIABLE | { NOT INSTANTIABLE }]
 [FINAL | { NOT FINAL }]
 [{ METHOD method_name (parameter_list) }, …]

Create a typed table

CREATE TABLE table_name OF UDT_name
 [UNDER supertype_name (added_column_list)]
 [REF IS reference_column_name
 ({ REF USING existing_data_type }
 | { REF IS identifier_name SYSTEM GENERATED }
 | { REF FROM attribute_list })]

Create a database user account and password

CREATE USER | LOGIN implementation_specific_syntax

Note: Creating user accounts is not part of the SQL standard and much of the syntax is implementa-
tion dependent.

Create a view

CREATE VIEW view_name [(column_list)]
 AS (complete_SELECT_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION])

Remove a dynamic SQL descriptor area from main memory

DEALLOCATE DESCRIPTOR descriptor_name

Declare a cursor for processing an embedded SQL SELECT that returns multiple rows

DECLARE CURSOR cursor_name [INSENSITIVE] [SCROLL] CURSOR FOR
 (complete_SELECT_statement)
 [FOR ({ READ ONLY } | UPDATE [OF column_name, …])]
 | prepared_dynamic_SQL_statement_name

Delete rows from a table

DELETE FROM table_name
 [{ WHERE row_selection_predicate }
 | { WHERE CURRENT OF cursor_name }]

 437

Describe the dynamic parameters in a prepared dynamic SQL statement for a descriptor area

DESCRIBE [INPUT | OUTPUT]
 Prepared_dyamic_SQL_statement_name
 USING SQL DESCRIPTOR descriptor_name

Disconnect from a database

DISCONNECT connection_identifier

Remove an assertion from a schema

DROP ASSERTION assertion_name

Remove a domain from a schema

DROP DOMAIN domain_name CASCADE | RESTRICT

Remove an index from a schema

DROP INDEX index_name

Remove a schema from a catalog

DROP SCHEMA schema_name CASCADE | RESTRICT

Remove a table from a schema

DROP TABLE table_name CASCADE | RESTRICT

Remove a view from a schema

DROP VIEW view_name CASCADE | RESTRICT

Execute an embedded SQL statement

EXEC SQL complete_SQL_statement

Execute a prepared dynamic SQL statement

EXECUTE [GLOBAL | LOCAL] prepared_dynamic_SQL_statement
 [INTO { parameter, … }
 | { SQL DESCRIPTOR [GLOBAL | LOCAL] descriptor_name }]
 [USING { parameter, … }
 | { SQL DESCRIPTOR [GLOBAL | LOCAL] descriptor_name }]

438 Appendix C: SQL Syntax Summary

Execute a dynamic SQL statement immediately, without a separate preparation step

EXECUTE IMMEDIATE SQL_statement_text_literal_or_variable

Retrieve a row from an open cursor’s result table

FETCH [NEXT | PRIOR | FIRST | LAST | ABSOLUTE
 | { RELATIVE row_number }]
 FROM cursor_name
 INTO host_language_variable, …

Retrieve information from a dynamic SQL descriptor area

GET DESCRIPTOR descriptor_name
 { host_language_variable = COUNT | KEY_TYPE | DYNAMIC_FUNCTION |
DYNAMIC_FUNCTION_CODE | TOP_LEVEL_COUNT }
 | VALUE descriptor_number { host_language_variable =
 descriptor_ field }, …

Note: Descriptor field most common used are TYPE (data type of parameter), DATA (actual
value of parameter), and INDICATOR (value of indicator variable associated with parameter).

Grant access rights to other users

GRANT { ALL PRIVILEGES }
 | SELECT
 | DELETE
 | INSERT [(column_name, …)]
 | UPDATE [(column_name, …)]
 | REFERENCES { (column_name, …) }
 | USAGE
 ON { [TABLE] table_name }
 | { DOMAIN domain_name }
 TO { user_id, … } | PUBLIC
 [WITH GRANT OPTION]

Insert new rows into a table

INSERT INTO table_name
 [(column_name, …)]
 { VALUES (value1, value2, …) }
 | complete_SELECT_statement
 | DEFAULT VALUES

 439

Conditionally update, delete, or insert data from one table into another

MERGE INTO target_table_name USING source_table_name ON merge_condition
WHEN MATCHED THEN
 Update/delete specifications
WHEN NOT MATCHED THEN
 insert specification

Open a cursor, executing the SELECT and positioning the cursor at the first row

OPEN cursor_name
 [{ USING host_language_variable_or_literal, … }
 | { SQL DESCRIPTOR descriptor_name }]

Prepare a dynamic SQL statement for execution

PREPARE [GLOBAL | LOCAL]
 prepared_dynamic_SQL_statement_name
 FROM SQL_statement_text_literal_or_variable

Remove access rights from a user

REMOVE [GRANT OPTION FOR]
 { ALL PRIVILEGES }
 | SELECT
 | DELETE
 | UPDATE
 | REFERENCES
 | USAGE
 ON [TABLE] table_name
 | DOMAIN domain_name
 FROM PUBLIC | { user_id, … }
 CASCADE | RESTRICT

Roll back a transaction

ROLLBACK [WORK]

440 Appendix C: SQL Syntax Summary

Retrieve rows from a table

SELECT [DISTINCT]
 { { summary_function, … }
 | { data_manipulation_expression, … }
 | { column_name, … } }
 FROM { { table_name [AS] [correlation_name] }
 | joined_tables
 | complete_SELECT_statement }
 [WHERE row_selection_predicate]
 [GROUP BY column_name, …]
 [HAVING group_selection_predicate]
 [UNION | INTERSECT | EXCEPT [CORRESPONDING BY (column_name, …)]
 complete_SELECT_statement]
 [ORDER BY (column_name [ASC | DESC], …)]

Retrieve rows from a common table expression (CTE)

WITH [RECURSIVE] CTE_name (column_list) AS
 (SELECT_statement_defining_table)
complete_SELECT_using_result_of_CTE_query

Choose the current catalog

SET CATALOG catalog_name

Choose an active connection

SET CONNECTION connection_name | DEFAULT

Choose when constraints are checked

SET CONSTRAINTS MODE { constraint_name, … | ALL }
 DEFERRED | IMMEDIATE

Store values in a SQL descriptor area

SET DESCRIPTOR [GLOBAL | LOCAL]
 descriptor_name { COUNT = integer_value }
 | {VALUE descriptor_number { descriptor_field = value, …}, …}

Choose the current schema

SET SCHEMA schema_name

 441

Choose the characteristics of the next transaction

SET TRANSACTION
 { ISOLATION LEVEL
 { READ UNCOMMITED }
 | { READ COMMITTED }
 | { REPEATABLE READ }
 | { SERIALIZABLE } }
 | { READ ONLY } | { READ WRITE }

Begin a transaction

START TRANSACTION transaction_mode

Remove all rows from a table leaving the table structure intact

TRUNCATE TABLE table_name

Change the data in a table

UPDATE table_name
 SET { column_name = { value
 | NULL
 | DEFAULT }, … }
 [{ WHERE row_selection_predicate }
 | { WHERE CURRENT OF cursor_name }]

Table C.2: SQL functions

Function Returns Input Data
AVG () Average of values Numeric values
COUNT (*) Number of rows in a result

set
none

LOWER () Convert to lowercase Character value
MAX () Maximum value Number, character, or datetime values
MIN () Minimum value Number, character, or datetime values
SUBSTRING () Portion of a character

string
Character value

SUM () Sum of values Numeric values

442 Appendix C: SQL Syntax Summary

TRIM () Remove trailing blanks Character value
UPPER () Convert to uppercase Character value

Create XML element
attributes

Attribute value, attribute name

XML COMMENT
()

Append comment to XML
document string

Character value

XMLCONCAT () Concatenate XML
fragments

Character values containing XML text

XMLELEMENT () Create an XML element Element name, optional attributes,
content of element

XMLFOREST () Create nested XML
element

Element content, element name

XMLPARSE () Convert text to XML Element type, content of element
XMLROOT () Modify XML Prolog XML character string, XML version,

standalone property
XMLSERIALIZE () Covert an XML string to

text
Character string formatted as XML

Table C.3: SQL operators

Operator Use Operates on:
Arithmetic Compute arithmetic quantities
 + Preserve the sign of a value Numeric value
 - Change the sign of a value Numeric value
 * Multiply two values Numeric values
 / Divide one value by another Numeric values
 + Add two values Numeric values
 - Subtract one value from another Numeric values
Comparison Compare two values
 = Equality Any compatible data types
 > Greater than Any compatible data types

 443

 >= Greater than or equal to Any compatible data types
 < Less than Any compatible data types
 <= Less than or equal to Any compatible data types
 != or <> Note equal to Any compatible data types
Logical
 AND Determine if two expressions are

true
Expressions returning a
Boolean value

 OR Determine if at least one of two
expressions is true

Expressions returning a
Boolean value

 NOT Change the truth value Expression returning a
Boolean value

= or := Assignment Any compatible data types
|| Concatenate two strings Character strings
Specialty operators
BETWEEN Determine if a value falls inside an

interval
Numeric, characters, or
datetime values

DISTINCT Remove duplicate rows Table
EXCEPT Find the difference between two

tables
Tables

EXISTS Determine if a subquery result
table contains at least one row

Table

EXTRACT Pull out portion of a datetime Datetime
IN Determine if a value is in a set Any set of values of the

same datatype
INTERSECT Find rows in common of two tables Tables
IS NULL Determine if a value is null Any data type
IS NOT NULL Determine if a value is not null Any data type
JOIN Combine two tables horizontally Tables
LIKE Perform string pattern matching Character value
MULTISET EXCEPT Find elements unique to each of

two multisets
Multisets

444 Appendix C: SQL Syntax Summary

MULTISET
INTERSECT

Find elements common to two
multisets

Multisets

MULTISET UNION Combine two multisets vertically Multisets
NOT IN Determine if a value is not in a set

of vaues
Any sets of values of the
same data type

OVERLAPS Determine if two datetime
intervals overlap

Datetimes

UNION Combine to tables vertically Tables

445

Abstract class: A class from which no objects are created.

Abstract data type: In an object-oriented environment, a user-defined data type; a class.

Accessor method: A function that returns the values of private data stored about an object.

Aggregate function: A SQL function—for example, AVG and SUM—that computes a variety of measures based
on values in one or more numeric columns.

Aggregation: In an object-oriented environment, a class that manages objects created from another class.

Array: In a SQL database, an ordered collection of elements of the same data type stored in a single column and
row of a table.

Assertion: A constraint that is not attached to a table but is instead a distinct database object. It can therefore be
used to enforce rules that apply to multiple tables or to verify that tables are not empty.

Attribute (relational database): A column in a relation.

Attribute (XML element): A data value that describes an XML element and is part of the element’s tag rather than
appearing in a separate element nested under the parent element.

Base class: A class at the “general” end of an inheritance relationship; a parent class.

Base table: A relation whose contents are physically and permanently stored in a database.

Before-image file: A file that contains images of every action taken by a transaction and is used to undo actions
when a transaction is rolled back.

Case sensitive: Aware of the difference between upper- and lower-case letters.

Glossary

446 Glossary

Catalog: A group of schemas, usually composed of all schemas handled by a single DBMS.

Class: A declaration of data and methods that describe a single entity and that will be used as a template to create
objects.

Cluster: A group of catalogs. Cluster definition is specific to a given DBMS.

Commit (a transaction): End a transaction, making any changes that it made permanent. A committed transac-
tion is never rolled back.

Common table expression (CTE): A virtual table created by a SQL query that is used as the data source for an-
other query. Unlike a view, the definition of a CTE is not stored in the database and must be used immediately
after it is created.

Composition: A relationship between two classes where objects created from one class are part of objects created
from the other.

Concrete class: A class from which objects are created.

Concatenated foreign key: A foreign key made up of two or more columns that references a concatenated primary
key.

Concatenated primary key: A primary key made up of the combination of two or more columns.

Concatenation: Combining two strings by placing one at the end of the other.

Concurrent execution: The simultaneous handling of multiple transactions by a single database.

Connect (to a database): Establish a user session with a database.

Constraint (on a relation): A rule to which data stored in a relation must adhere.

Container class: In an object-oriented environment, a class that manages groups of objects created from another
class.

Control class: A class that controls the operational flow of an object-oriented program.

Correlated subquery: A subquery that a DBMS cannot process completely before turning to the outer query. The
DBMS must execute the subquery repeatedly for every row in the outer query.

Correlation name: An alias for a table used in a SQL query.

Cursor: A pointer to a row in the result table generated when an embedded SQL SELECT returns multiple rows.

Constructor: In an object-oriented environment, a method that is executed automatically every time an object is
created from a class.

Glossary 447

Data dictionary: In the broadest sense, documentation of a logical structure of a database. In relational database
terms, a collection of tables that store data about the database.

Data dictionary driven: A property of a relational database where all access to data begins with a check of the data
dictionary to determine whether the requested database elements are present in the database and whether the user
has the necessary access rights to perform the requested action.

Database: A place to store data long with information about the relationships between the data.

Database management system (DBMS): Software that manipulates a database, isolating the user from the physi-
cal file storage structures.

Declaration (in an XML document): A statement at the beginning of an XML document that identifies the ver-
sion XML being use and optionally a character encoding scheme.

Derived class: A class at the “specific” end of an inheritance relationship; a child class.

Destructor: In an object-oriented environment, a method that is run each time an object is destroyed (removed
from main memory).

Difference: A relational algebra operation that returns the rows found in one table but not in another.

Dirty read: The problem that arises when a transaction reads the same data more than once, including data modi-
fied by concurrent transactions that are later rolled back.

Disconnect (from a database): Terminate a user session with a database.

Divide: A relational algebra operation that searches for multiple rows in a table.

Domain: An expression of the set of values from which the values stored in a column of a relation are taken.

Drop: Delete an element of database structure from a database.

Dynamic embedded SQL: Embedded SQL in which the entire SQL statement cannot be assembled prior to run-
ning the program. The SQL statement is therefore completed and processed during the program run.

Dynamic parameter: A value given to an embedded SQL statement at runtime rather than when the program in
which the statement is contained is compiled.

Embedded SQL: SQL statements placed within a host language, allowing SQL to be executed by application
programs.

Entity: Something about which we store data in a database environment, such as customer, an inventory item, or
a sale.

Entity class: In an object-oriented environment, a class that is used to create objects that manipulate data.

448 Glossary

Entity-relationship diagram (ERD): A graphic method for depicting the relationships in a database environment.

Equi-join: A join that combines two tables based on matching (equivalent) data in rows in the two tables.

Escape character: A character, usually \, that removes the special meaning of whatever follows in a literal string.

Exclusive lock: A lock on a database element that prevents other transactions from updating or viewing the data-
base element while the lock is held.

Extensible markup language (XML): A way of representing data and data relationships in text files, typically for
data exchange between software of different types.

Field: A piece of data contained within a column of the ROW data type.

Foreign key: A column or combination of columns that is the same as the primary key of some table in the
database.

Frame (in a windowing query): A portion of a windowing query’s window that “slides” to present to the DBMS
the rows that share the same value of the partitioning criteria.

Function: A small program that performs one task and returns a single value. It may be built into the SQL lan-
guage or written by a user, database administrator, or application programmer.

Get method: A function that returns the values of private data stored about an object.

Grant: Give access rights to database elements to users. The user that creates a database element has all rights to
that element. Other users have no access unless they are specifically granted access rights.

Granularity (of a lock): The size of the database element on which a lock is placed (usually a table or a row within
a table).

Grouping query: A query that groups rows of data based on common values in one or more columns and that
optionally computes summary values from each group.

Hierarchy: A structure for data relationships where all relationships are one-to-many and no child entity may have
more than one parent entity.

Host language: A programming language in which SQL statements are embedded.

Identifier chain: The fully qualified name of an element in a SQL database, including the catalog, schema, table,
and column of the element.

Indeterminate cursor: A cursor in which the effects of updates by the same transaction on the result table are left
up to each DBMS.

Index: A data structure that provides a fast-access path to one or more columns in a relation.

Glossary 449

Indicator variable: A variable that accompanies an embedded SQL dynamic parameter to indicate the presence
of nulls in the parameter.

Inheritance: A general to specific relationship between classes in an object-oriented environment.

Inner join: A join that excludes rows for which there is no match between the tables being joined.

Input parameter: A value sent by an embedded SQL statement to the DBMS.

Insensitive cursor: A cursor for which the contents of the result table to which it points are fixed.

Instance (of a relation): A relation containing one or more rows of data.

Interactive SQL: Individual SQL statements entered from the keyboard and processed immediately.

Interface class: In an object-oriented environment, a class that handles input and output operations.

Interleaved execution: A sequence of executing concurrent transactions in which the actions of two or more
transactions alternate.

Intersect: A relational algebra operation that returns all rows common to two tables.

Isolation level: The degree to which a transaction can view data modified by other transactions running
concurrently.

Join: A relational algebra operation that combines two tables making new rows that are a combination of one row
from each of the two source tables.

Locking: The processing of giving a transaction exclusive rights to view and/or update a database element to pre-
vent problems that arise with interleaved transaction execution.

Lost update: An error condition that occurs when the interleaved execution of a transaction wipes out an update
of another transaction.

Markup language: A set of special codes placed inside a text document to identify the elements of the document
and optionally to give instructions to software using the document.

Message: Requests for data manipulation sent from one object to another.

Method (class): A program module that acts on objects created from a class in an object-oriented program.

Method (SQL): A program module that is part of a user-defined data type that is used to create objects.

Module: A group of SQL routines.

450 Glossary

Multiset: In a SQL database, an unordered collection of elements of the same data type that is stored in a single
column and row.

Mutator method: A function that modifies the values of private data stored about an object.

Natural equi-join: An equi-join.

Nonprocedural: A process that specifies “what” but not “how,” leaving the manner in which the result is obtained
up to the DBMS.

Nonrepeatable read: The difference in result tables that occurs when a nonserialized transaction reads the same data
twice and retrieves different values but the same rows as the result of the actions of other interleaved transactions.

Null: A value, distinct from 0 or a blank, that means “unknown.”

Object: An instance of a self-contained element used by an object-oriented program, containing data that describe
the specific element and links to program modules that operate on the element.

Object-oriented: A programming and database environment in which elements in the environment are concep-
tualized as entities and data and programs are stored together.

Outer join: A join that preserves all rows from both source tables. Where a new row cannot be formed by combin-
ing rows, the outer join places nulls in empty columns.

Output parameter: A value returned by an embedded SQL statement to the host language program.

Overloading: In an object-oriented environment, two methods of the same class that have the same name but
different signatures (input parameters and data types).

Partition (in a windowing query): A set of rows for which an aggregate function will compute a summary value.

Persistent stored module (PSM): A SQL program written using the SQL programming language.

Phantom read: The difference in result tables that occurs when a nonserialized transaction reads the same data
twice and different rows are retrieved as a result of the actions of other interleaves transactions.

Polymorphism: The redefinition of the body of a superclass method inherited by a subclass. The polymorphic
method retains the same signature.

Precedence: The order in which a DBMS evaluates operators in a predicate when multiple operators are present.

Precision: In a floating-point number, the number of digits to the right of the decimal point.

Precompiler: A program processor that examines a source code file for SQL statements and translates them into
calls to routines in external program libraries. The result is another source code file that can be compiled by a nor-
mal programming language compiler.

Glossary 451

Predicate: A logical expression used to qualify the rows that are affected by a data manipulation request.

Primary key: One or more columns whose values uniquely identify every row in a relation.

Procedural: A process that is expressed in a step-by-step manner. It specifies “how” as well as “what.”

Procedure: A SQL routine that is stored in a database and executed with the SQL CALL statement. It does not
return a value.

Product: A relational algebra operation that forms all possible combinations of rows from two source tables.

Project: A relational algebra operation that takes a vertical subset of a table. In other words, it extracts complete
columns.

Prolog (of an XML document): A statement at the beginning of an XML document that identifies the version of
XML being used and optionally a character encoding scheme.

Query optimizer: A part of a DBMS that examines a nonprocedural data manipulation request and makes a de-
termination of the most efficient way to process that request.

Read lock: A lock on a database element that prevents other transactions from updating the database element
while the lock is held.

Recursive query: A query that queries itself.

Referential integrity: A constraint on a relation that states that every nonnull foreign key value must reference an
existing primary key value.

Relation: The defintion of the structure of a two-dimensional table with columns and rows.

Relational algebra: A set of procedural operations used to manipulate relations.

Relational calculus: A set of nonprocedural operations used to manipulate relations.

Restrict: A relational algebra operation that takes a horizontal subset of the rows in a table, usually choosing the
rows that meet the logical criteria specified in a predicate.

Revoke: Remove previously granted access rights from a user.

Roll back (a transaction): End a transaction, undoing any changes made by the transaction and restoring the
database to the state it was in before the transaction began.

Root (of an XML hierarchy): The top node in a hierarchy, providing a single point of access to the hierarchy.

Routine: The smallest unit of a SQL PSM. Typically it performs a single action, such as updating a total or insert-
ing a row in a table.

452 Glossary

Schema (relational database): In database design theory, the overall logical design of a database. In a SQL DBMS,
a group of tables and supporting elements such as views and indexes.

Schema (XML): A special type of XML document that contains definitions of document structure used to validate
XML documents that contain data.

Signature (of a function): The name and parameters of a function.

Scope (of a temporary table): The visibility of a temporary table. Local temporary tables can be seen only by the
program module that created them. Global temporary tables can be seen by the entire database session.

Scrollable cursor: A cursor that can move to the first, last, or prior row in a table rather than just to the next row.

Serial execution: A sequence of executing concurrent transactions in which one transaction runs from start to
finish before a second transaction begins.

Serializable: A property of interleaved transaction execution such that the result of the interleaved execution is the
same as the result of serial execution.

Session: A block of time during which a user interacts with a database.

Set function: A SQL function—for example, AVG and SUM—that computes a variety of measures based on
values in one or more numeric columns.

Set method: A function that modifies the values of private data stored about an object.

Shared lock: A lock on a database element that prevents other transactions from updating the database element
while the lock is held.

Static embedded SQL: Embedded SQL in which the entire SQL statement can be specified when the program is
written, allowing the statement to be precompiled before the program is executed.

Stored procedure: A SQL program module that is invoked by an application program using the SQL CALL com-
mand. Stored procedures are stored in the database they manipulate.

Subclass: A class at the “specific” end of an inheritance relationship; a child class.

Subquery: A complete SELECT statement that is part of another SELECT.

Substring: A portion of a string.

Superclass: A class at the “general” end of an inheritance relationship; a parent class.

Tag: The markup device in an XML file. XML tags exist in pairs, with an opening tag before the element being
identified and a closing tag after it.

Glossary 453

Temporary table: A relation whose contents are not stored in the database but that exists only during the database
session in which it was created.

Q-join (theta-join): A join that combines two tables on some condition, which may be equality or something else
such as greater than or less than.

Three-valued logic: A system of logic in which logical expressions can be evaluated to true, false, or maybe. It is
the result of the presence of nulls in relations.

Transaction: A unit of work presented to a database. The transaction may be committed, in which case any
changes it made to the database are permanent or it may be rolled back, in which case any changes it made to the
database are rolled back.

Tree structure: A structure for data relationships where all relationships are one-to-many and no child entity may
have more than one parent entity.

Trigger: A SQL program module that is executed when a specific data modification activity occurs. Triggers are
stored in the database they manipulate.

Truncate (a table): Remove all rows from a table, leaving the structure of the table in the database’s data dictionary.

Tuple: A row in a relation.

Two-phase locking: A locking scheme in which a transaction is given a shared lock on a database element when
it retrieves a value. The shared lock is upgraded to an exclusive lock when the transaction attempts to modify the
value.

Typecast: Change the data type of a value for output or use in a SQL program.

Typed table: A table created as a class using a user-defined data type to define the structure of the objects to be
stored in the table. Each row contains one object.

Uncorrelated subquery: A subquery that a DBMS can process completely before processing the query in which
the subquery is contained.

Union: A relational algebra operation that combines two tables by merging their rows into the same structure.

Union compatible: A property of two tables where all columns in both tables are drawn from the same logical
domains.

Updatability: A property of a view that indicates whether it can be used to perform updates that can then be
propagated to the base table from which it was derived.

User-defined data type (UDT): In a SQL database, a declaration of a structured data type that can be used as the
domain of a column or as an object.

454 Glossary

View: A stored SQL query from which a virtual table is created for use each time the name of the view is used.

Virtual class: A class from which no objects are created.

Virtual table: A table that exists only in main memory. It may be created by the end user as a temporary table or
it may be created by a DBMS to hold the results of a query.

Wait state: A hold placed by a DBMS on the execution of a transaction because the transaction is unable to obtain
a needed lock on a database element, usually because the element is locked by another transaction. The transaction
must wait until the lock can be placed.

Well-formed XML document: An XML document that meets all the XML syntax rules including having only one
root element, paired tags, case sensitive tags, proper tag nesting, and quoted attribute values.

Window: A set of rows for which an aggregate function will compute a summary value.

Windowing: A SQL technique for computing aggregate measures for groups of rows that also displays the indi-
vidual rows in each group.

Windowing function: A function that computes an aggregate measure about a partition in a windowing query.

Write lock: A lock on a database element that prevents other transactions from updating or viewing the database
element while the lock is held.

XML: A way of representing data and data relationships in text files, typically for data exchange between software
of different types.

XML schema: A special type of XML document that contains definitions of document structure used to validate
XML documents that contain data.

455

A
Abstract data types 372
Access rights 265–271
Accessors 374
ALLOCATE DESCRIPTOR 328
ALTER TABLE 255–259
ANY 127
Application classes 372
Arithmetic 143–147
Arithmetic operators 145
ARRAY data type 404–406
Assertions 233–234
AVG 166

B
Base tables 10
BETWEEN 99–101
BLOG 222
BOOLEAN 220

C
CALL 300
CASE 157–159, 294–205
Catalogs 211–213
CENTURY 153–154
Character data types 221
CHECK clauses 233–234
Classes

 abstract 381
 application 372
 container 374
 control 372
 entity 373
 inheritance 376–382
 interface 373
 methods 373–375
 object-relational 398–399
 user-defined data types as 410
CLOSE 317
Clusters 211–213
COMMIT 282
Common table expressions (CTEs) 244–248
Composition 382–384
Concatenation 147–148
CONNECT 278–278
Container classes 374
Constraint checking 234–236
Constraints
 adding 255–259
 CHECK clauses 233–234
 foreign key 223–233
 primary key 223
Constructors 374
Control classes 372
Correlated subqueries see Subqueries
Correlation names 117–121

Index

456 Index

COUNT 163–164
CREATE ASSERTION 234
CREATE DOMAIN 216–217
CREATE FUNCTION 289
CREATE INDEX 248–250
CREATE PROCEDURE 288
CREATE SCHEMA 215
CREATE TABLE 218–234
CREATE TEMPORARY TABLE 243
CREATE TRIGGER 299–300
CREATE USER 263–265
CREATE VIEW 238–239
CUME_DIST 191
CURRENT_DATE 151–152
CURRENT_TIME 151–152
CURRENT_TIMESTAMP 151–152
Cursors
 closing 317, 334
 declaring 311, 332–332
 dynamic parameters with 328–354
 opening 314, 332
 scrolling 311
 sensitivity of 312–313
 updating data with 312
 using 309–311

D
Database
 connecting to 278–279
 disconnecting from 279
 definition 3
Date and time data types 221–222
Date and time manipulation
 EXTRACT 156
 Intervals 152–154
 OVERLAPS 155
 System values for 151–152
Data modification
 changing data values 201–202
 copying rows from another table 199–200
 deleting rows 202–208
 embedded 317–322

 inserting one row 197–199
 with cursors 321–322
Data retrieval see SELECT
Data types
 changing with CAST 167–169
 for columns 219–222, 358–361
 object-relational 402–409
DAY 153–154
DBMS return codes 305–308
DEALLOCATE DESCRIPTOR 334
DECADE 153–154
Decimal data types 219–220
DECLARE CURSOR 311
DECLARE SECTION 304–305
Default values 223
DELETE 202–204, 322
Deleting
 domains 260
 rows 202–204
 table elements 258
 tables 260–261
 using cursors 322
 views 260–261
DEREF 413
DESCRIBE 226
DESCRIBE INPUT 330
DESCRIBE OUTPUT 330
Destructors 374
Difference (relational algebra) 58–59, 136–140
DISCONNECT 279
Divide (relational algebra) 61–63
Domains
 creating 216–217
 deleting 260–261
 modifying 259–260
 relational data model 7
 UDTs for 409
DROP DOMAIN 260–261
DROP INDEX 260–261
DROP MODULE 290
DROP ROUTINE 290
DROP TABLE 260–261
DROP TRIGGER 300

Index 457

DROP VIEW 260–261
Dynamic SQL
 cursors for 327–334
 descriptor areas 328, 330, 334
 dynamic parameters 326–335
 executing without cursors 334–335
 immediate 323–326,
 input parameters 331–332
 output parameters 333
 preparing SQL for 328–330

E
Element names 213–214
Embedded SQL
 compiler issues with 73, 301–302
 cursors 309–317
 data modification 317–322
 EXEC SQL 304
 fetching rows 314–314
 host language variables 304–305
 indicator variables 307–308, 318
 MATCH predicate 320
 return codes 305–308
Embedded SQL see also Dynamic SQL
Entities 4
Entity classes 373
Entity relationship diagrams (ERDs) 4, 392–397
Equi-join 40–49
EXCEPT 140
EXEC SQL 303
EXECUTE 300, 334–335
EXECUTE IMMEDIATE 323–326
EXISTS 141–142
EXTRACT 156

F
FETCH 314–317
Foreign keys
 declaring 223–233
 definition 16–18
Four-valued logic 104–105
Functions
 creating 289

 DEREF 413
 LOWER 148–149
 SUBSTRING 149–150

TRIM 149
 UPPER 148–149
Functions see also Programming
Functions see also Set functions
Functions see also Windowing
Functions see also XML functions

G
GET DESCRIPTOR 334
GRANT 268–269
GROUP BY 170–175
Grouping queries
 performing 161–177
 versus windowing 190–191

H
HAVING 175–177
HOUR 153–154

I
IF 293–294
IN 95
Indexes
 creating 248–251
 deleting 260–261
Indicator variables 307–308, 318
Information engineering 6
Inheritance 376–382, 411–412
INSERT 197–200, 244
Integer data types 219
Interface classes 373
Intersect (relational algebra) 59–61
INTERSECT (SQL command) 142–143
IS NULL 95–96
Isolation levels 277
Iteration 295–287

J
JAVA 303
JDBC 303

458 Index

Join (relational algebra)
 equi- 40–49
 invalid 54–59
 outer 50–54
 theta 49–50
Join (in WHERE clause)
 basic syntax for 107–109
 correlation names for 117–121
 more than two tables 114
 over concatenated keys 111–114
 over selected columns 110–111
 replacing with uncorrelated subquery 125–130
 table to itself 116–121
JOIN (SQL command)

basic syntax for 109
 correlation names for 117–121
 more than two tables 114
 outer 122–124
 over concatenated keys 111–114
 over selected columns 110–111
 performance of 115–116
 replacing with uncorrelated subquery 125–130
 table to itself 116–121

L
LIKE 93–94
Locking 275–277
LOOP 295º296
Lost updates 273–278
LOWER 148–149

M
Many-to-many relationships 13–15
MATCH 320–321
MAX 166
MERGE 204–208
Methods
 defining 414–415
 executing 415–416
 overloading 375–375
 types of 374–375
MICROSECONDS 153–154
MILLENNIUM 153–154

MILLISECONDS 153–154
MIN 166
MINUTE 153–154
Modifying data see Data Modification
Modifying table structure see Tables
Modules 290
Modules see also Programming
MONTH 153–154
Multiple inheritance 381
MULTISET data type 406–409
Mutators 375

N
Naming SQL elements 213–214
NATURAL JOIN see JOIN
Negative queries 136–140
NOT 88–90
NOT BETWEEN 99–101
NOT IN 136–139
NOT NULL 223
NTILE 191=4
Nulls 9–10, 103–105

O
Object-oriented databases 390
Object-oriented paradigm
 benefits of 384
 classes 371–384
 composition 382–384
 inheritance 376–382
 method types 374–375
 objects 367–371
 overloading 375–376
 polymorphism 318–382
 versus relational data model 384–389
Object-relational data model
 data structures in 398
 classes in 398–399
 entity-relationship diagrams for 392–397
 relations 398
Object-relational SQL
 ARRAY data type 404–406
 inheritance 412–413

Index 459

 methods 414–416
 MULTISET data type 406–409
 REF data type 412–414
 ROW data type 402–403
 typed tables 410–411
 UDTs as classes 410
 UDTs as domains 409
One-to-many relationships 11–13
One-to-one relationships 10–11
OPEN 314
Operators
 + (addition) 145
 AND 88–90
 ANY 127
 BETWEEN 99–101
 CASE 157–159
 CAST 167–169
 || (concatenation) 147–148
 / (division) 145
 = (equal to) 86–88
 EXCEPT 140, 144
 EXISTS 140–142
 EXTRACT 156
 HAVING 175–177
 IN 95
 INTERSECT 142–143, 144
 IS NULL 95–96
 < (less than) 86-88
 <= (less than or equal to) 86-88
 > (greater than) 86–88
 >= (greater than or equal to) 86–88
 LIKE 93–94
 * (multiplication) 145
 NOT 88–90
 NOT IN 131–136
 NOT BETWEEN 99–101
 != (not equal to) 86–88
 < > (not equal to) 86–88
 OR 88–90
 OVERLAPS 155
 precedence of 146–147
 – (subtraction) 145
 – (unary minus) 145

 + (unary plus) 145
 UNION 131–136, 144
Outer join 50–54, 122–124
OVERLAPS 155
Overloading 375–376

P
Parameter passing 291–292
Partitions 179–184
PERCENT_RANK 189
PERCENTILE_CONT 194–196
PERCENTILE_DISC 194–196
Polymorphism 381–382
Precedence 146–147
Predicates see WHERE clause
PREPARE 330
Primary keys
 declaring 223
 definition 7–9
Procedures 289–290
Procedures see also Programming
Product (relational algebra) 42–45
Programming
 assignment 290–291
 creating functions 289
 creating modules 290
 creating procedures 288
 deleting modules 288
 executing modules 298–300
 iteration 295–297
 LOOP 295–296
 parameter passing 291–292
 REPEAT 296
 scope of variables 292
 SQL DECLARE SECTION 292
 variables 290–292
 WHILE 296
Programming see also Embedded SQL
Project (relational algebra) 31–33, 25–37

Q
QUARTER 153–154

460 Index

R
RANK 184–187
Recursion 244–248
REF data type 412–414
Referential integrity 16–18, 203–204, 320–321
Relational algebra
 definition 29–30
 difference 58–59
 divide 61–63
 intersect 59–61
 join 39–59
 outer join 50–54
 product 42–45
 project 31–33. 35–37
 restrict 31–33, 25–27, 42–45
 union 37–38
Relational calculus 29
Relational data model
 columns 5–6
 domains 7
 foreign keys 16–18
 history of 4
 nulls 9–10
 primary keys 7–9
 referential integrity 16–18
 relationships in 4–5, 10–15
 repeating groups 4–5
 rows 5–6
 versus object-oriented data model 382–389
Relationally complete 29
Relations 5, 398
Relationship operators 88–86
Renaming table elements 258
REPEAT 296–297
Restrict (relational algebra) 33–35, 35–37, 42–45
Retrieval see SELECT
Return codes 305–308
REVOKE 269–270
Roles 270–271
ROLL BACK 282
ROW data type 402–403
ROW_NUMBER 189
Routines see Programming

S
Schemas
 choosing which to use 215–216
 creating 215
 relational 6
 SQL 211–213
 XML 346–347
SECOND 153–154
SELECT (SQL command)
 arithmetic 143–147
 CASE expressions 157–159
 changing data types with CAST 167–169
 choosing columns 77–80
 choosing rows 84–101
 common table expressions (CTEs) for 244–248
 correlated subqueries 140–142
 EXCEPT 140, 144
 GROUP BY 170–175
 HAVING 175–177
 INTERSECT 142–143, 144
 joining tables 107–125
 negative queries 131–140
 removing duplicate rows 80–82
 sorting rows 82–84
 uncorrelated subqueries 125–130
 UNION 131–136, 144
Select (relational algebra) see Restrict
Selection
 CASE expressions 157–159. 294–295
 IF 293–294
SET DESCRIPTOR 330–331
Set functions 161–163
 AVG 166
 COUNT 163–164
 MAX 166
 MIN 166
 SUM 164–165
 use in predicates 167
SET SCHEMA 215–216
SET TRANSACTION 278
SQL
 command line for 70–71
 element names 213–214

Index 461

 GUI for 71–72
 history 65–67
 standard conformance 67–69
SQL see also names of individual commands
SQL DECLARE SECTION 292
SQL programming see Programming
SQL/XML see XML
SQLSTATE 305–308
START TRANSACTION 281–282
String data types 221
String operations
 concatenation 147–148
 LOWER 148–149
 SUBSTRING 149–150
 TRIM 149
 UPPER 148–149
Subqueries
 ANY operator 127
 correlated 140–142, 165
 negative queries 131–139
 nesting 127–128
 uncorrelated 125–130
SUBSTRING 149–150
SUM 164–165

T
Table constructors 124
Tables
 adding columns 256
 adding constraints 256
 assertions 233–234
 base 10, 218
 CHECK clauses 233–234
 constraint checking 234–236
 creating 218–234
 data types for 219–222
 default values 223
 deleting elements 258
 foreign keys 223–233
 modifying structure of 255–259
 NOT NULL constraints 223
 primary keys 223
 renaming elements 259

 typed 410–411
 unique values 233
Tables see also Relations
Tables see also Temporary tables
Temporary tables
 creating 243
 definition 241–242
 disposition of rows 244
 inserting data into 243–244
Theta join 49–50
Three-valued logic 103–104
Time manipulation see Date and time manipulation
Transactions
 ending 282
 isolation levels 277
 length of 282–283
 problems with 273–278
 starting 281–282
Triggers 298–300
TRIM 149
TRUNCATE 205
Typed tables 410–411

U
Uncorrelated subqueries see Subqueries
Union (relational algebra) 37–38
UNION (SQL command) 131–136
Unique column values 233
UPDATE 201–202, 317–318, 321
UPPER 148–149
User-defined data types (UDTs) see Object-relational
SQL
Users
 access rights 266–271
 creating 263–265
 granting rights to 268–269
 revoking rights from 269–270

V
Variables 290–292, 304–305, 308–309
Views
 creating 238–239
 definition 18

462 Index

 deleting 260–261
 reasons for using 237–238
 retrieval using 239–240
 updating data using 240–241
Virtual tables 10

W
Well-formed XML 344–346
WHERE clause
 complex predicates for 97–98
 correlated subqueries 140–142, 165
 joins 107–125
 logical operators for 88–90
 negation 90–91
 nulls 103–105
 operator prececdence 91–92
 primary key expressions 96–97
 relationship operators for 86–88
 set functions in 167
 simple predicates for 97
 table constructors 124
 uncorrelated subqueries 125–130
WHILE 296
Window functions see Windowing
Windowing
 CUME_DIST 191
 NTILE 194
 ordering partitions 179–184
 partitions 178–179
 PERCENT_RANK 189
 PERCENTILE_CONT 194–196
 PERCENTILE_DISC 194–196
 RANK 184–187
 ROW_NUMBER 189
 versus grouping 190–191

X
XML
 data structure 340–342
 data type 358–361
 declarations 344
 document structure 343–346
 prologs 344

 schemas 346–347
 tags 343–344
 well-formed 344–345
XML functions
 XMLCOMMENT 348–349
 XMLCONCAT 355–358
 XMLELEMENT 350–351
 XMLFOREST 351–355
 XMLPARSE 349
 XMLROOT 349-350
 XMLSERIALIZE 361

Y
YEAR 153–154

	Cover Page
	Title Page
	Copyright
	Preface to the ThirdEdition
	The Relational DataModel
	Relational Algebra
	Introduction to SQL
	Simple SQLRetrieval
	Retrieving Datafrom More ThanOne Table
	Advanced RetrievalOperations
	Working with Groupsof Rows
	Data Modification
	Schemas and Tables
	Views, TemporaryTables, CTEs, andIndexes
	Keeping the DesignUp to Date
	Users and AccessRights
	Users, Sessions,and TransactionControl
	Writing andExecuting SQLRoutines andModules—Triggersand StoredProcedures
	Embedded SQL
	Dynamic SQL
	XML Support
	The Object-Relational DataModel
	Object-RelationalSupport
	Common Acronymsand Abbreviations
	SQLSTATE ReturnCodes
	SQL SyntaxSummary
	Glossary
	Index

