

PRACTICAL SQL
QUERIES for
Microsoft® SQL Server® 2008 R2

About the Author
Art Tennick (Brighton, U.K.) has worked in relational database design and SQL
queries for over 20 years. He has been involved in multidimensional database design,
cubes, data mining, and DMX and MDX queries for 10 years. Based in the United
Kingdom, he has been a software consultant, trainer, and writer for some 25 years.
Recently, he has worked with several major retail and banking corporations to
implement BI solutions using Microsoft SQL Server, SSAS, SSIS, SSRS, and Excel
2007/2010. This is his nineteenth book and he has also written over 300 articles for
computer magazines in the United States, the United Kingdom, and Ireland. His
web site is www.MrCube.net.

About the Technical Editor
Dejan Sarka focuses on development of database and Business Intelligence applications.
Besides projects, he spends about half of his time on training and mentoring. He is the
founder of the Slovenian SQL Server and .NET Users Group. Dejan Sarka is the main
author or coauthor of eight books about databases and SQL Server. Dejan Sarka also
developed two courses for Solid Quality Mentors: Data Modeling Essentials and Data
Mining with SQL Server 2008.

Art Tennick

New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore
Sydney Toronto

PRACTICAL SQL
QUERIES for
Microsoft® SQL Server® 2008 R2

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-174688-5

MHID: 0-07-174688-9

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174687-8,
MHID: 0-07-174687-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such
information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store
and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative
works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s
prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohib-
ited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK
VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work
will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors
shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no
circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or
similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility
of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

Art Tennick is an expert consultant and trainer in SSAS cubes, data mining, MDX,
DMX, XMLA, Excel 2010 PowerPivot, and DAX. His website is www.MrCube.net.

Packed with Hundreds of
Powerful, Ready-to-Use Queries

Available everywhere computer books are
sold, in print and ebook formats.

For my family, including Viv and Buster and Joey.

This page intentionally left blank

vii

Contents at a Glance

Chapter 1 Select: Single Table . 1

Chapter 2 Where . 33

Chapter 3 Order By . 77

Chapter 4 Select: Multiple Tables . 93

Chapter 5 Aggregates . 127

Chapter 6 Select: New Tables . 139

Chapter 7 Except/Intersect/Union . 151

Chapter 8 Group By . 159

Chapter 9 System Functions . 177

Chapter 10 Subqueries . 203

Chapter 11 Delete/Insert/Update . 213

Chapter 12 Views/User-Defined Functions . 229

Chapter 13 Stored Procedures/Programming . 241

Chapter 14 Data Definition Language (DDL) and Data Control Language (DCL) 273

Chapter 15 After You Finish . 289

Index . 293

This page intentionally left blank

ix

Contents
Acknowledgments . xxi

Introduction . xxiii

Chapter 1 Select: Single Table . 1

Hello World . 2

Select All Columns from a Table . 2

Schema Name . 4

Database Name . 5

Switching Databases . 6

Server Name . 6

Variations on a Theme . 7

Specific Column 1/2 . 8

Specific Column 2/2 . 9

Column Aliases 1/2 . 10

Column Aliases 2/2 . 11

Two or More Columns . 12

Concatenating Columns . 13

Adding Strings . 14

Concatenation Failure . 15

Cast and Convert . 16

Date Column . 17

Formatting Dates 1/3 . 18

Formatting Dates 2/3 . 18

Formatting Dates 3/3 . 19

System Date Function . 20

Date Column Calculation . 21

Numeric Column Calculation 1/2 . 22

Numeric Column Calculation 2/2 . 23

Arithmetic Calculation . 24

x P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Distinct Values . 25

Distinct on Multiple Columns . 25

Top . 26

XML . 27

Nulls 1/3 . 27

Nulls 2/3 . 28

Nulls 3/3 . 29

Case 1/2 . 30

Case 2/2 . 31

Chapter 2 Where . 33

All Rows in a Table . 34

Top . 35

Where = . 35

Where <> . 36

Where And . 37

Where <> And . 38

Where Or 1/2 . 39

Where Or 2/2 . 39

Case Sensitivity . 40

Where In . 41

Where Not In . 42

Where and Or 1/3 . 43

Where and Or 2/3 . 44

Where and Or 3/3 . 45

Where Comparing Columns . 46

Where with Numeric Column = . 47

Where with Numeric Column <> . 48

Where with Numeric Column > . 49

Where with Numeric Column >= . 50

Where with Non-numeric Column >= . 51

Where with Numeric Column < . 52

Where with Numeric Column <= . 53

Where with Numeric Column Range 1/3 . 54

Where with Numeric Column Range 2/3 . 55

C o n t e n t s x i

Where with Numeric Column Range 3/3 . 56

Numeric with Or . 57

Numeric with In . 58

Null Values 1/2 . 59

Null Values 2/2 . 60

Date Criteria . 61

Wildcards . 62

Left() . 63

Not Like . 64

Unicode Characters . 64

More on Like . 65

Single Character Wildcard . 66

Complex Wildcards 1/3 . 67

Complex Wildcards 2/3 . 68

Complex Wildcards 3/3 . 69

Working with Long Strings 1/2 . 70

Working with Long Strings 2/2 . 71

Like % . 72

Like %% . 73

Charindex() . 74

Contains 1/3 . 74

Contains 2/3 . 75

Contains 3/3 . 76

Chapter 3 Order By . 77

No Particular Order . 78

Order By . 79

Asc . 79

Desc . 80

Alternative Syntax . 81

Sorting on Two Columns 1/3 . 82

Sorting on Two Columns 2/3 . 83

Sorting on Two Columns 3/3 . 84

Order By with Where . 85

Numeric Sort . 86

x i i P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Top . 87

Top with Ties . 88

Bottom . 89

Top Percent 1/2 . 90

Top Percent 2/2 . 91

Column Name . 91

Chapter 4 Select: Multiple Tables . 93

Single Table . 94

How Not to Join Tables 1/3 . 95

How Not to Join Tables 2/3 . 96

How Not to Join Tables 3/3 . 97

How to Join Tables 1/2 . 98

How to Join Tables 2/2 . 99

Ambiguity Problem . 100

Joining Three Tables . 101

Complex Query 1/2 . 102

Complex Query 2/2 . 103

Outer Joins . 104

Left Outer Join 1/2 . 105

Left Outer Join 2/2 . 106

Right Outer Join 1/2 . 107

Right Outer Join 2/2 . 108

Another Inner Join . 109

Another Left Outer Join . 110

Another Right Outer Join . 110

Creating Mismatch 1/2 . 111

Creating Mismatch 2/2 . 112

Inner Join . 113

Left Outer Join 1/2 . 114

Left Outer Join 2/2 . 115

Right Outer Join 1/2 . 115

Right Outer Join 2/2 . 116

Full Outer Join 1/2 . 117

Full Outer Join 2/2 . 118

Cleanup 1/2 . 118

C o n t e n t s x i i i

Cleanup 2/2 . 119

Self Join 1/6 . 120

Self Join 2/6 . 121

Self Join 3/6 . 121

Self Join 4/6 . 122

Self Join 5/6 . 123

Self Join 6/6 . 124

Cross Join 1/3 . 124

Cross Join 2/3 . 125

Cross Join 3/3 . 126

Chapter 5 Aggregates . 127

Base Query . 128

Count(*) 1/2 . 129

Count(*) 2/2 . 129

Count(column) 1/3 . 130

Count(column) 2/3 . 130

Count(column) 3/3 . 131

Min() 1/2 . 131

Min() 2/2 . 132

Max() 1/5 . 132

Max() 2/5 . 132

Max() 3/5 . 133

Max() 4/5 . 133

Max() 5/5 . 134

Sum() 1/4 . 135

Sum() 2/4 . 135

Sum() 3/4 . 136

Sum() 4/4 . 136

Avg() 1/2 . 137

Avg() 2/2 . 137

StDev() . 138

Some Statistics . 138

Chapter 6 Select: New Tables . 139

Base Query . 140

Select Into . 141

x i v P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Testing New Table . 142

Deleting from New Table . 143

Dropping New Table . 143

Creating an Empty Table . 144

Testing New Table . 145

Dropping New Table . 145

Local Temporary Table . 146

Global Temporary Table . 147

Semipermanent Temporary Table . 148

Chapter 7 Except/Intersect/Union . 151

New Table 1/2 . 152

New Table 2/2 . 153

Inserting Data . 153

Union 1/3 . 154

Union 2/3 . 155

Union 3/3 . 155

Union All . 156

Intersect . 156

Except 1/2 . 157

Except 2/2 . 158

Chapter 8 Group By . 159

Base Query . 160

Count() . 161

Group By 1/2 . 161

Group By 2/2 . 162

Having 1/2 . 163

Having 2/2 . 163

No Aggregation . 164

Grouping on Two Columns . 165

Jumping a Level . 166

Sum() 1/2 . 167

Sum() 2/2 . 167

Min() . 168

Max() . 169

C o n t e n t s x v

Avg() . 170

Two Aggregate Functions . 171

Comparing Two Aggregate Functions . 172

Compute . 173

Compute By 1/2 . 174

Compute By 2/2 . 175

Chapter 9 System Functions . 177

Base Query for String Functions . 178

Lower() . 179

Upper() . 180

Left() . 181

Right() . 182

Charindex() . 183

Replace() . 184

Base Query for Mathematical Functions . 185

Ceiling() . 186

Floor() . 187

Round() . 188

Base Query for Date Functions 1/2 . 189

Base Query for Date Functions 2/2 . 190

Datepart() 1/5 . 191

Datepart() 2/5 . 192

Datepart() 3/5 . 193

Datepart() 4/5 . 193

Datepart() 5/5 . 194

Datename() 1/2 . 195

Datename() 2/2 . 196

New Base Query for Date Functions . 197

Convert() . 198

Datediff() . 199

Dateadd 1/2 . 200

Dateadd 2/2 . 201

Chapter 10 Subqueries . 203

Where Revision . 204

Subquery In . 205

x v i P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Subquery Not In . 206

Subquery Exists . 206

Subquery Not Exists . 207

Base Query . 208

Subquery Any . 209

Subquery All 1/2 . 210

Subquery All 2/2 . 211

Chapter 11 Delete/Insert/Update . 213

Select Into . 214

Truncate Table . 215

Drop Table . 215

Delete . 216

Select Into . 217

Insert Into … Select 1/3 . 217

Insert Into … Select 2/3 . 218

Insert Into … Select 3/3 . 218

Truncate Table with Identity . 219

Delete with Identity 1/2 . 220

Delete with Identity 2/2 . 220

Delete with Where . 221

Re-creating Base Table . 222

Update . 222

Update with Where 1/2 . 223

Update with Where 2/2 . 224

Re-creating Base Table . 224

Insert … Values 1/3 . 225

Insert … Values 2/3 . 225

Insert … Values 3/3 . 226

Insert Select . 227

Drop Table . 228

Chapter 12 Views/User-Defined Functions . 229

Select from Tables . 230

Create View . 231

Select from View . 232

C o n t e n t s x v i i

Alter View 1/2 . 233

Alter View 2/2 . 233

Select from View . 234

Insert/Update/Delete View . 235

Drop View . 236

Select Calculation . 236

Create Function . 237

Select Function 1/2 . 238

Select Function 2/2 . 239

Drop Function . 239

Create Function . 240

Chapter 13 Stored Procedures/Programming . 241

Select . 242

Print . 243

String Variable . 243

Numeric Variable . 244

System Variable 1/2 . 244

System Variable 2/2 . 245

While 1/3 . 245

While 2/3 . 246

While 3/3 . 247

Return . 247

If … Else 1/6 . 248

If … Else 2/6 . 249

If … Else 3/6 . 249

If … Else 4/6 . 250

If … Else 5/6 . 250

If … Else 6/6 . 251

Case … When … End . 252

Variable in Select . 252

Base Query . 253

Create Proc . 254

Alter Proc . 255

Running a Stored Procedure 1/3 . 255

Running a Stored Procedure 2/3 . 256

v i i i P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Running a Stored Procedure 3/3 . 257

Alter Proc . 258

Variables . 259

Parameters . 260

Passing Parameters . 260

Default Parameter Values . 261

Output Parameter 1/4 . 262

Output Parameter 2/4 . 263

Output Parameter 3/4 . 264

Output Parameter 4/4 . 264

Return 1/4 . 265

Return 2/4 . 266

Return 3/4 . 267

Return 4/4 . 267

Two Stored Procedures . 268

Try … Catch 1/2 . 269

Try … Catch 2/2 . 270

Your Last Stored Procedure . 271

Chapter 14 Data Definition Language (DDL) and Data Control Language (DCL) 273

Create Database . 274

Use . 275

Create Table . 275

Testing the Table . 276

Insert Into … Values . 276

Primary Key . 277

Create Table . 278

Foreign Key . 279

Foreign Key Violation . 279

Insert Into … Values . 280

Create Index . 280

Inner Join . 281

Create View . 281

Create Function . 282

Create Proc . 283

x

C o n t e n t s x i x

Create Login . 283

Create User . 284

Execute As . 284

Testing Security . 285

Grant . 285

Revoke . 286

Execute Permission . 287

Drop Database . 288

Chapter 15 After You Finish . 289

Where to Use SQL . 290

SSRS . 290

SSIS . 290

DMX . 290

XMLA . 290

Winforms and Webforms . 290

Third-Party Software . 291

Copy and Paste . 291

Index . 293

This page intentionally left blank

xxi

Acknowledgments

Thank you to my editor, Wendy Rinaldi—again. In particular, she demonstrated
remarkable vision and enthusiasm, and patience. Also thanks again to Joya
Anthony of McGraw-Hill and Melinda Lytle. I am also indebted to Dejan

Sarka for being such a perceptive technical reviewer.

This page intentionally left blank

xxiii

Introduction

SQL
Structured Query Language (SQL) is a standard language for interrogating and
working with relational databases. SQL is supported by many database vendors. The
SQL in this book was written against Microsoft SQL Server 2008. However, about
99 percent of the queries will work against earlier versions of SQL Server. In addition,
about 95 percent of the queries will work against databases such as Oracle, DB2,
MySQL, Access, and others. The Microsoft implementation of the SQL language
in SQL Server is called Transact-SQL (T-SQL). All SQL dialects have some small
differences, but most of the queries in this book can be adapted to your own database
software if it’s not SQL Server.

The SQL language is often divided into three sections, data manipulation language
(DML), data definition language (DDL), and data control language (DCL). All three
sections are covered in this book. DML consists of Select, Insert, Update, and Delete.
DDL consists of Create, Alter, and Drop. DCL consists of Grant, Revoke, and Deny.
DDL and DCL have their own chapter, but they are discussed briefly in other chapters
too. Most of the chapters deal with DML—in particular, we concentrate largely (but
not exclusively) on the Select statement of DML.

Generally, when people talk about SQL queries, they are referring to Select statements.
You are going to get lots and lots of practice with Select statements! But other areas of
SQL are also covered in reasonable detail too.

Prerequisites
You will need two databases. First, the SQL Server AdventureWorksDW2008 database
(called AdventureWorksDW in SQL Server 2005), which is the AdventureWorks star/
snowflake/OLAP schema—most of the SQL queries are written against that database.
Second, the SQL Server AdventureWorks2008 database (called AdventureWorks in
SQL Server 2005), which is an OLTP schema. Only one or two queries are written
against this database.

x x i v P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Installing Adventure Works
You can download the required SQL Server databases from www.codeplex.com (both
2008 and 2005 versions). As of this writing, the URL was http://www.codeplex.com/
MSFTDBProdSamples/Release/ProjectReleases.aspx?ReleaseID=16040. Choose SQL
Server 2008 or SQL Server 2005 from the Releases box. URLs can change—if you
have difficulty, then search www.codeplex.com on Adventure Works Samples, or try
http://msftdbprodsamples.codeplex.com.

SQL Server 2008
Before you begin the download, you might want to check the two hyperlinks for
Database Prerequisites and Installing Databases. Download and run SQL2008.
AdventureWorks All Databases.x86.msi (there are also 64-bit versions, x64 and ia64).
As the installation proceeds, you will have to choose an instance name for your SQL
Server. When the installation finishes, you will have some new SQL Server databases,
including AdventureWorksDW2008 and AdventureWorks2008.

SQL Server 2005
The download files are called AdventureWorksBICI.msi (there are also 64-bit versions,
x64 and IA64) and AdventureWorksDBCI.msi (there are also 64-bit versions, x64
and IA64). With 2005 you can also go through Setup or Control Panel to add the
samples—this is not possible in 2008. Unlike with 2008, the download and subsequent
installation do not result in the new databases appearing under SQL Server in SSMS—
it’s not possible to write your first query just yet. You have to manually attach the
databases. You can do this from SSMS (right-click on the Databases folder and choose
Attach) if you have some DBA knowledge. Or you might ask your SQL Server DBA
to do this for you. If you click the Release Notes hyperlink on the download page, you
will find out how to do this from SQL—using SQL before you even start a book for
learning SQL!

Source Code
All of the source code for the queries in this book is available for download. You can
simply copy and paste into the query editor to save you typing. You can copy and paste
individual queries or copy and paste blocks of code. If you do the latter, make sure that
you highlight only the relevant code before you run the query.

You can download the source code from www.mhprofessional.com/computingdownload.

I n t r o d u c t i o n x x v

Acronyms
BI Business Intelligence

BIDS SQL Server Business Intelligence Development Studio

DMX Data Mining Extensions

KPI Key Performance Indicator

MDX Multdimensional Expressions

SQL Structured Query Language

SSAS SQL Server Analysis Services

SSIS SQL Server Integration Services

SSMS SQL Server Management Studio

SSRS SQL Server Reporting Services

XMLA XML for Analysis

SQL Server 2008 or SQL Server 2005?
The SQL queries in this book are for both SQL Server 2008 and SQL Server 2005.

Enterprise/Developer Edition
or Standard Edition?
It makes little difference which edition you use. All of the queries work against the
Enterprise/Developer Edition and the Standard Edition of SQL Server.

Writing Queries
1. Open SSMS.

2. If prompted to connect, click Cancel.

3. Click File | New | Database Engine Query.

4. Click Connect in the dialog box.

5. From the drop-down on the toolbar, choose the AdventureWorksDW2008
(or AdventureWorks2008) database.

x x v i P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

6. Type, or type and drag, or copy and paste to create the query.

7. Click the Execute button on the toolbar.

There are many other ways of opening the query editor. Here’s a popular alternative:

1. In Object Explorer, right-click the SQL Server database AdventureWorksDW2008
or AdventureWorks2008 (AdventureWorksDW or AdventureWorks in SQL
Server 2005). If your Object Explorer is closed or empty, click File | Connect
Object Explorer.

2. Click New Query.

Chapter Content

Chapter 1, “Select: Single Table”
This is an introductory chapter. It concentrates on retrieving columns and rows of
data from a single table. A wide variety of techniques are covered—doing column
calculations, aliasing columns, handling dates and nulls, and more. Many of the
techniques discussed are fundamental ones and give you a sound basis on which to
develop more complex SQL. You will meet a lot of syntax from this chapter again in
later chapters as you learn more complex SQL.

Chapter 2, “Where”
This chapter is devoted to the Where clause. It’s a huge subject area and could easily fill
a whole book, let alone a single chapter. Here you’ll discover how to search records—how
to find what you’re looking for. You also see how to return subsets of your tables based
on the criteria you specify. Many of your own SQL queries are going to require Where
clauses—here you’ll become familiar with all of the important concepts and techniques
for returning just what you want (and being able to ignore what you don’t want).

Chapter 3, “Order By”
If you need to sort the output of your SQL queries, you use the Order By clause. That’s
the topic for this chapter. It shows you how to sort alphabetically and numerically. It
also demonstrates how to extract the top (or best) and the bottom (or worst) of the
rows in your tables.

I n t r o d u c t i o n x x v i i

Chapter 4, “Select: Multiple Tables”
The previous three chapters concentrate on single-table queries. It’s unlikely that you
will always find the data you need in a single table. Often, your data is split across
two or more tables. This chapter shows the SQL required to put tables together. The
technique is one of performing joins on tables. There are quite a few variations on the
join technique. All of the variations (inner joins and outer joins and more) are
covered here. You will find the SQL useful when you later move on to build views
and stored procedures. If you join tables in a normalized database, then the joining
is sometimes referred to as denormalization. Denormalization is an important part
of building SQL Server relational data warehouses (star schemas, for example) and
SSAS multidimensional cubes.

Chapter 5, “Aggregates”
Here we look at how to aggregate data. Aggregating data includes counting, totaling,
and averaging data. You may also be interested in how to calculate maximum and
minimum values. All of these topics are covered in this chapter. We’ll be doing the
aggregations on all of the records in a table—so, a summation, for example, will result in
a grand total. A later chapter, Chapter 8 on Group By, extends this chapter and shows
how to perform aggregations against subsets of tables—in other words, how to calculate
subtotals as well as grand totals. Being able to produce aggregates makes your reports
for end users more informative—they can see the overall picture rather than lots of
individual bits of data. Aggregation is also an important concept to understand as you
begin to develop your data warehouses.

Chapter 6, “Select: New Tables”
In this chapter we examine table creation. There are many ways of creating tables—here
we concentrate on creating tables using a Select statement (Select Into). A later chapter
shows how to do so with a Create statement. You’ll learn how to create both permanent
and temporary tables. Furthermore, you’ll meet three different types of temporary tables
and have a quick look at the tempdb system database. New permanent and temporary
tables have many uses. They can be used to denormalize and join tables for reporting
purposes. In addition, they are invaluable for testing new designs and testing your
SQL, when you prefer not to work against live production tables. Also, when your SQL
becomes very complex, you can break it down into simpler steps and work against a
series of temporary staging tables.

v i i i P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Chapter 7, “Except/Intersect/Union”
Here we examine set operations. The three main keywords introduced are Union,
Intersect, and Except. These are set operators that treat each table involved in the
operation as a set. If you are familiar with set theory and Venn diagrams from high
school math, you already have a good idea how they work. Union puts two or more
tables together. Intersect looks at what the tables have in common. Except returns the
differences between tables.

Chapter 8, “Group By”
Business users often ask for reports that show totals and subtotals. These totals are
often based on particular categories or groups of data. This chapter introduces the
SQL required to group your data and produce meaningful totals. The main emphasis
is on the Group By clause used with various aggregation functions, for example, Sum().
We also take a quick look at the more specialized Compute and Compute By clauses.
Hopefully, you’ll learn enough SQL in just this single chapter to begin producing
sophisticated reports for your business users.

Chapter 9, “System Functions”
SQL Server has a couple hundred built-in system functions. You can browse them all
in Object Explorer, where they are arranged by category. You can always write your
own functions in SQL, but it makes sense to use the prewritten ones if they serve
your purpose. It’s going to save you a lot of work and time if what you want is already
there. In this chapter, we investigate some of these system functions. In particular, we
concentrate on some of the most popular and useful string functions, mathematical
functions, and date functions. Knowledge of these functions will help you to easily
manipulate and transform your data, in exactly the way you want to.

Chapter 10, “Subqueries”
A chapter looking at queries within queries—that’s Select statements within Select
statements. These are often called subqueries or nested queries. Subqueries have lots of
uses, some of them quite advanced, like derived tables. As this is an introductory book,
we’ll concentrate on one of the more popular and simpler uses for subqueries. We
examine how to use a subquery in a Where clause. There are many ways of doing the
same thing in SQL, as is often the case. You can arrive at the same results as you do with
subqueries by possibly using joins or temporary tables or some procedural programming
with variables. Those other topics are covered in other chapters in this book.

x x

I n t r o d u c t i o n x x i x

Chapter 11, “Delete/Insert/Update”
Many of the other chapters deal with getting data out of your tables and databases—
lots and lots of Select statements. This assumes, of course, that the data is already
there and is in the form you require. By contrast, this chapter is dedicated to entering
and maintaining the data in the first place. Without data, your Select statements will
return nothing. Without good data, your Select statements will return erroneous or
obsolete data. Here, we look at data entry using the Insert statement and maintaining
data accuracy with the Update statement. In addition, you learn how to remove
obsolete or unwanted data with the Delete statement. There are also example queries
showing how to work with identity (auto-numbering) columns.

Chapter 12, “Views/User-Defined Functions”
As business user demands for more and more sophisticated reports increase, your
SQL is going to become more and more complex. Rather than having to code the
same syntax over and over again, you can save your SQL. There are three main ways
of doing this. You can create views for complex Select statements—a view is really a
stored query. You (and others) can reuse it at any time, without having to be aware of
all the complex SQL you originally put into it. This is called encapsulation. A second
way of saving SQL is to create your own user-defined functions. These are normally
used for storing calculations (we are not going to cover table functions that can store
Selects). A third way is to create stored procedures. Stored procedures can be used to
store both calculations and Selects. Views and functions are covered in this chapter.
The next chapter discusses stored procedures. Functions and stored procedures allow
you to do sophisticated procedural programming, which views do not.

Chapter 13, “Stored Procedures/Programming”
This is the chapter for procedural programmers. It introduces lots of syntax that
you may not think of as SQL. Indeed, strictly speaking, some of it is not SQL. We
should rather call it T-SQL (Transact-SQL), which is the SQL Server version of
SQL that contains lots of keywords and concepts that extend standard SQL. These
extensions are very powerful and help you make your SQL queries truly dynamic and
versatile. For example, you can dynamically change a Where clause at run time. The
main emphasis of the chapter (after exploring some basic programming constructs)
is on stored procedures. These allow you to change your SQL dynamically based on
conditional factors—and a whole lot more. In addition, stored procedures provide
encapsulation of your code. If you get it right, a Select in a stored procedure can
also run much faster than it normally would as a stand-alone query. This is SQL
on steroids!

x x x P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Chapter 14, “Data Definition Language
(DDL) and Data Control Language (DCL)”
Data definition language (DDL) is that part of SQL concerned with creating and
maintaining the database objects you will need. Data control language (DCL) is the
part of SQL dedicated to setting up security on the objects you’ve created. This chapter
is dedicated to DDL and DCL. You will see how to create a database, tables, keys,
indexes, and other objects. Once those objects have been created, you’ll also learn how
to create a login and a user and control and test access to the objects.

Chapter 15, “After You Finish”
Throughout this book, you’ll be using SSMS to write your SQL queries and display the
results. It’s unlikely that your users will have SSMS—indeed, it’s not recommended for
end users as it’s simply too powerful and potentially dangerous. This chapter presents
some alternative software and methods for getting SQL query results to the end user.

Select: Single Table

Chapter 1

2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

This is an introductory chapter. It concentrates on retrieving columns and rows
of data from a single table. A wide variety of techniques are covered—doing
column calculations, aliasing columns, handling dates and nulls, and more.

Many of the techniques discussed are fundamental ones and give you a sound basis on
which to develop more complex SQL. You will meet a lot of syntax from this chapter
again in later chapters as you learn more complex SQL.

Key concepts Selecting columns from a single table, schema names, database
names, case sensitivity, aliases, concatenation, data types, date and numeric
calculations, XML, nulls, Case functions

Keywords Select, From, Use, As, Cast(), Convert(), GetDate(), Datediff(),
Distinct, Top, For Xml, IsNull(), Is Null, Coalesce(), Case

Hello World
Your first Select query!

Syntax
-- hello world

-- this is a comment as is the line above

select 'Hello World'

Result

Analysis
I guess this is not the most exciting SQL query ever. However, it does prove a point—
a Select statement does not have to return data from a table. Select can be used to
return literals (strings and numbers), values of variables, function return values, and
more. We’ll investigate all of these in the course of this book—the rest of this chapter
is devoted to returning data from a single relational table.

Select All Columns from a Table
This is different from the previous query—it has a From clause. It returns all the
columns or fields (and all the rows or records) from a table called DimCustomer.

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 3

Syntax
-- basic select

-- make sure you are connected to

-- AdventureWorksDW2008 (SQL Server 2008)

-- or AdventureWorksDW (SQL Server 2005)

select * from DimCustomer

Result

Analysis
To return all the columns of a table, you use an asterisk symbol (*). It’s normally called
star—select star from table. Instead of using the star, you can type a list of all the
column names separated by commas. It is good practice to always explicitly have a column
list rather than use a star; then there is never any ambiguity about what is returned. You
might be wondering about the strange name of the table, DimCustomer! Tables with
a Dim prefix are often so-called “dimension tables.” This is a book about SQL queries,
not a book about database design, so you don’t need to worry about the table name and
what a dimension is. The result shows the details for over 18,000 customers. The row or
record count is shown in the bottom-right corner of the query editor window.

If your query fails with an invalid object name error, make sure you are connected
to the right database—the database is in the drop-down on the toolbar. If you have
the correct database and still get the same error, make sure you have capitalized the
table name (DimCustomer) as shown in the preceding syntax example (it may just be
possible that you have the case-sensitive variety of the database).

4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Schema Name
Here, there’s a dbo. prefix before the table name. The prefix is called the schema. Most
of the time, you may be able to ignore the schema name and simply use the table name
without the schema prefix. However, this is generally considered bad practice. It is possible
to have the same table name more than once in a database, if they belong to different
schemas. You should always explicitly use the schema name. Instances in which the
schema name is not used in this book are for learning purposes only.

Syntax
-- schema name

select * from dbo.DimCustomer

Result

Analysis
If you expand a database, then expand the Tables folder in the Object Explorer window
in SQL Server Management Studio (SSMS), you will notice that the table names have
a prefix followed by a dot. This is the schema to which the table belongs. By default,
the schema will be dbo. Also, dbo is the default schema for all users—unless your SQL
Server database administrator has changed it. If dbo is the default schema, then it’s
optional in the query—you can simply use the table name without the schema prefix. If
the designer of the database has assigned a table to another schema, then you may have
to include the schema name. It is recommended that you always adopt the two-part
names.

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 5

Database Name
In the previous query, we qualified the table name with the schema name. This time,
the query is further qualified by the database name.

Syntax
-- database name

-- the database is AdventureWorksDW2008 in SQL Server 2008

-- the database is AdventureWorksDW in SQL Server 2005

select * from AdventureWorksDW2008.dbo.DimCustomer

select * from AdventureWorksDW2008..DimCustomer

Result

Analysis
The result shows the first few columns and records returned. If you are connected to
the AdventureWorksDW2008 (or AdventureWorksDW, if you are working on SQL
Server 2005) database, then the database name qualifier is not necessary. The current
database connection can be seen in the drop-down on the toolbar. If you are currently
connected to another database (and don’t change the connection in the drop-down),
then the database name is necessary. When you do include the database name, you must
also include the schema name (here the schema is dbo). The second of the two example
queries shows a shorthand technique that works only if the schema is dbo. This
shorthand is bad practice—you should always explicitly mention the dbo schema. It’s
included here so you can identify what’s happening if you inherit code in this format.

6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Switching Databases
The Use statement here is an alternative to the syntax in the previous query. It’s
only necessary if the current database context is not AdventureWorksDW2008 (try
AdventureWorksDW if you have SQL Server 2005).

Syntax
-- alternative

use AdventureWorksDW2008

select * from dimcustomer

Result

Analysis
This query and the last one produce an identical result—all the columns and rows from
the DimCustomer table. However, the effects of the two queries are subtly different.
The last query does not change the current database. This query does change the current
database context—if you had been connected to another database, the database name
in the drop-down would have changed. I have not included the schema name, but you
should always try to do so. As this is a learning book, it means a little less typing for you.

Server Name
Now we have the server name as well. This is a fully qualified table name.

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 7

Syntax
-- server name

select * from MyServer.AdventureWorksDW2008.dbo.DimCustomer

Result

Analysis
A fully qualified table name consists of server name, followed by database name,
followed by schema name, and finally the table name. Such syntax might be necessary
if you are writing cross-server queries. Most likely your result will be an error. For this
syntax to work, you will need a valid server name (maybe not MyServer!), and that
server must be linked to the server you are working on. Setting up linked servers is a
database administrator’s task—it’s beyond the scope of an introductory book about
SQL queries. I included the syntax here for completeness.

Variations on a Theme
There are four queries here for you to try. There are subtle differences between all four.
All four should work and produce the same result (in certain circumstances, you might
find that the third query fails). You can run all four together and produce multiple result
sets or, probably better, highlight each one individually and run them in turn.

Syntax
-- semicolons are optional in this type of query

select * from DimCustomer;

-- SQL syntax is case-insensitive

Select * FROM DimCustomer

-- but object names might be case-sensitive, intellisense helps in 2008

select * from dimcustomer

-- copes with white space and carriage returns

select *

from

DimCustomer

8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Did all four queries work, or just three? It is just possible that the third one might fail.
The first of the four queries is terminated with a semicolon (;)—this is sometimes
optional, but many SQL programmers consider it good practice to clearly delineate
queries. I would recommend the use of semicolons in all your queries. In the second query,
the From is in uppercase (FROM)—SQL syntax is case-insensitive. The third query
is the one that might possibly fail—note the table name is in lowercase (dimcustomer).
If it does fail, then your database might be case-sensitive—there are some varieties of
the Microsoft AdventureWorks downloads that are case-sensitive. Object names can be
case-sensitive. Most SQL Server databases are, in reality, case-insensitive. If you suspect
that yours is case-sensitive, ask your SQL Server DBA to make it case-insensitive. Or
make sure you capitalize all object names used in this book correctly. You can check the
capitalization of object names by browsing to the object in Object Explorer in SSMS. The
fourth and final query uses lots of space characters and hard returns—it’s on three lines.
SQL queries are forgiving of white space and carriage returns.

Specific Column 1/2
Here the star or asterisk has been replaced by a specific column name.

Syntax
-- a specific column

select lastname from DimCustomer

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 9

Result

Analysis
You should still see rows for over 18,000 customers, but there is only the one column. If
you suspect that your database is case-sensitive, then replace lastname with LastName
(see the next query). You can expand the Columns folder in Object Explorer to check
the capitalization. Please be aware that you can drag and drop object names from
Object Explorer into the query editor window. Dragging and dropping avoids typos
and also capitalizes correctly if you are working on a case-sensitive database.

Specific Column 2/2
This is the same as the last query—except the column name is capitalized differently.

Syntax
select LastName from DimCustomer

1 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
For most readers of this book, this query and the previous one both work and produce
an identical result. Well, not quite. You might want to glance at the caption for the
column header—the one in this query looks better (LastName, rather than lastname).
For a small minority of readers (those with a case-sensitive database), only this query
will work. I won’t mention case sensitivity again, but please bear it in mind as you work
through the queries in this book if your database is case-sensitive—most of you can
ignore the problem.

Column Aliases 1/2
Often, a database designer may choose obscure names for columns (I have seen live
production databases in blue-chip companies with column names like Column1). Or
you might simply want a different name for the column. To rename a column you
use an alias. There are three queries here to try, either individually (by highlighting
individually, if you pasted in the code from the book’s download) or together (by having
no highlight or highlighting all three).

Syntax
-- column alias 1/2

select lastname as Surname from dimcustomer

select lastname Surname from dimcustomer

select Surname = lastname from dimcustomer

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 1 1

Result

Analysis
If you ran all three queries together, you may have to scroll down to see all three result
sets. All three queries produce the same desired effect, LastName is now Surname. The
choice of syntax is, of course, yours. Many SQL programmers prefer the first alternative
with the keyword As—perhaps it’s more explicit and easier to read.

Column Aliases 2/2
Here our alias is slightly different—there’s a space in the alias. There are two queries—
please run them separately. If you run them together, you won’t see any data being
returned.

Syntax
-- column alias 2/2

select lastname as Last Name from dimcustomer

select lastname as [Last Name] from dimcustomer

1 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The first query fails. If an alias contains a space, then it must be delineated with square
brackets. This is a general rule and applies to other objects, not just to aliases. If you
have table or original column names, for example, with embedded spaces, then you must
use the square brackets; otherwise, you’ll receive a syntax error message. If you run the
second query separately, then the caption for the column header will be Last Name.

Two or More Columns
So far, you’ve returned all the columns in a table by using the star or asterisk (*) symbol
or a single column only. This query returns two columns.

Syntax
-- two or more specific columns

select firstname, lastname from DimCustomer

select lastname, firstname from DimCustomer

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 1 3

Result

Analysis
Both queries return the same data—but the columns are in a different order. To retrieve
two columns, you separate the column names with a comma (,). If you want even more
columns, you write a comma-separated list—please note there is no comma after the
last column name. If you want all columns, it’s a lot easier to use the star or asterisk—it
can be tedious to type every single column name. Try not to be tempted to be lazy and
always explicitly use column names. You can generate a full list of columns by right-
clicking the table in Object Explorer and choosing Script Table as, SELECT To, New
Query Editor Window. This can be incredibly useful when there are lots of columns
and you want most of them (simply delete the column[s] not required).

Concatenating Columns
Appending one column to another is called concatenation—the concatenation symbol is
a plus sign (+). Both queries here use two columns, but the output is a single column.

Syntax
-- concatenation

select firstname + lastname from dimcustomer

select firstname + lastname as [Full Name] from dimcustomer

1 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The second query has an alias—its column header is much more user-friendly. Be
careful, please, when concatenating columns. It works on two strings (for example, char
or varchar columns), but not on two numeric columns (for example, with a data type of
int). In the latter case, it will add the numbers together. You can view the data type of
the column in Object Explorer.

Adding Strings
You can improve concatenation by adding your own text. Here, the columns are
separated by a comma and a space.

Syntax
-- concatenation with text

select firstname + ', ' + lastname as [Full Name] from dimcustomer

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 1 5

Result

Analysis
You’ve added some user-defined text. Strictly speaking, we should call it a string and
not text—text has a very specific meaning in SQL Server. Text is a data type—string
is not a data type and is a safe, generic term. Strings are enclosed within single quotes.
Incidentally, the SQL Server dialect of SQL is often called T-SQL or Transact-SQL.
Most of the T-SQL syntax in this book is standard SQL (ANSI SQL) and is valid for
other database software such as Oracle or DB2 or MySQL.

Concatenation Failure
All we’ve done here is to change the second column and use a different alias. Expect
this query not to work!

Syntax
-- concatenation fails

select lastname + ' ' + customerkey as [Name ID] from dimcustomer

Result

1 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
If you concatenate two alphabetic columns, then it appends them. If you concatenate
two numeric columns, you don’t actually get a concatenation—rather, it will add the
two numbers together as a summation. If you concatenate an alphabetic column
to a numeric one, you get an error. Here, CustomerKey is a numeric column. SQL
Server doesn’t know whether you want a true concatenation (append) or an addition
(summation). You see how to fix the error in the next query.

Cast and Convert
What if you want to concatenate an alphabetic column and a numeric column? To do
so, you can use Cast() or Convert(). The two queries produce the same result.

Syntax
-- cast or convert

select lastname + ' ' + cast(customerkey as nvarchar) as [Name ID]

from dimcustomer

select lastname + ' ' + convert(nvarchar,customerkey) as [Name ID]

from dimcustomer

Result

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 1 7

Analysis
LastName is an alphabetic column (data type of nvarchar). CustomerKey is a numeric
column (data type of int). The Cast() and Convert() functions change the numeric
column into an alphabetic one. Cast() and Convert() are generally interchangeable. Many
SQL programmers prefer Cast() as it’s a little easier to read. However, Convert() has some
additional functionality that is useful when working with dates and times. Cast() is ANSI-
standard, Convert() is not—Convert() may not work with non-SQL Server databases.

Date Column
Date columns are infamous for causing problems. Here’s a date column query.

Syntax
-- date format (default ANSI)

select birthdate from dimcustomer

Result

Analysis
It works, but the display is not very user-friendly. This is the default display for a SQL
Server date (yyyy-mm-dd). The data type of the BirthDate column is date. If you have
SQL Server 2005, the data type is datetime and your result will show the time after
the date (in this example, as midnight).

1 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Formatting Dates 1/3
The Convert() function is being used to format the date column.

Syntax
-- date format US 4 digit year

select convert(varchar,birthdate,101) as [US Date] from dimcustomer

Result

Analysis
The date column has been converted into an alphabetic column (data type varchar).
But here, the Convert() function has a third parameter, 101. The Cast() function does
not support this extension. The result is a date in U.S. format with a four-digit year.

Formatting Dates 2/3
The third parameter for the Convert() function has been changed from 101 to 1.

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 1 9

Syntax
-- date format US 2 digit year

select convert(varchar,birthdate,1) as [US Date] from dimcustomer

Result

Analysis
This time, you have a date in U.S. format, but with a two-digit year. If you wish to
research the codes for the third Convert() parameter, highlight the word Convert and
press f.

Formatting Dates 3/3
This time, the third parameter for Convert() is 103.

Syntax
-- date format UK 4 digit year

select convert(varchar,birthdate,103) as [UK Date] from dimcustomer

2 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The parameter 103 gives you a U.K. date format with a four-digit year (a parameter of
3 would result in a two-digit year).

System Date Function
There is no From clause here—we’re not working against a table. GetDate() is a system
function—it returns the current date and time.

Syntax
-- today's date (no table)

select GETDATE()

Result

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 2 1

Analysis
You should be looking at the current date and time. I guess your answer is different
from mine! GetDate() is not case-sensitive. Microsoft provides lots of useful system
functions. We are going to use this one to do some date calculations, shortly. If you wish
to view the system functions, expand your database in Object Explorer, then expand
Programmability, Functions, System Functions. GetDate() can be seen under the Date
and Time Functions folder.

Date Column Calculation
Here we introduce another system function for working with dates, Datediff().
Hopefully, this is quite a useful query for you.

Syntax
-- date calculation

select birthdate, datediff(yy,birthdate,GETDATE()) as Age

from dimcustomer

Result

2 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
Often, you’ll want to see how much time has elapsed since a start date or start time. For
example, if you are in marketing, you might want to see the age of your customers. It
doesn’t make sense to have a column (unless it’s a calculated column) in the table called
Age—you’ll be updating the column every year for every customer! This is probably a
better solution—it makes use of the Datediff() function. The function is working out
the number of years between the birth date of the customer and the current date. The
first parameter of the Datediff() function is yy. To see a full list of parameter codes,
highlight the word Datediff and press f. My help system takes me to Dateadd(), not
Datediff(), for some reason—but the codes are the same. This anomaly may well be
fixed in your version of SQL Server.

Numeric Column Calculation 1/2
As well as date column calculations, you can perform calculations using numeric
columns. Here, you’re attempting to find out how many children of a customer live
away from home. Expect this query to fail—at least, partially.

Syntax
-- columns calculation

select totalchildren, numberchildrenathome,

totalchildren - numberchildrenathome as AwayFromHome

from DimCustomer

Result

Analysis
You might just see a quick flicker of data on the Results tab before you are flipped to
the Messages tab, with an error about a tinyint overflow. If you then click the Results
tab, you will see some records returned—so you may be tempted to conclude that
the query was successful. However, you will see a note at the bottom that the query
completed with errors. Also, there are only 82 rows returned (bottom-right corner),
and from earlier queries we know there are over 18,000 customers. The problem is
addressed in the next query.

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 2 3

Numeric Column Calculation 2/2
The Cast() function is used here to change the two columns (TotalChildren and
NumberChildrenAtHome) involved in the calculation into a data type of smallint.

Syntax
-- columns calculation working

select totalchildren, numberchildrenathome,

cast(totalchildren as smallint) - cast(numberchildrenathome as smallint)

as AwayFromHome from DimCustomer

Result

Analysis
If you examine the two columns in the Object Explorer, you will notice they both have
a data type of tinyint. A tinyint only supports positive integers. A tinyint
column subtracted from a tinyint column will attempt to give the answer (aliased
as AwayFromHome) as a tinyint as well. However, the customer on row 83 has
a negative number as AwayFromHome—the previous query failed exactly at this
record. The Cast() function is used to change both tinyint columns into smallint
ones, and the result will be a smallint. A smallint supports negative (as well as
positive) integers. Now, the query completes successfully. I am not sure how you can
have a negative number of children away from home (but that’s the data we have to
work with)!

2 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Arithmetic Calculation
What if we are coming out of a recession? Maybe all of our customers are due a ten
percent raise in yearly income.

Syntax
-- numeric calculation

select YearlyIncome, YearlyIncome * 1.1 as [After Increase] from

dimcustomer

Result

Analysis
This is a simple arithmetic calculation. All basic arithmetic operators are supported
for add (+), subtract (-), multiply (*), and divide (/). There are also an integer division
(\) and a modulo (%). System functions provide a wide range of mathematical and
aggregate functions (you can browse these in Object Explorer).

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 2 5

Distinct Values
Definitely no recession—all of our customers have an occupation (EnglishOccupation
column). But many have the same occupation—maybe we simply want to see an
enumeration of the possible occupations.

Syntax
-- distinct on one column

select englishoccupation from DimCustomer

select distinct englishoccupation from DimCustomer

Result

Analysis
The second query includes the Distinct operator. Distinct suppresses duplicate values
for the column(s) in the columns list. Distinct followed by a star (*) suppresses duplicate
records. The first query returns duplicated records.

Distinct on Multiple Columns
In the second query here, the Distinct operator is applied to two columns. Please try
both queries and compare the number of records returned.

Syntax
-- distinct on more than one column

select englishoccupation, englisheducation from DimCustomer

select distinct englishoccupation, englisheducation from DimCustomer

2 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
As you examine the records you’ll notice Clerical more than once. You will also see
Bachelors more than once. However, you won’t see Clerical together with Bachelors
more than once. The Distinct operator is working on both columns together.

Top
When you are developing your queries against large tables, it can take a while for results
to be returned. Here’s a simple technique to reduce the number of rows while you
perfect your SQL.

Syntax
-- just a few records

select * from DimCustomer

select top 7 * from DimCustomer

Result

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 2 7

Analysis
The first query returns 18,484 rows. The second query returns just 7 rows—it uses the
Top keyword. Top has many more uses than this—we’ll return to Top when we examine
sorting records later in the book. If you don’t sort the rows, you can’t be sure which 7
rows are going to be returned.

XML
Normally, your SQL queries return a set of records or rows—this is often called a result
set or record set. You can handle this in a wide variety of ways in front-end applications;
a popular way is to use a data grid. Sometimes, though, your client software may
want the data in XML format. The second and third queries here show two ways of
retrieving XML data.

Syntax
-- xml

select * from DimCustomer

select * from DimCustomer for xml auto

select * from DimCustomer for xml auto, elements

Result

Analysis
The first query returns a simple result set. The second and third queries return the data
in XML format—they both use the For Xml clause. You can view the XML by clicking
its blue hyperlink. The second query shows attribute-centric XML, while the third
query returns element-centric XML. The result shown is from the third query.

Nulls 1/3
Null values can present interesting challenges. The MiddleName column in the
DimCustomer table has a number of null values. Please run the two queries and
compare the results. Null values represent missing values—they are not the same as
empty strings or zeroes.

2 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- handling nulls 1/3

select firstname, middlename, lastname from DimCustomer

select firstname + ' ' + middlename + ' ' + lastname as [Full Name]

from dimcustomer

Result

Analysis
The first query shows that Ruben Torres has a null value for the MiddleName column.
The second query demonstrates what happens when you try to concatenate a null value
to the other two columns. By default, any operation involving a null value will result
in Null. The result is from the second query. Unless otherwise mentioned, most results
shown in this book are from the last query (when more than one query is shown for the
syntax to try).

Nulls 2/3
There are two queries here showing how to handle nulls. Both queries produce an
identical result—but they use different syntax.

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 2 9

Syntax
-- handling nulls 2/3

select firstname + ' ' + isnull(middlename,'') + ' ' + lastname

as [Full Name] from dimcustomer

select firstname + ' ' +

case

when middlename is null then ''

else middlename + ' '

end

+ lastname as [Full Name] from dimcustomer

Result

Analysis
Now you can see the row for Ruben Torres. The first query uses the IsNull() function to
replace null values with an empty string. The second query uses the Is Null clause to do
the same. Please note that the IsNull() function is one word while the Is Null clause is
two words. The second query also introduces the Case function.

Nulls 3/3
You can also achieve the same effect with the Coalesce() function.

3 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- handling nulls 3/3 coalesce

select coalesce(firstname + ' ' + middlename + ' ' +lastname,

firstname + ' ' +lastname) as [Full Name] from dimcustomer

Result

Analysis
The syntax for Coalesce() is not quite as easy as that for the IsNull() function or the Is
Null clause. It accepts a list of expressions as parameters, separated by commas. It then
returns the first expression in the list that’s a non-null value. For Jon V Yang, it returns
FirstName and MiddleName and LastName. For Ruben Torres, it returns FirstName
and LastName (without the MiddleName).

Case 1/2
The Case function has many, many uses. It’s commonly used to change values or
to assign continuous values to buckets (if you are involved in SQL Server Analysis
Services [SSAS] data mining, you will recognize the latter as a technique called
discretization). Here, the Case function is being used for discretization.

C h a p t e r 1 : S e l e c t : S i n g l e Ta b l e 3 1

Syntax
-- case 1/2

select yearlyincome from dimcustomer

select

case

when yearlyincome <= 30000 then 'Low'

when yearlyincome <= 70000 then 'Medium'

else 'High'

end

as [Income Group]

from dimcustomer

Result

Analysis
The result of the first query shows a wide range of income values. The second query
shows only three values for the YearlyIncome column aliased as Income Group. Please
note that the original column name, YearlyIncome, is repeated after each When.

Case 2/2
This time, the Case function is used to change values.

3 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- case 2/2

select maritalstatus from DimCustomer

select

case maritalstatus

when 'M' then 'Married'

when 'S' then 'Single'

else 'Unknown'

end

as 'Married?'

from dimcustomer

Result

Analysis
The contents of the MaritalStatus column have been changed and aliased as ‘Married?’.
This is a subtly different syntax from the previous query. Here, the column name,
MaritalStatus, appears only once after Case—it does not appear after each When.
These are known respectively as simple and searched Case statements.

Where

Chapter 2

3 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

This chapter is devoted to the Where clause. It’s a huge subject area and could
easily fill a whole book, let alone a single chapter. Here you’ll discover how to
search records (relational database experts prefer to call them rows)—how to

find what you’re looking for. You’ll also see how to return subsets of your tables based
on the criteria you specify. Many of your own SQL queries are going to require Where
clauses—here you’ll become familiar with all of the important concepts and techniques
for returning just what you want (and being able to ignore what you don’t want).

Key concepts Searching for records, filtering, search criteria, date searching,
equalities and inequalities, null values, Unicode and ASCII, wildcards, full-text
searches

Keywords Where, And, Or, In(), Not, Between, Is Null, Is Not Null, Like,
Left(), N, Charindex(), Contains

All Rows in a Table
A query such as this will return all of the rows or records in the table. We are still using
the AdventureWorksDW2008 database.

Syntax
-- returns all rows

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

Result

C h a p t e r 2 : W h e r e 3 5

Analysis
The query returns four columns only—I’ve not used a star for all the columns. When
you have a subset of all possible columns in a table, it’s sometimes referred to as a
vertical partition of the table. If you examine the row count in the bottom-right corner,
you’ll notice that 18,484 records are returned. You can also click the Messages tab to
examine the row count.

Top
This query incorporates a Top clause to limit the number of rows returned.

Syntax
-- select just a few

select top 3 FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

Result

Analysis
Here there are only 3 rows, not the 18,484 we had in the previous query. When you
have a subset of the rows in a table, it’s often referred to as a horizontal partition.
Without any sorting of the data, you can’t predict exactly which 3 rows are going to
be returned. Also, please remember to include the schema name as you adapt this and
other queries for your own databases. As a reminder, it’s also good practice to terminate
the query with a semicolon.

Where =
Where clauses are used in many, many SQL queries. They are used to limit the number
of rows returned according to certain criteria.

Syntax
-- where one column =

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation = 'Partial College'

3 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
You should have 5,064 rows, not 18,484 rows. When you include a Where clause, you
are asking for a horizontal partition of the table. Many SQL developers refer to this as
a f ilter. Here the criterion for the filter is on the EnglishEducation column. Its data
type is nvarchar, so you need the criterion to be a string—strings are delineated by
single quotes. The column(s) used in the Where clause do not necessarily have to also
be in the Select list of columns.

Where <>
Instead of an equality in the Where clause, we have an inequality.

Syntax
-- where one column <>

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation <> 'Partial College'

C h a p t e r 2 : W h e r e 3 7

Result

Analysis
These are all of the customers who do not have an EnglishEducation of Partial College.
There are 13,420 rows (18,484 less 5,064).

Where And
Here we’ve introduced the And operator into the Where clause.

Syntax
-- where one column = with and

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation = 'Partial College'

and englisheducation = 'High School'

Result

3 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
You should discover that no rows at all are returned. The And operator is working on
the same column, EnglishEducation, twice. An individual customer, in this table design,
can only have one education level—it’s impossible for any customer to have two or
more education levels. That’s why no rows qualify for the criteria defined in the query.

Where <> And
This variation on the last query makes a little more sense.

Syntax
-- where one column <> with and

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation <> 'Partial College'

and englisheducation <> 'High School'

Result

Analysis
You should see 10,126 rows. These are for all those customers who do not have Partial
College and who do not have High School—thus, for example, a customer with an
education level of Bachelors qualifies.

C h a p t e r 2 : W h e r e 3 9

Where Or 1/2
We are now trying out the Or operator, rather than the And operator.

Syntax
-- where one column = with or 1/2

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation = 'Partial College'

or englisheducation = 'High School'

Result

Analysis
There should be 8,358 records. If you scroll down, you’ll see only those customers with
an EnglishEducation of either Partial College or High School. When we used the
And operator earlier, a similar query returned zero rows. And and Or operators use
different logic.

Where Or 2/2
Another Or operator has been added to extend the criteria for the Where clause.

4 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- where one column = with or 2/2

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation = 'Partial College'

or englisheducation = 'High School' or englisheducation = 'Graduate Degree'

Result

Analysis
This time, there are 11,547 records. You can see only those customers with an education
level of Partial College or High School or Graduate Degree. You may have to scroll
down a little to see examples of all three. If you have programmed in various languages,
you might recognize this as an inclusive Or.

Case Sensitivity
This is an identical query to the last, except the criteria are all in lowercase.

Syntax
-- case sensitive?

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation = 'partial college'

or englisheducation = 'high school' or englisheducation = 'graduate degree'

C h a p t e r 2 : W h e r e 4 1

Result

Analysis
Again you have 11,547 rows. If you see no records in your result, then your database is
case-sensitive—in which case, you’ll have to use the last query. If this query works for
you, your database is case-insensitive and you can use either this query or the previous
one to achieve the same outcome.

Where In
Typing out a long list of Or operators can get a little tedious. Our query here uses
a shorthand—the In keyword.

Syntax
-- in

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation in ('partial college','high school','graduate

degree')

4 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The In keyword requires a comma-separated list of values enclosed within parentheses.
You will still get 11,547 rows.

Where Not In
Our query this time shows how to use the Not operator.

Syntax
-- not in

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation not in ('partial college','high school',

'graduate degree')

C h a p t e r 2 : W h e r e 4 3

Result

Analysis
The Not operator, as you might expect, negates the criteria in a Where clause. No
matter how far down you scroll, you won’t see Partial College or High School or
Graduate Degree.

Where and Or 1/3
Where clauses can quickly become quite complex with various combinations of And,
Or, and Not operators. This query uses both And and Or.

Syntax
-- and with or 1/3

select FirstName, LastName, EnglishEducation, EnglishOccupation

from dimcustomer

where englisheducation = 'Partial College'

and englishoccupation = 'Clerical' or englishoccupation = 'Manual'

4 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The result shows Partial College with Clerical—there is no Clerical without Partial
College. The occupation Manual appears with any education level including Partial
College. To fully understand the logic of this, you need to realize that the And operator
takes precedence over the Or operator. If you are totally new to SQL, this is not at
all obvious—hopefully, the next query makes it a little clearer. If you reverse the And
and Or sections of the Where clause, you receive the same result. And takes logical
precedence over Or. It is good practice to always explicitly specify the precedence as in
the next query, then there is no ambiguity.

Where and Or 2/3
In this query, the And operator has been enclosed within parentheses.

Syntax
-- and with or 2/3

select FirstName, LastName, EnglishEducation, EnglishOccupation

from dimcustomer

where (englisheducation = 'Partial College'

and englishoccupation = 'Clerical') or englishoccupation = 'Manual'

C h a p t e r 2 : W h e r e 4 5

Result

Analysis
The result is the same as the last query. This version uses parentheses to explicitly show
the precedence of the And operator over the Or operator (in the previous query this
was implicit). Quite possibly, this version is easier to both read and understand.

Where and Or 3/3
Please note that the parentheses are in a different position.

Syntax
-- and with or 3/3

select FirstName, LastName, EnglishEducation, EnglishOccupation

from dimcustomer

where englisheducation = 'Partial College'

and (englishoccupation = 'Clerical' or englishoccupation = 'Manual')

4 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
You get a totally different result this time (2003 rather than 3639 rows)! All customers
have Partial College together with either Clerical or Manual. The parentheses now
explicitly give Or precedence over And. In complex Where clauses, it’s recommended
that you use parentheses wherever possible.

Where Comparing Columns
So far, you’ve been comparing columns to hard-coded, literal values. It’s also possible to
compare a column to another column in a Where clause.

Syntax
-- comparing two columns

select FirstName, LastName, TotalChildren, NumberChildrenAtHome

from dimcustomer

where TotalChildren < NumberChildrenAtHome

C h a p t e r 2 : W h e r e 4 7

Result

Analysis
An interesting result? I’m still not sure how TotalChildren can possibly be less than
NumberChildrenAtHome. Maybe the latter includes nephews and nieces and friends
of the customer’s own children?

Where with Numeric Column =
You can also have numeric criteria in a Where clause—after all, many of your columns
are likely to be numeric. There are four queries here for you to try—expect one of them
to fail.

Syntax
-- numeric column =

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome = 90000.00

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome = 90000

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome = 90,000

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome = '90,000'

4 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
In SQL, string values are enclosed in single quotes—numeric values are not. The first
two queries show the correct syntax for using a numeric criterion—YearlyIncome has a
data type of money. The third query may generate a syntax error—it’s confused by the
thousands separator for some collation settings. Strangely, the fourth query works. The
single quotes denote a string (which overcomes the thousands separator problem) and
then SQL Server kindly and implicitly converts the string into a number for you. The
syntax of the fourth query is not recommended.

Where with Numeric Column <>
This is a simple inequality criterion on a numeric column.

Syntax
-- numeric column <>

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome <> 90000

C h a p t e r 2 : W h e r e 4 9

Result

Analysis
The main thing to consider with numeric columns is the presence or absence of
decimal places. This query filters out YearlyIncome of 90000; it would not filter out a
YearlyIncome of 90000.01 (if it existed). You can check the exact data type of a column
by browsing in Object Explorer.

Where with Numeric Column >
Maybe you wish to see those customers with a YearlyIncome of more than 90000.

Syntax
-- numeric column >

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome > 90000

5 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
A fairly straightforward query—it returns 2198 rows.

Where with Numeric Column >=
Now, this query is for those customers with a YearlyIncome equal to or greater than
90000.

Syntax
-- numeric column >=

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome >= 90000

C h a p t e r 2 : W h e r e 5 1

Result

Analysis
This query returns 3040 rows.

Where with Non-numeric Column >=
This is similar to the last query except the Where clause contains a non-numeric
column.

Syntax
-- non numeric column >=

select FirstName, LastName, EnglishEducation from dimcustomer

where EnglishEducation >= 'High School'

5 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The EnglishEducation column is a string (nvarchar). Relational operators on strings
take into account alphabetic order. The result includes High School and Partial College;
it does not include Bachelors.

Where with Numeric Column <
Here, we have a simple variation on our continuing theme.

Syntax
-- numeric column <

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome < 90000

C h a p t e r 2 : W h e r e 5 3

Result

Analysis
This query returns 15444 rows.

Where with Numeric Column <=
There’s nothing new here—just some practice for you.

Syntax
-- numeric column <=

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome <= 90000

5 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This query returns 16286 rows.

Where with Numeric Column Range 1/3
It’s fairly easy to return customers with a range of incomes.

Syntax
-- numeric column > and <

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome > 90000 and YearlyIncome < 120000

C h a p t e r 2 : W h e r e 5 5

Result

Analysis
This query returns 1045 rows.

Where with Numeric Column Range 2/3
This time you have an inclusive range—it returns customers with incomes of 90000 and
120000 and all values between those two limits.

Syntax
-- numeric column >= and <=

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome >= 90000 and YearlyIncome <= 120000

5 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This query returns 2219 rows.

Where with Numeric Column Range 3/3
This query introduces the Between operator—it’s used in conjunction with the And
operator. Are you expecting 1045 or 2219 rows?

Syntax
-- numeric column between and

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome between 90000 and 120000

C h a p t e r 2 : W h e r e 5 7

Result

Analysis
This query returns 2219 rows. Between … And is inclusive.

Numeric with Or
A simple practice query.

Syntax
-- numeric column or

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome = 90000 or YearlyIncome = 120000

5 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This query returns 1174 rows.

Numeric with In
Another simple practice query.

Syntax
-- numeric column in

select FirstName, LastName, YearlyIncome from dimcustomer

where YearlyIncome in (90000,120000)

C h a p t e r 2 : W h e r e 5 9

Result

Analysis
This query returns 1174 rows.

Null Values 1/2
You may have null values in your own tables. If so, you need to know how to handle
them. There are two queries here.

Syntax
-- null values

select FirstName, MiddleName, LastName from DimCustomer

select FirstName, MiddleName, LastName from DimCustomer

where MiddleName is null

6 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The first query returns all records (18484) and includes the customers Jon Yang and
Ruben Torres. The second query returns 7830 records—Ruben Torres is there but Jon
Yang is not.

Null Values 2/2
This time we have added the Not logical operator.

Syntax
-- not null values

select FirstName, MiddleName, LastName from DimCustomer

where MiddleName is not null

C h a p t e r 2 : W h e r e 6 1

Result

Analysis
This query returns 10654 rows. Jon Yang has reappeared but Ruben Torres has gone.

Date Criteria
There are three queries here. The second and third queries show how to handle date
criteria.

Syntax
-- dates

select FirstName, LastName, BirthDate from DimCustomer

select FirstName, LastName, BirthDate from DimCustomer

where BirthDate = '1944-06-26'

select FirstName, LastName, BirthDate from DimCustomer

where BirthDate <= '1944-06-26'

Result

6 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
The result shown is from the second query. Dates as criteria can be problematic. Please
note they are enclosed in single quotes like strings. Also, note the format of the date
(YYYY-MM-DD, 1944-06-26)—this is just one of the formats you can use. Other
formats such as MM/DD/YYYY (06/26/1944) and DD/MM/YYYY (26/06/1944) may
cause difficulties for non-U.S. and U.S. users, respectively. You might want to experiment
further, maybe trying MMM DD, YYYY (Jun 26, 1944) or MMMM DD, YYYY (June
26, 1944) formats. A reasonably safe format is YYYYMMDD (19440626).

There are further complications. BirthDate has a date data type. You may well meet
other columns with a datetime data type. Such columns will also record the hours and
minutes and seconds and milliseconds. When developing your criteria, you will have to
pay attention to the time as well as the date—for example, 1944-06-26 00:00:00.000.

Wildcards
There may be occasions when you need to perform a wildcard search. The wildcard
operator is Like. One of the possible wildcard characters is %.

Syntax
-- like %

select FirstName, LastName from DimCustomer

select FirstName, LastName from DimCustomer

where LastName like 'L%'

Result

C h a p t e r 2 : W h e r e 6 3

Analysis
The wildcard character, %, finds zero, one, or more than one characters. The second
query here finds all customers whose LastName begins with the letter ‘L’—no matter
how many characters they have in their LastName.

Left()
Often, in SQL, you may find more than one way of doing the same thing. This query
returns the same rows as the previous query.

Syntax
-- alternative

select FirstName, LastName from DimCustomer

where left(LastName,1) = 'L'

Result

Analysis
The syntax uses the Left() system string function. Again, it finds all customers whose
LastName begins with the letter ‘L’.

6 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Not Like
We’ve introduced the Not operator before the Like operator.

Syntax
-- not like

select FirstName, LastName from DimCustomer

where LastName not like 'L%'

Result

Analysis
This finds all those customers whose LastName does not begin with the letter ‘L’.

Unicode Characters
Please note the use of the N prefix.

Syntax
-- like N%

select FirstName, LastName from DimCustomer

where LastName like N'L%'

C h a p t e r 2 : W h e r e 6 5

Result

Analysis
Some SQL Server string data types (for example, char and varchar) contain
ASCII characters only. Other string data types (for example, nchar and nvarchar)
contain Unicode characters. In general, the mapping from ASCII to Unicode happens
automatically. In certain circumstances, the mapping may not work. A discussion of
SQL Server collations and the difference between ASCII and Unicode is outside the
scope of this book. However, if you find that searches are not returning the expected
results, you may want to try the N prefix as shown in the syntax for this query. This
prefix means you are searching with a Unicode rather than an ASCII character. Many
graphical query designers automatically add the N prefix before strings for you.

More on Like
Here, the pattern for the wildcard search has changed.

Syntax
-- two letters

select FirstName, LastName from DimCustomer

where LastName like 'Li%'

6 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This finds all customers whose LastName begins with the letters ‘Li’.

Single Character Wildcard
The wildcard character is now an underscore (_) rather than a percent symbol (%).

Syntax
-- two letters, three in length

select FirstName, LastName from DimCustomer

where LastName like 'Li_'

C h a p t e r 2 : W h e r e 6 7

Result

Analysis
This is very similar to the last query, but it returns a different set of records. It shows
only those customers whose LastName begins with the letters ‘Li’ and whose LastName
is exactly three characters in length. The percent symbol (%) means any number of
characters, including zero characters. The underscore (_) means exactly one character.

Complex Wildcards 1/3
Sometimes you may need more complex wildcard searches.

Syntax
-- two letters, multiple times

select FirstName, LastName from DimCustomer

where LastName like 'L%' or LastName like 'M%' or LastName like 'N%'

6 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The result is all those customers whose LastName begins with any one of the letters
‘L’, ‘M’, and ‘N’. Typing in complex searches with repeated use of the Or operator can
get tedious.

Complex Wildcards 2/3
This is a much better alternative. Please note the use of square brackets.

Syntax
-- better

select FirstName, LastName from DimCustomer

where LastName like '[L-N]%'

C h a p t e r 2 : W h e r e 6 9

Result

Analysis
You have the same result as the last query, but the syntax is more elegant. The use of
square brackets denotes a range of values.

Complex Wildcards 3/3
This is the opposite of the last query. Note the use of the caret character (^).

Syntax
-- and not like a range

select FirstName, LastName from DimCustomer

where LastName like '[^L-N]%'

7 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The use of the caret character (^) denotes not in the range.

Working with Long Strings 1/2
All of the next few queries involve working with long strings. In order to do so, we are
going to use another table in another database. The new database is AdventureWorks2008
rather than AdventureWorksDW2008 (if you have SQL Server 2005 and not SQL
Server 2008, please use the AdventureWorks database rather than AdventureWorksDW).
To switch the database context, use the drop-down on the toolbar—then try the first
two queries here. Then switch the context back to AdventureWorksDW2008 and try the
third query.

Syntax
-- new table, new database

-- change database context to AdventureWorks2008

select * from ProductDescription

select * from Production.ProductDescription

-- or

select * from AdventureWorks2008.Production.ProductDescription

C h a p t e r 2 : W h e r e 7 1

Result

Analysis
The first query is always going to fail as the ProductDescription table is in the Production
schema (I am assuming that your default schema is dbo). The second query will work
provided the database context is correct. The third query is always going to work as it’s
an unambiguous fully qualified object name. Make sure your database context is back to
AdventureWorksDW2008 (or AdventureWorksDW in SQL Server 2005) for the rest
of the queries in this book.

Working with Long Strings 2/2
A simple Select resulting in two columns.

Syntax
-- long string

select ProductDescriptionID, Description

from AdventureWorks2008.Production.ProductDescription

7 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The Description column is quite large—in fact, it’s an nvarchar(400). We’re going
to use this column for some long string searches.

Like %
Please note the fully qualified table name in the syntax again.

Syntax
-- like %

select ProductDescriptionID, Description

from AdventureWorks2008.Production.ProductDescription

where Description like 'Alu%'

Result

Analysis
This finds four product descriptions starting with ‘aluminum’.

C h a p t e r 2 : W h e r e 7 3

Like %%
This is new—there are two wildcard characters in the query.

Syntax
-- like %%

select ProductDescriptionID, Description

from AdventureWorks2008.Production.ProductDescription

where Description like '%Alu%'

Result

Analysis
This is an interesting query. It still finds the four records where the description starts
with ‘aluminum’, but it also finds those rows where the word ‘aluminum’ appears in the
middle of the description. As well as locating ‘aluminum’ (U.S. spelling), it also locates
‘aluminium’ (French and U.K. spelling). Running a double wildcard character query like
this one against long string columns can be very inefficient, especially when you have
lots of records in the table. This inefficiency is mainly caused by the first wildcard.

7 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Charindex()
Just to give you some practice with another function, here’s the Charindex() system
string function.

Syntax
-- alternative

select ProductDescriptionID, Description

from AdventureWorks2008.Production.ProductDescription

where charindex('alu',Description,1) > 0

Result

Analysis
This gives you the same result as last time. This too can be very inefficient on long
strings when there are thousands of rows. Charindex() is searching from the first letter
of the description. If it finds the search text, it returns the start position of that text. If it
doesn’t find the search text, it returns zero.

Contains 1/3
The syntax here uses the Contains predicate in the Where clause. We are using a new
table, JobCandidate, which is in the HumanResources schema.

C h a p t e r 2 : W h e r e 7 5

Syntax
-- better, contains - another table

select JobCandidateID, Resume

from AdventureWorks2008.HumanResources.JobCandidate

where contains(Resume,'cycle')

Result

Analysis
This query finds the word ‘cycle’ anywhere within the Resume column of the table. The
Contains predicate assumes that full-text searching is enabled on your database and
that a Full Text Catalog exists on the table. Enabling full-text search and constructing
a Full Text Catalog on a table is beyond the scope of this book (but to point you in the
right direction, you right-click on a table and choose Full-Text index). The Resume
column has a data type of XML and has an awful lot of data in it. When you have long
strings to search (for example, XML, text, ntext, varchar(max), nvarchar(max))
and potentially lots of records, you will find full-text searching much faster than using
the Like operator with wildcards.

Contains 2/3
Here’s some more practice with using Contains.

Syntax
-- contains again

select JobCandidateID, Resume

from AdventureWorks2008.HumanResources.JobCandidate

where contains(Resume,'tricycles')

Result

7 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
Remember, you can click on the XML data hyperlink to read it.

Contains 3/3
You can even have wildcards with the Contains predicate.

Syntax
-- contains with wildcard

select JobCandidateID, Resume

from AdventureWorks2008.HumanResources.JobCandidate

where contains(Resume,'"cycle*"')

Result

Analysis
This is still going to be faster than using the Like operator. The wildcard operators for
Contains are different from those for Like. Instead of a percent symbol (%), you use an
asterisk (*). Also, note the double quotes embedded within the single quotes.

Order By

Chapter 3

7 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

If you need to sort the output of your SQL queries, you use the Order By clause.
That’s the topic for this chapter. It shows you how to sort alphabetically and
numerically. It also demonstrates how to extract the top (or best) and the bottom

(or worst) of the rows in your tables.

Key concepts Sorting records, sorting on alphabetic columns, sorting on
numeric columns, showing the top records, showing the bottom records

Keywords Order By, Asc, Desc, Top, Percent, With Ties

No Particular Order
Let’s start with a simple Select on two columns from the DimCustomer table.

Syntax
-- names in any old order

select LastName, FirstName from DimCustomer

Result

Analysis
Neither the LastName nor the FirstName columns are in any particular (alphabetical)
order. If you were to include the CustomerKey column, you might see that it appears to
be sorted numerically in ascending order. That column is the primary key of the table
and has a special type of index (clustered index) defined for it. Often, SQL Server will

C h a p t e r 3 : O r d e r B y 7 9

return data in the order of a cluster-indexed primary key. However, you can’t guarantee
that this will happen every time—the only way to be certain of some kind of sort is to
use an Order By clause.

Order By
Often, of course, you’ll want to sort the rows being returned—either alphabetically (on
strings) or numerically (on numeric columns). This query includes an Order By clause.

Syntax
-- order on lastname

select LastName, FirstName from DimCustomer

order by LastName

Result

Analysis
The LastName column is now sorted in ascending alphabetic order. You may have to
scroll down a long way to see the effect—there are an awful lot of customers with a
surname of Adams! You will also notice that the FirstName column is in no particular
order for each LastName.

Asc
The keyword Asc has been added to the Order By clause.

8 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- explicit asc

select LastName, FirstName from DimCustomer

order by LastName asc

Result

Analysis
The customer surnames are still sorted in ascending alphabetic order. As you might
have guessed, the keyword Asc means ascending. It’s the default setting for an Order
By clause, so you don’t have to include it. However, it’s explicit and it’s considered good
practice to include it.

Desc
In this query, the keyword Desc has been used instead of Asc.

Syntax
-- desc

select LastName, FirstName from DimCustomer

order by LastName desc

C h a p t e r 3 : O r d e r B y 8 1

Result

Analysis
Desc means descending. Your customers are now sorted in descending order based on
LastName. Desc is not the default for Order By, so you must specifically include it
when you require a descending sort. Notice, once again, that the FirstName column is
not sorted within each LastName.

Alternative Syntax
The Order By clause includes a number rather than a column name.

Syntax
-- alternative

select LastName, FirstName from DimCustomer

order by 1 desc

8 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The syntax means sort the first column (1) in the Select list in descending order. In this
example, that column is LastName—so this is the same as the last query. However,
this is not good practice—it’s quite possible that you might change the Select list at a
later date and end up sorting on a completely different column. I’ve only included this
version of the syntax for completeness—and just in case you inherit code from others
that adopts this approach.

Sorting on Two Columns 1/3
There is now a comma-separated list of columns in the Order By clause.

Syntax
-- on two columns

select LastName, FirstName from DimCustomer

order by LastName asc, FirstName asc

C h a p t e r 3 : O r d e r B y 8 3

Result

Analysis
You may have to scroll down to see various combinations of LastName and FirstName.
The rows are sorted by LastName, and within each LastName the rows are sorted by
FirstName.

Sorting on Two Columns 2/3
This query has both the Asc and Desc keywords.

Syntax
-- asc and desc

-- on two columns

select LastName, FirstName from DimCustomer

order by LastName asc, FirstName desc

8 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This is not the same as the previous query. The FirstName column is in descending
order within each LastName, which is sorted in ascending order.

Sorting on Two Columns 3/3
Here the two columns in the Order By clause have been reversed.

Syntax
-- reversing columns

select LastName, FirstName from DimCustomer

order by FirstName desc, LastName asc

C h a p t e r 3 : O r d e r B y 8 5

Result

Analysis
The primary sort is on FirstName descending. The secondary sort is on LastName
ascending. If you were also to reverse the two column names in the Select list, the
output would be easier to decipher.

Order By with Where
As you create your own SQL queries, you are not limited to single clauses or keywords.
This query shows how to combine a Where clause with an Order By clause.

Syntax
-- order with where

select LastName, FirstName from DimCustomer

where LastName <> 'Adams'

order by LastName asc, FirstName asc

8 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
We have lost all of the customers named Adams—and the rest of the customers are
sorted by LastName then FirstName. It’s important that the Order By clause appears
after the Where clause; it doesn’t work the other way around.

Numeric Sort
You can sort numerically as well as alphabetically. There are two queries here using the
YearlyIncome column.

Syntax
-- numeric column

select LastName, FirstName, YearlyIncome from DimCustomer

order by YearlyIncome

select LastName, FirstName, YearlyIncome from DimCustomer

order by YearlyIncome desc

C h a p t e r 3 : O r d e r B y 8 7

Result

Analysis
The first query is an (implicit) ascending sort; the second is a descending sort. The
YearlyIncome column is numeric (data type money). The result is from the second
query.

Top
Who is the customer (singular) with the highest income?

Syntax
-- top

select top 1 LastName, FirstName, YearlyIncome from DimCustomer

order by YearlyIncome desc

Result

8 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
There’s a Top clause in this query—it’s asking for the top one (1). But top one at what?
The Top clause works with the Order By clause (if you have that clause). Therefore, we
are asking for the top paid customer—here it’s Damien Chander (your answer may be
different). In fact, the result is not predictable, and the next query shows why.

You should be aware of an alternative syntax:

select top (1) LastName, FirstName, YearlyIncome from DimCustomer

order by YearlyIncome desc

This alternative syntax incorporates parentheses. This is, in fact, the recommended way to
do it. I have avoided this best practice, in this book, for reasons of backward compatibility.

Top with Ties
Who are the customers (plural) with the highest income? There are two queries here
for you to try.

Syntax
-- top with ties

select top 1 with ties LastName, FirstName, YearlyIncome from DimCustomer

order by YearlyIncome desc

select top 113 LastName, FirstName, YearlyIncome from DimCustomer

order by YearlyIncome desc

Result

C h a p t e r 3 : O r d e r B y 8 9

Analysis
The first query has the With Ties hint after the Top clause. Now you can see why
our previous query did not give the full picture. There are, in fact, 112 customers with
the same top income (170000). If you also run the second query, you can see that the
customer in row 113 has a lower income (160000).

Bottom
Which customers shared the lowest income?

Syntax
-- bottom

select top 1 with ties LastName, FirstName, YearlyIncome from DimCustomer

order by YearlyIncome asc

Result

Analysis
We’re still using Top to find the worst incomes. Unlike in the DMX and MDX
languages, there is no Bottom in SQL! Instead, you simply reverse the sort order. This
time we use Asc rather than Desc. There are 1155 customers who share the lowest
YearlyIncome of 10000.

9 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Top Percent 1/2
Sometimes you might be interested in top percentages.

Syntax
-- top percent

-- 1849 rows

select top 10 percent LastName, FirstName, YearlyIncome from DimCustomer

order by YearlyIncome desc

-- 2198 rows

select top 10 percent with ties LastName, FirstName, YearlyIncome

from DimCustomer

order by YearlyIncome desc

Result

Analysis
The first query includes the Percent keyword. The second query does too, but it also has
the With Ties qualifier. The first should return about 1849 rows and the second 2198
rows. There is a large number of customers with a YearlyIncome of 100000—you may
have to scroll down quite a way (or use ctrl-end).

C h a p t e r 3 : O r d e r B y 9 1

Top Percent 2/2
There is no Bottom Percent—you have to reverse the sort order in the Order By clause.

Syntax
-- bottom percent

-- 1849 rows

select top 10 percent LastName, FirstName, YearlyIncome from DimCustomer

order by YearlyIncome asc

-- 2922 rows

select top 10 percent with ties LastName, FirstName, YearlyIncome

from DimCustomer

order by YearlyIncome asc

Result

Analysis
There are two queries to try. If you run both, you can see that a lot of customers share a
salary of 20000.

Column Name
This is our final query in this chapter on sorting records.

9 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- don't have to show column

select LastName, FirstName from DimCustomer

order by YearlyIncome asc

Result

Analysis
The column you use in the Order By clause does not have to appear in the Select list as
well—though, if it doesn’t, as in this example, it makes the result a little more difficult
to interpret.

Select: Multiple Tables

Chapter 4

9 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

The previous three chapters concentrated on single-table queries. It’s unlikely
that you will always find the data you need in a single table. Often, your data
is split across two or more tables. This chapter shows the SQL required to put

tables together. The technique is one of performing joins on tables. There are quite a
few variations on the join technique. All of the variations (inner joins and outer joins
and more) are covered here. You will find the SQL useful when you later move on
to build views and stored procedures. If you join tables in a normalized database, the
joining is sometimes referred to as denormalization. Denormalization is an important
part of building SQL Server relational data warehouses (star schemas, for example) and
SSAS multidimensional cubes.

Key concepts Querying multiple tables, inner joins, left outer joins, right
outer joins, full outer joins, self joins, cross joins, matching records, nonmatching
records, table aliases

Keywords Inner Join, On, Left Outer Join, Right Outer Join, Full Outer Join

Single Table
If you’ve worked through the previous chapters, this should be revision. It’s a single
table Select to serve as a base query for some upcoming queries that are going to involve
more than just one table.

Syntax
-- single table

select EnglishProductName, ProductSubcategoryKey from DimProduct

where ProductSubcategoryKey is not null

Result

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 9 5

Analysis
You will notice that each product belongs to a particular product subcategory, denoted
by the ProductSubcategoryKey column. To simplify our introduction to multiple table
queries, we are ignoring those products that do not have a product subcategory. The
null values have been suppressed for now—we’ll see how to deal with them later in
the chapter. As the query stands, you should have 397 rows. It would be useful to see
the name of the products’ subcategories rather than their keys—we need another table
in order to do this.

If you know something about relational database design (in particular, normalization),
you might be surprised to see duplicate product names in the result. In fact,
AdventureWorksDW2008 (or AdventureWorksDW in SQL Server 2005) is not a
normalized database. It’s deliberately denormalized into a star schema (strictly speaking,
it’s a snowflaked star). Star and snowflake schemas are used in data warehousing and
building SSAS cubes. These topics are beyond the scope of this book. But, if you’re
interested, the same product name can appear more than once if other columns in
the record are different—for example, the same product can have a different price at
different times. Such a table is called a slowly changing dimension table.

How Not to Join Tables 1/3
In order to show the product subcategory name alongside the product name, this query
adds a second table (DimProductSubcategory, which contains the subcategory name).
We are trying to join the two tables together.

Syntax
-- how not to do it 1/3

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct, DimProductSubcategory

order by EnglishProductName

9 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This is not what we want! In the last query you saw 397 products—now it seems
there are 22422. In this query, the two tables are separated by a comma in the From
clause. This syntax is something called a cross join. It shows every single combination of
product name and product subcategory name—even when the combination is wrong.
Please take a look at the Adjustable Race product. Cross joins do have certain very
limited uses in SQL queries, but a cross join is not appropriate here. The Order By
clause is there purely to sort the records—nothing else.

How Not to Join Tables 2/3
Both the tables, DimProduct and DimProductSubcategory, have a column in common.
It’s called ProductSubcategoryKey. In this query, we’re trying to join the two tables
together on this shared column—to see if we can get the right match between products
and their subcategories.

Syntax
-- how not to do it 2/3

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct, DimProductSubcategory

where ProductSubcategoryKey = ProductSubcategoryKey

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 9 7

Result

Analysis
Well, it was a good try. Unfortunately, you see an ambiguous column name error. When
a column name is shared between tables, it must be qualified with the table name.

How Not to Join Tables 3/3
In the Where clause, the ambiguous column name has been qualified with the table
name. Does this look better?

Syntax
-- how not to do it 3/3

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct, DimProductSubcategory

where DimProduct.ProductSubcategoryKey =

DimProductSubcategory.ProductSubcategoryKey

Result

9 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
This is looking good. You are back with 397 products, and the products-to-subcategory
matches seem reasonable. I guess an AWC Logo Cap might belong to the Caps
subcategory. In an earlier query you saw a product called Adjustable Race—here, it
has disappeared. That’s because the Adjustable Race product does not have a product
subcategory.

If you inherit SQL queries written by others, you might see syntax similar to this.
The join between the tables is in the Where clause and it produces the correct result.
Yet it’s wrong! First, it does not conform to standard ANSI SQL rules. Second, as a
result of this nonconformance, it’s possible that SQL Server will not support it in future
versions. Thirdly, there is a more efficient and elegant and explicit method of joining
tables together—please look at the next query.

How to Join Tables 1/2
These are classic inner join queries. The syntax is substantially different from that of
our last query.

Syntax
-- how to do it 1/2

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct inner join DimProductSubcategory

on DimProduct.ProductSubcategoryKey =

DimProductSubcategory.ProductSubcategoryKey

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct join DimProductSubcategory

on DimProduct.ProductSubcategoryKey =

DimProductSubcategory.ProductSubcategoryKey

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 9 9

Result

Analysis
Yes, we get the same result—397 products and Adjustable Race missing. This time
the tables are separated by the Inner Join operator (or simply Join as in the second
example), not by a comma. The join is specified in the On clause. We are joining the
shared column across the two tables. Here, the column is ProductSubcategoryKey. In
the DimProductSubcategory table it’s a primary key. In the DimProduct table it’s a
foreign key. The DimProductSubcategory table is sometimes called the parent or the
one table. The DimProduct table is sometimes called the child or many table. One
subcategory can have many products.

If the child table appears first in the From clause, the On clause is from foreign key
to primary key. If the parent table appears first, the On clause is from the primary key
to the foreign key. Both varieties produce the same result.

How to Join Tables 2/2
This is the same query, but rewritten in a more elegant way.

Syntax
-- how to do it 2/2

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct as P inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

1 0 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The table names have been aliased as P and S. These aliases then substitute for the full
table names in the On clause. It makes the code more succinct and arguably easier to
read. However, once you have specified an alias, you must use the alias, not the original
table name in the On clause.

Ambiguity Problem
Maybe you do want to see the key value as well as the name of the subcategory for each
product. There are two queries. The first will fail. The second fixes the problem.

Syntax
-- ambiguity

select EnglishProductName, EnglishProductSubcategoryName,

ProductSubcategoryKey from DimProduct as P inner join

DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

select EnglishProductName, EnglishProductSubcategoryName,

S.ProductSubcategoryKey from DimProduct as P inner join

DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 0 1

Result

Analysis
The ProductSubcategoryKey column is shared between the two tables. It must be
fully qualified by the table name (or table alias) whether it’s in a Select list or in an On
clause.

Joining Three Tables
It’s almost as easy to join three tables together as it is two tables. The third table here is
DimProductCategory. It’s going to let us see not just product and product subcategory,
but product category as well.

Syntax
-- three tables

select EnglishProductName, EnglishProductSubcategoryName,

EnglishProductCategoryName from DimProduct as P inner join

DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

1 0 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The result seems totally reasonable. An AWC Logo Cap product belongs to the Caps
subcategory. The Caps subcategory belongs to the Clothing category.

To join two tables, you need one Inner Join (or Join) operator and one On clause.
In order to join three tables, you’ll require two Inner Join (or Join) operators and two
On clauses—and so on.

Complex Query 1/2
Here’s a practice query to help you extend your SQL to ask for more sophisticated
results. A Where clause has been added.

Syntax
-- with where

select EnglishProductName, EnglishProductSubcategoryName,

EnglishProductCategoryName from DimProduct as P inner join

DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes'

or EnglishProductCategoryName = 'Accessories'

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 0 3

Result

Analysis
The Where clause has to come after any joins.

Complex Query 2/2
Another practice query—with an extra Order By clause.

Syntax
-- with where and order

select EnglishProductName, EnglishProductSubcategoryName,

EnglishProductCategoryName from DimProduct as P inner join

DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes'

or EnglishProductCategoryName = 'Accessories'

order by EnglishProductName

1 0 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The Order By clause must come after the Where clause.

Outer Joins
Often, when you join tables, there may be a mismatch of records. For example, you may
have a product that does not belong to any product subcategory. Or you may have a
product subcategory that does not have any products belonging to it. Inner joins find
matched records across two or more tables. In order to find mismatched records as well,
you will need an outer join (not an inner join). The next few queries investigate outer
joins. Here’s a base query to get us started—for now, it’s still an inner join.

Syntax
-- two tables again 397 rows

select EnglishProductName, EnglishProductSubcategoryName,

S.ProductSubcategoryKey from DimProduct as P inner join

DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 0 5

Result

Analysis
There are 397 rows. If you scroll down through the records, you will notice that
every product (EnglishProductName) has an associated product subcategory
(EnglishProductSubcategoryName). Conversely, every product subcategory listed has
a product name next to it. This is an inner join—it includes an Inner Join (or Join)
operator.

There is no product called Adjustable Race—that’s a product with no matching
product subcategory.

Left Outer Join 1/2
There are two outer join queries here. To be specific, they are left outer joins. The queries
produce identical results—there is only a minor difference in the syntax. The first one
uses a Left Outer Join operator—the second one, a Left Join operator. They both mean
the same thing, but maybe it’s better to be more explicit and use the full Left Outer Join
version.

Syntax
-- now 606 records

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct as P left outer join DimProductSubcategory as S

1 0 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct as P left join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

Result

Analysis
This time there are more records, 606 in total. Now a product called Adjustable Race
is there—and it does not have a product subcategory. In fact, the query returns all
products, whether they have a matching subcategory or not. If you scroll all the way
down, you’ll see some products with subcategories and some without. Inner joins return
matching records; outer joins return matching and nonmatching records.

Our examples here are left outer joins. A left outer join returns all the records from
the left table. The left table is the table before (to the left of) the join operator. This is
sometimes called the preserved table.

Left Outer Join 2/2
It might be informative to see only those products that do not have a product
subcategory. This query has an additional Where with an Is Null clause.

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 0 7

Syntax
-- with is null 209 which is 606 minus 397

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct as P left outer join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

where EnglishProductSubcategoryName is null

Result

Analysis
You should see the Adjustable Race product again, with no matching product
subcategory. If you examine all the rows, none of them have a product subcategory.
There should be 209 rows. A couple of queries ago we had an inner join that returned
397 rows—that included just the products with subcategories. In the previous query
(left outer join), you saw 606 records—that included products both with and without
subcategories. Here we have 209 records (606—397); this includes a left outer join with
an Is Null clause and shows only those products that don’t have a subcategory.

Right Outer Join 1/2
This time, the join clause is Right Outer Join (or Right Join).

1 0 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- right outer 397 no mismatches

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct as P right outer join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

Result

Analysis
A right outer join returns all the records from the right-hand table—that’s the table
after (to the right of) the join clause. You should have 397 rows. That’s the same figure
as we had for an inner join. This suggests that every record in the right-hand table
(DimProductSubCategory) has a matching record in the left-hand table (DimProduct).
In other words, there are no subcategories that have no products belonging to them.

Right Outer Join 2/2
Here there’s an Is Null test in the Where clause.

Syntax
-- zero records

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct as P right outer join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

where EnglishProductName is null

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 0 9

Result

Analysis
The result of this query confirms our analysis of the previous query. There is no product
subcategory that does not contain any products.

Another Inner Join
We changed the tables involved—now there’s DimProductCategory with
DimProductSubcategory. This is an inner join.

Syntax
-- inner join again 37 records

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

Result

Analysis
There are 37 rows.

1 1 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Another Left Outer Join
Now, let’s try a left outer join.

Syntax
-- left 37

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

left outer join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

Result

Analysis
There are still 37 records. This means that every subcategory has a matching category.
There are no subcategories without a category.

Another Right Outer Join
This time, it’s a right outer join.

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 1 1

Syntax
-- right 37

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

right outer join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

Result

Analysis
This query also results in 37 rows! This suggests that every category has subcategories.
The inner, left outer, and right outer joins all give the same result. Our data is pretty
good! All categories have subcategories, and all subcategories have categories. There are
no orphan records—records in a child table without a matching record in the parent
table. And there are no parents without children. Real-world data is not always as
straightforward and clean. Our next few queries show how to find less friendly data.

Creating Mismatch 1/2
There are 37 product subcategories—you can verify this by running the Select
query first. Then please run the Insert query—this is going to add a new record to
the DimProductSubcategory table. If you try the Select again, you should have 38
subcategories.

1 1 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- creating mismatches 1/2

insert into DimProductSubcategory

values (null,'Racing Bikes','','',null)

-- 38 records not 37

select * from DimProductSubcategory

Result

Analysis
The result here is from the first query. You should see a new Racing Bikes
subcategory as a result of the second query. Don’t worry too much about the Insert
syntax—it’s covered later in the book. The Insert statement has created a new row
with an EnglishProductSubcategoryName of Racing Bikes. Please note that the
ProductCategoryKey column is null. The Racing Bikes subcategory does not have a
category—it’s an orphan record. If you’re concerned about changing your Adventure
Works data in this way, rest assured we remove this new record a little later.

Creating Mismatch 2/2
There are four product categories—you may want to try the Select query first. After
running the Insert query, try again with the Select. You should have five categories.

Syntax
-- creating mismatches 2/2

insert into DimProductCategory

values (null,'Trikes','','')

-- 5 records not 4

select * from DimProductCategory

Result

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 1 3

Analysis
Again, the result is from the first query. We are going to undo this change later, if
you are not keen to alter the original Adventure Works data. There is a new row (if
you run the second query) with an EnglishProductCategoryName of Trikes. As it
stands, this is a parent record with no children. We don’t have any subcategories in the
DimProductSubcategory table that belong to our new Trikes category. You’ll notice
that the new record has a ProductCategoryKey value—this is possibly, though not
necessarily, 5. The value for that column was not specified in the Insert statement.
In fact, that column is set to be autonumbered in the table design—in SQL Server, it’s
called an identity column.

Inner Join
Our query is an inner join on the two amended tables.

Syntax
-- inner 37

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

Result

1 1 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
There are 37 rows as before. There is no record with a subcategory of Racing Bikes.
There is no record with a category of Trikes.

Left Outer Join 1/2
This is a left outer join. The table on the left is DimProductSubcategory.

Syntax
-- left outer 38

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

left outer join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

Result

Analysis
You have 38 records now, not 37. You can see the subcategory Racing Bikes with no
matching category as the extra record (you may have to scroll down to see it).

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 1 5

Left Outer Join 2/2
This is the same left outer join, but with a null test.

Syntax
-- left outer is null 1

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

left outer join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName is null

Result

Analysis
There is only one record to see. This is our new orphan record for Racing Bikes. If you
combine outer joins with an Is Null clause, it’s a good way to spot orphan records in
a table.

Right Outer Join 1/2
This is a right outer join. The table on the right is DimProductCategory.

Syntax
-- right outer 38

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

right outer join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

1 1 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
We have 38 rows. If you recall, the inner join returned 37 records. The extra record is
for the Trikes category—it doesn’t have a matching subcategory. But you won’t see the
subcategory Racing Bikes. This is a right outer join—it’s pulling all records from the
category table, not from the subcategory table, which is on the left.

Right Outer Join 2/2
This is the same right outer join, but with a null test.

Syntax
-- right outer is null 1

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

right outer join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductSubcategoryName is null

Result

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 1 7

Analysis
There is only the record for the Trikes category. If you combine outer joins with an Is
Null clause, it’s a good way to spot records in a table that don’t have children in another
table.

Full Outer Join 1/2
Here’s some new join syntax for you. These two queries are full outer join queries (Full
Outer Join or Full Join).

Syntax
-- full outer 39

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

full outer join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

full join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

Result

1 1 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
You now have 39 rows. If you scroll down, you’ll see the Racing Bikes subcategory with
no category, and the Trikes category with no subcategory. Our original inner join gave
37 rows. Our left join returned 38 records: 37 rows plus Racing Bikes from the left
table. Our right join gave 38 records: 37 plus Trikes from the right table. The full outer
join, in this query, returns 39 records—37 plus Racing Bikes from the left table and
Trikes from the right table. A full outer join returns all records from both the left table
and the right table, including matched and mismatched records.

Full Outer Join 2/2
This is the full outer join with a double null test.

Syntax
-- full outer with two is nulls 2 records

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

full outer join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductSubcategoryName is null

or EnglishProductCategoryName is null

Result

Analysis
Now you have just two rows. These are the two new mismatched records (one from
each of the two tables). This is a standard and very useful query to try and discover
mismatched records in your tables. Please note that the Is Null clause is used twice on
two different columns.

Cleanup 1/2
We’ve finished our discussion of full outer joins, so it’s time to reset your Adventure
Works database. The first query removes the new subcategory, Racing Bikes.

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 1 9

Syntax
-- clean up back to 37

delete from DimProductSubcategory

where EnglishProductSubcategoryName = 'Racing Bikes'

select * from DimProductSubcategory

Result

Analysis
The result here is from the first query. If you run the Select after the Delete, you should
be back to 37 records in the DimProductSubcategory table and Racing Bikes should
have disappeared. Delete syntax is covered later in this book.

Cleanup 2/2
The first query, here, deletes the new record for Trikes.

Syntax
-- clean up back to 4

delete from DimProductCategory

where EnglishProductCategoryName = 'Trikes'

select * from DimProductCategory

Result

Analysis
The second Select query (please run the Delete first—which is shown in the result)
should confirm that you are back to four records in the DimProductCategory table.
Trikes should have gone.

1 2 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Self Join 1/6
Sometimes, a table may be joined to itself. It has a foreign key that points to the
primary key in the same table. A classic example is an employees’ table—for example,
DimEmployee. Such a table is often referred to as a self-join table (other terms include
hierarchical table, recursive table, and parent-child table). Please try the following Select
on the DimEmployee table.

Syntax
-- self join base query (Rob Walters twice)

select EmployeeKey, FirstName, LastName, ParentEmployeeKey, FirstName,

LastName from DimEmployee

Result

Analysis
There are 296 rows. The repetition of the FirstName and LastName columns is
deliberate—we’re going to use these columns in later queries. The primary key is
EmployeeKey and the foreign key is ParentEmployeeKey. The employee called Guy
Gilbert has a primary key of 1 and a foreign key of 18. This means he works for the
employee with a primary key of 18. That person is Jo Brown, who in turn reports to
Peter Krebs. If you understand that, then you understand self joins.

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 2 1

Some employees (for instance, Rob Walters) appear twice. If you are interested,
DimEmployee is a slowly changing dimension table. That is not relevant to our self-
join queries here, so you can ignore the duplication of employee names.

Self Join 2/6
The first step in constructing a self join is to join the table to itself. DimEmployee is on
the left and the right of the inner join.

Syntax
-- self join

select EmployeeKey, FirstName, LastName, ParentEmployeeKey, FirstName,

LastName from DimEmployee as E inner join DimEmployee as M

on E.ParentEmployeeKey = M.EmployeeKey

Result

Analysis
When you join a table to itself, it has to be aliased (here, I’ve used the aliases E and M).
But then you will receive ambiguity error messages on the column names, which is what
has happened here.

Self Join 3/6
There are two queries here. Try both if you wish; they are very similar.

Syntax
-- correct columns

select E.EmployeeKey, E.FirstName, E.LastName, E.ParentEmployeeKey,

M.FirstName, M.LastName from DimEmployee as E inner join DimEmployee as M

1 2 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

on E.ParentEmployeeKey = M.EmployeeKey

select E.EmployeeKey, E.FirstName, E.LastName, E.ParentEmployeeKey,

M.EmployeeKey, M.FirstName, M.LastName from DimEmployee as E

inner join DimEmployee as M on E.ParentEmployeeKey = M.EmployeeKey

Result

Analysis
Notice that the table aliases have been used to qualify the column names (for example,
E.LastName). If you can find Guy Gilbert, you can confirm that he does indeed work for
Jo Brown. This time we have 295 rows, not 296 as we did earlier—there is a mismatched
record somewhere.

It’s important to point out that this is not the only way to query a self-join table and
join it back to itself. As you progress in your SQL knowledge, you may also want to
consider recursive common table expressions (CTEs). CTEs possibly provide a more
elegant (but more difficult) approach.

Self Join 4/6
Here, we have some simple column aliases to make the output easier to read.

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 2 3

Syntax
-- some tidying up 295 employees

select E.EmployeeKey, E.FirstName, E.LastName,

M.FirstName as ManagerFirstName, M.LastName as ManagerLastName

from DimEmployee as E inner join DimEmployee as M

on E.ParentEmployeeKey = M.EmployeeKey

Result

Analysis
There are still only 295 rows.

Self Join 5/6
What if you want the record at the top of a self-join table’s hierarchy? You might be
tempted to only return the record with a null entry for its manager (that should return
the CEO!).

Syntax
-- who is CEO?

select E.EmployeeKey, E.FirstName, E.LastName,

M.FirstName as ManagerFirstName, M.LastName as ManagerLastName

from DimEmployee as E inner join DimEmployee as M

on E.ParentEmployeeKey = M.EmployeeKey

where M.LastName is null

1 2 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
There are no records—maybe there is no CEO.

Self Join 6/6
There are two queries here. Both use a left outer join rather than an inner join.

Syntax
-- 296

select E.EmployeeKey, E.FirstName, E.LastName,

M.FirstName as ManagerFirstName, M.LastName as ManagerLastName

from DimEmployee as E left outer join DimEmployee as M

on E.ParentEmployeeKey = M.EmployeeKey

select E.EmployeeKey, E.FirstName, E.LastName,

M.FirstName as ManagerFirstName, M.LastName as ManagerLastName

from DimEmployee as E left outer join DimEmployee as M

on E.ParentEmployeeKey = M.EmployeeKey

where M.LastName is null

Result

Analysis
The first query returns an extra record; there are 296 rather than 295 rows. The second
query (the result shown) has an Is Null clause. So, it appears that the CEO is Ken
Sánchez.

Cross Join 1/3
The two Select queries return a list of categories and a list of subcategories. We’re going
to use these tables shortly to examine cross joins.

Syntax
-- cross join

-- 4 categories

C h a p t e r 4 : S e l e c t : M u l t i p l e Ta b l e s 1 2 5

select * from DimProductCategory

-- 37 subcategories

select * from DimProductSubcategory

Result

Analysis
There are 4 categories (result shown) and 37 subcategories.

Cross Join 2/3
This is an inner join between subcategories and categories.

Syntax
-- 37 in inner join

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory as S

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

Result

1 2 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
The result has 37 rows. In general, with an inner join, the number of records is equal to
the number of records in the table with the most records.

Cross Join 3/3
This is a cross join. There is no join syntax as such in the example, and the table
names are comma-separated in the From clause. You might see this if you inherit code,
although you can also use the keywords Cross Join.

Syntax
-- 148 in cross join

select EnglishProductSubcategoryName, EnglishProductCategoryName

from DimProductSubcategory, DimProductCategory

order by EnglishProductSubcategoryName

Result

Analysis
The number of rows returned by a cross join is the multiplication of the numbers of
records in the tables. Here, you should get 148 rows (that is, 4 multiplied by 37).

Aggregates

Chapter 5

1 2 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

In this chapter, we look at how to aggregate data. Aggregating data includes
counting, totaling, and averaging data. You may also be interested in how to
calculate maximum and minimum values. All of these topics are covered in

this chapter. We’ll be doing the aggregations on all of the records in a table—so, a
summation, for example, will result in a grand total. A later chapter, Chapter 8 on
Group By, extends this chapter and shows how to perform aggregations against subsets
of tables—in other words, how to calculate subtotals as well as grand totals. Being able
to produce aggregates makes your reports for end users more informative—they can
see the overall picture rather than lots of individual bits of data. Aggregation is also an
important concept to understand as you begin to develop your data warehouses.

Key concepts Aggregating data, totaling data, counts, minimums, maximums,
sums, averages, standard deviations

Keywords Count(), Count_Big(), Count(distinct), Min(), Max(), Sum(), Avg(),
StDev()

Base Query
This is your base query and table (DimProduct) for some subsequent aggregation
exercises.

Syntax
-- 606 records

select * from DimProduct

Result

C h a p t e r 5 : A g g r e g a t e s 1 2 9

Analysis
The query returns 606 rows.

Count(*) 1/2
The two queries here both give the same result.

Syntax
-- count(*) 606

select COUNT(*) from DimProduct

select COUNT_BIG(*) from DimProduct

Result

Analysis
Our last query returned 606 rows. These two queries return just 1 row each. That single
row contains the count of the number of records in the table (606). Count() returns
an int data type while Count_Big() returns a bigint data type. If you are expecting
more than about two billion records to be in the table, you must use Count_Big() rather
than Count(). Both varieties in the syntax here have an asterisk (*) as a parameter. This
has a very specific meaning. It will count a record even if it’s a duplicate of another
record—a duplicated record counts as two. In addition, it will also count any records
that have null values in every single column.

Count(*) 2/2
Aggregate functions, like Count(), do not result in very friendly column names. Our
query here employs a simple alias.

Syntax
-- aliases good for all aggregates

select COUNT(*) as [Number of Records] from DimProduct

Result

1 3 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
Your column header caption should look a little better. As a reminder, the square
brackets are obligatory if there are spaces in the column alias name.

Count(column) 1/3
Instead of Count(*), you might like to try Count(EnglishProductName).

Syntax
-- count(column) 606

select COUNT(EnglishProductName) from DimProduct

Result

Analysis
We get the same answer. The parameter for the Count() function this time is a column
name. It too will count a duplicated record as two. However, it will ignore records that have
a null value for the specified column—its treatment of nulls is different from Count(*).

Count(column) 2/3
In the syntax there is a simple change to the column name.

Syntax
-- and again 397

select COUNT(ProductSubcategoryKey) from DimProduct

Result

Analysis
The aggregation is 397 rather than 606. Just over two hundred records in the DimProduct
Table have a null value in the ProductSubcategoryKey column—these records are ignored
by the Count() function as it has a column name for a parameter. If you go to the Messages
tab, you will see that nulls are eliminated.

C h a p t e r 5 : A g g r e g a t e s 1 3 1

Count(column) 3/3
The keyword Distinct precedes the column name in the Count() function.

Syntax
-- count distinct 37

select COUNT(distinct ProductSubcategoryKey) from DimProduct

Result

Analysis
The answer is 37 rather than 397. Many of the values in the ProductSubcategoryKey
column are duplicates. The Distinct keyword causes the Count() function to ignore
the duplicates. The syntax here is Count(Distinct ProductSubcategoryKey), and in the
previous query it was Count(ProductSubcategoryKey). As an alternative to the latter
you can also use Count(All ProductSubcategoryKey).

Min() 1/2
This is the Min() function applied to an alphabetic column.

Syntax
-- min alpha

select MIN(EnglishProductName) from DimProduct

Result

Analysis
EnglishProductName has a data type of nvarchar. It’s a string, and Min() applied to
a string will return the first one in alphabetical order.

1 3 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Min() 2/2
This is the Min() function applied to a numeric column.

Syntax
-- min numeric excludes nulls

select MIN(ListPrice) from DimProduct

Result

Analysis
ListPrice has a data type of money. It’s numeric, and Min() applied to a number
will return the lowest number. Some of the records have a null value in the ListPrice
column—Min() ignores null values.

Max() 1/5
This is the Max() function operating on a string.

Syntax
-- max alpha

select MAX(EnglishProductName) from DimProduct

Result

Analysis
It returns the last one in the alphabetical order.

Max() 2/5
Now for the Max() function on a numeric column.

C h a p t e r 5 : A g g r e g a t e s 1 3 3

Syntax
-- max numeric

select MAX(ListPrice) from DimProduct

Result

Analysis
This is the price of the most expensive product.

Max() 3/5
Perhaps you want to know the maximum price and the product(s) to which it applies.

Syntax
-- problem

select MAX(ListPrice), EnglishProductName from DimProduct

Result

Analysis
Unfortunately, this query simply doesn’t work. You can’t include an aggregate function
as part of a normal Select column list. You get to solve this problem shortly.

Max() 4/5
The aggregate function has been removed from the Select query.

Syntax
-- one solution

select ListPrice, EnglishProductName from DimProduct

where ListPrice = 3578.27

1 3 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Now we know the most expensive products and their price. But in order to write the
query you had to use the price in the Where clause. The query assumes that you already
know the maximum price, which you might not—unless you write two queries. Even
then, the maximum price is hard-coded; it could easily change over time.

Max() 5/5
Here’s a solution to the problem. We’ve not hard-coded the maximum price. We’ve not
written two separate queries—well, not quite. It’s a query within a query.

Syntax
-- better solution - subquery covered later

select ListPrice, EnglishProductName from DimProduct

where ListPrice = (select MAX(ListPrice) from DimProduct)

Result

Analysis
The inner query (called a subquery) establishes the maximum price. The outer query
uses that maximum price to return the name of the products. Subqueries are covered
in a later chapter in this book. I’ve introduced one here to show a common technique
when working with aggregate values—how to display an aggregate in a normal column
list. As is often the case, there are many other ways of doing this. Hopefully, this
solution is enough to get you started.

C h a p t e r 5 : A g g r e g a t e s 1 3 5

Sum() 1/4
We’re going to look at a couple of queries using the Sum() function. Here’s a Select on
a new base table (FactResellerSales) to get us started.

Syntax
-- new table

select SalesAmount, CarrierTrackingNumber from FactResellerSales

Result

Analysis
The SalesAmount column is numeric with a data type of money. The
CarrierTrackingNumber (despite its name) is not numeric—it’s a string with
a data type of nvarchar.

Sum() 2/4
Let’s try the Sum() function on the string column.

Syntax
-- sum with alpha

select SUM(CarrierTrackingNumber) from FactResellerSales

1 3 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
As you might have expected, it doesn’t work. It makes no sense to try to add
(as a summation as opposed to a concatenation) strings together.

Sum() 3/4
This is the Sum() function operating on a numeric column.

Syntax
-- sum with numeric

select SUM(SalesAmount) from FactResellerSales

Result

Analysis
Now you know what the total sales figure is.

Sum() 4/4
This time, there are four queries. Expect the third one to fail.

Syntax
-- formatting

select SUM(SalesAmount) as [Total Sales] from FactResellerSales

select cast(SUM(SalesAmount) as decimal(17,2)) as [Total Sales]

from FactResellerSales

select '$' + cast(SUM(SalesAmount) as decimal(17,2)) as [Total Sales]

from FactResellerSales

select '$' + cast(cast(SUM(SalesAmount) as decimal(17,2)) as varchar)

as [Total Sales] from FactResellerSales

Result

C h a p t e r 5 : A g g r e g a t e s 1 3 7

Analysis
Maybe the fourth Select is the best one. It’s showing some of the formatting available
to you, as you work with aggregates. Please note the double Cast() function in the last
query. The third query fails because you can’t concatenate a varchar directly to a
numeric column—you have to have an additional cast, as shown in the fourth query.

Avg() 1/2
To establish average values, you use the Avg() function.

Syntax
-- avg with alpha

select AVG(CarrierTrackingNumber) from FactResellerSales

Result

Analysis
Avg() does not work with strings.

Avg() 2/2
Avg() does work with numeric columns.

Syntax
-- avg with numeric

select AVG(SalesAmount) from FactResellerSales

Result

Analysis
Avg() gives an average. More specifically, it returns the mean, not the mode or the median.

1 3 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

StDev()
StDev() is used to work out standard deviations. There are three queries here.

Syntax
-- stdev

select STDEV(SalesAmount) from FactResellerSales

select STDEV(all SalesAmount) from FactResellerSales

select STDEV(distinct SalesAmount) from FactResellerSales

Result

Analysis
The first two queries are functionally equivalent (the result shown); the All keyword is
optional. The third query returns a different result—the keyword Distinct causes the
calculation to ignore duplicate SalesAmount values.

Some Statistics
This is our last query in this chapter devoted to aggregates. It displays more than one
aggregation.

Syntax
-- more than one aggregate function

select SUM(SalesAmount) as [Total Sales], AVG(SalesAmount)

as [Average Sale], STDEV(all SalesAmount) as [All SD],

STDEV(distinct SalesAmount) as [Distinct SD] from FactResellerSales

Result

Analysis
You can combine different aggregation functions in one Select list. You can even use
different columns, provided those columns are all aggregated in some way.

Select: New Tables

Chapter 6

1 4 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

In this chapter we examine table creation. There are many ways of creating tables—
here we concentrate on creating tables using a Select statement (Select Into).
A later chapter shows how to do so with a Create statement. You’ll learn how to

create both permanent and temporary tables. Furthermore, you’ll meet three different
types of temporary tables and have a quick look at the tempdb system database. New
permanent and temporary tables have many uses. They can be used to denormalize and
join tables for reporting purposes. In addition, they are invaluable for testing new designs
and testing your SQL when you prefer not to work against live production tables. Also,
when your SQL becomes very complex, you can break it down into simpler steps and
work against a series of temporary staging tables.

Key concepts Selecting into new tables, permanent tables, local temporary
tables, global temporary tables, semipermanent temporary tables, tempdb database,
deleting data, dropping tables

Keywords Select Into, #, ##, tempdb, Delete, Drop Table

Base Query
The records returned by this query are going to be used in this chapter to show a variety
of methods for creating new tables with a Select statement.

Syntax
-- select

select EnglishProductName, ListPrice - DealerPrice as Discount

from DimProduct

where ListPrice - DealerPrice is not null

order by EnglishProductName

C h a p t e r 6 : S e l e c t : N e w Ta b l e s 1 4 1

Result

Analysis
There are many different ways of creating tables. You can, of course, create tables
graphically in SSMS. As this is a book about queries, graphical methods are outside
its scope. To create queries directly from the SQL language, you often will use Create
Table syntax—this is covered in a later chapter on data definition language (DDL).
Create Table results in an empty table, which later has to be populated with records.
The next few queries in this chapter show some alternative methods for creating tables
(both permanent and temporary tables). The tables are going to be created using a Select
statement—this gives the option of populating the table with records as it’s created.

Select Into
This query is going to create a new table called NewDimProduct. There is an Into
clause before the From clause.

Syntax
-- select into

select EnglishProductName, ListPrice - DealerPrice as Discount

into NewDimProduct

from DimProduct

where ListPrice - DealerPrice is not null

1 4 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Here, you have a Select statement that doesn’t return any records. The result simply
informs you how many records have been inserted into the new table. Select Into will
fail if the table already exists. When the table already exists, you can use Insert Into
Select From. This topic is covered later in the book.

Testing New Table
This is a simple Select (without the Into clause) query to test the new table.

Syntax
-- test

select * from NewDimProduct

Result

Analysis
The records returned are the same as those in our first base query at the start of the
chapter. Select Into not only creates the structure of a new table, but it also copies the

C h a p t e r 6 : S e l e c t : N e w Ta b l e s 1 4 3

data from the source table into the new table. The new table is permanent—you can
see it listed in Object Explorer (you may have to right-click and choose Refresh first).
The new table has some but not all of the features of the source table. For example, it
has the same columns (those specified in the Select column list) with the same data
types. It has the same number of records and the same data. If one of the columns has
an identity property, this is copied too. However, it will not have any of the keys (for
instance, a primary or foreign key) nor any of the indexes from the original table.

If the Select Into is based on two joined tables, you are creating a single table from
two source tables. Some people use this method to denormalize data and to create
tables for reporting. You can also accomplish this by creating views. Views are discussed
in a later chapter. The difference is that a view does not usually create a new permanent
object (for simplicity, I am ignoring materialized indexed views, which are a special
case). Here, you have a permanent object that persists until it’s explicitly dropped.

Deleting from New Table
Please try the Delete query first and then run the Select query.

Syntax
-- delete

delete NewDimProduct

select * from NewDimProduct

Result

Analysis
The Delete statement does not delete the table! You can still see the column names
when you execute the Select query. A Delete statement does delete data from a table—
there are no rows to be seen.

Dropping New Table
Execute the Drop Table query and then try the Select query. Please be careful that you
use Drop Table on the correct table, NewDimProduct, not DimProduct.

1 4 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- drop

drop table NewDimProduct

select * from NewDimProduct

Result

Analysis
Drop Table is different from Delete. Delete removes data but leaves the table intact.
Drop Table removes the table completely—if the table contains data, then the data is
removed when the table is removed. The Select statement error message confirms that
the table no longer exists. If you right-click and choose Refresh in Object Explorer,
you can verify that our new table is gone. Maybe a word of caution is in order, if you
are using Object Explorer. When you right-click on a table, there is a Delete option in
the context menu. This is not the equivalent of the SQL Delete statement; it’s actually
the equivalent of the SQL Drop Table statement. Please don’t experiment on any
production database tables!

Creating an Empty Table
You have just created a new table containing data using Select Into. You can also create
a new table that does not contain data with Select Into. There is a Where clause at the
end of this query.

Syntax
-- empty table

select EnglishProductName, ListPrice - DealerPrice as Discount

into NewDimProduct

from DimProduct

where 1 = 0

Result

C h a p t e r 6 : S e l e c t : N e w Ta b l e s 1 4 5

Analysis
The result shows that no records were copied into the new table. The Where clause
is never true, so no rows are retrieved by the Select. However, the Select Into does
create an empty table structure. This might be handy when you need a few tables that
are similar. It’s also useful when you want to experiment with a table design—and are
rightly wary of doing so on a live production table.

Testing New Table
A simple Select.

Syntax
-- test

select * from NewDimProduct

Result

Analysis
The table exists but has no records. You know it’s there as there’s no error message and
the column names are returned as column header captions.

Dropping New Table
Please run these two queries separately.

Syntax
-- drop

drop table NewDimProduct

select * from NewDimProduct

Result

Analysis
The new empty table is gone.

1 4 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Local Temporary Table
There are a total of four queries here. First, there’s a Select Into to create a new table. The
new table name has a # prefix. Second, there’s a normal Select to test the table. Third,
there’s a Drop Table to remove the table. Fourth, there’s a normal Select to verify that the
new table has been removed. Before you run the third query, Drop Table, please read the
Analysis for this query.

Syntax
-- local temporary

select EnglishProductName, ListPrice - DealerPrice as Discount

into #NewDimProduct

from DimProduct

where ListPrice - DealerPrice is not null

order by EnglishProductName

-- test

select * from #NewDimProduct

-- drop

drop table #NewDimProduct

select * from #NewDimProduct

Result

C h a p t e r 6 : S e l e c t : N e w Ta b l e s 1 4 7

Analysis
The # prefix to the new table name results in the creation of a new temporary table (the
ones you created in earlier queries were permanent tables). A single # prefix means a
local temporary table. Before you run the Drop Table statement, it’s worth considering
a few things. As the table is temporary, it will automatically disappear if you close your
query editor window—so a Drop Table is not required. I’ve used Drop Table only to save
you closing your editor window. Also, as it’s a temporary table, it lives in your tempdb
database. You can view it in Object Explorer—open the System Databases folder, then
tempdb, and expand Temporary Tables (you may need to right-click and choose Refresh).
It’s a local temporary table; it can only be seen from the current query editor window. If
you were to open a new window, a normal Select on the table would fail.

Try the second Select to verify that the table exists and contains data. Then drop the
table and try selecting again to confirm it has disappeared.

Temporary tables are often used as work tables or staging tables or test tables. Maybe
you want to experiment with some SQL, but prefer not to do so on a production table.

Global Temporary Table
The new table name in the Select Into query has a ## prefix.

Syntax
-- global temporary

select EnglishProductName, ListPrice - DealerPrice as Discount

into ##NewDimProduct

from DimProduct

where ListPrice - DealerPrice is not null

order by EnglishProductName

-- test

select * from ##NewDimProduct

-- drop

drop table ##NewDimProduct

select * from ##NewDimProduct

1 4 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The result shown is from the second query. A double ## prefix means a global temporary
table. It will reside in your tempdb database until you close the query editor window
or issue a Drop Table. In those respects, it’s the same as a local temporary table. The
difference lies in its scope. A local temporary table is only accessible from the current
query editor window (called a session). On the other hand, a global temporary table
is visible (during its lifetime) from other query editor windows or sessions. Global
temporary tables can also be used for testing or as staging tables when you want to start
a new SQL query in a new window.

Semipermanent Temporary Table
Take a careful look at the first query here. It’s another Select Into but the table name
is qualified with a schema name and a database name. The database in question is the
system database, tempdb.

Syntax
-- semi-permanent temporary

select EnglishProductName, ListPrice - DealerPrice as Discount

into tempdb.dbo.NewDimProduct

from DimProduct

where ListPrice - DealerPrice is not null

C h a p t e r 6 : S e l e c t : N e w Ta b l e s 1 4 9

order by EnglishProductName

-- test

select * from tempdb.dbo.NewDimProduct

-- drop

drop table tempdb.dbo.NewDimProduct

select * from tempdb.dbo.NewDimProduct

Result

Analysis
The result is from the second query. You are explicitly creating the new table in tempdb.
But you won’t see it in Object Explorer underneath the tempdb Temporary Tables
folder. Rather, it’s under the tempdb Tables folder. It’s a permanent table in tempdb
(your temporary database). I have never discovered the official name for this type of
table—so I call them semipermanent temporary tables! They are not truly temporary—
if you close the query editor window, the tables are still there for other query editor
windows and users. They act just like permanent tables in normal production databases.
But then, they are not truly permanent—if you stop and restart SQL Server, they are
erased from tempdb. The tempdb database is always re-created and cleared as a result
when SQL Server starts up. Again, these tables can be used as test or staging tables.

This page intentionally left blank

Except/Intersect/Union

Chapter 7

1 5 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

In this chapter, we examine set operations. The three main keywords introduced are
Union, Intersect, and Except. These are set operators that treat each table involved
in the operation as a set. If you are familiar with set theory and Venn diagrams

from high school math, you already have a good idea how they work. Union puts two or
more tables together. Intersect looks at what the tables have in common. Except returns
the differences between tables.

Key concepts Set operations, appending tables, common records in tables,
different records in tables, except, intersect, union

Keywords Union, Union All, Intersect, Except, Select Into, Insert Into

New Table 1/2
We are going to need two new tables for the exercises in this chapter. Here’s a Select
Into to create the first of the two new tables. It’s followed by a normal Select to verify
the new table and its data.

Syntax
-- preparing data 1/2

select EnglishProductName, ReorderPoint

into Table1

from DimProduct

where EnglishProductName like 'flat%'

order by EnglishProductName-- 9 records

select * from Table1

Result

C h a p t e r 7 : E x c e p t / I n t e r s e c t / U n i o n 1 5 3

Analysis
Now you have a new table, with a very exciting name! It contains nine products, also
with highly stimulating names. I reinstated the Order By clause—the user may want
the records sorted.

New Table 2/2
The Select Into here creates the second of the two new tables we need for this chapter.

Syntax
-- preparing data 2/2

select EnglishProductName, ReorderPoint

into Table2

from DimProduct

where EnglishProductName = 'flat washer 9'

-- 1 record

select * from Table2

Result

Analysis
This new table (Table2) contains just the one record. This record is the same as one of
the records in Table1.

Inserting Data
Also, we’re going to need another record in the second of the two new tables (Table2). The
first query is an Insert Into statement—inserts are covered more fully later in the book.

Syntax
-- add a record

insert into Table2

values('Flat Washer 33',999)

-- 2 records

select * from Table2

1 5 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
There are now two records in Table2. One of them is the same as one of the records in
Table1. The other record is completely different from any of the records in Table1.

Union 1/3
There are actually only two queries here. Each one is composed of two Selects with
a Union operator in between. Please try both queries.

Syntax
-- union 10 records

select * from Table1

union

select * from Table2

--

select EnglishProductName from Table1

union

select EnglishProductName from Table2

Result

Analysis
Both queries return 10 rows—the only difference being in the number of columns.
Table1 has 9 records and Table2 has 2 records. When you append them with Union,
you end up with 10 records, not 11—the common record (Flat Washer 9) appears only
once, not twice.

C h a p t e r 7 : E x c e p t / I n t e r s e c t / U n i o n 1 5 5

You can union more than two tables—simply add more Union operators and
Select statements. A union is not the same as a join. A join puts the tables together
horizontally, usually based on a primary-to-foreign-key relationship—it’s for creating
a single result from often dissimilar tables (denormalization). A union appends tables;
it puts them together vertically—it’s for creating a single result from similar tables
(conforming).

Union 2/3
This query is designed to give an error.

Syntax
-- error 1/2

select * from Table1

union

select EnglishProductName from Table2

Result

Analysis
The error occurs as the first Select returns two columns and the second Select returns
only one column. When you append tables with the Union operator, there must be an
equal number of columns from each table.

Union 3/3
This query, too, is meant to fail!

Syntax
-- error 2/2

select ReOrderPoint from Table1

union

select EnglishProductName from Table2

Result

1 5 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
The error is a different one. This time we have the same number of columns, so
that’s not the problem. However, the data types of the two columns are incompatible.
ReOrderPoint is a smallint while EnglishProductName is an nvarchar.

Union All
But our queries here are meant to work. Please note that Union has been changed to
Union All.

Syntax
-- union all 11 records

select * from Table1

union all

select * from Table2

Result

Analysis
Here you should get 11 rows (not the 10 we had a couple of queries ago). The record
that is common to both tables, Flat Washer 9, is returned twice. The Union operator
suppresses duplicates, while Union All does not.

Intersect
The operator between the two Selects is Intersect rather than Union.

C h a p t e r 7 : E x c e p t / I n t e r s e c t / U n i o n 1 5 7

Syntax
-- intersect 1 record

select * from Table1

intersect

select * from Table2

Result

Analysis
Intersect returns the common record (Flat Washer 9) from the two tables. It shows just
one copy of the record, not both of them. This is a simple, yet powerful, set operation to
see if you have the same data in more than one table.

Except 1/2
The operator is now Except.

Syntax
-- except 8 records

select * from Table1

except

select * from Table2

Result

Analysis
You should have eight rows. Except is showing all of the records from Table1 that do
not also appear in Table2. Flat Washer 9 is therefore eliminated. Flat Washer 33 from
Table2 does not qualify as it’s not in Table1. Please note that Table1 is the first table in
the query.

1 5 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Except 2/2
The two tables are in a different order.

Syntax
-- except 1 record

select * from Table2

except

select * from Table1

Result

Analysis
Just one row—Flat Washer 33. This is the only record in the first table (Table2) that
does not appear in Table1. Flat Washer 9 has been eliminated as it’s also in the second
table (Table1).

You may want to issue two Drop Table statements (against Table1 and Table2) to
clean up your Adventure Works database.

Group By

Chapter 8

1 6 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Business users often ask for reports that show totals and subtotals. These totals are
often based on particular categories or groups of data. This chapter introduces
the SQL required to group your data and produce meaningful totals. The main

emphasis is on the Group By clause used with various aggregation functions, for example
Sum(). We also take a quick look at the more specialized Compute and Compute
By clauses. Hopefully, you’ll learn enough SQL in just this single chapter to begin
producing sophisticated reports for your business users.

Key concepts Grouping records, aggregations across groups, totals and subtotals,
filtering groups, comparing aggregate values, totals and detail records

Keywords Group By, Having, Compute, Compute By, Count(), Sum(), Min(),
Max(), Avg()

Base Query
To get us started on this chapter devoted to grouping records, here’s a base query that
we’ll use a few times.

Syntax
select EnglishProductCategoryName, EnglishProductSubcategoryName from

DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

Result

C h a p t e r 8 : G r o u p B y 1 6 1

Analysis
The result of the inner join is a list of categories and corresponding subcategories.
There are 37 rows. If you look at the Bikes category, it’s composed of three
subcategories (Mountain Bikes, Road Bikes, and Touring Bikes).

Count()
The Bikes category has three subcategories. It might be useful to see how many
subcategories make up each category for reporting purposes. Here’s the Count()
aggregate function.

Syntax
-- count with error

select EnglishProductCategoryName, COUNT(EnglishProductSubcategoryName)

from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

Result

Analysis
This is a really common error in SQL queries. There is something wrong with the
EnglishProductCategoryName column. It’s a non-aggregated column appearing
alongside an aggregated column, EnglishProductSubcategoryName. You can’t have a
non-aggregated column and an aggregated column in a column list, unless you include
a Group By clause. You could have aggregated the EnglishProductCategoryName
column too—but we don’t want that; we simply want to see the category name.

Group By 1/2
The query introduces the Group By clause.

Syntax
-- count with group

select EnglishProductCategoryName, COUNT(EnglishProductSubcategoryName)

as [Count Subcategories] from DimProductCategory as C

1 6 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

group by EnglishProductCategoryName

Result

Analysis
There are 4 records now, not the 37 we had earlier. The Bikes category has three
subcategories. We still have a non-aggregated and an aggregated column in the column
list, but the non-aggregated column (EnglishProductCategoryName) this time also
appears in the Group By clause. You are asking SQL Server to group on category and
return the count of the subcategories in each group.

Group By 2/2
Here we’ve added a Where clause as well.

Syntax
-- count with group with where

select EnglishProductCategoryName, COUNT(EnglishProductSubcategoryName)

as [Count Subcategories] from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

where EnglishProductCategoryName <> 'Bikes'

group by EnglishProductCategoryName

Result

Analysis
Now you can’t see the Bikes category. As always, you can extend your SQL by
combining clauses and keywords and operators and functions. In this case, the Where
clause must appear before the Group By clause.

C h a p t e r 8 : G r o u p B y 1 6 3

Having 1/2
You can filter records using a Where clause. You can also filter groups of records by
using a Having clause. The difference between Where and Having is examined shortly.
Let’s try eliminating bikes, by asking only for those categories that contain more than
three subcategories.

Syntax
-- count with group with having 1/2

select EnglishProductCategoryName, COUNT(EnglishProductSubcategoryName)

as [Count Subcategories] from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

group by EnglishProductCategoryName

having [Count Subcategories] > 3

Result

Analysis
Unfortunately, this doesn’t quite work. The count of the subcategories is aliased as
[Count Subcategories] and that’s what we’ve used in the Having clause.

Having 2/2
Instead of the alias, here we have the aggregation and column in the Having clause.

Syntax
-- count with group with having 2/2

select EnglishProductCategoryName, COUNT(EnglishProductSubcategoryName)

as [Count Subcategories] from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

group by EnglishProductCategoryName

having COUNT(EnglishProductSubcategoryName) > 3

1 6 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This time it works fine. You can’t use aliases in Having clauses—you have to repeat the
original expression, Count(EnglishProductSubcategoryName). A Where clause must
precede a Group By clause, while a Having clause has to come after the Group By. You
have now managed to eliminate the Bikes category in two queries. Earlier, you did this
in a Where clause. Here, you’ve done it in a Having clause. The two clauses operate
differently. A Where clause does not return unwanted rows—they are filtered out at
source. A Having clause has to return the records so the grouping and aggregating can
be done before they are filtered out. Generally, a Where clause is more efficient than
a Having clause. However, if you wish to filter on grouped and aggregated results, you
must use a Having clause. You will notice that Bikes is not referred to in the query.

No Aggregation
There are two queries here. The first one has no Group By. Both queries produce the
same result, although you might find that the order of the records is different.

Syntax
-- when not to use group by

select EnglishProductCategoryName, EnglishProductSubcategoryName from

DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

--

select EnglishProductCategoryName, EnglishProductSubcategoryName from

DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

group by EnglishProductCategoryName, EnglishProductSubcategoryName

C h a p t e r 8 : G r o u p B y 1 6 5

Result

Analysis
The Group By in the second query is overkill. If your Group By columns match the
non-aggregated columns in the column list and there is no aggregated column, then
Group By is generally not required.

Grouping on Two Columns
In this query you will see there are two columns in the Group By clause.

Syntax
-- when to use group by

select EnglishProductCategoryName, EnglishProductSubcategoryName,

COUNT(EnglishProductName) as [CountOfProducts] from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

group by EnglishProductCategoryName, EnglishProductSubcategoryName

1 6 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Here Group By makes perfect sense—there is an aggregated column
(EnglishProductName) in the column list. We are grouping on two levels and
counting the number of products in each subcategory. For each subcategory we are
showing the category group to which it belongs.

Jumping a Level
Here there is no reference at all to the subcategory in either the column list or the
Group By clause.

Syntax
-- grouping at higher level

select EnglishProductCategoryName, COUNT(EnglishProductName)

as [CountOfProducts] from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

group by EnglishProductCategoryName

C h a p t e r 8 : G r o u p B y 1 6 7

Result

Analysis
This query counts the number of products in each category—the result does not show
the subcategory. The subcategory table (DimProductSubcategory) is only used so we
can join each individual product to its relevant category.

Sum() 1/2
The Count() aggregate function has been replaced by Sum(). Expect this one to return
an error.

Syntax
-- sum rather than count

select EnglishProductCategoryName, EnglishProductSubcategoryName,

SUM(EnglishProductName) as [SumOfProducts] from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

group by EnglishProductCategoryName, EnglishProductSubcategoryName

Result

Analysis
EnglishProductName is a string with a data type of nvarchar. Earlier, we used
Count() on the same column. You can count product names but you can’t sum them.

Sum() 2/2
The aggregated column is now numeric.

1 6 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- sum on numeric, not much good on price

select EnglishProductCategoryName, EnglishProductSubcategoryName,

SUM(ListPrice) as [SumOfProducts] from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

group by EnglishProductCategoryName, EnglishProductSubcategoryName

Result

Analysis
ListPrice has a data type of money—this can be summed (as well as counted, of course).
This is just an example, so maybe adding prices is a little meaningless. But Group By
with Sum() would work well with something like quantity sold.

Min()
The aggregate function is Min().

C h a p t e r 8 : G r o u p B y 1 6 9

Syntax
-- min

select EnglishProductCategoryName, EnglishProductSubcategoryName,

MIN(ListPrice) as [MinOfProducts] from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

group by EnglishProductCategoryName, EnglishProductSubcategoryName

Result

Analysis
Min() works quite well on a price. The third column shows the price of the cheapest
product in each subcategory.

Max()
Max() quite simply returns a maximum value.

1 7 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- max

select EnglishProductCategoryName, EnglishProductSubcategoryName,

MAX(ListPrice) as [MaxOfProducts] from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

group by EnglishProductCategoryName, EnglishProductSubcategoryName

Result

Analysis
The third column displays the price of the most expensive product in each subcategory.
If Min() and Max() produce the same result, it indicates that each product in a
particular subcategory has the same price—or there is only one product in the
subcategory.

Avg()
In this query, the aggregate function is Avg().

C h a p t e r 8 : G r o u p B y 1 7 1

Syntax
-- avg some records avg is same as max

select EnglishProductCategoryName, EnglishProductSubcategoryName,

AVG(ListPrice) as [AvgOfProducts] from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

group by EnglishProductCategoryName, EnglishProductSubcategoryName

Result

Analysis
If Min() and Max() return the same answer for a subcategory, then Avg() will be the
same as well.

Two Aggregate Functions
There is nothing to stop you from using two aggregate functions with Group By.

Syntax
-- avg and max together

select EnglishProductCategoryName, EnglishProductSubcategoryName,

MAX(ListPrice) as [MaxOfProducts], AVG(ListPrice) as [AvgOfProducts]

from DimProductCategory as C

1 7 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

group by EnglishProductCategoryName, EnglishProductSubcategoryName

Result

Analysis
If you can find the Cranksets subcategory in the Components category, the maximum
and average prices of products are different. For this subcategory, there must be at least
two products with differing ListPrice.

Comparing Two Aggregate Functions
There is a Having clause here. It is using two aggregate functions.

Syntax
-- only those where avg and max are different

select EnglishProductCategoryName, EnglishProductSubcategoryName,

MAX(ListPrice) as [MaxOfProducts], AVG(ListPrice) as [AvgOfProducts]

from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

C h a p t e r 8 : G r o u p B y 1 7 3

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

group by EnglishProductCategoryName, EnglishProductSubcategoryName

having MAX(ListPrice) <> AVG(ListPrice)

Result

Analysis
You should see Cranksets in Components among other rows. A few rows have been
eliminated too. The Having clause is comparing the maximum price with the average
price. This type of query is very, very difficult to do with a Where clause!

Compute
This is your introduction to the Compute clause. We are still calculating aggregate
values, but this time, there’s no Group By clause. This query is going to give its result
in a completely different way. The structure of the result means you can’t use Compute
everywhere you might use a Group By—for example, in views and subqueries.

Syntax
-- but how to see products as well as aggregrate?

-- compute

select EnglishProductCategoryName, EnglishProductSubcategoryName,

EnglishProductName, ListPrice from DimProductCategory as C

1 7 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

compute MAX(ListPrice), AVG(ListPrice)

Result

Analysis
Group By is incredibly powerful syntax—hopefully, you’ve seen a couple of examples
you might be able to apply to your own data. It shows the groups and the aggregate
calculations such as totals. However, it does not show the detail records. For example, if
you return the maximum price of products in a subcategory, you don’t get to see a list of
the individual products in each subcategory as well. The Compute clause is able to show
totals and details. There are two result sets here. You can see the individual products and
their prices in the first result set. The second result set shows the maximum and average
prices. But these are not the maximum and average prices by category or subcategory—
they are the maximum and average prices of all the products. What we need is to be
able to aggregate on groups as well—we need some syntax that combines Compute
with Group By. The SQL to do that is the Compute By clause.

Compute By 1/2
This is the Compute By clause—not a Compute clause. This query is an attempt to see
both detail records and aggregations at the group level.

C h a p t e r 8 : G r o u p B y 1 7 5

Syntax
-- compute by error

select EnglishProductCategoryName, EnglishProductSubcategoryName,

EnglishProductName, ListPrice from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

compute MAX(ListPrice), AVG(ListPrice) by EnglishProductCategoryName

Result

Analysis
The Compute By is operating at the category level (EnglishProductCategoryName).
But there’s an error, and the error mentions the Order By clause!

Compute By 2/2
This is Compute By again, only this time there’s also an Order By clause.

Syntax
-- compute by

select EnglishProductCategoryName, EnglishProductSubcategoryName,

EnglishProductName, ListPrice from DimProductCategory as C

inner join DimProductSubcategory as S

on C.ProductCategoryKey = S.ProductCategoryKey

inner join DimProduct as P

on S.ProductSubcategoryKey = P.ProductSubcategoryKey

order by EnglishProductCategoryName

compute MAX(ListPrice), AVG(ListPrice) by EnglishProductCategoryName

1 7 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The column(s) you use in a Compute By clause must also appear in an Order By clause.
In addition, the Order By clause must precede the Compute By clause. Wow—eight
result sets! You should be able to see the product detail records for each of the four
categories and the aggregates for each category, too. You may have to use the outer
scroll bar to see all the aggregates. You may have to use the inner scroll bars to see all
the details.

The result of a Compute By can be a little difficult to read. To get all of the result
sets into a single result set would require some extremely complex and probably
inefficient SQL. It also gets quite tricky handing the multiple result sets in client
applications. If you find yourself writing lots of Compute and Compute By queries, you
are probably ready to start building a multidimensional database. However, that requires
SSAS cubes, not SQL Server relational tables. Oh, and it might involve learning the
MDX query language as well!

System Functions

Chapter 9

1 7 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

SQL Server has a couple hundred built-in system functions. You can browse
them all in Object Explorer where they are arranged by category. You can always
write your own functions in SQL, but it makes sense to use the prewritten ones

if they serve your purpose. It’s going to save you a lot of work and time, if what you
want is already there. In this chapter, we investigate some of these system functions.
In particular, we concentrate on some of the most popular and useful string functions,
mathematical functions, and date functions. A knowledge of these functions will help
you to easily manipulate and transform your data, in exactly the way you want to.

Key concepts Using the built-in system functions, string functions,
mathematical functions, date functions

Keywords Lower(), Upper(), Left(), Right(), Charindex(), Replace(), Ceiling(),
Floor(), Round(), Datepart(), Datename(), Getdate(), Datediff(), Dateadd(),
Convert()

Base Query for String Functions
Let’s start with a few string functions. This is a base query for these functions.

Syntax
-- string functions

-- base query

select distinct EnglishProductName from DimProduct as P

inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes'

order by EnglishProductName

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 7 9

Result

Analysis
You should be looking at quite a few bikes.

Lower()
This is your first system function—it’s the Lower() string function.

Syntax
-- lower

select distinct EnglishProductName, lower(EnglishProductName)

as [Function Result] from DimProduct as P

inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes'

order by EnglishProductName

1 8 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This function changes your strings into lowercase, if they are not already in lowercase.

You can browse the system functions in Object Explorer. To do so, expand the
Programmability folder under any database, then expand the Functions folder and the
System Functions folder. This last folder contains all of the system functions organized
into subfolders based on category. As you might expect, string functions are in the
String Functions folder, and mathematical functions are in the Mathematical Functions
folder. Date functions can be found under the Date and Time Functions folder. Later
in the chapter, we’re going to use the Convert() function—this appears under the Other
Functions folder. If you hover your mouse over a function, you get a tooltip explaining
its purpose. If you expand a function, you get a little help with its syntax. As with many
other objects in Object Explorer, you can drag and drop the function name into the
query editor window to save typing and typos. If you highlight the function in the
query editor and press f, it opens SQL Server Books Online (BOL), giving a full
explanation, full syntax, and examples that you can copy and paste. This technique
works best if you highlight only the function name without the parentheses.

Upper()
The Upper() function.

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 8 1

Syntax
-- upper

select distinct EnglishProductName, upper(EnglishProductName) as

[Function Result] from DimProduct as P

inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes'

order by EnglishProductName

Result

Analysis
This function changes your strings into uppercase.

Left()
The Left() function.

Syntax
-- just road bikes - left (could use like 'Road%')

select distinct EnglishProductName, left(EnglishProductName,4) as

[Function Result] from DimProduct as P

inner join DimProductSubcategory as S

1 8 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes' and

left(EnglishProductName,4) = 'Road'

order by EnglishProductName

Result

Analysis
Left() is used here in both the column list and the Where clause. The second parameter
is the number of characters to return.

Right()
The Right() function.

Syntax
-- just size 42 - right

select distinct EnglishProductName, right(EnglishProductName,2) as

[Function Result] from DimProduct as P

inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 8 3

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes' and

right(EnglishProductName,2) = '42'

order by EnglishProductName

Result

Analysis
The second parameter of the Right() function is the number of characters to return.

Charindex()
The Charindex() function.

Syntax
-- just black - charindex

select distinct EnglishProductName, charindex('Black',EnglishProductName,1)

as [Function Result] from DimProduct as P

inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes'

and charindex('Black',EnglishProductName,1) > 0

order by EnglishProductName

1 8 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Charindex() returns the start position of a string within an expression. It’s looking
for ‘Black’ within the EnglishProductName column, beginning from the first letter.
If there’s no match, Charindex() returns 0. The Where clause will only return those
products that contain ‘Black’ and belong to the Bikes category.

Replace()
The Replace() function.

Syntax
-- replace black

select distinct EnglishProductName,

replace(EnglishProductName,'Black','Blk') as [Function Result]

from DimProduct as P

inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes'

and charindex('Black',EnglishProductName,1) > 0

order by EnglishProductName

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 8 5

Result

Analysis
Replace() replaces one string with another string. Here the string ‘Black’ is replaced
with the string ‘Blk’.

Base Query for Mathematical Functions
Now maybe we should try some of the mathematical functions. Here’s our base query.

Syntax
-- numeric

-- base query

select EnglishProductName, ListPrice from DimProduct

where ListPrice is not null

1 8 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The upcoming mathematical functions are going to operate on the ListPrice column.

Ceiling()
The Ceiling() function.

Syntax
-- ceiling

select EnglishProductName, ListPrice, ceiling(ListPrice) as

[Function Result] from DimProduct

where ListPrice is not null

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 8 7

Result

Analysis
Ceiling() rounds up to the smallest integer greater than or equal to the number.

Floor()
The Floor() function.

Syntax
-- floor

select EnglishProductName, ListPrice, floor(ListPrice) as

[Function Result] from DimProduct

where ListPrice is not null

1 8 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Floor(), would you believe, is the opposite of Ceiling(). Both functions always return
integer values.

Round()
The Round() function.

Syntax
-- round

select EnglishProductName, ListPrice, round(ListPrice,2) as

[Function Result] from DimProduct

where ListPrice is not null

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 8 9

Result

Analysis
Round(), in this example, is rounding the price to two decimal places. There is an
extension to its syntax that you can use for truncation of a number, rather than
rounding.

Base Query for Date Functions 1/2
Time for time (or date) functions. We’re going to construct the base query in two stages.

Syntax
-- dates

-- base query analyze orders by date

select FullDateAlternateKey as [Date], round(SalesAmount,2) as [Sales]

from DimDate as D

inner join FactResellerSales as F

on D.DateKey = F.OrderDateKey

1 9 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The query returns 60,855 rows of dates and sales figures.

Base Query for Date Functions 2/2
Now we’re grouping the records by date.

Syntax
-- group on date

select FullDateAlternateKey as [Date], round(sum(SalesAmount),2) as

[Sales] from DimDate as D

inner join FactResellerSales as F

on D.DateKey = F.OrderDateKey

group by FullDateAlternateKey

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 9 1

Result

Analysis
This reduces the number of rows to 40 and aggregates sales for each date.

Datepart() 1/5
The Datepart(yy) function.

Syntax
-- year

select datepart(yy,FullDateAlternateKey) as [Year],

round(sum(SalesAmount),2) as [Sales] from DimDate as D

inner join FactResellerSales as F

on D.DateKey = F.OrderDateKey

group by FullDateAlternateKey

1 9 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Datepart(yy) extracts the year from a date.

Datepart() 2/5
This query uses the Datepart(yy) function again, but we’re also grouping using the
function.

Syntax
-- group on year

select datepart(yy,FullDateAlternateKey) as [Year],

round(sum(SalesAmount),2) as [Sales] from DimDate as D

inner join FactResellerSales as F

on D.DateKey = F.OrderDateKey

group by datepart(yy,FullDateAlternateKey)

Result

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 9 3

Analysis
You should see only four rows this time.

Datepart() 3/5
The Datepart(qq) function.

Syntax
-- by quarter wrong

select datepart(qq,FullDateAlternateKey) as [Quarter],

round(sum(SalesAmount),2) as [Sales] from DimDate as D

inner join FactResellerSales as F

on D.DateKey = F.OrderDateKey

group by datepart(qq,FullDateAlternateKey)

Result

Analysis
Datepart(qq) returns the quarter of a date. This query gives a result, but it’s wrong if
you want to see the quarters for each year. The previous query gave four years—surely,
there should be more than four quarters?

Datepart() 4/5
The Datepart(qq) function again.

Syntax
-- by quarter correct

select datepart(yy,FullDateAlternateKey) as [Year],

datepart(qq,FullDateAlternateKey) as [Quarter],

round(sum(SalesAmount),2) as [Sales] from DimDate as D

inner join FactResellerSales as F

on D.DateKey = F.OrderDateKey

1 9 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

group by datepart(yy,FullDateAlternateKey),

datepart(qq,FullDateAlternateKey)

order by datepart(yy,FullDateAlternateKey),

datepart(qq,FullDateAlternateKey)

Result

Analysis
This is better. The previous query did not differentiate quarters by year—this one does.
The important change is in the Group By clause.

Datepart() 5/5
The Datepart(mm) function. Only a single table (DimDate) is being used in this query.

Syntax
-- also months

select FullDateAlternateKey as [Date],

datepart(mm,FullDateAlternateKey) as [Month Number] from DimDate

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 9 5

Result

Analysis
Datepart(mm) extracts the month as a number from a date.

Datename() 1/2
The Datename(mm) function.

Syntax
-- also as names

select FullDateAlternateKey as [Date],

datename(mm,FullDateAlternateKey) as [Month Name] from DimDate

1 9 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Datename(mm) returns the month as a name from a date. Please note that it’s
Datename(), not Datepart().

Datename() 2/2
The Datename(mm) function again.

Syntax
-- handy for star schema

select distinct FullDateAlternateKey as [Date],

'CY ' + cast(datepart(yy, FullDateAlternateKey) as char(4)) + ' '

+ datename(mm,FullDateAlternateKey) as [Calendar Month]

from DimDate

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 9 7

Result

Analysis
This type of query is going to help you build time dimension attributes for star schemas
and cubes. Building relational and multidimensional dimension attributes is beyond
the scope of this book—I’ve included this query for readers who already have some
knowledge of those topics.

New Base Query for Date Functions
A change of table and columns, so you can try a few more date functions. The query
includes the Getdate() function.

Syntax
-- new base query

select FirstName, LastName, BirthDate, getdate() as [Today] from DimEmployee

1 9 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
I guess your Today column is going to show a different result from mine. Getdate() returns
a datetime data type. If you are using SQL Server 2008 AdventureWorksDW2008
database, BirthDate is a date data type (there is no time). If you are using SQL Server
2005 AdventureWorksDW, BirthDate is datetime.

Convert()
The Convert() function is applied to the Getdate() function.

Syntax
-- in UK try 103

select FirstName, LastName, convert(varchar,BirthDate,101) as

[Birth Date], convert(varchar,getdate(),101) as [Today]

from DimEmployee

C h a p t e r 9 : S y s t e m F u n c t i o n s 1 9 9

Result

Analysis
The third parameter for the Convert() function is 101—this gives dates in U.S. format.
U.K. and other European readers may want to try 103 instead of 101.

Datediff()
The Datediff(yy) function.

Syntax
-- datediff to find age

select FirstName, LastName, convert(varchar,BirthDate,101) as

[Birth Date], convert(varchar,getdate(),101) as [Today],

datediff(YY,BirthDate,getdate()) as [Age] from DimEmployee

2 0 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Your Today and Age columns are likely to be different from mine. Datediff(yy) works
out the number of years between two dates.

Dateadd 1/2
The Dateadd(yy) function.

Syntax
-- dateadd to find retirement date

select FirstName, LastName, convert(varchar,BirthDate,101) as [Birth

Date], datediff(YY,BirthDate,getdate()) as [Age], convert(varchar,dateadd

(yy,65,BirthDate),101) as [Retirement Day?] from DimEmployee

C h a p t e r 9 : S y s t e m F u n c t i o n s 2 0 1

Result

Analysis
Dateadd(yy) adds a number of years (65) to a date—the assumption here is that 65 is
the retirement age.

Dateadd 2/2
The Datediff(yy) and Dateadd(yy) functions again.

Syntax
-- who is near or past retirement age?

select FirstName, LastName, convert(varchar,BirthDate,101) as

[Birth Date], datediff(YY,BirthDate,getdate()) as [Age], convert(varchar,

dateadd(yy,65,BirthDate),101) as [Retirement Day?] from DimEmployee

where datediff(YY,BirthDate,getdate()) >= 60

order by datediff(YY,BirthDate,getdate()) desc

2 0 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The result is a list of employees who are 60 or over (in descending order of age) on the
day you run the query. It also shows age and possible retirement dates.

Subqueries

Chapter 10

2 0 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

This chapter looks at queries within queries—that’s Select statements with
Select statements. These are often called subqueries or nested queries. Subqueries
have lots of uses, some of them quite advanced, like derived tables. As this

is an introductory book, we’ll concentrate on one of the more popular and simpler
uses for subqueries. We examine how to use a subquery in a Where clause. As is often
the case, there are many ways of doing the same thing in SQL. You can arrive at the
same results as you do with subqueries by possibly using joins or temporary tables or
some procedural programming with variables. Those other topics are covered in other
chapters in this book.

Key concepts Subqueries or nested queries

Keywords Select, In, Exists, Not, Any, All

Where Revision
This chapter is going to have subqueries (or nested queries) in Where clauses. Here are
four queries to give you some revision of simple Where clauses—if you need it.

Syntax
-- simple where revision

select FirstName, LastName from DimEmployee

where LastName = 'Munson'

select FirstName, LastName from DimEmployee

where LastName <> 'Munson'

select FirstName, LastName from DimEmployee

where LastName in ('Munson','Brown')

select FirstName, LastName from DimEmployee

where LastName not in ('Munson','Brown')

Result

Analysis
The result shown is from the third of the four Select statements.

C h a p t e r 1 0 : S u b q u e r i e s 2 0 5

Subquery In
There are two Selects and two tables in one query. The second Select, in parentheses, is
the subquery.

Syntax
-- employee and customer table no direct join

-- same surname

select FirstName, LastName from DimEmployee

where LastName in (select LastName from DimCustomer)

Result

Analysis
The result is a list of your employees who share surnames with your customers. The
subquery must be enclosed within parentheses. A good way to test queries containing
subqueries is to make sure the subquery itself works. This is true for the subqueries in this
book—there is a type of subquery called a correlated subquery where it no longer holds.
You test by highlighting the subquery and executing it individually as a stand-alone query.
If it fails, the whole query (the outer and inner queries together) is also going to fail. This
subquery could be rewritten as a join between the tables. You can do this, even if there
is no primary-to-foreign-key relationship between the tables. In this example, the join
column would be LastName.

2 0 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Subquery Not In
This variation on the previous query includes the logical operator Not.

Syntax
-- different surnames

select FirstName, LastName from DimEmployee

where LastName not in (select LastName from DimCustomer)

Result

Analysis
You should be looking at a list of employees who do not share surnames with your
customers.

Subquery Exists
This time our two queries contain the Exists keyword and the subqueries have their
own Where clauses.

C h a p t e r 1 0 : S u b q u e r i e s 2 0 7

Syntax
-- exists

select FirstName, LastName from DimEmployee

where exists (select LastName from DimCustomer where LastName =

'Zimmerman')

--

select FirstName, LastName from DimEmployee

where exists (select LastName from DimCustomer where LastName = 'Munson')

Result

Analysis
The result shown is from the second of the two queries. The keyword Exists tests to see
if there are any records in the subquery. The first query returns all of your employees
only if there are one or more customers with a LastName of Zimmerman. The second
query does so if one or more customers have a surname of Munson. As that query
returns no employees, it means no customer has a LastName of Munson. On large
tables, you may find that using an asterisk (*) rather than a specific column name in the
subquery Select is more efficient.

Subquery Not Exists
This time, we’re using Not Exists.

Syntax
-- not exists

select FirstName, LastName from DimEmployee

where not exists (select LastName from DimCustomer

where LastName = 'Zimmerman')

--

select FirstName, LastName from DimEmployee

where not exists (select LastName from DimCustomer

where LastName = 'Munson')

2 0 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The results of these two queries are the opposite of those from the previous two queries.
The result shown here is from the second query. You can see your employees because no
customer has a LastName of Munson.

Base Query
In order to explore subqueries a little more, we need a new base query.

Syntax
-- new base query

-- inner query first 1742 is largest average

select avg(ListPrice) from DimProduct

group by ProductSubcategoryKey

order by avg(ListPrice) asc

C h a p t e r 1 0 : S u b q u e r i e s 2 0 9

Result

Analysis
The lowest, non-null, average price of the products within each subcategory is 7.95.
There is also a null value for one of the subcategories. The highest average price is
about 1742—you may need to scroll to the end to see it.

Subquery Any
There are a couple of points to make. First, the outer query has the Any keyword in its
Where clause. Second, the Order By clause is part of the outer query—Order By does
not work inside a subquery.

Syntax
-- any

-- remove inner order by

select EnglishProductName, ListPrice from DimProduct

where ListPrice > any(select avg(ListPrice) from DimProduct

group by ProductSubcategoryKey)

order by ListPrice asc

2 1 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This is quite a tricky query to decipher. It’s asking for a list of products whose price is
greater than any of the average list prices from the subquery. The lowest average is 7.95.
Therefore it’s showing all of those products with a ListPrice of more than 7.95.

Subquery All 1/2
The keyword Any has been replaced by the keyword All.

Syntax
-- all with nulls

select EnglishProductName, ListPrice from DimProduct

where ListPrice > all(select avg(ListPrice) from DimProduct

group by ProductSubcategoryKey)

order by ListPrice asc

Result

Analysis
The query returns no records. It’s looking for all products with a price greater than
all of the average prices from the subquery. In other words, it’s looking for all those

C h a p t e r 1 0 : S u b q u e r i e s 2 1 1

products whose price is greater than the highest of the subcategory average prices.
That figure is about 1742—from two queries ago. But there was an average price (two
queries ago) with a null value. A null value, if you like, is indeterminate—so the figure
of 1742 cannot be guaranteed to really be the maximum. The maximum is unknown, so
the outer query fails to show any records.

Subquery All 2/2
I’ve added a Having clause to the subquery—this is going to eliminate all average prices
with null values.

Syntax
-- all without nulls

select EnglishProductName, ListPrice from DimProduct

where ListPrice > all(select avg(ListPrice) from DimProduct group by

ProductSubcategoryKey having avg(ListPrice) is not null)

order by ListPrice asc

Result

Analysis
With the null average prices removed from the subquery, the maximum average price
for any subcategory is definitely about 1742. The outer query can therefore now return
all those products with a price greater than that maximum average price. The ListPrice
of such products starts at around 2049 and rises to about 3578.

This page intentionally left blank

Delete/Insert/Update

Chapter 11

2 1 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Many of the other chapters deal with getting data out of your tables and
databases—lots and lots of Select statements. This assumes, of course, that
the data is already there and is in the form you require it. By contrast, this

chapter is dedicated to entering and maintaining the data in the first place. Without
data, your Select statements will return nothing. Without good data, your Select
statements will return erroneous or obsolete data. Here, we look at data entry using the
Insert statement and maintaining data accuracy with the Update statement. In addition,
you learn how to remove obsolete or unwanted data with the Delete statement.
There are also example queries showing how to work with identity (auto-numbering)
columns.

Key concepts Inserting records, updating records, deleting records, truncating
tables, dropping tables, working with identity columns

Keywords Insert Into … Select, Insert Into … Values, Select Into, Update …
Set, Delete, Truncate Table, DBCC Checkident(), Set Identity_Insert, Drop Table

Select Into
Our first query in this chapter creates a new table, Scenario, based on an existing table
called DimScenario. There’s a second Select to test this new table. The new table is used
for exercises shortly. The first query also demonstrates Select Into, which is one way
(out of a few) to put data into a table.

Syntax
-- base table select into

select *

into Scenario

from DimScenario

--

select * from Scenario

Result

C h a p t e r 1 1 : D e l e t e / I n s e r t / U p d a t e 2 1 5

Analysis
Select Into creates a new table and populates it with data from the source table. If the
destination table already exists, the query will fail. To put data into an existing table
from a source table, you use Insert Select, not Select Into. If you don’t have a source
table, you can manually enter data with Insert Values. Both Insert Select and Insert
Values are also covered in this chapter.

Truncate Table
Here’s a Truncate Table query followed by a Select.

Syntax
-- truncate

truncate table Scenario

--

select * from Scenario

Result

Analysis
Truncate Table removes all the data from the table. It does not remove the table. You
can also use Delete to remove data from a table—Delete is discussed shortly. Truncate
Table is faster than Delete on large tables. However, Truncate Table is never logged
(Delete is logged if you have logging turned on—through the Recovery Model property
of a database), which means it’s more difficult to recover after an accidental removal
of records. In addition, Truncate Table will fail if the table is involved in a referential
integrity relationship with another table. Here it works fine, and you should be left with
an empty Scenario table.

Drop Table (the next query) is completely different from Truncate Table and Delete.
The latter two leave the table structure intact. Drop Table not only removes the data
from the table but it also removes the table itself.

Drop Table
This is a Drop Table query followed by a Select to test the results.

2 1 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- drop

drop table Scenario

--

select * from Scenario

Result

Analysis
Our new Scenario table has disappeared completely.

Delete
There are a total of four queries here. The initial Select Into re-creates the new
Scenario table and populates it with data from the DimScenario table. That’s followed
by a normal Select to verify the results. Then there’s a Delete statement and a final
Select statement to see what the Delete has done.

Syntax
-- delete

select *

into Scenario

from DimScenario

--

select * from Scenario

-- delete from works too

delete Scenario

--

select * from Scenario

Result

Analysis
The result is from the last Select showing the effect of the Delete statement. Instead of
Delete, you can use Delete From. The effect of a Delete is similar to that of a Truncate

C h a p t e r 1 1 : D e l e t e / I n s e r t / U p d a t e 2 1 7

Table—there is a small difference that we examine later. Please remember that Delete is
safer than Truncate Table as it is logged. In addition, a Delete can have a Where clause
so you don’t have to Delete all the records. Truncate Table always deletes every single
record.

Select Into
Our Scenario table is now empty after the last Delete. Here’s a Select Into to try and
repopulate it with records.

Syntax
-- error

select *

into Scenario

from DimScenario

Result

Analysis
Select Into does not work if the table already exists. In such a case, you have to use
Insert Into … Select or Insert Into … Values. There is another possibility, Insert Into …
Exec—this one is not covered in this book.

Insert Into … Select 1/3
The previous Select Into failed as the table already existed. Instead, let’s try an Insert
Into … Select, which is one way to enter data into existing tables.

Syntax
-- also an error

insert into Scenario

select * from DimScenario

Result

2 1 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
We seem to have a problem with something called an identity column. An identity
column is auto-numbering. SQL Server automatically enters data in the column for you.
By default, it won’t let you enter your own values. When you use Select Into to create
a new table, it will also make a column into an identity if such a column exists in the
source table. In the original DimScenario table, the ScenarioKey is an identity column.
Also, the ScenarioKey column in our new Scenario table is an identity. Our Insert Into
… Select is trying to copy data into this identity column, which is why it fails.

Insert Into … Select 2/3
This time we are only going to insert data into one column.

Syntax
-- better?

insert into Scenario

select ScenarioName from DimScenario

Result

Analysis
You should see that three rows are affected. Our Insert Into … Select has worked.

Insert Into … Select 3/3
This is even better. You have explicitly listed the destination column as well as the
source column.

Syntax
-- even better

insert into Scenario (ScenarioName)

select ScenarioName from DimScenario

--

select * from Scenario

C h a p t e r 1 1 : D e l e t e / I n s e r t / U p d a t e 2 1 9

Result

Analysis
If you followed the steps exactly so far, you should have six rows. Three records were
inserted by the last query and three by this query. But if you look carefully, the identity
column ScenarioKey now starts at number 4!

Truncate Table with Identity
Let’s clear out the table with a Truncate Table before our next Insert Into … Select.

Syntax
-- identities!

truncate table Scenario

--

insert into Scenario (ScenarioName)

select ScenarioName from DimScenario

--

select * from Scenario

Result

Analysis
The ScenarioKey column now starts at 1. Truncate Table resets an identity column so it
can start auto-numbering from the beginning again.

2 2 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Delete with Identity 1/2
This time, we’ll use Delete rather than Truncate Table before repopulating the Scenario
table.

Syntax
-- delete again

delete Scenario

-- delete from Scenario also works

--

insert into Scenario (ScenarioName)

select ScenarioName from DimScenario

--

select * from Scenario

Result

Analysis
Now ScenarioKey starts at 4. It picks up where it left off counting last time. Delete
(unlike Truncate Table) does not reset the identity column.

Delete with Identity 2/2
So, how do you reset an identity column after a Delete? The second query here uses
DBCC Checkident().

Syntax
-- delete with identities

delete Scenario

-- reseed

dbcc checkident(Scenario, reseed, 0)

--

insert into Scenario (ScenarioName)

select ScenarioName from DimScenario

--

select * from Scenario

C h a p t e r 1 1 : D e l e t e / I n s e r t / U p d a t e 2 2 1

Result

Analysis
Your ScenarioKey column should start at 1 again. DBCC Checkident() accepts a table
name, the Reseed keyword, and a reseed value. This is all a bit convoluted, so why bother?

Truncate Table removes all the records from a table. Delete (without a Where clause)
does the same. Truncate Table resets the identity column but Delete does not. However,
Truncate Table can be dangerous as it’s not logged. Anyway, it will not work if the table
is involved in a referential integrity relationship. So you may prefer to or be forced to
use Delete to clear out a table. But why bother worrying about reseeding the identity
column with DBCC Checkident after a Delete? Okay, it looks nicer if it restarts at 1
again. More importantly, though, you might simply run out of numbers, and further
inserts will not work. The point at which you are going to run out of numbers depends
on the data type of the identity column. Tinyint limits you to a couple of hundred,
smallint has a limit of just over 32,000, and the int limit is somewhere around two
billion. In terms of performance and storage space, tinyint is better than smallint,
which, in turn, is better than int. You are going to hit a trade-off between performance
and number limits. DBCC Checkident(), which resets the identity column, can help
you avoid this trade-off.

Delete with Where
If all is well, you should have three records in the new Scenario table, starting with
an identity column value of 1. So far, our Truncate Table and Delete statements have
managed to remove all the records from the table each time. Truncate Table and
Delete can be very, very dangerous! Delete is a little safer if you have logging turned on
(through the Recovery Model property of a database)—it’s easy to undo it. Delete is a
lot safer if you remember to add a Where clause (Truncate Table does not support the
Where clause).

Syntax
-- delete with where

delete Scenario

where ScenarioName = 'Budget'

--

select * from Scenario

2 2 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
You should have two records intact. The Delete has a Where clause, which means that
only one record (for Budget) gets removed.

Re-creating Base Table
Before we move onto another topic, Update, let’s re-create the Scenario table again.

Syntax
-- reset

truncate table Scenario

--

insert into Scenario (ScenarioName)

select ScenarioName from DimScenario

--

select * from Scenario

Result

Analysis
You are back to three rows.

Update
This is the Update … Set syntax. As you might expect, Update changes existing data.

C h a p t e r 1 1 : D e l e t e / I n s e r t / U p d a t e 2 2 3

Syntax
-- update

-- one column

update Scenario

set ScenarioName = 'Revised forecast'

--

select * from Scenario

Result

Analysis
Whoops, I forgot to use a Where clause! All the ScenarioName columns now have the
same data.

Update with Where 1/2
In this query, we have a Where clause with the Update statement.

Syntax
-- where clause doesn't have to be same column

update Scenario

set ScenarioName = 'New revised forecast'

where ScenarioKey = 3

--

select * from Scenario

Result

Analysis
Hopefully, we all just learned a very important lesson. An Update without a Where will
update every single record in the table. Similarly, a Delete without a Where will remove
all of the records from a table. Unless you have a very good reason not to, Updates and
Deletes should always be written with a Where clause.

2 2 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Update with Where 2/2
You can update more than one column by having a comma-separated list of column
names and their new values.

Syntax
-- two columns, fails because of identity

update Scenario

set ScenarioKey = 99,

ScenarioName = 'Budget'

where ScenarioKey = 3

Result

Analysis
ScenarioKey is an identity column. You can’t update the number that SQL Server has
already automatically assigned to the column. If you must change an identity value, you
have to delete the record and re-insert it.

Re-creating Base Table
We’re going to try to override an identity column. First, we need to get our Scenario
table back to how it was.

Syntax
-- insert – reset table first

drop table Scenario

--

select *

into Scenario

from DimScenario

--

select * from Scenario

C h a p t e r 1 1 : D e l e t e / I n s e r t / U p d a t e 2 2 5

Result

Analysis
Instead of Drop Table followed by Select Into, we could have used Delete (or Truncate
Table) followed by Insert … Select. Both Drop Table and Truncate Table will reseed the
identity without the need for DBCC Checkident().

Insert … Values 1/3
Let’s attempt to force a value into the first column, which is the identity column
ScenarioKey.

Syntax
-- insert values table

insert into Scenario

values(99,'Forecast 2011')

Result

Analysis
Not only can you not update an identity, but by default, you can’t insert one either. The
next query shows a way around this.

Insert … Values 2/3
The first query here introduces Set Identity_Insert. The second query (the first Insert)
will fail. The third query (the second Insert) should work.

Syntax
-- identity column

set identity_insert Scenario on

--

2 2 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

insert into Scenario

values(99,'Forecast 2011')

--

insert into Scenario (ScenarioKey, ScenarioName)

values(99,'Forecast 2011')

--

set identity_insert Scenario off

--

select * from Scenario

Result

Analysis
The second Insert worked as it has a column list—this is obligatory for inserting
identities. This is how you override an identity column. But why might you want to do
so? There are a number of reasons for doing this. When you delete records, the identity
number is not reused. You can use the method here to fill the “gaps” with new records—
this will prevent SQL Server from hitting the number limit, especially if it’s a tinyint
or smallint column. Or maybe you must have a specific number for a specific
ScenarioName, especially if the identity column is the primary key. If you’ve already got
a ScenarioName with a number you don’t want, simply delete it and re-insert it as here.

Insert … Values 3/3
Here are a couple of variations on Insert syntax. Both Inserts should succeed.

Syntax
-- insert values table again

insert into Scenario (ScenarioName)

values ('Forecast 2012')

-- shorthand

insert into Scenario

values ('Forecast 2013')

--

select * from Scenario

C h a p t e r 1 1 : D e l e t e / I n s e r t / U p d a t e 2 2 7

Result

Analysis
The first Insert explicitly nominates the destination column—the second Insert does
not. Yet, the second Insert works too. SQL Server will automatically populate the
identity column in a table, so it knows that, and values in the Value list should go
into your nonidentity column(s). If you have more than one column, then you need
a comma-separated list of values.

Insert Select
This query is for practice.

Syntax
-- insert select

insert into Scenario

select ScenarioName from DimScenario

--

select * from Scenario

Result

2 2 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
Please note the ScenarioKey values for the three new records.

Drop Table
Let’s get rid of our practice table.

Syntax
-- drop table to clean up

drop table Scenario

Result

Analysis
Hopefully, you should be back to an unblemished Adventure Works.

Views/User-Defined
Functions

Chapter 12

2 3 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

As business user demands for more and more sophisticated reports increase, your
SQL is going to become more and more complex. Rather than having to code
the same syntax over and over again, you can save your SQL. There are three

main ways of doing this. You can create views for complex Select statements—a view
is really a stored query. You (and others) can reuse it at any time, without having to be
aware of all the complex SQL you originally put into it. This is called encapsulation.
A second way of saving SQL is to create your own user-defined functions. These are
normally used for storing calculations (we are not going to cover table functions that
can store Selects). A third way is to create stored procedures. Stored procedures can
be used to store both calculations and Selects. Views and functions are covered in this
chapter. The next chapter discusses stored procedures. Functions and stored procedures
allow you to do sophisticated procedural programming, which views do not.

Key concepts Creating views, encapsulating and hiding complex SQL, creating
your own functions

Keywords Create View, Alter View, Drop View, Create Function, Drop Function

Select from Tables
Here’s some moderately complex SQL—it’s a Select joining three tables.

Syntax
-- a select

select EnglishProductName, EnglishProductSubcategoryName,

EnglishProductCategoryName from DimProduct as P

inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes' or

EnglishProductCategoryName = 'Accessories'

C h a p t e r 1 2 : V i e w s / U s e r - D e f i n e d F u n c t i o n s 2 3 1

Result

Analysis
It would be nice not to have to type this every time you needed it. It might also be
useful if you could make it easily available to other SQL developers in your company.

Create View
This is the same Select as in the last query, but it has Create View syntax before the
Select.

Syntax
-- a view

create view MyView as

select EnglishProductName, EnglishProductSubcategoryName,

EnglishProductCategoryName from DimProduct as P

inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Bikes'

or EnglishProductCategoryName = 'Accessories'

2 3 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
You’ll notice that the Select itself doesn’t run—there are no rows returned. It’s good
practice to give the view a name that describes its purpose—I guess MyView is not a
particularly good name! Your SQL is now stored in the view. You can see the view in
Object Explorer under the Views folder for the database—you may need to right-click
and choose Refresh first on the folder. It’s gone into the dbo schema.

Select from View
Using a view you’ve created is straightforward.

Syntax
-- encapsulation

select * from MyView

Result

C h a p t e r 1 2 : V i e w s / U s e r - D e f i n e d F u n c t i o n s 2 3 3

Analysis
This is encapsulation (the original complex SQL is hidden) and reusability. Subject
to permissions, it’s also available to other SQL developers and report designers—they
don’t have to know anything more than how to write a simple Select like the one here.

Alter View 1/2
You can retrospectively change a view, too. Here, we’re trying to change the product
categories in the Where clause.

Syntax
-- altering a view error

create view MyView as

select EnglishProductName, EnglishProductSubcategoryName,

EnglishProductCategoryName from DimProduct as P

inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Clothing' or

EnglishProductCategoryName = 'Components'

Result

Analysis
You can’t run Create View more than once on the same view.

Alter View 2/2
Instead, you might want to try this Alter View. It’s followed by a simple Select to verify
the change to the categories in the Where clause of the view. You’ll have to run the two
queries separately to avoid a syntax error.

2 3 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- altering a view no error

alter view MyView as

select EnglishProductName, EnglishProductSubcategoryName,

EnglishProductCategoryName from DimProduct as P

inner join DimProductSubcategory as S

on P.ProductSubcategoryKey = S.ProductSubcategoryKey

inner join DimProductCategory as C

on S.ProductCategoryKey = C.ProductCategoryKey

where EnglishProductCategoryName = 'Clothing' or

EnglishProductCategoryName = 'Components'

--

select * from MyView

Result

Analysis
Your view has been successfully changed.

Select from View
As well as being stored queries, views are also virtual tables. You can manipulate a view
from a Select just as you would a table.

C h a p t e r 1 2 : V i e w s / U s e r - D e f i n e d F u n c t i o n s 2 3 5

Syntax
-- like a table

select EnglishProductName from MyView

--

select * from MyView

where EnglishProductCategoryName = 'Components'

--

select * from MyView

order by EnglishProductName desc

Result

Analysis
We are manipulating the content from the original three tables just as if it were a single
table.

Insert/Update/Delete View
Although a view is like a single virtual table for Selects, it gets a little more complicated
if you try an Insert, Update, or Delete. This query is a Delete on the view.

Syntax
-- views can sometimes be updated and inserted and deleted

delete MyView where EnglishProductName = 'AWC Logo Cap'

2 3 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This Delete doesn’t work. The rules governing whether you can update, insert into, or
delete from a view are reasonably arcane. However, the main reason for having a view is
simply to write Selects against it.

Drop View
The syntax to remove a view is quite simple.

Syntax
-- removing a view

drop view MyView

--

select * from MyView

Result

Analysis
The Select can’t find the view.

Select Calculation
The Select here is using some predefined, built-in system functions. One of the
columns is a calculation to work out the tax on the price of a product.

Syntax
-- programming

-- functions user-defined scalar

-- calculation in a select

select EnglishProductName as [Product], round(ListPrice,2) as [Price],

ceiling(ListPrice * 0.15) as [Tax] from DimProduct

where ListPrice is not null

C h a p t e r 1 2 : V i e w s / U s e r - D e f i n e d F u n c t i o n s 2 3 7

Result

Analysis
The Tax column is a calculated column. If you repeatedly use the same calculation, it
might be a good idea to save it somewhere for reuse whenever you need it.

Create Function
So, here’s a function that saves the calculation.

Syntax
-- encapsulation re-usable library

create function Tax (@price money)

returns int

as

begin

return ceiling(@price * 0.15)

end

Result

2 3 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
The function is going to accept an input parameter with a data type of money and return
a value with a data type of int (in reality, this might be money too, but I just wanted to
show different data types in the syntax). The actual return value is the calculation. The
Begin and End keywords that define a Begin … End block are obligatory.

You can see the function in Object Explorer. Under the database, expand the
Programmability, Functions, and Scalar-valued Functions folders. You’ll probably have
to right-click on the latter folder and choose Refresh. If the built-in system functions
do not meet your requirements, you might consider creating your own functions as here.

Select Function 1/2
To use a function, you issue a Select against it—but the syntax has got to be exactly
right. There are five queries here—the first three generate errors! If you are using SQL
Server 2005 (rather than SQL Server 2008), you’ll have to adapt the database name in
the final query.

Syntax
-- calling a function

select Tax

--

select dbo.Tax

--

select Tax(20)

--

select dbo.Tax(20)

--

select AdventureWorksDW2008.dbo.Tax(20)

Result

Analysis
A call to a function must preface the function name with the schema name. In addition,
the function name must be followed by parentheses. If any input parameters are
expected by the function, they go inside the parentheses. If there’s more than one input
parameter, create a comma-separated list.

C h a p t e r 1 2 : V i e w s / U s e r - D e f i n e d F u n c t i o n s 2 3 9

Select Function 2/2
You can add the function call to any Select list.

Syntax
-- as part of a select from table

select EnglishProductName as [Product], round(ListPrice,2) as [Price],

dbo.Tax(ListPrice) as Tax from DimProduct

where ListPrice is not null

Result

Analysis
Now you don’t have to redo the calculation every time you need it. The input parameter
to the Tax function is the ListPrice column.

Drop Function
Removing a function is easy.

Syntax
-- clean up

drop function Tax

2 4 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Any subsequent calls to this function will not work.

Create Function
Here’s some practice on a final function. There are four queries—please run them
separately.

Syntax
-- another example

create function [Calculate Volume] (@x int, @y int, @z int)

returns int

as

begin

return @x * @y * @z

end

--

select dbo.[Calculate Volume](12,5,3) as [Volume]

--

select dbo.[Calculate Volume](12.9,5,3) as [Volume]

--

drop function [Calculate Volume]

Result

Analysis
This function accepts three input parameters. In the second call to the function, notice
the truncation of 12.9 to 12—that’s because the input parameter data type is int. You
might want to experiment with decimal(5,2) for the input parameters and the
Returns data types.

Stored Procedures/
Programming

Chapter 13

2 4 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

This is the chapter for procedural programmers. It introduces lots of syntax that
you may not think of as SQL. Indeed, strictly speaking, some of it is not SQL.
We should rather call it T-SQL (Transact-SQL), which is the SQL Server

version of SQL that contains lots of keywords and concepts that extend standard SQL.
These extensions are very powerful and help you make your SQL queries truly dynamic
and versatile. For example, you can dynamically change a Where clause at run time.
The main emphasis of the chapter (after exploring some basic programming constructs)
is on stored procedures. These allow you to change your SQL dynamically based on
conditional factors—and a whole lot more. In addition, stored procedures provide
encapsulation of your code. If you get it right, a Select in a stored procedure can also
run much faster than it normally would as a stand-alone query. This is SQL on steroids!

Key concepts Debugging with Select and Print, user-defined variables, while
loops, conditional branching, system variables, creating stored procedures, calling
stored procedures, input parameters, output parameters, return values, default
parameters, error handling

Keywords Select, Print, Declare, @, Set, @@Version, @@Rowcount, While,
Begin … End, Return, If … Else, Case … When … End, Create Proc, Alter Proc,
Out, Default, Try … Catch, ERROR_MESSAGE()

Select
You can use Select to display literals and variables onscreen.

Syntax
-- select

select 'Got here'

Result

Analysis
The result appears on the Results tab. Dumping variable values to screen is very handy
when you are debugging complex procedural code.

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 4 3

Print
You can also use Print.

Syntax
-- print

print 'Got here'

Result

Analysis
Print displays its result on the Messages tab. If you are dumping out lots of values, Print
possibly gives a cleaner display than Select.

String Variable
This query shows how to declare a variable, assign it a value, and check the value
onscreen. This example is for a string variable.

Syntax
-- variable alpha

declare @X varchar(25)

set @X = 'hello world'

print @X

Result

Analysis
Please note the use of the Declare statement to create the variable. Variables you define
must begin with an at sign (@). The Set statement is used to assign a value to the
variable. Finally, the Print statement displays the value of the variable.

2 4 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Numeric Variable
Here, it’s a numeric variable of data type int.

Syntax
-- variable numeric

declare @Y int

set @Y = 123

print @Y

Result

Analysis
The value of the variable is 123.

System Variable 1/2
This is a system variable.

Syntax
-- system variable @@version

select @@VERSION

Result

Analysis
System variables begin with a double at sign (@@). With system variables, you don’t
create them, nor do you assign them a value—SQL Server does that for you.

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 4 5

System Variable 2/2
Some system variables are only given values by SQL Server after you’ve done
something.

Syntax
-- system variable @@rowcount

select * from DimCustomer

select @@ROWCOUNT

Result

Analysis
@@Rowcount tells you how many records have been affected by a previous statement.
Here, it returns the number of records from the first Select.

While 1/3
This is the first of a few queries (I guess they’re not really queries—but they’re in the
query editor, so I’ll keep on calling them queries) on the While loop. There is no End
While. After you run it, click on the Messages tab. Wait a few seconds and then click
the Stop (Cancel Executing Query) button on the toolbar.

Syntax
-- while - click the stop button

declare @counter int

set @counter = 1

while @counter < 3

print @counter

2 4 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
If you don’t click the Stop button, then this query is going to run forever—or, at least
until you run out of stack space. There is nothing in the code to terminate the While.

While 2/3
Hopefully, this version of the While loop stops by itself.

Syntax
-- better only prints 3?

declare @counter int

set @counter = 1

while @counter < 3

set @counter = @counter + 1

print @counter

Result

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 4 7

Analysis
It only prints 3! The Print statement is not part of the While loop. It comes after the
While loop terminates and the value of @counter is 3.

While 3/3
There is a Begin … End block in the While loop.

Syntax
-- much better

declare @counter int

set @counter = 1

print @counter

while @counter < 3

begin

set @counter = @counter + 1

print @counter

end

Result

Analysis
As there’s no End While, the While loop is simply the next line—unless you have
a Begin … End block as in this query. The Print statement is now inside the loop.

Return
Our queries here introduce the Return statement. Please run the two queries separately
to appreciate the effect.

Syntax
-- return

print 'starting'

print 'finished'

--

print 'starting'

return

print 'finished'

2 4 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
Return stops program execution unconditionally.

If … Else 1/6
This is an introduction to If and Else. There is no Then and no End If. Please run each
of the four queries separately.

Syntax
-- if

if 1 = 0

print 'true'

--

if 1 <> 0

print 'true'

--

if 1 = 0

print 'true'

else

print 'false'

--

if 1 <> 0

print 'true'

else

print 'false'

Result

Analysis
If you have a background in Visual Basic, it might seem strange without Then and
without End If.

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 4 9

If … Else 2/6
This query is deliberately written to fail.

Syntax
-- more on if

if 1 <> 0

print 'true'

print 'got here'

else

print 'false'

Result

Analysis
The error may be a little perplexing at first. An Else must come after an If. But the If
is actually only the first Print (‘true’). The second Print (‘got here’) is not part of the
If—therefore the Else does not follow the If; it follows a stand-alone Print (‘got here’).

If … Else 3/6
Now, there’s a Begin … End block after the If.

Syntax
-- better

if 1 <> 0

begin

print 'true'

print 'got here'

end

else

print 'false'

Result

2 5 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
The Begin … End block means that both the first two Print statements (‘true’ and ‘got
here’) are part of the If. Now, the Else does follow the If, and we have eliminated
the error.

If … Else 4/6
Perhaps this query is quite strange too.

Syntax
-- more on else

if 1 <> 0

begin

print 'true'

print 'got here'

end

else

print 'false'

print 'got here too'

Result

Analysis
It reached the final Print (‘got here too’). That’s because it’s not part of the Else; it’s
a stand-alone Print statement.

If … Else 5/6
Here we introduce another Begin … End block after the Else.

Syntax
-- getting there!

if 1 <> 0

begin

print 'true'

print 'got here'

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 5 1

end

else

begin

print 'false'

print 'got here too'

end

Result

Analysis
This is more like it. Hopefully, you are beginning to appreciate just how important
Begin … End blocks are to your code.

If … Else 6/6
The If test at the top has changed.

Syntax
-- one more on if else

if 1 = 0

begin

print 'true'

print 'got here'

end

else

begin

print 'false'

print 'got here too'

end

Result

Analysis
I hope, by now, this is making perfect sense. Isn’t this much easier than Visual Basic?

2 5 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Case … When … End
Instead of If … Else, you might like to take a look at Case … When … End. Yes, this
one does have a Then and an End—maybe it’s a little more structured.

Syntax
-- case

declare @minute tinyint

set @minute = datepart(mi,getdate())

declare @OddEven bit

set @OddEven = @minute %2

select

case @OddEven

when 0 then 'Even'

when 1 then 'Odd'

else 'Unknown'

end as [Minute]

Result

Analysis
If you run this a few times, the result should change. Hopefully, you never see ‘Unknown’.
Getdate() returns the current date and time. Datepart(mi) extracts the minute from the
time. %2 means modulo 2—so divide by 2 and return the remainder, which is always
going to be 0 or 1.

Variable in Select
You can use variables to replace literals in your “standard” SQL queries. You can use If
and Case to determine the value of the variable. You can use While to repeat operations.
Here’s a variable in a Where clause.

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 5 3

Syntax
-- variable in where clause

declare @maritalstatus nchar(1)

set @maritalstatus = 'M'

select * from DimCustomer

where MaritalStatus = @maritalstatus

Result

Analysis
Only the married customers are returned.

Base Query
It’s about time we moved on to stored procedures, now that you have the programming
background. Here’s a base query to get us started.

Syntax
-- base select

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

2 5 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
I guess, by now, you might find this kind of SQL far too easy.

Create Proc
This is your first stored procedure. There are two varieties—please run one or the other;
if you attempt to run both, you’ll get an error on the second one.

Syntax
-- first stored procedure

create proc GetCustomers as

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

-- better

create proc GetCustomers as

begin

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

end

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 5 5

Result

Analysis
The second version has a Begin … End block. This is obligatory in a function—it’s
optional in a stored procedure, but maybe it looks better. When you run one of these
Create Proc queries, you won’t see any data returned by the Select statement.

You can see your stored procedure in Object Explorer. Under the database, expand
Programmability and the Stored Procedures folder. As usual, you’ll have to right-click
on the last folder and choose Refresh.

Alter Proc
Here there is a very minor cosmetic change to the stored procedure. The column alias is
now FullName, not Full Name.

Syntax
alter proc GetCustomers as

begin

select FirstName + ' ' + LastName as [FullName], MaritalStatus, Gender

from DimCustomer

end

Result

Analysis
When you change a stored procedure, you have to use Alter Proc. You can’t run Create
Proc more than once on the same stored procedure.

Running a Stored Procedure 1/3
One way to run a stored procedure is to highlight its name in your Create Proc or
Alter Proc syntax and execute. This is handy while you’re still developing. But, mostly,
you’ll not have that code showing any more and you’ll want to run it as a separate
stand-alone query.

2 5 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- calling a stored procedure

GetCustomers

Result

Analysis
All you have to do is type the name (or drag and drop from Object Explorer—it will
put the schema name in front) and run. Now, you will see the result of the Select inside
the stored procedure.

Running a Stored Procedure 2/3
To be doubly sure, you might want to run it twice. This is going to fail if you don’t do
them separately.

Syntax
-- calling it twice

GetCustomers

GetCustomers

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 5 7

Result

Analysis
Simply entering the name of the stored procedure doesn’t work on second and
subsequent lines. The fix is in the next query.

Running a Stored Procedure 3/3
Notice the Exec on the second line.

Syntax
-- better

GetCustomers

exec GetCustomers

Result

Analysis
It’s good practice to always use Exec anyway, even if it’s just a one-line query. It makes
it explicit that it’s a stored procedure that’s being run.

2 5 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Alter Proc
Don’t run this query yet! This is quite a nasty one. If you do run it, the Exec GetCustomers
line becomes part of the GetCustomers stored procedure. When you subsequently try the
stored procedure, it will run itself, repeatedly. So, please run the top query first and the Exec
GetCustomers separately.

Syntax
-- more hard-coded where clause

alter proc GetCustomers as

begin

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

where MaritalStatus = 'S' and Gender = 'F'

end

--

exec GetCustomers

Result

Analysis
The Alter Proc has added a Where clause.

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 5 9

Variables
There are two queries here. Please run the top one first. If you accidentally run all of this
syntax, the stored procedure is going to run itself. If that happens, highlight everything
apart from Exec GetCustomers and run again. Then try Exec GetCustomers by itself.

Syntax
-- variables in where clause

alter proc GetCustomers as

begin

declare @maritalstatus nchar(1)

declare @gender nvarchar(1)

set @maritalstatus = 'S'

set @gender = 'F'

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

where MaritalStatus = @maritalstatus and Gender = @gender

end

--

exec GetCustomers

Result

2 6 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
The literal values in the Where clause have been replaced by variables. Please note the
two Declare statements and the two Set statements.

Parameters
This version shows an important and fundamental change. There are two queries again.
The two Declares have gone. The two Sets have gone. And the former variable names
(@maritalstatus and @gender) have been placed before the As keyword and separated
by a comma. These are stored procedure input parameters.

Syntax
-- parameters in where clause

-- no declare and before as and no set

alter proc GetCustomers

@maritalstatus nchar(1),

@gender nvarchar(1)

as

begin

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

where MaritalStatus = @maritalstatus and Gender = @gender

end

--

exec GetCustomers

Result

Analysis
The Alter Proc should succeed. The Exec GetCustomers should fail, complaining about
a parameter.

Passing Parameters
If a stored procedure expects input parameters, you must supply the values for those
parameters.

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 6 1

Syntax
-- calling with parameters

exec GetCustomers 'S', 'F'

--

exec GetCustomers 'S', 'M'

Result

Analysis
You will get two different result sets from the two queries. We had to provide the values
for the parameters. In the next query we’ll look at default values for the parameters, so
you don’t always have to provide the values when you call the stored procedure.

Default Parameter Values
There are three queries this time. The Alter Proc is setting default values for the two
input parameters (single for marital status and female for gender).

Syntax
-- default value

alter proc GetCustomers

@maritalstatus nchar(1) = 'S',

@gender nvarchar(1) = 'F'

2 6 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

as

begin

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

where MaritalStatus = @maritalstatus and Gender = @gender

end

--

exec GetCustomers

--

exec GetCustomers 'M', 'M'

Result

Analysis
The first Exec GetCustomers returns single females, even without the values being
passed in (the result shown). The second Exec GetCustomers ‘M’, ‘M’ returns married
males—the provided values are overriding the default values for the parameters.

Output Parameter 1/4
As well as input parameters, stored procedures also support output parameters—that
is, you can get values being returned from the procedure. This query rebuilds the
procedure with an output parameter called @count.

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 6 3

Syntax
-- output parameter

alter proc GetCustomers

@maritalstatus nchar(1) = 'S',

@gender nvarchar(1) = 'F',

@count int out

as

begin

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

where MaritalStatus = @maritalstatus and Gender = @gender

set @count = @@ROWCOUNT

end

Result

Analysis
Output parameters require the keyword Out (or Output) and appear before the As
keyword. If there are two or more input and/or output parameters, they must be
comma-separated. The output parameter here, @count, is of data type int. In the main
body of the procedure, this parameter is being set to @@Rowcount. @@Rowcount is a
system variable that returns the number of records affected by the previous statement.
Consequently, @count holds the number of records returned by the Select statement.

Output Parameter 2/4
Let’s attempt to run our stored procedure. All three queries here are going to fail.

Syntax
-- calling to get output parameter

exec GetCustomers

--

exec GetCustomers 'M', 'F'

--

exec GetCustomers @count out

2 6 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The result shows the error from the third query. When you do call a stored procedure
with an output parameter, you can’t provide the value. Instead you use a variable
followed by the keyword Out. In the third query, the error is telling you that the
variable (@count, in this case) has not been declared.

Output Parameter 3/4
This time, the variable is declared first. The variable here (@count) will hold the value
of the output parameter (@count).

Syntax
-- better

declare @count int

exec GetCustomers 'M', 'M', @count out

select @count as [Records]

Result

Analysis
The final Select is dumping the value of the variable (@count) to screen. The result
shows the result of this Select—please note that you can’t run this Select separately
from the preceding syntax. Your variable does not have to have the same name as the
output parameter—but it’s probably good practice to do so.

Output Parameter 4/4
If you recall, our stored procedure has default values for the two input parameters. The
question is, how do you call the stored procedure with those default values? There are
two attempts here.

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 6 5

Syntax
-- with defaults

declare @count int

exec GetCustomers , , @count out

select @count as [Records]

--

declare @count int

exec GetCustomers default, default, @count out

select @count as [Records]

Result

Analysis
The first try won’t work. The second attempt will return all single female customers.
It also returns the number of records (result shown). Please note the use of the Default
keyword. You could have used this just for one input parameter and provided a literal
value for the other one.

Return 1/4
Without any work on your part, stored procedures also provide a return value—this is
simply a value with a data type of int.

Syntax
-- return value

declare @count int

declare @return int

exec @return = GetCustomers default, default, @count out

select @count as [Records]

select @return as [Return]

Result

2 6 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
If a stored procedure runs successfully, the return value is 0. Here, we’ve created a
variable (@return) to capture, hold, and display the return value. Please note the new
syntax for the Exec line. You must run all of the syntax in one go—the result shown is
from Select @return. Altogether, there are three results.

Return 2/4
In our last query, the return value was set implicitly by the stored procedure. You can, if
you wish, also set it explicitly. There are two queries here; please run them separately.

Syntax
alter proc GetCustomers

@maritalstatus nchar(1) = 'S',

@gender nvarchar(1) = 'F',

@count int out

as

begin

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

where MaritalStatus = @maritalstatus and Gender = @gender

set @count = @@ROWCOUNT

return 0

end

--

declare @count int

declare @return int

exec @return = GetCustomers default, default, @count out

select @count as [Records]

select @return as [Return]

Result

Analysis
To set the return value from a stored procedure explicitly, you use the Return statement.
A Return statement also causes the stored procedure to stop and exit. The result shown
is the return value.

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 6 7

Return 3/4
In this example, the values for the two input parameters are deliberately wrong.

Syntax
declare @count int

declare @return int

exec @return = GetCustomers 'X', 'Y', @count out

select @count as [Records]

select @return as [Return]

Result

Analysis
There are no records returned. We are going to see how to trap this happening. Once
again, the result shown in the preceding illustration is the return value.

Return 4/4
Here there are two queries—they need to be executed separately.

Syntax
-- trapped

alter proc GetCustomers

@maritalstatus nchar(1) = 'S',

@gender nvarchar(1) = 'F',

@count int out

as

begin

declare @err int

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

where MaritalStatus = @maritalstatus and Gender = @gender

set @count = @@ROWCOUNT

if @count = 0

return -99

else

2 6 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

return 0

end

--

declare @count int

declare @return int

exec @return = GetCustomers 'X', 'Y', @count out

select @count as [Records]

select @return as [Return]

Result

Analysis
Now, our stored procedure has two possible return values—in this case, it returns -99
(see the result). You can use these values in an If test to determine how to react. This is
often done in a stored procedure that calls a stored procedure.

Two Stored Procedures
Once again, there are two queries, to be executed one at a time.

Syntax
-- call the sp from a sp

create proc CallGetCustomers as

begin

declare @count int

declare @return int

exec @return = GetCustomers 'S', 'F', @count out

select @count as [Records]

select @return as [Return]

end

--

exec CallGetCustomers

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 6 9

Result

Analysis
Our new stored procedure, CallGetCustomers, is running the original stored procedure,
GetCustomers.

Try … Catch 1/2
You can trap errors in called stored procedures by having a Try … Catch construct in
the calling stored procedure. There are two separate queries here.

Syntax
-- try catch

alter proc CallGetCustomers as

begin

declare @count int

declare @return int

begin try

exec @return = GetCustomers 'S', 'F', @count out

end try

begin catch

set @count = 0

set @return = -100

2 7 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

print ERROR_MESSAGE()

end catch

select @count as [Records]

select @return as [Return]

end

--

exec CallGetCustomers

Result

Analysis
Our calling stored procedure (CallGetCustomers) is going to try to run the inner stored
procedure (GetCustomers). If the Try fails, the Catch block will be triggered.

Try … Catch 2/2
Yet again, we have two queries. The first introduces no changes. If you take a look at the
table name, it’s DimCustomer. The second query, which executes CallGetCustomers,
should print out a return value of 0. If you want to experiment, change the table
name to DimX in the Alter Proc and run again. Now, when you run the second
query, the return value is -100—and if you go to the Messages tab, you can see what
ERROR_MESSAGE does. Please make sure you correct the table name (if you have
experimented) and re-run the Alter Proc before you move on.

Syntax
-- correct tablename

alter proc GetCustomers

@maritalstatus nchar(1) = 'S',

@gender nvarchar(1) = 'F',

@count int out

as

begin

select FirstName + ' ' + LastName as [Full Name], MaritalStatus, Gender

from DimCustomer

where MaritalStatus = @maritalstatus and Gender = @gender

set @count = @@ROWCOUNT

if @count = 0

C h a p t e r 1 3 : S t o r e d P r o c e d u r e s / P r o g r a m m i n g 2 7 1

return -99

else

return 0

end

--

exec CallGetCustomers

Result

Analysis
The result shows the number of records returned. Hopefully, you are beginning to get
the hang of stored procedures. If you did experiment and change the table name, you are
seeing the Catch block being triggered. A Catch block is fired when a Try block fails.
Make sure the table name is reset to DimCustomer, before you attempt the next query.

Your Last Stored Procedure
Almost done. This has been a long chapter but there is one outstanding problem to fix.
The calling procedure (CallGetCustomers) has always been passing hard-coded values
to the input parameters of the called procedure (GetCustomers). We are always getting
single females (not that I’m complaining)! Here, we parameterize the outer, calling
stored procedure as well. There are a total of four queries, to be run one at a time.

Syntax
-- parameters on calling proc

alter proc CallGetCustomers

@maritalstatus nchar(1) = 'S',

@gender nvarchar(1) = 'F'

as

begin

declare @count int

declare @return int

begin try

exec @return = GetCustomers @maritalstatus, @gender, @count out

end try

begin catch

set @count = 0

2 7 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

set @return = -100

print ERROR_MESSAGE()

end catch

select @count as [Records]

select @return as [Return]

end

--

exec CallGetCustomers 'X', 'Y'

--

exec CallGetCustomers default, default

--

exec CallGetCustomers 'S', 'M'

Result

Analysis
If you wish, you can leave out the two Default keywords in the middle Exec
CallGetCustomers. If you got this far through the chapter, you have done really well.

Data Definition Language
(DDL) and Data Control
Language (DCL)

Chapter 14

2 7 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Data definition language (DDL) is that part of SQL concerned with creating
and maintaining the database objects you will need. Data control language
(DCL) is the part of SQL dedicated to setting up security on the objects

you’ve created. This chapter is dedicated to DDL and DCL. You will see how to
create a database, tables, keys, indexes, and other objects. Once those objects have been
created, you’ll also learn how to create a login and a user, and to control and test access
to the objects.

Key concepts Data definition language, data control language, creating databases,
creating tables, creating primary keys, creating foreign keys, creating indexes, creating
logins, creating users, security, giving and removing permissions

Keywords Create Database, Use, Create Table, Alter Table, Add Constraint,
Primary Key, Foreign Key, References, Create Index, Create Login, Create User,
Execute As, Revert, Grant, Revoke, Deny, Drop Database, Drop Login

Create Database
Creating a database from a SQL query can be very simple or very complex. This query
is about the simplest you can get. I would recommend that you don’t try the exercises in
this chapter on a production server.

Syntax
-- create database

-- you must be sysadmin

-- make sure it doesn't already exist

create database MyDatabase

Result

Analysis
There’s not a lot of syntax here! Creating a database this way means it will have all of
the default values configured for your SQL Server databases. The full syntax is complex
and beyond the scope of an introductory book. By default, you can only create databases
if you are a member of the sysadmin server role. You can also create databases if you
have been given explicit permissions or have been added to the dbcreator role. If you are
logged in as an administrator, it’s possible that you are a member of this role already.
If you’re not sure, you may want to consult with your SQL Server DBA.

C h a p t e r 1 4 : D D L a n d D C L 2 7 5

Use
You are going to create some tables in this new database. If you are currently connected
to AdventureWorksDW2008 (or AdventureWorksDW in SQL Server 2005), then the
tables you create shortly will go into that database. To ensure that the tables go into
your new MyDatabase, you have three choices. First, as you create other new objects,
preface the object name with the database and schema (dbo) names. Second, switch the
context to MyDatabase by using the drop-down on the toolbar. Third, issue the Use
statement as shown in this query.

Syntax
-- either switch database from combo or use MyDatabase

use MyDatabase

Result

Analysis
If you issue the Use statement as shown here, the new database context can be seen
in the drop-down on the toolbar. The tab of your query editor window also displays
the current context. Database context is vital. Many times I have inadvertently created
objects and then lost them—only to discover later that I accidentally created them in
the master database!

Create Table
There are two alternative queries here to create a table. Please try just one of them,
preferably the first one. If you do try the first one, make sure that the database context
is MyDatabase.

Syntax
-- check context is right before creating table

-- either

create table Suppliers

(

SupplierID int not null,

SupplierName varchar(25) not null

)

2 7 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

-- or when not in context

create table MyDatabase.dbo.Suppliers

(

SupplierID int not null,

SupplierName varchar(25) not null

)

Result

Analysis
When you create a table, you’ll need a comma-separated list of column names enclosed
within parentheses. Each column has to have a data type, and, optionally, you can
specify the nullability of the column. In this case, either of our two columns will allow
null values. All the objects we are creating during this chapter can be viewed in Object
Explorer (you may need to right-click and then choose Refresh for them to display).

Testing the Table
You can now start to use the new Suppliers table. Here’s a Select query.

Syntax
-- query new table

select * from Suppliers

-- or

select * from MyDatabase.dbo.Suppliers

Result

Analysis
There’s no data in the table, so all you get is the column names as captions to the
column headers in the result.

Insert Into … Values
Maybe we should add some data to the table. We can use a couple of Inserts followed
by a Select.

C h a p t e r 1 4 : D D L a n d D C L 2 7 7

Syntax
-- put some data in

insert into Suppliers

values (1,'Adventure Works')

insert into Suppliers

values (2,'Northwind')

--

select * from Suppliers

Result

Analysis
You should have two rows. There are no new concepts or syntax here.

Primary Key
The Alter Table query here makes the first column (SupplierID) into a primary key
using Add Constraint syntax. PK_SupplerID is the name you invent for the key. There
are also two Inserts and a Select—expect the first Insert to fail.

Syntax
-- primary key

alter table Suppliers

add constraint PK_SupplierID primary key (SupplierID)

--

insert into Suppliers

values (1,'Pubs')

--

insert into Suppliers

values (3,'Pubs')

--

select * from Suppliers

2 7 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
The Select should return three rows. The second Insert was successful. The first Insert
failed as there’s now a primary key on the table. The primary key is on the SupplierID
column. One of the features of a primary key is that it puts a unique index on the
column. This means you can’t have duplicate values—a supplier (Adventure Works)
already has a SupplierID of 1, and the attempt to add a new supplier (Pubs) with the
same SupplierID generates a primary key violation error. The second attempt to add
Pubs is fine.

Create Table
Here’s a second table called Products to add to our new database.

Syntax
-- second table

create table Products

(

ProductID int not null primary key,

ProductName varchar(25) not null,

ProductPrice money,

SupplierID int not null

)

Result

Analysis
This syntax is a slight variation on the syntax we used for the first Suppliers table. This
time, the primary key definition is part of the Create Table—we don’t need to have a
subsequent Alter Table.

C h a p t e r 1 4 : D D L a n d D C L 2 7 9

Foreign Key
We are going to define a foreign key and set up referential integrity between the two tables.

Syntax
-- foreign key DRI

alter table Products

add constraint FK_SupplierID foreign key (SupplierID)

references dbo.Suppliers (SupplierID)

Result

Analysis
The foreign key in the Products table is SupplierID. This refers back to the SupplierID
column in the parent table (Suppliers). SupplierID is the primary key in the Suppliers
table. FK_SupplierID is the name you decide to give the foreign key. You can see the
foreign key in Object Explorer under the Keys folder underneath the table.

Foreign Key Violation
This query is an Insert Into … Values. The last entry in the Values list is the foreign key
(SupplierID).

Syntax
-- inserting data fails DRI

insert into Products

values(1,'Red racing bike',2500,99)

Result

Analysis
The Insert should fail. You tried to insert a value of 99 as the SupplierID. The foreign
key constraint will only allow values for the foreign key (SupplierID) that already exist
in the primary key (SupplierID) column of the parent table (Suppliers).

2 8 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Insert Into … Values
You have three Inserts and a Select here. You can run them all at once if you wish.

Syntax
-- valid values

insert into Products

values(1,'Red racing bike',2500,1)

insert into Products

values(2,'Green tea',15,2)

insert into Products

values(3,'Black racing bike',2000,1)

--

select * from Products

Result

Analysis
You should be looking at three rows—all of the foreign keys are valid; there is no
violation of referential integrity.

Create Index
Let’s add an index to the ProductName column of the Products table. IX_ProductName
is simply a name you make up for the index.

Syntax
-- index

create index IX_ProductName

on Products (ProductName)

-- faster

select * from Products

where ProductName = 'Green tea'

C h a p t e r 1 4 : D D L a n d D C L 2 8 1

Result

Analysis
On a large table, a Select like this will run faster if it uses an index. The index is under
the Indexes folder under the table in Object Explorer.

Inner Join
Now we can join the two tables together. The join is on the primary-to-foreign-key
relationship between the two tables.

Syntax
-- inner join

select SupplierName, ProductName from Suppliers as S

inner join Products as P

on S.SupplierID = P.SupplierID

Result

Analysis
Three rows.

Create View
Let’s create a view on the join. You have to run these two queries separately.

Syntax
-- view

create view SimpleView as

select SupplierName, ProductName from Suppliers as S

inner join Products as P

2 8 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

on S.SupplierID = P.SupplierID

--

select * from SimpleView

order by SupplierName, ProductName

Result

Analysis
You can treat a view like a table.

Create Function
Now for a function to help us perform calculations. Please run the two queries separately.

Syntax
-- function

create function Discount (@price money)

returns money

as

begin

return @price * 0.9

end

--

select ProductName as Product, ProductPrice as Price,

dbo.Discount(ProductPrice) as [Price after discount] from Products

Result

Analysis
You can reuse this function at any time.

C h a p t e r 1 4 : D D L a n d D C L 2 8 3

Create Proc
Why not a stored procedure too? Please run separately—otherwise the stored procedure
will run itself recursively.

Syntax
-- stored procedure

create proc ProductsBySupplier

@supplier varchar(25)

as

select SupplierName, ProductName from Suppliers as S

inner join Products as P

on S.SupplierID = P.SupplierID

where SupplierName = @supplier

--

exec ProductsBySupplier 'Adventure Works'

Result

Analysis
You may want to vary the parameter value in the call to the stored procedure.

Create Login
We are going to look at security now. This query creates a login. Before you execute it,
please be aware of a couple of important points. You have to be sysadmin for this to
work. Please don’t do this on a production server; try it out on a development server. It
might not work anyway!

Syntax
-- DCL

-- create login

-- integrated security create login [Domain\User] from windows

create login TestLogin with password = ''

2 8 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Result

Analysis
This is only going to work if your SQL Server security model is set to SQL Server
and Windows Authentication mode. A setting of Windows Authentication mode (the
recommended setting) will result in an error. If you are sysadmin and are working on a
development server, then you can change the security model (or ask your SQL Server
DBA). Please don’t try to change the security model on a production server. If you can’t
switch the security mode, then use [Domain\User] instead of TestLogin as the login
name. [Domain\User] is in the form of domain name followed by Windows user name.

Create User
Now that we have a new login at the server level, we need to add this login as a user to
our new database. Please make sure that the database context is MyDatabase.

Syntax
-- create user

create user TestLogin for login TestLogin

Result

Analysis
You can see the new user in Object Explorer (under the Users folder under the Security
folder underneath your database). If you were unable to create a login in the last query,
then you won’t be able to create the user here—sorry, you’ll just have to read and not try
the next few security exercises.

Execute As
Run all of these as one complete query. It’s demonstrating impersonation.

C h a p t e r 1 4 : D D L a n d D C L 2 8 5

Syntax
-- impersonation

select USER

execute as login = 'TestLogin'

select USER

revert

select USER

Result

Analysis
Execute As allows you to impersonate another user in the database. You are briefly the
TestLogin user (the result shown). Revert switches you back to yourself (you are, in fact,
the dbo user).

Testing Security
Run this as one complete query. You are briefly trying to access the Products table as
TestLogin.

Syntax
-- test security on select

execute as login = 'TestLogin'

select * from Products

revert

Result

Analysis
You are locked out of the table.

Grant
This will work as one query. It includes the Grant statement.

2 8 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Syntax
-- give permission

grant select on Products to TestLogin

--

execute as login = 'TestLogin'

select * from Products

revert

Result

Analysis
You have given permission for the TestLogin user to perform a Select on the Products
table.

Revoke
There is also a Revoke statement. The first Grant statement is a repeat from the last
query; it’s not strictly necessary again. Please try the top Execute As block first. Then
run the Revoke statement line, and finally try the bottom Execute As block.

Syntax
-- revoke

grant select on Products to TestLogin

--

execute as login = 'TestLogin'

select * from Products

revert

--

revoke select on Products to TestLogin

--

execute as login = 'TestLogin'

select * from Products

revert

C h a p t e r 1 4 : D D L a n d D C L 2 8 7

Result

Analysis
On the first try, you can see the table as TestLogin. Your second try should fail. In
addition to Grant and Revoke, there is also a Deny statement. There is a subtle
difference between Revoke and Deny—we’re not going to cover that in this book.
However, if you have to implement security for real, you will need to understand the
difference. You are referred to SQL Server Books Online (BOL).

Here, you’ve been looking at Select permissions. You can also set permissions for
Insert, Update, and Delete.

Execute Permission
It’s also possible to allow users to run stored procedures. There are three Execute As
blocks this time. Run the first one, then the Grant statement. Then, run the second one
followed by the Deny statement. Finally, run the third Execute As block.

Syntax
-- test security on stored procedure

execute as login = 'TestLogin'

exec ProductsBySupplier 'Adventure Works'

revert

--

grant execute on ProductsBySupplier to TestLogin

--

execute as login = 'TestLogin'

exec ProductsBySupplier 'Adventure Works'

revert

--

deny execute on ProductsBySupplier to TestLogin

--

execute as login = 'TestLogin'

exec ProductsBySupplier 'Adventure Works'

revert

Result

2 8 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Analysis
You have used Deny this time rather than Revoke. In our very simplified example, both
Deny and Revoke have the same effect—in reality, you may find differences between
Deny and Revoke.

Drop Database
After our tour of DDL and DCL, it’s time to clean up your server. Try the first Drop
Database—it will fail, probably. If it does, try the Use with the second Drop Database.
Finally, try the Drop Login.

Syntax
-- drop database removes user tables view stored proc index

-- primary and foreign keys

-- but not login

-- login (drop or sp_revokelogin 'Domain\User')

--

drop database MyDatabase

--

use master

drop database MyDatabase

--

drop login TestLogin

Result

Analysis
You can’t drop a database if it’s in context and you have a connection to it. The Use
statement flips you into the master database, and then you can drop MyDatabase.
Dropping a database removes the database and any objects it contains (tables, views,
functions, stored procedures, and users). However, it won’t remove the login we created.
Users live in databases, but logins are at the server level. That’s why you needed the final
Drop Login.

Well done, that’s our last query. But please be careful! Your database context may now be
master. Remember to change back to AdventureWorksDW2008 (AdventureWorksDW in
SQL Server 2005) before you start experimenting with any more SQL. To change the
database, issue another Use statement or use the drop-down on the toolbar.

After You Finish

Chapter 15

2 9 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Where to Use SQL
Throughout this book, you’ve been using SSMS to write your SQL queries and display
the results. It’s unlikely that your users will have SSMS—indeed, it’s not recommended
for end users as it’s simply too powerful and potentially dangerous. This chapter
presents some alternative software and methods for getting SQL query results to the
end user.

SSRS
SQL Server Reporting Services (SSRS) can generate quite complex SQL for you, but
you may want some of the even more sophisticated queries you’ve seen in this book. You
will need a SQL Server connection to do this. To use your own SQL, paste the code
you might have developed in SSMS into the SQL Pane in Query Designer (or click
Edit As Text on the toolbar first).

SSIS
With SQL Server Integration Services (SSIS) you can get the SQL results into a data
pipeline using a Data Flow task. It’s then quite easy to convert it into a text file, an
Excel worksheet, or a SQL Server table. You will need an OLE DB or ADO NET
source with a SQL Server connection. Then change the Data access mode from Table
or View to SQL Command and paste in your SQL from SSMS. Alternatively, on the
SSIS Control Flow, you can use an Execute SQL task and configure the ResultSet
property appropriately.

DMX
If you need to train an SSAS data mining model or run a DMX prediction query
against a relational database, you can use SQL inside the DMX.

XMLA
Your SQL queries can also be nested inside XMLA. To do so, use an <Execute>
<Command> <Statement> construct.

Winforms and Webforms
If you are a .NET developer, you can create your own Windows applications (Winforms)
or web pages (Webforms) to display the results of your SQL queries. The simplest way to
do so is to use a datagrid.

C h a p t e r 1 5 : A f t e r Yo u F i n i s h 2 9 1

The SQL can return the data as a dataset or datareader or as XML. Here’s some
sample VB.NET code that creates a dataset (you may have to adapt the Data Source
and Initial Catalog properties as well as the table name in the From clause):

Dim con As New SqlClient.SqlConnection("Data Source=localhost;

Initial Catalog=AdventureWorksDW2008;Integrated Security=SSPI")

con.Open()

Dim cmd As New SqlClient.SqlCommand("select * from DimCustomer", con)

Dim adt As New SqlClient.SqlDataAdapter(cmd)

Dim dst As New DataSet

adt.Fill(dst)

 'or use a DATAREADER

 'Dim rdr As AdomdDataReader = cmd.ExecuteReader

 'do stuff with reader

 'rdr.Close()

 'or use an XMLREADER

 'Dim xml As System.Xml.XmlReader = cmd.ExecuteXmlReader

 'do stuff with XML

DataGridView1.DataSource = dst.Tables(0)

'for a Webform add .DataBind

con.Close()

Third-Party Software
There is an infinite variety of third-party software applications available that allow you
to paste in your SQL.

Copy and Paste
Or you can right-click on the Results pane in SSMS and choose Select All. Then right-
click again and choose Copy. You can then paste the SQL results (rather than the SQL
itself) into an application of your choice.

This page intentionally left blank

293

Index

A

Add Constraint statement, 277

adding

addition operator, 24

dates, 200–201

numbers, 14, 16, 135–136

strings, 14–15, 136

Sum, 135–137

ADO NET source, 290

aggregates, 128–129

Avg, 137

combination, 138

Count, 129–131

Group By clause. See Group By clause

Max, 132–134

Min, 131–132

StDev, 138

Sum, 135–137

aliases

columns, 10–12

Having clause, 164

inner joins, 100

self joins, 121–123

all columns queries, 2–3

All keyword in subqueries, 210–211

all rows queries, 33–34

alphabetic columns

concatenating, 16–17

from date columns, 18

Max, 132

Min, 131

alphabetizing. See Order By clause

Alter Proc statement, 255, 258

Alter Table statement, 277

Alter View statement, 233–234

ambiguity problem in joins, 100–101

And operator, 37–38, 43–46, 56

Any keyword, 209–210

appending

columns, 13–14, 16

tables, 154–156

arithmetic calculation, 24

As keyword

aliases, 11

parameters, 260, 263

Asc keyword, 79–80

ascending sorts, 79–80

ASCII characters, 65

asterisks (*)

all columns, 3

Contains predicate, 76

Count, 129–130

duplicate records, 25

multiplication, 24

at signs (@) for variables, 243–244

auto-numbering columns, 218–221

2 9 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Avg function

aggregate queries, 137

Group By clause, 170–173

B

backslashes (\) for division, 24

Begin End blocks

functions, 238, 255

If Else statement, 249–250

While loops, 247

Between operator, 56–57

bigint data type, 129

C

calculations

arithmetic, 24

dates, 21–22

numeric columns, 22–23

Select statement, 236–237

CallGetCustomers stored procedure, 269–271

caret character (^) for wildcards, 69–70

Case function

changing values, 31–32

discretization, 30–31

overview, 252

case-sensitivity

names, 8–10

Where clause, 40–41

Cast function

aggregates, 137

calculations, 23

concatenating columns, 16–17

Ceiling function, 186–187

Charindex function, 74, 183–184

child tables in inner joins, 99

clustered index, 78–79

Coalesce function, 29–30

columns

aliases, 10–12

appending, 16

comparing, 46–47

concatenating, 13–17

count queries, 130–131

dates, 17–22

distinct values, 25–26

numeric, 22–23, 47–59

Order By clause, 91–92

tables, 276

Union operator, 156

commas (,)

column names, 3, 13, 276

concatenating columns, 14

parameters, 238, 260, 263

common table expressions (CTEs), 122

comparing columns, 46–47

compatible columns with Union operator, 156

complex queries, 102–104

complex wildcard searches, 67–70

Compute By clause, 174–176

Compute clause, 173–174

concatenating columns, 13–17

Contains predicate, 74–76

Convert function

concatenating columns, 16–17

dates, 18–20, 198–199

copy and paste, 291

correlated subqueries, 205

Count_Big function, 129

Count function, 129–131, 161

Create Database statement, 274–275

Create Function statement, 237–238, 240, 282

Create Index statement, 280–281

I n d e x 2 9 5

Create Login statement, 283–284

Create Proc statement, 254–255, 283

Create Table statement, 275–276, 278

Create User statement, 284

Create View statement, 231–232, 281–282

cross joins, 96, 124–126

cross-server queries, 7

CTEs (common table expressions), 122

D

Data Control Language (DCL), 274

Data Definition Language (DDL), 274

databases

creating, 274–275

dropping, 288

names, 5

switching, 6

Date and Time Functions folder, 180

date data type, 62

date functions, 189–191, 197–198

Convert, 198–199

Dateadd, 200–201

Datediff, 199–200

Datename, 195–197

Datepart, 191–195

Dateadd function, 22, 200–201

Datediff function, 21–22, 199–200

Datename function, 195–197

Datepart function, 191, 252

Datepart(mm), 194–195

Datepart(qq), 193–194

Datepart(yy), 191–193

dates

calculations, 21–22

formatting, 18–20

functions. See date functions

single table queries, 17–22

system, 20–21

Where clause, 61–62

datetime data type, 17, 62, 198

DBCC Checkident function, 220–221, 225

dbo prefix, 4

DCL (Data Control Language), 274

DDL (Data Definition Language), 274

debugging, 242

Declare statement, 243–244

declaring

numeric variables, 244

string variables, 243

defaults

dates, 17

null value operations, 28

parameter values, 261–262,

264–265

schemes, 4

sort order, 80

Delete From statement, 216–217, 220

Delete queries

new tables, 143

views, 235–236

Delete statement, 216–217, 220–222

deleting

from new tables, 143

views, 235–236

denormalization, 94

Deny statement, 287

Desc keyword, 80–81

descending sort order, 80–81

dimension tables, 3

discretization, 30–31

2 9 6 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

distinct keyword

Min, 131

multiple columns, 25–26

single columns, 25

StDev, 138

division, 24

DMX prediction queries, 290

double quotes (“) for strings, 76

Drop Database statement, 288

Drop Function statement, 239–240

Drop Login statement, 288

Drop Table queries, 216, 228

global temporary tables, 148

local temporary tables, 146–147

new tables, 143–145

vs. truncating and deleting, 215

Drop View statement, 236

dumping variable values to

screen, 242

duplicate records, 25–26

E

Else statement, 248–251

empty tables, 144–145

encapsulation, 230

End keyword

Case, 252

functions, 238, 255

If Else statement, 249–250

While loops, 247

equal signs (=) in Where clause,

35–36, 47–48

error trapping, 269–271

Except operator, 157–158

Exec statement, 257–258

Execute As statement, 284–286

execute permissions, 287–288

Exists operator, 206–207

F

filters

Having clause, 163–164

Where clause, 36

Floor function, 187–188

For Xml clause, 27

foreign keys

defining, 279

inner joins, 99

self joins, 120

violations, 279

formatting dates, 18–20

From clause

all columns, 2–3

cross joins, 96, 126

Delete queries, 216

inner joins, 99

Select Into queries,

141–142

full outer joins, 118

fully qualified table names, 7

functions

aggregate. See aggregates

creating, 237–238, 240, 282

dropping, 239–240

Select statement, 238–239

system. See system functions

Functions folder, 180

G

GetCustomers stored procedure,

270–271

GetDate function, 20–21, 197–199, 252

I n d e x 2 9 7

global temporary tables, 147–148

Grant statement, 285–286

Group By clause, 160–162

without aggregation, 164–165

Avg, 170–173

Compute By clause, 174–176

Compute clause, 173–174

Having clause, 163–164

jumping levels, 166–167

Max, 169–173

Min, 168–169

Sum, 167–168

two aggregate functions, 171–173

two columns, 165–166

H

Having clause

Group By clause, 163–164

subqueries, 211

Hello World query, 2

hierarchical tables, 120

horizontal partitions, 35–36

I

identity columns, 113, 218–221

If Else statement, 248–251

In keyword

subqueries, 205

Where clause, 41–43, 58–59

inclusive ranges, 55–56

incompatible columns with Union, 156

indexes, 78–79, 280–281

inequalities (<>) in Where clause,

36–38, 48–54

inner joins, 98–102, 109, 113–114, 281

Insert Into statement, 153–154, 217–219

Insert Into Values statement, 276–277, 280

Insert Select statement, 215, 227–228

Insert Values statement, 215, 225–227

inserting data, 153–154

int data type, 221

integer division, 24

Intersect operator, 156–157

Into clause

Insert Into, 153–154, 217–219

Insert Into Values, 276–277, 280

Select Into, 141–142, 214–217

Is Null clause, 29–30

left outer joins, 106–107, 115

right outer joins, 108–109,

116–117

J

joins

ambiguity problem, 100–101

cross, 124–126

full outer, 118

improper, 95–98

inner, 98–102, 109, 113–114, 281

left outer, 105–107, 114–115

mismatches, 111–113

outer, 104–105

right outer, 107–111, 115–117

self, 120–124

three tables, 101–102

jumping levels in Group By clause,

166–167

L

Left function

overview, 181–182

Where clause, 63

2 9 8 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

left outer joins, 105–107, 114–115

Like operator, 62–70, 72–73

literals

displaying, 242–243

replacing, 252

local temporary tables, 146–147

logins

creating, 283–284

dropping, 288

long strings, 70–72

loops, While, 245–247

Lower function, 179–180

M

many tables, 99

mathematical functions, 185–186

Ceiling, 186–187

Floor, 187–188

Round, 188–189

Mathematical Functions folder, 180

Max function, 133–134

Group By clause, 169–173

numeric columns, 132–133

strings, 132

mean (Avg) function

aggregate queries, 137

Group By clause, 170–173

Messages tab, 243, 245

Min function

alphabetic channels, 131

Group By clause, 168–169

numeric columns, 132

minus signs () for subtraction, 24

mismatches with multiple tables, 111–113

modulo operation, 24

money data type, 168, 238

multiple columns, distinct values in, 25–26

multiple tables, 94–95

ambiguity problem, 100–101

cleaning up, 118–119

complex queries, 102–104

cross joins, 124–126

full outer joins, 118

improper joins, 95–98

inner joins, 98–100, 109, 113–114

left outer joins, 105–107, 114–115

mismatches, 111–113

outer joins, 104–105

right outer joins, 107–111, 115–117

self joins, 120–124

three tables, 101–102

multiplication, 24

N

N prefix, 64–65

names

aliases, 10–12

case-sensitivity, 8, 10

columns, 3, 13, 91–92, 276

databases, 5

schema, 4

servers, 6–7

tables, 7

nested queries. See subqueries

new tables, 140–141

creating, 152–153

deleting from, 143

dropping, 143–145

empty, 144–145

global temporary, 147–148

I n d e x 2 9 9

local temporary, 146–147

Select Into, 141–142

semipermanent temporary, 148–149

testing, 142–143, 145

non-numeric columns with Where clause,

51–52

Not Exists operator, 207–208

Not In operator, 206

Not operator

with Like, 64

with null values, 60–61

working with, 42–43

null values

single table queries, 27–30

Where clause, 59–61

numbers and numeric columns

Avg, 137

calculations, 22–23

concatenating, 16–17

equalities, 47–48

Group By clause, 167–168

In keyword, 58–59

inequalities, 48–54

Max, 132–133

Min, 132

Not operator, 60–61

null values, 59–61

Or operator, 57–58

Order By clause, 81–82, 86–87

ranges, 54–57

Sum, 136–137

variables, 244

Where clause, 47–59

O

OLE DB source, 290

On clause, 99–102

one tables, 99

Or operator, 39–40, 43–46, 57–58

Order By clause, 78–79

ascending order, 79–80

column name, 91–92

Compute By clause, 175–176

descending order, 80–81

multiple tables, 103–104

numbers, 81–82, 86–87

with Top, 87–91

with Top Percent, 90–91

with Top with Ties, 88–89

two columns, 82–85

with Where, 85–86

Other Functions folder, 180

outer joins, 104–105

full, 118

left, 105–107, 114–115

right, 107–111, 115–117

output parameters, 262–265

P

parameters

default values, 261–262

output, 262–265

passing, 260–261

stored procedures, 260–265,

271–272

parent tables for inner joins, 99

parent-child tables, 120

parentheses ()

And operator, 44–45

column names, 276

functions, 238

In keyword, 42

Or operator, 45–46

subqueries, 205

3 0 0 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

parentheses () (cont.)
Top clause, 88

Where clause, 45–46

passing parameters, 260–261

Percent keyword, 90–91

percent symbols (%)

modulo operation, 24

wildcards, 62–63, 66–67, 72–73

percentages in sorting, 90–91

permissions

execute, 287–288

granting, 285–286

revoking, 286–287

plus signs (+)

addition, 24

concatenating columns, 13

pound sign (#) prefix, 147–148

preserved tables, 106

primary keys

clustered indexes, 78–79

inner joins, 99

self joins, 120

tables, 277–278

Print statement, 243

Programmability folder, 180

programming

Case When End statements, 252

If Else statement, 248–251

Return statement, 247–248

stored procedures. See stored procedures

variables, 242–245, 252–253

While loops, 245–247

Q

quotes (‘,”)

dates, 62

strings, 15, 36, 48, 76

R

ranges in numeric columns, 54–57

record sets, 27

Recovery Model property, 221

recursive common table expressions, 122

recursive tables, 120

referential integrity, 279

renaming aliases, 10–12

Replace function, 184–185

result sets, 27

Results tab, 242

Return statement, 247–248, 266

return values from stored procedures,

265–268

Revoke statement, 286–287

Right function, 182–183

right outer joins, 107–111, 115–117

Round function, 188–189

running stored procedures, 255–257

S

schema names, 4

security testing, 285

Select from View statement, 232–235

Select Into statement, 141–142, 214–217

Select statement, 140–141, 230–231

calculations, 236–237

functions, 238–239

literals and variables display, 242

variables in, 252–253

self joins, 120–124

self-join tables, 120

semicolon (;) requirements, 8, 35

semipermanent temporary tables,

148–149

server names, 6–7

I n d e x 3 0 1

sessions, 148

Set Identity_Insert statement,

225–226

Set statement for variables, 243

shared columns, joining, 96–97

single character wildcards, 67–68

single quotes (‘)

dates, 62

strings, 15, 36, 48

single table queries, 1

adding strings, 14–15

aliases for columns, 10–12

all columns, 2–3

arithmetic calculations, 24

Case function, 30–32

concatenating columns,

13–17

database names, 5

dates, 17–22

distinct values, 25–26

Hello World, 2

null values, 27–30

numeric columns, 22–23

schema names, 4

server names, 6–7

specific columns, 8–10

switching databases, 6

top values, 26–27

two or more columns, 12–13

variations, 7–8

XML, 27

slashes (/) for division, 24

slowly changing dimension

tables, 95

smallint data type, 23, 221

snowflake schemas, 95

sorting. See Order By clause

spaces

aliases, 11–12

concatenating columns, 14

specific columns in single table queries, 8–10

SQL Server Integration Services (SSIS), 290

SQL Server Reporting Services (SSRS), 290

SQL uses, 290–291

square brackets ([])

aliases, 12, 130

wildcard characters, 68–69

SSIS (SQL Server Integration Services), 290

SSRS (SQL Server Reporting Services), 290

standard deviations, 138

star schemas, 95

stars (*)

all columns, 3

Contains predicate, 76

Count, 129–130

duplicate records, 25

multiplication, 24

StDev function, 138

stored procedures, 230, 242

altering, 255, 258

creating, 254–255, 283

parameters, 260–265, 271–272

return values, 265–268

running, 255–257

Try Catch construct, 269–271

two at one time, 268–269

variables, 259–260

string functions

Charindex, 183–184

Left, 181–182

Lower, 179–180

Replace, 184–185

Right, 182–183

Upper, 180–181

3 0 2 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

strings

adding, 14–15

concatenating, 16–17

declaring, 243

long, 70–72

Max, 132

Min, 131

single quotes, 15, 36, 48

Sum, 135–136

vs. text, 15

Unicode characters, 65

subqueries, 204

All keyword, 210–211

Any keyword, 209–210

Exists operator, 206–207

Having clause, 211

In operator, 205

Max, 134

Not Exists operator, 207–208

Not In operator, 206

subtraction, 24

Sum function

Group By clause, 167–168

working with, 135–137

summation in concatenating columns, 16

switching databases, 6

system date, 20–21

system functions, 178–179

Ceiling, 186–187

Charindex, 183–184

Convert, 198–199

Dateadd, 200–201

Datediff, 199–200

Datename, 195–197

Datepart, 191–195

Floor, 187–188

Left, 181–182

Lower, 179–180

Replace, 184–185

Right, 182–183

Round, 188–189

Upper, 180–181

System Functions folder, 180

system variables, 244–245

T

tables

all rows in, 33–34

Create Table statement, 279

creating, 275–276, 278

dropping, 215–216, 228

Insert Into Values statement,

276–277

joining. See joins

multiple. See multiple tables

new. See new tables

primary keys, 277–278

testing, 276

truncating, 215, 219

temporary tables

global, 147–148

local, 146–147

semipermanent, 148–149

testing

new tables, 142–143, 145, 276

security, 285

Text data type, 15

third-party software, 291

three tables, joining, 101–102

tinyint data type, 23, 221

I n d e x 3 0 3

Top keyword

Order By clause, 87–91

single table queries, 26–27

Where clause, 35

Top Percent clause, 90–91

Top with Ties clause, 88–89

Transact-SQL (T-SQL), 15, 242

trapping errors, 269–271

Truncate Table queries, 215, 219

Try Catch construct, 269–271

T-SQL (Transact-SQL), 15, 242

two or more columns

Group By clause, 165–166

Order By clause, 82–85

single table queries, 12–13

U

underscore (_) characters for wildcards, 66–67

Unicode characters, 64–65

Union All operator, 156

Union operator, 154–156

Update statement, 222–224

Upper function, 180–181

Use statement

databases, 6

overview, 275

user-defined text, 15

users, creating, 284

V

variables

displaying, 242–243

numeric, 244

Select, 252–253

stored procedures, 259–260

string, 243

system, 244–245

vertical partitions, 35

views, 230

altering, 233–234

creating, 231–232, 281–282

deleting, 235–236

dropping, 236

selection from, 232–235

violations, foreign key, 279

W

Webforms, 290–291

Where clause, 33

all rows in tables, 33–34

Alter Proc, 258

And operator, 37–38, 43–46

case sensitivity, 40–41

Charindex, 74

comparing columns, 46–47

Contains predicate, 74–76

date, 61–62

Delete with, 221–222

empty tables, 144–145

equalities, 35–36, 47–48

with Group By, 162

In keyword, 41–43, 58–59

inequalities, 36–38, 48–54

Left, 63

left outer joins, 106–107

long strings, 70–72

multiple tables, 102–104

non-numeric columns, 51–52

Not operator, 42–43, 60–61, 64

null values, 59–61

3 0 4 P r a c t i c a l S Q L Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r 2 0 0 8 R 2

Where clause (cont.)
numeric column ranges, 54–57

numeric columns, 47–59

Or operator, 39–40, 43–46, 57–58

Order By with, 85–86

right outer joins, 108–109

subqueries. See subqueries

Top clause, 35

unicode characters, 64–65

Update Set statement, 223–224

variables in, 252

wildcard searches, 62–70, 72–73

While loops, 245–247

wildcards

Contains predicate, 76

Where clause, 62–70, 72–73

Windows Authentication mode, 284

Winforms, 290–291

With Ties hint, 89

X

XML, 27

XMLA, 290

	Contents
	Acknowledgments
	Introduction
	Chapter 1 Select: Single Table
	Hello World
	Select All Columns from a Table
	Schema Name
	Database Name
	Switching Databases
	Server Name
	Variations on a Theme
	Specific Column 1/2
	Specific Column 2/2
	Column Aliases 1/2
	Column Aliases 2/2
	Two or More Columns
	Concatenating Columns
	Adding Strings
	Concatenation Failure
	Cast and Convert
	Date Column
	Formatting Dates 1/3
	Formatting Dates 2/3
	Formatting Dates 3/3
	System Date Function
	Date Column Calculation
	Numeric Column Calculation 1/2
	Numeric Column Calculation 2/2
	Arithmetic Calculation
	Distinct Values
	Distinct on Multiple Columns
	Top
	XML
	Nulls 1/3
	Nulls 2/3
	Nulls 3/3
	Case 1/2
	Case 2/2

	Chapter 2 Where
	All Rows in a Table
	Top
	Where =
	Where <>
	Where And
	Where <> And
	Where Or 1/2
	Where Or 2/2
	Case Sensitivity
	Where In
	Where Not In
	Where and Or 1/3
	Where and Or 2/3
	Where and Or 3/3
	Where Comparing Columns
	Where with Numeric Column =
	Where with Numeric Column <>
	Where with Numeric Column >
	Where with Numeric Column >=
	Where with Non-numeric Column >=
	Where with Numeric Column <
	Where with Numeric Column <=
	Where with Numeric Column Range 1/3
	Where with Numeric Column Range 2/3
	Where with Numeric Column Range 3/3
	Numeric with Or
	Numeric with In
	Null Values 1/2
	Null Values 2/2
	Date Criteria
	Wildcards
	Left()
	Not Like
	Unicode Characters
	More on Like
	Single Character Wildcard
	Complex Wildcards 1/3
	Complex Wildcards 2/3
	Complex Wildcards 3/3
	Working with Long Strings 1/2
	Working with Long Strings 2/2
	Like %
	Like %%
	Charindex()
	Contains 1/3
	Contains 2/3
	Contains 3/3

	Chapter 3 Order By
	No Particular Order
	Order By
	Asc
	Desc
	Alternative Syntax
	Sorting on Two Columns 1/3
	Sorting on Two Columns 2/3
	Sorting on Two Columns 3/3
	Order By with Where
	Numeric Sort
	Top
	Top with Ties
	Bottom
	Top Percent 1/2
	Top Percent 2/2
	Column Name

	Chapter 4 Select: Multiple Tables
	Single Table
	How Not to Join Tables 1/3
	How Not to Join Tables 2/3
	How Not to Join Tables 3/3
	How to Join Tables 1/2
	How to Join Tables 2/2
	Ambiguity Problem
	Joining Three Tables
	Complex Query 1/2
	Complex Query 2/2
	Outer Joins
	Left Outer Join 1/2
	Left Outer Join 2/2
	Right Outer Join 1/2
	Right Outer Join 2/2
	Another Inner Join
	Another Left Outer Join
	Another Right Outer Join
	Creating Mismatch 1/2
	Creating Mismatch 2/2
	Inner Join
	Left Outer Join 1/2
	Left Outer Join 2/2
	Right Outer Join 1/2
	Right Outer Join 2/2
	Full Outer Join 1/2
	Full Outer Join 2/2
	Cleanup 1/2
	Cleanup 2/2
	Self Join 1/6
	Self Join 2/6
	Self Join 3/6
	Self Join 4/6
	Self Join 5/6
	Self Join 6/6
	Cross Join 1/3
	Cross Join 2/3
	Cross Join 3/3

	Chapter 5 Aggregates
	Base Query
	Count(*) 1/2
	Count(*) 2/2
	Count(column) 1/3
	Count(column) 2/3
	Count(column) 3/3
	Min() 1/2
	Min() 2/2
	Max() 1/5
	Max() 2/5
	Max() 3/5
	Max() 4/5
	Max() 5/5
	Sum() 1/4
	Sum() 2/4
	Sum() 3/4
	Sum() 4/4
	Avg() 1/2
	Avg() 2/2
	StDev()
	Some Statistics

	Chapter 6 Select: New Tables
	Base Query
	Select Into
	Testing New Table
	Deleting from New Table
	Dropping New Table
	Creating an Empty Table
	Testing New Table
	Dropping New Table
	Local Temporary Table
	Global Temporary Table
	Semipermanent Temporary Table

	Chapter 7 Except/Intersect/Union
	New Table 1/2
	New Table 2/2
	Inserting Data
	Union 1/3
	Union 2/3
	Union 3/3
	Union All
	Intersect
	Except 1/2
	Except 2/2

	Chapter 8 Group By
	Base Query
	Count()
	Group By 1/2
	Group By 2/2
	Having 1/2
	Having 2/2
	No Aggregation
	Grouping on Two Columns
	Jumping a Level
	Sum() 1/2
	Sum() 2/2
	Min()
	Max()
	Avg()
	Two Aggregate Functions
	Comparing Two Aggregate Functions
	Compute
	Compute By 1/2
	Compute By 2/2

	Chapter 9 System Functions
	Base Query for String Functions
	Lower()
	Upper()
	Left()
	Right()
	Charindex()
	Replace()
	Base Query for Mathematical Functions
	Ceiling()
	Floor()
	Round()
	Base Query for Date Functions 1/2
	Base Query for Date Functions 2/2
	Datepart() 1/5
	Datepart() 2/5
	Datepart() 3/5
	Datepart() 4/5
	Datepart() 5/5
	Datename() 1/2
	Datename() 2/2
	New Base Query for Date Functions
	Convert()
	Datediff()
	Dateadd 1/2
	Dateadd 2/2

	Chapter 10 Subqueries
	Where Revision
	Subquery In
	Subquery Not In
	Subquery Exists
	Subquery Not Exists
	Base Query
	Subquery Any
	Subquery All 1/2
	Subquery All 2/2

	Chapter 11 Delete/Insert/Update
	Select Into
	Truncate Table
	Drop Table
	Delete
	Select Into
	Insert Into … Select 1/3
	Insert Into … Select 2/3
	Insert Into … Select 3/3
	Truncate Table with Identity
	Delete with Identity 1/2
	Delete with Identity 2/2
	Delete with Where
	Re-creating Base Table
	Update
	Update with Where 1/2
	Update with Where 2/2
	Re-creating Base Table
	Insert … Values 1/3
	Insert … Values 2/3
	Insert … Values 3/3
	Insert Select
	Drop Table

	Chapter 12 Views/User-Defined Functions
	Select from Tables
	Create View
	Select from View
	Alter View 1/2
	Alter View 2/2
	Select from View
	Insert/Update/Delete View
	Drop View
	Select Calculation
	Create Function
	Select Function 1/2
	Select Function 2/2
	Drop Function
	Create Function

	Chapter 13 Stored Procedures/Programming
	Select
	Print
	String Variable
	Numeric Variable
	System Variable 1/2
	System Variable 2/2
	While 1/3
	While 2/3
	While 3/3
	Return
	If … Else 1/6
	If … Else 2/6
	If … Else 3/6
	If … Else 4/6
	If … Else 5/6
	If … Else 6/6
	Case … When … End
	Variable in Select
	Base Query
	Create Proc
	Alter Proc
	Running a Stored Procedure 1/3
	Running a Stored Procedure 2/3
	Running a Stored Procedure 3/3
	Alter Proc
	Variables
	Parameters
	Passing Parameters
	Default Parameter Values
	Output Parameter 1/4
	Output Parameter 2/4
	Output Parameter 3/4
	Output Parameter 4/4
	Return 1/4
	Return 2/4
	Return 3/4
	Return 4/4
	Two Stored Procedures
	Try … Catch 1/2
	Try … Catch 2/2
	Your Last Stored Procedure

	Chapter 14 Data Definition Language (DDL) and Data Control Language (DCL)
	Create Database
	Use
	Create Table
	Testing the Table
	Insert Into … Values
	Primary Key
	Create Table
	Foreign Key
	Foreign Key Violation
	Insert Into … Values
	Create Index
	Inner Join
	Create View
	Create Function
	Create Proc
	Create Login
	Create User
	Execute As
	Testing Security
	Grant
	Revoke
	Execute Permission
	Drop Database

	Chapter 15 After You Finish
	Where to Use SQL
	SSRS
	SSIS
	DMX
	XMLA
	Winforms and Webforms
	Third-Party Software
	Copy and Paste

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

