

SQL Server on Linux

Configuring and administering Microsoft's database solution

Jasmin Azemović

BIRMINGHAM - MUMBAI

SQL Server on Linux
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1100817

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78829-180-4

www.packtpub.com

http://www.packtpub.com

Credits

Author
Jasmin Azemović

Copy Editor
Safis Editing

Reviewer
Marek Chmel

Project Coordinator
Nidhi Joshi

Commissioning Editor
Amey Varangaonkar

Proofreader
Safis Editing

Acquisition Editor
Tushar Gupta

Indexer
Pratik Shirodkar

Content Development Editor
Cheryl Dsa

Graphics
Tania Dutta

Technical Editor
Prasad Ramesh

Production Coordinator
Melwyn Dsa

About the Author
Jasmin Azemović is a university professor active in the database systems, information
security, data privacy, forensic analysis, and fraud detection fields. His PhD degree was in
modeling design and developing an environment for the preservation of privacy inside
database systems. He is the author of many scientific research papers and two books:
Writing T-SQL Queries for Beginners Using Microsoft SQL Server 2012 and Securing SQL
Server 2012. He has been a Microsoft MVP (Data Platform) for the last 10 years and an
information security consultant. He is an active speaker at many IT professional and
community conferences.

I thank God for giving me the strength to write this book and not give up in hard moments.
Special gratitude goes to my wife Nermana and children Selver, Imran, and Sara. They
supported me even when I was spending family time working on this project. Finally,
thanks go to my parents father Atif and mother Adila for encouraging me to choose an as
my profession many years ago and selflessly supporting me on that path.
Finally, I'm grateful to all the people who helped me on the way and made this book
possible: Travis Wright from Microsoft for pointing me in the right direction and the Packt
team for recognizing the potential of this book and working with me on it: Tushar Gupta,
Amey Varangaonkar, Cheryl D'sa, and Prasad Ramesh.

About the Reviewer
Marek Chmel is an IT consultant and trainer with more than 10 years' experience. He is a
frequent speaker, with a focus on Microsoft SQL Server, Azure, and security topics. Marek
writes for Microsoft's TechnetCZSK blog and since 2012 he has been an MVP (Data
Platform). He has also been recognized as a Microsoft Certified Trainer: Regional Lead for
the Czech Republic for a few years in a row. He holds many MCSE certifications, he's also
an EC Council Certified Ethical Hacker and holder of several eLearnSecurity certifications.
Marek earned his MSc in business and informatics from Nottingham Trent University. He
started his career as a trainer for Microsoft server courses. Later, he joined AT&T as a senior
database administrator, with a specialization in MSSQL Server, data platforms, and
machine learning.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1788291808.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808
https://www.amazon.com/dp/1788291808

Table of Contents
Preface 1

Chapter 1: Linux Distributions 6

Supported Linux distributions 7
openSUSE 8
Installation procedure 8
Kubuntu 19

Installation procedure 19
Summary 28

Chapter 2: Installation and Configuration 29

Bash, really quick start 30
SQL Server installation on openSUSE 36
SQL Server installation on Kubuntu 42
Summary 44

Chapter 3: SQL Server Basics 45

Overview of SQL Server 46
Client-server architecture concepts 46
SQL Server components 47

How it works on Linux 48
SQL Server objects 49

System databases 49
Database objects 50
SQL Server data types 51

SQL/T-SQL basics 51
History of SQL/TSQL 52
Types of SQL statements 52

DDL - Data Definition Language 52
DCL - Data Control Language 52
DML - Data Manipulation Language 52

Working environments and tools 53
sqlcmd 53
bcp 55
Visual Studio code 55
SQL Server Management Studio (SSMS) 56

Summary 60

[ii]

Chapter 4: Database in the Sandbox 61

DDL statements 61
Creating a new database 62
Creating new tables 63

DML statements 66
Data manipulation 66
Changing table definition 69
Dropping a table 70
Creating other database objects 71

Creating views 71
Creating stored procedures 72
Creating triggers 73

Summary 74

Chapter 5: Sample Databases 75

Relational database concepts 76
Normalization 76

First normal form 77
Second normal form 77
Third normal form 78

Northwind database 78
Pubs database 80
AdventureWorks database 82

Installing AdventureWorks 84
WideWorldImporters database 85
Summary 88

Chapter 6: A Crash Course in Querying 89

Retrieving and filtering data 89
Retrieving data from a table 90
String functions 92

Exercise 93
Filtering data 94
Comparison operators 94
String comparison 95
Logical operators 96
Working with NULL values 98
Manipulating query output 99

Overview of aggregate functions 101
Aggregate functions and NULL values 102
GROUP BY clause 102

[iii]

HAVING clause 103
JOIN operators 104

INNER JOIN 105
OUTER JOIN 106
Multiple joins 107

Summary 108

Chapter 7: Backup and Recovery Operations 109

SQL Server recovery models 109
Simple recovery model 110
Full recovery model 110
Bulk-logged recovery model 110

How transaction log works 112
Elements of backup strategy 113

Who can create backups? 113
Backup media 113
Types of backup 115

Full database backups 115
Transaction log backups 115
Differential backups 116

Backup and restore 117
Summary 122

Chapter 8: User Management 123

Authentication process 123
Authorization process 126
Accessing SQL Server resources 128

Server-level permissions 129
Database-level permissions 130

Schema separation 131
Summary 133

Chapter 9: Implementing Data Protection 134

Crash course in cryptography 134
Symmetric cryptography 135
Asymmetric cryptography 136
What is a key? 137
SQL Server cryptographic elements 137

T-SQL functions 138
Certificates 139
Service Master Key 140
Database master key 142

[iv]

Transparent Data Encryption 144
Backup encryption 146
Symmetric encryption 147
Row-level security 150
Dynamic data masking 152
Summary 154

Chapter 10: Indexing 155

Indexing concepts 155
Accessing the data 156
Index structure 157
Single and composite indexes 157
Ascending and descending indexes 157

Clustered index 158
What is a heap 159
Non-clustered index 160

Unique indexes 162
Columnstore index 163
Summary 165

Chapter 11: In-Memory OLTP 166

Elements of performance 166
The good 167
The bad 167
The ugly 168

What is In-Memory OLTP? 168
In-Memory OLTP quick start 170

How to create memory-optimized tables? 171
What is natively compiled stored procedure? 174

Summary 176

Chapter 12: Beyond SQL Server 177

Query store 177
Temporal tables 182
Mssql-scripter tool 186
DBFS tool 188
DBeaver – third party tool 191
Summary 198
Conclusion 198

Index 199

Preface
Microsoft now loves Linux and part of its new exciting strategy is the availability of SQL
Server as one of the best database platforms on all major Linux distributions. This book will
be your quick-start guide to this new uncharted space. You will recognize and understand
the full potential of a new database environment in the Linux world. At this point, the
technology is pretty fresh and getting to know things now in this early phase will be to your
strategic advantage.

What this book covers
Chapter 1, Linux Distributions, covers the basics of supported Linux distributions. You will
learn about openSUSE and Ubuntu distributions and will be prepared for the installation
procedure.

Chapter 2, Installation and Configuration, covers key points about the installation and initial
configuration of SQL Server on Linux. You will learn how to install SQL Server on Linux on
the openSUSE and Ubuntu distributions.

Chapter 3, SQL Server Basics, is about the SQL Server architecture and concepts, and how
they differ from other database platforms.

Chapter 4, Database in the Sandbox, is about using DDL and DML sets of SQL statements in
the SQL Server environment. You will learn how to create, modify, and delete a database
and its objects, and how to implement INSERT, SELECT, DELETE, and update statements.

Chapter 5, Sample Databases, teaches you how to find and install SQL Server samples. You
will learn how to restore a sample database and browse through its structure and objects.

Chapter 6, A Crash Course in Querying, shows you how to write efficient queries on SQL
Server samples. The readers will learn to write SELECT statements on one or more tables in
combination with different sets of operators and functions.

Chapter 7, Backup and Recovery Operations, is about understanding and creating backup
procedures inside your database environment. The process of restoring is equally as
important as backing up. This chapter will also teach you how to create and implement an
efficient restore procedure.

Preface

[2]

Chapter 8, User Management, focusses on the user management process using the security
features of SQL Server. You will learn how to implement new logins and map procedures to
specific assets on SQL Server.

Chapter 9, Implementing Data Protection, is focused on data protection using the built-in
support for encryption. If you want to prevent and minimize the consequences of data
breaches, then this is the right chapter for you.

Chapter 10, Indexing, explains how to use different types of indexing to achieve better
performance for your SQL code. The reader will learn how to recognize bottlenecks inside
databases and apply the appropriate indexing methods.

Chapter 11, In-Memory OLTP, shows the readers how to implement different types of in-
memory OLTP features.

Chapter 12, Beyond SQL Server, takes you on a beautiful journey through the rest of the
features and tools that can be used in SQL Server development.

What you need for this book
This book is a highly practical guide for SQL Server on Linux. We focus on how to get
things up-and-running, whether or not you have any prior SQL Server or Linux experience.
To achieve the full potential and get the maximum benefits from this book, you will need
one of these Linux distributions: Ubuntu 16.04 or Ubuntu 17.04, openSUSE Leap 42.2 or
openSUSE Tumbleweed, Kubuntu 16.04 or 17.04, Red Hat Enterprise Linux 7.3, SUSE, or
Linux Enterprise Server v12 SP2.
Last but not least, you will need to install SQL Server on Linux. At the time of writing, the
last actual version was SQL Server on Linux RC1. I recommend the Developer edition. We
have tried to keep all the code as user-friendly and readable as possible. We feel that this
will enable our readers to easily understand it, and readily use it, in different scenarios.

Who this book is for
This book is for the Linux users who want to learn SQL Server on their favorite Linux
distributions. It is not important if you are experienced database user or a beginner as we
are starting from scratch. However, it is recommended that you have basic knowledge
about relational models. More advanced readers can pick the chapters of their interest and
study specific topics immediately. Users from Windows platform can also benefit from this
book to expand their frontiers and become equally efficient on both platforms..

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Execute
the following SELECT statement and count the number of records."

Any command-line input or output is written as follows:

1> ALTER DATABASE CURRENT
2> SET COMPATIBILITY_LEVEL = 130;
3> GO

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files e-mailed directly to you. You can
download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /S Q L - S e r v e r - o n - L i n u x . We also have other code bundles from our rich catalog of
books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/SQL-Server-on-Linux
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting www.packtpub.com/submit-errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k

s /c o n t e n t /s u p p o r t and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Linux Distributions

Welcome to the exciting new journey of our old friend in a new environment. Yes, we are
talking about one of the best database platforms in the world. SQL Server is well known in
the domain of the Windows operating system, whether we speak of small, medium, or
enterprise-size businesses. Cloud computing pushes those limits even further in the
directions of big data analytics and data science. SQL Server has it all.

Linux, or to be precise GNU/Linux, is one of the best alternatives to Windows and, in many
cases, it is the first choice of environment for daily tasks such as system administration,
running different kinds of services, or just a tool for desktop application. Linux, which is the
actual name for a kernel, was originally developed in 1991 by Linus Torvalds as his
response to the MINIX operating system, which was limited to educational use. It was
quickly recognized by the open source community, adopted, and packaged in many
distributions. It's fascinating how large that number is. I believe that you've heard or read at
least one name in the following list (the list is arranged by date (1993 - 2013)): Debian,
Slackware, SUSE Linux, Red Hat Linux, CentOS, Fedora, Ubuntu, Tails, Kali Linux, and
many more. Today, GNU/Linux does not hold a large chunk of the desktop operating
system market. That fact is changing and many people, organizations, businesses, and even
states are embracing this technology. But, if we talk about the server market, the situation is
quite the opposite. Linux is holding a large share of the market.

However, Linux territory was a no-go for Microsoft products for a long time to be precise,
from the beginning. Now, Microsoft loves Linux. A couple of years ago, this sentence
would've sounded like a bad science fiction scenario. Fortunately, Microsoft has changed
and become friendly to open source and free software philosophies. One of the reasons for
this 180 degree change is cloud computing. New paradigms simply don't push old platform
limitations to the background. Everything is a service now and it is not important where
that service (Windows/Linux/Unix) is. The fact that Microsoft is pushing its core product on
a couple of major Linux distributions speaks for itself.

Linux Distributions

[7]

However, one segment of the database ecosystem was out of Microsoft's reach. Linux was
mostly reserved for open source representatives such as MySQL, PostgreSQL, and
MariaDB, or proprietary ones such as IBM's DB2 and Oracle. But now it is time to change
those facts. We can say that Microsoft is officially offering their data platform flagship as
options and choice for database professionals in the Linux world. There are varied kinds of
responses to this subject, from totally negative to positive comments. My opinion is that this
is good thing. SQL Server is one of the best database environments; let's give them a chance
to prove it on the ground. The Linux ecosystem has become richer and end users have more
choices to pick the right solution for their needs.

This is not a book about Linux distributions, nor is it about Linux internals. Here, you will
not find any Linux command line reference, but you will find a lot of useful information on
how to deal with SQL Server on Linux.

This chapter targets DBAs, developers, and everyone else from the Windows playground. If
you are from this group of users and you want to try out SQL Server in Linux land but don't
know how to start, this is the chapter for you. If you are a Linux user with experience in
your favorite distribution or different kinds of distributions, you can skip this chapter and
go straight to the installation part.

In this chapter we will cover the following topics:

Supported Linux distributions
Installation of Linux operating system

Supported Linux distributions
When this book was written, SQL Server on Linux supported all major distributions:

Commercial: Red Hat Enterprise Linux 7.3 Workstation, Server, and Desktop
Commercial: SUSE Enterprise Linux Server v12 SP2
Free: Ubuntu 16.04 LTS and 16.10

Red Hat Enterprise Linux and SUSE Enterprise Linux are commercial versions of popular
open source and free distributions. So, this list can be easily expanded to include the
following distributions:

openSUSE Leap/Tumbleweed
Fedora

Linux Distributions

[8]

The two are not officially listed in the documentation but they work just fine, the same as
the commercial versions. If you don't have any Linux experience whatsoever, I recommend
Ubuntu or openSUSE. These two distributions will be covered in this chapter, specifically
how to install them and prepare for SQL Server installation.

openSUSE
This distribution has a long history (h t t p s ://w w w . s u s e . c o m /c o m p a n y /h i s t o r y /). The
journey started under the name of SUSE Linux in 1994. Later, in 2003, Novel bought SUSE
and its brand and trademark. The company recognized the importance of the community
and created openSUSE, preserving the open source philosophy.

Novel was acquired by The Attachmate Group in 2011 and SUSE became an independent
part of the company business. In a nutshell, SUSE has two product lines:

Commercial: SUSE Enterprise Server (SLES)
openSUSE: an independent community project based on SLES source code

Microsoft officially supports SLES, but openSUSE is in that train also.

Installation procedure
Let's start with the installation of openSUSE Leap 42.2, stable release. I will use a Hyper-V
virtualization environment, but any other, such as VMWare or Oracle Virtual Box, will be
just fine. If you are planning to install a native Linux environment without virtualization,
the steps are the same. The installation of ISO can be found at https://www.opensuse.org/.
You can mount ISO directly inside your virtual machine, create a bootable USB drive, or
burn a DVD. The choice is yours.

https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.suse.com/company/history/
https://www.opensuse.org/

Linux Distributions

[9]

The steps for the installation of openSUSE Leap 42.2 are as follows:

The welcome screen will show up after the initial boot procedure from USB drive,1.
DVD ROM, or ISO image directly as shown in the following screenshot.

Figure 1-1. openSUSE welcome screen

In the next step, you can choose to book from the hard drive, start a fresh2.
installation of openSUSE, run an upgrade process of an old installation, or
initialize some advanced steps. We will choose Installation.

Linux Distributions

[10]

Now, we pick the installation language and keyboard layout as shown in the3.
following screenshot. You can test specific language characters if you come from
non-English region. The license agreement is also there. Click Next after you are
satisfied with your choices.

Figure 1-2. Keyboard layout and license agreement

Linux Distributions

[11]

Linux can work without a network connection, but for full efficiency, this step is4.
recommended. Here you will see a list of all network adapters that are
recognized by the setup procedure in your PC, laptop, or virtual machine.

You can click on Next and finish network configuration after the installation
procedure (if you decide to configure the network after installation, skip to
the disk partition creation part), or you can do it now by choosing the
network adapter name and clicking on Edit.

In most use cases, choosing Dynamic Address will be just fine. It will give
you IP address, DNS, and Gateway settings. However, in some situations,
you will need to manually enter those parameters by selecting Statically
Assigned IP Address (In this scenario, you will need to know the DNS
setting and gateway parameters to successfully configure network settings
manually)

This is an important step if you are planning to use internet access in the
following steps.

Figure 1-3. Set up the network

Linux Distributions

[12]

openSUSE comes with a huge collection of software and an excellent built-in5.
package manager, but still you can install a lot more from separate media. Also
you can add online software repositories before the installation starts. If you
choose online repositories, then you will need an internet connection (you can go
back to configure it, or you can leave both options off and activate those options
after installation).

A slow internet connection can slow down your installation and you will
need separate installation media for the add-ons. If you are an inexperienced
Linux user, then I suggest that you leave the network connection and online
repositories configuration until after installation is done.

Figure 1-4. Option to add online repositories during install

Linux Distributions

[13]

You have the option to add online repositories during this step, you can choose6.
your region and corresponding time zone. The same as in a Windows
environment, these settings are reflecting the latter in the operating system and
application that are depended on these parameters. The GUI is very nice, and by
simply clicking, you can zoom in and focus on your country. By clicking on
Other Settings, you can fine-tune those settings.

Figure 1-5. Regional settings

Linux Distributions

[14]

Now is the moment of truth. Yes, seriously. This step will adapt your frontend7.
and install the desktop environment of your choice.

Figure 1-6. Desktop selection

Linux Distributions

[15]

Almost every Linux distribution gives you two options. When it comes to openSUSE, you
can pick one of the following:

KDE Plasma desktop (h t t p s ://w w w . k d e . o r g /)
GNOME desktop (h t t p s ://w w w . g n o m e . o r g /)
Server (text mode)
Other

Let us take a look at each one:

KDE Plasma desktop: KDE is not something new on the scene. It has been here
since 1996 and in more than 20 years it has built a loyal user base. It is simple,
efficient, robust, and Windows-like. You even have a Start (K) menu. If you are
coming from a Windows background, then this should be your first choice. Don't
get me wrong! KDE is popular in the world of Linux distributions. KDE is also
my first choice and I will use it as the default installation option for openSUSE
and Kubuntu (the KDE version of Ubuntu).
GNOME desktop: It is same as in the example before, GNOME is on the stage
since 1999 and the user base is also large. We can say that the Linux community is
divided between KDE and GNOME desktop environments. This is not a bad
thing. Differences and options are good things and, if you are not a Start menu
fan, then GNOME is just for you. openSUSE distribution comes with KDE as the
default.

https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.kde.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/
https://www.gnome.org/

Linux Distributions

[16]

Server (text mode): This mode is simple, fast, and a good old Command Prompt
environment. If you are planning to run some kind of production service (web,
mail, FTP, and so on), there is no need for GUI at all (this philosophy is taken and
implemented in Windows OS (Windows Core and Nano version)).

Figure 1-7. Creating initial local user

Linux Distributions

[17]

The next step is about creating new user profile for daily tasks. Unlike Windows,1.
Linux does not have admin first philosophy. This is regular user without root
(super user permissions). It is not a good idea to work neater on Windows or
Linux as admin (root). If you check Use this password for system administrator,
the same password will be associated with root account. It will be required for
admin tasks. However, if you skip this option it will bring you to the next screen
where you can define different root password. This step is so important that
installation gives you an option to test the keyboard layout just in case you are
planning to use some exotic kind of characters.

Figure 1-8. Password for root access

Linux Distributions

[18]

The next step is reviewing of chosen options. Still, you can go back and2.
correct/modify some parameters before changes become permanent. After some
time, when setup finishes you will get login screen. Enter your credentials and
you are ready to go with openSUSE.

This book is not an openSUSE user guide, so if you are Windows user then you can
reference some additional resources, but it will be easy. KDE is something familiar and its
GUI is efficient enough to support your exploring through this great distribution.

Figure 1-9. Welcome to openSUSE

Linux Distributions

[19]

Kubuntu
Ubuntu is one of the simplest and most user friendly Linux distributions. It's based on
Debian like many other distros whose roots date back to the distant 2004. Ubuntu is, by
default, a GNOME (Unity) based environment which is OK. But my opinion is that
Windows users will find it a little bit confusing. KDE is much better for them. Kubuntu is
official flavor of the Ubuntu based on KDE plasma desktop, started in 2005. From the
perspective of SQL Server there is no difference at all because most of our work will be
console based.

Installation procedure
Kubuntu has a different approach than openSUSE. At the same time, Kubuntu is a live
distribution, it means that after boot you are directly in the working environment where
you can test things. At any time, you can start installation and make permanent changes on
your disk. This following screenshot shows how Kubuntu looks after boot procedure.

Linux Distributions

[20]

Figure 1-10. Welcome screen of Kubuntu live distribution

If you are not an adventurous type and you like to keep things simple, then Kubuntu is
your kind of Linux distribution.

Linux Distributions

[21]

Now, you can test the environment by running different kinds of applications: Libre Office,
Firefox, Thunderbird, GIMP, and so on, or you can click on K menu | Applications |
System | Install this system permanently to hard disk. After this step, the process of
Kubuntu installation is very similar to openSUSE. The installation procedure involves the
following steps:

First, you need to choose the language for the install process and it will be the1.
default language for that computer.

Figure 1-11. Language settings

Linux Distributions

[22]

The next step is to configure network connection. During the testing phase,2.
before installation, you can make right click on the icon of the screen near to the
clock and setup you network parameters. Those setting are recognized by the
setup procedure and used later.

Figure 1-12. Network parameters

Linux Distributions

[23]

If the network is working, then you can download updates while installing3.
Kubuntu and/or install third party software. You can skip this step and finish it
later.

Figure 1-13. Option to add online repositories during install

Linux Distributions

[24]

We must be honest and admit Kubuntu is much simpler to install the openSUSE.4.
One of the proofs is disk setup. All you need is to pick an option without
necessary technical details. Those details can scare users who don't have
experience with disk partitioning. We can apply the same rule as before. If you're
just starting with Linux and you don't care about the partitioning thing, then you
chose Guided - use entire disk. After this step, changes on the disk become
permanent and it may lead to data loss.

Figure 1-14. Disk partitioning

Linux Distributions

[25]

Now, you need to select your location and time zone settings is next step. This is5.
important because of the display conventions for your country.

Figure 1-15. Regional settings

Linux Distributions

[26]

This leads to a screen where you can choose a keyboard layout and variant, if6.
any. The nice thing is that you can actually see specific language letters and
compare them with your physical keyboard.

Figure 1-16. Choosing and testing the keyboard layout

Linux Distributions

[27]

The last step before your setup finishes is to choose your credentials: username,7.
password, and computer name. Kubuntu will not give you an option to choose a
root password. It can be done later. Actually, there is no need to use root at all.
For that purpose, there is a program called sudo. It allows you to run programs
with the security privileges of another user. The default is super user. On
Kubuntu, calling the su command will require you to enter your account
password to execute the command, which requires super user privileges. Setup
will add your username to the sudo group.

Figure 1-17. Creating the initial local user

Linux Distributions

[28]

Summary
In this chapter, you learned the basics of Linux and how SQL Server has become part of this
story. After that, we explained what Linux is and how to install one of the two popular
distributions, both supported by SQL Server on Linux. Now, after the initial steps on your
working/learning environment, we can dig a little bit deeper. In the next chapter we will see
how to install SQL Server on openSUSE, downloading Linux packages and initial security
settings.

2
Installation and Configuration

Linux's native working interface is the command line. Yes, KDE and GNOME are great
graphic user interfaces however from a user's perspective, clicking is much easier than
typing, but this observation is relative. Many Linux and Windows users will disagree with
me; I am somewhere in the middle. GUI is something that changed the perception of
modern IT and computer usage. Some tasks are very difficult without a mouse, but not
impossible.

On the other hand, command line is something where you can solve some tasks quicker,
more efficiently, and better than in GUI. You don't believe me? Imagine these situations and
try to implement them through your favorite GUI tool:

From a folder of 1,000 files, copy only those which names start with letter A, end
with letter Z, and end with TXT extension
Rename 100 files at the same time
Redirect console output to the file

There are many such examples; in each of them, command prompt is superior--Linux bash,
even more so.

The first part of this chapter, Bash, really quick start is for Windows users
with very little or no command line experience. If you are a Linux user,
you can safely skip to the installation section.

In this chapter we will cover the following topics:

SQL Server installation on openSUSE
SQL Server installation on Kubuntu
Initial security settings

Installation and Configuration

[30]

Bash, really quick start
Linux bash is going way beyond the scope of this book, but I will cover basic commands,
which you may need in your daily work with SQL Server on Linux, such as creating folders,
copying files, navigating through a tree of folders, deleting files and folders, listing content
of folders and current position in the folder tree.

pwd

ls

cd

mkdir

cp

rm

rmdir

You can run the command line bash tool in many ways. Here, you can find two of the most
common ways. Assuming that you have a KDE environment, click on K menu | System |
Konsole.

Alternately, press Alt+Space and start typing Konsole. You will see at the top of the screen a
menu with a list of tools, programs, files, and everything else that has the word Konsole in
the name. Just choose Konsole Terminal as shown in the following screenshot and press
Enter:

Figure 2-1. Choosing Konsole Terminal option to run bash

Installation and Configuration

[31]

After you run the Konsole Terminal bash application, depending on the version of Linux,
username, and host name, you should see something like this:

Figure 2-2. Command prompt in bash Konsole

The current location is your Home directory, which is your username.

How do you check what your current position on the directory tree is? The Linux command
for this kind of a job is pwd. If you type pwd and press Enter, bash will show your current
position on the filesystem, as you can see in the following screenshot:

Figure 2-3. Effect of pwd command

My current position is /home/dba. The first forward slash is the root directory. It means
that home is subdirectory of root.

Installation and Configuration

[32]

I believe many of you are familiar with the old DOS command (Windows as well): dir. The
Linux equivalent is ls. Take a look at the next screenshot:

Figure 2-4. Result of ls command without and with parameter -l

When you type just ls without any argument and parameters, it gives you a list of files and
folders. The output is not descriptive. But, if you type ls -l, the output is much better. In
this case, if you have many files and folders, you will need to scroll a lot; so the first option
is better:

Figure 2-5. Combination of different bash commands

Installation and Configuration

[33]

The scenario from figure 2-5 can be summarized as follows:

Check your current position with the pwd command.1.

 dba@openSUSE:~> pwd

Change the path from home/dba to: /opt/mssql/bin/ with the cd2.
command.

 dba@openSUSE:~> cd /opt/mssql/bin/

Again, check the current position.3.

 dba@openSUSE:~> pwd

List the content /opt/mssql/bin/ folder with the ls -l command.4.

 dba@openSUSE:~> ls -l

Go back to home/dba with a single cd command and check your new position5.
with pwd.

 dba@openSUSE:~> cd

Installation and Configuration

[34]

The next scenario will combine all commands from previous cases with the addition of:
creating new folders, copying, and removing files. First, take a look at the following
screenshot:

Figure 2-6. Working with files and folders trough bash

The scenario from figure 2-6 can be summarized as follows:

Check your current position with the pwd command.1.

 dba@openSUSE:~> pwd

With the cp command, you will copy the Readme file from the Documents folder2.
to the sql folder. Both folders are on same level, as sub-folders of home/dba (in
my case).

 dba@openSUSE:~> cp Documents/Readme sql/

Installation and Configuration

[35]

Change the path from home to sql/ with the cd command.3.

 dba@openSUSE:~> cd sql/

Delete the Readme file from the sql/ folder with the rm command:4.

 dba@openSUSE:~> rm Readme

List the content sql/ folder with the ls -l command. As you see, the total5.
number of files is 0 because we just deleted Readme.

 dba@openSUSE:~> ls -l

This takes you back to home/dba with the cd command (only one level in the6.
tree, from sql to dba).

 dba@openSUSE:~> cd..

You can't delete folders with the rm command.7.

 dba@openSUSE:~> rm sql/

You can delete folders with the rmdir command.8.

 dba@openSUSE:~> rmdir sql/

List the content home/dba folder with the ls -l command. As you see, the sql9.
subfolder is gone from the the list files.

 dba@openSUSE:~> ls -l

Installation and Configuration

[36]

This quick bash introduction will be enough to start interacting with Linux through the
command line interface. You will need some of these commands later in the book to finish
some tasks, such as creating backup folders, copying database backups, modifying SQL
scripts, and so on. If you would like to learn more about command line on Linux, I would
recommend additional reading The Linux Command Line, a book by William Shotts.

If you are planning to commit yourself to some serious database
administration on SQL Server or any other database platform, then bash is
something that you will use most of the time. I strongly advice that you
invest your time in this area.

SQL Server installation on openSUSE
The following installation procedure is the same for the SUSE Linux Enterprise Server v12
SP2 (SLES), which is officially supported by the Microsoft Corporation. My example is
based on openSUSE Leap 42.2.

Another remark is that the installation is based on the SQL Server vNext CTP 1.3 RC1 set of
versions, which were actual at the time of writing this book. The installation procedure is
command line-based. It means that you will be required to use bash. openSUSE and
Kubuntu use the same bash client, Konsole.

If you want to start installation on openSUSE or SLES, you will need
minimum 3.25GB of memory to run the SQL Server on Linux. The file
system must be XFS or EXT4.

Installation and Configuration

[37]

Following are the steps to install SQL Server on Linux on openSUSE:

First of all, you will need to add the mssql-server package to your distribution1.
with the following two commands as shown in the screenshot:

 # sudo zypper addrepo -fc
https://packages.microsoft.com/config/sles/12/mssql-server.repo
 # sudo zypper --gpg-auto-import-keys refresh

Figure 2-7. Result of adding msql-server packages

Installation and Configuration

[38]

Now openSUSE knows where to look and find SQL Server binaries. Installation2.
can start with this command:

 # sudo zypper install mssql-server

Figure 2-8. Result of step two should be like this. Press y or n to start/abort this process

After the installation is over, you can run the mssql-conf setup and follow the3.
procedure. For the sake of security, you need to specify a strong password for the
sa account (system administrator). The minimum length is eight characters, a
combination of uppercase and lowercase letters, 10 digits and/or non-
alphanumeric symbols:

 # sudo /opt/mssql/bin/mssql-conf setup

Installation and Configuration

[39]

Figure 2-9. Setting up sa account and finishing install procedure

Now is the time to check the status of the SQL Server service:4.

 # systemctl status mssql-server

Figure 2-10. Information that SQL Server database engine is up and running

Installation and Configuration

[40]

In case you need to upgrade the already installed binaries to the new version, you5.
should write following command:

 # sudo zypper update mssql-server

If you wish to remove the SQL Server from your Linux distribution, write the6.
next bash command:

 # sudo zypper remove mssql-server

So, SQL Server is successfully installed, and service is up and running. The next step is the
installation procedure for mssql-tools repository. It is set of a client (command line)
applications to interact with database engine.

The upgrade process will not affect the user and system databases that are
located in /opt/mssql/. On the other hand, step 6 will not delete user and
system database located in: /var/opt/mssql; you should delete them
manually.

SQL Server for Linux in this phase of development has only command line-tools. We are
speaking in terms of the Linux platform. The original SQL Server Management Studio, built
for Windows, can be used to work with SQL Server on Linux. The only catch is that you
need Windows side by side or as a remote client. This book is dealing with Linux, so the
focus will be on command line access.

As in the first step of engine installation, we need to add the mssql-tools1.
repository to openSUSE with the following commands:

 # sudo zypper addrepo -fc
 https://packages.microsoft.com/config/sles/12/prod.repo
 # sudo zypper --gpg-auto-import-keys refresh

To install mssql-tools with the necessary unixODBC developer package, type2.
the following command:

 # sudo zypper install mssql-tools unixODBC-devel

Installation and Configuration

[41]

The following screenshot illustrates the process of installing the tools component.3.
After you say yes, you will be asked to accept (or not) the licence agreement. If
you decide to say no, the installation will stop:

Figure 2-11. Starting installation of mssql-tools

In case you want to update only tools to the new version, you run these two4.
commands:

 # sudo zypper refresh
 # sudo zypper update mssql-tools

The next step is optional and can save you a lot of time initially while you figure5.
out what is going on. At this moment, bash does not know where the mssql-
tools repository is, so you will need to modify your PATH environment variable.
The following two commands are referenced for running the sqlcmd and bpc
command-line tools:

 # echo 'export PATH="$PATH:/opt/mssql-tools/bin"'>> ~/.bash_profile
 # echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bashrc
 # source ~/.bashrc

Now you need to test your tool. The only way to do this is to try to connect on6.
SQL Server database engine. To start, just type the following:

 # sqlcmd

Installation and Configuration

[42]

If you see something like the following screenshot, then you are on the right path:7.

Figure 2-12. Result of sqlcmd command

SQL Server installation on Kubuntu
The installation procedure on Kubuntu is identical to that in Ubuntu 16.04 and 16.10, which
are officially supported by Microsoft. Kubuntu and Ubuntu share the same version
numbering. My installation example is based on Kubuntu 16.10.

The whole installation procedure is command line-based. It means that you will be required
to use bash.

If you want to start installation, you will need minimum 3.25GB of
memory to run SQL Server on Linux.

Installation and Configuration

[43]

The following are the steps to install SQL Server on Linux on Kubuntu:

The first step is to add GPG keys and register SQL Server Ubuntu repository:1.

 # curl https://packages.microsoft.com/keys/microsoft.asc | sudo
apt-key add -
 # curl
https://packages.microsoft.com/config/ubuntu/16.04/mssql-server.list | sudo
tee
 /etc/apt/sources.list.d/mssql-server.list

Run the following two commands to install SQL Server. The first one is to refresh2.
the packages list and the second one to start setting up:

 # sudo apt-get update
 # sudo apt-get install -y mssql-server

After the installation is over, you can run the mssql-conf setup and follow the3.
procedure. For the sake of security, you need to specify a strong password for the
sa account. The minimum length is eight characters, a combination of uppercase
and lowercase letters, 10 digits, and/or non-alphanumeric symbols:

 # sudo /opt/mssql/bin/mssql-conf setup

Now is the time to check the status of the SQL Server service:4.

 # systemctl status mssql-server

In case you need to upgrade the already installed binaries to the new version, you5.
should write two commands. The first one is to refresh the packages list and the
second one to start the upgrade procedure:

 # sudo apt-get update
 # sudo apt-get install mssql-server

If you wish to remove the SQL Server from your Linux distribution, write the6.
next bash command:

 # sudo apt-get remove mssql-server

The upgrade process will not affect user and system databases that are
located in /opt/mssql/. On the other hand, step 6 will not delete user and
system database located in: /var/opt/mssql; you should delete them
manually.

Installation and Configuration

[44]

Before installing the tool components, we need to import public GPG keys and7.
register the Microsoft Ubuntu repository with the following commands:

 # curl https://packages.microsoft.com/keys/microsoft.asc | sudo
apt-key add -
 # curl https://packages.microsoft.com/config/ubuntu/16.04/prod.list
| sudo tee
 /etc/apt/sources.list.d/msprod.list

To install mssql-tools with the necessary unixODBC developer package, type8.
the following command:

 # sudo apt-get update
 # sudo apt-get install mssql-tools unixodbc-dev

In case you want to update only tools for the new version, run these two9.
commands:

 # sudo apt-get update
 # sudo apt-get install mssql-tools

Now you will need to modify your PATH environment variable. The following10.
two commands are referenced for running the sqlcmd and bpc command-line
tools:

 # echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >>
~/.bash_profile
 # echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bashrc
 # source ~/.bashrc

As in the openSUSE scenario, you need to test the client tools. You can type the11.
same command:

 # sqlcmd

Summary
In this chapter, you learned how to start interacting with Linux through the bash command-
line utility. This is enough to finish all command line tasks that you will find in this book
regarding SQL Server. A more detailed approach was on the installation procedure of SQL
Server on Linux (openSUSE and Kubuntu distros).

In the next chapter, we'll take a look to the SQL Server architecture and some internals that
are different compared with SQL Server on Windows.

3
SQL Server Basics

Microsoft SQL Server is considered to be one of the most commonly used systems for
database management in the world. This popularity has been gained by a high degree of
stability, security, and business intelligence and integration functionality. Microsoft SQL
Server for Linux is a database server that accepts queries from clients, evaluates them, and
then internally executes them to deliver results to the client. The client is an application that
produces queries through a database provider and communication protocol sends requests
to the server and retrieves the result for client-side processing and/or presentation.

Before starting to write queries and work with Microsoft SQL Server it's a good idea to gain
a good understanding of how the software works. With a good understanding of the
product and its mechanics, you'll be able to write more efficient queries and get results
much faster.

In this chapter, we will cover the following topics:

Overview of SQL Server
SQL Server components
How does it work on Linux?
SQL Server objects
SQL/T-SQL basics
Working environments and tools

SQL Server Basics

[46]

Overview of SQL Server
When writing queries, it's important to understand that the interaction between the tool of
choice and the database based on client-server architecture, and the processes that are
involved. It's also important to understand which components are available and what
functionality they provide.

With a broader understanding of the full product and its components and tools, you'll be
able to make better use of its functionality, and also benefit from using the right tool for
specific jobs.

Client-server architecture concepts
In client-server architecture, the client is described as a user and/or device, and the server as
a provider of some kind of service.

Figure 3-1. SQL Server client-server communication

As you can see in Figure 3-1, the client is represented as a machine, but in reality it can be
anything:

Custom application (desktop, mobile, web)
Administration tool (SQL Server Management Studio, dbForge, sqlcmd)
Development environment (Visual Studio, KDevelop)

SQL Server Basics

[47]

SQL Server components
Microsoft SQL Server consists of many different components to serve a variety of
organizational needs of their data platform. Some of these are:

Database Engine is the relational database management system (RDBMS), which
hosts databases and processes queries to return results of structured, semi-
structured, and non-structured data in online transactional processing solutions
(OLTP).
Analysis Services is the online analytical processing engine (OLAP) as well as
the data mining engine. OLAP is a way of building multi-dimensional data
structures for fast and dynamic analysis of large amounts of data, allowing users
to navigate hierarchies and dimensions to reach granular and aggregated results
to achieve a comprehensive understanding of business values. Data mining is a
set of tools used to predict and analyze trends in data behavior and much more.
Integration Services supports the need to extract data from sources, transform it,
and load it in destinations (ETL) by providing a central platform that distributes
and adjusts large amounts of data between heterogeneous data destinations.
Reporting Services is a central platform for delivery of structured data reports
and offers a standardized, universal data model for information workers to
retrieve data and model reports without the need of understanding the
underlying data structures.
Data Quality Services (DQS) is used to perform a variety of data cleaning,
correction, and data quality tasks, based on knowledge base. DQS is mostly used
in ETL process before loading DW.
Machine Learning Services (advanced analytics) is a new service that actually
incorporates powerful R and Python languages for advanced statistic analytics. It
is part of a database engine and you can combine classic SQL code with R and
Python scripts.

While writing this book, only one service was actually available in SQL
Server for Linux and its database engine. This will change in the future
and you can expect more services to be available.

SQL Server Basics

[48]

How it works on Linux
SQL Server is a product with a 30 years long history of development. We are speaking
about millions of lines of code on a single operating system (Windows). The logical question
is how Microsoft successfully ports those millions of lines of code to the Linux platform so
fast. SQL Server on Linux officially became public in the autumn of 2016. This process
would take years of development and investment. Fortunately, it was not so hard.

From version 2005, the SQL Server database engine had a platform layer called SQL
operating system (SOS). It is a layer between the SQL Server engine and the Windows
operating systems.

The main purpose of SOS is to minimize the number of system calls by letting SQL Server
deal with its own resources. It greatly improves performance, stability, and the debugging
process. On the other hand, it is platform dependent and does not provide an abstraction
layer. That was the first big problem encountered before even beginning to think about
creating the Linux version.

Project Drawbridge is a Microsoft research project that was created to minimize
virtualization resources when a host runs many VM on the same physical machine. The
technical explanation goes beyond the scope of this book
(https://www.microsoft.com/en-us/research/project/drawbridge/). Drawbridge bring
us to the solution of the problem.

Linux solutions use a hybrid approach that combines SOS and Liberty OS from the
Drawbridge project to create SQL PAL (SQL Platform Abstraction Layer). This approach
creates a set of SOS API calls that does not require Win32 or NT calls and separates them
from platform depended code. This is a dramatically reduced process of rewriting SQL
Server from its native environment to Linux platform. The next figure gives you a high level
overview of SQL PAL
(https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-
on-linux-how-introduction/):

https://www.microsoft.com/en-us/research/project/drawbridge/
https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/
https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/

SQL Server Basics

[49]

Figure 3-2. SQL PAL architecture.

SQL Server objects
In the following lines, we will present the basic structure of SQL Server objects, from the
server to the database level. This book does not have the scope to cover all the elements of
which we are going to speak, but it will give you enough information to cover all the basics.

System databases
SQL server has a concept of system and user databases. User databases are created for
specific types of business process: HR, online shop, eHealth, and so on. It's up to the user
(developers and DBAs) to define all the parameters. Here, you are in charge (more about it
Chapter 4, Database in the Sandbox).

On the other hand, system databases are created during the installation procedure without
almost any user influence. It is a repository of all SQL Server internals and it continues its
process of updating its content, such as:

Configuration data
Users information
Database objects

SQL Server Basics

[50]

Query execution statistics
Troubleshooting
Data statistics
And many more

SQL Server simply can't work without it. All this important information is stored in the
following system databases:

master (system-wide settings and information about user databases)
tempdb (a place for any temporal database tasks)
model (the template for new user databases)
msdb (used by SQL Server Agent Service for tasks scheduling)

Those four databases are default and the user can't directly access their content. To do that
we need to use system catalog and dynamic management views objects.

Database objects
Tables are the containers for database records. They represent basic elements of the
database structure. For example, Students, Educators, Courses, and Grades can be a
table in some hypothetical eUniversity system. Tables are built around data types bounded
on table columns. For example, LastName - nvarchar(50), Salary - Money,
BirthDate - datatime. Every data operation includes tables and some of the other
database objects (listed as follows):

Stored procedures are objects in the database for storing methods of actions. A
procedure could be described as a program that processes actions in the database.
For example, inserts, updates, and/or delete rows in a table.
Functions are objects in the database that encapsulate formulas and calculations
and return either scalar values, or sets of data.
Views are an object that consists of one select-statement, and are referenced as a
table. Normalized database views bring normalized data together and masks
complex table structures.
Schemas are an organizational object and can be described as a folder in a
filesystem. All objects in a database must belong to a schema.
User-defined objects are objects that consist of an interpretation of a native SQL
Server data type and offer a standardized method of describing the value of
columns, variables, and parameters.

SQL Server Basics

[51]

SQL Server data types
The SQL Server Database Engine utilizes a wide selection of data types. A data type is a
definition of how a value is structured, stored, and handled. There are data types for any
kind of structured, semi-structured, and non-structured type of data.

Structured data types are native SQL Server data types such as int, char, varchar,
datetime, binary, varbinary, money, decimal, geography, geometry,

location, and so on. Character-based data types support both non-unicode,
char/varchar, and unicode, nchar/nvarchar.

Semi-structured data types, such as xml, store their data in a structured manner internally
and is usually handled by the database engine as large objects, but at the same time offers
flexibility to add custom functions and indexes to efficiently display its content.

Non-structured data types are usually referred to as large objects called blob (binary large
objects) or clob (character large objects) and used to store large amounts of data such as
documents and binaries in the database. Also, varbinary(max), varchar(max), and
nvarchar (max) are seen as non-structured objects. From the 2016 version , SQL Server
had used a more modern approach and adequate data types for dealing with non-
structured data: polybase feature and support for JSON.

Every data type offers specific features for a specific use. When designing a database, it's
important to choose the right data type for every column of a table.

SQL/T-SQL basics
In this part of the chapter, you will get an introduction about SQL language, or to be more
precise, the Microsoft version T-SQL (Transact-SQL). Before we actually start to write code,
we will cover some basics about language SQL and T-SQL syntax. This knowledge is
applicable in all the chapters that will come later, especially in Chapter 4, Database in the
Sandbox, and Chapter 5, Sample Databases.

SQL Server Basics

[52]

History of SQL/TSQL
During the seventies, the IBM research centre in San Jose, California created a research team
named System R based on Edgar F. Codd's article A Relational Model of Data for Large Shared
Data Banks. This later evolved into IBM System/38 in August of 1978. In 1986, the language
SQL (Structured Query Language), became an ANSI standard and in 1987 it was accepted
as an ISO standard. Today, almost 40 years later, SQL is de facto standard when we are
talking about retrieving and data processing.

In order to successfully write queries against SQL Server databases, you need to understand
the query language T-SQL (Transact-Structured Query Language). T-SQL, and both the
ANSI and ISO standard, offers words such as SELECT, INSERT, UPDATE, and DELETE as
well as FROM, JOIN, WHERE, GROUP BY, and ORDER BY to understand the syntax and what
these words add to build better results when querying the database.

Even if the standards have minimal support for flow control, T-SQL offers additional
scripting and batch processing flow control support such as IF...ELSE, WHILE.

Types of SQL statements
SQL/T-SQL consists of three main groups of statements:

DDL - Data Definition Language
CREATE, to create database objects
ALTER, to modify database objects
DROP, to remove database objects

DCL - Data Control Language
GRANT, to grant users permission to objects
DENY, to deny users permissions to objects
REVOKE, to remove either grant or deny

SQL Server Basics

[53]

DML - Data Manipulation Language
SELECT, to return rows of data from tables
INSERT, to add rows of data to tables
UPDATE, to modify rows of data in tables
DELETE, to remove rows of data from tables

The next three chapters are focused on DDL, DML statements, and data retrieving
techniques, from the SQL Server from a Linux point of view.

Working environments and tools
In Chapter 2, Installation and Configuration, we covered the installation procedure of SQL
Server database engine and command-line tools. In this phase of development (CTP 1.3 -
RC1) there is a limited number of tools to interact with SQL Server. But that will be changed
in the near future. If this book was about the Windows platform, then content would likely
be different, but this does not mean that we don't have quality tools to work with this
database engine.

Here is a list of the most used currently supported tools on Linux and Windows platforms:

sqlcmd (Linux)
bpc (Linux)
Visual Studio Code (Linux)
SSMS (Windows)

sqlcmd
The command-line utility, sqlcmd, offers batch execution of T-SQL scripts and a simple
utility for executing T-SQL statements. It will be our primary interaction interface with SQL
Server database engine. If you want to connect to your SQL Server instance you will need to
type sqlcmd and the following parameters: (-S server name, -U user name -P
password) in your bash command line.

You should avoid typing the password with parameter -P, because it will
be visible on the screen. You can simply prevent this kind of situation in a
matter skipping -P, and the database engine will ask your credentials after
you press ENTER.

SQL Server Basics

[54]

To connect on SQL Server, type the following command:

sqlcmd -S sqlserver -U sa

In my case, the hostname is sqlserver; instead, you can type your IP address or
localhost. After you press Enter, sqlcmd will ask you to provide a valid password for the
sa account:

Password:

If login credentials are OK, you will get a screen output as follows:

Figure 3-3. Successful login on SQL Server instance

Now, let's type your first SQL statement to check version number of your SQL Server
database engine. As you can see in Figure 3-3, sqlcmd is numbering code lines, starting
from 1. So, each time you press Enter, you will jump to the next line 2, 3, and so on. But
when you need to execute your command (Enter is not enough), you will need to finish
your statement with batch directive GO. Take a look at the following listing:

1> SELECT @@VERSION
2> GO

Microsoft SQL Server vNext (CTP1.3) - 14.0.304.138 (X64)
 Feb 13 2017 16:49:12
 Copyright (C) 2016 Microsoft Corporation. All rights reserved.
 on Linux (openSUSE Leap 42.2

(1 rows affected)

SQL Server Basics

[55]

First, we typed SELECT @@VERSION. After you press Enter, in the next line you need to type
batch directive GO. Output (or result of execution) is an information message about SQL
Server database engine and operating system version. Congratulations, you just finished
your first SQL statement on a freshly installed SQL Server on Linux. It was not so hard. To
exit in the bash command line, just type EXIT and press Enter. We will come back to sqlcmd
in Chapter 4, Database in the Sandbox.

bcp
The bulk copy program bcp copies data between the same or different SQL Server
instances. It can be used for import and export procedures. It is mostly used to import large
numbers of rows into SQL Server databases or to export rows into data files. This utility
requires no knowledge of SQL. One of the common usage scenarios is the ETL (Extract
Transform and Load), process.

For example, to copy the content of a database table into a data file, you should write
something like this (depends on your database and object names):

bcp Northwind.Customers out "List of Customers.dat" -T -c

This command bulk copies the content of the Customers table from the Northwind
database into a new file List of Customers.dat.

We will deal with bcp in the following chapters.

Visual Studio code
Now, something completely new. It is GUI code editor for Linux, macOS, and Windows. I
don't know if you would believe me, but the vendor is also Microsoft. This is part of their
new strategy to provide the power of Microsoft development tools on every major platform,
not only Windows.

Visual Studio supports extensions for different kinds of development technologies and
languages:

C/C++
Python
SQL
C#
JavaScript

SQL Server Basics

[56]

PHP
R
XML
And many more

From our point of view, Visual Studio code can directly communicate with SQL Server. Yes,
this is a primary development tool, but it can be used to interact with database engines
through SQL.

You can see how it looks in the following screenshot:

Figure 3-4. Writing SQL code trough Visual Studio Code editor

Figure 3-5. Browsing data and options for exporting

This tool is primarily for developers who use different kinds of programming languages. In
the process, they can interact with SQL Server (on Linux and Windows) or many other
database platforms. You can find more information on the tool here: h t t p s ://c o d e . v i s u a l

s t u d i o . c o m /.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

SQL Server Basics

[57]

SQL Server Management Studio (SSMS)
SQL Server Management Studio (SSMS
(https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studi
o-ssms)), is the primary tool for both database administrators as well as database designers.
It offers a graphical interface to write queries, server administration, and create database
objects. Almost every action that can be carried out via dialog boxes and windows can also
be done using SQL scripts. T-SQL also offers an advanced T-SQL editor with support for
IntelliSense and code snippets together with full blown templates and linking into the
Books Online.

Unfortunately, this tool is not supported on Linux platforms. This will probably change in
the future. But don't look at this is as a limitation. If you have Windows installed (physical
or virtual) you can install this free tool and connect to your (physical or virtual) Linux. This
will require simultaneous usage of different platforms, but in today's IT world I believe that
every IT professional uses more than one different operating system environment. The
installation procedure is pretty simple and it requires no interaction.

Before SQL Server 2016, SSMS was part of standard SQL Server
installation. Now it is available as a separate download because faster
development cycles.

The following steps describe how to connect to SQL Server on Linux with SQL Server
Management Studio. To successfully do this, you will need the following:

A Windows operating system with SSMS (physical or virtual)
Linux with SQL Server on Linux (physical or virtual)
The IP address of your SQL Server on Linux
Login credentials
Open TCP/IP port 1433 on Linux (default communication SQL Server port)

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

SQL Server Basics

[58]

In the Start menu, locate SQL Server Management Studio and click on it. After1.
SSMS starts, you should see something similar to the following:

Figure 3-6. SSMS is awaiting connection parameters

The environment is not ready yet. Focus your attention on Connect to Server
dialog windows, which expect some additional parameters:

Service type
Server name
Authentication
Username
Password

For the Server type, we will choose Database Engine. In the field Server name,2.
type the IP address of your Linux machine with SQL Server. Currently, SQL
Server on Linux only supports SQL Server authentication. If you remember,
during installation, you typed password for an sa user. Based on my
configuration, Connect to Server dialog screen should look similar to the
following screenshot:

SQL Server Basics

[59]

Figure 3-7. Connect to Server dialog windows with connection details

Click Connect. If your parameters are OK, then SSMS will initialize an3.
environment to start interacting with the database engine.
From this point it is really easy to start. Every SQL query entered through SSMS4.
or sqlcmd has the same results. The only difference is the luxury of GUI and the
military style of Command Prompt. Let's try:
Press Ctrl + N to open new query windows.5.
Type the same command as in the sqlcmd case, SELECT @@VERSION.6.

While you are typing, IntelliSense will pop up with suggestions:

Figure 3-8. IntelliSense in action

SQL Server Basics

[60]

Now press F5. Output will be similar to what is shown in the following7.
screenshot:

Figure 3-9. Result of query execution in GUI environment

It is much easier than in sqlcmd, but this not a native Linux environment and we will leave
it for now. As I mentioned earlier, our focus is on command line.

Summary
In this chapter, we covered basics about SQL Server architecture and the major differences
compared with classic SQL Server on Windows. Also, we explained basic tool usage that we
will use in following chapters.

Now, prepare yourself for some real SQL coding in the next chapter.

4
Database in the Sandbox

The first major stop during our journey on SQL Server on Linux is SQL coding. To be more
precise, we will write some DDL and DML statements which will provide us with a testing
playground. That environment will be used now for practice and later when we need to use
it again. This chapter is for all Linux users, and no SQL experience is necessary.

We will cover the following topics:

DDL statements
Creating a new database
Creating new tables
DML statements
Data manipulation
Creating database objects

DDL statements
DDL or Data Definition Language statements are a set of three simple but powerful and
effective commands: CREATE, ALTER, and DROP. When you look at those words they do not
provide you with enough information about what they are capable of doing. In a nutshell,
you can do the following:

CREATE: This statement will create anything from the server, down to the
database level of objects (database, tables, views, stored procedures, triggers,
users, encryption keys, and so on)
ALTER: This gives you the option to modify any kind of object including server
configuration and the database itself

Database in the Sandbox

[62]

DROP: This is a dangerous but effective statement for deleting (dropping is the
database term) server and database level of objects

As an example, the basic syntax for creating a new table looks like this:

CREATE TABLE [table name]
([column definitions]) [list of parameters]

Creating a new database
Before we create some tables and other database objects we need to set up our playground. I
am assuming that you have some basic knowledge about databases, tables, data types, and
relational modelling. However, don't you worry I'll lead you all the way:

First, connect to your SQL Server through the sqlcmd command-line tool:1.

 # sqlcmd -S sqlserver -U sa

Now, we will check how many databases we have on our instance by calling the2.
sys.databases catalog view with the following statement:

 1> SELECT name FROM sys.databases
 2> GO
 name

 master
 tempdb
 model
 msdb

 (4 rows affected)

As you can see, for now only the system databases are visible, but that is about to3.
change.
Enter this CREATE statement in your sqlcmd to create a new database called4.
University:

 1> CREATE DATABASE University
 2> GO

Database in the Sandbox

[63]

This tool does not tell you whether the database has been created, so you will5.
need to repeat step 2. You should now see a new database on the list:

 1> SELECT name FROM sys.databases
 2> GO
 name

 master
 tempdb
 model
 msdb
 University

 (5 rows affected)

Now, call the catalog view sys.database_files (h t t p s ://m s d n . m i c r o s o f t . c o6.
m /e n - u s /l i b r a r y /m s 174397. a s p x), to see some detailed information about your
new database. Be careful, this view has a large number of attributes and it will
not be practical to see them all in the console. In my example, I will show just a
small number of them:

 1> USE University
 2> GO
 Changed database context to 'University'.
 1> SELECT name, physical_name
 2> FROM sys.database_files
 3> GO
 name physical_name

 University C:\var\opt\mssql\data\University.mdf
 University_log C:\var\opt\mssql\data\University_log.ldf

 (2 rows affected)

Creating new tables
Now, we will create some basic table structures for our University database. Nothing too
complicated, but you will get enough information about how SQL Server on Linux handles
these requests. The idea is to practice a combination of DDL and DML statements in one
project, from the database schema creation, to filling the database with some data, to
changing the database structure, and finally by creating database objects to access the data.

https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx
https://msdn.microsoft.com/en-us/library/ms174397.aspx

Database in the Sandbox

[64]

The best way to explain this in practice is to create the following tables inside our
University database:

Students (basic personal data about students)
Educators (basic personal data about teaching staff)
Courses (tables to store information about courses)
Grades (the central point of our system data about student's evaluation grades)

Our hypothetical system should look like the following figure:

Figure 4-1. Database diagram for the University database

This schema does not describe a real-life university system, but the basic concepts, such as
column definitions, data types, and primary and foreign keys, are the same whether there
are 4 tables or 100 tables. All the concepts are contained within these simple four tables
(entities), and are the foundation of every university information system. Let's start:

First, if you are not connected already, connect to your SQL server using the1.
sqlcmd command-line tool.
Tell the SQL server that you want to work with the University database with2.
the USE keyword:

 1> USE University
 2> GO
 Changed database context to 'University'.

Database in the Sandbox

[65]

The next step is to create a Students table with the following columns:3.
StudentID, LastName (15), FirstName (10), Email (15), and Phone (15):

 1> CREATE TABLE Students (
 2> StudentID int IDENTITY (1,1) PRIMARY KEY,
 3> LastName nvarchar (15) NOT NULL,
 4> FirstName nvarchar (10) NOT NULL,
 5> Email nvarchar (15) NULL,
 6> Phone nvarchar (15) NULL);
 7> GO

Now let's define a table for the education staff: EducatorID, LastName (15),4.
FirstName (10), Title (5), and Email (15):

 1> CREATE TABLE Educators (
 2> EducatorID int IDENTITY (1, 1) PRIMARY KEY,
 3> LastName nvarchar (15) NOT NULL,
 4> FirstName nvarchar (10) NOT NULL,
 5> Title nvarchar (5) NULL,
 6> Email nvarchar (15) NULL);
 7> GO

The table for the courses should have the following definition: CourseID,5.
CourseName (15), and Active (Boolean):

 1> CREATE TABLE Courses (
 2> CourseID int IDENTITY (1, 1) PRIMARY KEY,
 3> CourseName nvarchar (15) NOT NULL,
 4> Active bit NOT NULL);
 5> GO

The last table will store students' grades and reference to other tables: GradeID,6.
StudentID, CourseID, EducatorID, Grade (integer), and Date (date and time):

 1> CREATE TABLE Grades (
 2> GradeID int IDENTITY (1,1) PRIMARY KEY,
 3> StudentID int NOT NULL CONSTRAINT FK_Students FOREIGN KEY
REFERENCES Students (StudentID),
 4> CourseID int NOT NULL CONSTRAINT FK_Courses FOREIGN KEY
REFERENCES Courses (CourseID),
 5> EducatorID int NOT NULL CONSTRAINT FK_Educators FOREIGN KEY
REFERENCES Educators (EducatorID),
 6> Grade smallint NOT NULL,
 7> Date datetime NOT NULL);
 8> GO

Database in the Sandbox

[66]

Now, call the catalog view to see the list of newly created tables in the7.
University database:

 1> SELECT name,type_desc
 2> FROM sys.objects
 3> WHERE type = 'U'
 4> GO
 name type_desc

 Students USER_TABLE
 Educators USER_TABLE
 Courses USER_TABLE
 Grades USER_TABLE
 (4 rows affected)

DML statements
DML or Data Manipulation Language statements are a set of classic SQL commands used
to work on the data (records inside the tables). They are: INSERT, UPDATE, DELETE and
SELECT. We can use them directly (ad hoc) or through different sets of applications, as a
CRUD layer (CREATE, READ, UPDATE, and DELETE). Here are the explanations of DML
commands:

INSERT: Adding new records in to tables
UPDATE: Modifying existing rows inside the tables
DELETE: Removing records from the tables
SELECT: Read-only access to the records stored inside the tables

We will learn more about SELECT in Chapter 6, A Crash Course in Querying.

Data manipulation
Now, we will start working with concrete data based on the foundation that we've created
in the previous steps. So, we will use our University database to enter initial data into
tables and test basic manipulation with the data:

Database in the Sandbox

[67]

If you are not already in it, change the focus of the current database to1.
University:

 1> USE University
 2> GO
 Changed database context to 'University'.

First, let's add one student into the Students table with a single INSERT2.
statement:

 1> INSERT INTO Students
 2> VALUES ('Azemović','Imran','Imran@dba.ba', NULL)
 3> GO
 (1 rows affected)

In this step, we will add two new students with a single INSERT statement,3.
another cool SQL Server feature:

 1> INSERT INTO Students
 2> VALUES ('Avdić','Selver', NULL, NULL),
 3> ('Azemović','Sara','Sara@dba','000-111-222'),
 4> ('Mušić','Denis','Denis@dba.ba, NULL)
 5> GO
 (3 rows affected)

Now, let's check the content of the Student table:4.

 1> SELECT * FROM Students
 2> GO
 StudentID LastName FirstName Email Phone
 ----------- --------------- ---------- --------------- -----------
 1 Azemovic Imran Imran@dba.ba NULL
 2 Avdic Selver NULL NULL
 3 Azemovic Sara Sara@dba 000-111-222
 4 Music Denis Denis@dba.ba NULL

 (4 rows affected)

One student is sent a request to add an email address. The following UPDATE5.
command will do the job:

 1> UPDATE Students
 2> SET Email = 'Selver@dba.ba'
 3> WHERE StudentID = 2
 4> GO
 (1 rows affected)

Database in the Sandbox

[68]

It is time to delete one record, because Denis should not be on the student list6.
since he is one of the teaching staff:

 1> DELETE FROM Students
 2> WHERE StudentID = 4
 3> GO
 (1 rows affected)

Again, let's check the contents of the Students table:7.

 1> SELECT * FROM Students
 2> GO
 StudentID LastName FirstName Email Phone
 ----------- --------------- ---------- --------------- -----------
 1 Azemovic Imran Imran@dba.ba NULL
 2 Avdic Selver NULL NULL
 3 Azemovic Sara Sara@dba 000-111-222
 (3 rows affected)

Using the same principle, we will add a couple of records to the Educators8.
table:

 1> INSERT INTO Educators
 2> VALUES ('Vejzovic','Zanin','Ph.D.',NULL),
 3> ('Music','Denis','Ph.D.',NULL),
 4> ('Bevanda','Vanja','Ph.D.','Vanja@dba.ba')
 5> GO
 (3 rows affected)

Now, we will add some courses:9.

 1> INSERT INTO Courses
 2> VALUES ('Programming',1),
 3> ('Databases',1),
 4> ('Networks',1)
 5> GO
 (3 rows affected)

The final step is to enter one grade and to check the content of the Grades table:10.

 1> INSERT INTO Grades
 2> VALUES (1,2,3,10,GETDATE())
 3> GO
 (1 rows affected)

 1> SELECT * FROM Grades
 2> GO

Database in the Sandbox

[69]

 GradeID StudentID CourseID EducatorID Grade Date
 ----------- ----------- ----------- ----------- ------ -----------
 1 1 2 3 10 2017-03-23
 (1 rows affected)

This DML practice will be enough to understand the basic concepts of adding, modifying,
and deleting data. If you don't have any SQL experience it is a good start from which to
continue exploring on your own. If you have experience with another data platform, such
as MySQL, PostgreSQL, and so on, then you will see differences in using SQL Server on
Linux.

Changing table definition
Sometimes you simply can't implement all the tables' attributes. One of the reasons is that in
the moment you may not know all the business requirements and will not be able to define
a stable table structure. The SQL language gives you the power to do that even if tables
have records inside.

Let's add a new PhoneNumber column to the Educators table:

In this scenario, we will use the ALTER TABLE statement:1.

 1> ALTER TABLE Educators
 2> ADD PhoneNumber nvarchar (15) NULL
 3> GO

Now, we will alter the Students table to add the new column, set default values,2.
and place a unique constraint on it. A unique constraint is used when we need to
ensure some values are unique in the table but without using primary keys:

 1> ALTER TABLE Students
 2> ADD UserName nvarchar (15) NOT NULL DEFAULT 'user.name'
 3> WITH VALUES
 4> GO
 1> UPDATE Students
 2> SET UserName = Email
 3> GO
 1> CREATE UNIQUE NONCLUSTERED INDEX UQ_user_name
 2> ON dbo.Students (UserName)
 3> GO

Database in the Sandbox

[70]

Okay, let's add a new record to test the column constraint:3.

 1> INSERT INTO Students
 2> (FirstName, LastName, UserName)
 3> VALUES
 4> ('John','Doe','john.doe')
 5> GO

For some reason, the student with ID = 1 wants to add a user name, but it is4.
already been taken by a different user. The database engine will throw an error
and state that this operation is not valid:

 1> UPDTAE Students
 2> SET UserName = 'john.doe'
 3> WHERE StudentID = 1
 4> GO
 Msg 2627, Level 14, State 1, Server openSUSE, Line 1
 Violation of UNIQUE KEY constraint 'UQ_user_name'. Cannot insert
duplicate key in object 'dbo.Students'. The duplicate key value is
(john.doe).
 The statement has been terminated.

Dropping a table
Finally, the last table operation to look at is dropping. To use Windows terminology, you
can think of it like a delete but without the Recycle Bin. It will delete all the records and
table definitions:

First, we will create a simple table:1.

 1> CREATE TABLE Test
 2> (Column1 int, Column2 int)
 3> GO

The next step is to make it vanish from our database:2.

 1> DROP TABLE Test
 2> GO

In the same way, you can delete any object from a database:
DROP object type (object name)

Database in the Sandbox

[71]

Creating other database objects
After tables and playing with DML statements, we are ready to look at another set of
database objects. These are also important from the perspective of data access and are
heavily used by developers during the application development process. Of course, they
can be used for direct data access and modification without an application layer. We will
cover the following objects:

Views
Stored procedures
Triggers

Again, as in previous examples, we will not go into much technical detail. But it will give
you enough information to explore this topic further on your own.

Creating views
Views are objects that consist of the SELECT statement, and are referenced as a table.
Normalized database views bring normalized data together and mask the complexity of the
table structures.

Another use of views is a security purpose. Let's say that, of 10 columns inside your table,
two of them are not for public viewing. Creating a view to access the rest of the public
columns is the most effective and easiest way of implementation. However, be aware that a
view is not essentially a security feature.

We want to create a view to show only FirtsName, LastName, and Email1.
columns from the Students table and corresponding data. To do that, type the
following statement:

 1> CREATE VIEW vStudents
 2> AS
 3> SELECT FirstName, LastName, Email
 4> FROM Students
 5> GO

Database in the Sandbox

[72]

The next step is to check it is working as expected. Type the following SELECT2.
statement on the view, not the table:

 1> SELECT * FROM vStudents
 2> GO
 FirstName LastName Email
 ---------- --------------- ---------------
 Azemovic Imran Imran@dba.ba
 Avdic Selver NULL
 Azemovic Sara Sara@dba.ba
 John Doe NULL
 (4 rows affected)

Working with views is the same as with tables. After the next two chapters, you will be able
to combine and create more sophisticated views and queries on your SQL Server on Linux.

Creating stored procedures
Stored procedures are objects in the database for storing methods of action. A procedure
could be described as a program that processes actions in the database. For example, inserts,
updates, and/or deletes rows in a table:

In the following demonstration, you will create a stored procedure for searching.1.
It will take StudentID as the dynamic parameter and show the result based on
that. In the sqlcmd, type following SQL code:

 1> CREATE PROCEDURE usp_Student_search_byID
 2> @StudentID int
 3> AS
 4> SELECT StudentID,LastName,FirstName,Email
 5> FROM Students
 6> WHERE StudentID = @StudentID
 7> GO

Database in the Sandbox

[73]

If you want to execute a stored procedure, you can do it two ways: ad hoc,2.
through the database administration and development tools (sqlcmd, SSMS, and
so on); or you can call it directly from the application layer (web or mobile) and
provide the input parameters. In our case, it will use an ad hoc approach:

 1> EXEC usp_Student_search_byID 1
 2> GO
 StudentID LastName FirstName Email
 ----------- --------------- ---------- ------------
 1 Azemovic Imran Imran@dba.ba

 (1 rows affected)

As you can see, we had provided an input parameter to @StudentID, in this case3.
StudentID is 1.

Creating triggers
Triggers are event-based SQL code. They are commonly used when we need to execute
some specific operation (SQL code) after, before, or instead of some user action. For
example, when a user deletes a record from the database, a trigger can store the original
data. The scope of its usage is really wide.

You will create a trigger that will prevent any dropping of database objects (accidental or
not). Now type the following trigger definition:

 1> CREATE TRIGGER Dropping_prevention
 2> ON DATABASE
 3> FOR DROP_TABLE, DROP_VIEW, DROP_PROCEDURE
 4> AS
 5> PRINT 'Deleting is not permitted, this operation is logged!'
 6> ROLLBACK
 7> GO

Now is the moment of truth. We will try to drop a stored procedure that we created in the
previous steps:

 1> DROP PROCEDURE usp_Student_search_byID
 2> GO
 Deleting is not permitted, this operation is logged!
 Msg 3609, Level 16, State 2, Server openSUSE, Line 1
 The transaction ended in the trigger. The batch has been aborted.

Database in the Sandbox

[74]

Summary
In this chapter, you have learned how to create a learning or test environment on your SQL
Server on Linux. You now know how to create a database, tables, and other database
objects, such as views, stored procedures, and triggers. Also, you are familiar with how to
deal with data. After the next two chapters, you will be able to combine all your knowledge
to create some really impressive work.

In the next chapter, you will learn how to deal with SQL Server sample databases, where to
find them, and how to install them. Those environments are ideal to learn administration
tasks and train your SQL language skills from this chapter.

5
Sample Databases

In the previous chapter, you learned how to create a learning environment and started
writing some serious SQL code. However, our database lacks data and complexity, which
we need in order to practice and test all the cool SQL language features on SQL Server on
Linux. This chapter will guide you through some of the best sample databases which can be
used to test almost any SQL Server feature and prepare yourself for the production
environment. Before beginning with the samples, I will briefly explain the basics about
relational database concepts and the process of normalization.

We will cover the following topics:

Relational database concepts
Normalization
Northwind database
Pubs database
AdventureWorks database
WideWorldImporters database

Sample Databases

[76]

Relational database concepts
Relational databases consist of many objects, and the most common of these is a table. A
table is a logical structure (relation) for storing and retrieving rows of data. It is defined by
its columns which are represented by the data types.

Every table should have a primary key as a unique representation of a single row. It is
usually a single column that either hosts a sequential number or a unique identifier that
would never be used more than once. Tables can also contain two or more columns that
together represent the unique row of the table. A table can also host foreign keys which
describe its table reference, or relation to another table. For example, a Students table has a
unique StudentID column, and the same StudentID is then represented in a Grades table
to tie the actual grade to the student. This allows for one student to have none, one, or many
grades, and requires that student record to exist before the grades can be entered.

Normalization
Modelling, or designing, a database is deciding which tables and columns, together with
other objects, are needed to support the application that consumes the data. As applications
work with objects and attributes, a common mistake is to create a physical table structure as
a copy of the object model. Even if the database supports the object model, the main
responsibility of the database is to handle data. When different objects share the same types
of data, the database designer needs to look further and model the table based on the types
of data.

Database normalization is the process that seeks to eliminate the need for multiple
repetitions of the same data. It implies a specific form of field and table organization that
will minimize data redundancy and dependency. Therefore, the process of normalization
often requires the division of large tables into smaller (and less redundant) tables and
defined relationships between them. The objective is to isolate data so that additions,
deletions, and modifications of a field can be made in just one table and then propagated
through the rest of the database via the defined relationships.

Sample Databases

[77]

In June 1970, Edgar F Codd published an article, A Relational Model of Data for Large Shared
Data Banks, in which he introduced the concept of normalization and what we now know as
the first normal form (1NF) that laid the groundwork for the theory of relational databases
and the rules for how they should be constructed. Codd's 12 rules are a set of thirteen rules
numbered 0 to 12 that describe the requirements for what should be considered as a
relational database.

Codd went on to also define the second normal form (2NF) and third normal form (3NF).

First normal form
Every table must uniquely represent each row, not carry any duplicate rows, and not have
any repeating groups. For example, a Students table, with the attributes:

Name

City

EmailAddress

PhoneNumber1

PhoneNumber2

The PhoneNumber attributes are a repeating group and the table should consist of four
columns:

Name

City

EmailAddress

PhoneNumber

Second normal form
The table must meet the criteria of 1NF and any of the non-key attributes cannot rely on a
subset of the key. As a student might have several phone numbers, this model might
generate many rows for one person (redundancy). If hypothetically speaking, Name
uniquely represents a student, the model should be: Students (Name, City,
EmailAddress) and PhoneNumbers (Name, PhoneNumber).

Sample Databases

[78]

Third normal form
The table must meet the criteria of 2NF and every non-key attribute is directly dependent
on its key, a super key. For example, a students table: Students (StudentKey, Name,
Department, DepartmentLocation). DepartmentLocation is dependent on the
department, not the employee. To adhere to the 3NF a better solution would be Locations
(LocationKey, Name), Departments (DepartmentKey, Name, LocationKey), and
Employees (EmployeeKey, Name, DepartmentKey).

Northwind database
If you are familiar with the classic SQL Server on Windows then there is only a very small
probability that you haven't heard about the epic Northwind. Actually, this database
originated from the ancient Microsoft Access. Those members of the Linux population with
some MySQL or PostgreSQL experience probably do not know about it, but it is very close
to the sakila or dvdrental samples from those platforms.

Northwind (h t t p s ://n o r t h w i n d d a t a b a s e . c o d e p l e x . c o m /) is a classic example of a sales
system where you have basic entities: Customers, Products, Orders, and Employees.
From the SQL Server perspective, it was an official example from version SQL Server 2000
to SQL Server 2005. Later it was replaced by a more detailed and complex system of sales.
Now, Northwind is not officially supported by Microsoft, but it remains one of the most
popular examples in the SQL Server world as it is simple, easy to read, and ideal for
beginners with zero or very little database and SQL experience.

As you can see in Figure 5-1, Northwind has 13 tables with a very clear set of names of the
tables and table attributes. From the data perspective, the content is small but very clear and
easy to understand:

https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)
https://northwinddatabase.codeplex.com/)

Sample Databases

[79]

Figure 5-1. Northwind database relational schema

Sample Databases

[80]

You can test and practice almost any SQL Server on Linux feature with the Northwind
database. You can download and install this database on your SQL Server instance from
http://www.microsoft.com/en-us/download/details.aspx?id=23654.

Pubs database
The hall of fame would not be complete if I did not mention the Pubs
(http://www.microsoft.com/en-us/download/details.aspx?id=23654) sample database.
If sales are not good enough for you, then publishing is the right choice. Here you can find
authors, titles, publishers, and other entities regarding a publishing business:

http://www.microsoft.com/en-us/download/details.aspx?id=23654
http://www.microsoft.com/en-us/download/details.aspx?id=23654

Sample Databases

[81]

Figure 5-2. Pubs database relational schema

Objects and table attribute names are a less clear, because the author of this database sample
has preferred the use of short words, qty, au_lname, highqty, and so on. However, with
11 tables it is quite simple and easy to understand.

Sample Databases

[82]

You can download this sample at
http://www.microsoft.com/en-us/download/details.aspx?id=23654. Pubs originated
from Accent SQL Server 2000, but it can be used for practicing SQL and DBA tasks.

In Chapter 7, Backup Operations, we will learn how to restore those databases. If you are
eager you can jump quickly to Chapter 8, User Management, and study how to do it.

AdventureWorks database
From SQL Server 2005 until 2016, this has been the new example. We can see it as like
Northwind on steroids. In the last official version, AdventureWorks database included 71
user tables, which is more than five times larger than Northwind. Don't panic, it is just a
good old customer-sales system but with more detail. Northwind deals with seafood, while
AdventureWorks is about selling bicycles.

One of the biggest complaints about the previous examples is that they are not complex
enough to present adequate real-life database system environments. If we just look at the
partial list of tables we will get a picture:

Name

Address
AddressType
AWBuildVersion
BillOfMaterials
BusinessEntity
BusinessEntityAddress
BusinessEntityContact
ContactType
CountryRegion
CountryRegionCurrency
CreditCard
Culture
Currency
CurrencyRate
Customer
DatabaseLog
Department
Document
EmailAddress
Employee
EmployeeDepartmentHistory
EmployeePayHistory
ErrorLog

http://www.microsoft.com/en-us/download/details.aspx?id=23654

Sample Databases

[83]

Illustration
JobCandidate
Location
Password
Person
PersonCreditCard
PersonPhone
PhoneNumberType
Product
ProductCategory
ProductCostHistory
ProductDescription
ProductDocument
...
(71 row(s) affected)

The database diagram can't fit onto one page of this book. Even A4 would be tight, so let me
just show you just one small part of the system. The following picture illustrates the HR
division of the AdventureWorks hypothetical corporation:

Figure 5-3. AdventureWorks HR division

Sample Databases

[84]

This database goes way beyond the classic system for learning, but here you can test almost
any type of query or admin task that can be close to a real-life scenario. In the next chapter,
some of the examples we use will be on this database. Now, I will explain how to install this
database on your SQL Server on Linux.

Installing AdventureWorks
The following steps will install AdventureWorks on SQL Server on Linux:

The first step is to download a backup file to your default location:1.
From: h t t p ://m s f t d b p r o d s a m p l e s . c o d e p l e x . c o m /r e l e a s e s /v i e w
/125550

To: /home/Downloads/
Filename: In my case that is: Adventure Works 2014 Full
Database Backup.zip

Unzip the AdventureWorks2014.bak file2.
Now create a folder for all your backups with root privileges (sudo su) through3.
bash:

 dba@openSUSE:~> sudo su
 dba@openSUSE:~> mkdir -p /var/opt/mssql/backup

Move AdventureWorks2014.bak into the backup folder:4.

 dba@openSUSE:~> mv /home/user1/Downloads/AdventureWorks2014.bak
/var/opt/mssql/backup/
 dba@openSUSE:~> exit

http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550
http://msftdbprodsamples.codeplex.com/releases/view/125550

Sample Databases

[85]

Last but not least, restore the BAK file into the AdventureWorks sample5.
database:

 1> RESTORE DATABASE AdventureWorks
 2> FROM DISK = '/var/opt/mssql/backup/AdventureWorks2014.bak'
 3> WITH MOVE 'AdventureWorks2014_Data' TO
'/var/opt/mssql/data/AdventureWorks2014_Data.mdf',
 4> MOVE 'AdventureWorks2014_Log' TO
'/var/opt/mssql/data/AdventureWorks2014_Log.ldf'
 5> GO

Now try to change the working database to see if everything is okay:6.

 1> USE AdventureWorks
 2> GO

If the default database I changed, then the restore operation was successful. Don't you
worry, if you don't fully understand RESTORE DATABASE. It will be clear in Chapter 7,
Backup Operations. In this phase, it is important that you have working and testing
environments.

WideWorldImporters database
This database
(https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-import
ers-v1.0) is the latest one and fully compatible with all features in SQL Server 2016 and
beyond, and it is the most complex. If you are planning to learn or develop your SQL skills,
I highly recommend not starting with WideWordlImporters until you have sufficient
knowledge about SQL Server specific features, such as temporal tables, in-memory OLTP,
data masking, and so on.

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0

Sample Databases

[86]

This database contains a lot of useful gems, just waiting to be explored, and based on the
examples, implemented inside your own projects. The following diagram, Figure 5-4, only
illustrates one small part of the database:

Figure 5-4. WideWordlImporters locations section

name

BuyingGroups
BuyingGroups_Archive
Cities
Cities_Archive
ColdRoomTemperatures
ColdRoomTemperatures_Archive
Colors
Colors_Archive
Countries
Countries_Archive
CustomerCategories
CustomerCategories_Archive

Sample Databases

[87]

Customers
Customers_Archive
CustomerTransactions
DeliveryMethods
DeliveryMethods_Archive
InvoiceLines
Invoices
OrderLines
Orders
PackageTypes
PackageTypes_Archive
PaymentMethods
PaymentMethods_Archive
People
People_Archive
PurchaseOrderLines
PurchaseOrders
SpecialDeals
StateProvinces
StateProvinces_Archive
StockGroups
StockGroups_Archive
StockItemHoldings
StockItems
StockItems_Archive
StockItemStockGroups
StockItemTransactions
SupplierCategories
SupplierCategories_Archive
Suppliers
Suppliers_Archive
SupplierTransactions
SystemParameters
TransactionTypes
TransactionTypes_Archive
VehicleTemperatures

(48 row(s) affected)

Sample Databases

[88]

Summary
In this chapter, you learned what the SQL Server sample databases are. Also, you know
what the process of normalization is and how to recognize normal forms based on the entity
attributes. Finally, you learned how to install the AdventureWorks sample, which we will
be using in the next chapter.

In the next chapter, you will learn new, or improve you current, SQL coding skills through
a crash course of querying. The reason is very simple, if you are dealing with databases then
you should speak SQL.

6
A Crash Course in Querying

Databases are one of the cornerstones of modern businesses. Data retrieval is usually made
with a SELECT statement and it's therefore very important that you are familiar with this
part of your journey. Retrieved data is often not organized in the way you want it to be, so
it requires additional formatting. Besides formatting, accessing very large amounts of data
requires you to take into account the speed and manner of query execution, which can have
a major impact on system performance.

This chapter will be your guide through the basic elements of the SELECT statement, the last
of the DML commands that we haven't yet covered in detail. To cover all the elements and
scenarios we would need at least another book.

We will cover the following topics:

Retrieving and filtering data
Summarizing data
Querying multiple tables

Retrieving and filtering data
As you will have noticed, databases usually consist of many tables where all the data is
stored. The AdventureWorks database contains 71 tables, including tables for Customers,
Products, Orders, and so on. The table names clearly describe the data that is stored in the
table. If you need to create a list of new products, or a list of customers who ordered the
most products, you would retrieve this information by creating a query. A query is an
enquiry into the database made by using the SELECT statement. The SELECT statement is
the first and most fundamental SQL statement that we are going to introduce in this
chapter.

A Crash Course in Querying

[90]

The SELECT statement consists of a set of clauses that specifies which data will be included
into a query result set. All the clauses of SQL statements are the keywords and, because of
that, are written in capital letters. A syntactically correct SELECT statement requires a
mandatory FROM clause which specifies the source of the data you want to retrieve. Besides
mandatory clauses, there are a few optional clauses that can be used to filter and organize
data:

INTO: Enables you to insert data (retrieved by the SELECT clause) into a different
table, it is mostly used to create table backups
WHERE: Places conditions on a query and eliminates rows that would be returned
by a query without any conditions
ORDER BY: Displays the query result in either ascending or descending
alphabetical order
GROUP BY: Provides a mechanism for arranging identical data into groups
HAVING: Allows you to create selection criteria at the group level

Retrieving data from a table
The SELECT clause in a query is followed by a list of the comma separated column names
that you wish to retrieve in a result set.

From this point onwards, I will assume that you know how to start sqlcmd
and connect to your SQL Server on Linux instance and the sample
database, AdventureWorks. For the sake of simplicity, where the result
set provides a reasonable amount of data, I will use the TOP operator. TOP
can limit the result set to an exact number of rows. For example, SELECT
TOP 3 Name FROM Production.Product will return only the first three
rows from this table.

A Crash Course in Querying

[91]

The following code sample retrieves data from the ProductNumber and Name columns
stored inside the Product table:

1> USE AdventureWorks
2> GO
Changed database context to 'AdventureWorks'.
1> SELECT TOP 5 ProductNumber, Name
2> FROM Production.Product
3> GO

ProductNumber Name
------------------------- ------------------------
AR-5381 Adjustable Race
BA-8327 Bearing Ball
BE-2349 BB Ball Bearing
BE-2908 Headset Ball Bearings
BL-2036 Blade

(5 rows affected)

As a result of the query execution, we received only five records from the entire table (504
rows in total) that include only data on product name and number. In order to retrieve all
the columns from the Production.Product table you can use a wildcard character (*) that
means all columns:

1> SELECT *
2> FROM Production.Product
3> GO

However, especially when working with a production database, SELECT
* should be avoided unless you really need to retrieve all columns.
Depending on the amount of retrieved data, use of the wildcard character
can cause not only server and network performance reduction, but also a
result set that is difficult to read and analyze.

A Crash Course in Querying

[92]

String functions
String data manipulation is mostly used in cases when it is necessary to represent strings in
a format that is different from the one stored in the table; for example, to extract substrings,
change letter case, and so on. The easiest way to manipulate string data is to use string
functions that take a character string as input and produce another character string as
output. Some of the most commonly used string functions are: SUBSTRING, LEFT, RIGHT,
UPPER, LOWER, LEN, and DATALENGTH.

Let us take a look at each one in detail:

SUBSTRING: Returns part of an expression passed in as an argument. The
following example extracts a substring from the expression SQL Server loves
Linux and which starts from the eighteenth character and is five characters long:

 1> SELECT SUBSTRING ('SQL Server loves Linux', 18, 5)
 2> GO

 Linux
 (1 rows affected)

LEFT, RIGHT: Returns the specified number of characters from one side (left or
right) of the expression:

 1> SELECT LEFT ('SQL Server loves Linux', 3)
 2> GO

 SQL
 (1 rows affected)

UPPER, LOWER: Returns uppercase or lowercase versions of all characters in the
expression:

 1> SELECT UPPER ('SQL Server loves Linux')
 2> GO

 SQL SERVER LOVES LINUX
 (1 rows affected)

A Crash Course in Querying

[93]

REPLACE: Replaces the occurrence of the string specified as the search string
(Linux) with a replacement string (openSUSE):

 1> SELECT REPLACE ('SQL Server loves Linux', 'Linux', 'openSUSE')
 2> GO

 SQL Server loves openSUSE
 (1 rows affected)

LEN, DATALENGTH: The LEN function returns the length (number of characters) of
a string expression, while DATALENGTH returns the number of bytes used to
represent any expression:

 1> SELECT LEN ('SQL Server loves Linux')
 2> GO

 22
 (1 rows affected)

Exercise
Your company manager requires a list of all products, which should contain a product
number and color next to the product name. Product names should all be capitalized and
the list should omit the product initials (the first two characters) but include the rest of the
product number:

1> SELECT TOP 5 UPPER (Name),
2> SUBSTRING (ProductNumber, 4, 6), Color
3> FROM Production.Product
4> GO
 Color
----------------------------- ------------- ------------
ADJUSTABLE RACE 5381 NULL
BEARING BALL 8327 NULL
BB BALL BEARING 2349 NULL
HEADSET BALL BEARINGS 2908 NULL
BLADE 2036 NULL

(5 rows affected)

A Crash Course in Querying

[94]

Filtering data
In practice, there are very few cases where you want to show all the data contained in the
table. Therefore, most of the time you will need data that meets certain conditions or, in
other words, you will need filtered data. By using the WHERE clause in the SELECT
statement, you can specify search conditions and return only those rows (records) that meet
specific criteria. The conditions that are specified in the WHERE clauses are known as
predicates and, in most cases, they result in one of the Boolean values TRUE or FALSE.
However, predicates can result in an UNKNOWN value which will be discussed later in the
chapter. Let's look at an example that creates a list of products that can be manufactured in
2 days. The number of days necessary to manufacture products is stored as an integer value
in column DaysToManufacture:

1> SELECT ProductNumber, Color
2> FROM Production.Product
3> WHERE DaysToManufacture = 2
4> GO

ProductNumber Color
------------------- ---------------
 FR-M94B-38 Black
 FR-M94S-38 Silver
 FR-M63B-38 Black
 FR-R72Y-38 Yellow
 FR-M63S-38 Silver
 FR-M21B-40 Black
 FR-M21S-40 Silver

(7 rows affected)

Comparison operators
Comparison operators are used when it is necessary to compare data from the table with a
specific value or expression. It is important to note that you can compare only compatible
values which are defined by a data type. This means that you will not be able to compare
the string with decimal values. The following is a list of the basic comparison operators that
can be used in the WHERE clause:

A Crash Course in Querying

[95]

Operator Description

= equals

<>, != does not equal

> is greater than

< is less than

>= is greater than or equal to

<= is less than or equal to

The next example returns a list of products whose weight is greater than or equal to 1,000:

1> SELECT Name, Weight
2> FROM Production.Product
3> WHERE Weight >= 1000
4> GO

Name Weight
------------------------------- ----------
LL Road Rear Wheel 1050.00
ML Road Rear Wheel 1000.00

(2 rows affected)

String comparison
In addition to the basic operators described, SQL also supports comparison operators for
evaluating string data types. The most basic form of string comparison can be made with
the equal (=) operator as shown in the next example which retrieves the Name and
ProductNumber of the product named Chainring:

1> SELECT Name
2> FROM Production.Product
3> WHERE Name = 'Chainring'
4> GO

Name

Chainring

(1 rows affected)

A Crash Course in Querying

[96]

In order to create more complex comparisons, you will need to use some of the advanced
mechanisms such as LIKE. This operator is used in cases when search criteria are only
partially known. In order to specify the missing parts of the value, you can use one of the
following wildcard characters:

Wildcard character Description

% (percent) Replaces zero or more characters

_ (underscore) Replaces a single character

[] Replaces any single character within the specified range or set of
characters

[^] Replaces any single character NOT in the specified range or set of
characters

For example, if you are not sure what the exact product name is but you know it does not
start with A and that its third character is f, then you can use the following query:

1> SELECT Name
2> FROM Production.Product
3> WHERE Name LIKE '[^A]_f%'
4> GO

Name
--
Reflector

(1 rows affected)

Logical operators
If the search criteria require more than one condition to be specified, then those conditions
need to be connected with logical operators AND, OR, and NOT. Expression evaluation with
logical operators usually results with a Boolean value TRUE or FALSE.

A Crash Course in Querying

[97]

Let us go through each one in detail:

AND: Results with TRUE only when the left and the right expressions are TRUE.
The next query will return the top three rows from Products table where
ListPrice is less than 2,000 and it takes no longer than one day to manufacture
them.

 1> SELECT TOP 3 ProductNumber, ListPrice, DaysToManufacture
 2> FROM Production.Product
 3> WHERE ListPrice < 2000 AND DaysToManufacture = 1
 4> GO
 ProductNumber ListPrice DaysToManufacture
 ---------------- ------------- -----------------
 BE-2349 .0000 1
 BL-2036 .0000 1
 CS-2812 .0000 1
 (3 rows affected)

OR: Results with TRUE when either expression is TRUE. Therefore, the execution of
the previous query with the OR logical operator will result with 469 rows
(including all rows that can be manufactured in one day or with a ListPrice is
less than 2,000):

 1> SELECT TOP 3 ProductNumber, ListPrice, DaysToManufacture
 2> FROM Production.Product
 3> WHERE ListPrice < 2000 OR DaysToManufacture = 1
 4> GO

NOT: Results with the reversed value of any other Boolean operator. The
following query will return all rows whose ListPrice is not less than 2,000, or
in other words it will return all rows whose ListPrice is greater than or equal
to 2,000:

 1> SELECT TOP 3 ProductNumber, ListPrice, DaysToManufacture
 2> FROM Production.Product
 3> WHERE NOT ListPrice < 2000
 4> GO

A Crash Course in Querying

[98]

Working with NULL values
One of the issues that occurs regularly when working with databases is an absent,
incomplete, or unavailable value. In order to overcome these issues, SQL uses so-called 3-
valued logic where expressions can either have a value, have no value (NULL), or be
UNKNOWN (caused by the existence of a NULL value in the expression). A NULL is an
undefined value and it's usually used as a temporary value that will later be updated with
some real data. In the context of numeric or string data, NULL is not the same as zeros or
blanks since they are both defined values.

Considering that NULL is used to represent a missing value, there are several rules that
should be borne in mind:

Any arithmetic or comparison operation that involves a NULL value will result
with NULL value:

50 + NULL -> NULL
50 < NULL -> NULL

When one of the conditions in the WHERE clause results with NULL , it is treated as
FALSE.
It is important to note that NULL values can't be compared using standard
comparison operators and therefore you will have to use the keyword IS NULL.
The following query will return the top five rows whose color is NULL:

 1> SELECT TOP 5 Name, Color
 2> FROM Production.Product
 3> WHERE Color IS NULL
 4> GO
 Name Color
 -- --------
 Adjustable Race NULL
 Bearing Ball NULL
 BB Ball Bearing NULL
 Headset Ball Bearings NULL
 Blade NULL
 (5 rows affected)

The keyword IS NULL can also be used in combination with the negation NOT, so you can
write this condition: WHERE Color IS NOT NULL.

A Crash Course in Querying

[99]

However, sometimes you want to make NULL values part of the result set but in a form that
is understandable to people. One way is to adjust the NULL value to the end user and
replace it with other more appropriate terms such as N/A (not applicable). These
adjustments can be made by using the IS NULL function:

 1> SELECT TOP 5 Name, ISNULL (Color, 'N/A')
 2> FROM Production.Product
 3> GO
 Name
 -- -------
 Adjustable Race N/A
 Bearing Ball N/A
 BB Ball Bearing N/A
 Headset Ball Bearings N/A
 Blade N/A
 (5 rows affected)

Manipulating query output
By default, records in a result set are ordered in the same way they were entered into the
table. If you want to modify the default order of records in a result set, you can use the
ORDER BY clause. This clause enables you to specify ascending (keyword ASC) or
descending (keyword DESC):

1> SELECT TOP 10 LastName, FirstName
2> FROM Person.Person
3> ORDER BY LastName
4> GO

LastName FirstName
-- ---------
Abbas Syed
Abel Catherine
Abercrombie Kim
Abercrombie Kim
Abercrombie Kim
Abolrous Hazem
Abolrous Sam
Acevedo Humberto
Achong Gustavo
Ackerman Pilar

(10 rows affected)

A Crash Course in Querying

[100]

As you can see, the default form of order is ascending (ASC), and if you want the
descending form you will need to specify the keyword DESC. In addition to simple sorting
by one column, sorting can be carried out on multiple columns where each can have a
different form of sorting:

1> SELECT TOP 10 LastName, FirstName
2> FROM Person.Person
3> ORDER BY LastName DESC, FirstName ASC
4> GO

LastName FirstName
-- ---------
Zwilling Michael
Zwilling Michael
Zukowski Jake
Zugelder Judy
Zubaty Carla
Zubaty Patricia
Zimprich Karin
Zimprich Karin
Zimmerman Bianca
Zimmerman Candice

(10 rows affected)

While formatting data output, in many cases you will be required to include some sort of
mathematical operator, such as addition, multiplication, subtraction, and so on.
Mathematical expressions can be used in SELECT and WHERE clauses, and are very useful for
creating more descriptive results and eliminating the necessity for data adjustment after the
query results have been delivered:

1> SELECT ProductNumber AS Number,
2> ListPrice AS 'Old price',
3> (ListPrice*1.17) AS 'New price'
4> FROM Production.Product
5> WHERE ListPrice > 3400
6> GO

Number Old price New price
------------------ ---------------- -----------------
BK-R93R-62 3578.2700 4186.575900
BK-R93R-44 3578.2700 4186.575900
BK-R93R-48 3578.2700 4186.575900
BK-R93R-52 3578.2700 4186.575900
BK-R93R-56 3578.2700 4186.575900

(5 rows affected)

A Crash Course in Querying

[101]

Overview of aggregate functions
Data summarizing is one of the most common scenarios for SQL use in business
environments. It is also very important for developers, report creators, and information
workers. SQL Server has several built-in aggregate functions, such as AVG, SU, and MIN, to
perform summarizing data operations. Basically, those operations are taken using multiple
values to produce a single (scalar) value (for example, the average function on a column
with 10,000 values will always produce a single output):

Function Example Description

MIN MIN (ListPrice) Finds the smallest value in a column

MAX MAX (Grade) Finds the largest values in a column

SUM SUM (TotalSales) Creates a sum of numeric values in a column (non-null)

AVG AVG (Size) Creates an average of numeric values in a column (non-
null)

COUNT COUNT (OrderID)
COUNT (*)

COUNT with column name counts the number of data and
ignores nulls
COUNT (*) counts the number of rows in the table

The following query uses four out of five aggregate functions to search the
Production.Product table to find the largest and smallest list prices, the average size of
all products, and the total days spent to manufacture all products:

1> SELECT MAX (ListPrice) AS MaxPrice,
2> MIN (ListPrice) AS MinPrice,
3> AVG (CONVERT (int, Size)) AS AvgSize,
4> SUM (DaysToManufacture) AS TotalDays
5> FROM Production.Product
6> WHERE ISNUMERIC (Size) = 1
7> GO

MaxPrice MinPrice AvgSize TotalDays
--------------------- --------------------- ----------- -----------
3578,27 54,99 48 474

(1 row(s) affected))

Notice that, before calculating the average value on Size, we need to convert the data using
CONVERT to numeric data type.

A Crash Course in Querying

[102]

Aggregate functions and NULL values
Most queries with aggregation functions inside ignore NULL values. This can produce
anomalies in result sets and create confusion. The following query will count the number of
rows and number of column data in the Production.Product table:

1> SELECT COUNT (*), COUNT (SellEndDate)
2> FROM Production.Product
3> GO

----------- -----------
504 98
Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

COUNT (*): Counts all records in a table including records with NULL and
duplicate values.
COUNT (SellEndDate): Ignores NULL values. You can't count something that is
UNKNOWN (NULL).

GROUP BY clause
Often, we find it useful to group data by some characteristic of the group, such as
department or division, or benefit level, so that summary statistics about the group (totals,
averages, and so on) can be calculated. For example, to calculate the average student grades,
the user could group the grades of all students. The GROUP BY clause is used to divide the
rows of a table into groups that have matching values in one or more columns.

First, let's examine the following example and error that it produces.

We want a list of all products, with a count of sales items for specific products and profit
information. The query looks just fine; so, then, what is the problem? The problem is that
COUNT and SUM returns a single (scalar) value, and the first column in SELECT (ProductID)
returns all products. So, we have a conflict in result sets. The solution for this is to use the
GROUP BY clause:

1> SELECT ProductID, COUNT (ProductID) AS ProductSales,
2> SUM (LineTotal) As Profit
3> FROM Purchasing.PurchaseOrderDetail
4> ORDER BY ProductID
5> GO

A Crash Course in Querying

[103]

Msg 8120, Level 16, State 1, Line 1
Column 'Purchasing.PurchaseOrderDetail.ProductID' is invalid in the select
list because it is not contained in either an aggregate function or the
GROUP BY clause.

Now let's modify this example and run it again:

1> SELECT TOP 5 ProductID, COUNT (ProductID) AS ProductSales,
2> SUM (LineTotal) As Profit
3> FROM Purchasing.PurchaseOrderDetail
4> GROUP BY ProductID
5> ORDER BY ProductID
6> GO

ProductID ProductSales Profit
----------- ------------ ---------------------
1 51 7740,565
2 50 6287,40
4 51 8724,9015
317 80 1246014,00
318 80 1532916,00

(5 row(s) affected)

The explanation is quite simple. In our case, GROUPY BY ProductID creates groups of
unique data in the result set based on data in column ProductID; for example, if it finds the
same ProductID in 10 places, GROUP BY takes the group representative and the others are
grouped. Then, for each group, it makes an aggregation.

HAVING clause
The HAVING clause was added to SQL because the WHERE keyword could not be used with
aggregate functions and would result in the error seen in the following example.

Before we explain HAVING, let's go back for a moment on the WHERE clause and combine it
with aggregations:

1> SELECT SUM (OrderQty) AS TotalOrderQty
2> FROM Purchasing.PurchaseOrderDetail
3> WHERE SUM (OrderQty) > 1000
4> GO
Msg 147, Level 15, State 1, Line 1
An aggregate may not appear in the WHERE clause unless it is in a subquery
contained in a HAVING clause or a select list, and the column being
aggregated is an outer reference.

A Crash Course in Querying

[104]

This error means that we cannot use aggregation in a WHERE clause. HAVING allows you to
define a search parameter similar to WHERE, but in this case HAVING can handle groups
returned by the GROUP BY clause as seen in the following example:

1> SELECT SUM (OrderQty) AS TotalOrderQty
2> FROM Purchasing.PurchaseOrderDetail
3> HAVING SUM (OrderQty) > 1000
4> GO

TotalOrderQty

2348637

(1 row(s) affected

JOIN operators
Queries created on a single table can sometimes provide you with the necessary data.
However, in practice, most queries require data that is acquired from multiple tables. To
create a query that will combine data from multiple tables into a single result set requires
you to use a powerful relational operator called JOIN:

Figure 6-1. Two table join operation

The JOIN operator provides you with the functionality to combine data from two or more
tables into a single result set. Related tables are created with common columns, usually
named primary and foreign key. These keys are used to join related tables to each other.

The database engine performs table joins in a way that it takes the record from the left table
and, usually based on the common field, checks for one or more matches in the right table.
There are several types of JOIN operators, but the most common ones are INNER JOIN and
OUTER JOIN.

A Crash Course in Querying

[105]

INNER JOIN
An INNER JOIN can be viewed as a cross-section of two sets. Therefore, when you create an
INNER JOIN with two tables, depending on the conditions of connectivity, the resulting set
will contain only those elements that are common to both tables. In other words, an INNER
JOIN matches rows from two tables based on the common columns values in each table. In
other words, an INNER JOIN matches rows from two tables based on the common columns
values in each table.

The following query will create a list of all products for which a review is created. Since the
products and reviews data are stored in two separate tables, this is a signal for the JOIN
operator:

1> SELECT P.ProductNumber, LEFT (R.Comments, 20)
2> FROM Production.Product AS P
3> INNER JOIN Production.ProductReview AS R
4> ON P.ProductID = R.ProductID
5> GO

ProductNumber Comments
------------------------- --------------------
SO-B909-M I can't believe I'm
PD-M562 A little on the heav
PD-M562 Maybe it's just beca
BK-R64Y-40 The Road-550-W from

(4 rows affected)

I am using the string function LEFT because the comments are large and
don't fit in readable form in the console window.

As you can see, the Product table contains 504 rows, and the table ProductReview only 4.
However, since we have used INNER JOIN, the result set will consist of those rows that
match both tables. Table joining is made based on the value of the ProductID column
which we specified by using the ON operator. It is also important to note the way in which
we have used aliases, and based on them we have referenced columns in different tables. As
an exercise, try to make the previous example without using aliases. Since INNER JOIN is
the default type of join, you can simply use the keyword JOIN.

A Crash Course in Querying

[106]

OUTER JOIN
An OUTER JOIN will return all rows that exist in the left table, even though corresponding
rows do not exist in the right table. Therefore, OUTER JOIN enables you to create a result set
that includes even the data that does not have a match in the joining table, and in the place
of a matching value they will be assigned a NULL. There are two common variations of
OUTER JOIN operator: LEFT and RIGHT.

The result set of a LEFT OUTER JOIN includes all the rows from the left table and only the
matching rows from the right table.

Here is a just a little-modified version of the previous example with LEFT JOIN operator:

1> SELECT TOP 7 P.ProductNumber, LEFT (R.Comments, 20)
2> FROM Production.Product AS P
3> LEFT JOIN Production.ProductReview AS R
4> ON P.ProductID = R.ProductID
5> ORDER BY R.Comments DESC
6> GO

ProductNumber Comments
------------------------- -----------------------
BK-R64Y-40 The Road-550-W from...
PD-M562 Maybe it's just beca...
SO-B909-M I can't believe I'm...
PD-M562 A little on the heav...
CR-7833 NULL
CN-6137 NULL
CB-2903 NULL

(10 rows affected)

A RIGHT OUTER JOIN is the reverse of a LEFT OUTER JOIN and therefore it includes all
the rows from the right table and only the matching rows from the left table, which is in this
case the same as the result of the INNER JOIN. In the other words, there is no review for
products that do not exist in the left table:

1> SELECT TOP 10 P.ProductNumber, LEFT (R.Comments, 20)
2> FROM Production.Product AS P
3> RIGHT JOIN Production.ProductReview AS R
4> ON P.ProductID = R.ProductID
5> GO

ProductNumber
------------------------- --------------------
SO-B909-M I can't believe I'm

A Crash Course in Querying

[107]

PD-M562 A little on the heav
PD-M562 Maybe it's just beca
BK-R64Y-40 The Road-550-W from

(4 rows affected)

Multiple joins
Generating detailed information about an entity in a single result set will often require data
from multiple tables. This means you will have to apply a corresponding type of JOIN on
more than two tables.

The next query will collect information on the quantity of every product on each production
location. The required data are located in three different tables: Product (contains data
about products), ProductInventory (contains data about the quantity of every product on
each location), and Location (contains data about the location of production). It is
important to note which common columns or keys are used to join tables:

1> SELECT TOP 10 P.Name AS Product, L.Name AS Location, I.Quantity
2> FROM Production.Product AS P
3> INNER JOIN Production.ProductInventory AS I
4> ON P.ProductID = I.ProductID
5> INNER JOIN Production.Location L
6> ON L.LocationID = I.LocationID
7> ORDER BY Quantity DESC
8> GO

Product Location Quantity
----------------------- ----------------------- --------
Seat Lug Miscellaneous Storage 924
Hex Nut 7 Miscellaneous Storage 897
Spokes Miscellaneous Storage 888
Hex Nut 14 Miscellaneous Storage 780
Hex Nut 19 Subassembly 763
Seat Lug Final Assembly 729
Touring Rim Subassembly 724
Seat Stays Miscellaneous Storage 715
Hex Nut 10 Miscellaneous Storage 710
Spokes Subassembly 702

(10 rows affected)

A Crash Course in Querying

[108]

If you want to narrow the search to a specific location and quantity, it is necessary to define
the search conditions in the WHERE clause. For example:

WHERE L.Name = 'Tool Crib' AND I.Quantity < 200

As a special form of JOIN we can consider self-join, which refers to any kind of join used to
join a table to itself. Self-join is used in cases where the inner and outer queries refer to the
same table. The following query example will return only those products with a price that is
higher than the average prices of the same sub-category:

1> SELECT TOP 4 P1.Name, P1.ListPrice
2> FROM Production.Product AS P1
3> INNER JOIN Production.Product AS P2
4> ON P1.ProductSubcategoryID = P2.ProductSubcategoryID
5> GROUP BY P1.Name, P1.ListPrice
6> HAVING P1.ListPrice > AVG (P2.ListPrice)
7> GO

Name ListPrice
-------------------------------------- ----------
Mountain-100 Silver, 38 3399.9900
Mountain-100 Silver, 42 3399.9900
Mountain-100 Silver, 44 3399.9900
Mountain-100 Silver, 48 3399.9900

(5 rows affected)

Summary
You should now have sufficient skills to recognize scenarios that require the use of
aggregations based on AVG, SUM, COUNT, and other set-based functions. You'll also have an
understanding of the GROUP BY clause, and filtering result sets with HAVING. Also, you
should be able to create queries that can be used to support the basic forms of reporting.
The database typically contains dozens of tables, and it is therefore extremely important
that you master creating queries over multiple tables. This includes knowledge of the
functioning JOIN operators with a combination of elements of string manipulation. This
chapter completes this aspect of SQL Server on Linux.

In the next chapter, we will cover topics relevant for administration and database
operations.

7
Backup and Recovery

Operations
Do you have a backup? Yes! How often do you take backups? We have a backup of our
database from the day of installation, so we can restore it to the initial state. Sorry, you don't
have any backups. I don't know about you, but this scenario is so common that it scares me.
Believe me, this hypnotic conversation can be heard even in large companies.

When it comes to a database, backups are something that you should consider and
reconsider really carefully. Mistakes can cost you: money, users, data, and time, each of
which can have bigger consequences. Backup and restore are elements of a much wider
picture known as disaster recovery and it is a science itself. However, these two operations
are the foundation for everything else.

In this chapter, you will learn:

SQL Server recovery models
How transaction log works
Elements of backup strategy
Backup and restore

SQL Server recovery models
Before you even think about your backups, you need to understand the recovery models
that SQL Server internally uses while the database is in operational mode. A recovery
model is about maintaining data in the event of a server failure. Also, it defines the amount
of information that SQL Server writes to the log file for the purpose of recovery.

Backup and Recovery Operations

[110]

SQL Server has three database recovery models:

Simple recovery model
Full recovery model
Bulk-logged recovery model

Simple recovery model
This model is typically used for small databases and scenarios where data changes are
infrequent. It is limited to restoring the database to the point when the last backup was
created. It means that all changes made after the backup are lost. You will need to recreate
all changes manually. The major benefit of this model is that the log file takes only a small
amount of storage space. How and when to use it depends on the business scenario.

Full recovery model
This model is recommended when recovery from damaged storage is the highest priority
and data loss should be minimal. SQL Server uses copies of database and log files to restore
the database. The database engine logs all changes to the database, including bulk operation
and most DDL statements.

If the transaction log file is not damaged, SQL Server can recover all data except any
transaction which are in process at the time of failure (that is, not committed in to the
database file). All logged transactions give you the opportunity of point-in-time recovery,
which is a really cool feature.

A major limitation of this model is the large size of the log files which leads you to
performance and storage issues. Use it only in scenarios where every insert is important
and loss of data is not an option.

Bulk-logged recovery model
This model is somewhere between simple and full. It uses database and log backups to
recreate the database. Compared to the full recovery model, it uses less log space for
CREATE INDEX and bulk load operations, such as SELECT INTO. Let's look at this example.
SELECT INTO can load a table with 1,000,000 records with a single statement. The log will
only record the occurrence of these operations but not the details. This approach uses less
storage space compared to the full recovery model.

Backup and Recovery Operations

[111]

The bulk-logged recovery model is good for databases which are used for ETL process and
data migrations.

As you know from Chapter 6, A Crash Course in Querying, SQL Server has a system
database model. This database is the template for each new one you create. If you use only
the CREATE DATABASE statement without any additional parameters, it simply copies the
model database with all the properties and metadata. It also inherits the default recovery
model, which is full. So, the conclusion is that each new database will be in full recovery
mode. This can be changed during and after the creation process.

Here is a SQL statement to check recovery models of all your databases on SQL Server on
Linux instance:

1> SELECT name, recovery_model, recovery_model_desc
2> FROM sys.databases
3> GO

name recovery_model recovery_model_desc
------------------------ -------------- -------------------
master 3 SIMPLE
tempdb 3 SIMPLE
model 1 FULL
msdb 3 SIMPLE
AdventureWorks 3 SIMPLE
WideWorldImporters 3 SIMPLE

(6 rows affected)

The following DDL statement will change the recovery model for the model database from
full to simple:

1> USE master
2> ALTER DATABASE model
3> SET RECOVERY SIMPLE
4> GO

If you now execute the SELECT statement again to check recovery models, you will notice
that model now has different properties.

Backup and Recovery Operations

[112]

How transaction log works
If you are Linux user with MySQL and PostgreSQL experience, you have probably noticed
that SQL Server works with two types of files, .data and .log:

data: A container file for database objects and data itself
log: A container file for logging database operations, depending on recovery
model

Each database has at least one data and log file. However, based on business needs, this
number can be larger.

The transaction log file is the heart of Atomicity, Consistency, Integrity, and Durability
(ACID). Those four magic words are the most powerful tools of every relational database.
In a nutshell, it helps that, if something goes wrong during the business process, all changes
are written to the database or returned to the state prior to the transaction. ACID in SQL
Server is implemented through Write Ahead Log (WAL). The following figure describes
that process:

Figure 7-1 WAL process in SQL Server

As you see, all changes are made first on the memory level and written to the log file. After
the transaction is committed, changes are written to the data file. This process ensures that
no changes will be partially committed. Relational databases are all or nothing.

Backup and Recovery Operations

[113]

Elements of backup strategy
A good backup strategy is not just about creating a backup. This is a process of many
elements and conditions that should be filed to achieve the final goal, and this is the most
efficient backup strategy plan. To create a good strategy, we need to analyze the following:

Who can create backups?
Backup media
Types of backup

Who can create backups?
This issue is part of the security subject, and that is covered in Chapter 8, User Management.
For now, let's just say that a SQL Server user who is authorized to execute backup
operations needs to have a security role. Security roles are:

sysadmin server role: Every user with sysadmin permission can work with
backups. Our default sa user is a member of the sysadmin role.
db_owner database role: Any user who can create databases by default can
execute any backup/restore operations.
db_backupoperator database role: Sometimes you need just one person to deal
with every aspect of backup operations. This is common for large scale
organizations with tens or even hundreds of SQL Server instances. In those
environments, backup is not a trivial business.

Backup media
An important decision is where to store backup files and how to organize backup files and
devices. SQL Server gives you a large set of combinations to define your own backup media
strategy. Before we explain how to store backups, let's describe the following terms:

Backup disk is a hard disk or other storage device that contains backup files.
Backup file is just an ordinary file on the top of the filesystem.
Media set is a collection of backup media which are in an ordered way and fixed
type. For example, three types of devices Tape1, Tape2, and Tape3.

Backup and Recovery Operations

[114]

Physical backup device can be a disk file or tape drive. You will need to provide
information to SQL Server about your backup device. A backup file that is
created before it is used for a backup operation is called a backup device.

Figure 7-2 Backup devices

The simplest way to store and handle database backups is by using a back disk and storing
them as regular operating system files. Usually, with extension .bak, Linux does not much
care about the extension, but it is a good practice to mark those files with something
obvious.

This chapter will explain how to use backup disk devices because every reader of this book
should have a hard disk with the installation of SQL Server on Linux. Tapes and media sets
are used for the majority of database operations, such as enterprise class business (banks,
government institutions, and so on).

A disk backup device can be anything from a simple hard disk drive, SSD disk, hot-swap
disk, USB drive, and so on. The size of the disk determines the maximum size of the
database backup file.

It is recommended that you use a different disk for backup. Using this
approach, you will separate database data and log disks.
Imagine this: database files and backups are on the same device. If that
device fails your perfect backup strategy will fall like a tower of cards.
Always separate them. Some serious disaster recovery strategies (backup
is only smart part of it) suggest using different geographic locations. This
makes sense: a natural disaster can knock out a business if you can't
restore your system from a secondary location in a reasonable amount of
time.

Backup and Recovery Operations

[115]

Types of backup
SQL Server gives you several methods to back up your databases based on your business
scenarios and needs. The first three are the most common ones and I will explain them:

Full database backups
Transaction log backups
Differential backups
Partial backups
Tail-log backups
File or filegroup backups
Copy-only backups

Full database backups
A full backup of a database includes all data files and active parts of a transaction log. A full
backup represents the database at the time of the backup and represents the baseline in the
event of a system failure. This type of backup is the foundation for other types, such as
differential, transaction log, and is a good starting point for planning a backup strategy. In
most case scenarios, a full database backup is not enough to prevent data loss. The only case
when this is not true is when you use a database in read-only mode.

An example of a full backup strategy is shown in the following figure:

Figure 7-3 Full backup strategy

This picture represents an example of when full backup is created every 24 hours; let's say,
at midnight. The problem with this example arises if your system experiences failures at,
say, 3pm the next day: then you will have 15 hours of lost data. This could equate to 10
records or 10 million records.

Backup and Recovery Operations

[116]

Transaction log backups
This type of backup records all database modifications by backing-up log records. They are
generally much smaller than full database backups. Pre-requirements are at least one full
database backup and full recovery mode of database. We can set the log backup for every
15 minutes or less, depending on your business needs. This strategy is necessary for point-
in-time recovery.

An example of a transaction backup strategy is shown in the following figure:

Figure 7-4 Transaction log backup strategy

This example illustrates scenarios when a full database is taken every day at midnight, and
logs backup every 3 hours between full backups. In this case, you can restore any
transaction from log backups. First, you need to restore full database backups and every log
backup until you reach a point in time that suits you. A side effect is that you can have a
large number of small backups. Imagine that you create a log backup every 15 minutes.

Differential backups
The problem with transaction backups can be minimized with differential backup. This type
of backup is used to save data changes between the last full and differential backup. It is
based on data files. The important thing to remember is that differential backup is not
possible without full backup. Also, it minimizes the time that is necessary for restoring a
frequently modified database. For example, if a full database backup file is 2 GB and you
have only 10 MB of changes after, the differential backup is just an additional 10 MB
(differential).

Backup and Recovery Operations

[117]

An example of a differential backup strategy is shown in the following figure:

Figure 7-5 Differential backup strategy

The previous scenario represents full database backup at midnight, daily. In between, we
have our log backups every three hours and a differential every day at noon. This approach
drastically reduces the number of restore operations because a differential backup contains
all changes from the last full database backup. If your system experiences a failure at
3.15pm then you need to restore one full, one differential, and one transaction log backup.
This is the most efficient data loss prevention strategy.

Backup and restore
Now it's time for SQL coding and implementing backup/restore operations in our own
environments. We will use the University database that you created in Chapter 4,
Database in the Sandbox:

First let's create a full database backup of our University database:1.

 1> BACKUP DATABASE University
 2> TO DISK = '/var/opt/mssql/data/University.bak'
 3> GO
 Processed 376 pages for database'University', file 'University' on
file 1.
 Processed 7 pages for database 'University', file 'University_log'
on file 1.
 BACKUP DATABASE successfully processed 383 pages in 0.562 seconds
(5.324 MB/sec)

Backup and Recovery Operations

[118]

Now let's check the content of the table Students:2.

 1> USE University
 2> GO
 Changed database context to 'University'
 1> SELECT LastName, FirstName
 2> FROM Students
 3> GO
 LastName FirstName
 --------------- ----------
 Azemovic Imran
 Avdic Selver
 Azemovic Sara
 Doe John
 (4 rows affected)

As you can see there are four records. Let's now simulate a large import from the3.
AdventureWorks database, Person.Person table. We will adjust the
PhoneNumber data to fit our 13 nvarchar characters. But first we will drop
unique index UQ_user_name so that we can quickly import a large amount of
data.

 1> DROP INDEX UQ_user_name
 2> ON dbo.Students
 3> GO

 1> INSERT INTO Students (LastName, FirstName, Email, Phone,
UserName)
 2> SELECT T1.LastName, T1.FirstName, T2.PhoneNumber, NULL,
'user.name'
 3> FROM AdventureWorks.Person.Person AS T1
 4> INNER JOIN AdventureWorks.Person.PersonPhone AS T2
 5> ON T1.BusinessEntityID = T2.BusinessEntityID
 6> WHERE LEN (T2.PhoneNumber) < 13
 7> AND LEN (T1.LastName) < 15 AND LEN (T1.FirstName)< 10
 8> GO
 (10661 rows affected)

Let's check the new row numbers:4.

 1> SELECT COUNT (*) FROM Students
 2> GO

 10665
 (1 rows affected)

Backup and Recovery Operations

[119]

As you see the table now has 10,665 rows (10,661+4). But don't forget that
we had created a full database backup before the import procedure.

Now, we will create a differential backup of the University database:5.

 1> BACKUP DATABASE University
 2> TO DISK = '/var/opt/mssql/data/University-diff.bak'
 3> WITH DIFFERENTIAL
 4> GO
 Processed 216 pages for database 'University', file 'University' on
file 1.
 Processed 3 pages for database 'University', file 'University_log'
on file 1.
 BACKUP DATABASE WITH DIFFERENTIAL successfully processed 219 pages
in 0.365 seconds (4.676 MB/sec).

If you want to see the state of .bak files on the disk, follow this procedure.6.
However, first enter super user mode with sudo su. This is necessary because a
regular user does not have access to the data folder:

Figure 7-6 University database backup files

Now let's test the transaction log backup of University database log file.7.
However, first you will need to make some changes inside the Students table:

 1> UPDATE Students
 2> SET Phone = 'N/A'
 3> WHERE Phone IS NULL
 4> GO
 1> BACKUP LOG University
 2> TO DISK = '/var/opt/mssql/data/University-log.bak'
 3> GO
 Processed 501 pages for database 'University', file

Backup and Recovery Operations

[120]

'University_log' on file 1.
 BACKUP LOG successfully processed 501 pages in 0.620 seconds (6.313
MB/sec).

Next steps are to test restore database options of full and differential
backup procedures.

First, restore the full database backup of University database. Remember that8.
the Students table had four records before first backup, and it currently has
10,665 (as we checked in step 4):

 1> ALTER DATABASE University
 2> SET SINGLE_USER WITH ROLLBACK IMMEDIATE
 3> RESTORE DATABASE University
 4> FROM DISK = '/var/opt/mssql/data/University.bak'
 5> WITH REPLACE
 6> ALTER DATABASE University SET MULTI_USER
 7> GO
 Nonqualified transactions are being rolled back. Estimated rollback
completion: 0%.
 Nonqualified transactions are being rolled back. Estimated rollback
completion: 100%.
 Processed 376 pages for database 'University', file 'University' on
file 1.
 Processed 7 pages for database 'University', file 'University_log'
on file 1.
 RESTORE DATABASE successfully processed 383 pages in 0.520 seconds
(5.754 MB/sec).

Before the restore procedure, the database is switched to single user mode.
This way we are closing all connections that could abort the restore
procedure. In the last step, we are switching the database to multi-user
mode again.

Let's check the number of rows again. You will see the database is restored to its9.
initial state, before the import of more than 10,000 records from the
AdventureWorks database:

 1> SELECT COUNT (*) FROM Students
 2> GO

 4
 (1 rows affected)

Backup and Recovery Operations

[121]

Now it's time to restore the content of the differential backup and return the10.
University database to its state after the import procedure:

 1> USE master
 2> ALTER DATABASE University
 3> SET SINGLE_USER WITH ROLLBACK IMMEDIATE
 4> RESTORE DATABASE University
 5> FROM DISK = N'/var/opt/mssql/data/University.bak'
 6> WITH FILE = 1, NORECOVERY, NOUNLOAD, REPLACE, STATS = 5
 7> RESTORE DATABASE University
 8> FROM DISK = N'/var/opt/mssql/data/University-diff.bak'
 9> WITH FILE = 1, NOUNLOAD, STATS = 5
 10> ALTER DATABASE University SET MULTI_USER
 11> GO
 Processed 376 pages for database 'University', file 'University' on
file 1.
 Processed 7 pages for database 'University', file 'University_log'
on file 1.
 RESTORE DATABASE successfully processed 383 pages in 0.529 seconds
(5.656 MB/sec).
 Processed 216 pages for database 'University', file 'University' on
file 1.
 Processed 3 pages for database 'University', file 'University_log'
on file 1.
 RESTORE DATABASE successfully processed 219 pages in 0.309 seconds
(5.524 MB/sec).

In the final part of this chapter, we'll look at a really cool feature of SQL Server: backup
compression. A backup can be a very large file, and if companies create backups on daily
basis, then you can do the math on the amount of storage required.

Disk space is cheap today, but it is not free. As a database administrator on SQL Server on
Linux, you should consider any possible option to optimize and save money. Backup
compression is just that kind of feature. It provides you with a compression procedure (ZIP,
RAR) after creating regular backups. So, you save time, space, and money.

Let's consider a full database backup of the University database. The uncompressed file is
about 3 MB. After we create a new one with compression, the size should be reduced. The
compression ratio mostly depends on data types inside the database. It is not a magic stick
but it can save space.

Backup and Recovery Operations

[122]

The following SQL command will create a full database backup of the University
database and compress it:

1> BACKUP DATABASE University
2> TO DISK = '/var/opt/mssql/data/University-compress.bak'
3> WITH NOFORMAT, INIT, SKIP, NOREWIND, NOUNLOAD, COMPRESSION, STATS = 10
4> GO

Now exit to bash, enter super user mode, and type the following ls command to compare
the size of the backup files:

tumbleweed:/home/dba # ls -lh /var/opt/mssql/data/U*.bak

Figure 7-7 University database backup files

As you can see, the compression size is 676 KB and it is around five times smaller. That is a
huge space saving without any additional tools. SQL Server on Linux has one security
feature with backup, and that will be elaborated in Chapter 9, Implementing Data Protection.

Summary
This chapter has walked you through some important options. Backup and restore is not
something that you can leave aside. It requires serious analysis and planning, and SQL
Server gives you powerful backup types and options to create your disaster recovery policy
on SQL Server on Linux. You can do some additional research and expand your knowledge.
A good starting point is the official SQL Server on Linux online documentation.

8
User Management

Today, security is a hot topic. Mistakes can come at a high price, and lead to the loss of
customers and business. Almost every day, we hear about some serious data breach. User
management is the first point at which the security story actually begins.

SQL Server has a very powerful mechanism for checking user identity. Based on that
process, we can configure all other aspects of security from the higher (server) to the lower
(database) level.

In this chapter, we will go into more detail about the process of authentication, and
authorization, and how to gain access to concrete SQL Server assets (also known as
securables).

In this chapter, you will learn the following:

The authentication process
The authorization process
Accessing SQL Server resources
Schema separation

Authentication process
This question is very simple: Who are you? Unfortunately, the answer is not so simple. The
database engine needs to verify your identity, and I believe a more important question is Is
this really you?

User Management

[124]

During the setup procedure, you have to select a sa password which actually uses the SQL
Server authentication process. This database engine comes from Windows and it is tightly
connected with Active Directory and internal Windows authentication. In this phase of
development, SQL Server on Linux only supports SQL authentication.

Figure 8-1. Authentication process

SQL Server has a very secure entry point. This means no access without the correct
credentials. Every information system has some way of checking a user's identity, but SQL
Server has three different ways of verifying identity, and the ability to select the most
appropriate method, based on individual or business needs.

When using SQL Server authentication, logins are created on SQL Server. Both the user
name and the password are created by using SQL Server and stored in SQL Server. Users
connecting through SQL Server authentication must provide their credentials every time
that they connect (user name and password are transmitted through the network).

When using SQL Server authentication, it is highly recommended to set
strong passwords for all SQL Server accounts.

As you'll have noticed, so far you have not had any problems accessing SQL Server
resources. The reason for this is very simple. You are working under the sa login. This login
has unlimited SQL Server access. In some real-life scenarios, sa is not something to play
with. It is good practice to create a login under a different name with the same level of
access.

User Management

[125]

Now let's see how to create a new SQL Server login. But, first, we'll check the list of current
SQL Server logins. To do this, access the sys.sql_logins system catalog view and three
attributes: name, is_policy_checked, and is_expiration_checked. The attribute name
is clear; the second one will show the login enforcement password policy; and the third one
is for enforcing account expiration. Both attributes have a Boolean type of value: TRUE or
FALSE (1 or 0).

Type the following command to list all SQL logins:1.

 1> SELECT name, is_policy_checked, is_expiration_checked
 2> FROM sys.sql_logins
 3> WHERE name = 'sa'
 4> GO
 name is_policy_checked is_expiration_checked
 -------------- ----------------- ---------------------
 sa 1 0
 (1 rows affected)

If you want to see what your password for the sa login looks like, just type this2.
version of the same statement. This is the result of the hash function:

 1> SELECT password_hash
 2> FROM sys.sql_logins
 3> WHERE name = 'sa'
 4> GO
 password_hash

 0x0200110F90F4F4057F1DF84B2CCB42861AE469B2D43E27B3541628
 B72F72588D36B8E0DDF879B5C0A87FD2CA6ABCB7284CDD0871
 B07C58D0884DFAB11831AB896B9EEE8E7896
 (1 rows affected)

Now let's create the login dba, which will require a strong password and will not3.
expire:

 1> USE master
 2> GO
 Changed database context to 'master'.
 1> CREATE LOGIN dba
 2> WITH PASSWORD ='S0m3c00lPa$$',
 3> CHECK_EXPIRATION = OFF,
 4> CHECK_POLICY = ON
 5> GO

User Management

[126]

Re-check the dba on the login list:4.

 1> SELECT name, is_policy_checked, is_expiration_checked
 2> FROM sys.sql_logins
 3> WHERE name = 'dba'
 4> GO
 name is_policy_checked is_expiration_checked
 ----------------- ----------------- ---------------------
 dba 1 0
 (1 rows affected)

Notice that dba logins do not have any kind of privilege. Let's check that part. First close
your current sqlcmd session by typing exit. Now, connect again but, instead of using sa,
you will connect with the dba login. After the connection has been successfully created, try
to change the content of the active database to AdventureWorks. This process, based on the
login name, should looks like this:

dba@tumbleweed:~> sqlcmd -S suse -U dba
Password:
1> USE AdventureWorks
2> GO
Msg 916, Level 14, State 1, Server tumbleweed, Line 1
The server principal "dba" is not able to access the database
"AdventureWorks" under the current security context.

As you can see, the authentication process will not grant you anything. Simply, you can
enter the building but you can't open any door. You will need to pass the process of
authorization first.

Authorization process
After authenticating a user, SQL Server will then determine whether the user has
permission to view and/or update data, view metadata, or perform administrative tasks
(server-side level, database-side level, or both). If the user, or a group to which the user is a
member, has some type of permission within the instance and/or specific databases, SQL
Server will let the user connect.

In a nutshell, authorization is the process of checking user access rights to specific
securables. In this phase, SQL Server will check the login policy to determine whether there
are any access rights to the server and/or database level. Login can have successful
authentication, but no access to the securables. This means that authentication is just one
step before login can proceed with any action on SQL Server.

User Management

[127]

SQL Server will check the authorization process on every T-SQL statement. In other words,
if a user has SELECT permissions on some database, SQL Server will not check once and
then forget until the next authentication/authorization process. Every statement will be
verified by the policy to determine whether there are any changes.

Figure 8-2. Authorization process

Permissions are the set of rules that govern the level of access that principals have to
securables. Permissions in an SQL Server system can be granted, revoked, or denied. Each
of the SQL Server securables has associated permissions that can be granted to each
principal.

The only way a principal can access a resource in an SQL Server system is if it is granted
permission to do so, as you can see in Figure 8-2. At this point, it is important to note that
authentication and authorization are two different processes, but they work in conjunction
with one another. Furthermore, the terms login and user are to be used very carefully, as
they are not the same:

Login is the authentication part
User is the authorization part

Prior to accessing any database on SQL Server, the login needs to be mapped as a user. Each
login can have one or many user instances in different databases. For example, one login
can have read permission in AdventureWorks and write permission in
WideWorldImporters. This type of granular security is a great SQL Server security feature.
A login name can be the same or different from a user name in different databases.

User Management

[128]

In the following lines, we will create a database user dba based on login dba. The process
will be based on the AdventureWorks database. After that we will try to enter the database
and execute a SELECT statement on the Person.Person table:

dba@tumbleweed:~> sqlcmd -S suse -U sa
Password:
1> USE AdventureWorks
2> GO
Changed database context to 'AdventureWorks'.

1> CREATE USER dba
2> FOR LOGIN dba
3> GO
1> exit

dba@tumbleweed:~> sqlcmd -S suse -U dba
Password:
1> USE AdventureWorks
2> GO
Changed database context to 'AdventureWorks'.

1> SELECT *
2> FROM Person.Person
3> GO

Msg 229, Level 14, State 5, Server tumbleweed, Line 1
The SELECT permission was denied on the object 'Person', database
'AdventureWorks', schema 'Person'.

We are making progress. Now we can enter the database, but we still can't execute SELECT
or any other SQL statement. The reason is very simple. Our dba user still is not authorized
to access any types of resources.

Accessing SQL Server resources
Now that we understand the authentication/authorization process, we can create more
detailed user access policies on the server and/or database level. Also, we will go into more
detail about fixed server-side and database roles.

User Management

[129]

Server-level permissions
SQL Server provides nine fixed server roles. The permissions that are granted to the fixed
server roles cannot be changed. You can create user-defined server roles and add server-
level permissions to those roles:

sysadmin: Members of the sysadmin fixed server role can perform any activity
on the server.
serveradmin: Members of the serveradmin fixed server role can change server-
wide configuration options and shut down the server.
securityadmin: Members of the securityadmin fixed server role manage logins
and their properties. They can GRANT, DENY, and REVOKE server-level
permissions. They can also GRANT, DENY, and REVOKE database-level permissions
if they have access to a database.
processadmin: Members of the processadmin fixed server role can end processes
that are running in an instance of SQL Server.
setupadmin: Members of the setupadmin fixed server role can add and remove
linked servers.
bulkadmin: Members of the bulkadmin fixed server role can run the BULK
INSERT statement.
diskadmin: The diskadmin fixed server role is used for managing disk files.
dbcreator: Members of the dbcreator fixed server role can create, alter, drop, and
restore any database.
public: Every SQL Server login belongs to the public server role. When a server
principal has not been granted or denied specific permissions on a securable
object, the user inherits the permissions granted to public on that object.

Only assign public permissions on any object when you want the object to
be available to all users.

We can create a new SQL Server login and assign a permission to create new databases on a
server with the CREATE LOGIN statement. Before you begin, don't you forget to exit the dba
sqlcmd session and logon under the sa login:

1> USE master
2> GO
Changed database context to 'master'.

1> CREATE LOGIN dbAdmin

User Management

[130]

2> WITH PASSWORD = 'S0m3C00lPa$$',
3> CHECK_EXPIRATION = OFF,
4> CHECK_POLICY = ON
5> GO
1> ALTER SERVER ROLE dbcreator ADD MEMBER dbAdmin
2> GO
1> exit
dba@tumbleweed:~> sqlcmd -S suse -U dbAdmin
Password:
1> CREATE DATABASE TestDB
2> GO
1> USE TestDB
2> GO
Changed database context to 'TestDB'.
1> USE master
2> GO
Changed database context to 'master'.
1> DROP DATABASE TestDB
2> GO
1> exit

Database-level permissions
As in server-side security, database level security has a set of fixed predefined roles that
incorporate any database-level task. You can combine more than one role to specify user
access right in more detail:

db_owner: Members of the db_owner fixed database role can perform all
configuration and maintenance activities on the database, and can also drop the
database
db_securityadmin: Members of the db_securityadmin fixed database role can
modify role membership and manage permissions
db_accessadmin: Members of the db_accessadmin fixed database role can add
or remove access to the database for Windows logins, Windows groups, and SQL
Server logins
db_backupoperator: Members of the db_backupoperator fixed database role
can back up the database
db_ddladmin: Members of the db_ddladmin fixed database role can run any
Data Definition Language (DDL) command in a database
db_datawriter: Members of the db_datawriter fixed database role can add,
delete, or modify data in all user tables

User Management

[131]

db_datareader: Members of the db_datareader fixed database role can read all
data from all user tables
db_denydatawriter: Members of the db_denydatawriter fixed database role
cannot add, modify, or delete any data in the user tables within a database
db_denydatareader: Members of the db_denydatareader fixed database role
cannot read any data in the user tables within a database

The next example assigns two fixed database roles to the user dba, but only in the
AdventureWorks database where this login is already mapped as user under the same
name. One of the fixed database roles is the explicit read role and the other is the explicit
deny role on data change:

1> USE AdventureWorks
2> GO
Changed database context to 'AdventureWorks'.

1> ALTER ROLE db_datareader ADD MEMBER dba
2> GO
1> ALTER ROLE db_denydatawriter ADD MEMBER dba
2> GO

Now log on as dba user and test these roles on your own.

Schema separation
In Microsoft SQL Server, a schema is a collection of database objects that are owned by a
single principal and form a single namespace.

All objects within a schema must be uniquely named and a schema itself must be uniquely
named in the database catalog. SQL Server (since version 2005) breaks the link between
users and schemas. In other words, users do not own objects; schemas own objects, and
principals own schemas.

Users can now have a default schema assigned using the DEFAULT_SCHEMA option from the
CREATE USER and ALTER USER commands. If a default schema is not supplied for a user,
then the dbo will be used as the default schema.

User Management

[132]

If a user from a different default schema needs to access objects in another schema, then the
user will need to type a full name. For example, Denis needs to query the Contact tables in
the Person schema, but he is in Sales. To resolve this, he would type:

SELECT * FROM Person.Contact

Figure 8-3. Accessing schema separated objects

Keep in mind that the default schema is dbo. When database objects are created and not
explicitly put in schemas, SQL Server will assign them to the dbo default database schema.
Therefore, there is no need to type dbo because it is the default schema.

User Management

[133]

Summary
In summary, understanding the basics of security and being aware of security issues
contributes to an effective authentication/authorization policy. Furthermore, the precision
of your permissions setting will yield a better security and permissions policy. It is
important to remember that user access should be based on what they need in order to
accomplish their jobs. In other words, a user's access rights should be restricted before
allowing the user to access a database. It is bad practice to grant all access to a user, and
then later restrict the access rights. By granting all access, you are weakening your security
policy and promoting damage to the database.

9
Implementing Data Protection

Security is a hot topic today. When it comes to the database level, the consequences can be a
lot bigger compared to the classic attack on network resources. This is because when all
security elements fail (for instance, installation, authentication, authorization, bad access
policy, and so on), all that is left is the data. In other words, if database records containing
critical information are not protected, then all security elements are irrelevant.

This chapter is focused on data protection using built-in encryption features in SQL Server
on Linux. If you want to prevent and minimize consequences of data breach, then this is the
right chapter for you. Also, this chapter will teach you how to protect your data assets from
inside threats in the form of internal malicious users.

In this chapter, you will learn the following:

Crash course in cryptography
Transparent Data Encryption
Backup encryption
Symmetric encryption
Row-level security
Dynamic data masking

Crash course in cryptography
We use cryptography every day: on the internet, mobile devices, ATM machines, and in
almost every aspect of our digital life. In a nutshell, cryptography is about data scrambling
and hiding, depending on the implementation and user-specific needs.

Implementing Data Protection

[135]

A database is the spine of every information system and is the specific target of potential
data thieves. SQL Server has one of the best cryptographic set of features that we can use to
create a state of the art security and privacy-aware systems.

Cryptography has two major terms:

Encryption: The process of creating an obfuscated message from plain text using
a key
Decryption: The process of returning plain text from an obfuscated message
using a key

From the perspective of how data is encrypted/decrypted there are two types of encryption:

Symmetric cryptography
Asymmetric cryptography

It's important to understand how each works and the differences between the two types.
Based on that understanding, you will need to make the right decision in concrete business
scenarios.

Symmetric cryptography
In symmetric cryptography cases, the sender and recipient share a key that is used to
perform encryption and decryption. Symmetric cryptography is the most popular way for
encryption in modern IT.

Figure 9-1. Symmetric encryption schema

Implementing Data Protection

[136]

Some of the most common symmetric algorithms are: Rijndael (AES) and Triple DES
(3DES).

Symmetric cryptography is simple because the same key is used for encryption and
decryption. However, before communication can occur, the sender and the recipient must
exchange a secret key.

The exchange of the shared secret key is the only weakness of symmetric
cryptography.

Asymmetric cryptography
With asymmetric cryptography (also known as public key cryptography), the sender
encrypts data with one key, and the recipient uses another key for decryption. The
encryption and decryption key are known to us as a public/private key pair.

Figure 9-2. Asymmetric encryption schema

The most commonly used asymmetric algorithm is the RSA algorithm.

Asymmetric encryption requires more processing power than symmetric encryption.
Because of this, asymmetric encryption is usually optimized by adding a symmetric key to
encrypt a message and then asymmetrically encrypt the shared key. This can reduce the
amount of data that is asymmetrically encrypted and also improves performance.

Implementing Data Protection

[137]

What is a key?
A key is used to configure a cryptosystem for encryption and decryption. A fundamental
principle of cryptography is that the inner workings of a cryptosystem are completely
known to everyone. However, the key is the only secret. This principle is known as the
Kerckhoffs' principle (http://www.crypto-it.net/eng/theory/kerckhoffs.html)

From the technical perspective, a key is the product of a specific cryptosystem and is based
on randomly collected information, such as random numbers, the temperature of the CPU,
sample data in RAM, and so on. The randomly collected information is entered into a
cryptosystem which then generates a key.

A key is hard to handle by users because it is long and contains hard readable data. Due to
its complexity, a cryptosystem will associate a key with a password. In most cases, the
password will trigger the key to start the encryption/decryption process.

In cryptography, the key size or length is measured in bits. A longer key means a more
secure system. However, a longer key will affect performance because the encryption
process takes longer. Therefore, it is important to choose an appropriate type of encryption
and key length.

Both symmetric and asymmetric keys are measured in bits. Despite this similarity,
symmetric and asymmetric keys are different. For example, a symmetric key using AES can
be 256-bits long, while an asymmetric key using RSA can be as long as 4096 bits. Although
4096 bits may appear more secure than 256 bits, it does not mean that RSA is more secure
than AES. Both RSA and AES are different and not comparable.

For example, the security available with a 1024-bit key using asymmetric RSA is considered
approximately equal in security to an 80-bit key using a symmetric algorithm.

SQL Server cryptographic elements
As we've defined previously, encryption is the process of obfuscating data by the use of a
key or password. This can make the data useless without the corresponding decryption key
or password. Encryption does not solve access control problems. However, it enhances
security by limiting data loss even if access controls are bypassed.

For example, if the database host computer is misconfigured and a hacker obtains sensitive
data, that stolen information might be useless if it is encrypted.

http://www.crypto-it.net/eng/theory/kerckhoffs.html

Implementing Data Protection

[138]

SQL Server provides the following building blocks for the encryption; based on them you
can implement all supported features, such as backup encryption, Transparent Data
Encryption, column encryption and so on.

Figure 9-3. SQL Server encryption building blocks

We already know what the symmetric and asymmetric keys are. The basic concept is the
same in SQL Server implementation. Later in the chapter you will practice how to create
and implement all elements from the Figure 9-3. Let me explain the rest of the items.

T-SQL functions
SQL Server has built in support for handling encryption elements and features in the forms
of T-SQL functions. You don't need any third-party software to do that, as you do with
other database platforms.

Implementing Data Protection

[139]

Certificates
A public key certificate is a digitally-signed statement that connects the data of a public key
to the identity of the person, device, or service that holds the private key. Certificates are
issued and signed by a certification authority (CA). You can work with self-signed
certificates, but you should be careful here. This can be misused for the large set of network
attacks.

SQL Server encrypts data with a hierarchical encryption. Each layer encrypts the layer
beneath it using certificates, asymmetric keys, and symmetric keys.

Figure 9-4. SQL Server Encryption Hierarchy

In a nutshell, Figure 9-4 means that any key in a hierarchy is guarded (encrypted) with the
key above it. In practice, if you miss just one element from the chain, decryption will be
impossible. This is an important security feature, because it is really hard for an attacker to
compromise all levels of security. Let me explain the most important elements in the
hierarchy.

Implementing Data Protection

[140]

Service Master Key
SQL Server has two primary applications for keys: a Service Master Key (SMK) generated
on and for a SQL Server instance, and a database master key (DMK) used for a database.
The SMK is automatically generated during installation and the first time the SQL Server
instance is started. It is used to encrypt the next first key in the chain.

The SMK should be backed up and stored in a secure, off-site location. This is an important
step, because this is the first key in the hierarchy. Any damage at this level can prevent
access to all encrypted data in the layers below. When the SMK is restored, the SQL Server
decrypts all the keys and data that have been encrypted with the current SMK, and then
encrypts them with the SMK from the backup.

Service Master Key can be viewed with the following system catalog view:

1> SELECT name, create_date
2> FROM sys.symmetric_keys
3> GO

name create_date
------------------------- -----------------------
##MS_ServiceMasterKey## 2017-04-17 17:56:20.793

(1 row(s) affected)

Here is an example of how you can back up your SMK to the /var/opt/mssql/backup
folder that we created in Chapter 7, Backup Operations.

In the case that you don't have /var/opt/mssql/backup folder execute
all 5 bash lines.
In the case you don't have permissions to /var/opt/mssql/backup
folder execute all lines without first one.
sudo mkdir /var/opt/mssql/backup

sudo chown mssql /var/opt/mssql/backup/
sudo chgrp mssql /var/opt/mssql/backup/
sudo /opt/mssql/bin/mssql-conf set
filelocation.defaultbackupdir /var/opt/mssql/backup/
sudo systemctl restart mssql-server

Implementing Data Protection

[141]

1> USE master
2> GO
Changed database context to 'master'.

1> BACKUP SERVICE MASTER KEY TO FILE = '/var/opt/mssql/backup/smk'
2> ENCRYPTION BY PASSWORD = 'S0m3C00lp4sw00rd'
3> --In the real scenarios your password should be more complicated
4> GO
exit

The next example is how to restore SMK from the backup location:

1> USE master
2> GO
Changed database context to 'master'.

1> RESTORE SERVICE MASTER KEY
2> FROM FILE = '/var/opt/mssql/backup/smk'
3> DECRYPTION BY PASSWORD = 'S0m3C00lp4sw00rd'
4> GO

You can examine the contents of your SMK with the ls command or some internal Linux
file views, such is in Midnight Commander (MC). Basically there is not much to see, but
that is the power of encryption.

Figure 9-5. This is how SMK looks in the MC internal viewer.

Implementing Data Protection

[142]

The SMK is the foundation of the SQL Server encryption hierarchy. You should keep a copy
at an offsite location.

Database master key
The DMK is a symmetric key used to protect the private keys of certificates and asymmetric
keys that are present in the database. When it is created, the master key is encrypted by
using the AES 256 algorithm and a user-supplied password. To enable the automatic
decryption of the master key, a copy of the key is encrypted by using the SMK and stored in
both the database (user and in the master database).

The copy stored in the master is always updated whenever the master key is changed. The
next T-SQL code show how to create DMK in the Sandbox database:

1> CREATE DATABASE Sandbox
2> GO
1> USE Sandbox
2> GO
3> CREATE MASTER KEY
4> ENCRYPTION BY PASSWORD = 'S0m3C00lp4sw00rd'
5> GO

Let's check where the DMK is with the sys.sysmmetric_keys system catalog view:

1> SELECT name, algorithm_desc
2> FROM sys.symmetric_keys
3> GO

name algorithm_desc
-------------------------- ---------------
##MS_DatabaseMasterKey## AES_256

(1 row(s) affected)

This default can be changed by using the DROP ENCRYPTION BY SERVICE MASTER KEY
option of ALTER MASTER KEY. A master key that is not encrypted by the SMK must be
opened by using the OPEN MASTER KEY statement and a password.

Implementing Data Protection

[143]

Now that we know why the DMK is important and how to create one, we will continue
with the following DMK operations:

ALTER

OPEN

CLOSE

BACKUP

RESTORE

DROP

These operations are important because all other encryption keys, on database-level, are
dependent on the DMK.

We can easily create a new DMK for Sandbox and re-encrypt the keys below it in the
encryption hierarchy, assuming that we have the DMK created in the previous steps:

1> ALTER MASTER KEY REGENERATE
2> WITH ENCRYPTION BY PASSWORD = 'S0m3C00lp4sw00rdforN3wK3y'
3> GO

Opening the DMK for use:

1> OPEN MASTER KEY
2> DECRYPTION BY PASSWORD = 'S0m3C00lp4sw00rdforN3wK3y'
3> GO

If the DMK was encrypted with the SMK, it will be automatically opened
when it is needed for decryption or encryption. In this case, it is not
necessary to use the OPEN MASTER KEY statement.

Closing the DMK after use:

1> CLOSE MASTER KEY
2> GO

Backing up the DMK:

1> USE Sandbox
2> GO
1> OPEN MASTER KEY
2> DECRYPTION BY PASSWORD = 'S0m3C00lp4sw00rdforN3wK3y';
3> BACKUP MASTER KEY TO FILE = '/var/opt/mssql/backup/Snadbox-dmk'
4> ENCRYPTION BY PASSWORD = 'fk58smk@sw0h%as2'
5> GO

Implementing Data Protection

[144]

Restoring the DMK:

1> USE Sandbox
2> GO
1> RESTORE MASTER KEY
2> FROM FILE = '/var/opt/mssql/backup/Snadbox-dmk'
3> DECRYPTION BY PASSWORD = 'fk58smk@sw0h%as2'
4> ENCRYPTION BY PASSWORD = 'S0m3C00lp4sw00rdforN3wK3y';
5> GO

When the master key is restored, SQL Server decrypts all the keys that are encrypted with
the currently active master key, and then encrypts these keys with the restored master.

Dropping the DMK:

1> USE Sandbox
2> GO
1> DROP MASTER KEY
2> GO

Transparent Data Encryption
SQL Server has two ways of encrypting data. One way is by protecting data at rest, and the
second is by protecting it in transit.

Imagine the following scenario: someone has unauthorized access to your database system
environment. That person finds a way to get the last database backup file, copies it, and
takes it to an unsecured environment. At this moment, the security mechanism just fell
apart.

This scenario illustrates what can happen when someone illegally copies, detaches, and
restores your database. The consequences of such activity can be substantial, depending on
the sensitivity of your data environment.

Those unpleasant situations can be avoided by using Transparent Data Encryption (TDE).

TDE performs real-time I/O encryption and decryption of the data and log files. The
encryption uses a database encryption key (DEK) which is secured by using a certificate
stored in the master database of the server or an asymmetric key. It provides the ability to
comply with many laws, regulations, and guidelines established in various industries. This
enables software developers to encrypt data by using AES encryption algorithms without
changing existing applications.

Implementing Data Protection

[145]

TDE does not provide client/server encryption, but system database
tempdb will be encrypted.

Backup files of databases that have TDE enabled are also encrypted by using the DEK. As a
result, when you restore these backup files, the certificate protecting the DEK must be
available. This means that, in addition to backing up the database, you have to make sure
that you maintain backups of the server certificates to prevent data loss. Data loss will result
if the certificate is no longer available:

To implement TDE, we need to follow these steps:

Create a master key in the master database.1.
Create a certificate protected by using the master key.2.
Create a database encryption key and protect it by using the certificate.3.
Create a database encryption key and protect it by using the certificate.4.
Set the database to use encryption.5.

 1> USE master;
 2> GO
 1> CREATE MASTER KEY ENCRYPTION
 2> BY PASSWORD = 'Some3xtr4Passw00rd';
 3> GO
 1> SELECT name, create_date
 2> FROM sys.symmetric_keys
 3> GO
 name create_date
 ------------------------- -----------------------
 ##MS_DatabaseMasterKey## 2017-05-14 12:02:59.630
 ##MS_ServiceMasterKey## 2017-04-17 17:56:20.793
 (2 row(s) affected)
 1> CREATE CERTIFICATE TDE
 2> WITH SUBJECT = 'TDE-Certificate';
 3> GO
 1> SELECT name, expiry_date
 2> FROM sys.certificates
 3> WHERE name = 'TDE'
 4> GO
 name expiry_date
 --------------------- -----------------------
 TDE 2018-05-14 10:03:44.000
 (1 row(s) affected)
 1> USE Sandbox
 2> GO

Implementing Data Protection

[146]

 1> CREATE DATABASE ENCRYPTION KEY
 2> WITH ALGORITHM = AES_256
 3> ENCRYPTION BY SERVER CERTIFICATE TDE
 4> GO
 Warning: The certificate used for encrypting the database
encryption key has not been backed up.
 1> ALTER DATABASE Sandbox
 2> SET ENCRYPTION ON
 3> GO

You are done. TDE is now in the operation mode. To test it, you will need
to detach this database, and drop the certificate and master key. After that
try to attach the database again. You should get an error message.

Backup encryption
This feature is very close to TDE, but there is a difference: TDE is a transparent process.
Data is encrypted on-the-fly into the database, and decrypted on the way out. But what if
we don't want to encrypt the whole database? Encryption is a CPU time-consuming task.
Data needs to be encrypted and decrypted all the time. With a large number of user
requests, this can be an issue if we don't scale our hardware to follow this security feature.

In some business scenarios, we need only to worry about backup file security. TDE handle
this part as well, but we need to turn on TDE. Backup encryption solves this problem in the
way that SQL Server only encrypts backup files after the backup procedure. So, if anyone
gets their hands on backup files, without corresponding keys it will be useless.

In the following steps, we'll create a backup certificate, create a backup file of our Sandbox
database, and do compression and encryption with the certificate:

1> USE master;
2> GO

1> CREATE CERTIFICATE BackupCert
2> WITH SUBJECT = 'Database encrypted backups';
3> GO

1> BACKUP DATABASE Sandbox
2> TO DISK = '/var/opt/mssql/backup/Sandbox.bak'
3> WITH
4> COMPRESSION,
5> ENCRYPTION
6> (

Implementing Data Protection

[147]

7> ALGORITHM = AES_256,
8> SERVER CERTIFICATE = BackupCert
9>),
10> STATS = 10
11> GO

Warning: The certificate used for encrypting the database encryption key
has not been backed up. You should immediately back up the certificate
and the private key associated with the certificate. If the certificate ever
becomes unavailable or if you need to restore or attach the database on
another server, you must have backups of both the certificate and the
private key or you will not be able to open the database.

Symmetric encryption
Symmetric encryption is the type of encryption that uses the same key for encryption and
decryption. SQL Server allows you to choose from several algorithms, including DES, Triple
DES, TRIPLE_DES_3KEY, RC2, RC4, 128-bit RC4, DESX, 128-bit AES, 192-bit AES, and 256-
bit AES.

No single algorithm is ideal for all situations. However, the following general principles
apply:

Strong encryption requires more CPU resources
Long keys generally yield stronger encryption than short keys
Asymmetric encryption is stronger than symmetric encryption if using the same
key size; but performance is compromised
Long and strong passwords are better than short and/or weak passwords
If you are encrypting large amounts of data, you should encrypt using a
symmetric key because of performance issues
Encrypted data cannot be compressed, but compressed data can be encrypted

When a symmetric key is created, it must be encrypted by using at least one of the
following:

Certificate
Password
Symmetric key
Asymmetric key

Implementing Data Protection

[148]

The key can have more than one encryption of each type. In other words, a single
symmetric key can be encrypted by using multiple certificates, passwords, symmetric keys,
and asymmetric keys at the same time.

In the following lines, you will see how symmetric encryption works. Here is our scenario:

In the database Sandbox, you will create the table EncryptedCustomer
We will import all records from the AdventureWorks.Person.Person table
During import, we will trigger the encryption process of sensitive data
The imported record will be in AES 256 format

Let's start:

1> USE Sandbox
2> GO

1> CREATE MASTER KEY
2> ENCRYPTION BY PASSWORD = 'Some3xtr4Passw00rd';
3> GO

-- Create new table for encryption process
1> CREATE TABLE EncryptedCustomer(
3> CustomerID int NOT NULL PRIMARY KEY,
4> FirstName varbinary(200),
5> MiddleName varbinary(200),
6> LastName varbinary(200),
7> EmailAddress varbinary(200),
8> Phone varbinary(150));
9> GO
-- Create a certificate
1> CREATE CERTIFICATE Cert4SymKey
2> ENCRYPTION BY PASSWORD = 'pGFD4bb925DGvbd2439587y'
3> WITH SUBJECT = 'Protection of symmetric key',
4> EXPIRY_DATE = '20201031';
5> GO

-- Create a AES 256 symmetric key
1> CREATE SYMMETRIC KEY CustomerSymKey
2> WITH ALGORITHM = AES_256,
3> IDENTITY_VALUE = 'NTK2016'
4> ENCRYPTION BY CERTIFICATE Cert4SymKey;
5> GO

-- Open the key that's protected by certificate
1> OPEN SYMMETRIC KEY CustomerSymKey
2> DECRYPTION BY CERTIFICATE Cert4SymKey
3> WITH PASSWORD = 'pGFD4bb925DGvbd2439587y';

Implementing Data Protection

[149]

4> GO

-- Encrypt the data
1> INSERT INTO EncryptedCustomer(
2> CustomerID,
3> FirstName,
4> MiddleName,
5> LastName,
6> EmailAddress,
7> Phone)
8> SELECT
9> P.BusinessEntityID,
10> EncryptByKey(Key_Guid('CustomerSymKey'),FirstName),
11> EncryptByKey(Key_Guid('CustomerSymKey'),MiddleName),
12> EncryptByKey(Key_Guid('CustomerSymKey'),LastName),
13> EncryptByKey(Key_Guid('CustomerSymKey'),EA.EmailAddress),
14> EncryptByKey(Key_Guid('CustomerSymKey'), PP.PhoneNumber)
15> FROM AdventureWorks.Person.Person AS P
16> INNER JOIN AdventureWorks.Person.EmailAddress AS EA
17> ON P.BusinessEntityID = EA.BusinessEntityID
18> INNER JOIN AdventureWorks.Person.PersonPhone AS PP
19> ON P.BusinessEntityID = PP.BusinessEntityID
20> GO

-- Close the key
1> CLOSE SYMMETRIC KEY CustomerSymKey
2> GO

-- View encrypted binary data
1> SELECT FirstName
2> FROM EncryptedCustomer
3> GO

-- Open the key again and decrypt column side by side
1> OPEN SYMMETRIC KEY CustomerSymKey
2> DECRYPTION BY CERTIFICATE Cert4SymKey
3> WITH PASSWORD = 'pGFD4bb925DGvbd2439587y'
4> GO

1> SELECT
2> CAST(DecryptByKey(FirstName) AS nvarchar(100)) AS
3> DecryptedFirstName, FirstName
4> FROM EncryptedCustomer;
5> GO

Implementing Data Protection

[150]

Figure 9-6. Content of column FirstName

Row-level security
This feature is new, starting from version SQL Server 2016. Row-level security was a
security challenge for a long time. It was implemented through different sets of add-ons
and tools. However, this is now built into the database engine and SQL language. Imagine
this scenario: a sales person has read permission on the Sales table, but you want each
sales person to only see their own sales records, and the manager should see all the records.
If you look at this problem through the classic user-permission chain, it is impossible to
implement it. However, the row-level security feature makes it possible.

Let's see how it works:

1> USE Sandbox
2> GO

--Create three users without logins
1> CREATE USER Manager WITHOUT LOGIN;
2> CREATE USER Sales1 WITHOUT LOGIN;
3> CREATE USER Sales2 WITHOUT LOGIN;
4> GO

-- Create Sales table
1> CREATE TABLE Sales(
2> OrderID int,
3> SalesRep sysname,
4> Product varchar(10),
5> Qty int)
6> GO

-- Add some sample data
1> INSERT Sales VALUES
2> (1, 'Sales1', 'Valve', 5),

Implementing Data Protection

[151]

3> (2, 'Sales1', 'Wheel', 2),
4> (3, 'Sales1', 'Valve', 4),
5> (4, 'Sales2', 'Bracket', 2),
6> (5, 'Sales2', 'Wheel', 5),
7> (6, 'Sales2', 'Seat', 5);
8> GO
-- Execute SELECT statement under your permission
1> SELECT * FROM Sales;
2> GO

-- Give to all users necessary read permissions
1> GRANT SELECT ON Sales TO Manager
2> GO
1> GRANT SELECT ON Sales TO Sales1
2> GO
1> GRANT SELECT ON Sales TO Sales2
2> GO

-- Create new schema
1> CREATE SCHEMA Security;
2> GO

--Creating new function which will user SalesRep as input
1> CREATE FUNCTION
2> Security.fn_securitypredicate(@SalesRep AS sysname)
3> RETURNS TABLE
4> WITH SCHEMABINDING
5> AS
6> RETURN SELECT 1 AS fn_securitypredicate_result
7> WHERE @SalesRep = USER_NAME() OR USER_NAME() = 'Manager'
8> GO

--Creating security policy for the data filtering
1> CREATE SECURITY POLICY SalesFilter
2> ADD FILTER PREDICATE
3> Security.fn_securitypredicate(SalesRep)
4> ON dbo.Sales
5> WITH (STATE = ON);
6> GO
--Now execute SELECT in the context of the new users
1> EXECUTE AS USER = 'Sales1'
2> SELECT * FROM Sales
3> REVERT
4> GO

1> EXECUTE AS USER = 'Sales2'
2> SELECT * FROM Sales
3> REVERT

Implementing Data Protection

[152]

4> GO

1> EXECUTE AS USER = 'Manager'
2> SELECT * FROM Sales
3> REVERT
4> GO

-- If you need you can turn off this policy
1> ALTER SECURITY POLICY SalesFilter
2> WITH (STATE = OFF);
3> GO

Row-level security does not encrypt any data. It basically just filters
content based on the input parameter of the function. This feature can be
used in many business scenarios. Some of the examples are ad-hoc
querying, reporting, analyzing, exporting, and so on, where users need to
have rows filtered on the row level not the column.

Dynamic data masking
Another great security feature is presented in version SQL Server 2016. Dynamic data
masking limits sensitive data exposure by masking it to users with low-level privileges.
Sometimes you will need to expose some elements from the data, but with built-in elements
of preventing unauthorized access. Let's look at the following example: a user will execute
SELECT, but unauthorized elements are hidden-masked:

ID FirstName LastName PhoneNumber EmailAddress Credit CardNumber

1 Jasmin Azemović +387- xxxxxx jxx@xxxx.com xxxx-xxxx-xxxx-1111

2 Denis Musić +387- xxxxxx dxx@xxxx.com xxxx-xxxx-xxxx-2222

3 Edward Snowden +387- xxxxxx exx@xxxx.com xxxx-xxxx-xxxx-3333

4 Julian Assange +387- xxxxxx jxx@live.com xxxx-xxxx-xxxx-4444

This feature can be implemented without affecting or modifying any existing SQL or
application code.

Implementing Data Protection

[153]

Let's see how it works:

-- You will use content of AdventureWorks sample database
1> USE AdventureWorks
2> GO

-- Add masked future to the Email column
1> ALTER TABLE Person.EmailAddress
2> ALTER COLUMN EmailAddress
3> ADD MASKED WITH (FUNCTION = 'email()')
4> GO

--New user without login and read permission
1> CREATE USER UnauthorizedUser WITHOUT LOGIN
2> GO
3> GRANT SELECT ON Person.EmailAddress TO UnauthorizedUser
4> GO

--Execute SELECT in the contenxrt of UnauthorizedUser
1> EXECUTE AS USER = 'UnauthorizedUser'
2> SELECT TOP 5 EmailAddressID, EmailAddress
3> FROM Person.EmailAddress
4> REVERT
5> GO
EmailAddressID EmailAddress
-------------- -----------------
 798 aXXX@XXXX.com
 1516 aXXX@XXXX.com
 509 aXXX@XXXX.com
 1467 aXXX@XXXX.com
 4690 aXXX@XXXX.com

(5 row(s) affected)

--Execute SELECT in the context of the sa user
1> SELECT TOP 5 EmailAddressID, EmailAddress
2> FROM Person.EmailAddress
3> GO

EmailAddressID EmailAddress
-------------- -------------------------------
798 a0@adventure-works.com
1516 a1@adventure-works.com
509 aaron0@adventure-works.com
1467 aaron1@adventure-works.com
4690 aaron10@adventure-works.com

(5 row(s) affected)

Implementing Data Protection

[154]

Dynamic data masking does not prevent database users from connecting
directly to the database and running ad-hoc queries that can expose
sensitive data. It is highly recommended to use this feature in combination
with other security features for better protection.

Summary
Protecting data is the most important thing in database environments. When all security
elements fail (for instance, installation errors, authentication, authorization, bad access
policy, and so on), there is no more protection. This chapter looked at how to implement
advanced techniques for protecting data, such as cryptography and advanced built-in SQL
Server on Linux security features.

In the next chapter, we will introduce the basic elements of SQL Server indexing.

10
Indexing

In the database world, faster means better. Every query, no matter how well written, can
execute faster. If we look from a different angle, every query over time can execute slower
than it initially did. Everything is okay with your database, but the internal mechanisms of
inserting, updating, and deleting can create fragmentation inside database files, which can
cause a degradation in performance. There are many reasons for poor performance: one of
them is the inappropriate process of indexing data inside the tables. SQL Server has strong
indexing foundations.

This chapter will introduce you to the basics of:

Indexing concepts
Clustered index
Concept of heap
Non-clustered index
Columnstore index

Indexing concepts
Imagine a small book of 100 pages. Let's say that this hypothetical book is about the SQL
language. Your only navigation through the book is via the Table of Contents (TOC) with
page numbers. Now, imagine that you need to find where the word DDL is mentioned in
the book. The TOC is useless. You can find a chapter about DDL commands, if it exists, but
there is no guarantee that DDL is not mentioned anywhere else. You have to conclude that
the only way to find all DDL words is by reading all 100 pages, page by page.

Indexing

[156]

Now, let's imagine the same book with an Index of Terms. It means you will have all the
book's related words in some order (for example, ascending) with the number of the page(s)
where that word is positioned in the book. In our example, let's say that DDL is mentioned
on pages 33, 56, and 78 of the book. Now there is no need to read each page; you can look at
the index and quickly locate the required data.

The same concept is applied in the database world. Tables with the data can be indexed to
ensure that your query locates data more efficiently. An index is a collection of the column
data associated with a table. Indexes can be used to improve the performance of queries or
enforce data uniqueness. However, the primary use is to point to the location of the
requested data and to minimize the need for scanning the entire table.

Accessing the data
SQL Server accesses data in one of two ways:

By scanning all the data pages in a table (table scan). When SQL Server performs a table
scan, it:

Starts at the beginning of the table
Scans from page to page through all the rows in the table
Extracts the rows that satisfied the criteria of the query

When SQL Server uses an index, it:

Goes through the index tree structure to find rows that the query requests
Extracts only the rows that satisfy search criteria

Whenever SQL Server needs to access data in a table, it needs to makes a decision about
whether to read all the pages of the table or whether there are one or more indexes on the
table that would reduce the amount of read operations.

Indexes are not described in ANSI SQL standards. The database itself can function without
it, but accessing data by reading large numbers of pages is usually considerably slower than
methods that use appropriate indexes. Indexes are considered to be part of the
implementation.

Indexing

[157]

Index structure
Indexes in database systems are often based on tree (B-tree) structures. Binary trees (B-
trees) are simple structures where, at each level, a decision is made to navigate left or right.
This style of tree can become unbalanced and less useful.

On the other hand, SQL Server on Linux indexes are based on self-balancing trees, where
binary trees have at most two children per node. Also, SQL Server indexes can have a large
number of children per node. This improves the efficiency of the indexes and avoids the
need for frequent depth scans within an index.

For operations that read data, indexes perform best when each page of the index is full.
While indexes may initially start full, modifications to the data in the indexes can cause the
need to split index pages. Modification can occur when users modify data inside the table.

For example, the original record was on page 45, but after modification it has now spanned
across two pages, 45 and 46. This information needs to be updated in the index structure.
The conclusion is that frequent data changes are not index-friendly. Because of this side
effect, it is important to choose only the required columns for the indexing procedure.

Single and composite indexes
Indexes in general are based on data from single columns. Indexes can also be based on the
data from multiple columns. In business applications, composite indexes are often more
useful than single-column indexes. The key advantage of composite indexes is higher
selectivity.

An example could be searching for students and details about their grades. This is an
example of a composite index. In the absence of any other criteria, when designing
composite indexes you should index the most selective column first.

Ascending and descending indexes
Each index can be created in ascending or descending order. For single-column indexes,
ascending and descending indexes are equally efficient. For composite indexes, specifying
the order of individual columns within the index might be useful. For example, you might
need to output grades by date descending, with students ascending. In this case scenario,
you will get the grades with recent dates faster.

Indexing

[158]

Further detail on this is beyond the scope of this book. The information
provided should be enough to understand the basic concept and start to
implement concrete index types.

Clustered index
A clustered index sorts and stores the data rows of the table in an order based on the
clustered index key. The clustered index is implemented as a B-tree where every page in a
tree is called an index node. Because a clustered index determines the order in which table
rows are actually stored, each table can have only one clustered index, and the table's rows
cannot be stored in more than one order.

Because you can have only one clustered index per table, you must ensure that you use it to
achieve the maximum benefits. Before you create a clustered index, you need to understand
how your data will be accessed.

Clustered indexes are most effective when used to support queries that do the following:

Return a range of values by using operators such as BETWEEN, >, >=, <, and <=
Return data sorted using the ORDER BY or GROUP BY clause
Return data combined by using JOIN clauses; typically these are foreign key
columns
Return large result sets

When you define a PRIMARY KEY on a user table, SQL Server will
automatically create a clustered index on that column. In most business
scenarios, that will be the int data type with the IDENTITY option.

Here are some examples of how you can create a clustered index through SQL code:

1> USE Sandbox
2> GO

-- This example will automatically create clustered index on PatientID
column
1> CREATE TABLE Patients (
2> PatientID int IDENTITY (1,1) PRIMARY KEY,
3> LastName nvarchar (15) NOT NULL,
4> FirstName nvarchar (15) NOT NULL,
5> Email nvarchar (15) NOT NULL)

Indexing

[159]

5> GO

-- You can add clustered index after you create the table
1> CREATE TABLE Telemetry (
2> TelemetryID int IDENTITY (1,1),
3> TelemetryData xml NOT NULL)
4> GO

1> CREATE CLUSTERED INDEX CL_TelemetryID
2> ON Telemetry (TelemetryID)

--You can check indexes with this system catalog view
1> SELECT name FROM sys.indexes
2> WHERE type = 1 --clustered index
3> ORDER BY object_id DESC
4> GO

name

queue_clustered_index
queue_clustered_index
queue_clustered_index
CL_TelemetryID
PK__Patients__970EC346FB2AFC49
wpr_bucket_clustered_idx

Your output can be different but you should find indexes from previous examples. In my
case, CL_TelemetryID is easy to spot. The first example from the Patients table has a
generic name, PK__Patients__970EC346FB2AFC49.

One important thing to note is that a clustered index does not always need
to be PK. In some scenarios, you will choose some other column.

What is a heap
Imagine a library where every book is just placed in any available space. To find a
particular book, you need to scan through all the bookshelves. From the database
perspective, there is a structure with the same properties called a heap. A heap is the
simplest table structure available in SQL Server.

Indexing

[160]

A heap is a table without a clustered index. The data rows are not stored in any specific
order, and there is no specific order to quickly find a particular data page. Data rows are
added to the first available location within the table's pages that have sufficient space. If no
space is available, additional pages are added to the table and the rows placed in those
pages.

Consider using a heap for tables that:

Contain volatile data where rows are added, deleted, and updated frequently:
The overhead of index maintenance can be costlier than the benefits
Contain small amounts of data: Using a table scan to find data can be quicker
than maintaining and using an index
Contain data that is written and rarely read, such as an audit log: An index can
be an unnecessary storage and maintenance overhead

Here is a SQL query to check if there are any heap structures inside a database where this
query is executed:

1> SELECT O.name, O.object_id
2> FROM sys.objects O
3> INNER JOIN sys.partitions P
4> ON P.object_id = O.object_id
5> WHERE P.index_id =0
6> GO

The conclusion is that heaps are not such good structures from the point of
view of performance. If you need to write any query on a particular table,
a heap is not an option. You should avoid them where possible.
Unfortunately, in real-life scenarios you will find many examples of tables
in heap structures. Over time, these objects become performance
bottlenecks.

Non-clustered index
You can freely call these a user index. In most case scenarios, non-clustered indexes are
created based on search criteria and business requirements. For example, users of your
application will search based on LastName and ProductName. These attributes are not
primary keys (in this universe), but you need to use the power of indexing techniques. From
the SQL Server perspective, non-clustered indexes are the right choice.

Indexing

[161]

Non-clustered indexes have almost the same structure as clustered indexes. The only
difference is that the data rows in the tables are not sorted based on their non-clustered
keys. In the non-clustered index, the data and the index are stored separately.

Non-clustered indexes are designed to improve the performance of frequently used queries
that are not covered by a clustered index. If your table already has a clustered index and
you need to index another column, you have no choice but to use a non-clustered index.
You can achieve maximum query performance improvements when an index contains all
columns from a query. This is the reason why you need to make plans for your indexing
strategy. However, too many indexes can result in side effects.

Consider using a non-clustered index when:

You want to improve the performance of queries that use JOIN or GROUP BY
clauses
Your table has a low update frequency but contains large volumes of data
You know that your queries do not return large result sets
You need to index columns that are frequently used in the search conditions of a
query, such as a WHERE clause, that returns exact matches
You need to index columns that contain many distinct values, such as a
combination of last name and first name

Now let's play a little bit with non-clustered indexes. You will learn how to create them,
include new columns, change the definition of an index, delete, and reorganize the content
of an index the content of an index with the following code:

1> USE Sandbox
2> GO

1> CREATE TABLE Books (
2> BookID nvarchar(20) PRIMARY KEY,
3> PublisherID int NOT NULL,
4> Title nvarchar(50) NOT NULL,
5> ReleaseDate date NOT NULL)
6> GO

--Create nonclusterd composite index on two columns
1> CREATE NONCLUSTERED INDEX IX_Book_Publisher
2> ON Books (PublisherID, ReleaseDate DESC);
3> GO

--Disabling of an index.
1> ALTER INDEX IX_Book_Publisher
2> ON Books

Indexing

[162]

3> DISABLE
4> GO

--Dropping of an index
1> DROP INDEX IX_Book_Publisher
2> ON Books
3> GO

--Creating same index but with included column Title
1> CREATE NONCLUSTERED INDEX IX_Book_Publisher
2> ON Books (PublisherID, ReleaseDate DESC)
3> INCLUDE (Title);
4> GO

--Process of reorganizing an index if fragmentation is low
1> ALTER INDEX IX_Book_Publisher
2> ON Books
3> REORGANIZE
4> GO

----Process of rebuilding an index if fragmentation is high
1> ALTER INDEX IX_Book_Publisher
2> ON Books
3> REBUILD

Unique indexes
Special types of indexes are unique indexes. Sometimes you will need to maintain
uniqueness on an attribute that is not a good candidate for the primary key, for example,
Email or LoginName. A unique index will ensure that there are no duplicate values inside
the table in that specific column.

NULL if stored one time is still considered unique.

Here is an example on the Patients table:

1> CREATE UNIQUE NONCLUSTERED INDEX UQ_Patient_Email
2> ON Patients (Email ASC)
3> GO

Indexing

[163]

Columnstore index
From version SQL Server 2012, the database engine includes new types of indexes called
columnstore indexes, which are in-memory structures that use compression technology to
organize index data in a column-based format instead of the row-based format that
traditional indexes use. Columnstore indexes are specifically designed to improve the
performance of queries against data warehouse environments where you need to deal with
large fact tables and related dimension tables. There are two types of columnstore indexes:

A non-clustered columnstore index is a read-only index that you can create on a table that
has an existing standard clustered index, or on a table that is a heap. Like a standard non-
clustered index, a non-clustered columnstore index can include one or more columns from
the table.

A clustered columnstore index represents the actual data rows in the table, and is not a
separate structure. This means that all columns are included in the index. Unlike non-
clustered columnstore indexes, clustered columnstore indexes to do not make the table
read-only, so you can update without restrictions.

An important thing to remember when using clustered columnstore
indexes is that when you create one on a specific table, it must be the only
index on that object. You cannot use a clustered columnstore index in
combination with any other index.

Here is one example on the AdventureWorks sample database, in the
SalesOrderDetails table. From the sample database perspective, it is a large table, with
more than 100,000 records. However, in a real-life scenario, it is not a big deal.
Improvements based on this type of index make sense on millions of rows. But in any case
we will try to feel a difference even on small amount of data:

1> USE AdventureWorks
2> GO

--Check number of rows
1> SELECT COUNT (*)
2> FROM Sales.SalesOrderDetail
3> GO

121317

(1 row(s) affected)

1> SELECT TOP 5 ProductID, SUM(UnitPrice) TotalPrice,

Indexing

[164]

2> AVG(UnitPrice) AvgPrice,
3> SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty
4> FROM Sales.SalesOrderDetail
5> GROUP BY ProductID
6> ORDER BY ProductID
7> GO

ProductID TotalPrice AvgPrice SumOrder AvgOrder
----------- -------------- ----------- --------- ---------
707 95223,1798 30,8865 6266 2
708 91561,731 30,4495 6532 2
709 1063,335 5,656 1107 5
710 250,80 5,70 90 2
711 93827,8566 30,365 6743 2

(5 row(s) affected)

Now look at the following screenshot. It was taken on the SQL Server
Management Tool in Windows, because there is no GUI tool with this
capability yet.

Figure 10-1. Execution plan of the query

--Create Nonclustered columnstore on three columns
1> CREATE NONCLUSTERED COLUMNSTORE INDEX
2> IX_SalesOrderDetail_ColumnStore
3> ON Sales.SalesOrderDetail
4> (UnitPrice, OrderQty, ProductID)
5> GO

Indexing

[165]

Let's execute the same query again.

You probably didn't notice any significant difference in execution time, but internally there
is a huge difference. Take a look at the following screenshot:

Figure 10-2. Execution plan of the query but with columnstore index

The difference is in initial operator type (those diagrams are read from right to left). In the
first case, the operator is Clustered Index Scan and it took 64% of all query execution
time. The second-time operator is Columnstore Index Scan and took 19% of query
execution time, which is much less than the first time. In your case, the number could be
different, but it should be within these boundaries.

Summary
In this chapter, you learned the basic foundations of SQL Server on Linux indexes. You
should now also understand why they are so important for performance, and how to use
them in particular business scenarios.

In the next chapter, you will learn about a more advanced topic, that is, addressing
performance issues.

11
In-Memory OLTP

In the previous chapter, you learned how index in general can help your queries run faster.
But indexing has its limitations. When your I/O subsystem is not performing well in
combination with less RAM, then indexing is just a first aid. All these problems will return
later with much higher intensity.

Simply adding more RAM, faster disks, and better CPU will solve your problems
temporarily. The system will breathe better, but you must ask yourself is this it or can I push
the limits sky high? Yes, you can. It is amazing what SQL Server can offer you in terms of
achieving better performance.

In this chapter, you will get the basics on how to implement In-Memory OLTP on SQL
Server on Linux through the following topics:

Elements of performance
What is In-Memory OLTP
Implementation

Elements of performance
How do you know if you have a performance issue in your database environment? Well,
let's put it in these terms. You notice it (the good), users start calling technical support and
complaining about how everything is slow (the bad) or you don't know about your
performance issues (the ugly). Try to never get in to the last category.

In-Memory OLTP

[167]

The good
Achieving best performance is an iterative process where you need to define a set of tasks
that you will execute on a regular basics and monitor their results. Here is a list that will
give you an idea and guide you through this process:

Establish the baseline
Define the problem
Fix one thing at a time
Test and re-establish the baseline
Repeat everything

Establishing the baseline is the critical part. In most case scenarios, it is not possible without
real stress testing. Example: How many users' systems can you handle on the current
configuration? The next step is to measure the processing time. Do your queries or stored
procedures require milliseconds, seconds, or minutes to execute?

Now you need to monitor your database server using a set of tools and correct
methodologies. During that process, you notice that some queries show elements of
performance degradation. This is the point that defines the problem.

Let's say that frequent UPDATE and DELETE operations are resulting in index fragmentation.
The next step is to fix this issue with REORGANIZE or REBUILD index operations.

Test your solution in the control environment and then in the production. Results can be
better, same, or worse. It depends and there is no magic answer here. Maybe now
something else is creating the problem: disk, memory, CPU, network, and so on. In this
step, you should re-establish the old or a new baseline.

Measuring performance process is something that never ends. You should keep monitoring
the system and stay alert.

The bad
If you are in this category, then you probably have an issue with establishing the baseline
and alerting the system. So, users are becoming your alerts and that is a bad thing. The rest
of the steps are the same except re-establishing the baseline. But this can be your wake-up
call to move yourself in the good category.

In-Memory OLTP

[168]

The ugly
This means that you don't know or you don't want to know about performance issues. The
best case scenario is a headline on some news portal, but that is the ugly thing. Every decent
DBA should try to be light years away from this category.

What do you need to start working with performance measuring, monitoring, and fixing?

Here are some tips that can help you:

Know the data and the app
Know your server and its capacity
Use dynamic management views—DMVs:

sys.dm_os_wait_stats
sys.dm_exec_query_stats
sys.dm_db_index_operational_stats

Look for top queries by reads, writes, CPU, execution count
Put everything in to LibreOffice Calc or another spreadsheet application and do
some basic comparative math

Fortunately, there is something in the field that can make your life really easy. It can boost
your environment to the scale of warp speed (I am a Star Trek fan).

What is In-Memory OLTP?
SQL Server In-Memory feature is unique in the database world. The reason is very simple;
because it is built-in to the databases' engine itself. It is not a separate database solution and
there are some major benefits of this. One of these benefits is that in most cases you don't
have to rewrite entire SQL Server applications to see performance benefits. On average, you
will see 10x more speed while you are testing the new In-Memory capabilities. Sometimes
you will even see up to 50x improvement, but it all depends on the amount of business logic
that is done in the database via stored procedures. The greater the logic in the database, the
greater the performance increase. The more the business logic sits in the app, the less
opportunity there is for performance increase. This is one of the reasons for always
separating database world from the rest of the application layer.

In-Memory OLTP

[169]

It has built-in compatibility with other non-memory tables. This way you can optimize the
memory you have for the most heavily used tables and leave others on the disk. This also
means you won't have to go out and buy expensive new hardware to make large In-
Memory databases work; you can optimize In-Memory to fit your existing hardware.

In-Memory was started in SQL Server 2014. One of the first companies that has started to
use this feature during the development of the 2014 version was Bwin. This is an online
gaming company. With In-Memory OLTP they improved their transaction speed by 16x,
without investing in new expensive hardware.

Table 11-1. BWIN In-memory OLTP Case study

The same company has achieved 1.2 Million requests/second on SQL
Server 2016 with a single machine using In-Memory OLTP:
https://blogs.msdn.microsoft.com/sqlcat/2016/10/26/how-bwin-is-u
sing-sql-server-2016-in-memory-oltp-to-achieve-unprecedented-
performance-and-scale/

Not every application will benefit from In-Memory OLTP. If an application is not suffering
from performance problems related to concurrency, IO pressure, or blocking, it's probably
not a good candidate. If the application has long-running transactions that consume large
amounts of buffer space, such as ETL processing, it's probably not a good candidate either.

https://blogs.msdn.microsoft.com/sqlcat/2016/10/26/how-bwin-is-using-sql-server-2016-in-memory-oltp-to-achieve-unprecedented-performance-and-scale/
https://blogs.msdn.microsoft.com/sqlcat/2016/10/26/how-bwin-is-using-sql-server-2016-in-memory-oltp-to-achieve-unprecedented-performance-and-scale/
https://blogs.msdn.microsoft.com/sqlcat/2016/10/26/how-bwin-is-using-sql-server-2016-in-memory-oltp-to-achieve-unprecedented-performance-and-scale/

In-Memory OLTP

[170]

The best applications for consideration would be those that run high volumes of small fast
transactions, with repeatable query plans such as order processing, reservation systems,
stock trading, and ticket processing. The biggest benefits will be seen on systems that suffer
performance penalties from tables that are having concurrency issues related to a large
number of users and locking/blocking. Applications that heavily use the tempdb for
temporary tables could benefit from In-Memory OLTP by creating the table as memory
optimized, and performing the expensive sorts, and groups, and selective queries on the
tables that are memory optimized.

In-Memory OLTP quick start
An important thing to remember is that the databases that will contain memory-optimized
tables must have a MEMORY_OPTIMIZED_DATA filegroup. This filegroup is used for
storing the checkpoint needed by SQL Server to recover the memory-optimized tables.

Here is a simple DDL SQL statement to create a database that is prepared for In-Memory
tables:

1> USE master
2> GO

1> CREATE DATABASE InMemorySandbox
2> ON
3> PRIMARY (NAME = InMemorySandbox_data,
4> FILENAME =
5> '/var/opt/mssql/data/InMemorySandbox_data_data.mdf',
6> size=500MB),
7> FILEGROUP InMemorySandbox_fg
8> CONTAINS MEMORY_OPTIMIZED_DATA
9> (NAME = InMemorySandbox_dir,
10> FILENAME =
11> '/var/opt/mssql/data/InMemorySandbox_dir')
12> LOG ON (name = InMemorySandbox_log,
13> Filename=
14>'/var/opt/mssql/data/InMemorySandbox_data_data.ldf',
15> size=500MB)
16 GO

In-Memory OLTP

[171]

The next step is to alter the existing database and configure it to access memory-optimized
tables. This part is helpful when you need to test and/or migrate current business solutions:

--First, we need to check compatibility level of database.
-- Minimum is 130
1> USE AdventureWorks
2> GO
3> SELECT T.compatibility_level
4> FROM sys.databases as T
5> WHERE T.name = Db_Name();
6> GO

compatibility_level

120

(1 row(s) affected)

--Change the compatibility level
1> ALTER DATABASE CURRENT
2> SET COMPATIBILITY_LEVEL = 130;
3> GO

--Modify the transaction isolation level
1> ALTER DATABASE CURRENT SET
2> MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT=ON
3> GO

--Finlay create memory optimized filegroup
1> ALTER DATABASE AdventureWorks
2> ADD FILEGROUP AdventureWorks_fg CONTAINS
3> MEMORY_OPTIMIZED_DATA
4> GO

1> ALTER DATABASE AdventureWorks ADD FILE
2> (NAME='AdventureWorks_mem',
3> FILENAME='/var/opt/mssql/data/AdventureWorks_mem')
4> TO FILEGROUP AdventureWorks_fg
5> GO

How to create memory-optimized tables?
The syntax for creating memory-optimized tables is almost the same as the syntax for
creating classic disk-based tables. You will need to specify that the table is a memory-
optimized table, which is done using the MEMORY_OPTIMIZED = ON clause.

In-Memory OLTP

[172]

A memory-optimized table can be created with two DURABILITY values:

SCHEMA_AND_DATA (default)
SCHEMA_ONLY

If you defined a memory-optimized table with DURABILITY=SCHEMA_ONLY, it means that
changes to the table's data are not logged and the data is not persisted on disk. However,
the schema is persisted as part of the database metadata. A side effect is that an empty table
will be available after the database is recovered during a restart of SQL Server on Linux
service.

The following table is a summary of key differences between those two DURABILITY
options.

When you create a memory-optimized table, the database engine will generate DML
routines just for accessing that table, and load them as DLLs files. SQL Server itself does not
perform data manipulation, instead it calls the appropriate DLL:

Conditions SCHEMA_AND_DATA SCHEMA_ONLY

Schema is durable YES YES

Rows are durable YES NO

Is in checkpoint files YES NO

Is logged YES NO

Is in backup YES NO

Speed Fast Faster

Table 11-2. Durability differences

Now let's add some memory-optimized tables to our sample database:

1> USE InMemorySandbox
2> GO

-- Create a durable memory-optimized table
1> CREATE TABLE Basket(
2> BasketID INT IDENTITY(1,1)
3> PRIMARY KEY NONCLUSTERED,
4> UserID INT NOT NULL INDEX ix_UserID
5> NONCLUSTERED HASH WITH (BUCKET_COUNT=1000000),
6> CreatedDate DATETIME2 NOT NULL,

In-Memory OLTP

[173]

7> TotalPrice MONEY) WITH (MEMORY_OPTIMIZED=ON)
8> GO

-- Create a non-durable table.
1> CREATE TABLE UserLogs (
2> SessionID INT IDENTITY(1,1)
3> PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT=400000),
4> UserID int NOT NULL,
5> CreatedDate DATETIME2 NOT NULL,
6> BasketID INT,
7> INDEX ix_UserID
8> NONCLUSTERED HASH (UserID) WITH (BUCKET_COUNT=400000))
9> WITH (MEMORY_OPTIMIZED=ON, DURABILITY=SCHEMA_ONLY)
10> GO

-- Add some sample records
1> INSERT INTO UserLogs VALUES
2> (432, SYSDATETIME(), 1),
3> (231, SYSDATETIME(), 7),
4> (256, SYSDATETIME(), 7),
5> (134, SYSDATETIME(), NULL),
6> (858, SYSDATETIME(), 2),
7> (965, SYSDATETIME(), NULL)
8> GO

1> INSERT INTO Basket VALUES
2> (231, SYSDATETIME(), 536),
3> (256, SYSDATETIME(), 6547),
4> (432, SYSDATETIME(), 23.6),
5> (134, SYSDATETIME(), NULL)
6> GO

-- Checking the content of the tables
1> SELECT SessionID, UserID, BasketID
2> FROM UserLogs
3> GO

SessionID UserID BasketID
----------- ----------- ----------
1 432 1
2 231 7
3 256 7
4 134 NULL
5 858 2
6 965 NULL

(6 row(s) affected)

In-Memory OLTP

[174]

1> SELECT BasketID, UserID
2> FROM Basket
3> GO

BasketID UserID
-------------- -----------
1 231
2 256
3 432
4 134

(4 row(s) affected)

What is natively compiled stored procedure?
This is another great feature that comes comes within In-Memory package. In a nutshell, it
is a classic SQL stored procedure, but it is compiled into machine code for blazing fast
performance. They are stored as native DLLs, enabling faster data access and more efficient
query execution than traditional T-SQL.

Now you will create a natively compiled stored procedure to insert 1,000,000 rows into
Basket:

1> USE InMemorySandbox
2> GO

1> CREATE PROCEDURE dbo.usp_BasketInsert @InsertCount int
2> WITH NATIVE_COMPILATION, SCHEMABINDING AS
3> BEGIN ATOMIC
4> WITH
5> (TRANSACTION ISOLATION LEVEL = SNAPSHOT,
6> LANGUAGE = N'us_english')
7> DECLARE @i int = 0
8> WHILE @i < @InsertCount
9> BEGIN
10> INSERT INTO dbo.Basket VALUES (1, SYSDATETIME() , NULL)
11> SET @i += 1
12> END
13> END
14> GO
--Add 1000000 records
1> EXEC dbo.usp_BasketInsert 1000000
2> GO

In-Memory OLTP

[175]

The insert part should be blazing fast. Again, it depends on your environment (CPU, RAM,
disk, and virtualization). My insert was done in less than three seconds, on an average
machine. But significant improvement should be visible now. Execute the following SELECT
statement and count the number of records:

1> SELECT COUNT(*)
2> FROM dbo.Basket
3> GO

1000004

(1 row(s) affected)

In my case, counting of one million records was less than one second. It is really hard to
achieve this performance on any kind of disk.

Let's try another query. We want to know how much time it will take to find the top 10
records where the insert time was longer than 10 microseconds:

1> SELECT TOP 10 BasketID, CreatedDate
2> FROM dbo.Basket
3> WHERE DATEDIFF
4> (MICROSECOND,'2017-05-30 15:17:20.9308732', CreatedDate)
5> >10
6> GO

BasketID CreatedDate
-------------- ---------------------------
999542 2017-05-30 15:17:20.9349303
999543 2017-05-30 15:17:20.9349303
999544 2017-05-30 15:17:20.9349303
999545 2017-05-30 15:17:20.9349303
999546 2017-05-30 15:17:20.9349303
999547 2017-05-30 15:17:20.9349303
999548 2017-05-30 15:17:20.9349303
999549 2017-05-30 15:17:20.9349303
999550 2017-05-30 15:17:20.9349303
999551 2017-05-30 15:17:20.9349303

(10 row(s) affected)

In-Memory OLTP

[176]

Again, query execution time was less than a second. Even if you remove TOP and try to get
all the records it will take less than a second (in my case scenario). Advantages of In-
Memory tables are more than obvious.

Summary
In this chapter, you learned what an In-Memory OLTP concept is and how to implement it
on new and existing databases. Also, you know that a memory-optimized table can be
created with two DURABILITY values. Finally, you can create In-Memory tables to achieve
best possible performance using this exciting feature.

In the next chapter, we will cover some advanced SQL Server topics and beyond.

12
Beyond SQL Server

This chapter will be an exciting ride through the rest of the different features and tools that
can be used in the current state of SQL Server development. As I mentioned in the
beginning of Chapter 1, Linux Distributions, SQL Server on Linux has just started landing
on the Linux planet, and you can definitely expect many improvements in the near future.

This book will probably go out before the final release, so keep that in mind as you read.
However, the important thing is that this reference will provide you with more than
enough information to quickly start with testing, development, and production without
having to read books with more than 500 pages.

Here is the list of the closing topics that we will take a look at in this chapter:

Query store (feature)
Temporal tables (feature)
mssql-scripter (tool)
DBFS tool (tool)
DBeaver (third-party tool)

Query store
Sometimes, you will notice that perfectly fine queries will show weak performance for no
particular reason. One of the reasons for this could be a change of the execution plan. An
execution plan is an internal result SQL Server procedure where the engine needs to decide
the best possible way to execute your query. Each query has its own plan. During standard
database operations, based on internal statistics, those plans can be changed, but the results
are not always better in terms of performance. On the contrary, they can be the exact
opposite. Before SQL Server 2016, it was not an easy task to investigate these problems.

Beyond SQL Server

[178]

You were facing the following issues:

TTD: Long time to detect the issue
TTM: Long time to mitigate

The main reason for this is that the fixing query plan that causes regression is a difficult task
to perform. The query plan is not designed for performance troubleshooting. Fortunately,
we have this great feature. Query store provides you with insight on the query plan choice
and performance. It helps with performance troubleshooting by enabling an option to find
performance differences caused by changes in query plans.

Query store automatically captures a history of queries, plans, and statistics, and keeps
them for later review and analysis. This allows you to observe database usage patterns and
understand when query plan changes occur on the server, and lets you force a particular
plan for a specific query.

So, let us see how to activate this cool feature with the following steps and use it on your
own queries:

Query store is not a feature that automatically starts, and you will need to turn it1.
on. You will use the AdventureWorks sample database:

 1> USE AdventureWorks
 2> GO
 1> ALTER DATABASE AdventureWorks SET QUERY_STORE = ON
 2> GO

 --If you want to see more detailed information of what is in the --
query store, run this query
 1> SELECT T3.query_text_id, T3.query_sql_text,
 2> T2.plan_id, T1.*
 3> FROM sys.query_store_query AS T1
 4> JOIN sys.query_store_plan AS T2
 5> ON T2.query_id = T1.query_id
 6> JOIN sys.query_store_query_text AS T3
 7> ON T1.query_text_id = T3.query_text_id

Please consider this query is visually very inappropriate for the sqlcmd
interface. The console is not created for this kind of stuff. In this chapter,
you have a quick overview of the third-party GUI tool that can be used for
this example or any other example from this book or your own practice.

Beyond SQL Server

[179]

Because you have just activated this feature, you will not see anything
spectacular. But if you run the same query a second time, you will see it on
the list. Later, you will see how the number of records your database is
working on will rise.

This query will give you a handful of insightful information, such as query
text, plan_id, compile statistics, duration, CPU, memory, and optimization
details. Based on this, you can compare which plan is performing better and
force SQL Server to use that particular one.

Now you can write some queries on your own and test the query store
feature. Also, you can go back to Chapter 6, A Crash Course in Querying, if
you have any doubts about how to write functional queries on sample
databases.

Queries that are executed multiple times will result in that SQL Server engine
using different plan(s), which will produce different resource utilization. You
can easily detect when the query performance regression occurred and select
the optimal plan within a period of interest. Then you can force that optimal
plan for future query executions. Some of the reasons why a plan might
change are: index fragmentation, wrong index statistics, changes in the
distribution of the data, and so on.

You should consider purging query store data based on your needs. This can
be done through the set of query store parameters that you can configure
through the ALTER DATABASE statement, which gives you more control over
the whole process. Here are some of them:

OPERATION_MODE

DATA_FLUSH_INTERVAL_SECONDS

INTERVAL_LENGTH_MINUTES

MAX_STORAGE_SIZE_MB

QUERY_CAPTURE_MODE

SIZE_BASED_CLEANUP_MODE

CLEANUP_POLICY (STALE_QUERY_THRESHOLD_DAYS)

MAX_PLANS_PER_QUERY

Beyond SQL Server

[180]

Here are a couple of examples with those options:2.

 --Maximum storage size is fixed to 150 MB
 1> ALTER DATABASE AdventureWorks
 2> SET QUERY_STORE(MAX_STORAGE_SIZE_MB = 150)
 3> GO
 --Maximum size of query store
 --and size based clean up mode is set to AUTO
 1> ALTER DATABASE AdventureWorks
 2> SET QUERY_STORE(
 3> MAX_STORAGE_SIZE_MB = 150,
 4> SIZE_BASED_CLEANUP_MODE = AUTO,
 5> CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 15))
 6> GO
 --Purge all the data inside the Query Store
 1> ALTER DATABASE AdventureWorks SET QUERY_STORE CLEAR
 2> GO

For queries that are executed more than once, you may notice that SQL
Server used different plans, which resulted in different resource utilization.
Query store can help you to easily detect when the query performance
regressed, and determine the optimal plan. Based on that information, you
can force the optimal plan for query execution.

For demonstration purposes, you can use this heavy query on the3.
AdventureWorks sample database:

 1> SELECT P.LastName, P.FirstName, EA.EmailAddress,
 2> PP.PhoneNumber,
 3> CC.CardNumber,P.FirstName+'.'+P.LastName,
 4> SUBSTRING (REVERSE (P.LastName),2,4)+
 5> SUBSTRING (REVERSE (P.FirstName),2,2)+
 6> SUBSTRING (CAST (P.rowguid AS nvarchar (100)),10,6)
 7> FROM Person.Person AS P
 8> INNER JOIN
 9> Person.EmailAddress AS EA
 10> ON P.BusinessEntityID = EA.BusinessEntityID
 11> INNER JOIN
 12> Person.PersonPhone AS PP
 13> ON P.BusinessEntityID = PP.BusinessEntityID
 14> LEFT JOIN
 15> Sales.PersonCreditCard AS PCC
 16> ON PP.BusinessEntityID = PCC.BusinessEntityID
 17> LEFT JOIN
 18> Sales.CreditCard AS CC
 19> ON PCC.CreditCardID = CC.CreditCardID

Beyond SQL Server

[181]

Now execute this query a couple of times.

After that, run a query to access the content of the query store with this simplified4.
version for the purpose of reducing the number of columns and adjusting the
output to the bash console window:

 1> SELECT T2.plan_id,T1.query_id,
 2> LEFT (T3.query_sql_text,15)
 3> FROM sys.query_store_query AS T1
 4> JOIN sys.query_store_plan AS T2
 5> ON T2.query_id = T1.query_id
 6> JOIN sys.query_store_query_text AS T3
 7> ON T1.query_text_id = T3.query_text_id

 plan_id query_id
 ------------ ------------ -------------------
 1 2 SELECT P1.LastN ...
 (1 row(s) affected)

In the time it takes to do this, the plan can change and show regression. Examining query
store, you will probably notice that the first version of the plan was performing better. This
hypothetical scenario is the ideal candidate for the forcing of the plan.

When a plan is forced on a certain query, every time a query comes to execution, it will be
executed with the plan that is forced. The following code will force SQL Server to use
plan_id 1 for the query:

--Forcing plan_id 1 to be used by query_id 2
1> EXEC sp_query_store_force_plan
2> @query_id = 2, @plan_id = 1
3> GO

When using sp_query_store_force_plan, you can only use plans that were recorded by
query store as plans for that query. In other words, while query store is active, if you want
to remove plan forcing for a particular query and rely on the SQL Server query optimizer,
you can use sp_query_store_unforce_plan:

--Unforcing plan_id 1 to query_id 2
1> EXEC sp_query_store_unforce_plan
2> @query_id = 1, @plan_id =1
3> GO

Beyond SQL Server

[182]

The query store feature is a great tool that can make your life much easier when you are
stuck with performance issues, and it's just a matter of time until this happens. Dealing with
query store is more user-friendly through the SQL Server Management Tool, so if you have
access to this tool, give yourself some time and explore it. Eventually, the new SQL Server
cross-platform administration GUI tool, which is in development, is expected to support
many SSMS features and bring them to the Linux platform.

Temporal tables
One of the big issues in the database world is how to deal with historical records. The goal
is to keep each version of the record from its initial insertion through its other, different
versions over time. It sounds simple, but its implementation is not so easy. DBA and
developers were using different tools, techniques, and hacks to achieve this goal. Some of
them are as follows:

Triggers
Audit logs
Data warehouses
Custom solutions

Any of them are efficient, but unfortunately, they are not built into the database engine, and
in order to be implemented, it requires some things to be reconsidered:

Learning new tools
Learning new concepts
Administration
Changes in the application layer

Everything listed here costs time and money. This is the main reason why temporal
databases exist as a concept. Microsoft is actually implementing this concept into SQL
Server 2016 and subsequent versions, and is calling it temporal tables.

So what is it? A temporal table is a database object that provides information about stored
facts at any point in time. Temporal tables consist of two separate but connected
tables—one for the current data and one for the historical part of the data. SQL Server
monitors the data changes in the table with the current data based on the previous values
that are stored in the historical table. The database engine provides an interface through
SQL statements without any application changes. SQL Server documentation uses system-
versioning, and you can find it in Microsoft's official documentation.

Beyond SQL Server

[183]

In a nutshell, implementation is based on two additional datetime (datetime2 and
datatype) columns that are used to define a time period from-to a particular record that is
or was actually in the system. SQL Server used SysStartTime (system start time) to mark
when the specific record became active and SysEndTime (system and time) to specify the
date that the record is valid to:

Figure 12-1. How system-versioning works

Now it is time for query back in time. The best way to understand how this concept actually
works is to write some SQL statements and see it for yourself. For this purpose, I will use an
already created Sandbox database. You can follow me or you can create a different
database:

1> USE Sandbox
2> GO

-- Creating pair of system-versioning tables
1> CREATE TABLE Users (
2> UserID int NOT NULL PRIMARY KEY CLUSTERED,
3> LastName varchar(10) NOT NULL,
4> FirstName varchar(10) NOT NULL,
5> Email varchar(20) NULL,
6> SysStartTime datetime2
7> GENERATED ALWAYS AS ROW START NOT NULL,
8> SysEndTime datetime2 GENERATED ALWAYS AS ROW END NOT NULL,
9> PERIOD FOR SYSTEM_TIME (SysStartTime,SysEndTime)
10>)
11> WITH
12> (SYSTEM_VERSIONING = ON
13> (HISTORY_TABLE = dbo.UsersHistory))
14> GO

--Checking the tables trough sys.tabeles, system catalog view

Beyond SQL Server

[184]

1> USE Sandbox
2> GO
3> SELECT name, temporal_type_desc
4> FROM sys.tables

name temporal_type_desc
------------------------- --------------------------------
Users SYSTEM_VERSIONED_TEMPORAL_TABLE
UsersHistory HISTORY_TABLE

(2 row(s) affected)

As you can see from the output, Users is a temporal table and UsersHistory keeps a
history of the records through time based on INSERT, UPDATE, and DELETE statements.

I believe that the next example is appropriate to explain what I need to say:

-- Adding new record
1> INSERT INTO Users
2> VALUES (1, 'Marty', 'McFly', NULL, DEFAULT, DEFAULT)
3> GO

-- Checking content of the temporal table
1> SELECT UserID, SysStartTime, SysEndTime
2> FROM Users
3> GO

UserID SysStartTime SysEndTime
----------- -------------------- --------------------
1 2017-06-12 13:24:34 9999-12-31 23:59:59

(1 row(s) affected)

Note that the content of the SysEndTime attribute is 9999-12-31 23:59:59, a default
maximum value. It means that this record is valid:

--Checking content of history table
1> SELECT *
2> FROM UsersHistory
3> GO

UserID SysStartTime SysEndTime
----------- ---------------- ---------------

(0 row(s) affected)

Beyond SQL Server

[185]

--Now, we will update Marty's email address
1> UPDATE Users
2> SET Email = 'Marty@HillValley.com'
3> WHERE UserID = 1
4> GO

This means that the old record is not valid any more. SQL Server will take the old version
(without email) and archive it in the UsersHistory table, and then update the record in the
Users table. Two attributes are about to change: Email and SysStartTime.

If you want to do any type of time analysis, use the FOR SYSTEM_TIME clause, which
currently has four temporal subclauses:

AS OF

FROM TO

BETWEEN AND

CONTAINED IN

ALL

You will use the AS OF clause when you want to recreate a state of the record at a specific
time in the past. On the other hand, FROM...TO, BETWEEN...AND and CONTAINED IN are
useful for data audits, and get all changes for a specific record through time.

Let's look at this temporal query, for example:

1> SELECT TOP 10 BasketID, CreatedDate
2> FROM dbo.Basket
3> WHERE DATEDIFF (MILLISECOND,'2017-08-09 11:00:20.9308732', CreatedDate)
> 10

UserID SysStartTime SysEndTime
----------- ------------------- -------------------
1 2017-06-12 13:24:34 9999-12-31 23:59:59
1 2017-06-12 13:23:00 2017-06-12 13:24:34

(2 row(s) affected)

As you can see, the first record shows the current valid record with the new email address.
The second record is the past version with a specific time from-until the record was valid.

Sometimes you will need to turn off, or just temporarily disable, system versioning. One
good reason for this can be maintenance operations on a temporal table. In any case, you
will get two independent tables, one with actual data and one with the history of the data
changes. The thing to mention is that there is no data loss in this process.

Beyond SQL Server

[186]

Let's disable the temporal tables feature on the Users table:

1> USE Sandbox
2> GO

--Permanently removes SYSTEM_VERSIONING
1> ALTER TABLE Users
2> SET (SYSTEM_VERSIONING = OFF)
3> GO

--Checking the status of tables
1> SELECT name, temporal_type_desc
2> FROM sys.tables
3> GO

name temporal_type_desc
---------------------- ------------------------
Users NON_TEMPORAL_TABLE
UsersHistory NON_TEMPORAL_TABLE

(2 row(s) affected)

--Optionally, removes the period columns property
ALTER TABLE Users
DROP PERIOD FOR SYSTEM_TIME
GO

Writing temporal queries can be a challenging task, but when you get some practice, you
will unlock the huge potential of temporal data and its usage in different business scenarios.

Mssql-scripter tool
Microsoft is pushing really hard to fill in the gaps in the world of Linux regarding SQL
Server on Linux. In the Windows environment, it has it all, from the official application over
third-party and other commercial, non-commercial, and open source tools.

In this phase of development, CTP 1.3 - RC1, Microsoft started two open source projects on
GitHub to help the Linux community become quicker and more productive using SQL
Server on Linux. One of them is mssql-scripter
(https://github.com/Microsoft/sql-xplat-cli)

https://github.com/Microsoft/sql-xplat-cli

Beyond SQL Server

[187]

It is a cross-platform, command-line interface with the purpose of generating DDL and
DML scripts. If you are dealing with databases, then you will appreciate this quite
impressive tool. With a simple command, you can export schema from your database, for
example, AdventureWorks, and recreate it on the other server. Also, it is easy to script all
the database data and insert it into a new environment. We can say that mssql-scripter can
be used even in the ETL process.

This tool is not a part of standard SQL Server on Linux installation: you will need to install
it manually. In the following steps, you will find how to do that. It is built on the top of
Python libraries, so you will need a pip. A pip is a tool for managing Python packages.

First, you will need to check the version of pip on your Linux distribution:

pip --version

If the version is older than 9.0, or pip is not installed at all, then you should run one of the
following commands, depending on your need:

sudo apt-get install python-pip

Or:

sudo pip install --upgrade pip

After that, you can install the tool using the following command:

sudo pip install mssql-scripter

Based on your distro, you may need some additional libraries. If that happens, please refer
to https://github.com/Microsoft/sql-xplat-cli.

For the complete list of command options, you can type:

mssql-scripter -h

Here, you can find a couple of usage scenarios. As you will see, it is not complicated, and it
follows a classic Linux command-line approach.

Export the database schema:

mssql-scripter -S localhost -d AdventureWorks -U sa -f
./AdventureWorks.sql

Export the database schema and data:

mssql-scripter -S localhost -d AdventureWorks -U sa --schema-and-data >
./AdventureWorks.sql

https://github.com/Microsoft/sql-xplat-cli

Beyond SQL Server

[188]

Script the data to a file:

mssql-scripter -S localhost -d AdventureWorks -U sa --data-only >
./AdventureWorks-data.sql

Execute the generated script with sqlcmd:

sqlcmd -S ServerName -U sa -i ./ScriptName.sql

The export/import procedure is something that database professionals deal with on a daily
basis, and you should spend some time to master those skills. Also, it is certain that at some
point in time, the GUI tool will show up to help you with those tasks, but remember we are
talking about the Linux world, where command-line tools are highly appreciated.

DBFS tool
Like in the previous case, this tool is open source, where its purpose is to fill in the gap in
the market and prepare the field of SQL Server on Linux for the official arrival.

I believe you have noticed, while reading previous chapters, that SQL Server had a large
number of DMVs (dynamic management views) that help DBAs and admins to monitor
SQL Server internals (live or stored system metadata). SQL Server on Windows, through
SSMS, can easily access DMVs and use them. Yes, you can use them with sqlcmd, but the
problem is that it is hard to list them all in human-readable form. This is the place where
DBFS (https://github.com/Microsoft/dbfs) jumps in.

In a nutshell, DBFS uses FUSE to mount SQL Server DMVs in the form of a virtual file
system, where you can use the classic bash command and explore SQL Server internals. In
case you don't know, FUSE allows nonprivileged Linux users to create their own file system
without messing with kernel code.

Here are the quick steps for the installation on Kubuntu, as well as a usage scenario:

sudo wget
https://github.com/Microsoft/dbfs/releases/download/0.1.5/dbfs_0.1.5_amd64.
deb
sudo dpkg -i dbfs_0.1.5_amd64.deb
sudo apt-get install -f

https://github.com/Microsoft/dbfs

Beyond SQL Server

[189]

Change the directory to where you want to create your config file. In my case,1.
this is home:

 # cd

Create a directory for the DMVs to mount to:2.

 # mkdir dmv

Create the configuration file:3.

 # touch dmvtool.config

Edit the .config file using your favorite editor.4.
The contents of the file should be:5.

 [server name]
 hostname=[HOSTNAME]
 username=[DATBASE_LOGIN]
 password=[PASSWORD]
 version=[VERSION]

Run the tool (this is based on my settings):6.

 # dbfs -c ./dmvtool.config -m ./dmv

Enter the dmv folder:7.

 # cd dmv

Type ls, and you should see your [server name]. Now, enter the [server8.
name] folder:

 # cd [server name]

Beyond SQL Server

[190]

Type ls, and you should see a large number of files. I will use MC to illustrate9.
this:

Figure 12-2. DBFS after installation and configuration

Now take a look at the following figure, where we will first list all DMVs with host in their
name and then call a JSON version of dm_os_host_info.json.

Beyond SQL Server

[191]

Each DMV has a classic and JSON version, so you can use it based on your preferences. I
found that the JSON version is a little bit more human-readable:

Figure 12-3. DBFS in action

Like any other open source project, DBFS will evolve and adapt based on the user usage,
experience, and suggestions for improvements. I advise that you point your web browser to
a URL of a product from time to time to check what is going on in the development process,
and if you are a developer, you can take an active role in that process.

DBeaver – third party tool
Last but not least, DBeaver (http://dbeaver.jkiss.org/) is a very cool multiplatform GUI
frontend that can help you with your daily tasks if you are not such a big fan of the
command line. Yes, sometimes sqlcmd is necessary and better, but why use it when we
have the luxury not to?

So why have we chosen DBeaver? First, it is open source, free, and supports many different
SQL and NoSQL databases. SQL Server is just one name on the big list:

SQL Server
MySQL
Oracle
PostgreSQL

http://dbeaver.jkiss.org/

Beyond SQL Server

[192]

IBM DB2
Access
Sybase
Java DB
Firebird
Derby
SQLite
Mimer
HSQLDB
H2
IBM Informix
Teradata
SAP MAX DB
Cache
Ingres
Linter
Vertica
MongoDB
Cassandra

If you're a database professional, or you are intending to be, then there is a big chance that
you will have at least two or more different databases installed on your workstation. This
might lead you to believe that DBeaver is the right tool for you.

While I am writing this book, SQL Server on Linux is passing from an
early development stage to the near final CTP 1.3 - RC1 stage. SQL Server
on Linux still does not have an official GUI administration/development
tool.

Beyond SQL Server

[193]

The installation process is quite easy. From the official page, download the version that
corresponds to your Linux distribution. The list of packages and supported platforms is
shown in the next screenshot:

Figure 12-4. DBeaver download page

You can use Linux Debian packages for Ubuntu/Kubuntu and Linux RPM for
SLES/openSUSE.

Beyond SQL Server

[194]

After you download this, you can use the following command to install it. I am using the
RPM 64 package to install it on openSUSE:

sudo rpm -ivh dbeaver-<version-number>.rpm

After it is done, just type the following command:

dbeaver &

The next step is to configure the connection to your database server. In our case, it is
Microsoft SQL Server:

Figure 12-5 Choosing the database server

Beyond SQL Server

[195]

Now you will need to enter the configuration details: host name, port, username,
passwords, and so on. In this phase, DBeaver can download additional database providers
based on your choices. This step is illustrated on the next figure:

Figure 12-6 Connection parameters

At any moment, you can click on Test Connection to check if DBeaver is communicating
with your SQL Server before you finish the configuration steps.

Beyond SQL Server

[196]

In the near-final step, you can name your connection, save the password with the
configuration, and choose some additional settings that can help you later. This step is
illustrated in the next figure:

Figure 12-7 Additional parameters

Beyond SQL Server

[197]

After you click Finish, you will get a really cool working environment where you can learn,
test, and improve your SQL Server on Linux skills:

Figure 12-8 DBeaver environment

Every example from this book can be tested through sqlcmd and DBeaver. I suggest that
you use both of them. You will need to improve your command-line skills, and sqlcmd is a
Spartan environment just for that: clean, efficient, and fast.

While we are waiting for the official Microsoft GUI tool, DBeaver is more than enough to
give you Windows luxury on a Linux platform using SQL Server on Linux. As I said before,
DBeaver is not the only tool for this, but it is free, open source, and frequently updated.

Beyond SQL Server

[198]

Summary
In this chapter, you have learned something that goes beyond the traditional relational
database concept. SQL Server features, such as query store and temporal databases, will
give you more than enough ideas for what SQL Server is capable of.

We also had a quick journey through some additional toolsets that will expand SQL Server's
capabilities for you.

Conclusion
We have reached the end of this book, but this is not the end of your journey and your
exploration of this new and uncharted area. You are a witness to the creation of a new
ecosystem inside the world of Linux that is heavily based on SQL Server on Linux.

This technology is just beginning, and this book is only a quick reference to provide you
with a fresh and efficient start. New features will pop up quickly after the final release of
SQL Server 2017 and its subversion, SQL Server on Linux. So far, we only have a database
engine and integration services. It means that a lot more will come in the future, and this
fact is a good thing for this book.

A second version is planned shortly after the final release to fill up the gaps that are missing
and things that were not finished in the penultimate phase of development (CTP 1.3 - RC1).

On the other end, I hope that you have enjoyed reading this book as much as I have enjoyed
writing this content. The most important thing is that you have benefited from reading this
book, and have gained knowledge and skills that you can apply in your future work.

Index

A
AdventureWorks database
 about 82
 installing 84, 85
aggregate functions
 about 102
 AVG 101
 COUNT 101
 MAX 101
 MIN 101
 overview 101
 SUM 101
ALTER statement 61
Analysis Services 47
AND operator 97
asymmetric cryptography 136
Atomicity, Consistency, Integrity and Durability

(ACID) 112
authentication process 124, 126
authorization process 126, 127

B
backup 117, 119, 121
backup encryption 146
backup media
 backup disk 113
 media set 113
 physical backup device 114
backup strategy
 backup media 113
 backup, types 115
 backups, creating 113
 elements 113
backup, types
 differential backups 116
 full database backups 115

 transaction log backups 116
bcp 55
blob (binary large objects) 51
bulk-logged recovery model 111

C
certification authority (CA) 139
clob (character large objects) 51
clustered index 158
columnstore index
 about 163, 165
 clustered columnstore index 163
 nonclustered columnstore index 163
comparison operators 94
components, SQL Server
 Analysis Services 47
 Data Quality Services (DQS) 47
 Database Engine 47
 Integration Services 47
 Machine Learning Services 47
 Reporting Services 47
CREATE statement 61
cryptography
 about 134
 asymmetric cryptography 136
 decryption 135
 encryption 135
 key 137
 SQL Server cryptographic elements 137
 symmetric cryptography 135

D
Data Control Language (DCL) 52
Data Definition Language (DDL) 52, 61, 130
data manipulation 66, 67, 68
Data Manipulation Language (DML) 53, 66
Data Quality Services (DQS) 47

[200]

data types, SQL Server
 non-structured data types 51
 semi-structured 51
 structured data types 51
data
 filtering 89, 94
 retrieving 89
 retrieving, from table 90
database encryption key (DEK) 144
Database Engine 47
database level permissions
 about 130
 db_accessadmin 130
 db_backupoperator 130
 db_datareader 131
 db_datawriter 130
 db_ddladmin 130
 db_denydatawriter 131
 db_owner 130
 db_securityadmin 130
database master key (DMK) 140, 142
database normalization 76
database objects
 about 50, 71
 functions 50
 schemas 50
 stored procedures 50, 72
 triggers 73
 user-defined objects 50
 views 50, 71
database
 creating 62, 63
DATALENGTH function 93
DBeaver
 about 191, 194, 195, 196, 197
 reference link 191
DBFS tool
 about 188, 190
 reference link 188
DDL statements
 ALTER statement 61
 CREATE statement 61
 DROP statement 62
DELETE statement 66
DML statements

 DELETE statement 66
 INSERT statement 66
 SELECT statement 66
 UPDATE statement 66
DROP statement 62
dynamic data masking 152
dynamic management views (DMVs) 188

E
elements of performance
 about 166
 advantages 167
 disadvantages 167, 168
ETL (Extract Transform and Load) 55

F
first normal form (1NF) 77
full recovery model 110
functions 50

G
GNOME desktop
 about 15
 URL 15
GNU/Linux 6
GROUP BY clause 90, 102

H
HAVING clause 90, 103
heap 159

I
In-Memory OLTP
 about 168, 169
 beginning 170
 memory-optimized tables, creating 171
 natively compiled stored procedure 174
indexing concepts
 about 155
 ascending indexes 157
 composite indexes 157
 data, accessing 156
 descending indexes 157
 index structure 157

[201]

 single indexes 157
INNER JOIN operator 105
INSERT statement 66
Integration Services 47
INTO clause 90

J
JOIN operator 104
joins
 INNER JOIN operator 105
 multiple joins 107
 OUTER JOIN operator 106

K
KDE Plasma desktop
 about 15
 reference link 15
Kerckhoffs' principle
 reference link 137
key 137
Kubuntu
 about 19
 installation procedure 19, 21, 22, 23, 24, 25, 26,

27

 SQL Server, installing on 42

L
LEFT function 92
LEN function 93
Linux 6
Linux bash 30, 31, 32, 34, 35, 36
Linux distribution options, openSUSE
 GNOME desktop 15
 KDE Plasma desktop 15
 server (text mode) 16
logical operators
 about 96
 AND 97
 NOT 97
 OR 97
LOWER function 92

M
Machine Learning Services 47

Midnight Commander (MC) 141
mssql-scripter tool
 about 186
 reference link 186
multiple joins 107

N
non-clustered index
 about 160
 unique indexes 162
non-structured data types 51
normalization 76
Northwind database
 about 78
 download link 80
 reference link 78
NOT operator 97
NULL values 102
 working with 98

O
objects, SQL Server
 database objects 50
 system databases 49, 50
online transactional processing solutions (OLTP)

47

openSUSE Leap 42.2
 installation procedure 8, 9, 10, 11, 13, 14
openSUSE
 about 8
 Linux distribution options 15, 16, 17, 18
 reference link 8
 SQL Server, installing on 36, 37, 38, 41, 42
OR operator 97
ORDER BY clause 90
OUTER JOIN operator 106

P
product lines, SUSE
 commercial 8
 openSUSE 8
Project Drawbridge
 about 48
 reference link 48
Pubs database

[202]

 about 80
 reference link 80

Q
query 89
query output
 manipulating 99
query store 177, 179, 180, 182

R
relational database
 concepts 76
REPLACE function 93
Reporting Services 47
restore 117, 119, 121
RIGHT function 92
row-level security 150

S
schema separation 131
schemas 50
second normal form (2NF) 77
security role
 db_backupoperator database role 113
 db_owner database role 113
 sysadmin server role 113
SELECT statement 66, 90
semi-structured data types 51
server-level permissions
 about 129
 bulkadmin 129
 dbcreator 129
 diskadmin 129
 processadmin 129
 public 129
 securityadmin 129
 serveradmin 129
 setupadmin 129
 sysadmin 129
Service Master Key (SMK) 140
simple recovery model 110
SQL (Structured Query Language) 52
SQL operating system (SOS) 48
SQL PAL (SQL Platform Abstraction Layer)
 about 48

 reference link 48
SQL Server cryptographic elements
 about 137
 certificates 139
 database master key (DMK) 142
 Service Master Key (SMK) 140
 T-SQL functions 138
SQL Server Management Studio (SSMS)
 about 57, 58
 reference link 57
SQL Server recovery models
 about 109
 bulk-logged recovery model 110
 full recovery model 110
 simple recovery model 110
SQL Server resources
 accessing 128
 database level permissions 130
 server-level permissions 129
SQL Server
 about 6
 client-server architecture concepts 46
 components 47
 data types 51
 installing, on Kubuntu 42
 installing, on openSUSE 36, 37, 38, 41, 42
 objects 49
 overview 46
 working, on Linux 48
SQL statements
 about 52
 Data Control Language (DCL) 52
 Data Definition Language (DDL) 52
 Data Manipulation Language (DML) 53
SQL/TSQL
 basics 51
 history 52
sqlcmd 53, 55
stored procedure 50
stored procedures
 creating 72
string comparison 95
string functions
 DATALENGTH 93
 LEFT 92

 LEN 93
 LOWER 92
 REPLACE 93
 RIGHT 92
 SUBSTRING 92
 UPPER 92
structured data types 51
SUBSTRING function 92
sudo 27
supported Linux distributions 7
supported tools, on Linux/Windows platform
 bcp 55
 SQL Server Management Studio (SSMS) 57, 58,

60

 sqlcmd 53, 55
 Visual Studio code 55
SUSE Enterprise Server (SLES) 8
SUSE
 product lines 8
symmetric cryptography 135
symmetric encryption 147
system databases 49, 50

T
T-SQL (Transact-Structured Query Language) 52
table definition
 modifying 69, 70
Table of Contents (TOC) 155
table
 creating 63, 64
 data, retrieving from 90

 dropping 70
temporal tables 182, 183, 185, 186
third normal form (3NF) 77, 78
transaction log
 working 112
Transparent Data Encryption (TDE) 144
triggers
 creating 73

U
unique indexes 162
UPDATE statement 66
UPPER function 92
user-defined objects 50

V
views
 about 50
 creating 71
Visual Studio code
 about 55
 reference link 56

W
WHERE clause 90
WideWorldImporters database
 about 85, 86
 reference link 85
working environments 53
Write Ahead Log (WAL) 112

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Linux Distributions
	Supported Linux distributions
	openSUSE
	Installation procedure
	Kubuntu
	Installation procedure

	Summary

	Chapter 2: Installation and Configuration
	Bash, really quick start
	SQL Server installation on openSUSE
	SQL Server installation on Kubuntu
	Summary

	Chapter 3: SQL Server Basics
	Overview of SQL Server
	Client-server architecture concepts
	SQL Server components

	How it works on Linux
	SQL Server objects
	System databases
	Database objects
	SQL Server data types

	SQL/T-SQL basics
	History of SQL/TSQL
	Types of SQL statements
	DDL - Data Definition Language
	DCL - Data Control Language
	DML - Data Manipulation Language

	Working environments and tools
	sqlcmd
	bcp
	Visual Studio code
	SQL Server Management Studio (SSMS)

	Summary

	Chapter 4: Database in the Sandbox
	DDL statements
	Creating a new database
	Creating new tables

	DML statements
	Data manipulation
	Changing table definition
	Dropping a table
	Creating other database objects
	Creating views
	Creating stored procedures
	Creating triggers

	Summary

	Chapter 5: Sample Databases
	Relational database concepts
	Normalization
	First normal form
	Second normal form
	Third normal form

	Northwind database
	Pubs database
	AdventureWorks database
	Installing AdventureWorks

	WideWorldImporters database
	Summary

	Chapter 6: A Crash Course in Querying
	Retrieving and filtering data
	Retrieving data from a table
	String functions
	Exercise

	Filtering data
	Comparison operators
	String comparison
	Logical operators
	Working with NULL values
	Manipulating query output

	Overview of aggregate functions
	Aggregate functions and NULL values
	GROUP BY clause
	HAVING clause

	JOIN operators
	INNER JOIN
	OUTER JOIN
	Multiple joins

	Summary

	Chapter 7: Backup and Recovery Operations
	SQL Server recovery models
	Simple recovery model
	Full recovery model
	Bulk-logged recovery model

	How transaction log works
	Elements of backup strategy
	Who can create backups?
	Backup media
	Types of backup
	Full database backups
	Transaction log backups
	Differential backups

	Backup and restore
	Summary

	Chapter 8: User Management
	Authentication process
	Authorization process
	Accessing SQL Server resources
	Server-level permissions
	Database-level permissions

	Schema separation
	Summary

	Chapter 9: Implementing Data Protection
	Crash course in cryptography
	Symmetric cryptography
	Asymmetric cryptography
	What is a key?
	SQL Server cryptographic elements
	T-SQL functions
	Certificates
	Service Master Key
	Database master key

	Transparent Data Encryption
	Backup encryption
	Symmetric encryption
	Row-level security
	Dynamic data masking
	Summary

	Chapter 10: Indexing
	Indexing concepts
	Accessing the data
	Index structure
	Single and composite indexes
	Ascending and descending indexes

	Clustered index
	What is a heap
	Non-clustered index
	Unique indexes

	Columnstore index
	Summary

	Chapter 11: In-Memory OLTP
	Elements of performance
	The good
	The bad
	The ugly

	What is In-Memory OLTP?
	In-Memory OLTP quick start
	How to create memory-optimized tables?
	What is natively compiled stored procedure?

	Summary

	Chapter 12: Beyond SQL Server
	Query store
	Temporal tables
	Mssql-scripter tool
	DBFS tool
	DBeaver – third party tool
	Summary
	Conclusion

	Index

