

Third Edition

SQL
IN A NUTSHELL

Kevin E. Kline
with Daniel Kline and Brand Hunt

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

SQL in a Nutshell, Third Edition
by Kevin E. Kline with Daniel Kline and Brand Hunt

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Julie Steele and Mary Treseler
Production Editor: Rachel Monaghan
Copyeditor: Rachel Head
Indexer: Angela Howard

Production Services: Octal Publishing, Inc.
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

January 2001: First Edition.

September 2004: Second Edition.

November 2008: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. The In a Nutshell series designations, SQL in a Nutshell,
the image of a chameleon, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51884-4

[M]

iii

Chapter 1

Table of Contents

Preface . v

1. SQL History and Implementations . 1
The Relational Model and ANSI SQL 2
History of the SQL Standard 10
SQL Dialects 14

2. Foundational Concepts . 16
Database Platforms Described in This Book 16
Categories of Syntax 17
SQL2003 and Platform-Specific Datatypes 29
Constraints 50

3. SQL Statement Command Reference . 59
How to Use This Chapter 59
SQL Platform Support 60
SQL Command Reference 63

4. SQL Functions . 437
Types of Functions 437
ANSI SQL Aggregate Functions 438
ANSI SQL Window Functions 455
ANSI SQL Scalar Functions 463
Platform-Specific Extensions 483

iv | Table of Contents

Appendix: Shared and Platform-Specific Keywords 547

Index . 555

v

Chapter 2

Preface

Since its first incarnation in the 1970s, the Structured Query Language (SQL) has
been developed hand in hand with the information boom, and as a result, it is the
most widely used database manipulation language in business and industry. A
number of different software companies and program developers, including those
in the open source movement (http://www.opensource.org), have concurrently
developed their own SQL dialects in response to specific professional needs. All
the while, standards bodies have developed a growing list of common features.

SQL in a Nutshell, Third Edition, describes the latest ANSI standard, SQL2003
(SQL3) version of each SQL command, and then documents each platform’s
implementation of that command. In this book, you will find a concise explana-
tion of the relational database management system (RDBMS) model, a clear-cut
explanation of foundational RDBMS concepts, and thorough coverage of SQL
syntax and commands.

Most importantly, at least if you’re a programmer or developer, SQL in a Nutshell,
Third Edition, provides a concise guide both to the most popular commercial
database packages on the market (Microsoft SQL Server and Oracle). It is also the
guide for two of the best-known open source database products (MySQL and
PostgreSQL). The attention this book pays to open source SQL platforms recog-
nizes the growing importance of the open source movement within the computing
community.

The SQL syntax covered in this book includes:

• ANSI SQL2003 (also known as SQL3) standard syntax

• MySQL version 5.1

• Oracle Database 11g

• PostgreSQL version 8.2.1

• Microsoft SQL Server 2008

http://www.opensource.org

vi | Preface

Why This Book?
The primary source of information for relational databases is the documentation
and help files provided by the vendors themselves. While each vendor’s documen-
tation is an indispensable resource that most database programmers and database
administrators turn to first, this documentation has a number of limitations:

• It describes the vendor’s implementation of SQL without giving you any con-
text as to how well that implementation meets the ANSI standard for SQL.

• It covers only a single, specific vendor’s product. There is no coverage of
translation, migration, or integration issues.

• It typically describes programming methods in a multitude of small, discon-
nected documents or help files.

• It covers individual commands, often in confusing detail, obscuring the sim-
ple and direct uses of commands that programmers and administrators use
every day.

In other words, the documentation included with a vendor’s database provides an
exhaustive explanation of every aspect of that particular vendor’s platform. This is
only natural; after all, help texts are geared toward delivering the main facts about
a product. They’ll tell you a command’s specific syntax (and all its obscure vari-
ants) and, in general terms, how to implement it. However, if you move between
RDBMSs and you need to be productive very quickly, you will rarely use those
obscure command variations; instead, you’ll utilize the capabilities most common
in real-life situations.

This book begins where the vendor documentation ends by distilling the experi-
ences of professional database administrators and developers who have used these
SQL variants day in and day out to support complex enterprise applications. It
offers you the benefit of their experience in a compact and easily usable format.
Whether SQL is new to you or you have been using SQL since its earliest days,
there are always new tips and techniques to learn. And when you’re moving
between different implementations, it’s always important to find out about the
issues that can bite you if you’re not careful and informed.

Who Should Read This Book?
SQL in a Nutshell, Third Edition, benefits several groups of users. It will be useful
for programmers who require a concise and handy SQL reference tool; for devel-
opers who need to migrate from one SQL dialect to another; and for database
administrators (DBAs) who need to both execute a myriad of SQL statements to
keep their enterprise databases up and running, and create and manage objects
such as tables, indexes, and views.

This book is a reference work, not a tutorial. The writing is not expository. For
example, we won’t explain the concept of an elementary loop. Experienced devel-
opers already know such things—you want the meat. So we will explain, for
example, the detailed workings of an ANSI standard cursor, how it works on each
of the database platforms we cover, the special capabilities of cursors on each
database platform, and the various pitfalls of cursors and how to get around them.

Preface | vii

While we don’t intend for SQL in a Nutshell, Third Edition, to be a tutorial on
SQL or a handbook for database design, we do provide some brief coverage of
introductory topics, and we hope you’ll find that helpful. Chapter 1 and
Chapter 2 provide a concise introduction to SQL, covering the general origins,
essential structure, and basic operation of the language. If you’re new to SQL,
these chapters will help you get started.

How This Book Is Organized
SQL in a Nutshell, Third Edition, is divided into four chapters and one appendix:

Chapter 1, SQL History and Implementations
Discusses the relational database model, describes the current and previous
SQL standards, and introduces the SQL implementations covered in this
book.

Chapter 2, Foundational Concepts
Describes the fundamental concepts necessary for understanding relational
databases and SQL commands.

Chapter 3, SQL Statement Command Reference
Provides an alphabetical command reference to SQL statements. This chapter
details the latest ANSI standard (SQL3) for each command, as well as the
implementation of each command by MySQL, Oracle, PostgreSQL, and SQL
Server.

Chapter 4, SQL Functions
Provides an alphabetical reference of the ANSI SQL3 functions, describing
vendor implementations of all SQL3 functions. In addition, this chapter
includes coverage of all platform-specific functions that are unique to each
implementation.

Appendix, Shared and Platform-Specific Keywords
Provides a table of keywords declared in SQL3 and by the different database
platforms. You can use this table to look for words that you should not use
for object or variable names.

How to Use This Book
SQL in a Nutshell, Third Edition, is primarily a command reference. As a conse-
quence, you’ll probably use it to look up a variety of SQL commands and
functions. However, with documentation for the ANSI standard itself plus four
database platforms, the description for each command has the potential to get
very large.

In order to reduce the verbiage describing each command, we compare each plat-
form’s implementation to the SQL3 standard. If the platform supports a clause
described in the SQL3 discussion, we won’t repeat that clause again.

Generic and transportable examples are provided within the body of each SQL3
command description. Since the SQL3 standard is ahead of most database plat-
forms, examples aren’t provided for elements of the SQL3 commands that are not

viii | Preface

supported by any platform discussed in this book. In addition, more examples are
provided for each database platform that highlight unique extensions and
enhancements, of which there are many.

We recognize that our approach may necessitate jumping from a description of a
platform’s implementation of a command back to the corresponding SQL3
command description. However, we felt that this was better than packing the
book with hundreds of pages of redundant content.

Resources
The following websites provide additional information about the various plat-
forms covered in this book:

MySQL
The corporate resource for MySQL is http://www.mysql.com, and another
good site is http://dev.mysql.com/doc/refman/5.1/en/. A great developer
resource with lots of useful tips is Devshed.com. See http://www.devshed.com/
c/b/MySQL/ for MySQL-specific information.

PostgreSQL
The home for this open source database is located at http://www.postgresql.org.
In addition to making a great deal of useful information available for down-
load, this site also maintains mailing lists for PostgreSQL users. Another
PostgreSQL site worth investigating is http://www.pgsql.com, which offers
support for commercial customers.

Oracle
Oracle’s cyberspace home is http://www.oracle.com. A great resource for hard-
core Oracle users is http://www.oracle.com/technology/. You can also find all
Oracle documentation at http://www.oracle.com/technology/documentation/
index.html. For useful independent information about Oracle, be sure to
check out the Independent Oracle User Group at http://www.ioug.org.

SQL Server
The official Microsoft SQL Server website is http://www.microsoft.com/sql/.
Another good resource is found at the home of the Professional Association
for SQL Server (PASS) at http://www.sqlpass.org.

Changes in the Third Edition
One of the biggest reasons to release a new edition of a technology book is
because the technology has progressed. Since the second edition of this book was
published, the ANSI standard has released one new version and all of the data-
base platforms it covers have delivered at least one major release. Consequently,
our readers want fresh content on the latest versions of SQL in the marketplace
today.

Here are more details about changes in this third edition:

http://www.mysql.com
http://dev.mysql.com/doc/refman/5.1/en/
http://www.devshed.com/c/b/MySQL/
http://www.devshed.com/c/b/MySQL/
http://www.postgresql.org
http://www.pgsql.com
http://www.oracle.com
http://www.oracle.com/technology/
http://www.ioug.org
http://www.microsoft.com/sql/
http://www.sqlpass.org

Preface | ix

Reduced footprint
The readership of SQL in a Nutshell, Second Edition, loved its expansive
coverage of all major database platforms. However, maintaining such a huge
amount of content proved to be too difficult for the return on the invest-
ment. Therefore, based upon the results of a large readership survey, we
decided to remove the two least popular database platforms from this
edition: Sybase Adaptive Server and IBM’s DB2 UDB.

Improved organization
The second edition did a great job of presenting everything readers could want
to know about all of the commands and functions available in SQL and the
major database platforms, but that didn’t mean the content was always easy to
find or navigate. We’ve added better indexes, tables of content, and page
headers and footers so you can navigate much more quickly and effectively.

More examples
It’s impossible to have too many examples. We’ve added to our already large
set of basic examples, including more sample code that highlights the unique
and powerful capabilities of the SQL standard and the extensions offered by
each database platform.

Conventions Used in This Book
This book uses the following typographical conventions:

Constant width
Used to indicate programming syntax, code fragments, and examples.

Constant width italic
Used to indicate variables in code that should be replaced with user-supplied
values.

Constant width bold
Used in code sections to highlight portions of the code.

Italic
Used to introduce new terms, for emphasis, to indicate commands or user-
specified file and directory names, and to indicate variables within text.

Bold
Used to display the names of database objects, such as tables, columns, and
stored procedures.

UPPERCASE ITALIC
Used to indicate SQL keywords when they appear in the text.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

x | Preface

Using Code Examples
This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from this
book does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “SQL in a Nutshell, Third
Edition, by Kevin E. Kline with Daniel Kline and Brand Hunt. Copyright 2009
O’Reilly Media, Inc., 978-0-596-51884-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made
mistakes!). We want to hear from you, especially with information that will make
this book better. Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a website for this book, where we’ll list any examples, errata, or plans for
future editions. You can access this page at:

http://www.oreilly.com/catalog/9780596518844/

Please help us out by pointing out any typos or syntactical errors that you
encounter. (You can imagine how hard it is to proofread a book covering the
ANSI standard and four separate products.) You may also ask technical questions
or comment on the book by sending an email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see the O’Reilly website:

http://www.oreilly.com

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596518844/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface | xi

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available
online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments
We’d like to take a moment to thank a few special individuals at O’Reilly Media.
First, we owe a huge debt of gratitude to Julie Steele, the editor of this third
edition. Julie helped keep our noses to the grindstone and ensured that we
finished what we started. With her helpful and relaxed work style, Julie was
always a pleasure to work with. Thank you for all you’ve done for us!

We also owe a debt to our fine technical reviewers. To Peter Gulutzan (SQL Stan-
dard, from the second edition), Thomas Lockhart (PostgreSQL), Ronald Bradford
(Oracle/MySQL), and Richard Sonnen (Oracle): we owe you a hearty thanks!
Your contributions have greatly improved the accuracy, readability, and value of
this book. Without you, our sections on each of the language extensions would
have been on shaky ground. In addition, we’d like to tip our hat to Peter Gulutzan
and Trudy Pelzer for their book SQL-99 Complete, Really! (R&D), which helped
us understand the ANSI SQL3 standards.

Kevin E. Kline’s Acknowledgments

Many people helped deliver the big, thick book you hold in your hands. This note
expresses our appreciation to those who helped make this book a reality.

First of all, a big thanks to my two awesome coauthors, Dan and Brand. You guys
are amazing and a pleasure to work with. Next, Julie Steele, our editor at O’Reilly
Media, gets a big hug for all of her help. You helped keep us on task and on track.
Thank you!

To all of my colleagues at Quest Software go very big thanks for your support and
encouragement. Christian Hasker, Andy Grant, Heather Eichman, David Gugick,
Billy Bosworth, Douglas Chrystall, David Swanson, Jason Hall, Ariel Weil, and
my many other friends at Quest Software: thank you for making these last six
years with Quest Software such a blast.

Here’s a dedication to my loved ones, Dylan, Emily, Anna, and Katie. You were
my hope and breath and light when it seemed that no hope or breath or light
remained anywhere in the world. Thank you for loving me so completely and so
selflessly. And finally, to Rachel, more precious than jewels and more valuable
than rubies, your love has restored my heart and my faith.

http://www.oreilly.com
http://safari.oreilly.com

xii | Preface

Daniel Kline’s Acknowledgments

I’d like to thank my brother, Kevin, for his continued willingness to work with
me; my colleagues at the University of Alaska Anchorage for their suggestions;
and the users of the first two editions of SQL in a Nutshell for their honest feed-
back and useful critiques. We’ve also received some terrific feedback from the
different translators of the first two editions, and I’d like to thank them for their
help as well.

Brand Hunt’s Acknowledgments

To my wife, Michelle: without your continued support and love, I wouldn’t be a
part of this project. I’m appreciative of every moment we’ve shared and of your
forgiveness for my keeping you awake at night with the “tappity-tap-taps”
emanating from the computer.

Thanks also to my parents, Rex and Jackie, the two biggest influences in every-
thing I’ve ever done correctly—especially those things that frequently take
multiple attempts (like writing!).

A huge thanks to my teammates, Kevin, Daniel, and Jonathan for letting me
participate in this project and exercising so much patience in tutoring a first-time
O’Reilly author. Your professionalism, work ethic, and ability to make the most
tedious tasks fun is so admirable I plan to steal it and adopt it as my own!

Mad props to my friends and colleagues at Rogue Wave Software, ProWorks,
NewCode Technology, and Systems Research and Development, for providing the
ultimate sandbox for refining skills in SQL, databases, business, software develop-
ment, writing, and friendship: Gus Waters, Greg Koerper, Marc Manley, Wendi
Minne, Erin Foley, Elaine Cull, Randall Robinson, Dave Ritter, Edin Zulic, David
Noor, Jim Shur, Chris Mosbrucker, Dan Robin, Mike Faux, Jason Prothero, Tim
Romanowski, Andy Mosbrucker, Jeff Jonas, Jeff Butcher, Charlie Barbour, Steve
Dunham, Brian Macy, and Ze’ev Mehler.

1

Chapter 1SQL History

1
SQL History and

Implementations

In the early 1970s, the seminal work of IBM research fellow Dr. E. F. Codd led to
the development of a relational data model product called SEQUEL, or Structured
English Query Language. SEQUEL ultimately became SQL, or Structured Query
Language.

IBM, along with other relational database vendors, wanted a standardized method
for accessing and manipulating data in a relational database. Although IBM was
the first to develop relational database theory, Oracle was first to market the tech-
nology. Over time, SQL proved popular enough in the marketplace to attract the
attention of the American National Standards Institute (ANSI), which released
standards for SQL in 1986, 1989, 1992, 1999, 2003, and 2006. This text covers
the ANSI 2003 standard because the 2006 standard deals with elements of SQL
outside the scope of the commands described in this book. (In essence, the
SQL2006 standard describes how XML would be used in SQL.)

Since 1986, various competing languages have allowed programmers and devel-
opers to access and manipulate relational data. However, few were as easy to learn
or as universally accepted as SQL. Programmers and administrators now have the
benefit of being able to learn a single language that, with minor adjustments, is
applicable to a wide variety of database platforms, applications, and products.

SQL in a Nutshell, Third Edition, provides the syntax for five common implemen-
tations of SQL2003 (SQL3):

• The ANSI SQL standard

• MySQL version 5.1

• Oracle Database 11g

• PostgreSQL version 8.3

• Microsoft’s SQL Server 2008

2 | Chapter 1: SQL History and Implementations

The Relational Model and ANSI SQL
Relational database management systems (RDBMSs) such as those covered in this
book are the primary engines of information systems worldwide, and particularly
of web applications and distributed client/server computing systems. They enable
a multitude of users to quickly and simultaneously access, create, edit, and manip-
ulate data without impacting other users. They also allow developers to write
useful applications to access their resources and provide administrators with the
capabilities they need to maintain, secure, and optimize organizational data
resources.

An RDBMS is defined as a system whose users view data as a collection of tables
related to each other through common data values. Data is stored in tables, which
are composed of rows and columns. Tables of independent data can be linked (or
related) to one another if they each have unique, identifying columns of data
(called keys) that represent data values held in common. E. F. Codd first described
relational database theory in his landmark paper “A Relational Model of Data for
Large Shared Data Banks,” published in the Communications of the ACM (Associ-
ation for Computing Machinery) in June, 1970. Under Codd’s new relational data
model, data was structured (into tables of rows and columns); manageable using
operations such as selections, projections, and joins; and consistent as the result of
integrity rules such as keys and referential integrity. Codd also articulated rules
that governed how a relational database should be designed. The process for
applying these rules is now known as normalization.

Codd’s Rules for Relational Database Systems

Codd applied rigorous mathematical theories (primarily set theory) to the
management of data, and he compiled a list of criteria a database must meet to be
considered relational. At its core, the relational database concept centers around
storing data in tables. This concept is now so common as to seem trivial; however,
not long ago the goal of designing a system capable of sustaining the relational
model was considered a long shot with limited usefulness.

Following are Codd’s Twelve Principles of Relational Databases:

1. Information is represented logically in tables.

2. Data must be logically accessible by table, primary key, and column.

3. Null values must be uniformly treated as “missing information,” not as empty
strings, blanks, or zeros.

4. Metadata (data about the database) must be stored in the database just as
regular data is.

5. A single language must be able to define data, views, integrity constraints,
authorization, transactions, and data manipulation.

6. Views must show the updates of their base tables and vice versa.

7. A single operation must be available to do each of the following operations:
retrieve data, insert data, update data, or delete data.

8. Batch and end-user operations are logically separate from physical storage
and access methods.

The Relational Model and ANSI SQL | 3

SQL H
istory

9. Batch and end-user operations can change the database schema without
having to recreate it or the applications built upon it.

10. Integrity constraints must be available and stored in the metadata, not in an
application program.

11. The data manipulation language of the relational system should not care
where or how the physical data is distributed and should not require alter-
ation if the physical data is centralized or distributed.

12. Any row processing done in the system must obey the same integrity rules
and constraints that set-processing operations do.

These principles continue to be the litmus test used to validate the “relational”
characteristics of a database platform; a database that does not meet all of these
rules is not fully relational. While these rules do not apply to applications devel-
opment, they do determine whether the database engine itself can be considered
truly “relational.” Currently, most commercial RDBMS products pass Codd’s test.
Among the platforms discussed in SQL in a Nutshell, Third Edition, only MySQL
failed to support all of these requirements, and only then in releases prior to the
one covered in this book.

Understanding Codd’s principles assists programmers and developers in the
proper development and design of relational databases (RDBs). The following
sections detail how some of these requirements are met within SQL using RDBs.

Data structures (rules 1, 2, and 8)

Codd’s rules 1 and 2 state that “information is represented logically in tables” and
that “data must be logically accessible by table, primary key, and column.” So, the
process of defining a table for a relational database does not require that programs
instruct the database how to interact with the underlying physical data structures.
Furthermore, SQL logically isolates the processes of accessing data and physically
maintaining that data, as required by rule 8: “batch and end-user operations are
logically separate from physical storage and access methods.”

In the relational model, data is shown logically as a two-dimensional table that
describes a single entity (for example, business expenses). Academics refer to
tables as entities and to columns as attributes. Tables are composed of rows, or
records (academics call them tuples), and columns (called attributes, since each
column of a table describes a specific attribute of the entity). The intersection of a
record and a column provides a single value. The column or columns whose
values uniquely identify each record can act as a primary key. These days this
representation seems elementary, but it was actually quite innovative when it was
first proposed.

SQL3 defines a whole data structure hierarchy beyond simple tables, though
tables are the core data structure. Relational design handles data on a table-by-
table basis, not on a record-by-record basis. This table-centric orientation is the
heart of set programming. Consequently, almost all SQL commands operate
much more efficiently against sets of data within or across tables than against
individual records. Said another way, effective SQL programming requires that
you think in terms of sets of data, rather than of individual rows.

4 | Chapter 1: SQL History and Implementations

Figure 1-1 is a description of the SQL3 terminology used to describe the hierar-
chical data structures used by a relational database: clusters contain sets of
catalogs; catalogs contain sets of schemas; schemas contain sets of objects, such as
tables and views; and tables are composed of sets of columns and records.

For example, in a Business_Expense table, a column called Expense_Date might
show when an expense was incurred. Each record in the table describes a specific
entity; in this case, everything that makes up a business expense (when it
happened, how much it cost, who incurred the expense, what it was for, and so on).

Figure 1-1. SQL3 dataset hierarchy

CLUSTERS
A cluster is a uniquely named set of catalogs available to a SQL session. This is roughly
comparable to an installation of an RDBMS product. According to the ANSI standard,
clusters also control who gets access to the data and what sort of permissions the users
might have. However, most implementations, such as Oracle and Microsoft SQL Server,
track permissions at the catalog layer.Contain one

or many

CATALOGS

SCHEMAS
A schema is a uniquely named set of objects and data owned by a given user. Every
catalog must contain the INFORMATION_SCHEMA, which contains metadata about all
the other objects stored in the catalog. A schema is the rough equivalent of a database.

Contain one
or many

Contain one
or many

OBJECTS
An object is a uniquely named set of data or SQL functionality. Schema objects include
tables, views, modules, and routines; i.e., stored procedures and functions.

If the object is a table or view,
it may contain one or many

COLUMNS
A column is a uniquely named set of values that defines a specific attribute of a table entity.

Contain one
or many

DOMAIN and
USER DEFINED

TYPES

These identify the set of valid and allowable values for a given column.

RULES and
ASSERTIONS

These identify further rules that define valid and allowable values for a given column. For
example, a trigger is a SQL rule.

A catalog is a uniquely named set of schemas. If you’re an Oracle or Microsoft SQL Server
user, you might be more comfortable with the term instance.

The Relational Model and ANSI SQL | 5

SQL H
istory

Each attribute of an expense—in other words, each column—is supposed to be
atomic; that is, each column is supposed to contain one, and only one, value. If a
table is constructed in which the intersection of a row and column can contain
more than one distinct value, one of SQL’s primary design guidelines has been
violated. (Some of the database platforms discussed in this book do allow you to
place more than one value into a column, via the VARRAY or TABLE datatypes.)

Rules of behavior are specified for column values. Foremost is that column values
must share a common domain, better known as a datatype. For example, if the
Expense_Date field is defined as having a DATE datatype, the value ELMER
should not be placed into that field because it is a string, not a date, and the
Expense_Date field can contain only dates. In addition, SQL3 allows further
control of column values through the application of constraints (discussed in
detail in Chapter 2) and assertions. A SQL constraint might, for instance, limit
Expense_Date to expenses less than a year old. Additionally, data access for all
individuals and computer processes is controlled at the schema level by an Autho-
rizationID or user. Permissions to access or modify specific sets of data may be
granted or restricted on a per-user basis.

SQL databases also employ character sets and collations. Character sets are the
“symbols” or “alphabets” used by the “language” of the data. For example, the
American English character set does not contain the special character for ñ in
the Spanish character set. Collations are sets of sorting rules that operate on a
character set. A collation defines how a given data manipulation operation sorts
data. For example, an American English character set might be sorted either by
character-order, case-insensitive, or by character-order, case-sensitive.

The ANSI standard does not say how sorts should be done, only
that platforms must provide common collations found in a particu-
lar language.

It is important to know what collation you are using when writing SQL code
against a database platform, as it can have a direct impact on how queries behave,
and particularly on the behavior of the WHERE and ORDER BY clauses of
SELECT statements. For example, a query that sorts data using a binary collation
will return data in a very different order than one that sorts data using, say, an
American English collation.

NULLs (rule 3)

Most databases allow any of their supported datatypes to store NULL values.
Inexperienced SQL programmers and developers tend to think of NULL as zero or
blank. In fact, NULL is neither of these. In SQL3, NULL literally means that the
value is unknown or indeterminate. (This question alone—whether NULL should
be considered unknown or indeterminate—is the subject of much academic
debate.) This differentiation enables a database designer to distinguish between
those entries that represent a deliberately placed zero, for example, and those
where either the data is not recorded in the system or a NULL has been explicitly
entered. As an illustration of this semantic difference, consider a system that
tracks payments. If a product has a NULL price, that does not mean the product

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

6 | Chapter 1: SQL History and Implementations

is free; instead, a NULL price indicates that the amount is not known or perhaps
has not yet been determined.

There is a good deal of differentiation between the database plat-
forms in terms of how they handle NULL values. This leads to
some major porting issues between those platforms relating to
NULLs. For example, an empty string (i.e., a NULL string) is
inserted as a NULL value on Oracle. All the other databases cov-
ered in this book permit the insertion of an empty string into VAR-
CHAR and CHAR columns.

One side effect of the indeterminate nature of a NULL value is that it cannot be
used in a calculation or a comparison. Here are a few brief but very important
rules, from the ANSI standard, to remember about the behavior of NULL values
when dealing with NULLs in SQL statements:

• A NULL value cannot be inserted into a column defined as NOT NULL.

• NULL values are not equal to each other. It is a frequent mistake to compare
two columns that contain NULL and expect the NULL values to match. (The
proper way to identify a NULL value in a WHERE clause or in a Boolean
expression is to use phrases such as “value IS NULL” and “value IS NOT
NULL”.)

• A column containing a NULL value is ignored in the calculation of aggregate
values such as AVG, SUM, or MAX COUNT.

• When columns that contain NULL values are listed in the GROUP BY clause
of a query, the query output contains a single row for NULL values. In
essence, the ANSI standard considers all NULLs found to be in a single
group.

• DISTINCT and ORDER BY clauses, like GROUP BY, also see NULL values
as indistinguishable from each other. With the ORDER BY clause, the ven-
dor is free to choose whether NULL values sort high (first in the result set) or
sort low (last in the result set) by default.

Metadata (rules 4 and 10)

Codd’s fourth rule for relational databases states that data about the database
must be stored in standard tables, just as all other data is. Data that describes the
database itself is called metadata. For example, every time you create a new table
or view in a database, records are created and stored that describe the new table.
Additional records are needed to store any columns, keys, or constraints on the
table. This technique is implemented in most commercial and open source SQL
database products. For example, SQL Server uses what it calls “system tables” to
track all the information about the databases, tables, and database objects in any
given database. It also has “system databases” that keep track of information
about the server on which the database is installed and configured.

The Relational Model and ANSI SQL | 7

SQL H
istory

The language (rules 5 and 11)

Codd’s rules do not require SQL to be used with a relational database. His rules,
particularly rules 5 and 11, only specify how the language should behave when
coupled with a relational database. At one time SQL competed with other
languages (such as Digital’s RDO and Fox/PRO) that might have fit the relational
bill, but SQL won out, for three reasons. First, SQL is a relatively simple, intui-
tive, English-like language that handles most aspects of data manipulation.
Second, SQL is satisfyingly high-level. A programmer or database administrator
(DBA) does not have to spend time ensuring that data is stored in the proper
memory registers or that data is cached to disk; the database management system
(DBMS) handles that task automatically. Finally, because no single vendor owns
SQL, it was adopted across a number of platforms.

Views (rule 6)

A view is a virtual table that does not exist as a physical repository of data, but is
instead constructed on the fly from a SELECT statement whenever that view is
queried. Views enable you to construct different representations of the same
source data for a variety of audiences without having to alter the way in which the
data is stored.

Some vendors support database objects called materialized views.
Don’t let the similarity of terms confuse you; materialized views are
not governed by the same rules as ANSI standard views.

Set operations (rules 7 and 12)

Other database manipulation languages, such as the venerable Xbase, perform
their data operations quite differently from SQL. These languages require you to
tell the program exactly how to treat the data, one record at a time. Since the
program cycles down through a list of records, performing its logic on one record
after another, this style of programming is frequently called row processing or
procedural programming.

In contrast, SQL programs operate on logical sets of data. Set theory is applied in
almost all SQL statements, including SELECT, INSERT, UPDATE, and DELETE
statements. In effect, data is selected from a set called a “table.” Unlike the row-
processing style, set processing allows a programmer to tell the database simply
what is required, not how each individual piece of data should be handled. Some-
times set processing is referred to as declarative processing, since a programmer
declares only what data is wanted (as in, “Give me all employees in the southern
region who earn more than $70,000 per year”) rather than describing the exact
procedure to be used to retrieve or manipulate the data.

8 | Chapter 1: SQL History and Implementations

Set theory was the brainchild of mathematician Georg Cantor, who
developed it at the end of the nineteenth century. At the time, set
theory (and Cantor’s theory of the infinite) was quite controversial.
Today, set theory is such a common part of life that it is learned in
elementary school. Things like card catalogs, the Dewey Decimal
System, and alphabetized phone books are all simple and common
examples of applied set theory.

Examples of set theory in conjunction with relational databases are detailed in the
following section.

Codd’s Rules in Action: Simple SELECT Examples

Up to this point, this chapter has focused on the individual aspects of a relational
database platform as defined by Codd and implemented under ANSI SQL. This
section presents a high-level overview of the most important SQL statement,
SELECT, and some of its most salient points—namely, the relational operations
known as projections, selections, and joins:

Projection
Retrieves specific columns of data

Selection
Retrieves specific rows of data

Join
Returns columns and rows from two or more tables in a single result set

Although at first glance it might appear as though the SELECT statement deals
only with the relational selection operation, in actuality, SELECT deals with all
three operations.

The following statement embodies the projection operation by selecting the first
and last names of an author, plus his home state, from the authors table:

SELECT au_fname, au_lname, state
FROM authors

The results from any such SELECT statement are presented as another table of data:

au_fname au_lname state
-------------------- ----------------------------------- -----
Johnson White CA
Marjorie Green CA
Cheryl Carson CA
Michael O'Leary CA
Meander Smith KS
Morningstar Greene TN
Reginald Blotchet-Halls OR
Innes del Castillo MI

The resulting data is sometimes called a result set, work table, or derived table,
differentiating it from the base table in the database that is the target of the
SELECT statement.

The Relational Model and ANSI SQL | 9

SQL H
istory

It is important to note that the relational operation of projection, not selection, is
specified using the SELECT clause (that is, the keyword SELECT followed by a
list of expressions to be retrieved) of a SELECT statement. Selection—the opera-
tion of retrieving specific rows of data—is specified using the WHERE clause in a
SELECT statement. WHERE filters out unwanted rows of data and retrieves only
the requested rows. Continuing with the previous example, the following state-
ment selects authors from states other than California:

SELECT au_fname, au_lname, state
FROM authors
WHERE state <> 'CA'

Whereas the first query retrieved all authors, the result of this second query is a
much smaller subset of records:

au_fname au_lname state
-------------------- ----------------------------------- -----
Meander Smith KS
Morningstar Greene TN
Reginald Blotchet-Halls OR
Innes del Castillo MI

By combining the capabilities of projection and selection in a single query, you can
use SQL to retrieve only the columns and records that you need at any given time.

Joins are the next, and last, relational operation we’re going to talk about in this
section. A join relates one table to another in order to return a result set consisting
of related data from both tables.

Different vendors allow you to join varying numbers of tables in a
single join operation. For example, Oracle places no limit on the
number of tables in a join, while Microsoft SQL Server allows up to
256 tables in a join operation.

The ANSI standard method of performing joins is to use the JOIN clause in a
SELECT statement. An older method, know as a theta join, performs the join
analysis in the WHERE clause. The following example shows both approaches.
Each statement retrieves employee information from the employee base table as
well as job descriptions from the jobs base table. The first SELECT uses the
newer, ANSI JOIN clause, while the second SELECT uses a theta join:

-- ANSI style
SELECT a.au_fname, a.au_lname, t.title_id
FROM authors AS a
JOIN titleauthor AS t ON a.au_id = t.au_id
WHERE a.state <> 'CA'

-- Theta style
SELECT a.au_fname, a.au_lname, t.title_id
FROM authors AS a,
 titleauthor AS t
WHERE a.au_id = t.au_id
 AND a.state <> 'CA'

For more information about joins, see the “JOIN Subclause” section in Chapter 3.

10 | Chapter 1: SQL History and Implementations

History of the SQL Standard
In response to the proliferation of SQL dialects, ANSI published its first SQL stan-
dard in 1986 to bring about greater conformity among vendors. This was followed
by a second, widely adopted standard in 1989. The International Standards Orga-
nization (ISO) also approved the SQL standard. ANSI released one update in
1992, known as SQL92 or SQL2, and another in 1999, termed SQL99 or SQL3.
The next update, made in 2003, is also referred to as SQL3 (or SQL2003). When
we use that term in this book, we are referring to the 2003 revision of the
standard.

Each time it revises the SQL standard, ANSI adds new features and incorporates
new commands and capabilities into the language. For example, the SQL99 stan-
dard added a group of capabilities that handled object-oriented datatype
extensions.

What’s New in SQL2006

The ANSI standards body that regulates SQL issued a new standard in 2006, in
which the important major improvements of SQL3 were retained and augmented.
The ANSI SQL2006 release was evolutionary over the SQL3 release, but it did not
include any significant changes to the SQL3 commands and functions that were
described in the second edition of this book. Instead, SQL2006 described an
entirely new functional area of behavior for the SQL standard. Briefly, SQL2006
describes how SQL and XML (the eXtensible Markup Language) interact. For
example, the SQL2006 standard describes how to import and store XML data in a
SQL database, manipulate that data, and then publish the data both in native
XML form and as conventional SQL data wrapped in XML form. The SQL2006
standard provides a means of integrating SQL application code with XQuery, the
XML Query Language standardized by the World Wide Web Consortium (W3C).
Because XML and XQuery are disciplines in their own right, they are considered
beyond the scope of this book and are not covered here.

What’s New in SQL2003 (SQL3)

SQL99 had two main parts, Foundation:1999 and Bindings:1999. The SQL3 Foun-
dation section includes all of the Foundation and Bindings standards from
SQL99, as well as a new section called Schemata.

The Core requirements of SQL3 did not change from Core SQL99, so the data-
base platforms that conformed to Core SQL99 automatically conform to SQL3.
Although the Core of SQL3 has no additions (except for a few new reserved
words), a number of individual statements and behaviors have been updated or
modified. Because these updates are reflected in the individual syntax descrip-
tions of each statement in Chapter 3, we won’t spend time on them here.

A few elements of the Core in SQL99 were deleted in SQL3, including:

• The BIT and BIT VARYING datatypes

• The UNION JOIN clause

• The UPDATE...SET ROW statement

History of the SQL Standard | 11

SQL H
istory

A number of other features, most of which were or are rather obscure, have also
been added, deleted, or renamed. Many of the new features of the SQL3 standard
are currently interesting mostly from an academic standpoint, because none of the
database platforms support them yet. However, a few new features hold more
than passing interest:

Elementary OLAP functions
SQL3 adds an Online Analytical Processing (OLAP) amendment, including a
number of windowing functions to support widely used calculations such as
moving averages and cumulative sums. Windowing functions are aggregates
computed over a window of data: ROW_NUMBER, RANK, DENSE_RANK,
PERCENT_RANK, and CUME_DIST. OLAP functions are fully described in
T611 of the standard. Some database platforms are starting to support the
OLAP functions. Refer to Chapter 4 for details.

Sampling
SQL3 adds the TABLESAMPLE clause to the FROM clause. This is useful for
statistical queries on large databases, such as a data warehouse.

Enhanced numeric functions
SQL3 adds a large number of numeric functions. In this case, the standard
was mostly catching up with the trend in the industry, since one or more
database platforms already supported the new functions. Refer to Chapter 4
for details.

Levels of Conformance

SQL99 is built upon SQL92’s levels of conformance. SQL92 first introduced levels
of conformance by defining three categories: Entry, Intermediate, and Full.
Vendors had to achieve at least Entry-level conformance to claim ANSI SQL
compliance. The U.S. National Institute of Standards and Technology (NIST)
later added the Transitional level between the Entry and Intermediate levels, so
NIST’s levels of conformance were Entry, Transitional, Intermediate, and Full,
while ANSI’s were only Entry, Intermediate, and Full. Each higher level of the
standard was a superset of the subordinate level, meaning that each higher level
included all the features of the lower levels of conformance.

Later, SQL99 altered the base levels of conformance, doing away with the Entry,
Intermediate, and Full levels. With SQL99, vendors must implement all the
features of the lowest level of conformance, Core SQL99, in order to claim (and
publish) that they are SQL99 ready. Core SQL99 includes the old Entry SQL92
feature set, features from other SQL92 levels, and some brand new features. A
vendor may also choose to implement additional feature packages described in
the SQL99 standard.

Supplemental Features Packages in the SQL3 Standard

The SQL3 standard represents the ideal, but very few vendors currently meet or
exceed the Core SQL3 requirements. The Core standard is like the interstate
speed limit: some drivers go above it and others go below it, but few go exactly
the speed limit. Similarly, vendor implementations can vary greatly.

12 | Chapter 1: SQL History and Implementations

Two committees—one within ANSI, the other within ISO, and both composed of
representatives from virtually every RDBMS vendor—drafted the supplemental
feature definitions described in this section. In this collaborative and somewhat
political environment, vendors compromised on exactly which proposed features
and implementations would be incorporated into the new standard.

New features in the ANSI standard often are derived from an existing product or
are the outgrowth of new research and development in the academic community.
Consequently, vendor adoption of specific ANSI standards can be spotty. A rela-
tively new addition to the SQL3 standard is SQL/XML (greatly expanded in
SQL2006.) The other parts of the SQL99 standard remain in SQL3, though their
names may have changed and they may have been slightly rearranged.

The nine supplemental features packages, representing different subsets of
commands, are platform-optional. Some features might show up in multiple pack-
ages, while others do not appear in any of the packages. These packages and their
features are described in the following list:

Part 1, SQL/Framework
Includes common definitions and concepts used throughout the standard.
Defines the way the standard is structured and how the various parts relate to
one another, and describes the conformance requirements set out by the stan-
dards committee.

Part 2, SQL/Foundation
Includes the Core, an augmentation of the SQL99 Core. This is the largest
and most important part of the standard.

Part 3, SQL/CLI (Call-Level Interface)
Defines the call-level interface for dynamically invoking SQL statements from
external application programs. Also includes over 60 routine specifications to
facilitate the development of truly portable shrink-wrapped software.

Part 4, SQL/PSM (Persistent Stored Modules)
Standardizes procedural language constructs similar to those found in data-
base platform-specific SQL dialects such as PL/SQL and Transact-SQL.

Part 9, SQL/MED (Management of External Data)
Defines the management of data located outside of the database platform
using datalinks and a wrapper interface.

Part 10, SQL/OBJ (Object Language Binding)
Describes how to embed SQL statements in Java programs. It is closely
related to JDBC, but offers a few advantages. It is also very different from the
traditional host language binding possible in early versions of the standard.

Part 11, SQL/Schemata
Defines over 85 views (three more than in SQL99) used to describe the meta-
data of each database and stored in a special schema called INFORMATION_
SCHEMA. Updates a number of views that existed in SQL99.

History of the SQL Standard | 13

SQL H
istory

Part 12, SQL/JRT (Java Routines and Types)
Defines a number of SQL routines and types using the Java programming
language. Several features of Java, such as Java static methods and classes, are
now supported.

Part 14, SQL/XML
Adds a new type called XML, four new operators (XMLPARSE, XMLSERI-
ALIZE, XMLROOT, and XMLCONCAT), several new functions (described
in Chapter 4), and the new IS DOCUMENT predicate. Also includes rules for
mapping SQL-related elements (like identifiers, schemas, and objects) to
XML-related elements.

Note that parts 5, 6, 7, and 8 do not exist by design.

Be aware that an RDBMS platform may claim SQL3 compliance by meeting Core
SQL99 standards, so read the vendor’s fine print for a full description of its ANSI
conformity features. By understanding what features comprise the nine packages,
users can gain a clear idea both of the capabilities of a particular RDBMS and of
how the various features behave when SQL code is transported to other database
products.

The ANSI standards—which cover retrieval, manipulation, and management of
data in commands such as SELECT, JOIN, ALTER TABLE, and DROP—
formalize many SQL behaviors and syntax structures across a variety of plat-
forms. These standards have become even more important as open source
database products, such as MySQL and PostgreSQL, have grown in popularity
and begun being developed by virtual teams rather than large corporations.

SQL in a Nutshell, Third Edition explains the SQL implementation of four
popular RDBMSs. These vendors do not meet all the SQL3 standards; in fact, all
RDBMS platforms play a constant game of tag with the standards bodies. Often,
as soon as vendors close in on the standard, the standards bodies update, refine,
or otherwise change the benchmark. Conversely, the vendors often implement
new features that are not yet a part of the standard but that boost the effective-
ness of their users.

SQL3 Statement Classes

Comparing statement classes further delineates SQL3 from SQL92. However, the
older terms are still used, so readers need to know them. SQL92 grouped state-
ments into three broad categories:

Data Manipulation Language (DML)
Provides specific data-manipulation commands such as SELECT, INSERT,
UPDATE, and DELETE

Data Definition Language (DDL)
Contains commands that handle the accessibility and manipulation of data-
base objects, including CREATE and DROP

Data Control Language (DCL)
Contains the permission-related commands GRANT and REVOKE

14 | Chapter 1: SQL History and Implementations

In contrast, SQL3 supplies seven core categories, now called classes, that provide
a general framework for the types of commands available in SQL. These state-
ment “classes” are slightly different from the SQL92 statement categories, because
they attempt to identify the statements within each class more accurately and logi-
cally and they provide for the development of new features and statement classes.
Additionally, the new statement classes now allow some “orphaned” statements
that did not fit well into any of the old categories to be properly classified.

Table 1-1 identifies the SQL3 statement classes and lists some of the commands in
each class, each of which is fully discussed later. At this point, the key is to
remember the statement class titles.

Those who work with SQL regularly should become familiar with both the old
(SQL92) and the new (SQL3) statement classes, since both nomenclatures are still
used to refer to SQL features and statements.

SQL Dialects
The constantly evolving nature of the SQL standard has given rise to a number of
SQL dialects among the various vendors and platforms. These dialects commonly
evolve because a given database vendor’s user community requires capabilities in
the database before the ANSI committee creates an applicable standard. Occa-
sionally, though, the academic or research communities introduce a new feature
in response to pressures from competing technologies. For example, many data-
base vendors are augmenting their current programmatic offerings with either
Java (as is the case with DB2, Oracle, and Sybase) or VBScript (as is the case with
Microsoft). In the future, programmers and developers will use these program-
ming languages in concert with SQL to build SQL programs.

Table 1-1. SQL3 statement classes

Class Description Example commands

SQL connection statements Start and end a client connection CONNECT, DISCONNECT

SQL control statements Control the execution of a set of SQL
statements

CALL, RETURN

SQL data statements May have a persistent and enduring
effect upon data

SELECT, INSERT, UPDATE, DELETE

SQL diagnostic statements Provide diagnostic information and
raise exceptions and errors

GET DIAGNOSTICS

SQL schema statements May have a persistent and enduring
effect on a database schema and
objects within that schema

ALTER, CREATE, DROP

SQL session statements Control default behavior and other
parameters for a session

SET statements like SET CONSTRAINT

SQL transaction statements Set the starting and ending point of
a transaction

COMMIT, ROLLBACK

SQL Dialects | 15

SQL H
istory

Many of these dialects include conditional processing capabilities (such as that
controlled through IF...THEN statements), control-of-flow functions (such as
WHILE loops), variables, and error-handling capabilities. Because ANSI had not
yet developed a standard for these important features at the time users began to
demand them, RDBMS developers and vendors created their own commands and
syntax. In fact, some of the earliest vendors from the 1980s have variances in the
most elementary commands, such as SELECT, because their implementations
predate the standards. ANSI is now refining standards that address these
inconsistencies.

Some of these dialects introduced procedural commands to support the function-
ality of a more complete programming language. For example, these procedural
implementations contain error-handling commands, control-of-flow language,
conditional commands, variable-handling commands, support for arrays, and
many other extensions. Although these are technically divergent procedural
implementations, they are called dialects here. The SQL/PSM (Persistent Stored
Module) package provides many features associated with programming stored
procedures and incorporates many of the extensions offered by these dialects.

Some popular dialects of SQL include:

PL/SQL
Found in Oracle. PL/SQL stands for Procedural Language/SQL and contains
many similarities to the language Ada.

Transact-SQL
Used by both Microsoft SQL Server and Sybase Adaptive Server. As Microsoft
and Sybase have moved away from the common platform they shared early in
the 1990s, their implementations of Transact-SQL have also diverged.

PL/pgSQL
SQL dialect and extensions implemented in PostgreSQL. The acronym stands
for Procedural Language/PostgreSQL.

Users who plan to work extensively with a single database system should learn the
intricacies of their preferred SQL dialect or platform.

16

Chapter 2Foundational Concepts

2
Foundational Concepts

SQL provides an easy, intuitive way to interact with a database. While the
SQL2003 (SQL3) standard does not define the concept of a “database,” it does
define all the functions and concepts needed for a user to create, retrieve, update,
and delete data. It is important to know the types of syntax in the SQL2003 stan-
dard and the particular platform-specific syntax guidelines. This chapter will
provide you with a grounding in those areas.

Database Platforms Described in This Book
SQL in a Nutshell, Third Edition describes the SQL standard and the platform-
specific implementations of several leading RDBMSs:

MySQL
MySQL is a popular open source DBMS that is known for its blistering
performance. It runs on numerous operating systems, including most Linux
variants. To improve performance, it has a slimmer feature set than many
other DBMSs. This book covers MySQL 5.1.

Oracle
Oracle is a leading RDBMS in the commercial sector. It runs on a multitude
of operating systems and hardware platforms. Its scalable, reliable architec-
ture has made it the platform of choice for many users. In this edition, we
cover Oracle Database 11g.

PostgreSQL
PostgreSQL is the most feature-rich open source database platform available.
Whereas MySQL is best known for its high-speed performance, PostgreSQL
is best known for its excellent support for ANSI standards and robust trans-
action processing capabilities, as well as its rich datatype and database object
support. In addition to its full set of features, PostgreSQL runs on a wide
variety of operating systems and hardware platforms. This book covers
PostgreSQL 8.2.1.

Categories of Syntax | 17

Foundational
Concepts

SQL Server
Microsoft SQL Server is a popular RDBMS that runs only on the Windows
platform. Its features include ease of use, an all-inclusive feature set, low cost,
and high performance. This book covers Microsoft SQL Server 2008.

Categories of Syntax
To begin to use SQL, readers should understand how statements are written. SQL
syntax falls into four main categories. Each category is introduced in the following
list and then explained in further detail in the sections that follow:

Identifiers
Describe a user- or system-supplied name for a database object, such as a
database, a table, a constraint on a table, a column in a table, a view, etc.

Literals
Describe a user- or system-supplied string or value that is not otherwise an
identifier or a keyword. Literals may be strings like “hello”, numbers like
1234, dates like “Jan 01, 2002”, or Boolean values like TRUE.

Operators
Are symbols specifying an action to be performed on one or more expres-
sions, most often in DELETE, INSERT, SELECT, or UPDATE statements.
Operators are also used frequently in the creation of database objects.

Reserved words and keywords
Have special meaning to the database SQL parser. Keywords such as
SELECT, GRANT, DELETE, or CREATE are words that cannot be used as
identifiers within the database platform. These are usually commands or SQL
statements. Reserved words are words that may become reserved some time in
the future. Elsewhere in the book, we use the term keyword to describe both
concepts. You can circumvent the restriction on using reserved words and
keywords as identifiers by using quoted identifiers, which will be described in
a moment. However, this is not recommended!

Identifiers

Keep in mind that RDBMSs are built upon set theory. In ANSI terms, clusters
contain sets of catalogs, catalogs contain sets of schemas, schemas contain sets of
objects, and so on. Most database platforms use corollary terms: instances contain
one or more databases; databases contain one or more schemas; and schemas
contain one or more tables, views, or stored procedures, and the privileges associ-
ated with each object. At each level of this structure, items require unique names
(that is, identifiers) so that they can be referenced by programs and system
processes. This means that each object (whether a database, table, view, column,
index, key, trigger, stored procedure, or constraint) in an RDBMS must be identi-
fied. When issuing the command that creates a database object, you must specify
an identifier (i.e., a name) for that new object.

There are two important categories of rules that experienced programmers keep in
mind when choosing an identifier for a given item:

18 | Chapter 2: Foundational Concepts

Naming conventions
Logical rules of thumb that govern how database designers name objects.
Consistently following these rules ultimately creates better database struc-
tures and enables improved data tracking. These are not so much SQL
requirements as the distilled experience of practiced programmers.

Identifier rules
Naming rules set by the SQL standard and implemented by the platforms.
These rules govern characteristics such as how long a name may be. These
identifier conventions are covered for each vendor later in this chapter.

Naming conventions

Naming conventions establish a standard baseline for choosing object identifiers.
In this section, we present a list of naming conventions (rules for picking your
identifiers) that are based on long years of experience. The SQL standard has no
comment on naming conventions outside of the uniqueness of an identifier, its
length, and the characters that are valid within the identifier. However, here are
some conventions that you should follow:

Select a name that is meaningful, relevant, and descriptive
Do not name a table XP03; instead, name it Expenses_2005, showing that it
stores expenses for the year 2005. Remember that other people will likely be
using the table or database too, perhaps long after you have gone, and the
names you use should make sense at a glance. Each database vendor has
limits on object name size, but names generally can be long enough to make
sense to anyone reading them.

Choose and apply the same case throughout
Use either all uppercase or all lowercase for all objects throughout the data-
base. Some database servers are case-sensitive, so using mixed-case identifiers
might cause problems later.

Use abbreviations consistently
Once you’ve chosen an abbreviation, use it consistently throughout the data-
base. For example, if you use EMP as an abbreviation for EMPLOYEE, you
should use EMP throughout the database; do not use EMP in some places
and EMPLOYEE in others.

Use complete, descriptive, meaningful names with underscores for reading clarity
A column name like UPPERCASEWITHUNDERSCORES is not as easy to
read as UPPERCASE_WITH_UNDERSCORES.

Do not put company or product names in database object names
Companies get acquired, and products change names. These elements are too
transitory to be included in database object names.

Do not use overly obvious prefixes or suffixes
For example, don’t use DB_ as a prefix for a database, and don’t prefix every
view with V_. Simple queries to the system table of the database can tell the
DBA or database programmer what type of object an identifier represents.

Categories of Syntax | 19

Foundational
Concepts

Do not fill up all available space for the object name
If the database platform allows a 32-character table name, try to leave at least
a few free characters at the end. Some database platforms append prefixes or
suffixes to table names when manipulating temporary copies of the tables.

Do not use quoted identifiers
Quoted identifiers are object names stored within double quotation marks.
(The ANSI standard calls these delimited identifiers.) Quoted identifiers are
also case-sensitive. Encapsulating an identifier within double quotes allows
creation of names that may be difficult to use and may cause problems later.
For example, users could embed spaces, special characters, mixed-case char-
acters, or even escape sequences within a quoted identifier, but some third-
party tools (and even vendor-supplied tools) cannot handle special characters
in names. Therefore, quoted identifiers should not be used.

Some platforms allow delimiting symbols other than double quotes.
For example, SQL Server uses brackets ([]) to designate quoted
identifiers.

There are several benefits to following these naming conventions. First, your SQL
code becomes, in a sense, self-documenting, because the chosen names are mean-
ingful and understandable to other users. Second, your SQL code and database
objects are easier to maintain—especially for other users who come later—
because the objects are consistently named. Finally, maintaining consistency
increases database functionality. If the database ever has to be transferred or
migrated to another RDBMS, consistent and descriptive naming saves both time
and energy. Giving a few minutes of thought to naming SQL objects in the begin-
ning can prevent problems later.

Identifier rules

Identifier rules are rules for identifying objects within the database that are rigidly
enforced by the database platforms. These rules apply to normal identifiers, not
quoted identifiers. Rules specified by the SQL2003 standard generally differ some-
what from those of specific database vendors. Table 2-1 contrasts the SQL2003
rules with those of the RDBMS platforms covered in this book.

Table 2-1. Platform-specific rules for regular object identifiers (excludes quoted
identifiers)

Characteristic Platform Specification

Identifier size

SQL3 128 characters.

MySQL 64 characters; aliases may be 255 characters.

Oracle 30 bytes (number of characters depends on the character set);
database names are limited to 8 bytes; database links are
limited to 128 bytes.

PostgreSQL 63 characters (NAMEDATALEN property minus 1).

SQL Server 128 characters; temp tables are limited to 116 characters.

20 | Chapter 2: Foundational Concepts

Identifier may contain

SQL3 Any number or character, and the underscore (_) symbol.

MySQL Any number, character, or symbol. Cannot be composed
entirely of numbers.

Oracle Any number or character, and the underscore (_), pound sign
(#), and dollar sign ($) symbols (though the last two are
discouraged). Database links may also contain a period (.).

PostgreSQL Any number or character, and the underscore (_) symbol.

SQL Server Any number or character, and the underscore (_), at sign (@),
pound sign (#), and dollar sign ($) symbols.

Identifier must begin with

SQL3 A letter.

MySQL A letter or number. Cannot be composed entirely of numbers.

Oracle A letter.

PostgreSQL A letter or underscore (_).

SQL Server A letter, underscore (_), at sign (@), or pound sign (#).

Identifier cannot contain

SQL3 Spaces or special characters.

MySQL Period (.), slash (/), or any ASCII(0) or ASCII(255) character. Single
quotes (’‘) and double quotes (“”) are allowed only in quoted
identifiers. Identifiers should not end with space characters.

Oracle Spaces, double quotes (“ ”), or special characters.

PostgreSQL Double quotes (“ ”).

SQL Server Spaces or special characters.

Allows quoted identifiers

SQL3 Yes.

MySQL Yes.

Oracle Yes.

PostgreSQL Yes.

SQL Server Yes.

Quoted identifier symbol

SQL3 Double quotes (“ ”).

MySQL Single quotes (’‘) or double quotes (“ ”) in ANSI compatibility
mode.

Oracle Double-quotes (“ ”).

PostgreSQL Double-quotes (“ ”).

SQL Server Double quotes (“ ”) or brackets ([]); brackets are preferred.

Identifier may be reserved

SQL3 No, unless as a quoted identifier.

MySQL No, unless as a quoted identifier.

Oracle No, unless as a quoted identifier.

PostgreSQL No, unless as a quoted identifier.

SQL Server No, unless as a quoted identifier.

Table 2-1. Platform-specific rules for regular object identifiers (excludes quoted
identifiers) (continued)

Characteristic Platform Specification

Categories of Syntax | 21

Foundational
Concepts

Identifiers must be unique within their scope. Thus, given our earlier discussion of
the hierarchy of database objects, database names must be unique on a particular
instance of a database server, while the names of tables, views, functions, triggers,
and stored procedures must be unique within a particular schema. On the other
hand, a table and a stored procedure can have the same name, since they are
different types of object. The names of columns, keys, and indexes must be
unique on a single table or view, and so forth. Check your database platform’s
documentation for more information—some platforms require unique identifiers
where others may not. For example, Oracle requires that all index identifiers be
unique throughout the database, while others (such as SQL Server) require that
the index identifier be unique only for the table on which it depends.

Remember, quoted identifiers (object names encapsulated within a special delim-
iter, usually double quotes) may be used to break some of the identifier rules

Schema addressing

SQL3 Catalog.schema.object

MySQL Database.object.

Oracle Schema.object.

PostgreSQL Database.schema.object.

SQL Server Server.database.schema.object.

Identifier must be unique

SQL3 Yes.

MySQL Yes.

Oracle Yes.

PostgreSQL Yes.

SQL Server Yes.

Case Sensitivity

SQL3 No.

MySQL Only if underlying filesystem is case sensitive (e.g., Mac OS or
Unix). Triggers, logfile groups, and tablespaces are always case
sensitive.

Oracle No by default, but can be changed.

PostgreSQL No.

SQL Server No by default, but can be changed.

Other rules

SQL3 None.

MySQL May not contain numbers only.

Oracle Database links are limited to 128 bytes and may not be quoted
identifiers.

PostgreSQL None.

SQL Server Microsoft commonly uses brackets rather than double quotes
for quoted identifiers.

Table 2-1. Platform-specific rules for regular object identifiers (excludes quoted
identifiers) (continued)

Characteristic Platform Specification

22 | Chapter 2: Foundational Concepts

specified earlier. One example is that quoted identifiers are case sensitive—that
is, “foo” does not equal “FOO”. Furthermore, quoted identifiers may be used to
bestow a reserved word as a name, or to allow normally unusable characters and
symbols within a name. For instance, you normally can’t use the percent sign (%)
in a table name. However, you can, if you must, use that symbol in a table name
so long as you always enclose that table name within double quotes. That is, to
name a table expense%%ratios, you would specify the name in quotes:
“expense%%ratios”. Again, remember that in SQL3 such names are sometimes
known as “delimited identifiers.”

Once you have created an object name as a quoted identifier, we
recommend that users always reference it using its special delimiter.

Literals

SQL defines a literal value as any explicit numeric value, character string,
temporal value (e.g., date or time), or Boolean value that is not an identifier or a
keyword. SQL databases allow a variety of literal values in a SQL program. Literal
values are allowed for most of the numeric, character, Boolean, and date
datatypes. For example, SQL Server numeric datatypes include (among others)
INTEGER, REAL, and MONEY. Thus, numeric literals can look like:

30
-117
+883.3338
-6.66
$70000
2E5
7E-3

As these examples illustrate, SQL Server allows signed and unsigned numerals, in
scientific or normal notation. And since SQL Server has a money datatype, even a
dollar sign can be included. SQL Server does not allow other symbols in numeric
literals (besides 0 1 2 3 4 5 6 7 8 9 + - $. E e), however, so do not include commas
(or periods, in European countries where a comma is used in place of a period in
decimal or monetary values). Most databases interpret a comma in a numeric
literal as a list item separator. Thus, the literal value 3,000 would likely be inter-
preted as two values: 3 and, separately, 000.

Boolean, character string, and date literals look like:

TRUE
'Hello world!'
'OCT-28-1966 22:14:30:00'

Character string literals should always be enclosed in single quotation marks ('').
This is the standard delimiter for all character string literals. Character string literals
are not restricted just to the letters of the alphabet. In fact, any character in the char-
acter set can be represented as a string literal. All of the following are string literals:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Categories of Syntax | 23

Foundational
Concepts

'1998'
'70,000 + 14000'
'There once was a man from Nantucket,'
'Oct 28, 1966'

and are compatible with the CHARACTER datatype. Remember not to confuse
the string literal '1998' with the numeric literal 1998. Once string literals are asso-
ciated with a character datatype, it is poor practice to use them in arithmetic
operations without explicitly converting them to a numeric datatype. Some data-
base products will perform automatic conversion of string literals containing
numbers when comparing them against any DATE or NUMBER datatype values,
but not all.

By doubling the delimiter, you can effectively represent a single quotation mark in
a literal string, if necessary. That is, you can use two quotation marks each time a
single quotation mark is part of the value. This example, taken from SQL Server,
illustrates the idea:

SELECT 'So he said ''Who''s Le Petomaine?'''

This statement gives the following result:

So he said 'Who's Le Petomaine?'

Operators

An operator is a symbol specifying an action to be performed on one or more
expressions. Operators are used most often in DELETE, INSERT, SELECT, and
UPDATE statements, but they are also used frequently in the creation of database
objects such as stored procedures, functions, triggers, and views.

Operators typically fall into these categories:

Arithmetic operators
Supported by all databases

Assignment operators
Supported by all databases

Bitwise operators
Supported by MySQL and SQL Server

Comparison operators
Supported by all databases

Logical operators
Supported by all databases

Unary operators
Supported by MySQL, Oracle, and SQL Server

24 | Chapter 2: Foundational Concepts

Arithmetic operators

Arithmetic operators perform mathematical operations on two expressions of any
datatype in the numeric datatype category. See Table 2-2 for a listing of the arith-
metic operators.

In MySQL, Oracle, and SQL Server, the + and - operators can be
used to perform arithmetic operations on date values.

The various platforms also offer their own unique methods for per-
forming arithmetic operations on date values.

Assignment operators

Except in Oracle, which uses :=, the assignment operator (=) assigns a value to a
variable or the alias of a column heading. In all of the database platforms covered
in this text, the keyword AS may serve as an operator for assigning table- or
column-heading aliases.

Bitwise operators

Both Microsoft SQL Server and MySQL provide bitwise operators (see Table 2-3)
as a shortcut to perform bit manipulations between two-integer expressions. Valid
datatypes that are accessible to bitwise operators include BINARY, BIT, INT,
SMALLINT, TINYINT, and VARBINARY. PostgreSQL supports the BIT and BIT
VARYING datatypes; it also supports the bitwise operators AND, OR, XOR,
concatenation, NOT, and shifts left and right.

Comparison operators

Comparison operators test whether two expressions are equal or unequal. The result
of a comparison operation is a Boolean value: TRUE, FALSE, or UNKNOWN.

Table 2-2. Arithmetic operators

Arithmetic operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modula (SQL Server only); returns the remainder of a division operation as an integer value

Table 2-3. Bitwise operators

Bitwise operator Meaning

& Bitwise AND (two operands)

| Bitwise OR (two operands)

^ Bitwise exclusive OR (two operands)

Categories of Syntax | 25

Foundational
Concepts

Also, note that the ANSI standard behavior for a comparison operation where one
or more of the expressions is NULL is to return NULL. For example, the expres-
sion 23 + NULL returns NULL, as does the expression Feb 23, 2002 + NULL. See
Table 2-4 for a list of the comparison operators.

Boolean comparison operators are used most frequently in a WHERE clause to
filter the rows that qualify for the search conditions. The following example uses
the greater than or equal to comparison operation:

SELECT *
 FROM Products
 WHERE ProductID >= 347

Logical operators

Logical operators are commonly used in a WHERE clause to test for the truth of
some condition. They return a Boolean value of either TRUE or FALSE. Table 2-5
shows a list of logical operators. Note that not all database systems support all
operators.

Table 2-4. Comparison operators

Comparison operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

!= Not equal to (not ANSI standard)

!< Not less than (not ANSI standard)

!> Not greater than (not ANSI standard)

Table 2-5. Logical operators

Logical operator Meaning

ALL TRUE if all of a set of comparisons are TRUE

AND TRUE if both Boolean expressions are TRUE

ANY TRUE if any one of a set of comparisons is TRUE

BETWEEN TRUE if the operand is within a range

EXISTS TRUE if a subquery contains any rows

IN TRUE if the operand is equal to one of a list of expressions or one or more rows returned by
a subquery

LIKE TRUE if the operand matches a pattern

NOT Reverses the value of any other Boolean operator

OR TRUE if either Boolean expression is TRUE

SOME TRUE if some of a set of comparisons are TRUE

26 | Chapter 2: Foundational Concepts

Unary operators

Unary operators perform an operation on only one expression of any of the
datatypes in the numeric datatype category. Unary operators may be used on any
numeric datatype, though the bitwise operator (~) may be used only on integer
datatypes (see Table 2-6).

Operator precedence

Sometimes operator expressions become rather complex. When an expression has
multiple operators, operator precedence determines the sequence in which the
operations are performed. The order of execution can significantly affect the
resulting value.

Operators have different precedence levels. An operator on a higher level is evalu-
ated before an operator on a lower level. The following listing shows the
operators’ precedence levels, from highest to lowest:

• () (parenthetical expressions)

• +, -, ~ (unary operators)

• *, /, % (mathematical operators)

• +, - (arithmetic operators)

• =, >, <, >=, <=, <>, !=, !>, !< (comparison operators)

• ^ (bitwise exclusive OR), & (bitwise AND), | (bitwise OR)

• NOT

• AND

• ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

• = (variable assignment)

Operators are evaluated from left to right when they are of equal precedence.
However, parentheses are used to override the default precedence of the opera-
tors in an expression. Expressions within a set of parentheses are evaluated first,
while operations outside the parentheses are evaluated next.

For example, the following expressions in an Oracle query return very different
results:

SELECT 2 * 4 + 5 FROM dual
-- Evaluates to 8 + 5, which yields an expression result of 13.

SELECT 2 * (4 + 5) FROM dual
-- Evaluates to 2 * 9, which yields an expression result of 18.

Table 2-6. Unary operators

Unary operator Meaning

+ Numeric value is positive

- Numeric value is negative

~ A bitwise NOT; returns the complement of the number (not in Oracle)

Categories of Syntax | 27

Foundational
Concepts

In expressions with nested parentheses, the most deeply nested expression is eval-
uated first.

This next example contains nested parentheses, with the expression 5 – 3 in the
most deeply nested set of parentheses. This expression yields a value of 2. Then
the addition operator (+) adds this result to 4, which yields a value of 6. Finally,
the 6 is multiplied by 2 to yield an expression result of 12:

SELECT 2 * (4 + (5 - 3)) FROM dual
-- Evaluates to 2 * (4 + 2), which further evaluates to 2 * 6,
-- and yields an expression result of 12.
RETURN

We recommend using parentheses to clarify precedence in all com-
plex queries.

System delimiters and operators

String delimiters mark the boundaries of a string of alphanumeric characters.
System delimiters are those symbols within the character set that have special
significance to your database server. Delimiters are symbols that are used to judge
the order or hierarchy of processes and list items. Operators are those delimiters
used to judge values in comparison operations, including symbols commonly used
for arithmetic or mathematical operations. Table 2-7 lists the system delimiters
and operators allowed by SQL.

Table 2-7. SQL delimiters and operators

Symbol Usage Example

+ Addition operator; in SQL Server, also serves
as a concatenation operator

On all database platforms:
SELECT MAX(emp_id) + 1
 FROM employee

- Subtraction operator; also serves as a range
indicator in CHECK constraints

As a subtraction operator:
SELECT MIN(emp_id) - 1
 FROM employee

As a range operator, in a CHECK constraint:
ALTER TABLE authors
 ADD CONSTRAINT authors_zip_num
 CHECK (zip LIKE '%[0-9]%')

* Multiplication operator SELECT salary * 0.05 AS 'bonus'
 FROM employee;

/ Division operator SELECT salary / 12 AS 'monthly'
 FROM employee;

= Equality operator SELECT *
 FROM employee
 WHERE lname = 'Fudd'

<, > Inequality operators (!= is a nonstandard
equivalent on several platforms)

On all platforms:
SELECT *
 FROM employee
 WHERE lname <> 'Fudd'

28 | Chapter 2: Foundational Concepts

<
<=

Less than operator
Less than or equal to operator

SELECT lname, emp_id,
 (salary * 0.05) AS bonus
 FROM employee
 WHERE (salary * 0.05) <= 10000
 AND exempt_status < 3

>
>=

Greater than operator
Greater than or equal to operator

SELECT lname, emp_id,
 (salary * 0.025) AS bonus
 FROM employee
 WHERE (salary * 0.025) > 10000
 AND exempt_status >= 4

() Used in expressions and function calls, to
specify order of operations, and as a
subquery delimiter

Expression:
SELECT (salary / 12) AS monthly
 FROM employee
 WHERE exempt_status >= 4

Function call:
SELECT SUM(travel_expenses)
 FROM "expense%%ratios"

Order of operations:
SELECT (salary / 12) AS monthly,

((salary / 12) / 2) AS biweekly
 FROM employee
 WHERE exempt_status >= 4

Subquery:
SELECT *
 FROM stores
 WHERE stor_id IN
 (SELECT stor_id FROM sales

WHERE ord_date > '01-JAN-2004')

% Wildcard attribute indicator SELECT *
 FROM employee
 WHERE lname LIKE 'Fud%'

, List item separator SELECT lname,
 fname,
 ssn,
 hire_date
 FROM employee
 WHERE lname = 'Fudd'

. Identifier qualifier separator SELECT *
 FROM scott.employee
 WHERE lname LIKE 'Fud%'

’ Character string indicators SELECT *
 FROM employee
 WHERE lname LIKE 'FUD%'
 OR fname = 'ELMER'

“ Quoted identifier indicators SELECT expense_date,
 SUM(travel_expense)
 FROM "expense%%ratios"
 WHERE expense_date
 BETWEEN '01-JAN-2004'
 AND '01-APR-2004'

Table 2-7. SQL delimiters and operators (continued)

Symbol Usage Example

SQL2003 and Platform-Specific Datatypes | 29

Foundational
Concepts

Keywords and Reserved Words

Just as certain symbols have special meaning and functionality within SQL,
certain words and phrases have special significance. SQL keywords are words
whose meanings are so closely tied to the operation of the RDBMS that they
should not be used for any other purpose; generally, they are words used in SQL
statements. Reserved words, on the other hand, do not have special significance
now, but they probably will in a future release. Note that these words can be used
as identifiers on most platforms, but they shouldn’t be. For example, the word
“SELECT” is a keyword and should not be used as a table name. To emphasize
the fact that keywords should not be used as identifiers but nevertheless could be,
the SQL standard calls them “nonreserved keywords.”

It is generally a good idea to avoid naming columns or tables after a
keyword that occurs in any major platform, because database appli-
cations are frequently converted from one platform to another.

Reserved words and keywords are not always words used in SQL statements; they
may also be words commonly associated with database technology. For example,
CASCADE is used to describe data manipulations that allow their actions, such as
a delete or update operation, to “flow down,” or cascade, to any subordinate
tables. Reserved words and keywords are widely published so that programmers
will not use them as identifiers that will, either now or at some later revision,
cause a problem.

SQL3 specifies its own list of reserved words and keywords, as do the database
platforms, because they each have their own extensions to the SQL command set.
The SQL standard keywords, as well as the keywords in the different vendor
implementations, are listed in the Appendix.

SQL2003 and Platform-Specific Datatypes
A table can contain one or many columns. Each column must be defined with a
datatype that provides a general classification of the data that the column will
store. In real-world applications, datatypes improve efficiency and provide some
control over how tables are defined and how the data is stored within a table.

-- Single-line comment delimiter (two dashes
followed by a space)

-- Finds all employees like Fudd, Fudge,
and Fudston
SELECT *
 FROM employee
 WHERE lname LIKE 'Fud%'

/*
*/

Beginning multiline comment delimiter
Ending multiline comment indicator

/* Finds all employees like Fudd, Fudge,
and Fudston */
SELECT *
 FROM employee
 WHERE lname LIKE 'Fud%'

Table 2-7. SQL delimiters and operators (continued)

Symbol Usage Example

30 | Chapter 2: Foundational Concepts

Using specific datatypes enables better, more understandable queries and helps
control the integrity of the data.

The tricky thing about SQL2003 datatypes is that they do not always map directly
to identical implementations in different platforms. Although the various plat-
forms specify “datatypes” that correspond to the SQL2003 datatypes, these are
not always true SQL2003 datatypes: for example, MySQL’s implementation of a
BIT datatype is actually identical to a CHAR(1) datatype value. Nonetheless, each
of the platform-specific datatypes is close enough to the standard to be both easily
understandable and job-ready.

The official SQL2003 datatypes (as opposed to platform-specific datatypes) fall
into the general categories described in Table 2-8. Note that the SQL2003 stan-
dard contains a few rarely used datatypes (ARRAY, MULTISET, REF, and ROW)
that are shown only in Table 2-8 and not discussed elsewhere in the book.

Table 2-8. SQL2003 categories and datatypes

Category
Example datatypes and
abbreviations Description

BINARY BINARY LARGE OBJECT (BLOB) This datatype stores binary string values in
hexadecimal format. Binary string values
are stored without reference to any char-
acter set and without any length limit.

BOOLEAN BOOLEAN This datatype stores truth values (either
TRUE or FALSE).

CHARACTER string types CHAR
CHARACTER VARYING (VARCHAR)

These datatypes can store any combination
of characters from the applicable character
set. The varying datatypes allow variable
lengths, while the other datatypes allow
only fixed lengths. Also, the variable-length
datatypes automatically trim trailing
spaces, while the other datatypes pad all
open space.

NATIONAL CHARACTER (NCHAR)
NATIONAL CHARACTER VARYING
(NCHAR VARYING)

The national character datatypes are
designed to support a particular implemen-
tation-defined character set.

CHARACTER LARGE OBJECT (CLOB) CHARACTER LARGE OBJECT and BINARY
LARGE OBJECT are collectively referred to as
large object string types.

NATIONAL CHARACTER LARGE OBJECT
(NCLOB)

Same as CHARACTER LARGE OBJECT, but
supports a particular implementation-
defined character set.

DATALINK DATALINK Defines a reference to a file or other
external data source that is not part of the
SQL environment.

INTERVAL INTERVAL Specifies a set of time values or span of
time.

COLLECTION ARRAY
MULTISET

ARRAY was offered in SQL99, and MULTISET
was added in SQL2003. Whereas an ARRAY
is a set-length, ordered collection of
elements, MULTISET is a variable-length,
unordered collection of elements. The
elements in an ARRAY and a MULTISET must
be of a predefined datatype.

SQL2003 and Platform-Specific Datatypes | 31

Foundational
Concepts

Not every database platform supports every ANSI SQL datatype. Table 2-9
compares datatypes across the five platforms. The table is organized by datatype
name. Be careful to look for footnotes when reading this table, because some plat-
forms support a datatype of a given name but implement it in a different way than
the ANSI standard and/or other vendors.

While the different platforms may support similarly named
datatypes, the details of their implementations may vary. The sec-
tions that follow this table list the specific requirements of each
platform’s datatypes.

NUMERIC INTEGER (INT)
SMALLINT
BIGINT
NUMERIC(p,s)
DEC[IMAL](p,s)
FLOAT(p,s)
REAL
DOUBLE PRECISION

These datatypes store exact numeric values
(integers or decimals) or approximate
(floating-point) values. INT, BIGINT, and
SMALLINT store exact numeric values with a
predefined precision and a scale of zero.
NUMERIC and DEC store exact numeric
values with a definable precision and a
definable scale. FLOAT stores approximate
numeric values with a definable precision,
while REAL and DOUBLE PRECISION have
predefined precisions. You may define a
precision (p) and scale (s) for a DECIMAL,
FLOAT, or NUMERIC datatype to indicate the
total number of allowed digits and the
number of decimal places, respectively.
INT, SMALLINT, and DEC are sometimes
referred to as exact numeric types, while
FLOAT, REAL, and DOUBLE PRECISION are
sometimes called approximate numeric
types.

TEMPORAL DATE
TIME
TIME WITH TIME ZONE
TIMESTAMP
TIMESTAMP WITH TIME ZONE

These datatypes handle values related to
time. DATE and TIME are self-explanatory.
Datatypes with the WITH TIME ZONE suffix
also include a time zone offset. The TIMES-
TAMP datatypes are used to store a value
that represents a precise moment in time.
Temporal types are also known as datetime
types.

XML XML Stores XML data and can be used wherever
a SQL datatype is allowed (e.g., for a
column of a table, a field in a row, etc.).
Operations on the values of an XML type
assume a tree-based internal data struc-
ture. The internal data structure is based on
the XML Information Set Recommendation
(Infoset), using a new document informa-
tion item called the XML root information
item.

Table 2-8. SQL2003 categories and datatypes (continued)

Category
Example datatypes and
abbreviations Description

32 | Chapter 2: Foundational Concepts

Table 2-9. Comparison of platform-specific datatypes

Vendor datatype MySQL Oracle PostgreSQL SQL Server SQL2003 datatype

BFILE Y None

BIGINT Y Y Y BIGINT

BINARY Y Y BLOB

BINARY_FLOAT Y FLOAT

BINARY_DOUBLE Y DOUBLE PRECISION

BIT Y Y Y None

BIT VARYING, VARBIT Y None

BLOB Y Y BLOB

BOOL, BOOLEAN Y Y BOOLEAN

BOX Y None

BYTEA Y BLOB

CHAR, CHARACTER Y Y Y Y CHARACTER

CHAR FOR BIT DATA None

CIDR Y None

CIRCLE Y None

CLOB Y CLOB

CURSOR Y None

DATALINK DATALINK

DATE Y Y Y Y DATE

DATETIME Y Y TIMESTAMP

DATETIMEOFFSET Y TIMESTAMP

DATETIME2 Y TIMESTAMP WITH
TIME ZONE

DBCLOB NCLOB

DEC, DECIMAL Y Y Y Y DECIMAL

DOUBLE, DOUBLE
PRECISION

Y Y Ya Y FLOAT

ENUM Y Y None

FLOAT Y Y Y Y DOUBLE PRECISION

FLOAT4 Yb FLOAT(p)

FLOAT8 Yc FLOAT(p)

GRAPHIC BLOB

GEOGRAPHY Y None

GEOMETRY Y None

HIERARCHYID Y None

IMAGE Y None

INET Y None

INT, INTEGER Y Y Y Y INTEGER

INT2 Y SMALLINT

INT4 Y INT, INTEGER

INTERVAL Y INTERVAL

SQL2003 and Platform-Specific Datatypes | 33

Foundational
Concepts

INTERVAL DAY TO
SECOND

Y Y INTERVAL DAY TO
SECOND

INTERVAL YEAR TO
MONTH

Y Y INTERVAL YEAR TO
MONTH

LINE Y None

LONG Y None

LONG VARCHAR None

LONGBLOB Y BLOB

LONG RAW Y BLOB

LONG VARGRAPHIC None

LONGTEXT Y None

LSEG Y None

MACADDR Y None

MEDIUMBLOB Y None

MEDIUMINT Y INT

MEDIUMTEXT Y None

MONEY Yd Y None

NATIONAL CHAR-
ACTER VARYING,
NATIONAL CHAR
VARYING, NCHAR
VARYING,
NVARCHAR

Y Y Y Y NATIONAL CHAR-
ACTER VARYING

NCHAR, NATIONAL
CHAR, NATIONAL
CHARACTER

Y Y Y Y NATIONAL
CHARACTER

NCLOB Y NCLOB

NTEXT, NATIONAL
TEXT

Y NCLOB

NVARCHAR2(n) Y None

NUMBER Y Y Ye Y None

NUMERIC Y NUMERIC

OID Y None

PATH Y None

POINT Y None

POLYGON Y None

RAW Y None

REAL Y Y Y Y REAL

ROWID Y None

ROWVERSION Y None

SERIAL, SERIAL4 Yf Y None

SERIAL8, BIGSERIAL Y None

SET Y None

SMALLDATETIME Y None

Table 2-9. Comparison of platform-specific datatypes (continued)

Vendor datatype MySQL Oracle PostgreSQL SQL Server SQL2003 datatype

34 | Chapter 2: Foundational Concepts

The following sections list platform-specific datatypes, their SQL2003 datatype
categories (if any), and pertinent details. Descriptions are provided for non-
SQL2003 datatypes.

SMALLINT Y Y Y Y SMALLINT

SMALLMONEY Y None

SQL_VARIANT Y None

TABLE Y None

TEXT Y Y Y None

TIME Y Y Y TIME

TIMESPAN INTERVAL

TIMESTAMP Y Y Y Yg TIMESTAMP

TIMESTAMP WITH
TIME ZONE,
TIMESTAMPTZ

Y TIMESTAMP WITH
TIME ZONE

TIMETZ Y TIME WITH TIME
ZONE

TINYBLOB Y Y None

TINYINT Y Y None

TINYTEXT Y None

UNIQUEIDENTIFIER Y None

UROWID Y None

VARBINARY Y Y BLOB

VARCHAR, CHAR
VARYING,
CHARACTER VARYING

Y Yh Y Y CHARACTER
VARYING(n)

VARCHAR2 Y CHARACTER VARYING

VARCHAR FOR BIT
DATA

BIT VARYING

VARGRAPHIC NCHAR VARYING

YEAR Y TINYINT

XML Y Y XML

XMLTYPE Y XML

a Synonym for FLOAT.
b Synonym for REAL.
c Synonym for DOUBLE PRECISION.
d Synonym for DECIMAL(9,2).
e Synonym for DECIMAL.
f Synonym for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.
g Implemented as a non-date datatype.
h Oracle vastly prefers VARCHAR2.

Table 2-9. Comparison of platform-specific datatypes (continued)

Vendor datatype MySQL Oracle PostgreSQL SQL Server SQL2003 datatype

SQL2003 and Platform-Specific Datatypes | 35

Foundational
Concepts

MySQL Datatypes

MySQL version 5.1 has support for spatial data, but not as datatypes. Spatial data
is handled in a variety of classes provided in the OpenGIS Geometry Model,
which is supported by the MyISAM, InnoDB, NDB, and ARCHIVE database
engines. Only MyISAM supports both spatial and non-spatial indexes; the other
database engines only support non-spatial indexes.

MySQL numeric datatypes support the following optional attributes:

UNSIGNED
The numeric value is assumed to be non-negative (positive or zero). For
fixed-point datatypes such as DECIMAL and NUMERIC, the space normally
used to show a positive or negative condition of the numeric value can be
used as part of the value, providing a little extra numeric range in the column
for these types. (There is no SIGNED optional attribute.)

ZEROFILL
Used for display formatting, this attribute tells MySQL that the numeric value
is padded to its full size with zeros rather than spaces. ZEROFILL automati-
cally forces the UNSIGNED attribute as well.

MySQL also enforces a maximum display size for columns of up to 255 charac-
ters. Columns longer than 255 characters are stored properly, but only 255
characters are displayed. Floating-point numeric datatypes may have a maximum
of 30 digits after the decimal point.

The following list enumerates the datatypes MySQL supports. These include most
of the SQL2003 datatypes, plus several additional datatypes used to contain lists
of values, as well as datatypes used for binary large objects (BLOBs). Datatypes
that extend the ANSI standard include TEXT, ENUM, SET, and MEDIUMINT.
Special datatype attributes that go beyond the ANSI standard include AUTO_
INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL. The datatypes
supported by MySQL are:

BIGINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 datatype: BIGINT)
Stores signed or unsigned integers. The signed range is
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. The unsigned
range is 0 to 18,446,744,073,709,551,615. BIGINT may perform imprecise
calculations with very large numbers (63 bits), due to rounding issues.

BINARY[(n)] (SQL2003 datatype: BLOB)
Stores binary byte strings of optional length n. Otherwise, similar to the
CHAR datatype.

BIT, BOOL (SQL2003 datatype: none)
Synonyms for TINYINT.

BLOB (SQL2003 datatype: BLOB)
Stores up to 65,535 characters of data. Support for indexing BLOB columns
is found only in MySQL version 3.23.2 or greater (this feature is not found in
any other platform covered in this book). In MySQL, BLOBs are functionally
equivalent to the MySQL datatype VARCHAR BINARY (discussed later) with
the default upper limit. BLOBs always require case-sensitive comparisons.

36 | Chapter 2: Foundational Concepts

BLOB columns differ from MySQL VARCHAR BINARY columns by not
allowing DEFAULT values. You cannot perform a GROUP BY or ORDER BY
on BLOB columns. Depending on the storage engine being used, BLOBs also
are sometimes stored separately from their tables, whereas all other datatypes
in MySQL (with the exception of TEXT) are stored in the table file structure
itself.

CHAR(n) [BINARY], CHARACTER(n) [BINARY] (SQL2003 datatype:
CHARACTER(n))
Contains a fixed-length character string of 1 to 255 characters. CHAR pads
with blank spaces when it stores values but trims spaces upon retrieval, just
as ANSI SQL2003 VARCHAR does. The BINARY option allows binary
searches rather than dictionary-order, case-insensitive searches.

DATE (SQL2003 datatype: DATE)
Stores a date within the range of 1000-01-01 to 9999-12-31 (delimited by
quotes). MySQL displays these values by default in the format YYYY-MM-
DD, though the user may specify some other display format.

DATETIME (SQL2003 datatype: TIMESTAMP)
Stores date and time values within the range of 1000-01-01 00:00:00 to 9999-
12-31 23:59:59.

DECIMAL[(p[,s])] [ZEROFILL] (SQL2003 datatype: DECIMAL(PRECISION,
SCALE))
Stores exact numeric values as if they were strings, using a single character for
each digit. Precision is 10 if omitted, and scale is 0 if omitted.

DOUBLE[(p,s)] [ZEROFILL], DOUBLE PRECISION[(p,s)] [ZEROFILL]
(SQL2003 datatype: DOUBLE PRECISION)
Holds double-precision numeric values and is otherwise identical to the
double-precision FLOAT datatype, except for the fact that its allowable
range is –1.7976931348623157E+308 to –2.2250738585072014E–308, 0,
and 2.2250738585072014E–308 to 1.7976931348623157E+308.

ENUM(“val1,” “val2,” . . .n) [CHARACTER SET cs_name] [COLLATE
collation_name] (SQL2003 datatype: none)
Holds a list of allowable values (expressed as strings but stored as integers).
Other possible values for the datatype are NULL, or an empty string (“”) as
an error value. Up to 65,535 distinct values are allowed.

FLOAT[(p[,s])] [ZEROFILL] (SQL2003 datatype: FLOAT(P))
Stores floating-point numbers in the range –3.402823466E+38 to –1.
175494351E–38 and 1.175494351E–38 to 3.402823466E+38. FLOAT
without a precision, or with a precision of <= 24, is single-precision.
Otherwise, FLOAT is double-precision. When specified alone, the preci-
sion can range from 0 to 53. When you specify both precision and scale,
the precision may be as high as 255 and the scale may be as high as 253.
All FLOAT calculations in MySQL are done with double precision and
may, since FLOAT is an approximate datatype, encounter rounding errors.

SQL2003 and Platform-Specific Datatypes | 37

Foundational
Concepts

INT[EGER][(n)] [UNSIGNED] [ZEROFILL] [AUTO_INCREMENT] (SQL2003
datatype: INTEGER)
Stores signed or unsigned integers. For ISAM tables, the signed range is from
–2,147,483,648 to 2,147,483,647 and the unsigned range is from 0 to
4,294,967,295. The range of values varies slightly for other types of tables.
AUTO_INCREMENT is available to all of the INT variants; it creates a
unique row identity for all new rows added to the table. (Refer to the section
“CREATE/ALTER DATABASE Statement” in Chapter 3 for more informa-
tion on AUTO_INCREMENT.)

LONGBLOB (SQL2003 datatype: BLOB)
Stores BLOB data up to 4,294,967,295 characters in length. Note that this
might be too much information for some client/server protocols to support.

LONGTEXT [CHARACTER SET cs_name] [COLLATE collation_name]
(SQL2003 datatype: CLOB)
Stores TEXT data up to 4,294,967,295 characters in length (less if the charac-
ters are multibyte). Note that this might be too much data for some client/
server protocols to support.

MEDIUMBLOB (SQL2003 datatype: none)
Stores BLOB data up to 16,777,215 bytes in length. The first three bytes are
consumed by a prefix indicating the total number of bytes in the value.

MEDIUMINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 datatype: none)
Stores signed or unsigned integers. The signed range is from 8,388,608 to
–8,388,608, and the unsigned range is 0 to 16,777,215.

MEDIUMTEXT [CHARACTER SET cs_name] [COLLATE collation_name]
(SQL2003 datatype: none)
Stores TEXT data up to 16,777,215 characters in length (less if the characters
are multibyte). The first three bytes are consumed by a prefix indicating the
total number of bytes in the value.

NCHAR(n) [BINARY], [NATIONAL] CHAR(n) [BINARY] (SQL2003 datatype:
NCHAR(n))
Synonyms for CHAR. The NCHAR datatypes provide UNICODE support
beginning in MySQL v4.1.

NUMERIC(p,s) (SQL2003 datatype: DECIMAL(p,s))
Synonym for DECIMAL.

NVARCHAR(n) [BINARY], [NATIONAL] VARCHAR(n) [BINARY], NATIONAL
CHARACTER VARYING(n) [BINARY] (SQL2003 datatype: NCHAR
VARYING)
Synonyms for VARYING [BINARY]. Hold variable-length character strings
up to 255 characters in length. Values are stored and compared in a case-
insensitive fashion unless the BINARY keyword is used.

REAL(p,s) (SQL2003 datatype: REAL)
Synonym for DOUBLE PRECISION.

38 | Chapter 2: Foundational Concepts

SERIAL
Synonym for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT
UNIQUE.

SET(“val1,” “val2,” ...n) [CHARACTER SET cs_name] [COLLATE collation_name]
(SQL2003 datatype: none)
A CHAR datatype whose value must be equal to zero or more values speci-
fied in the list of values. Up to 64 items are allowed in the list of values.

SMALLINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 datatype: SMALLINT)
Stores signed or unsigned integers. The signed range is from –32,768 to
32,767, and the unsigned range is from 0 to 65,535.

TEXT (SQL2003 datatype: none)
Stores up to 65,535 characters of data. TEXT datatypes are sometimes stored
separately from their tables, depending on the storage engine used, whereas
all other datatypes (with the exception of BLOB) are stored in their respec-
tive table file structures. TEXT is functionally equivalent to VARCHAR with
no specific upper limit (besides the maximum size of the column), and it
requires case-insensitive comparisons. TEXT differs from a standard
VARCHAR column by not allowing DEFAULT values. TEXT columns
cannot be used in GROUP BY or ORDER BY clauses. In addition, support for
indexing TEXT columns is provided only in MySQL version 3.23.2 and
greater.

TIME (SQL2003 datatype: none)
Stores time values in the range of ‘–838:59:59’ to ‘838:59:59’, in the format
‘HH:MM:SS’. The values may be assigned as strings or numbers.

TIMESTAMP (SQL2003 datatype: TIMESTAMP)
Stores date values in the range of ‘1970-01-01 00:00:01’ to partway through
the year 2038. The values are expressed as the number of seconds since
‘1970-01-01 00:00:01’. Timestamp values are always displayed in the format
‘YYYY-MM-DD HH:MM:SS’.

TINYBLOB (SQL2003 datatype: BLOB)
Stores BLOB values of up to 255 bytes, the first byte being consumed by a
prefix indicating the total number of bytes in the value.

TINYTEXT (SQL2003 datatype: none)
Stores TEXT values of up to 255 characters (less if they are multibyte charac-
ters). The first byte is consumed by a prefix indicating the total number of
bytes in the value.

VARBINARY(n) (SQL2003 datatype: BLOB)
Stores variable-length binary byte strings of length n. Otherwise, similar to
the VARCHAR datatype.

YEAR (SQL2003 datatype: none)
Stores the year in a two- or four-digit (the default) format. Two-digit years
allow values of ‘70’ to ‘69’, meaning 1970 to 2069, while four-digit years
allow values of ‘1901’ to ‘2155’, plus ‘0000’. YEAR values are always
displayed in ‘YYYY’ format but may be assigned as strings or numbers.

SQL2003 and Platform-Specific Datatypes | 39

Foundational
Concepts

Oracle Datatypes

As you’ll see in this section, Oracle supports a rich variety of datatypes, including
most of the SQL3 datatypes and some special datatypes. The special datatypes,
however, often require optional components to be installed. For example, Oracle
supports spatial datatypes, but only if you have installed the Oracle Spatial add-
on. The Oracle Spatial datatypes, including SDO_GEOMETRY, SDO_TOPO_
GEOMETRY, and SDO_GEORASTER, are beyond the scope of this book. Refer
to the Oracle Spatial documentation for further details on these types.

Oracle Multimedia datatypes use object types, similar to Java or C++ classes for
multimedia data. Oracle Multimedia datatypes include ORDAudio, ORDImage,
ORDVideo, ORDDoc, ORDDicom, SI_Stillimage, SI_Color, SI_AverageColor, SI_
ColorHistogram, SI_PositionalColor, SI_Texture, SI_FeatureList, and
ORDImageSignature.

Oracle also supports “Any Types” datatypes. These highly flexible datatypes are
intended for use as procedure parameters and as table columns where the actual
type is unknown. The Any Type datatypes are ANYTYPE, ANYDATA, and
ANYDATASET.

A complete listing of the Oracle datatypes follows:

BFILE (SQL2003 datatype: DATALINK)
Holds a pointer to a BLOB stored outside the database, but present on the
local server, of up to 4 GB in size. The database streams input (but not
output) access to the external BLOB. If you delete a row containing a BFILE
value, only the pointer value is deleted; the actual file structure is not deleted.

BINARY_DOUBLE (SQL2003 datatype: FLOAT)
Holds a 64-bit floating-point number.

BINARY_FLOAT (SQL2003 datatype: FLOAT)
Holds a 32-bit floating-point number.

BLOB (SQL2003 datatype: BLOB)
Holds a binary large object (BLOB) value of between 8 and 128 terabytes in
size, depending on the database block size. In Oracle, large binary objects
(BLOBs, CLOBs, and NCLOBs) have the following restrictions:

• They cannot be selected remotely.

• They cannot be stored in clusters.

• They cannot compose a varray.

• They cannot be a component of an ORDER BY or GROUP BY clause in
a query.

• They cannot be used by an aggregate function in a query.

• They cannot be referenced in queries using DISTINCT, UNIQUE, or joins.

• They cannot be referenced in ANALYZE...COMPUTE or ANALYZE...
ESTIMATE statements.

• They cannot be part of a primary key or index key.

• They cannot be used in the UPDATE OF clause in an UPDATE trigger.

40 | Chapter 2: Foundational Concepts

CHAR(n) [BYTE | CHAR], CHARACTER(n) [BYTE | CHAR] (SQL2003 datatype:
CHARACTER(n))
Holds fixed-length character data of up to 2,000 bytes in length. BYTE tells
Oracle to use bytes for the size measurement. CHAR tells Oracle to use char-
acters for the size measurement.

CLOB (SQL2003 datatype: CLOB)
Stores a character large object (CLOB) value of between 8 and 128 terabytes
in size, depending on the database block size. See the description of the
BLOB datatype for a list of restrictions on the use of the CLOB type.

DATE (SQL2003 datatype: DATE)
Stores a valid date and time within the range of 4712BC-01-01 00:00:00 to
9999AD-12-31 23:59:59.

DECIMAL(p,s) (SQL2003 datatype: DECIMAL(p,s))
A synonym for NUMBER that accepts precision and scale arguments.

DOUBLE PRECISION (SQL2003 datatype: DOUBLE PRECISION)
Stores floating-point values with double precision, the same as FLOAT(126).

FLOAT(n) (SQL2003 datatype: FLOAT(n))
Stores floating-point numeric values with a binary precision of up to 126.

INTEGER(n) (SQL2003 datatype: INTEGER)
Stores signed and unsigned integer values with a precision of up to 38.
INTEGER is treated as a synonym for NUMBER.

INTERVAL DAY(n) TO SECOND(x) (SQL2003 datatype: INTERVAL)
Stores a time span in days, hours, minutes, and seconds, where n is the
number of digits in the day field (values from 0 to 9 are acceptable, and 2 is
the default) and x is the number of digits used for fractional seconds in the
seconds field (values from 0 to 9 are acceptable, and 6 is the default).

INTERVAL YEAR(n) TO MONTH (SQL2003 datatype: INTERVAL)
Stores a time span in years and months, where n is the number of digits in the
year field. The value of n can range from 0 to 9, with a default of 2.

LONG (SQL2003 datatype: none)
Stores variable-length character data of up to 2 gigabytes in size. Note,
however, that LONG is not scheduled for long-term support by Oracle. Use
another datatype, such as CLOB, instead of LONG whenever possible.

LONG RAW (SQL2003 datatype: none)
Stores raw variable-length binary data of up to 2 gigabytes in size. LONG
RAW and RAW are typically used to store graphics, sounds, documents, and
other large data structures. BLOB is preferred over LONG RAW in Oracle,
because there are fewer restrictions on its use. LONG RAW is deprecated.

NATIONAL CHARACTER VARYING(n), NATIONAL CHAR VARYING(n),
NCHAR VARYING(n) (SQL2003 datatype: NCHAR VARYING (n))
Synonyms for NVARCHAR2.

SQL2003 and Platform-Specific Datatypes | 41

Foundational
Concepts

NCHAR(n), NATIONAL CHARACTER(n), NATIONAL CHAR(n) (SQL2003
datatype: NATIONAL CHARACTER)
Holds UNICODE character data of 1 to 2,000 bytes in length. Default size is
1 byte.

NCLOB (SQL2003 datatype: NCLOB)
Represents a CLOB that supports multibyte and UNICODE values of
between 8 and 128 terabytes in size, depending on the database block size.
See the description of the BLOB datatype for a list of restrictions on the use
of the NCLOB type.

NUMBER(p,s), NUMERIC(p,s) (SQL2003 datatype: NUMERIC(p,s))
Stores a number with a precision of 1 to 38 and a scale of –84 to 127.

NVARCHAR2(n) (SQL2003 datatype: none)
Represents Oracle’s preferred UNICODE variable-length character datatype.
Can hold data of 1 to 4,000 bytes in size.

RAW(n) (SQL2003 datatype: none)
Stores raw, variable-length binary data of up to 2,000 bytes in size. The value
n is the specified size of the datatype. RAW is also deprecated in Oracle 11g.
(See LONG RAW.)

REAL (SQL2003 datatype: REAL)
Stores floating-point values as single-precision. Same as FLOAT(63).

ROWID (SQL2003 datatype: none)
Represents a unique, base-64 identifier for each row in a table, often used in
conjunction with the ROWID pseudocolumn.

SMALLINT (SQL2003 datatype: SMALLINT)
Synonym for INTEGER.

TIMESTAMP(n) {[WITH TIME ZONE] | [WITH LOCAL TIME ZONE]}
(SQL2003 datatype: TIMESTAMP[WITH TIME ZONE])
Stores a full date and time value, where n is the number of digits (values from
0 to 9 are acceptable, and 6 is the default) in the fractional part of the seconds
field. WITH TIME ZONE stores whatever time zone you pass to it (the
default is your session time zone) and returns a time value in that same time
zone. WITH LOCAL TIME ZONE stores data in the time zone of the current
session and returns data in the time zone of the user’s session.

UROWID[(n)] (SQL2003 datatype: none)
Stores a base-64 value showing the logical address of the row in its table.
Defaults to 4,000 bytes in size, but you may optionally specify a size of
anywhere up to 4,000 bytes.

VARCHAR(n), CHARACTER VARYING(n), CHAR VARYING(n) (SQL2003
datatype: CHARACTER VARYING(n))
Holds variable-length character data of 1 to 4,000 bytes in size.

42 | Chapter 2: Foundational Concepts

Oracle does not recommend using VARCHAR and has for many
years instead encouraged the use of VARCHAR2.

VARCHAR2(n [BYTE | CHAR]) (SQL2003 datatype: CHARACTER VARYING(n))
Holds variable-length character data of up to 4,000 bytes in length, as defined
by n. BYTE tells Oracle to use bytes for the size measurement. CHAR tells
Oracle to use characters for the size measurement. If you use CHAR, Oracle
internally must still transform that into some number of bytes, which is then
subject to the 4,000-byte upper limit.

XMLTYPE (SQL2003 datatype: XML)
Stores XML data within the Oracle database. The XML data is accessed using
XPath expressions as well as a number of built-in XPath functions, SQL func-
tions, and PL/SQL packages. The XMLTYPE datatype is a system-defined
type, so it is usable as an argument in functions, or as the datatype of a
column in a table or view. When used in a table, the data can be stored in a
CLOB column or object-relationally.

PostgreSQL Datatypes

The PostgreSQL database supports most SQL2003 datatypes, plus an extremely
rich set of datatypes that store spatial and geometric data. PostgreSQL sports a
rich set of operators and functions especially for the geometric datatypes,
including capabilities such as rotation, finding intersections, and scaling. It also
supports additional versions of existing datatypes that are smaller and take up less
disk space than their corresponding primary datatypes. For example, PostgreSQL
offers several variations on INTEGER to accommodate small or large numbers
and thereby consume proportionally less or more space. Here’s a list of the
datatypes it supports:

BIGINT, INT8 (SQL2003 datatype: none)
Stores signed or unsigned 8-byte integers within the range of
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

BIGSERIAL
See SERIALS.

BIT (SQL2003 datatype: BIT)
Stores a fixed-length bit string.

BIT VARYING(n), VARBIT(n) (SQL2003 datatype: BIT VARYING)
Stores a variable-length bit string whose length is denoted by n.

BOOL, BOOLEAN (SQL2003 datatype: BOOLEAN)
Stores a logical Boolean (true/false/unknown) value. The keywords TRUE
and FALSE are preferred, but PostgreSQL supports the following valid literal
values for the “true” state: TRUE, t, true, y, yes, and 1. Valid “false” values
are: FALSE, f, false, n, no, and 0.

SQL2003 and Platform-Specific Datatypes | 43

Foundational
Concepts

BOX((x1, y1), (x2, y2)) (SQL2003 datatype: none)
Stores the values of a rectangular box in a 2D plane. Values are stored in 32
bytes and are represented as ((x1, y1), (x2, y2)), signifying the opposite
corners of the box (upper-right and lower-left corners, respectively). The
outer parentheses are optional.

BYTEA (SQL2003 datatype: BINARY LARGE OBJECT)
Holds raw, binary data; typically used to store graphics, sounds, or docu-
ments. For storage, this datatype requires 4 bytes plus the actual size of the
binary string.

CHAR(n), CHARACTER(n) (SQL2003 datatype: CHARACTER(n))
Contains a fixed-length character string padded with spaces up to a length of
n. Attempting to insert a value longer than n results in an error (unless the
extra length is composed of spaces, which are then truncated such that the
result fits in n characters).

CIDR(x.x.x.x/y) (SQL2003 datatype: none)
Describes an IP version 4 (IPv4) network or host address in a 12-byte storage
space. The range is any valid IPv4 network address. Data in CIDR datatypes
is represented as x.x.x.x/y, where the xs are the IP address and y is the
number of bits in the netmask. CIDR does not accept nonzero bits to the
right of a zero bit in the netmask.

CIRCLE(x, y, r) (SQL2003 datatype: none)
Describes a circle in a 2D plane. Values are stored in 24 bytes of storage space
and are represented as (x, y, r). The x, y value represents the coordinates of
the center of the circle, while r represents the length of the radius. Paren-
theses or arrow brackets may optionally delimit the values for x, y, and r.

DATE (SQL2003 datatype: DATE)
Holds a calendar date (year, day, and month) without the time of day in a 4-
byte storage space. Dates must be between 4713 BC and 32767 AD. DATE’s
lowest resolution, naturally, is to the day.

DECIMAL[(p,s)], NUMERIC[(p,s)] (SQL2003 datatype: DECIMAL(p,s),
NUMERIC(p,s))
Stores exact numeric values with a precision (p) in the range of 0 to 9 and a
scale (s) of 0, with no upper limit.

FLOAT4, REAL (SQL2003 datatype: FLOAT(p))
Stores floating-point numbers with a precision of 0 to 8 and 6 decimal places.

FLOAT8, DOUBLE PRECISION (SQL2003 datatype: FLOAT(p), 7 <= p < 16)
Stores floating-point numbers with a precision of 0 to 16 and 15 decimal
places.

INET(x.x.x.x/y) (SQL2003 datatype: none)
Stores an IP version 4 network or host address in a 12-byte storage space. The
range is any valid IPv4 network address. The xs represent the IP address, and
y is the number of bits in the netmask. The netmask defaults to 32. Unlike
CIDR, INET accepts nonzero bits to the right of the netmask.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

44 | Chapter 2: Foundational Concepts

INTEGER, INT, INT4 (SQL2003 datatype: INTEGER)
Stores signed or unsigned 4-byte integers within the range of –2,147,483,648
to 2,147,483,647.

INTERVAL(p) (SQL2003 datatype: none)
Holds general-use time-span values within the range of –178,000,000 to
178,000,000 years in a 12-byte storage space. INTERVAL’s lowest resolution
is to the microsecond. This is a different datatype than the ANSI standard,
which requires an interval qualifier such as INTERVAL YEAR TO MONTH.

LINE((x1, y1), (x2, y2)) (SQL2003 datatype: none)
Holds line data, without endpoints, in 2D plane values. Values are stored in
32 bytes and are represented as ((x1, y1), (x2, y2)), indicating the start and
end points of a line. The enclosing parentheses are optional for line syntax.

LSEG((x1, y1), (x2, y2)) (SQL2003 datatype: none)
Holds line segment (LSEG) data, with endpoints, in a 2D plane. Values are
stored in 32 bytes and are represented as ((x1, y1), (x2, y2)). The outer
parentheses are optional for LSEG syntax. For those who are interested, the
“line segment” is what most people traditionally think of as a line. For
example, the lines on a playing field are actually line segments.

In true geometric nomenclature, a line stretches to infinity, having
no terminus at either end, while a line segment has end points.
PostgreSQL has datatypes for both, but they are functionally
equivalent.

MACADDR (SQL2003 datatype: none)
Holds a value for the MAC address of a computer’s network interface card in
a 6-byte storage space. MACADDR accepts a number of industry standard
representations, such as:

08002B:010203
08002B-010203
0800.2B01.0203
08-00-2B-01-02-03
08:00:2B:01:02:03

MONEY, DECIMAL(9,2) (SQL2003 datatype: none)
Stores U.S.-style currency values in the range of –21,474,836.48 to
21,474,836.47.

NUMERIC[(p,s)], DECIMAL[(p,s)] (SQL2003 datatype: none)
Stores exact numeric values with a precision (p) and scale (s).

OID (SQL2003 datatype: none)
Stores unique object identifiers.

SQL2003 and Platform-Specific Datatypes | 45

Foundational
Concepts

PATH((x1, y1), .. .n), PATH[(x1, y1), .. .n] (SQL2003 datatype: none)
Describes an open and closed geometric path in a 2D plane. Values are repre-
sented as [(x1, y1), ...n] and consume 4 + 32n bytes of storage space. Each (x, y)
value represents a point on the path. Paths are either open, where the first
and last points do not intersect, or closed, where the first and last points do
intersect. Parentheses are used to encapsulate closed paths, while brackets
encapsulate open paths.

POINT(x, y) (SQL2003 datatype: none)
Stores values for a geometric point in a 2D plane in a 16-byte storage space.
Values are represented as (x, y). The point is the basis for all other two-
dimensional spatial datatypes supported in PostgreSQL. Parentheses are
optional for point syntax.

POLYGON((x1, y1), .. .n) (SQL2003 datatype: none)
Stores values for a closed geometric path in a 2D plane using 4 + 32n bytes of
storage. Values are represented as ((x1,y1), .. .n); the enclosing parentheses
are optional. POLYGON is essentially a closed-path datatype.

SERIAL, SERIAL4 (SQL2003 datatype: none)
Stores an autoincrementing, unique integer ID for indexing and cross-
referencing. Can contain up to 4 bytes of data (a range of numbers from 1 to
2,147,483,647). Tables defined with this datatype cannot be directly
dropped: you must first issue the DROP SEQUENCE command, then follow
up with the DROP TABLE command.

SERIAL8, BIGSERIAL (SQL2003 datatype: none)
Stores an autoincrementing, unique integer ID for indexing and cross-
referencing. Can contain up to 8 bytes of data (a range of numbers from 1 to
9,223,372,036,854,775,807). Tables defined with this datatype cannot be
directly dropped: you must first issue the DROP SEQUENCE command,
then follow up with the DROP TABLE command.

SMALLINT (SQL2003 datatype: SMALLINT)
Stores signed or unsigned 2-byte integers within the range of –32,768 to
32,767. INT2 is a synonym.

TEXT (SQL2003 datatype: CLOB)
Stores large, variable-length character-string data of up to 1 gigabyte.
PostgreSQL automatically compresses TEXT strings, so the disk size may be
less than the string size.

TIME[(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (SQL2003 datatype:
TIME)
Holds the time of day and stores either no time zone (using 8 bytes of storage
space) or the time zone of the database server (using 12 bytes of storage
space). The allowable range is from 00:00:00.00 to 23:59:59.99. The lowest
granularity is 1 microsecond. Note that time zone information on most Unix
systems is available only for the years 1902 through 2038.

46 | Chapter 2: Foundational Concepts

TIMESTAMP[(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (SQL2003
datatype: TIMESTAMP [WITH TIME ZONE | WITHOUT TIME ZONE])
Holds the date and time and stores either no time zone or the time zone of
the database server. The range of values is from 4713 BC to 1465001 AD.
TIMESTAMP uses 8 bytes of storage space per value. The lowest granularity
is 1 microsecond. Note that time zone information on most Unix systems is
available only for the years 1902 through 2038.

 TIMETZ (SQL2003 datatype: TIME WITH TIME ZONE)
Holds the time of day, including the time zone.

VARCHAR(n), CHARACTER VARYING(n) (SQL2003 datatype: CHARACTER
VARYING(n))
Stores variable-length character strings of up to a length of n. Trailing spaces
are not stored.

SQL Server Datatypes

Microsoft SQL Server supports most SQL2003 datatypes, as well as some addi-
tional datatypes used to uniquely identify rows of data within a table and across
multiple servers, such as UNIQUEIDENTIFIER. These datatypes are included in
support of Microsoft’s hardware philosophy of “scale-out” (that is, deploying on
many Intel-based servers) rather than “scale-up” (deploying on a single huge,
high-end Unix server or a Windows Data Center Server).

Here’s an interesting side note about SQL Server dates: SQL Server
supports dates starting at the year 1753, and you can’t store dates
prior to that year using any of SQL Server’s date datatypes. Why
not? The rationale is that the English-speaking world started using
the Gregorian calendar in 1753 (the Julian calendar was used prior
to September, 1753), and converting dates prior to Julian to the
Gregorian calendar can be quite challenging.

The datatypes SQL Server supports are:

BIGINT (SQL2003 datatype: BIGINT)
Stores signed and unsigned integers in the range of
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, using 8 bytes of
storage space. See INT for IDENTITY property rules that also apply to
BIGINT.

BINARY[(n)] (SQL2003 datatype: BLOB)
Stores a fixed-length binary value of 1 to 8,000 bytes in size. BINARY
datatypes consume n + 4 bytes of storage space.

BIT (SQL2003 datatype: BOOLEAN)
Stores a value of 1, 0, or NULL (to indicate “unknown”). Up to eight BIT
columns on a single table will be stored in a single byte. An additional eight
BIT columns consume one more byte of storage space. BIT columns cannot
be indexed.

SQL2003 and Platform-Specific Datatypes | 47

Foundational
Concepts

CHAR[(n)], CHARACTER[(n)] (SQL2003 datatype: CHARACTER(n))
Holds fixed-length character data of 1 to 8,000 characters in length. Any
unused space is, by default, padded with spaces. (You can disable the auto-
matic padding.) Storage size is n bytes.

CURSOR (SQL2003 datatype: none)
A special datatype used to describe a cursor as a variable or stored procedure
OUTPUT parameter. It cannot be used in a CREATE TABLE statement. The
CURSOR datatype is always nullable.

DATE (SQL2003 datatype: DATE)
Holds a date in the range of January 1, 0001 AD to December 31, 9999 AD.

DATETIME (SQL2003 datatype: TIMESTAMP)
Holds a date and time within the range of 1753-01-01 00:00:00 through
9999-12-31 23:59:59. Values are stored in an 8-byte storage space.

DATETIME2 (SQL2003 datatype: TIMESTAMP)
Holds a date and time within the range of January 1, 0001 AD to December
31, 9999 AD, to an accuracy of 100 nanoseconds.

DATETIMEOFFSET (SQL2003 datatype: TIMESTAMP)
Holds a date and time within the range of January 1, 0001 AD to December
31, 9999 AD, to an accuracy of 100 nanoseconds. Also includes time zone
information. Values are stored in a 10-byte storage space.

DECIMAL(p,s), DEC(p,s), NUMERIC(p,s) (SQL2003 datatype: DECIMAL(p,s),
NUMERIC(p,s))
Stores decimal values up to 38 digits long. The values p and s define the preci-
sion and scale, respectively. The default value for the scale is 0. The precision
of the datatype determines how much storage space it will consume:

Precision 1–9 uses 5 bytes
Precision 10–19 uses 9 bytes
Precision 20–28 uses 13 bytes
Precision 29–39 uses 17 bytes

See INT for IDENTITY property rules that also apply to DECIMAL.

DOUBLE PRECISION (SQL2003 datatype: none)
Synonym for FLOAT(53).

FLOAT[(n)] (SQL2003 datatype: FLOAT, FLOAT(n))
Holds floating-point numbers in the range of –1.79E+308 through 1.79E+308.
The precision, represented by n, may be in the range of 1 to 53. The storage
size is 4 bytes for 7 digits, where n is in the range of 1 to 24. Anything larger
requires 8 bytes of storage.

HIERARCHYID (SQL2003 datatype: none)
Represents a hierarchy or tree structure within the relational data. Although it
may consume more space, HIERARCHYID will usually consume 5 bytes or
less. Refer to the vendor documentation for more information on this special
datatype.

48 | Chapter 2: Foundational Concepts

IMAGE (SQL2003 datatype: BLOB)
Stores a variable-length binary value of up to 2,147,483,647 bytes in length.
This datatype is commonly used to store graphics, sounds, and files such as
MS-Word documents and MS-Excel spreadsheets. IMAGE cannot be freely
manipulated; both IMAGE and TEXT columns have a lot of constraints on
how they can be used. See TEXT for a list of the commands and functions
that work on an IMAGE datatype.

INT [IDENTITY [(seed, increment)]] (SQL2003 datatype: INTEGER)
Stores signed or unsigned integers within the range of –2,147,483,648 to
2,147,483,647 in 4 bytes of storage space. All integer datatypes, as well as the
decimal type, support the IDENTITY property. An identity is an automati-
cally incrementing row identifier. Refer to the section “CREATE/ALTER
DATABASE Statement” in Chapter 3 for more information.

MONEY (SQL2003 datatype: none)
Stores monetary values within the range of –922,337,203,685,477.5808 to
922,337,203,685,477.5807, in an 8-byte storage space.

NCHAR(n), NATIONAL CHAR(n), NATIONAL CHARACTER(n) (SQL2003
datatype: NATIONAL CHARACTER(n))
Holds fixed-length UNICODE data of up to 4,000 characters in length. The
storage space consumed is double the character length inserted into the field
(2 * n).

NTEXT, NATIONAL TEXT (SQL2003 datatype: NCLOB)
Holds UNICODE text passages of up to 1,073,741,823 characters in length.
See TEXT for rules about the commands and functions available for NTEXT.

NUMERIC(p,s) (SQL2003 datatype: DECIMAL(p,s))
Synonym for DECIMAL. See INT for rules about the IDENTITY property
that also apply to this type.

NVARCHAR(n), NATIONAL CHAR VARYING(n), NATIONAL CHARACTER
VARYING(n) (SQL2003 datatype: NATIONAL CHARACTER VARYING(n))
Holds variable-length UNICODE data of up to 4,000 characters in length.
The storage space consumed is double the character length inserted into the
field (2 * n). The system setting SET ANSI_PADDING is always enabled
(ON) for NCHAR and NVARCHAR fields in SQL Server.

REAL, FLOAT(24) (SQL2003 datatype: REAL)
Holds floating-point numbers in the range of –3.40E+38 through 3.40E+38
in a 4-byte storage space. REAL is functionally equivalent to FLOAT(24).

ROWVERSION (SQL2003 datatype: none)
Stores a number that is unique within the database whenever a row in the
table is updated. Called TIMESTAMP in earlier versions.

SMALLDATETIME (SQL2003 datatype: none)
Holds a date and time within the range of ‘1900-01-01 00:00’ through ‘2079-
06-06 23:59’, accurate to the nearest minute. (Minutes are rounded down
when seconds are 29.998 or less; otherwise, they are rounded up.) Values are
stored in 4 bytes.

SQL2003 and Platform-Specific Datatypes | 49

Foundational
Concepts

SMALLINT (SQL2003 datatype: SMALLINT)
Stores signed or unsigned integers in the range of –32,768 and 32,767, in 2
bytes of storage space. See INT for rules about the IDENTITY property that
also apply to this type.

SMALLMONEY (SQL2003 datatype: none)
Stores monetary values within the range of –214,748.3648 to 214,748.3647,
in 4 bytes of storage space.

SQL_VARIANT (SQL2003 datatype: none)
Stores values of other SQL Server-supported datatypes, except TEXT,
NTEXT, ROWVERSION, and other SQL_VARIANT commands. Can store
up to 8,016 bytes of data and supports NULL and DEFAULT values. SQL_
VARIANT is used in columns, parameters, variables, and return values of
functions and stored procedures.

TABLE (SQL2003 datatype: none)
Special datatype that stores a result set for a later process. Used solely in
procedural processing, and cannot be used in a CREATE TABLE statement.
This datatype alleviates the need for temporary tables in many applications. It
can reduce the need for stored procedure recompiles, thus speeding execu-
tion of stored procedures and user-defined functions.

TEXT (SQL2003 datatype: CLOB)
Stores very large passages of text (up to 2,147,483,647 characters in length).
TEXT and IMAGE values are often more difficult to manipulate than, say,
VARCHAR values. For example, you cannot place an index on a TEXT or
IMAGE column. TEXT values valuescan be manipulated using the functions
DATALENGTH, PATINDEX, SUBSTRING, TEXTPTR, and TEXTVALID as
well as the commands READTEXT, SET TEXTSIZE, UPDATETEXT, and
WRITETEXT.

TIME (SQL2003 datatype: TIME)
Stores an automatically generated binary number that guarantees uniqueness
in the current database and is therefore different from the ANSI TIMESTAMP
datatype. TIMEs consume 8 bytes of storage space. ROWVERSION is now
preferred over TIME to uniquely track each row.

TIMESTAMP (SQL2003 datatype: TIMESTAMP)
Stores the time of day based on a 24-hour clock without time zone aware-
ness, to an accuracy of 100 nanoseconds, in a 5-byte storage space.

TINYINT (SQL2003 datatype: none)
Stores unsigned integers within the range 0 to 255 in 1 byte of storage space.
See INT for rules about the IDENTITY property that also apply to this type.

UNIQUEIDENTIFIER (SQL2003 datatype: none)
Represents a value that is globally unique across all databases and all servers.
Values are represented as xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where
each x is a hexadecimal digit in the range 0 to 9 or a to f. The only operations
allowed against UNIQUEIDENTIFIERs are comparisons and NULL checks.
Column constraints and properties are allowed on UNIQUEIDENTIFIER
columns, with the exception of the IDENTITY property.

50 | Chapter 2: Foundational Concepts

VARBINARY[(n)] (SQL2003 datatype: BLOB)
Describes a variable-length binary value of up to 8,000 bytes in size. The
storage space consumed is equivalent to the size of the data inserted, plus 4
bytes.

VARCHAR[(n)], CHAR VARYING[(n)], CHARACTER VARYING[(n)] (SQL2003
datatype: CHARACTER VARYING(n))
Holds fixed-length character data of 1 to 8,000 characters in length. The
amount of storage space required is determined by the actual size of the value
entered in bytes, not the value of n.

XML (SQL2003 datatype: XML)
Stores XML data in a column or a variable of variable size in storage space up
to but not exceeding 2 gigabytes in size.

Constraints
Constraints allow you to automatically enforce the integrity of data and to filter
the data that is placed in a database. In a sense, constraints are rules that define
which data values are valid during INSERT, UPDATE, and DELETE operations.
When a data-modification transaction breaks the rules of a constraint, the trans-
action is rejected.

In the ANSI standard, there are four constraint types: CHECK, PRIMARY KEY,
UNIQUE, and FOREIGN KEY. (The RDBMS platforms may allow more; refer to
Chapter 3 for details.)

Scope

Constraints may be applied at the column level or the table level:

Column-level constraints
Are declared as part of a column definition and apply only to that column.

Table-level constraints
Are declared independently from any column definitions (traditionally, at the
end of a CREATE TABLE statement) and may apply to one or more columns
in the table. A table constraint is required when you wish to define a
constraint that applies to more than one column.

Syntax

Constraints are defined when you create or alter a table. The general syntax for
constraints is shown here:

CONSTRAINT [constraint_name] constraint_type [(column[, ...])]
[predicate] [constraint_deferment] [deferment_timing]

The syntax elements are as follows:

Constraints | 51

Foundational
Concepts

CONSTRAINT [constraint_name]
Begins a constraint definition and, optionally, provides a name for the
constraint. When you omit constraint_name, the system will create a name
for you automatically. On some platforms, you may omit the CONSTRAINT
keyword as well.

System-generated names are often incomprehensible. It is good
practice to specify human-readable, sensible names for constraints.

constraint_type
Declares the constraint as one of the allowable types: CHECK, PRIMARY
KEY, UNIQUE, or FOREIGN KEY. More information about each type of
constraint appears later in this section.

column[, . . .]
Associates one or more columns with the constraint. Specify the columns in a
comma-delimited list, enclosed in parentheses. The column list should be
omitted for column-level constraints. Columns are not used in every
constraint. For example, CHECK constraints do not generally use column
references.

predicate
Defines a predicate for CHECK constraints.

constraint_deferment
Declares a constraint as DEFERRABLE or NOT DEFERRABLE. When a
constraint is deferrable, you can specify that it be checked for a rules viola-
tion at the end of a transaction. When a constraint is not deferrable, it is
checked for a rules violation at the conclusion of every SQL statement.

deferment_timing
Declares a deferrable constraint as INITIALLY DEFERRED or INITIALLY
IMMEDIATE. When set to INITIALLY DEFERRED, the constraint check
time will be deferred until the end of a transaction, even if the transaction is
composed of many SQL statements. In this case, the constraint must also be
DEFERRABLE. When set to INITIALLY IMMEDIATE, the constraint is
checked at the end of every SQL statement. In this case, the constraint may
be either DEFERRABLE or NOT DEFERRABLE. The default is INITIALLY
IMMEDIATE.

Note that this syntax may vary among the different vendor platforms. Check the
individual platform sections in Chapter 3 for more details.

PRIMARY KEY Constraints

A PRIMARY KEY constraint declares one or more columns whose values uniquely
identify each record in the table. It is considered a special case of the UNIQUE
constraint. Here are some rules about primary keys:

52 | Chapter 2: Foundational Concepts

• Only one primary key may exist on a table at a time.

• Columns in the primary key cannot have datatypes of BLOB, CLOB,
NCLOB, or ARRAY.

• Primary keys may be defined at the column level for a single column key or at
the table level if multiple columns make up the primary key.

• Values in the primary key column(s) must be unique and not NULL.

• In a multicolumn primary key, called a concatenated key, the combination of
values in all of the key columns must be unique and not NULL.

• Foreign keys can be declared that reference the primary key of a table to
establish direct relationships between tables (or possibly, though rarely,
within a single table).

The following ANSI standard code includes the options for creating both a table-
and column-level primary key constraint on a table called distributors. The first
example shows a column-level primary-key constraint, while the second shows a
table-level constraint:

-- Creating a column-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT);

-- Creating a table-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
CONSTRAINT pk_dist_id PRIMARY KEY (dist_id));

In the example showing a table-level primary key, we could easily have created a
concatenated key by listing several columns separated by commas.

FOREIGN KEY Constraints

A FOREIGN KEY constraint defines one or more columns in a table as refer-
encing columns in a unique or primary key in another table. (A foreign key can
reference a unique or primary key in the same table as the foreign key itself, but

Constraints | 53

Foundational
Concepts

such foreign keys are rare.) Foreign keys can then prevent the entry of data into a
table when there is no matching value in the related table. They are the primary
means of identifying the relationships between tables in a relational database.
Here are some rules about foreign keys:

• Many foreign keys may exist on a table at a time.

• A foreign key can be declared to reference either the primary key or a unique
key of another table to establish a direct relationship between the two tables.

The full SQL2003 syntax for foreign keys is more elaborate than the general
syntax for constraints shown earlier, and it’s dependent on whether you are
making a table-level or column-level declaration:

-- Table-level foreign key
[CONSTRAINT [constraint_name]]
FOREIGN KEY (local_column[, ...])
REFERENCES referenced_table [(referenced_column[, ...])]
[MATCH {FULL | PARTIAL | SIMPLE}]
[ON UPDATE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[ON DELETE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[constraint_deferment] [deferment_timing]

-- Column-level foreign key
[CONSTRAINT [constraint_name]]
REFERENCES referenced_table [(referenced_column[, ...])]
[MATCH {FULL | PARTIAL | SIMPLE}]
[ON UPDATE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[ON DELETE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[constraint_deferment] [deferment_timing]

The keywords common to a standard constraint declaration were described
earlier, in the “Syntax” section. Keywords specific to foreign keys are described in
the following list:

FOREIGN KEY (local_column[, . . .])
Declares one or more columns of the table being created or altered that are
subject to the foreign key constraint. This syntax is used only in table-level
declarations and is excluded from column-level declarations. We recom-
mend that the ordinal positions and datatypes of the columns in the local_
column list match the ordinal positions and datatypes of the columns in the
referenced_column list.

REFERENCES referenced_table [(referenced_column[, . . .])]
Names the table and, where appropriate, the column(s) that hold the valid
list of values for the foreign key. A referenced_column must already be named
in a NOT DEFERRABLE PRIMARY KEY or NOT DEFERRABLE UNIQUE
KEY statement. The table types must also match; for example, if one is a local
temporary table, both must be local temporary tables.

54 | Chapter 2: Foundational Concepts

MATCH {FULL | PARTIAL | SIMPLE}
Defines the degree of matching required between the local and referenced
columns in foreign-key constraints when NULLs are present:

FULL
Declares that a match is acceptable when: 1) none of the referencing
columns are NULL and match all of the values of the referenced column,
or 2) all of the referencing columns are NULL. In general, you should
either use MATCH FULL or ensure that all columns involved have NOT
NULL constraints.

PARTIAL
Declares that a match is acceptable when at least one of the referenced
columns is NULL and the others match the corresponding referenced
columns.

SIMPLE
Declares that a match is acceptable when any of the values of the refer-
encing column is NULL or a match. This is the default.

ON UPDATE
Specifies that, when an UPDATE operation affects one or more referenced
columns of the primary or unique key on the referenced table, a corre-
sponding action should be taken to ensure that the foreign key does not lose
data integrity. ON UPDATE may be declared independently of or together
with the ON DELETE clause. When omitted, the default for the ANSI stan-
dard is ON UPDATE NO ACTION.

ON DELETE
Specifies that, when a DELETE operation affects one or more referenced
columns of the primary or unique key on the referenced table, a corre-
sponding action should be taken to ensure that the foreign key does not lose
data integrity. ON DELETE may be declared independently of or together
with the ON UPDATE clause. When omitted, the default for the ANSI stan-
dard is ON DELETE NO ACTION.

 NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT
Defines the action the database takes to maintain the data integrity of the
foreign key when a referenced primary or unique key constraint value is
changed or deleted:

NO ACTION
Tells the database to do nothing when a primary key or unique key value
referenced by a foreign key is changed or deleted.

CASCADE
Tells the database to perform the same action (i.e., DELETE or
UPDATE) on the matching foreign key when a primary key or unique
key value is changed or deleted.

Constraints | 55

Foundational
Concepts

RESTRICT
Tells the database to prevent changes to the primary key or unique key
value referenced by the foreign key.

SET NULL
Tells the database to set the value in the foreign key to NULL when a
primary key or unique key value is changed or deleted.

SET DEFAULT
Tells the database to set the value in the foreign key to the default (using
default values you specify for each column) when a primary key or
unique key value is changed or deleted.

As with the code example for primary keys, you can adapt this generic syntax to
both column-level and table-level foreign key constraints. Note that column-level
and table-level constraints perform their function in exactly the same way; they
are merely defined at different levels of the CREATE TABLE command. In the
following example, we create a single-column foreign key on the salesrep column
referencing the empid column of the employee table. We create the foreign key
two different ways, the first time at the column level and the second time at the
table level:

-- Creating a column-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,

sales_rep INT NOT
NULL REFERENCES employee(empid));

-- Creating a table-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),
CONSTRAINT fk_empid
 FOREIGN KEY (sales_rep)

REFERENCES employee(empid));

56 | Chapter 2: Foundational Concepts

UNIQUE Constraints

A UNIQUE constraint, sometimes called a candidate key, declares that the values
in one column, or the combination of values in more than one column, must be
unique. Rules concerning unique constraints include:

• Columns in a unique key cannot have datatypes of BLOB, CLOB, NCLOB,
or ARRAY.

• The column or columns in a unique key may not be identical to those in any
other unique keys, or to any columns in the primary key of the table.

• A single NULL value, if the unique key allows NULL values, is allowed.

• SQL2003 allows you to substitute the column list shown in the general syn-
tax diagram for constraints with the keyword (VALUE). UNIQUE (VALUE)
indicates that all columns in the table are part of the unique key. The VALUE
keyword also disallows any other unique or primary keys on the table.

In the following example, we limit the number of distributors we do business with
to only one distributor per zip code. We also allow one (and only one) “catch-all”
distributor with a NULL zip code. This functionality can be implemented easily
using a UNIQUE constraint, either at the column or the table level:

-- Creating a column-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,

zip CHAR(5) UNIQUE,
 phone CHAR(12) ,
 sales_rep INT NOT NULL
 REFERENCES employee(empid));

-- Creating a table-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),
CONSTRAINT fk_emp_id FOREIGN KEY (sales_rep)
 REFERENCES employee(empid),
CONSTRAINT unq_zip UNIQUE (zip));

Constraints | 57

Foundational
Concepts

CHECK Constraints

CHECK constraints allow you to perform comparison operations to ensure that
values match specific conditions that you set out. The syntax for a check
constraint is very similar to the general syntax for constraints:

[CONSTRAINT] [constraint_name] CHECK (search_conditions)
[constraint_deferment] [deferment_timing]

Most of the elements of the check constraint were introduced earlier in this
section. The following element is unique to this constraint:

search_conditions
Specifies one or more search conditions that constrain the values inserted
into the column or table, using one or more expressions and a predicate.
Multiple search conditions may be applied to a column in a single check
constraint using the AND and OR operators (think of a WHERE clause).

A check constraint is considered matched when the search conditions evaluate to
TRUE or UNKNOWN. Check constraints are limited to Boolean operations (e.g.,
=, >=, <=, or <>), though they may include any SQL2003 predicate, such as IN or
LIKE. Check constraints may be appended to one another (when checking a
single column) using the AND and OR operators. Here are some other rules about
check constraints:

• A column or table may have one or more check constraints.

• A search condition cannot contain aggregate functions, except in a subquery.

• A search condition cannot use nondeterministic functions or subqueries.

• A check constraint can only reference like objects. That is, if a check con-
straint is declared on a global temporary table, it cannot then reference a
permanent table.

• A search condition cannot reference these ANSI functions: CURRENT_
USER, SESSION_USER, SYSTEM_USER, USER, CURRENT_PATH,
CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCAL-
TIME, and LOCALTIMESTAMP.

The following example adds a check constraint to the dist_id and zip columns.
(This example uses generic code run on SQL Server.) The zip code must fall into
the normal ranges for postal zip codes, while the dist_id values are allowed to
contain either four alphabetic characters or two alphabetic and two numeric
characters:

-- Creating column-level CHECK constraints
CREATE TABLE distributors

(dist_id CHAR(4)
CONSTRAINT pk_dist_id PRIMARY KEY
CONSTRAINT ck_dist_id CHECK

(dist_id LIKE '[A-Z][A-Z][A-Z][A-Z]' OR
dist_id LIKE '[A-Z][A-Z][0-9][0-9]'),

58 | Chapter 2: Foundational Concepts

 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2)
 CONSTRAINT def_st DEFAULT ("CA"),

zip CHAR(5)
CONSTRAINT unq_dist_zip UNIQUE
CONSTRAINT ck_dist_zip CHECK

(zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),
 phone CHAR(12),
 sales_rep INT
 NOT NULL DEFAULT USER REFERENCES employee(emp_id))

59

Chapter 3SQL Statement Commands

3
SQL Statement Command

Reference

This chapter is the heart of the book. It consists of an alphabetical listing of SQL
commands, with detailed explanations and examples. Each command and func-
tion is identified in Table 3-1 as being “supported,” “supported with variations,”
“supported with limitations,” or “not supported,” for each of the four SQL
dialects covered in this book: MySQL 5.1, Oracle Database 11g, PostgreSQL 8.2.1,
and Microsoft’s SQL Server 2008. After a brief description of the SQL2003 stan-
dard, each vendor application is discussed briefly but thoroughly, with supporting
examples. If a specific platform does not support a particular command, that fact
will be noted in the table that heads the command, and that command will not be
listed for that platform. Similarly, although this book is not a comprehensive
review of the SQL2003 standard, each command has been validated against that
standard.

How to Use This Chapter
When researching a command in this chapter:

1. Read “SQL Platform Support.”

2. Check the platform support table.

3. Read the section on the SQL2003 syntax and description, even if you are
looking for a specific platform implementation.

4. Finally, read the specific platform implementation information.

Any common features between the platform implementations of a command are
discussed and compared against the SQL2003 section. Thus, the subsection on a
platform’s implementation of a particular command may not describe every
aspect of that command, since some of its details may be covered in the SQL2003
section. Please note that if there is a keyword that appears in a command’s syntax
but not in its keyword description, this is because we chose not to repeat descrip-
tions that appear under the ANSI entry.

60 | Chapter 3: SQL Statement Command Reference

SQL Platform Support
Table 3-1 provides a listing of the SQL statements, the platforms that support
them, and the degree to which they support them. The following list offers useful
tips for reading Table 3-1, as well as an explanation of what each abbreviation
stands for:

1. The first column contains the SQL commands, in alphabetical order.

2. The SQL statement class for each command is indicated in the second
column.

3. The subsequent columns list the level of support for each vendor:

Supported (S)
The platform supports the SQL2003 standard for the particular
command.

Supported, with variations (SWV)
The platform supports the SQL2003 standard for the particular
command, using vendoor-specific code or syntax.

Supported, with limitations (SWL)
The platform supports some but not all of the functions specified by the
SQL2003 standard for the particular command.

 Not supported (NS)
The platform does not support the particular command according to the
SQL2003 standard.

The sections that follow the table describe the commands in detail. Related
CREATE and ALTER commands (e.g., CREATE DATABASE and ALTER DATA-
BASE) are discussed together (e.g., in a section titled “CREATE/ALTER
DATABASE Statement”).

Remember that even if a specific SQL2003 command is listed in the table as “Not
supported,” the platform usually has alternative coding or syntax to enact the
same command or function. Therefore, be sure to read the discussion and exam-
ples for each command later in this chapter. Likewise, a few of the commands in
Table 3-1 are not found in the SQL2003 standard; these have been indicated with
the term “Non-ANSI” under the heading “SQL2003 class” in the table.

There are also a few ANSI commands in the table (such as CREATE DOMAIN
and ALTER DOMAIN) that are not currently supported by any of the database
platforms covered in this text. Since this book focuses on the implementation of
the SQL language, unsupported ANSI commands are shown in Table 3-1 but are
not documented elsewhere in the book.

Table 3-1. Alphabetical quick SQL command reference

SQL2003
command SQL2003 class

MySQL
v5.1 Oracle v11g

PostgreSQL
v8.2.1

SQL
Server
2008

ALL/ANY/SOME SQL-data S S S S

BETWEEN SQL-data S S S S

SQL Platform Support | 61

SQLStatem
ent

Com
m

ands

ALTER
DATABASE

SQL-schema SWV SWV SWV SWV

ALTER
FUNCTION

SQL-schema SWL SWV SWL SWV

ALTER INDEX Non-ANSI SWV SWV SWV SWV

ALTER METHOD SQL-schema NS NS NS NS

ALTER
PROCEDURE

SQL-schema SWV SWV NS SWV

ALTER ROLE SQL-schema NS SWV SWV SWL

ALTER SCHEMA SQL-schema SWL NS SWL SWL

ALTER TABLE SQL-schema SWV SWV SWV SWV

ALTER TRIGGER Non-ANSI NS SWV SWV SWV

ALTER TYPE SQL-schema NS SWV NS NS

ALTER VIEW Non-ANSI SWV SWV SWV SWV

CALL SQL-control S SWV NS NS

CLOSE CURSOR SQL-data NS S S SWV

COMMIT SQL-transaction SWV SWV SWV SWV

CONNECT SQL-connection NS S NS SWV

CREATE
DATABASE

Non-ANSI SWV SWV SWV SWV

CREATE
FUNCTION

SQL-schema SWL SWV SWL SWV

CREATE INDEX Non-ANSI SWV SWV SWV SWV

CREATE
METHOD

SQL-schema NS NS NS NS

CREATE
PROCEDURE

SQL-schema SWV SWV NS SWV

CREATE ROLE SQL-schema NS SWV SWV SWL

CREATE SCHEMA SQL-schema SWL SWV SWL SWL

CREATE TABLE SQL-schema SWV SWV SWV SWV

CREATE TRIGGER SQL-schema SWL SWV SWV SWV

CREATE TYPE SQL-schema NS SWL SWV SWV

CREATE VIEW SQL-schema SWV SWV SWV SWV

DECLARE
CURSOR

SQL-data SWL SWL SWL SWL

DELETE SQL-data SWV SWV SWV SWV

DISCONNECT SQL-connection NS SWL NS SWL

DROP
DATABASE

Non-ANSI SWV S SWV SWV

DROP DOMAIN SQL-schema NS NS S NS

DROP FUNCTION SQL-schema SWV SWV SWV SWV

Table 3-1. Alphabetical quick SQL command reference (continued)

SQL2003
command SQL2003 class

MySQL
v5.1 Oracle v11g

PostgreSQL
v8.2.1

SQL
Server
2008

62 | Chapter 3: SQL Statement Command Reference

DROP INDEX Non-ANSI SWV SWV SWV SWV

DROP METHOD SQL-schema NS SWV NS NS

DROP
PROCEDURE

SQL-schema SWV S NS S

DROP ROLE SQL-schema NS SWV SWV SWV

DROP SCHEMA SQL-schema SWV SWV SWV SWV

DROP TABLE SQL-schema SWV SWV SWV SWV

DROP TRIGGER SQL-schema SWV SWV SWV SWV

DROP TYPE SQL-schema NS S S NS

DROP VIEW SQL-schema SWV S S S

EXCEPT SQL-data NS SWL SWL SWL

EXISTS SQL-data S S S S

FETCH SQL-data SWL SWL SWV SWV

GRANT SQL-schema SWV SWV SWV SWV

IN SQL-data S S S S

INSERT SQL-data SWV SWV SWV SWV

INTERSECT SQL-data NS SWL SWL SWL

IS SQL-data S S S S

JOIN SQL-data SWV S SWV SWL

LIKE SQL-data S S SWV S

MERGE SQL-data NS SWV NS SWV

OPEN SQL-data S S NS S

ORDER BY SQL-data SWL SWV SWV SWL

RELEASE
SAVEPOINT

SQL-transaction S NS S NS

RETURN SQL-control S S S S

REVOKE SQL-schema SWV SWV SWV SWV

ROLLBACK SQL-transaction SWL SWV SWV SWV

SAVEPOINT SQL-transaction S S S SWL

SELECT SQL-data SWV SWV SWV SWV

SET SQL-session S NS S S

SET CONNECTION SQL-connection NS NS NS SWL

SET CONSTRAINT SQL-connection NS SWV SWV NS

SET PATH SQL-session NS NS NS NS

SET ROLE SQL-session NS SWV NS NS

SET SCHEMA SQL-session NS NS NS NS

SET SESSION
AUTHORIZATION

SQL-session NS NS S NS

SET TIME ZONE SQL-session NS SWV SWL NS

Table 3-1. Alphabetical quick SQL command reference (continued)

SQL2003
command SQL2003 class

MySQL
v5.1 Oracle v11g

PostgreSQL
v8.2.1

SQL
Server
2008

Chapter 3: SQL Statement Command Reference | 63

SQLStatem
ent

Com
m

ands
ALL/ANY/SOME Operators

SQL Command Reference

ALL/ANY/SOME Operators

The ALL operator performs a Boolean test of a subquery for the existence of a value in
all rows. The ANY operator and its synonym SOME perform a Boolean test of a
subquery for the existence of a value in any of the rows tested.

SQL2003 Syntax
SELECT ...
WHERE expression comparison {ALL | ANY | SOME} (subquery)

Keywords
WHERE expression

Tests a scalar expression (such as a column) against every value in the subquery
for ALL, and against every value until a match is found for ANY and SOME. All
rows must match the expression to return a Boolean TRUE value for the ALL
operator, while one or more rows must match the expression to return a Boolean
TRUE value for the ANY and SOME operators.

comparison
Compares the expression to the subquery. The comparison must be a standard
comparison operator like =, <>, !=, >, >=, <, or <=.

SET
TRANSACTION

SQL-session SWV SWL S SWV

START
TRANSACTION

SQL-transaction SWL NS NS NS

SUBQUERY SQL-data SWL S S S

TRUNCATE
TABLE

In the SQL-data
style (not an
official SQL3
statement)

S S S S

UNION SQL-data NS SWL SWL SWL

UPDATE SQL-data SWV SWV SWV SWV

WHERE SQL-data S S S S

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

Table 3-1. Alphabetical quick SQL command reference (continued)

SQL2003
command SQL2003 class

MySQL
v5.1 Oracle v11g

PostgreSQL
v8.2.1

SQL
Server
2008

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

64 | Chapter 3: SQL Statement Command Reference

ALL/ANY/SOME Operators > All Platforms

Rules at a Glance
The ALL operator returns a Boolean TRUE value when one of two things happens:
either the subquery returns an empty set (i.e., no records), or every record in the set
meets the comparison. ALL returns FALSE when any record in the set does not match
the value comparison. The ANY and SOME operators return a Boolean TRUE when at
least one record in the subquery matches the comparison operation, and FALSE when
no record matches the comparison operation (or when a subquery returns an empty
result set). If even one return value of the subquery is NULL, the operation evaluates
as NULL, not as TRUE.

Do not include special clauses like ORDER BY, GROUP BY,
CUBE, ROLLUP, WITH, etc. in your subquery.

For example, this query returns authors who currently have no titles:

SELECT au_id
FROM authors
WHERE au_id <> ALL(SELECT au_id FROM titleauthor)

You can use ANY or SOME to perform filtering checks of different kinds. For example,
the following query will retrieve from the employees table any records that exist in the
employees_archive table where the employee has the same job_lvl as any employee
working in Anchorage, Alaska:

SELECT *
FROM employees
WHERE job_lvl = ANY(SELECT job_lvl FROM employees_archive
 WHERE city = 'Anchorage')

Programming Tips and Gotchas
The ALL and ANY/SOME operators are somewhat difficult to get used to. Most devel-
opers find it easier to use similar functions like IN and EXISTS.

EXISTS is semantically equivalent to the ANY/SOME operator.

MySQL
MySQL supports ALL and ANY/SOME in the manner described above, with the
exception of versions of MySQL prior to 4.0. On pre-v4.0 MySQL platforms, consider
using the IN operator instead of EXISTS for ANY/SOME.

Oracle
Oracle supports the ANSI standard versions of ALL and ANY/SOME with one minor
variation, which is that you can supply a list of values instead of a subquery. For
example, to find all employees who have a job_lvl value equal to 9 or 14:

SELECT * FROM employee
WHERE job_lvl = ALL(9, 14);

PostgreSQL
PostgreSQL supports ALL and ANY/SOME in the manner described above.

Chapter 3: SQL Statement Command Reference | 65

SQLStatem
ent

Com
m

ands
BETWEEN Operator> All Platforms

SQL Server
SQL Server supports the ANSI standard versions of ALL and ANY/SOME. It also
supports some additional comparison operators: not greater than (!>) and not less
than (!<).

See Also
BETWEEN
EXISTS
SELECT
WHERE

BETWEEN Operator

The BETWEEN operator performs a Boolean test of a value against a range of values.
It returns TRUE when the value is included in the range and FALSE when the value
falls outside of the range. The results are NULL (unknown) if any of the range values
are NULL.

SQL2003 Syntax
SELECT ...
WHERE expression [NOT] BETWEEN lower_range AND upper_range

Keywords
WHERE expression

Compares a scalar expression, such as a column, to the range of values bounded
by upper_range and lower_range.

[NOT] BETWEEN lower_range AND upper_range
Compares the expression to the lower_range and upper_range. The comparison is
inclusive, meaning that it is equivalent to saying “where expression is [not]
greater than or equal to lower_range and less than or equal to upper_range.”

Rules at a Glance
The BETWEEN operator is used to test an expression against a range of values. The
BETWEEN operator may be used with any datatype except BLOB, CLOB, NCLOB,
REF, and ARRAY.

For example, this query returns title_ids that have year-to-date sales of between
10,000 and 20,000:

SELECT title_id
FROM titles
WHERE ytd_sales BETWEEN 10000 AND 20000

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

66 | Chapter 3: SQL Statement Command Reference

CALL Statement

BETWEEN is inclusive of the range of values listed, so it includes the values 10,000
and 20,000 in the search. If you want an exclusive search, you must use the greater
than (>) and less than (<) symbols:

SELECT title_id
FROM titles
WHERE ytd_sales > 10000
 AND ytd_sales < 20000

The NOT operator allows you to search for values outside of the BETWEEN range.
For example, you can find all the title_ids that were not published during 2003:

SELECT title_id
FROM titles
WHERE pub_date NOT BETWEEN '01-JAN-2003'
 AND '31-DEC-2003'

Programming Tips and Gotchas
Some coders are very particular about how the keyword AND is used in WHERE
clauses. To prevent a casual reviewer from thinking that the AND used in a
BETWEEN operation is a logical AND operator, you might want to use parentheses to
encapsulate the entire BETWEEN clause:

SELECT title_id
FROM titles
WHERE (ytd_sales BETWEEN 10000 AND 20000)
 AND pubdate >= '1991-06-12 00:00:00.000'

Platform Differences
All of the platforms support BETWEEN in the manner described above.

See Also
ALL/ANY/SOME
EXISTS
SELECT
WHERE

CALL Statement

The CALL statement invokes a stored procedure.

SQL2003 Syntax
CALL procedure_name([parameter[, ...]])

Platform Command

MySQL Supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Not supported

Chapter 3: SQL Statement Command Reference | 67

SQLStatem
ent

Com
m

ands
CALL Statement > Oracle

Keywords
CALL procedure_name

Specifies the stored procedure that you want to invoke. It must be a previously
defined stored procedure that is available in the current user context (instance,
database, schema, etc.).

([parameter[, . . .]])
Provides values for each input parameter required by the stored procedure. Each
parameter listed is required by the stored procedure in the same ordinal position;
thus, the fifth parameter listed will provide the value for the fifth argument
required by the stored procedure. The parameters must be enclosed in paren-
theses and separated by commas. Note that the parentheses are required even if
there are no parameter values (e.g., if there are no parameter values, you must still
use CALL()). Strings should be enclosed in single quotes. If the stored procedure
has only OUT parameters, place host variables or parameter markers within the
parentheses.

Rules at a Glance
The CALL statement makes it easy to invoke a stored procedure. Simply provide the
name of the stored procedure and include any parameters used by the stored proce-
dure, enclosing them within parentheses.

This Oracle example creates a simple stored procedure, and then calls it:

CREATE PROCEDURE update_employee_salary
 (emp_id NUMBER, updated_salary NUMBER)
IS
BEGIN
 UPDATE employee SET salary = updated_salary
WHERE employee_id =emp_id;
END;
CALL update_employee_salary(1517, 95000);

Programming Tips and Gotchas
The return status of a called stored procedure can be found, typically, by using GET
DIAGNOSTIC. GET DIAGNOSTIC is not widely supported among the various data-
base platforms, so check the platform documentation for more details.

Many platforms also support an alternative command called EXECUTE to perform the
same functionality. In some cases you may prefer EXECUTE to CALL, since the
former can be used to execute any kind of prepared SQL, including methods, func-
tions, or batches of SQL code.

MySQL
MySQL supports the ANSI-standard form of the CALL statement.

Oracle
Oracle allows the CALL statement to invoke standalone stored procedures, functions,
and methods, as well as stored procedures and functions contained within a type or
package. Following is the Oracle syntax:

CALL [schema.][{type_name | package_name}.]procedure_name@dblink
[(parameter[, ...])]
[INTO :variable_name [[INDICATOR] :indicator_name]]

68 | Chapter 3: SQL Statement Command Reference

CALL Statement > PostgreSQL

where:

CALL [schema.][{type_name | package_name}.]procedure_name@dblink
Calls the named object. You may fully enumerate the object name, including the
schema, type, etc., or allow Oracle to assume the current schema and database
instance. If the procedure or function resides in another database, simply specify
the database via a database link name, shown as dblink in the syntax. dblink must
refer to a previously created database link.

INTO :variable_name
Specifies the name of a previously declared variable that will store the value
returned when you call a function. INTO is required, and only usable, when
calling a function.

INDICATOR :indicator_name
Retains the condition of the host variable (for example, whether the return value
is NULL) for functions precompiled in a Pro*C/C++ routine.

The parameters used in an Oracle CALL statement may not include pseudocolumns or
the VALUE or REF functions. You must use a host variable for any parameter that
corresponds to an OUT or IN OUT argument of the called stored procedure.

PostgreSQL
Not supported.

SQL Server
Not supported. Instead, use the non-ANSI EXECUTE statement.

See Also
CREATE/ALTER PROCEDURE

CLOSE CURSOR Statement

The CLOSE CURSOR statement closes a server-side cursor previously created with a
DECLARE CURSOR statement.

SQL2003 Syntax
CLOSE cursor_name

Keywords
cursor_name

Names a cursor previously created with the DECLARE CURSOR statement.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported, with variations

Chapter 3: SQL Statement Command Reference | 69

SQLStatem
ent

Com
m

ands
CLOSE CURSOR Statement > All Platforms

Rules at a Glance
The CLOSE statement closes a cursor and destroys the cursor result set. All the data-
base platforms release any locks that were held by the cursor, though this is not
specified in the ANSI standard. For example:

CLOSE author_names_cursor;

Programming Tips and Gotchas
You can also close a cursor implicitly using a COMMIT statement or, for cursors
defined with WITH HOLD, using a ROLLBACK statement.

MySQL
MySQL supports the ANSI-standard form of the statement.

Oracle
Oracle supports the ANSI-standard form of the statement.

PostgreSQL
PostgreSQL supports the ANSI-standard syntax. PostgreSQL issues an implicit CLOSE
statement for every open cursor when a transaction is ended with a COMMIT or
ROLLBACK statement.

SQL Server
Microsoft SQL Server supports the ANSI-standard syntax, and an additional GLOBAL
keyword:

CLOSE [GLOBAL] cursor_name

where:

GLOBAL
Identifies the previously defined cursor as a global cursor.

In the ANSI-standard behavior, closing a cursor destroys the cursor result set. Locking
is a physical feature of each database platform and thus not a part of the ANSI SQL
definition. However, all the database platforms covered here drop the locks taken up by
the cursor. Another physical implementation detail is that SQL Server does not auto-
matically reallocate memory structures consumed by a cursor to the memory pool. To
accomplish such reallocation, you must issue a DEALLOCATE cursor_name command.

This example from Microsoft SQL Server opens a cursor and fetches a result set of all
employees who have a last name starting with “K”:

DECLARE employee_cursor CURSOR FOR
 SELECT lname, fname
 FROM pubs.dbo.employee
 WHERE lname LIKE 'K%'
OPEN employee_cursor
FETCH NEXT FROM employee_cursor
WHILE @@FETCH_STATUS = 0
BEGIN
 FETCH NEXT FROM employee_cursor
END
CLOSE employee_cursor
DEALLOCATE employee_cursor
GO

70 | Chapter 3: SQL Statement Command Reference

COMMIT Statement

See Also
DECLARE CURSOR
FETCH
OPEN

COMMIT Statement

The COMMIT statement explicitly ends an open transaction and makes the changes
permanent in the database. Transactions can be opened implicitly as part of an
INSERT, UPDATE, or DELETE statement, or opened explicitly with a START state-
ment. In either case, an explicitly issued COMMIT statement will end the open
transaction.

SQL2003 Syntax
COMMIT [WORK] [AND [NO] CHAIN]

Keywords
COMMIT [WORK]

Ends the current, open transaction and writes any data manipulated by the trans-
action to the database. The optional keyword WORK is noise and has no effect.

AND [NO] CHAIN
AND CHAIN tells the DBMS to treat the next transaction as if it were a part of
the preceding transaction. In effect, the two transactions are separate units of
work, but they share a common transaction environment (such as transaction
isolation level). Including the optional NO keyword tells the DMBS to explicitly
use the ANSI default behavior. The COMMIT keyword by itself is functionally
equivalent to the statement COMMIT WORK AND NO CHAIN.

Rules at a Glance
For simple operations, you will execute transactions (that is, SQL code that manipu-
lates or changes data and objects in a database) without explicitly declaring a
transaction. However, all transactions are best managed by explicitly closing them
with a COMMIT statement. Because records and even entire tables can be locked for
the duration of a transaction, it is extremely important that transactions are completed
as quickly as possible. Thus, manually issuing a COMMIT statement with a transac-
tion can help control user concurrency issues and locking problems on the database.

Programming Tips and Gotchas
The most important gotcha to consider is that some database platforms perform auto-
matic and implicit transactions, while others require explicit transactions. If you
assume a platform uses one method of transactions over the other, you may get bitten.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Chapter 3: SQL Statement Command Reference | 71

SQLStatem
ent

Com
m

ands
COMMIT Statement > MySQL

Thus, when moving between database platforms you should follow a standard, preset
way of addressing transactions. We recommend always using explicit transactions
with START TRAN, on database platforms that support it, to begin a transaction, and
COMMIT or ROLLBACK to end a transaction.

In addition to finalizing a single or group of data-manipulation operation(s), COMMIT
has some interesting effects on other aspects of a transaction. First, it closes any associ-
ated open cursors. Second, any temporary table(s) specified with ON COMMIT
DELETE ROWS (an optional clause of the CREATE TABLE statement) are cleared of
data. Third, all deferred constraints are checked. If any deferred constraints are
violated, the transaction is rolled back. Finally, all locks opened by the transaction are
released. Please note that SQL2003 dictates that transactions are implicitly opened
when one of the following statements is executed:

• ALTER

• CLOSE

• COMMIT AND CHAIN

• CREATE

• DELETE

• DROP

• FETCH

• FREE LOCATOR

• GRANT

• HOLD LOCATOR

• INSERT

• OPEN

• RETURN

• REVOKE

• ROLLBACK AND CHAIN

• SELECT

• START TRANSACTION

• UPDATE

If you did not explicitly open a transaction when you started one of the commands
listed above, the standard dictates that the DBMS platform open a transaction for you.

MySQL
MySQL supports COMMIT and transactions two transaction-safe engines, InnoDB
and NDB Cluster, using this syntax:

COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

The RELEASE keyword tells MySQL to disconnect the current client connection once
the current transaction is complete. The NO keyword, for either CHAIN or RELEASE,
tells MySQL to override the default behavior or explicitly disallows chaining or auto-
releasing transactions.

72 | Chapter 3: SQL Statement Command Reference

COMMIT Statement > Oracle

Oracle
Oracle supports the standard, but not the AND [NO] CHAIN clause. In addition,
Oracle has a couple of extensions to the standard clause:

COMMIT [WORK] [{COMMENT 'text' | FORCE 'text'[, int]}];

where:

COMMENT 'text'
Associates a comment with the current transaction where 'text' is a literal string
up to 255 characters long. The text string is stored in the Oracle data dictionary
view DBA_2PC_PENDING with the transaction ID, in case the transaction rolls
back.

FORCE 'text'[, int]
Allows an in-doubt distributed transaction to be manually committed, where
'text' is a literal string that identifies the local or global transaction ID. Transac-
tions can be identified by querying the Oracle data dictionary view DBA_2PC_
PENDING. The optional int parameter is an integer that explicitly assigns a
system change number (SCN) to the transaction. Without int, the transaction
commits using the current SCN.

Issuing a COMMIT statement with the FORCE clause will commit only the transac-
tion explicitly identified in the FORCE clause. It will not affect the current transaction
unless it is explicitly identified. The FORCE clause is not usable in PL/SQL statements.

The following example commits a transaction while associating a comment with the
transaction:

COMMIT WORK COMMENT 'In-doubt transaction, Call (949) 555-1234';

PostgreSQL
PostgreSQL implements the following syntax:

COMMIT [WORK | TRANSACTION];

In PostgreSQL, both the WORK and TRANSACTION keywords are optional. When
you issue a COMMIT, all open transactions are written to disk and the results of those
transactions then become visible to other users. For example:

INSERT INTO sales VALUES('7896','JR3435','Oct 28 1997',25,
 'Net 60','BU7832');
COMMIT WORK;

SQL Server
SQL Server does support the AND [NO] CHAIN clause. SQL Server supports the
keyword TRANSACTION as an equivalent to WORK, as in the following syntax:

COMMIT { [TRAN[SACTION] [transaction_name]] | [WORK] }

Microsoft SQL Server allows the creation of a specific, named transaction using the
START TRAN statement. The COMMIT TRANSACTION syntax allows you to specify
an explicit, named transaction to close or to store a transaction name in a variable.
Curiously, SQL Server still commits only the most recently opened transaction, despite
the name of the transaction that is specified.

When you issue COMMIT WORK, SQL Server terminates all open transactions and
writes their changes to the database. You may not specify a transaction name when
using COMMIT WORK.

Chapter 3: SQL Statement Command Reference | 73

SQLStatem
ent

Com
m

ands
CONNECT Statement

See Also
ROLLBACK
START TRANSACTION

CONNECT Statement

The CONNECT statement establishes a connection to the DBMS and to a specific
database within the DBMS.

SQL2003 Syntax
CONNECT TO {DEFAULT | {[server_name] [AS connection_name]
 [USER user_name]}

Keywords
DEFAULT

Initiates a default session with the server where the user authorization is the
default and the current database is the default. The standard specifies that
CONNECT TO DEFAULT is issued implicitly if you start a SQL session without
first issuing a CONNECT statement.

server_name
Establishes a connection to a named server. The server_name may be a string
literal enclosed in single quotes, or a host variable.

AS connection_name
Establishes a connection with the name connection_name shown in single quotes.
The optional connection_name may be a string literal enclosed in single quotes or a
host variable. It is optional only for the first connection attached to a server. All
subsequent sessions must include the AS clause. This is useful for telling user
connections apart when many users (or perhaps even a single user) have many
open sessions on a given server_name.

USER user_name
Establishes a connection to the named server under the user_name specified.

Rules at a Glance
Issue the CONNECT statement to open an interactive SQL session with a DBMS. The
period between issuing the CONNECT and DISCONNECT statements is commonly
called a session. Typically, you will complete all work on a DBMS during an explicitly
invoked session.

If you do not specify the server name, the connection name, or the username, the
DBMS will provide default values for you. The defaults vary from platform to
platform.

Platform Command

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

SQL Server Supported, with variations

74 | Chapter 3: SQL Statement Command Reference

CONNECT Statement > MySQL

To connect to the houston server under a specific user ID, you might issue the
command:

CONNECT TO houston USER pubs_admin

If the DBMS requires named connections, you might use the following, alternative
syntax:

CONNECT TO houston USER pubs_admin
 AS pubs_administrative_session;

Or, if you want just a simple, short-term connection, you might use the default:

CONNECT TO DEFAULT;

Programming Tips and Gotchas
If the CONNECT statement is invoked before the previous session has been explicitly
disconnected, the old session becomes dormant and the new session becomes active.
You can then switch between connections using the SET CONNECTION statement.

The Oracle tool SQL*Plus uses the CONNECT command some-
what differently: to connect a user to a specific schema.

MySQL
Not supported.

Oracle
The CONNECT clause allows a database connection under a specific username. Alter-
nately, a connection can be established for special privileges with AS SYSOPER or AS
SYSDBA. The Oracle syntax is:

CONN[ECT] [[username/password] [AS {SYSOPER | SYSDBA}]]

where:

CONN[ECT] [username/password]
Establishes a connection to the database instance.

AS {SYSOPER | SYSDBA}
Establishes the connection as one of the two optional system roles.

If another connection is already open, CONNECT commits any open transactions,
closes the current session, and opens the new one.

Oracle also allows the CONNECT statement in its SQL*Plus and iSQL*Plus tools.

PostgreSQL
PostgreSQL does not explicitly support the CONNECT statement. However, it does
support the statement SPI_CONNECT under the Server Programming Interface (SPI)
and PG_CONNECT under the PG/TCL programming package.

SQL Server
SQL Server supports the basic elements of the CONNECT statement within
Embedded SQL (inside of C++ or Visual Basic programs), as in the following:

CONNECT TO [server_name.]database_name [AS connection_name]
USER {login_name[.password] | $integrated}

where:

Chapter 3: SQL Statement Command Reference | 75

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement

CONNECT TO [server_name.]database_name
Specifies the server and database to which you want to connect. You may leave
off the server_name if you wish to default to the local server.

AS connection_name
Names the connection with an alphanumeric string of up to 30 characters in
length. Symbols are allowed, except for hyphens (-), but the first character must
be a letter. CURRENT and ALL are reserved and may not be used for a
connection_name. You need only define connection names when making more
than one connection.

USER {login_name[.password] | $integrated}
Connects the session under the login_name specified using either the password
provided or Windows integrated security. The password is optional when
supplying a login name.

For example, we can connect to the server named new_york as the Windows login
pubs_admin:

CONNECT TO new_york.pubs USER pubs_admin

To issue the same command under SQL Server standard security:

EXEC SQL CONNECT TO new_york.pubs USER pubs_admin

To issue the same command under Windows integrated security:

EXEC SQL CONNECT TO new_york.pubs USER $integrated

To switch to a different connection, use the SET CONNECTION statement.

See Also
SET CONNECTION

CREATE/ALTER DATABASE Statement

The ANSI standard does not actually contain a CREATE DATABASE statement.
However, since it is nearly impossible to operate a SQL database without this
command, we’ve added CREATE DATABASE here. Almost all database platforms
support some version of this command.

Rules at a Glance
This command creates a new, empty database with a specific name. Most DBMS plat-
forms require the user to possess administrator privileges in order to create a new
database. Once the new database is created, you can populate it with database objects
(such as tables, views, triggers, and so on) and populate the tables with data.

Depending on the platform, CREATE DATABASE may also create corresponding files
on the filesystem that contain the data and metadata of the database.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

76 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > MySQL

Programming Tips and Gotchas
Since CREATE DATABASE is not an ANSI command, it is prone to rather extreme
variation in syntax between platforms.

MySQL
In MySQL, CREATE DATABASE essentially creates a new directory that holds the
database objects:

CREATE { DATABASE | SCHEMA } [IF NOT EXISTS] database_name
 [[DEFAULT] CHARACTER SET character_set]
 [[DEFAULT] COLLATE collation_set]

The following is the syntax for MySQL’s implementation of the ALTER DATABASE
statement:

ALTER { DATABASE | SCHEMA } database_name
{ [[DEFAULT] CHARACTER SET character_set]
 [[DEFAULT] COLLATE collation_set] |
 UPGRADE DATA DIRECTORY NAME }

where:

{CREATE | ALTER} { DATABASE | SCHEMA } database_name
Creates a database and directory of database_name. The database directory
appears under the MySQL data directory. Tables in MySQL then appear as files in
the database directory. The SCHEMA keyword is synonymous with DATABASE.

IF NOT EXISTS
Avoids an error if the database already exists.

[DEFAULT] CHARACTER SET character_set
Optionally defines the default character set used by the database. Refer to the
MySQL documentation for a full listing of the available character sets.

[DEFAULT] COLLATE collation_set
Optionally defines the database collation used by the database. Refer to the
MySQL documentation for a full listing of the available collations.

UPGRADE DATA DIRECTORY NAME
Updates the name of the directory associated with the database to use the
encoding implemented in MySQL v5.1 and later for mapping database names to
database directories.

For example, we could create a database called sales_archive on a MySQL server. If
the database already exists, we want to abort the command without causing an error:

CREATE DATABASE IF NOT EXISTS sales_archive

Any tables that we create in the sales_archive database will now appear as files within
the sales_archive directory.

Oracle
Oracle provides an extraordinary level of control over database file structures, far
beyond merely naming the database and specifying a path for the database files.
CREATE and ALTER DATABASE are very powerful commands in Oracle, and some
of the more sophisticated clauses are best used only by experienced DBAs. These
commands can be very large and complex—ALTER DATABASE alone consumes over
50 pages in the Oracle vendor documentation!

Chapter 3: SQL Statement Command Reference | 77

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > Oracle

Novices should be aware that CREATE DATABASE, when run, erases all data that is
already in existence in the specified datafiles. Similarly, all the data in an existing data-
base will be lost.

Following is the syntax to create a new database in Oracle:

CREATE DATABASE [database_name]
{[USER SYS IDENTIFIED BY password | USER SYSTEM IDENTIFIED BY password]}
[CONTROLFILE REUSE]
{[LOGFILE definition[, ...]] [MAXLOGFILES int] [[MAXLOGMEMBERS] int]
 [[MAXLOGHISTORY] int] [{ARCHIVELOG | NOARCHIVELOG}] [FORCE LOGGING]}
[MAXDATAFILES int]
[MAXINSTANCES int]
[CHARACTER SET charset]
[NATIONAL CHARACTER SET charset]
[EXTENT MANAGEMENT {DICTIONARY | LOCAL
 [{AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}]}]
[DATAFILE definition[, ...]]
[SYSAUX DATAFILE definition[, ...]]
[DEFAULT TABLESPACE tablespace_name
 [DATAFILE file_definition]
 EXTENT MANAGEMENT {DICTIONARY |
 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}}]
[[{BIGFILE | SMALLFILE}] DEFAULT TEMPORARY TABLESPACE tablespace_name
 [TEMPFILE file_definition]
 EXTENT MANAGEMENT {DICTIONARY |
 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}}]
[[{BIGFILE | SMALLFILE}] UNDO TABLESPACE tablespace_name
 [DATAFILE temp_datafile_definition]]
[SET TIME_ZONE = '{ {+ | -} hh:mi | time_zone_region }']
[SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE]

Following is the syntax to alter an existing database:

ALTER DATABASE [database_name]
[ARCHIVELOG | NOARCHIVELOG] |
 {MOUNT [{STANDBY | CLONE} DATABASE] | OPEN [READ ONLY | READ WRITE]
 [RESETLOGS | NORESETLOGS] | [UPGRADE | DOWNGRADE]} |
 {ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [FINISH APPLY]
 [SKIP [STANDBY LOGFILE]] |
 SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY |
 PERFORMANCE} |
 REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']
 [FOR logminer_session_name] |
 {COMMIT | PREPARE} TO SWITCHOVER TO
 {{[PHYSICAL | LOGICAL] PRIMARY | STANDBY} [WITH[OUT]
 SESSION SHUTDOWN] [WAIT | NOWAIT]} |
 CANCEL} |
 START LOGICAL STANDBY APPLY [IMMEDIATE] [NODELAY]
 [{INITIAL int | NEW PRIMARY dblink_name | {FINISH |
 SKIP FAILED TRANSACTION}}] |
 {STOP | ABORT} LOGICAL STANDBY APPLY |
 [CONVERT TO {PHYSICAL | SNAPSHOT} STANDBY] |

78 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > Oracle

{RENAME GLOBAL_NAME TO database[.domain[.domain ...]] |
 CHARACTER SET character_set |
 NATIONAL CHARACTER SET character_set |
 DEFAULT TABLESPACE tablespace_name |
 DEFAULT TEMPORARY TABLESPACE {GROUP int | tablespace_name} |
 {DISABLE BLOCK CHANGE TRACKING | ENABLE BLOCK CHANGE TRACKING [USING
 FILE 'file'] [REUSE]} |
 FLASHBACK {ON | OFF} |
 SET TIME_ZONE = '{ {+ | -} hh:mi | time_zone_region }' |
 SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE} |
{ENABLE | DISABLE} { [PUBLIC] THREAD int | INSTANCE 'instance_name' } |
{GUARD {ALL | STANDBY | NONE}} |
{CREATE DATAFILE 'file'[, ...] [AS {NEW | file_definition[, ...]}] |
 {DATAFILE 'file' | TEMPFILE 'file'}[, ...]
 {ONLINE | OFFLINE [FOR DROP | RESIZE int [K | M]] |
 END BACKUP | AUTOEXTEND {OFF | ON [NEXT int [K | M]]} [MAXSIZE
 [UNLIMITED | int [K | M]]] |
 {TEMPFILE 'file' | TEMPFILE 'file'}[, ...]
 {ONLINE | OFFLINE | DROP [INCLUDING DATAFILES] |
 RESIZE int [K | M] | AUTOEXTEND {OFF | ON [NEXT int [K | M]]}
 [MAXSIZE [UNLIMITED | int [K | M]]] |
 RENAME FILE 'file'[, ...] TO 'new_file_name'[, ...]} |
{[[NO] FORCE LOGGING] | [[NO]ARCHIVELOG [MANUAL]] |
 [ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE |
 FOREIGN KEY | FOR PROCEDURAL REPLICATION)[, ...]] COLUMNS |
 [ADD | DROP] [STANDBY] LOGFILE
 {{[THREAD int | INSTANCE 'instance_name']} {[GROUP int |

logfile_name[, ...]]} [SIZE int [K | M]] | [REUSE] |
 [MEMBER] 'file' [REUSE][, ...] TO logfile_name[, ...]} |
 ADD LOGFILE MEMBER 'file' [REUSE][, ...] TO {[GROUP int |

logfile_name[, ...]]} |
 DROP [STANDBY] LOGFILE {MEMBER 'file' | {[GROUP int | logfile_name
 [, ...]]}}
 CLEAR [UNARCHIVED] LOGFILE {[GROUP int | logfile_name[, ...]]}[, ...]
 [UNRECOVERABLE DATAFILE]} |
{CREATE [LOGICAL | PHYSICAL] STANDBY CONTROLFILE AS 'file' [REUSE] |
 BACKUP CONTROLFILE TO
 {'file' [REUSE] | TRACE [AS 'file' [REUSE]]} [{RESETLOGS |
 NORESETLOGS}]} |
{RECOVER
 {[AUTOMATIC [FROM 'location']] |
 {[STANDBY] DATABASE
 {[UNTIL {CANCEL | TIME date | CHANGE int}] |
 USING BACKUP CONTROLFILE} |
 {{[STANDBY] {TABLESPACE tablespace_name[, ...] | DATAFILE
 'file'[, ...]} [UNTIL [CONSISTENT WITH] CONTROLFILE]} |
 TABLESPACE tablespace_name[, ...] | DATAFILE 'file'[, ...]} |
 LOGFILE filename[, ...]} [{TEST | ALLOW int CORRUPTION | [NO]PARALLEL

int}]} |
 CONTINUE [DEFAULT] |
 CANCEL}

Chapter 3: SQL Statement Command Reference | 79

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > Oracle

 {MANAGED STANDBY DATABASE
 {[USING CURRENT LOGFILE]
 [DISCONNECT [FROM SESSION]]
 [NODELAY]
 [UNTIL CHANGE int]
 [FINISH]
 [CANCEL]} |
 TO LOGICAL STANDBY {database_name | KEEP IDENTITY}}
{{BEGIN | END} BACKUP}

The syntax elements in Oracle are as follows. First, for CREATE DATABASE:

{CREATE | ALTER} DATABASE [database_name]
Creates or alters a database with the name database_name. The database name can
be up to 8 bytes in length and may not contain European or Asian characters. You
can omit the database name and allow Oracle to create the name for you, but
beware that the names Oracle creates can be counterintuitive.

USER SYS IDENTIFIED BY password | USER SYSTEM IDENTIFIED BY password
Specifies passwords for the SYS and SYSTEM users. You may specify neither or
both of these clauses, but not just one of them.

CONTROLFILE REUSE
Causes existing control files to be reused, enabling you to specify existing files in the
CONTROL_FILES parameter in INIT.ORA. Oracle will then overwrite any informa-
tion those files may contain. This clause is normally used when recreating a
database. Consequently, you probably don’t want to use this clause in conjunction
with MAXLOGFILES, MAXLOGMEMBER, MAXLOGHISTORY, MAXDATA-
FILES, or MAXINSTANCES.

LOGFILE definition
Specifies one or more logfiles for the database. You may define multiple files all
with the same size and characteristics, using the file parameter, or you may
define multiple files each with its own size and characteristics. The entire logfile
definition syntax is rather ponderous, but it offers a great deal of control:

LOGFILE { ('file'[, ...]) [SIZE int [K | M]]
[GROUP int] [REUSE] }[, ...]

LOGFILE ('file'[, . . .])
Defines one or more files that will act as redo logfiles; file is both the file-
name and the path. Any files defined in the CREATE DATABASE statement
are assigned to redo log thread number 1. When specifying multiple redo
logfiles, each filename should be enclosed in single quotes and separated from
the other names by commas. The entire list should be enclosed in parentheses.

SIZE int [K | M]
Specifies the size of the redo logfile in bytes as an integer value, int. Alter-
nately, you may define the redo logfile in larger units than bytes by
appending a K (for kilobytes) or an M (for megabytes).

GROUP int
Defines the integer ID, int, of the redo logfile group. The value may be from
1 to the value of the MAXLOGFILES clause. An Oracle database must have
at least two redo logfile groups. Oracle will create a redo logfile group for
you, with a default size of 100 MB, if you omit this group ID.

80 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > Oracle

REUSE
Reuses an existing redo logfile.

MAXLOGFILES int
Sets the maximum number of logfiles, int, available to the database being
created. The minimum, maximum, and default values for this clause are OS-
dependent.

MAXLOGMEMBERS int
Sets the maximum number of members (i.e., copies) for a redo logfile group. The
minimum value is 1, while the maximum and default values for this clause are
OS-dependent.

MAXLOGHISTORY int
Sets the maximum number of archived redo logfiles available to a Real Applica-
tion Cluster (RAC). You can use the MAXLOGHISTORY clause only when
Oracle is in ARCHIVELOG mode on a RAC. The minimum value is 0, while the
maximum and default values for this clause are OS-dependent.

ARCHIVELOG | NOARCHIVELOG
Defines how redo logs operate. When used with ALTER DATABASE, specifying
one of these allows the current setting to be changed. ARCHIVELOG saves data
stored in the redo log(s) to an archiving file, providing for media recoverability.
Conversely, NOARCHIVELOG allows a redo log to be reused without archiving
the contents. Both options provide recoverability, although NOARCHIVELOG
(the default) does not provide media recovery.

FORCE LOGGING
Places all instances of the database into FORCE LOGGING mode, in which all
changes to the database are logged, except for changes to temporary tablespaces
and segments. This setting takes precedence over any tablespace- or object-level
settings.

MAXDATAFILES int
Sets the initial number of datafiles, int, available to the database being created.
Note that the INIT.ORA setting, DB_FILES, also limits the number of datafiles
accessible to the database instance.

MAXINSTANCES int
Sets the maximum number of instances, int, that may mount and open the data-
base being created. The minimum value is 1, while the maximum and default
values for this clause are OS-dependent.

CHARACTER SET charset
Controls the language character set in which the data is stored. The value for
charset cannot be AL16UTF16. The default value is OS-dependent.

NATIONAL CHARACTER SET charset
Controls the national language character set for data stored in NCHAR, NCLOB,
and NVARCHAR2 columns. The value for charset must be either AL16UTF16
(the default) or UTF8.

EXTENT MANAGEMENT {DICTIONARY | LOCAL}
Creates a locally managed SYSTEM tablespace (otherwise, the SYSTEM
tablespace will be dictionary-managed). This clause requires a default temporary
tablespace. If you omit the DATAFILE clause you can also omit the default
temporary tablespace, because Oracle will create them both for you.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3: SQL Statement Command Reference | 81

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > Oracle

DATAFILE definition
Specifies one or more datafiles for the database. (All these datafiles become part
of the SYSTEM tablespace.) You may repeat filenames to define multiple files
with the same size and characteristics. Alternately, you may repeat the entire
DATAFILE clause, with each occurrence defining one or more files with the same
size and characteristics. The entire datafile definition syntax is rather large, but it
offers a great deal of control:

DATAFILE { ('file1'[, ...]) [GROUP int] [SIZE int [K | M]] [REUSE]
[AUTOEXTEND {OFF | ON [NEXT int [K | M]]}]
[MAXSIZE [UNLIMITED | int [K | M]]] } [,...]

DATAFILE ('file1'[, . . .])
Defines one or more files that will act as the datafile(s), where file1 is both
the filename and the path. For multiple files, each filename should be
enclosed in single quotes and separated from the others by a comma. The
entire list should be enclosed in parentheses.

GROUP int
Defines the integer ID, int, of the datafile group. The value may be from 1 to
the value of the MAXLOGFILES clause. An Oracle database must have at
least two datafile groups. Oracle will create them for you, at 100 MB each, if
you omit this clause.

SIZE int [K | M]
Specifies the size of the datafile in bytes as an integer value, int. Alternately,
you may define the datafile in large units by appending a K (for kilobytes) or
an M (for megabytes).

REUSE
Reuses an existing datafile.

AUTOEXTEND {OFF | ON [NEXT int [K | M]]}
Enables (ON) the automatic extension of new or existing datafiles or temp-
files (but does not redo logfiles). NEXT specifies the next increment of space
allocated to the file in bytes, kilobytes (K), or megabytes (M) when more
space is needed.

MAXSIZE [UNLIMITED | int [K | M]]
Specifies the maximum disk space allowed for automatic extension of the
file. UNLIMITED allows the file to grow without an upper limit (except, of
course, the total capacity of the drive). Otherwise, you may define the
maximum size limit as an integer, int, in bytes (the default), kilobytes with
the keyword K, or megabytes with the keyword M.

SYSAUX DATAFILE definition
Specifies one or more datafiles for the SYSAUX tablespace. By default, Oracle
creates and manages the SYSTEM and SYSAUX tablespaces automatically. You
must use this clause if you have specified a datafile for the SYSTEM tablespace. If
you omit the SYSAUX clause when using Oracle-managed files, Oracle will create
the SYSAUX tablespace as an online, permanent, locally managed tablespace with
a single datafile of 100 MB, using automatic segment-space management and
logging.

82 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > Oracle

BIGFILE | SMALLFILE
Specifies the default file type of a subsequently created tablespace. BIGFILE indi-
cates that the tablespace will contain a single datafile or tempfile of up to 8
exabytes (8 million terabytes) in size, while SMALLFILE indicates the tablespace
is a traditional Oracle tablespace. The default, when omitted, is SMALLFILE.

DEFAULT TABLESPACE tablespace_name
Specifies a default permanent tablespace for the database for all non-SYSTEM
users. When this clause is omitted, the SYSTEM tablespace is the default perma-
nent tablespace for non-SYSTEM users.

DEFAULT TEMPORARY TABLESPACE tablespace_name [TEMPFILE file_definition]
Defines the name and location of the default temporary tablespace for the data-
base. Users who are not explicitly assigned to a temporary tablespace will operate
in this one. If you don’t create a default temporary tablespace, Oracle uses the
SYSTEM tablespace. Under ALTER DATABASE, this clause allows you to change
the default temporary tablespace.

TEMPFILE file_definition
The tempfile definition is optional when the DB_CREATE_FILE_DEST
INIT.ORA parameter is set. Otherwise, you’ll have to define the tempfile
yourself. The TEMPFILE definition syntax is identical to the DATAFILE
definition syntax described earlier in this section.

EXTENT MANAGEMENT {DICTIONARY | LOCAL {AUTOALLOCATE | UNIFORM
[SIZE int [K | M]]}}

Defines the way in which the SYSTEM tablespace is managed. When this clause is
omitted, the SYSTEM tablespace is dictionary-managed. Once created as a locally
managed tablespace, it cannot be converted back to a dictionary-managed
tablespace, nor can any new dictionary-managed tablespaces be created in the
database.

DICTIONARY
Specifies that the Oracle data dictionary manages the tablespace. This is the
default. The AUTOALLOCATE and UNIFORM subclauses are not used
with this clause.

LOCAL
Declares that the tablespace is locally managed. This clause is optional, since
all temporary tablespaces have locally managed extents by default. Use of
this clause requires a default temporary tablespace. If you do not manually
create one, Oracle will automatically create one called TEMP, of 10 MB in
size, with AUTOEXTEND disabled.

AUTOALLOCATE
Specifies that new extents will be allocated as needed by the locally managed
tablespace.

UNIFORM [SIZE int [K | M]]
Specifies that all extents of the tablespace are the same size (UNIFORM), in
bytes, as int. The SIZE clause allows you to configure the size of the extents
to your liking in bytes (the default), in kilobytes using the keyword K, or in
megabytes using the keyword M. The default is 1M.

Chapter 3: SQL Statement Command Reference | 83

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > Oracle

UNDO TABLESPACE tablespace_name [DATAFILE temp_datafile_definition]
Defines the name and location for undo data, creating a tablespace named
tablespace_name, but only if you have set the UNDO_MANAGEMENT INIT.ORA
parameter to AUTO. If you don’t use this clause, Oracle manages undo space via
rollback segments. (You may also set the INIT.ORA parameter to UNDO_
TABLESPACE. If you do so, the value of the parameter and the tablespace_name
used here must be identical.)

DATAFILE temp_datafile_definition
Creates and assigns the datafile, as you have defined it, to the undo
tablespace. Refer to the earlier description of DATAFILE for the full syntax
of this clause. This clause is required if you have not specified a value for the
INIT.ORA parameter DB_CREATE_FILE_DEST.

SET TIME_ZONE = ' { {+ | -} hh:mi | time_zone_region }’
Sets the time zone for the database, either by specifying a delta from Greenwich
Mean Time (now called Coordinated Universal Time) or by specifying a time
zone region. (For a list of time zone regions, query the tzname column of the
v$timezone_names view.) If you do not use this clause, Oracle defaults to the
operating-system time zone.

SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE
Sets all tablespaces created by the current CREATE DATABASE or ALTER
DATABASE statement as either BIGFILE or SMALLFILE. When creating data-
bases, this clause also applies to the SYSTEM and SYSAUX tablespaces.

And for ALTER DATABASE:

MOUNT [{STANDBY | CLONE}] DATABASE]
Mounts a database for users to access. The STANDBY keyword mounts a phys-
ical standby database, enabling it to receive archived redo logs from the primary
instance. The CLONE keyword mounts a clone database. This clause cannot be
used with OPEN.

OPEN [READ WRITE | READ ONLY] [RESETLOGS | NORESETLOGS] [UPGRADE |
DOWNGRADE]

Opens the database separately from the mounting process. (Mount the database
first.) READ WRITE opens the database in read/write mode, allowing users to
generate redo logs. READ ONLY allows reads of but disallows changes to redo
logs. RESETLOGS discards all redo information not applied during recovery and sets
the log sequence number to 1. NORESETLOGS retains the logs in their present
condition. The optional UPGRADE and DOWNGRADE clauses tell Oracle to
dynamically modify the system parameters as required for database upgrade or
downgrade, respectively. The default is OPEN READWRITE NORESETLOGS.

ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [FINISH APPLY] [SKIP
[STANDBY LOGFILE]]

Promotes a standby database to the primary database. You can optionally specify
a PHYSICAL standby, the default, or a LOGICAL standby. FINISH APPLY
initiates the application of the remaining redo log, bringing the logical standby
database to the same state as the primary database. When it’s finished, the data-
base completes the switchover from the logical standby to the primary database.
Use the SKIP clause to immediately promote a physical standby and discard any
data still unapplied by the RECOVER MANAGED STANDBY DATABASE
FINISH statement. The clause STANDBY LOGFILE is noise.

84 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > Oracle

SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY |
PERFORMANCE}

Sets the level of protection for data in the primary database. The old terms
PROTECTED and UNPROTECTED equate to MAXIMIZE PROTECTION and
MAXIMIZE PERFORMANCE, respectively.

PROTECTION
Provides the highest level of data protection, but has the greater overhead
and negatively impacts availability. This setting commits transactions only
after all data necessary for recovery has been physically written in at least one
physical standby database that uses the SYNC log transport mode.

AVAILABILITY
Provides the second highest level of data protection, but the highest level of
availability. This setting commits transactions only after all data necessary
for recovery has been physically written in at least one physical or logical
standby database that uses the SYNC log transport mode.

PERFORMANCE
Provides the highest level of performance, but compromises data protection
and availability. This setting commits transactions before all data necessary
for recovery has been physically written to a standby database.

REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']
Manually registers redo logfiles from a failed primary server when issued from a
standby server. The logfile may optionally be declared as PHYSICAL or
LOGICAL. The OR REPLACE clause allows updates to details of an existing
archivelog entry.

FOR logminer_session_name
Registers the logfile with a single, specific LogMiner session in an Oracle Streams
environment.

{COMMIT | PREPARE} TO SWITCHOVER TO {[PHYSICAL | LOGICAL] PRIMARY |
STANDBY}

Performs a graceful switchover, moving the current primary database to standby
status and promoting a standby database to primary. (In a RAC environment, all
instances other than the current instance have to be shut down.) To gracefully
switch over, you should issue the command twice (the first time to prepare the
primary and standby databases to begin exchanging logfiles in advance of the
switchover) using PREPARE TO SWITCHOVER. To demote the primary data-
base and switch over to the standby, use COMMIT TO SWITCHOVER. The
PHYSICAL clause puts the primary database into physical standby mode. The
LOGICAL clause puts the primary database into logical standby mode. However,
you must then issue an ALTER DATABASE START LOGICAL STANDBY APPLY
statement.

[WITH[OUT] SESSION SHUTDOWN] [WAIT | NOWAIT]
WITH SESSION SHUTDOWN closes any open application sessions and rolls
back any uncommitted transactions during a switchover of physical databases
(but not logical ones). WITHOUT SESSION SHUTDOWN, the default, causes
the COMMIT TO SWITCHOVER statement to fail if it encounters any open
application sessions. WAIT returns control to the console after completion of the
SWITCHOVER command, while NOWAIT returns control before the command
completes.

Chapter 3: SQL Statement Command Reference | 85

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > Oracle

START LOGICAL STANDBY APPLY [IMMEDIATE] [NODELAY] [{INITIAL int |
NEW PRIMARY dblink_name} | {FINISH | SKIP FAILED TRANSACTION}]

Starts to apply redo logs to the logical standby database. IMMEDIATE tells the
Oracle LogMiner to read the redo data in the standby redo logfiles. NODELAY
tells Oracle to ignore a delay for the apply, such as when the primary database is
unavailable or disabled. INITIAL is used the first time you apply logs to the
standby database. NEW PRIMARY is required after a switchover has completed
or after a standby database has processed all redo logs and another standby is
promoted to primary. Use SKIP FAILED TRANSACTION to skip the last transac-
tion and to restart the apply. Use FINISH to apply the data in the redo logs if the
primary database is disabled.

[STOP | ABORT] LOGICAL STANDBY APPLY
Stops the application of redo logs to a logical standby server. STOP performs an
orderly stop, while ABORT performs an immediate stop.

CONVERT TO {PHYSICAL | SNAPSHOT} STANDBY
Converts a primary database or snapshot standby database into a physical
standby database (for PHYSICAL), or converts a physical standby database into a
snapshot standby database (for SNAPSHOT).

RENAME GLOBAL_NAME TO database[.domain[.domain . . .]]
Changes the global name of the database, where database is the new name of up
to 8 bytes in length. The optional domain specifications identify the database’s
location in the network. This does not propagate database name changes to any
dependent objects like synonyms, stored procedures, etc.

{DISABLE | ENABLE} BLOCK CHANGE TRACKING [USING FILE 'file'] [REUSE]
Tells Oracle to stop or start tracking the physical locations of all database
updates, respectively, and maintain the information in a special file called the
block change tracking file. Oracle will automatically create the file as defined by
the DB_CREATE_FILE_DEST parameter, unless you add the USING FILE
'file' clause, where 'file' is the path and name of the file. REUSE tells Oracle
to overwrite an existing block change tracking file of the same name as 'file'.
The USING and REUSE subclauses are allowed only with the ENABLE BLOCK
clause.

FLASHBACK {ON | OFF}
Places the database into or out of FLASHBACK mode, respectively. When in
flashback mode, an Oracle database automatically creates and maintains flash-
back database logs in the flash recovery area. When OFF, the flashback database
logs are deleted and unavailable.

SET TIME ZONE
Specifies the time zone for the server. Refer to the description of the SET TIME ZONE
statement in the discussion of the CREATE TABLE syntax for more information.

{ENABLE | DISABLE} { [PUBLIC] THREAD int | INSTANCE 'instance_name'}
In RAC environments, you can ENABLE or DISABLE a redo log thread by
number (int). You may optionally specify an instance_name to enable or disable a
thread mapped to a specific database instance of an Oracle RAC environment.
The instance_name may be up to 80 characters long. The PUBLIC keyword makes
the thread available to any instance. When omitted, the thread is available only
when explicitly requested. To enable a thread, the thread must have at least two
redo logfile groups. To disable a thread, the database must be open but not
mounted by an instance using the thread.

86 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > Oracle

GUARD {ALL | STANDBY | NONE}
Protects the data in a database from changes. ALL prevents users other than SYS
from making any changes. STANDBY prevents all users other than SYS from
making changes in a logical standby. NONE provides normal security for the
database.

CREATE DATAFILE 'file'[, . . .] [AS {NEW | file_definition}]
Creates a new, empty datafile, replacing an existing one. The value 'file' identifies
a file (either by filename or file number) that was lost or damaged without a
backup. AS NEW creates a new file in the default filesystem using an Oracle-
supplied name. AS file_definition allows you to specify a filename and sizing
details, as defined under “TEMPFILE file_definition” section in the preceding
list.

DATAFILE 'file' | TEMPFILE 'file'}[, . . .] {ONLINE | OFFLINE [FOR DROP] |
RESIZE int [K | M]] | END BACKUP | AUTOEXTEND {OFF | ON [NEXT int [K |
M]]} [MAXSIZE [UNLIMITED | int [K | M]]]

Changes the attributes, such as the size, of one or more existing datafiles or temp-
files. You may alter one or more files in a comma-delimited list, identified in the
value 'file' by filename or file number. Do not mix datafile and tempfile declara-
tions; only one or the other should appear in this clause at a time.

ONLINE
Sets the file online.

OFFLINE [FOR DROP]
Sets the file offline, allowing media recovery. FOR DROP is required to take
a file offline in NOARCHIVELOG mode, but it does not actually destroy the
file. It is ignored in ARCHIVELOG mode.

RESIZE int [K | M]
Sets a new size for an existing datafile or tempfile.

END BACKUP
Described later in the main list, under END BACKUP. Used only with the
DATAFILE clause.

AUTOEXTEND {OFF | ON [NEXT int [K | M]]} [MAXSIZE [UNLIMITED | int
[K | M]]]

Described in the preceding list, under the DATAFILE definition.

DROP [INCLUDING DATAFILES]
Drops not only the tempfile, but all datafiles on the filesystem associated with the
tempfile. Oracle also adds an entry to the alert log for each file that is erased.
Used only with the TEMPFILE clause.

RENAME FILE 'file'[, . . .] TO 'new_file_name'[, . . .]
Renames a datafile, tempfile, or redo logfile member from the old name, file, to
the new_file_name. You can rename multiple files at once by specifying multiple
old and new filenames, separated by commas. This command does not rename
files at the operating-system level. Rather, it specifies new names that Oracle will
use to open the files. You need to rename at the operating-system level yourself.

[NO] FORCE LOGGING
Puts the database into force logging mode (FORCE LOGGING) or takes it out of
force logging mode (NO FORCE LOGGING). In the former, Oracle logs all
changes to the database except in temporary tablespaces or segments. This
database-level FORCE LOGGING setting supersedes all tablespace-level declara-
tions regarding force logging mode.

Chapter 3: SQL Statement Command Reference | 87

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > Oracle

[NO]ARCHIVELOG [MANUAL]
Tells Oracle to create redo logfiles, but that the user will handle the archiving of
the redo logfiles explicitly. This is used only with the ALTER DATABASE state-
ment and only for backward compatibility for users with older tape backup
systems. When this clause is omitted, Oracle defaults the redo logfile destination
to the LOG_ARCHIVE_DEST_n initialization parameter.

[ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE |
FOREIGN KEY | FOR PROCEDURAL REPLICATION)[, .. .] COLUMNS

ADD places additional column data into the log stream whenever an update is
executed. It also enables minimal supplemental logging, which ensures that
LogMiner can support chained rows and special storage arrangements such as
clustered tables. Supplemental logging is disabled by default. You can add the
clauses PRIMARY KEY COLUMNS, UNIQUE KEY COLUMNS, FOREIGN KEY
COLUMNS, or ALL (to get all three options) if you need to enable full referential
integrity via foreign keys in another database, such as a logical standby, or FOR
PROCEDURAL REPLICATION for logging PL/SQL calls. In either case, Oracle
places either the primary key columns, the unique key columns (or, if none exist,
a combination of columns that uniquely identify each row), the foreign key
columns, or all three into the log. DROP tells Oracle to suspend supplemental
logging.

[ADD | DROP] [STANDBY] LOGFILE {{[THREAD int | INSTANCE 'instance_
name']} {[GROUP int | logfile_name[, . . .]]} [SIZE int [K | M]] | [REUSE] |
[MEMBER] 'file' [REUSE][, .. .]

ADD includes one or more primary or standby redo logfile groups to the speci-
fied instance. THREAD assigns the added files to a specific thread number (int)
on a RAC. When omitted, the default is the thread assigned to the current
instance. GROUP assigns the redo logfile groups to a specific group within the
thread. MEMBER adds the specified 'file' (or files in a comma-delimited list) to
an existing redo logfile group. REUSE is needed if the file already exists. DROP
LOGFILE MEMBER drops one or more redo logfile members, after issuing an
ALTER SYSTEM SWITCH LOGFILE statement.

CLEAR [UNARCHIVED] LOGFILE {[GROUP int | logfile_name[, . . .]]}[, . . .]
[UNRECOVERABLE DATAFILE]

Reinitializes one or more (in a comma-delimited list) specified online redo logs.
UNRECOVERABLE DATAFILE is required when any datafile is offline and the
database is in ARCHIVELOG mode.

CREATE {LOGICAL | PHYSICAL} STANDBY CONTROLFILE AS 'file' [REUSE]}
Creates a control file that maintains a logical or physical standby database.
REUSE is needed if the file already exists.

BACKUP CONTROLFILE TO {'file' [REUSE] | TRACE [AS 'file' [REUSE]]
[{RESETLOGS | NORESETLOGS}]

Backs up the current control file of an open or mounted database. TO 'file'
identifies a full path and filename for the control file. TO TRACE writes SQL
statements to recreate the control file to a trace file. TO TRACE AS 'file' writes
all the SQL statements to a standard file rather than a trace file. REUSE is needed
if the file already exists. RESETLOGS initializes the trace file with the statement
ALTER DATABASE OPEN RESETLOGS and is valid only when online logs are
unavailable. NORESETLOGS initializes the trace file with the statement ALTER
DATABASE OPEN NORESETLOGS and is valid only when online logs are
available.

88 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > Oracle

RECOVER
Controls media recovery for the database, standby database, tablespace, or file. In
Oracle, the ALTER TABLE command is one of the primary means of recovering a
damaged or disabled database, file, or tablespace. Use RECOVER when the data-
base is mounted (in exclusive mode), the files and tablespaces involved are not in
use (offline), and the database is in either an open or closed state. The entire data-
base can be recovered only when it is closed, but specific files or tablespaces can
be recovered in a database that is open.

AUTOMATIC [FROM 'location']
Tells Oracle to automatically generate the name of the next archived redo logfile
necessary for continued operation during recovery. Oracle will prompt you if it
cannot find the next file. The FROM 'location' clause tells Oracle where to find
the archived redo logfile group. The following subclauses may be applied to an
automatically recovered database.

STANDBY
Specifies that the database or tablespace to recover is a standby type.

DATABASE {[UNTIL {CANCEL | TIME date | CHANGE int}] | USING
BACKUP CONTROLFILE}

Tells Oracle to recover the entire database. The UNTIL keyword tells Oracle
to continue recovery until ALTER DATABASE...RECOVER CANCEL
(CANCEL) is issued, until a specified time in the format YYYY-MM-
DD:HH24:MI:SS is reached (TIME), or until a specific system change
number is reached (CHANGE int, where int is the number). The clause
USING BACKUP CONTROLFILE enables use of the backup, rather than
current, control file.

[STANDBY] [TABLESPACE tablespace_name[, . . .] | DATAFILE 'file'[, . . .]]
Recovers one or more specific tablespaces or datafiles, respectively. You may
specify more than one tablespace or datafile using a comma-delimited list.
You may also recover a datafile by datafile number, rather than by name.
The tablespace may be in normal or standby mode. The standby tablespace
or datafile is reconstructed using archived redo logfiles copied from the
primary database and a control file.

UNTIL [CONSISTENT WITH] CONTROLFILE
Tells Oracle to recover an older standby tablespace or datafile by using the
current standby control file. CONSISTENT WITH are noise words.

LOGFILE filename[, . . .]
Continues media recovery by applying one or more redo logfiles that you
specify in a comma-delimited list.

 TEST | ALLOW int CORRUPTION | [NO]PARALLEL int
TEST performs a trial recovery, allowing you to foresee any problems.
ALLOW int CORRUPTION tells how many corrupt blocks (int) to tolerate
before causing recovery to abort. int must be 1 for a real recovery, but may
be any number you choose when paired with TEST. [NO]PARALLEL deter-
mines whether parallel recovery of media is used. NOPARALLEL is the
default and enforces serial reading of the media. PARALLEL with no int
value tells Oracle to choose the degree of parallelism to apply. Specifying int
declares the degree of parallelism to apply.

Chapter 3: SQL Statement Command Reference | 89

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > Oracle

CONTINUE [DEFAULT]
Determines whether multi-instance recovery continues after interruption.
CONTINUE DEFAULT is the same as RECOVER AUTOMATIC, but it does
not result in a prompt for a filename.

CANCEL
Cancels a managed recovery operation at the next archived log boundary, if
it was started with the USING CANCEL clause.

MANAGED STANDBY DATABASE
Specifies managed physical standby recovery mode on an active component of a
standby database. This command is used for media recovery only and not to
construct a new database, using the following parameters:

USING CURRENT LOGFILE
Invokes real time apply, which allows recovery of redos from standby online
logs as they are being filled, without first requiring that they be archived by
the standby database.

DISCONNECT [FROM SESSION]
Causes the managed redo process to occur in the background, leaving the
current process available for other tasks. FROM SESSION are noise words.
DISCONNECT is incompatible with TIMEOUT.

NODELAY
Overrides the DELAY attribute LOG_ARCHIVE_DEST_n parameter on the
primary database. When omitted, Oracle delays the application of the
archived redo log according to the attribute.

UNTIL CHANGE int
Conducts a managed recovery up to (but not including) the specified system
change number int.

FINISH
Recovers all available online redo log files immediately in preparation of the
standby assuming the primary database role. The FINISH clause is known as
a terminal recovery and should be used only in the event of a failure of the
primary database.

CANCEL
Stops application of redo applies immediately and returns control as soon as
the redo apply stops.

TO LOGICAL STANDBY {database_name | KEEP IDENTITY}
Converts the physical standby database into a logical standby database. The
database_name identifies the new logical standby database. The KEEP IDEN-
TITY subclause tells Oracle that the logical standby is used for a rolling
upgrade and is not usable as a general-purpose logical standby database.

{BEGIN | END} BACKUP
Controls the online backup mode for any datafiles. BEGIN places all datafiles into
online backup mode. The database must be mounted and open, in archivelog
mode with media recovery enabled. (Note that while the database is in online
backup mode the instance cannot be shut down and individual tablespaces
cannot be backed up, taken offline, or made read-only.) END takes all datafiles
currently in online backup mode out of that mode. The database must be
mounted but need not be open.

90 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > Oracle

After that long discussion of specific syntax, it’s important to establish some Oracle
basics.

Oracle allows the use of primary and standby databases. A primary database is a
mounted and open database accessible to users. The primary database regularly and
frequently ships its redo logs to a standby database where they are recovered, thus
making the standby database a very up-to-date copy of the primary.

Unique to the Oracle environment is the INIT.ORA file, which specifies the database
name and a variety of other options that you can use when creating and starting up the
database. You should always define startup parameters, such as the name of any
control files, in the INIT.ORA file to identify the control files; otherwise, the database
will not start. Starting in Oracle 9.1, you can use binary parameter files rather than
INIT.ORA files.

When a group of logfiles is listed, they are usually shown in parentheses. The paren-
theses aren’t needed when creating a group with only one member, but this is seldom
done. Here’s an example using a parenthetical list of logfiles:

CREATE DATABASE publications
LOGFILE ('/s01/oradata/loga01','/s01/oradata/loga02') SIZE 5M
DATAFILE;

That example creates a database called publications with an explicitly defined logfile
clause and an automatically created datafile. The following example of an Oracle
CREATE DATABASE command is much more sophisticated:

CREATE DATABASE sales_reporting
CONTROLFILE REUSE
LOGFILE
 GROUP 1 ('diskE:log01.log', 'diskF:log01.log') SIZE 15M,
 GROUP 2 ('diskE:log02.log', 'diskF:log02.log') SIZE 15M
MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET AL32UTF8
NATIONAL CHARACTER SET AL16UTF16
DATAFILE
 'diskE:sales_rpt1.dbf' AUTOEXTEND ON,
 'diskF:sales_rpt2.dbf' AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE temp_tblspc
UNDO TABLESPACE undo_tblspc
SET TIME_ZONE = '-08:00';

This example defines logfiles and datafiles, as well as all appropriate character sets. We
also define a few characteristics for the database, such as the use of ARCHIVELOG
mode and CONTROLFILE REUSE mode, the time zone, the maximum number of
instances and datafiles, etc. This example also assumes that the INIT.ORA parameter
for DB_CREATE_FILE_DEST has already been set. Thus, we don’t have to define file
definitions for the DEFAULT TEMPORARY TABLESPACE and UNDO
TABLESPACE clauses.

When issued by a user with SYSDBA privileges, this statement creates a database and
makes it available to users in either exclusive or parallel mode, as defined by the value
of the CLUSTER_DATABASE initialization parameter. Any data that exists in

Chapter 3: SQL Statement Command Reference | 91

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > PostgreSQL

predefined datafiles is erased. You will usually want to create tablespaces and rollback
segments for the database. (Refer to the vendor documentation for details on the platform-
specific commands CREATE TABLESPACE and CREATE ROLLBACK SEGMENT.)

Oracle has tightened up security around default database user accounts. Many
default database user accounts are now locked and expired during initial installa-
tion. Only SYS, SYSTEM, SCOTT, DBSNMP, OUTLN, AURORAJISUTILITY$,
AURORAORBUNAUTHENTICATED, and OSE$HTTP$ADMIN are the same in
11g as they were in earlier versions. You must manually unlock and assign a new pass-
word to all locked accounts, as well as assign a password to SYS and SYSTEM, during
the initial installation.

In the next example, we add more logfiles to the current database, and then add a
datafile:

ALTER DATABASE ADD LOGFILE GROUP 3
 ('diskf: log3.sales_arch_log','diskg:log3.sales_arch_log')
SIZE 50M;
ALTER DATABASE sales_archive
CREATE DATAFILE 'diskF:sales_rpt4.dbf'
AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED;

We can set a new default temporary tablespace, as shown in the next example:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE sales_tbl_spc_2;

Next, we’ll perform a simple full database recovery:

ALTER DATABASE sales_archive RECOVER AUTOMATIC DATABASE;

In the next example, we perform a more elaborate partial database recovery:

ALTER DATABASE RECOVER STANDBY DATAFILE 'diskF:sales_rpt4.dbf'
UNTIL CONTROLFILE;

Now, we’ll perform a simple recovery of a standby database in managed standby
recovery mode:

ALTER DATABASE RECOVER sales_archive MANAGED STANDBY DATABASE;

In the following example, we gracefully switch over from a primary database to a
logical standby, and promote the logical standby to primary:

-- Demotes the current primary to logical standby database.
ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;
-- Applies changes to the new standby.
ALTER DATABASE START LOGICAL STANDBY APPLY;
-- Promotes the current standby to primary database.
ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

PostgreSQL
PostgreSQL’s implementation of the CREATE DATABASE command creates a data-
base and a file location for the datafiles:

CREATE DATABASE database_name [WITH]
 [OWNER [=] database_owner]
 [TEMPLATE [=] tmp_name]
 [ENCODING [=] enc_value]
 [TABLESPACE [=] tablespace_name]
 [CONNECTION LIMIT [=] int]

92 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > PostgreSQL

PostgreSQL’s syntax for ALTER DATABASE is:

ALTER DATABASE database_name [WITH]
 [CONNECTION LIMIT int]
 [OWNER TO new_database_owner]
 [RENAME TO new_database_name]
 [RESET parameter]
 [SET parameter {TO | =} {value | DEFAULT}]

where:

WITH
Is an optional keyword to further define the details of the database.

OWNER [=] database_owner
Specifies the name of the database owner if it is different from the name of the
user executing the statement.

TEMPLATE [=] tmp_name
Names a template to use for creating the new database. You can omit this clause
to accept the default template describing the location of the database files (or use
the clause TEMPLATE = DEFAULT). The default is to copy the standard system
database template1. You can get a pristine database (one that contains only
required database objects) by specifying TEMPLATE = template0.

ENCODING [=] enc_value
Specifies the multibyte encoding method to use in the new database using either a
string literal (such as ‘SQL_ASCII’), an integer encoding number, or DEFAULT
for the default encoding.

TABLESPACE [=] tablespace_name
Specifies the name of the tablespace associated with the database.

CONNECTION LIMIT [=] int
Specifies how many concurrent connections to the database are allowed. A value
of –1 means no limit.

RENAME TO new_database_name
Assigns a new name to the database.

RESET parameter | SET parameter {TO | =} {value | DEFAULT}
Assigns (using SET) or reassigns (using RESET) a value for a parameter defining
the database.

For example, to create the database sales_revenue in the /home/teddy/private_db
directory:

CREATE DATABASE sales_revenue
WITH LOCATION = '/home/teddy/private_db';

Be careful using absolute file and pathnames, since they impact
security and data integrity issues.

PostgreSQL advises that databases used as templates be treated as read-only. Template
databases should not be used for general-purpose “copy database” functionality.

Chapter 3: SQL Statement Command Reference | 93

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > SQL Server

PostgreSQL does not support the ALTER DATABASE command.

SQL Server
SQL Server offers a lot of control over the OS filesystem structures that hold the database
and its objects. SQL Server’s CREATE DATABASE statement syntax looks like this:

CREATE DATABASE database_name
[ON file_definition[, ...]]
[, FILEGROUP filegroup_name file_definition[, ...]]
[LOG ON file_definition[, ...]]
[COLLATE collation_name]
[FOR { ATTACH [WITH {ENABLE_BROKER | NEW_BROKER | ERROR_BROKER_
CONVERSATIONS}] |
 ATTACH_REBUILD_LOG }
[WITH [DB_CHAINING {ON | OFF}][, TRUSTWORTHY {ON | OFF}]]]
[AS SNAPSHOT OF source]

Following is the syntax for ALTER DATABASE:

ALTER DATABASE database_name
{ADD FILE file_definition[, ...] [TO FILEGROUP filegroup_name]
| ADD LOG FILE file_definition[, ...]
| REMOVE FILE file_name
| ADD FILEGROUP filegroup_name
| REMOVE FILEGROUP filegroup_name
| MODIFY FILE file_definition
| MODIFY NAME = new_database_name
| MODIFY FILEGROUP filegroup_name
 {NAME = new_filegroup_name | filegroup_property
 {READONLY | READWRITE | DEFAULT}}
| SET {state_option | cursor_option
| auto_option | sql_option | recovery_option}
 [, ...] [WITH termination_option]
| COLLATE collation_name}

Parameter descriptions are as follows:

{CREATE | ALTER} DATABASE database_name
Creates a database (or alters an existing database) with the name database_name.
The name cannot be longer than 128 characters. You should limit the database
name to 123 characters when no logical filename is supplied, since SQL Server
will create a logical filename by appending a suffix to the database name.

{ON | ADD} file_definition[, . . .]

Defines the disk file(s) that store(s) the data components of the database for
CREATE DATABASE, or adds disk file(s) for ALTER DATABASE. ON is required
for CREATE DATABASE only if you wish to provide one or more file definitions.
The syntax for file_definition is:

{[PRIMARY] ([NEW][NAME = file_name]
[, FILENAME = {'os_file_name' | 'filestream_name'}]
[, SIZE = int [KB | MD | GB | TB]][, MAXSIZE = { int |
UNLIMITED }][, FILEGROWTH = int][, OFFLINE])}[, ...]

where:

94 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > SQL Server

PRIMARY
Defines the file_definition as the primary file. Only one primary file is
allowed per database. (If you don’t define a primary file, SQL Server defaults
primary status to the file that it autocreates, in the absence of any user-
defined file, or to the first file that you define.) The primary file or group of
files (also called a filegroup) contains the logical start of the database, all the
database system tables, and all other objects not contained in user filegroups.

[NEW]NAME = file_name
Provides the logical name of the file defined by the file_definition for
CREATE DATABASE. Use NEWNAME for ALTER DATABASE to define a
new logical name for the file. In either case, the logical name must be unique
within the database. This clause is optional when using FOR ATTACH.

FILENAME = {'os_file_name'| 'filestream_name'}
Specifies the operating system path and filename for the file defined by file_
definition. The file must be in a noncompressed directory on the filesystem.
For raw partitions, specify only the drive letter of the raw partition.

SIZE = int [KB | MB | GB | TB]
Sets the size of the file defined by the file_definition. This clause is
optional, but it defaults to the file size for the primary file of the model data-
base, which is usually very small. Logfiles and secondary datafiles default to
a size of 1 MB. The value of int defaults to megabytes; however, you can
explicitly define the size of the file using the suffixes for kilobyte (KB), mega-
byte (MB), gigabyte (GB), and terabyte (TB). The size cannot be smaller than
512 KB or the size of the primary file of the model database.

MAXSIZE = { int | UNLIMITED }
Defines the maximum size to which the file may grow. Suffixes, as described
under the entry for SIZE, are allowed. The default, UNLIMITED, allows the
file to grow until all available disk space is consumed. Not required for files
on raw partitions.

FILEGROWTH = int
Defines the growth increment for the file each time it grows. Suffixes, as
described under the entry for SIZE, are allowed. You may also use the
percentage (%) suffix to indicate that the file should grow by a percentage of
the total disk space currently consumed. If you omit the FILEGROWTH
clause, the file will grow in 10% increments, but never less than 64 KB. Not
required for files on raw partitions.

OFFLINE
Sets the file offline, making all objects in the filegroup inaccessible. This
option should only be used when the file is corrupted.

 [ADD] LOG {ON | FILE} file_definition
Defines the disk file(s) that store(s) the log component of the database for CREATE
DATABASE, or adds disk file(s) for ALTER DATABASE. You can provide one or
more file_definitions for the transaction logs in a comma-delimited list. Refer to
the earlier section under the keyword ON for the full syntax of file_definition.

REMOVE FILE file_name
Removes a file from the database and deletes the physical file. The file must be
emptied of all content first.

Chapter 3: SQL Statement Command Reference | 95

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > SQL Server

[ADD] FILEGROUP filegroup_name [file_definition]
Defines any user filegroups used by the database, and their file definitions. All
databases have at least one primary filegroup (though many databases only use
the primary filegroup that comes with SQL Server by default). Adding filegroups
and then moving files to those filegroups can allow you greater control over disk
I/O. (However, we recommend that you do not add filegroups without careful
analysis and testing.)

REMOVE FILEGROUP filegroup_name
Removes a filegroup from the database and deletes all the files in the filegroup.
The files and the filegroup must be empty first.

MODIFY FILE file_definition
Changes the definition of a file. This clause is very similar to the [ADD] LOG
{ON | FILE} clause. For example: MODIFY FILE (NAME = file_name,
NEWNAME = new_file_name, SIZE = ...).

MODIFY NAME = new_database_name
Changes the database’s name from its current name to new_database_name.

MODIFY FILEGROUP filegroup_name {NAME = new_filegroup_name | filegroup_
property}

Used with ALTER DATABASE, this clause has two forms. One form allows you to
change a filegroup’s name, as in MODIFY FILEGROUP filegroup_name NAME =
new_filegroup_name. The other form allows you to specify a filegroup_property
for the filegroup, which must be one of the following:

READONLY
Sets the filegroup to read-only and disallows updates to all objects within the
filegroup. READONLY can only be enabled by users with exclusive database
access and cannot be applied to the primary filegroup. You may also use
READ_ONLY.

READWRITE
Disables the READONLY property and allows updates to objects within the
filegroup. READWRITE can only be enabled by users with exclusive data-
base access. You may also use READ_WRITE.

DEFAULT
Sets the filegroup as the default filegroup for the database. All new tables and
indexes are assigned to the default filegroup unless explicitly assigned else-
where. Only one default filegroup is allowed per database. (By default, the
CREATE DATABASE statement sets the primary filegroup as the default
filegroup.)

SET {state_option | cursor_option | auto_option | sql_option | recovery_option}[, . . .]
Controls a wide variety of behaviors for the database. These are discussed in the
rules and information later in this section.

WITH termination_option
Used after the SET clause, WITH sets the rollback behavior for incomplete trans-
actions whenever the database is in transition. When this clause is omitted,
transactions must commit or roll back on their own with the database state
changes. There are two termination_option settings:

96 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > SQL Server

ROLLBACK AFTER int [SECONDS] | ROLLBACK IMMEDIATE
Causes the database to roll back in int number of seconds, or immediately.
SECONDS is a noise word and does not change the behavior of the ROLL-
BACK AFTER clause.

NO_WAIT
Causes database state or option changes to fail if a change cannot be
completed immediately, without waiting for the current transaction to inde-
pendently commit or roll back.

COLLATE collation_name
Defines or alters the default collation used by the database. collation_name can be
either a SQL Server collation name or a Windows collation name. By default, all
new databases receive the collation of the SQL Server instance. (You can execute
the query SELECT * FROM ::fn_helpcollations() to see all the collation names
available.) To change the collation of a database, you must be the only user in the
database, no schema-bound objects that depend on the current collation may
exist in the database, and the collation change must not result in the duplication
of any object names in the database.

FOR { ATTACH [WITH {ENABLE_BROKER | NEW_BROKER | ERROR_BROKER_
CONVERSATIONS}] | ATTACH_REBUILD_LOG }

Places the database in special startup mode. FOR ATTACH creates the database
from a set of pre-existing operating system files (almost always database files
created previously). Because of this, the new database must have the same code
page and sort order as the previous database. You only need the file_definition
of the first primary file or those files that have a different path from the last time
the database was attached. The FOR ATTACH_REBUILD_LOG clause specifies
that the database is created by attaching an existing set of OS files, rebuilding the
log in the process in case any logfiles are missing. In general, you should use the
sp_attach_db system stored procedure instead of the CREATE DATABASE FOR
ATTACH statement unless you need to specify more than 16 file_definitions.

Service Broker options may be specified when using the FOR ATTACH clause:

ENABLE_BROKER
Specifies that Service Broker is enabled for the database.

NEW_BROKER
Creates a new service_broker_guid and ends all conversation endpoints with
a cleanup.

ERROR_BROKER_CONVERSATIONS
Terminates all Service Broker conversations with an error indicating that a
database has been attached or restored. The broker is disable during the
operation and then re-enabled afterward.

WITH [DB_CHAINING {ON | OFF}][, TRUSTWORTHY {ON | OFF}]
Specifies that the database can be involved in a cross-database ownership chain
(with DB_CHAINING ON). When omitted, the default is OFF, which disallows
cross-database ownership chains. Setting TRUSTWORTHY ON specifies that data-
base routines (such as views, functions, or procedures) that use an impersonation
context can access resources outside of the database. When omitted, the default is
OFF, which disallows accessing external resources from within a routine running
in an impersonation context. TRUSTWORTHY is set OFF whenever a database is
attached. DB_CHAINING and TRUSTWORTHY cannot be set ON for master,
model, or tempdb databases.

Chapter 3: SQL Statement Command Reference | 97

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > SQL Server

AS SNAPSHOT OF source
Declares that the database being created is a snapshot of the source database.
Both source and snapshot must exist on the same instance of SQL Server.

The CREATE DATABASE command should be issued from the master system data-
base. You can, in fact, issue the command CREATE DATABASE database_name, with
no other clauses, to get a very small, default database.

SQL Server uses files, formerly called devices, to act as a repository for databases. Files
are grouped into one or more filegroups, with at least a PRIMARY filegroup assigned
to each database. A file is a predefined block of space created on the disk structure. A
database may be stored on one or more files or filegroups. SQL Server also allows the
transaction log to be placed in a separate location from the database using the LOG
ON clause. These functions allow sophisticated file planning for optimal control of
disk I/O. For example, we can create a database called sales_report with a data and
transaction logfile:

USE master
GO
CREATE DATABASE sales_report
ON
(NAME = sales_rpt_data, FILENAME =
 'c:\mssql\data\salerptdata.mdf',
 SIZE = 100, MAXSIZE = 500, FILEGROWTH = 25)
LOG ON
(NAME = 'sales_rpt_log',
 FILENAME = 'c:\mssql\log\salesrptlog.ldf',
 SIZE = 25MB, MAXSIZE = 50MB,
 FILEGROWTH = 5MB)
GO

When a database is created, all objects in the model database are copied into the new
database. All of the empty space within the file or files defined for the database is then
initialized (i.e., emptied out), which means that creating a new and very large data-
base can take a while, especially on a slow disk.

A database always has at least a primary datafile and a transaction logfile, but it may
also have secondary files for both the data and log components of the database. SQL
Server uses default filename extensions: .mdf for primary datafiles, .ndf for secondary
files, and .ldf for transaction logfiles. The following example creates a database called
sales_archive with several very large files that are grouped into a couple of filegroups:

USE master
GO
CREATE DATABASE sales_archive
ON
PRIMARY (NAME = sales_arch1, FILENAME = 'c:\mssql\data\archdata1.mdf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sales_arch2,
 FILENAME = 'c:\mssql\data\archdata2.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sales_arch3,
 FILENAME = 'c:\mssql\data\archdat3.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB)

98 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > SQL Server

FILEGROUP sale_rpt_grp1
 (NAME = sale_rpt_grp1_1_data,
 FILENAME = 'c:\mssql\data\SG1Fi1dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sale_rpt_grp1_1_data,
 FILENAME = 'c:\mssql\data\SG1Fi2dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
FILEGROUP sale_rpt_grp2
(NAME = sale_rpt_grp2_1_data, FILENAME = 'c:\mssql\data\SRG21dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sale_rpt_grp2_2_data, FILENAME = 'c:\mssql\data\SRG22dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
LOG ON
 (NAME = sales_archlog1,
 FILENAME = 'd:\mssql\log\archlog1.ldf',
 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%),
 (NAME = sales_archlog2,
 FILENAME = 'd:\ mssql\log\archlog2.ldf',
 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%)
GO

The FOR ATTACH clause is commonly used for situations like a salesperson traveling
with a database on a CD. This clause tells SQL Server that the database is attached
from an existing operating system file structure, such as a DVD-ROM, CD-ROM, or
portable hard drive. When using FOR ATTACH, the new database inherits all the
objects and data of the parent database, not the model database.

The following examples show how to change the name of a database, file, or filegroup:

-- Rename a database
ALTER DATABASE sales_archive MODIFY NAME = sales_history
GO
-- Rename a file
ALTER DATABASE sales_archive MODIFY FILE
NAME = sales_arch1,
NEWNAME = sales_hist1
GO
-- Rename a filegroup
ALTER DATABASE sales_archive MODIFY FILEGROUP
sale_rpt_grp1
NAME = sales_hist_grp1
GO

There may be times when you want to add new free space to a database, especially if
you have not enabled it to auto-grow:

USE master
GO
ALTER DATABASE sales_report ADD FILE
(NAME = sales_rpt_added01, FILENAME = 'c:\mssql\data\salerptadded01.mdf',
 SIZE = 50MB, MAXSIZE = 250MB, FILEGROWTH = 25MB)
GO

When you alter a database, you can set many behavior options on the database. State
options (shown as state_option in the earlier syntax diagram) control how users
access the database. Following is a list of valid state options:

Chapter 3: SQL Statement Command Reference | 99

SQLStatem
ent

Com
m

ands
CREATE/ALTER DATABASE Statement > SQL Server

SINGLE_USER | RESTRICTED_USER | MULTI_USER
Sets the number and type of users with access to the database. SINGLE_USER
mode allows only one user to access the database at a time. RESTRICTED_USER
mode allows access only to members of the system roles db_owner, dbcreator, or
sysadmin. MULTI_USER, the default, allows concurrent database access from all
users who have permission.

OFFLINE | ONLINE
Sets the database to offline (unavailable) or online (available).

READ_ONLY | READ_WRITE
Sets the database to READ_ONLY mode, where no modifications are allowed, or
to READ_WRITE mode, where data modifications are allowed. READ_ONLY
databases can be very fast for query-intensive operations, since almost no locking
is needed.

Cursor options control default behavior for cursors in the database. In the ALTER
DATABASE syntax shown earlier, you can replace cursor_option with any of the
following:

CURSOR_CLOSE_ON_COMMIT { ON | OFF }
When set to ON, any open cursors are closed when a transaction commits or rolls
back. When set to OFF, any open cursors remain open when transactions are
committed and close when a transaction rolls, back unless the cursor is INSENSI-
TIVE or STATIC.

CURSOR_DEFAULT { LOCAL | GLOBAL }
Sets the default scope of all cursors in the database to either LOCAL or GLOBAL.
(See later in this chapter for more details.)

In the SET clause, auto_option controls the automatic file-handling behaviors of the
database. The following are valid replacements for auto_option:

AUTO_CLOSE { ON | OFF }
When set to ON, the database automatically shuts down cleanly and frees all
resources when the last user exits. When set to OFF, the database remains open
when the last user exits. The default is OFF.

AUTO_CREATE_STATISTICS { ON | OFF }
When set to ON, statistics are automatically created when SQL Server notices
they are missing during query optimization. When set to OFF, statistics are not
created during optimization. The default is ON.

AUTO_SHRINK { ON | OFF }
When set to ON, the database files may automatically shrink (the database peri-
odically looks for an opportunity to shrink files, though the time is not always
predictable). When set to OFF, files will shrink only when you explicitly and
manually shrink them. The default is OFF.

AUTO_UPDATE_STATISTICS { ON | OFF }
When set to ON, out-of-date statistics are reassessed during query optimization.
When set to OFF, statistics are reassessed only by explicitly and manually recom-
piling them using the SQL Server command UPDATE STATISTICS.

The sql_options clause controls the ANSI compatibility of the database. You can use
the standalone SQL Server command SET ANSI_DEFAULTS ON to enable all the
ANSI SQL92 behaviors at one time, rather than using the individual statements below.
In the SET clause, you can replace sql_option with any of the following:

100 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER DATABASE Statement > SQL Server

ANSI_NULL_DEFAULT { ON | OFF }
When set to ON, the CREATE TABLE statement causes columns with no
nullability setting to default to NULL. When set to OFF, the nullability of a
column defaults to NOT NULL. The default is OFF.

ANSI_NULLS { ON | OFF }
When set to ON, comparisons to NULL yield UNKNOWN. When set to OFF,
comparisons to NULL yield NULL if both non-UNICODE values are NULL. The
default is OFF.

ANSI_PADDING { ON | OFF }
When set to ON, strings are padded to the same length for insert or comparison
operations on VARCHAR and VARBINARY columns. When set to OFF, strings
are not padded. The default is ON. (We recommend that you do not change this!)

ANSI_WARNINGS { ON | OFF }
When set to ON, the database warns when problems like “divide by zero” or
“NULL in aggregates” occur. When set to OFF, these warnings are not raised.
The default is OFF.

ARITHABORT { ON | OFF }
When set to ON, divide-by-zero and overflow errors cause a query or Transact-
SQL batch to terminate and roll back any open transactions. When set to OFF, a
warning is raised but processing continues. The default is ON. (We recommend
that you do not change this!)

CONCAT_NULL_YIELDS_NULL { ON | OFF }
When set to ON, returns a NULL when a NULL is concatenated to a string.
When set to OFF, NULLs are treated as empty strings when concatenated to a
string. The default is OFF.

NUMERIC_ROUNDABORT { ON | OFF }
When set to ON, an error is raised when a numeric expression loses precision.
When set to OFF, losses of precision result in rounding of the result from the
numeric expression. The default is OFF.

QUOTED_IDENTIFIER { ON | OFF }
When set to ON, double quotation marks identify an object identifier that
contains special characters or is a reserved word (e.g., a table named SELECT).
When set to OFF, identifiers may not contain special characters or reserved
words, and all occurrences of double quotation marks signify a literal string value.
The default is OFF.

RECURSIVE_TRIGGERS { ON | OFF }
When set to ON, triggers can fire recursively. That is, the actions taken by one
trigger may cause another trigger to fire, and so on. When set to OFF, triggers
cannot cause other triggers to fire. The default is OFF.

Recovery options control the recovery model used by the database. Use any of the
following in place of recovery_option in the ALTER DATABASE syntax:

RECOVERY { FULL | BULK_LOGGED | SIMPLE }
When set to FULL, database backups and transaction logs provide full recover-
ability even for bulk operations like SELECT...INTO, CREATE INDEX, etc.
FULL is the default for SQL Server 2000 Standard Edition and Enterprise Edition.
FULL provides the most recoverability, even from a catastrophic media failure,
but uses more space. When set to BULK_LOGGED, logging for bulk operations

Chapter 3: SQL Statement Command Reference | 101

SQLStatem
ent

Com
m

ands
CREATE/ALTER FUNCTION/PROCEDURE Statements

is minimized. Space is saved and fewer I/O operations are incurred, but risk of
data loss is greater than under FULL. When set to SIMPLE, the database can only
be recovered to the last full or differential backup. SIMPLE is the default for SQL
Server 2000 Desktop Edition and Personal Edition.

TORN_PAGE_DETECTION { ON | OFF }
When set to ON, SQL Server can detect incomplete I/O operations at the disk
level by checking each 512-byte sector per 8K database page. (Torn pages are
usually detected in recovery.) The default is ON.

For example, we may want to change some behavior settings for the sales_report data-
base without actually changing the underlying file structure:

ALTER DATABASE sales_report SET ONLINE, READ_ONLY,
AUTO_CREATE_STATISTICS ON
GO

This statement puts the database online and in read-only mode. It also sets the
AUTO_CREATE_STATISTICS behavior to ON.

See Also
CREATE SCHEMA
DROP

CREATE/ALTER FUNCTION/PROCEDURE Statements

The CREATE FUNCTION and CREATE PROCEDURE statements are very similar in
syntax and coding (as are the respective ALTER statements).

The CREATE PROCEDURE statement creates a stored procedure, which takes input
arguments and performs conditional processing against various objects in the data-
base. According to the ANSI standard, a stored procedure returns no result set (though
it may return a value in an OUTPUT parameter). For example, you might use a stored
procedure to perform all the processes that close an accounting cycle.

The CREATE FUNCTION statement creates a user-defined function (UDF), which
takes input arguments and returns a single value output in the same way as a system-
supplied function like CAST() or UPPER(). These functions, once created, can be
called in queries and data-manipulation operations, such as INSERT, UPDATE, and
the WHERE clause of DELETE statements. Refer to Chapter 4 for descriptions of
built-in SQL functions and their individual vendor implementations.

SQL2003 Syntax
Use the following syntax to create a stored procedure or function:

CREATE {PROCEDURE | FUNCTION} object_name
 ([{[IN | OUT | INOUT] [parameter_name] datatype [AS LOCATOR] [RESULT]}
 [, ...]])

Platform Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Supported, with variations

102 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER FUNCTION/PROCEDURE Statements

 [RETURNS datatype [AS LOCATOR]
 [CAST FROM datatype [AS LOCATOR]]]
[LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}]
[PARAMETER STYLE {SQL | GENERAL}]
[SPECIFIC specific_name]
[DETERMINISTIC | NOT DETERMINISTIC]
[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]
[DYNAMIC RESULT SETS int]
[STATIC DISPATCH] code_block

Use the following syntax to alter a pre-existing UDF or stored procedure:

ALTER {PROCEDURE | FUNCTION} object_name
 [({parameter_name datatype }[, ...])]
[NAME new_object_name]
[LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}]
[PARAMETER STYLE {SQL | GENERAL}]
[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]
[DYNAMIC RESULT SETS int]
[CASCADE | RESTRICT]

Keywords
CREATE {PROCEDURE | FUNCTION} object_name

Creates a new stored procedure or user-defined function with the name object_
name. A user-defined function returns a value, whereas a stored procedure (in
ANSI SQL) does not.

([{[IN | OUT | INOUT] [parameter_name] datatype [AS LOCATOR] [RESULT]} [, ...]])
Declares one or more parameters to be passed into a stored procedure in a
comma-delimited list enclosed in parentheses. Parameters used with a procedure
may pass a value IN, OUT, or both in and out via INOUT.

The syntax for the parameter declaration is:

[{IN | OUT | INOUT}] parameter_name1 datatype,
[{IN | OUT | INOUT}] parameter_name2 datatype,[...]

When providing the optional parameter_name, make sure the name is unique
within the stored procedure. The optional AS LOCATOR subclause is used to
validate an external routine with a RETURNS parameter that is a BLOB, CLOB,
NCLOB, ARRAY, or user-defined type. If you need to change the datatype of a
RETURNS parameter on the fly, use the CAST clause (refer to the section on the
function CAST in Chapter 4): for example, RETURNS VARCHAR(12) CAST
FROM DATE. When used with ALTER, this clause adds parameters to a pre-
existing stored procedure. Refer to Chapter 2 for details on datatypes.

RETURNS datatype [AS LOCATOR] [CAST FROM datatype [AS LOCATOR]]
Declares the datatype of the result returned by a function. (This clause is used only in
the CREATE FUNCTION statement and is not used in stored procedures.) The key
purpose of a user-defined function is to return a value.

LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}
Declares the language in which the function is written. Most database platforms
do not support all of these languages and may support several not mentioned,
such as Java. When omitted, the default is SQL. When used with ALTER, this
clause changes the existing LANGUAGE value to the value that you declare.

Chapter 3: SQL Statement Command Reference | 103

SQLStatem
ent

Com
m

ands
CREATE/ALTER FUNCTION/PROCEDURE Statements

PARAMETER STYLE {SQL | GENERAL}
Indicates, for external routines only, whether certain implicit and automatic
parameters are passed explicitly, with the options (SQL) or not (GENERAL).
(The difference between SQL style and GENERAL style is that SQL style auto-
matically passes SQL parameters, such as indicators, while GENERAL style does
not automatically pass parameters.) The default is PARAMETER STYLE SQL.
When used with ALTER, this clause changes the existing PARAMETER STYLE
value to the value that you declare.

SPECIFIC specific_name
Uniquely identifies the function. Generally used with user-defined types.

DETERMINISTIC | NOT DETERMINISTIC
States the nature of values returned by a function. (This clause is used only in
CREATE and ALTER FUNCTION statements.) DETERMINISTIC functions
always return the same value when given the same parameter values. NOT
DETERMINISTIC functions may return variable results when given the same
parameter values. For example, CURRENT_TIME is not deterministic because it
returns a constantly advancing value corresponding to the time.

NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA
Specifies, in conjunction with the LANGUAGE setting, the type of SQL contained
in the user-defined function. When used with ALTER, this clause changes the
existing SQL style value to the value that you declare.

NO SQL
Indicates that no SQL statements of any type are in the function. Used with a
non-SQL LANGUAGE setting such as LANGUAGE ADA...CONTAINS NO
SQL.

CONTAINS SQL
Indicates that SQL statements other than read or modify statements are in
the function. This is the default.

READS SQL DATA
Indicates that the function contains SELECT or FETCH statements.

MODIFIES SQL DATA
Indicates that the function contains INSERT, UPDATE, or DELETE
statements.

RETURN NULL ON NULL INPUT | CALL ON NULL INPUT
These options are for use with a host LANGUAGE that cannot support NULLs.
The RETURNS NULL ON NULL INPUT setting causes the function to immedi-
ately return a NULL value if it is passed a NULL value. The CALL ON NULL
INPUT setting causes the function to handle NULLs according to standard rules:
for example, returning UNKNOWN when a comparison of two NULL values
occurs. (This clause is used in the CREATE and ALTER PROCEDURE and
FUNCTION statements.) When used with ALTER, this clause changes the
existing NULL-style value to the value that you declare.

DYNAMIC RESULT SETS int
Declares that a certain number of cursors (int) can be opened by the stored
procedure and that those cursors are visible after returning from the procedure.
When omitted, the default is DYNAMIC RESULT SETS 0. (This clause is not
used in CREATE FUNCTION statements.) When used with ALTER, this clause
changes the existing DYNAMIC RESULT SETS value to the value that you
declare.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

104 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER FUNCTION/PROCEDURE Statements

STATIC DISPATCH
Returns the static values of a user-defined type or ARRAY datatype. Required for
non-SQL functions that contain parameters that use user-defined types or
ARRAYs. (This clause is not used in CREATE PROCEDURE statements.) This
clause must be the last clause in the function or procedure declaration before the
code_block.

code_block
Declares the procedural statements that handle all processing within the user-
defined function or stored procedure. This is the most important, and usually
largest, part of a function or procedure. We assume you’re interested in a user-
defined function of LANGUAGE SQL, so note that the code_block may not
contain SQL-Schema statements, SQL-Transaction statements, or SQL-Connection
statements.

While we assume that you’re interested in SQL-based UDFs and stored proce-
dures (this is a SQL book, after all), you can declare that the code block is derived
externally. The syntax for external code_blocks is:

EXTERNAL [NAME external_routine_name] [PARAMETER STYLE
 {SQL | GENERAL}] [TRANSFORM GROUP group_name]

where:

EXTERNAL [NAME external_routine_name]
Defines an external routine and assigns a name to it. When omitted, the
unqualified routine name is used.

PARAMETER STYLE {SQL | GENERAL}
Same as for CREATE PROCEDURE.

TRANSFORM GROUP group_name
Transforms values between user-defined types and host variables in a user-
defined function or a stored procedure. When omitted, the default is
TRANSFORM GROUP DEFAULT.

NAME new_object_name
Declares the new name to use for a previously defined UDF or stored procedure.
This clause is used only with ALTER FUNCTION and ALTER PROCEDURE
statements.

 CASCADE | RESTRICT
Allows you to cause changes to CASCADE down to all dependent UDFs or stored
procedures, or to RESTRICT a change from happening if there are dependent
objects. We strongly recommend that you do not issue an ALTER statement
against UDFs or stored procedures that have dependent objects. This clause is
used only with ALTER FUNCTION and ALTER PROCEDURE statements.

Rules at a Glance
With a user-defined function, you declare the input arguments and the single output
argument that the function passes back out. You can then call the user-defined func-
tion just as you would any other function: for example, in SELECT statements,
INSERT statements, or the WHERE clauses of DELETE statements.

User-defined functions and stored procedures, when referred to
generically, are called routines.

Chapter 3: SQL Statement Command Reference | 105

SQLStatem
ent

Com
m

ands
CREATE/ALTER FUNCTION/PROCEDURE Statements

With a stored procedure, you declare the input arguments that go into the stored
procedure and the output arguments that come out from it. You invoke a stored
procedure using the CALL statement.

The content of the code_block must conform to the rules of whatever procedural
language the database platform supports. Some platforms do not have their own
internal procedural languages, requiring you to use EXTERNAL code_block
constructs.

For example, you might want to build a user-defined function on Microsoft SQL
Server that returns the first and last name of a person as a single string:

CREATE FUNCTION formatted_name (@fname VARCHAR(30),
@lname VARCHAR(30))
RETURNS VARCHAR(60)
AS
BEGIN
 DECLARE @full_name VARCHAR(60)
 SET @full_name = @fname + ' ' + @lname
 RETURN @full_name
END

You could then use this user-defined function just as you would any other function:

SELECT formatted_name(au_fname, au_lname) AS name, au_id AS id
FROM authors

The SELECT statement in this example will return a result set with the two columns
name and id.

The ANSI statement CREATE METHOD is supported only by
IBM’s UDB DB2 platform at this time. A method is essentially a
special-purpose user-defined function and follows the same syntax
as that outlined here.

Stored procedures behave similarly. The Microsoft SQL Server stored procedure in the
following example generates a unique 22-digit value (based on elements of the system
date and time) and returns it to the calling process:

-- A Microsoft SQL Server stored procedure
CREATE PROCEDURE get_next_nbr
 @next_nbr CHAR(22) OUTPUT
AS
BEGIN
 DECLARE @random_nbr INT
 SELECT @random_nbr = RAND() * 1000000
SELECT @next_nbr =
 RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))AS
 CHAR(6), 6) +
 RIGHT('0000' + CAST(DATEPART (yy, GETDATE()) AS CHAR(4)), 2) +
 RIGHT('000' + CAST(DATEPART (dy, GETDATE()) AS CHAR(3)), 3) +
 RIGHT('00' + CAST(DATEPART (hh, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (mi, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (ss, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('000' + CAST(DATEPART (ms, GETDATE()) AS CHAR(3)), 3)
END
GO

106 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER FUNCTION/PROCEDURE Statements > MySQL

In this next (and final) ANSI SQL2003 example, we change the name of an existing
stored procedure:

ALTER PROCEDURE get_next_nbr
NAME 'get_next_ID'
RESTRICT;

Programming Tips and Gotchas
A key advantage of a stored procedure or function is the fact that it is precompiled,
meaning that once it’s been created, its query plans are already stored in the database.
Precompiled routines can often (though not always) be cached in database memory to
provide an additional boost in performance. A stored procedure or user-defined func-
tion can perform many statements with a single communication to the server, thus
reducing network traffic.

Implementations of user-defined functions and stored procedures vary widely by plat-
form. Some database platforms do not support internal code_block content. On these
platforms, you can only write an external code_block. The following sections outline
the variations and the capabilities of each platform.

If you execute an ALTER PROCEDURE or FUNCTION statement, dependent objects
may become invalid after a change to an object on which they depend. Be careful to
check all dependencies when altering UDFs or stored procedures on which other
UDFs or stored procedures may depend.

MySQL
MySQL supports both the ALTER and CREATE FUNCTION statements, as well as
the ALTER and CREATE PROCEDURE statements.

The CREATE syntax for functions and procedures follows:

CREATE
[DEFINER = {user | CURRENT_USER}]
{ FUNCTION | PROCEDURE } [database_name.]routine_name

([{IN | OUT | INOUT}] [parameter[, ...])
[RETURNS type]
[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
[COMMENT 'string']
routine_body;

where:

CREATE { FUNCTION | PROCEDURE } [database_name.]routine_name
Creates an external function or procedure with a routine_name of not more than
64 characters. The module is stored in the proctable in the MySQL database.

DEFINER
Assigns a user, in the format 'user_name@host_name', as the owner of the routine.
When omitted, the current_user is the default.

([{IN | OUT | INOUT}] parameter[, . . .])
Defines one or more parameters for the routine. All function parameters must be
IN parameters, but procedure parameters may be any of the three types. When
this clause is omitted on a procedure, parameters are IN by default.

RETURNS type
Returns a value called type of any valid MySQL datatype. Only for use with
CREATE or ALTER FUNCTION, where it is mandatory.

Chapter 3: SQL Statement Command Reference | 107

SQLStatem
ent

Com
m

ands
CREATE/ALTER FUNCTION/PROCEDURE Statements > Oracle

COMMENT 'my_string'
Adds a comment to the routine. The comment(s) may be displayed using the
SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements.

routine_body
Contains one or more valid SQL statements. Multiple SQL statements should be
nested within BEGIN and END. The routine_body can also contain procedural
language such as declarations, loops, and other control structures.

Procedures and functions may contain DDL statements such as CREATE, ALTER, or
DROP. Procedures, but not functions, may contain transaction control statements
such as COMMIT and ROLLBACK. Functions may not use statements that perform
explicit or implicit rollbacks or commits, nor may functions contain statements that
return uncontrolled result sets, such as a SELECT statement without the INTO clause.
Neither procedures nor functions may contain the command LOAD DATA INFILE.

Once implemented, a MySQL function may be called just like any built-in function,
such as ABS() or SOUNDEX(). Procedures, on the other hand, are invoked using the
CALL statement.

The implementation of CREATE FUNCTION in MySQL has long supported user-
defined functions through an implementation that depends on external procedural
code in C/C++ under an operating system that supports dynamic loading. The C/C++
program is named in the shared_program_library_name option. The function may be
compiled either directly into the MySQL server, making it permanently available, or as
a dynamically callable program. For example, the code behind the UDF created in the
following statement might be found on a Unix server:

CREATE FUNCTION find_radius RETURNS INT SONAME "radius.so";

Oracle
Oracle supports ALTER and CREATE for both the FUNCTION and PROCEDURE
object types. (You may also wish to learn about Oracle packages, which can also be
used to create UDFs and stored procedures. Check Oracle’s documentation.) Oracle’s
CREATE PROCEDURE syntax is as follows:

CREATE [OR REPLACE] {FUNCTION | PROCEDURE} [schema.]object_name
[(parameter1 [IN | OUT | IN OUT] [NOCOPY] datatype[, ...])]
RETURN datatype
[DETERMINISTIC] [AUTHID {CURRENT_USER | DEFINER}] [IS | AS] [EXTERNAL]
[PARALLEL_ENABLE [(PARTITION prtn_name BY {ANY | {HASH | RANGE}
 (column[, ...])}) [{ORDER | CLUSTER} BY (column[, ...])]]]
{ {PIPELINED | AGGREGATE} [USING [schema.]implementation_type] |
 [PIPELINED] {IS | AS} }
{code_block | LANGUAGE {JAVA NAME external_program_name |
 C [NAME external_program_name]}
 LIBRARY lib_name [AGENT IN (argument[, ...])] [WITH CONTEXT]
 [PARAMETERS (params[, ...])]};

The ALTER FUNCTION/PROCEDURE statement shown next is used to recompile
invalid UDFs or stored procedures:

ALTER {FUNCTION | PROCEDURE} [schema.]object_name
COMPILE [DEBUG] [compiler_param = value [...]] [REUSE SETTINGS]

Following are the parameter descriptions:

108 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER FUNCTION/PROCEDURE Statements > Oracle

CREATE [OR REPLACE] {FUNCTION | PROCEDURE} [schema.]object_name
Creates a new UDF or stored procedure. Use OR REPLACE to replace an existing
procedure or UDF without first dropping it and then having to reassign all
permissions to it.

Certain clauses are only used with user-defined functions, including the RETURN
clause, the DETERMINISTIC clause, and the entirety of the USING clause.

IN | OUT | IN OUT
Specifies whether a parameter is an input to the function, an output from the
function, or both.

NOCOPY
Speeds up performance when an OUT or IN OUT argument is very large, as with
a VARRAY or RECORD datatype.

AUTHID {CURRENT_USER | DEFINER}
Forces the routine to run in the permission context of either the current user or
the person who owns the function, using AUTHID CURRENT_USER or
AUTHID DEFINER, respectively.

AS EXTERNAL
Alternatively declares a C method. Oracle prefers the AS LANGUAGE C syntax
except when PL/SQL datatypes need to be mapped to parameters.

PARALLEL_ENABLE
Enables the routine to be executed by a parallel query operation on a symmetric
multi-processor (SMP) or parallel-processor server. This clause is used only for
UDFs. (Do not use session state or package variables, because they can’t be
expected to be shared among parallel-execution servers.) Define the behavior of
the PARALLEL_ENABLE query operation using these subclauses:

PARTITION prtn_name BY {ANY | {HASH | RANGE} (column[, . . .])}
Defines partitioning of inputs on functions with REF CURSOR arguments.
This may benefit table functions. ANY allows random partitioning. You can
restrict partitioning to a specific RANGE or HASH partition on a comma-
delimited column list.

{ORDER | CLUSTER} BY (column[, . . .])
Orders or clusters parallel processing based on a comma-delimited column
list. ORDER BY causes the rows to be locally ordered on the parallel-execution
server according to the column list. CLUSTER BY restricts the rows on the
parallel-execution server to the key values identified in the column list.

{PIPELINED | AGGREGATE} [USING [schema.]implementation_type]
PIPELINED iteratively returns the results of a table function, instead of the
normal serial return of the VARRAY or nested table result set. This clause is used
only for UDFs. The clause PIPELINED USING implementation_type is for an
external UDF that uses a language such as C++ or Java. The AGGREGATE
USING implementation_type clause defines a UDF as an aggregate function (a
function that evaluates many rows but returns a single value).

IS | AS
Oracle treats IS and AS equally. Use either one to introduce the code_block.

Chapter 3: SQL Statement Command Reference | 109

SQLStatem
ent

Com
m

ands
CREATE/ALTER FUNCTION/PROCEDURE Statements > Oracle

code_block
Oracle allows a PL/SQL code block for user-defined functions and stored proce-
dures. Alternately, you may use the LANGUAGE clause for stored procedures
written in Java or C.

LANGUAGE {JAVA NAME external_program_name | C [NAME external_program_name]
LIBRARY lib_name [AGENT IN (argument[, …])] [WITH CONTEXT] [PARAMETERS
(params[, …])] }

Defines the Java or C implementation of the external program. The parameters
and semantics of each declaration are specific to Java and C, not SQL.

ALTER {FUNCTION | PROCEDURE} [schema.]object_name
Recompiles an invalid standalone stored routine. Use CREATE...OR REPLACE
to change the arguments, declarations, or definition of an existing routine.

COMPILE [DEBUG] [REUSE SETTINGS]
Recompiles the routine. Note that COMPILE is required. (You can see compile
errors with the SQL*Plus command SHOW ERRORS.) The routine is marked
valid if no compiler errors are encountered. The following optional subclauses
may also be included with the COMPILE clause:

DEBUG
Generates and stores code used by the PL/SQL debugger.

compiler_param = value [. . .]
Specifies a PL/SQL compiler parameter. Allowable parameters include
PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG,
PLSQL_WARNINGS, and NLS_LENGTH_SEMANTICS. Refer to Oracle’s
documentation on the PL/SQL compiler for more details.

REUSE SETTINGS
Maintains the existing compiler switch settings and reuses them for recompi-
lation. Normally, Oracle drops and reacquires compiler switch settings.

In Oracle, UDFs and stored procedures are very similar in composition and structure.
The primary difference is that a stored procedure cannot return a value to the invoking
process, while a function may return a single value to the invoking process.

For example, you can pass in the name of a construction project to the following func-
tion to obtain the project’s profit:

CREATE OR REPLACE FUNCTION project_revenue (project IN varchar2)
RETURN NUMBER
AS
 proj_rev NUMBER(10,2);
BEGIN
 SELECT SUM(DECODE(action,'COMPLETED',amount,0)) -
 SUM(DECODE(action,'STARTED',amount,0)) +
 SUM(DECODE(action,'PAYMENT',amount,0))
 INTO proj_rev
 FROM construction_actions
 WHERE project_name = project;
 RETURN (proj_rev);
END;

In this example, the UDF accepts the project name as an argument. Then it processes
the project revenue, behind the scenes, by subtracting the starting costs from the
completion payment and adding any other payments into the amount. The RETURN
(proj_rev); line returns the amount to the invoking process.

110 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER FUNCTION/PROCEDURE Statements > PostgreSQL

In Oracle, UDFs cannot be used in the following situations:

• In a CHECK constraint or DEFAULT constraint of a CREATE TABLE or ALTER
TABLE statement.

• In a SELECT, INSERT, UPDATE, or DELETE, the UDF cannot, either directly or
indirectly (if invoked by another routine):

• Have an OUT or IN OUT parameter. (Indirect calls may take OUT and IN
OUT parameters.)

• Terminate the transaction with COMMIT, ROLLBACK, SAVEPOINT, or a
CREATE, ALTER, or DROP statement that implicitly issues a COMMIT or
ROLLBACK.

• Use session control (SET ROLE) or system control (the Oracle-specific state-
ment ALTER SYSTEM) statements.

• Write to a database (when a component of a SELECT statement or a parallel-
ized INSERT, UPDATE, or DELETE statement).

• Write to the same table that is modified by the statement that calls the UDF.

When you recompile a routine with the ALTER statement, it is marked valid if no
compiler errors are encountered. If any errors are encountered, it is marked invalid.
However, perhaps more importantly, any objects that depend upon the recompiled
routine are marked invalid regardless of whether or not an error occurs. You can either
recompile those dependent objects yourself, or allow Oracle to take some additional
time to recompile them at runtime.

By way of example, the following statement recompiles the project_revenue function
and maintains any compiler information for the PL/SQL debugger:

ALTER FUNCTION project_revenue COMPILE DEBUG;

PostgreSQL
PostgreSQL supports the ALTER and CREATE FUNCTION statements, but not
CREATE PROCEDURE or ALTER PROCEDURE. This is because PostgreSQL’s
powerful functions can be used to simulate the processing performed by a procedure.
The syntax to use to create a function is:

CREATE [OR REPLACE] FUNCTION routine_name
 ([parameter [{IN | OUT | INOUT}][, ...]])
[RETURNS datatype]
AS {code_block | object_file, link_symbol}
 [LANGUAGE {C | SQL | internal} | {IMMUTABLE | STABLE | VOLATILE} |
 {CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT} |
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER]
[WITH {[ISCACHABLE][,] [ISSTRICT]}]

The syntax for ALTER FUNCTION follows:

ALTER FUNCTION routine_name
 ([parameter [{IN | OUT | INOUT}][, ...]])
[RESTRICT]
[RENAME TO new_routine_name]
[OWNER TO new_owner_name]
[SET SCHEMA new_schema_name]

The parameters are:

Chapter 3: SQL Statement Command Reference | 111

SQLStatem
ent

Com
m

ands
CREATE/ALTER FUNCTION/PROCEDURE Statements > PostgreSQL

CREATE [OR REPLACE] FUNCTION routine_name
Creates a new function of the name you provide, or replaces an existing function.
OR REPLACE does not enable you to change the name, input parameters, or
output results of an existing function; you must drop and recreate a function to
change any of those settings.

RETURNS datatype
Specifies the type of data required by the function. Not used with a procedure.

code_block | object_file, link_symbol
Defines the composition of the user-defined function. The code_block can be a
string defining the function (dependent on the LANGUAGE setting), such as an
internal function name, the path and name of an object file, a SQL query, or the
text of a procedural language. The definition also can be an object file and link
symbol for a C-language function.

LANGUAGE {C | SQL | internal}
Defines a call to an external program or an internal SQL routine. Since all of the
language options except SQL are programs compiled in other languages, they are
beyond the scope of this book. However, the LANGUAGE SQL clause should be
used when writing SQL user-defined functions.

You can add a new language not installed by default on Postgre-
SQL by using the CREATE LANGUAGE statement.

IMMUTABLE | STABLE | VOLATILE
Describes the behavior of a function. IMMUTABLE describes a deterministic
function that does not modify or access data stored within the database (i.e., no
SELECT statements). STABLE describes a deterministic function that may modify
or access data stored within the database (i.e., a SELECT statement that always
returns the same data given the same inputs). When all of these descriptors are
omitted, PostgreSQL assumes VOLATILE. VOLATILE indicates that the func-
tion is not deterministic (i.e., may give different results even when the inputs are
always the same).

CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
STRICT is a synonym for RETURNS NULL ON NULL INPUT. Both RETURNS
NULL ON NULL INPUT and CALLED ON NULL INPUT are part of the ANSI
standard and are described in that section.

[EXTERNAL] SECURITY {INVOKER | DEFINER}
INVOKER tells PostgreSQL to execute using the privileges of the user that called
the routine, while DEFINER tells PostgreSQL to execute using the privileges of
the user that created the routine. EXTERNAL is a noise word and is included only
for ANSI compliance.

[WITH {[ISCACHABLE][,] [ISSTRICT]}]
Optimizes PostgreSQL performance by indicating that the function always
returns the same value when provided with the same parameter values. WITH
ISCACHABLE is similar to the ANSI setting DETERMINISTIC, except that this
setting then allows the optimizer to pre-evaluate the call of the function. WITH
ISSTRICT is similar to the ANSI setting RETURNS NULL ON NULL INPUT.

112 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER FUNCTION/PROCEDURE Statements > SQL Server

When omitted, the default behavior is similar to CALLED ON NULL INPUT.
Note that you may include both keywords in a single function declaration.

[RESTRICT] [RENAME TO new_routine_name] [OWNER TO new_owner_name] [SET
SCHEMA new_schema_name]

Assigns a new name, owner, or schema to the routine. The RESTRICT keyword is
noise.

PostgreSQL also allows function overloading, where the same function name is
allowed for different functions, as long as they accept distinct input parameters.

Whenever you drop an existing function, all dependent objects are
invalidated and must be recompiled.

Here’s an example of a simple SQL function in PostgreSQL:

CREATE FUNCTION max_project_nbr
RETURNS int4
AS "SELECT MAX(title_ID) FROM titles AS RESULT"
LANGUAGE 'sql';

In this example, we created a UDF that returns the maximum title_ID from the titles table.

PostgreSQL uses CREATE FUNCTION as a substitute for CREATE PROCEDURE, as
well as to define actions for CREATE TRIGGER.

SQL Server
SQL Server supports CREATE and ALTER for both types of routines. By default, SQL
Server stored procedures can return result sets and SQL Server UDFs can return single
or multirow result sets using the TABLE datatype on RETURNS arguments, contrary
to the ANSI standard. However, this makes SQL Server routines more flexible and
powerful. Use the following syntax to create a user-defined function or stored
procedure:

CREATE {FUNCTION | PROCEDURE} [owner_name.]object_name[;int]
([{@parameter datatype [VARYING] [=default] [OUTPUT]} [READONLY][, ...]])
[RETURNS {datatype | TABLE]]
[WITH {ENCRYPTION | SCHEMABINDING | RECOMPILE | RECOMPILE, ENCRYPTION |
 RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT |
 EXEC[UTE] AS {CALLER | SELF | OWNER | 'user_name'}}]
[FOR REPLICATION]
[AS]

code_block

Use the following syntax to alter an existing user-defined function or stored procedure:

ALTER {FUNCTION | PROCEDURE} [owner_name.]object_name[;int]
([{@parameter datatype [VARYING] [=default] [OUTPUT]}[, ...]])
[RETURNS {datatype | TABLE}]
[WITH {ENCRYPTION | SCHEMABINDING | RECOMPILE | RECOMPILE, ENCRYPTION |
 RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT |
 EXEC[UTE] AS {CALLER | SELF | OWNER | 'user_name'}}]
[FOR REPLICATION]
[AS]

code_block

Following are the parameter descriptions:

Chapter 3: SQL Statement Command Reference | 113

SQLStatem
ent

Com
m

ands
CREATE/ALTER FUNCTION/PROCEDURE Statements > SQL Server

CREATE {FUNCTION | PROCEDURE} [owner_name.]object_name[;int]
Creates a new UDF or stored procedure in the current database. For SQL Server
stored procedures, you may optionally specify a version number in the format
procedure_name;1, where 1 is an integer indicating the version number. This
facility allows you to have multiple versions of a single stored procedure.

{@parameter datatype [VARYING] [=default] [OUTPUT]} [READONLY][, .. .]
Defines one or more input arguments for a UDF or stored procedure. SQL Server
parameters are always declared with an at sign (@) as the first character.

VARYING
Used in stored procedures with a CURSOR datatype parameter. Indicates
that the procedure constructs the result set dynamically.

=default
Assigns a default value to the parameter. The default value is used whenever
the stored procedure or UDF is invoked without a value being supplied for
the parameter.

OUTPUT
Used for stored procedures, OUTPUT is functionally equivalent to the ANSI
OUT clause in the CREATE FUNCTION statement. The value stored in the
return parameter is passed back to the calling procedure through the return
variables of the SQL Server EXEC[UTE] command. Output parameters can
be any datatype except TEXT and IMAGE.

READONLY

Used in functions to indicate that the parameter cannot be updated or modi-
fied within the routine code body. This is especially useful for user-defined
TABLE types.

RETURNS {datatype | TABLE}
Allows SQL Server UDFs to return a single datatype value or to return multiple
values via the TABLE datatype. The TABLE datatype is considered inline if it has
no accompanying column list and is defined with a single SELECT statement. If
the RETURNS clause returns multiple values via the TABLE datatype, and if the
TABLE has defined columns and datatypes, the function is considered a multi-
statement, table-valued function.

WITH
Allows the assignment of additional characteristics to a SQL Server UDF or stored
procedure.

ENCRYPTION
Tells SQL Server to encrypt the column in the system table that stores the
text of the function, thus preventing unwarranted review of the function
code. Usable by both UDFs and stored procedures.

SCHEMABINDING
Specifies that the function is bound to a specific database object, such as a
table or view. That database object cannot be altered or dropped as long as
the function exists (or maintains the SCHEMABINDING option). Usable
only by UDFs.

114 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER FUNCTION/PROCEDURE Statements > SQL Server

RECOMPILE
Tells SQL Server not to store a cache plan for the stored procedure, but
instead to recompile the cache plan each time the stored procedure is
executed. This is useful when using atypical or temporary values in the
procedure, but it can cause serious degradation in performance. Usable only
by stored procedures. Note that RECOMPILE and ENCRYPTION can be
invoked together.

EXEC[UTE] AS {CALLER | SELF| OWNER | 'user_name'}
Optional clause, for both procedures and functions, to specify the privileges
under which the routine will execute. CALLER indicates the routine will run
with the privileges of the user invoking the routine. When this clause is
omitted, SQL Server assumes CALLER. SELF indicates the routine will run
with the privileges of the creator of the routine. OWNER indicates the
routine will run with the privileges of the current owner of the routine.
'user_name' indicates the routine will run with the privileges of the named,
pre-existing user.

FOR REPLICATION
Disables execution of the stored procedure on a subscribing server. This clause is
used primarily to create a filtering stored procedure that is executed only by SQL
Server’s built-in replication engine. It is incompatible with WITH RECOMPILE.

Like tables (see CREATE TABLE), local and global temporary stored procedures may
be declared by prefixing a pound symbol (#) or double pound symbol (##) to the
name of the procedure, respectively. Temporary procedures exist only for the duration
of the user or process session that created them. When that session ends, the tempo-
rary procedures automatically delete themselves.

A SQL Server stored procedure or UDF may have as many as 1,024 input parameters,
specified by the at sign (@). Parameters are defined using SQL Server datatypes.
(Parameters of the CURSOR datatype must be defined with both VARYING and
OUTPUT.) The user or calling process must supply values for any input parameters.
However, a default value can be supplied for any input parameter to allow the proce-
dure to execute without a user- or process-supplied value. The default must be a
constant or NULL, but it may contain wildcard characters.

SQL Server requires that one or more user-supplied parameters be declared for a given
user-defined function. All SQL Server datatypes are supported as parameters, except
TIMESTAMP. Values returned by the function can be any datatype except TIME-
STAMP, TEXT, NTEXT, or IMAGE. If an inline table value is required, the TABLE
option without an accompanying column list may be used.

The ALTER FUNCTION and ALTER PROCEDURE statements
support the full syntax provided by the corresponding CREATE
statements. You can use the ALTER statements to change any of
the attributes of an existing routine without changing permissions
or affecting any dependent objects.

For UDFs, the code_block is either a single SELECT statement for an inline function, in
the format RETURN (SELECT...), or a series of Transact-SQL statements following
the AS clause for a multistatement operation. When using RETURN (SELECT), the AS
clause is optional. Here are some other rules for SQL Server UDFs:

Chapter 3: SQL Statement Command Reference | 115

SQLStatem
ent

Com
m

ands
CREATE/ALTER FUNCTION/PROCEDURE Statements > SQL Server

• When using the AS clause, the code_body should be enclosed in BEGIN...END
delimiters.

• UDFs cannot make any permanent changes to data or cause other lasting side
effects. A number of other restrictions exist as a result. For example, INSERT,
UPDATE, and DELETE statements may modify only TABLE variables local to a
function.

• When returning a scalar value, a SQL Server UDF must contain the clause
RETURN datatype, where datatype is the same as that identified in the
RETURNS clause.

• The last statement of the code_block must be an unconditional RETURN that
returns a single datatype value or TABLE value.

• The code_block may not contain any global variables that return a perpetually
changing value, such as @@CONNECTIONS or GETDATE. However, it may
contain variables that return a single, unchanging value, such as
@@SERVERNAME.

The following is an example of a scalar function that returns a single value. Once
created, the scalar UDF can then be utilized in a query just like a system-supplied
function:

CREATE FUNCTION metric_volume -- Input dimensions in centimeters.
 (@length decimal(4,1),
 @width decimal(4,1),
 @height decimal(4,1))
RETURNS decimal(12,3) -- Cubic centimeters.
AS BEGIN
 RETURN (@length * @width * @height)
 END
GO
SELECT project_name,
 metric_volume(construction_height,
 construction_length,
 construction_width)
FROM housing_construction
WHERE metric_volume(construction_height,
 construction_length,
 construction_width) >= 300000
GO

An inline table-valued UDF supplies values via a single SELECT statement using an AS
RETURN clause. For example, we can supply a store ID and find all of that store’s
titles:

CREATE FUNCTION stores_titles(@stor_id varchar(30))
RETURNS TABLE
AS
RETURN (SELECT title, qty
 FROM sales AS s
 JOIN titles AS t ON t.title_id = s.title_id
 WHERE s.stor_id = @storeid)

Now, let’s alter the UDF just a bit by changing the input argument datatype length
and adding another condition to the WHERE clause (changes indicated in boldface):

ALTER FUNCTION stores_titles(@stor_id VARCHAR(4))
RETURNS TABLE

116 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER FUNCTION/PROCEDURE Statements > SQL Server

AS
RETURN (SELECT title, qty
 FROM sales AS s
 JOIN titles AS t ON t.title_id = s.title_id
 WHERE s.stor_id = @storeid
AND s.city = 'New York')

User-defined functions that return TABLE values are often selected as result set values
or are used in the FROM clause of a SELECT statement, just as a regular table is used.
These multi-statement, table-valued functions can have very elaborate code bodies since
the code_block is composed of many Transact-SQL statements that populate a TABLE
return variable.

Here is an example invoking a multistatement, table-valued function in a FROM
clause. Notice that a table alias is assigned, just as for a regular table:

SELECT co.order_id, co.order_price
FROM construction_orders AS co,
 fn_construction_projects('Cancelled') AS fcp
WHERE co.construction_id = fcp.construction_id
ORDER BY co.order_id
GO

For stored procedures, the code_block clause contains one or more Transact-SQL
commands, up to a maximum size of 128 MB, delimited by BEGIN and END clauses.
Some rules about Microsoft SQL Server stored procedures include:

• The code_block allows most valid Transact-SQL statements, but SET
SHOWPLAN_TEXT and SET SHOWPLAN_ALL are prohibited.

• Some other commands have restricted usages within stored procedures, including
ALTER TABLE, CREATE INDEX, CREATE TABLE, all DBCC statements,
DROP TABLE, DROP INDEX, TRUNCATE TABLE, and UPDATE STATISTICS.

• SQL Server allows deferred name resolution, meaning that a stored procedure
compiles without an error even though it references an object that has not yet
been created. SQL Server creates the execution plan and fails only when the
object is actually invoked (for instance, in a stored procedure), if the object still
doesn’t exist.

• Stored procedures can be nested easily in SQL Server. Whenever a stored proce-
dure invokes another stored procedure, the system variable @@NESTLEVEL is
incremented by 1. It is decreased by 1 when the called procedure completes. Use
SELECT @@NESTLEVEL inside a procedure or from an ad hoc query session to
find the current nesting depth.

In the following example, a SQL Server stored procedure generates a unique 22-digit
value (based on elements of the system date and time) and returns it to the calling
process:

-- A Microsoft SQL Server stored procedure
CREATE PROCEDURE get_next_nbr
 @next_nbr CHAR(22) OUTPUT
AS
BEGIN
 DECLARE @random_nbr INT
 SELECT @random_nbr = RAND() * 1000000

Chapter 3: SQL Statement Command Reference | 117

SQLStatem
ent

Com
m

ands
CREATE/ALTER INDEX Statement

SELECT @next_nbr =
 RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))
 AS CHAR(6), 6) +
 RIGHT('0000' + CAST(DATEPART (yy, GETDATE())
 AS CHAR(4)), 2) +
 RIGHT('000' + CAST(DATEPART (dy, GETDATE())
 AS CHAR(3)), 3) +
 RIGHT('00' + CAST(DATEPART (hh, GETDATE())
 AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (mi, GETDATE())
 AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (ss, GETDATE())
 AS CHAR(2)), 2) +
 RIGHT('000' + CAST(DATEPART (ms, GETDATE())
 AS CHAR(3)), 3)
END
GO

SQL Server supports functions and procedures written in Microsoft .NET Framework
common language runtime (CLR) methods that can take and return user-supplied
parameters. These routines have similar CREATE and ALTER declarations to regular
SQL routines and functions; however, the code bodies are external assemblies. Refer
to the SQL Server documentation if you want to learn more about programming
routines using the CLR.

See Also
CALL
RETURN

CREATE/ALTER INDEX Statement

Indexes are special objects built on top of tables that speed many data-manipulation
operations, such as SELECT, UPDATE, and DELETE statements. The selectivity of a
given WHERE clause and the available query plans the database query optimizer can
choose from are usually based upon the quality of the indexes that have been placed
on the table in a given database.

The CREATE INDEX command is not a part of the ANSI SQL standard, and thus its
syntax varies greatly among vendors.

Common Vendor Syntax
CREATE [UNIQUE] INDEX index_name ON table_name
(column_name[, ...])

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

118 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER INDEX Statement

Keywords
CREATE [UNIQUE] INDEX index_name

Creates a new index named index_name in the current database and schema
context. Since indexes are associated with specific tables (or sometimes views),
the index_name need only be unique to the table it is dependent on. The UNIQUE
keyword defines the index as a unique constraint for the table and disallows any
duplicate values into the indexed column or columns of the table. (Refer to
“Constraints.”)

table_name
Declares the pre-existing table with which the index is associated. The index is
dependent upon the table: if the table is dropped, so is the index.

column_name[, . . .])
Defines one or more columns in the table that are indexed. The pointers derived
from the indexed column or columns enable the database query optimizer to
greatly speed up data-manipulation operations such as SELECT and DELETE
statements. All major vendors support composite indexes, also known as concate-
nated indexes, which are used when two or more columns are best searched as a
unit (for example, last_name and first_name columns).

Rules at a Glance
Indexes are created on tables to speed data-manipulation operations against those
tables, such as those in a WHERE or JOIN clause. Indexes may also speed other opera-
tions, including:

• Identifying a MIN() or MAX() value in an indexed column.

• Sorting or grouping columns of a table.

• Searching based on IS NULL or IS NOT NULL.

• Fetching data quickly when the indexed data is all that is requested. A SELECT
statement that retrieves data from an index and not directly from the table itself is
called a covering query. An index that answers a query in this way is a covering
index.

After creating a table, you can create indexes on columns within the table. It is a good
idea to create indexes on columns that are frequently part of the WHERE clauses or
JOIN clauses of the queries made against a table. For example, the following state-
ment creates an index on a column in the sales table that is frequently used in the
WHERE clauses of queries against that table:

CREATE INDEX ndx_ord_date ON sales(ord_date);

In another case, we want to set up the pub_name and country as a unique index on
the publishers table:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country);

Since the index is unique, any new record entered into the publishers table must have
a unique combination of publisher name and country.

Some vendor platforms allow you to create indexes on views as well
as tables.

Chapter 3: SQL Statement Command Reference | 119

SQLStatem
ent

Com
m

ands
CREATE/ALTER INDEX Statement > MySQL

Programming Tips and Gotchas
Concatenated indexes are most useful when queries address the columns of the index
starting from the left. If you omit left-side columns in a query against a concatenated
key, the query may not perform as well. For example, assume that we have a concate-
nated index on (last_name, first_name). If we query only by first_name, the
concatenated index that starts with last_name and includes first_name may not be
any good to us. That said, some of the vendor platforms have now advanced their
query engines to the point where this is much less of a problem than it used to be.

Creating an index on a table may cause that table to take up as
much as 1.2 to 1.5 times more space than the table currently occu-
pies. Make sure you have enough room! Most of that space is
released after the index has been created.

You should be aware that there are situations in which too many indexes can actually
slow down system performance. In general, indexes greatly speed lookup operations
against a table or view, especially in SELECT statements. However, every index you
create adds overhead whenever you perform an UPDATE, DELETE, or INSERT oper-
ation, because the database must update all dependent indexes with the values that
have changed in the table. As a rule of thumb, 6 to 12 indexes are about the most
you’ll want to create on a single table.

In addition, indexes take up extra space within the database. The more columns there
are in an index, the more space it consumes. This is not usually a problem, but it
sometimes catches the novices off guard when they’re developing a new database.

Most databases use indexes to create statistical samplings (usually just called statis-
tics), so the query engine can quickly determine which, if any, index or combination of
indexes will be most useful for a query. These indexes are always fresh and useful
when the index is first created, but they may become stale and less useful over time as
records in the table are deleted, updated, and inserted. Consequently, indexes, like
day-old bread, are not guaranteed to be useful as they age. You need to be sure to
refresh, rebuild, and maintain your databases regularly to keep index statistics fresh.

MySQL
MySQL supports a form of the CREATE INDEX statement, but not the ALTER INDEX
statement. The types of indexes you can create in MySQL are determined by the engine
type, and the indexes are not necessarily stored in B-tree structures on the filesystem.
Strings within an index are automatically prefix- and end-space-compressed. MySQL’s
CREATE INDEX syntax is:

CREATE [ONLINE | OFFLINE] [UNIQUE | FULLTEXT] INDEX index_name
 [USING {BTREE | HASH | RTREE}]
 ON table_name (column_name(length)[, ...])
[KEY BLOCK SIZE int]
[WITH PARSER parser_name]

where:

FULLTEXT
Creates a full-text search index against a column. Full-text indexes are only
supported on MyISAM table types and CHAR, VARCHAR, or TEXT datatypes.
They do not support the (length) clause.

120 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER INDEX Statement > Oracle

ONLINE | OFFLINE
ONLINE indicates that creating the index does not require the subject table to be
copied first. OFFLINE copies the table before creating the index.

USING {BTREE | HASH | RTREE}
Specifies a specific type of index to use. RTREE indexes may be used only for
SPATIAL indexes. Use this hint sparingly, since different storage engines allow
different indextypes: MyISAM allows BTREE and RTREE, InnoDB allows only
BTREE, NDB allows only HASH (and allows the USING clause only for unique
keys and primary keys), and MEMORY/HEAP allows HASH and BTREE. This
clause deprecates the TYPE type_name clause found in MySQL 5.1.10 and earlier.

KEY BLOCK SIZE int
Provides a hint to the storage engine about the size to use for index key blocks,
where int is the value in kilobytes to use. A value of 0 means that the default for
the storage engine should be used.

WITH PARSER parser_name
Used only with FULLTEXT indexes, this clause associates a parser plug-in with
the index. Plug-ins are fully documented in the MySQL documentation.

MySQL supports the basic industry standard syntax for the CREATE INDEX state-
ment. Interestingly, MySQL also lets you build an index on the first length characters
of a CHAR or VARCHAR column. MySQL requires the length clause for BLOB and
TEXT columns. Specifying a length can be useful when selectivity is sufficient in the
first, say, 10 characters of a column, and in those situations where saving disk space is
very important. This example indexes only the first 25 characters of the pub_name
column and the first 10 characters of the country column:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name(25),
 country(10))

As a general rule, MySQL allows at least 16 keys per table, with a total maximum
length of at least 256 bytes. This can vary by storage engine, however.

Oracle
Oracle allows the creation of indexes on tables, partitioned tables, clusters, and index-
organized tables, as well as on scalar type object attributes of a typed table or cluster,
and on nested table columns using the CREATE INDEX statement. Oracle also allows
several types of indexes, including normal B-tree indexes, BITMAP indexes (useful for
columns that have each value repeated 100 or more times), partitioned indexes, func-
tion-based indexes (based on an expression rather than a column value), and domain
indexes.

Oracle index names must be unique within a schema, not just to
the table to which they are assigned.

Oracle also supports the ALTER INDEX statement, which is used to change or rebuild
an existing index without forcing the user to drop and recreate the index. Oracle’s
CREATE INDEX syntax is:

CREATE [UNIQUE | BITMAP] INDEX index_name
{ON
 {table_name ({column | expression} [ASC | DESC][, ...])
 [{INDEXTYPE IS index_type [PARALLEL [int] | NOPARALLEL]

Chapter 3: SQL Statement Command Reference | 121

SQLStatem
ent

Com
m

ands
CREATE/ALTER INDEX Statement > Oracle

 [PARAMETERS ('values')] }] |
 CLUSTER cluster_name |
 FROM table_name WHERE condition [LOCAL partitioning]}
[{LOCAL partitioning | GLOBAL partitioning}]
[physical_attributes_clause] [{LOGGING | NOLOGGING}] [ONLINE]
[COMPUTE STATISTICS] [{TABLESPACE tablespace_name | DEFAULT}]
[{COMPRESS int | NOCOMPRESS}] [{NOSORT | SORT}] [REVERSE]
[{VISIBLE | INVISIBLE}] [{PARALLEL [int] | NOPARALLEL}] }

and the syntax for ALTER INDEX is:

ALTER INDEX index_name
{ {ENABLE | DISABLE} | UNUSABLE | {VISIBLE | INVISIBLE} |
 RENAME TO new_index_name | COALESCE |
 [NO]MONITORING USAGE | UPDATE BLOCK REFERENCES |
 PARAMETERS ('ODCI_params') | alter_index_partitioning_clause |

rebuild_clause |
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]
 [ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE 'filename']
 [INSTANCE int])]
 [SHRINK SPACE [COMPACT] [CASCADE]]
 [{PARALLEL [int] | NOPARALLEL}]
 [{LOGGING | NOLOGGING}]
 [physical_attributes_clause] }

where the non-ANSI clauses are:

BITMAP
Creates an index bitmap for each index value, rather than indexing each indi-
vidual row. Bitmaps are best for low-concurrency tables (e.g., read-intensive
tables). BITMAP indexes are incompatible with global partitioned indexes, the
INDEXTYPE clause, and index-organized tables without a mapping table
association.

 ASC | DESC
Specifies that the values in the index be kept in either ascending (ASC) or
descending (DESC) order. When ASC or DESC is omitted, ASC is used by
default. However, be aware that Oracle treats DESC indexes as function-based
indexes, so there is some difference in functionality between ASC and DESC
indexes. You may not use ASC or DESC when you are using the INDEXTYPE
clause. DESC is ignored on BITMAP indexes.

INDEXTYPE IS index_type [PARAMETERS ('values')]
Creates an index on a user-defined type of index_type. Domain indexes require
that the user-defined type already exists. If the user-defined type requires argu-
ments, pass them in using the optional PARAMETERS clause. You may also
optionally parallelize the creation of the type index using the PARALLEL clause
(explained in more detail later in this list).

CLUSTER cluster_name
Declares a clustering index based on the specified pre-existing cluster_name. On
Oracle, a clustering index physically co-locates two tables that are frequently
queried on the same columns, usually a primary key and a foreign key. (Clusters
are created with the Oracle-specific command CREATE CLUSTER.) You do not
declare a table or columns on a CLUSTER index, since both the tables involved
and the columns indexed are already declared with the previously issued CREATE
CLUSTER statement.

122 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER INDEX Statement > Oracle

GLOBAL partitioning
Includes the full syntax:

GLOBAL PARTITION BY
 {RANGE (column_list) (PARTITION [partition_name] VALUE LESS THAN
 (value_list) [physical_attributes_clause]
 [TABLESPACE tablespace_name] [LOGGING | NOLOGGING][, ...])} |
 {HASH (column_list) (PARTITION [partition_name])
 {[TABLESPACE tablespace_name] [[OVERFLOW] TABLESPACE

tablespace_name] [VARRAY varray_name STORE AS LOB
lob_segment_name] [LOB (lob_name) STORE AS [lob_segment_name]]

 [TABLESPACE tablespace_name]} |
 [STORE IN (tablespace_name[, ...])] [OVERFLOW STORE IN
 (tablespace_name [,...])]}[, ...]

The GLOBAL PARTITION clause declares that the global index is manually
partitioned via either range or hash partitioning onto partition_name. (The
default is to partition the index equally in the same way the underlying table is
partitioned, if at all.) You can specify a maximum of 32 columns, though none
may be ROWID. You may also apply the [NO]LOGGING clause, the
TABLESPACE clause, and the physical_attributes_clause (defined earlier) to a
specific partition. You cannot partition on ROWID. You may include one or more
partitions, along with any attributes, in a comma-delimited list, according to the
following:

RANGE
Creates a range-partitioned global index based on the range of values from
the table columns listed in the column_list.

VALUE LESS THAN (value_list)
Sets an upper bound for the current partition of the global index. The values
in the value_list correspond to the columns in the column_list, both of
which are comma-delimited lists of columns. Both lists are prefix-dependent,
meaning that for a table with columns a, b, and c, you could define parti-
tioning on (a, b) or (a, b, c), but not (b, c). The last value in the list should
always be the keyword MAXVALUE.

HASH
Creates hash-partitioned global index, assigning rows in the index to each
partition based on a hash function of the values of the columns in the
column_list. You may specify the exact tablespace to store special database
objects such as VARRAYs and LOBs, and for any OVERFLOW of the speci-
fied (or default) tablespaces.

LOCAL partitioning
Supports local index partitioning on range-partitioned indexes, list-partitioned
indexes, hash-partitioned indexes, and composite-partitioned indexes. You may
include zero or more partitions, along with any attributes, in a comma-delimited
list. When this clause is omitted, Oracle generates one or more partitions consis-
tent with those of the table partition. Index partitioning is done in one of three
ways:

Range- and list-partitioned indexes
Applied to regular or equipartitioned tables. Range- and list-partitioned
indexes (synonyms for the same thing) follow the syntax:

Chapter 3: SQL Statement Command Reference | 123

SQLStatem
ent

Com
m

ands
CREATE/ALTER INDEX Statement > Oracle

LOCAL [(PARTITION [partition_name]
 { [physical_attributes_clause] [TABLESPACE tablespace_name]
 [LOGGING | NOLOGGING] |
 [COMPRESS | NOCOMPRESS] }[, ...])]

All of the options are the same as for GLOBAL PARTITION (see earlier),
except that the scope is for a local index.

Hash-partitioned indexes
Applied to hash-partitioned tables. Hash-partitioned indexes allow you to
choose between the earlier syntax and the following optional syntax:

 LOCAL {STORE IN (tablespace_name[, ...]) |
 (PARTITION [partition_name] [TABLESPACE tablespace_name])}

to store the index partition on a specific tablespace. When you supply more
tablespace names than index partitions, Oracle will cycle through the
tablespaces when it partitions the data.

Composite-partitioned indexes
Applied on composite-partitioned tables, using the following syntax:

LOCAL [STORE IN (tablespace_name[, ...])]
PARTITION [partition_name]
 {[physical_attributes_clause] [TABLESPACE tablespace_name]
 [LOGGING | NOLOGGING] |
 [COMPRESS | NOCOMPRESS]}
 [{STORE IN (tablespace_name[, ...]) |

(SUBPARTITION [subpartition_name] [TABLESPACE tablespace_
name])}]

You may use the LOCAL STORE clause shown under the hash-partitioned
indexes entry, or the LOCAL clause shown under the range- and list-
partitioned indexes entry. (When using the LOCAL clause, substitute the
keyword SUBPARTITION for PARTITION.)

physical_attributes_clause
Establishes values for one or more of the following settings: PCTFREE int,
PCTUSED int, and INITRANS int. When this clause is omitted, Oracle defaults
to PCTFREE 10, PCTUSED 40, and INITRANS 2.

PCTFREE int
Designates the percentage of free space to leave on each block of the index as
it is created. This speeds up new entries and updates on the table. However,
PCTFREE is applied only when the index is created. It is not maintained over
time. Therefore, the amount of free space can erode over time as records are
inserted, updated, and deleted from the index. This clause is not allowed on
index-organized tables.

PCTUSED int
Designates the minimum percentage of used space to be maintained on each
data block. A block becomes available to row insertions when its used space
falls below the value specified for PCTUSED. The default is 40. The sum of
PCTFREE and PCTUSED must be equal to or less than 100.

INITRANS int
Designates the initial number of concurrent transactions allocated to each
data block of the database. The value may range from 1 to 255.

124 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER INDEX Statement > Oracle

In versions prior to 11g the MAXTRANS parameter was used to
define the maximum allowed number of concurrent transactions on
a data block, but this parameter has now been deprecated. Oracle
11g automatically sets MAXTRANS to 255, silently overriding any
other value that you specify for this parameter (although existing
objects retain their established MAXTRANS settings).

LOGGING | NOLOGGING
Tells Oracle to log the creation of the index on the redo logfile (LOGGING), or
not to log it (NOLOGGING). This clause also sets the default behavior for subse-
quent bulk loads using Oracle SQL*Loader. For partitioned indexes, this clause
establishes the default values of all partitions and segments associated with the
partitions, and the defaults used on any partitions or subpartitions added later with
an ALTER TABLE...ADD PARTITION statement. (When using NOLOGGING,
we recommend that you take a full backup after the index has been loaded in case
the index has to be rebuilt due to a failure.)

ONLINE
Allows data manipulation on the table while the index is being created. Even with
ONLINE, there is a very small window at the end of the index creation operation
where the table will be locked while the operation completes. Any changes made
to the base table at that time will then be reflected in the newly created index.
ONLINE is incompatible with bitmap, cluster, or parallel clauses. It also cannot
be used on indexes on a UROWID column or on index-organized tables with
more than 32 columns in their primary keys.

COMPUTE [STATISTICS]
Collects statistics while the index is being created, when it can be done with rela-
tively little cost. Otherwise, you will have to collect statistics after the index is
created.

TABLESPACE {tablespace_name | DEFAULT}
Assigns the index to a specific tablespace. When omitted, the index is placed in
the default tablespace. Use the DEFAULT keyword to explicitly place an index
into the default tablespace. (When local partitioned indexes are placed in
TABLESPACE DEFAULT, the index partition (or subpartition) is placed in the
corresponding tablespace of the base table partition (or subpartition).

COMPRESS [int] | NOCOMPRESS
Enables or disables key compression, respectively. Compression eliminates
repeated occurrences of key column values, yielding a substantial space savings at
the cost of speed. The integer value, int, defines the number of prefix keys to
compress. The value can range from 1 to the number of columns in the index for
nonunique indexes, and from 1 to n–1 columns for unique indexes. The default is
NOCOMPRESS, but if you specify COMPRESS without an int value, the default
is COMPRESS n (for nonunique indexes) or COMPRESS n–1 (for unique
indexes), where n is the number of columns in the index. COMPRESS can only be
used on nonpartitioned and nonbitmapped indexes.

 NOSORT | REVERSE
NOSORT allows an index to be created quickly for a column that is already sorted in
ascending order. If the values of the column are not in perfect ascending order, the
operation aborts, allowing a retry without the NOSORT option. REVERSE, by
contrast, places the index blocks in storage by reverse order (excluding ROWID).

Chapter 3: SQL Statement Command Reference | 125

SQLStatem
ent

Com
m

ands
CREATE/ALTER INDEX Statement > Oracle

REVERSE is mutually exclusive of NOSORT and cannot be used on a bitmap
index or an index-organized table. NOSORT is most useful for creating indexes
immediately after a base table is loaded with data in presorted order.

VISIBLE | INVISIBLE
Declares whether the index is visible or invisible to the optimizer. Invisible
indexes are maintained by DML operations but are not normally used by the opti-
mizer for query performance. This is very useful when you cannot alter an index
to disable it, but you really need Oracle to ignore the index.

PARALLEL [int] | NOPARALLEL
Allows the parallel creation of the index using multiple server process, each oper-
ating on a distinct subset of the index, to speed up the operation. An optional
integer value, int, may be supplied to define the exact number of parallel threads
used in the operation. When omitted, Oracle calculates the number of parallel
threads to use. NOPARALLEL, the default, causes the index to be created
serially.

ENABLE | DISABLE
Enables or disables a pre-existing function-based index, respectively. You cannot
specify any other clauses of the ALTER INDEX statement with ENABLE or
DISABLE.

UNUSABLE
Marks the index (or index partition or subpartition) as unusable. When
UNUSABLE, an index (or index partition or subpartition) may only be rebuilt or
dropped and recreated before it can be used.

RENAME TO new_index_name
Renames the index from index_name to new_index_name.

COALESCE
Merges the contents of index blocks used to maintain the index-organized table
so that the blocks can be reused. COALESCE is similar to SHRINK, though
COALESCE compacts the segments less densely than SHRINK and does not
release unused space.

[NO]MONITORING USAGE
Declares that Oracle should clear existing information on index usage and
monitor the index, posting information in the V$OBJECT_USAGE dynamic
performance view, until ALTER INDEX...NOMONITORING USAGE is
executed. The NOMONITORING USAGE clause explicity disables this behavior.

UPDATE BLOCK REFERENCES
Updates all stale guess data block addresses stored as part of the index row on
normal or domain indexes of an index-organized table. The guess data blocks
contain the correct database addresses for the corresponding blocks identified by
the primary key. This clause cannot be used with other clauses of the ALTER
INDEX statement.

PARAMETERS ('ODCI_params')
Specifies a parameter string passed, without interpretation, to the ODCI index-
type routine of a domain index. The parameter string, called 'ODCI_params', may
be up to 1,000 characters long. Refer to the vendor documentation for more infor-
mation on ODCI parameter strings.

alter_index_partitioning_clause
Refer to in the section “Oracle partitioned and subpartitioned tables” under
“Oracle” in the section on CREATE/ALTER TABLE for more details.

126 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER INDEX Statement > Oracle

rebuild_clause
Rebuilds the index, or a specific partition (or subpartition) of the index. A
successful rebuild marks an UNUSABLE index as USABLE. The syntax for the
rebuild_clause is:

REBUILD {[NO]REVERSE | [SUB]PARTITION partn_name}
 [{PARALLEL [int] | NOPARALLEL}] [TABLESPACE tablespace_name]
 [PARAMETERS ('ODCI_params')] [ONLINE] [COMPUTE STATISTICS]
 [COMPRESS int | NOCOMPRESS] [[NO]LOGGING]
 [physical_attributes_clause]

where:

[NO]REVERSE
Stores the bytes of the index block in reverse order and excludes rows when
the index is rebuilt (REVERSE), or stores the bytes of the index blocks in
regular order (NOREVERSE).

DEALLOCATE UNUSED [KEEP int [K | M | G | T]]
Deallocates unused space at the end of the index (or at the end of each range or
hash partition of a partitioned index) and frees the space for other segments in the
tablespace. The optional KEEP keyword defines how many bytes (int) above the
high-water mark the index will keep after deallocation. You can append a suffix
to the int value to indicate that the value is expressed in kilobytes (K), megabytes
(M), gigabytes (G), or terabytes (T). When the KEEP clause is omitted, all unused
space is freed.

ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE 'filename']
[INSTANCE int])

Explicitly allocates a new extent for the index using the specified parameters. You
may mix and match any of the parameters. SIZE specifies the size of the next
extent, in bytes (no suffix), kilobytes (K), megabytes (M), gigabytes (G), or
terabytes (T). DATAFILE allocates an entirely new datafile to the index extent.
INSTANCE, used only on Oracle RACs, makes a new extent available to a freelist
group associated with the specified instance.

SHRINK SPACE [COMPACT] [CASCADE]
Shrinks the index segments, though only segments in tablespaces with automatic
segment management may be shrunk. Shrinking a segment moves rows in the
table, so make sure ENABLE ROW MOVEMENT is also used in the ALTER
TABLE...SHRINK statement. Oracle compacts the segment, releases the emptied
space, and adjusts the high-water mark, unless the optional keywords COMPACT
and/or CASCADE are applied. The COMPACT keyword only defragments the
segment space and compacts the index; it does not readjust the high-water mark
or empty the space immediately. The CASCADE keyword performs the same
shrinking operation (with some restrictions and exceptions) on all dependent
objects of the index. The statement ALTER INDEX...SHRINK SPACE
COMPACT is functionally equivalent to ALTER INDEX...COALESCE.

By default, Oracle indexes are non-unique. It is also important to know that Oracle’s
regular B-tree indexes do not include records that have a NULL key value.

Oracle does not support indexes on columns with the following datatypes: LONG,
LONG RAW, REF (with the SCOPE attribute), or any user-defined datatype. You may
create indexes on functions and expressions, but they cannot allow NULL values or
aggregate functions. When you create an index on a function, if it has no parameters

Chapter 3: SQL Statement Command Reference | 127

SQLStatem
ent

Com
m

ands
CREATE/ALTER INDEX Statement > Oracle

the function should show an empty set (for example, function_name()). If the function
is a UDF, it must be DETERMINISTIC.

Oracle supports a special index structure called an index-organized table (IOT) that
combines the table data and primary key index on a single physical structure, instead
of having separate structures for the table and the index. IOTs are created using the
CREATE TABLE...ORGANIZATION INDEX statement. Refer to the section on the
CREATE/ALTER TABLE statement for more information on making an IOT.

Oracle automatically creates any additional indexes on an index-organized table as
secondary indexes. Secondary indexes do not support the REVERSE clause.

Oracle allows the creation of partitioned indexes and tables with the PARTITION
clause. Consequently, Oracle’s indexes also support partitioned tables. The LOCAL
clause tells Oracle to create separate indexes for each partition of a table. The
GLOBAL clause tells Oracle to create a common index for all the partitions.

Note that any time an object name is referenced in the syntax diagram, you may
optionally supply the schema. This applies to indexes, tables, etc., but not to
tablespaces. You must have the explicitly declared privilege to create an index in a
schema other than the current one.

As an example, you can use a statement such as the following to create an Oracle
index that is compressed and created in parallel, with compiled statistics, but without
logging the creation:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)
COMPRESS 1 PARALLEL NOLOGGING COMPUTE STATISTICS;

As with other Oracle object creation statements, you can control how much space the
index consumes and in what increments it grows. The following example constructs
an index in Oracle on a specific tablespace with specific instructions for how the data
is to be stored:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)
STORAGE (INITIAL 10M NEXT 5M PCTINCREASE 0)
TABLESPACE publishers;

For example, when you create the housing_construction table as a partitioned table on an
Oracle server, you should also create a partitioned index with its own index partitions:

CREATE UNIQUE CLUSTERED INDEX project_id_ind
ON housing_construction(project_id)
GLOBAL PARTITION BY RANGE (project_id)
 (PARTITION part1 VALUES LESS THAN ('H')
 TABLESPACE construction_part1_ndx_ts,
 PARTITION part2 VALUES LESS THAN ('P')
 TABLESPACE construction_part2_ndx_ts,
 PARTITION part3 VALUES LESS THAN (MAXVALUE)
 TABLESPACE construction_part3_ndx_ts);

If in fact the housing_construction table used a composite partition, we could accom-
modate that here:

CREATE UNIQUE CLUSTERED INDEX project_id_ind
ON housing_construction(project_id)
STORAGE (INITIAL 10M MAXEXTENTS UNLIMITED)
LOCAL (PARTITION part1 TABLESPACE construction_part1_ndx_ts,
 PARTITION part2 TABLESPACE construction_part2_ndx_ts
 (SUBPARTITION subpart10, SUBPARTITION subpart20,

128 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER INDEX Statement > PostgreSQL

 SUBPARTITION subpart30, SUBPARTITION subpart40,
 SUBPARTITION subpart50, SUBPARTITION subpart60),
 PARTITION part3 TABLESPACE construction_part3_ndx_ts);

In the following example, we rebuild the project_id_ind index that was created earlier
by using parallel execution processes to scan the old index and build the new index in
reverse order:

ALTER INDEX project_id_ind
REBUILD REVERSE PARALLEL;

Similarly, we can split out an additional partition on project_id_ind:

ALTER INDEX project_id_ind
SPLIT PARTITION part3 AT ('S')
INTO (PARTITION part3_a TABLESPACE constr_p3_a LOGGING,
 PARTITION part3_b TABLESPACE constr_p3_b);

PostgreSQL
PostgreSQL allows the creation of ascending-order indexes, as well as UNIQUE
indexes. Its implementation also includes a performance enhancement under the
USING clause. PostgreSQL’s CREATE INDEX syntax is:

CREATE [UNIQUE] INDEX [CONCURRENTLY] index_name ON table_name
[USING {BTREE | RTREE | HASH | GIST}]
{function_name | (column_name[, ...])}
[WITH FILLFACTOR = int]
[TABLESPACE tablespace_name]
[WHERE condition]

and the syntax for ALTER INDEX is:

ALTER INDEX index_name
[RENAME TO new_index_name]
[SET TABLESPACE new_tablespace_name]
[SET FILLFACTOR = int]
[RESET FILLFACTOR = int]

where:

CONCURRENTLY
Builds the index without acquiring any locks that would prevent concurrent
inserts, updates, or deletes on the table. Normally, PostgreSQL locks the table to
writes (but not reads) until the operation completes. Building an index concur-
rently is not recommended unless you can be sure that the table is not being used
for write activity.

USING {BTREE | RTREE | HASH | GIST}
Specifies one of three dynamic access methods to optimize performance. Of
particular importance is the fact that the indexes are fully dynamic and do not
require periodic refreshes of their statistics. The USING options are as follows:

BTREE
Uses Lehman-Yao’s high-concurrency B-tree structures to optimize the
index. This is the default method when no other is specified. B-tree indexes
can be invoked for comparisons using =, <, <=, >, and >=. B-tree indexes can
be multicolumn.

Chapter 3: SQL Statement Command Reference | 129

SQLStatem
ent

Com
m

ands
CREATE/ALTER INDEX Statement > PostgreSQL

RTREE
Uses Guttman’s quadratic-split algorithm R-tree structures to optimize the
index. R-tree indexes can be invoked for comparison using <<, &<, &>, >>,
@, ~=, and &&. R-tree indexes must be single-column indexes. This
keyword is deprecated and has been removed from the latest version of Post-
greSQL. If this value is declared, PostgreSQL will interprete it as USING
GIST.

HASH
Uses Litwin’s linear hashing algorithm to optimize the index. Hash indexes
can be invoked for comparisons using =. Hash indexes must be single-
column indexes.

GIST
Uses Generalized Index Search Trees (GISTs) to optimize the index. GIST
indexes may be multicolumn.

function_name
Defines a user-defined function, rather than a column from the base table, as the
basis of the index values. A function-based index is mutually exclusive of a
regular column-based index.

WITH FILLFACTOR = int
Defines a percentage for PostgreSQL to fill each index page during the creation
process. For B-tree indexes, this is during the initial index creation process and
when extending the index. The default is 90. PostgreSQL does not maintain the
fillfactor over time, so it is advisable to rebuild the index at regular intervals to
avoid excessive fragmentation and page splits.

TABLESPACE tablespace_name
Defines the tablespace where the index is created.

WHERE condition
Defines a WHERE clause search condition, which is then used to generate a
partial index. A partial index contains entries for a select set of records in the
table, not all records. You can get some interesting effects from this clause. For
example, you can pair UNIQUE and WHERE to enforce uniqueness for a subset
of the table rather than for the whole table. The WHERE clause must:

• Reference columns in the base table (though they need not be columns of the
index itself).

• Not make use of aggregate functions.

• Not use subqueries.

[RENAME TO new_index_name] [SET TABLESPACE new_tablespace_name] [SET
FILLFACTOR = int] [RESET FILLFACTOR]

Allows you to alter the properties of an existing index, for example to rename the
index, specify a new tablespace for the index, specify a new fillfactor for the
index, or reset the fillfactor to its default value. Note that for SET FILLFACTOR
and RESET FILLFACTOR, we recommend that you rebuild the index with the
REINDEX command because changes do not immediately take effect.

In PostgreSQL, a column may have an associated operator class based on the datatype
of the column. An operator class specifies the operators for a particular index.
Although users are free to define any valid operator class for a given column, the
default operator class is the appropriate operator class for that column type.

130 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER INDEX Statement > SQL Server

In the following example, we create an index using the GIST indextype and make sure
that uniqueness is enforced only for publishers outside of the USA:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)
USING GIST
WHERE country <> 'USA';

SQL Server
SQL Server’s CREATE INDEX syntax is:

CREATE [UNIQUE] [[NON]CLUSTERED] INDEX index_name
ON {table_name | view_name} (column [ASC | DESC][, ...])
[INCLUDE (column [ASC | DESC][, ...])]
[WITH [PAD_INDEX = {ON | OFF}] [FILLFACTOR = int] [IGNORE_DUP_KEY = {ON |
OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}] [DROP_EXISTING = {ON | OFF}]
 [ONLINE = {ON | OFF}] [SORT_IN_TEMPDB = {ON | OFF}]
 [ALLOW_ROW_LOCKS = {ON | OFF}] [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [MAXDOP = int][, ...]]
[ON {filegroup | prtn (column) | DEFAULT}]
[FILESTREAM_ON {filestream_filegroup_name | prtn | "NULL"}]

and the syntax for ALTER INDEX is:

ALTER INDEX {index_name | ALL} ON {object_name}
{ DISABLE |
 REBUILD [PARTITION = prtn_nbr] [WITH
 ([SORT_IN_TEMPDB = {ON | OFF}][MAXDOP = int][, ...])]
 [WITH [PAD_INDEX = {ON | OFF}][FILLFACTOR = int]
 [IGNORE_DUP_KEY = {ON | OFF}]

[STATISTICS_NORECOMPUTE = {ON | OFF}] [SORT_IN_TEMPDB = {ON | OFF}]
 [ALLOW_ROW_LOCKS = {ON | OFF}] [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [MAXDOP = int][, ...]] |
 REORGANIZE [PARTITION = prtn_nbr] [WITH (LOB_COMPACTION = {ON | OFF})] |
 SET [ALLOW_ROW_LOCKS = {ON | OFF}] [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [IGNORE_DUP_KEY = {ON | OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}][, ...] }

where:

[NON]CLUSTERED
Controls the physical ordering of data for the table using either a CLUSTERED or
a NONCLUSTERED index. The columns of a CLUSTERED index determine the
order in which the records of the table are physically written. Thus, if you create
an ascending clustered index on column A of table Foo, the records will be
written to disk in ascending alphabetical order. The NONCLUSTERED clause
(the default when a value is omitted) creates a secondary index containing only
pointers and has no impact on how the actual rows of the table are written to
disk.

ASC | DESC
Specifies that the values in the index be kept in either ascending (ASC) or
descending (DESC) order. When ASC or DESC is omitted, ASC is used by
default.

WITH
Allows the specification of one or more optional attributes for the index.

Chapter 3: SQL Statement Command Reference | 131

SQLStatem
ent

Com
m

ands
CREATE/ALTER INDEX Statement > SQL Server

PAD_INDEX = {ON | OFF}
Specifies that space should be left open on each 8K index page, according to
the value established by the FILLFACTOR setting.

FILLFACTOR = int
Declares a percentage value, int, from 1 to 100 that tells SQL Server how
much of each 8K data page should be filled at the time the index is created.
This is useful to reduce I/O contention and page splits when a data page fills
up. Creating a clustered index with an explicitly defined fillfactor can
increase the size of the index, but it can also speed up processing in certain
circumstances.

IGNORE_DUP_KEY = {ON | OFF}
Controls what happens when a duplicate record is placed into a unique
index through an insert or update operation. If this value is set for a column,
only the duplicate row is excluded from the operation. If this value is not set,
all records in the operation (even nonduplicate records) are rejected as
duplicates.

DROP_EXISTING = {ON | OFF}
Drops any pre-existing indexes on the table and rebuilds the specified index.

STATISTICS_NORECOMPUTE = {ON | OFF}
Stops SQL Server from recomputing index statistics. This can speed up the
CREATE INDEX operation, but it may mean that the index is less effective.

ONLINE = {ON | OFF}
Specifies whether underlying tables and associated indexes are available for
queries and data-manipulation statements during the index operation. The
default is OFF. When set to ON, long-term write locks are not held, only
shared locks.

SORT_IN_TEMPDB = {ON | OFF}
Stores any intermediate results used to build the index in the system data-
base, TEMPDB. This increases the space needed to create the index, but it
can speed processing if TEMPDB is on a different disk than the table and
index.

ALLOW_ROW_LOCKS = {ON | OFF}
Specifies whether row locks are allowed. When omitted, the default is ON.

ALLOW_PAGE_LOCKS = {ON | OFF}
Specifies whether page locks are allowed. When omitted, the default is ON.

MAXDOP = int
Specifies the maximum degrees of parallelism for the duration of the
indexing operation. 1 suppresses parallelism. A value greater than 1 restricts
the operation to the number of processors specified. 0, the default, allows
SQL Server to choose up to the actual number of processors on the system.

ON filegroup
Creates the index on a given pre-existing filegroup. This enables the placing of
indexes on a specific hard disk or RAID device. Issuing a CREATE CLUSTERED
INDEX...ON FILEGROUP statement effectively moves a table to the new file-
group, since the leaf level of the clustered index is the same as the actual data
pages of the table.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

132 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER INDEX Statement > SQL Server

DISABLE
Disables the index, making it unavailable for use in query execution plans.
Disabled nonclustered indexes do not retain underlying data in the index pages.
Disabling a clustered index makes the underlying table unavailable to user access.
You can re-enable an index with ALTER INDEX REBUILD or CREATE INDEX
WITH DROP_EXISTING.

REBUILD [PARTITION = prtn_nbr]
Rebuilds an index using the pre-existing properties, including columns in the
index, indextype, uniqueness attributes, and sort order. You may optionally
specify a new partition. This clause will not automatically rebuild associated
nonclustered indexes unless you include the keyword ALL. When using this
clause to rebuild an XML or spatial index, you may not also use the ONLINE =
ON or IGNORE_DUP_KEY = ON clauses. Equivalent to DBCC DBREINDEX.

REORGANIZE [PARTITION = prtn_nbr]
Performs an online reorganization of the leaf level of the index (i.e., no long-term
blocking table locks are held and queries and updates to the underlying table can
continue). You may optionally specify a new partition. Not allowed with
ALLOW_PAGE_LOCKS=OFF. Equivalent to DBCC INDEXDEFRAG.

WITH (LOB_COMPACTION = {ON | OFF})
Compacts all pages containing LOB datatypes, including IMAGE, TEXT,
NTEXT, VARCHAR(MAX), NVARCHAR(MAX), VARBINARY(MAX), and XML.
When omitted, the default is ON. The clause is ignored if no LOB columns are
present. When ALL is specified, all indexes associated with the table or view are
reorganized.

SET
Specifies index options without rebuilding or reorganizing the index. SET cannot
be used on a disabled index.

SQL Server allows the creation of a unique clustered index on a view, effectively mate-
rializing the view. This can greatly speed up data-retrieval operations against the view.
Once a view has a unique clustered index, nonclustered indexes can be added to the
view. Note that the view also must be created using the SCHEMABINDING option.
Indexed views are allowed only in SQL Server 2000 Enterprise Edition, unless you add
a NOEXPAND hint to the view. Indexed views support data retrieval, but not data
modification.

SQL Server allows up to 249 nonclustered indexes (unique or non-unique) on a table,
as well as one primary key index. Index columns may not be of the datatypes NTEXT,
TEXT, or IMAGE.

SQL Server automatically parallelizes the creation of the index according to the config-
uration option max degree of parallelism.

It is often necessary to build indexes that span several columns—i.e., a concatenated
key. Concatenated keys may contain up to 16 columns and/or a total of 900 bytes
across all fixed-length columns. Here is an example:

CREATE UNIQUE INDEX project2_ind
ON housing_construction(project_name, project_date)
WITH PAD_INDEX, FILLFACTOR = 80
ON FILEGROUP housing_fg
GO

Chapter 3: SQL Statement Command Reference | 133

SQLStatem
ent

Com
m

ands
CREATE/ALTER METHOD Statement > All Platforms

Adding the PAD_INDEX clause and setting the FILLFACTOR to 80 tells SQL Server
to leave the index and data pages 80% full, rather than 100% full. This example also
tells SQL Server to create the index on the housing_fg filegroup, rather than the
default filegroup.

See Also
CREATE/ALTER TABLE
DROP

CREATE/ALTER METHOD Statement

The CREATE/ALTER METHOD statements allow the creation of a new database
method or the alteration of an already existing database method. An easy (but loose)
way to think of a method is that it is a user-defined function associated with a user-
defined type. For example, a method called Office, of type Address, can accept a
VARCHAR input parameter and passes out a result Address.

An implicitly defined method is created every time a structured type is created. Using a
combination of the CREATE TYPE statement and the CREATE METHOD statement
creates user-defined methods.

SQL2003 Syntax
{CREATE | ALTER} [INSTANT | STATIC] METHOD method_name
 ([{IN | OUT | INOUT}] param datatype [AS LOCATOR] [RESULT][, ...])
RETURNS datatype
FOR udt_name
[SPECIFIC specific_name] code_body

Keywords
{CREATE | ALTER} [INSTANT | STATIC] method_name

Creates a new method or alters an existing method and, optionally, specifies it as
an INSTANT or STATIC method.

([{IN | OUT | INOUT}] param datatype[, . . .])
Declares one or more parameters to be passed into the method in a comma-
delimited list enclosed in parentheses. Parameters used with a method may pass a
value IN, OUT, or both in and out via INOUT. The syntax for the parameter
declaration is:

[{IN | OUT | INOUT}] parameter_name1 datatype,
[{IN | OUT | INOUT}] parameter_name2 datatype,[...]

Make sure the name is unique within the method. When used with ALTER, this
clause adds parameters to a pre-existing method. Refer to Chapter 2 for details on
datatypes.

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

134 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER METHOD Statement > All Platforms

AS LOCATOR
The optional AS LOCATOR clause is used to validate an external routine with a
RETURNS parameter that is a BLOB, CLOB, NCLOB, ARRAY, or user-defined
type. In other words, the locator (i.e., a pointer) for the LOB is returned, but not
the entire value of the LOB.

RESULT
Designates a user-defined type. Not needed for standard datatypes.

RETURNS datatype
Declares the datatype of the results returned by a method. The key purpose of a
user-defined method is to return a value. If you need to change the datatype of a
RETURNS parameter on the fly, use the CAST clause (refer to the function
CAST); for example, RETURNS VARCHAR(12) CAST FROM DATE.

FOR udt_name
Associates the method with a specific, pre-existing user-defined type, created
using CREATE TYPE.

SPECIFIC specific_name
Uniquely identifies the function; generally used with user-defined types.

Rules at a Glance
User-defined methods are essentially a different approach to obtaining the same
output provided by user-defined functions. For example, consider the following two
pieces of code:

CREATE FUNCTION my_fcn (order_udt)
RETURNS INT;
CREATE METHOD my_mthd ()
RETURNS INT
FOR order_udt;

Although the code sections for the function and method are different, they do exactly
the same thing.

The rules for use and invocation of methods are otherwise the same as for functions.

Programming Tips and Gotchas
The main difficulty with CREATE METHOD statements is that they are an object-
oriented approach to the same sort of functionality provided by user-defined func-
tions. Since they accomplish the same work using a different approach, it can be hard
to decide which approach to use.

MySQL
Not supported.

Oracle
Not supported.

PostgreSQL
Not supported.

Chapter 3: SQL Statement Command Reference | 135

SQLStatem
ent

Com
m

ands
CREATE ROLE Statement

SQL Server
Not supported.

See Also
CREATE/ALTER TYPE

CREATE ROLE Statement

CREATE ROLE allows the creation of a named set of privileges that may be assigned
to users of a database. When a role is granted to a user, that user gets all the privileges
and permissions of that role. Roles are generally accepted as one of the best means for
maintaining security and controlling privileges within a database.

SQL2003 Syntax
CREATE ROLE role_name [WITH ADMIN {CURRENT_USER | CURRENT_ROLE}]

Keywords
CREATE ROLE role_name

Creates a new role and differentiates that role from a host DBMS user and other
roles. A role can be assigned any permission that a user can be assigned. The
important difference is that a role can then be assigned to one or more users, thus
giving them all the permissions of that role.

WITH ADMIN {CURRENT_USER | CURRENT_ROLE}
Assigns a role immediately to the currently active user or currently active role
along with the privilege to pass the use of the role on to other users. By default,
the statement defaults to WITH ADMIN CURRENT_USER.

Rules at a Glance
Using roles for database security can greatly ease administration and user mainte-
nance. The general steps for using roles in database security are:

1. Assess the needs for roles and pick the role names (e.g., administrator, manager,
data_entry, report_writer, etc.).

2. Assign permissions to each role as if it were a standard database user, using the
GRANT statement. For example, the manager role might have permission to read
from and write to all user tables in a database, while the report_writer role might
only have permission to execute read-only reports against certain reporting tables
in the database.

3. Use the GRANT statement to grant roles to users of the system according to the
types of work they will perform.

Permissions can be disabled using the REVOKE command.

Platform Command

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

136 | Chapter 3: SQL Statement Command Reference

CREATE ROLE Statement > MySQL

Programming Tips and Gotchas
The main problem with roles is that occasionally a database administrator will provide
redundant permissions to a role and separately to a user. If you ever need to prevent a
user’s access to a resource in situations like this, you usually will need to REVOKE the
permissions twice: the role must be revoked from the user, and then the specific user-
level privilege must also be revoked from the user.

MySQL
Not supported.

Oracle
Although it is not currently supported by the ANSI standard, Oracle also offers an
ALTER ROLE statement. Oracle supports the concept of roles, though its implemen-
tation of the commands is very different from the ANSI SQL standard:

{CREATE | ALTER} ROLE role_name
 [NOT IDENTIFIED |
 IDENTIFIED {BY password | EXTERNALLY | GLOBALLY |
 USING package_name}]

where:

{CREATE | ALTER} ROLE role_name
Identifies the name of the new role being created or the pre-existing role being
modified.

NOT IDENTIFIED
Declares that no password is needed for the role to receive authorization to the
database. This is the default.

IDENTIFIED
Declares that the users of the role must authenticate themselves by the method
indicated before the role is enabled via the SET ROLE command, where:

BY password
Creates a local role authenticated by the string value of password. Only
single-byte characters are allowed in the password, even when using a multi-
byte character set.

EXTERNALLY
Creates an external role that is authenticated by the operating system or a
third-party provider. In either case, the external authentication service will
likely require a password.

GLOBALLY
Creates a global role that is authenticated by an enterprise directory service,
such as an LDAP directory.

USING package_name
Creates an application role that enables a role only through an application
that uses a PL/SQL package of package_name. If you omit the schema, Oracle
assumes that the package is in your schema.

In Oracle, the role is created first, then granted privileges and permissions as if it is a
user via the GRANT command. When users want to get access to the permissions of a
role protected by a password, they use the SET ROLE command. If a password is
placed on the role, any user wishing to access it must provide the password with the
SET ROLE command.

Chapter 3: SQL Statement Command Reference | 137

SQLStatem
ent

Com
m

ands
CREATE ROLE Statement > PostgreSQL

Oracle ships with several preconfigured roles. CONNECT, DBA, and RESOURCE are
available in all versions of Oracle. EXP_FULL_DATABASE and IMP_FULL_DATABASE
are newer roles used for import and export operations. The GRANT statement reference
has a more detailed discussion of all of the preconfigured roles available in Oracle.

The following example uses CREATE to specify a new role in Oracle, GRANTs it privi-
leges, assigns it a password with ALTER ROLE, and GRANTs the new role to a couple
of users:

CREATE ROLE boss;
GRANT ALL ON employee TO boss;
GRANT CREATE SESSION, CREATE DATABASE LINK TO boss;
ALTER ROLE boss IDENTIFIED BY le_grand_fromage;
GRANT boss TO emily, jake;

PostgreSQL
PostgreSQL supports both the ALTER and CREATE ROLE statements, and it offers a
nearly identical extension of its own called ALTER/CREATE GROUP. The syntax for
CREATE ROLE follows:

{CREATE | ALTER} ROLE name
[[WITH] [[NO]SUPERUSER] [[NO]CREATEDB] [[NO]CREATEUSER] [[NO]INHERIT]
[[NO]LOGIN]
 [CONNECTION LIMIT int] [{ENCRYPTED | UNENCRYPTED} PASSWORD 'password']
 [VALID UNTIL 'date_and_time'] [IN ROLE rolename[, ...]]
 [IN GROUP groupname[, ...]] [ROLE rolename[, ...]]
 [ADMIN rolename[, ...]] [USER rolename[, ...]] [SYSID int][...]]
[RENAME TO new_name]
[SET parameter {TO | =} {value | DEFAULT}]
[RESET parameter]

where:

{CREATE | ALTER} ROLE name
Specifies the new role to create or the existing role to modify, where name is the
name of the role to create or modify.

[NO]SUPERUSER
Specifies whether the role is a superuser or not. The superuser may override all
access restrictions within the database. NOSUPERUSER is the default.

[NO]CREATEDB
Specifies whether the role may create databases or not. NOCREATEDB is the
default.

[NO]CREATEROLE
Specifies whether the role may create new roles and alter or drop other roles.
NOCREATEROLE is the default.

[NO]CREATEUSER
Specifies whether the role may create a superuser. This clause is deprecated in
favor of [NO]SUPERUSER.

[NO]INHERIT
Specifies whether the role inherits the privileges of the roles of which it is a
member. A role with INHERIT automatically may use the privileges that are
granted to the roles that of which it is (directly or indirectly) a member. INHERIT
is the default.

138 | Chapter 3: SQL Statement Command Reference

CREATE ROLE Statement > SQL Server

[NO]LOGIN
Specifies whether the role may log in. With LOGIN, a role is essentially a user.
With NOLOGIN, a role provides mapping to specific database privileges but is
not an actual user. The default is NOLOGIN.

CONNECTION LIMIT int
Specifies how many concurrent connections a role can make, if it has LOGIN
privileges. The default is –1; that is, unlimited.

{ENCRYPTED | UNENCRYPTED} PASSWORD 'password'
Sets a password for the role, if it has LOGIN privileges. The password may be
stored in plain text (UNENCRYPTED) or encrypted in MD5-format in the system
catalogs (ENCRYPTED). Older clients may not support MD5 authentication, so
be careful.

VALID UNTIL 'date_and_time'
Sets a date and time when the role’s password will expire, if it has LOGIN privi-
leges. When omitted, the default is no time limit.

IN ROLE, IN GROUP
Specifies one or more existing roles (or groups, though this clause is deprecated)
of which the role is a member.

ROLE, GROUP
Specifies one or more existing roles (or groups, though this clause is deprecated)
that are automatically added as members of the new or modified role.

ADMIN rolename
Similar to the ROLE clause, except new roles are added WITH ADMIN OPTION,
giving them the right to grant membership in this role to others.

SYSID int, USER username
Deprecated clauses that are still accepted for backward compatibility. USER is
equivalent to the ROLE clause and SYSID is equivalent to the GROUP clause.

[RENAME TO new_name] [SET parameter {TO | =} {value | DEFAULT}] [RESET
parameter]

Renames an existing role to a new name, sets a configuration parameter, or resets
a configuration parameter to the default value. Configuration parameters are fully
detailed within PostgreSQL’s documentation.

Use the DROP ROLE clause to drop a role you no longer want.

SQL Server
Microsoft SQL Server supports the ALTER and CREATE ROLE statements, as well as
equivalent capabilities via the system stored procedure sp_add_role. SQL Server’s
syntax follows:

CREATE ROLE role_name [AUTHORIZATION owner_name]
 [WITH NAME = new_role_name]

where:

AUTHORIZATION owner_name
Specifies the database user or role that owns the new role. When omitted, the role
is owned by the user that created it. Only used with CREATE ROLE.

WITH NAME = new_role_name
Specifies the new name of the role. Only used with ALTER ROLE.

Chapter 3: SQL Statement Command Reference | 139

SQLStatem
ent

Com
m

ands
CREATE SCHEMA Statement

See Also
GRANT
REVOKE

CREATE SCHEMA Statement

This statement creates a schema—i.e., a named group of related objects. A schema is a
collection of tables, views, and permissions granted to specific users or roles.
According to the ANSI standard, specific object permissions are not schema objects in
themselves and do not belong to a specific schema. However, roles are sets of privi-
leges that do belong to a schema.

SQL2003 Syntax
CREATE SCHEMA [schema_name] [AUTHORIZATION owner_name]
[DEFAULT CHARACTER SET char_set_name]
[PATH schema_name[, ...]]
 [ANSI CREATE statements [...]]
 [ANSI GRANT statements [...]]

Keywords
CREATE SCHEMA [schema_name]

Creates a schema called schema_name. When omitted, the database will create a
schema name for you using the name of the user who owns the schema.

AUTHORIZATION owner_name
Specifies the user who will be the owner of the schema. When this clause is
omitted, the current user is set as the owner. The ANSI standard allows you to omit
either the schema_name or the AUTHORIZATION clause, or to use them both
together.

DEFAULT CHARACTER SET char_set_name
Declares a default character set of char_set_name for all objects created within the
schema.

PATH schema_name[, . . .]
Optionally declares a file path and filename for any unqualified routines (i.e.,
stored procedures, user-defined functions, user-defined methods) in the schema.

ANSI CREATE statements [. . .]
Contains one or more CREATE statements. No commas are used between the
CREATE statements.

ANSI GRANT statements [. . .]
Contains one or more GRANT statements that apply to previously defined
objects. Usually, the objects were created earlier in the same CREATE SCHEMA
statement, but they may be pre-existing objects. No commas are used between
the GRANT statements.

Platform Command

MySQL Supported (as CREATE DATABASE)

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Supported, with limitations

140 | Chapter 3: SQL Statement Command Reference

CREATE SCHEMA Statement > MySQL

Rules at a Glance
The CREATE SCHEMA statement is a container that can hold many other CREATE
and GRANT statements. The most common way to think of a schema is as all of the
objects that a specific user owns. For example, the user jake may own several tables
and views in his own schema, including a table called publishers. Meanwhile, the user
dylan may own several other tables and views in his schema, but may also own his
own separate copy of the publishers table.

The ANSI standard requires that all CREATE statements are allowed in a CREATE
SCHEMA statement. In practice, however, most implementations of CREATE
SCHEMA allow only three subordinate statements: CREATE TABLE, CREATE VIEW,
and GRANT. The order of the commands is not important, meaning that (although it
is not recommended) you can grant privileges on tables or views whose CREATE state-
ments appear later in the CREATE SCHEMA statement.

Programming Tips and Gotchas
It is not required, but it is considered a best practice to arrange the objects and grants
within a CREATE SCHEMA statement in an order that will execute naturally. In other
words, CREATE VIEW statements should follow the CREATE TABLE statements that
they depend on, and the GRANT statements should come last.

If your database system uses schemas, we recommend that you always reference your
objects by schema and then object name (as in jake.publishers). If you do not include
a schema qualifier, the database platform will typically assume the default schema for
the current user connection.

Some database platforms do not explicitly support the CREATE SCHEMA command.
However, they implicitly create a schema when a user creates database objects. For
example, Oracle creates a schema whenever a user is created. The CREATE SCHEMA
command is simply a single-step method of creating all the tables, views, and other
database objects along with their permissions.

MySQL
MySQL supports the CREATE SCHEMA statement as a synonym of the CREATE DATA-
BASE statement. Refer to that section for more information on MySQL’s implementation.

Oracle
In Oracle, the CREATE SCHEMA statement does not actually create a schema; only the
CREATE USER statement does that. What CREATE SCHEMA does is allow a user to
perform multiple CREATEs and GRANTs in a previously created schema in one SQL
statement:

CREATE SCHEMA AUTHORIZATION schema_name
 [ANSI CREATE statements [...]]
 [ANSI GRANT statements [...]]

Note that Oracle only allows ANSI-standard CREATE TABLE, CREATE VIEW, and
GRANT statements within a CREATE SCHEMA statement. You should not use any of
Oracle’s extensions to these commands when using the CREATE SCHEMA statement.

The following Oracle example places the permissions before the objects within the
CREATE SCHEMA statement:

CREATE SCHEMA AUTHORIZATION emily
 GRANT SELECT, INSERT ON view_1 TO sarah
 GRANT ALL ON table_1 TO sarah

Chapter 3: SQL Statement Command Reference | 141

SQLStatem
ent

Com
m

ands
CREATE SCHEMA Statement > SQL Server

 CREATE VIEW view_1 AS
 SELECT column_1, column_2
 FROM table_1
 ORDER BY column_2
 CREATE TABLE table_1(column_1 INT, column_2 CHAR(20));

As this example shows, the order of the statements within the CREATE SCHEMA
statement is unimportant; Oracle commits the CREATE SCHEMA statement only if all
CREATE and GRANT statements in the statement complete successfully.

PostgreSQL
PostgreSQL supports both ALTER and CREATE SCHEMA statements without
support for the PATH and DEFAULT CHARACTER SET clauses. The CREATE
SCHEMA syntax follows:

CREATE SCHEMA { schema_name [AUTHORIZATION user_name] | AUTHORIZATION user_
name }
 [ANSI CREATE statements [...]]
 [ANSI GRANT statements [...]]

When the schema_name is omitted, the user_name is used to name the schema.
Currently, PostgreSQL supports only the following CREATE statements within a
CREATE SCHEMA statement: CREATE TABLE, CREATE VIEW, CREATE INDEX,
CREATE SEQUENCE, and CREATE TRIGGER. Other CREATE statements must be
handled separately from the CREATE SCHEMA statement.

The ALTER SCHEMA syntax follows:

ALTER SCHEMA schema_name [RENAME TO new_schema_name] [OWNER TO new_user_name]

The ALTER SCHEMA statement allows you to rename a schema or to specify a new
owner, who must be a pre-existing user on the database.

SQL Server
SQL Server supports the basic CREATE SCHEMA statement, without support for the
PATH clause or the DEFAULT CHARACTER SET clause:

CREATE SCHEMA AUTHORIZATION owner_name
 [ANSI CREATE statements [...]]
 [ANSI GRANT statements [...]]

If any statement fails within the CREATE SCHEMA statement, the entire statement
fails.

SQL Server does not require that the CREATE or GRANT statements be in any partic-
ular order, except that nested views must be declared in their logical order. That is, if
view_100 references view_10, view_10 must appear in the CREATE SCHEMA state-
ment before view_100.

For example:

CREATE SCHEMA AUTHORIZATION katie
 GRANT SELECT ON view_10 TO public
 CREATE VIEW view_10(col1) AS SELECT col1 FROM foo
 CREATE TABLE foo(col1 INT)
 CREATE TABLE foo
 (col1 INT PRIMARY KEY,
 col2 INT REFERENCES foo2(col1))

142 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement

 CREATE TABLE foo2
 (col1 INT PRIMARY KEY,
 col2 INT REFERENCES foo(col1));

The syntax for ALTER ROLE follows:

ALTER ROLE owner_name WITH NAME = new_owner_name;

The ALTER ROLE statement merely allows the assignment of a new owner to an
existing schema.

See Also
CREATE/ALTER TABLE
CREATE/ALTER VIEW
GRANT

CREATE/ALTER TABLE Statement

Manipulating tables is one of the most common activities that database administra-
tors and programmers perform when working with database objects. This section
details how to create and modify tables.

The ANSI standard represents a sort of least common denominator among the
vendors. Although not all vendors offer every option of the ANSI-standard version of
CREATE TABLE and ALTER TABLE, the ANSI standard does represent the basic
form that can be used across all of the platforms. Conversely, the vendor platforms
offer a variety of extensions and additions to the ANSI standards for CREATE and
ALTER TABLE.

Typically, a great deal of consideration goes into the design and cre-
ation of a table. This discipline is known as database design. The
discipline of analyzing the relationship of a table to its own data
and to other tables within the database is known as normalization.
We recommend that database programmers and administrators
alike study both database design and normalization principles thor-
oughly before issuing CREATE TABLE commands.

SQL2003 Syntax
The SQL2003 statement CREATE TABLE creates a permanent or temporary table
within the database where the command is issued. The syntax is as follows:

CREATE [{LOCAL TEMPORARY| GLOBAL TEMPORARY}] TABLE table_name
 (column_name datatype attributes[, ...]) |
 [column_name WITH OPTIONS options] |
 [LIKE table_name] |

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Chapter 3: SQL Statement Command Reference | 143

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement

 [REF IS column_name
 {SYSTEM GENERATED | USER GENERATED | DERIVED}]
 [CONSTRAINT constraint_type [constraint_name][, ...]]
[OF type_name [UNDER super_table] [table_definition]]
[ON COMMIT {PRESERVE ROWS | DELETE ROWS}

The SQL2003 statement ALTER TABLE allows many useful modifications to be made
to an existing table without dropping any existing indexes, triggers, or permissions
assigned to it. Following is the ALTER TABLE syntax:

ALTER TABLE table_name
[ADD [COLUMN] column_name datatype attributes]
| [ALTER [COLUMN] column_name SET DEFAULT default_value]
| [ALTER [COLUMN] column_name DROP DEFAULT]
| [ALTER [COLUMN] column_name ADD SCOPE table_name]
| [ALTER [COLUMN] column_name DROP SCOPE {RESTRICT | CASCADE}]
| [DROP [COLUMN] column_name {RESTRICT | CASCADE}]
| [ADD table_constraint]
| [DROP CONSTRAINT table_constraint_name {RESTRICT | CASCADE}]

Keywords
CREATE [{LOCAL TEMPORARY | GLOBAL TEMPORARY}] TABLE

Declares a permanent table or a TEMPORARY table of LOCAL or GLOBAL
scope. Local temporary tables are accessible only to the session that created them
and are automatically dropped when that session terminates. Global temporary
tables are accessible by all active sessions but are also automatically dropped
when the session that created them terminates. Do not qualify a temporary table
with a schema name.

(column_name datatype attributes[, . . .])
Defines a comma-delimited list of one or more columns, their datatypes, and any
additional attributes (such as nullability). Every table declaration must contain at
least one column, which may include:

column_name
Specifies a name for a column. The name must be a valid identifier according
to the rules of the specific DBMS. Make sure the name makes sense!

datatype
Associates a specific datatype with the column identified by column_name. An
optional length may be specified for datatypes that allow user-defined
lengths, for example VARCHAR(255). It must be a valid datatype on the
specific DBMS. Refer to Chapter 2 for a full discussion of acceptable
datatypes and vendor variations.

attributes
Associates specific constraint attributes with the column_name. Many
attributes may be applied to a single column_name, no commas required.
Typical ANSI attributes include:

NOT NULL
Tells the column to reject NULL values or, when omitted, to accept them.
Any INSERT or UPDATE statement that attempts to place a NULL value in
a NOT NULL column will fail and roll back.

144 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement

DEFAULT expression
Tells the column to use the value of expression when no value is supplied by
an INSERT or UPDATE statement. The expression must be acceptable
according to the datatype of the column; for example, no alphabetic charac-
ters may be used in an INTEGER column. expression may be a string or
numeric literal, but you may also define a user-defined function or system
function. SQL2003 allows these system functions in a DEFAULT expres-
sion: NULL, USER, CURRENT_USER, SESSION_USER, SYSTEM_USER,
CURRENT_PATH, CURRENT_DATE, CURRENT_TIME, LOCALTIME,
CURRENT_TIMESTAMP, LOCALTIMESTAMP, ARRAY, or ARRAY[].

COLLATE collation_name
Defines a specific collation, or sort order, for the column to which it is
assigned. The name of the collation is platform-dependent. If you do not
define a collation, the columns of the table default to the collation of the
character set used for the column.

REFERENCES ARE [NOT] CHECKED [ON DELETE {RESTRICT | SET NULL}]
Indicates whether references are to be checked on a REF column defined
with a scope clause. The optional ON DELETE clause tells whether any
values in records referenced by a deleted record should set to NULL, or
whether the operation should be restricted.

CONSTRAINT constraint_name [constraint_type [constraint]]
Assigns a constraint and, optionally a constraint name, to the specific
column. Constraint types are discussed in Chapter 2. Because the constraint
is associated with a specific column, the constraint declaration assumes that
the column is the only one in the constraint. After the table is created, the
constraint is treated as a table-level constraint.

column_name [WITH OPTIONS options]
Defines a column with special options, such as a scope clause, a default clause, a
column-level constraint, or a COLLATE clause. For many implementations, the
WITH OPTIONS clause is restricted to the creation of typed tables.

LIKE table_name
Creates a new table with the same column definitions as the pre-existing table
named table_name.

REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}
Defines the object identifier column (OID) for a typed table. An OID is necessary
for the root table of a table hierarchy. Based on the option specified, the REF
might be automatically generated by the system (SYSTEM GENERATED), manu-
ally provided by the user when inserting the row (USER GENERATED), or
derived from another REF (DERIVED). Requires the inclusion of a REFER-
ENCES column attribute for column_name.

CONSTRAINT constraint_type [constraint_name][, . . .]
Assigns one or more constraints to the table. This option is noticeably different
from the CONSTRAINT option at the column level, because column-level
constraints are assumed to apply only to the column with which they are associ-
ated. Table-level constraints, however, give the option of associating multiple
columns with a constraint. For example, in a sales table you might wish to
declare a unique constraint on a concatenated key of store_id, order_id, and
order_date. This can only be done using a table-level constraint. Refer to
Chapter 2 for a full discussion of constraints.

Chapter 3: SQL Statement Command Reference | 145

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement

OF type_name [UNDER super_table] [table_definition]
Declares that the table is based upon a pre-existing user-defined type. In this situ-
ation, the table may have only a single column for each attribute of the structured
type, plus an additional column, as defined in the REF IS clause. This clause is
incompatible with the LIKE table_name clause.

[UNDER super_table] [table_definition]
Declares the direct supertable of the currently declared table within the same
schema, if any exists. The table being created is thus a direct subtable of the
supertable. You may optionally provide a complete table_definition of the
new subtable, complete with columns, constraints, etc.

ON COMMIT {PRESERVE ROWS | DELETE ROWS}
ON COMMIT PRESERVE ROWS preserves data rows in a temporary table on
issuance of a COMMIT statement. ON COMMIT DELETE ROWS deletes all data
rows in a temporary table on COMMIT.

ADD [COLUMN] column_name datatype attributes
Adds a column to a table, along with the appropriate datatype and attributes.

ALTER [COLUMN] column_name SET DEFAULT default_value
Adds a default value to the column if none exists, and resets the default value if a
previous one exists.

ALTER [COLUMN] column_name DROP DEFAULT
Completely removes a default from the named column.

ALTER [COLUMN] column_name ADD SCOPE table_name
Adds a scope to the named column. A scope is a reference to a user-defined
datatype.

ALTER [COLUMN] column_name DROP SCOPE {RESTRICT | CASCADE}
Drops a scope from the named column. The RESTRICT and CASCADE clauses
are defined at the end of this list.

DROP COLUMN column_name {RESTRICT | CASCADE}
Drops the named column from the table.

ADD table_constraint
Adds a table constraint of the specified name and characteristics to the table.

DROP CONSTRAINT constraint_name {RESTRICT | CASCADE}
Drops a previously defined constraint from the table.

RESTRICT
Tells the DBMS to abort the command if it finds any other objects in the data-
base that depend on the object.

CASCADE
Tells the DBMS to drop any other objects that depend on the object.

Rules at a Glance
The typical CREATE TABLE statement is very simple. Generally, it names the table
and any columns contained in the table. Many table definitions also include a
nullability constraint for most of the columns, as in this SQL Server example:

CREATE TABLE housing_construction
 (project_number INT NOT NULL,
 project_date DATE NOT NULL,
 project_name VARCHAR(50) NOT NULL,

146 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement

 construction_color NCHAR(20) ,
 construction_height DECIMAL(4,1),
 construction_length DECIMAL(4,1),
 construction_width DECIMAL(4,1),
 construction_volume INT)

This example adds a foreign key to the example table:

-- Creating a column-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) PRIMARY KEY,
 book_name VARCHAR(40) UNIQUE,
 category VARCHAR(40) ,
 subcategory VARCHAR(40) ,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL,
 CONSTRAINT fk_categories FOREIGN KEY (category)
 REFERENCES category(cat_name));

The foreign key on the categories column relates it to the cat_name table in the cate-
gory table. All the vendors discussed in this book support this syntax.

Examples for creating a table with each constraint type are shown
in Chapter 2.

Similarly, the foreign key could be added after the fact as a multicolumn key including
both the category and subcategory columns:

ALTER TABLE favorite_books ADD CONSTRAINT fk_categories
 FOREIGN KEY (category, subcategory)
 REFERENCES category(cat_name, subcat_name);

Now, we can use an ALTER TABLE statement to drop the constraint altogether:

ALTER TABLE favorite_books DROP CONSTRAINT fk_categories RESTRICT;

Listed here are more full examples from pubs, the sample database that ships with
Microsoft SQL Server and Sybase Adaptive Server:

-- For a Microsoft SQL Server database
CREATE TABLE jobs
 (job_id SMALLINT IDENTITY(1,1) PRIMARY KEY CLUSTERED,
 job_desc VARCHAR(50) NOT NULL DEFAULT 'New Position',
 min_lvl TINYINT NOT NULL CHECK (min_lvl >= 10),
 max_lvl TINYINT NOT NULL CHECK (max_lvl <= 250))
-- For a MySQL database
CREATE TABLE employee
 (emp_id INT AUTO_INCREMENT CONSTRAINT PK_emp_id PRIMARY KEY,
 fname VARCHAR(20) NOT NULL,
 minit CHAR(1) NULL,
 lname VARCHAR(30) NOT NULL,
 job_id SMALLINT NOT NULL DEFAULT 1
 REFERENCES jobs(job_id),
 job_lvl TINYINT DEFAULT 10,
 pub_id CHAR(4) NOT NULL DEFAULT ('9952')
 REFERENCES publishers(pub_id),
 hire_date DATETIME NOT NULL DEFAULT (CURRENT_DATE());

Chapter 3: SQL Statement Command Reference | 147

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement

CREATE TABLE publishers
 (pub_id char(4) NOT NULL
 CONSTRAINT UPKCL_pubind PRIMARY KEY CLUSTERED
 CHECK (pub_id IN ('1389', '0736', '0877', '1622', '1756')
 OR pub_id LIKE '99[0-9][0-9]'),
 pub_name varchar(40) NULL,
 city varchar(20) NULL,
 state char(2) NULL,
 country varchar(30) NULL DEFAULT('USA'))

Once you get into the vendor extensions, the CREATE TABLE command is no longer
portable between database platforms. The following is an example of an Oracle
CREATE TABLE statement with many storage properties:

CREATE TABLE classical_music_cds
 (music_id INT,
 composition VARCHAR2(50),
 composer VARCHAR2(50),
 performer VARCHAR2(50),
 performance_date DATE DEFAULT SYSDATE,
 duration INT,
 cd_name VARCHAR2(100),
CONSTRAINT pk_class_cds PRIMARY KEY (music_id)
 USING INDEX TABLESPACE index_ts
 STORAGE (INITIAL 100K NEXT 20K),
CONSTRAINT uq_class_cds UNIQUE
 (composition, performer, performance_date)
 USING INDEX TABLESPACE index_ts
 STORAGE (INITIAL 100K NEXT 20K))
TABLESPACE tabledata_ts;

When issuing a CREATE or ALTER statement, we recommend that it be the only
statement in your transaction. For example, do not attempt to create a table and select
from it in the same batch. Instead, first create the table, then verify the operation, issue
a COMMIT, and finally perform any subsequent operations against the table.

table_name is the name of a new or existing table. New table names should start with
an alphabetic character and in general should contain no other special symbol besides
the underscore (_). Rules for the length of the name and its exact composition differ
according to the vendor.

When creating or altering a table, the list of column definitions is always encapsulated
within parentheses, and the individual column definitions are separated by commas.

Programming Tips and Gotchas
The user issuing the CREATE TABLE command must have the appropriate permis-
sions. Similarly, any user wishing to ALTER or DROP a table should own the table
within his own schema or have adequate permissions to alter or drop the table. Since
the ANSI standard does not specify the privileges required, expect some variation
between vendors.

You can encapsulate a CREATE TABLE or ALTER TABLE statement within a transac-
tion, using a COMMIT or ROLLBACK statement to explicitly conclude the
transaction. We recommend that the CREATE/ALTER TABLE statement be the only
command in the transaction.

148 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > MySQL

Extensions to the ANSI standard can give you a great deal of control over the way that
the records of a table are physically written to disk. SQL Server uses a technique called
clustered indexes to control the way that records are written to disk. Oracle uses a tech-
nique that is functionally similar, called an index-organized table.

Some databases will lock a table that is being modified by an ALTER TABLE state-
ment. It is therefore wise to issue this command only on tables that are not in use on a
production database.

Furthermore, some databases will lock the target and source tables when using the
CREATE TABLE...LIKE statement.

MySQL
The MySQL syntax for CREATE TABLE creates a permanent or local temporary table
within the database in which the command is issued:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table_name
{(column_name datatype attributes
constraint_type constraint_name[, ...])

 [constraint_type [constraint_name][, ...]]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON {DELETE | UPDATE} {RESTRICT | CASCADE | SET NULL | NO ACTION}]
LIKE other_table_name}
 {[TABLESPACE tablespace_name STORAGE DISK] |
 [ENGINE = {ISAM | MyISAM | HEAP | BDB | InnoDB | MERGE | MRG_MyISAM}] |
 [AUTO_INCREMENT = int] |
 [AVG_ROW_LENGTH = int] |
 [[DEFAULT] CHARACTER SET charset_name] |
 [CHECKSUM = {0 | 1}] |
 [[DEFAULT] COLLATE collation_name] |
 [COMMENT = "string"] |
 [CONNECTIOIN = 'connection_string'] |
 [DATA DIRECTORY = "path_to_directory"] |
 [DELAY_KEY_WRITE = {0 | 1}] |
 [INDEX DIRECTORY = "path_to_directory"] |
 [INSERT_METHOD = {NO | FIRST | LAST}] |
 [KEY_BLOCK_SIZE = int] |
 [MAX_ROWS = int] |
 [MIN_ROWS = int] |
 [PACK_KEYS = {0 | 1}] |
 [PASSWORD = "string"] |
 [ROW_FORMAT= { DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT |
COMPACT }] [...]}
[partition_definition[, ...]]
[[IGNORE | REPLACE] select_statement]

In most cases, MySQL alters a table by creating a temporary work copy of the table,
manipulating it, deleting the original, and finally renaming the copy. The MySQL
syntax for ALTER TABLE allows modifications to a table or even renaming of a table:

ALTER [IGNORE] TABLE table_name
{ [ADD [COLUMN] (column_name datatype attributes)
 [FIRST | AFTER column_name][, ...]]
| [ADD [CONSTRAINT] [UNIQUE | FOREIGN KEY | FULLTEXT | PRIMARY KEY | SPATIAL]
 [INDEX | KEY] [index_name](index_col_name[, ...])]
| [ALTER [COLUMN] column_name {SET DEFAULT literal | DROP DEFAULT}]

Chapter 3: SQL Statement Command Reference | 149

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > MySQL

| [CHANGE | MODIFY] [COLUMN] old_col_name new_column_name column_definition
 [FIRST | AFTER column_name]
| [DROP [COLUMN | FOREIGN KEY | PRIMARY KEY | INDEX | KEY] [object_name]]
| [{ENABLE | DISABLE} KEYS]
| [RENAME [TO] new_tbl_name]
| [ORDER BY column_name[, ...]]
| [CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]]
| [{DISCARD | IMPORT} TABLESPACE]
| [{ADD | DROP | COALESCE int | ANALYZE | CHECK | OPTIMIZE | REBUILD |
REPAIR}
 PARTITION]
| [REORGANIZE PARTITION prtn_name INTO (partition_definition)]
| [REMOVE PARTITIONING]
| [table_options] }[, ...]

Keywords and parameters are as follows:

TEMPORARY
Creates a table that persists for the duration of the connection under which it was
created. Once that connection closes, the temporary table is automatically
deleted.

IF NOT EXISTS
Prevents an error if the table already exists. A schema specification is not
required.

constraint_type
Allows standard ANSI SQL constraints to be assigned at the column or table
level. MySQL fully supports the following constraints: primary key, unique, and
default (must be a constant). MySQL provides syntax support for check, foreign
key, and references constraints, but they are not functional except on InnoDB
tables. MySQL also has six specialty constraints:

FULLTEXT [{INDEX | KEY}]
Creates a fulltext-search index to facilitate rapid searches of large blocks of
text. Note that only MyISAM tables support FULLTEXT indexes, and that
they can only be made on CHAR, VARCHAR, and TEXT columns.

SPATIAL [{INDEX | KEY}]
Creates a spatial index or key on the column. Only MyISAM supports
SPATIAL indexes.

AUTO_INCREMENT
Sets up an integer column so that it automatically increases its value by 1
(starting with a value of 1). MySQL only allows one AUTO_INCREMENT
column per table. When all records are deleted (using DELETE or TRUN-
CATE), the values may start over. This option is allowed on MyISAM,
MEMORY, ARCHIVE, and InnoDB tables.

 [UNIQUE] INDEX
When an INDEX characteristic is assigned to a column, a name for the index
can also be included. (A MySQL synonym for INDEX is KEY.) If a name is
not assigned to the primary key, MySQL assigns a name of column_name plus
a numeric suffix (_2, _3, . . .) to make it unique. All table types except ISAM
support indexes on NULL columns, or on BLOB or TEXT columns. Note
that UNIQUE without INDEX is valid syntax on MySQL.

150 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > MySQL

COLUMN_FORMAT {FIXED | DYNAMIC | DEFAULT}
Specifies a data storage format for individual columns in NDB tables. FIXED
specifies fixed-width storage; DYNAMIC specifies variable-width storage;
and DEFAULT specifies that either FIXED or DYNAMIC be used, according
to the datatype for the column. This clause is not available in versions before
5.1.19-ndb.

STORAGE {DISK | MEMORY}
Specifies whether to store the column in an NDB table on the DISK or in
MEMORY (the default). Not available in versions before 5.1.19-ndb.

ENGINE
Describes how the data should be physically stored. You can convert tables
between types using the ALTER TABLE statement. Only InnoDB and BDB
tables offer recoverability with the COMMIT or ROLLBACK statements. All
other table types will result in the loss of data if the database crashes, but are
much faster and take up less space. The default is MyISAM. Following is the list
of MySQL table types:

ARCHIVE
Utilizes the ARCHIVE storage engine, which is good for storing large
amounts of data without indexes in a small footprint. When creating an
ARCHIVE table, the filename is the table’s name with an .FRM extension.
Data and metadata tables have the table name as the filename and exten-
sions of .ARX and .ARM, respectively. A file with an .ARN extension may
appear occasionally during optimizations.

CSV
Stores rows in comma-separated values (CSV) format. When creating a CSV
table, the filename is the table name with an .FRM extension. Data is stored
in a file with the table name as the filename and an extension of .CSV. The
data is stored in plain text, so be careful with security on these tables.

EXAMPLE
EXAMPLE is a stub engine that does nothing. No data can be stored in an
EXAMPLE table.

FEDERATED
Stores data in such a way that it is accessible from other remote MySQL
databases without using replication or clustering technology. No data is
stored in the local tables.

HEAP
Creates a memory-resident table that uses hashed indexes. Synonymous with
MEMORY. Since they are memory-resident, these tables are not transaction-
safe. Any data they contain will be lost if the server crashes. Think of HEAP
tables as an alternative to temporary tables. If you use HEAP tables, always
specify the MAX_ROWS option so that you do not use all available memory.
HEAP tables also do not support BLOB columns, TEXT columns, AUTO_
INCREMENT constraints, ORDER BY clauses, or the variable-length record
format.

InnoDB
Creates a transaction-safe table with row-level locking. It also provides an
independently managed tablespace, checkpoints, non-locking reads, and fast
reads from large datafiles for heightened concurrency and performance.

Chapter 3: SQL Statement Command Reference | 151

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > MySQL

Requires the innodb_data_file_path startup parameter. InnoDB supports all
ANSI constraints, including CHECK and FOREIGN KEY. Well-known
developer websites like Slashdot.org run on MySQL with InnoDB because of
its excellent performance. InnoDB tables and indexes are stored together in
their own tablespace (unlike other table formats, such as MyISAM, which
store tables in separate files).

ISAM
Creates a table in the older ISAM style. ISAM has been deprecated and is
obsolete and unavailable in MySQL v5.1. When upgrading, convert ISAM
tables to MyISAM before performing the upgrade.

MEMORY
Creates a memory-resident table that uses hashed indexes. Synonymous with
HEAP. Since they are memory-resident, the indexes are not transaction-safe;
any data they contain will be lost if the server crashes. MEMORY tables can
have up to 32 indexes per table and 16 columns per index, for a maximum
index length of 500 bytes. Think of MEMORY tables as an alternative to
temporary tables; like temporary tables, they are shared by all clients. If you
use MEMORY tables, always specify the MAX_ROWS option so that you do
not use all available memory. MEMORY tables do not support BLOB or
TEXT columns, ORDER BY clauses, or the variable-length record format,
and there are many additional rules concerning MEMORY tables. Be sure to
read the vendor documentation before implementing MEMORY tables.

MERGE
Collects several identically structured MyISAM tables for use as one table,
providing some of the performance benefits of a partitioned table. SELECT,
DELETE, and UPDATE statements operate against the collection of tables as
if they were one table. Think of a merge table as the collection, but not as the
table(s) containing the data. Dropping a merge table only removes it from
the collection; it does not erase the table or its data from the database.
Specify a MERGE table by using the statement UNION=(table1, table2, .. .).
The two keywords MERGE and MRG_MyISAM are synonyms.

MyISAM
Stores data in .MYD files and indexes in .MYI files. MyISAM is based on
ISAM code, with several extensions. MyISAM is a binary storage structure
that is more portable than ISAM. MyISAM supports AUTO_INCREMENT
columns, compressed tables (with the myisampack utility), and large table
sizes. Under MyISAM, BLOB and TEXT columns can be indexes, and up to
64 indexes are allowed per table, with up to 16 columns per index and a
maximum key length of 1,000 bytes.

NDBCLUSTER
Creates clustered, fault-tolerant, memory-based tables called NDBs. This is
MySQL’s special high-availability table format. Refer to the vendor docu-
mentation for additional information on implementing NDBs.

UNION
Refer to MERGE.

TABLESPACE…STORAGE DISK
Assigns the table to a Cluster Disk Data tablespace when using NDB Cluster
tables. The tablespace named in the clause must already have been created using
CREATE TABLESPACE.

152 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > MySQL

AUTO_INCREMENT = int
Sets the auto-increment value (int) for the table (MyISAM only).

AVG_ROW_LENGTH = int
Sets an approximate average row length for tables with variable-size records.
MySQL uses AVG_ROW_LENGTH * MAX_ROWS to determine how big a table
may be.

[DEFAULT] CHARACTER SET
Specifies the CHARACTER SET (or CHARSET) for the table, or for specific
columns.

CHECKSUM = {0 | 1}
When set to 1, maintains a checksum for all rows in the table (MyISAM only).
This makes processing slower but leaves your data less prone to corruption.

[DEFAULT] COLLATE
Specifies the collation set for the table, or for specific columns.

COMMENT = "string"
Allows a comment of up to 60 characters.

CONNECTION = 'connection_string'
The connection string required to connect to a FEDERATED table. Otherwise,
this is a noise word. Older versions of MySQL used the COMMENT option for
the connection string.

DATA DIRECTORY = "path_to_directory"
Overrides the default path and directory that MySQL should use for MyISAM
table storage.

DELAY_KEY_WRITE = {0 | 1}
When set to 1, delays key table updates until the table is closed (MyISAM only).

INDEX DIRECTORY = "path_to_directory"
Overrides the default path and directory that MySQL should use for MyISAM
index storage.

INSERT_METHOD = {NO | FIRST | LAST}
Required for MERGE tables. If no setting is specified for a MERGE table or the
value is NO, INSERTs are disallowed. FIRST inserts all records to the first table in
the collection, while LAST inserts them all into the last table of the collection

KEY_BLOCK_SIZE = int
Allows the storage engine to change the value used for the index key block size.
0 tells MySQL to use the default.

MAX_ROWS = int
Sets a maximum number of rows to store in the table. The default maximum is
4 GB of space.

MIN_ROWS = int
Sets a minimum number of rows to store in the table.

PACK_KEYS = {0 | 1}
When set to 1, compacts the indexes of the table, making reads faster but updates
slower (MyISAM and ISAM only). By default, only strings are packed. When set
to 1, both strings and numeric values are packed.

PASSWORD = "string"
Encrypts the .FRM file (but not the table itself) with a password, "string".

Chapter 3: SQL Statement Command Reference | 153

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > MySQL

ROW_FORMAT = { DEFAULT | DYNAMIC | FIXED | COMPRESSED |
REDUNDANT | COMPACT }

Determines how future rows should be stored in a MySQL table. DEFAULT
varies by storage engine. DYNAMIC allows the rows to be of variable sizes (i.e.,
using VARCHAR), while FIXED expects fixed-size columns (i.e., CHAR, INT, etc.).
REDUNDANT is used only on InnoDB tables and maximizes the value of an
index, even if some redundant data is stored. COMPRESSED tables are read-only
and compresses the data by about 20% compared to the REDUNDANT format.
COMPRESSED is also allowed only on InnoDB.

partition_definition
Specifies a partition or subpartition for a MySQL table. Refer to the section below
for more details on partitioning and subpartitioning MySQL tables. Note that all
of the definition options are usable for subpartitions, with the exception of the
VALUE subclause.

[IGNORE | REPLACE] select_statement
Creates a table with columns based upon the elements listed in the SELECT state-
ment. The new table will be populated with the results of the SELECT statement
if the statement returns a result set.

ALTER [IGNORE]
The altered table will include all duplicate records unless the IGNORE keyword is
used. If it is not used, the statement will fail if a duplicate row is encountered and
if the table has a unique index or primary key.

{ADD | COLUMN} [FIRST | AFTER column_name]
Adds or moves a column, index, or key to the table. When adding or moving
columns, the new column appears as the last column in the table unless it is
placed AFTER another named column.

ALTER COLUMN
Allows the definition or resetting of a default value for a column. If you reset a
default, MySQL will assign a new default value to the column.

CHANGE
Renames a column, or changes its datatype.

MODIFY
Changes a column’s datatype or attributes such as NOT NULL. Existing data in
the column is automatically converted to the new datatype.

DROP
Drops the column, key, index, or tablespace. A dropped column is also removed
from any indexes in which it participated. When dropping a primary key, MySQL
will drop the first unique key if no primary key is present.

{ENABLE | DISABLE} KEYS
Enables or disables all non-unique keys on a MyISAM table simultaneously. This
can be useful for bulk loads where you want to temporarily disable constraints
until after the load is finished. It also speeds performance by finishing all index
block flushing at the end of the operation.

RENAME [TO] new_tbl_name
Renames a table.

ORDER BY column_name[, . . .]
Orders the rows in the specified order.

154 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > MySQL

CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
Converts the table to a character set (and optionally a collation) that you specify.

DISCARD | IMPORT TABLESPACE
Deletes the current .IDB file (using DISCARD), or makes a tablespace available
after restoring from a backup (using IMPORT).

{ADD | DROP | COALESCE int | ANALYZE | CHECK | OPTIMIZE | REBUILD |
REPAIR} PARTITION

Adds or drops a partition on a table. Other options perform preventative mainte-
nance behaviors analogous to those available for MySQL tables (i.e., CHECK
TABLE and REPAIR TABLE). Only COALESCE PARTITION has a unique
behavior, in which MySQL reduces the number of KEY or HASH partitions to the
number specified by int.

REORGANIZE PARTITION prtn_name INTO (partition_definition)
Alters the definition of an existing partition according to the new partition_
definition specified.

REMOVE PARTITIONING
Removes a table’s partitioning without otherwise affecting the table or its data.

For example:

CREATE TABLE test_example
 (column_a INT NOT NULL AUTO_INCREMENT,
 PRIMARY KEY(column_a),
 INDEX(column_b))
 TYPE=HEAP
IGNORE
SELECT column_b,column_c FROM samples;

In MySQL v5.1 and later, only the MyISAM, INNoDB, and MEM-
ORY storage engines support indexes on columns that contain
NULL values. For all other indexed columns, the column must be
declared NOT NULL. Spatial types are supported only on MyISAM
and, when indexed, must be declared as NOT NULL. Note that
MySQL v5.1 is limited to 4,096 columns per table, but it may not
even be able to store that many due to space constraints.

This creates a heap table with three columns: column_a, column_b, and column_c.
Later, we could change this table to the MyISAM type:

ALTER TABLE example TYPE=MyISAM;

Three operating-system files are created when MySQL creates a MyISAM table: a table
definition file with the extension .FRM, a datafile with the extension .MYD, and an
index file with the extension .MYI. The .FRM datafile is used for all other tables.

The following example creates two base MyISAM tables and then creates a MERGE
table from them:

CREATE TABLE message1
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20));
CREATE TABLE message2
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20));

Chapter 3: SQL Statement Command Reference | 155

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > MySQL

CREATE TABLE all_messages
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20))
 TYPE=MERGE UNION=(message1, message2) INSERT_METHOD=LAST;

Partitioned tables

MySQL allows partitioning of tables for greater control of I/O and space manage-
ment. The syntax for the partitioning clause is:

PARTITION BY function
[[SUB]PARTITION prtn_name
 [VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}]
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'comment_text']
 [DATA DIRECTORY [=] 'data_path']
 [INDEX DIRECTORY [=] 'index_path']
 [MAX_ROWS [=] max_rows]
 [MIN_ROWS [=] min_rows]
 [TABLESPACE [=] (tablespace_name)]
 [NODEGROUP [=] node_group_id]
 [(subprtn[, subprtn] ...)][, ...]]

where (values not described below are redundant to the list of table options and are
presented in the earlier listing):

function
Specifies the function used to create the partition. Allowable values include:
HASH(expr), where expr is a hash of one or more columns in an allowable SQL
format (including function calls that return any single integer value); LINEAR
KEY(column_list), where MySQL’s hashing function more evenly distributes
data; RANGE(expr), where expr is one or more columns in an allowable SQL
format with the VALUES clause telling exactly which partition holds which
values; and LIST(expr), where expr is one or more columns in an allowable SQL
format with the VALUES clause telling exactly which partition holds which
values.

[SUB]PARTITION prtn_name
Names the partition or subpartition.

VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}
Specifies which values are assigned to which partitions.

NODEGROUP [=] node_group_id
Makes the partition or subpartition act as part of a node group identified by node_
group_id. Only applicable for NDB tables.

Note that partitions and subpartitions must all use the same storage engine.

The following example creates three tables, each with a different partitioning function:

CREATE TABLE employee (emp_id INT, emp_fname VARCHAR(30), emp_lname
VARCHAR(50))
 PARTITION BY HASH(emp_id);

CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30), location_code
CHAR(5))
 PARTITION BY KEY(location_code)
 PARTITIONS 4;

156 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30), location_code
CHAR(5))
 PARTITION BY LINEAR KEY(location_code)
 PARTITIONS 5;

The following two examples show somewhat more elaborate examples of partitioning
using RANGE partitioning and LIST partitioning:

CREATE TABLE employee (emp_id INT,
 emp_fname VARCHAR(30),
 emp_lname VARCHAR(50),
 hire_date DATE)
PARTITION BY RANGE(hire_date)
 (PARTITION prtn1 VALUES LESS THAN ('01-JAN-2004'),
 PARTITION prtn2 VALUES LESS THAN ('01-JAN-2006'),
 PARTITION prtn3 VALUES LESS THAN ('01-JAN-2008'),
 PARTITION prtn4 VALUES LESS THAN MAXVALUE);

CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30), location_code
CHAR(5))
PARTITION BY LIST(prod_id)
 (PARTITION prtn0 VALUES IN (10, 50, 90, 130, 170, 210),
 PARTITION prtn1 VALUES IN (20, 60, 100, 140, 180, 220),
 PARTITION prtn2 VALUES IN (30, 70, 110, 150, 190, 230),
 PARTITION prtn3 VALUES IN (40, 80, 120, 160, 200, 240));

The following example renames both a table and a column:

ALTER TABLE employee RENAME AS emp;
ALTER TABLE employee CHANGE employee_ssn emp_ssn INTEGER;

Since MySQL allows the creation of indexes on a portion of a column (for example, on
the first 10 characters of a column), you can also build short indexes on very large
columns.

MySQL can redefine the datatype of an existing column, but to avoid losing any data,
the values contained in the column must be compatible with the new datatype. For
example, a date column could be redefined to a character datatype, but a character
datatype could not be redefined to an integer. Here’s an example:

ALTER TABLE mytable MODIFY mycolumn LONGTEXT

MySQL offers some additional flexibility in the ALTER TABLE statement by allowing
users to issue multiple ADD, ALTER, DROP, and CHANGE clauses in a comma-
delimited list in a single ALTER TABLE statement. However, be aware that the
CHANGE column_name and DROP INDEX clauses are MySQL extensions not found in
SQL2003. MySQL supports the clause MODIFY column_name to mimic the same
feature found in Oracle.

Oracle
The Oracle syntax for CREATE TABLE creates a relational table either by declaring
the structure or by referencing an existing table. You can modify a table after it is
created using the ALTER TABLE statement. Oracle also allows the creation of a rela-
tional table that uses user-defined types for column definitions, an object table that is
explicitly defined to hold a specific UDT (usually a VARRAY or NESTED TABLE
type), or an XMLType table.

Chapter 3: SQL Statement Command Reference | 157

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

The standard ANSI-style CREATE TABLE statement is supported, but Oracle has
added many sophisticated extensions to the command. For example, Oracle allows
significant control over the storage and performance parameters of a table. In both the
CREATE TABLE and ALTER TABLE statements, you’ll see a great deal of nesting and
reusable clauses. To make this somewhat easier to read, we have broken Oracle’s
CREATE TABLE statement into three distinct variations (relational table, object table,
and XML table) so that you can more easily follow the syntax.

The CREATE TABLE syntax for a standard relational table, which has no object or
XML properties, is as follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name
[({column | virtual_column | attribute} [SORT] [DEFAULT expression]
[{column_constraint |

inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[table_constraint_clause]
{ [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause] [[NO]LOGGING] |
 [CLUSTER (column[, ...])] |
 {[ORGANIZATION
 {HEAP [physical_attributes_clause][TABLESPACE

tablespace_name] [storage_clause]
 [COMPRESS | NOCOMPRESS] [[NO]LOGGING] |
 INDEX [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause]
 [PCTTHRESHOLD int] [COMPRESS [int] | NOCOMPRESS]
 [MAPPING TABLE | NOMAPPING][...] [[NO]LOGGING]
 [[INCLUDING column] OVERFLOW
 [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause] [[NO]LOGGING]}] |
 EXTERNAL ([TYPE driver_type]) DEFAULT DIRECTORY directory_name
 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}]
 LOCATION ([directory_name:]'location_spec'[, ...])
 [REJECT LIMIT {int | UNLIMITED}]} }
[{ENABLE | DISABLE} ROW MOVEMENT]
[[NO]CACHE] [[NO]MONITORING] [[NO]ROWDEPENDENCIES] [[NO]FLASHBACK ARCHIVE]
[PARALLEL int | NOPARALLEL] [NOSORT] [[NO]LOGGING]]
[COMPRESS [int] | NOCOMPRESS]
[{ENABLE | DISABLE} [[NO]VALIDATE]
 {UNIQUE (column[, ...]) | PRIMARY KEY | CONSTRAINT constraint_name}]
 [USING INDEX {index_name | CREATE_INDEX_statement}] [EXCEPTIONS INTO]
 [CASCADE] [{KEEP | DROP} INDEX]] |
[partition_clause]
[AS subquery]

The relational table syntax contains a large number of optional clauses. However, the
table definition must contain, at a minimum, either column names and datatypes spec-
ifications or the AS subquery clause.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

158 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

The Oracle syntax for an object table follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name
AS object_type [[NOT] SUBSTITUTABLE AT ALL LEVELS]
[({column | attribute} [DEFAULT expression] [{column_constraint |

inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]
[OIDINDEX [index_name] ([physical_attributes_clause] [storage_clause])]
[physical_attributes_clause] [TABLESPACE tablespace_name] [storage_clause]

Oracle allows you to create, and later alter, XMLType tables. XMLType tables may
have regular columns or virtual columns. The Oracle syntax for an XMLType table
follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name
OF XMLTYPE
[({column | attribute} [DEFAULT expression] [{column_constraint |

inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] |
 [{SECUREFILE | BASICFILE}]
 [{CLOB | BINARY XML} [lob_segname] [lob_params]}] [xml_schema_spec]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]
[OIDINDEX index_name ([physical_attributes_clause] [storage_clause])]
[physical_attributes_clause] [TABLESPACE tablespace_name] [storage_clause]

The Oracle syntax for ALTER TABLE changes the table or column properties, storage
characteristics, LOB or VARRAY properties, partitioning characteristics, and integrity
constraints associated with a table and/or its columns. The statement can also do
other things, like move an existing table into a different tablespace, free recuperated
space, compact the table segment, and adjust the “high-water mark.”

The ANSI SQL standard uses the ALTER keyword to modify existing elements of a
table, while Oracle uses MODIFY for the same purpose. Since they are essentially the
same thing, please consider the behavior of otherwise identical clauses (for example,
ANSI’s ALTER TABLE...ALTER COLUMN and Oracle’s ALTER TABLE...MODIFY
COLUMN) to be functionally equivalent.

Oracle’s ALTER TABLE syntax is:

ALTER TABLE table_name
-- Alter table characteristics
 [physical_attributes_clause] [storage_clause]
 [{READ ONLY | READ WRITE}]
 [[NO]LOGGING] [[NO]CACHE] [[NO]MONITORING] [[NO]COMPRESS]
 [[NO]FLASHBACK ARCHIVE] [SHRINK SPACE [COMPACT] [CASCADE]]
 [UPGRADE [[NOT] INCLUDING DATA] column_name datatype attributes]
 [[NO]MINIMIZE RECORDS_PER_BLOCK]
 [PARALLEL int | NOPARALLEL]
 [{ENABLE | DISABLE} ROW MOVEMENT]
 [{ADD | DROP} SUPPLEMENTAL LOG

Chapter 3: SQL Statement Command Reference | 159

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

 {GROUP log_group [(column_name [NO LOG][, ...]) [ALWAYS]] |
 DATA ({ALL | PRIMARY KEY | UNIQUE | FOREIGN KEY}[, ...]) COLUMNS}]
 [ALLOCATE EXTENT
 [([SIZE int [K | M | G | T]] [DATAFILE 'filename'] [INSTANCE int])]
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]
 [ORGANIZATION INDEX ...
 [COALESCE] [MAPPING TABLE | NOMAPPING] [PCTTHRESHOLD int]
 [COMPRESS int | NOCOMPRESS]
 [{ ADD OVERFLOW [TABLESPACE tablespace_name] [[NO]LOGGING]
 [physical_attributes_clause] } |
 OVERFLOW { [ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE
 'filename'] [INSTANCE int]) |
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]] }]]]
 [RENAME TO new_table_name]
-- Alter column characteristics
 [ADD (column_name datatype attributes[, ...])]
 [DROP { {UNUSED COLUMNS | COLUMNS CONTINUE} [CHECKPOINT int] |
 {COLUMN column_name | (column_name[, ...])} [CHECKPOINT int]
 [{CASCADE CONSTRAINTS | INVALIDATE}] }]
 [SET UNUSED {COLUMN column_name | (column_name[, ...])}
 [{CASCADE CONSTRAINTS | INVALIDATE}]]
 [MODIFY { (column_name datatype attributes[, ...]) |
 COLUMN column_name [NOT] SUBSTITUTABLE AT ALL LEVELS [FORCE] }]
 [RENAME COLUMN old_column_name TO new_column_name]
 [MODIFY {NESTED TABLE | VARRAY} collection_item [RETURN AS {LOCATOR |
 VALUE}]]
-- Alter constraint characteristics
 [ADD CONSTRAINT constraint_name table_constrain_clause]
 [MODIFY CONSTRAINT constraint_name constraint_state_clause]
 [RENAME CONSTRAINT old_constraint_name TO new_constraint_name]
 [DROP { { PRIMARY KEY | UNIQUE (column[, ...]) } [CASCADE]
 [{KEEP | DROP} INDEX] |
 CONSTRAINT constraint_name [CASCADE] }]
-- Alter table partition characteristics
 [alter partition clauses]
-- Alter external table characteristics
 DEFAULT DIRECTORY directory_name
 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}]
 LOCATION ([directory_name:]'location_spec'[, ...])
 [ADD (column_name ...)][DROP column_name ...][MODIFY (column_name ...)]
 [PARALLEL int | NOPARALLEL]
 [REJECT LIMIT {int | UNLIMITED}]
 [PROJECT COLUMN {ALL | REFERENCED}]
-- Move table clauses
 [MOVE [ONLINE] [physical_attributes_clause]
 [TABLESPACE tablespace_name] [[NO]LOGGING] [PCTTHRESHOLD int]
 [COMPRESS int | NOCOMPRESS] [MAPPING TABLE | NOMAPPING]
 [[INCLUDING column] OVERFLOW
 [physical_attributes_clause] [TABLESPACE tablespace_name]
 [[NO]LOGGING]]
 [LOB ...] [VARRAY ...] [PARALLEL int | NOPARALLEL]]
-- Enable/disable attributes and constraints
 [{ {ENABLE | DISABLE} [[NO]VALIDATE] {UNIQUE (column[, ...]) |
 PRIMARY KEY | CONSTRAINT constraint_name}

160 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

 [USING INDEX {index_name | CREATE_INDEX_statement |
 [TABLESPACE tablespace_name] [physical_attributes_clause]
 [storage_clause]
 [NOSORT] [[NO]LOGGING] [ONLINE] [COMPUTE STATISTICS]
 [COMPRESS | NOCOMPRESS] [REVERSE]
 [{LOCAL | GLOBAL} partition_clause]
 [EXCEPTIONS INTO table_name] [CASCADE] [{KEEP | DROP} INDEX]]} |
 [{ENABLE | DISABLE}] [{TABLE LOCK | ALL TRIGGERS}] }]

The parameters are as follows:

virtual_column
Allows the creation or alteration of a virtual column (i.e., a column whose value is
derived from a calculation rather than directly from a physical storage location).
For example, a virtual column income might be derived by summing the salary,
bonus, and commission columns.

column_constraint
Specifies a column constraint using the syntax described later.

GROUP log_group (column [NO LOG][, .. .]) [ALWAYS] | DATA (constraints[, . . .])
COLUMNS

Specifies a log group rather than a single logfile for the table.

ON COMMIT {DELETE | PRESERVE} ROWS
Declares whether a declared temporary table should keep the data in the table
active for the entire session (PRESERVE) or only for the duration of the transac-
tion in which the temporary table is created (DELETE).

table_constraint_clause
Specifies a table constraint using the syntax described later.

physical_attributes_clause
Specifies the physical attributes of the table using the syntax described later.

TABLESPACE tablespace_name
Specifies the name of the tablespace where the table you are creating will be
stored. If omitted, the default tablespace for the schema owner will be used. See
below for specifics. See the Oracle Concepts manual to learn about tablespaces
and their use.

storage_clause
Specifies physical storage characteristics of the table using the syntax described
later.

[NO]LOGGING
Specifies whether redo log records will be written during object creation
(LOGGING) or not (NOLOGGING). LOGGING is the default. NOLOGGING
can speed the creation of database objects. However, in case of database failure
under the NOLOGGING option, the operation cannot be recovered by applying
logfiles, and the object must be recreated. The LOGGING clause replaces the
older RECOVERABLE clause, which is deprecated.

CLUSTER(column[, . . .])
Declares that the table is part of a clustered index. The column list should corre-
spond, one to one, with the columns in a previously declared clustered index.
Because it uses the clustered index’s space allocation, the CLUSTER clause is
compatible with the physical_attributes_clause, storage_clause, or
TABLESPACE clause. Tables containing LOBs are incompatible with the
CLUSTER clause.

Chapter 3: SQL Statement Command Reference | 161

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

ORGANIZATION HEAP
Declares how the data of the table should be recorded to disk. HEAP, the default
for an Oracle table, declares that no order should be associated with the storage
of rows of data (i.e., the physical order in which records are written to disk) for
this table. The ORGANIZATION HEAP clause allows several optional clauses,
described in detail elsewhere in this list, that control storage, logging, and
compression for the table.

ORGANIZATION INDEX
Declares how the data of the table should be recorded to disk. INDEX declares
that the records of the table should be physically written to disk in the sort order
defined by the primary key of the table. Oracle calls this an index-organized table.
A primary key is required. Note that the physical_attributes_clause, the
TABLESPACE clause, and the storage_clause (all described in greater detail else-
where in this section) and the [NO]LOGGING keyword may all be associated
with the new INDEX segment as you create it. In addition, the following
subclauses may also be associated with an ORGANIZATION INDEX clause:

PCTTHRESHOLD int
Declares the percentage (int) of space in each index block to be preserved for
data. On a record-by-record basis, data that cannot fit in this space will be
placed in the overflow segment.

INCLUDING column
Declares the point at which a record will split between index and overflow
portions. All columns that follow the specified column will be stored in the
overflow segment. The column cannot be a primary key column.

MAPPING TABLE | NOMAPPING
Tells the database to create a mapping of local to physical ROWIDs. This
mapping is required to create a bitmap index on an IOT. Mappings are also
partitioned identically if the table is partitioned. NOMAPPING tells the data-
base not to create the ROWID map.

[INCLUDING column] OVERFLOW
Declares that a record that exceeds the PCTTHRESHOLD value be placed in
a segment described in this clause. The physical_attributes_clause, the
TABLESPACE clause, the storage_clause (all described elsewhere in the list
in greater detail) and the [NO]LOGGING keyword may all be associated
with a specific OVERFLOW segment when you create it. The optional
INCLUDING column clause defines a column at which to divide an IOT row
into index and overflow portions. Primary key columns are always stored in
the index. However, all non-primary key columns that follow column are
stored in the overflow data segment.

ORGANIZATION EXTERNAL
Declares how the data of the table should be recorded to disk. EXTERNAL
declares that the table stores its data outside of the database and is usually read-
only (its metadata is stored in the database, but its data is stored outside of the
database). There are some restrictions on external tables: they cannot be tempo-
rary; they cannot have constraints; they can only have column, datatype, and
attribute column-descriptors; and LOB and LONG datatypes are disallowed. No
other ORGANIZATION clauses are allowed with EXTERNAL. The following
subclauses may be used with the ORGANIZATION EXTERNAL clause:

162 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

TYPE driver_type
Defines the access driver API for the external table. The default is ORACLE_
LOADER.

DEFAULT DIRECTORY directory_name
Defines the default directory on the filesystem where the external table
resides.

ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}
Assigns and passes specific parameters to the access driver. Oracle does not
interpret this information. USING CLOB subquery tells Oracle to derive the
parameters and their values from a subquery that returns a single row with a
single column of the datatype CLOB. The subquery cannot contain an
ORDER BY, UNION, INTERSECT, or MINUS/EXCEPT clause. The opaque_
format clause allows you to list parameters and their values, as described in
the ORACLE LOADER section of the “Oracle9i Database Utilities” guide.

LOCATION (directory_name:'location_spec'[, . . .])
Defines one or more external data sources, usually as files. Oracle does not
interpret this information.

REJECT LIMIT {int | UNLIMITED}
Defines the number of conversion errors (int) that are allowed during the
query to the external data source before Oracle aborts the query and returns
an error. UNLIMITED tells Oracle to continue with the query no matter how
many errors are encountered. The default is 0.

{ENABLE | DISABLE} ROW MOVEMENT
Specifies that a row may be moved to a different partition or subpartition if
required due to an update of the key (ENABLE), or not (DISABLE). The
DISABLE keyword also specifies that Oracle return an error if an update to a key
would require a move.

 [NO]CACHE
Buffers a table for rapid reads (CACHE), or turns off this behavior (NOCACHE).
Index-organized tables offer CACHE behavior.

[NO]MONITORING
Specifies whether modification statistics can be collected for this table (MONI-
TORING) or not (NOMONITORING). NOMONITORING is the default.

[NO]ROWDEPENDENCIES
Specifies whether a table will use row-level dependency tracking, a feature that
applies a system change number (SCN) greater than or equal to the time of the
last transaction affecting the row. The SCN adds 6 extra bytes of space to each
record. Row-level dependency tracking is most useful in replicated environments
with parallel data propagation. NOROWDEPENDENCIES is the default.

[NO]FLASHBACK ARCHIVE
Enables or disables historical tracking for the table, if a flashback archive for the
table already exists. NO FLASHBACK ARCHIVE is the default.

PARALLEL [int] | NOPARALLEL
The PARALLEL clause allows for the parallel creation of the table by distinct
CPUs to speed the operation. It also enables parallelism for queries and other
data-manipulation operations against the table after its creation. An optional
integer value may be supplied to define the exact number of parallel threads used

Chapter 3: SQL Statement Command Reference | 163

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

to create the table in parallel, as well as the number of parallel threads allowed to
service the table in the future. (Oracle calculates the best number of threads to use
in a given parallel operation, so the int argument is optional.) NOPARALLEL,
the default, creates the table serially and disallows future parallel queries and
data-manipulation operations.

COMPRESS [int] | NOCOMPRESS
Specifies whether the table should be compressed or not. On index-organized
tables, only the key is compressed; on heap-organized tables, the entire table is
compressed. This can greatly reduce the amount of space consumed by the table.
NOCOMPRESS is the default. In index-organized tables, you can specify the
number of prefix columns (int) to compress. The default value for int is the
number of keys in the primary key minus one. You need not specify an int value
for other clauses, such as ORGANIZATION. When you omit the int value,
Oracle will apply compression to the entire table.

{ENABLE | DISABLE} [[NO]VALIDATE] {UNIQUE (column[, . . .]) | PRIMARY KEY |
CONSTRAINT constraint_name}

Declares whether the named key or constraint applies to all of the data in the new
table or not. ENABLE specifies that the key or constraint applies to all new data
in the table while DISABLE specifies that the key or constraint is disabled for the
new table, with the following options:

[NO]VALIDATE
VALIDATE verifies that all existing data in the table complies with the key or
constraint. When NOVALIDATE is specified with ENABLE, Oracle does not
verify that existing data in the table complies with the key or constraint, but
ensures that new data added to the table does comply with the constraint.

UNIQUE (column[, . . .]) | PRIMARY KEY | CONSTRAINT constraint_name
Declares the unique constraint, primary key, or constraint that is enabled or
disabled.

USING INDEX index_name | CREATE_INDEX_statement
Declares the name (index_name) of a pre-existing index (and its characteris-
tics) used to enforce the key or constraint, or creates a new index (CREATE_
INDEX_statement). If neither clause is declared, Oracle creates a new index.

EXCEPTIONS INTO table_name
Specifies the name of a table into which Oracle places information about
rows violating the constraint. Run the utlexpt1.sql script before using this
keyword to explicitly create this table.

CASCADE
Cascades the disablement/enablement to any integrity constraints that
depend on the constraint named in the clause. Usable only with the
DISABLE clause.

{KEEP | DROP} INDEX
Lets you keep (KEEP) or drop (DROP) an index used to enforce a unique or
primary key. You can drop the key only when disabling it.

partition_clause
Declares partitioning and subpartitioning of a table. Partitioning syntax can be
quite complex; refer to the material later in this section under “Oracle partitioned
and subpartitioned tables” for the full syntax and examples.

164 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

AS subquery
Declares a subquery that inserts rows into the table upon creation. The column
names and datatypes used in the subquery can act as substitutes for column name
and attribute declarations for the table.

AS object_type
Declares that the table is based on a pre-existing object type.

[NOT] SUBSTITUTABLE AT ALL LEVELS
Declares whether row objects corresponding to subtypes can be inserted into the
type table or not. When this clause is omitted, the default is SUBSTITUTABLE
AT ALL LEVELS.

inline_ref_constraint and table_ref_constraint
Declares a reference constraint used by an object-type table or XMLType table.
These clauses are described in greater detail later in this section.

OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}
Declares whether the object ID (OID) of the object-type table is SYSTEM
GENERATED or based on the PRIMARY KEY. When omitted, the default is
SYSTEM GENERATED.

OIDINDEX [index_name]
Declares an index, and possibly a name for the index, if the OID is system-
generated. You may optionally apply a physical_attributes_clause and a
storage_clause to the OIDINDEX. If the OID is based on the primary key, this
clause is unnecessary.

OF XMLTYPE
Declares that the table is based on Oracle’s XMLTYPE datatype.

XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] | [{SECUREFILE |
BASICFILE}] [{CLOB | BINARY XML} [lob_segname] [lob_params]]

Declares how the underlying data of the XMLTYPE is stored: either in LOB,
object-relational, or binary XML format. OBJECT RELATIONAL stores the data
in object-relational columns and allows indexing for better performance. This
subclause requires an xml_schema_spec and a schema that has been preregistered
using the DBMS_XMLSCHEMA package. CLOB specifies that the XMLTYPE
data will be stored in a LOB column for faster retrieval. You may optionally
specify the LOB segment name and/or the LOB storage parameters, but you
cannot specify LOB details and XMLSchema specifications in the same state-
ment. BINARY XML stores the data in a compact binary XML format, with any
LOB parameters applied to the underlying BLOB column.

xml_schema_spec
Allows you to specify the URL of one or more registered XML schemas, and an
XML element name. The element name is required, but the URL is optional.
Multiple schemas are allowed only when using the BINARY XML storage format.
You may further specify ALLOW ANYSCHEMA to store any schema-based docu-
ment in the XMLType column, ALLOW NONSCHEMA to store non-schema-based
documents, or DISALLOW NONSCHEMA to prevent storage of non-schema-based
documents.

READ ONLY | READ WRITE
Places the table in read-only mode, which disallows all DML operations including
SELECT…FOR UPDATE. Regular SELECT statements are allowed, as are opera-
tions on indexes associated with a read-only table. READ WRITE re-enables
normal DML operations.

Chapter 3: SQL Statement Command Reference | 165

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

ADD ...
Adds a new column, virtual column, constraint, overflow segment, or supple-
mental log group to an existing table. You may also alter an XMLType table by
adding (or removing) one or more XMLSchemas.

MODIFY ...
Changes an existing column, constraint, or supplemental log group on an existing
table.

DROP ...
Drops an existing column, constraint, or supplemental log group from an existing
table. You can explicitly drop columns marked as unused from a table with
DROP UNUSED COLUMNS; however, Oracle will also drop all unused columns
when any other column is dropped. The INVALIDATE keyword causes any
object that depends on the dropped object, such as a view or stored procedure, to
become invalid and unusable until the dependent object is recompiled or reused.
The COLUMNS CONTINUE clause is used only when a DROP COLUMN state-
ment failed with an error and you wish to continue where it left off.

RENAME ...
Renames an existing table, column, or constraint on an existing table.

SET UNUSED ...
Declares a column or columns to be unused. Those columns are no longer acces-
sible from SELECT statements, though they still count toward the maximum
number of columns allowed per table (1,000). SET UNUSED is the fastest way to
render a column unusable within a table, but it is not the best way. Only use SET
UNUSED as a shortcut until you can actually use ALTER TABLE...DROP to
drop the column.

COALESCE
Merges the contents of index blocks used to maintain the index-organized table
so that the blocks can be reused. COALESCE is similar to SHRINK, though
COALESCE compacts the segments less densely than SHRINK and does not
release unused space.

ALLOCATE EXTENT
Explicitly allocates a new extent for the table using the SIZE, DATAFILE, and
INSTANCE parameters. You may mix and match any of these parameters. The
size of the extent may be specified in bytes (no suffix), kilobytes (K), megabytes
(M), gigabytes (G), or terabytes (T).

DEALLOCATE UNUSED [KEEP int [K | M | G | T]]
Deallocates unused space at the end of the table, LOB segment, partition, or
subpartition. The deallocated space is then usable by other objects in the data-
base. The KEEP keyword indicates how much space you want to have left over
after deallocation is complete.

SHRINK SPACE [COMPACT] [CASCADE]
Shrinks the table, index-organized table, index, partition, subpartition, material-
ized view, or materialized log view, though only segments in tablespaces with
automatic segment management may be shrunk. Shrinking a segment moves rows
in the table, so make sure ENABLE ROW MOVEMENT is also used in the
ALTER TABLE...SHRINK statement. Oracle compacts the segment, releases the
emptied space, and adjusts the high-water mark unless the optional keywords
COMPACT and/or CASCADE are applied. The COMPACT keyword only defrag-
ments the segment space and compacts the table row for subsequent release; it

166 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

does not readjust the high-water mark or empty the space immediately. The
CASCADE keyword performs the same shrinking operation (with some restric-
tions and exceptions) on all dependent objects of the table, including secondary
indexes on index-organized tables. Used only with ALTER TABLE.

UPGRADE [NOT] INCLUDING DATA
Converts the metadata of object tables and relational tables with object columns
to the latest version for each referenced type. The INCLUDING DATA clause will
either convert the data to the latest type format (INCLUDING DATA) or leave it
unchanged (NOT INCLUDING DATA).

MOVE ...
Moves the tablespace, index-organized table, partition, or subpartition to a new
location on the filesystem.

[NO]MINIMIZE RECORDS_PER_BLOCK
Tells Oracle to restrict or leave open the number of records allowed per block.
The MINIMIZE keyword tells Oracle to calculate the maximum number of
records per block and set the limit at that number. (Best to do this when a repre-
sentative amount of data is already in the table.) This clause is incompatible with
nested tables and index-organized tables. NOMINIMIZE is the default.

PROJECT COLUMN {REFERENCE | ALL}
Determines how the driver for the external data source validates the rows of the
external table in subsequent queries. REFERENCE processes only those columns
in the select item list. ALL processes the values in all columns, even those not in
the select item list, and validates rows with full and valid column entries. Under
ALL, rows are rejected when errors occur, even on columns that are not selected.
ALL returns consistent results, while REFERENCE returns varying numbers of
rows depending on the columns referenced.

{ENABLE | DISABLE} {TABLE LOCK | ALL TRIGGERS}
Enables or disables table-level locks and all triggers on the table, respectively.
ENABLE TABLE LOCK is required if you wish to change the structure against an
existing table, but it is not required when changing or reading the data of the table.

A global temporary table is available to all user sessions, but the data stored within a
global temporary table is visible only to the session that inserted it. The ON COMMIT
clause, which is allowed only when creating temporary tables, tells Oracle either to
truncate the table after each commit against the table (DELETE ROWS) or to truncate
the table when the session terminates (PRESERVE ROWS). For example:

CREATE GLOBAL TEMPORARY TABLE shipping_schedule
 (ship_date DATE,
 receipt_date DATE,
 received_by VARCHAR2(30),
 amt NUMBER)
ON COMMIT PRESERVE ROWS;

This CREATE TABLE statement creates a global temporary table, shipping_schedule,
which retains inserted rows across multiple transactions.

The Oracle physical_attributes_clause

The physical_attributes_clause (shown in the following code block) defines storage
characteristics for an entire local table, or, if the table is partitioned, for a specific
partition (discussed later). To declare the physical attributes of a new table or change
the attributes on an existing table, simply declare the new values:

Chapter 3: SQL Statement Command Reference | 167

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

-- physical_attributes_clause
[{PCTFREE int | PCTUSED int | INITRANS int |

storage_clause}]

where:

PCTFREE int
Defines the percentage of free space reserved for each data block in the table. For
example, a value of 10 reserves 10% of the data space for new rows to be inserted.

PCTUSED int
Defines the minimum percentage of space allowed in a block before it can receive
new rows. For example, a value of 90 means new rows are inserted in the data
block when the space used falls below 90%. The sum of PCTFREE and
PCTUSED cannot exceed 100.

INITRANS int
Rarely tinkered with; defines the allocation of from 1 to 255 initial transactions to
a data block.

In versions prior to 11g the MAXTRANS parameter was used to
define the maximum allowed number of concurrent transactions on
a data block, but this parameter has now been deprecated. Oracle
11g automatically sets MAXTRANS to 255, silently overriding any
other value that you specify for this parameter (although existing
objects retain their established MAXTRANS settings).

The Oracle storage_clause and LOBs

The storage_clause controls a number of attributes governing the physical storage of
data:

-- storage_clause
STORAGE ([{INITIAL int [K | M | G | T]
 | NEXT int [K | M]
 | MINEXTENTS int
 | MAXEXTENTS {int | UNLIMITED}
 | PCTINCREASE int
 | FREELISTS int
 | FREELIST GROUPS int
 | BUFFER_POOL {KEEP | RECYCLE | DEFAULT}}] [...])

When delineating the storage clause attributes, enclose them in parentheses and sepa-
rate them with spaces—for example, (INITIAL 32M NEXT8M). The attributes are as
follows:

INITIAL int [K | M | G | T]
Sets the initial extent size of the table in bytes, kilobytes (K), megabytes (M),
gigabytes (G), or terabytes (T).

NEXT int [K | M]
Tells how much additional space to allocate after INITIAL is filled.

MINEXTENTS int
Tells Oracle to create a minimum number of extents. By default, only one is
created, but more can be created when the object is initialized.

168 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

MAXEXTENTS int | UNLIMITED
Tells Oracle the maximum number of extents allowed. This value may be set to
UNLIMITED. (Note that UNLIMITED should be used with caution, since a table
could grow until it consumes all free space on a disk.)

PCTINCREASE int
Controls the growth rate of the object after the first growth. The initial extent gets
allocated as specified, the second extent is the size specified by NEXT, the third
extent is NEXT + (NEXT * PCTINCREASE), and so on. When PCTINCREASE is
set to 0, NEXT is always used. Otherwise, each added extent of storage space is
PCTINCREASE larger than the previous extent.

FREELISTS int
Establishes the number of freelists for each group, defaulting to 1.

FREELIST GROUPS int
Sets the number of groups of freelists, defaulting to 1.

BUFFER_POOL {KEEP | RECYCLE | DEFAULT}
Specifies a default buffer pool or cache for any non-cluster table where all object
blocks are stored. Index-organized tables may have a separate buffer pool for the
index and overflow segments. Partitioned tables inherit the buffer pool from the
table definition unless they are specifically assigned a separate buffer pool.

KEEP
Puts object blocks into the KEEP buffer pool; that is, directly into memory.
This enhances performance by reducing I/O operations on the table. KEEP
takes precedence over the NOCACHE clause.

RECYCLE
Puts object blocks into the RECYCLE buffer pool.

DEFAULT
Puts object blocks into the DEFAULT buffer pool. When this clause is
omitted, DEFAULT is the default buffer pool behavior.

For example, the table books_sales is defined on the sales tablespace as consuming an
initial 8 MB of space, to grow by no less than 8 MB when the first extent is full. The
table has no less than 1 and no more than 8 extents, limiting its maximum size to 64 MB:

CREATE TABLE book_sales
 (qty NUMBER,
 period_end_date DATE,
 period_nbr NUMBER)
TABLESPACE sales
STORAGE (INITIAL 8M NEXT 8M MINEXTENTS 1 MAXEXTENTS 8);

An example of a LOB table called large_objects with special handling for text and
image storage might look like this:

CREATE TABLE large_objects
 (pretty_picture BLOB,
 interesting_text CLOB)
STORAGE (INITIAL 256M NEXT 256M)
LOB (pretty_picture, interesting_text)
 STORE AS (TABLESPACE large_object_segment
 STORAGE (INITIAL 512M NEXT 512M)
 NOCACHE LOGGING);

Chapter 3: SQL Statement Command Reference | 169

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

The exact syntax used to define a LOB, CLOB, or NCLOB column is defined by the
lob_parameter_clause. LOBs can appear at many different levels within an Oracle
table. For instance, separate LOB definitions could exist in a single table in a partition
definition, in a subpartition definition, and at the top table-level definition. The syntax
of lob_parameter_clause follows:

{TABLESPACE tablespace_name] [{SECUREFILE | BASICFILE}]
 [{ENABLE | DISABLE} STORAGE IN ROW]
 [storage_clause] [CHUNK int] [PCTVERSION int]
 [RETENTION [{MAX | MIN int | AUTO | NONE}]]
 [{DEDUPLICATE | KEEP_DUPLICATES}]
 [{NOCOMPRESS | COMPRESS [{HIGH | MEDIUM}]}]
 [FREEPOOLS int]
[{CACHE | {NOCACHE | CACHE READS} [{LOGGING | NOLOGGING}]}]

In the lob_parameter_clause, each parameter is identical to those of the wider
CREATE TABLE LOB-object level. However, the following parameters are unique to
LOBs:

SECUREFILE | BASICFILE
Specifies use of either the high-performance LOB storage (SECUREFILE) or the
traditional LOB storage (BASICFILE, the default). When using SECUREFILE,
you get access to other new features such as LOB compression, encryption, and
deduplication.

{ENABLE | DISABLE} STORAGE IN ROW
Defines whether the LOB value is stored inline with the other columns of the row
and the LOB locator (ENABLE), when it is smaller than approximately 4,000
bytes or less, or outside of the row (DISABLE). This setting cannot be changed
once it is set.

CHUNK int
Allocates int number of bytes for LOB manipulation. int should be a multiple of
the database block size; otherwise, Oracle will round up. int should also be less
than or equal to the value of NEXT, from the storage_clause, or an error will be
raised. When omitted, the default chunk size is one block. This setting cannot be
changed once it is set.

PCTVERSION int
Defines the maximum percentage (int) of the overall LOB storage dedicated to
maintaining old versions of the LOB. When omitted, the default is 10%.

RETENTION [{MAX | MIN int | AUTO | NONE}]
Used in place of PCTVERSION on databases in automatic undo mode.
RETENTION tells Oracle to retain old versions of the LOB. When using
SECUREFILE, you may specify additional options. MAX tells Oracle to allow the
undo file to grow until the LOB segment has reached its maximum size, as
defined by the MAXSIZE value of the storage_clause. MIN limits undo to int
seconds if the database is in flashback mode. AUTO, the default, maintains
enough undo for consistent reads. NONE specifies that the undo is not required.

DEDUPLICATE | KEEP_DUPLICATES
Specifies whether to keep duplicate LOB values within an entire LOB segment
(KEEP_DUPLICATES) or to eliminate duplicate copies (DEDUPLICATE, the
default). Only usable with SECUREFILE LOBs.

170 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

NOCOMPRESS | COMPRESS [{HIGH | MEDIUM}]
NOCOMPRESS, the default, disables server-side compression of LOBs in the
SECUREFILE format. Alternately, you may tell Oracle to compress LOBs using
either a MEDIUM (the default when a value is omitted) or HIGH degree of
compression (HIGH compression incurs more overhead).

The following example shows our large_objects LOB table with added parameters to
control inline storage and retention of old LOBs:

CREATE TABLE large_objects
 (pretty_picture BLOB,
 interesting_text CLOB)
STORAGE (INITIAL 256M NEXT 256M)
LOB (pretty_picture, interesting_text)
 STORE AS (TABLESPACE large_object_segment
 STORAGE (INITIAL 512M NEXT 512M)
 NOCACHE LOGGING
 ENABLE STORAGE IN ROW
 RETENTION);

The earlier example added parameter values for STORAGE IN ROW and RETEN-
TION, but since we did not set one for CHUNK, that value is set to the Oracle default
for the LOB.

Oracle nested tables

Oracle allows the declaration of a NESTED TABLE, in which a table is virtually stored
within a column of another table. The STORE AS clause enables a proxy name for the
table within a table, but the nested table must be created initially as a user-defined
datatype. This capability is valuable for sparse arrays of values, but we don’t recom-
mend it for day-to-day tasks. This example creates a table called proposal_types along
with a nested table called props_nt, which is stored as props_nt_table:

CREATE TYPE prop_nested_tbl AS TABLE OF props_nt;
CREATE TABLE proposal_types
 (proposal_category VARCHAR2(50),
 proposals PROPS_NT)
NESTED TABLE props_nt STORE AS props_nt_table;

Oracle compressed tables

Starting at Oracle 9i Release 2, Oracle allows compression of both keys and entire
tables. (Oracle 9i Release 1 allowed only key compression.) Although compression
adds a tiny bit of overhead, it significantly reduces the amount of disk space consumed
by a table. This is especially useful for databases pushing the envelope in terms of size.
Key compression is handled in the ORGANIZE INDEX clause, while table compres-
sion is handled in the ORGANIZE HEAP clause.

Oracle partitioned and subpartitioned tables

Oracle allows tables to be partitioned and subpartitioned. You can also break out
LOBs onto their own partition(s). A partitioned table may be broken into distinct
parts, possibly placed on separate disk subsystems to improve I/O performance (based
on four strategies: range, hash, list, or a composite of the first three), or on a system
partition. Partitioning syntax is quite elaborate:

{ PARTITION BY RANGE (column[, ...])
 [INTERVAL (expression) [STORE IN (tablespace[, ...])]]
 (PARTITION [partition_name]

Chapter 3: SQL Statement Command Reference | 171

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

 VALUES LESS THAN ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY HASH (column[, ...])
 {(PARTITION [partition_name] [partitioning_storage_clause][, ...]) |
 PARTITIONS hash_partition_qty [STORE IN (tablespace[, ...])]
 [OVERFLOW STORE IN (tablespace[, ...])]} |
 PARTITION BY LIST (column[, ...]) (PARTITION [partition_name]
 VALUES ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY RANGE (column[, ...])
 {subpartition_by_list | subpartition_by_hash}
 (PARTITION [partition_name] VALUES LESS THAN
 ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY SYSTEM [int] |
 PARTITION BY REFERENCE (constraint)
 [(PARTITION [partition_name] [table_partition_description][, ...])]
}

The following example code shows the orders table partitioned by range:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY RANGE(order_date)
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE));

This example creates three partitions on the orders table—one for the orders taken
before the year 2000 (pre_yr_2000), one for the orders taken before the year 2004 (pre_
yr_2004), and another for the orders taken after the year 2004 (post_yr_2004)—all
based on the range of dates that appear in the order_date column.

The INTERVAL clause further facilitates range partitioning on numeric or datetime
values by automatically creating new partitions when the current range boundaries are
exceeded. The interval expression defines a valid number for the range boundary. Use
the STORE IN subclause to tell Oracle which tablespace(s) will store the interval parti-
tion data. You cannot use interval partitioning on index-organized tables, with domain
indexes, or at a subpartition level.

The next example creates the orders table based on a hash value in the cust_shp_id column:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)

172 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

PARTITION BY HASH (cust_shp_id)
 (PARTITION shp_id1 TABLESPACE tblspc01,
 PARTITION shp_id2 TABLESPACE tblspc02,
 PARTITION shp_id3 TABLESPACE tblspc03)
ENABLE ROW MOVEMENT;

The big difference in how the records are divided among partitions between the hash
partition example and the range partition example is that the range partition code
explicitly defines where each record goes, while the hash partition example allows
Oracle to decide (by applying a hash algorithm) which partition to place the record in.
(Note that we also enabled row movement for the table).

In addition to breaking tables apart into partitions (for easier backup, recovery, or
performance reasons), you may further break them apart into subpartitions. The
subpartition_by_list clause syntax follows:

SUBPARTITION BY LIST (column)
[SUBPARTITION TEMPLATE
 { (SUBPARTITION subpartition_name
 [VALUES {DEFAULT | {val | NULL}[, ...]}]
 [partitioning_storage_clause]) |

hash_subpartition_qty }]

As an example, we’ll recreate the orders table once again, this time using a range-hash
composite partition. In a range-hash composite partition, the partitions are broken
apart by range values, while the subpartitions are broken apart by hashed values. List
partitions and subpartitions are broken apart by a short list of specific values.
Because you must list out all the values by which the table is partitioned, the parti-
tion value is best taken from a small list of values. In this example, we’ve added a
column (shp_region_id) that allows four possible regions:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20))
PARTITION BY RANGE(order_date)
SUBPARTITION BY LIST(shp_region)
 SUBPARTITION TEMPLATE(
 (SUBPARTITION shp_region_north
 VALUES ('north','northeast','northwest'),
 SUBPARTITION shp_region_south
 VALUES ('south','southeast','southwest'),
 SUBPARTITION shp_region_central
 VALUES ('midwest'),
 SUBPARTITION shp_region_other
 VALUES ('alaska','hawaii','canada')
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE))
ENABLE ROW MOVEMENT;

Chapter 3: SQL Statement Command Reference | 173

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

This code example sends the records of the table to one of three partitions based on
the order_date, and further partitions the records into one of four subpartitions based
on the region where the order is being shipped and on the value of the shp_region
column. By using the SUBPARTITION TEMPLATE clause, you apply the same set of
subpartitions to each partition. You can manually override this behavior by specifying
subpartitions for each partition.

You may also subpartition using a hashing algorithm. The subpartition_by_hash
clause syntax follows:

SUBPARTITION BY HASH (column[, ...])
 {SUBPARTITIONS qty [STORE IN (tablespace_name[, ...])] |
 SUBPARTITION TEMPLATE
 { (SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL}
 [, ...]}] [partitioning_storage_clause]) |

hash_subpartition_qty }}

The table_partition_description clause referenced in the partitioning syntax is, in
itself, very flexible and supports precise handling of LOB and VARRAY data:

[segment_attr_clause] [[NO] COMPRESS [int]] [OVERFLOW segment_attr_clause]
[partition_level_subpartition_clause]
[{ LOB { (lob_item[, ...]) STORE AS lob_param_clause |
 (lob_item) STORE AS {lob_segname (log_param_clause) |

log_segname | (log_param_clause)} } |
 VARRAY varray_item [{[ELEMENT] IS OF [TYPE] (ONLY type_name) |
 [NOT] SUBSTITUTABLE AT ALL LEVELS}] STORE AS LOB { log_segname |
 [log_segname] (log_param_clause) } |
 [{[ELEMENT] IS OF [TYPE] (ONLY type_name) |
 [NOT] SUBSTITUTABLE AT ALL LEVELS}] }]

The partition_level_subpartition_clause syntax follows:

{SUBPARTITIONS hash_subpartition_qty [STORE IN (tablespace_name[, ...])] |
 SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL}[, ...]]
 [partitioning_storage_clause] }

The partition_storage_clause, like the table-level storage_clause defined earlier,
defines how elements of a partition (or subpartition) are stored. The syntax follows:

[[TABLESPACE tablespace_name] | [OVERFLOW TABLESPACE tablespace_name] |
 VARRAY varray_item STORE AS LOB log_segname |
 LOB (lob_item) STORE AS { (TABLESPACE tablespace_name) |

Log_segname [(TABLESPACE tablespace_name)] }]

SYSTEM partitioning is simple because it does not require partitioning key columns or
range or list boundaries. Instead, SYSTEM partitions are equipartitioned subordinate
tables, like nested tables or domain index storage tables, whose parent table is parti-
tioned. If you leave off the int variable, Oracle will create one partition called SYS_
Pint. Otherwise, it will create int number of partitions, up to a limit of 1,024K – 1.
System partitioned tables are similar to other partitioned or subpartitioned tables, but
they do not support the OVERFLOW clause within the table_partition_description
clause.

REFERENCE partitioning is allowable only when the table is created. It enables equi-
partitioning of a table based on a referential-integrity constraint found in an existing
partitioned parent table. All maintenance on the subordinate table with REFERENCE
partitioning occurs automatically, because operations on the parent partition automat-
ically cascade to the subordinate table.

174 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

In this final partitioning example, we’ll again recreate the orders table using a
composite range-hash partition, this time with LOB (actually, an NCLOB column) and
storage elements:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB)
PARTITION BY RANGE(order_date)
SUBPARTITION BY HASH(cust_shp_id)
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY') TABLESPACE tblspc01
 LOB (order_desc) STORE AS (TABLESPACE tblspc_a01
 STORAGE (INITIAL 10M NEXT 20M))
 SUBPARTITIONS subpartn_a,
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY') TABLESPACE tblspc02
 LOB (order_desc) STORE AS (TABLESPACE tblspc_a02
 STORAGE (INITIAL 25M NEXT 50M))
 SUBPARTITIONS subpartn_b TABLESPACE tblspc_x07,
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE (SUBPARTITION subpartn_1,
 SUBPARTITION subpartn_2,
 SUBPARTITION subpartn_3
 SUBPARTITION subpartn_4))
ENABLE ROW MOVEMENT;

In this somewhat more complex example, we define the orders table with the added
NCLOB table called order_desc. In the pre_yr_2000 and pre_yr_2004 partitions, we
specify that all of the non-LOB data goes to tablespaces tblspc01 and tblspc02,
respectively. However, the NCLOB values of the order_desc column will be stored in
the tblespc_a01 and tblspc_a02 partitions, respectively, with their own unique storage
characteristics. Note that the subpartition subpartn_b under the partition pre_yr_
2004 is also stored in its own tablespace, tblspc_x07. Finally, the last partition (post_
yr_2004) and its subpartitions are stored in the default tablespace for the orders table,
because no partition- or subpartition-level TABLESPACE clause overrides the default.

Altering partitioned and subpartition tables

Anything about partitions and subpartitions that is explicitly set by the CREATE
TABLE statement may be altered after the table is created. Many of the clauses shown
here (for example, the SUBPARTITION TEMPLATE and MAPPING TABLE clauses)
are merely repetitions of clauses that were described in the earlier section about
creating partitioned tables; consequently, descriptions of these clauses will not be
repeated. Altering the partitions and/or subpartitions of an Oracle table is governed by
this syntax:

ALTER TABLE table_name
 [MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]
 [physical_attributes_clause] [storage_clause] [PCTTHRESHOLD int]
 [{ADD OVERFLOW ... | OVERFLOW ...}] [[NO]COMPRESS]

Chapter 3: SQL Statement Command Reference | 175

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

 [{LOB (lob_name) | VARRAY varray_name} [(lob_parameter_clause)]]
 [COMPRESS int | NOCOMPRESS]]
 [SET SUBPARTITION TEMPLATE {hash_subpartn_quantity |
 (SUBPARTITION subpartn_name [partn_list] [storage_clause])}]
 [{ SET INTERVAL (expression) |
 SET SET STORE IN (tablespace[, ...]) }]
 [MODIFY PARTITION partn_name
 { [table_partition_description] |
 [[REBUILD] UNUSABLE LOCAL INDEXES] |
 [ADD [subpartn specification]] |
 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]] |
 [{ADD | DROP} VALUES (partn_value[, ...])] |
 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSED ...}] }
 [MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes |

list_subpartn_attributes}]
 [MOVE {PARTITION | SUBPARTITION} partn_name
 [MAPPING TABLE] [table_partition_description] [[NO]PARALLEL]
 [update_index_clause]]
 [ADD PARTITION [partn_name] [table_partition_description]
 [[NO]PARALLEL] [update_index_clause]]
 [COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]]
 [DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL]
 [update_index_clause]]
 [RENAME {PARTITION | SUBPARTITION} old_partn_name TO new_partn_name]
 [TRUNCATE {PARTITION | SUBPARTITION} partn_name
 [{DROP | REUSE} STORAGE] [[NO]PARALLEL] [update_index_clause]]
 [SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES}
 (value[, ...])
 [INTO (PARTITION [partn_name1]
 [table_partition_description],
 PARTITION [partn_name2]
 [table_partition_description])]
 [[NO]PARALLEL] [update_index_clause]]
 [MERGE {PARTITION | SUBPARTITION} partn_name1, partn_name2
 [INTO PARTITION [partn_name] [partn_attributes]] [[NO]PARALLEL]
 [update_index_clause]]
 [EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE table_name
 [{INCLUDING | EXCLUDING} INDEXES] [{WITH | WITHOUT} VALIDATION]
 [[NO]PARALLEL] [update_index_clause] [EXCEPTIONS INTO table_name]]

where:

MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]
Modifies a wide variety of attributes for the current partition or a specific parti-
tion of partn_name. Refer to the earlier section “Oracle partitioned and
subpartitioned tables” for all the details on partition attributes.

SET SUBPARTITION TEMPLATE {hash_subpartn_quantity | (SUBPARTITION
subpartn_name [partn_list] [storage_clause])}

Sets a new subpartition template for the table.

SET INTERVAL (expression | SET SET STORE IN (tablespace[, . . .])
Converts a range-partitioned table to an interval-partitioned table or, using SET
STORE IN, changes the tablespace storage of an existing interval-partitioned
table. You can change an interval-partitioned table back to a range-partitioned
table using the syntax SET INTERVAL ().

176 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

MODIFY PARTITION partn_name
Changes a wide variety of physical and storage characteristics, including the
storage properties of LOB and VARRAY columns, of a pre-existing partition or
subpartition called partn_name. Additional syntax may be appended to the
MODIFY PARTITION partn_name clause:

{ [table_partition_description] | [[REBUILD] UNUSABLE LOCAL INDEXES] |
 [ADD [subpartn specification]] |
 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]
 { [{UPDATE | INVALIDATE} GLOBAL INDEXES] |
 UPDATE INDEXES [(index_name (
 {index_partn | index_subpartn}))[, ...]] }] |
 [{ADD | DROP} VALUES (partn_value[, ...])] |
 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSED ...}] }

where:

table_partition_description
Described in the earlier section “Oracle partitioned and subpartitioned
tables.” This clause may be used on any partitioned table.

[REBUILD] UNUSABLE LOCAL INDEXES
Marks the local index partition as UNUSABLE. Adding the optional
REBUILD keyword tells Oracle to rebuild the unusable local index partition
as part of the operation performed by the MODIFY PARTITION statement.
This clause may not be used with any other subclause of the MODIFY
PARTITION statement, nor may it be used on tables with subpartitions.
This clause may be used on any partitioned table.

ADD [subpartn specification]
Adds a hash or list subpartition specification, as described in the earlier
section “Oracle partitioned and subpartitioned tables,” to an existing range
partition. This clause may be used to define range-hash or range-list
composite partitions only. Oracle populates the new subpartition with rows
from other subpartitions using either the hash function or the list values you
specify. We recommend the total number of subpartitions be set to a power
of 2 for optimal load balancing. You may add range-list subpartitions only if
the table does not already have a DEFAULT subpartition. When adding
range-list subpartitions, the list value clause is required, but it cannot dupli-
cate values found in any other subpartition of the current partition. The only
storage or physical attribute you may couple with this clause for both range-
hash and range-list subpartitions is the TABLESPACE clause. Adding the
clause DEPENDENT TABLES (table_name (partn_specification[, . . .])[, . . .])
[{UPDATE | INVALIDATE} [GLOBAL] INDEXES (index_name (index_
partn)[, . . .]))] instructs Oracle to cascade partition maintenance and alter-
ation operations on a table to any reference-partitioned child tables (and/or
indexes) that may exist.

COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]
Coalesces the subpartition of a range-hash composite partitioned table. This
clause tells Oracle to distribute the contents of the last hash subpartition to
one or more remaining subpartitions in the set, and then drop the last hash
subpartition. Oracle also drops local index subpartitions corresponding to
the subpartition you are coalescing. The update_index_clause is described
later in this list. Global indexes may be updated or invalidated using the
syntax {UPDATE | INVALIDATE} GLOBAL INDEXES. In addition, local

Chapter 3: SQL Statement Command Reference | 177

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

indexes, index partitions, or index subpartitions may be updated using the
syntax UPDATE INDEXES (index_name ({index_partn | index_subpartn})).

{ADD | DROP} VALUES (partn_value[, . . .])
Adds a new value (or values) or drops existing values on an existing list-
partitioned table, respectively. Local and global indexes are not affected by
this clause. Values cannot be added to or dropped from a DEFAULT list
partition.

MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSED ...}
Defines a mapping table for a partitioned table that is an IOT. The ALLOCATE
EXTENT and DEALLOCATE UNUSED clauses were described earlier, in
the syntax description list for the CREATE TABLE statement. This clause
may be used on any type of partitioned table, as long as the table is an index-
organized table.

MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes | list_subpartn_
attributes}

Modifies a specific hash or list subpartition according to the subpartition
attributes described in the earlier section “Oracle partitioned and subpartitioned
tables.”

MOVE {PARTITION | SUBPARTITION} partn_name [MAPPING TABLE] [table_
partition_description] [[NO]PARALLEL] [update_index_clause]

Moves a specified partition (or subpartition) of partn_name to another partition
(or subpartition) described in the table_partition_description clause. Moving a
partition is I/O-intensive, so the optional PARALLEL clause may be used to
parallelize the operation. When it’s omitted, NOPARALLEL is the default. In
addition, you may optionally update or invalidate the local and global index, as
described in the update_index_clause discussed later in this list.

ADD PARTITION [partn_name] [table_partition_description] [[NO]PARALLEL]
[update_index_clause]

Adds a new partition (or subpartition) of partn_name to the table. The ADD
PARTITION clause supports all aspects of creating a new partition or subparti-
tion, via the table_partition_description clause. Adding a partition may be I/O-
intensive, so the optional PARALLEL clause may be used to parallelize the
operation. When it’s omitted, NOPARALLEL is the default. In addition, you may
optionally update or invalidate local and global indexes on the table using the
update_index_clause.

update_index_clause
Controls the status assigned to indexes once the partitions and/or subpartitions of
a table are altered. By default, Oracle invalidates the entire index(es) of a table,
not just those portions of the index on the partition and/or subpartition being
altered. You may update or invalidate global indexes on the table or update one
or more specific index(es) on the table, respectively, using this syntax:

[{UPDATE | INVALIDATE} GLOBAL INDEXES] |
 UPDATE INDEXES [(index_name ({index_partn|index_subpartn}))[, ...]]

COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]
Takes the contents of the last partition of a set of hash partitions and rehashes the
contents to one or more of the other partitions in the set. The last partition is then
dropped. Obviously, this clause is only for use with hash partitions. The update_
index_clause may be applied to update or invalidate the local and/or global
indexes of the table being coalesced.

178 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL] [update_
index_clause]

Drops an existing range or list partition or subpartition of partn_name from the
table. The data within the partition is also dropped. If you want to keep the data,
use the MERGE PARTITION clause. If you want to get rid of a hash partition or
subpartition, use the COALESCE PARTITION clause. Tables with only a single
partition are not affected by the ALTER TABLE...DROP PARTITION state-
ment; instead, use the DROP TABLE statement.

RENAME {PARTITION | SUBPARTITION} old_partn_name TO new_partn_name
Renames an existing partition or subpartition of old_partn_name to a new name of
new_partn_name.

TRUNCATE {PARTITION | SUBPARTITION} partn_name [{DROP | REUSE}
STORAGE] [[NO]PARALLEL] [update_index_clause]

Removes all of the rows of a partition or subpartition of partn_name. If you trun-
cate a composite partition, all the rows of the subpartition(s) are also dropped.
On IOTs, mapping table partitions and overflow partitions are also truncated.
LOB data and index segments, if the table has any LOB columns, are also trun-
cated. Finally, disable any existing referential integrity constraints on the data, or
else delete the rows from the table first, then truncate the partition or subparti-
tion. The optional DROP and REUSE STORAGE subclauses define whether the
space freed by the truncated data is made available for other objects in the
tablespace or remains allocated to the original partition or subpartition.

SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES} (value[, . . .])
[INTO (PARTITION [partn_name1] [table_partition_description]), (PARTITION
[partn_name2] [table_partition_description])] [[NO]PARALLEL] [update_index_clause]

Creates from the current partition (or subpartition) identified by partn_name two
new partitions (or subpartitions) called partn_name1 and partn_name2. These new
partitions may have their own complete specification, as defined by the table_
partition_description clause. When such a specification is omitted, the new
partitions inherit all physical characteristics of the current partition. When split-
ting a DEFAULT partition, all of the split values go to partn_name1, while all of
the default values go to partn_name2. For IOTs, Oracle splits any mapping table
partition in a manner corresponding to the split. Oracle also splits LOB and
OVERFLOW segments, but you may specify your own LOB and OVERFLOW
storage characteristics, as described in the earlier section on LOBs.

{AT | VALUES} (value[, . . .])
Splits range partitions (using AT) or list partitions (using VALUES)
according to the value(s) you specify. The AT (value[, ...]) clause defines the
new noninclusive upper range for the first of the two new partitions. The
new value should be less than the partition boundary of the current parti-
tion, but greater than the partition boundary of the next lowest partition (if
one exists). The VALUES (value1[, ...]) clause defines the values to go into
the first of the two new list partitions. The first new list partition is built
from value1, and the second is built from the remaining partition values in
the current partition of partn_name. The value list must include values that
already exist in the current partition, but it cannot contain all of the values of
the current partition.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3: SQL Statement Command Reference | 179

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

INTO (PARTITION [partn_name1] [table_partition_description]), (PARTITION
[partn_name2] [table_partition_description])

Defines the two new partitions that result from the split. At a minimum, the
two PARTITION keywords, in parentheses, are required. Any characteristics
not explicitly declared for the new partitions are inherited from the current
partition of partn_name, including any subpartitioning. There are a few restric-
tions to note. When subpartitioning range-hash composite partitioned tables,
only the TABLESPACE value is allowed for the subpartitions. Subparti-
tioning is not allowed at all when splitting range-list composite partitioned
tables. Any indexes on heap-organized tables are invalidated by default when
the table is split. You must use the update_index_clause to update their status.

MERGE {PARTITION | SUBPARTITION} partn_name1, partn_name2 [INTO PARTITION
[partn_name] [partn_attributes]] [[NO]PARALLEL] [update_index_clause]

Merges the contents of two or more partitions or subpartitions of a table into a
single new partition. Oracle then drops the two original partitions. Merged range
partitions must be adjacent and are then bound by the higher boundary of the
original two partitions when merged. Merged list partitions need not be adjacent
and result in a single new partition with a union of the two sets of partition
values. If one of the list partitions was the DEFAULT partition, the new partition
will be the DEFAULT. Merged range-list composite partitions are allowed but
may not have a new subpartition template. Oracle creates a subpartition template
from the existing one(s) or, if none exist, creates a new DEFAULT subpartition.
Physical attributes not defined explicitly are inherited from the table-level
settings. By default, Oracle makes all local index partitions and global indexes
UNUSABLE unless you override this behavior using the update_index_clause.
(The exception to this rule is with IOTs, which, being index-based, will remain
USABLE throughout the merge operation.) Merge operations are not allowed on
hash-partitioned tables; use the COALESCE PARTITION clause instead.

EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE table_name
[{INCLUDING | EXCLUDING} INDEXES] [{WITH | WITHOUT} VALIDATION]
[[NO]PARALLEL] [update_index_clause] [EXCEPTIONS INTO table_name]

Exchanges the data and index segments of a nonpartitioned table with those of a
partitioned table, or the data and index segments of a partitioned table of one
type with those of a partitioned table of another type. The structure of the tables
in the exchange must be identical, including the same primary key. All segment
attributes (e.g., tablespaces, logging, and statistics) of the current partitioned
table, called partn_name, and the table it is being exchanged with, called table_
name, are exchanged. Tables containing LOB columns will also exchange LOB
data and index segments. Additional syntax details that have not previously been
defined elsewhere in this list follow:

WITH TABLE table_name
Defines the table that will exchange segments with the current partition or
subpartition.

{INCLUDING | EXCLUDING} INDEXES
Exchanges local index partitions or subpartitions with the table index (on
nonpartitioned tables) or the local index (on hash-partitioned tables), using
the INCLUDING INDEXES clause. Alternately, marks all index partitions
and subpartitions as well as regular indexes and partitioned indexes of the
exchanged table with the UNUSABLE status, using the EXLCUDING
INDEXES clause.

180 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

{WITH | WITHOUT} VALIDATION
Returns errors when any rows in the current table fail to map into a partition
or subpartition of the exchanged table, using the WITH VALIDATION
clause. Otherwise, the WITHOUT VALIDATION clause may be included to
skip checking of row mapping between the tables.

EXCEPTIONS INTO table_name
Places the ROWIDs of all rows violating a UNIQUE constraint (in DISABLE
VALIDATE state) on the partitioned table. When this clause is omitted,
Oracle assumes there is a table in the current schema called EXCEPTIONS.
The EXCEPTIONS table is defined in the utlexcpt.sql and utlexpt1.sql scripts
that ship with Oracle. Refer to the Oracle documentation if you need these
scripts.

There are a couple of caveats to remember about altering a partitioned table. First,
altering a partition on a table that serves as the source for one or more materialized
views requires that the materialized views be refreshed. Second, bitmap join indexes
defined on the partitioned table being altered will be marked UNUSABLE. Third,
several restrictions apply if the partitions (or subpartitions) are ever spread across
tablespaces that use different block sizes. Refer to the Oracle documentation when
attempting these sorts of alterations to a partitioned table.

In the next few examples, assume we are using the orders table, partitioned as shown
here:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY RANGE(order_date)
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE)) ;

The following statement will mark all of the local index partitions as UNUSABLE in
the orders table for the post_yr_2004 partition:

ALTER TABLE orders MODIFY PARTITION post_yr_2004
 UNUSABLE LOCAL INDEXES;

However, say we’ve decided to now split the orders table partition post_yr_2004 into
two new partitions, pre_yr_2008 and post_yr_2008. Values that are now less
than MAXVALUE will be stored in the post_yr_2008 partition, while values less than
‘01-JAN-2008’ will be stored in pre_yr_2008:

ALTER TABLE orders SPLIT PARITION post_yr_2004
 AT (TO_DATE('01-JAN-2008','DD-MON-YYYY'))
 INTO (PARTITION pre_yr_2008, PARTITION post_yr_2008);

Assuming that the orders table contained a LOB or a VARRAY column, we could
further refine the alteration by including additional details for handling these columns,
while also updating the global indexes as the operation completes:

Chapter 3: SQL Statement Command Reference | 181

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

ALTER TABLE orders SPLIT PARITION post_yr_2004
 AT (TO_DATE('01-JAN-2008','DD-MON-YYYY'))
 INTO
 (PARTITION pre_yr_2008
 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1),
 PARTITION post_yr_2008)
 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1))
 UPDATE GLOBAL INDEXES;

Now, assuming the orders table has been grown at the upper end, let’s merge together
the partitions at the lower end:

ALTER TABLE orders
 MERGE PARTITIONS pre_yr_2000, pre_yr_2004
 INTO PARTITION yrs_2004_and_earlier;

After a few more years have passed, we might want to get rid of the oldest partition, or
at least give it a better name:

ALTER TABLE orders DROP PARTITION yrs_2004_and_earlier;
ALTER TABLE orders RENAME PARTITION yrs_2004_and_earlier TO pre_yr_2004;

Finally, let’s truncate a table partition, delete all of its data, and return the empty space
for use by other objects in the tablespace:

ALTER TABLE orders
 TRUNCATE PARTITION pre_yr_2004
 DROP STORAGE;

As these examples illustrate, anything related to partitioning and subpartitioning that
can be created with the Oracle CREATE TABLE statement can later be changed,
augmented, or cut down using the Oracle ALTER TABLE statement.

Organized tables: heaps, IOTs, and external tables

Oracle 11g offers powerful means of controlling the physical storage behavior of tables.

The most useful aspect of the ORGANIZATION HEAP clause is that you can now
compress an entire table within Oracle. This is extremely useful for reducing disk
storage costs in database environments with multiterabyte tables. The following
example creates the orders table in a compressed and logged heap, along with a
primary key constraint and storage details:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB,
CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))
ORGANIZATION HEAP
 COMPRESS LOGGING
PCTTHRESHOLD 2
STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
OVERFLOW STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
ENABLE ROW MOVEMENT;

182 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

To define the same table using an index-organized table based on the order_date
column, we would use this syntax:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB,
CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))
ORGANIZATION HEAP
 INCLUDING order_date
PCTTHRESHOLD 2
STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
OVERFLOW STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
ENABLE ROW MOVEMENT;

Finally, we’ll create an external table that stores our customer shipping information,
called cust_shipping_external. The code shown in bold is the opaque_format_spec:

CREATE TABLE cust_shipping_external
 (external_cust_nbr NUMBER(6),
 cust_shp_id NUMBER,
 shipping_company VARCHAR2(25))
ORGANIZATION EXTERNAL
 (TYPE oracle_loader
 DEFAULT DIRECTORY dataloader
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY newline
 BADFILE 'upload_shipping.bad'
 DISCARDFILE 'upload_shipping.dis'
 LOGFILE 'upload_shipping.log'
 SKIP 20
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'
 (client_id INTEGER EXTERNAL(6),
 shp_id CHAR(20),
 shipper CHAR(25)))
 LOCATION ('upload_shipping.ctl'))
REJECT LIMIT UNLIMITED;

In this example, the external table type is ORACLE_LOADER and the default direc-
tory is DATALOADER. This example illustrates the fact that you define the metadata
of the table within Oracle and then describe how that metadata references a data
source outside of the Oracle database server itself.

Oracle XMLType and object-type tables

When an Oracle XMLType table is created, Oracle automatically stores the data in a
CLOB column, unless you create an XML schema-based table. (For details on Oracle’s
XML support, see Oracle’s XMLDB Developer’s Guide.) The following code example first
creates an XMLType table, distributors, with the implicit CLOB data storage, then
creates a second such table, suppliers, with a more sophisticated XML-schema definition:

Chapter 3: SQL Statement Command Reference | 183

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > Oracle

CREATE TABLE distributors OF XMLTYPE;
CREATE TABLE suppliers OF XMLTYPE
XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"
ELEMENT "vendors";

A key advantage of tables based on XML schemas is that you can create B-tree indexes
on them. In the following example, we create an index on suppliercity:

CREATE INDEX suppliercity-index
ON suppliers
(S."XMLDATA"."ADDRESS"."CITY");

You may similarly create tables using a mix of standard and XMLTYPE columns. In
this case, the XMLTYPE column may store its data as a CLOB, or it may store its data
in an object-relational column of a structure determined by your specification. For
example, we’ll recreate the distributors table (this time with some added storage speci-
fications) and the suppliers table with both standard and XMLTYPE columns:

CREATE TABLE distributors
 (distributor_id NUMBER,
 distributor_spec XMLTYPE)
XMLTYPE distributor_spec
STORE AS CLOB
 (TABLESPACE tblspc_dist
 STORAGE (INITIAL 10M NEXT 5M)
 CHUNK 4000
 NOCACHE
 LOGGING);
CREATE TABLE suppliers
 (supplier_id NUMBER,
 supplier_spec XMLTYPE)
XMLTYPE supplier_spec STORE AS OBJECT RELATIONAL
 XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"
 ELEMENT "vendors"
OBJECT IDENTIFIER IS SYSTEM GENERATED
OIDINDEX vendor_ndx TABLESPACE tblspc_xml_vendors;

When creating XML and object tables, you may refer to inline_ref_constraint and
table_ref_constraint clauses. The syntax for an inline_ref_constraint clause is:

{SCOPE IS scope_table |
 WITH ROWID |
 [CONSTRAINT constraint_name] REFERENCES object [(column_name)]
 [ON DELETE {CASCADE | SET NULL}]
 [constraint_state]}

The only difference between an inline reference constraint and a table reference
constraint is that inline reference constraints operate at the column level and table
reference constraints operate at the table level. (This is essentially the same behavior
and coding rule of standard relational constraints like PRIMARY KEY or FOREIGN
KEY.) The syntax for a table_ref_constraint follows:

{SCOPE FOR (ref_col | ref_attr) IS scope_table |
 REF (ref_col | ref_attr) WITH ROWID |
 [CONSTRAINT constraint_name] FOREIGN KEY (ref_col | ref_attr)
 REFERENCES object [(column_name)]
 [ON DELETE {CASCADE | SET NULL}]
 [constraint_state]}

184 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > Oracle

The constraint_state clause contains a number of options that have already been
defined earlier in the discussion of the Oracle CREATE TABLE statement. However,
these options are applied only to the condition of the scope reference:

[NOT] DEFERRABLE
INITIALLY {IMMEDIATE | DEFERRED}
{ENABLE | DISABLE}
{VALIDATE | NOVALIDATE}
{RELY | NORELY}
EXCEPTIONS INTO table_name
USING INDEX {index_name | (create_index_statement) | index_attributes}

Object-type tables are useful for creating tables containing user-defined types. For
example, the following code creates the building_type type:

CREATE TYPE OR REPLACE building_type AS OBJECT
 (building_name VARCHAR2(100),
 building_address VARCHAR2(200));

We can then create a table called offices_object_table that contains the object and
defines some of its characteristics, such as OID information. In addition, we’ll create
two more tables, based upon building_type, that reference the object type as an inline_
ref_constraint and a table_ref_constraint, respectively:

CREATE TABLE offices_object_table
 OF building_type (building_name PRIMARY KEY)
OBJECT IDENTIFIER IS PRIMARY KEY;
CREATE TABLE leased_offices
 (office_nbr NUMBER,
 rent DEC(9,3),
 office_ref REF building_type
 SCOPE IS offices_object_table);
CREATE TABLE owned_offices
 (office_nbr NUMBER,
 payment DEC(9,3),
 office_ref REF building_type
 CONSTRAINT offc_in_bld REFERENCES offices_object_table);

In these examples, the SCOPE IS clause defines the inline_ref_constraint, while the
CONSTRAINT clause defines the table_ref_constraint.

Oracle ALTER TABLE

When using the Oracle command ALTER TABLE, you are able to ADD, DROP, or
MODIFY every aspect of each element of the table. For example, the syntax diagram
shows that the method for adding or modifying an existing column includes its
attributes, but you need to explicitly state that the attributes include any Oracle-
specific extensions. So, while the ANSI standard only lets you modify attributes such
as DEFAULT or NOT NULL (as well as column-level constraints assigned to the
column), Oracle also allows you to alter any special characteristics that might exist,
such as LOB, VARRAY, NESTED TABLE, index-organized table, CLUSTER, or
PARTITION settings.

For example, the following code adds a new column to a table in Oracle and adds a
new, unique constraint to that table:

ALTER TABLE titles
ADD subtitle VARCHAR2(32) NULL
CONSTRAINT unq_subtitle UNIQUE;

Chapter 3: SQL Statement Command Reference | 185

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > PostgreSQL

When a foreign key constraint is added to a table, the DBMS verifies that all existing
data in the table meets that constraint. If not, the ALTER TABLE fails.

Any queries that use SELECT * return the new columns, even if this
was not planned. Precompiled objects, such as stored procedures,
can return any new columns if they use the %ROWTYPE attribute.
Otherwise, a precompiled object may not return any new columns.

Oracle also allows you to perform multiple actions, such as ADD or MODIFY, on
multiple columns by enclosing the actions within parentheses. For example, the
following command adds several columns to a table with a single statement:

ALTER TABLE titles
ADD (subtitles VARCHAR2(32) NULL,
 year_of_copyright INT,
 date_of_origin DATE);

PostgreSQL
PostgreSQL supports the ANSI standards for CREATE and ALTER TABLE, with a
couple of extensions that enable you to quickly build a new table from existing table
definitions. Following is the syntax for CREATE TABLE:

CREATE [LOCAL] [[TEMP]ORARY] TABLE table_name
 (column_name datatype attributes[, ...]) |
CONSTRAINT constraint_name [{NULL | NOT NULL}]
{[UNIQUE] | [PRIMARY KEY (column_name[, ...])] | [CHECK (expression)] |
REFERENCES reference_table (reference_column[, ...])
 [MATCH {FULL | PARTIAL | default}]
 [ON {UPDATE | DELETE}
 {CASCADE | NO ACTION | RESTRICT | SET NULL | SET DEFAULT value}]
 [[NOT] DEFERRABLE] [INITIALLY {DEFERRED | IMMEDIATE}]}[, ...] |
 [table_constraint][, ...]
[WITH[OUT] OIDE]
[INHERITS (inherited_table[, ...])]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[AS select_statement]

And the PostgreSQL syntax for ALTER TABLE is:

ALTER TABLE [ONLY] table_name [*]
[ADD [COLUMN] column_name datatype attributes [...]]
| [ALTER [COLUMN] column_name
 {SET DEFAULT value | DROP DEFAULT | SET STATISTICS int}]
| [RENAME [COLUMN] column_name TO new_column_name]
| [RENAME TO new_table_name]
| [ADD table_constraint]
| [DROP CONSTRAINT constraint_name RESTRICT]
| [OWNER TO new_owner]

The parameters are as follows:

REFERENCES...MATCH...ON {UPDATE | DELETE}...
Checks a value inserted into the column against the values of a column in another
table. This clause can also be used as part of a FOREIGN KEY declaration. The
MATCH options are FULL, PARTIAL, and the default, where MATCH has no
other keyword. FULL match forces all columns of a multicolumn foreign key

186 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > PostgreSQL

either to be NULL or to contain a valid value. The default allows mixed NULLs
and values. PARTIAL matching is a valid syntax, but is not supported. The
REFERENCES clause also allows several different behaviors to be declared for
ON DELETE and/or ON UPDATE referential integrity:

NO ACTION
Produces an error when the foreign key is violated (the default).

RESTRICT
Synonym for NO ACTION.

CASCADE
Sets the value of the referencing column to the value of the referenced
column.

SET NULL
Sets the value of the referencing column to NULL.

SET DEFAULT value
Sets the referencing column to its declared default value or NULL, if no
default value exists.

[NOT] DEFERRABLE [INITIALLY {DEFERRED | IMMEDIATE}]
The DEFERRABLE option of the REFERENCES clause tells PostgreSQL to
defer evaluation of all constraints until the end of a transaction. NOT
DEFERRABLE is the default behavior for the REFERENCES clause. Similar
to the DEFERRABLE clause is the INITIALLY clause: specifying INITIALLY
DEFERRED checks constraints at the end of a transaction; INITIALLY
IMMEDIATE checks constraints after each statement (the default).

FOREIGN KEY
Can be declared only as a table-level constraint, not as a column-level constraint.
All options for the REFERENCES clause are supported as part of the FOREIGN
KEY clause. The syntax follows:

[FOREIGN KEY (column_name[, ...]) REFERENCES...]

WITH[OUT] OIDS
Specifies whether rows of the new table should have automatically assigned object
IDs (WITH OIDS) or not (WITHOUT OIDS). The default is WITH OIDS. OIDs
are assigned based on a 32-bit counter. Once the counter is surpassed, the OID
numbers cycle over and uniqueness can no longer be guaranteed. We recom-
mend that you add a unique index to any OID columns you specify to avoid an
error with duplicate OIDs on very large tables. A table with an inherited structure
receives the OID setting of its parent table.

INHERITS inherited_table
Specifies a table or tables from which the table you are creating inherits all
columns. The newly created table also inherits functions attached to tables higher
in the hierarchy. If any inherited column appears more than once, the statement
fails.

ON COMMIT {DELETE | PRESERVE} ROWS
Used only with temporary tables. This clause controls the behavior of the tempo-
rary table after records are committed to the table. ON COMMIT DELETE
ROWS clears the temporary table of all rows after each commit. This is the
default if the ON COMMIT clause is omitted. ON COMMIT PRESERVE ROWS
saves the rows in the temporary table after the transaction has committed.

Chapter 3: SQL Statement Command Reference | 187

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > SQL Server

AS select_statement
Enables you to create and populate a table with data from a valid SELECT state-
ment. The column names and datatypes do not need to be defined, since they are
inherited from the query. The CREATE TABLE...AS statement has similar func-
tionality to SELECT...INTO, but is more readable.

ONLY
Specifies that only the named table is affected by the ALTER TABLE statement,
not any parent or subtables in the table hierarchy.

OWNER TO new_owner
Changes the owner of the table to the user identified by new_owner.

A PostgreSQL table cannot have more than 1,600 columns. However, you should limit
the number of columns to well below 1,600, for performance reasons. For example:

CREATE TABLE distributors
 (name VARCHAR(40) DEFAULT 'Thomas Nash Distributors',
 dist_id INTEGER DEFAULT NEXTVAL('dist_serial'),
 modtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP);

Unique to PostgreSQL is the ability to create column-level con-
straints with multiple columns. Since PostgreSQL also supports
standard table-level constraints, the ANSI-standard approach is still
the recommended approach.

PostgreSQL’s implementation of ALTER TABLE allows the addition of extra columns
using the ADD keyword. Existing columns may have new default values assigned to
them using ALTER COLUMN...SET DEFAULT, while ALTER COLUMN...DROP
DEFAULT allows the complete erasure of a column-based default. In addition, new
defaults may be added to columns using the ALTER clause, but only newly inserted
rows will be affected by such new default values. RENAME allows new names for
existing columns and tables.

SQL Server
SQL Server offers a plethora of options when defining or altering a table, its columns,
and its table-level constraints. Its CREATE TABLE syntax is:

CREATE TABLE table_name
(column_name datatype { [DEFAULT default_value]
 | [IDENTITY [(seed,increment) [NOT FOR REPLICATION]]]
 [ROWGUIDCOL] [NULL | NOT NULL]
 | [{PRIMARY KEY | UNIQUE}
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = int] [ON {filegroup | DEFAULT}]]
 | [[FOREIGN KEY]
 REFERENCES reference_table [(reference_column[, ...])]
 [ON {DELETE | UPDATE} {CASCADE | NO ACTION}]
 [NOT FOR REPLICATION]]
 | [CHECK [NOT FOR REPLICATION] (expression)]
 | [COLLATE collation_name]
| column_name AS computed_column_expression }
[, ...]
| [table_constraint][, ...])
[ON {filegroup | DEFAULT}]
[TEXTIMAGE_ON {filegroup | DEFAULT}]

188 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > SQL Server

And the SQL Server version of ALTER TABLE is:

ALTER TABLE table_name
[ALTER COLUMN column_name new_datatype attributes {ADD | DROP} ROWGUIDCOL]
| [ADD [COLUMN] column_name datatype attributes][, ...]]
| [WITH CHECK | WITH NOCHECK] ADD table_constraint][, ...]
| [DROP { [CONSTRAINT] constraint_name | COLUMN column_name }][, ...]
| [{CHECK | NOCHECK} CONSTRAINT { ALL | constraint_name[, ...] }]
| [{ENABLE | DISABLE} TRIGGER { ALL | trigger_name[, ...] }]

The parameters are as follows:

DEFAULT default_value
Applies to any column except those with a TIMESTAMP datatype or an IDEN-
TITY property. The default_value must be a constant value such as a character
string or a number, a system function such as GETDATE(), or NULL.

IDENTITY [(seed, increment)]
Creates and populates the column with a monotonically increasing number when
applied to an integer column. The IDENTITY starts counting at the value of seed
and increases by the value of increment. When either is omitted, the default is 1.

NOT FOR REPLICATION
Specifies that the values of an IDENTITY or FOREIGN KEY are not replicated to
subscribing servers. This helps in situations in which different servers require the
same table structures, but not the exact same data.

ROWGUIDCOL
Identifies a column as a globally unique identifier (GUID), which ensures no two
values are ever repeated across any number of servers. Only one such column may
be identified per table. This clause does not, however, create the unique values
itself. They must be inserted using the NEWID function.

{PRIMARY KEY | UNIQUE}
Defines a unique or primary key constraint for the table. The primary key declara-
tion differs from the ANSI standard by allowing you to assign the clustered or
nonclustered attributes on the primary key index, as well as a starting fillfactor.
(Refer to the section “PRIMARY KEY Constraints” in Chapter 2 for more infor-
mation.) The attributes of a unique or primary key include:

CLUSTERED | NONCLUSTERED
Declares that the column or columns of the primary key set the physical sort
order of the records in the table (CLUSTERED), or that the primary key
index maintains pointers to all of the records of the table (NONCLUS-
TERED). CLUSTERED is the default when this clause is omitted.

WITH FILLFACTOR = int
Declares that a percentage of space (int) should remain free on each data
page when the table is created. SQL Server does not maintain FILLFACTOR
over time, so you should rebuild the index on a regular basis.

ON {filegroup | DEFAULT}
Specifies that the primary key either is located on the pre-existing, named
filegroup or is assigned to the DEFAULT filegroup.

FOREIGN KEY
Checks values as they are inserted into the table against a column in another table
in order to maintain referential integrity. Foreign keys are described in detail in

Chapter 3: SQL Statement Command Reference | 189

SQLStatem
ent

Com
m

ands
CREATE/ALTER TABLE Statement > SQL Server

Chapter 2. A foreign key can only reference columns that are defined as a
PRIMARY KEY or UNIQUE index on the referencing table. A referential action
may be specified to take place on the reference_table when the record is deleted
or updated, according to the following:

ON {DELETE | UPDATE}
Specifies that an action needs to happen in the local table when either (or
both) an UPDATE or DELETE occurs on the referenced table.

CASCADE
Specifies that any DELETE or UPDATE also takes place on the referring
table for any records dependent on the value of the FOREIGN KEY.

NO ACTION
Specifies that no action occurs on the referring table when a record on the
current table is deleted or updated.

NOT FOR REPLICATION
Specifies that an IDENTITY property should not be enforced when the data
is replicated from another database. This ensures that data from the
published server is not assigned new identity values.

CHECK
Ensures that a value inserted into the specified column of the table is a valid
value, based on the CHECK expression. For example, the following shows a table
with two column-level CHECK constraints:

CREATE TABLE people
 (people_id CHAR(4)
 CONSTRAINT pk_dist_id PRIMARY KEY CLUSTERED
 CONSTRAINT ck_dist_id CHECK (dist_id LIKE '
 [A-Z][A-Z][A-Z][A-Z]'),
 people_name VARCHAR(40) NULL,
 people_addr1 VARCHAR(40) NULL,
 people_addr2 VARCHAR(40) NULL,
 city VARCHAR(20) NULL,
 state CHAR(2) NULL
 CONSTRAINT def_st DEFAULT ("CA")
 CONSTRAINT chk_st REFERENCES states(state_ID),
 zip CHAR(5) NULL
 CONSTRAINT ck_dist_zip
 CHECK(zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),
 phone CHAR(12) NULL,
 sales_rep empid NOT NULL DEFAULT USER)
GO

The CHECK constraint on people_id ensures an all-alphabetic ID, while the one
on zip ensures an all-numeric value. The REFERENCES constraint on state
performs a lookup on the states table. The REFERENCES constraint is essen-
tially the same as a CHECK constraint, except that it derives its list of acceptable
values from the values stored in another column. This example illustrates how
column-level constraints are named using the CONSTRAINT constraint_name
syntax.

COLLATE
Allows programmers to change, on a column-by-column basis, the sort order and
character set that is used by the column.

190 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TABLE Statement > SQL Server

TEXTIMAGE_ON {filegroup | DEFAULT}
Controls the placement of text, ntext, and image columns, allowing you to place
LOB data on the pre-existing filegroup of your choice. When omitted, these
columns are stored in the default filegroup with all other tables and database
objects.

WITH [NO]CHECK
Tells SQL Server whether the data in the table should be validated against any
newly added constraints or keys. When constraints are added using WITH
NOCHECK, the query optimizer ignores them until they are enabled via ALTER
TABLE table_name CHECK CONSTRAINT ALL. When constraints are added
using WITH CHECK, the constraints are checked immediately against all data
already in the table.

[NO]CHECK CONSTRAINT
Enables an existing constraint with CHECK CONSTRAINT or disables one with
NOCHECK CONSTRAINT.

{ENABLE | DISABLE} TRIGGER { ALL | trigger_name[, . . .] }
Enables or disables the specified trigger or triggers, respectively. All triggers on
the table may be enabled or disabled by substituting the keyword ALL for the
table name, as in ALTER TABLE employee DISABLE TRIGGER ALL. You may,
alternately, disable or enable a single trigger_name or more than one trigger by
placing each trigger_name in a comma-delimited list.

SQL Server allows any column-level constraint to be named by specifying
CONSTRAINT constraint_name . . . , and then the text of the constraint. Several
constraints may be applied to a single column, as long as they are not mutually exclu-
sive (for example, PRIMARY KEY and NULL).

SQL Server also allows a local temporary table to be created, but not using ANSI
syntax. A local temporary table, which is stored in the tempdb database, requires a
prefix of a single pound sign (#) to the name of the table. The local temporary table is
usable by the person or process that created it and is deleted when the person logs out
or the process terminates. A global temporary table, which is usable by all people and
processes that are currently logged in/running, can be established by prefixing two
pound signs (##) to the name of the table. The global temporary table is deleted when
its process terminates or its creator logs out.

SQL Server also allows the creation of tables with columns that contain computed
values. Such a column does not actually contain data; instead, it is a virtual column
containing an expression using other columns already in the table. For example, a
computed column could contain an expression such as order_cost AS (price * qty).
Computed columns also can contain constants, functions, variables, noncomputed
columns, or any of these combined with each other using operators.

Any of the column-level constraints shown earlier also may be declared at the table
level. That is, PRIMARY KEY constraints, FOREIGN KEY constraints, CHECK
constraints, and others may be declared after all the columns have been defined in the
CREATE TABLE statement. This is very useful for constraints that cover more than
one column. For example, a column-level UNIQUE constraint can be applied only to
that column. However, declaring the constraint at the table level allows it to span
several columns. Here is an example of both column- and table-level constraints:

-- Creating a column-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) PRIMARY KEY NONCLUSTERED,

Chapter 3: SQL Statement Command Reference | 191

SQLStatem
ent

Com
m

ands
CREATE/ALTER TRIGGER Statement

 book_name VARCHAR(40) UNIQUE,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL)
GO
-- Creating a table-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) NOT NULL,
 book_name VARCHAR(40) NOT NULL,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL,
 CONSTRAINT pk_book_id PRIMARY KEY NONCLUSTERED (isbn)
 WITH FILLFACTOR=70,
 CONSTRAINT unq_book UNIQUE CLUSTERED (book_name,pub_date))
GO

These two commands provide nearly the same results, except that the table-level
UNIQUE constraint has two columns, whereas only one column is included in the
column-level UNIQUE constraint.

The following example adds a new CHECK constraint to a table, but does not check to
ensure that the existing values in the table pass the constraint:

ALTER TABLE favorite_book WITH NOCHECK
ADD CONSTRAINT extra_check CHECK (ISBN > 1)
GO

In this example, we further add a new column with an assigned DEFAULT value that
is placed in each existing record in the table:

ALTER TABLE favorite_book ADD reprint_nbr INT NULL
CONSTRAINT add_reprint_nbr DEFAULT 1 WITH VALUES
GO
-- Now, disable the constraint
ALTER TABLE favorite_book NOCHECK CONSTRAINT add_reprint_nbr
GO

See Also
CREATE SCHEMA
DROP

CREATE/ALTER TRIGGER Statement

A trigger is a special kind of stored procedure that fires automatically (hence the term
“trigger”) when a specific data-modification statement is executed against a table. The
trigger is directly associated with the table and is considered a dependent object. For
example, you might want all of the part_numbers in the sales table to be updated
when a part_number is changed in the products table, thus ensuring that part
numbers are always in sync. You can accomplish this with a trigger.

192 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TRIGGER Statement

ALTER TRIGGER is not an ANSI-supported statement.

SQL2003 Syntax
CREATE TRIGGER trigger_name
{BEFORE | AFTER} {DELETE | INSERT | UPDATE [OF column[, ...]]}
ON table_name
[REFERENCING {OLD {[ROW] | TABLE} [AS] old_name | NEW
{ROW | TABLE} [AS] new_name}] [FOR EACH { ROW | STATEMENT }]
[WHEN (conditions)]
[BEGIN ATOMIC]code_block
[END]

Keywords
CREATE TRIGGER trigger_name

Creates a trigger named trigger_name and associates it with a specific table.

BEFORE | AFTER
Declares that the trigger logic is fired either BEFORE or AFTER the data-
manipulation operation that invoked the trigger. BEFORE triggers perform their
operations before the INSERT, UPDATE, or DELETE operation occurs, allowing
you to do dramatic things like circumvent the data-manipulation operation alto-
gether. AFTER triggers fire after the data-manipulation operation has completed
and are useful for after-the-fact operations like recalculating running totals.

DELETE | INSERT | UPDATE [OF column[, . . .]]
Defines the data-manipulation operation that causes the trigger to fire:
DELETE statements, INSERT statements, or UPDATE statements. You may
optionally choose which columns will trigger an update trigger using UPDATE
OF column[, . . .]. If an update occurs on any columns not in the column list, the
trigger will not fire.

ON table_name
Declares the pre-existing table on which the trigger is dependent.

REFERENCING {OLD {[ROW] | TABLE} [AS] old_name | NEW {ROW | TABLE} [AS]
new_name}

Enables aliasing for the old or new ROW or TABLE acted upon by the trigger.
Although the syntax shows the options as exclusive, you may have up to four
aliasing references: one for the old row, one for the old table, one for the new
row, and one for the new table. The alias OLD refers to the data contained in the
table or row before the data-manipulation operation that fired the trigger, while
the alias NEW refers to the data that will be contained in the table or row after the
data-manipulation operation that fired the trigger. Note that the syntax indicates

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Chapter 3: SQL Statement Command Reference | 193

SQLStatem
ent

Com
m

ands
CREATE/ALTER TRIGGER Statement

that ROW is optional, but TABLE is not. (That is, OLD ROW AS is the same as
OLD AS, but for TABLE, the only valid option is OLD TABLE AS.) INSERT trig-
gers do not have an OLD context, while DELETE triggers do not have a NEW
context. The keyword AS is noise and may be omitted. If the REFERENCING
clause specifies either OLD ROW or NEW ROW, the FOR EACH ROW clause is
required.

FOR EACH { ROW | STATEMENT }
Tells the database to apply the trigger for each row in the table that has changed
(ROW) or for each SQL statement issued against the table (STATEMENT).
Consider a single UPDATE statement that updates the salaries of 100 employees.
If you specify FOR EACH ROW, the trigger will execute 100 times. If you specify
FOR EACH STATEMENT, the trigger will execute only once.

WHEN (conditions)
Allows you to define additional criteria for a trigger. For example, you might have
a trigger called DELETE employee that will fire whenever an employee is deleted.
When a trigger fires, if the search conditions contained in the WHEN clause eval-
uate to TRUE, the trigger action will fire. Otherwise, the trigger will not fire.

BEGIN ATOMIC | code_block | END
The ANSI standard requires that the code_block should contain only one SQL
statement or, if it contains multiple SQL statements, they should be encosed in a
BEGIN and END block.

Rules at a Glance
Triggers, by default, fire once at the statement level. That is, a single INSERT state-
ment might insert 500 rows into a table, but an insert trigger on that table will fire
only one time. However, some vendors allow a trigger to fire for each row of the
data-modification operation. A statement that inserts 500 rows into a table that has a
row-level insert trigger will cause that trigger to fire 500 times, once for each inserted row.

In addition to being associated with a specific data-modification statement (INSERT,
UPDATE, or DELETE) on a given table, triggers are associated with a specific time of
firing. In general, triggers can fire BEFORE the data-modification statement is processed,
AFTER it is processed, or (when supported by the vendor) INSTEAD OF the statement
being processed. Triggers that fire before or instead of the data-modification statement do
not see the changes that the statement renders, while those that fire afterward can see
and act upon the changes rendered.

Triggers make use of two pseudotables. (They are pseudotables in the sense that they
are not declared with a CREATE TABLE statement, but they exist logically on the
database.) The pseudotables have different names on the different platforms, but we’ll
call them Before and After here. They are structured exactly the same as the table a
trigger is associated with, but they contain snapshots of the table’s data: the Before
table contains a snapshot of all the records in the table before the trigger fired, while
the After table contains a snapshot of how all the records in the table will look after
the event that fires the trigger has occurred. You can then use comparison operations
to compare the data in the table before and after the event to determine exactly what
you want to happen.

Here is an Oracle BEFORE trigger that uses the OLD and NEW pseudotables to
compare values. (By way of comparison, SQL Server uses the DELETED and
INSERTED pseudotables in the same way.) This trigger creates an audit record before
changing an employee’s pay record:

194 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TRIGGER Statement

CREATE TRIGGER if_emp_changes
BEFORE DELETE OR UPDATE ON employee
FOR EACH ROW
WHEN (new.emp_salary <> old.emp_salary)
BEGIN
 INSERT INTO employee_audit
 VALUES ('old', :old.emp_id, :old.emp_salary, :old.emp_ssn);
END;

You can also take advantage of capabilities within each database platform to make
your triggers more powerful and easier to program. For example, Oracle has a special
IF...THEN clause for use just in triggers. This IF...THEN clause takes the form IF
{DELETING | INSERTING | UPDATING} THEN. The following example builds an
Oracle DELETE and UPDATE trigger that uses the IF DELETING THEN clause:

CREATE TRIGGER if_emp_changes
BEFORE DELETE OR UPDATE ON employee
FOR EACH ROW
BEGIN
 IF DELETING THEN
 INSERT INTO employee_audit
 VALUES ('DELETED', :old.emp_id, :old.emp_salary, :old.emp_ssn);
 ELSE
 INSERT INTO employee_audit
 VALUES ('UPDATED', :old.emp_id, :new.emp_salary, :old.emp_ssn);
 END IF;
END;

This SQL Server example adds a new table called contractor to the database, and all
records in the employee table that indicate that the employee is a contractor are
moved into the contractor table. Now we’ll specify that all new employees inserted
into the employee table will go into the contractor table instead, using an INSTEAD
OF INSERT trigger:

CREATE TRIGGER if_emp_is_contractor
INSTEAD OF INSERT ON employee
BEGIN
 INSERT INTO contractor
 SELECT * FROM inserted WHERE status = 'CON'
 INSERT INTO employee
 SELECT * FROM inserted WHERE status = 'FTE'
END
GO

Adding triggers to a table that already has data in it does not cause the triggers to fire.
A trigger will fire only for data-modification statements declared in the trigger defini-
tion that occur after the trigger is created.

Once in place, a trigger generally ignores structural changes to tables, such as an added
column or an altered datatype on an existing column, unless the modification directly
interferes with the operation of the trigger. For example, if you add a new column to a
table, existing triggers will ignore the new column (with the exception of UPDATE
triggers). On the other hand, removing from a table a column that is used by a trigger
will cause that trigger to fail every time it executes.

Chapter 3: SQL Statement Command Reference | 195

SQLStatem
ent

Com
m

ands
CREATE/ALTER TRIGGER Statement > Oracle

Programming Tips and Gotchas
One of the key programming issues associated with triggers is the inappropriate and
uncontrolled use of nested and recursive triggers. A nested trigger is a trigger that
invokes a data-manipulation operation that causes other triggers to fire. For example,
assume we have three tables, T1, T2, and T3. Table T1 has a BEFORE INSERT
trigger that inserts a record into table T2. Table T2 also has a BEFORE INSERT
trigger that inserts a record into table T3. Although this is not necessarily a bad thing if
your logic is well considered and fully thought out, it does introduce two problems.
First, an INSERT into table T1 now requires many more I/O operations and transac-
tions than a simple INSERT statement typically does. Second, you can get yourself into
hot water if table T3 performs an INSERT operation against table T1. In a case like
that, you may have a looping trigger process that can consume all available disk space
and even shut down the server.

Recursive triggers are triggers that can fire themselves; for example, an INSERT trigger
that performs an INSERT against its own base table. If the procedural logic within the
code_body is not properly constructed, adding a recursive trigger can cause a looping
trigger error. In recognition of this danger, using recursive triggers often requires
setting a special configuration flag on the various database platforms.

MySQL
MySQL’s implementation of the CREATE TRIGGER statement follows:

CREATE [DEFINER = {user_name | CURRENT_USER}]
 TRIGGER trigger_name {BEFORE | AFTER} {INSERT | UPDATE | DELETE}
 ON table_name FOR EACH ROW code_body

where:

DEFINER = {user_name | CURRENT_USER}
Specifies the user account to use when checking privileges. You may specify either
a pre-existing user or the user who issued the CREATE TRIGGER statement (i.e.,
the CURRENT_USER). CURRENT USER is the default when this clause is
omitted.

MySQL does not allow triggers on temporary tables. Insert triggers will fire any time
data is inserted into a table, not just on INSERT statements. Thus, insert triggers on a
table will also fire when LOAD DATA and REPLACE statements are executed. Simi-
larly, a delete trigger will also fire on a REPLACE statement. Triggers are not,
however, activated by cascading foreign key actions.

MySQL allows only one type of trigger per table. Thus, a table could have a BEFORE
INSERT and an AFTER INSERT trigger, but not two AFTER INSERT triggers. To fire
multiple SQL statements for each row that the trigger fires upon, be sure to use a
BEGIN…END block inside of the code_body.

MySQL doesn’t yet support the ALTER TRIGGER statement.

Oracle
Oracle supports the ANSI standard for CREATE TRIGGER, with several additions
and variations:

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF}
{ {[object_event] [database_event] [...] ON {DATABASE | schema.SCHEMA}} |

196 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TRIGGER Statement > Oracle

 {[DELETE] [OR] [INSERT] [OR] [UPDATE [OF column[, ...]]] [...]}
 ON {table_name | [NESTED TABLE column_name OF] view_name}
 [REFERENCING {[OLD [AS] old_name] [NEW [AS] new_name]
 [PARENT [AS] parent_name]}]
 [FOR EACH ROW] }
[FOLLOWS trigger_name]
[{ENABLE | DISABLE}]
[WHEN (conditions)] code_block

Here is the syntax for ALTER TRIGGER, which allows you to rename, enable, or
disable a trigger without dropping and recreating it:

ALTER TRIGGER trigger_name
{ {ENABLE | DISABLE} | RENAME TO new_name |
 COMPILE [compiler_directives] [DEBUG] [REUSE SETTINGS] }

The parameters are:

OR REPLACE
Recreates an existing trigger by assigning a new definition to an existing trigger
named trigger_name.

object_event
In addition to the standard data-modification events, Oracle allows triggers to fire
based on object events. object_event operations may be paired with BEFORE and
AFTER keywords. An object_event fires the trigger whenever such an event
occurs, according to the following keywords:

ALTER
Fires whenever an ALTER statement (except ALTER DATABASE) is issued.

ANALYZE
Fires whenever Oracle validates the structure of a database object, or collects
or deletes statistics on an index.

ASSOCIATE STATISTICS
Fires whenever Oracle associates a statistics type with a database object.

AUDIT
Fires whenever Oracle tracks a SQL statement or operation against a schema
object.

COMMENT
Fires whenever an Oracle comment is added in the data dictionary to a data-
base object.

DDL
Fires whenever Oracle encounters any object_event in this list.

DISASSOCIATE STATISTICS
Fires whenever Oracle disassociates a statistics type from a database object.

DROP
Fires whenever a DROP statement erases a database object from the data
dictionary.

GRANT
Fires whenever a user grants privileges or roles to another user or role.

NOAUDIT
Fires whenever the NOAUDIT statement causes Oracle to stop tracking SQL
statements or operations against schema objects.

Chapter 3: SQL Statement Command Reference | 197

SQLStatem
ent

Com
m

ands
CREATE/ALTER TRIGGER Statement > Oracle

RENAME
Fires whenever the RENAME statement changes the name of a database
object.

REVOKE
Fires whenever a user revokes privileges or roles from another user or role.

TRUNCATE
Fires whenever a TRUNCATE statement is issued against a table or cluster.

database_event
In addition to the standard data-modification events, Oracle allows triggers to fire
based on database events. database_event operations may be paired with
BEFORE and AFTER keywords. The list of allowable database_event keywords is:

LOGON
Fires whenever a client application logs on to the database. Valid for AFTER
triggers only.

LOGOFF
Fires whenever a client application logs off of the database. Valid for
BEFORE triggers only.

SERVERERROR
Fires whenever a server error message is logged. Valid for AFTER triggers
only.

SHUTDOWN
Fires whenever an instance of the database is shut down. Valid only for
BEFORE triggers with the ON DATABASE clause.

STARTUP
Fires whenever an instance of the database is opened. Valid only for AFTER
triggers with the ON DATABASE clause.

SUSPEND
Fires whenever a server error causes a transaction to suspend. Valid for
AFTER triggers only.

ON {DATABASE | schema.SCHEMA}
Declares that the trigger fires whenever any database user invokes a triggering
event with ON DATABASE. The trigger then fires for events occurring anywhere
in the entire database. Otherwise, ON schema.SCHEMA declares that the trigger
fires whenever a user connected as schema invokes a triggering event. The trigger
then fires for events occurring anywhere in the current schema.

ON [NESTED TABLE column_name OF] view_name
Declares that the trigger fires only if the data-manipulation operation applies to
the column(s) of the view called view_name. The ON NESTED TABLE clause is
compatible only with INSTEAD OF triggers.

REFERENCING PARENT [AS] parent_name
Defines the alias for the current row of the parent table (i.e., supertable). Other-
wise, identical to the ANSI standard.

FOLLOWS trigger_name
Specifies that the new trigger is of the same type as another trigger and that it
should fire only after the other trigger has fired. The trigger_name must already
exist. Rather than creating a series of triggers that must fire in a specific order, it is
recommended that you instead create a single trigger with logic to handle all of
the situations that the multiple triggers handled.

198 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TRIGGER Statement > Oracle

ENABLE
Enables a deactivated trigger when used with ALTER TRIGGER, or creates a new
trigger in enabled mode (the default). You may alternately use the statement
ALTER TABLE table_name ENABLE ALL TRIGGERS.

DISABLE
Disables an activated trigger when used with ALTER TRIGGER, or creates a new
trigger in disabled mode. You may alternately use the statement ALTER TABLE
table_name DISABLE ALL TRIGGERS.

RENAME TO new_name
Renames the trigger to new_name, though the state of the trigger remains
unchanged when used with ALTER TRIGGER.

COMPILE [DEBUG] [REUSE SETTINGS]
Compiles a trigger, whether valid or invalid, and all the objects on which the
trigger depends. If any of the objects are invalid, the trigger is invalid. If all of the
objects are valid, including the code_body of the trigger, the trigger is valid.

DEBUG
Tells the PL/SQL compiler to generate and store extra information for use by
the PL/SQL debugger.

REUSE SETTINGS
Tells Oracle to retain all compiler switch settings, which can save significant
time during the compile process.

compiler_directives
Defines a special value for the PL/SQL compiler in the format: directive =
'value'. The directives are: PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE,
PLSQL_DEBUG, PLSQL_WARNINGS, and NLS_LENGTH_SEMANTICS. They
may each specify a value once in the statement. The directive is valid only for the
unit being compiled.

When referencing values in the OLD and NEW pseudotables, the values must be pref-
aced with a colon (:), except in the trigger’s WHEN clause, where no colons are used.
In this example, we’ll call a procedure in the code_body and use both :OLD and :NEW
values as arguments:

CREATE TRIGGER scott.sales_check
BEFORE INSERT OR UPDATE OF ord_id, qty ON scott.sales
 FOR EACH ROW
 WHEN (new.qty > 10)
 CALL check_inventory(:new.ord_id, :new.qty, :old.qty);

Multiple trigger types may be combined into a single trigger command if they are of
the same level (row or statement) and they are on the same table. When triggers are
combined in a single statement, the clauses IF INSERTING THEN, IF UPDATING
THEN, and IF DELETING THEN may be used in the PL/SQL block to break the code
logic into distinct segments. An ELSE clause also can be used in this structure.

Following is an example of a database_event-style trigger:

CREATE TRIGGER track_errors
AFTER SERVERERROR ON DATABASE
BEGIN
 IF (IS_SERVERERROR (04030))
 THEN INSERT INTO errors ('Memory error');

Chapter 3: SQL Statement Command Reference | 199

SQLStatem
ent

Com
m

ands
CREATE/ALTER TRIGGER Statement > PostgreSQL

 ELSE (IS_SERVERERROR (01403))
 THEN INSERT INTO errors ('Data not found');
 END IF;
END;

This example creates a trigger that is SCHEMA-wide in scope:

CREATE OR REPLACE TRIGGER create_trigger
AFTER CREATE ON scott.SCHEMA
BEGIN
 RAISE_APPLICATION_ERROR (num => -20000, msg =>
 'Scott created an object');
END;

DDL triggers

Oracle now has support for DDL triggers, meaning that you can have a trigger fire, for
example, when a new table is created or when a view is dropped. DDL triggers may be
created on either a DATABASE or a SCHEMA for events like CREATE, ALTER, or
DROP. For example:

CREATE TRIGGER audit_object_changes AFTER CREATE ON SCHEMA
 code_body;

The full list of DDL trigger events includes the firing of any of these statements:
ALTER, ANALYZE, ASSOCIATE STATISTICS, AUDIT, COMMENT, CREATE,
DISASSOCIATE STATISTICS, DROP, GRANT, NOAUDIT, RENAME, REVOKE,
TRUNCATE, and DDL (which will fire the trigger when any of the preceding DDL
statements are issued). You may also create a DDL trigger that fires on a specific data-
base state, rather than on a DDL statement. The database states you may use include
AFTER STARTUP, BEFORE SHUTDOWN, AFTER DB_ROLE_CHANGE, AFTER
LOGON, BEFORE LOGOFF, AFTER SERVERERROR, and AFTER SUSPEND.

PostgreSQL
PostgreSQL’s implementation of CREATE TRIGGER offers a subset of the features
found in the ANSI standard. On PostgreSQL, a trigger may fire BEFORE a data-
modification operation is attempted on a record and before any constraints are
fired, or it may fire AFTER a data-manipulation operation fires (and after
constraints have been checked), making all operations involved in the transaction
visible to the trigger. Finally, the trigger may fire INSTEAD OF the data-modification
operation and completely replace the INSERT, UPDATE, or DELETE statement with
some other behavior. The CREATE TRIGGER syntax is:

CREATE TRIGGER trigger_name
{ BEFORE | AFTER }
{ {[DELETE] [OR | ,] [INSERT] [OR | ,] [UPDATE]} [OR ...] }
ON table_name
FOR EACH { ROW | STATEMENT }
EXECUTE PROCEDURE function_name (parameters)

PostgreSQL’s implementation of ALTER TRIGGER merely allows you to rename an
existing trigger:

ALTER TRIGGER trigger_name ON table_name RENAME TO new_trigger_name

The CREATE TRIGGER parameters are:

200 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TRIGGER Statement > SQL Server

OR
Declares an additional trigger action. The OR keyword is a synonym for the
comma delimiter.

FOR EACH ROW
Explicitly declares that the trigger acts at the row level. This is also the default.
Although PostgreSQL does not reject the STATEMENT keyword, it does not
enforce statement-level triggers.

EXECUTE PROCEDURE function_name (parameters)
Executes a previously defined function (created using CREATE FUNCTION)
rather than a block of procedural code. (PostgreSQL does not have its own proce-
dural language.)

The following is an example of a PostgreSQL BEFORE trigger that checks at the row
level to ensure that the specified distributor code exists in the distributors table before
inserting or updating a row in the sales table:

CREATE TRIGGER if_dist_exists
BEFORE INSERT OR UPDATE ON sales
FOR EACH ROW
EXECUTE PROCEDURE check_primary_key
 ('dist_id', 'distributors', 'dist_id');

BEFORE and AFTER triggers are supported by the ANSI standard. INSTEAD OF trig-
gers on PostgreSQL completely skip the data-modification operation that triggered
them in favor of code that you substitute for the data-modification operation.

SQL Server
SQL Server supports the basics of the ANSI standard with the addition of the
INSTEAD OF trigger type and a column change check. It does not support the
REFERENCING or WHEN clauses. Its syntax is:

{CREATE | ALTER} TRIGGER trigger_name ON table_name
[WITH [ENCRYPTION] [EXEC[UTE] AS {CALLER | SELF | 'user_name'}]]
{FOR | AFTER | INSTEAD OF}
{ dml_events | ddl_events }
[WITH APPEND]
[NOT FOR REPLICATION]
AS
 [IF UPDATE(column) [{AND | OR} UPDATE(column)][...]]
code_block

where:

{CREATE | ALTER} TRIGGER trigger_name
Creates a new trigger named trigger_name or alters an existing trigger of that
name by adding or changing trigger properties or the trigger code_block. When
altering an existing trigger, the permissions and dependencies of the existing
trigger are maintained.

ON table_name
Declares the table or view on which the trigger is dependent. Views may have
INSTEAD OF triggers defined on them, as long as they are updatable and do not
have the WITH CHECK clause on them.

Chapter 3: SQL Statement Command Reference | 201

SQLStatem
ent

Com
m

ands
CREATE/ALTER TRIGGER Statement > SQL Server

WITH ENCRYPTION
Encrypts the text of the CREATE TRIGGER statement as shown in the syscom-
ments table. This option is useful to protect important intellectual property.
WITH ENCRYPTION prevents the trigger from being used in a SQL Server repli-
cation scheme.

EXEC[UTE] AS {CALLER | SELF | OWNER | 'user_name'}
Specifies the privileges under which the trigger will execute. CALLER indicates
the routine will run with the privileges of the user invoking the routine. When this
clause is omitted, SQL Server assumes CALLER. SELF indicates the routine will
run with the privileges of the creator of the routine. OWNER indicates the routine
will run with the privileges of the current owner of the routine. 'user_name' indi-
cates the routine will run with the privileges of the named, pre-existing user.

FOR | AFTER | INSTEAD OF
Tells SQL Server when the trigger should fire. FOR and AFTER are synonyms and
specify that the trigger should fire only after the triggering data-modification
statement (and any cascading actions and constraint checks) have completed
successfully. The INSTEAD OF trigger is similar to the ANSI BEFORE trigger in
that the code of the trigger may completely replace the data-modification opera-
tion. It specifies that the trigger be executed instead of the data-modification
statement that fired the trigger. INSTEAD OF DELETE triggers cannot be used
when there is a cascading action on the delete. Only INSTEAD OF triggers can
access TEXT, NTEXT, or IMAGE columns.

dml_events
Specifies an ANSI-standard DML event that causes the trigger to fire: DELETE,
INSERT, and/or UPDATE. You may specify one or more DML events in a single
statement.

ddl_events
Specifies a DDL event that causes the trigger to fire: CREATE, ALTER, DROP,
GRANT, DENY, REVOKE, BIND, UNBIND, RENAME, or UPDATE STATIS-
TICS. DDL events may fire FOR or AFTER the event. You may also specify a
trigger that fires FOR or AFTER LOGON. SQL Server also has a number of short-
cuts called “DDL Event Groups” that include many DDL events with one term:
for example, DDL_TABLE_EVENTS includes the CREATE, ALTER, and DROP
TABLE DDL events. Refer to the SQL Server documentation for a full listing of
DDL Event Groups.

WITH APPEND
Adds an additional trigger of an existing type to a table or view. This clause is
supported for backward compatibility with earlier versions of the product and can
be used only with FOR triggers. This clause cannot be used with INSTEAD OF
triggers or if AFTER is explicitly stated during creation, nor can it be used with
CLR triggers.

NOT FOR REPLICATION
Prevents data-manipulation operations invoked through SQL Server’s built-in
replication engine from firing the trigger.

IF UPDATE(column) [{AND | OR} UPDATE(column)][.. .]
Allows you to choose the specific columns that fire the trigger. A column-specific
trigger fires only on UPDATE and INSERT operations, not on DELETE opera-
tions. If an UPDATE or INSERT occurs on any columns not in the column list, the
trigger will not fire.

202 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TRIGGER Statement > SQL Server

SQL Server allows multiple triggers for a given data-manipulation operation on a table
or view. Thus, three UPDATE triggers are possible on a single table, and multiple
AFTER triggers are possible on a given table. Their specific order is undefined, though
the first and last triggers can be explicitly declared using the sp_settriggerorder system
stored procedure. Only one INSTEAD OF trigger is possible per INSERT, UPDATE,
or DELETE statement on a given table.

In SQL Server, any combination of triggers is possible in a single trigger definition
statement; simply separate each option with a comma. (When you do so, the same
code fires for each statement in the combination definition.)

SQL Server implicitly fires in the FOR EACH STATEMENT style of the ANSI
standard.

SQL Server instantiates two important pseudotables when a trigger is fired: deleted
and inserted. They are equivalent, respectively, to the before and after pseudotables
described earlier, in the SQL2003 section. These tables are identical in structure to
the table on which the triggers are defined, except that they contain the old data
before the data-modification statement fired (deleted) and the new values of the table
after the data-modification statement has fired (inserted).

The AS IF UPDATE(column) clause tests specifically for INSERT or UPDATE actions
on a given column or columns, in the way the ANSI statement uses the
UPDATE(column) syntax. Specify multiple columns by adding separate
UPDATE(column) clauses after the first. Follow the AS IF UPDATE(column) clause
with a Transact-SQL BEGIN...END block to allow the trigger to fire multiple
Transact-SQL operations. This clause is functionally equivalent to the IF...THEN...
ELSE operation.

In addition to intercepting data-modification statements as shown in the ANSI SQL
example, SQL Server allows you to perform other sorts of actions when a data-
modification operation occurs. In the following example, we’ve decided that the table
sales_archive_2002 is off-limits and that anyone who attempts to alter data in this
table is to be notified of that restriction:

CREATE TRIGGER archive_trigger
ON sales_archive_2002
FOR INSERT, UPDATE
AS RAISERROR (50009, 16, 10, 'No changes allowed to this table')
GO

SQL Server does not allow the following statements within the Transact-SQL code_
block of a trigger: ALTER, CREATE, DROP, DENY, GRANT, REVOKE, LOAD,
RESTORE, RECONFIGURE, or TRUNCATE. In addition, it does not allow any DISK
statements or the UPDATE STATISTICS command.

SQL Server allows triggers to fire recursively using the recursive triggers setting of the
sp_dboption system stored procedure. Recursive triggers, by their own action, cause
themselves to fire again. For example, if an INSERT trigger on table T1 performs an
INSERT operation on table T1, it might perform a recursive operation. Since recursive
triggers can be dangerous, this functionality is disabled by default.

Similarly, SQL Server allows nested triggers up to 32 levels deep. If any one of the
nested triggers performs a ROLLBACK operation, no further triggers execute. An
example of nested triggers is a trigger on table T1 firing an operation against table T2,
which also has a trigger that fires an operation against table T3. The triggers cancel if
an infinite loop is encountered. Nested triggers are enabled with the nested triggers

Chapter 3: SQL Statement Command Reference | 203

SQLStatem
ent

Com
m

ands
CREATE/ALTER TRIGGER Statement > SQL Server

setting of the system stored procedure sp_configure. If nested triggers are disabled,
recursive triggers are disabled as well, regardless of what the recursive triggers setting
is in sp_dboption.

In the following example, we want to reroute the user activity that occurs on the
people table—especially UPDATE transactions—so that changes to records in the
people table are instead written to the people_reroute table. Our update trigger will
record any changes to columns 2, 3, or 4 of the people table and write them to the
people_reroute table. The trigger will also record which user issued the UPDATE
statement and the time of the transaction:

CREATE TABLE people
 (people_id CHAR(4),
 people_name VARCHAR(40),
 people_addr VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2),
 zip CHAR(5),
 phone CHAR(12),
 sales_rep empid NOT NULL)
GO
CREATE TABLE people_reroute
 (reroute_log_id UNIQUEIDENTIFIER DEFAULT NEWID(),
 reroute_log_type CHAR (3) NOT NULL,
 reroute_people_id CHAR(4),
 reroute_people_name VARCHAR(40),
 reroute_people_addr VARCHAR(40),
 reroute_city VARCHAR(20),
 reroute_state CHAR(2),
 reroute_zip CHAR(5),
 reroute_phone CHAR(12),
 reroute_sales_rep empidNOT NULL,
 reroute_user sysname DEFAULT SUSER_SNAME(),
 reroute_changed datetime DEFAULT GETDATE())
GO
CREATE TRIGGER update_person_data
ON people
FOR update AS
IF (COLUMNS_UPDATED(people_name)
 OR COLUMNS_UPDATEE(people_addr)
 OR COLUMNS_UPDATED(city))
BEGIN
-- Audit OLD record
 INSERT INTO people_reroute (reroute_log_type, reroute_people_id,
 reroute_people_name, reroute_people_addr, reroute_city)
 SELECT 'old', d.people_id, d.people_name, d.people_addr, d.city
 FROM deleted AS d
-- Audit NEW record
 INSERT INTO people_reroute (reroute_log_type, reroute_people_id,
 reroute_people_name, reroute_people_addr, reroute_city)
 SELECT 'new', n.people_id, n.people_name, n.people_addr, n.city
 FROM inserted AS n
END
GO

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

204 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TYPE Statement

Note that SQL Server CREATE statements allow deferred name resolution, meaning
that commands will be processed even if they refer to a database object that does not
yet exist in the database.

SQL Server supports the creation of triggers written in Microsoft .NET Framework
common language runtime (CLR) methods that can take and return user-supplied
parameters. These routines have similar CREATE and ALTER declarations to regular
SQL triggers, but the code bodies are external assemblies. Refer to the SQL Server
documentation if you want to learn more about programming routines using the CLR.

See Also
CREATE/ALTER FUNCTION/PROCEDURE
DELETE
DROP
INSERT
UPDATE

CREATE/ALTER TYPE Statement

The CREATE TYPE statement allows you to create a user-defined type (UDT); that is,
a user-defined datatype or “class” in object-oriented terms. UDTs extend SQL capabil-
ities into the realm of object-oriented programming by allowing inheritance and other
object-oriented features. You can also create something called typed tables with the
CREATE TABLE statement using a previously created type made with the CREATE
TYPE statement. Typed tables are based on UDTs and are equivalent to “instantiated
classes” from object-oriented programming.

SQL2003 Syntax
CREATE TYPE type_name
[UNDER supertype_name]
[AS [new_udt_name] datatype [attribute][, ...]
 {[REFERENCES ARE [NOT] CHECKED
 [ON DELETE
 {NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT}]] |
 [DEFAULT value] |
 [COLLATE collation_name]}]
 [[NOT] INSTANTIABLE]
 [[NOT] FINAL]
[REF IS SYTEM GENERATED |
 REF USING datatype
 [CAST {(SOURCE AS REF) | (REF AS SOURCE)} WITH identifier] |
 REF new_udt_name[, ...]]
[CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier]
[method_definition[, ...]]

Platform Command

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Chapter 3: SQL Statement Command Reference | 205

SQLStatem
ent

Com
m

ands
CREATE/ALTER TYPE Statement

The following syntax alters an existing user-defined datatype:

ALTER TYPE type_name {ADD ATTRIBUTE type_definition |
 DROP ATTRIBUTE type_name}

Keywords
{CREATE | ALTER} TYPE type_name

Creates a new type or alters an existing type with the name type_name.

UNDER supertype_name
Creates a subtype that is dependent upon a single, pre-existing, named super-
type. (A UDT can be a supertype if it is defined as NOT FINAL.)

AS [new_udt_name] datatype [attribute][, . . .]
Defines attributes of the type as if they were column declarations in a CREATE
TABLE statement without constraints. You should either define the UDT
attribute on an existing datatype, such as VARCHAR(10), or on another, previ-
ously created UDT, or even on a user-defined domain. Defining a UDT using a
predefined datatype (e.g., CREATE TYPE my_type AS INT) creates a distinct type,
while a UDT defined with an attribute definition is a structured type. The allow-
able attributes for a structured type are:

ON DELETE NO ACTION
Produces an error when the foreign key is violated (the default).

ON DELETE RESTRICT
Synonym for NO ACTION.

ON DELETE CASCADE
Sets the value of the referencing column to the value of the referenced
column.

ON DELETE SET NULL
Sets the value of the referencing column to NULL.

ON DELETE SET DEFAULT value
Defines a default value for the UDT for when the user does not supply a
value. Follows the rules of a DEFAULT in the section.

COLLATE collation_name
Assigns a collation—that is, a sort order—for the UDT. When omitted, the
collation of the database where the UDT was created applies. Follows the
rules of a COLLATION in the section.

[NOT] INSTANTIABLE
Defines the UDT such that it can be instantiated. INSTANTIABLE is required for
typed tables, but not for standard UDTs.

[NOT] FINAL
Required for all UDTs. FINAL means the UDT may have no subtypes. NOT
FINAL means the UDT may have subtypes.

REF
Defines either a system-generated or user-generated reference specification—that
is, a sort of unique identifier that acts as a pointer that another type may refer-
ence. By referencing a pre-existing type using its reference specification, you can
have a new type inherit properties of a pre-existing type. There are three ways to
tell the DBMS how the typed table’s reference column gets its values (i.e., its
reference specification):

206 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TYPE Statement

new_udt_name[, . . .]
Declares that the reference specification is provided by another pre-existing
UDT called new_udt_name.

IS SYSTEM GENERATED
Declares that the reference specification is system-generated (think of an
automatically incrementing column). This is the default when the REF clause
is omitted.

USING datatype [CAST {(SOURCE AS REF) | (REF AS SOURCE)} WITH
identifier]

Declares that the user defines the reference specification. You do this by
using a predefined datatype and optionally casting the value. You can use
CAST (SOURCE AS REF) WITH identifier to cast the value with the speci-
fied datatype to the reference type of the structured type, or use CAST (REF
AS SOURCE) WITH identifier to cast the value for the structured type to
the datatype. The WITH clause allows you to declare an additional identifier
for the cast datatype.

CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier
method_definition[, . . .]

Defines one or more pre-existing methods for the UDT. A method is merely a
specialized user-defined function and is created using the CREATE METHOD state-
ment (see CREATE FUNCTION). The method_definition clause is not needed for
structured types since their method(s) are implicitly created. The default character-
istics of a method are LANGUAGE SQL, PARAMETER STYLE SQL, NOT
DETERMINISTIC, CONTAINS SQL, and RETURN NULL ON NULL INPUT.

ADD ATTRIBUTE type_definition
Adds an additional attribute to an existing UDT, using the format described
earlier under the AS clause. Available via the ALTER TYPE statement.

DROP ATTRIBUTE type_name
Drops an attribute from an existing UDT. Available via the ALTER TYPE statement.

Rules at a Glance
You can create user-defined types as a way to further ensure data integrity in your
database and to ease the work involved in doing so. An important concept of UDTs is
that they allow you to easily create subtypes, which are UDTs built upon other UDTs.
The UDT that subtypes depend on is called a parent type or supertype. Subtypes
inherit the characteristics of their supertypes.

Assume, for example, that you want to define a general UDT for phone numbers
called phone_nbr. You could then easily build new subtypes of phone_nbr called
home_phone, work_phone, cell_phone, pager_phone, etc. Each of the subtypes could
inherit the general characteristics of the parent type but also have characteristics of its
own.

In this example, we create a general root UDT called money and then several subtypes:

CREATE TYPE money (phone_number DECIMAL (10,2))
 NOT FINAL;
CREATE TYPE dollar UNDER money AS DECIMAL(10,2)
 (conversion_rate DECIMAL(10,2)) NOT FINAL;
CREATE TYPE euro UNDER money AS DECIMAL(10,2)
 (dollar_conversion_rate DECIMAL(10,2)) NOT FINAL;
CREATE TYPE pound UNDER euro
 (euro_conversion_rate DECIMAL(10,2)) FINAL;

Chapter 3: SQL Statement Command Reference | 207

SQLStatem
ent

Com
m

ands
CREATE/ALTER TYPE Statement > Oracle

Programming Tips and Gotchas
The biggest programming gotcha for user-defined types is that they are seldom used
and not well understood by most database developers and database administrators.
Consequently, they can be problematic due to simple ignorance. They offer, however,
a consistent and labor-saving approach for representing commonly reused conceptual
elements in a database, such as an address (e.g., street1, street2, city, state, postal code).

MySQL
Not supported.

Oracle
Oracle has CREATE TYPE and ALTER TYPE statements, but they are not ANSI-
standard. Instead of a single CREATE TYPE statement, Oracle uses CREATE TYPE
BODY to define the code that makes up the UDT, while CREATE TYPE defines the
argument specification for the type. The syntax for CREATE TYPE is:

CREATE [OR REPLACE] TYPE type_name
{ [OID 'object_identifier'] [AUTHID {DEFINER | CURRENT_USER}]
 { {AS | IS} OBJECT | [UNDER supertype_name] |
 {OBJECT | TABLE OF datatype | VARRAY (limit) OF datatype} }
 EXTERNAL NAME java_ext_name LANGUAGE JAVA USING data_definition
 { [(attribute datatype[, ...]) [EXTERNAL NAME 'name'] |
 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]
 [{ {MEMBER | STATIC}
 {function_based | procedure_based} | constructor_clause |

map_clause } [...]]
 [pragma_clause]] } }

Once the type has been declared, you encapsulate all of the UDT logic in the type
body declaration. The type_name for both CREATE TYPE and CREATE TYPE BODY
should be identical. The syntax for CREATE TYPE BODY is shown here:

CREATE [OR REPLACE] TYPE BODY type_name
{AS | IS}
{{MEMBER | STATIC}
{function_based | procedure_based | constructor_clause}}[...]
[map_clause]

Oracle’s implementation of ALTER TYPE enables you to drop or add attributes and
methods from or to the type:

ALTER TYPE type_name
 {COMPILE [DEBUG] [{SPECIFICATION | BODY}]
 [compiler_directives] [REUSE SETTINGS] |
 REPLACE [AUTHID {DEFINER | CURRENT_USER}] AS OBJECT
 (attribute datatype[, ...] [element_definition[, ...]]) |
 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]
 { {ADD | DROP} { {MAP | ORDER} MEMBER FUNCTION function_name
 (parameter datatype[, ...]) } |
 { {MEMBER | STATIC} {function_based | procedure_based} |

constructor_clause | map_clause [pragma_clause] } [...] |
 {ADD | DROP | MODIFY} ATTRIBUTE (attribute [datatype][, ...]) |
 MODIFY {LIMIT int | ELEMENT TYPE datatype} }
 [{INVALIDATE |
 CASCADE [{ [NOT] INCLUDING TABLE DATA | CONVERT TO SUBSTITUTABLE }]
 [FORCE] [EXCEPTIONS INTO table_name]}]}

208 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TYPE Statement > Oracle

Parameters for the three statements are as follows:

OR REPLACE
Recreates the UDT if it already exists. Objects that depend on the type are
marked as DISABLED after you recreate the type.

AUTHID {DEFINER | CURRENT_USER}
Determines what user permissions any member functions or procedures are
executed under and how external name references are resolved. (Note that
subtypes inherit the permission styles of their supertypes.) This clause can be
used only with an OBJECT type, not with a VARRAY type or a nested table type.

DEFINER
Executes functions or procedures under the privileges of the user who
created the UDT. Also specifies that unqualified object names (object names
without a schema definition) in SQL statements are resolved to the schema
where the member functions or procedures reside.

CURRENT_USER
Executes functions or procedures under the privileges of the user who
invoked the UDT. Also specifies that unqualified object names in SQL state-
ments are resolved to the schema of the user who invoked the UDT.

UNDER supertype_name
Declares that the UDT is a subtype of another, pre-existing UDT. The supertype
UDT must be created with the AS OBJECT clause. A subtype will inherit the
properties of the supertype, though you should override some of those or add
new properties to differentiate it from the supertype.

OID 'object_identifier'
Declares an equivalent identical object, of the name 'object_identifier', in more
than one database. This clause is most commonly used by those developing
Oracle Data Cartridges and is seldom used in standard SQL statement
development.

AS OBJECT
Creates the UDT as a root object type (the top-level object in a UDT hierarchy of
objects).

AS TABLE OF datatype
Creates a named nested table type of a UDT called datatype. The datatype cannot be
an NCLOB, but CLOB and BLOB are acceptable. If the datatype is an object type,
the columns of the nested table must match the name and attributes of the object
type.

AS VARRAY (limit) OF datatype
Creates the UDT as an ordered set of elements, all of the same datatype. The
limit is an integer of zero or more. The type name must be a built-in datatype, a
REF, or an object type. The VARRAY cannot contain LOB or XMLType
datatypes. VARRAY may be substituted with VARYING ARRAY.

EXTERNAL NAME java_ext_name LANGUAGE JAVA USING data_definition
Maps a Java class to a SQL UDT by specifying the name of a public Java external
class, java_ext_name. Once defined, all objects in a Java class must be Java objects.
The data_definition may be SQLData, CustomDatum, or OraData, as defined in
the “Oracle9i JDBC Developers Guide.” You can map many Java object types to the
same class, but there are two restrictions. First, you should not map two or more
subtypes of a common datatype to the same class. Second, subtypes must be
mapped to an immediate subclass of the class to which their supertype is mapped.

Chapter 3: SQL Statement Command Reference | 209

SQLStatem
ent

Com
m

ands
CREATE/ALTER TYPE Statement > Oracle

datatype
Declares the attributes and datatypes used by the UDT. Oracle does not allow
ROWID, LONG, LONG ROW, or UROWID. Nested tables and VARRAYs do
not allow attributes of AnyType, AnyData, or AnyDataSet.

EXTERNAL NAME 'name' [NOT] OVERRIDING
Declares that this method overrides a MEMBER method defined in the supertype
(OVERRIDING) or not (NOT OVERRIDING, the default). This clause is valid
only for MEMBER clauses.

 MEMBER | STATIC
Describes the way in which subprograms are associated with the UDT as
attributes. MEMBER has an implicit first argument referenced as SELF, as in
object_expression.method(). STATIC has no implicit arguments, as in type_name.
method(). The following bases are allowed to call subprograms:

function_based
Declares a subprogram that is function-based using the syntax:

FUNCTION function_name (parameter datatype[, ...])
return_clause | java_object_clause

This clause allows you to define the PL/SQL function-based UDT body
without resorting to the CREATE TYPE BODY statement. The function_
name cannot be the name of any existing attribute, including those inherited
from supertypes. The return_clause and java_object_clause are defined
later in this list.

procedure_based
Declares a subprogram that is function-based using the syntax:

PROCEDURE procedure_name (parameter datatype[, ...])
{AS | IS} LANGUAGE {java_call_spec | c_call_spec}

This clause allows you to define the PL/SQL procedure-based UDT body
without resorting to the CREATE TYPE BODY statement. The procedure_
name cannot be the name of any existing attribute, including those inherited
from supertypes. Refer to the entries on java_call_spec and c_call_spec
later in this list for details on those clauses.

constructor_clause
Declares one or more constructor specifications, using the following syntax:

[FINAL] [INSTANTIABLE] CONSTRUCTOR FUNCTION datatype
 [([SELF IN OUT datatype,] parameter datatype[, ...])]
RETURN SELF AS RESULT
 [{AS | IS} LANGUAGE {java_call_spec | c_call_spec}]

A constructor specification is a function that returns an initialized instance of a
UDT. Constructor specifications are always FINAL, INSTANTIABLE, and SELF
IN OUT, so these keywords are not required. The java_call_spec and c_call_
spec subclauses may be replaced with a PL/SQL code block in the CREATE TYPE
BODY statement. (Refer to the entries on java_call_spec and c_call_spec later in
this list for details.)

map_clause
Declares the mapping or ordering of a supertype, using the following syntax:

{MAP | ORDER} MEMBER function_based

210 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TYPE Statement > Oracle

MAP uses more efficient algorithms for object comparison and is best in situa-
tions where you’re performing extensive sorting or hash joins. MAP MEMBER
specifies the relative position of a given instance in the ordering of all instances of
the UDT. ORDER MEMBER specifies the explicit position of an instance and
references a function_based subprogram that returns a NUMBER datatype value.
Refer to the entry on function_based earlier in this list for details.

return_clause
Declares the datatype return format of the SQL UDT using the syntax:

RETURN datatype [{AS | IS} LANGUAGE {java_call_spec |
c_call_spec}]

java_object_clause
Declares the return format of the Java UDT using the syntax:

RETURN {datatype | SELF AS RESULT} EXTERNAL [VARIABLE] NAME
 'java_name'

If you use the EXTERNAL clause, the value of the public Java method must be
compatible with the SQL returned value.

pragma_clause
Declares a pragma restriction (that is, an Oracle precompiler directive) for the
type using the syntax:

PRAGMA RESTRICT REFERENCES ({DEFAULT | method_name},
{RNDS | WNDS |RNPS | WNPS | TRUST}[, ...])

This feature is deprecated and should be avoided. It is intended to control how
UDTs read and write database tables and variables.

DEFAULT
Applies the pragma to all methods in the type that don’t have another
pragma in place.

method_name
Identifies the exact method to which to apply the pragma.

RNDS
Reads no database state—no database reads allowed.

WNDS
Writes no database state—no database writes allowed.

RNPS
Reads no package state—no package reads allowed.

WNPS
Writes no package state—no package writes allowed.

TRUST
States that the restrictions of the pragma are assumed but not enforced.

java_call_spec
Identifies the Java implementation of a method using the syntax JAVA NAME
'string'. This clause allows you to define the Java UDT body without resorting
to the CREATE TYPE BODY statement.

c_call_spec
Declares a C language call specification using the syntax:

C [NAME name] LIBRARY lib_name [AGENT IN (argument)]
[WITH CONTEXT] [PARAMETERS (parameter[, ...])]

Chapter 3: SQL Statement Command Reference | 211

SQLStatem
ent

Com
m

ands
CREATE/ALTER TYPE Statement > Oracle

This clause allows you to define the C UDT body without resorting to the
CREATE TYPE BODY statement.

COMPILE
Compiles the object type specification and body. This is the default when neither
a SPECIFICATION clause nor a BODY clause is defined.

DEBUG
Generates and stores additional codes for the PL/SQL debugger. Do not specify
both DEBUG and the compiler_directive PLSQL_DEBUG.

 SPECIFICATION | BODY
Indicates whether to recompile the SPECIFICATION of the object type (created
by the CREATE TYPE statement) or the BODY (created by the CREATE TYPE
BODY statement).

compiler_directives
Defines a special value for the PL/SQL compiler in the format directive = 'value'.
The directives are: PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_
DEBUG, PLSQL_WARNINGS, and NLS_LENGTH_SEMANTICS. They may
each specify a value once in the statement. The directive is valid only for the unit
being compiled.

REUSE SETTINGS
Retains the original value for the compiler_directives.

REPLACE AS OBJECT
Adds new member subtypes to the specification. This clause is valid only for
object types.

[NOT] OVERRIDING
Indicates that the method overrides a MEMBER method defined in the super-
type. This clause is valid only with MEMBER methods and is required for
methods that define (or redefine, using ALTER) a supertype method. NOT
OVERRIDING is the default if this clause is omitted.

ADD
Adds a new MEMBER function, function- or procedure-based subprogram, or
attribute to the UDT.

DROP
Drops an existing MEMBER function, function- or procedure-based subprogram,
or attribute from the UDT.

MODIFY
Alters the properties of an existing attribute of the UDT.

MODIFY LIMIT int
Increases the number of elements in a VARRAY collection type up to int, as long
as int is greater than the current number of elements in the VARRAY. Not valid
for nested tables.

MODIFY ELEMENT TYPE datatype
Increases the precision, size, or length of a scalar datatype of a VARRAY or nested
table. This clause is valid for any non-object collection type. If the collection is a
NUMBER, you may increase its precision or scale. If the collection is a RAW, you
may increase its maximum size. If the collection is a VARCHAR2 or
NVARCHAR2, you may increase its maximum length.

212 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TYPE Statement > Oracle

INVALIDATE
Invalidates all dependent objects without checks.

CASCADE
Cascades the change to all subtypes and tables. By default, the action will be
rolled back if any errors are encountered in the dependent types or tables.

[NOT] INCLUDING TABLE DATA
Converts data stored in the UDT columns to the most recent version of the
column’s type (INCLUDING TABLE DATA, the default), or not (NOT
INCLUDING TABLE DATA). When NOT, Oracle checks the metadata but does
not check or update the dependent table data.

CONVERT TO SUBSTITUTABLE
Used when changing a type from FINAL to NOT FINAL. The altered type then
can be used in substitutable tables and columns, as well as in subtypes, instances
of dependent tables, and columns.

FORCE
Causes the CASCADE operation to go forward, ignoring any errors found in
dependent subtypes and tables. All errors are logged to a previously created
EXCEPTIONS table.

EXCEPTIONS INTO table_name
Logs all error data to a table previously created using the system package DBMS_
UTILITY.CREATE_ALTER_TYPE_ERROR_TABLE.

In this example, we create a Java SQLJ object type called address_type:

CREATE TYPE address_type AS OBJECT
 EXTERNAL NAME 'scott.address' LANGUAGE JAVA
 USING SQLDATA (street1 VARCHAR(30) EXTERNAL NAME 'str1',
 street2 VARCHAR(30) EXTERNAL NAME 'str2',
 city VARCHAR(30) EXTERNAL NAME 'city',
 state CHAR(2) EXTERNAL NAME 'st',
 locality_code CHAR(15) EXTERNAL NAME 'lc',
 STATIC FUNCTION square_feet RETURN NUMBER
 EXTERNAL VARIABLE NAME 'square_feet',
 STATIC FUNCTION create_addr (str VARCHAR,
 City VARCHAR, state VARCHAR, zip NUMBER)
 RETURN address_type
 EXTERNAL NAME 'create (java.lang.String,
 java.lang.String, java.lang.String, int)
 return scott.address',
 MEMBER FUNCTION rtrims RETURN SELF AS RESULT
 EXTERNAL NAME 'rtrim_spaces () return scott.address')
NOT FINAL;

We could create a UDT using a VARRAY type with four elements:

CREATE TYPE employee_phone_numbers AS VARRAY(4) OF CHAR(14);

In the following example, we alter the address_type that we created earlier by adding a
VARRAY called phone_varray:

ALTER TYPE address_type
 ADD ATTRIBUTE (phone phone_varray) CASCADE;

In this last example, we’ll create a supertype and a subtype called menu_item_type and
entry_type, respectively:

Chapter 3: SQL Statement Command Reference | 213

SQLStatem
ent

Com
m

ands
CREATE/ALTER TYPE Statement > PostgreSQL

CREATE OR REPLACE TYPE menu_item_type AS OBJECT
(id INTEGER, title VARCHAR2(500),
 NOT INSTANTIABLE
 MEMBER FUNCTION fresh_today
 RETURN BOOLEAN)
NOT INSTANTIABLE
NOT FINAL;

In the preceding example, we created a type specification (but not the type body) that
defines items that may appear on a menu at a café. Included with the type specifica-
tion is a subprogram method called fresh_today, a Boolean indicator that tells whether
the menu item is made fresh that day. The NOT FINAL clause that appears at the end
of the code tells Oracle that this type may serve as the supertype (or base type) to other
subtypes that we might derive from it. So now, let’s create the entre_type:

CREATE OR REPLACE TYPE entry_type UNDER menu_item_type
(entre_id INTEGER, desc_of_entre VARCHAR2(500),
 OVERRIDING MEMBER FUNCTIOIN fresh_today
 RETURN BOOLEAN)
NOT FINAL;

PostgreSQL
PostgreSQL supports both an ALTER TYPE statement and a CREATE TYPE state-
ment used to create a new datatype. PostgreSQL’s implementation of the CREATE
TYPE statement is nonstandard:

CREATE TYPE type_name
 (INPUT = input_function_name,
 OUTPUT = output_function_name
[, INTERNALLENGTH = { int | VARIABLE }]
[, DEFAULT = value]
[, ELEMENT = array_element_datatype]
[, DELIMITER = delimiter_character]
[, PASSEDBYVALUE]
[, ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}]
[, STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}]
[, SEND = send_function]
[, RECEIVE = receive_function]
[, ANALYZE = analyze_function])

PostgreSQL allows you to change the schema or owner of an existing type using the
ALTER TYPE statement:

ALTER TYPE type_name [OWNER TO new_owner_name] [SET SCHEMA new_schema_name]

The parameters are as follows:

CREATE TYPE type_name
Creates a new user-defined datatype called type_name. The name may not exceed
30 characters in length, nor may it begin with an underscore.

INPUT = input_function_name
Declares the name of a previously created function that converts external argu-
ment values into a form usable by the type’s internal form.

OUTPUT = output_function_name
Declares the name of a previously created function that converts internal output
values to a display format.

214 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER TYPE Statement > PostgreSQL

INTERNALLENGTH = { int | VARIABLE }
Specifies a numeric value, int, for the internal length of the new type, if the
datatype is fixed-length. The keyword VARIABLE (the default) declares that
the internal length is variable.

DEFAULT = value
Defines a value for type when it defaults.

ELEMENT = array_element_datatype
Declares that the datatype is an array and that array_element_datatype is the
datatype of the array elements. For example, an array containing integer values
would be ELEMENT = INT4. In general, you should allow the array_element_
datatype value to default. The only time you might want to override the default is
when creating a fixed-length UDT composed of an array of multiple identical
elements that need to be directly accessible by subscripting.

DELIMITER = delimiter_character
Declares a character to be used as a delimiter between output values of an array
produced by the type. Only used with the ELEMENT clause. The default is a
comma.

PASSEDBYVALUE
Specifies that the values of the datatype are passed by value and not by reference.
This optional clause cannot be used for types whose value is longer than the
DATUM datatype (4 bytes on most operating systems, 8 bytes on a few others).

ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}
Defines a storage alignment for the type. Four datatypes are allowed, with each
equating to a specific boundary: CHAR equals a 1-byte boundary, INT2 equals a
2-byte boundary, INT4 equals a 4-byte boundary (the requirement for a variable-
length UDT on PostgreSQL), and DOUBLE equals an 8-byte boundary.

STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}
Defines a storage technique for variable-length UDTs. (PLAIN is required for
fixed-length UDTs.) Four types are allowed:

PLAIN
Stores the UDT inline, when declared as the datatype of a column in a table,
and uncompressed.

EXTERNAL
Stores the UDT outside of the table without trying to compress it first.

EXTENDED
Stores the UDT as a compressed value if it fits inside the table. If it is too
long, PostgreSQL will save the UDT outside of the table.

MAIN
Stores the UDT as a compressed value within the table. Bear in mind,
however, that there are situations where PostgreSQL cannot save the UDT
within the table because it is just too large. The MAIN storage parameter
puts the highest emphasis on storing UDTs with all other table data.

SEND = send_function
Converts the internal representation of the type to the external binary representa-
tion. Usually coded in C or another low-level language.

RECEIVE = receive_function
Converts the text’s external binary representation to the internal representation.
Usually coded in C or another low-level language.

Chapter 3: SQL Statement Command Reference | 215

SQLStatem
ent

Com
m

ands
CREATE/ALTER TYPE Statement > SQL Server

ANALYZE = analyze_function
Performs type-specific statistical collection for columns of the type.

More details on the SEND, RECEIVE, and ANALYZE functions are
available in the PostgreSQL documentation.

When you create a new datatype in PostgreSQL, it is available only in the current data-
base. The user who created the datatype is the owner. When you create a new type,
the parameters may appear in any order and are largely optional, except for the first
two (the input and output functions).

To create a new datatype, you must create at least two functions before defining the type
(see the earlier section “CREATE/ALTER FUNCTION/PROCEDURE Statements”). In
summary, you must create an INPUT function that provides the type with external
values that can be used by the operators and functions defined for the type, as well as an
OUTPUT function that renders a usable external representation of the datatype. There
are some additional requirements when creating the input and output functions:

• The input function should either take one argument of type OPAQUE or take
three arguments of OPAQUE, OID, and INT4. In the latter case, OPAQUE is the
input text of a C string, OID is the element type for array types, and INT4 (if
known) is the typemod of the destination column.

• The output function should either take one argument of type OPAQUE or take
two arguments of type OPAQUE and OID. In the latter case, OPAQUE is the
datatype itself and OID is the element type for array types, if needed.

For example, we can create a UDT called floorplan and use it to define a column in
two tables, one called house and one called condo:

CREATE TYPE floorplan
 (INTERNALLENGTH=12, INPUT=squarefoot_calc_proc,
 OUTPUT=out_floorplan_proc);
CREATE TABLE house
 (house_plan_id int4,
 size floorplan,
 descrip varchar(30));
CREATE TABLE condo
 (condo_plan_id INT4,
 size floorplan,
 descrip varchar(30)
 location_id varchar(7));

SQL Server
SQL Server supports the CREATE TYPE statement, but not the ALTER TYPE state-
ment. New datatypes can also be added to SQL Server using the non-ANSI system
stored procedure sp_addtype. The syntax for SQL Server’s implementation of
CREATE TYPE follows:

CREATE TYPE type_name
{ FROM base_type [(precision [, scale])] [[NOT] NULL] |
 AS TABLE table_definition |

CLR_definition }

where:

216 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER VIEW Statement

FROM base_type
Supplies the datatype upon which the datatype alias is based. The datatype may
be one of the following: BIGINT, BINARY, BIT, CHAR, DATE, DATETIME,
DATETIME2, DATETIMEOFFSET, DECIMAL, FLOAT, IMAGE, INT, MONEY,
NCHAR, NTEXT, NUMERIC, NVARCHAR, REAL, SMALLDATETIME,
SMALLINT, SMALLMONEY, SQL_VARIANT, TEXT, TIME, TINYINT,
UNIQUEIDENTIFIER, VARBINARY, or VARCHAR. Where appropriate to the
datatype, a precision and scale may be defined.

[NOT] NULL
Specifies whether the type can hold a NULL value. When omitted, NULL is the
default.

AS TABLE table_definition
Specifies a user-defined table type with columns, datatypes, keys, constraints
(such as CHECK, UNIQUE, and PRIMARY KEY), and properties (such as CLUS-
TERED and NONCLUSTERED), just like a regular table.

SQL Server supports the creation of types written in Microsoft .NET Framework
common language runtime (CLR) methods that can take and return user-supplied
parameters. These types have similar CREATE and ALTER declarations to regular
SQL types; however, the code bodies are external assemblies. Refer to the SQL Server
documentation if you want to learn more about programming routines using the CLR.

User-defined types created with sp_addtype are accessible by the public database role.
However, permission to access user-defined types created with CREATE TYPE must
be granted explicitly, including to PUBLIC.

See Also
CREATE/ALTER FUNCTION/PROCEDURE
DROP

CREATE/ALTER VIEW Statement

This statement creates a view (also known as a virtual table). A view acts just like a
table but is actually defined as a query. When a view is referenced in a statement, the
result set of the query becomes the content of the view for the duration of that state-
ment. Almost any valid SELECT statement can define the contents of a view, though
some platforms restrict the certain clauses of the SELECT statement and certain set
operators.

In some cases, views can be updated, causing the view changes to be translated to the
underlying data in the base tables. Some database platforms support a materialized
view; that is, a physically created table that is defined with a query just like a view.

ALTER VIEW is not an ANSI-supported statement.

Chapter 3: SQL Statement Command Reference | 217

SQLStatem
ent

Com
m

ands
CREATE/ALTER VIEW Statement

SQL2003 Syntax
CREATE [RECURSIVE] VIEW view_name {[(column[, ...])] |
[OF udt_name [UNDER supertype_name
 [REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}]
 [column_name WITH OPTIONS SCOPE table_name]]]}
AS select_statement [WITH [CASCADED | LOCAL] CHECK OPTION]

Keywords
CREATE VIEW view_name

Creates a new view using the supplied name.

RECURSIVE
Creates a view that derives values from itself. It must have a column clause and
may not use the WITH clause.

[(column[, . . .])]
Names all of the columns in the view. The number of columns declared here must
match the number of columns generated by the select_statement. When omitted,
the columns in the view derive their names from the columns in the table. This
clause is required when one or more of the columns is derived and does not have
a base table column to reference.

OF udt_name [UNDER supertype_name]
Defines the view on a UDT rather than on the column clause. The typed view is
created using each attribute of the type as a column in the view. Use the UNDER
clause to define a view on a subtype.

REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}
Defines the object-ID column for the view.

column_name WITH OPTIONS SCOPE table_name
Provides scoping for a reference column in the view. (Since the columns are
derived from the type, there is no column list. Therefore, to specify column
options, you must use column_name WITH OPTIONS....)

AS select_statement
Defines the exact SELECT statement that provides the data of the view.

WITH [CASCADED | LOCAL] CHECK OPTION
Used only on views that allow updates to their base tables. Ensures that only data
that may be read by the view may be inserted, updated, or deleted by the view.
For example, if a view of employees showed salaried employees but not hourly
employees, it would be impossible to insert, update, or delete hourly employee
records through that view. The CASCADED and LOCAL options of the CHECK
OPTION clause are used for nested views. CASCADED performs the check
option for the current view and all views upon which it is built; LOCAL performs
the check option only for the current view, even when it is built upon other views.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

218 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER VIEW Statement

Rules at a Glance
Views are usually only as effective as the queries upon which they are based. That is
why it is important to be sure that the defining SELECT statement is speedy and well
written. The simplest view is based on the entire contents of a single table:

CREATE VIEW employees
AS
SELECT *
FROM employee_tbl;

A column list also may be specified after the view name. The optional column list
contains aliases serving as names for each element in the result set of the SELECT
statement. If you use a column list, you must provide a name for every column
returned by the SELECT statement. If you don’t use a column list, the columns of the
view will be named whatever the columns in the SELECT statement are called. You
will sometimes see complex SELECT statements within a view that make heavy use of
AS clauses for all columns, because that allows the developer of the view to put mean-
ingful names on the columns without including a column list.

The ANSI standard specifies that you must use a column list or an AS clause.
However, some vendors allow more flexibility, so follow these rules for when to use an
AS clause:

• When the SELECT statement contains calculated columns, such as (salary * 1.04)

• When the SELECT statement contains fully qualified column names, such as
pubs.scott.employee

• When the SELECT statement contains more than one column of the same name
(though with separate schema or database prefixes)

For example, the following two view declarations have the same functional result:

-- Using a column list
CREATE VIEW title_and_authors
 (title, author_order, author, price, avg_monthly_sales,
 publisher)
AS
SELECT t.title, ta.au_ord, a.au_lname, t.price, (t.ytd_sales / 12),
 t.pub_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0;

-- Using the AS clause with each column
CREATE VIEW title_and_authors
AS
SELECT t.title AS title, ta.au_ord AS author_order,
 a.au_lname AS author, t.price AS price,
 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0

Alternatively, you can change the titles of columns using the column list. In this case,
we’ll change avg_monthly_sales to avg_sales. Note that the code overrides the default
column names provided by the AS clauses (in bold):

Chapter 3: SQL Statement Command Reference | 219

SQLStatem
ent

Com
m

ands
CREATE/ALTER VIEW Statement

CREATE VIEW title_and_authors
 (title, author_order, author, price, avg_sales, publisher)
AS
SELECT t.title AS title, ta.au_ord AS author_order,
 a.au_lname AS author, t.price AS price,
 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0;

An ANSI-standard view can update the base table(s) it is based upon if it meets the
following conditions:

• The view does not have UNION, EXCEPT, or INTERSECT operators.

• The defining SELECT statement does not contain GROUP BY or HAVING
clauses.

• The defining SELECT statement does not contain any reference to non-ANSI
pseudocolumns such as ROWNUM or ROWGUIDCOL.

• The defining SELECT statement does not contain the DISTINCT clause.

• The view is not materialized.

This example shows a view named california_authors that allows data modifications
to apply only to authors within the state of California:

CREATE VIEW california_authors
AS
SELECT au_lname, au_fname, city, state
FROM authors
WHERE state = 'CA'
WITH LOCAL CHECK OPTION

The view shown in this example would accept INSERT, DELETE, and UPDATE state-
ments against the base table but guarantee that all inserted, updated, or deleted
records contain a state of ‘CA’ using the WITH...CHECK clause.

The most important rule to remember when updating a base table through a view is
that all columns in a table that are defined as NOT NULL must receive a not-NULL
value when receiving a new or changed value. You can do this explicitly by directly
inserting or updating a not-NULL value into the column, or by relying on a default
value. In addition, views do not lift constraints on the base table. Thus, the values
being inserted into or updated in the base table must meet all the constraints originally
placed on the table through unique indexes, primary keys, CHECK constraints, etc.

Programming Tips and Gotchas
Views also can be built upon other views, but this is inadvisable and usually consid-
ered bad practice. Depending on the platform, such a view may take longer to compile,
but may offer the same performance as a transaction against the base table(s). On
other platforms, where each view is dynamically created as it is invoked, nested views
may take a long time to return a result set because each level of nesting means that
another query must be processed before a result set is returned to the user. In this
worst-case scenario, a three-level nested view must make three correlated query calls
before it can return results to the user.

220 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER VIEW Statement > MySQL

Although materialized views are defined like views, they take up space more like
tables. Ensure that you have enough space available for the creation of materialized
views.

MySQL
MySQL supports both a CREATE VIEW and an ALTER VIEW statement. MySQL
doesn’t support SQL3 recursive views, UDT and supertyped views, or views using
REF. The syntax for both statements follows:

{ALTER | CREATE [OR REPLACE]}
[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = {user_name | CURRENT_USER}]
[SQL SECURITY {DEFINER | INVOKER}]
VIEW view_name [(column[, ...])]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

where:

ALTER | CREATE [OR REPLACE]
Alters an existing view or creates (or replaces) a view.

ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}
Specifies how MySQL should process the view. MERGE tells MySQL to merge
the query plans of the query referencing the view and the underlying view itself to
achieve optimal performance. TEMPTABLE tells MySQL to first retrieve the
results of the view into a temporary table, then act upon the query that called the
view against the temporary table. UNDEFINED tells MySQL to choose the best
algorithm to process the view. When this clause is omitted, UNDEFINED is the
default.

DEFINER = {user_name | CURRENT_USER}
Specifies the user account to use when checking privileges. You may specify either
a pre-existing user, or the user who issued the CREATE TRIGGER statement (i.e.,
the CURRENT_USER). CURRENT USER is the default when this clause is
omitted.

SQL SECURITY {DEFINER | INVOKER}
Specifies the security context under which the view runs: either that of the user
that created the view (DEFINER, the default when this clause is omitted), or the
user running the view (INVOKER).

In MySQL, tables and views may not have the same names, because they share the
same namespace.

Oracle
Oracle supports extensions to the ANSI standard to create object-oriented views,
XMLType views, and views that support LOB and object types:

CREATE [OR REPLACE] [[NO] FORCE] VIEW view_name
 {[(column[, ...]) [constraint_clause]] |
 [OF type_name {UNDER parent_view |
 WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, ...])}
 [(constraint_clause)]}] |
 [OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT
 {element | xml_schema_url # element}]
 WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, ...])}]]}

Chapter 3: SQL Statement Command Reference | 221

SQLStatem
ent

Com
m

ands
CREATE/ALTER VIEW Statement > Oracle

AS
(select statement)
[WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]]]

Oracle’s implementation of the ALTER VIEW statement supports added capabilities,
such as adding, dropping, or modifying constraints associated with the view. In addi-
tion, the ALTER VIEW statement will explicitly recompile a view that is invalid,
enabling you to locate recompilation errors before runtime. This recompiling feature
enables you to determine whether a change in a base table negatively impacts any
dependent views:

ALTER VIEW view_name
 {ADD constraint_clause |
 MODIFY CONSTRAINT constraint_clause [NO]RELY]] |

DROP {PRIMARY KEY | CONSTRAINT constraint_clause | UNIQUE (column[, ...])}}
COMPILE

The parameters are:

OR REPLACE
Replaces any existing view of the same view_name with the new view.

[NO] FORCE
The FORCE clause creates the view regardless of whether the base tables exist or
the user creating the view has privileges to read from or write to the base tables,
views, or functions defined in the view. The FORCE clause also creates the view
regardless of any errors that occur during view creation. The NO FORCE clause
creates the view only if the base tables and proper privileges are in place.

constraint_clause
Allows you to specify constraints on views for CREATE VIEW (see the section on
CREATE TABLE for details). Using ALTER VIEW, this clause also allows you to
affect a named, pre-existing constraint. You can define the constraint at the view
level, similar to a table-level view, or at the column or attribute level. Note that
although Oracle allows you to define constraints on a view, it doesn’t yet enforce
them. Oracle supports constraints on a view in DISABLE and NOVALIDATE
modes.

OF type_name
Declares that the view is an object view of type type_name. The columns of the
view correspond directly to the attributes returned by type_name, where type_name
is a previously declared type (see the section on CREATE TYPE). You do not
specify column names for object and XMLType views.

UNDER parent_view
Specifies a subview based on a pre-existing parent_view. The subview must be in
the same schema as the parent view, the type_name must be an immediate subtype
of the parent_view, and only one subview is allowed.

WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, . . .])}
Defines the root object view as well as any attributes of the object type used to
identify each row of the object view. The attributes usually correspond to the
primary key columns of the base table and must uniquely identify each row of the
view. This clause is incompatible with subviews and dereferenced or pinned REF
keys. The DEFAULT keyword uses the implicit object identifier of the base object
table or view.

222 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER VIEW Statement > Oracle

OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT {element | xml_schema_
url # element }] WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, . . .])}

Specifies that the view will return XMLType instances. Specifying the optional xml_
schema_url as a pre-registered XMLSchema and element name further constrains
the returned XML as an element in that XMLSchema. The WITH OBJECT IDEN-
TIFIER clause specifies the identifier that uniquely identifies each row of the
XMLType view. One or more attributes may use non-aggregate functions like
EXTRACTVALUE to obtain the identifiers from the resultant XMLType.

WITH READ ONLY
Ensures that the view is used only to retrieve data, not to modify it.

WITH CHECK OPTION [CONSTRAINT constraint_name]
Forces the view to accept only inserted and updated data that can be returned by
the view’s SELECT statement. Alternately, you can specify a single CHECK
OPTION constraint_name that exists on the base table that you want to enforce.
If the constraint is not named, Oracle names the constraint SYS_Cn, where n is an
integer.

ADD constraint_clause
Adds a new constraint to the view. Oracle supports constraints only in DISABLE
and NOVALIDATE modes.

MODIFY CONSTRAINT constraint_clause [NO]RELY
Changes the RELY or NORELY setting of an existing view constraint. (RELY and
NORELY are explained in the section on CREATE TABLE.)

DROP {PRIMARY KEY | CONSTRAINT constraint_clause | UNIQUE (column[, . . .])}
Drops an existing constraint on a view.

COMPILE
Recompiles the view.

Any dblinks in the view’s SELECT statement must be declared using the CREATE
DATABASE LINK...CONNECT TO statement. Any view containing flashback queries
will have its AS OF clause evaluated at each invocation of the view, not when the view
is compiled.

In this example, we create a view that has an added constraint:

CREATE VIEW california_authors (last_name, first_name,
 author_ID UNIQU RELY DISABLE NOVALIDATE,
 CONSTAINT id_pk PRIMARY KEY (au_id) RELY DISABLE NOVALIDATE)
AS
SELECT au_lname, au_fname, au_id
FROM authors
WHERE state = 'CA';

We might also wish to create an object view on an Oracle database and schema. This
example creates the type and the object view:

CREATE TYPE inventory_type AS OBJECT
(title_id NUM(6),
 warehouse wrhs_typ,
 qty NUM(8));
CREATE VIEW inventories OF inventory_type
WITH OBJECT IDENTIFIER (title_id)
AS
SELECT i.title_id, wrhs_typ(w.wrhs_id, w.wrhs_name,
 w.location_id), i.qty

Chapter 3: SQL Statement Command Reference | 223

SQLStatem
ent

Com
m

ands
CREATE/ALTER VIEW Statement > SQL Server

FROM inventories i
JOIN warehouses w ON i.wrhs_id = w.wrhs_id;

We could recompile the inventory_type view like this:

ALTER VIEW inventory_type COMPILE:

An updatable view in Oracle cannot contain any of the following:

• The DISTINCT clause

• UNION, INTERSECT, or MINUS clauses

• Joins that cause inserted or updated data to affect more than one table

• Aggregate or analytic functions

• GROUP BY, ORDER BY, CONNECT BY, or START WITH clauses

• Subqueries or collection expressions in the SELECT item list (subqueries are
acceptable in the SELECT statement’s WHERE clause)

• Update pseudocolumns or expressions

There are some restrictions on how subviews and materialized views can be defined in
Oracle:

• The subview must use aliases for ROWID, ROWNUM, or LEVEL pseudocolumns.

• The subview cannot query CURRVAL or NEXTVAL pseudocolumns.

• The subview cannot contain the SAMPLE clause.

• The subview evaluates all columns of a SELECT * FROM... statement at compile
time. Thus, any new columns added to the base table will not be retrieved by the
subview until the view is recompiled.

Note that while older versions of Oracle supported partitioned views, this feature has
been deprecated. You should use explicitly declared partitions instead.

PostgreSQL
PostgreSQL supports a no-frills subset of the ANSI standard for CREATE VIEW:

CREATE [OR REPLACE] [TEMP[ORARY]] VIEW view_name [(column[, ...])]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

PostgreSQL does not support ALTER VIEW. However, you can use CREATE OR
REPLACE view_name to substitute the definition of an old view with the definition of a
new view. In addition, PostgreSQL allows you to create temporary views, which is an
extension to the SQL3 standard.

PostgreSQL’s CREATE VIEW does not support some of the more complex options
that other vendors’ versions of this statement do. However, it does allow views to be
built on tables and other defined class objects. PostgreSQL views are built only upon
other tables, not upon other views. They are always read-only and cannot be used to
perform data modifications on the underlying base tables.

SQL Server
SQL Server supports some extensions to the ANSI standard but does not offer object
views or subviews:

CREATE VIEW view_name [(column[, ...])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA}[, ...]]
AS select_statement
[WITH CHECK OPTION]

224 | Chapter 3: SQL Statement Command Reference

CREATE/ALTER VIEW Statement > SQL Server

SQL Server’s implementation of ALTER VIEW allows you to change an existing view
without affecting the permissions or dependent objects of the view:

ALTER VIEW view_name [(column[, ...])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA}[, ...]]
AS select_statement
[WITH CHECK OPTION]

The parameters are as follows:

ENCRYPTION
Encrypts the text of the view in the syscomments table. This option is usually
invoked by software vendors who want to protect their intellectual capital.

SCHEMABINDING
Binds the view to a specific schema, meaning that all objects in the view must be
referenced by their full names (both owner and object name). The view and any
tables referenced in the view’s SELECT statement must be fully qualified, as in
pubs.scott.employee. Views created with SCHEMABINDING (and tables refer-
enced by these views) must have the schema binding dropped (via ALTER VIEW)
before they may be dropped or altered.

VIEW_METADATA
Specifies that SQL Server return metadata about the view (rather than the base
table) to calls made from DBLIB or OLEDB APIs. Views created or altered with
VIEW_METADATA enable their columns to be updated by INSERT and
UPDATE INSTEAD OF triggers.

WITH CHECK OPTION
Forces the view to accept only inserted and updated data that can be returned by
the view’s SELECT statement.

The SELECT clause of a SQL Server view cannot:

• Have COMPUTE, COMPUTE BY, INTO, or ORDER BY clauses (ORDER BY is
allowed if you use SELECT TOP)

• Reference a temporary table

• Reference a table variable

• Reference more than 1,024 columns, including those referenced by subqueries

Here, we define a SQL Server view with both ENCRYPTION and CHECK OPTION
clauses:

CREATE VIEW california_authors (last_name, first_name, author_id)
WITH ENCRYPTION
AS
 SELECT au_lname, au_fname, au_id
 FROM authors
 WHERE state = 'CA'
WITH CHECK OPTION
GO

SQL Server allows multiple SELECT statements in a view, as long as they are linked
with UNION or UNION ALL clauses. SQL Server also allows functions and hints in a
view’s SELECT statement. A SQL Server view is updatable if all of the conditions in
the following list are true:

• The SELECT statement has no aggregate functions.

• The SELECT statement does not contain TOP, GROUP BY, DISTINCT, or
UNION clauses.

Chapter 3: SQL Statement Command Reference | 225

SQLStatem
ent

Com
m

ands
CREATE/ALTER VIEW Statement > SQL Server

• The SELECT statement has no derived columns (see SUBQUERY).

• The FROM clause of the SELECT statement references at least one table.

SQL Server allows indexes to be created on views (see CREATE INDEX). By creating a
unique, clustered index on a view, you cause SQL Server to store a physical copy of the
view on the database. Changes to the base table are automatically updated in the
indexed view. Indexed views consume extra disk space but provide a boost in perfor-
mance. These views must be built using the SCHEMABINDING clause.

SQL Server also allows the creation of local and distributed partitioned views. A local
partitioned view is a partitioned view where all views are present on the same SQL
server. A distributed partitioned view is a partitioned view where one or more views are
located on remote servers.

Partitioned views must very clearly derive their data from different sources, with each
distinct data source joined to the next with a UNION ALL statement. Furthermore, all
columns of the partitioned views should be selected and identical. (The idea is that
you have split the data out logically by means of a frontend application; SQL Server
then recombines the data through the partitioned view.) This example shows how the
data in the view comes from three separate SQL servers:

CREATE VIEW customers
AS
--Select from a local table on server New_York
SELECT *
FROM sales_archive.dbo.customers_A
UNION ALL
SELECT *
FROM houston.sales_archive.dbo.customers_K
UNION ALL
SELECT *
FROM los_angeles.sales_archive.dbo.customers_S

Note that each remote server (New_York, houston, and los_angeles) has to be defined
as a remote server on all of the SQL servers using the distributed partitioned view.

Partitioned views can greatly boost performance because they can split I/O and user
loads across many machines. However, they are difficult to plan, create, and maintain.
Be sure to read the vendor documentation for complete details about all the permuta-
tions available with partitioned views.

When altering an existing view, SQL Server acquires and holds an exclusive schema
lock on the view until the alteration is finished. ALTER VIEW drops any indexes that
might be associated with a view; you must manually recreate them using CREATE
INDEX.

See Also
CREATE/ALTER TABLE
DROP
SELECT
SUBQUERY

226 | Chapter 3: SQL Statement Command Reference

DECLARE CURSOR Command

DECLARE CURSOR Command

The DECLARE command is one of four commands used in cursor processing, along
with FETCH, OPEN, and CLOSE. Cursors allow you to process queries one row at a
time, rather than in a complete set. The DECLARE CURSOR command specifies the
exact records to be retrieved and manipulated (one row at a time) from a specific table
or view.

In other words, cursors are especially important for relational databases because data-
bases are set-based, while most client-centric programming languages are row-based.
This is important for two reasons. First, cursors allow programmers to program using
methodologies supported by their favorite row-based programming languages. Second,
cursors run counter to the default behavior of some relational database platforms,
which operate on sets of records, and on those specific platforms cursor operations
may be noticeably slower than standard set-based operations.

SQL2003 Syntax
DECLARE cursor_name [{SENSITIVE | INSENSITIVE | ASENSITIVE}]
[[NO] SCROLL] CURSOR [{WITH | WITHOUT} HOLD]
 [{WITH | WITHOUT} RETURN]
FOR select_statement
[FOR {READ ONLY | UPDATE [OF column[, ...]]}]

Keywords
DECLARE cursor_name

Gives the cursor a unique name in the context in which it is defined (for example,
in the database or schema where it is created). No other cursors may share the
same name.

SENSITIVE | INSENSITIVE | ASENSITIVE
Defines the manner in which the cursor interacts with the source table and the
result set retrieved by the cursor query, where:

SENSITIVE
Tells the database to operate directly against the result set, so that the cursor
will see changes to its result set as it moves through the records.

INSENSITIVE
Tells the database to create a temporary but separate copy of the result set,
so that all changes made against the result set by other operations are invis-
ible to the cursor during the cursor operation.

ASENSITIVE
Allows the database implementation to determine whether to make a copy of
the result set. ASENSITIVE is the SQL2003 default.

Platform Command

MySQL Supported, with limitations

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

Chapter 3: SQL Statement Command Reference | 227

SQLStatem
ent

Com
m

ands
DECLARE CURSOR Command

[NO] SCROLL
SCROLL tells the database not to enforce processing one row at a time, using
FETCH NEXT, but that all forms of the FETCH clause are allowed against the
result set. NO SCROLL enforces processing one row at a time.

{WITH | WITHOUT} HOLD
WITH HOLD tells the cursor to remain open when a transaction encounters the
COMMIT statement. Conversely, WITHOUT HOLD tells the cursor to close
when the transaction encounters a COMMIT statement. (A cursor that uses
WITH HOLD can only be and is always closed with a ROLLBACK statement or a
CLOSE CURSOR statement.)

{WITH | WITHOUT} RETURN
Used only in a stored procedure. The WITH RETURN clause tells the database to
return the result set, if it is still open, when the stored procedure terminates. With
the WITHOUT RETURN clause, which is the default, all open cursors are implic-
itly closed when the stored procedure terminates.

FOR select_statement
Defines the underlying SELECT statement that determines the rows in the result
set of the cursor. As with a regular SELECT statement, the results of the query
may be sorted according to an ORDER BY clause.

FOR {READ ONLY | UPDATE [OF column[, . . .]]}
Specifies that the cursor is not updatable in any way, using FOR READ ONLY.
This is the default when the cursor is defined with the SCROLL or INSENSITIVE
properties, and when the query contains an ORDER BY clause or is against a non-
updatable table. Alternately, you can specify FOR UPDATE OF column1, column2[, ...],
defining the columns where you want to execute UPDATE statements, or omit
the column list to include all columns in the cursor.

Rules at a Glance
The DECLARE CURSOR command enables the retrieval and manipulation of records
from a table one row at a time. This provides row-by-row processing, rather than the
traditional set processing offered by SQL.

At the highest level, these steps are followed when working with a cursor:

1. Create a cursor using DECLARE.

2. Open the cursor using OPEN.

3. Operate against the cursor using FETCH.

4. Dismiss the cursor using CLOSE.

The DECLARE CURSOR command works by specifying a SELECT statement. Each
row returned by the SELECT statement may be individually retrieved and manipu-
lated. In this Oracle example, the cursor is declared in the declaration block, along
with some other variables. The cursor is then opened, fetched against, and then closed
in the BEGIN...END block that follows:

DECLARE CURSOR title_price_cursor IS
SELECT title, price
FROM titles
WHERE price IS NOT NULL;
 title_price_val title_price_cursor%ROWTYPE;
 new_price NUMBER(10,2);

228 | Chapter 3: SQL Statement Command Reference

DECLARE CURSOR Command

BEGIN
 OPEN title_price_cursor;
 FETCH title_price_cursor INTO title_price_val;
 new_price := "title_price_val.price" * 1.25
 INSERT INTO new_title_price
 VALUES (title_price_val.title, new_price)
 CLOSE title_price_cursor;
END;

Because this example uses PL/SQL, much of the code is beyond the scope of this book.
However, the DECLARE block clearly shows that the cursor is declared. In the PL/
SQL execution block, the cursor is initialized with the OPEN command, values are
retrieved with the FETCH command, and the cursor finally is terminated with the
CLOSE command.

The SELECT statement is the heart of your cursor, so it is a good idea to test it thor-
oughly before embedding it in the DECLARE CURSOR statement. The SELECT
statement may operate against a base table or a view. For that matter, read-only
cursors may operate against non-updatable views. The SELECT statement can have
subclauses such as ORDER BY, GROUP BY, and HAVING if it is not updating the
base table. If the cursor is FOR UPDATE, however, it is a good idea to exclude these
clauses from the SELECT statement.

Local cursors are sometimes used as output parameters of stored procedures. Thus, a
stored procedure could define and populate a cursor and pass that cursor to a calling
batch or stored procedure.

In this next example from Microsoft SQL Server, a cursor from the publishers table is
declared and opened. The cursor takes the first record from publishers that matches
the SELECT statement and inserts it into another table; it then moves to the next
record and then the next, until all records are processed. Finally, the cursor is closed
and deallocated (DEALLOCATE is used only with Microsoft SQL Server):

DECLARE @publisher_name VARCHAR(20)
DECLARE pub_cursor CURSOR
FOR SELECT pub_name FROM publishers
 WHERE country <> 'USA'
OPEN pub_cursor
FETCH NEXT FROM pub_cursor INTO @publisher_name
WHILE @@FETCH_STATUS = 0
BEGIN
 INSERT INTO foreign_publishers VALUES(@publisher_name)
END
CLOSE pub_cursor
DEALLOCATE pub_cursor

In this example, you see how the cursor moves through a set of records. (The example
was intended only to demonstrate this concept, since there is actually a better way to
accomplish the same task; namely, an INSERT...SELECT statement.)

Programming Tips and Gotchas
Most platforms do not support dynamically executed cursors. Rather, cursors are
embedded within an application program, stored procedure, user-defined function,
etc. In other words, the various statements for creating and using a cursor are usually
used only in the context of a stored procedure or other database-programming object,
not in a straight SQL script.

Chapter 3: SQL Statement Command Reference | 229

SQLStatem
ent

Com
m

ands
DECLARE CURSOR Command > Oracle

For ease of programming and migration, don’t use the SCROLL clause or the various
sensitivity keywords. Some platforms support only forward-scrolling cursors, so you
can avoid headaches later by just sticking to the simplest form of cursor.

Cursors behave differently on the various database platforms when crossing a transac-
tion boundary—for example, when a set of transactions is rolled back in the midst of
a cursor operation. Be sure to familiarize yourself with exactly how each database plat-
form behaves in these circumstances.

MySQL does not support server-side cursors in the ANSI SQL style, but it does
support extensive C programming extensions that provide the same functionality.

MySQL
MySQL supports a subset of the SQL3 standard syntax:

DECLARE cursor_name
FOR select_statement

MySQL only allows cursors within stored procedures, functions, and triggers. MySQL
cursors are always read-only, non-updatable, non-scrollable (the cursor only moves in
one direction and cannot skip rows), and asensitive (meaning that the server will
choose whether to make a copy of the result table according to what is most expe-
dient). MySQL will not allow you to create more than one cursor in a block with the
same name. Cursors must be declared after variables and conditions, but before
handlers.

Oracle
Oracle has a rather interesting implementation of cursors. In reality, all Oracle data-
modification statements (INSERT, UPDATE, DELETE, and SELECT) implicitly open
a cursor. For example, a C program accessing Oracle would not need to issue a
DECLARE CURSOR statement to retrieve data on a record-by-record basis, because
that is the implicit behavior of Oracle. Because of this behavior, you’ll only use
DECLARE CURSOR in PL/SQL constructs such as stored procedures, not in a script
that is purely SQL.

Since cursors can only be used in stored procedures and user-
defined functions in Oracle, they are documented in the Oracle PL/
SQL reference material, not in the SQL reference material.

Oracle utilizes a variation of the DECLARE CURSOR statement that supports parame-
terized inputs, as the following syntax demonstrates:

DECLARE CURSOR cursor_name [(parameter datatype[, ...])]
IS select_statement
[FOR UPDATE [OF column_name[, ...]]]

where:

[(parameter datatype[, . . .])] IS select_statement
Defines the parameter name and datatype of each input parameter as well as the
select_statement used to retrieve the cursor result set. Serves the same purpose as
the ANSI SQL2003 FOR select_statement clause.

FOR UPDATE [OF column_name]
Defines the cursor or specific columns of the cursor as updatable. Otherwise, the
cursor is assumed to be read-only.

230 | Chapter 3: SQL Statement Command Reference

DECLARE CURSOR Command > PostgreSQL

In Oracle, variables are not allowed in the WHERE clause of the SELECT statement
unless they are first declared as variables. The parameters are not assigned in the
DECLARE statement; instead, they are assigned values in the OPEN command. This is
important since any system function will return an identical value for all rows in the
cursor result set.

PostgreSQL
PostgreSQL does not support the WITH clauses. It does allow you to return result sets
in binary rather than text format. Although the compiler will not cause errors with
many of the ANSI keywords, PostgreSQL’s implementation of DECLARE CURSOR is
more limited than it might first appear:

DECLARE cursor_name [BINARY] [INSENSITIVE] [[NO] SCROLL] CURSOR
[{WITH | WITHOUT} HOLD]
FOR select_statement
[FOR {READ ONLY | UPDATE [OF column_name[, ...]]}]

where:

BINARY
Forces the cursor to retrieve binary-formatted data rather than text-formatted data.

INSENSITIVE
Indicates that data retrieved by the cursor is unaffected by updates from other
processes or cursors. This is PostgreSQL’s default behavior, so omitting this
keyword has no effect.

[NO] SCROLL
Allows multiple rows to be retrieved by a single FETCH operation in either a
forward or backward direction. Be aware that SCROLL can slow down
processing. NO SCROLL specifies that the cursor reads only in a forward direc-
tion and that it does not skip any records.

{WITH | WITHOUT} HOLD
WITH HOLD specifies that the cursor can continue to be used after the transac-
tion that created it has completed a COMMIT. WITHOUT HOLD, the default,
specifies that the cursor cannot be used outside of the transaction that created it.

FOR {READ-ONLY | UPDATE [OF column_name[, . . .]]}
Indicates that a cursor is opened using read-only mode or update mode, respec-
tively. However, PostgreSQL only supports read-only cursors. Consequently, the
FOR READ-ONLY clause has no effect, while the FOR UPDATE [OF column_
name[, …]] clause produces an informational error message.

PostgreSQL closes any existing cursor when a newly declared cursor is created with
the same name. Binary cursors tend to be faster because PostgreSQL stores data as
binary on the backend. However, user applications are only text-aware. Therefore,
you’ll have to build in binary handling for any BINARY cursors.

PostgreSQL allows cursors only within a transaction. You should enclose a cursor
within a BEGIN and COMMIT or ROLLBACK transaction block.

PostgreSQL does not support an explicit OPEN cursor statement. Cursors are consid-
ered open when they are declared. So, to declare and open a cursor in PostgreSQL, you
could use code like this:

DECLARE pub_cursor CURSOR
FOR SELECT pub_name FROM publishers
 WHERE country <> 'USA';

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3: SQL Statement Command Reference | 231

SQLStatem
ent

Com
m

ands
DECLARE CURSOR Command > SQL Server

SQL Server
SQL Server supports the ANSI standard, as well as a good many extensions that
provide flexibility in how a cursor scrolls through a result set and manipulates data, as
shown in the following syntax:

DECLARE cursor_name CURSOR
 [LOCAL | GLOBAL] [INSENSITIVE | FORWARD_ONLY | SCROLL]
 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
 [TYPE_WARNING]
FOR select_statement
[FOR {READ ONLY | UPDATE [OF column_name[, ...]]}]

The parameters are as follows:

LOCAL | GLOBAL
Scopes the cursor for either the local Transact-SQL batch or makes the cursor
available to all Transact-SQL batches issued by the current session via OPEN and
FETCH statements, respectively. A global cursor name can be referenced by any
stored procedure, function, or Transact-SQL batch executed in the current
session. A global cursor is implicitly deallocated at disconnect, but a local cursor
must be manually deallocated. The LOCAL and GLOBAL keywords are optional.
The default behavior, if neither is specified, is defined by the default to local
database property.

INSENSITIVE | FORWARD_ONLY | SCROLL
Determines how the cursor will move through the result set, with three options:

INSENSITIVE
Creates the result set as a table in TEMPDB. Changes to the base table are
not reflected in the cursor result set. Not compatible with SQL Server exten-
sions to the DECLARE CURSOR command such as LOCAL, GLOBAL,
STATIC, KEYSET, DYNAMIC, FAST_FORWARD, etc. Can only be used in
a SQL92-style DECLARE CURSOR statement, such as DECLARE sample
CURSOR INSENSITIVE FOR select_statement FOR UPDATE.

FORWARD_ONLY
Indicates that the cursor must scroll from the first to the last record in the
result set and that FETCH NEXT is the only supported form of the FETCH
statement. The cursor is assumed to be DYNAMIC unless STATIC or
KEYSET is used. FAST_FORWARD is mutually exclusive of FORWARD_
ONLY.

SCROLL
Enables all FETCH options (ABSOLUTE, FIRST, LAST, NEXT, PRIOR, and
RELATIVE). Otherwise, only FETCH NEXT is available. If DYNAMIC,
STATIC, or KEYSET is used, the cursor defaults to SCROLL behavior.
FAST_FORWARD is mutually exclusive of SCROLL.

 STATIC | KEYSET | DYNAMIC | FAST_FORWARD
Determines how records are manipulated in the result set. These settings are
incompatible with the FOR READ ONLY and FOR UPDATE clauses. There are
four options:

STATIC
Makes a temporary copy of the result set data and stores it in tempdb. Modi-
fications made to the source table or view do not show up when processing
the cursor. STATIC cursors cannot modify data in the source table or view.

232 | Chapter 3: SQL Statement Command Reference

DECLARE CURSOR Command > SQL Server

KEYSET
Makes a temporary copy of the result set with membership and fixed row
order (also known as a keyset) in tempdb. The keyset correlates the data in
the cursor result set to the base table or view, so that the cursor can see
changes made to the underlying data. Rows that have been deleted or
updated show an @@FETCH_STATUS of –2 (unless the update was done
using UPDATE...WHERE CURRENT OF, in which case they are fully
visible), while rows inserted by other users are not visible at all.

DYNAMIC
Determines the records in the cursor result set as each FETCH operation is
executed. Thus, DYNAMIC cursors see all changes made to the base table or
view, even those by other users. Because the result set may be in constant
flux, DYNAMIC cursors do not support FETCH ABSOLUTE.

FAST_FORWARD
Creates a FORWARD_ONLY, READ_ONLY cursor that quickly reads
through the entire cursor result set at one time.

READ_ONLY | SCROLL_LOCKS | OPTIMISTIC
Determines concurrency and positional update behavior for the cursor. These
settings are incompatible with FOR READ ONLY and FOR UPDATE. The allow-
able parameters are:

READ_ONLY
Prevents updates to the cursor and disallows the cursor from being refer-
enced in UPDATE or DELETE statements that contain WHERE CURRENT
OF.

SCROLL_LOCKS
Ensures that positional updates and deletes succeed by locking the cursor
result set rows as they are read into the cursor. The locks are held until the
cursor is closed and deallocated. SCROLL_LOCKS is mutually exclusive of
FAST_FORWARD.

OPTIMISTIC
Ensures that positional updates and deletes succeed unless the row being
updated or deleted in the cursor result set has changed since it was read into
the cursor. SQL Server accomplishes this by comparing a timestamp, or a
checksum value when no timestamp exists, on the columns. It does not lock
the rows in the cursor result set. OPTIMISTIC is mutually exclusive of
FAST_FORWARD.

TYPE_WARNING
Warns the user when the cursor is implicitly converted from one type to another
(for example, from SCROLL to FORWARD_ONLY).

FOR {READ ONLY | UPDATE [OF column_name[, . . .]]}
FOR READ ONLY identifies the cursor as read-only, using the ANSI-standard
syntax. This clause is not compatible with the other type identifiers discussed
previously; it should only be used with INSENSITIVE, FORWARD_ONLY, and
SCROLL. FOR UPDATE allows updates to columns in the cursor using UPDATE
and DELETE statements with the WHERE CURRENT OF clause. If FOR
UPDATE is used without a column list, all columns in the cursor are updatable.
Otherwise, only those columns listed are updatable.

Chapter 3: SQL Statement Command Reference | 233

SQLStatem
ent

Com
m

ands
DECLARE CURSOR Command > SQL Server

Microsoft SQL Server allows two basic forms of syntax for the
DECLARE CURSOR statement. These syntax forms are not com-
patible! The basic forms of syntax are SQL92-compatible and
Transact-SQL extensions. You cannot mix together keywords of the
two forms.

The SQL92 compatibility syntax for DECLARE CURSOR is:

DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR
FOR select_statement
[FOR { READ ONLY | UPDATE [OF column_name[, ...]] }]

while the Transact-SQL extensions syntax for DECLARE CURSOR is:

DECLARE cursor_name CURSOR
[LOCAL | GLOBAL] [FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]
FOR select_statement
[FOR UPDATE [OF column_name[, ...]]]

The SQL92 compatability syntax is supported to enable your code to be more trans-
portable. The Transact-SQL extensions syntax enables you to define cursors using the
same cursor types that are available in popular database APIs such as ODBC, OLE-DB,
and ADO, but it may only be used in SQL Server stored procedures, user-defined func-
tions, triggers, and ad hoc queries.

If you do define a Transact-SQL extension cursor but do not define concurrency
behavior using the OPTIMISTIC, READ_ONLY, or SCROLL_LOCKS keywords, then:

• The cursor defaults to READ-ONLY if was defined as FAST_FORWARD or
STATIC, or the user has insufficient privileges to update the base table or view.

• The cursor defaults to OPTIMISTIC if the cursor was defined as DYNAMIC or
KEYSET.

Note that variables may be used in the select_statement of a SQL Server cursor, but
the variables are evaluated when the cursor is declared. Thus, a cursor containing a
column based on the system function GETDATE() will have the same date and time
for every record in the cursor result set.

In the following SQL Server example, we use a KEYSET cursor to change blank spaces
to dashes in the phone column of the authors table:

SET NOCOUNT ON
DECLARE author_name_cursor CURSOR LOCAL KEYSET TYPE_WARNING
 FOR SELECT au_fname FROM pubs.dbo.authors
DECLARE @name varchar(40)
OPEN author_name_cursor
FETCH NEXT FROM author_name_cursor INTO @name
WHILE (@@fetch_status <> -1)
BEGIN
-- @@fetch_status checks for 'record not found' conditions and errors
 IF (@@fetch_status <> -2)
 BEGIN
 PRINT 'updating record for ' + @name
 UPDATE pubs.dbo.authors

234 | Chapter 3: SQL Statement Command Reference

DELETE Statement

 SET phone = replace(phone, ' ', '-')
 WHERE CURRENT OF author_name_cursor
 END
 FETCH NEXT FROM author_name_cursor INTO @name
END
CLOSE author_name_cursor
DEALLOCATE author_name_cursor
GO

See Also
CLOSE CURSOR
FETCH
OPEN

DELETE Statement

The DELETE statement erases records from a specified table or tables. DELETE state-
ments acting against tables are sometimes called search deletes. The DELETE
statement may also be used in conjunction with a cursor. DELETE statements acting
upon the rows of a cursor are sometimes called positional deletes.

SQL2003 Syntax
DELETE FROM { table_name | ONLY (table_name) }
[{ WHERE search_condition | WHERE CURRENT OF cursor_name }]

Keywords
FROM { table_name | ONLY (table_name) }

Identifies the table (called table_name) from which rows will be deleted. The
table_name assumes the current schema if one is not specified. You may alter-
nately specify a single table view name. FROM is mandatory, except in the
DELETE...WHERE CURRENT OF statement. When not using the ONLY
clause, do not enclose the table_name in parentheses. ONLY restricts cascading of
the deleted records to any subtables of the target table or view. This clause affects
only typed (object-oriented) tables and views. If used with a non-typed table or
view, it is ignored and does not cause an error.

WHERE search_condition
Defines search criteria for the DELETE statement, using one or more search_
condition clauses to ensure that only the target rows are deleted. Any legal
WHERE clause is acceptable. Typically, these criteria are evaluated against each
row of the table before the deletion occurs.

WHERE CURRENT OF cursor_name
Restricts the DELETE statement to the current row of a defined and opened
cursor called cursor_name.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported, with limitations

Chapter 3: SQL Statement Command Reference | 235

SQLStatem
ent

Com
m

ands
DELETE Statement > MySQL

Rules at a Glance
The DELETE statement erases rows from a table or view. Space released by erased
rows will be returned to the database where the table is located, though this may not
happen immediately.

A simple DELETE statement that erases all records in a given table has no WHERE
clause, as in the following:

DELETE FROM sales;

You can use any valid WHERE clause to filter records that you do not want to delete.
All three of the following examples show valid DELETE statements, and since all are
search deletes, they all include the FROM clause:

DELETE FROM sales
WHERE qty IS NULL;
DELETE FROM suppliers
WHERE supplierid = 17
 OR companyname = 'Tokyo Traders';
DELETE FROM distributors
WHERE postalcode IN
 (SELECT territorydescription FROM territories);

Note that in the positional delete, the FROM clause is not required.

In some cases, you may wish to delete a specific row that is being processed by a
declared and open cursor:

DELETE titles WHERE CURRENT OF title_cursor;

This query assumes that you have declared and opened a cursor named title_cursor;
whichever row the cursor is on will be deleted when the command is executed.

Programming Tips and Gotchas
It is rare to issue a DELETE statement without a WHERE clause, because this results
in all rows being deleted from the affected table. You should first issue a SELECT
statement with the same WHERE clause you intend to use in the DELETE statement.
That way, you can be sure exactly which records will be deleted.

If it becomes necessary to remove all the rows in a table, you should consider using the
non-ANSI though very common TRUNCATE TABLE statement. In those databases
that support the command, TRUNCATE TABLE is usually a faster method to physi-
cally remove all rows. TRUNCATE TABLE is faster than DELETE because the
deletion of individual records is not logged. The reduction of logging overhead saves
considerable time when erasing a large number of records, but on some platforms this
makes rollback of a TRUNCATE statement impossible. Furthermore, on some data-
base platforms all foreign keys on the table must be dropped before issuing a
TRUNCATE statement.

MySQL
MySQL allows a number of extensions to the ANSI standard, but it does not support
the WHERE CURRENT OF clause. The syntax is shown here:

DELETE [LOW_PRIORITY] [QUICK] [table_name[.*][, ...]]
{FROM table_name[.*][, ...] | [USING table_name[.*][, ...]]}
[WHERE search_condition]
[ORDER BY clause]
[LIMIT nbr_of_rows]

236 | Chapter 3: SQL Statement Command Reference

DELETE Statement > MySQL

The parameters are:

LOW PRIORITY
Delays the execution of DELETE until no other clients are reading from the table.

QUICK
Prevents the storage engine from merging index leaves during the delete
operation.

DELETE table_name[, . . .]
Enables you to delete from more than one table at a time. Tables listed before the
FROM clause, assuming one or more tables appear in the FROM clause, will be
the target of the delete operation. That is, if more than one table appears before
the FROM clause, all matching records in all of the tables will be deleted.

FROM table_name[.*]
Specifies the table or tables from which records will be deleted. (The .* clause is
an option to improve compatibility with MS-Access.) If tables are listed before the
FROM clause, the table or tables in the FROM clause are assumed to be used to
support a join or lookup operation.

USING table_name[.*][, . . .]
Substitutes the table or tables before the FROM clause with those after the FROM
clause.

ORDER BY clause
Specifies the order in which rows will be deleted. This is useful only in conjunc-
tion with LIMIT.

LIMIT nbr_of_row
MySQL also can place an arbitrary cap on the number of records deleted before
control is passed back to the client using the LIMIT nbr_of_rows clause.

MySQL allows deletion from more than one table at a time. For example, the
following two DELETE statements are functionally equivalent:

DELETE orders FROM customers, orders
WHERE customers.customerid = orders.customerid
 AND orders.orderdate BETWEEN '19950101' AND '19951231'
DELETE FROM orders USING customers, orders
WHERE customers.customerid = orders.customerid
 AND orders.orderdate BETWEEN '19950101' AND '19951231'

In the preceding examples, we delete all orders made by customers during the year
1995. Note that you cannot use ORDER BY or LIMIT clauses in a multitable delete
like those just shown.

You can also delete records in orderly batches using the ORDER BY clause in conjunc-
tion with the LIMIT clause:

DELETE FROM sales
WHERE customerid = 'TORTU
ORDER BY customerid
LIMIT 5

MySQL exhibits several behaviors that speed up delete operations. For example, it
normally returns the number of records deleted when it completes the operation, but it
will return zero as the number of deleted records when you delete all records from a
table because it is faster to do so than to count the actual number of rows deleted. In
AUTOCOMMIT mode, MySQL will even substitute a TRUNCATE statement for a
DELETE statement without a WHERE clause because TRUNCATE is faster.

Chapter 3: SQL Statement Command Reference | 237

SQLStatem
ent

Com
m

ands
DELETE Statement > Oracle

Note that the speed of a MySQL delete operation is directly related to the number of
indexes on the table and the available index cache. You can speed up delete opera-
tions by executing the command against tables with few or no indexes or by increasing
the size of the index cache.

Oracle
Oracle allows you to delete rows from tables, views, materialized views, nested
subqueries, and partitioned views and tables, as follows:

DELETE [FROM]
 {table_name | ONLY (table_name)} [alias]
 [{PARTITION (partition_name) |
 SUBPARTITION (subpartition_name)}] |
 (subquery [WITH {READ ONLY |
 CHECK OPTION [CONSTRAINT constraint_name]}]) |
 TABLE (collection_expression) [(+)]}
[hint]
[WHERE search_condition]
[RETURNING expression[, ...] INTO variable[, ...]]
[LOG ERRORS [INTO [schema.]table_name] [(simple_expression)]
 [REJECT LIMIT {UNLIMITED |int }]]

The parameters are:

table_name [alias]
Specifies the table, view, materialized view, or partitioned table or view from
which the records will be deleted. You may optionally prepend a schema identi-
fier to the table_name or append a database link. Otherwise, Oracle will assume
the user’s default schema and the local database server. You may also optionally
apply an alias to the table_name. The alias is required if the target table refer-
ences an object type attribute or method.

PARTITION partition_name
Applies the delete operation to the named partition, rather than to the entire
table. You are not required to name a partition when deleting from a partitioned
table, but it can, in many cases, help reduce the complexity of the WHERE clause.

SUBPARTITION subpartition_name
Applies the operation to a named subpartition, rather than to the entire table.

(subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}])
Specifies that the target for deletion is a nested subquery, not a table, view, or
other database object. The parameters of this clause are:

subquery
Describes the SELECT statement that makes up the subquery. The subquery
can be any standard subquery, though it may not contain an ORDER BY
clause.

WITH READ ONLY
Specifies that the subquery cannot be updated.

WITH CHECK OPTION [CONSTRAINT constraint_name]
Tells Oracle to abort any changes to the deleted table that would not appear
in the result set of the subquery. [CONSTRAINT constraint_name] tells
Oracle to further restrict changes based upon a specific constraint identified
by constraint_name.

238 | Chapter 3: SQL Statement Command Reference

DELETE Statement > Oracle

TABLE (collection_expression) [(+)]
Informs Oracle that the collection_expression should be treated like a table even
though it may, in fact, be a subquery, a function, or some other collection
constructor. In any case, the value returned by the collection_expression must be
a nested table or VARRAY.

hint
Instructs the database to use specific optimizer instructions other than those it
might choose for itself; for example, to use or ignore a specific index. Refer to the
vendor documentation for a full discussion of hints.

RETURNING expression
Retrieves the rows affected by the command (DELETE normally only shows the
number of rows deleted). The RETURNING clause can be used when the target is
a table, a materialized view, or a view with a single base table. When used for
single-row deletes, the RETURNING clause stores values from the row deleted by
the statement, defined by expression, into PL/SQL variables and bind variables.
When used for a multirow delete, the RETURNING clause stores the values of
the deleted rows, defined by expression, into bind arrays.

INTO variable
Specifies the variables into which the values returned as a result of the
RETURNING clause are stored. There must be a corresponding variable for
every expression in the RETURNING clause.

LOG ERRORS [INTO [schema.]table_name] [(simple_expression)] [REJECT LIMIT
{UNLIMITED |int}]

Captures DML errors and log column values of affected rows, saving them in an
error-logging table. Constraint violations will always cause the statement to fail
and roll back, regardless of whether you specify a LOG ERRORS clause. The
LOG ERRORS clause also cannot track errors in the error-logging table for
columns with LONG, LOG, or object-type columns, though the table that is that
target of the DML operation may have columns of these datatypes. The parame-
ters of this clause are:

INTO [schema.]table_name
Specifies the error-logging table. When omitted, the default is ERR$_xxx,
where xxx is the first 25 characters of the name of the table from which the
records are being deleted.

(simple_expression)
Specifies a value that tags each error in the logging table so that you can
differentiate errors from many DML statements.

REJECT LIMIT {UNLIMITED | int}
Specifies an upper limit for the number of errors to be logged (int) before
terminating the DELETE and rolling back any changes. The default is 0. The
UNLIMITED keyword allows error logging with no upper limit.

When you execute a DELETE statement, Oracle releases space from the target table
(or the base table of a target view) back to the table or index that owned the data.

When deleting from a view, the view cannot contain a set operator, the DISTINCT
keyword, joins, an aggregate function, an analytic function, a subquery in the SELECT
list, a collection expression in the SELECT list, a GROUP BY clause, an ORDER BY
clause, a CONNECT BY clause, or a START WITH clause.

Chapter 3: SQL Statement Command Reference | 239

SQLStatem
ent

Com
m

ands
DELETE Statement > PostgreSQL

Here’s an example where we delete records from a remote server:

DELETE FROM scott.sales@chicago;

In the following query, we delete from a derived table that is a collection expression:

DELETE TABLE(SELECT contactname FROM customers
 c WHERE c.customerid = 'BOTTM') s
WHERE s.region IS NULL OR s.country = 'MEXICO';

Here’s an example where we delete from a partition:

DELETE FROM sales PARTITION (sales_q3_1997)
WHERE qty > 10000;

Finally, in the next example, we use the RETURNING clause to look at the values that
are deleted:

DELETE FROM employee
WHERE job_id = 13
 AND hire_date + TO_YMINTERVAL('01-06') =< SYSDATE;
RETURNING job_lvl
INTO :int01;

This example deletes records from the employee table and returns the job_lvl values
into the predefined :into1 variable.

PostgreSQL
PostgreSQL uses the DELETE command to remove rows and any defined subclasses
from the table. Its implementation is otherwise identical to the ANSI standard. The
syntax follows:

DELETE [FROM] [ONLY] [schema.]table_name
[USING usinglist]
[WHERE search_condition | WHERE CURRENT OF cursor_name]
[RETURNING { * | expression [AS alias][, ...] }]

When deleting rows from only the table specified, use the optional ONLY clause.
Otherwise, PostgreSQL will also delete records from any explicitly defined subtable.
PostgreSQL supports two other important subclauses:

USING usinglist
Specifies a list of table expressions, thereby allowing columns from other tables to
appear in the WHERE clause. This has the effect of specifying multiple tables in
the FROM clause of a SELECT statement.

RETURNING { * | expression [AS alias][, . . .] }
Specifies an expression to be returned by the DELETE statement after each row is
deleted. The expression can return all columns (using the * wildcard) or any
columns you specify that are in table_name or in the usinglist.

To delete all records from the titles table:

DELETE titles

To delete all records in the authors table where the last name starts with “Mc”:

DELETE FROM authors
WHERE au_lname LIKE 'Mc%'

To delete all titles with an old ID number:

DELETE titles WHERE title_id >= 40

240 | Chapter 3: SQL Statement Command Reference

DELETE Statement > SQL Server

To delete all titles that have no sales:

DELETE titles WHERE ytd_sales IS NULL

To delete all records in one table based on the results of a subquery against another
table (in this case, erasing from the titleauthor table the records that have a match
concerning “computers” in the titles table):

DELETE FROM titleauthor
WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE title LIKE '%computers%')
DISCONNECT

To delete all records in a table and return the full details of the deleted rows:

DELETE FROM titles WHERE ytd_sales IS NULL RETURNING *;

SQL Server
Microsoft SQL Server allows records to be deleted both from tables and from views
that describe a single table. SQL Server also allows a second FROM clause to allow
JOIN constructs, as in the following example:

[WITH cte_expression[, ...]]
DELETE [TOP (number) [PERCENT]] [FROM] table_name [[AS] alias]
[WITH (hint [...])]
[OUTPUT expression INTO {@table_variable | output_table} [(column_list[, ..
.])]]
[FROM table_source[, ...]]
[[{INNER | CROSS | [LEFT | RIGHT | FULL] OUTER}]
 JOIN joined_table ON condition][, ...]]
[WHERE search_condition | WHERE CURRENT OF [GLOBAL] cursor_name]
[OPTION (hint[, ...n])]

The syntax elements are as follows:

WITH cte_expression
Defines the temporary named result set of a common table expression, derived
from a SELECT statement, for the DELETE statement.

DELETE table_name
Allows the deletion of records from the named table or view filtered by the
WHERE clause. You can delete records from a view, provided the view is based
on one table and contains no aggregate functions and no derived columns. If you
omit the server name, database name, or schema name when naming the table or
view, SQL Server assumes the current context. An OPENDATASOURCE or
OPENQUERY function, as described in the section on the SELECT statement,
may be referenced instead of a table or view.

TOP (number) [PERCENT]
Indicates that the statement should delete only the specified number of rows. If
PERCENT is specified, only the first number percent of the rows are retrieved. If
number is an expression, such as a variable, it must be enclosed in parentheses.
The expression should be of the FLOAT datatype with a range of 0 to 100 when
using PERCENT. When not using PERCENT, the number should be of the
BIGINT datatype.

Chapter 3: SQL Statement Command Reference | 241

SQLStatem
ent

Com
m

ands
DELETE Statement > SQL Server

WITH (hint)

Instructs the database to use specific optimizer instructions other than those it
might choose for itself; for example, to use or ignore a specific index. The
WITH (hint) clause specifies one or more table hints that are allowed for the
target table. Refer to the vendor documentation for a full discussion of hints.

OUTPUT expression INTO {@table_variable | output_table} [(column_list[, ...])]
Retrieves the rows affected by the command, whereas DELETE normally only
shows the number of rows deleted, placing the rows you specify in expression
into either a given table_variable or output_table. If the column_list is omitted
for the output_table, the output_table must have the same number of columns as
the number of columns in the OUTPUT expression. The output_table cannot
have triggers, participate in a foreign key, or have any CHECK constraints.

FROM table_source
Names an additional FROM clause that correlates records from the table in the
first FROM clause using a JOIN rather than forcing you to use a correlated
subquery. One or more tables may be listed in the second FROM clause.

[{INNER | CROSS | [LEFT | RIGHT | FULL] OUTER}] JOIN joined_table ON
condition][, . . .]

Specifies one or more JOIN clauses, in conjunction with the second FROM
clause. You may use any of the join types that SQL Server supports. Refer to the
section “The JOIN clause” within the discussion of the SELECT satement, later in
this chapter, for more information.

GLOBAL cursor_name
Specifies that the delete operation should occur on the current row of an open
global cursor. This clause is otherwise the same as the standard for WHERE
CURRENT OF.

OPTION (hint[, . . .])
Replaces elements of the default query plan with your own. Because the opti-
mizer usually picks the best query plan for any query, we strongly discourage you
from placing optimizer hints into your queries.

A significant extension to SQL Server’s implementation of the DELETE statement is
the addition of a second FROM clause. The second FROM allows the use of the JOIN
statement and makes it quite easy to delete rows from the table specified in the first
FROM by correlating rows of a table declared in the second FROM. For example, you
could use a rather complex subquery to erase all the sales records of computer books
with this command:

DELETE sales
WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE type = 'computer')

But SQL Server allows a more elegant construction using a second FROM clause and a
JOIN clause:

DELETE s
FROM sales AS s
INNER JOIN titles AS t ON s.title_id = t.title_id
 AND type = 'computer'

242 | Chapter 3: SQL Statement Command Reference

DISCONNECT Statement > All Platforms

The following example deletes all rows with an order_date of 2003 or earlier, in
batches of 2,500:

WHILE 1 = 1
BEGIN
 DELETE TOP (2500)
 FROM sales_history WHERE order_date <= '20030101'
 IF @@rowcount < 2500 BREAK
END

The TOP clause should be used in favor of the old SET ROWCOUNT statement
because the TOP clause is open to many more query-optimization algorithms. (Prior
to SQL Server 2005, the SET ROWCOUNT statement was often used with data-
modification transactions to process large numbers of rows in batches, thus
preventing the transaction log from filling up and ensuring that row locks would not
escalate to a full table lock.)

Common table expressions may be used with SELECT, INSERT, UPDATE, and
DELETE statements as well as the CREATE VIEW statement. These expressions are a
means of naming and defining a temporary result set from a SELECT statement, even
allowing recursive behaviors. When defining a common table expression, you may not
use COMPUTE, COMPUTE BY, FOR XML, FOR BROWSE, INTO, OPTION, or
ORDER BY clauses. Multiple SELECT statements are allowed in a common table
expression only if they are combined with set operators such as UNION, UNION
ALL, EXCEPT, or INSERSECT. The following is a simple DELETE statement using a
common table expression:

WITH direct_reports (Manager_ID, DirectReports) AS
(SELECT manager_ID, COUNT(*)
 FROM hr.employee AS e
 WHERE manager_id IS NOT NULL
 GROUP BY manager_id)
DELETE FROM direct_reports
WHERE DirectReports <= 1;

The OUTPUT clause allows you to see all of the rows that are being deleted:

DELETE TOP 10 error_log WITH (READPAST)
OUTPUT deleted.*
WHERE error_log_id = '28-OCT-2008';

See Also
INSERT
SELECT
TRUNCATE TABLE
UPDATE

DISCONNECT Statement

The DISCONNECT statement terminates one or more connections created between
the current SQL process and the database server.

Chapter 3: SQL Statement Command Reference | 243

SQLStatem
ent

Com
m

ands
DISCONNECT Statement > All Platforms

SQL2003 Syntax
DISCONNECT {CURRENT | ALL | connection_name | DEFAULT}

Keywords
CURRENT

Closes the currently active user connection.

ALL
Closes all open connections for the current user.

Rules at a Glance
DISCONNECT is used to disconnect a named SQL session (connection_name), the
CURRENT connection, the DEFAULT connection, or ALL connections held by the
user. For example, we can disconnect a single session called new_york:

DISCONNECT new_york

or disconnect all currently open sessions for the current user process:

DISCONNECT ALL

Programming Tips and Gotchas
DISCONNECT is not universally supported across platforms. Do not build cross-
platform applications based on DISCONNECT unless you’ve made provisions to
disconnect SQL sessions using each platform’s preferred disconnection methodology.

MySQL
Not supported.

Oracle
Oracle allows DISCONNECT only in its ad hoc query tool, SQL*Plus, using this
syntax:

DISC[ONNECT]

In this usage, the command ends the current session with the database server but
otherwise allows work in SQL*Plus to continue. For example, a programmer can
continue to edit the buffer, save run files, and so on, but must establish a new connec-
tion to issue any SQL commands. Exiting SQL*Plus and returning to the filesystem
requires the EXIT or QUIT command. For example, to end the current connection
with an Oracle server:

DISCONNECT;

You may achieve a similar effect to the SQL3 command by using the Oracle statement
ALTER SYSTEM DISCONNECT SESSION.

Platform Command

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Not supported

SQL Server Supported, with limitations

244 | Chapter 3: SQL Statement Command Reference

DISCONNECT Statement > All Platforms

PostgreSQL
Not supported. Instead, every programming interface supports a disconnect opera-
tion; for example, SPI_FINISH is available under the Server Programming Interface,
and PG_DISCONNECT is available under the PL/TCL programming package.

SQL Server
Microsoft SQL Server supports the ANSI syntax for DISCONNECT in Embedded-SQL
(ESQL) only, not within its ad hoc querying tool, SQL Server Management Studio. To
disconnect cleanly from Microsoft SQL Server in an ESQL program, use the DISCON-
NECT ALL statement.

See Also
CONNECT

DROP Statements

All of the database objects created with CREATE statements may be destroyed using
complementary DROP statements. On some platforms, a ROLLBACK statement after
a DROP statement will recover the dropped object. However, on other database plat-
forms the DROP statement is irreversible and permanent, so it is advisable to use the
command with care.

SQL2003 Syntax
Currently, the SQL2003 standard supports the ability to drop a lot of object types that
are largely unsupported by most vendors. The ANSI SQL2003 syntax follows this
format:

DROP [object_type] object_name {RESTRICT | CASCADE}

Keywords
DROP [object_type] object_name

Irreversibly and permanently destroys the object of type object_type called
object_name. The object_name does not need a schema identifier, but if none is
provided the current schema is assumed. ANSI SQL2003 supports a long list of
object types, each created with its own corresponding CREATE statement.
CREATE statements covered in this book with corresponding DROP statements
include:

• DOMAIN

• FUNCTION

• METHOD

Platform Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

Chapter 3: SQL Statement Command Reference | 245

SQLStatem
ent

Com
m

ands
DROP Statements

• PROCEDURE

• ROLE

• SCHEMA

• TABLE

• TRIGGER

• TYPE

• VIEW

RESTRICT | CASCADE
Prevents the DROP from taking place if any dependent objects exist (RESTRICT),
or causes all dependent objects to also be dropped (CASCADE). This clause is not
allowed with some forms of DROP, such as DROP TRIGGER, but is mandatory
for others, such as DROP SCHEMA. To further explain, DROP SCHEMA
RESTRICT will only drop an empty schema. Otherwise (i.e., if the schema
contains objects), the operation will be prevented. In contrast, DROP SCHEMA
CASCADE will drop a schema and all objects contained therein.

Rules at a Glance
For rules about the creation or modification of each of the object types, refer to the
sections on the corresponding CREATE/ALTER statements.

The DROP statement destroys a pre-existing object. The object is permanently
destroyed, and all users who had permission to access the object immediately lose the
ability to access it.

The object may be qualified—that is, you may fully specify the schema where the
dropped object is located. For example:

DROP TABLE scott.sales_2008 CASCADE;

This statement will drop not only the table scott.sales_2004, but also any views, trig-
gers, or constraints built on it. On the other hand, a DROP statement may include an
unqualified object name, in which case the current schema context is assumed. For
example:

DROP TRIGGER before_ins_emp;
DROP ROLE sales_mgr;

Although not required by the SQL2003 standard, most implementations cause the
DROP command to fail if the database object is in use by another user.

Programming Tips and Gotchas
DROP will only work when it is issued against a pre-existing object of the appropriate
type and when the user has appropriate permissions (usually the DROP TABLE
permission—refer to the section on the GRANT statement for more information). The
SQL standard requires only that the owner of an object be able to drop it, but most
database platforms allow variations on that requirement. For example, the database
superuser/superadmin can usually drop any object on a database server.

With some vendors, the DROP command fails if the database object has extended
properties. For example, Microsoft SQL Server will not drop a table that is replicated
unless you first remove the table from replication.

246 | Chapter 3: SQL Statement Command Reference

DROP Statements > MySQL

It is important to be aware that most vendors do not notify you if
the DROP command creates a dependency problem. Thus, if a
table that is used by a few views and stored procedures elsewhere in
the database is dropped, no warning is issued; those other objects
simply fail when they are accessed. To prevent this problem, you
may wish to use the RESTRICT syntax where it is available, or
check for dependencies before invoking the DROP statement.

You may have noticed that the ANSI standard does not support certain common
DROP commands, such as DROP DATABASE and DROP INDEX, even though every
vendor covered in this book (and just about every one in the market) supports these
commands. The exact syntax for each of these commands is covered in the platform-
specific sections that follow.

MySQL
MySQL supports a very limited number of objects via the CREATE/ALTER state-
ment. Consequently, the syntax for DROP is also limited:

DROP { {DATABASE | SCHEMA} | FUNCTION | INDEX [ONLINE | OFFLINE] |
 PROCEDURE | [TEMPORARY] TABLE | TRIGGER | VIEW }
[IF EXISTS] object_name[, ...]
[RESTRICT |CASCADE]

The supported SQL3 syntax elements are:

{DATABASE | SCHEMA} database_name
Drops the named database, including all the objects it contains (such as tables
and indexes). DROP SCHEMA is a synonym for DROP DATABASE on MySQL.
The DROP DATABASE command removes all database and table files from the
filesystem, as well as two-digit subdirectories. MySQL will return a message
showing how many files were erased from the database directory. (Files of these
extensions are erased: .BAK, .DAT, .FRM, .HSH, .ISD, .ISM, .MRG, .MYD, .MYI,
.DM, and .FM.) If the database is linked, both the link and the database are
erased. You may drop only one database at a time. RESTRICT and CASCADE are
not valid on DROP DATABASE.

FUNCTION routine_name
Drops the named routine from a MySQL v5.1 or greater database. You can use
the IF EXISTS clause with a DROP FUNCTION statement.

INDEX [ONLINE | OFFLINE] index_name ON table_name
Drops the named index from the named table, in MySQL v3.22 or later. This
command doesn’t do anything in versions earlier than 3.22, but in 3.22 it actually
executes an ALTER TABLE...DROP INDEX command behind the scenes. Begin-
ning with version 5.1.22-ndb-6.2.5, you can drop indexes online using the
eponymous keyword. Dropping an index online means that the specified table is
not copied, while dropping the index offline creates a copy of the table before
performing the action. You cannot use RESTRICT, CASCADE, or IF EXISTS with
a DROP INDEX statement.

PROCEDURE routine_name
Drops the named routine from a MySQL v5.1 or greater database. You can use
the IF EXISTS clause with a DROP PROCEDURE statement.

Chapter 3: SQL Statement Command Reference | 247

SQLStatem
ent

Com
m

ands
DROP Statements > Oracle

[TEMPORARY] TABLE table_name[, . . .]
Drops one or more named tables, with table names separated from each other by
commas. MySQL erases each table’s definition and deletes the three table files (.FRM,
.MYD, and .MYI) from the filesystem. Issuing this command causes MySQL to
commit all active transactions. The TEMPORARY keyword drops only temporary
tables without committing running transactions or checking access rights.

TRIGGER [schema_name.]trigger_name
Drops a named trigger for a MySQL v5.0.2 or greater database. You can use the
IF EXISTS clause with a DROP TRIGGER statement to ensure that you only drop
a trigger that actually exists within the database.

VIEW view_name
Drops a named view for the MySQL database. You can use the IF EXISTS clause
with a DROP VIEW statement.

 IF EXISTS
Prevents an error message when you attempt to drop an object that does not exist.
Usable in MySQL v3.22 or later.

RESTRICT | CASCADE
Noise words. These keywords do not generate an error, nor do they have any
other effect.

MySQL supports only the ability to drop a database, a table (or tables), or an index
from a table. Although the DROP statement will not fail with the RESTRICT and
CASCADE optional keywords, they have no effect. You can use the IF EXISTS clause
to prevent MySQL from returning an error message if you try to delete an object that
doesn’t exist.

Other objects that MySQL allows you to drop using similar syntax include:

DROP { EVENT | FOREIGN KEY | LOGFILE GROUP | PREPARE | PRIMARY KEY |
 SERVER | TABLESPACE | USER }
object_name

These variations of the DROP statement are beyond the scope of this book. Check the
MySQL documentation for more details.

Oracle
Oracle supports most of the ANSI keywords for the DROP statements, as well as many
additional keywords corresponding to objects uniquely supported by Oracle. Oracle
supports the DROP statement for the following SQL3 objects:

DROP { DATABASE | FUNCTION | INDEX | PROCEDURE | ROLE | TABLE |
 TRIGGER | TYPE [BODY] | VIEW }
object_name

The rules for Oracle DROP statements are less consistent than the ANSI standard’s
rules, so the full syntax of each DROP variant is shown in the following list:

DATABASE database_name
Drops the named database from the Oracle server.

FUNCTION function_name
Drops the named function, as long as it is not a component of a package. (If you
want to drop a function from a package, use the CREATE PACKAGE...OR
REPLACE statement to redefine the package without that function.) Any local
objects that depend on or call the function are invalidated, and any statistical
types associated with the function are disassociated.

248 | Chapter 3: SQL Statement Command Reference

DROP Statements > Oracle

INDEX index_name [FORCE]
Drops a named index or domain index from the database. Dropping an index
invalidates all objects that depend on the parent table, including views, packages,
functions, and stored procedures. Dropping an index also invalidates cursors and
execution plans that use the index and will force a hard parse of the affected SQL
statements when they are next executed.

Non-IOT indexes are secondary objects and can be dropped and recreated
without any loss of user data. IOTs, because they combine both table and index
data in the same structure, cannot be dropped and recreated in this manner. IOTs
should be dropped using the DROP TABLE syntax.

When you drop a partitioned index, all partitions are dropped. When you drop a
composite partitioned index, all index partitions and subpartitions are dropped.
When you drop a domain index, any statistics associated with the domain index
are removed and any statistic types are disassociated. The optional keyword
FORCE applies only when dropping domain indexes. FORCE allows you to drop
a domain index marked IN PROGRESS, or to drop a domain index when its
indextype routine invocation returns an error. For example:

DROP INDEX ndx_sales_salesperson_quota;

PROCEDURE procedure_name
Drops the named stored procedure. Any dependent objects are invalidated when
you drop a stored procedure, and attempts to access them before you recreate the
stored procedure will fail with an error. If you recreate the stored procedure and
then access a dependent object, the dependent object will be recompiled.

ROLE role_name
Drops the named role, removes it from the database, and revokes it from all users
and roles to whom it has been granted. No new sessions can use the role, but
sessions that are currently running under the role are not affected. For example,
the following statement drops the sales_mgr role:

DROP ROLE sales_mgr:

TABLE table_name [CASCADE CONSTRAINTS] [PURGE]
Drops the named table, erases all of its data, drops all indexes and triggers built
from the table (even those in other schemas), and invalidates all permissions and
all dependent objects (views, stored procedures, etc.). On partitioned tables,
Oracle drops all partitions (and subpartitions). On index-organized tables, Oracle
drops all dependent mapping tables. Statistic types associated with a dropped
table are disassociated. Materialized view logs built on a table are also dropped
when the table is dropped.

The DROP TABLE statement is effective for standard tables, index-organized
tables, and object tables. The table being dropped is only moved to the recycling
bin, unless you add the optional keyword PURGE, which tells Oracle to imme-
diate free all space consumed by the table. (Oracle also supports a non-ANSI SQL
command called PURGE that lets you remove tables from the recycling bin
outside of the DROP TABLE statement.) DROP TABLE erases only the metadata
of an external table. You must use an external operating system command to drop
the file associated with an external table and reclaim its space.

Use the optional CASCADE CONSTRAINTS clause to drop all referential
integrity constraints elsewhere in the database that depend on the primary or
unique key of the dropped table. You cannot drop a table with dependent referen-
tial integrity constraints without using the CASCADE CONSTRAINTS clause.

Chapter 3: SQL Statement Command Reference | 249

SQLStatem
ent

Com
m

ands
DROP Statements > Oracle

The following example drops the job_desc table in the emp schema, then drops
the job table and all referential integrity constraints that depend on the primary
key and unique key of the job table:

DROP TABLE emp.job_desc;
DROP TABLE job CASCADE CONSTRAINTS;

TRIGGER trigger_name
Drops the named trigger from the database.

TYPE [BODY] type_name [{FORCE | VALIDATE}]
Drops the specification and body of the named object type, nested table type, or
VARRAY, as long as they have no type or table dependencies. You must use the
optional FORCE keyword to drop a supertype, a type with an associated statistic
type, or a type with any sort of dependencies. All subtypes and statistic types are
then invalidated. Oracle will also drop any public synonyms associated with a
dropped type. The optional BODY keyword tells Oracle to drop only the body of
the type while keeping its specification intact. BODY cannot be used in conjunc-
tion with the FORCE or VALIDATE keywords. Use the optional VALIDATE
keyword when dropping subtypes to check for stored instances of the named type
in any of its supertypes. Oracle performs the drop only if no stored instances are
found. For example:

DROP TYPE salesperson_type;

VIEW view_name [CASCADE CONSTRAINTS]
Drops the named view and marks as invalid any views, subviews, synonyms, or
materialized views that refer to the dropped view. Use the optional clause
CASCADE CONSTRAINTS to drop all referential integrity constraints that
depend on the view. Otherwise, the DROP statement will fail if dependent refer-
ential integrity constraints exist. For example, the following statement drops the
active_employees view in the hr schema:

DROP VIEW hr.active_employees;

In the DROP syntax, object_name can be replaced with [schema_name.]object_name. If
you omit the schema name, the default schema of the user session is assumed. Thus,
the following DROP statement drops the specified view from the sales_archive
schema:

DROP VIEW sales_archive.sales_1994;

However, if your personal schema is scott, the following command is assumed to be
against scott.sales_1994:

DROP VIEW sales_1994;

Oracle also supports the DROP statement for a large number of objects that aren’t
part of SQL3, including:

DROP { CLUSTER | CONTEXT | DATABASE LINK | DIMENSION | DIRECTORY | DISKGROUP |
 FLASHBACK ARCHIVE | INDEXTYPE | JAVA | LIBRARY | MATERIALIZED VIEW |

MATERIALIZED VIEW LOG | OPERATOR | OUTLINE | PACKAGE | PROFILE | RESTORE
POINT |
 ROLLBACK SEGMENT | SEQUENCE | SYNONYM | TABLESPACE | TYPE BODY | USER }
object_name

These variations are beyond the scope of this book. Refer to the Oracle documenta-
tion if you want to drop an object of one of these types (although the basic syntax is
the same for almost all variations of the DROP statement).

250 | Chapter 3: SQL Statement Command Reference

DROP Statements > PostgreSQL

PostgreSQL
PostgreSQL does not support the RESTRICT or CASCADE optional keywords
supported by the ANSI standard. It does support a wide variety of DROP variants, as
follows:

DROP { DATABASE | DOMAIN | FUNCTION | INDEX | ROLE |
 SCHEMA | TABLE | TRIGGER | TYPE | VIEW }
[IF EXISTS]
object_name
[CASCADE | RESTRICT]

Following is the full SQL3-supported syntax for each variant:

DATABASE database_name
Drops the named database and erases the operating system directory containing
all of the database’s data. This command can only be executed by the database
owner, while that user is connected to a database other than the target database.
For example, we can drop the sales_archive database:

DROP DATABASE sales_archive;

DOMAIN domain_name[, . . .] [CASCADE | RESTRICT]
Drops one or more named domains owned by the session user. CASCADE auto-
matically drops objects that depend on the domain, while RESTRICT prevents
the action from occurring if any objects depend on the domain. When omitted,
RESTRICT is the default behavior.

FUNCTION function_name ([datatype1[, . . .]) [CASCADE | RESTRICT]
Drops the named user-defined function. Since PostgreSQL allows multiple func-
tions of the same name, distinguished only by the various input parameters they
require, you must specify one or more datatypes to uniquely identify the user-
defined function you wish to drop. PostgreSQL does not perform any kind of
dependency checks on other objects that might reference a dropped user-defined
function. (They will fail when invoked against an object that no longer exists.) For
example:

DROP FUNCTION median_distribution (int, int, int, int);

INDEX index_name[, . . .] [CASCADE | RESTRICT]
Drops one or more named indexes that you own. For example:

DROP INDEX ndx_titles, ndx_authors;

ROLE rule_name[, . . .]
Drops one or more named database roles. On PostgreSQL, a role cannot be
dropped when it is referenced in any database. That means you’ll need to drop or
reassign ownership of any objects owned by the role, using REASSIGN OWNED
and DROP OWNED statements, before dropping it, and then revoke any privi-
leges the role has been granted.

SCHEMA schema_name[, . . .] [CASCADE | RESTRICT]
Drops one or more named schemas from the current database. A schema can only
be dropped by a superuser or the owner of the schema (even when the owner
does not explicitly own all of the objects in the schema).

TABLE table_name[, . . .] [CASCADE | RESTRICT]
Drops one or more existing tables from the database, as well as any indexes or
triggers specified for the tables. For example:

DROP TABLE authors, titles;

Chapter 3: SQL Statement Command Reference | 251

SQLStatem
ent

Com
m

ands
DROP Statements > SQL Server

TRIGGER trigger_name ON table_name [CASCADE | RESTRICT]
Drops the named trigger from the database. You must specify the table_name
because PostgreSQL requires that trigger names be unique only on the tables to
which they are attached. This means it is possible to have many triggers called,
say, insert_trigger or delete_trigger, each on a different table. For example:

DROP TRIGGER insert_trigger ON authors;

TYPE type_name[, . . .] [CASCADE | RESTRICT]
Drops one or more pre-existing user-defined types from the database. Postgr-
eSQL does not check to see what impact the DROP TYPE command might have
on any dependent objects, such as functions, aggregates, or tables; you must
check the dependent objects manually. (Do not remove any of the built-in types
that ship with PostgreSQL!) Note that PostgreSQL’s implementation of types
differs from the ANSI standard. Refer to the section on the CREATE/ALTER
TYPE statement for more information.

VIEW view_name[, . . .] [CASCADE | RESTRICT]
Drops one or more pre-existing views from the database.

 CASCADE | RESTRICT
CASCADE automatically drops objects that depend on the object being dropped,
while RESTRICT prevents the action from occurring if any objects depend on the
object being dropped. When omitted, RESTRICT is the default behavior. Since
this subclause is not allowed with all forms of DROP in PostgreSQL, it is shown
with the statements where it is allowed.

IF EXISTS
Suspends the creation of an error message of the object to be dropped does not
exist. This subclause is usable for all variations of the DROP statement.

Note that PostgreSQL drop operations do not allow you to specify the target database
where the operation will take place (except for DROP DATABASE). Therefore, you
should execute any drop operation from the database where the object you want to
drop is located.

PostgreSQL supports variations of the DROP statement for several objects that are
extensions to the SQL3 standard, as shown here:

DROP { AGGREGATE | CAST | CONVERSION | GROUP | LANGUAGE | OPERATOR [CLASS] |
 RULE | SEQUENCE | TABLESPACE | USER } object_name

These variations are beyond the scope of this book. Refer to the PostgreSQL documen-
tation if you want to drop an object of one of these types (although the basic syntax is
the same for almost all variations of the DROP statement).

SQL Server
SQL Server supports several SQL3 variants of the DROP statement:

DROP { DATABASE | FUNCTION | INDEX | PROCEDURE | ROLE |
 SCHEMA | TABLE | TRIGGER | TYPE | VIEW } object_name

Following is the full syntax for each variant:

DATABASE database_name[, . . .]
Drops the named database(s) and erases all disk files used by the database(s).
This command may only be issued from the master database. Replicated data-
bases must be removed from their replication schemes before they can be
dropped, as must log shipping databases. You cannot drop a database while it is
in use, nor can you drop system databases (master, model, msdb, or tempdb).

252 | Chapter 3: SQL Statement Command Reference

DROP Statements > SQL Server

For example, we can drop the northwind and pubs databases with one
command:

DROP DATABASE northwind, pubs
GO

FUNCTION [schema.]function_name[, . . .]
Drops one or more user-defined functions from the current database.

INDEX index_name ON table_or_view_name[, ...] [WITH { MAXDOP = int | ONLINE =
{ON | OFF} | MOVE TO location [FILESTREAM_ON location] }]

Drops one or more indexes from tables or indexed views in the current database
and returns the freed space to the database. This statement should not be used to
drop a PRIMARY KEY or UNIQUE constraint. Instead, drop these constraints
using the ALTER TABLE...DROP CONSTRAINT statement. When dropping a
clustered index from a table, all non-clustered indexes are rebuilt. When drop-
ping a clustered index from a view, all non-clustered indexes are dropped. The
WITH subclause may only be used when dropping a clustered index. MAXDOP
specifies the maximum degrees of parallelism that SQL Server may use to drop
the clustered index. Values for MAXDOP may be 1 (suppresses parallelism), 0
(the default, using all or fewer processors on the system), or a value greater than 1
(restricts parallelism to the value of int). ONLINE specifies that queries or
updates may continue on the underlying tables (with ON), or that table locks are
applied and the table is unavailable for the duration of the process (with OFF).
MOVE TO specifies a pre-existing filegroup or partition, or the default location
for data within the database to which the clustered index will be moved. The clus-
tered index is moved to the new location in the form of a heap.

PROC[EDURE] procedure_name[, . . .]
Drops one or more stored procedures from the current database. SQL Server
allows multiple versions of a single procedure via version numbers, but these
versions cannot be dropped individually; you must drop all versions of a stored
procedure at once. System procedures (those with an sp_ prefix) are dropped
from the master database if they are not found in the current user database. For
example:

DROP PROCEDURE calc_sales_quota
GO

ROLE rule_name[, . . .]
Drops one or more roles from the current database. The role must not own any
objects, or else the statement will fail. You must first drop owned objects or
change their ownership before dropping a role that owns any objects.

SCHEMA schema_name
Drops a schema that does not own any objects. To drop a schema that owns
objects, first drop the dependent objects or assign them to a different schema.

TABLE [database_name.][schema_name.]table_name[, . . .]
Drops a named table and all data, permissions, indexes, triggers, and constraints
specific to that table. (The table_name may be a fully qualified table name like
pubs.dbo.sales or a simple table name like sales, if the current database and
owner are correct.) Views, functions, and stored procedures that reference the
table are not dropped or marked as invalid, but will return an error when their
procedural code encounters the missing table. Be sure to drop these yourself! You
cannot drop a table referenced by a FOREIGN KEY constraint without first drop-
ping the constraint. Similarly, you cannot drop a table used in replication without

Chapter 3: SQL Statement Command Reference | 253

SQLStatem
ent

Com
m

ands
DROP Statements > SQL Server

first removing it from the replication scheme. Any user-defined rules or defaults
are unbound when the table is dropped. They must be rebound if the table is
recreated.

TRIGGER trigger_name[, . . .] [ON {DATABASE | ALL SERVER}]
Drops one or more triggers from the current database. The subclause [ON
{DATABASE | ALL SERVER}] is available when dropping DDL triggers, while the
subclause [ON ALL SERVER] is also available to LOGON event triggers. ON
DATABASE indicates the scope of the DDL trigger applied to the current data-
base and is required if the subclause was used when the trigger was created. ON
ALL SERVER indicates the scope of the DDL or LOGON trigger applied to the
current server and is required if the subclause was used when the trigger was
created.

TYPE [schema_name.]type_name[, . . .]
Drops one or more user-defined types from the current database.

VIEW [schema_name.]view_name[, . . .]
Drops one or more views from the database, including indexed views, and returns
all space to the database.

SQL Server also has a large number of objects that extend the ANSI standard and that
are removed using the more-or-less standardized syntax of the DROP statement. These
variations of the syntax include:

DROP { AGGREGATE | APPLICATION ROLE | ASSEMBLY | ASYMMETRIC KEY | BROKER
PRIORITY |
 CERTIFICATE | CONTRACT | CREDENTIAL | CRYPTOGRAPHIC PROVIDER | DATABASE
AUDIT

SPECIFICATION | DATABASE ENCRYPTIIN KEY | DEFAULT | ENDPOINT | EVENT
 NOTIFICATION | EVENT SESSION | FULLTEXT CATALOG | FULLTEXT INDEX | FULLTEXT

STOPLIST | LOGIN | MASTER KEY | MESSAGE TYPE | PARTITION FUNCTION |
PARTITION

SCHEME | QUEUE | REMOTE SERVICE BINDING | RESOURCE POOL | ROUTE | SERVER
AUDIT |
 SERVER AUDIT SPECIFICATION | SERVICE | SIGNATURE | STATISTICS | SYMMETRIC
KEY |
 SYNONYM | USER | WORKLOAD GROUP | XML SCHEMA COLLECTION }
object_name

These variations are beyond the scope of this book. Refer to the SQL Server documen-
tation to drop an object of one of these types (although the basic syntax is the same for
almost all variations of the DROP statement).

See Also
CALL
CONSTRAINTS
CREATE/ALTER FUNCTION/PROCEDURE/METHOD
CREATE SCHEMA
CREATE/ALTER TABLE
CREATE/ALTER VIEW
DELETE
DROP
GRANT
INSERT
RETURN

254 | Chapter 3: SQL Statement Command Reference

EXCEPT Set Operator

SELECT
SUBQUERY
UPDATE

EXCEPT Set Operator

The EXCEPT set operator retrieves the result sets of two or more queries, including all
the records retrieved by the first query that are not also found in subsequent queries.
Whereas JOIN clauses are used to return the rows of two or more queries that are in
common, EXCEPT is used to filter out the records that are present in only one of
multiple, but similar, tables.

EXCEPT is in a class of keywords called set operators. Other set operators include
INTERSECT and UNION. (MINUS is Oracle’s equivilent to the EXCEPT keyword;
EXCEPT is the ANSI standard.) All set operators are used to simultaneously manipu-
late the result sets of two or more queries, hence the term “set operators.”

SQL2003 Syntax
There are technically no limits to the number of queries that you may combine with
the EXCEPT operator. The general syntax is:

{SELECT statement1 | VALUES (expr1[, ...])}
EXCEPT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, colum2, ...)]]
{SELECT statement2 | VALUES (expr2[, ...])}
EXCEPT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, column2, ...)]]
...

Keywords
VALUES (expr1[, . . .])

Generates a derived result set with explicitly declared values as expr1, expr2, etc.
It is essentially a SELECT statement result set without the SELECT...FROM
syntax. This is known as a row constructor, since the rows of the result set are
manually constructed. According to the ANSI standard, mutliple hand-coded rows
in a row constructor must be enclosed in parentheses and separated by commas.

EXCEPT
Determines which rows will be excluded from the single result set.

ALL | DISTINCT
ALL considers duplicate rows from all result sets. DISTINCT drops duplicate rows
from all result sets prior to the EXCEPT comparison. Any columns containing a
NULL value are considered duplicates. (If neither ALL nor DISTINCT is used,
DISTINCT behavior is the default.)

Platform Command

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

Chapter 3: SQL Statement Command Reference | 255

SQLStatem
ent

Com
m

ands
EXCEPT Set Operator

CORRESPONDING [BY (column1, column2, . . .)]
Specifies that only columns with the listed names are returned, even if one or both
queries use the asterisk shortcut.

Rules at a Glance
There is only one significant rule to remember when using EXCEPT: the number and
order of the columns should be the same in all queries, and the datatypes should be of
the same category.

The datatypes do not have to be identical, but they must be compatible. For example,
CHAR and VARCHAR are compatible datatypes. By default, the result set will default
to the largest datatype size of each column in each ordinal position. For example, a
query retrieving rows from VARCHAR(10) and VARCHAR(15) columns will use the
VARCHAR(15) datatype and size.

Programming Tips and Gotchas
None of the platforms supports the CORRESPONDING [BY (column1, column2, . . .)]
clause.

On platforms that do not support EXCEPT, you might substitute a
NOT IN subquery. However, NOT IN subqueries have different
NULL handling and, on some database platforms, produce differ-
ent result sets.

According to the ANSI standard, the UNION and EXCEPT set operators evaluate with
equal precedence. However, the INTERSECT set operator evaluates before the other
set operators. We recommend that you explicitly control the precedence of the set
operators using parentheses as a general best practice.

According to the ANSI standard, only one ORDER BY clause is allowed in the entire
query. Include it at the end of the last SELECT statement. To avoid column and table
ambiguity, be sure to alias each column for each table with the same respective alias.
For example:

SELECT au_lname AS 'lastname', au_fname AS 'firstname'
FROM authors
EXCEPT
SELECT emp_lname AS 'lastname', emp_fname AS 'firstname'
FROM employees
ORDER BY lastname, firstname

Also, while each of your column lists may list columns with correspondingly
compatible datatypes, there may be some variation in behavior across the DBMS
platforms with regard to the length of the columns. For example, if the au_lname
column in the previous example’s first query is markedly longer than the emp_lname
column in the second query, the platforms may apply different rules as to which length is
used for the final result. In general, though, the platforms will choose the longer (and less
restrictive) column size for use in the result set.

Note that you can use NOT IN or NOT EXISTS operations in conjunction with a
correlated subquery as alternatives. The following queries are examples of how you
can achieve EXCEPT functionality using NOT EXISTS and NOT IN:

SELECT DISTINCT a.city
FROM pubs..authors AS a

256 | Chapter 3: SQL Statement Command Reference

EXCEPT Set Operator > MySQL

WHERE NOT EXISTS
 (SELECT *
 FROM pubs..publishers AS p
 WHERE a.city = p.city)
SELECT DISTINCT a.city
FROM pubs..authors AS a
WHERE a.city NOT IN
 (SELECT p.city
 FROM pubs..publishers AS p
 WHERE p.city IS NOT NULL)

In general, NOT EXISTS is faster than NOT IN. In addition, there is a subtle issue
with NULLs that differentiates the IN and NOT IN operators and the EXISTS and
NOT EXISTS set operators. To get around this different handling of NULLs, simply
add the IS NOT NULL clause to the WHERE clause, as shown in the preceding
example.

Each DBMS may apply its own rules as to which column name is used if the names
vary across column lists. In general, the column names of the first query are used.

MySQL
EXCEPT is not supported in MySQL. However, you can use the NOT IN or NOT
EXISTS operations as alternatives, as detailed in the previous section.

Oracle
Oracle does not support the EXCEPT set operator. However, it has an alternative set
operator, MINUS, with identical functionality:

<SELECT statement1>
MINUS
<SELECT statement2>
MINUS
...

MINUS DISTINCT and MINUS ALL are not supported. MINUS is the functional
equivalent of MINUS DISTINCT. Oracle does not support MINUS on queries under
the following circumstances:

• Queries containing columns whose datatypes are LONG, BLOB, CLOB, BFILE,
or VARRAY

• Queries containing a FOR UPDATE clause

• Queries containing TABLE collection expressions

If the first query in a set operation contains any expressions in the select item list, you
must include AS clauses to associate aliases with those expressions. Also, only the last
query in the set operation may contain an ORDER BY clause.

For example, you could generate a list of all store IDs that do not have any records in
the sales table as follows:

SELECT stor_id FROM stores
MINUS
SELECT stor_id FROM sales

The MINUS command is functionally similar to a NOT IN query. This query retrieves
the same results:

Chapter 3: SQL Statement Command Reference | 257

SQLStatem
ent

Com
m

ands
EXCEPT Set Operator > SQL Server

SELECT stor_id FROM stores
WHERE stor_id NOT IN
 (SELECT stor_id FROM sales)

PostgreSQL
PostgreSQL supports the EXCEPT and EXCEPT ALL set operators using the basic
ANSI SQL syntax:

<SELECT statement1>
EXCEPT [ALL]
<SELECT statement2>
EXCEPT [ALL]
...

PostgreSQL does not support EXCEPT or EXCEPT ALL on queries with a FOR
UPDATE clause. EXCEPT DISTINCT is not supported, but EXCEPT is the functional
equivalent. PostgreSQL also does not support the CORRESPONDING clause.

The first query in the set operation may not contain an ORDER BY clause or a LIMIT
clause. Subsequent queries in the EXCEPT or EXCEPT ALL set operation may contain
these clauses, but such queries must be enclosed in parentheses. Otherwise, the right-
most occurence of ORDER BY or LIMIT will be applied to the entire set operation.

PostgreSQL evaluates SELECT statements in a multi-EXCEPT statement from top to
bottom, unless you use parentheses to change the evaluation hierarchy of the
statements.

Normally, duplicate rows are eliminated from the two result sets, unless you add the
ALL keyword. For example, you could find all titles in the authors table that have no
records in the sales table using this query:

SELECT title_id
FROM authors
EXCEPT ALL
SELECT title_id
FROM sales;

SQL Server
EXCEPT is supported, though the SQL3 subclauses CORRESPONDING, ALL, and
DISTINCT are not. For comparison purposes, SQL Server considers NULL values
equal when evaluating an EXCEPT result set. If using the SELECT…INTO statement,
only the first query may contain the INTO clause. ORDER BY is only allowed at the
end of the statement and is not allowed with each individual query. Conversely,
GROUP BY and HAVING clauses can only be used within individual queries and may
not be used to affect the final result set. The FOR BROWSE clause may not be used
with statements that include EXCEPT.

See Also
INTERSECT
SELECT
UNION

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

258 | Chapter 3: SQL Statement Command Reference

EXISTS Operator > All Platforms

EXISTS Operator

The EXISTS operator tests a subquery for the existence of rows.

SQL2003 Syntax
SELECT ...
WHERE [NOT] EXISTS (subquery)

The parameters and keywords are as follows:

WHERE [NOT] EXISTS
Tests the subquery for the existence of one or more rows. If even one row satis-
fies the subquery clause, it returns a Boolean TRUE value. The optional NOT
keyword returns a Boolean TRUE value when the subquery returns no matching
rows.

subquery
Retrieves a result set based on a fully formed subquery.

Rules at a Glance
The EXISTS operator checks a subquery for the existence of one or more records
against the records in the parent query.

For example, if we want to see whether there any jobs where no employee is filling the
position:

SELECT *
FROM jobs
WHERE NOT EXISTS
 (SELECT * FROM employee
 WHERE jobs.job_id = employye.job_id)

This example tests for the absence of records in the subquery using the optional NOT
keyword. The next example looks for specific records in the subquery to retrieve the
main result set:

SELECT au_lname
FROM authors
WHERE EXISTS
 (SELECT *
 FROM publishers
 WHERE authors.city = publishers.city)

This query returns the last names of authors who live in the same city as their
publishers. Note that the asterisk in the subquery is acceptable, since the subquery
only needs to return a single record to provide a Boolean TRUE value. Columns are
irrelevant in these cases. The first example selects only a single column; the key point
is whether a row exists.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

Chapter 3: SQL Statement Command Reference | 259

SQLStatem
ent

Com
m

ands
FETCH Statement

Programming Tips and Gotchas
EXISTS, in many queries, does the same thing as ANY (in fact, it is symantically equiva-
lent to the ANY operator). EXISTS is usually most effective with correlated subqueries.

The EXISTS subquery usually searches for only one of two things. Your first option is
to use the asterisk wildcard (e.g., SELECT * FROM...) so that you are not retrieving
any specific column or value. In this case, the asterisk means “any column.” The
second option is to select only a single column in the subquery (e.g., SELECT au_id
FROM...). Some individual database platforms also allow a subquery against more
than one column (e.g., SELECT au_id, au_lname FROM...). However, this feature is
rare and should be avoided in code that needs to be transportable across platforms.

Platform Differences
All of the platforms support EXISTS in the manner described above.

See Also
ALL/ANY/SOME
SELECT
WHERE

FETCH Statement

The FETCH statement is one of four commands used in cursor processing, along with
DECLARE, OPEN, and CLOSE. Cursors allow you to process queries one row at a
time, rather than as a complete set. FETCH positions a cursor on a specific row and
retrieves that row from the result set.

Cursors are especially important in relational databases because they are set-based,
while most client-centric programming languages are row-based. Cursors allow you to
perform operations a single row at a time, to better fit what a client program can do,
rather than operating on a whole set of records at once.

SQL2003 Syntax
FETCH [{ NEXT | PRIOR | FIRST | LAST |
 { ABSOLUTE int | RELATIVE int } }
 FROM] cursor_name
[INTO variable1[, ...]]

Keywords
NEXT

Tells the cursor to return the record immediately following the current row, and
increments the current row to the row returned. FETCH NEXT is the default
behavior for FETCH. It retrieves the first record if FETCH is performed as the first
fetch against a cursor.

Platform Command

MySQL Supported, with limitations

Oracle Supported, with limitations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

260 | Chapter 3: SQL Statement Command Reference

FETCH Statement

PRIOR
Tells the cursor to return the record immediately preceding the current row and
decrements the current row to the row returned. FETCH PRIOR does not retrieve
a record if it is performed as the first fetch against the cursor.

FIRST
Tells the cursor to return the first record in the cursor result set, making it the
current row.

LAST
Tells the cursor to return the last record in the cursor result set, making it the
current row.

ABSOLUTE int
Tells the cursor to return the int record from the cursor record set counting from
the top (if int is a positive integer), or the int record counting from the bottom (if
int is a negative integer), making the returned record the new current record of
the cursor. If int is 0, no rows are returned. If the value of int moves the cursor
past the end of the cursor result set, the cursor is positioned after the last row (for
a positive int) or before the first row (for a negative int).

RELATIVE int
Tells the cursor to return the record int rows after the current record (if int is
positive) or int rows before the current record (if int is negative), making the
returned record the new current row of the cursor. If int is 0, the current row is
returned. If the value of int moves the cursor past the end of the cursor result set,
the cursor is positioned after the last row (for a positive int) or before the first
row (for a negative int).

[FROM] cursor_name
Gives the name of the (open) cursor from which you want to retrieve rows. The
cursor must be previously created and instantiated using the DECLARE and
OPEN clauses. FROM is optional, but encouraged.

INTO variable1[, . . .]
Stores data from each column in the open cursor into a local variable. Each
column in the cursor must have a corresponding variable of a matching datatype
in the INTO clause. Each column value is directly related to the variables in
ordinal positions.

Rules at a Glance
At the highest level, a cursor must be:

1. Created using DECLARE

2. Opened using OPEN

3. Operated against using FETCH

4. Dismissed using CLOSE

By following these steps, you create a result set similar to that of a SELECT statement,
except that you can operate against each individual row within the result set
separately.

Chapter 3: SQL Statement Command Reference | 261

SQLStatem
ent

Com
m

ands
FETCH Statement

Each database platform has its own rules about how variables are
used. For example, SQL Server requires an at sign (@) as a prefix,
PostgreSQL and Oracle have no prefix, and so forth. The SQL stan-
dard says that a colon (:) prefix is necessary for languages that are
embedded, like C or COBOL, but no prefix is needed for proce-
dural SQL.

A cursor rests either directly on a row, before the first row, or after the last row. When
a cursor is resting directly in a row, that row is known as the current row. You can use
cursors to position an UPDATE or DELETE statement in the current row using the
WHERE CURRENT OF clause.

It is important to remember that a cursor result set does not wrap around. Thus, if you
have a result set containing 10 records and you tell the cursor to move forward 12
records, it will not wrap back around to the beginning and continue its count from
there. Instead, the default cursor behavior is to stop after the last record in the result
set when scrolling forward, and to stop before the first record when scrolling back. For
example, on SQL Server:

FETCH RELATIVE 12 FROM employee_cursor
INTO @emp_last_name, @emp_first_name, @emp_id

When fetching values from the database into variables, make sure that the datatypes
and number of columns and variables match. Otherwise, you’ll get an error. For
example, this will fail since the employee_cursor contains three columns while the
fetch operation has only two variables:

FETCH PRIOR FROM employee_cursor
INTO @emp_last_name, @emp_id

Programming Tips and Gotchas
The most common errors encountered with the FETCH statement are mismatches
between the number, order, or datatypes of the variables and the values in the cursor.
So, before you write your FETCH statements, make sure you know exactly what values
are in the cursor and what their datatypes are.

Typically, the database will lock at least the current row and possibly all rows held by
the cursor. According to the ANSI standard, cursor locks are not held through ROLL-
BACK or COMMIT operations, although this behavior varies from platform to
platform.

Although the FETCH statement is detailed in isolation here, it should always be
managed as a group with the DECLARE, OPEN, and CLOSE statements. For
example, every time you open a cursor, the server consumes memory. If you forget to
close your cursors, you could create memory-management problems. So, you need to
make sure that every declared and opened cursor is eventually closed.

Cursors are also often used in stored procedures or batches of procedural code. The
reason for this is because sometimes you need to perform actions on individual rows
rather than on entire sets of data at a time. But because cursors operate on individual
rows and not sets of data, they are often much slower than other means of accessing
your data. It’s important to analyze your approach. Many challenges, such as a convo-
luted DELETE operation or a very complex UPDATE, can be solved by using clever
WHERE and JOIN clauses instead of cursors.

262 | Chapter 3: SQL Statement Command Reference

FETCH Statement > MySQL

MySQL
MySQL supports the basics of the SQL3 standard FETCH statement:

FETCH cursor_name INTO variable_name1[, ...]

MySQL will fetch the next row (if one exists) using the specific open cursor and
advance the cursor pointer one increment. When no more rows are available, MySQL
returns a SQLSTATE value of ‘02000’ and a NO DATA condition event. You can
detect and treat this occurrence using a handler for the SQLSTATE value or for a NOT
FOUND condition.

Oracle
Oracle cursors are implicitly forward-only cursors that always scroll forward one
record at a time. An Oracle cursor, when compared to the ANSI standard, is essen-
tially a FETCH NEXT 1 cursor. Oracle cursors must either insert the retrieved values
into matching variables, or use the BULK COLLECT clause to insert all of the records
of the result set into an array. Oracle does not support keywords like PRIOR, ABSO-
LUTE, and RELATIVE. However, Oracle does support both forward-only and
scrollable cursors in the database via the Oracle Call Interface (OCI). OCI also
supports features like PRIOR, ABSOLUTE, and RELATIVE for read-only cursors
whose result sets are based on read-consistent snapshots.

Oracle’s FETCH syntax is:

FETCH cursor_name
{ INTO variable_name1[, ...] | BULK COLLECT INTO

collection_name[, ...] [LIMIT int] }

where:

BULK COLLECT INTO collection_name
Retrieves the entire rowset, or a specified number of rows (see LIMIT), into a
client-side array or collection variable named collection_name.

LIMIT int
Limits the number of records fetched from the database when using the BULK
statement. The int value is a nonzero integer (or a variable representing an integer
value).

Oracle supports dynamic SQL-based cursors whose text can be built at runtime.
Oracle also supports cursor_names that may be any allowable variable, parameter, or
host-array type. In fact, you may also use user-defined or %ROWTYPE record vari-
ables for the INTO clause. This allows you to construct flexible, dynamic cursors in a
template-like structure.

For example:

DECLARE
 TYPE namelist IS TABLE OF employee.lname%TYPE;
 names namelist;
 CURSOR employee_cursor IS SELECT lname FROM employee;
BEGIN
 OPEN employee_cursor;
 FETCH employee_cursor BULK COLLECT INTO names;
 ...
 CLOSE employee_cursor;
END;

Chapter 3: SQL Statement Command Reference | 263

SQLStatem
ent

Com
m

ands
FETCH Statement > PostgreSQL

Oracle FETCH often is paired with a PL/SQL FOR loop (or other kind of loop) to
cycle through all the rows in the cursor. You should use the cursor attributes
%FOUND or %NOTFOUND to detect the end of the rowset. For example:

DECLARE
 TYPE employee_cursor IS REF CURSOR RETURN employee%ROWTYPE;
 employee_cursor EmpCurTyp;
 employee_rec employee%ROWTYPE;
BEGIN
 LOOP
 FETCH employee _cursor INTO employee_rec;
 EXIT WHEN employee _cursor%NOTFOUND;
 ...
 END LOOP;
CLOSE employee_cursor;
END;

This example uses a standard PL/SQL loop with an EXIT clause to end the loop when
there are no more rows in the cursor to process.

PostgreSQL
PostgreSQL supports both forward- and backward-scrolling cursors with a superset of
modes compared to the SQL3 standard. The syntax for FETCH in PostgreSQL is:

FETCH { FORWARD [{ALL | int}] | BACKWARD [{ALL | int}] |
 ABSOLUTE int | RELATIVE int | int | ALL | NEXT | PRIOR | FIRST | LAST }
{ IN | FROM } cursor_name
[INTO :variable1[, ...]]

where:

FORWARD [{ALL | int}]
Tells PostgreSQL to fetch the next row (same as NEXT), if there are no other
keywords. This is the default if no other mode is defined. FORWARD ALL
fetches all remaining rows in the cursor and positions the cursor after the last
remaining row, while FORWARD int returns all rows up to int rows forward (or
the current row if int is 0) and places the cursor after the last row fetched.

BACKWARD [{ALL | int}]
Fetches the prior row, if no other keywords are specified. BACKWARD ALL
fetches all prior rows in the cursor scanning backward and positions the cursor
before the first row, while BACKWARD int returns all rows up to int rows back
(or the current row if int is 0) and places the cursor before the last row fetched.

ABSOLUTE int
Fetches the row occurring at position int.

RELATIVE int
Fetches the int next rows or int prior rows (if negative).

int
A signed integer that indicates how many records to scroll forward (if positive) or
backward (if negative).

ALL
Retrieves all records remaining in the cursor.

NEXT
Retrieves the next single record.

264 | Chapter 3: SQL Statement Command Reference

FETCH Statement > SQL Server

PRIOR
Retrieves the previous single record.

IN | FROM cursor_name
Defines the previously declared and opened cursor from which data will be
retrieved.

INTO variable
Assigns a cursor value to a specific variable. As with ANSI cursors, the values
retrieved by the cursor and the variables must match in number, datatype, and
order.

PostgreSQL cursors must be used with transactions explicitly declared using BEGIN
and must be closed with COMMIT or ROLLBACK.

The following PostgreSQL statement retrieves five records from the employee table
and displays them:

FETCH FORWARD 5 IN employee_cursor;

PostgreSQL also supports a separate command, MOVE, to move to a specific cursor
position. It differs from FETCH only by not returning values into variables:

MOVE { [FORWARD | BACKWARD | ABSOLUTE | RELATIVE] }
 { [int | ALL | NEXT | PRIOR] }
{ IN | FROM } cursor_name

For example, the following code declares a cursor, skips forward five records, and then
returns the values in the sixth record:

BEGIN WORK;
 DECLARE employee_cursor CURSOR FOR SELECT * FROM employee;
 MOVE FORWARD 5 IN employee_cursor;
 FETCH 1 IN employee_cursor;
 CLOSE employee_cursor;
COMMIT WORK;

The preceding code will return a single row from the employee_cursor result set.

SQL Server
SQL Server supports a variation of FETCH that is very close to the ANSI standard:

FETCH [{ NEXT | PRIOR | FIRST | LAST |
 { ABSOLUTE int | RELATIVE int } }]
 [FROM] [GLOBAL] cursor_name
[INTO @variable1[, ...]]

The differences between SQL Server’s implementation and the ANSI standard are very
small. First, SQL Server allows you to use variables in place of the int and cursor_name
values. Second, SQL Server allows the declaration and use of GLOBAL cursors that
can be accessed by any user or session, not just the one that created it.

There are some rules that apply to how you use the FETCH command based upon
how you issued the DECLARE CURSOR command:

• When you declare a SCROLL SQL-92 cursor, all FETCH options are supported.
In all other SQL-92 cursors, NEXT is the only option supported. (There is also an
alternate Transact-SQL-style DECLARE CURSOR statement.)

• DYNAMIC SCROLL cursors support all FETCH options except ABSOLUTE.

• FORWARD_ONLY and FAST_FORWARD cursors support only FETCH NEXT.

• KEYSET and STATIC cursors support all FETCH options.

Chapter 3: SQL Statement Command Reference | 265

SQLStatem
ent

Com
m

ands
GRANT Statement

SQL Server also requires a DEALLOCATE statement, in addition to
CLOSE, to release memory consumed by a cursor.

Here’s a full example that goes from declaring and opening a cursor, to initiating
several fetches, and then finally closing and deallocating the cursor:

DECLARE @vc_lname VARCHAR(30), @vc_fname VARCHAR(30), @i_emp_id CHAR(5)
DECLARE employee_cursor SCROLL CURSOR FOR
 SELECT lname, fname, emp_id
 FROM employee
 WHERE hire_date <= 'FEB-14-2004'
OPEN employee_cursor
-- Fetch the last row in the cursor.
FETCH LAST FROM employee_cursor
-- Fetch the row immediately prior to the current row in the cursor.
FETCH PRIOR FROM employee_cursor
-- Fetch the fifth row in the cursor.
FETCH ABSOLUTE 5 FROM employee_cursor
-- Fetch the row that is two rows after the current row.
FETCH RELATIVE 2 FROM employee_cursor
-- Fetch values eight rows prior to the current row into variables.
FETCH RELATIVE -8 FROM employee_cursor
INTO @vc_lname, @vc_fname, @i_emp_id
CLOSE employee_cursor
DEALLOCATE employee_cursor
GO

Remember that in SQL Server you must not only CLOSE the cursor, but also DEAL-
LOCATE it. In some rare cases, you might wish to reopen a closed cursor. You can
reuse any cursor that you have closed but not deallocated. The cursor is permanently
destroyed only when it is deallocated.

See Also
CLOSE
DECLARE CURSOR
OPEN

GRANT Statement

The GRANT statement assigns privileges to users and roles, allowing them to access
and use database objects. In addition, most database platforms use the GRANT state-
ment to authorize users and roles to create database objects and execute stored
procedures, functions, and so on. In other words, on most platforms it can be used to
assign both object and usage privileges.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

266 | Chapter 3: SQL Statement Command Reference

GRANT Statement

SQL2003 Syntax
The SQL2003 syntax for GRANT allows for only the assignment of object privileges
and roles to a specific user:

GRANT { {object privilege[, ...] | role[, ...]} }
[ON database_object_name]
[TO grantee[, ...]]
[WITH HIERARCHY OPTION] [WITH GRANT OPTION] [WITH ADMIN OPTION]
[FROM {CURRENT_USER | CURRENT_ROLE}]

Keywords
GRANT object privilege[, . . .]

Grants privileges to issue one or more SQL statements. Multiple privileges may be
granted at one time, separated by commas. You should not combine ALL PRIVI-
LEGES with other privileges, but the remainder may be combined in any order.
Valid privileges are:

ALL PRIVILEGES
Indicates every privilege the grantor has available to grant; grants all privi-
leges currently assigned to the grantor to the named user(s) and/or for the
specified database objects. This is generally not a recommended approach,
since it can encourage sloppy permissioning.

EXECUTE
Grants the privilege to execute any ANSI SQL routine. An ANSI routine is
any stored procedure, user-defined function, or user-defined method.

SELECT | INSERT | UPDATE | DELETE
Grants the specified privilege for a given user on the specified database
object, such as a table or view. You may add a parenthetical list of the
columns of a given table on which the privilege will be granted (except for
the DELETE statement).

REFERENCES
Grants the privilege to use the column(s) in any constraint or assertion, not
just a foreign key. The REFERENCES clause also allows you to define
column-specific details (by including a parenthetical, comma-delimited list)
for statements such as INSERT, SELECT, and so on. Finally, REFERENCES
grants the privilege to create or drop foreign key constraints referencing the
database object as a parent object.

TRIGGER
Grants the privilege to create a trigger to operate on a specific table and its
columns.

UNDER
Grants the privilege to create subtypes or typed tables.

USAGE
Grants privileges to use a domain, user-defined type, character set, collation,
sequence, or translation.

GRANT role[, . . .]
Grants a specific, predefined role to the grantee; this role must be available to the
user or role identified in the FROM clause. For example, the database adminis-
trator might want to create a role called Reporter that has read-only access to

Chapter 3: SQL Statement Command Reference | 267

SQLStatem
ent

Com
m

ands
GRANT Statement

several tables. Subsequently granting this role to a user would bestow upon that
user all of the read-only permissions granted to the Reporter role. That is, users
can have roles assigned to them and receive all of the permissions already
assigned to those roles.

ON database_object_name
Grants privileges on the specified, predefined database object identified by
database_object_name, which may be one of the following:

{[TABLE] object_name | DOMAIN object_name |
 COLLATION object_name | CHARACTER SET object_name |
 TRANSLATION object_name | SPECIFIC ROUTINE routine_name}

TO grantee
Assignes the privilege(s) to the named user(s) or role(s), designated as grantee.
You can assign privileges to multiple users and/or roles, as long as commas sepa-
rate them. Alternately, privileges may be granted to PUBLIC, meaning that all
users (including those that will be created in the future) have the specified
privileges.

WITH HIERARCHY OPTION
Bestows the WITH HIERARCHY OPTION privilege, enabling the grantee to
SELECT not only from the named table, but also from all of its subtables. This
applies to privilege grants only.

WITH GRANT OPTION
Enables the grantee to further grant the privileges to other users. This applies to
privilege grants only.

WITH ADMIN OPTION
Bestows the ability to assign a role. The ability to assign role responsibilities is
separate from the ability to grant privileges to other users or roles.

FROM {CURRENT_USER | CURRENT_ROLE}
Names the user who is granting the specified privilege(s), either the CURRENT_
USER or the CURRENT_ROLE. This clause is optional and assumes the current
user context.

Rules at a Glance
You may grant many privileges on a single object with one statement, but do not mix
the ALL PRIVILEGES privilege with the individual SQL statement keywords in a
single GRANT statement. You can grant a specific privilege on a specific database
object to a single user using the syntax:

GRANT privilege_name ON object_name TO grantee_name

For example:

GRANT SELECT ON employee TO Dylan;

You can grant a specific privilege on a specific object to all users via the PUBLIC user.
When a grant is issued to PUBLIC, that means everyone has permission to the object
without the need for a grant specifically to the object. For example:

GRANT SELECT ON employee TO PUBLIC;

When granting privileges to multiple grantees, simply place a comma between each:

GRANT SELECT ON employee TO Dylan, Matt, PUBLIC

268 | Chapter 3: SQL Statement Command Reference

GRANT Statement > MySQL

The previous example shows that you may grant privileges to multiple users, in this
case Dylan and Matt, and to the PUBLIC user in a single GRANT statement. When
granting privileges on a table, you may extend or restrict the privileges to the column
level by providing a list of columns enclosed in parentheses after the table name. For
example:

GRANT SELECT ON employee(emp_id, emp_fname, emp_lname, job_id)
TO Dylan, Matt

This example shows that Dylan and Matt now have select privileges on several
columns of the employee table.

Programming Tips and Gotchas
Depending on the specific database implementation, views may or may not have
access privileges independent from their base tables.

Note that all of the optional WITH clauses control extensions to the base privilege(s)
granted in the statement. Thus, the following command grants Dylan the privilege to
SELECT records from the employee table:

GRANT SELECT ON employee TO Dylan;

but the following command grants the privilege to SELECT records from the employee
table and to grant that SELECT privilege to other users:

GRANT SELECT ON employee TO Dylan
WITH GRANT OPTION;

Similarly, you can use the REVOKE statement to revoke only the WITH GRANT
OPTION, the individual SELECT privilege, or both.

Most of the platforms isolate privileges at the user and role level. Thus, an individual user
who is a member of two roles may be granted an individual permission four times—once
for herself, once for PUBLIC, and once via each of the roles of which she is a member.
In this situation, you must be very careful: to remove the privilege completely, you’ll
have to remove the user from the PUBLIC role and then revoke the user’s privileges
directly in both of the other roles.

MySQL
MySQL provides additional access privileges, primarily relating to object manipula-
tion within a database. GRANT in MySQL is available from v3.22.11 and on. The
syntax is as follows:

GRANT [{ ALL [PRIVILEGES] |
 {SELECT | INSERT | UPDATE} [(column_name[, ...])] | DELETE |
 REFERENCES [(column_name[, ...])] } |
 {[{ALTER | CREATE | DROP} [dml_option]] | [EVENT] | [EXECUTE] |
 [FILE] | [INDEX] | [LOCK TABLES] | [PROCESS] | [RELOAD] |
 [REPLICATION {CLIENT | SLAVE}] | [SHOW DATABASES] | [SHOW VIEW] |
[SHUTDOWN] |
 [SUPER] | [TRIGGER] | [USAGE]}[, ...]
ON [{TABLE | FUNCTION | PROCEDURE}]
 { [database_name.]table_name | * | *.* | database_name.* }
TO grantee_name [IDENTIFIED BY [PASSWORD] 'password'][, ...]
[REQUIRE security_options]
[WITH with_option[...]]

where:

Chapter 3: SQL Statement Command Reference | 269

SQLStatem
ent

Com
m

ands
GRANT Statement > MySQL

ALL [PRIVILEGES]
Grants a user all applicable privileges that apply at the current level on one or
more objects in the database, with the exception of WITH GRANT OPTION. For
example, GRANT ALL ON *.* grants all privleges globally, except WITH GRANT
OPTION.

SELECT | INSERT | UPDATE | DELETE | REFERENCES
Grants the ability to read, write, modify, and erase data from tables (and
possibly from specific columns of a table), respectively. Column-level permis-
sions are allowed on SELECT, INSERT, and UPDATE, but not DELETE.
Granting column-level permissions can slow down MySQL somewhat, since
more permission checking is required. The REFERENCES subclause is
unimplemented.

{ALTER | CREATE | DROP} [dml_option]
Grants the ability to alter, drop, or create tables and other database objects.
When using the CREATE syntax, you are not required to specify an ON clause to
identify a specific table. Specify ALTER, CREATE, or DROP, and an object name;
MySQL assumes the object name is for a table. You can further refine this
subclause with these dml_options:

{CREATE | ALTER | DROP} ROUTINE
Grants the privilege to create, alter, or drop procedures and functions.

CREATE TEMPORARY TABLE
Grants the use of the CREATE TEMPORARY TABLE statement, for use with
GRANT CREATE only.

CREATE USER
Grants the privilege to create, drop, and rename users as well as to use the
statement REVOKE ALL PRIVILEGES.

CREATE VIEW
Grants the use of the CREATE VIEW statement.

EVENT
Grants the privilege to create events for the event scheduler.

EXECUTE
Grants the privilege to run procedures and functions.

FILE
Grants the ability to load data from, or write data to, files using the SELECT
INTO and LOAD DATA commands.

INDEX
Grants the ability to create or drop indexes.

LOCK TABLES
Grants the use of the MySQL command LOCK TABLES on tables where the user
has SELECT privileges.

PROCESS
Grants the ability to view running processes using SHOW PROCESSLIST.

RELOAD
Grants the ability to invoke the FLUSH and RESET commands.

270 | Chapter 3: SQL Statement Command Reference

GRANT Statement > MySQL

REPLICATION {CLIENT | SLAVE}
Grants a user the privilege to see metadata about replication slaves and masters
(CLIENT), or grants a replication slave the right to read binlogs from a replica-
tion master (SLAVE).

SHOW DATABASES
Grants the user the privilege to execute the MySQL command SHOW
DATABASES.

SHOW VIEW
Grants the use of the SHOW CREATE VIEW command.

SHUTDOWN
Grants usage of the MYSQLADMIN SHUTDOWN command to kill the server
process.

SUPER
Grants the user the privilege of one connection even if the MAX_CONNEC-
TIONS threshold is reached. Users with SUPER privileges can also execute
important MySQL commands such as CHANGE MASTER, KILL,
MYSQLADMIN DEBUG, PURGE [MASTER] LOGS, and SET GLOBAL.

TRIGGER
Grants the ability to create and drop triggers on a specific table, not on a specific
trigger. (Before version 5.1.6, the SUPER privilege was required to create or drop
triggers.)

USAGE
Creates a “no privilege” user account (i.e., a user that has no privileges).

ON {[database_name.]table_name | * | *.* | database_name.*}
Grants privileges on the specified table_name, on all tables within the current
database using an asterisk (*), on all tables in all databases with *.*, or on all tables
in the specified database_name with database_name.*.

TO grantee_name [IDENTIFIED BY [PASSWORD] 'password'][, . . .]
Names the user or users who will gain the specified privilege(s). The PASSWORD
keyword is entirely optional. You may enter multiple users separated by commas.
When granting privileges to a new user, you may also optionally set the new pass-
word for the new named user at the same time using the IDENTIFIED BY clause.

REQUIRE security_options = { NONE | {SSL | X509} [CIPHER 'cipher_name'
[AND]] [ISSUER 'issuer_name' [AND]] [SUBJECT 'subject_name'] }

Specifies whether the user must connect with a secured connection or not,
according to these security options:

REQUIRE NONE
The account has no special SSL or X509 requirements. This is the default if
no REQUIRE subclause is specified.

REQUIRE SSL
Allows only SSL-encrypted connections for the account.

REQUIRE X509
Specifies that the client must have a valid certificate, though the certificate,
issuer, and subject do not matter. You can specify X509 to also include one
or more specific SUBJECTs, ISSUERs, and CIPHERs. The AND keyword is
optional between the security_options.

Chapter 3: SQL Statement Command Reference | 271

SQLStatem
ent

Com
m

ands
GRANT Statement > MySQL

REQUIRE CIPHER 'cipher_name'
Ensures that a specific cipher method and ciphers and key lengths of suffi-
cient length are used.

REQUIRE ISSUER 'issuer_name'
Ensures that a valid X509 certificate containing a specific CA issuer is used.

REQUIRE SUBJECT 'subject_name'
Ensures that a valid X509 certificate containing a specific subject is used.

WITH with_option
Allows you to set one or more optional privileges:

GRANT OPTION
Entitles the grantee to assign the granted privilege (in fact, any privilege that
that user/role possesses) to other users.

MAX_QUERIES_PER_HOUR count
Limits the number of queries not served from the cache that may be
performed by the user per hour. Queries served from cache do not count
against the limit. The default value of 0 means unlimited queries per hour.

MAX_UPDATES_PER_HOUR count
Limits the number of UPDATE statements that may be performed by the
user per hour. The default value of 0 means unlimited updates per hour.

MAX_CONNECTIONS_PER_HOUR count
Limits the maximum number of simultaneously open connections that the
user may hold per hour. The default value of 0 means the maximum number
of simultaneous connections is determined by the MAX_USER_CONNECTION
system variable.

Since MySQL is focused on speed, you can implement server-wide features that
provide high-speed performance. For example, you can enable the SKIP_GRANT_
TABLES startup option to disable checks for privileges. This can speed up queries, but
obviously no permission checking is done, which means that all users have full access
to all resources in the database.

The following are access privileges that are usable with tables: SELECT, INSERT,
UPDATE, DELETE, CREATE, DROP, GRANT, WITH GRANT OPTION, CREATE
VIEW, SHOW VIEW, INDEX, TRIGGER, and ALTER. INSERT, UPDATE, and
SELECT permissions are also grantable or revocable at the column level of a table.
Thus, for example, you can grant SELECT permissions on a specific column of a
specific table.

For routines (i.e., procedures and functions), you can specify ALTER ROUTINE,
EXECUTE, and WITH GRANT OPTION permissions. CREATE ROUTINE is not
actually a routine-level privilege, because a user must have this privilege in the first
place to create a routine.

Several privileges can be granted only globally, using ON *.* syntax, including: FILE,
PROCESS, RELOAD, REPLICATION CLIENT, REPLICATION SLAVE, SHOW
DATABASES, SHUTDOWN, SUPER, and CREATE USER.

In any situation, table, database, and column names may each be up to 64 characters
in length, and the hostname may be up to 60 characters long. The username (a.k.a. the
grantee_name) may be up to 16 characters long.

MySQL also supports the possibility of granting rights to a specific user on a specific
host if the grantee_name is in the form USER@HOST. Wildcards can be included in the

272 | Chapter 3: SQL Statement Command Reference

GRANT Statement > MySQL

hostname of a grantee_name to provide the access privilege to a large number of users
at one time. A missing hostname is considered the same as the “%” wildcard. For
example, consider this GRANT statement:

GRANT SELECT ON employee TO katie@% IDENTIFIED BY 'audi',
 annalynn IDENTIFIED BY 'cadillac',
 cody@us% IDENTIFIED BY 'bmw';

This statement grants read privileges on the employee table to the user katie explicitly
at any hostname. Similarly, it grants read privileges to the user annalynn implicitly at
any hostname. Finally, this statement grants read privileges to the user cody explicitly
at any hostname starting with “US”.

The grantee_name must be at most 16 characters long. When specifying the user, pass-
word protection may be enforced by including the IDENTIFIED BY clause.

The following example grants permissions to three users with passwords:

GRANT SELECT ON employee TO dylan IDENTIFIED BY 'porsche',
 kelly IDENTIFIED BY 'mercedes',
 emily IDENTIFIED BY 'saab';

If you grant permissions to a user that doesn’t exist in MySQL, MySQL creates that
user. The two statements that follow create a user and password with global privileges
and another user that has no privileges (the USAGE privilege):

GRANT SELECT ON *.* TO tony IDENTIFIED BY 'humbolt';
GRANT USAGE ON sales.* TO alicia IDENTIFIED BY 'dakota';

Failing to include the IDENTIFIED BY clause on a GRANT state-
ment that creates a new user will create a user without a password.
This practice is insecure and dangerous.

If you do create a new user using the GRANT command, and you
forget to specify a password, you can (and probably should) set a
password using the SET PASSWORD command.

MySQL also allows you to issue grants on remote hosts, specified with @hostname,
and include the wildcard character percent (%). For example, the following grant
provides all permissions on all tables of the current database across all hosts in the
notforprofit.org domain to the user annalynn:

GRANT ALL ON * TO annalynn@'%.notforprofit.org';

Privileges are written directly to system tables at four different levels:

Global level
Global privileges apply to all databases on a given server and are stored in the
mysql.user system table.

Database level
Database privileges apply to all tables in a given database and are stored in the
mysql.db system table.

Table level
Table privileges apply to all columns in a given table and are stored in the
mysql.tables_priv system table.

Column level
Column privileges apply to single columns in a given table and are stored in the
mysql.columns_priv system table.

Chapter 3: SQL Statement Command Reference | 273

SQLStatem
ent

Com
m

ands
GRANT Statement > Oracle

Because of the way permissions are granted and the system tables involved, you may
grant redundant permissions at different levels. For example, you could grant a user
SELECT privileges on a specific table, and then grant global SELECT privileges on that
same table to all users of the database. To ensure that that user no longer had the priv-
ilege of SELECTing from the table, you would then have to revoke those privileges
separately. Furthermore, MySQL does not automatically revoke any privileges when
dropping a table or database, though it will drop routine privileges when dropping a
procedure or function.

The system tables are also somewhat unprotected, so it is possible to change permis-
sions by issuing INSERT, UPDATE, and DELETE statements against those tables
rather than by using GRANT or REVOKE. Normally, all privileges are read into
memory when MySQL starts. Database, table, and column privileges issued by a
GRANT statement are available immediately and take effect right away. User privi-
leges issued by a GRANT statement are noticed immediately and take effect the next
time the user connects. If you directly modify permissions in the system tables, none of
the changes will be noticed until you restart MySQL or issue a FLUSH PRIVILEGES
command.

If high-level, certificate-based security is important, you should consider using the
REQUIRE clause. You do not have to specify all elements of the REQUIRE clause if
you simply want the user to have a valid SSL or X509 certificate. However, you may
add more specifications if they’re required to meet your needs. Here, for example, we
grant privileges to the user Tony on the localhost MySQL server and require an X509
subject, issuer, and cipher:

GRANT SELECT ON *.* TO 'tony'@'localhost'
 IDENTIFIED BY 'humbolt'
 REQUIRE SUBJECT '/C=EE/ST=CA /L=Frisco/O=MySQL demo client certificate/
 CN=Tony Tubs/Email=tont@myorg.com'
 AND ISSUER '/C=FI/ST=CA /L=UC /O=MySQL /CN=Tony Tubs/Email=tont@myorg.com'

 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

Oracle
Oracle’s implementation of the GRANT statement supports an enormous number of
variations and permutations. The syntax is as follows:

GRANT { [object_privilege][, ...] | [system_privilege][, ...] | [role][, ...]
}
[ON { [schema_name.][object][, ...] |
 [DIRECTORY directory_object_name] |
 [JAVA [{ SOURCE | RESOURCE }] [schema_name.][object]] }]
TO {grantee_name[, ...] | role_name[, ...] | PUBLIC}
 [WITH { GRANT | HIERARCHY } OPTION]
[IDENTIFIED BY password] [WITH ADMIN OPTION];

You can grant multiple privileges with a single invocation of the command, but they
must all be of the same type (object, system, or role).

For example, you could grant a user three object privileges on a single table in one
GRANT statement, and then issue a separate grant of two system privileges to a role,
and yet a third grant of several roles to a user, but you could not do all of this in one
GRANT statement.

274 | Chapter 3: SQL Statement Command Reference

GRANT Statement > Oracle

Following are the parameters to Oracle’s GRANT statement:

GRANT object_privilege
Grants the specified privilege(s) to the specified grantee_name or role_name on the
named schema object (for example, a table or view). You may combine several
object privileges, schema objects, and grantees in a single statement. However,
you may not grant system privileges or roles in the same statement as object privi-
leges. The object privileges are:

ALL [PRIVILEGES]
Grants all available privileges on a named schema object. Available for use
on tables.

ALTER
Grants the privilege to change an existing table using the ALTER TABLE
statement. Available for use on tables and sequences.

DEBUG
Grants access to a table through a debugger. The access granted applies to
any triggers on the table and to information in SQL that directly references
the table. Available for use on tables, views, procedures, functions, pack-
ages, Java objects, and types.

EXECUTE
Grants the privilege to execute a stored procedure, user-defined function,
indextype, library, or package. Available for use on procedures, functions,
packages, Java objects, libraries, types, indextypes, and user-defined
operators.

INDEX
Grants the privilege to create indexes on a table.

{ ON COMMIT REFRESH | QUERY REWRITE }
Grants the privilege to create a refresh-on-commit materialized view or to
create a materialized view for query rewrite on the specified table. Available
for materialized views only.

QUERY REWRITE
Grants the privilege to create a materialized view for query rewriting on a
specific table. Available for materialized views only.

{ READ | WRITE }
Grants the privilege to read and write files against a named directory,
including the full pathname of the operating system directory. Since Oracle
has the ability to store files outside of the database, the Oracle server process
must run under a user context with privileges on the applicable directories.
You can enable Oracle to enforce security on individual users via this secu-
rity mechanism. Note that WRITE is only useful in connection with an
external table, such as a logfile or an error file.

REFERENCES
Grants the privilege to define referential integrity constraints. Available for
use on tables.

{ SELECT | INSERT | DELETE | UPDATE }
Grants the privilege to execute each of the respective SQL commands against
the named schema object. Available for use on tables and views, as well as
sequences and materialized views (SELECT only). Note that you must
grant SELECT privileges to a user or role that requires DELETE privileges.

Chapter 3: SQL Statement Command Reference | 275

SQLStatem
ent

Com
m

ands
GRANT Statement > Oracle

You can grant column-level privileges (as a parentheses-encapsulated list
following the object name) only when granting INSERT, REFERENCES, or
UPDATE object privileges on a table or view.

UNDER
Grants the privilege to create a subview under the named view. Available for
use on views and types only.

GRANT system_privilege
Grants the specified Oracle system privilege to one or more users or roles. For
example, you could grant the CREATE TRIGGER privilege or the ALTER USER
privilege; in each case, issuing a grant for a system privilege empowers the user or
role to execute the command of the same name. Refer to Table 3-2 later in this
section for a full list of system privileges.

role
Grants a role to the specified user or to another role. In addition to user-defined
roles, there are a number of system roles that come predefined with Oracle:

CONNECT, RESOURCE, and DBA
Provided for backward compatibility with older versions of Oracle. Do not
use these roles in current or newer versions of Oracle, since they may be
dropped in the future.

DELETE_CATALOG_ROLE, EXECUTE_CATALOG_ROLE, and SELECT_
CATALOG_ROLE

Grant members of these roles the privilege to delete, execute, and select from
data dictionary views and packages.

EXP_FULL_DATABASE and IMP_FULL_DATABASE
Grant members of these roles the privilege to execute the import and export
utilities.

AQ_USER_ROLE and AC_ADMINISTRATOR_ROLE
Grant members of these roles the privilege to use or administrate Oracle’s
Advanced Queuing functionality.

SNMPAGENT
Assigned only to Oracle Enterprise Manager and Intelligent Agent.

RECOVERY_CATALOG_OWNER
Grants the privilege to create users who own their own recovery catalogs.

HS_ADMIN_ROLE
Grants the privilege to access areas of the data dictionary used to support
Oracle’s heterogeneous services feature.

ON schema_name
Grants a user or role the named privilege(s) to on an object in the schema. Data-
base objects include tables, views, sequences, stored procedures, user-defined
functions, packages, materialized views, user-defined types, libraries, indextypes,
user-defined operators, and any synonyms for any of these. If you do not include
the schema name, Oracle assumes the schema of the current user.

Oracle also supports two additional keywords for special cases:

DIRECTORY
Grants privileges on a directory object, which is an Oracle object corre-
sponding to a filesystem directory.

JAVA
Grants privileges on a Java SOURCE or a RESOURCE schema object.

276 | Chapter 3: SQL Statement Command Reference

GRANT Statement > Oracle

TO {grantee_name | role_name | PUBLIC} [WITH { GRANT | HIERARCHY } OPTION]
Names the user or role that will get the specified privilege(s). PUBLIC may also be
used to revoke privileges granted to the PUBLIC role. Multiple grantees can be
listed with a comma between each.

WITH GRANT OPTION
Enables the grantee to grant the specific privilege(s) to other users or to
PUBLIC, but not to roles.

WITH HIERARCHY OPTION
Enables the grantee to receive privileges on all subobjects when granted priv-
ileges on a parent object. This includes subobjects created in the future. You
can use this option only when granting the SELECT object privilege.

IDENTIFIED BY password
Establishes or changes a password that the grantee must use to enable a role being
granted.

WITH ADMIN OPTION
Enables the grantee to exercise control over a role that you are granting to that
grantee. This clause enables the grantee to grant the role to and revoke it from
other users or non-GLOBAL roles, and to drop the role or change the authoriza-
tion needed to access the role.

Grants to users take effect right away. Grants to roles also take effect right away,
assuming the roles are enabled. Otherwise, a grant to a role takes effect when the role
is enabled. Note that you can grant roles to users and to other roles (including
PUBLIC). For example:

GRANT sales_reader TO sales_manager;

To grant privileges on a view, you must have the specific privilege and the WITH
GRANT OPTION on all of the base tables for the view.

Any time you want a privilege to be available to all users, simply grant it to PUBLIC:

GRANT SELECT ON work_schedule TO public;

However, there are some restrictions when granting system privileges and roles:

• A privilege or role should not appear more than once in the GRANT statement.

• Roles cannot be granted to themselves.

• Roles cannot be granted recursively. That is, you can’t grant the role sales_reader
to sales_manager and then grant the role sales_manager to sales_reader.

You can grant multiple privileges of the same type in a single statement. However, the
grants must be on the same type of objects:

GRANT UPDATE (emp_id, job_id), REFERENCES (emp_id),
ON employees
TO sales_manager;

As an aside, granting any of the object permissions on a table allows the user (or role)
to lock the table in any lock mode using Oracle’s LOCK TABLE statement.

Recent versions of Oracle have added a number of business intelligence objects.
Although the business intelligence features are beyond the scope of this book, granting
privileges to them works in essentially the same way as you might grant privileges to
any other object. The business intelligence objects include MINING MODEL, CUBE,
CUBE MEASURE FOLDER, CUBE DIMENSIONS, and CUBE BUILD PROCESS.

Chapter 3: SQL Statement Command Reference | 277

SQLStatem
ent

Com
m

ands
GRANT Statement > Oracle

Oracle also includes some additional advanced queuing features in other add-on
components. The privilege syntax for these add-ons’ objects is similar to that for
objects such as AQ_USER_ROLE and AQ_ADMINISTRATOR_ROLE. Refer to
Oracle’s documentation for more information on business intelligence and advanced
queuing features and privileges.

Nearly every supported Oracle feature or command is assignable with a GRANT
command (as shown in Table 3-2). Privileges can be granted not only on database
objects (such as tables and views) and system commands (such as CREATE ANY
TABLE), but also on schema objects (such as DIRECTORY, JAVA SOURCE, and
RESOURCE). The ANY option grants the privilege to execute a given statement
against objects of a specific type owned by any user within the schema. Without the
ANY option, the user can only execute the statement against objects in his own
schema.

Table 3-2. Oracle system privileges

Options Description

Create | Alter | Drop

CREATE CLUSTER Grants the privilege to create a cluster in the grantee’s
own schema.

{CREATE | ALTER | DROP} ANY CLUSTER Grants the privilege to create, alter, or drop (respectively)
a cluster in any schema.

{CREATE | DROP} ANY CONTEXT Grants the privilege to create or drop (respectively) any
context namespace.

CREATE DIMENSION Grants the privilege to create dimensions in the grantee’s
own schema.

{CREATE | ALTER | DROP} ANY DIMENSION Grants the privilege to create, alter, or drop dimensions in
any schema.

{CREATE | DROP} ANY DIRECTORY Grants the privilege to create or drop directory database
objects.

{CREATE | ALTER | DROP | EXECUTE} [ANY] INDEX Grants the privilege to create, alter, drop, or execute a
specific index in one or (using the ANY keyword) all
schemas.

CREATE INDEXTYPE Grants the privilege to create an indextype in the
grantee’s own schema.

{CREATE | DROP | EXECUTE} ANY INDEXTYPE Grants the privilege to create, alter, drop, or execute an
indextype in any schema.

CREATE DATABASE LINK Grants the privilege to create private database links in the
grantee’s own schema.

CREATE EXTERNAL JOB Allows the grantee to create an executable scheduler job
that runs on the OS within the grantee’s schema.

CREATE [ANY] JOB Grants the privilege to create, alter, or drop jobs, sched-
ules, or programs in any schema or, without ANY, a single
specific schema. Grant this with caution, because it allows
the user to execute any code as if she were another user.

{CREATE | DROP} [ANY] LIBRARY Grants the privilege to create or drop external procedure/
function libraries in any or, without ANY, a single specific
schema.

{CREATE | ALTER | DROP} [ANY] MATERIALIZED VIEW Grants the privilege to create, alter, or drop materialized
views in any schema. CREATE ANY allows creation of a
materialized view in any schema, while CREATE without
ANY allows it only in the current schema.

278 | Chapter 3: SQL Statement Command Reference

GRANT Statement > Oracle

CREATE OPERATOR Grants the privilege to create an operator and its bindings
in the grantee’s own schema.

{CREATE | DROP | ALTER | EXECUTE} ANY OPERATOR Grants the privilege to create, drop, alter, or execute an
operator and its bindings in any schema.

CREATE PUBLIC DATABASE LINK Grants the privilege to create public database links.

{CREATE | ALTER | DROP} [ANY] ROLE Grants the privilege to create a database role (do not use
ANY with the CREATE keyword), as well as to alter or drop
any existing role.

{CREATE | DROP | ALTER} ANY OUTLINE Grants the privilege to create, alter, or drop outlines that
can be used in any schema that uses outlines.

SELECT ANY OUTLINE Grants the privilege to clone private outlines from public
ones.

{CREATE | ALTER | DROP | EXECUTE} [ANY] PROCEDURE Grants the privilege to create, alter, drop, or execute
stored procedures, functions, and packages in any
schema, or, without ANY, to create a procedure in the
current schema.

{CREATE | ALTER | DROP} PROFILE Grants the privilege to create, alter, or drop profiles.

ALTER RESOURCE COST Allows the grantee to set costs for session resources.

{CREATE | ALTER | DROP | GRANT} ANY ROLE Grants the privilege to create, alter, drop, or grant roles in
the database.

{CREATE | ALTER | DROP} ROLLBACK SEGMENT Grants the privilege to create, alter, or drop rollback
segments.

{CREATE | ALTER | DROP | SELECT} [ANY] SEQUENCE Grants the privilege to create, alter, drop, or select
sequences in any schema in the database or, without ANY,
to create a sequence in the current schema.

CREATE SNAPSHOT Grants the privilege to create snapshots (a.k.a. material-
ized views) in the grantee’s own schema.

{CREATE | ALTER | DROP} ANY SNAPSHOT Grants the privilege to create, alter, or drop snapshots in
any schema.

CREATE SYNONYM Grants the privilege to create synonyms in grantee’s own
schema.

{CREATE | DROP} ANY SYNONYM Grants the privilege to create or drop private synonyms in
any schema.

{CREATE | DROP} PUBLIC SYNONYM Grants the privilege to create or drop public synonyms.

Execute

EXECUTE ANY PROGRAM Grants the privilege to run any program in a job within
the grantee’s schema.

EXECUTE ANY CLASS Grants the privilege to run any job class in a job in the
grantee’s schema.

Session

CREATE SESSION Grants the privilege to connect to the database.

ALTER SESSION Grants the privilege to issue ALTER SESSION statements.

RESTRICTED SESSION Enforces that the grantee logs on after the instance is
started after the instance is started using the SQL*Plus
STARTUP RESTRICT statement.

Table 3-2. Oracle system privileges (continued)

Options Description

Chapter 3: SQL Statement Command Reference | 279

SQLStatem
ent

Com
m

ands
GRANT Statement > Oracle

DEBUG CONNECT SESSION Grants the privilege to connect the current session to the
Java Debug Wire Protocol (JDWP) debugger.

DEBUG ANY PROCEDURE Grants the privilege to debug all PL/SQL objects in the
database. Similar to granting DEBUG on all procedures,
functions, and packages.

DROP PUBLIC DATABASE LINK Grants the privilege to drop public database links.

FLASHBACK ARCHIVE ADMINISTRATOR Grants the privilege to create, alter, or drop any flashback
data archive.

GRANT ANY ROLE Grants the privilege to grant a role to other users.

MANAGE SCHEDULER Grants full privileges for jobs (i.e., privileges to drop,
create, or alter any job class, window, or window group).

ON COMMIT REFRESH Grants privileges to create a refresh-on-commit material-
ized view on any table in the database or alter any
refresh-on-demand materialized view into a refresh-on-
commit materialized view.

Table and Tablespace

FLASHBACK ANY TABLE Grants the privilege to issue a SQL flashback query on any
table, view, or materialized view in any schema. This priv-
ilege is not required for DBMS_FLASHBACK procedures.

CREATE ANY TABLE Grants the privilege to create tables in any schema. The
owner of the schema containing the table must have
enough free space in the tablespace to contain the table.

ALTER ANY TABLE Grants the privilege to alter any table or view in the
schema.

BACKUP ANY TABLE Enables the use of the export utility to incrementally
export objects from the schemas of other users.

DELETE ANY TABLE Allows the deletion of rows from tables, table partitions,
or views in any schema.

DROP ANY TABLE Grants the privilege to drop or truncate tables or table
partitions in any schema.

INSERT ANY TABLE Grants the privilege to insert rows into tables and views in
any schema.

LOCK ANY TABLE Grants the privilege to lock tables and views in any
schema.

UPDATE ANY TABLE Grants the privilege to update rows in tables and views in
any schema.

SELECT ANY TABLE Grants the privilege to query tables, views, or snapshots in
any schema.

{CREATE | ALTER | DROP} TABLESPACE Grants the privilege to create, alter, or drop tablespaces.

MANAGE TABLESPACE Grants the privilege to take tablespaces offline and online
and begin and end tablespace backups.

UNLIMITED TABLESPACE Grants the privilege to use an unlimited amount of any
tablespace. This privilege overrides any specific quotas
assigned. If you revoke this privilege from a user, the
user’s schema objects remain, but further tablespace allo-
cation is denied unless authorized by specific tablespace
quotas. You cannot grant this system privilege to roles.

Table 3-2. Oracle system privileges (continued)

Options Description

280 | Chapter 3: SQL Statement Command Reference

GRANT Statement > Oracle

Trigger

ADMINISTER DATABASE TRIGGER Grants the privilege to create a trigger on DATABASE. (The
user/role must also have the CREATE TRIGGER or CREATE
ANY TRIGGER privilege.)

{CREATE | ALTER | DROP} [ANY] TRIGGER Grants the privilege to create, alter, or drop database trig-
gers in any schema or, without ANY, to create, alter, or
drop a trigger in the current schema.

Type

{CREATE | ALTER | DROP} [ANY] TYPE Grants the privilege to create, alter, or drop object types
and object-type bodies in any schema or, without ANY, to
create a type in the current schema.

EXECUTE ANY TYPE If granted to a specific user, allows that user to use and
reference object types and collection types in any schema
and to invoke methods of an object type in any schema. If
granted to a role, individual members of that role will not
be able to invoke methods of an object type in any
schema.

User

CREATE USER Grants the privilege to create users. This privilege also
allows the grantee to:
• Assign quotas on any tablespace.
• Set default and temporary tablespaces.
• Assign a profile as part of a CREATE USER statement.

ALTER USER Grants the privilege to alter any user. This privilege autho-
rizes the grantee to:
• Change another user’s password or authentication

method.
• Assign quotas on any tablespace.
• Set default and temporary tablespaces.
• Assign a profile and default roles.

BECOME USER Grants the privilege to become another user (required by
any user performing a full database import).

DROP USER Grants the privilege to drop users.

UNDER ANY TYPE Allows the creation of subtypes under any parent object
type, such as a table or view.

View

{CREATE | DROP} [ANY] VIEW Grants the privilege to create or drop views in any schema
or, without ANY, to create a view in the current schema.

UNDER ANY VIEW Grants the privilege to create a subview under any parent
view.

MERGE ANY VIEW Grants the privilege to the optimizer to use view merging
on behalf of the user to speed query performance.

Additional privileges

ADMINISTER [ANY] SQL TUNING SET Grants privileges to create, drop, select, load, or delete an
owned SQL tuning set (without the ANY keyword) or any
user’s SQL tuning set (with the ANY keyword) through the
DBMS_SQLTUNE package.

ADVISOR Grants the privilege to access the advisor framework
through PL/SQL packages.

Table 3-2. Oracle system privileges (continued)

Options Description

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3: SQL Statement Command Reference | 281

SQLStatem
ent

Com
m

ands
GRANT Statement > Oracle

ALTER DATABASE Grants the privilege to alter the database.

ALTER SYSTEM Grants the privilege to issue ALTER SYSTEM statements.

ANALYZE ANY Grants the privilege to analyze any table, cluster, or index
in any schema.

ANALYZE ANY DICTIONARY Grants the privilege to analyze any data dictionary object.

AUDIT ANY Grants the privilege to audit any object in any schema
using AUDIT schema_objects statements.

AUDIT SYSTEM Grants the privilege to issue AUDIT sql_statements
statements.

{DELETE | EXECUTE | SELECT} CATALOG_ROLE Grants privileges to access data dictionary views and
packages.

CHANGE NOTIFICATION Allows the grantee to register for and receive notifications
of a change in a database or query.

COMMENT ANY TABLE Allows comments on any table, view, or column in any
schema.

EXEMPT ACCESS POLICY Circumvents fine-grained access control. Generally, this is
ill-advised since the user can then bypass any application-
driven security policies.

FORCE ANY TRANSACTION Forces the commit or rollback of any in-doubt distributed
transaction in the local database and induces the failure
of a distributed transaction.

FORCE TRANSACTION Forces the commit or rollback of grantee’s own in-doubt
distributed transactions in the local database.

{EXP | IMP} FULL_DATABASE Grants the privilege to use the import and export utilities.

GRANT ANY PRIVILEGE Grants any system privilege.

GRANT ANY OBJECT PRIVILEGE Grants any object privilege available.

RECOVERY_CATALOG_OWNER Grants the privilege to create and own recovery catalogs.

RESUMABLE Enables resumable space allocations.

SELECT ANY DICTIONARY Allows the user to query any data dictionary object in the
SYS schema.

SELECT ANY TRANSACTION Grants the privilege to view the contents of the
FLASHBACK_TRANSACTION_QUERY view. (Grant this with
caution, because it allows the grantee to see all data in
the database!)

SYSDBA Provides the user with RESTRICTED SESSION permission
and authorizes the user to:
• Perform STARTUP and SHUTDOWN operations
• Issue CREATE/ALTER DATABASE commands and OPEN/

MOUNT/BACKUP commands
• Change the character set
• Perform ARCHIVELOG and RECOVERY operations

SYSOPER Provides the user with RESTRICTED SESSION permission
and authorizes the user to:
• Perform STARTUP and SHUTDOWN operations
• Issue ALTER DATABASE and OPEN/MOUNT/BACKUP

commands
• Perform ARCHIVELOG and RECOVERY operations

Table 3-2. Oracle system privileges (continued)

Options Description

282 | Chapter 3: SQL Statement Command Reference

GRANT Statement > PostgreSQL

Any of the privileges shown in Table 3-2 containing the ANY keyword has a special
meaning. In effect, ANY gives a user the privilege to execute the specified command or
operation in any schema. If you want to include all user schemas but exclude the SYS
system schema, keep the O7_DICTIONARY_ ACCESSIBILITY initialization param-
eter at its default value of FALSE.

PostgreSQL
PostgreSQL supports a subset of the ANSI GRANT commands supporting object privi-
leges against database objects such as tables, sequences, functions, and so forth.
PostgreSQL’s GRANT syntax is as follows:

GRANT { role_name | { ALL [PRIVILEGES] | SELECT | INSERT | DELETE | UPDATE |
RULE |
 REFERENCES| TRIGGERS | CREATE | USAGE }[, ...] }
ON { [TABLE | SEQUENCE | DATABASE | FUNCTION | LANGUAGE | SCHEMA |
TABLESPACE]

object_name[, ...] }
[WITH GRANT OPTION]
TO {grantee_name | GROUP group_name | PUBLIC}[, ...]
[WITH ADMIN OPTION]

where:

GRANT role_name
Grants a previously created role to a specific user following the syntax GRANT
role_name TO grantee_name [WITH ADMIN OPTION]. The grantee then receives
all of the privileges inherent with the role. Role-based privileges may not be
granted to PUBLIC.

ALL [PRIVILEGES]
Grants all privileges the grantor has available to grant. Using ALL is generally not
a recommended approach, since it can encourage sloppy permissioning.

CREATE
Grants the privilege to create objects of the specified type. Usable with ON
DATABASE, ON SCHEMA, and ON TABLESPACE. On databases, this privilege
allows the creation of new schemas within the database. On schemas, it allows
the creation of new objects and the renaming of existing objects in the schema.
On tablespaces, this privilege allows the creation of tables and indexes within the
tablespace.

CONNECT | TEMP[ORARY]
Grants the privilege to connect to a specific database and/or to create temporary
tables when using the named database.

QUERY REWRITE Enables rewrites using a materialized view, or creates a
function-based index, when that materialized view or
index references tables and views that are in the grantee’s
own schema.

GLOBAL QUERY REWRITE Enables rewrites using a materialized view, or creates a
function-based index.

Table 3-2. Oracle system privileges (continued)

Options Description

Chapter 3: SQL Statement Command Reference | 283

SQLStatem
ent

Com
m

ands
GRANT Statement > PostgreSQL

SELECT | INSERT | DELETE | UPDATE
Grants the specified privilege to a given user on the specified database object,
such as a table or view. For column-level privileges, you may add a parenthetical
list of specific columns of a given table; the permission then applies only to the
columns of the table that are named.

RULE
Grants the privilege to create or drop a rule on a table or view.

REFERENCES
Grants the privilege to create or drop foreign key constraints referencing the data-
base object as a parent object.

TRIGGERS
Grants the privilege to create a trigger to operate on a specific table and its
columns.

USAGE
Grants privileges to use these objects: CHARACTER SET, COLLATION, TRANS-
LATION, and DOMAIN (a user-defined datatype). You can grant USAGE
privileges on sequences, languages, and schemas.

ON { [TABLE] | SEQUENCE | DATABASE | FUNCTION | LANGUAGE | SCHEMA |
TABLESPACE object_name[, . . .] }

Specifies the object to which permissions are granted. The optional TABLE
keyword is the default if omitted. You may grant permissions on more than one
object at a time by specifying a comma-delimited list of object names, as long as
the objects are of the same type.

WITH GRANT OPTION
Allows the grantee to grant any of his privileges in turn to any other users.

TO {grantee_name | GROUP group_name | PUBLIC}[, .. .]
Names the user(s) or role(s) that will receive the specified privilege(s). In
PostgreSQL, PUBLIC is a synonym for all users. PostgreSQL allows permissions
to be assigned to a GROUP (essentially a role), provided it is a valid, pre-existing
group_name.

WITH ADMIN OPTION
Grants the privilege for a member of a role to grant membership in that role to or
revoke it from other users.

Multiple privileges may be granted at one time, in a comma-separated list. However,
when granting privileges, they should be of a related type. You should not combine
ALL [PRIVILEGES] with other privileges, but many of the remainding privileges may
be combined in any order.

PostgreSQL does not support the WITH clauses or column-level permissions. Under
PostgreSQL, the creator of an object has all privileges on the object. She may revoke
most of her own privileges on that object, but the privilege for the creator of an object
to assign privileges on that object cannot be revoked. Similarly, the right to drop an
object is permanently assigned to the creator of the object and cannot be revoked.
Users other than the creator of an object do not have permissions on an object until
they are specifically granted.

284 | Chapter 3: SQL Statement Command Reference

GRANT Statement > SQL Server

Certain privileges are allowed only for certain objects, as shown here:

TABLE
May be granted SELECT, INSERT, UPDATE, DELETE, REFERENCES,
TRIGGER, and ALL [PRIVILEGES].

SEQUENCE
May be granted USAGE, SELECT, and ALL [PRIVILEGES].

DATABASE
May be granted CONNECT, CREATE, TEMP[ORARY], and ALL [PRIVILEGES].

FUNCTION
May be granted EXECUTE and ALL [PRIVILEGES].

LANGUAGE
May be granted USAGE and ALL [PRIVILEGES].

SCHEMA
May be granted CREATE, USAGE, and ALL [PRIVILEGES].

TABLESPACE
May be granted CREATE and ALL [PRIVILEGES].

PostgreSQL’s support for the GRANT statement is elementary. In the following exam-
ples, INSERT privileges are granted on the publishers table to the PUBLIC role and
SELECT and UPDATE privileges are granted on the sales table to the users Emily and
Dylan:

GRANT INSERT ON TABLE publishers TO PUBLIC;
GRANT SELECT, UPDATE ON sales TO emily, dylan;

The following example grants database control privileges to the user Katie and then
assign the users Katie and Anna to a new group:

GRANT ALL ON DATABASE publishing TO katie;
GRANT manager_role ON katie, anna WITH ADMIN OPTION;

SQL Server
SQL Server’s implementation of GRANT offers few variations from the ANSI stan-
dard. SQL Server does not support the ANSI standard’s FROM clause or the
HIERARCHY or ADMIN options, but it does offer the ability to grant specific system
privileges, and to grant them under another user’s security context. The syntax is as
follows:

GRANT { [object_privilege][, ...] | [system_privilege] }
[ON { [definition_scope::[[schema_name.]object_name] [(column[, ...])] }]
TO { grantee_name[, ...] | role[, ...] | PUBLIC | GUEST }
[WITH GRANT OPTION]
[AS {group | role}]

where:

GRANT object_privilege
Grants privileges for a variety of objects, which may all be combined in any order
(with the exception of the ALL [PRIVILEGES] privilege). Object privileges may
be granted for tables, views, functions (table-valued, scalar, and aggregate), proce-
dures (stored and extended), service queues, and synonyms. The privileges that
may be granted on objects include:

Chapter 3: SQL Statement Command Reference | 285

SQLStatem
ent

Com
m

ands
GRANT Statement > SQL Server

ALL [PRIVILEGES]
Grants all privileges currently assigned to the named user(s) and/or for the
specified database objects. This is generally not a recommended approach,
since it can encourage sloppy programming. ALL can only be used by
members of the SYSADMIN and DB_OWNER system roles, or by the object
owner. ALL is deprecated in SQL Server 2008 and only included for backward
compatibility. GRANT ALL is now shorthand for the following privileges:

GRANT ALL on databases
Grants the privileges BACKUP DATABASE, BACKUP LOG, CREATE
DATABASE, CREATE DEFAULT, CREATE FUNCTION, CREATE
PROCEDURE, CREATE RULE, CREATE TABLE, and CREATE VIEW.

GRANT ALL on functions
Grants the privileges EXECUTE and REFERENCES for scalar functions
and DELETE, INSERT, REFERENCES, SELECT, and UPDATE for
table-valued functions.

GRANT ALL on procedures (includes both stored procedures and extended
stored procedures)

Grants the EXECUTE privilege.

GRANT ALL on tables and views
Grants the privileges DELETE, INSERT, REFERENCES, SELECT, and
UPDATE.

{SELECT | INSERT | DELETE | UPDATE}
Grants the specified privilege to a given user on the specified database object,
such as a table or view. For column-level privileges, add a parenthetical list of
table columns; the privileges will then be assigned only for the named
columns.

REFERENCES
Grants the privilege to create or drop foreign key constraints referencing the
database object as a parent object.

EXECUTE
Grants the privilege to execute a stored procedure, user-defined function, or
extended stored procedure.

GRANT system_privilege
Grants the privilege to execute one of the corresponding statements (EXECUTE)
or to select against one (or more) of the views in the SYS schema (SELECT). More
details can be found in Table 3-3.

The privilege to issue a CREATE statement also implies the privilege to issue the
equivalent ALTER or DROP statement. However, granting a single granular
permission does not ensure that all required permissions have been granted—for
example, granting EXECUTE permission on sp_addlinkedserver doesn’t allow a
user to create a linked server unless that user has also been added as a member to
the sysadmin role.

ON [definition_scope::][[schema_name.]object_name] [(column[, . . .])]
Specifies the object for which the privilege is granted. This clause is not required
when granting system privileges. The definition_scope is required and indicates
the type of object to which you will be granting privileges. definition_scopes

286 | Chapter 3: SQL Statement Command Reference

GRANT Statement > SQL Server

must always include the assignment symbols (::). The definition scope OBJECT::
is for tables, views, and other database objects. Other definition_scopes are
applicable to objects of the same name: APPLICATION ROLE, ASSEMBLY,
ASYMMETRIC KEY, CERTIFICATE, ENDPOINT, FULLTEXT CATALOG,
LOGIN, ROLE, SCHEMA, service broker scopings (CONTRACT, MESSAGE
TYPE, REMOTE SERVICE BINDING, ROUTE, and SERVICE), SYMMETRIC
KEY, TYPE, USER, and XML SCHEMA COLLECTION. If the object is a table or
view, you may optionally grant privileges on specific columns. You can grant
SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges on a table
or view, but you can only grant SELECT and UPDATE privileges on the columns
of a table, a view, or a user-defined function. You can grant EXECUTE privileges
on a stored procedure or extended stored procedure, and REFERENCES privi-
leges on user-defined functions. REFERENCES privileges are also required on
functions or views created using the WITH SCHEMABINDING clause.

TO {grantee_name[, . . .] | role[, . . .] | PUBLIC | GUEST}
Names the user or role that will gain the privilege being granted. Multiple
grantees can be listed in a comma-separated list. Use the keyword PUBLIC to
grant privileges to the PUBLIC role, a role that implicitly includes all users. SQL
Server also supports a GUEST role, which is the role used by all users who do not
have any other roles in the database. Because SQL Server allows two different
security models (one based on the database and one based on the Windows oper-
ating system), you may be granting privileges to a SQL Server user, a Windows
user, a Windows group, or a SQL Server database role. The grantee_name may be
any of these.

WITH GRANT OPTION
Enables the grantee to further grant the given permission to other users or roles.
You may use WITH GRANT OPTION only when granting object permissions.

AS {group | role}
Specifies an alternative user or group that has the authority in the current data-
base to execute the GRANT command. You can use the AS clause to grant
privileges as if the granting session is part of a different group or role context from
the current one.

Privileges may not be granted in any database other than the current database, nor
may privileges be granted in more than one database at a time.

SQL Server has a somewhat different security model than the other
platforms described here (and from the ANSI standard). Like the
ANSI standard, SQL Server uses the GRANT command to assign
specific privileges to a user or role and the REVOKE command to
remove those permissions. However, SQL Server augments these
commands with the DENY command, using essentially the same
syntax as REVOKE.

DENY, under SQL Server, allows DBAs to declare certain privi-
leges as strictly off-limits to a user or role. Any privileges that have
been denied must be revoked before they can be granted. As such,
DENY takes precedence over GRANT and REVOKE. DENY can be
used to effectively take away any permission from an individual
who might otherwise inherit permissions from membership in Win-
dows groups or SQL Server database roles.

Chapter 3: SQL Statement Command Reference | 287

SQLStatem
ent

Com
m

ands
GRANT Statement > SQL Server

SQL Server applies precedence to permissions. Thus, if a user has a privilege granted at
the user level, but the permission is revoked at the group level (when the user is a
member of a group), the permission is revoked at both levels.

System privileges to CREATE or ALTER an object also imply the privilege to DROP
the object. System privileges to CREATE an object additionally imply the privilege to
ALTER the object. A complete list of system privileges is shown in Table 3-3.

Table 3-3. SQL Server system privileges

Options Description

ADMINISTER BULK OPERATIONS Grants the privilege to execute bulk operations, such as
BULK INSERT, within the current database.

ALTER ANY { APPLICATION ROLE | DATABASE DDL TRIGGER |
DATASPACE |USER }

Grants the privilege to alter any pre-existing object of the
named type within the current database.

{ALTER [ANY] | CREATE} ASSEMBLY Grants the privilege to CREATE an assembly, or to ALTER a
specific assembly or (with ANY) all assemblies within the
database.

{ALTER [ANY] | CREATE} ASYMMETRIC KEY Grants the privilege to CREATE an asymmetric security key, or
to ALTER a specific asymmetric security key or (with ANY) all
asymmetric security keys within the database.

{ALTER [ANY] | CREATE} CERTIFICATE Grants the privilege to CREATE a security certificate, or to
ALTER a specific security certificate or (with ANY) all secu-
rity certificates within the database.

{ALTER [ANY] | CREATE} CONTRACT Grants the privilege to alter a specific service broker
contract or (with ANY) all service broker contracts within
the current database, or to create a new contract.

{ALTER [ANY] | CREATE} DATABASE DDL EVENT NOTIFICATION Grants the privilege to alter a specific database DDL event
notification or (with ANY) all database DDL event notifica-
tions, or to create a new database DDL notification.

{ALTER [ANY] | CREATE} FULLTEXT CATALOG Grants the privilege to alter a specific full-text catalog or
(with ANY) all full-text catalogs within the current data-
base, or to create a new full-text catalog.

CREATE FUNCTION Grants the privilege to create new functions.

{ALTER [ANY] | CREATE} MESSAGE TYPE Grants the privilege to alter a specific service broker
message type or (with ANY) all service broker message
types within the current database, or to create new
message type.

{ALTER [ANY] | CREATE} REMOTE SERVICE BINDING Grants the privilege to alter a specific service broker
service binding or (with ANY) all service bindings within
the current database, or to create new service binding.

{ALTER [ANY] | CREATE} ROLE Grants the privilege to alter a specific role or (with ANY) all
roles on the server, or to create new role.

{ALTER [ANY] | CREATE} ROUTE Grants the privilege to alter a specific service broker route
or (with ANY) all service broker route within the current
database, or to create new route.

{ALTER [ANY] | CREATE} SCHEMA Grants the privilege to alter a specific schema or (with
ANY) all schemas on the server, or to create new schema.

{ALTER [ANY] | CREATE} SERVICE Grants the privilege to alter a specific service broker
service or (with ANY) all service broker services within the
current database, or to create new service.

288 | Chapter 3: SQL Statement Command Reference

GRANT Statement > SQL Server

SQL Server also contains a number of fixed system roles with preset privileges on both
objects and commands. The SQL Server system roles are:

SYSADMIN
Can perform any activity on the server and has access to all objects

SERVERADMIN
Can set server configuration options as well as shut down and restart the server

{ALTER [ANY] | CREATE} SYMMETRIC KEY Grants the privilege to alter a specific security symmetric
key or (with ANY) all security symmetric keys within the
current database, or to create new symmetric key.

AUTHENTICATE [SERVER] Grants the privilege to connect to and authenticate a
server.

BACKUP {DATABASE | LOG} Grants to a specific user or role the privilege to execute
the BACKUP DATABASE or BACKUP LOG statements.

CHECKPOINT Grants to a specific user or role the privilege to execute
CHECKPOINT statements.

CONNECT Grants permission to a service broker endpoint to connect
to an instance of SQL Server.

CONNECT REPLICATION Grants permission to a replication scheme to connect to
an instance of SQL Server.

CONTROL [SERVER] Grants all permissions on all objects (for CONTROL SERVER)
or all permissions on all objects in named database or
schema (for CONTROL), as well as the ability to grant privi-
leges to other users. When used with a single object,
grants full control over the named object, as in GRANT
CONTROL ON USER::anna TO manager123;.

CREATE {AGGREGATE | DATABASE | DEFAULT | PROCEDURE |
QUEUE | RULE | SYSNONYM | TABLE | TYPE | VIEW | XML
SCHEMA COLLECTION}

Grants the privilege to create the object of the specified
type within the current server, database, or schema.

IMPERSONATE Grants a user the privilege to act as another user, as in
GRANT IMPERSONATE ON USER::katie TO manager123;.

RECEIVE Grants the privilege for a user to receive a given service
broker queue, as in GRANT RECEIVE ON query_
notification_errorqueue TO emily;.

SEND Grants the privilege to send query notifications from a
service broker queue to a named login, as in GRANT SEND
ON SERVICE:://mysvc TO dylan;.

SHOWPLAN Grants the privilege to see query execution plans.

SHUTDOWN Grants the privilege to shut down the SQL server.

SUBSCRIBE QUERY NOTIFICATIONS Grants the privilege to receive notifications from a given
query notification queue, as in GRANT SUBSCRIBE QUERY
NOTIFICATIONS TO sam;.

TAKE OWNERSHIP Grants the privilege to transfer ownership of an XML
schema collection from one user to another.

VIEW {DATABASE STATE | DEFINITION} Grants the privilege to view the metadata that describes
all of a database, regardless of whether the user owns or
may use that databas (for DATABASE STATE) or the meta-
data about a server, database, schema, or individual
object (for DEFINITION).

Table 3-3. SQL Server system privileges (continued)

Options Description

Chapter 3: SQL Statement Command Reference | 289

SQLStatem
ent

Com
m

ands
GRANT Statement > SQL Server

SETUPADMIN
Can start up procedures and linked servers

SECURITYADMIN
Can read error logs, change passwords, administrate logins, and grant CREATE
DATABASE permissions

PROCESSADMIN
Can administrate processes running on the SQL server

DBCREATOR
Can create, alter, and drop databases

DISKADMIN
Can administrate disks and files

BULKADMIN
Can perform Bulk Copy Program (BCP) operations and execute BULK INSERT
statements (and regular INSERT statements) against tables in the database.

The SYSADMIN system role can grant any permission in any database on the server.
Members of the DB_OWNER and DB_SECURITYADMIN system roles can grant
any permission on any statement or object in databases they own. Members of the
DB_DDLADMIN system role, the SYSADMIN system role, and the database owner
may grant system privileges.

Members of the system roles may add other logins or users to their roles, but not via a
GRANT statement. Instead, to add a user to a system role, you must use a SQL Server
system stored procedure called sp_addsrvrolemember.

In addition to the server-wide system roles, there are a number of database-wide
system roles. That is, whereas the previous system roles have privileges that span every
database on the server, the following system roles exist in each individual database and
have privileges within the scope of a specific database:

DB_OWNER
Grants the privilege to perform all the functions of the other database system
roles, plus other maintenance and configuration tasks for the database

DB_ACCESSADMIN
Grants the privilege to add Windows and SQL Server users and groups to the
database, or to remove them

DB_DATAREADER
Grants the privilege to read data from all user tables in the database

DB_DATAWRITER
Grants privileges to read, add, change, or delete data in all user tables in the
database

DB_DDLADMIN
Grants privileges to add, change, and drop objects in the database, as well as run
all DDL statements

DB_SECURITYADMIN
Grants the privilege to administrate SQL Server roles and users as well as state-
ment and object permissions throughout the database

DB_BACKUPOPERATOR
Grants the privilege to perform backups of the database

290 | Chapter 3: SQL Statement Command Reference

IN Operator > All Platforms

DB_DENYDATAREADER
Denies permission to read data in the database

DB_DENYDATAWRITER
Denies permission to change data in the database

Like the server-wide system roles, database-wide system roles cannot be granted to a
user via the GRANT statement. Instead, you must use a SQL Server system stored
procedure called sp_addrolemember.

In the following example, the CREATE DATABASE and CREATE TABLE system priv-
ileges are granted to the users emily and sarah. Next, numerous permissions on the
titles table are granted to the editors group. The editors are then able to grant permis-
sions to others:

GRANT CREATE DATABASE, CREATE TABLE TO emily, sarah
GO
GRANT SELECT, INSERT, UPDATE, DELETE ON titles
TO editors
WITH GRANT OPTION
GO

The following example grants permissions to the database user sam and the Windows
user jacob:

GRANT CREATE TABLE TO sam, [corporate\jacob]
GO

Finally, the following example shows how to grant permissions using the optional AS
keyword. In this example, the user emily owns the sales_detail table, and she grants
SELECT privileges to the sales_manager role. The user kelly, who is a member of the
sales_manager role, wants to grant SELECT privileges to sam, but she cannot because
the permissions were granted to the sales_manager role and not to her explicitly. kelly
can use the AS clause to get around this hurdle:

-- Initial grant
GRANT SELECT ON sales_detail TO sales_manager
WITH GRANT OPTION
GO
-- Kelly passes the privilege to Sam as a member of the sale_manager role
GRANT SELECT ON sales_detail TO sam AS sales_manager
GO

See Also
REVOKE

IN Operator

The IN operator provides a way to delineate a list of values, either explicity listed or
from a subquery, and compare a value against that list in a WHERE or HAVING
clause. In other words, it gives you a way to say “Is value A in this list of values?”

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

Chapter 3: SQL Statement Command Reference | 291

SQLStatem
ent

Com
m

ands
IN Operator > All Platforms

SQL2003 Syntax
{WHERE | HAVING | {AND | OR}}

value [NOT] IN ({comp_value1, comp_value2[, ...] | subquery})

Keywords
{WHERE | HAVING | {AND | OR}} value

IN is permitted under either the WHERE or the HAVING clause. The IN compar-
ison may also be a part of an AND or OR clause in a multicondition WHERE or
HAVING clause. value may be of any datatype, but is usually the name of a
column of the table referenced by the transaction, or perhaps a host variable
when used programmatically.

NOT
Optionally tells the database to look for a result set that contains values that are
not in the list.

IN ({comp_value1, comp_value2[, . . .] | subquery})
Defines the list of comparative values (hence, comp_value) to compare against.
Each comp_value must be of the same or a compatible datatype as the initial value.
They are also governed by standard datatype rules. For example, string values
must be delimited by quotes, while integer values need no delimiters. As an alter-
native to listing specific values, you may use parentheses to enclose a subquery
that returns one or more values of a compatible datatype.

In the following example, generated on SQL Server, we look for all employees in the
employee table of the HR database who have a home state of Georgia, Tennessee,
Alabama, or Kentucky:

SELECT *
FROM hr..employee
WHERE home_state IN ('AL','GA','TN','KY')

Similarly, we can look for all employees in the HR database who are authors in the
PUBS database:

SELECT *
FROM hr..employee
WHERE emp_id IN (SELECT au_id FROM pubs..authors)

We can also use the NOT keyword to return a result set based upon the absence of a
value. In the following case, the company headquarters is located in New York, and
many workers commute in from neighboring states. We want to see all such workers:

SELECT *
FROM hr..employee
WHERE home_state
 NOT IN ('NY','NJ','MA','CT','RI','DE','NH')

Note that Oracle, while fully supporting the ANSI functionality, extends the function-
ality of the IN operator by allowing multiple argument matches. For example, the
following SELECT...WHERE ...IN statement is acceptable on Oracle:

SELECT *
FROM hr..employee e
WHERE (e.emp_id, e.emp_dept) IN
((242, 'sales'), (442, 'mfg'), (747, 'mkt))

292 | Chapter 3: SQL Statement Command Reference

INSERT Statement

See Also
ALL/ANY/SOME
BETWEEN
EXISTS
LIKE
SELECT
SOME/ANY

INSERT Statement

The INSERT statement adds rows of data to a table or view.

The INSERT statement allows rows to be written to a table through one of several
methods:

• One or more rows can be inserted using the DEFAULT values specified for a
column via the CREATE TABLE or ALTER TABLE statements.

• The actual values to be inserted into each column of the record can be declared
(this is the most common method).

• The result set of a SELECT statement can be inserted into a table or view, popu-
lating it with many records simultaneously.

SQL2003 Syntax
INSERT INTO [ONLY] {table_name | view_name} [(column1[, ...])]
[OVERRIDE {SYSTEM | USER} VALUES]
{DEFAULT VALUES | VALUES (value1[, ...]) | select_statement}

Keywords
ONLY

Used on typed tables only, this optional keyword ensures that the values inserted
into table_name are not inserted into any subtables.

{table_name | view_name} [(column1[, . . .])]
Declares the updatable target table or view into which the records will be
inserted. You must have INSERT privileges on the table or, at a minimum, on the
columns that will receive the inserted values. If no schema information is
included, as in scott.employee, the current schema and user context are assumed.
You may optionally include a list of the columns in the target table or view that
will receive data.

OVERRIDE {SYSTEM | USER} VALUES
Requires the SYSTEM keyword when inserting a literal value into a column that
would otherwise be given a system-generated value, such as an autogenerated
sequence number. The OVERRIDE USER VALUES clause does the converse, by
inserting system-supplied values even if a user has provided literal values to insert.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported, with variations

Chapter 3: SQL Statement Command Reference | 293

SQLStatem
ent

Com
m

ands
INSERTStatement

DEFAULT VALUES
Inserts all values declared via the DEFAULT column characteristic on the target
table where they exist, and NULLs where they do not exist. (Of course, the
DEFAULT column characteristic can specify NULL as a value, too.) This opera-
tion inserts a single record. It might encounter an error, depending on how the
PRIMARY KEY constraint or UNIQUE constraint is constructed on the target
table (assuming such constraints exist).

VALUES (value1[, . . .])
Specifies the actual values to be inserted into the target table. The number of
values must match the exact number of columns in the column list, if one is
provided. Furthermore, the values must be datatype- and size-compatible with
the columns of the target table. Each value in the value list corresponds to the
column with the same ordinal number in the column list. Thus, the first column
will get its data from the first value, the second column from the second value,
and so on until all columns are satisfied. You may also optionally use the
keywords DEFAULT to insert a column’s default value and NULL to insert a
NULL value.

select_statement
Inserts rows retrieved via the specified SELECT statement into the target table or
view. The values retrieved by the fully formed SELECT statement’s select item list
correspond directly to the columns of the column list. The target table or view
may not be referenced in the SELECT statement’s FROM or JOIN clauses.

Rules at a Glance
You may insert values into tables, and into views built upon a single source table. The
INSERT...VALUES statement adds a single row of data to a table, using literal values
supplied in the statement. In the following example, a new row in the authors table is
inserted for the author Jessica Rabbit:

INSERT INTO authors (au_id, au_lname, au_fname, phone,
 address, city, state, zip, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,
 '1717 Main St', NULL, 'CA', '90675', 1)

Every column in the table is assigned a specific, literal value except the phone column,
which is assigned the default value (as defined in the CREATE TABLE or ALTER
TABLE statement), and the city column, which is set to NULL.

It’s important to remember that you may skip columns in the table and set them to
NULL, assuming they allow NULL values. Inserts that leave some columns NULL are
called partial INSERTs. Here is a partial INSERT that performs the same work as the
preceding example:

INSERT INTO authors (au_id, au_lname, au_fname, phone, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT, 1)

The INSERT statement, combined with a nested SELECT statement, allows a table to
be quickly populated with one or more rows from the result set of the SELECT state-
ment. When using INSERT...SELECT between a target table and a source table, it is
important to ensure that the datatypes returned by the SELECT statement are compat-
ible with the datatypes in the target table. For example, to load data from the sales
table into the new_sales table:

INSERT INTO sales (stor_id, ord_num, ord_date, qty, payterms,
 title_id)

294 | Chapter 3: SQL Statement Command Reference

INSERT Statement

SELECT
 CAST(store_nbr AS CHAR(4)),
 CAST(order_nbr AS VARCHAR(20)),
 order_date,
 quantity,
 SUBSTRING(payment_terms,1,12),
 CAST(title_nbr AS CHAR(1))
FROM new_sales
WHERE order_date >= 01-JAN-2005
-- Retrieve only the newer records

You must specify the columns in the table that will receive data by enclosing their
names in parentheses, in a comma-delimited list. This column_list can be omitted, but
all columns that are defined for the table are then assumed, in their ordinal positions.
Any column with an omitted value will be assigned its default value (according to any
DEFAULT column setting on the table) or, if no DEFAULT column setting exists,
NULL. The columns in the column list may be in any order, but you may not repeat
any column in the list. Furthermore, the columns and their corresponding value
entries must agree in terms of datatype and size.

The first of the following two examples leaves off the column list, while the second
uses only DEFAULT values:

INSERT INTO authors
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,
 '1717 Main St', NULL, 'CA', '90675', 1)
INSERT INTO temp_details
DEFAULT VALUES

The first statement will succeed only if all the values in the value list correspond
correctly with the datatypes and size limitations of the columns of the target table. Any
inconsistencies will generate an error. The second statement will succeed only as long
as defaults have been declared for the columns of the target table, or those columns
allow NULL values.

Executing an INSERT statement without a column list is a “worst
practice,” since the statement may fail if the target table ever
changes.

Programming Tips and Gotchas
INSERT statements will always fail under the following circumstances:

• When a datatype mismatch occurs between a column and its value

• When a column is defined as NOT NULL and the insertion value is NULL

• When a duplicate value is inserted into a UNIQUE or PRIMARY KEY constraint

• When the inserted values do not meet the requirements of a CHECK constraint

• When an inserted value is constrained by a FOREIGN KEY constraint because
the value is not derived from the declared primary key of another table

The most common error encountered when executing INSERT statements is a
mismatch between the number of columns and the number of values. If you acciden-
tally leave out a value that corresponds to a column, you are likely to encounter an
error that will cause the statement to fail.

Chapter 3: SQL Statement Command Reference | 295

SQLStatem
ent

Com
m

ands
INSERT Statement > MySQL

INSERT statements also fail when an inserted value is of a datatype that is a mismatch
with the column of the target table. For example, an attempt to insert a string like
“Hello World” into an integer column would fail. On the other hand, some database
platforms automatically and implicitly convert certain datatypes. For example, SQL
Server will automatically convert a date value to a character string for insertion into a
VARCHAR column.

Another common problem encountered with the INSERT statement is a size mismatch
between a value and its target column. For example, inserting a long string into a
CHAR(5) target column or inserting a very large integer into a TINYINT column can
cause problems. Depending on the platform you are using, the size mismatch may
cause an outright error and rollback of the transaction, or the database server may
simply trim the extra data. Either result is undesirable. Similarly, a problem can arise
when an INSERT statement attempts to insert a NULL value into a target column that
does not accept NULLs.

Most problems with INSERT statements occur because the pro-
grammer does not know the target table very well. Make sure you
understand the target table or view before writing elaborate
INSERT statements.

MySQL
MySQL supports several INSERT syntax options that engender this platform’s reputa-
tion for high speed:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] [[database_name.]owner.]table_name [(column1[, ...])]
{VALUES ({value1 | DEFAULT}[, ...]) | select_statement |
 SET [ON DUPLICATE KEY UPDATE] column1=value1, column2=value2[, ...]}

where:

LOW_PRIORITY | DELAYED | HIGH_PRIORITY
Defers the execution of INSERT until no other clients are reading from the table,
for LOW_PRIORITY. This may result in a long wait. LOW_PRIORITY should
not be used with MyISAM tables, because it disables concurrent inserts. The
DELAYED keyword allows the client to continue immediately, even if the
INSERT has not yet completed. DELAYED is ignored with INSERT…SELECT
and INSERT…ON DUPLICATE variations. HIGH_PRIORITY merely overrides
the effect of servers running in low-priority mode; it does not otherwise boost
priority (or processing speed) for queries running normally.

IGNORE
Tells MySQL not to attempt to insert records that would duplicate a value in a
primary key or unique key; without this clause, the INSERT will fail if such dupli-
cation occurs. If a duplicate is encountered while the IGNORE clause is in use,
the duplicate records are ignored while all the other records are inserted.

SET column=value
An alternate syntax that allows you to specify values for target columns by name.

ON DUPLICATE KEY UPDATE
Causes an INSERT operation that would create a duplicate value of in a UNIQUE
index or PRIMARY KEY to update the value of the existing row.

296 | Chapter 3: SQL Statement Command Reference

INSERT Statement > Oracle

MySQL does not support the ANSI-standard OVERRIDE clauses.

MySQL trims any portion of a value that has a size or datatype mismatch. Thus,
inserting the value “10.23 X” into a decimal datatype column will cause “...X” to be
trimmed from the inserted value. If you attempt to insert into a column a numeric
value that is beyond the range of the column, MySQL will trim the value. Inserting an
illegal time or date value in a column will result in a zero value for the target column.
Inserting the string “Hello World” into a CHAR(5) column will result in the value
being trimmed to just the five characters in “Hello”. This string-trimming feature
applies to CHAR, VARCHAR, TEXT, and BLOB columns.

MySQL supports a statement called REPLACE with similar syntax to INSERT that
overwrites existing values rather than discarding rows that are duplicates. REPLACE is
essentially the same as INSERT…IGNORE.

Oracle
Oracle’s implementation of the INSERT statement allows data insertion into a given
table, view, partition, subpartition, or object table. It also supports additional exten-
sions such as inserting records into many tables at once and conditional inserts. The
syntax is:

-- Standard INSERT statement
INSERT [INTO] {table_name [[SUB]PARTITION { (prtn_name) | (key_value) }] |
 (subquery) [WITH {READ ONLY | CHECK OPTION
 [CONSTRAINT constr_name]}] |
 TABLE (collection) [(+)] } [alias]
 [(column1[, ...])]
{VALUES (value1[, ...]) [RETURNING expression1[, ...]
 INTO variable1[, ...]] |

select_statement [WITH {READ ONLY |
 CHECK OPTION [CONSTRAINT constr_name]}]}
-- Conditional INSERT statement
INSERT {[ALL | FIRST]} WHEN condition
 THEN standard_insert_statement
ELSE standard_insert_statement
[LOG ERRORS [INTO [schema.]table_name] [(expression)]
 [REJECT LIMIT {int | UNLIMITED}]]

where:

INSERT [INTO]
Inserts one or more rows into a single table, view, materialized view, or subquery.
The INTO keyword is optional. You insert a single row using the VALUES clause
and many rows using a subquery.

table_name [[SUB]PARTITION { (prtn_name) | (key_value) }]
Identifies the target into which you will insert data. The target may be a table,
view, materialized view, or subquery. To enable you to fully qualify the target,
table_name can expand to [schema.]table_name[@db_link]. You may optionally
identify the schema and remote address (via @db_link) of the target, but the current
schema and local database are assumed if you do not otherwise specify them.

Chapter 3: SQL Statement Command Reference | 297

SQLStatem
ent

Com
m

ands
INSERT Statement > Oracle

You may also optionally identify the PARTITION or SUBPARTITION (through
the prtn_name parameter or a key_value for a hash partition or subpartition) into
which the record(s) will be inserted, as long as the target is not an object table or
object view.

subquery
Instructs Oracle to insert records into the base table or tables of the subquery,
where the subquery is a normally formed SELECT statement. Essentially, you’re
using a subquery to construct a view on the fly, and the effect is the same as
inserting into a view. This is the primary means for inserting values into multiple
tables at one time. All of the columns defined by the subquery, across all tables,
must have a corresponding value to insert, or a failure will occur. Multitable
inserts must use the subquery format. The following options apply when using
subqueries:

WITH READ ONLY
Indicates that the subqueried table or view cannot be updated until the state-
ment completes.

WITH CHECK OPTION [CONSTRAINT constr_name]
Indicates that you cannot insert into the table or view rows that would not
pass the constr_name check constraint.

TABLE (collection) [(+)] } [alias]
Tells Oracle that the collection should be treated like a standard target (i.e.,
a table or view), whether it be a subquery, a column, a function, or a collec-
tion constructor. In any event, the table collection must return a nested table
or VARRAY set of values. Since constructions can be very long, you can
provide an optional alias. Aliases are not allowed in multitable insert
operations.

(column1[, . . .])
Specifies the target column(s) into which data will be inserted. If you leave off the
list of columns, Oracle assumes that the VALUES clause or columns of the
subquery will perfectly match the columns of the target. Oracle will return an
error if you do not insert a value for any columns marked as NOT NULL that do
not have defined default values.

VALUES (value1[, . . .]) [RETURNING expression1[, . . .] INTO variable1[, . . .]]
Inserts values into the target table or tables. As with the ANSI standard, there
must be a matching value for every column, though the value can be DEFAULT
or, if the column accepts NULLs, the literal NULL. DEFAULT is not allowed
when inserting into a view. On multitable insert operations, the VALUES clause
must return a corresponding value for every item in the select list of the subquery.
The syntax is as follows:

RETURNING expression1
Retrieves the rows inserted by the operation. The expression returned by the
statement is often a value being inserted, but it may be another value. For
example, you might use the RETURNING clause to find the value of an
automatically generated primary key. Single-row operations store the results
into host variables or PL/SQL variables, while multirow operations store
them in bind arrays. You can use RETURNING against tables, views with a
single base table, and materialized views. The RETURNING clause is not
allowed with multitable insert operations.

298 | Chapter 3: SQL Statement Command Reference

INSERT Statement > Oracle

INTO variable1
Specifies the variables that will hold the values returned as a result of the
RETURNING clause. You must declare a corresponding host variable or PL/
SQL variable for each expression in the RETURNING clause. You cannot
use the INTO clause to hold a LONG datatype; with remote objects; on
views that have INSTEAD OF triggers; or with parallel INSERT, UPDATE,
or DELETE statements.

ALL
Performs a multitable INSERT statement. ALL is used only with the subquery
format. Without a WHEN clause, ALL unconditionally inserts all the data
retrieved by the subquery into the tables defined. With a WHEN clause, ALL
performs conditional insert operations that tell Oracle to evaluate all WHEN
clauses regardless of the results of any other WHEN operation. Each time a
WHEN clause evaluates as TRUE, Oracle executes the corresponding INTO
clause. Multitable inserts are not parallelized on index-organized tables or bitmap
indexed tables. They are not allowed at all when:

• The target is a view or materialized view.

• The target is a remote table.

• The INSERT command uses a TABLE collection expression.

• The table needs more than 999 total target columns.

• The subquery uses a sequence.

FIRST
Tells Oracle to evaluate the WHEN clauses in order and, when it finds the first
TRUE expression, to execute the corresponding INTO clause and skip all other
WHEN clauses.

WHEN condition THEN standard_insert_statement
Sets a condition and, when the condition is TRUE, executes the THEN insert
clause. The value of condition is evaluated for each column returned in the result
set of the subquery. Up to 127 WHEN clauses are allowed.

ELSE standard_insert_statement
Executes when no WHEN clause evaluates as TRUE.

LOG ERRORS [INTO [schema.]table_name] [(expression)] [REJECT LIMIT {int |
UNLIMITED}]

Captures DML errors and logs column values of the affected rows into an error-
logging table. INTO specifies the name of the error-logging table. When omitted,
Oracle inserts the affected rows into a table with a name of ERR$_ prepended to
the first 25 characters of the table name. expression is a literal string or general
SQL expression (such as TO_CHAR(SYSDATE)) that you want inserted into the
error-logging table. REJECT LIMIT allows an upper limit for the total number of
errors allowed before terminating the DML operation and rolling back the trans-
action. (Note that you cannot track errors for LONG, LOB, or object type
columns.)

Oracle allows the standard INSERT operations as described in the ANSI implementa-
tion section, such as INSERT...SELECT and INSERT...VALUES. However, it has a
great many special variations.

When inserting into tables that have assigned sequences, be sure to use the
<sequence_name>.nextval function call to insert the next logical number in the sequence.

Chapter 3: SQL Statement Command Reference | 299

SQLStatem
ent

Com
m

ands
INSERT Statement > Oracle

For example, assume you want to use the authors_seq sequence to set the value of au_
id when inserting a new row into the authors table:

INSERT authors (au_id, au_lname, au_fname, contract)
VALUES (authors_seq.nextval, 'Rabbit', 'Jessica', 1)

When retrieving values during an INSERT operation, check for a one-for-one match
between the expressions in the RETURNING clause and the variables of the INTO
clause. The expressions returned by the clause do not necessarily have to be those
mentioned in the VALUES clause. For example, the following INSERT statement
places a record into the sales table, but places a completely distinct value into a bind
variable:

INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1)
RETURNING hire_date INTO :temp_hr_dt;

Notice that the RETURNING clause returns the hire_date even though hire_date is
not one of the values listed in the VALUES clause. (In this example, it is reasonable to
assume a default value was established for the hire_date column.)

An unconditional multitable INSERT statement into a lookup table that contains a list
of all the approved jobs in the company looks like this:

INSERT ALL
 INTO jobs(job_id, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 INTO jobs(job_id+1, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 INTO jobs(job_id+2, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 INTO jobs(job_id+3, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
SELECT job_identifier, job_title, base_pay, max_pay
FROM job_descriptions
WHERE job_status = 'Active';

And just to make things more complex, Oracle allows multitable INSERT statements
that are conditional:

INSERT ALL
 WHEN job_status = 'Active' INTO jobs
 WHEN job_status = 'Inactive' INTO jobs_old
 WHEN job_status = 'Terminated' INTO jobs_cancelled
 ELSE INTO jobs
SELECT job_identifier, job_title, base_pay, max_pay
FROM job_descriptions;

Note that in the preceding example, you would have to follow each INTO clause with
a VALUES clause if you were skipping NOT NULL columns in the target table. The
following example shows this syntax:

INSERT FIRST
 WHEN job_status = 'Active'
 INTO jobs
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 WHEN job_status = 'Inactive'
 INTO jobs_old
 VALUES(job_id, job_desc, min_lvl, max_lvl)

300 | Chapter 3: SQL Statement Command Reference

INSERT Statement > Oracle

 WHEN job_status = 'Terminated'
 INTO jobs_cancelled
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 WHEN job_status = 'Terminated'
 INTO jobs_outsourced
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 ELSE INTO jobs
 VALUES(job_id, job_desc, min_lvl, max_lvl)
SELECT job_identifier, job_title, base_pay, max_pay
FROM job_descriptions;

Notice that in this example, the FIRST clause also tells Oracle to execute the first
occurrence of job_status = 'Terminated' by inserting the records into the jobs_
cancelled table and skipping the jobs_outsourced INSERT operation.

Oracle allows you to insert data into a table, partition, or view (also known as the
target) using either a regular or a direct-path INSERT statement. In a regular insert,
Oracle maintains referential integrity and reuses free space in the target. In a direct-
path insert, Oracle appends data at the end of the target table without filling in any
free space gaps elsewhere in the table. This method bypasses the buffer cache and
writes directly to the datafiles; hence the term “direct-path.”

Oracle allows the use of hints to circumvent default query optimi-
zation for INSERT statements. For example, you can use the
APPEND hint to ensure that an INSERT uses a direct-path
approach. Refer to the platform documentation for more details on
hints that are usable with INSERT.

The direct-path approach enhances performance on long, multirecord insert opera-
tions. However, if any of the following are true, Oracle will perform a regular INSERT
instead of a direct-path INSERT:

• The data in the target is altered with an UPDATE or DELETE statement before
the INSERT statement, in a single transaction. (UPDATE and DELETE are
allowed after the direct-path INSERT statement.)

• The INSERT statement is or may become distributed.

• The target contains a LOB or object datatype column.

• The target has a clustered index or index-organized table.

• The target has triggers or referential integrity constraints.

• The target is replicated.

• The ROW_LOCKING initialization parameter is set to INTENT.

In addition, Oracle will not allow you to query (e.g., using SELECT) a table later in the
same transaction after you perform a direct-path INSERT into that table until a
COMMIT has been performed.

Oracle allows you to use parallel direct-path inserts into multiple tables, but you may
only use subqueries to insert the data into the tables, not a standard VALUES clause.

Inserting LOBs and BFILEs is tricky. You should initilize such val-
ues to NULL before inserting. RAW columns are also tricky. If you
insert a regular string into a RAW column, all future queries against
the column will be forced to use a table scan.

Chapter 3: SQL Statement Command Reference | 301

SQLStatem
ent

Com
m

ands
INSERT Statement > SQL Server

PostgreSQL
PostgreSQL supports the ANSI standard for the INSERT statement, but it does not
support the ANSI SQL clause OVERRIDE SYSTEM GENERATED VALUES and has
added support for a RETURNING clause:

INSERT INTO table_name [(column1[, ...])]
{[DEFAULT] VALUES | VALUES {(value1[, ...]) | DEFAULT} | SELECT_statement}
[RETURNING { * | column_value [AS output_name][, ...] }]

where:

(column1[, . . .])
Identifies one or more columns in the target table. The list must be enclosed in
parentheses, and commas must separate each item in the list. SQL Server auto-
matically provides values for IDENTITY columns, TIMESTAMP columns, and
columns with DEFAULT constraints.

DEFAULT
Tells the INSERT statement simply to create a new record using all of the default
values specified for the target table.

RETURNING { * | column_value [AS output_name][, . . .] }
Retrieves the rows inserted by the operation. You may return all columns using an
asterisk (*), or one or more columns of the table with the heading output_name.
For example, you might use the RETURNING clause to find the value of an auto-
matically generated primary key.

PostgreSQL attempts to perform automatic datatype coercion when the expressions in
the VALUE clause or the select item list of a subquery do not match the datatypes
defined for the target table or view.

SQL Server
SQL Server supports a few extensions to the ANSI standard for INSERT. Specifically,
it supports several rowset functions (explained below), as well as the capability to
insert the results from stored procedures and extended procedures directly into the
target table. SQL Server’s syntax is:

[WITH cte_expression[, ...]]
INSERT [TOP (number) [PERCENT]]
[INTO] table_name [(column1[, ...])]
[OUTPUT expression INTO {@table_variable | output_table} [(column_list[, ...
])]]
{[DEFAULT] VALUES | VALUES (value1[, ...]) | select_statement |
 EXEC[UTE] proc_name [[@param =] value] [OUTPUT] [, ...]]}

where:

WITH cte_expression
Defines the temporary named result set of a common table expression, derived
from a SELECT statement, for the DELETE statement.

INSERT [INTO] table_name
Tells SQL Server that the target is a table, a view, or a rowset function. When
inserting into a view, an INSERT cannot affect more than one of the base tables in
the view, if there are more than one. Rowset functions allow SQL Server to source
data from special or external data sources such as XML streams, full-text search
file structures (a special structure in SQL Server used to store things like MS
Word documents and MS PowerPoint slideshows within the database), or

302 | Chapter 3: SQL Statement Command Reference

INSERT Statement > SQL Server

external data sources (such as an MS-Excel spreadsheet). Examples are shown
later in this section. SQL Server currently supports the following rowset_functions
for the INSERT statement:

OPENQUERY
Executes a pass-through INSERT against a linked server. This is an effective
means of performing a nested INSERT against a data source that is external
to SQL Server. The data source must first be declared as a linked server.

OPENROWSET
Executes a pass-through INSERT statement against an external data source.
This is similar to OPENDATASOURCE, except that OPENDATASOURCE
only opens the data source; it does not actually pass through an INSERT
statement. OPENROWSET is intended for occasional, ad hoc usage only.

TOP (number) [PERCENT]
Indicates that the statement should insert only the specified number of rows. If
PERCENT is specified, only the first number percent of the rows are inserted. If
number is an expression, such as a variable, it must be enclosed in parentheses.
The expression should be of the FLOAT datatype with a range of 0 to 100 when
using PERCENT. When not using PERCENT, the value of number should conform
to the rules for the BIGINT datatype.

(column1[, . . .])
Identifies one or more columns in the target table. The list must be enclosed in
parentheses, and commas must separate each item in the list. SQL Server auto-
matically provides values for IDENTITY columns, TIMESTAMP columns, and
columns with DEFAULT constraints.

OUTPUT expression INTO {@table_variable | output_table} [(column_list[, ...])]
Retrieves the rows affected by the command (whereas INSERT normally only
shows the number of rows affected), placing the rows you specify in expression
into either a given table_variable or output_table. If the column_list is omitted
for the output_table, the output_table must have the same number of columns as
the target table. The output_table cannot have triggers, participate in a foreign-
key constraint, or have any CHECK constraints.

DEFAULT
Tells the INSERT statement simply to create a new record using all of the default
values specified for the target table.

EXEC[UTE] proc_name [[@param =] value] [OUTPUT][, .. .]]
Tells SQL Server to execute a dynamic Transact-SQL statement, a stored proce-
dure, a Remote Procedure Call (RPC), or an extended stored procedure and store
the results in a local table. proc_name is the name of the stored procedure you wish
to execute. You may optionally include any of the parameters of the stored proce-
dure, as identified by @param (the at sign is required), assign a value to the
parameter, and optionally designate the parameter as an OUTPUT parameter.
The columns returned by the result set must match the datatypes of the columns
in the target table.

Although SQL Server automatically assigns values to IDENTITY columns and
TIMESTAMP columns, it does not do so for UNIQUEIDENTIFIER columns.
Columns of either of the former datatypes can simply be skipped in the columns and
values lists. However, you cannot do that with a UNIQUEIDENTIFIER column. Instead,
you must use the NEWID() function to obtain and insert a globally unique ID (GUID):

Chapter 3: SQL Statement Command Reference | 303

SQLStatem
ent

Com
m

ands
INSERT Statement > SQL Server

INSERT INTO guid_sample (global_ID, sample_text, sample_int)
VALUES (NEWID(), 'insert first record','10000')
GO

When migrating between platforms, remember that inserting an empty string (‘ ’) into
a SQL Server TEXT or VARCHAR column results in a zero-length string being stored.
This is not the same as a NULL value, as some platforms interpret it. When inserting
into a table using the INSERT…SELECT variant, WITH hints are allowed on the
subquery as long as you do not use READPAST, NOLOCK, and
READUNCOMMITTED.

The following example illustrates the INSERT...EXEC statements. It first creates a
temporary table called #ins_exec_container. Then, the first INSERT operation
retrieves a listing of the c:\temp directory and stores it in the temporary table, while the
second INSERT executes a dynamic SELECT statement:

CREATE TABLE #ins_exec_container (result_text
 VARCHAR(300) NULL)
GO
INSERT INTO #ins_exec_container
EXEC master..xp_cmdshell "dir c:\temp"
GO
INSERT INTO sales
EXECUTE ('SELECT * FROM sales_2002_Q4')
GO

This functionality can be very useful when you want to build business logic using
Transact-SQL stored procedures; for example, to determine the state of objects in or
outside of the database and then act on those results using Transact-SQL.

SQL Server allows the use of hints to circumvent default query opti-
mization for INSERT statements. However, this type of tuning is
recommended only for the most advanced users. Refer to the ven-
dor documentation for more details on hints that are usable with
INSERT.

Common table expressions may be used with SELECT, INSERT, UPDATE, and
DELETE statements, as well as the CREATE VIEW statement. Common table expres-
sions offer a means of naming and defining a temporary result set from a SELECT
statement, even allowing recursive behaviors. When defining a common table expres-
sion, you may not use COMPUTE, COMPUTE BY, FOR XML, FOR BROWSE, INTO,
OPTION, or ORDER BY clauses. Multiple SELECT statements are allowed in a
common table expression only if they are combined with set operators such as
UNION, UNION ALL, EXCEPT, or INSERSECT.

The following is a simple INSERT statement using a common table expression:

WITH direct_reports (Manager_ID, DirectReports) AS
(SELECT manager_ID, COUNT(*)
 FROM hr.employee AS e
 WHERE manager_id IS NOT NULL
 GROUP BY manager_id)
DELETE FROM direct_reports
WHERE DirectReports <= 1;

304 | Chapter 3: SQL Statement Command Reference

INTERSECT Set Operator

Performing an INSERT that shows what records and column values were inserted is
easy using the OUTPUT clause:

INSERT hr.employee
OUTPUT INSERTED.employee_id, INSERTED.employee_lname, INSERTED.employee_

fname
 INTO @my_temporary_table_variable
VALUES ('Insert Error', GETDATE());

See Also
DELETE
MERGE
SELECT
UPDATE

INTERSECT Set Operator

The INTERSECT set operator retrieves the rows of two or more queries, where the
rows of the result sets are identical in both the first and second (and possibly more)
queries. In some ways, INTERSECT is a lot like an INNER JOIN operation (see the
JOIN section for details).

INTERSECT is in a class of keywords called set operators. Other set operators include
EXCEPT and UNION. All set operators are used to simultaneously manipulate the
result sets of two or more queries; hence the term “set operators.”

SQL2003 Syntax
There is technically no limit to the number of queries that you may combine with the
INTERSECT set operator. The general syntax is:

<SELECT statement1>
INTERSECT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, column2, ...)]]
<SELECT statement2>
INTERSECT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, column2, ...)]]
...

Keywords
ALL

Includes duplicate rows from all result sets.

DISTINCT
Drops duplicate rows from all result sets prior to the INTERSECT comparison.
Columns containing a NULL value are considered duplicates. (If neither ALL nor
DISTINCT is used, the DISTINCT behavior is the default.)

Platform Command

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

Chapter 3: SQL Statement Command Reference | 305

SQLStatem
ent

Com
m

ands
INTERSECT Set Operator

CORRESPONDING
Specifies that only columns with the same name in both queries are returned,
even if both queries use the asterisk shortcut.

BY
Specifies that only the named columns are returned, even if more columns with
corresponding names exist in the queries. Must be used with the CORRE-
SPONDING keyword.

Rules at a Glance
There is only one significant rule to remember when using INTERSECT: the order and
number of columns must be the same in all of the queries.

Also, while the datatypes of the corresponding columns do not have to be identical,
they must be compatible (for example, CHAR and VARCHAR are compatible
datatypes). By default, the result set will default to the largest of the columns in each
ordinal position.

Programming Tips and Gotchas
None of the platforms support the ANSI CORRESPONDING [BY (column1, column2, ...)]
clause.

On platforms that do not support INTERSECT, substitute a query
using FULL JOIN.

The ANSI standard evaluates INTERSECT as higher priority than other set operators,
but not all platforms evaluate set operator precedence the same way. You can explic-
itly control the precedence of set operators using parentheses. Otherwise, the DBMS
might evaluate the expressions either from leftmost to rightmost or from first to last.

According to the standard, only one ORDER BY clause is allowed in the entire query.
It should be included at the end of the last SELECT statement. To avoid column and
table ambiguity, be sure to alias each column of each table with the same respective
alias. For example:

SELECT a.au_lname AS 'lastname', a.au_fname AS 'firstname'
FROM authors AS a
INTERSECT
SELECT e.emp_lname AS 'lastname', e.emp_fname AS 'firstname'
FROM employees AS e
ORDER BY lastname, firstname

Also, be aware that while your column datatypes may be compatible throughout the
queries in the INTERSECT, there may be some variation in behavior across the DBMS
platforms with regard to varying length of the columns. For example, if the au_lname
column in the first query is markedly longer than the emp_lname column in the
second query, different platforms may apply different rules as to which length is used
for the final result. In general, though, the platforms will choose the longer (and less
restrictive) column size for use in the result set.

Each DBMS may apply its own rules as to which column name is used if the columns
across the tables have different names. In general, the column names from the first
query are used.

306 | Chapter 3: SQL Statement Command Reference

INTERSECT Set Operator > MySQL

MySQL
Not supported.

Oracle
Oracle supports the INTERSECT and INTERSECT ALL set operators using the basic
ANSI SQL syntax:

<SELECT statement1>
INTERSECT
<SELECT statement2>
INTERSECT
...

Oracle does not support the CORRESPONDING clause. INTERSECT DISTINCT is
not supported, but INTERSECT is the functional equivalent. Oracle does not support
INTERSECT on the following types of queries:

• Queries containing columns with LONG, BLOB, CLOB, BFILE, or VARRAY
datatypes

• Queries containing a FOR UPDATE clause or a TABLE collection expression

If the first query in the set operation contains any expressions in the select item list,
you should include the AS keyword to associate an alias with the column resulting
from the expression. Also, only the first query in the set operation may contain an
ORDER BY clause.

For example, you could find all store IDs that also have sales using this query:

SELECT stor_id FROM stores
INTERSECT
SELECT stor_id FROM sales

PostgreSQL
PostgreSQL supports the INTERSECT and INTERSECT ALL set operators using the
basic ANSI SQL syntax:

<SELECT statement1>
INTERSECT [ALL]
<SELECT statement2>
INTERSECT [ALL]
...

PostgreSQL does not support INTERSECT or INTERSECT ALL on queries with a FOR
UPDATE clause, nor does it support the CORRESPONDING clause. INTERSECT
DISTINCT is not supported, but INTERSECT is the functional equivalent.

The first query in the set operation may not contain an ORDER BY clause or a LIMIT
clause. Subsequent queries in the INTERSECT or INTERSECT ALL set operation may
contain these clauses, but such queries must be enclosed in parentheses. Otherwise,
the rightmost occurance of ORDER BY or LIMIT will be assumed to apply to the
entire set operation.

For example, you can find all authors who are also employees and whose last last
names start with “P”:

SELECT a.au_lname
FROM authors AS a
WHERE a.au_lname LIKE 'P%'
INTERSECT

Chapter 3: SQL Statement Command Reference | 307

SQLStatem
ent

Com
m

ands
IS Operator > All Platforms

SELECT e.lname
FROM employee AS e
WHERE e.lname LIKE 'W%';

SQL Server
SQL Server supports the INTERSECT set operators using the basic ANSI SQL syntax:

<SELECT statement1>
INTERSECT [ALL]
<SELECT statement2>
INTERSECT [ALL]

The column names of the result set are those returned by the first query. Any column
names or aliases referenced in an ORDER BY clause must appear in the first query.
When using INTERSECT (or EXCEPT) to compare more than two result sets, each
pair of result sets (i.e., each pair of queries) is compared before moving to the next pair
in the order of expressions in parentheses first, INTERSECT set operators second, and
EXCEPT and UNION last in order of appearance.

Also note that you can use NOT IN or NOT EXISTS operations in conjunction with a
correlated subquery, as alternatives. Refer to the sections on IN and EXISTS for
examples.

See Also
EXCEPT
SELECT
UNION

IS Operator

The IS operator determines whether a value is NULL or not.

SQL2003 Syntax
{WHERE | {AND | OR}} expression IS [NOT] NULL

Keywords
{WHERE | {AND | OR}} expression IS NULL

Returns a Boolean value of TRUE if the expression is NULL, and FALSE if the
expression is not NULL. The expression evaluated for NULL can be preceded by
the WHERE keyword or AND or OR keywords.

NOT
Inverses the predicate: the statement will instead return a Boolean TRUE if the
value of expression is not NULL, and FALSE if the value of expression is NULL.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

308 | Chapter 3: SQL Statement Command Reference

JOIN Subclause

Rules at a Glance
Because the value of NULL is unknown, you cannot use comparison expressions to
determine whether a value is NULL. For example, the expressions X = NULL and X
<> NULL cannot be resolved because no value can equal, or not equal, an unknown.

Instead, you must use the IS NULL operator. Be sure that you do not put the word
NULL within quotation marks, because if you do that, the DBMS will interpret the
value as the word “NULL” and not the special value NULL.

Programming Tips and Gotchas
Some platforms support the use of a comparison operator to determine whether an
expression is NULL. However, all platforms covered by this book now support the
ANSI IS [NOT] NULL syntax.

Sometimes, checking for NULL will make your WHERE clause only slightly more
complex. For example, rather than a simple predicate to test the value of stor_id, as
shown here:

SELECT stor_id, ord_date
FROM sales
WHERE stor_id IN (6630, 7708)

you need to add a second predicate to accommodate the possibility that stor_id might
be NULL:

SELECT stor_id, ord_date
FROM sales
WHERE stor_id IN (6630, 7708)
 OR stor_id IS NULL

See Also
SELECT
WHERE

JOIN Subclause

The JOIN subclause enables you to retrieve rows from two or more logically related
tables. You can define many different join conditions and types of joins, though the
types of joins supported by the different platforms vary greatly.

SQL2003 Syntax
FROM table [AS alias] {CROSS JOIN |
 [NATURAL] [join_type] JOIN joined_table [[AS] alias]
 { ON join_condition1 [{AND | OR} join_condition2] [...] |
 USING (column1[, ...]) }}
[...]

Platform Command

MySQL Supported, with variations

Oracle Supported

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

Chapter 3: SQL Statement Command Reference | 309

SQLStatem
ent

Com
m

ands
JOIN Subclause

Keywords
FROM table

Defines the first table or view in the join.

NATURAL
Specifies that the join (either inner or outer) should be assumed on the tables
using all columns of identical name shared between the two tables. Conse-
quently, you should not specify join conditions using the ON or USING clauses.
The query will fail if you issue a natural join on two tables that do not contain any
columns with the same name(s).

[join_type] JOIN joined_table
Specifies the type of JOIN and the second (and any subsequent) table(s) in the
join. You may also define an alias on any of the joined_tables. The join types
are:

CROSS JOIN
Specifies the complete cross product of two tables. For each record in the
first table, all the records in the second table are joined, creating a huge result
set. This command has the same effect as leaving off the join condition, and
its result set is also known as a “Cartesian product.” Cross joins are not advis-
able or recommended.

[INNER] JOIN
Specifies that unmatched rows in either table of the join should be discarded.
If no join type is explicitly defined in the ANSI style, this is the default.

LEFT [OUTER] JOIN
Specifies that all records be returned from the table on the left side of the join
statement. If a record returned from the left table has no matching record in
the table on the right side of the join, it is still returned. Columns from the
right table return NULL values when there is no matching row. It is a good
idea to configure all your outer joins as left outer joins (rather than mixing
left and right outer joins) wherever possible, for consistency.

RIGHT [OUTER] JOIN
Specifies that all records be returned from the table on the right side of the
join statement, even if the table on the left has no matching record. Columns
from the left table return NULL values when there is no matching row.

FULL [OUTER] JOIN
Specifies that all rows from both tables be returned, regardless of whether a
row from one table matches a row in the other table. Any columns that have
no value in the corresponding joined table are assigned a NULL value.

UNION JOIN
Specifies that all the columns of both tables and every row of both tables will
be returned. Any columns that have no value in the corresponding joined
table are assigned a NULL value.

[AS] alias
Specifies an alias or shorthand for the joined table. The AS keyword is optional
when specifying an alias.

ON join_condition
Joins together the rows of the table shown in the FROM clause and the rows of
the table declared in the JOIN clause. You may have multiple JOIN statements,
all based on a common set of values. These values are usually contained in

310 | Chapter 3: SQL Statement Command Reference

JOIN Subclause

columns of the same name and datatype appearing in both of the tables being
joined. These columns, or possibly a single column from each table, are called the
join key or common key. Most (but not all) of the time, the join key is the primary
key of one table and a foreign key in another table. As long as the data in the
columns match, the join can be performed.

join_conditions are syntactically depicted in the following form (note that join types
are intentionally excluded in this example):

FROM table_name1
JOIN table_name2
 ON table_name1.column1 = table_name2.column2
 [{AND|OR} table_name1.column3 = table_name2.column4]
 [...]
JOIN table_name3
 ON table_name1.columnA = table_name3.columnA
 [{AND|OR} table_name1.column3 = table_name2.column4]
 [...]
[JOIN...]

Use the AND operator and the OR operator to issue a JOIN with multiple conditions.
It is also a good idea to use brackets around each pair of joined tables if more than two
tables are involved, as this makes reading the query much easier.

USING (column[, . . .])
Assumes an equality condition on one or more named columns that appear in both
tables. The column (or columns) must exist, as named, in both tables. Writing a
USING clause is a little quicker than writing . . .ON table1.columnA = table2.
columnA, but the results are functionally equivalent.

Rules at a Glance
Joins enable you to retrieve records from two (or more) logically related tables in a
single result set. You can use an ANSI JOIN (detailed here) to perform this operation,
or something called a theta join. Theta joins, which use a WHERE clause to establish
the filtering criteria, are the “old” way to do join operations.

For example, you might have a table called employee that tracks information about
everyone employed in your company. The employee table, however, doesn’t contain
extensive information about the job an employee holds; instead, it holds only job_ids.
All information about the job, such as its description and title, are stored in a table
called job. Using a JOIN, you can easily return columns from both tables in a single set
of records. The following sample queries illustrate the difference between a theta and
an ANSI JOIN:

/* Theta join */
SELECT emp_lname, emp_fname, job_title
FROM employee, jobs
WHERE employee.job_id = jobs. job_id;
/* ANSI join */
SELECT emp_lname, emp_fname, job_title
FROM employee
JOIN jobs ON employee.job_id = jobs.job_id;

Whenever you reference multiple columns in a single query, the columns must be
unambiguous. In other words, the columns must either be unique to each table or be
referenced with a table identifier. In the preceding example, both tables have a job_id

Chapter 3: SQL Statement Command Reference | 311

SQLStatem
ent

Com
m

ands
JOIN Subclause

column, so references to job_id must be qualified with a table identifier (the columns
in the query that don’t exist in both tables don’t need to be qualified by table identi-
fiers). However, queries like this are often very hard to read. The following variation of
the previous ANSI join is in better form, because it uses the short, easy-to-read alias e
to refer to the table:

SELECT e.emp_lname, e.emp_fname, j.job_title
FROM employee AS e
JOIN jobs AS j ON e.job_id = j.job_id;

The previous examples were limited to equi-joins, or joins using equality and an equals
sign (=). However, most other comparison operators are also allowed: you can
perform joins on >, <, >=, <=, <>, and so forth.

You cannot join on large object binary datatypes (e.g., BLOB) or any other large object
datatypes (e.g., CLOB, NLOB, etc.). Other datatypes are usually allowed in a join
comparison.

Cartesian products (i.e., a join between two or more tables that
returns all the data for all the rows in all possible variations) are a
really bad idea. Refer to the following description of CROSS JOINs
so you know what they look like, and then avoid them!

Following are examples of each type of join:

CROSS JOIN
Following are some cross join examples. The first is a theta join that simply leaves
off the join conditions, the second is written using the CROSS JOIN clause, and
the final query is similar in concept to the first, with a JOIN clause that omits the
join conditions:

SELECT *
FROM employee, jobs;

SELECT *
FROM employee
CROSS JOIN jobs;

SELECT *
FROM employee
JOIN jobs;

INNER JOIN
Following is an inner join written using the newer syntax:

SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
INNER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC

There are lots of authors in the authors table, but very few of them have cities
that match their publishers’ cities in the publishers table. For example, the
preceding query executed in the pubs database on SQL Server produces results
like the following:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

312 | Chapter 3: SQL Statement Command Reference

JOIN Subclause

first name last name publisher
--------------- -------------------- ------------------
Carson Cheryl Algodata Infosystems
Bennet Abraham Algodata Infosystems

The join is called an inner join because only those records that meet the join
condition in both tables are said to be “inside” the join. You could also issue the
same query, on platforms that support it, by substituting the USING clause for
the ON clause:

SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
INNER JOIN publishers AS p USING (city)
ORDER BY a.au_lname DESC

The results for this above query would be the same.

LEFT [OUTER] JOIN
It is a good idea to configure all your outer joins as left outer joins, for greater
consistency, rather than mixing left and right outer joins.

In the following example, we show a LEFT OUTER JOIN by asking for the
publisher for each author (we could also substitute the USING clause for the ON
clause, as shown in the earlier INNER JOIN example):

SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
LEFT OUTER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC

In this example every author will be returned, along with the publisher’s name
where there is a match, or a NULL value where there is no match. For example, in
the SQL Server pubs database, the query returns:

first name last name publisher
--------------- -------------------- ----------------
Yokomoto Akiko NULL
White Johnson NULL
Stringer Dirk NULL
Straight Dean NULL
...

All of the data is returned in the lefthand columns (those from the authors table),
and any column on the righthand side (those from the publishers table) that does
not have a match returns a NULL value. The result set shows NULL values where
no data matches in the join.

RIGHT [OUTER] JOIN
A RIGHT OUTER JOIN is essentially the same as a LEFT OUTER JOIN, except
everything is weighted toward the table on the right side of the query. For
example, the following query executed in the pubs database on SQL Server:

SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'

Chapter 3: SQL Statement Command Reference | 313

SQLStatem
ent

Com
m

ands
JOIN Subclause

FROM authors AS a
RIGHT OUTER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC

returns the following result set:

first name last name publisher
---------------- ---------------- ------------------------
Carson Cheryl Algodata Infosystems
Bennet Abraham Algodata Infosystems
NULL NULL New Moon Books
NULL NULL Binnet & Hardley

All of the data is returned on the righthand side of the query (hence the term
“right outer join”), and any columns from the lefthand side that do not have a
match return a NULL value. The result set shows NULL values where no data
matches in the join.

NATURAL [INNER | {LEFT | RIGHT} [OUTER]] JOIN
Natural joins are a substitute for the ON or USING clause, so do not use
NATURAL with those clauses. For example:

SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
NATURAL RIGHT OUTER JOIN publishers AS p
ORDER BY a.au_lname DESC

The preceding query will work the same as the earlier examples, but only if both
tables possess a column called city and that is the only column that they hold in
common. You could similarly perform any of the other types of joins (INNER,
FULL, OUTER) using the NATURAL prefix.

FULL [OUTER] JOIN
Specifies that all rows from either table be returned, regardless of whether the
records match. The result set shows NULL values where no data matches in the
join. Note that the OUTER keyword is optional. If we take our earlier example
query and render it as a FULL JOIN, it looks like this:

SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
FULL JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC

The result set returned by the query is actually the accumulation of the result sets
of issuing separate INNER, LEFT, and RIGHT join queries (some records have
been excluded for brevity):

first name last name publisher
-------------------- -------------------- --------------------
Yokomoto Akiko NULL
White Johnson NULL
Stringer Dirk NULL
...
Dull Ann NULL
del Castillo Innes NULL
DeFrance Michel NULL

314 | Chapter 3: SQL Statement Command Reference

JOIN Subclause > MySQL

Carson Cheryl Algodata Infosystems
Blotchet-Halls Reginald NULL
Bennet Abraham Algodata Infosystems
NULL NULL Binnet & Hardley
NULL NULL Five Lakes Publishin
NULL NULL New Moon Books
...
NULL NULL Scootney Books
NULL NULL Ramona Publishers
NULL NULL GGG&G

As you can see, with a FULL JOIN you get some records with the NULLs on the
right and data on the left (LEFT JOIN), some with all of the data (INNER JOIN),
and some with NULLs on the left and data on the right (RIGHT JOIN).

Programming Tips and Gotchas
If an explicit join_type is omitted, an INNER JOIN is assumed. Note that there are
many types of joins, each with their own rules and behaviors, as described in the
preceding section.

In general, you should favor the JOIN clause over the WHERE clause for describing
join expressions. This not only keeps your code cleaner, making it easy to differentiate
join conditions from search conditions, but also avoids the possibility of buggy
behavior resulting from some platform-specific implementations of outer joins speci-
fied using the WHERE clause.

In general, we do not recommend the use of labor-saving keywords like NATURAL,
since the subclause will not automatically update itself when the structures of the
underlying tables change. Consequently, statements using these constructs may fail
when a table change is introduced without also changing the query.

Not all join types are supported by all platforms, so refer to the following sections for
full details on platform-specific join support.

Joins involving more than two tables can be difficult. When joins
involve three or more tables, it is a good idea to think of the query
as a series of two table joins.

MySQL
MySQL supports most ANSI syntax, except that natural joins are supported only on
outer joins, not on inner joins. MySQL’s JOIN syntax is:

FROM table [AS alias]
{[STRAIGHT_JOIN joined_table] |
{ {[INNER] | [CROSS] |
 [NATURAL] [{LEFT | RIGHT | FULL} [OUTER]]}
 JOIN joined_table [AS alias]
 { ON join_condition1 [{AND|OR} join_condition2] [...] } |
 USING (column1[, ...]) }}
[...]

where:

STRAIGHT_JOIN
Forces the optimizer to join tables in the exact order in which they appear in the
FROM clause.

Chapter 3: SQL Statement Command Reference | 315

SQLStatem
ent

Com
m

ands
JOIN Subclause > Oracle

The STRAIGHT_JOIN keyword is functionally equivalent to JOIN, except that it
forces the join order from left to right. This option was supplied because MySQL
might, rarely, join the tables in the wrong order.

Refer to the earlier section “Rules at a Glance” for examples.

Oracle
Oracle fully supports the entire ANSI-standard JOIN syntax. However, Oracle only
began to support ANSI-standard JOIN syntax in version 9. Consequently, any older
Oracle SQL code exclusively uses WHERE clause joins. Oracle’s old syntax for outer
theta joins included adding “(+)” to the column names on the opposite side of the
direction of the join. This comes from the fact that the table supplying the NULL value
rows in effect has NULL value rows added to it.

For example, the following query does a RIGHT OUTER JOIN on the authors and
publishers tables. The old Oracle syntax looks like this:

SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors a, publishers p
WHERE a.city(+) = p.city
ORDER BY a.au_lname DESC

while the same query in the ANSI syntax would look like this:

SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a
RIGHT OUTER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC

Refer to the section “Rules at a Glance” for more JOIN examples.

Oracle is unique in offering partitioned outer joins, which are useful for filling gaps in
result sets due to sparse data storage. For example, assume we store production
records in a manufacturing table keyed on day and product_id. The table holds a row
showing the quantity of each product produced during any day on which it is made,
but there are no rows for the days it is not produced. This is considered sparse data,
since a list of all rows will not show every day for every product. For calculation and
reporting purposes, it’s very useful to be able to create result sets where each product
has a row for every day, regardless of whether or not it was manufactured on that day.
A partitioned outer join makes it simple to do that, since it lets you define a logical
partition and apply an outer join to each partition value. The following example does a
partitioned outer join with a times table to make sure each product_id has the full set
of dates in a specified time range:

SELECT times.time_id AS time, product_id AS id, quantity AS qty
FROM manufacturing
PARTITION BY (product_id)
RIGHT OUTER JOIN times
ON (manufacturing.time_id = times.time_id)
WHERE manufacturing.time_id
BETWEEN TO_DATE('01/10/05', 'DD/MM/YY')
 AND TO_DATE('06/10/05', 'DD/MM/YY')
ORDER BY 2, 1;

316 | Chapter 3: SQL Statement Command Reference

JOIN Subclause > PostgreSQL

Here is the output from this query:

time id qty
--------- ------ ---
01-OCT-05 101 10
02-OCT-05 101
03-OCT-05 101
04-OCT-05 101 17
05-OCT-05 101 23
06-OCT-05 101
01-OCT-05 102
02-OCT-05 102
03-OCT-05 102 43
04-OCT-05 102 99
05-OCT-05 102
06-OCT-05 102 87

Getting these results without using a partitioned outer join would require much more
complex and less efficient SQL.

PostgreSQL
PostgreSQL fully supports the ANSI standard. Refer to the section “Rules at a Glance”
for examples.

SQL Server
SQL Server supports INNER, OUTER, and CROSS joins using the ON clause. SQL
Server does not support NATURAL join sytax, nor the USING clause. SQL Server’s
JOIN syntax is:

FROM table [AS alias]
{ {[INNER] | [CROSS] | [{LEFT | RIGHT | FULL} [OUTER]]}
 JOIN joined_table [AS alias]
 { ON join_condition1 [{AND|OR}

join_condition2] [...] } }
[...]

Refer to the section “Rules at a Glance” for examples.

See Also
SELECT
WHERE

LIKE Operator

The LIKE operator enables specified string patterns in SELECT, INSERT, UPDATE,
and DELETE statements to be matched, specifically in the WHERE clause. A specified
pattern may include special wildcard characters. The specific wildcards supported vary
from platform to platform.

Chapter 3: SQL Statement Command Reference | 317

SQLStatem
ent

Com
m

ands
LIKE Operator

SQL2003 Syntax
WHERE expression [NOT] LIKE string_pattern
 [ESCAPE escape_sequence]

Keywords
WHERE expression LIKE

Returns a Boolean TRUE when the value of expression matches the string_
pattern. The expression may be a column, a constant, a host variable, a scalar
function, or a concatenation of any of these. It should not be a user-defined type,
nor should it be certain types of LOBs.

NOT
Inverses the predictate: the statement returns a Boolean TRUE if the value of
expression does not contain the string_pattern and returns FALSE if the value of
expression contains the string_pattern.

ESCAPE escape_sequence
Allows you to search for the presence of characters that would normally be inter-
preted as wildcards.

Rules at a Glance
Matching string patterns is easy with LIKE, but there are a couple of simple rules to
remember:

• All characters, including trailing and leading spaces, are important.

• Differing datatypes may be compared using LIKE, but they store string patterns
differently. In particular, be aware of the differences between the CHAR,
VARCHAR, and DATE datatypes.

• Using LIKE may negate indexes or force the DBMS to use alternative, less optimal
indexes than a straight comparison operation.

The ANSI standard currently supports two wildcard operators that are supported by
all of the platforms covered in this book:

%
Matches any string

_ (underscore)
Matches any single character

The first query in the following example retrieves any city record with “ville” in its
name. The second query returns authors with a first name not like Sheryl or Cheryl (or
Aheryl, Bheryl, Dheryl, 2heryl, and so forth):

SELECT * FROM authors
WHERE city LIKE '%ville%';
SELECT * FROM authors
WHERE au_fname NOT LIKE '_heryl';

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported, with variations

SQL Server Supported, with variations

318 | Chapter 3: SQL Statement Command Reference

LIKE Operator > MySQL

Some of the platforms support additional wildcard symbols. These are described in the
platform-specific sections that follow.

Use of the ESCAPE clause allows you to look for wildcard characters in the strings
stored in your database. Using this mechanism, you designate a character—typically a
character that does not otherwise appear in the pattern string—as your escape char-
acter. For example, you might designate the tilde (~) because you know it never
appears in the pattern string. Any wildcard character preceded by the escape sequence
is then treated not as a wildcard, but rather as the character itself. For example, we can
look through the comments column of the sales_detail table (on SQL Server) to see
whether any customers have mentioned a newly introduced discount using this query:

SELECT ord_id, comment
FROM sales_detail
WHERE comment LIKE '%~%%' ESCAPE '~'

In this case, the first and last %s are interpreted as wildcards, but the second % char-
acter is interpreted as just that (a % character), because it is preceded by the
designated escape sequence.

Programming Tips and Gotchas
The usefulness of LIKE is based on the wildcard operators that it supports. LIKE
returns a Boolean TRUE value when the comparison finds one or more matching
values.

The default case sensitivity of the DBMS is very important to the behavior of LIKE.
For example, Microsoft SQL Server is not case sensitive by default (though it can be
configured that way). Thus, Microsoft SQL Server will evaluate the strings DAD and dad
to be equal. Oracle, on the other hand, is case sensitive. Thus, on Oracle a compar-
ison of DAD and dad would show them to be unequal. Here’s an example query to better
illustrate this point:

SELECT *
FROM authors
WHERE lname LIKE 'LARS%'

This query on Microsoft SQL Server would find authors whose last names are stored
as ‘larson’ or ‘lars’, even though the search was for the uppercase ‘LARS%’. Oracle,
however, would not find ‘Larson’ or ‘Lars’, because Oracle performs case-sensitive
comparisons.

MySQL
MySQL supports the ANSI syntax for LIKE. It supports the percent (%) and under-
score (_) wildcards, as well as the ESCAPE clause.

MySQL also supports the special functions of REGEXP and RLIKE, plus NOT
REGEXP and NOT RLIKE for the evaluation of regular expressions. MySQL, after
version 3.23.4, is not case-sensitive by default.

Oracle
Oracle supports the ANSI syntax for LIKE. It supports the percent (%) and under-
score (_) wildcards, and ESCAPE sequences. Oracle’s LIKE syntax is as follows:

WHERE expression [NOT] {LIKE | LIKEC | LIKE2 |
 LIKE4} string_pattern
[ESCAPE escape_sequence]

Chapter 3: SQL Statement Command Reference | 319

SQLStatem
ent

Com
m

ands
LIKE Operator > SQL Server

The Oracle-specific syntax elements have the following meanings:

LIKEC
Uses UNICODE complete characters

LIKE2
Uses UNICODE USC2 codepoints

LIKE4
Uses UNICODE UCS4 codepoints

Since Oracle is case sensitive, you should enclose the expression, the string_pattern,
or both with the UPPER function. That way, you are always comparing apples to
apples.

PostgreSQL
PostgreSQL supports the ANSI syntax for LIKE. It supports the percent (%) and
underscore (_) wildcards and ESCAPE sequences.

PostgreSQL is case sensitive by default but provides the keyword ILIKE for case-
insensitive pattern matching. You can also use the operators ~~ as an equivalent to
LIKE, ~~* for ILIKE, and !~~ and !~~* for NOT LIKE and NOT ILIKE, respectively.
These are all extensions to the ANSI SQL2003 standard.

For example, the following queries are functionally the same:

SELECT * FROM authors
WHERE city LIKE '%ville';
SELECT * FROM authors
WHERE city ~~ '%ville';

Since these queries are in lowercase, you might run into a case-sensitivity problem.
That is, the queries are looking for a lowercase ‘%ville’, but the table might contain
uppercase (and unequal) values such as ‘BROWNSVILLE’, ‘NASHVILLE’, and
‘HUNTSVILLE’. You can get around this as follows:

-- Convert the values to uppercase
SELECT * FROM authors
WHERE city LIKE UPPER('%ville');
-- Perform the pattern match using case insensitivity
SELECT * FROM authors
WHERE city ~~* '%ville';
SELECT * FROM authors
WHERE city ILIKE '%ville';

Although beyond the scope of this text, you should be aware that PostgreSQL also
supports POSIX regular expressions. See the platform documentation for details.

SQL Server
SQL Server supports the ANSI syntax for LIKE. It supports the percent (%) and under-
score (_) wildcards, and ESCAPE sequences. It also supports the following additional
wildcard operators:

[]
Matches any value in the specified set, as in [abc], or range, as in [k–n].

[^]
Matches any characters not in the specified set or range.

320 | Chapter 3: SQL Statement Command Reference

MERGE Statement

Using SQL Server’s additional wildcard operators, you have some added capabilities.
For example, you can retrieve any author with a last name like Carson, Carsen,
Karson, or Karsen:

SELECT * FROM authors
WHERE au_lname LIKE '[CK]ars[eo]n'

or you can retrieve any author with a last name that ends in “arson” or “arsen,” but is
not Larsen or Larson:

SELECT * FROM authors
WHERE au_lname LIKE '[A-Z^L]ars[eo]n'

Remember that when you’re performing string comparisons with
LIKE, all characters in the pattern string are significant, including
all leading and trailing blank spaces.

See Also
SELECT
UPDATE
DELETE
WHERE

MERGE Statement

The MERGE statement is sort of like a CASE statement for DML operations. It
combines UPDATE and INSERT statements into a single atomic statement with
either/or functionality.

Basically, MERGE examines the records of a source table and a target table. If the
records exist in both the source and target tables, the records in the target table are
updated with the values of the records in the source table, based upon predefined
conditions. If records that do not exist in the target table do exist in the source table,
they are inserted into the target table. The MERGE statement was added in the
SQL2003 release of the ANSI standard.

SQL2003 Syntax
MERGE INTO {object_name | subquery} [[AS] alias]
USING table_reference [[AS] alias]
ON search_condition
WHEN MATCHED
 THEN UPDATE SET column = { expression | DEFAULT }[, ...]
 WHEN NOT MATCHED
 THEN INSERT [(column[, ...])] VALUES (expression[, ...])

Platform Command

MySQL Not supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

Chapter 3: SQL Statement Command Reference | 321

SQLStatem
ent

Com
m

ands
MERGE Statement

Keywords
MERGE INTO {object_name | subquery}

Declares the target object of the merge operation. The target object may be a table
or updatable view of object_name, or it may be a nested table subquery.

[AS] alias
Provides an optional alias for the target table.

USING table_reference
Declares the source table, view, or subquery of the merge operation.

ON search_condition
Specifies the condition or conditions on which a match between the source and
target table is evaluated. The syntax is essentially the same as the ON subclause of
the JOIN clause. For example, when merging records from the new_hire_emp
table into the emp table, the clause might look like ON emp.emp_id = new_hire_
emp.emp_id.

WHEN MATCHED THEN UPDATE SET column = { expression | DEFAULT }[, . . .]
Declares that if a record from the source table has a matching record in the target
table (based on the search_condition), one or more specified columns of the target
table should be updated with the indicated value of expression.

WHEN NOT MATCHED THEN INSERT [(column[, ...])] VALUES (expression[, ...]
Declares that if a record from the source table does not have a matching record in
the target table (based on the search_condition), a new record should be inserted
into the target table using one or more specified columns with the value of
expression.

Rules at a Glance
The rules for using MERGE are straightforward:

• The WHEN MATCHED and WHEN NOT MATCHED clauses are required, but
may not be specified more than once.

• The target table can be a standard updatable table, an updatable view, or an
updatable subquery.

• If the table_reference is a subquery, enclose it in parentheses.

• The search_condition clause should not contain any references to stored proce-
dures or user-defined functions.

• The search_condition clause may contain multiple elements using the AND or
OR operators.

• If the column list is omitted from the WHEN NOT MATCHED clause, a column
list of all the columns in the target table, in ordinal position, is assumed.

Other important rules used by the MERGE statement are self-evident. For example,
the columns referenced in the WHEN MATCHED clause must be updatable.

Programming Tips and Gotchas
The MERGE statement is sometimes nicknamed the “upsert” statement. That is
because it allows, in a single operation, a set of records to be either inserted into a
table or, if they already exist, updated with new values.

The only tricky aspect of the MERGE statement is simply getting used to the idea of
the either/or processing of the INSERT and UPDATE statements.

322 | Chapter 3: SQL Statement Command Reference

MERGE Statement > MySQL

Assume that we have two tables, EMP and NEW_HIRE. The EMP table contains all
employees of the company who have successfully completed the mandatory 90-day
probationary period at the start of their employment. Employees in the EMP table can
also have several statuses, such as active, inactive, and terminated. Any new hire to the
company is recorded in the NEW_HIRE table. After 90 days, they are moved into the
EMP table like all other regular employees. However, since our company hires college
interns every summer, it’s very likely that some of our new hires will actually have a
record in the EMP table from last year with a status of inactive. Using pseudocode, the
business problem is summarized as:

For each record in the NEW_HIRE table
 Find the corresponding record in the EMP table
 If the record exists in the EMP table
 Update existing data in the EMP table
 Else
 Insert this record into the EMP table
 End If
End For

We could write a rather lengthy stored procedure that would examine all the records
of the NEW_HIRE table and then conditionally perform INSERT statements for the
entirely new employees or UPDATE statements for the returning college interns.
However, the following ANSI-standard MERGE statement makes this process much
easier:

MERGE INTO emp AS e
 USING (SELECT * FROM new_hire) AS n
 ON e.empno = n.empno
WHEN MATCHED THEN
 UPDATE SET
 e.ename = n.ename,
 e.sal = n.sal,
 e.mgr = n.mgr,
 e.deptno = n.deptno
WHEN NOT MATCHED THEN
 INSERT (e.empno, e.ename, e.sal, e.mgr, e.deptno)
 VALUES (n.empno, n.ename, n.sal, n.mgr, n.deptno);

As you can see, the MERGE statement is very useful for data-loading operations.

MySQL
Not supported. However, you may use the syntactically and functionally similar
REPLACE statement to do the same thing as a MERGE statement.

Oracle
Oracle supports the MERGE statement with only the tiniest variations, which are
almost entirely evident by comparing the Oracle syntax diagram against the ANSI-
standard syntax diagram:

MERGE INTO [schema.]{object_name | subquery} [alias]
USING [schema.]table_reference [alias]
ON (search_condition)
WHEN MATCHED THEN
 UPDATE SET column = { expression | DEFAULT }[, ...]

Chapter 3: SQL Statement Command Reference | 323

SQLStatem
ent

Com
m

ands
MERGE Statement > SQL Server

WHEN NOT MATCHED THEN
 INSERT (column[, ...]) VALUES (expression[, ...]
[LOG ERRORS [INTO [schema.]table_name] [(expression)]
 [REJECT LIMIT { int | UNLIMITED}]]

The differences between the ANSI standard and Oracle’s implementation include:

• The Oracle implementation does not allow the AS keyword with assigning an
alias to the target or source table.

• Oracle requires parentheses around the search_condition clause.

• In Oracle the WHEN NOT MATCHED clause requires an insert column list,
while the ANSI standard makes it optional.

Oracle supports error logging on the MERGE statement following the syntax LOG
ERRORS [INTO [schema.]table_name] [(expression)] [REJECT LIMIT { int | UNLIM-
ITED }]. This clause captures DML errors and logs column values of the affected rows
into an error-logging table. INTO specifies the name of the error-logging table. When
omitted, Oracle inserts the affected rows into a table with a name of ERR$_
prepended to the first 25 characters of the table name. expression is a literal string or
general SQL expression (such as TO_CHAR(SYSDATE)) that you want inserted into
the error-logging table. REJECT LIMIT allows an upper limit for the total number of
errors allowed before terminating the DML operation and rolling back the transac-
tion. (Note that you cannot track errors for LONG, LOB, or object type columns.)

Refer to the examples in the earlier “Rules at a Glance” and “Programming Tips and
Gotchas” sections for more information.

PostgreSQL
Not supported.

SQL Server
SQL Server supports its own distinctive variant of the MERGE statement, starting in
SQL Server 2008. In most ways, it is the same as the SQL3 ANSI standard. The syntax
follows:

[WITH common_table_expression[, ...]]
MERGE [TOP (number) [PERCENT]]
[INTO] {object_name | subquery} [[AS] alias]
USING (table_reference) [[AS] alias]
ON search_condition
WHEN MATCHED
 THEN { UPDATE SET column = { expression | DEFAULT }[, ...] | DELETE }
WHEN [{[TARGET] | SOURCE}] NOT MATCHED
 THEN INSERT [(column[, ...])] [DEFAULT] VALUES (expression[, ...])
[OUTPUT expression [INTO {@table_variable | output_table}
 [(column_list[, ...])]]]

where:

WITH cte_expression
Defines the temporary named result set of a common table expression, derived
from a SELECT statement, for the DELETE statement.

324 | Chapter 3: SQL Statement Command Reference

OPEN Statement > All Platforms

TOP (number) [PERCENT]
Indicates that the statement should insert only the specified number of rows. If
PERCENT is specified, only the first number percent of the rows are inserted. If the
number is an expression, such as a variable, it must be enclosed in parentheses.
The expression should be of the FLOAT datatype with a range of 0 to 100 when
using PERCENT. When not using PERCENT, the value of number should conform
to the rules for the BIGINT datatype.

WHEN {[TARGET] | SOURCE} NOT MATCHED
Specifies the behavior of the transaction when a matching value is not discovered
between the source and target tables. When neither keyword is specified, the
TARGET behavior is assumed, so WHEN NOT MATCHED is equivalent to
WHEN TARGET NOT MATCHED. The WHEN SOURCE NOT MATCHED
clause is for use with additional search conditions, all of which must be matched
for the condition to be considered satisfied. Otherwise, you should use WHEN
[TARGET] NOT MATCHED. You may have two WHEN SOURCE NOT
MATCHED clauses that specify different conditions for a DELETE operation and
an UPDATE operation.

OUTPUT expression INTO {@table_variable | output_table} [(column_list[, ...])]
Retrieves the rows affected by the command (whereas MERGE normally only
shows the number of rows affected), placing the rows you specify in expression
into either a given table_variable or output_table. If the column_list is omitted
for the output_table, the output_table must have the same number of columns as
the target table. The output_table cannot have triggers, participate in a foreign-
key constraint, or have any CHECK constraints.

The MERGE statement allows a few variations on simply specifying a column name to
update or insert values into. The column may be {DELETED | INSERTED | from_
table_name}.{* | column_name} or $ACTION ($ACTION is a keyword that outputs the
actual INSERT, UPDATE, or DELETE statement used by the MERGE statement,
depending on the action(s) it performs). SQL Server maintains the same inserted and
deleted pseudotables that are used in triggers to maintain transactional consistency
within the MERGE statement. Therefore, a column may be referenced in the OUTPUT
clause using the inserted or deleted pseudotables. In addition, any AFTER triggers
declared on the target table may fire according to the INSERT, UPDATE, or DELETE
triggers defined upon it and the INSERT, UPDATE, or DELETE transaction initiated
by the MERGE statement.

See Also
INSERT
JOIN
SELECT
SUBQUERY
UPDATE

OPEN Statement

The OPEN statement is one of four commands used in cursor processing, along with
DECLARE, FETCH, and CLOSE. Cursors allow you to process queries one row at a
time, rather than as a complete set. The OPEN statement opens a pre-existing server
cursor created with the DECLARE CURSOR statement.

Chapter 3: SQL Statement Command Reference | 325

SQLStatem
ent

Com
m

ands
OPEN Statement > All Platforms

Cursors are especially important in relational databases because databases are set-
based, while most client-centric programming languages are row-based. Cursors allow
programmers and databases to perform operations a single row at a time, while the
default behavior of a relational database is to operate on a whole set of records.

SQL2003 Syntax
OPEN cursor_name

Keywords
OPEN cursor_name

Identifies and opens the previously defined cursor created with the DECLARE
CURSOR command.

Rules at a Glance
At the highest level, a cursor must be:

1. Created using DECLARE

2. Opened using OPEN

3. Operated against using FETCH

4. Dismissed using CLOSE

By following these steps, you create a result set similar to that generated by a SELECT
statement, except that you can operate against each individual row within the result
set.

The following generic SQL example opens a cursor and fetches the first and last names
of all of the authors from the authors table:

DECLARE employee_cursor CURSOR FOR
 SELECT au_lname, au_fname
 FROM pubs.dbo.authors
 WHERE lname LIKE 'K%'
OPEN employee_cursor
FETCH NEXT FROM employee_cursor
BEGIN
 FETCH NEXT FROM employee_cursor
END
CLOSE employee_cursor

Programming Tips and Gotchas
The most common error encountered with the OPEN statement is failing to close the
cursor properly. Although the OPEN statement is detailed in isolation here, it should
always be managed as a group with the DECLARE, FETCH, and CLOSE statements.
You won’t get an error message if you fail to close a cursor, but the cursor may
continue to hold locks and consume memory and other resources on the server as long

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Not supported

SQL Server Supported

326 | Chapter 3: SQL Statement Command Reference

OPEN Statement > All Platforms

as it is open. If you forget to close your cursors, you could end up creating a problem
similar to a memory leak. Each cursor consumes memory until it is closed, so even if
you’re no longer use the cursors, they’re still taking up memory that the database
server might otherwise be using elsewhere. It’s worth taking a little extra time to make
sure that every declared and opened cursor is eventually closed.

Cursors are often used in stored procedures and in batches of procedural code. They
are useful when you need to perform actions on individual rows rather than on entire
sets of data at a time. But because cursors operate on individual rows and not on sets
of data, they are often much slower than other means of accessing data. Make sure
that you analyze your approach carefully. Many challenges, such as a convoluted
DELETE operation or a very complex UPDATE, can be solved by using clever
WHERE and JOIN clauses instead of cursors.

MySQL
Fully supports the SQL3 standard.

Oracle
Oracle fully supports the ANSI standard, and it allows parameters to be passed
directly into the cursor when it is opened. Do this using the following format:

OPEN cursor_name [parameter1[, ...]]

PostgreSQL
PostgreSQL does not support the OPEN CURSOR statement. Instead, PostgreSQL
implicitly opens a cursor when it is created using the DECLARE statement.

SQL Server
In addition to the standard OPEN statement, SQL Server allows “global” cursors using
the following syntax:

OPEN [GLOBAL] cursor_name

where:

cursor_name
Specifies the name of a cursor (or is a string variable containing the name of a
cursor) created earlier with the DECLARE CURSOR statement.

GLOBAL
Enables the cursor to be referenced by multiple users, even if they have not explic-
itly been assigned permissions to the cursor. If this keyword is omitted, a local
cursor is assumed.

SQL Server allows you to declare several different kinds of cursors. If a cursor is
INSENSITIVE or STATIC, the OPEN statement creates a temporary table to hold the
cursor result set. Similarly, if the cursor is declared with the KEYSET option, a tempo-
rary table is automatically created to hold the keyset.

See Also
CLOSE
DECLARE
FETCH
SELECT

Chapter 3: SQL Statement Command Reference | 327

SQLStatem
ent

Com
m

ands
ORDER BY Clause

ORDER BY Clause

The ORDER BY clause specifies the sort order of the result set retrieved by a SELECT
statement.

SQL2003 Syntax
ORDER BY {sort_expression [COLLATE collation_name]
 [ASC | DESC]}[, ...]

Keywords
ORDER BY

Specifies the order in which rows should be returned by a query. You should not
anticipate a specific ordering if you exclude the ORDER BY clause, even if you
specify a GROUP BY clause and it appears that a sort has been done.

sort_expression
Specifies an item in the query that will help determine the order of the result set.
You can have multiple sort_expressions. They are usually column names or
column aliases from the query; however, they may also be expressions like (salary
* 1.02). SQL92 allowed the use of ordinal positions for sort_expressions, but this
functionality has been deprecated and should not be used in SQL2003 queries.

COLLATE collation_name
Overrides the default collation of the sort_expression and applies the collation_
name to the sort expression for the purposes of the ORDER BY clause.

ASC | DESC
Specifies that the sort_expression should be returned in either ascending order
(ASC) or descending order (DESC).

Rules at a Glance
The ORDER BY clause should reference columns as they appear in the select item list
of the SELECT statement, preferably using their aliases (if aliases exist). For example:

SELECT au_fname AS first_name, au_lname AS last_name
FROM authors
ORDER BY first_name, last_name

The ORDER BY clause uses a major-to-minor sort ordering. This means that the result
set is ordered by the first column referenced; equal values in the first column are then
ordered by the second column, equal values in the second column are ordered by the
third column, and so forth.

The individual aspects of a column’s ordering—COLLATE and ASC/DESC—are
independent of the other columns in the ORDER BY clause. Thus, you could order a
result set in ascending order by one column, and then flip the next column and order it
in descending order:

Platform Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

328 | Chapter 3: SQL Statement Command Reference

ORDER BY Clause

SELECT au_fname AS first_name, au_lname AS last_name
FROM authors
ORDER BY au_lname ASC, au_fname DESC

NULLs are always grouped together (i.e., considered equal) for the purposes of
sorting. Depending on your platform, NULLs will be clumped together at the top or at
the bottom of the result set. The following query on SQL Server:

SELECT title, price
FROM titles
ORDER BY price, title

provides this result set (edited for brevity):

title price
-- -------
Net Etiquette NULL
The Psychology of Computer Cooking NULL
The Gourmet Microwave 2.9900
You Can Combat Computer Stress! 2.9900
Life Without Fear 7.0000
Onions, Leeks, and Garlic: Cooking Secrets of the Me 20.9500
Computer Phobic AND Non-Phobic Individuals: Behavior 21.5900
But Is It User Friendly? 22.9500

You can force NULLs to appear at the top or bottom of the result set using ASC or
DESC. Of course, all the non-NULL rows of the result set are also ordered in
ascending or descending order.

The ANSI standard for ORDER BY also supports for the sort_expression the use of
columns that are not referenced in the select item list. For example, the following
query is valid under SQL2003:

SELECT title, price
FROM titles
ORDER BY title_id

Looking at this example, you can see that although the query does not select title_id,
that column is the primary sort_expression. The result set is returned in title_id order
even though that column is not selected.

Programming Tips and Gotchas
When using set operators (UNION, EXCEPT, INTERSECT), only the last query may
have an ORDER BY clause. You should not use ORDER BY in subqueries of any type.

A number of behaviors that were supported in SQL92 are deprecated in SQL2003.
You should avoid these usages:

References to table aliases
For example, ORDER BY e.emp_id should be changed to ORDER BY emp_id. If
there is an ambiguous column name, use an alias to compensate.

References to ordinal position
Use explicitly defined column aliases to compensate.

You may sort not only on columns, but also on expressions involving columns, or even
literals:

SELECT SUBSTRING(title,1,55) AS title, (price * 1.15) as price
FROM titles
WHERE price BETWEEN 2 and 19
ORDER BY price, title

Chapter 3: SQL Statement Command Reference | 329

SQLStatem
ent

Com
m

ands
ORDER BY Clause > PostgreSQL

When sorting on expressions from the select item list, you should use aliases to make
the ORDER BY sort_expression column references easier.

MySQL
MySQL supports the ANSI standard, except for the COLLATE option.

You should not attempt to ORDER BY columns of the BLOB datatype, because only
the first bytes, defined by the MAX_SORT_LENGTH setting, will be used in the sort.
By default, MySQL sorts NULL values as lowest (first) for ASC order and highest (last)
for DESC order.

Oracle
Oracle supports the ANSI standard, except for the COLLATE option. It also supports
the SIBLINGS and NULLS {FIRST | LAST} options. Oracle’s ORDER BY syntax is:

ORDER [SIBLINGS] BY
 {sort_expression [ASC | DESC] [NULLS {FIRST | LAST}]}[, ...]

where the Oracle-specific keywords are:

ORDER [SIBLINGS] BY sort_expression
Sorts the result set of the query in order of the sort_expression(s). A sort_
expression may be a column name, an alias, an integer indicating a column’s
ordinal position, or another expression (e.g., salary * 1.02). The ORDER
SIBLINGS BY clause tells Oracle to preserve any ordering specified by a hierar-
chical query clause (CONNECT BY), and to use the sort expression order for
ordering of siblings in the hierarchy.

NULLS {FIRST | LAST}
NULLS FIRST and NULLS LAST specify that the records containing NULLs
should appear either first or last, respectively. By default, Oracle places NULLs
last for ascending-order sorts and first for descending-order sorts.

You can emulate the behavior of the COLLATE option for a single session by using the
NLSSORT function with the NLS_SORT parameter. You can also emulate the
behavior of the COLLATE option for all sessions on the server either explicitly, by
using the NLS_SORT initialization parameter, or implicitly, with the NLS_
LANGUAGE initialization parameter.

Oracle continues to support deprecated SQL92 features, such as sorting by ordinal
position. However, you should not perform an ORDER BY on any LOB column,
nested table, or VARRAY.

PostgreSQL
PostgreSQL supports the ANSI SQL2003 standard, with the exception of the
COLLATE option. It also supports the USING extension:

ORDER BY {sort_expression1 [ASC | DESC | USING operator]}[, ...]

where:

USING operator
Specifies a specific comparison operator. Thus, you may sort by >, <, =, >=, <=,
and so forth. Ascending order is the same as specifying USING <, while
descending order is the same as USING >.

PostgreSQL sorts NULLs as the highest values. Thus, NULLs will appear at the end
when sorting in ascending order, and at the beginning when sorting in descending
order.

330 | Chapter 3: SQL Statement Command Reference

ORDER BY Clause > SQL Server

SQL Server
SQL Server fully supports the ANSI standard, including the COLLATE option. For
example, the following query retrieves the authors’ first names from the authors table
in the SQL_Latin1 collation:

SELECT au_fname
FROM authors
ORDER BY au_fname
COLLATE SQL_Latin1_general_cp1_ci_as

SQL Server continues to support the deprecated SQL92 features of the ORDER BY
clause, including the ability to specify ORDER BY columns by their ordinal positions.

By default, SQL Server sorts NULL values higher than all other values.

You should not use TEXT, IMAGE, or NTEXT columns as sort_expressions on SQL
Server.

See Also
SELECT

RELEASE SAVEPOINT Statement

The RELEASE SAVEPOINT statement eliminates one or more previously created save-
points in the current transaction.

SQL2003 Syntax
RELEASE SAVEPOINT savepoint_name

Keywords
savepoint_name

Represents a named savepoint (or target specification) created earlier in the trans-
action with the SAVEPOINT statement. The savepoint_name must be unique
within the transaction.

Rules at a Glance
Use the RELEASE SAVEPOINT statement within a transaction to destroy a named
savepoint. Any savepoints that were created after the named savepoint will also be
destroyed.

To illustrate the behavior of savepoints, the following example code inserts a few
records, creates a savepoint named first_savepoint, and then releases it:

INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1);

Platform Command

MySQL Supported

Oracle Not supported

PostgreSQL Supported

SQL Server Not supported

Chapter 3: SQL Statement Command Reference | 331

SQLStatem
ent

Com
m

ands
RELEASE SAVEPOINT Statement > All Platforms

SAVEPOINT first_savepoint;
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('277-27-2777', 'Fudd', 'E.P.', 1);
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('366-36-3636', 'Duck', 'P.J.', 1);
RELEASE SAVEPOINT first_savepoint;
COMMIT;

In this example, the first_savepoint savepoint is destroyed and then all three records
are inserted into the authors table.

In the next example, we perform the same action but with more savepoints:

INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1);
SAVEPOINT first_savepoint;
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('277-27-2777', 'Fudd', 'E.P.', 1);
SAVEPOINT second_savepoint;
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('366-36-3636', 'Duck', 'P.J.', 1);
SAVEPOINT third_savepoint;
RELEASE SAVEPOINT second_savepoint;
COMMIT;

In this example, when we release the savepoint called second_savepoint the database
actually releases second_savepoint and third_savepoint, since third_savepoint was
created after second_savepoint.

Once released, a savepoint name can be reused.

Programming Tips and Gotchas
Issuing either a COMMIT or a full ROLLBACK statement will destroy all open save-
points in a transaction. Issuing a ROLLBACK TO SAVEPOINT statement returns the
transaction to its state at the specified savepoint; any savepoints declared afterward are
nullified.

MySQL
Supports the SQL3 standard syntax.

Oracle
Not supported.

PostgreSQL
Supports the SQL3 standard syntax, although the keyword SAVEPOINT is optional:

RELEASE [SAVEPOINT] savepoint_name

SQL Server
Not supported.

See Also
ROLLBACK
SAVEPOINT

332 | Chapter 3: SQL Statement Command Reference

RETURN Statement > All Platforms

RETURN Statement

The RETURN statement terminates processing within a SQL-invoked function (as
opposed to a host-invoked function) or stored procedure and returns the routine’s
result value.

Some vendors use RETURNS instead of RETURN (the SQL
standard).

SQL2003 Syntax
RETURN return_parameter_value | NULL

Keywords
return_parameter_value

Represents a value returned by the routine code. A wide variety of value types are
possible.

NULL
Terminates the function without returning an actual value.

Rules at a Glance
Use the RETURN statement within procedural code to terminate processing. For
example, you might create a user-defined function that takes a complex and often-used
CASE expression and, when passed a parameter, returns a single, easy-to-understand
expression value.

Programming Tips and Gotchas
Although the RETURN statement is categorized as a separate command within SQL, it
is deeply intertwined with the CREATE FUNCTION and CREATE PROCEDURE
statements. Consequently, the RETURN statement is almost always found embedded
in one of these other commands. Check each statement’s section in this book, or your
vendor documentation, to get a more complete understanding of each platform’s
implementation of RETURN within the context of each statement.

MySQL
MySQL supports the ANSI-standard syntax for RETURN, excluding the NULL
keyword:

RETURNS return_parameter_value

Platform Command

MySQL Supported, with limitations

Oracle Supported

PostgreSQL Supported, with limitations

SQL Server Supported

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3: SQL Statement Command Reference | 333

SQLStatem
ent

Com
m

ands
RETURN Statement > All Platforms

Oracle
Oracle supports the ANSI-standard syntax for RETURN, excluding the NULL
keyword. (Oracle does support the return of a NULL value, just not using the ANSI
syntax.) Oracle allows the RETURN clause only in user-defined functions and user-
defined operators. The returned value cannot be a LONG, LONG RAW, or REF
datatype in the CREATE OPERATOR statement. PL/SQL user-defined functions fully
support Boolean datatypes internally, but you cannot invoke a Boolean UDF from a
SQL statement. To hold Boolean values, use INT (0 or 1) or VARCHAR2 (‘TRUE’ or
‘FALSE’).

The following example creates a function that returns the value stored in the proj_rev
variable to the calling session:

CREATE FUNCTION project_revenue (project IN varchar2)
RETURN NUMBER
AS
 proj_rev NUMBER(10,2);
BEGIN
 SELECT SUM(DECODE(action,'COMPLETED',amount,0) -
 SUM(DECODE(action,'STARTED',amount,0) +
 SUM(DECODE(action,'PAYMENT',amount,0)
 INTO proj_rev
 FROM construction_actions
 WHERE project_name = project;
 RETURN (proj_rev);
END;

PostgreSQL
PostgreSQL supports the ANSI-standard syntax for RETURN, excluding the NULL
keyword:

RETURNS return_parameter_value

PostgreSQL allows you to define user-defined functions using either SQL code or C/C++.
PostgreSQL does not currently allow stored procedures, though you can duplicate
their functionality with user-defined functions. For the purposes of this discussion, we
are interested only in SQL functions.

The output allowed by the return_parameter_value may be a base type, a complex
type, a SETOF type, an OPAQUE modifier, or the same as the type of an existing
column. The SETOF type modifier is used to return a set of items via the RETURNS
statement, rather than a single data value. The OPAQUE modifier indicates that the
RETURNS statement does not return a value. OPAQUE can be used only within
triggers.

SQL Server
SQL Server supports the RETURN statement with this syntax:

RETURN [return_integer_value]

The RETURN command is typically used in stored procedures or user-defined func-
tions. It causes an immediate and complete exit from the program and, optionally,
returns an integer value upon exit. SQL Server procedures implicitly return a zero
value if no RETURN clause is supplied in the procedure definition. Any commands
that follow the RETURN statement are ignored.

334 | Chapter 3: SQL Statement Command Reference

REVOKE Statement

The RETURN statement in the following function returns an integer representing the
calculated value:

CREATE FUNCTION metric_volume -- Input dimensions in centimeters.
 (@length decimal(4,1),
 @width decimal(4,1),
 @height decimal(4,1))
RETURNS decimal(12,3) -- Cubic centimeters.
AS
BEGIN

RETURN (@length * @width * @height)
END
GO
REVOKE

This example creates a function that returns a calculated value—the metric volume of
a space—to the calling session.

See Also
CREATE/ALTER FUNCTION/PROCEDURE
CREATE/ALTER TRIGGER

REVOKE Statement

The REVOKE statement takes two main forms. The first form of the statement
removes specific statement permissions from a user, group, or role. The second form
of the statement removes access permissions to specific database objects or resources.

SQL2003 Syntax
The SQL2003 syntax for REVOKE takes this general form:

REVOKE { [special_options] | {privilege[, ...] | role[, ...]} }
ON database_object_name
FROM grantee_name[, ...]
[GRANTED BY {CURRENT_USER | CURRENT_ROLE}]
{CASCADE | RESTRICT}

Keywords
special_options

Allows the use of one of three optional special_options:

GRANT OPTION FOR
Undoes the WITH GRANT OPTION privilege assigned to a user, meaning
that the user can no longer grant privileges to other users on the object. That
user’s own privileges on the object remain intact. (This clause is valid to
revoke a privilege, but not to revoke a role.)

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Chapter 3: SQL Statement Command Reference | 335

SQLStatem
ent

Com
m

ands
REVOKE Statement

HIERARCHY OPTION FOR
Undoes the WITH HIERARCHY OPTION privilege that allows a user to
SELECT not only from the named table, but also all of its subtables. (This
clause is valid to revoke a privilege, but not to revoke a role.)

ADMIN OPTION FOR
Undoes the ability to grant a role to other users. (This clause is valid to
revoke a privilege, but not to revoke a role.)

privilege
Revokes privileges for a variety of statements, which may all be combined in any
order:

ALL PRIVILEGES
Revokes all privileges currently assigned to the named users and/or for the
specified database objects. Generally not a recommended approach, since it
can encourage sloppy coding.

EXECUTE
Revokes the privileges to execute a routine (i.e., a stored procedure, user-
defined function, or method).

SELECT | INSERT | UPDATE | DELETE
Revokes the specific privilege for a given user on the specified database
object, such as a table or view. You may add a parenthetical list of the
columns on a given table where the privilege will be revoked for SELECT,
INSERT, and UPDATE privileges, to limit the action to those columns.

REFERENCES
Revokes the user’s privilege to create any constraints or assertions refer-
encing the database object as a parent object. You may add a parenthetical
list of the columns on a given table where the privilege will be revoked, to
limit the action to those columns.

TRIGGER
Revokes the user’s ability to create triggers on the specified tables. As a side
effect of the REVOKE, any triggers that depend on the privilege are also
dropped.

UNDER
Revokes the privilege to create subtypes or typed tables.

USAGE
Revokes the privilege to use a domain, user-defined type, character set, colla-
tion, or translation.

role
Revokes a specific, predefined role from the named grantee identified in the
FROM clause. For example, the database administrator might want to create a
role called Reporter that has read-only access to several tables. When that role is
granted to a user, the user is able to do all of the actions the role may do. See the
section on the GRANT statement for more details.

ON database_object_name
Revokes privileges on a specific, predefined database object identified by the
database_object_name provided. SQL2003 does not include support for system
privileges, but many implementations provide a variation of this clause to revoke
such privileges. (The ON subclause is not used at all when revoking system privi-
leges or roles.) The database_object_name may be one of the following:

336 | Chapter 3: SQL Statement Command Reference

REVOKE Statement

{ [TABLE] object_name | DOMAIN object_name |
 COLLATION object_name |
 CHARACTER SET object_name | TRANSLATION object_name |
 TYPE object_name | [SPECIFIC] {ROUTINE | FUNCTION |
 PROCEDURE | METHOD}

object_name }

FROM grantee_name
Names the user(s) or role(s) who will lose the specified privilege(s). The PUBLIC
keyword may be used to revoke privileges granted to the PUBLIC global user list.
Multiple grantees can be listed with a comma between each.

FROM { CURRENT_USER | CURRENT_ROLE }
Optionally used to specify who granted the privilege to the user in the first place.
For example, when using FROM CURRENT_USER, the privilege is revoked only
if the current user granted the privilege. Otherwise, the statement will fail. When
this clause is omitted, CURRENT_USER is the default.

RESTRICT | CASCADE
Limits a REVOKE operation to only the specified privilege (RESTRICT), or
causes the specified privilege and all dependent privileges to be revoked
(CASCADE) and possibly causes objects that depend on the privilege to be
dropped. Note that REVOKE...RESTRICT will fail if dependent privileges exist.
The dependent privileges must be revoked first.

Rules at a Glance
A specific privilege on a specific database object can be revoked for a single user using
REVOKE privilege_name ON object_name FROM grantee_name RESTRICT. A specific
privilege on a specific object may be revoked from all users via the PUBLIC global user
list.

When revoking privileges from multiple grantees, simply place a comma between
each. You may also revoke privileges from one or more grantees and the PUBLIC role
in a single REVOKE statement. (PUBLIC is described in detail in the section on the
GRANT statement. When a GRANT is issued to PUBLIC, that means everyone has the
specified permissions.)

When revoking privileges on a table, the operation may be restricted to the column
level by including a list of columns enclosed in parentheses after the table name.

Programming Tips and Gotchas
Most of the platforms isolate privileges at the user and role level. (Remember, a role is
a group of privileges.) Thus, it’s possible for an individual user who is assigned two
roles to be granted the same permission three times. In this situation, to revoke that
permission you would have to revoke the user’s privilege directly and remove the user
from both roles.

An important aspect of REVOKE (and its sister command GRANT) is that certain
elements of the command are geared toward object-level permissions, while other
options of the command are more oriented toward roles or administrative privileges.
Generally, these operations are never combined. (The differences in object-level
permissions and administrative privileges are fully explained in the database platform
sections that follow.) For example, you might want to revoke certain object-level privi-
leges for a given role (salespeople) or for individual users (e_fudd and prince_edward):

Chapter 3: SQL Statement Command Reference | 337

SQLStatem
ent

Com
m

ands
REVOKE Statement > MySQL

REVOKE SELECT ON TABLE authors FROM salespeople RESTRICT;
REVOKE ALL PRIVILEGES ON TABLE sales FROM e_fudd,
 prince_edward CASCADE;

A lot of table-level privileges can even be assigned down to the column level. Those
privileges can be revoked as follows:

REVOKE INSERT(au_id, au_fname, au_lname)
 ON authors FROM e_fudd;

The special option clauses (GRANT OPTION, HIERARCHY OPTION, and ADMIN
OPTION) all exist to allow you to revoke the ability of users to pass privileges or roles
on to other users. However, these clauses do not prevent the first group of users them-
selves from exercising those privileges. For example, we can issue this command if we
no longer want anyone in the role manager to grant their UPDATE privileges to other
users:

REVOKE GRANT OPTION FOR UPDATE ON sales FROM manager CASCADE;

You can also remove role privileges from a user with the REVOKE command:

REVOKE manager FROM e_fudd CASCADE;

A common best practice is to keep REVOKE and GRANT statements as self-contained
and logical as possible. Under this practice, you should avoid using the CASCADE and
ALL PRIVILEGES clauses, because they perform work for you that may not be imme-
diately evident within the scope of the command.

MySQL
MySQL supports many of the standard keywords of the ANSI standard. Notable
exceptions include TRIGGER, EXECUTE, and UNDER. MySQL also has a nice
shortcut to allow global assignment or revocation of privileges. Please refer back to the
ANSI-standard description for those elements of the command not described below:

REVOKE [{ ALL [PRIVILEGES] |
 {SELECT | INSERT | UPDATE} [(column_name[, ...])] | DELETE |
 REFERENCES [(column_name[, ...])] } |
{ [USAGE] | [{ALTER | CREATE | DROP}] | [FILE] | [INDEX] | [PROCESS] |
 [RELOAD] | [SHUTDOWN] | [CREATE TEMPORARY TABLES] | [LOCK TABLES] |
 [REPLICATION CLIENT] | [REPLICATION SLAVE] | [SHOW DATABASES] |
 [SUPER] }[, ...]
ON [object_type] {table_name | * | *.* | database_name.*}
FROM user_name[, ...]

where:

ALL [PRIVILEGES]
Synonymous with ALL PRIVILEGES. On MySQL, this includes all privileges that
apply at the level indicated by the ON clause, except the GRANT OPTION. (This
includes privileges like SELECT, INSERT, UPDATE, DELETE, and others.)

SELECT | INSERT | UPDATE | DELETE
Revoke the ability to read, write, modify, and erase data from tables (and possibly
from specific columns of a table), respectively.

REFERENCES
Unimplemented.

USAGE
Revokes all of a user’s privileges.

338 | Chapter 3: SQL Statement Command Reference

REVOKE Statement > MySQL

{ALTER | CREATE | DROP} ON table_name
Revokes the ability to alter, create, or drop tables and other database objects.

FILE
Revokes the ability to load data from or write data to files using the SELECT
INTO and LOAD DATA commands.

INDEX
Revokes the ability to create or drop indexes.

PROCESS
Revokes the ability to view running processes using SHOW FULL PROCESSLIST.

RELOAD
Revokes the ability to invoke the FLUSH command.

SHUTDOWN
Revokes the ability to use the MYSQLADMIN SHUTDOWN command to kill the
server process.

CREATE TEMPORARY TABLES
Revokes the ability to create temporary tables.

LOCK TABLES
Revokes the ability to use the MySQL command LOCK TABLES on tables where
the user has SELECT privileges.

REPLICATION CLIENT
Revokes the privilege to see metadata about replication slaves and masters.

REPLICATION SLAVE
Revokes the right to read binlogs of a replication master from a replication slave.

SHOW DATABASES
Revokes the privilege to execute the MySQL command SHOW DATABASES.

SUPER
Revokes the user privilege of opening one connection even if the MAX_
CONNECTIONS threshold has been reached. Also revokes from the users the
privileges to execute these MySQL commands: CHANGE MASTER, KILL,
MYSQLADMIN DEBUG, PURGE [MASTER] LOGS, and SET GLOBAL.

ON [object_type] {table_name | * | *.* database_name.*}
Removes privileges from the specified table_name, from all tables within the
current database with *, from all tables in the specified database_name with
database_name.*, or from all tables in all databases with *.*. The optional object_type
may be used to revoke privileges on specific objects (namely, TABLE, FUNCTION, or
PROCEDURE object types).

FROM
Removes the privileges of one or more users, separated by commas. Usernames
may also include an @host_name suffix, if you wish to restrict the revocation to a
specific host computer.

REVOKE has size limitations: usernames cannot be longer than 16 characters, while
host, database, and database object names can be up to 60 characters long. User-
names may also be linked to a specific host. Refer to the section on the GRANT
command for more details.

Chapter 3: SQL Statement Command Reference | 339

SQLStatem
ent

Com
m

ands
REVOKE Statement > Oracle

MySQL’s implementation of REVOKE does not explicitly roll back
permissions on objects that are dropped. Thus, it is necessary to
explicitly REVOKE permissions on a table, even if the table is
dropped. For example, let’s say you drop a table without issuing a
REVOKE on the existing permissions. If you later recreate the
table, all of the old permissions will still be in place. Similarly, a
user’s privileges still persist in the database, even after the user has
been dropped.

It is also important to note that MySQL allows multiple levels of permissions. Thus, a
user might have access to a table from a table-level grant, and have an additional set of
permissions to the same table because she has been given global database or server-
wide permissions. Thus, you need to be careful when revoking permissions, because
global-level permissions might continue to provide to a user permissions you thought
you had revoked!

The first of the following commands revokes all privileges on the sales table for users
emily and dylan, while the second command revokes SELECT privileges for the user
kelly in the current database:

REVOKE ALL PRIVILEGES ON sales FROM emily, dylan;
REVOKE SELECT ON * FROM kelly;

The first of the next two commands removes kelly’s ability to grant privileges to other
users on the sales table, while the second command removes privileges that the user
sam has in the pubs database:

REVOKE GRANT OPTION ON sales FROM kelly;
REVOKE ALL ON pubs.* FROM sam;

Oracle
The REVOKE command can be used not only to immediately revoke object and
system privileges, but also to revoke a role from a user (or a role from another role).
Refer to the section on the GRANT statement for more information on the specific
object and system privileges supported by the REVOKE command.

The two forms of the REVOKE command, REVOKE object_
privilege and REVOKE system_privilege, are mutually exclusive.
Do not attempt to do both operations in a single statement. Since
the complete syntax for both forms of the command is extremely
long, refer to the section on GRANT for more details on the differ-
ent object_privileges and system_privileges.

Oracle provides an interesting twist on privileges. While other database platforms typi-
cally allow a user to have more than one context for a set of privileges (based on the
individual user and again for any groups to which that user belongs), Oracle takes this
one step further. More than one grantor may have given a user a particular privilege on
a specific object. When this is the case, all grantors must revoke that privilege to effec-
tively rid the user of the privilege. If even one grantor doesn’t do this, the user still has
the privilege.

340 | Chapter 3: SQL Statement Command Reference

REVOKE Statement > Oracle

In Oracle, use the following syntax with REVOKE:

REVOKE { [object_privilege][, ...]|
 [system_privilege] |
 [role] }
[ON { [schema_name.][object] |
 [DIRECTORY directory_object_name] |
 [JAVA [{ SOURCE | RESOURCE }] [schema_name.][object]] }]
FROM {grantee_name[, ...] | role_name[, ...] | PUBLIC}
[CASCADE [CONSTRAINTS]] [FORCE];

where:

object_privilege
Revokes the specified privilege(s) for the given user(s) or role(s) on the named
schema object (for example, a table or view).

ALL [PRIVILEGES]
Revokes all granted privileges on the named schema object. Since ALL also
includes the REFERENCES privilege, you must include the CASCADE clause
(see REFERENCES below).

ALTER
Revokes the privilege to change an existing table using the ALTER TABLE
statement.

EXECUTE
Revokes the privilege to execute a stored procedure, user-defined function,
or package.

INDEX
Revokes the privilege to create indexes on a table.

REFERENCES
Revokes the privilege to define referential integrity constraints. Requires that
the CASCADE CONSTRAINTS clause also be used.

SELECT | INSERT | DELETE | UPDATE
Revokes the privilege to execute each of the respective SQL commands
against the named schema object. Note that DELETE privileges are depen-
dent on SELECT privileges.

system_privilege
Revokes the specified Oracle system privilege(s), such as CREATE TRIGGER or
ALTER USER, for the given user(s) or role(s). Do not use the ON clause with the
REVOKE system_privilege variation of the statement. Because there are so many
system privileges, we won’t list them again here. Please refer to the section on
Oracle’s implementation of the GRANT statement for a full list of system
privileges.

role
Revokes a user’s or role’s membership in the named role.

ON
Revokes the named privilege for the given user(s) or role(s) from the named
object. Objects include tables, views, sequences, stored procedures, user-defined
functions, packages, materialized views, user-defined types, libraries, indextypes,
user-defined operators, and synonyms for any of these. For example, you could
revoke SELECT privileges for a given user on the scott.authors table. If you do
not include the schema name, Oracle assumes the schema of the current user.
Oracle also supports two additional keywords for special cases:

Chapter 3: SQL Statement Command Reference | 341

SQLStatem
ent

Com
m

ands
REVOKE Statement > PostgreSQL

DIRECTORY directory_object_name
Identifies a directory object from which the privileges are revoked.

JAVA [{ SOURCE | RESOURCE }] [schema_name.][object]
Identifies a Java source or a resource schema object from which the privi-
leges are revoked.

FROM {grantee_name | role_name | PUBLIC}
Names the user or role that will lose the specified privilege. PUBLIC may also be
used to revoke privileges granted to the PUBLIC role. Multiple grantees can be
listed with a comma between each.

CASCADE [CONSTRAINTS]
Drops any referential integrity constraints that depend on the privilege being
revoked. This clause is needed only when the REFERENCES or ALL [PRIVILEGES]
clauses are used.

FORCE
Required to revoke EXECUTE object privileges on user-defined type objects with
type or table dependencies.

Oracle automatically cascades the revocation from the defined grantee_name to all
users that received their privileges from the grantee. In addition, any objects created by
the grantee that depend on the privilege (such as stored procedures, triggers, views,
and packages that depend on a SELECT privilege against a certain table) will become
invalid.

Users who are granted the GRANT ANY ROLE system privilege may revoke any role.
The REVOKE command can only revoke privileges specifically granted with the
GRANT command, not privileges available through roles or the operating system. In
those cases, you must use the REVOKE command to drop the privilege from the role.
All users assigned to the role will then lose the privilege.

The following are examples of revoking a role from specific grantee and revoking a
system privilege from a role:

REVOKE read_only FROM sarah;
REVOKE CREATE ANY SEQUENCE,
 CREATE ANY DIRECTORY FROM read_only;

Here’s an example that revokes a REFERENCES privilege and cascades the revoked
privileges:

REVOKE REFERENCES
ON pubs_new_york.emp
FROM dylan
CASCADE CONSTRAINTS;

Finally, the following example grants all privileges on a specific table, and then revokes
a privilege:

GRANT ALL PRIVILEGES ON emp TO dylan;
REVOKE DELETE, UPDATE ON emp FROM dylan;

PostgreSQL
PostgreSQL offers base-level features of the REVOKE statement, primarily for
revoking privileges on specific tables, views, and sequences. It does not offer the ANSI-
standard special options like HIERARCHY OPTION FOR or ADMIN OPTION FOR.
The syntax is as follows:

342 | Chapter 3: SQL Statement Command Reference

REVOKE Statement > PostgreSQL

REVOKE [GRANT OPTION FOR]
{ privileges | { ALL [PRIVILEGES] | {SELECT | INSERT | DELETE | UPDATE} |
RULE |
 REFERENCES| TRIGGERS | CREATE | USAGE }[, ...] }
ON { [TABLE] | SEQUENCE | DATABASE | FUNCTION | LANGUAGE | SCHEMA |
TABLESPACE]

object_name[, ...] }
FROM {grantee_name | GROUP group_name | PUBLIC}[, ...]
[{CASCADE | RESTRICT}]

where:

REVOKE [GRANT OPTION FOR] privileges
Revokes privileges for a variety of statements, which may be combined in any
order. GRANT OPTION FOR revokes the privilege to grant privileges the named
user/role possesses to other users/roles.

ALL [PRIVILEGES]
Shorthand for every privilege the grantor has available to grant. Revokes all
privileges currently assigned to the named user(s) and/or group(s) for the
specified database object(s). Generally not a recommended approach, since it
can encourage sloppy coding.

SELECT | INSERT | DELETE | UPDATE
Revokes the specified privilege for a given user or group on the specified
database object, such as a table or view. You may add a parenthetical list of
the columns on a given table where the privilege will be revoked.

RULE
Revokes the user or group’s privilege to create or drop a rule on a table or
view.

REFERENCES
Revokes the user of group’s privilege to create or drop foreign key
constraints that reference the database object as a parent object.

TRIGGERS
Revokes the user or group’s privilege to create or drop triggers on a table.

CREATE
Revokes a user or group’s privilege to create objects.

USAGE
Revokes privileges to use a domain, user-defined type, or character set (as
opposed to the UNDER privilege, which controls the ability to create these
objects).

FROM grantee_name[, . . .] | PUBLIC | GROUP group_name
Names the user or role that will lose the specified privilege. PUBLIC may also be
used to revoke privileges granted to the PUBLIC role (a role that implicitly
includes all users). Multiple grantees can be listed with a comma between each.

CASCADE | RESTRICT
Limits a REVOKE operation to only the specified privilege (RESTRICT), or
causes the specified privilege and all dependent privileges to be revoked
(CASCADE). Only used with the GRANT OPTION FOR clause. When omitted,
PostgreSQL assumes RESTRICT by default.

Chapter 3: SQL Statement Command Reference | 343

SQLStatem
ent

Com
m

ands
REVOKE Statement > SQL Server

Refer to the section detailing PostgreSQL’s implementation of the GRANT statement
to see a full list of privileges allowed for each object type. You may, in turn, revoke any
of these privileges that have been assigned to a user or role.

PostgreSQL’s implementation of REVOKE is relatively straightforward. The only issue
to be aware of is that PostgreSQL treats the term GROUP as a synonym for ROLE. For
example, the following commands remove some privileges from the PUBLIC group
and from the READ-ONLY group:

REVOKE ALL PRIVILEGES ON employee FROM public;
REVOKE SELECT ON jobs FROM read-only;

PostgreSQL does not support privileges on individual columns within a table or view.

When revoking the GRANT OPTION FOR clause, you should pay extra attention to
dependencies. If you revoke a user’s privilege with the RESTRICT keyword, the state-
ment will fail if other users depend on the revokee. If you revoke a user’s privilege with
the CASCADE keyword, the statement will revoke privileges not only for the revokee,
but for all users that depend on the revokee.

SQL Server
SQL Server implements the REVOKE statement as a means to undo any permission
settings for a given user or role. This is significant because SQL Server supports an
extension statement called DENY, which explicity disallows a user from a specific
resource. REVOKE, in SQL Server, can be used to undo permissions granted to a user
with GRANT. If you want to explicitly prevent a user from having a certain privilege,
you must use the DENY statement.

SQL Server does not support the HIERARCHY OPTION and ADMIN OPTION
clauses of the ANSI standard. Although the ADMIN OPTION clause is not supported,
a couple of administrative privileges (CREATE and BACKUP) are supported in SQL
Server’s version of REVOKE. Use the following syntax:

REVOKE [GRANT OPTION FOR]
{ [object_privilege][, ...]|
 [system_privilege] }
[ON [class::][object] [(column[, ...])]]|
{TO | FROM} {grantee_name[, ...] | role[, ...] | PUBLIC | GUEST}
[CASCADE]
[AS {group_name | role_name}]

where:

GRANT OPTION FOR
Revokes the privilege of a user to grant a specific privilege to other users.

object_privilege
Revokes privileges for a variety of statements, which may be combined in any
order. Refer to the discussion of SQL Server’s implementation of the GRANT
statement for a full list of object privileges.

system_privilege
Revokes privileges to execute commands and perform certain functions. Refer to
the discussion of SQL Server’s implementation of the GRANT statement for a full
list of system privileges.

344 | Chapter 3: SQL Statement Command Reference

REVOKE Statement > SQL Server

ON object [(column[, . . .])]
Removes the privilege for the user on the named object. If the object is a table or
view, you may optionally revoke privileges on specific columns. You may revoke
SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges on a table
or view, but only SELECT and UPDATE privileges on the columns of a table or
view. You may revoke EXECUTE privileges on a stored procedure, user-defined
function, or extended stored procedure.

{TO | FROM} {grantee_name | role | PUBLIC | GUEST}
Names the user or role that will lose the specified privilege. PUBLIC may also be
used to revoke privileges granted to the PUBLIC role (a role that implicitly
includes all users). Multiple grantees can be listed with a comma between each.
SQL Server also supports the role known as GUEST, an account used by all users
who do not have a user account in the database.

CASCADE
Revokes privileges from users who received their permissions under the WITH
GRANT OPTION clause. Required when using the GRANT OPTION FOR
clause.

AS {group_name | role_name}
Defines the authority by which the privilege is revoked. In certain circumstances,
a user may need to temporarily assume the privileges of a group to revoke the
specified privileges. To accommodate this scenario, you can use the AS clause to
assume the authority of a given group.

The two forms of the REVOKE command, REVOKE object_privilege and REVOKE
system_privilege, are mutually exclusive. Do not attempt to do both operations in a
single statement. The key syntactical difference between the two versions is that you
should not include the ON clause when revoking system privileges. For example, to
drop a system privilege:

REVOKE CREATE DATABASE, BACKUP DATABASE FROM dylan, katie

If commands were granted to a user with WITH GRANT OPTION enabled, the privi-
lege should be revoked using both WITH GRANT OPTION and CASCADE. For
example:

REVOKE GRANT OPTION FOR
SELECT, INSERT, UPDATE, DELETE ON titles
TO editors
CASCADE
GO

REVOKE can be used only in the current database. Consequently, the CURRENT_
USER and CURRENT_ROLE options in the ANSI variations are always implied.
REVOKE is also used to disable any DENY settings.

SQL Server additionally supports the DENY statement, which is
syntactically the same as REVOKE. However, it is conceptually dif-
ferent in that REVOKE neutralizes a user’s privileges, while DENY
explicitly prohibits a user from having certain privileges. You can
use the DENY statement to keep a user or role from accessing a
privilege, even it is granted through a role or an explicit GRANT
statement.

Chapter 3: SQL Statement Command Reference | 345

SQLStatem
ent

Com
m

ands
ROLLBACK Statement

You must use REVOKE to remove previously granted or denied privileges. For
example, say the user kelly took an extended leave of absence for maternity leave.
During that time, her permissions on the employee table were denied. Now that she’s
returned, we’ll lift (REVOKE) the denied privileges:

DENY ALL ON employee TO kelly
GO
REVOKE ALL ON employee TO kelly
GO

In this example, the REVOKE command did not remove kelly’s privileges; rather, it
neutralized the DENY statement.

See Also
GRANT

ROLLBACK Statement

The ROLLBACK statement undoes a transaction to its beginning or to a previously
declared savepoint. ROLLBACK also closes any open cursors.

SQL2003 Syntax
ROLLBACK [WORK]
[AND [NO] CHAIN]
[TO SAVEPOINT savepoint_name]

Keywords
WORK

An optional keyword, but basically just noise.

AND [NO] CHAIN
AND CHAIN tells the DBMS to end the current transaction, but to share the
common transaction environment (such as transaction isolation level) with the
next transaction. AND NO CHAIN simply ends the transaction (and is effectively
the same as not including the clause at all).

TO SAVEPOINT savepoint_name
Allows the transaction to be rolled back to a named savepoint (that is, a partial
rollback) rather than rolling back the entire transaction. The savepoint_name may
be a literal expression or a variable. If no savepoint of savepoint_name is active, the
statement will return an error. When the TO SAVEPOINT clause is omitted, all
cursors are closed. When the TO SAVEPOINT clause is included, only the
cursors that were open within the savepoint are closed.

Platform Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Supported, with variations

346 | Chapter 3: SQL Statement Command Reference

ROLLBACK Statement > MySQL

In addition to undoing a single data-manipulation operation such as an INSERT,
UPDATE, or DELETE statement (or a batch of them), the ROLLBACK statement
undoes transactions up to the last issued START TRANSACTION, SET TRANSACTION,
or SAVEPOINT statement.

Rules at a Glance
ROLLBACK is used to undo a transaction. It can be used to undo explicitly declared
transactions that are started with a START TRAN statement or a transaction-initiating
statement. It can also be used to undo implicit transactions that are started without a
START TRAN statement. ROLLBACK is mutually exclusive of the COMMIT
statement.

Most people associate commands like INSERT, UPDATE, and DELETE with the term
“transaction.” However, transactions encompass a wide variety of commands. The list
of commands varies from platform to platform but generally includes any command
that alters data or database structures and is logged to the database logging mecha-
nism. According to the ANSI standard, all SQL statements can be undone with
ROLLBACK.

Programming Tips and Gotchas
The most important gotcha to consider is that some database platforms perform auto-
matic and implicit transations, while others require explicit transactions. If you assume
a platform uses one method of transactions, you may get bitten. Thus, when moving
between database platforms, you should follow a standard, preset way of addressing
transactions. We recommend an explicit approach, using SET TRAN or START TRAN
to begin a transaction and COMMIT or ROLLBACK to end a transaction.

MySQL
MySQL supports a simple and direct rollback mechanism, as well as the ANSI SQL
CHAIN keyword:

ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE] TO [SAVEPOINT] savepoint_name

The optional RELEASE clause allows you to specify that MySQL should automati-
cally terminate the client connection when the current transaction has completed.

When creating a table in MySQL, beware that if you might issue a ROLLBACK against
it, it must be transaction-safe. (A transaction-safe table is one declared with the
InnoDB or NDB Cluster property. Refer to the CREATE TABLE statement for more
information.) MySQL allows you to issue transaction-control statements like
COMMIT and ROLLBACK against non-transaction-safe tables, but it will simply
ignore them and autocommit as usual. In the case of a ROLLBACK against a non-
transaction-safe table, the changes will not be rolled back.

MySQL, by default, runs in AUTOCOMMIT mode, causing all data modifications to
automatically be written to disk. You can turn AUTOCOMMIT off by issuing the
command SET AUTOCOMMIT=0. You can also control the autocommit behavior on
a statement-by-statement basis using the BEGIN or BEGIN WORK command:

BEGIN;
SELECT @A:=SUM(salary) FROM employee WHERE job_type=1;
BEGIN WORK;
UPDATE jobs SET summmary=@A WHERE job_type=1;
COMMIT;

Chapter 3: SQL Statement Command Reference | 347

SQLStatem
ent

Com
m

ands
ROLLBACK Statement > PostgreSQL

MySQL automatically issues an implicit COMMIT upon the completion of any of
these statements: ALTER TABLE, BEGIN, CREATE INDEX, DROP DATABASE,
DROP TABLE, RENAME TABLE, and TRUNCATE.

MySQL supports rollbacks using savepoints starting with version 4.0.14.

Oracle
Oracle supports the ANSI-standard form of the ROLLBACK statement with the addi-
tion of the FORCE clause:

ROLLBACK [WORK] {[TO [SAVEPOINT] savepoint_name] | [FORCE 'text']};

ROLLBACK clears all data modifications made to the current open transaction (or to a
specific, existing savepoint). It also releases all locks held by the transaction, erases all
savepoints, undoes all the changes made by the current transaction, and ends the
current transaction.

ROLLBACK...TO SAVEPOINT rolls back just the portion of the transaction after the
savepoint, erases all savepoints that followed, and releases all table- and row-level
locks aquired after the savepoint. Refer to the section on the SAVEPOINT statement
later in this chapter for more information.

Oracle’s implementation closely follows the SQL standard, with the exception of the
FORCE option. ROLLBACK FORCE rolls back an in-doubt, distributed transaction.
You must have the FORCE TRANSACTION privilege to issue a ROLLBACK...
FORCE statement. FORCE cannot be used with TO [SAVEPOINT]. ROLLBACK...
FORCE affects not the current transaction but the transaction named in 'text', where
'text' must be equal to the local or global transaction ID of the transaction you want
to roll back. (These transactions and their ID names are detailed in the Oracle system
view DBA_2PC_PENDING.)

For example, you might want to roll back your current transaction to the salary_
adjustment savepoint. These two commands are equivalent:

ROLLBACK WORK TO SAVEPOINT salary_adjustment;
ROLLBACK TO salary_adjustment;

In the following example, you roll back an in-doubt distributed transaction:

ROLLBACK FORCE '45.52.67'

PostgreSQL
PostgreSQL supports the basic form of ROLLBACK, with savepoints:

ROLLBACK { [WORK] | [TRANSACTION] | PREPARED }
[TO [SAVEPOINT] savepoint_name]

where:

WORK | TRANSACTION
Optional keywords that are not required.

PREPARED
Rolls back a transaction that was prepared earlier for two-phase commit (i.e., a
prepared transaction). Only the superuser or the user who owns the prepared
transaction may roll it back. Use the non-SQL3 PostgreSQL command PREPARE
TRANSACTION to create a transaction for two-phase commit and the command
COMMIT PREPARED to save the prepared transaction.

348 | Chapter 3: SQL Statement Command Reference

ROLLBACK Statement > SQL Server

TO [SAVEPOINT] savepoint_name
Rolls back all commands that were executed after the savepoint was established.
The savepoint stays active and can be reused later, if needed.

ROLLBACK clears all data modifications made to the current open transaction. It will
return an error if no transaction is currently open. For example, to roll back all open
changes, use:

ROLLBACK;

Be careful with cursors and rolling back to savepoints. For example, a cursor that is
opened within a savepoint will be closed if the transaction is rolled back to that save-
point. If a cursor is open but has a savepoint midway through its FETCH processes,
the cursor position will remain at the position that FETCH left it at (meaning that it
won’t be rolled back). A cursor will remain closed even if rolling back to a savepoint
takes you back before the CLOSE CURSOR command was issued. Generally, it’s a
good idea not to mix cursors and savepoints.

Remember that only the command RELEASE SAVEPOINT permanently destroys a
savepoint; otherwise, it remains active and reusable.

PostgreSQL supports ABORT as a synonym of ROLLBACK, in the form ABORT
[WORK] or ABORT [TRANSACTION].

SQL Server
SQL Server supports both the WORK and TRAN keywords. The only difference
between them is that the ROLLBACK WORK statement doesn’t allow rolling back of a
named transaction or to a specific savepoint:

ROLLBACK { [WORK] | [TRANSACTION] } {transaction_name | savepoint_name};

If ROLLBACK is issued alone without the WORK or TRAN keywords, it rolls back all
current open transactions. ROLLBACK normally frees locks, but it does not free locks
when rolling back to a savepoint.

SQL Server allows you to name a specific transaction_name in addition to a specific
savepoint_name. You may reference them explicitly, or you may use variables within
Transact-SQL.

SQL Server does not allow rolling back transactions to a savepoint with a two-phase
commit (i.e., a distributed transaction on SQL Server).

ROLLBACK TRANSACTION, when issued in a trigger, undoes all data modifica-
tions, including those performed by the trigger, up to the point of the ROLLBACK
statement. Nested triggers are not executed if they follow a ROLLBACK within a
trigger; however, any statements within the trigger that follow the rollback are not
impacted by the rollback. ROLLBACK behaves similarly to COMMIT with regard to
nesting, resetting the @@TRANCOUNT system variable to zero. (Refer to the section
on the COMMIT statement earlier in this chapter for more information on transaction
control within a SQL Server nested trigger.)

Following is a Transact-SQL batch using COMMIT and ROLLBACK in Microsoft SQL
Server. In this example, the code inserts a record into the sales table. If the insertion
fails the transaction is rolled back, but if the insertion succeeds the transaction is
committed:

BEGIN TRAN -- Initializes a transaction
-- The transaction itself
INSERT INTO sales

Chapter 3: SQL Statement Command Reference | 349

SQLStatem
ent

Com
m

ands
SAVEPOINT Statement > All Platforms

VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832')
-- Some error-handling in the event of a failure
IF @@ERROR <> 0
BEGIN
 -- Raises an error in the event log and skips to the end
 RAISERROR 50000 'Insert of sales record failed'
 ROLLBACK WORK
 GOTO end_of_batch
END
-- The transaction is committed if no errors are detected
COMMIT TRAN
-- The GOTO label that enables the batch to skip to
-- the end without committing
end_of_batch:
GO
SAVEPOINT sales1

See Also
COMMIT
RELEASE SAVEPOINT
SAVEPOINT

SAVEPOINT Statement

This command breaks a transaction into logical breakpoints. Multiple savepoints may
be specified within a single transaction. The main benefit of the SAVEPOINT
command is that transactions may be partially rolled back to a savepoint marker using
the ROLLBACK command.

SQL2003 Syntax
SAVEPOINT savepoint_name

Keywords
SAVEPOINT savepoint_name

Establishes a savepoint named savepoint_name within the current transaction.

Some vendors allow duplicate savepoint names within a transaction, but this is not
recommended by the ANSI standard.

SQL2003 supports the statement RELEASE SAVEPOINT savepoint_name, enabling an
existing savepoint to be eliminated. Refer to the “RELEASE SAVEPOINT Statement”
section for more information about eliminating an existing savepoint.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported, with limitations

350 | Chapter 3: SQL Statement Command Reference

SAVEPOINT Statement > All Platforms

Rules at a Glance
Savepoints are established within the scope of the entire transaction in which they are
defined, and savepoint names should be unique within their scope. Always make sure
to provide easy-to-understand names for your savepoints, because you’ll be refer-
encing them later in your programs. Furthermore, make sure you use BEGIN and
COMMIT statements prudently, because accidentally placing a BEGIN statement too
early or a COMMIT statement too late can have a dramatic impact on the way transac-
tions are written to the database.

Programming Tips and Gotchas
Generally, reusing a savepoint name won’t produce an error or warning, but a dupli-
cate savepoint name will render the previous savepoint with the same name useless.
So, be careful when naming savepoints!

When a transaction is initiated, resources (namely, locks) are expended to ensure
transactional consistency. Make sure that your transaction runs to completion as
quickly as possible so that the locks are released for others to use.

The following example performs several data modifications and then rolls back to a
savepoint:

INSERT INTO sales
VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832');
SAVEPOINT after_insert;
UPDATE sales SET terms = 'Net 90'
WHERE sales_id = '7896';
SAVEPOINT after_update;
DELETE sales;
ROLLBACK TO after_insert;

MySQL
MySQL fully supports the ANSI implementation.

Oracle
Oracle fully supports the ANSI implementation.

PostgreSQL
PostgreSQL fully supports the ANSI implementation.

SQL Server
SQL Server does not support the SAVEPOINT command. Instead, it uses the SAVE
command:

SAVE TRAN[SACTION] savepoint_name;

In addition, rather than declaring the literal name of the savepoint, you can optionally
reference a variable containing the name of the savepoint. If you use a variable, it must
be of the CHAR, VARCHAR, NCHAR, or NVARCHAR datatype.

SQL Server allows you to have many different named savepoints in a single transac-
tion. However, be careful—since SQL Server supports multiple savepoints in a single
transaction, it might appear that SQL Server fully supports nested savepoints, but in
fact it does not. Any time you issue a commit or savepoint in SQL Server, it only
commits or rolls back to the last open savepoint.

Chapter 3: SQL Statement Command Reference | 351

SQLStatem
ent

Com
m

ands
SELECT Statement

When the ROLLBACK TRAN savepoint_name command is executed, SQL Server rolls
the transaction back to the specified savepoint, then continues processing with the
next valid Transact-SQL command following the ROLLBACK statement. The transac-
tion must ultimately be concluded with a COMMIT or a final ROLLBACK statement.

See Also
COMMIT
RELEASE SAVEPOINT
ROLLBACK

SELECT Statement

The SELECT statement retrieves rows, columns, and derived values from one or many
tables of a database.

SQL2003 Syntax
The full syntax of the SELECT statement is powerful and complex, but can be broken
down into these main clauses:

SELECT [{ALL | DISTINCT}] select_item [AS alias][, ...]
FROM [ONLY | OUTER]
 {table_name [[AS] alias] | view_name [[AS] alias]}[, ...]
[[join_type] JOIN join_condition]
[WHERE search_condition] [{AND | OR | NOT} search_condition [...]]
[GROUP BY group_by_expression {group_by_columns | ROLLUP group_by_columns |
 CUBE group_by_columns | GROUPING SETS (grouping_set_list) |
 () | grouping_set, grouping_set_list}
 [HAVING search_condition]]
[ORDER BY {order_expression [ASC | DESC]}[, ...]]

Keywords
Each of the keywords shown below, except the select_item clause, is discussed in
greater detail in the “Rules at a Glance” section that follows:

[{ALL | DISTINCT}] select_item
Retrieves values that compose the query result set. Each select_item may be a
literal, an aggregate or scalar function, a mathematic calculation, a parameter or
variable, or a subquery, but a select_item is most commonly a column from a
table or view. A comma must separate each item in a list of such items.

The schema or owner name should be prefixed to a column’s name when it’s
extracted from a context outside of the current user’s. If another user owns the
table, that user must be included in the column reference. For example, assume
the user jake needs to access data in the schema katie:

SELECT emp_id
FROM katie.employee;

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

352 | Chapter 3: SQL Statement Command Reference

SELECT Statement

You can use the asterisk (*) shorthand to retrieve all columns in every table or
view shown in the FROM clause. It’s a good idea to use this shortcut on single-
table queries only.

ALL, the default behavior, returns all records that meet the selection criteria.
DISTINCT tells the database to filter out any duplicate records, thus retrieving
only one instance of many identical records.

AS alias
Replaces a column heading (when in the select_item clause) or a table name or
view name (when in the FROM clause) with a shorter heading or name. This
clause is especially useful for replacing cryptic or lengthy names with short, easy
to understand names or mnemonics, and for when the column contains only
derived data, so you don’t end up with a column called something like
ORA000189x7/0.02. It is also very useful in self-joins and correlated subqueries
where a single query references the same table more than once. When multiple
items appear in the select_item clause or FROM clause, make sure to place the
commas after the AS alias clauses. Also, be careful to always use an alias
uniformly once you introduce it into the query.

FROM table_name
Lists all of the tables and/or views from which the query retrieves data. Separate
table and view names using commas. The FROM clause also allows you to assign
aliases to long table/or view names or subqueries using the AS clause. Using
shorter aliases instead of longer table or view names simplifies coding. (Of course,
this might thwart the DBA’s carefully planned naming conventions, but the alias
only lasts for the duration of the query. Refer to the following section, “Rules at a
Glance,” for more information on aliases.) A FROM clause may contain a
subquery (refer to the SUBQUERY section later in this chapter for details).

ONLY
Specifies that only the rows of the named table or view (and no rows in subtables
or subviews) will be retrieved in the result set. When using ONLY, be sure to
enclose the table_name or view_name within parentheses. ONLY is ignored if the
table or view has no subtables or subviews.

OUTER
Specifies that the rows of the named table or view, along with the rows and
columns of any and all subtables or subviews, will be retrieved in the result set.
Columns of the subtables (or subviews) will be appended to the right, in subtable
hierarchy order according to the depth of the subtable. In extensive hierarchies,
subtables with common parents are appended in creation order of their types.
When using OUTER, be sure to enclose the table_name or view_name within
parentheses. OUTER is ignored if the table or view has no subtables or subviews.

JOIN join_condition
Joins together the result set of the table shown in the FROM clause to another
table that shares a meaningful relationship based on a common set of values.
These values are usually contained in columns of the same name and datatype
that appear in both tables being joined. These columns, or possibly a single
column from each table, are called the join key or common key. Most—but not
all—of the time, the join key is the primary key of one table and a foreign key in
another table. As long as the data in the columns matches, the join can be
performed. (Note that joins can also be performed using the WHERE clause. This
technique is sometimes called a theta join.)

Chapter 3: SQL Statement Command Reference | 353

SQLStatem
ent

Com
m

ands
SELECT Statement

join_conditions are most commonly depicted in the form:

JOIN table_name2 ON table_name1.column1 <comparison operator>
table_name2.column1

JOIN table_name3 ON table_name1.columnA <comparison operator>
table_name3.columnA

[...]

When the comparison_operator is the equals sign (=), a join is said to be an
equijoin. However, the comparison operator may be <, >, <=, >=, or even <>.

Use the AND operator to issue a JOIN with multiple conditions. You can also use
the OR operator to specify alternate join conditions.

If an explicit join_type is omitted, an INNER JOIN is assumed. Note that there
are many types of joins, each with its own rules and behaviors (as described in the
upcoming “Rules at a Glance” section). Also be aware that an alternate approach
to the join condition, via the USING clause, exists:

USING (column_name[, . . .])
Acts as an alternative to the ON clause. With this clause, instead of
describing the conditions of the join, you simply provide a column_name (or
column names, separated by commas) that appears in both tables. The data-
base then evaluates the join based on the column (or columns) of column_
name that appear in both tables. (The column names must be identical in
both tables.) In the following example, the two queries produce identical
results:

SELECT emp_id
FROM employee
LEFT JOIN sales USING (emp_id, region_id);

SELECT emp_id
FROM employee AS e
LEFT JOIN sales AS s
 ON e.emp_id = s.emp_id
 AND e.region_id = s.region_id;

WHERE search_condition
Filters unwanted data from the result set of the query, returning only those
records that satisfy the search conditions. A poorly written WHERE clause can
ruin the performance of an otherwise useful SELECT statement, so mastering the
nuances of the WHERE clause is of paramount importance. search_conditions are
syntactically depicted in the form:

WHERE [schema.[table_name.]]column operator value

WHERE clauses usually compare the values contained in a column of the table.
The values of the column are compared using an operator of some type (refer to
Chapter 2 for more details). For example, a column might equal (=) a given value,
be greater than (>) a given value, or be BETWEEN a range of values.

WHERE clauses may contain many search conditions concatenated together
using the AND or OR Boolean operators, and parentheses can be used to impact
the order of precedence of the search conditions. WHERE clauses can also
contain subqueries (refer to the section on the WHERE subclause later in this
chapter).

354 | Chapter 3: SQL Statement Command Reference

SELECT Statement

GROUP BY group_by_expression
Used in queries that utilize aggregate functions such as AVG, COUNT, COUNT
DISTINCT, MAX, MIN, and SUM to group result sets into the categories you
define in the group_by_expression. The group_by_expression of the GROUP BY
clause has an elaborate syntax of its own:

[GROUP BY group_by_expression

where group_by_expression is:

{ (grouping_column[, ...]) | ROLLUP (grouping_column[, ...]) |
 CUBE (grouping_column[, ...]) | GROUPING SETS (grouping_set_list) |
 () | grouping_set, grouping_set_list }

Refer to the upcoming “Rules at a Glance” section for examples and more infor-
mation on ROLLUP, CUBE, and GROUPING SETS.

HAVING search_condition
Adds search conditions on the results of the GROUP BY clause in a manner
similar to the WHERE clause. HAVING does not affect the rows used to calcu-
late the aggregates. HAVING clauses may contain subqueries.

ORDER BY order_expression [ASC | DESC]
Sorts the result set in either ascending (ASC) or descending (DESC) order using
the order_expression specified. The order_expression is a list of columns, sepa-
rated by commas, that you want to sort by.

Rules at a Glance
Each clause of the SELECT statement has a specific use. Thus, it is possible to speak
individually of the FROM clause, the WHERE clause, the GROUP BY clause, and so
forth. You can get more details and examples of SELECT statements by looking up the
entries for each clause of the statement. However, not every query needs every clause.
At a minimum, a query needs a SELECT item list and a FROM clause. Because the
SELECT clause is so important and offers so many options, we’ve divided this “Rules
at a Glance” section into the following detailed subsections:

• Aliases and WHERE clause joins

• The JOIN clause

• The WHERE clause

• The GROUP BY clause

• The HAVING clause

• The ORDER BY clause

Aliases and WHERE clause joins

Column names may need to be prefixed with their database, schema, and table names,
particularly when the same column name may appear in more than one table in the
query. For example, on an Oracle database, both the jobs table and scott’s employee
table may contain job_id columns. The following example joins the employee and
jobs tables using the WHERE clause:

SELECT scott.employee.emp_id,
 scott.employee.fname,
 scott.employee.lname,
 jobs.job_desc

Chapter 3: SQL Statement Command Reference | 355

SQLStatem
ent

Com
m

ands
SELECT Statement

FROM scott.employee,
 jobs
WHERE scott.employee.job_id = jobs.job_id
ORDER BY scott.employee.fname,
 scott.employee.lname

You can also use aliases to write such a query more simply and clearly:

SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM scott.employee AS e,
 jobs AS j
WHERE e.job_id = j.job_id
ORDER BY e.fname,
 e.lname

These two queries also illustrate the following important rules about WHERE clause
joins:

1. Use commas to separate multiple elements in the select_item list, tables in the
FROM clause, and items in the order_expression.

2. Use the AS clause to define aliases.

3. Use aliases consistently throughout the SELECT statement once you define them.

In general, you should favor the JOIN clause (explained in a moment) over the
WHERE clause for describing join expressions. This not only keeps your code cleaner,
making it easy to differentiate join conditions from search conditions, but also allows
you to avoid the counterintuitive behavior that may result from using the WHERE
clause for outer joins in some implementations.

The JOIN clause

To perform the same query as in the previous example using an ANSI-style join, list
the first table and the keyword JOIN, followed by the name of the table to be joined,
the keyword ON, and the join condition that would have been used in the old-style
query. The next example shows the preceding query in ANSI style:

SELECT e.emp_id, e.fname, e.lname, j.job_desc
FROM scott.employee AS e
JOIN jobs AS j ON e.job_id = j.job_id
ORDER BY e.fname, e.lname;

Alternately, you could use the USING clause. Instead of describing the conditions of
the join, simply provide one or more column_names (separated by commas) that appear
in both of the joined tables. The database then evaluates the join based on the column
(or columns) of column_name that appear in both tables. (The column names must be
identical in both tables.) In the following example, the two queries (one using the ON
clause and one using the USING clause) produce identical results:

SELECT emp_id
FROM employee
LEFT JOIN sales USING (emp_id, region_id);
SELECT emp_id
FROM employee AS e
LEFT JOIN sales AS s
 ON e.emp_id = s.emp_id
 AND e.region_id = s.region_id;

356 | Chapter 3: SQL Statement Command Reference

SELECT Statement

You can specifiy several different types of joins in ANSI style:

CROSS JOIN
Specifies the complete cross product of two tables. For each record in the first
table, all the records in the second table are joined, creating a potentially huge
result set. (Of course, the result set would be small if both tables had only four
records each, but imagine if they each had four million!) This command has the
same effect as leaving off the join condition and is also known as a “Cartesian
product.” We do not recommend using cross joins.

INNER JOIN
Specifies that unmatched rows in either table of the join should be discarded. If
no join type is explicitly defined in the ANSI style, this is the default.

LEFT [OUTER] JOIN
Specifies that all records be returned from the table on the left side of the join
statement. If a record returned from the left table has no matching record in the
table on the right side of the join, it is still returned, and the corresponding
column from the right table returns a NULL value. Many professionals recom-
mend configuring outer joins as left joins wherever possible for consistency.

RIGHT [OUTER] JOIN
Specifies that all records be returned from the table on the right side of the join
statement, even if the table on the left has no matching record. In this case, the
columns from the left table return NULL values.

FULL [OUTER] JOIN
Specifies that all rows from either table be returned, regardless of matching
records in the other table. The result set shows NULL values where no matching
data exists in the join.

Not all joins are supported by all platforms, so refer to the specific
RDBMS sections for full details on platform-specific join support.

The WHERE clause

A poorly written WHERE clause can ruin an otherwise beautiful SELECT statement,
so the nuances of the WHERE clause must be mastered thoroughly. Here is an example
of a typical query and a multipart WHERE clause:

SELECT a.au_lname,
 a.au_fname,
 t2.title,
 t2.pubdate
FROM authors a
JOIN titleauthor t1 ON a.au_id = t1.au_id
JOIN titles t2 ON t1.title_id = t2.title_id
WHERE (t2.type = 'business' OR t2.type = 'popular_comp')
 AND t2.advance > 5500
ORDER BY t2.title

In examining this query, note that the parentheses impact the order of processing for
the search conditions. You can use parentheses to move search conditions up or down
in precedence, just like you would in an algebra equation.

Chapter 3: SQL Statement Command Reference | 357

SQLStatem
ent

Com
m

ands
SELECT Statement

On some platforms, the database’s default collation (also known as
the sort order) impacts how the WHERE clause filters results for a
query. For example, SQL Server is (by default) dictionary-order and
case insensitive, making no differentiation between “Smith,”
“smith,” and “SMITH.” Oracle, however, is dictionary-order and
case sensitive, finding the values “Smith,” “smith,” and “SMITH” to
be unequal.

The WHERE clause offers many more specific capabilities than the preceding example
illustrates. The following list references some of the more common capabilities of the
WHERE clause:

NOT
Inverts a comparison operation using the syntax WHERE NOT expression. Thus,
you might use WHERE NOT LIKE... or WHERE NOT IN... in a query.

Comparison operators
Compare any set of values, using the operations <, >, <>, >=, <=, and =. For
example:

WHERE emp_id = '54123'

IS NULL or IS NOT NULL conditions
Search for any NULL or NOT NULL values using the syntax WHERE expression
IS [NOT] NULL.

AND
Merges multiple conditions, returning only those records that meet all condi-
tions, using the AND operator. The maximum number of multiple conditions is
platform-dependent. For example:

WHERE job_id = '12' AND job_status = 'active'

OR
Merges alternative conditions, returning records that meet any of the conditions,
using the OR operator. For example:

WHERE job_id = '13' OR job_status = 'active'

LIKE
Tells the query to use a pattern-matching string contained within quotation
marks. The wildcard symbols supported by each platform are detailed in their
individual sections. All platforms support the percent sign (%) for a wildcard
symbol. For example, to find any phone number starting with the 415 area code:

WHERE phone LIKE '415%'

EXISTS
Used only with subqueries, EXISTS tests to see whether the subquery data exists.
It is typically much faster than a WHERE IN subquery. For example, the
following query finds all authors who are also employees:

SELECT au_lname FROM authors WHERE EXISTS (SELECT last_name FROM
employees)

BETWEEN
Performs a range check to see whether a value is in between two values (inclusive
of those two values). For example:

WHERE ytd_sales BETWEEN 4000 AND 9000.

358 | Chapter 3: SQL Statement Command Reference

SELECT Statement

IN
Performs a test to see whether an expression matches any one value out of a list of
values. The list may be literal, as in WHERE state IN (‘or’, ‘il’, ‘tn’, ‘ak’). The list
of values may also be derived using a subquery:

WHERE state IN (SELECT state_abbr FROM territories).

SOME | ANY
Functions the same as the EXISTS operation, though with slightly different
syntax. For example, the following query finds all authors who are also
employees:

SELECT au_lname FROM authors WHERE au_lname = SOME(SELECT last_name FROM
employees)

ALL
Performs a check to see whether all records in the subquery match the evaluation
criteria, and returns TRUE when the subquery returns zero rows. For example:

WHERE city = ALL (SELECT city FROM employees WHERE emp_id = 54123)

The GROUP BY clause

The GROUP BY clause (and the HAVING clause) is needed only in queries that utilize
aggregate functions.

The GROUP BY clause is used to report an aggregated value for one or more rows
returned by a SELECT statement based on one or more non-aggregated columns called
grouping columns. For example, here is a query that counts up how many people we
hired each year during the years 1999 through 2004:

SELECT hire_year, COUNT(emp_id) AS nbr_emps
FROM employee
WHERE status = 'ACTIVE'
 AND hire_year BETWEEN 1999 AND 2004
GROUP BY hire_year;

The results are:

hire_year nbr_emps
--------- --------
1999 27
2000 17
2001 13
2002 19
2003 20
2004 32

Queries using aggregate functions provide many types of summary information. The
most common aggregate functions include:

AVG
Returns the average of all non-NULL values in the specified column(s)

AVG DISTINCT
Returns the average of all unique, non-NULL values in the specified column(s)

COUNT
Counts the occurrences of all non-NULL values in the specified column(s)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3: SQL Statement Command Reference | 359

SQLStatem
ent

Com
m

ands
SELECT Statement

COUNT DISTINCT
Counts the occurrences of all unique, non-NULL values in the specified
column(s)

COUNT(*)
Counts every record in the table

MAX
Returns the highest non-NULL value in the specified column(s)

MIN
Returns the lowest non-NULL value in the specified column(s)

SUM
Totals all non-NULL values in the specified column(s)

SUM DISTINCT
Totals all unique, non-NULL values in the specified column(s)

Some queries that use aggregates return a sole value. Single-value aggregates are
known as a scalar aggregates. Scalar aggregates do not need a GROUP BY clause. For
example:

--Query
SELECT AVG(price)
FROM titles
--Results
14.77

Queries that return both regular column values and aggregate function values are
commonly called vector aggregates. Vector aggregates use the GROUP BY clause and
return one or many rows. There are a few rules to follow when using GROUP BY:

• Place GROUP BY in the proper clause order—after the WHERE clause and
before the ORDER BY clause.

• Include all non-aggregate columns in the GROUP BY clause.

• Do not use column aliases in the GROUP BY clause, though table aliases are
acceptable.

For example, let’s suppose you need to know the total purchase amount of several
purchases, with an Order_Details table that looks like this:

OrderID ProductID UnitPrice Quantity
----------- ----------- ------------------- --------
10248 11 14.0000 12
10248 42 9.8000 10
10248 72 34.8000 5
10249 14 18.6000 9
10249 51 42.4000 40
10250 41 7.7000 10
10250 51 42.4000 35
10250 65 16.8000 15
...

The following example will give you the results:

SELECT OrderID, SUM(UnitPrice * Quantity) AS 'Order Amt'
FROM order_details
WHERE orderid IN (10248, 10249, 10250)
GROUP BY orderid

360 | Chapter 3: SQL Statement Command Reference

SELECT Statement

The results are:

OrderID Order Amt
----------- ----------------
10248 440.0000
10249 1863.4000
10250 1813.0000

We could further refine the aggregations by using more than one grouping column.
Consider the following query, which retrieves the average price of our products,
grouped first by name and then by size:

SELECT name, size, AVG(unit_price) AS 'avg'
FROM product
GROUP BY name, size

The results are:

Name Size avg
------------ ------ -----------------------
Flux Capacitor small 900
P32 Space Modulator small 1400
Transmorgrifier medium 1400
Acme Rocket large 600
Land Speeder large 6500

In addition, the GROUP BY clause supports a number of very important subclauses:

GROUP BY [{ROLLUP | CUBE}] ([grouping_column[, . . .]])[, grouping set list]
Groups the aggregate values of the result set by one or more grouping columns.
(Without ROLLUP or CUBE, the GROUP BY (grouping_column[, . . .]) clause is
the simplest and common form of the GROUP BY clause.)

ROLLUP
Produces subtotals for each set of grouping columns as a hierarchical result
set, adding subtotal and grand total rows into the result set in a hierarchical
fashion. ROLLUP operations return one row per grouping column, with
NULL appearing in the grouping column to show the subtotaled or totaled
aggregate value (illustrated in a moment).

CUBE
Produces subtotals and cross-tabulated totals for all grouping columns. In a
sense, the CUBE clause enables you to quickly return multidimensional
result sets from standard relational tables without a lot of programmatic
work. CUBE is especially useful when working with large amounts of data.
Like ROLLUP, CUBE provides subtotals of the grouping columns, but it also
includes subtotal rows for all possible combinations of the grouping columns
specified in the query.

GROUP BY GROUPING SETS [{ROLLUP | CUBE}] ([grouping_column[, ...]])[, grouping
set list]

Enables aggregated groups on several different sets of grouping columns within
the same query. This is especially useful when you want to return only a portion
of an aggregated result set. The GROUPING SETS clause also lets you select
which grouping columns to compare, whereas CUBE returns all of the grouping
columns and ROLLUP returns a hierarchical subset of the grouping columns. As
the syntax shows, the ANSI standard also allows GROUPING SETS to be paired
with ROLLUP or CUBE.

Consider the clauses shown in Table 3-4 and the result sets they return.

Chapter 3: SQL Statement Command Reference | 361

SQLStatem
ent

Com
m

ands
SELECT Statement

Each type of GROUP BY clause returns a different set of aggregated values and, in the
case of ROLLUP and CUBE, totals and subtotals.

The concepts of ROLLUP, CUBE, and GROUPING SETS are much more intuitive
when explained by example. In the following example, we query for data summa-
rizing the number of sales_orders by order_year and by order_quarter:

SELECT order_year AS year, order_quarter AS quarter,
 COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2003, 2004)
GROUP BY ROLLUP (order_year, order_quarter)
ORDER BY order_year, order_quarter;

The results are:

year quarter orders
---- ------- ------
NULL NULL 648 -- the grand total
2003 NULL 380 -- the total for year 2003
2003 1 87
2003 2 77
2003 3 91
2003 4 125
2004 NULL 268 -- the total for year 2004
2004 1 139
2004 2 119
2004 3 10

Adding grouping columns to the query provides more details (and more subtotaling)
in the result set. Now let’s modify the previous example by adding a region to the
query (but since the number of rows increases, we’ll only look at the first and second
quarters):

Table 3-4. GROUP BY syntax variations

GROUP BY syntax Returns the following sets

GROUP BY (col_A, col_B, col_C) (col_A, col_B, col_C)

GROUP BY ROLLUP (col_A, col_B, col_C) (col_A, col_B, col_C)
 (col_A, col_B)
 (col_A)
 ()

GROUP BY CUBE (col_A, col_B, col_C) (col_A, col_B, col_C)
 (col_A, col_B)
 (col_A)
 (col_B, col_C)
 (col_B)
 (col_C)
 ()

GROUP BY GROUPING SETS
 ((col_A, col_B),
 (col_A, col_C), (col_C))

Subquery:
 SELECT *
 FROM stores
 WHERE stor_id IN
 (SELECT stor_id FROM sales
 WHERE ord_date >
 '01-JAN-2004')

362 | Chapter 3: SQL Statement Command Reference

SELECT Statement

SELECT order_year AS year, order_quarter AS quarter, region,
 COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2003, 2004)
 AND order_quarter IN (1,2)
 AND region IN ('USA', 'CANADA')
GROUP BY ROLLUP (order_year, order_quarter)
ORDER BY order_year, order_quarter;

The results are:

year quarter region orders
---- ------- ------ ------
NULL NULL NULL 183 -- the grand total
2003 NULL NULL 68 -- the subtotal for year 2003
2003 1 NULL 36 -- the subtotal for all regions in q1 of 2003
2003 1 CANADA 3
2003 1 USA 33
2003 2 NULL 32 -- the subtotal for all regions in q2 of 2004
2003 2 CANADA 3
2003 2 USA 29
2004 NULL NULL 115 -- the subtotal for year 2004
2004 1 NULL 57 -- the subtotal for all regions in q1 of 2004
2004 1 CANADA 11
2004 1 USA 46
2004 2 NULL 58 -- the subtotal for all regions in q2 of 2004
2004 2 CANADA 4
2004 2 USA 54

The GROUP BY CUBE clause is useful for performing multidimensional analyses on
aggregated data. Like GROUP BY ROLLUP, it returns subtotals, but unlike GROUP
BY ROLLUP, it returns subtotals combining all of the grouping columns named in the
query. (As you will see, it also has the potential to increase the number of rows
returned in the result set.)

In the following example, we query for data summarizing the number of sales_orders
by order_year and by order_quarter:

SELECT order_year AS year, order_quarter AS quarter,
 COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2003, 2004)
GROUP BY CUBE (order_year, order_quarter)
ORDER BY order_year, order_quarter;

The results are:

year quarter orders
---- ------- ------
NULL NULL 648 -- the grand total
NULL 1 226 -- the subtotal for q1 of both years
NULL 2 196 -- the subtotal for q2 of both years
NULL 3 101 -- the subtotal for q3 of both years
NULL 4 125 -- the subtotal for q4 of both years
2003 NULL 380 -- the total for year 2003
2003 1 87
2003 2 77
2003 3 91
2003 4 125

Chapter 3: SQL Statement Command Reference | 363

SQLStatem
ent

Com
m

ands
SELECT Statement

2004 NULL 268 -- the total for year 2004
2004 1 139
2004 2 119
2004 3 10

The GROUP BY GROUPING SETS clause lets you aggregate on more than one group
in a single query. For each group set, the query returns subtotals with the grouping
column marked as NULL. While the CUBE and ROLLUP clauses place predefined
subtotals into the result set, the GROUPING SETS clause allows you to control what
subtotals to add to the query. The GROUPING SETS clause does not return a grand
total.

Using a similar example query to the ones shown with ROLLUP and CUBE, this time
we’ll subtotal by year and quarter and separately by year:

SELECT order_year AS year, order_quarter AS quarter, COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2003, 2004)
GROUP BY GROUPING SETS ((order_year, order_quarter), (order_year))
ORDER BY order_year, order_quarter;

The results are:

year quarter orders
---- ------- ------
2003 NULL 380 -- the total for year 2003
2003 1 87
2003 2 77
2003 3 91
2003 4 125
2004 NULL 268 -- the total for year 2004
2004 1 139
2004 2 119
2004 3 10

Another way to think of GROUPING SETS is to consider them to be like a UNION
ALL of more than one GROUP BY query that references different parts of the same
data. You can tell the database to add subtotals to a GROUPING SET by simply
adding in the ROLLUP or CUBE clause according to how you would like subtotaling
to occur.

GROUPING SETS can also be concatenated to concisely generate large combinations
of groupings. Concatenated GROUPING SETS yield the cross product of groupings
from each of the sets within a GROUPING SETS list. Concatenated GROUPING SETS
are compatible with CUBE and ROLLUP, but since they perform a cross product of all
GROUPING SETS, they will generate a very large number of final groupings from even
a small number of concatenated groupings. This is demonstrated in the example in
Table 3-5.

Table 3-5. GROUP BY syntax variations

GROUP BY syntax Returns the following sets

GROUP BY (col_A, col_B, col_C) (col_A, col_B, col_C)

... ...

GROUP GY GROUPING SETS (col_A, col_B)
(col_Y, col_Z)

(col_A, col_Y)
 (col_A, col_Z)
 (col_B, col_Y)
 (col_B, col_Z)

364 | Chapter 3: SQL Statement Command Reference

SELECT Statement

You can imagine how large the result set would be if the concatenated GROUPING
SETS contained a large number of groupings! However, the information returned can
be very valuable and hard to reproduce.

The HAVING clause

The HAVING clause adds search conditions on the result of the GROUP BY clause.
HAVING works very much like the WHERE clause, but it applies to the GROUP BY
clause. The HAVING clause supports all the same search conditions as the WHERE
clause shown earlier. For example, using the same query as before, say we now want to
find only those jobs that are performed by more than three people:

--Query
SELECT j.job_desc "Job Description",
 COUNT(e.job_id) "Nbr in Job"
FROM employee e
JOIN jobs j ON e.job_id = j.job_id
GROUP BY j.job_desc
HAVING COUNT(e.job_id) > 3
--Results
Job Description Nbr in Job
-- -----------
Acquisitions Manager 4
Managing Editor 4
Marketing Manager 4
Operations Manager 4
Productions Manager 4
Public Relations Manager 4
Publisher 7

Note that the ANSI standard does not require that an explicit GROUP BY clause
appear with a HAVING clause. For example, the following query against the employee
table is valid because it has an implied GROUP BY clause:

SELECT COUNT(dept_nbr)
FROM employee
HAVING COUNT(dept_nbr) > 30;

Even though it’s valid, though, this application for the HAVING clause is rather rare.

The ORDER BY clause

A result set can be sorted through the ORDER BY clause, in accordance with the data-
base’s sort order. Each column of the result set may be sorted in either ascending
(ASC) or descending (DESC) order. (Ascending order is the default.) If no ORDER BY
clause is specified, most implementations return the data either according to the phys-
ical order of the data within the table or according to the order of an index utilized by
the query. However, when no ORDER BY clause is specified, there is no guarantee as
to the order of the result set. Following is an example of a SELECT statement with an
ORDER BY clause on SQL Server:

SELECT e.emp_id "Emp ID",
 e.fname "First",
 e.lname "Last",
 j.job_desc "Job Desc"
FROM employee e,
 jobs j

Chapter 3: SQL Statement Command Reference | 365

SQLStatem
ent

Com
m

ands
SELECT Statement > MySQL

WHERE e.job_id = j.job_id
 AND j.job_desc = 'Acquisitions Manager'
ORDER BY e.fname DESC,
 e.lname ASC

The results are:

Emp ID First Last Job Desc
--------- --------------- --------------- --------------------
MIR38834F Margaret Rancé Acquisitions Manager
MAS70474F Margaret Smith Acquisitions Manager
KJJ92907F Karla Jablonski Acquisitions Manager
GHT50241M Gary Thomas Acquisitions Manager

After the result set is pared down to meet the search conditions, it is sorted by the
authors’ first names in descending order. Where the authors’ first names are equal, the
results are sorted in ascending order by last name.

You may write an ORDER BY clause using columns in the table
that do not appear in the select list. For example, you might query
all emp_ids from the employee table, yet ORDER BY the
employee’s first and last name.

Programming Tips and Gotchas
Once you’ve assigned an alias to a table or view in the FROM clause, use it exclusively
for all other references to that table or view within the query (in the WHERE clause,
for example). Do not mix references to the full table name and the alias within a single
query. You should avoid mixed references for a couple of reasons. First, it is simply
inconsistent and makes code maintenance more difficult. Second, some database plat-
forms return errors on SELECT statements containing mixed references. (Refer to the
section on SUBQUERY later in this chapter for special instructions on aliasing within a
subquery.)

MySQL, PostgreSQL, and SQL Server support certain types of queries that do not
need a FROM clause. Use these types of queries with caution, since the ANSI stan-
dard requires a FROM clause. Queries without a FROM clause must be manually
migrated either to the ANSI-standard form or to a form that also works on the target
database. Certain platforms do not support the ANSI-style JOIN clause. Refer to the
entry for each clause to fully investigate the varying degrees of support offered by the
different database vendors for the various options of the SELECT command.

MySQL
MySQL’s implementation of SELECT includes partial JOIN support, the INTO clause,
the LIMIT clause, and the PROCEDURE clause. MySQL does not support subqueries
prior to version 4.0. Its syntax follows:

SELECT [DISTINCT | DISTINCTROW | ALL]
 [STRAIGHT_JOIN] [{SQL_SMALL_RESULT | SQL_BIG_RESULT}] [SQL_BUFFER_
RESULT]
 [{SQL_CACHE | SQL_NO_CACHE}] [SQL_CALC_FOUND_ROWS]
 [HIGH_PRIORITY] select_item AS alias[, ...]
[INTO {OUTFILE | DUMPFILE | variable[, ...]} 'file_name' options]
[FROM table_name AS alias[, ...]

[{ USE INDEX (index1[, ...]) | IGNORE INDEX (index1[, ...]) }]

366 | Chapter 3: SQL Statement Command Reference

SELECT Statement > MySQL

[join type] [JOIN table2] [ON join_condition]
[WHERE search_condition]
[GROUP BY {unsigned_integer | column_name | formula}
 [ASC | DESC][, ...] [WITH ROLLUP]]
[HAVING search_condition]
[ORDER BY {unsigned_integer | column_name | formula} [ASC | DESC][, ...]]
[LIMIT { [offset_position,] number_of_rows] | number_of_rows
 OFFSET offset_position }]
[PROCEDURE procedure_name (param[, ...])]
[{FOR UPDATE | LOCK IN SHARE MODE}];

where:

STRAIGHT_JOIN
Forces the optimizer to join tables in the exact order in which they appear in the
FROM clause.

 SQL_SMALL_RESULT | SQL_BIG_RESULT
Tells the optimizer to expect a small or large result set on a GROUP BY clause or
a DISTINCT clause, respectively. MySQL builds a temporary table when a query
has a DISTINCT or GROUP BY clause, and these optional clauses tell MySQL
whether to build a fast temporary table in memory (for SQL_SMALL_RESULT)
or a slower, disk-based temporary table (for SQL_BIG_RESULT) to process the
worktable.

SQL_BUFFER_RESULT
Forces the result set into a temporary table so that MySQL can free table locks
earlier and speed the result set to the client.

SQL_CACHE | SQL_NO_CACHE
Controls caching of the result sets of the query. SQL_CACHE stores the result set
in the query cache, assuming that the result set is cachable and the value of query_
cache_type is 2 or DEMAND. SQL_NO_CACHE causes the result set not to
reside in the query cache. For queries with UNIONs or subqueries or views, SQL_
NO_CACHE applies everywhere if it is used even for just one query, while SQL_
CACHE applies only if it appears after the first query.

SQL_CALC_FOUND_ROWS
Calculates how many rows are in the result set (regardless of a LIMIT clause),
which can then be retrieved using SELECT FOUND_ROWS().

HIGH_PRIORITY
Gives the query a higher priority than statements that modify data within the
table. This should be used only for special, high-speed queries.

select_item
Retrieves the expressions or columns listed. Columns may be listed in the format
[database_name.][table_name.]column_name. If the database and/or table names
are left out, MySQL assumes the current database and table.

 FROM...USE INDEX | IGNORE INDEX
Indicates the table from which rows will be retrieved. The table may be described
as [database_name.][table_name]. MySQL will treat the query as a join if more than
one table appears in the FROM clause. The optional FORCE INDEX, USE
INDEX (index1, index2, . . .), and IGNORE INDEX (index1, index2, . . .) clauses
enable you to tell MySQL to use or ignore specific indexes on a table, respectively.

Chapter 3: SQL Statement Command Reference | 367

SQLStatem
ent

Com
m

ands
SELECT Statement > MySQL

INTO {OUTFILE | DUMPFILE | variable[, . . .]} 'file_name'
Writes the result set of the query to a file named 'file_name' on the host file-
system with the OUTPUT option. The file_name must not already exist on the
filesystem. The DUMPFILE option writes a single continuous line of data without
column terminations, line terminations, or escape characters. This option is used
mostly for BLOB files. Specific rules for using this clause are detailed below. The
INTO variable clause allows you to list one or more variables (one for each
column returned). If using INTO variable, do not also use the 'file_name'
keyword.

LIMIT { [offset_position,] number_of_rows] | number_of_rows OFFSET offset_
position}

Constrains the number of rows returned by the query, starting at the offset_
position and returning number_of_rows. If only one integer is supplied, the speci-
fied number of records is returned, and a default offset (or starting position) of
zero is assumed. The alternative syntax number_of_rows OFFSET is included for
interoperability with PostgreSQL.

PROCEDURE procedure_name (param[, . . .])
Names a procedure that processes the data in the result set. The procedure is an
external procedure (usually C++), not an internal database stored procedure.

FOR UPDATE | LOCK IN SHARE MODE
Issues a write lock on the rows returned by the query (FOR UPDATE) for its
exclusive use (provided the table is of InnoDB or BDB type), or issues read locks
on the rows returned by the query (LOCK IN SHARE), such that other users may
see the rows but may not modify them.

Keep a couple of rules in mind when using the INTO clause. First, the output file
cannot already exist, since overwrite functionality is not supported. Second, any file
created by the query will be readable by everyone that can connect to the server.
(When using SELECT...INTO OUTFILE, you can then turn around and use the
MySQL command LOAD DATA INFILE to quickly load the data.)

You can use the following options to better control the content of the output file when
using SELECT...INTO OUTFILE:

• ESCAPED BY

• FIELDS TERMINATED BY

• LINES TERMINATED BY

• OPTIONALLY ENCLOSED BY

The following example illustrates the use of these optional commands via a MySQL
query that returns a result set in a comma-delimited output file:

SELECT job_id, emp_id, lname+fname
INTO OUTFILE "/tmp/employees.text"
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY "\n"
FROM employee;

MySQL also allows SELECT statements without a FROM clause when performing
simple arithmetic. For example, the following queries are valid on MySQL:

SELECT 2 + 2;
SELECT 565 - 200;
SELECT (365 * 2) * 52;

368 | Chapter 3: SQL Statement Command Reference

SELECT Statement > MySQL

For interoperability with Oracle, MySQL also supports selection from the pseudotable
called dual:

SELECT 565 – 200 FROM dual;

MySQL is very fluid in the way it supports joins. You can use several different syntaxes
to perform a join; for example, you can explicitly declare a join in a query using the
JOIN clause, but then show the join condition in the WHERE clause. The other plat-
forms force you to pick one method or the other and do not allow you to mix them in
a single query. However, we think it’s bad practice to mix methods, so our examples
use ANSI JOIN syntax.

MySQL supports the following types of JOIN syntax:

FROM table1, table2
FROM table1 {
 [CROSS] JOIN table2 |
 STRAIGHT_JOIN table2 |
 INNER JOIN table2 [{ON join_condition |
 USING (column_list)}] |
 LEFT [OUTER] JOIN table2 {ON join_condition |
 USING (column_list)} |
 NATURAL [LEFT [OUTER]] JOIN table2 |
 RIGHT [OUTER] JOIN table2 [{ON join_condition |
 USING (column_list)}]|
 NATURAL [RIGHT [OUTER]] JOIN table2 }

where:

[CROSS] JOIN table2
Retrieves all records from both table1 and table2. Refer to the section on the
JOIN subclause, earlier in this chapter, for more information on the different
types of joins.

STRAIGHT_JOIN table2
Retrieves all records of both table1 and table2, as any other JOIN statement
would, but with some special behavior. Normally, MySQL evaluates the table
order of a join operation based on choices made by the query optimizer.
However, the optimizer can occasionally choose an ineffective table order. The
STRAIGHT_JOIN keyword forces the optimizer to evaluate the tables in the order
listed in the query.

INNER JOIN
Retrieves those records of both table1 and table2 where there are matching
values in both tables according to the join condition. Note that the syntax FROM
table1, table2 is semantically equivalent to an inner join. When using FROM
table1, table2, be sure include the join condition(s) in the WHERE clause.

NATURAL
Shortcuts the need to declare a join condition by assuming a USING clause that
names all columns that exist in both tables. (An example of the USING clause
appears later.)

LEFT [OUTER] JOIN
Retrieves all records in the leftmost table (i.e., table1) and matching records in
the rightmost table (i.e., table2). If there isn’t a matching record in table2, NULL
values are substituted for that table’s columns. You can use this type of join to
retrieve all records in a table even when there are no counterparts in the joined
table.

Chapter 3: SQL Statement Command Reference | 369

SQLStatem
ent

Com
m

ands
SELECT Statement > Oracle

RIGHT [OUTER] JOIN
Retrieves all records in the rightmost table, regardless of whether there is a
matching record in the leftmost table. A RIGHT JOIN is nothing more than a
LEFT JOIN written from the opposite direction. As a best practice, write all outer
join queries as either LEFT or RIGHT OUTER JOIN queries, but do not use both
types, since they require a shift in thinking to understand at first glance.

MySQL offers an interesting alternative to the ANSI SQL standard for querying tables—
the HANDLER statement. The HANDLER statement works a lot like SELECT, except
that HANDLER provides very rapid data reads that circumvent the SQL query engine
in MySQL. However, since the HANDLER statement is not a SQL statement, we’ll
refer you to the MySQL documentation for more information.

Oracle
Oracle allows a very large number of extensions to the ANSI SELECT statement. For
example, since both nested tables and partitioned tables are allowed in Oracle (see
CREATE TABLE), the SELECT statement allows queries to those types of structures:

[WITH query_name AS (subquery)[, ...]]
SELECT { {[ALL | DISTINCT]} | [UNIQUE] } [optimizer_hints]

select_item [AS alias][, ...]
[INTO {variable[, ...] | record}]
FROM {[ONLY] {[schema.][table_name | view_name |

materialized_view_name]}[@database_link] [AS [OF]
{SCN | TIMESTAMP} expression] |

subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}] |
 [[VERSIONS BETWEEN {SCN | TIMESTAMP} {exp | MINVALUE} AND
 {exp | MAXVALUE}] AS OF {SCN | TIMESTAMP} expression] |
 TABLE (nested_table_column) [(+)]
 {[PARTITION (partition_name) | SUBPARTITION (subpartition_name)]}
 [SAMPLE [BLOCK] [sample_percentage] [SEED (seed_value)]]} [AS alias]
 [, ...]
[[join_type] JOIN join_condition [PARTITION BY expression[, ...]]]
[WHERE search_condition
 [{AND | OR} search_condition[, ...]]
 [[START WITH value] CONNECT BY [PRIOR] condition]]
[GROUP BY group_by_expression [HAVING search_condition]]
[MODEL model_clause]
[ORDER [SIBLINGS] BY order_expression {[ASC | DESC]}
 {[NULLS FIRST | NULLS LAST]}]
[FOR UPDATE [OF [schema.][table.]column][, ...]
 {[NOWAIT | WAIT (integer)]}]

Unless otherwise noted, the clauses shown here follow the ANSI standard. Similarly,
elements of the clauses are identical to those in the ANSI standard unless otherwise
noted. For example, Oracle’s GROUP BY clause is nearly identical to the ANSI stan-
dard, including its component elements, such as ROLLUP, CUBE, GROUPING SETS,
concatenated GROUPING SETS, and the HAVING clause.

The parameters are:

WITH query_name AS (subquery)[, . . .]
References a named query. Oracle allows you to assign names to subqueries, and
you can then reference the subquery in multiple places by specifying only its
name. (Oracle optimizes this process by treating the subquery as a nested table
subquery or a temporary table.)

370 | Chapter 3: SQL Statement Command Reference

SELECT Statement > Oracle

ALL | DISTINCT | UNIQUE
ALL and DISTINCT are identical to the ANSI ALL and DISTINCT clauses (see
the ANSI SQL syntax described earlier). UNIQUE is a synonym for DISTINCT.
DISTINCT cannot be used on LOB columns.

optimizer_hint
Overrides the default behavior of the query optimizer with user-specified behav-
iors. For example, hints can force Oracle to use an index that it might not
otherwise use or to avoid an index that it might otherwise use. Refer to the vendor
documentation for more information about optimizer hints.

select_item
May be an expression or a column from a named query, table, view, or material-
ized view in the format [schema.][table_name.]column_name. If you omit the schema,
Oracle assumes the context of the current schema. Oracle also allows for named
queries (explained earlier, under the WITH keyword) that may be referenced
much like nested table subqueries (refer to the section on SUBQUERY later in this
chapter). Oracle refers to using named queries as subquery factoring. In addition
to named queries, Oracle also supports subqueries and the asterisk (*), shorthand
for all columns, in the select_item list.

INTO {variable[, . . .] | record}
Retrieves the result set values into PL/SQL variables or into a PL/SQL record.

FROM [ONLY]
Identifies the table, view, materialized view, partition, or subquery from which
the result set is retrieved. The ONLY keyword is optional and applies only to
views belonging to a hierarchy. Use ONLY when you want to retrieve records
from a named view only, and not from any of its subviews.

AS [OF] {SCN | TIMESTAMP} expression
Implements SQL-driven flashback, whereby system change numbers (or time-
stamps) are applied to each object in the select_item list. Records retrieved by the
query are only those that existed at the specific system change number (SCN) or
time. (This feature can also be implemented at the session level using the DBMS_
FLASHBACK built-in package.) SCN expression must equal a number, while
TIMESTAMP expression must equal a timestamp value. Flashback queries cannot
be used on linked servers.

subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}]
Mentioned separately because Oracle allows you extra ways to control a
subquery. WITH READ ONLY indicates that the target of the subquery cannot be
updated. WITH CHECK OPTION indicates that any update to the target of the
subquery must produce rows that would be included in the subquery. WITH
CONSTRAINT creates a CHECK OPTION constraint of constraint_name on the
table. Note that WITH CHECK OPTION and WITH CONSTRAINT are usually
used in INSERT...SELECT statements.

[[VERSIONS BETWEEN {SCN | TIMESTAMP} {exp | MINVALUE} AND {exp |
MAXVALUE}] AS OF {SCN | TIMESTAMP} expression]

Specifies a special kind of query using a flashback_query_clause to retrieve the
history of changes made to data from a table, view, or materialized view. The
VERSIONS_XID pseudocolumn shows the identifier corresponding to the trans-
action that made the change. A flashback_query_clause requires that you specify
an SCN (system change number) or a TIMESTAMP value for each object in the
select_item list. (Implement SQL-driven session-level flashback using the Oracle
DBMS_FLASHBACK package.)

Chapter 3: SQL Statement Command Reference | 371

SQLStatem
ent

Com
m

ands
SELECT Statement > Oracle

The optional subclause VERSIONS BETWEEN is used to retrieve multiple
versions of the data specified, either using an upper and lower boundary of an
SCN (a number) or TIMESTAMP (a timestamp value), or using the MINVALUE
and MAXVALUE keywords. Without this clause, only one past version of the
data is returned. (Oracle also provides several version query pseudocolumns for
additional versioning information.)

The AS OF clause, discussed earlier in this list, determines the SCN or moment in
time from which the database issues the query when used with the VERSIONS
clause.

You cannot use flashback queries with the VERSIONS clause against temporary
tables, external tables, tables in a cluster, or views.

TABLE
Required when querying a hierarchically declared nested table.

PARTITION
Restricts a query to the specified partition of the table. In essence, rows are
retrieved only from the named partition, not from the entire table.

SUBPARTITION
Restricts a query to the specified subpartition of the table. I/O is reduced because
the rows are retrieved from only the named subpartition instead of the entire
table.

SAMPLE [BLOCK] [sampling_percentage] [SEED (seed_value)]
Tells Oracle to select records from a random sampling of rows within the result
set, as either a percentage of rows or blocks, rather than from the entire table.
BLOCK tells Oracle to use block sampling rather than row sampling. The
sampling_percentage, telling Oracle the total block or row percentage to be
included in the sample, may be anywhere between .000001 and 99. The optional
SEED clause is used to provide limited repeatability. If you specify a seed value,
Oracle will attempt to return the same sample from one execution of the query to
the next. The seed value can be between 0 and 4294967295. When SEED is
omitted, the resulting sample will change from one execution of the query to the
next. Sampling may be used only on single-table queries.

JOIN
Merges the result sets of two or more tables in a single query. Described in detail
in the upcoming “Oracle” subsection.

PARTITION BY expression[, . . .]
Defines a special kind of query called a partitioned_outer_join that extends the
conventional outer join syntax by applying a right or left outer join to a partition
of one or more rows specified by the expression. This is especially useful for
querying sparse data along a particular dimension of data, thereby returning rows
that otherwise would be omitted from the result set. For an example, see the
upcoming subsection “Partitioned outer joins.” The PARTITION BY clause can
be used on either side of an outer join, resulting in a UNION of the outer joins of
each of the partitions in the partitioned result set and the table on the other side
of the join. (When this clause is omitted, Oracle treats the entire result set as a
single partition.) PARTITION BY is not allowed with FULL OUTER JOIN.

WHERE... [[START WITH value] CONNECT BY [PRIOR] condition]
Filters records returned in the result set. Oracle allows the use of hierarchical
information within tables, whose filtering can be controlled with the START
WITH clause. START WITH identifies the rows that will serve as the parent rows

372 | Chapter 3: SQL Statement Command Reference

SELECT Statement > Oracle

in the result set. CONNECT BY identifies the relationship condition between the
parent rows and their child rows. The PRIOR keyword is used to identify the
parent rows instead of the child rows.

Hierarchical queries use the LEVEL pseudocolumn to identify the root node (1),
the child nodes (2), the grandchild nodes (3), and so forth. Other pseudocolumns
available in hierarchical queries are CONNECT_BY_ISCYCLE and CONNECT_
BY_ISLEAF. Hierarchical queries are mutually exclusive of the ORDER BY and
GROUP BY clauses. Do not use those clauses in a query containing START WITH
or CONNECT BY. You can order records from siblings of the same parent table
by using the ORDER SIBLINGS BY clause.

ORDER [SIBLINGS] BY order_expression {NULLS FIRST | NULLS LAST}
Sorts the result set of the query in order of order_expression. The order_
expression may be the column names, their aliases, or integers indicating their
ordinal positions. The ORDER SIBLINGS BY clause is used when querying hier-
archical tables with the CONNECT BY clause. ORDER SIBLINGS BY tells Oracle
to preserve any ordering specified in the CONNECT BY clause and applies the
ordering only to siblings (i.e., rows of equal level in the hierarchy). NULLS FIRST
and NULLS LAST specify that the records containing NULLs should appear
either first or last, respectively.

FOR UPDATE [OF [schema.]. . . {[NOWAIT | WAIT (integer)]}
Locks the rows of the result set so that other users cannot lock or update them
until you’re finished with your transaction. FOR UPDATE cannot be used in a
subquery, in queries using DISTINCT or GROUP BY, or in queries with set oper-
ators or aggregate functions. Child rows in a hierarchical table are not locked
when this clause is issued against the parent rows. The OF keyword is used to
lock only the selected table or view. Otherwise, Oracle locks all the tables or
views referenced in the FROM clause. When using OF, the columns are not
significant, though real column names (not aliases) must be used. The NOWAIT
and WAIT keywords tell Oracle either to return control immediately if a lock
already exists or to wait integer seconds before returning control to you, respec-
tively. If neither NOWAIT nor WAIT is specified, Oracle waits until the rows
become available.

Unlike some other database platforms, Oracle does not allow a SELECT statement
without a FROM clause. The following query, for example, is invalid:

SELECT 2 + 2;

As a workaround, Oracle has provided a special-purpose table called dual. Any time
you want to write a query that does not retrieve data from a user-created table, such as
to perform a calculation, use FROM dual. All of the following queries are valid:

SELECT 2 + 2
FROM dual;
SELECT (((52-4) * 5) * 8)
FROM dual;

Oracle’s implementation of SELECT is quite straightforward if you want to retrieve
data from a table. For example, Oracle allows the use of named queries. A named
query is, in a sense, an alias to an entire query that can save you time when you’re
writing a complex multi-subquery SELECT statement. For example:

WITH pub_costs AS
 (SELECT pub_id, SUM(job_lvl) dept_total
 FROM employees e
 GROUP BY pub_id),

Chapter 3: SQL Statement Command Reference | 373

SQLStatem
ent

Com
m

ands
SELECT Statement > Oracle

avg_costs AS
 (SELECT SUM(dept_total)/COUNT(*) avg
 FROM employee)
SELECT * FROM pub_costs
WHERE dept_total > (SELECT avg FROM avg_cost)
ORDER BY department_name;

In this example, we create two named subqueries—pub_costs and avg_costs—which
are later referenced in the main query. The named queries are effectively the same as
subqueries; however, subqueries must be written out in their entirety each time they’re
used, while named queries need not.

Oracle allows you to select rows from a single partition of a partitioned table using the
PARTITION clause, or to retrieve only a statistical sampling of the rows (as a
percentage of rows or blocks) of a result set using SAMPLE. For example:

SELECT *
FROM sales PARTITION (sales_2004_q3) sales
WHERE sales.qty > 1000;
SELECT *
FROM sales SAMPLE (12);

Flashback queries are a feature of Oracle that enable retrieval of point-in-time result
sets. For example, you could find out what everyone’s salary was yesterday before a
big change was applied to the database:

SELECT job_lvl, lname, fname
FROM employee
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY);

Another interesting Oracle extension of the standard query format is the hierarchic
query. Hierarchic queries return the results of queries against hierarchically designed
tables in the order you define. For example, the following query returns the names of
the employees and their positions in the hierarchy (represented by the position in the
org_char column), employee IDs, manager IDs, and job IDs:

SELECT LPAD(' ',2*(LEVEL-1)) || lname AS org_chart,
 emp_id, mgr_id, job_id
FROM employee
START WITH job_id = 'Chief Executive Officer'
CONNECT BY PRIOR emp_id = mgr_id;
ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
-------------- ----------- ---------- ------------------------
Cramer 101 100 Chief Executive Officer
 Devon 108 101 Business Operations Mgr
 Thomas 109 108 Acquisitions Manager
 Koskitalo 110 108 Productions Manager
 Tonini 111 108 Operations Manager
 Whalen 200 101 Admin Assistant
 Chang 203 101 Chief Financial Officer
 Gietz 206 203 Comptroller
Buchanan 102 101 VP Sales
 Callahan 103 102 Marketing Manager

In the previous query, the CONNECT BY clause defines the hierarchical relationship
of the emp_id value as the parent row equal to the mgr_id value in the child row,
while the START WITH clause specifies where in the hierarchy the result set should
begin.

374 | Chapter 3: SQL Statement Command Reference

SELECT Statement > Oracle

Oracle supports the following types of JOIN syntax (refer to the section on the JOIN
subclause for more details):

FROM table1 {
 CROSS JOIN table2 |
 INNER JOIN table2 [{ON join_condition |
 USING (column_list)}] |
 LEFT [OUTER] JOIN table2 [{ON join_condition
 | USING (column_list)}] |
 NATURAL [LEFT [OUTER]] JOIN table2 |
 RIGHT [OUTER] JOIN table2 [{ON join_condition
 | USING (column_list)}]|
 NATURAL [RIGHT [OUTER]] JOIN table2
 FULL [OUTER] JOIN table2 }

[CROSS] JOIN
Retrieves all records of both table1 and table2. This is syntactically the same as
FROM table1, table2 with no join conditions in the WHERE clause.

INNER JOIN
Retrieves those records of both table1 and table2 where there are matching
values in both tables according to the join condition. Note that the syntax FROM
table1, table2 with join conditions in the WHERE clause is semantically equiva-
lent to an inner join.

NATURAL
Shortcuts the need to declare a join condition by assuming a USING clause
containing all columns that are in common between the two joined tables. (Be
careful if columns have the same names but not the same datatypes or the same
sort of values!) LOB columns cannot be referenced in a natural join. Referencing a
LOB or collection column in a NATURAL JOIN will return an error.

LEFT [OUTER] JOIN
Retrieves all records in the leftmost table (i.e., table1) and matching records in
the rightmost table (i.e., table2). If there isn’t a matching record in table2, NULL
values are substituted for that table’s columns. You can use this type of join to
retrieve all the records in a table, even when there are no counterparts in the
joined table. For example:

SELECT j.job_id, e.lname
FROM jobs j
LEFT OUTER JOIN employee e ON j.job_id = e.job_id
ORDER BY d.job_id

RIGHT [OUTER] JOIN
Retrieves all records in the rightmost table, regardless of whether there is a
matching record in the leftmost table. A right join is the same as a left join, except
that the optional table is on the left.

FULL [OUTER] JOIN
Specifies that all rows from both tables be returned, regardless of whether a row
from one table matches a row in the other table. Any columns that have no value
in the corresponding joined table are assigned a NULL value.

ON join_condition
Declares the condition(s) that join the result set of two tables together. This takes
the form of declaring the columns in table1 and table2 that must match the join
condition. When multiple columns must be compared, use the AND clause.

Chapter 3: SQL Statement Command Reference | 375

SQLStatem
ent

Com
m

ands
SELECT Statement > Oracle

USING (column_list)
Acts as an alternative to the ON clause. Instead of describing the conditions of the
join, simply provide a column name (or columns separated by commas) that
appears in both tables. The column names must be identical in both tables and
cannot be prefixed with a table name or alias. USING cannot be used on LOB
columns of any type. The following two queries produce identical results. One is
written with a USING clause and the other specifies join conditions using ANSI
syntax:

SELECT column1
FROM foo
LEFT JOIN poo USING (column1, column2);

SELECT column1
FROM foo
LEFT JOIN poo ON foo.column1 = poo.column1
AND foo.column2 = poo.column2;

Note that older Oracle syntax for joins centered around the WHERE clause, and outer
joins were described using a (+) marker. ANSI JOIN syntax only became available with
Oracle 9i Release 1. Therefore, you will often see existing code using the old syntax.
For example, the following query is semantically equivalent to the earlier example of a
left outer join:

SELECT j.job_id, e.lname
FROM jobs j, employee e
WHERE j.job_id = e.job_id (+)
ORDER BY d.job_id

This older syntax is sometimes problematic and more difficult to read. You are
strongly advised to use the ANSI-standard syntax.

Partitioned outer joins

Partitioned outer joins are useful for retrieving sparse data that might otherwise not be
easily seen in a result set. (The ANSI standard describes partitioned outer joins, but
Oracle is the first to support them.) For example, our product table keeps track of all
products we produce, while the manufacturing table shows when we produce them.
Since we’re not continuously making every product at all times, the joined data
between the two tables may be sparse at times:

SELECT manufacturing.time_id AS time, product_name AS name,
 quantity AS qty
FROM product
PARTITION BY (product_name)
RIGHT OUTER JOIN times ON (manufacturing.time_id =
 product.time_id)
WHERE manufacturing.time_id
 BETWEEN TO_DATE('01/10/05', 'DD/MM/YY')
 AND TO_DATE('06/10/05', 'DD/MM/YY')
ORDER BY 2, 1;

returns the following:

time name qty
--------- ---------- ----------
01-OCT-05 flux capacitor 10
02-OCT-05 flux capacitor

376 | Chapter 3: SQL Statement Command Reference

SELECT Statement > Oracle

03-OCT-05 flux capacitor
04-OCT-05 flux capacitor
05-OCT-05 flux capacitor
06-OCT-05 flux capacitor 10
06-OCT-05 flux capacitor 8
01-OCT-05 transmorgrifier 10
01-OCT-05 transmorgrifier 15
02-OCT-05 transmorgrifier
03-OCT-05 transmorgrifier
04-OCT-05 transmorgrifier 10
04-OCT-05 transmorgrifier 11
05-OCT-05 transmorgrifier
06-OCT-05 transmorgrifier

The example query and result set show that partitioned outer joins are useful for
retrieving result sets that might otherwise be hard to query due to sparse data.

Flashback queries

Oracle 9i and later versions also supports flashback queries—queries that keep track
of previous values of the result requested by the SELECT statement. In the following
set of example code, we’ll issue a regular query on a table, change the values in the
table with an UPDATE statement, and then query the flashback version of the data.
First, the regular query:

SELECT salary FROM employees
WHERE last_name = 'McCreary';

The results are:

SALARY

3800

Now, we’ll change the value in the employees table and query the table to confirm the
current value:

UPDATE employees SET salary = 4000
WHERE last_name = 'McCreary ';
SELECT salary FROM employees
WHERE last_name = 'McCreary ';

The results are:

SALARY

4000

Finally, we’ll perform a flashback query to see what the salary value was in the past:

SELECT salary FROM employees
AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY)
WHERE last_name = 'McCreary';

The results are:

SALARY

3800

If we wanted to be more elaborate, we could find out all of the values of salary for a
given time period, say, the last two days:

Chapter 3: SQL Statement Command Reference | 377

SQLStatem
ent

Com
m

ands
SELECT Statement > Oracle

SELECT salary FROM employees
VERSIONS BETWEEN TIMESTAMP
 SYSTIMESTAMP - INTERVAL '1' MINUTE AND
 SYSTIMESTAMP - INTERVAL '2' DAY
WHERE last_name = 'McCreary';

The results are:

SALARY

4000
3800

The MODEL clause

Oracle Database 10g introduced a powerful new clause, called MODEL, which enables
spreadsheet-like result sets from a SELECT statement. The MODEL clause, in partic-
ular, is designed to alleviate the need for developers to extract data from the database
and put it into a spreadsheet, like Microsoft Excel, for further manipulation. It creates
a multidimensional array in which cells can be referenced by dimension values. For
instance, you might dimension an array on product and time, specifying column
values that you wish to access via combinations of those two dimensions. You can
then write rules that are similar in concept to spreadsheet formulas, that are executed
in order to change values in your model, or that create new values, and perhaps even
new rows, in your model.

Syntactically, the MODEL clause appears after the GROUP BY and HAVING clauses
and before the ORDER BY clause. The earlier syntax diagram for Oracle’s SELECT
statement shows the position of the clause, and the syntax details are presented here:

MODEL
 [{IGNORE | KEEP} NAV] [UNIQUE {DIMENSION | SINGLE REFERENCE}]
 [RETURN {UPDATED | ALL}]
 [REFERENCE reference_model_name ON (subquery)
 [PARTITION BY (column [AS alias][, ...])]
 DIMENSION BY (column [AS alias][, ...])
 MEASURES (column [AS alias][, ...])
 [{IGNORE | KEEP} NAV] [UNIQUE {DIMENSION | SINGLE REFERENCE}]]
[MAIN main_model_name]
 [PARTITION BY (column [AS alias][, ...])]
 DIMENSION BY (column [AS alias][, ...])
 MEASURES (column [AS alias][, ...])
 [{IGNORE | KEEP} NAV] [UNIQUE {DIMENSION | SINGLE REFERENCE}]]
 model_rules_clause
[RULES [UPSERT [ALL] | UPDATE] [{AUTOMATIC | SEQUENTIAL} ORDER]]
 [ITERATE (int) [UNTIL (ending_condition)]]
 ([{UPSERT [ALL] | UPDATE }]
 measure [...]
 [FOR { dimension | (dimension[, ...]) }
 { [IN ({subquery | literal[, ...]})] |
 [LIKE pattern] FROM start_literal TO end_literal
 {INCREMENT | DECREMENT} diff_literal }[, ...]
 [ORDER [SIBLINGS] BY (order_column [ASC | DESC]
 [NULLS FIRST | NULLS_LAST][, ...])]]
 = expr[, ...])

The parameters of this MODEL clause are as follows:

378 | Chapter 3: SQL Statement Command Reference

SELECT Statement > Oracle

{IGNORE | KEEP} NAV
Specifies whether NULL or absent values (NAV) are retained as NULLs (KEEP),
or whether they are replaced with suitable defaults (IGNORE): zero for numeric
types, 1-Jan-2000 for date types, an empty string for character types, and NULL
for anything else.

UNIQUE {DIMENSION | SINGLE REFERENCE}
Specifies the scope within which the database ensures that a given cell reference
points to a unique data value. Use DIMENSION to require that each possible cell
reference, whether on the left or right side of a rule, represent a single value. Use
SINGLE REFERENCE to perform that check only for those cell references that
appear on the righthand side of a rule.

RETURN {UPDATED | ALL} ROWS
Specifies whether all rows are returned from model processing, or whether only
updated row are returned.

reference_model_name
Defines a reference model on which you cannot perform calculations, but
containing values that you can reference from within your main query.

reference_model_name ON (subquery)
Specifies the name and rowsource for a reference model.

alias
Specifies an alias for a partition.

DIMENSION BY (column[, column . . .])
Specifies the dimensions for a model. Values from these columns represent the set
of index values that are used to identify cells in the multidimensional addressing
space.

MEASURES (column[, column . . .])
Specifies the values associated with each unique combination of dimensions (e.g.,
with each cell of the model).

PARTITION BY [(]column[, column . . .][)]
Splits a model into independent partitions based on the columns given. You can
not partition reference models.

main_model_name
Represents the model on which you perform work. Rows from your containing
SELECT feed into this model, rules are applied, and the resulting rows are
returned.

MAIN model_name
Begins the definition of the main model, and also gives that model a name.

RULES [UPSERT | UPDATE]
Specifies whether rules may both create new cells and update existing cells
(UPSERT), or whether they much only update existing cells (UPDATE). If you
want your model to be able to create new rows in your result set, specify
UPSERT. The default is UPSERT. You can also control this behavior on a rule-by-
rule basis; see rule in the syntax.

{AUTOMATIC | SEQUENTIAL} ORDER
Specifies whether the optimizer determines the order in which rules are evaluated
(AUTOMATIC), or whether rules are evaluated in the order in which you list
them (SEQUENTIAL). The default is SEQUENTIAL.

Chapter 3: SQL Statement Command Reference | 379

SQLStatem
ent

Com
m

ands
SELECT Statement > Oracle

ITERATE (int)
Requests that entire set of rules be evaluated repeatedly, int times. The default is
to evaluate the set of rules just once.

UNTIL (ending_condition)
Specifies a condition that, when met, causes iteration to end. You must still
specify a int, which serves as a safeguard against infinite loops.

measure[.. .]
A reference to one of the measures listed in the MEASURES clause. When you
reference a measure, the square brackets are part of the syntax. You must specify
all dimensions, either via a subquery or by listing them, and the specific value of
the measure associated with those dimensions will be returned, or referenced.

FOR ...
A FOR-loop iterating over one or many dimensions. The multi-iterating FOR-
loop is much like a subquery where each row of the result set represents a specific
combination of dimensions.

dimension_indexes
A list of values, whether from columns or expressions, that collectively identify a
unique cell in the model.

IN ({subquery | literal[, literal . . .]})
The source of values for a for-loop may be a subquery, or it may be a specific list
of literal values.

LIKE pattern
Allows you to insert dimension values into a pattern. Use a percent-sign to mark
the location at which you want dimension values to be inserted. For example, use
FOR x LIKE 'A%B' FROM 1 TO 3 INCREMENT 1 to generate values such as 'A1B',
'A2B', 'A3B'.

FROM start_literal TO end_literal {INCREMENT | DECREMENT} diff_literal
Defines the starting and ending for-loop values, and also the difference between
each subsequent value as the loop iterates from start to end.

ORDER BY (order_column[, . . .])
Imposes an order of evaluation with respect to the cells referenced from the left
side of a rule. Use this clause if you want a rule to be applied to cells in order.
Otherwise, you have no guarantee as to the order in which the rule is applied to
the cells that it affects.

Following is a list of functions that have been designed specifically for use in the
MODEL clause:

CV() or CV(dimension_column)
Returns the current value of a dimension column. May be used only on the right-
hand side of an expression in a rule. When the CV() form is used, the dimension
column is determined implicitly based on the function call’s position in a list of
dimension values.

PRESENTNNV(measure[dimension, dimension . . .], not_null, was_null)
Returns either not_null or was_null, depending on whether the specified measure
was NULL when model processing began. This function may be used only from
the righthand side of a rule expression.

380 | Chapter 3: SQL Statement Command Reference

SELECT Statement > Oracle

PRESENTV(measure[dimension, dimension . . .], did_exist, didnt_exist)
Returns either did_exist or didnt_exist, depending on whether the specified
measure existed when model processing began. This function may be used only
from the righthand side of a rule expression. Be aware that whether a measure
existed is a completely separate question from whether that measure was NULL.

ITERATION_NUMBER
Returns zero on the first iteration through the rules, 1 on the second iteration,
and so forth. This is useful when you want to base rule calculations on the
number of iterations.

The following example demonstrates that the MODEL clause gives a normal SELECT
statement the ability to construct a multidimensional array as a result set and calcu-
late inter-row and inter-array values interdependently. The newly calculated values are
returned as part of the SELECT statement’s result set:

SELECT SUBSTR(region,1,20) country, SUBSTR(product,1,15) product,
 year, sales
FROM sales_view
WHERE region IN ('USA','UK')
MODEL RETURN UPDATED ROWS
 PARTITION BY (region)
 DIMENSION BY (product, year)
 MEASURES (sale sales)
 RULES (
 sales['Bounce',2006] = sales['Bounce',2005] + sales['Bounce',2004],
 sales['Y Box', 2006] = sales['Y Box', 2005],
 sales['2_Products',2006] = sales['Bounce',2006]
 + sales['Y Box',2006])
ORDER BY region, product, year;

In this example, a query against the SALES_VIEW materialized view returns the sum
of sales over the course of a few years for the regions ‘USA’ and ‘UK’. The MODEL
clause then falls between the WHERE clause and the ORDER BY clause. Since
SALES_VIEW currently holds data for the years 2004 and 2005, we provide it rules to
calculate figures for the year 2006.

The subclause RETURN UPDATED ROWS limits the result set to the rows that were
created or updated by the query. Next, the example defines the logical divisions of the
data using data elements from the materialized view and using the PARTITION BY,
DIMENSION BY, and MEASURES subclauses. The RULES subclause then references
individual measures of the model by referring to combinations of different dimension
values much like a spreadsheet macro references worksheet cells with specific lookups
and references to ranges of values.

Oracle (and SQL Server using a somewhat different technique) both support a non-
ANSI, non-ISO query known as a pivot query. Although you should refer to the vendor
documentation for exactly how to write a pivot (or unpivot) query, an example here
will help you take advantage of this useful technique. A pivot query turns the result set
on its side, enabling you to extract more value from the data. In Oracle, you must first
create your pivot table. By using a pivot table, you can now turn the result “on its side”
so that the order_type column becomes the column headings:

CREATE TABLE pivot_table AS
SELECT * FROM (SELECT year, order_type, amt FROM sales)
PIVOT SUM(amt) FOR order_type IN ('retail', 'web');

SELECT * FROM pivot_table ORDER BY YEAR;

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3: SQL Statement Command Reference | 381

SQLStatem
ent

Com
m

ands
SELECT Statement > PostgreSQL

where the results are:

YEAR RETAIL WEB
---- ----------- ------
2004 7014.54
2005 9745.12
2006 16717.88 10056.6
2007 28833.34 39334.9
2008 66165.77 127109.4

PostgreSQL
PostgreSQL supports a straightforward implementation of the SELECT statement. It
supports JOIN and subquery applications. PostgreSQL also allows the creation of new
temporary or permanent tables using the SELECT...INTO syntax.

SELECT [ALL | DISTINCT [ON (select_item[, ...])]]
[AS alias [(alias_list)]][, ...]
[INTO [[TEMP]ORARY] [TABLE] new_table_name]
[FROM [ONLY] table1[.*] [AS alias][, ...]]
[[join type] JOIN table2 {[ON join_condition] |
 [USING (column_list)]}
[WHERE search_condition]
[GROUP BY group_by_expression]
[HAVING having_condition]
[ORDER BY order_by_expression [{ASC | DESC | USING operator][, ...] }]
[FOR UPDATE [OF column[, ...]]
[LIMIT {count | ALL}][OFFSET [number_of_records]]]

where:

ALL | DISTINCT [ON (select_item[, . . .]]
Supports the ALL and DISTINCT keywords of the ANSI SQL standard, where
ALL (the default) returns all rows (including duplicates) and DISTINCT elimi-
nates duplicate rows. In addition, DISTINCT ON eliminates duplicates on only
the specified select_items, not on all of the select_items in the query (example
below).

select_item
Includes the standard elements of a select_item list supported by the ANSI SQL
standard. In addition to the asterisk (*) shorthand to retrieve all rows, you can use
table_name.* to retrieve all rows from an individual table.

AS alias [(alias_list)]
Creates an alias or a list of aliases for one or more columns (or tables in the
FROM clause). AS is required for select_item aliases, but not for FROM table
aliases. (Some other database platforms treat the AS as an option when declaring
an alias.)

INTO [[TEMP]ORARY] [TABLE] new_table_name
Creates a new table from the result set of the query. Both TEMP and TEMPO-
RARY are acceptable usages to create a temporary table that is automatically
dropped at the end of the session. Otherwise, the command creates a permanent
table. Permanent tables created with this statement must have new, unique names
but temporary tables may have the same name as an existing table. If you create a
temporary table with the same name as an existing permanent table, the temporary
table is used to resolve all operations against that table name while in the same
session as the one that created it. Other sessions will continue to see the existing
permanent table.

382 | Chapter 3: SQL Statement Command Reference

SELECT Statement > PostgreSQL

FROM [ONLY] table1[, . . .]
Specifies one or more source tables where the data resides. (Be sure to specify a
join condition or a theta WHERE clause so that you don’t get a Cartesian product
of all records in all tables.) PostgreSQL allows inheritance in child tables of
declared parent tables. Use the ONLY keyword to suppress rows from the child
tables of your source table. (You can turn off this default inheritance globally with
the command SET SQL_Inheritance TO OFF.) PostgreSQL also supports nested
table subqueries (see the section on SUBQUERY later in this chapter). The FROM
clause is not needed when used for computation:

SELECT 8 * 40;

PostgreSQL will also include an implicit FROM on SELECT statements that include
schema-identified columns. For example, the following query is acceptable (though
not recommended):

SELECT sales.stor_id WHERE sales.stor_id = '6380';

GROUP BY group_by_expression
Allows group_by_expressions that can be the column name or the ordinal number
of the column (as determined by its position in the select_item list). An example
illustrates this concept under the ORDER BY entry just below.

ORDER BY order_by_expression
Allows order_by_expressions that can be the column name, its alias, or the
ordinal number of the column (as determined by its position in the select_item
list.) For example, the following two queries are functionally identical:

SELECT stor_id, ord_date, qty AS quantity
FROM sales
ORDER BY stor_id, ord_date DESC, qty ASC;

SELECT stor_id, ord_date, qty
FROM sales
ORDER BY 1, 2 DESC, quantity;

In single-table SELECT statements, you may also order by columns of the table that do
not appear in the select_item list. For example:

SELECT *
FROM sales
ORDER BY stor_id, qty;

ASC and DESC are ANSI standard. If not specified, ASC is the default. PostgreSQL
sorts NULL values as higher than any other value, causing NULL values to appear at
the end of ASC sorts and at the beginning of DESC sorts.

FOR UPDATE [OF column[, . . .]] LIMIT {count | ALL} [OFFSET [number_of_records]]
Limits the number of rows returned by the query to the maximum specified by
the integer count. The optional OFFSET keyword tells PostgreSQL to skip number_
of_records before starting to return rows. You should make sure you have an
ORDER BY clause when using LIMIT or you may get an unexpected result set.
(PostgreSQL 7.0 and greater treat LIMIT/OFFSET as a hint and use it to create
optimal, possibly very different query plans.)

Chapter 3: SQL Statement Command Reference | 383

SQLStatem
ent

Com
m

ands
SELECT Statement > PostgreSQL

PostgreSQL supports a handy variation of the DISTINCT clause—DISTINCT ON
(select_item[, . . .]). This variation allows you to pick and choose the exact columns
that are considered for elimination of duplications. PostgreSQL chooses the result set
in a manner much like it does for ORDER BY. You should include an ORDER BY
clause so that there’s no unpredictability as to which record is returned. For example:

SELECT DISTINCT ON (stor_id), ord_date, qty
FROM sales
ORDER BY stor_id, ord_date DESC;

The above query retrieves the most recent sales report for each store based on the most
recent order date. However, there would be no way to predict what single record
would have been returned without the ORDER BY clause.

PostgreSQL supports only these types of JOIN syntax:

FROM table1[, ...] {
 CROSS JOIN table2 |
 [INNER] JOIN table2 [{ON join_condition |
 USING (column_list)}] |
 LEFT [OUTER] JOIN table2 [{ON join_condition |
 USING (column_list)}] |
 NATURAL [LEFT [OUTER]] JOIN table2 |
 RIGHT [OUTER] JOIN table2 [{ON join_condition |
 USING (column_list)}]|
 NATURAL [RIGHT [OUTER]] JOIN table2
 FULL [OUTER] JOIN table2 }

where:

[CROSS] JOIN
Retrieves all records of both table1 and table2. This is syntactically the same as
FROM table1, table2. The results are a Cartesian product (usually a very bad thing!).

INNER JOIN
Retrieves those records of both table1 and table2 where there are matching
values in both tables according to the join condition. Note that the syntax FROM
table1, table2 is semantically equivalent to an inner join without a join condi-
tion (i.e., a Cartesian product). When using FROM table1, table2, be sure
include the join condition(s) in the WHERE clause. If you leave out a join type,
PostgreSQL assumes you want an inner join.

NATURAL
Shortcuts the need to declare a join condition by assuming a USING clause that
names all columns that have the same name in both tables. (Be careful if columns
have the same names but not the same datatypes or the same sort of values!)
NATURAL is mutually exclusive of a specified join condition via ON or USING.

LEFT [OUTER] JOIN
Retrieves all records in the leftmost table (i.e., table1) and matching records in the
rightmost table (i.e., table2). If there isn’t a matching record in table2, a NULL value
is substituted. You can use LEFT OUTER JOIN to find all the records in a table even
when there are no counterparts in the joined table. For example:

SELECT j.job_id, e.lname
FROM jobs j
LEFT OUTER JOIN employee e ON j.job_id = e.job_id
ORDER BY d.job_id

384 | Chapter 3: SQL Statement Command Reference

SELECT Statement > SQL Server

RIGHT [OUTER] JOIN
Retrieves all records in the rightmost table regardless of whether there are
matching records in the leftmost table. Analogous to a LEFT JOIN, but the join is
performed in the opposite direction.

FULL [OUTER] JOIN
Retrieves all records in the inner join in addition to all records that have no
matching records on both the left and right sides.

ON join_condition
Declares the condition(s) that join the result set of two (or more) tables together.
This takes the form of declaring the columns in table1 and table2 that must be
equal. When multiple columns must be compared, use the AND clause.

SQL Server
SQL Server supports most of the basic elements of the ANSI SELECT statement,
including all of the various join types. It also offers several variations on the SELECT
statement, including optimizer hints, the INTO clause, the TOP clause, GROUP BY
variations, COMPUTE, and WITH OPTIONS:

[WITH cte_expression[, ...]]
SELECT {[ALL | DISTINCT] | [TOP number [PERCENT] [WITH TIES]]}

select_item [AS alias]
[INTO new_table_name]
[FROM {[rowset_function | table1[, ...]]} [AS alias]]
[[join type] JOIN table2 [ON join_condition]]
[WHERE search_condition]
[GROUP BY [GROUPING SETS] {grouping_column[, ...] | ALL}]
[WITH { CUBE | ROLLUP }]
[HAVING search_condition]
[ORDER BY order_by_expression [ASC | DESC]]
[COMPUTE {aggregation (expression)}[, ...]
 [BY expression[, ...]]]
[FOR {BROWSE | XML {RAW | AUTO | EXPLICIT}
 [, XMLDATA][, ELEMENTS][, BINARY base64]}]
[OPTION (hint[, ...])]

where:

WITH cte_expression
Defines the temporary named result set of a common table expression, derived
from a SELECT statement, for the SELECT statement.

TOP number [PERCENT] [WITH TIES]
Indicates that only the specified number of rows should be retrieved in the query
result set. If PERCENT is specified, only the first number percent of the rows are
retrieved. WITH TIES is used only for queries with an ORDER BY clause. This
variation specifies that additional rows are returned from the base result set using
the same value in the ORDER BY clause, appearing as the last of the TOP rows.

INTO new_table_name
Creates a new table from the result set of the query. You can use this command to
create temporary or permanent tables. (Refer to SQL Server’s rules for creating
temporary or permanent tables in the section.) The SELECT...INTO command
quickly copies the rows and columns queried from other table(s) into a new table
using a non-logged operation. Since it is not logged, COMMIT and ROLLBACK
statements do not affect it.

Chapter 3: SQL Statement Command Reference | 385

SQLStatem
ent

Com
m

ands
SELECT Statement > SQL Server

FROM {[rowset_function | table1[, . . .]]}
Supports the standard behavior of the ANSI SQL FROM clause, including nested
table subqueries. In addition, SQL Server supports a set of extensions called
rowset_functions. Rowset functions allow SQL Server to source data from special
or external data sources such as XML streams, full-text search file structures (a
special structure in SQL Server used to store things like MS Word documents and
MS PowerPoint slide shows within the database), or external data sources (like an
MS Excel spreadsheet).

(See the SQL Server documentation for the full description of the available FROM
{[rowset_function | table1[, . . .]]} options. Among the many possibilities, SQL
Server currently supports the following rowset_functions:

CONTAINSTABLE
Returns a table derived from a specified table that contains at least one full-
text index TEXT or NTEXT column. The records derived are based upon
either a precise, fuzzy, weighted-match, or proximity-match search. The
derived table is then treated like any other FROM data source.

FREETEXTTABLE
Similar to CONTAINSTABLE, except that records are derived based upon a
meaning search of 'freetext_string'. FREETEXTTABLE is useful for ad hoc
queries against full-text tables, but less accurate than CONTAINSTABLE.

OPENDATASOURCE
Provides a means of sourcing data external to SQL Server via OLE DB
without declaring a linked server, such as an MS Excel spreadsheet or a
Sybase Adaptive Server database table. It is intended for the occasional ad
hoc query; if you frequently retrieve result sets from external data sources,
you should declare a linked server.

OPENQUERY
Executes a pass-through query against a linked server. It is an effective means
of performing a nested table subquery against a data source that is external
to SQL Server. The data source must first be declared as a linked server.

OPENROWSET
Executes a pass-through query against an external data source. It is similar to
OPENDATASOURCE, except that OPENDATASOURCE only opens the
data source; it does not actually pass through a SELECT statement. OPEN-
ROWSET is intended for occasional, ad hoc usage only.

OPENXML
Provides a queryable, table-like view to an XML string.

[GROUP BY [GROUPING SETS] {grouping_column[, . . .] | ALL}] [WITH {CUBE |
ROLLUP}]

SQL Server supports the ANSI SQL standard, with some variations. The first
noticeable difference is in syntax: where the ANSI standard clause is GROUP BY
[{CUBE | ROLLUP}] (grouping_column[, . . .]), SQL Server uses GROUP BY [ALL]
(group_by_expression) [WITH {CUBE | ROLLUP}]. The ALL keyword is the
default behavior and may not be explicitly used with grouping sets, cubes, or
rollups. To use grouping sets, you must explicitly use the GROUPING SETS
subclause. Note that grouping sets may not be nested. (SQL Server also supports
the clause GROUP BY (), which returns a grand total for the result set.)

386 | Chapter 3: SQL Statement Command Reference

SELECT Statement > SQL Server

GROUP BY ALL tells SQL Server to provide group_by categories even when the
matching aggregation is NULL (normally, SQL Server does not return a category
whose aggregation is NULL). It must be used only in conjunction with a WHERE
clause. WITH {CUBE | ROLLUP} tells SQL Server to perform additional higher-
level aggregates of the summary categories. In the simplest terms, ROLLUP
produces subtotals for the categories, while CUBE produces cross-tabulated totals
for the categories.

The GROUPING function can be used to help differentiate nor-
mally occurring NULLs from the NULLs generated by ROLLUP
and CUBE behavior.

This example groups royalty and aggregate advance amounts. The GROUPING
function is applied to the royalty column:

USE pubs
SELECT royalty, SUM(advance) 'total advance',
 GROUPING(royalty) 'grp'
 FROM titles
 GROUP BY royalty WITH ROLLUP

The result set shows two NULL values under royalty. The first NULL represents
the group of NULL values from this column in the table. The second NULL is in
the summary row added by the ROLLUP operation. The summary row shows the
total advance amounts for all royalty groups and is indicated by 1 in the grp
column.

Here is the result set:

royalty total advance grp
--------- --------------------- ---
NULL NULL 0
10 57000.0000 0
12 2275.0000 0
14 4000.0000 0
16 7000.0000 0
24 25125.0000 0
NULL 95400.0000 1

ORDER BY
Functions normally, as specified by the ANSI SQL standard. However, you
should remember that SQL Server allows a variety of collations that can affect
how the result set is evaluated. Thus, under certain collations “SMITH” and
“smith” might evaluate and sort differently. Also note that you cannot ORDER
BY columns of TEXT, NTEXT, or IMAGE datatype.

COMPUTE {aggregation (expression)}[, . . .] [BY expression[, . . .]]
Generates additional aggregations—usually totals—that appear at the end of the
result set. BY expression adds subtotals and control breaks to the result set.
COMPUTE and COMPUTE BY can be used simultaneously in the same query.
COMPUTE BY must be coupled with an ORDER BY clause, though the
expression used by COMPUTE BY can be a subset of the order_by_expression.
The aggregation may be any of these function calls: AVG, COUNT, MAX, MIN,
STDEV, STDEVP, VAR, VARP, and SUM. Examples are shown later in this
section.

Chapter 3: SQL Statement Command Reference | 387

SQLStatem
ent

Com
m

ands
SELECT Statement > SQL Server

COMPUTE, in any form, does not work with the DISTINCT keyword or with
TEXT, NTEXT, or IMAGE datatypes.

FOR {BROWSE | XML {RAW | AUTO | EXPLICIT}[, XMLDATA][, ELEMENTS][,
BINARY BASE64]}

FOR BROWSE is used to allow updates to data retrieved in a DB-Library browse
mode cursor. (DB-Library is the original access methodology for SQL Server and
has since been supplanted by OLE DB in most applications.) FOR BROWSE can
only be used against tables with a unique index and a column with the TIME-
STAMP datatype. FOR BROWSE cannot be used in UNION statements or when
a HOLDLOCK hint is active.

FOR XML
Used to extract the result set as an XML document to the SQL Server 2000
client only. You must further define the resulting XML document as either
RAW, AUTO, or EXPLICIT. RAW transforms each returned row into a
generic XML element with the <row/> element tag. AUTO transforms the
results into a simple, nested XML tree. Finally, EXPLICIT transforms the
resulting XML tree into an explicitly defined shape. However, the query must
be written such that the desired nesting information is specified explicitly.
You may optionally attach a few extra control features.

XMLDATA
Returns the schema appended to the XML document. ELEMENTS returns
the columns as subelements instead of mapping them to XML attributes.

BINARY BASE6
Returns the binary data in base64-encoded format. (Binary is the default
format for the AUTO mode but must be declared explicitly for RAW and
EXPLICIT.) FOR XML cannot be used in any sort of subquery, in conjunc-
tion with a COMPUTE clause or a BROWSE clause, in the definition of a
view, in the result set of a user-defined function, or in a cursor. Aggregations
and GROUP BY are mutually exclusive of FOR XML AUTO.

OPTION (hint[, . . .])
Replaces elements of the default query plan with your own. Because the opti-
mizer usually picks the best query plan for any query, you are strongly
discouraged from placing optimizer hints into your queries. Refer to the SQL
Server documentation for more information on hints.

Here’s an example of SQL Server’s SELECT...INTO capability. This example creates a
table called non_mgr_employees using SELECT...INTO. The table contains the emp_
id, first name, and last name of each non-manager from the employee table, joined
with their job descriptions (taken from the jobs table):

-- Query
SELECT e.emp_id, e.fname, e.lname,
 SUBSTRING(j.job_desc,1,30) AS job_desc
INTO non_mgr_employee
FROM employee e
JOIN jobs AS j ON e.job_id = j.job_id
WHERE j.job_desc NOT LIKE '%MANAG%'
ORDER BY 2,3,1

The newly created and loaded table non_mgr_employee now can be queried like any
other table.

388 | Chapter 3: SQL Statement Command Reference

SELECT Statement > SQL Server

SELECT. . . INTO should be used only in development or non-
production code because it is not logged or recoverable.

Many of SQL Server’s extensions to the ANSI SELECT statement involve the GROUP
BY clause. For example, the GROUP BY ALL clause causes the aggregation to include
NULL valued results when they would normally be excluded. The following two
queries are essentially the same except for the ALL keyword, yet they produce very
different result sets:

-- Standard GROUP BY
SELECT type, AVG(price) AS price
FROM titles
WHERE royalty <= 10
GROUP BY type
ORDER BY type
-- Results
type price
------------ -------
business 17.3100
mod_cook 19.9900
popular_comp 20.0000
psychology 13.5040
trad_cook 17.9700

-- Using GROUP BY ALL
SELECT type, AVG(price) AS price
FROM titles
WHERE royalty = 10
GROUP BY ALL type
ORDER BY type
-- Results
type price
------------ -------
business 17.3100
mod_cook 19.9900
popular_comp 20.0000
psychology 13.5040
trad_cook 17.9700
UNDECIDED NULL

COMPUTE has a number of permutations that can impact the result set retrieved by
the query. The following example shows the sum of book prices broken out by type of
book and sorted by type and then price:

-- Query
SELECT type, price
FROM titles
WHERE type IN ('business','psychology')
 AND price > 10
ORDER BY type, price
COMPUTE SUM(price) BY type
-- Results

Chapter 3: SQL Statement Command Reference | 389

SQLStatem
ent

Com
m

ands
SELECT Statement > SQL Server

type price
------------ ---------------------
business 11.9500
business 19.9900
business 19.9900
 sum
 =====================
 51.9300
type price
------------ ---------------------
psychology 10.9500
psychology 19.9900
psychology 21.5900
 sum
 =====================
 52.5300

The COMPUTE clause behaves differently if you do not include BY. The following query
retrieves the grand total of prices and advances for books with prices over $16.00:

-- Query
SELECT type, price, advance
FROM titles
WHERE price > $16
COMPUTE SUM(price), SUM(advance)
-- Result
type price advance
------------ --------------------- ---------------------
business 19.9900 5000.0000
business 19.9900 5000.0000
mod_cook 19.9900 .0000
popular_comp 22.9500 7000.0000
popular_comp 20.0000 8000.0000
psychology 21.5900 7000.0000
psychology 19.9900 2000.0000
trad_cook 20.9500 7000.0000
 sum
 =====================
 165.4500
 sum
 =====================
 41000.0000

You can even use COMPUTE BY and COMPUTE in the same query to produce
subtotals and grand totals. (For the sake of brevity, we’ll show an example query, but
not the result set.) In this example, we find the sum of prices and advances by type for
business and psychology books that cost over $16.00:

SELECT type, price, advance
FROM titles
WHERE price > $16
 AND type IN ('business','psychology')
ORDER BY type, price
COMPUTE SUM(price), SUM(advance) BY type
COMPUTE SUM(price), SUM(advance)

390 | Chapter 3: SQL Statement Command Reference

SELECT Statement > SQL Server

Don’t forget that you must include the ORDER BY clause with a COMPUTE BY
clause! (You do not need an ORDER BY clause with a simple COMPUTE clause
without the BY keyword.) There are many permutations that you can perform in a
single query—multiple COMPUTE and COMPUTE BY clauses, GROUP BY with a
COMPUTE clause, and even COMPUTE with an ORDER BY statement. It’s actually
fun to tinker around with the different ways you can build queries using COMPUTE
and COMPUTE BY. It’s not theme park fun, but what’dya want? This is a program-
ming book!

SQL Server also includes the FOR XML clause, which converts the standard result set
output into an XML document. This is very useful for web database applications. You
can execute queries with FOR XML directly against the database or within a stored
procedure. For example, we can retrieve one of our earlier example queries as an XML
document:

SELECT type, price, advance
FROM titles
WHERE price > $16
 AND type IN ('business','psychology')
ORDER BY type, price
FOR XML AUTO

The results aren’t particularly pretty, but they’re very usable:

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<titles type="business " price="19.9900"
advance="5000.0000"/><titles type="business " price="19.9900"
advance="5000.0000"/>
<titles type="psychology" price="19.9900" advance="2000.0000"/><titles
type="psychology" price="21.5900" advance="7000.000

If you wanted the XML schema and/or XML elements fully tagged in the output, you
could simply append the XMLDATA and ELEMENTS keywords to the FOR XML
clause. The query would look like this:

SELECT type, price, advance
FROM titles
WHERE price > $16
 AND type IN ('business','psychology')
ORDER BY type, price
FOR XML AUTO, XMLDATA, ELEMENTS

SQL Server also implements a number of other enhancements to support XML. For
example, the OPENXML rowset function can be used to insert an XML document into
a SQL Server table. SQL Server also includes system stored procedures that can help
you prepare and manipulate XML documents.

SQL Server (and Oracle, using a somewhat different technique) both support a non-
ANSI, non-ISO query known as a pivot query. Although you should refer to the vendor
documentation for details on exactly how to write a pivot (or unpivot) query, an
example here will help you take advantage of this useful technique. A pivot query
turns the result set on its side, enabling you to extract more value from the data. For
example, the following query produces a two-column, four-row result set:

SELECT days_to_make, AVG(manufacturing_cost) AS Avg_Cost
FROM manufacturing.products
GROUP BY days_to_make;

Chapter 3: SQL Statement Command Reference | 391

SQLStatem
ent

Com
m

ands
SETStatement

where the result set is:

days_to_make Avg_Cost
0 5
1 225
2 350
4 950

By using a pivot query, you can now turn the result “on its side” so that the days_to_
make column values become the column headings and the query returns one row with
five columns:

SELECT 'Avg_Cost' As Cost_by_Days, [0], [1], [2], [3], [4]
FROM (SELECT days_to_make, manufacturing_cost FROM manufacturing.products)
AS source
PIVOT
 (AVG(manufacturing_cost) FOR days_to_make IN ([0], [1], [2], [3], [4]))
AS pivottable;

where the results are:

Cost_by_Days 0 1 2 3 4
Avg_Cost 5 225 350 NULL 950

See Also
JOIN
WHERE

SET Statement

The SET statement assigns a value to a runtime variable. The variables may be platform-
specific system variables or user-defined variables.

SQL2003 Syntax
SET variable = value

Keywords
variable

Denotes a system or user-defined variable.

value
Denotes a string or numeric value appropriate to the system or user-defined
variable.

Rules at a Glance
Variable values are set for the duration of the session. The value assigned to a variable
must match the datatype of the variable. For example, you cannot assign a string value

Platform Command

MySQL Supported

Oracle Not supported

PostgreSQL Supported

SQL Server Supported

392 | Chapter 3: SQL Statement Command Reference

SET Statement > MySQL

to a variable that is declared with a numeric datatype. The actual command to create a
variable varies from platform to platform. For example, Oracle and SQL Server use the
DECLARE statement to declare a variable name and datatype, but other platforms
may use other means.

The value assigned to a variable does not have to be a literal value. It may be a
dynamic value that is derived from a subquery. For example, we assign the maximum
employee ID to the emp_id_var variable in the following example:

DECLARE emp_id_var CHAR(5)
SET emp_id_var = (SELECT MAX(emp_id)
 FROM employees WHERE type = 'F')

In this example, an employee type of ‘F’ indicates that the employee is a full-time, sala-
ried employee.

Programming Tips and Gotchas
The SET statement is easily transportable between the database platforms. Only
Oracle uses a consistently different scheme for assigning values to variables. In the
following example, we declare a variable on SQL Server called emp_id_var and assign a
value to it:

DECLARE emp_id_var CHAR(5)
SET emp_id_var = '67888'

Now, we will perform the same action on an Oracle server:

DECLARE emp_id_var CHAR(5);
emp_id_var := '67888';

You’ll find more on these differences in the sections that follow.

MySQL
SET, as a keyword in MySQL, has several uses. First, SET is a MySQL datatype that
allows multiple comma-separated values. In addition, SET may assign a value to a user
variable. That latter use is described here, and the syntax for it is:

SET @variable = value[, ...]

When setting multiple values in a single statement, set each value separately with a
comma between them:

SET new_var.order_qty = 125, new_var.discount = 4;

In addition, MySQL allows the use of SELECT to assign values to variables in the same
fashion as that described under the ANSI description of SET. However, there are some
weaknesses when using the SELECT method for assigning values to variables. The
primary problem is that values are not assigned immediately within the SELECT state-
ment. Thus, in the following example:

SELECT (@new_var := row_id) AS a,
 (@new_var + 3) AS b
FROM table_name;

the @new_var variable will not possess the newly selected value of row_id + 3;
instead, it will retain the value from the beginning of the statement. For this reason, it
is a best practice to assign only one value to a variable at a time.

Chapter 3: SQL Statement Command Reference | 393

SQLStatem
ent

Com
m

ands
SET Statement > PostgreSQL

Oracle
The SET clause is not supported as the method of assigning values to variables in
Oracle. Instead, user-defined variables are simply assigned values using the assign-
ment indicator :=. The basic syntax is shown here:

variable := value

PostgreSQL
The PostgreSQL command SET is used to set a runtime variable:

SET [SESSION | LOCAL] variable { TO | = } { value | DEFAULT }

The runtime variable may be set to a string literal designated by value, or to its default
value using the DEFAULT keyword. The optional SESSION keyword specifies that the
command takes effect only for the current session (the default when both SESSION
and LOCAL are omitted). The optional LOCAL keyword indicates that the command
takes effect only for the current transaction; behavior falls back to whatever the
session-level settings are after the current transaction is committed or rolled back.

In addition, some client configuration settings may be configured using SET (though
you can also use the function SET_CONFIG for equivalent functionality). PostgreSQL
supports setting additional runtime values for:

[CLIENT_ENCODING] NAMES
Sets multibyte client encoding on PostgreSQL installations built with multibyte
support.

DATESTYLE
Sets the style used to display dates and times. Supported styles include:

ISO
Depicts date and time as YYYY-MM-DD HH:MM:SS (the default ISO 8601
style).

SQL
Depicts the Oracle/Ingres style of date and time, not the date and time style
mandated by ANSI SQL.

Postgresql
Depicts the long-time date and time format in PostgreSQL (this is no longer
the default).

German
Depicts the date and time as DD.MM.YYYY.

You can further qualify the SQL and Postgresql styles using the keywords European,
US, and NonEuropean, which give dates in the forms DD/MM/YYYY, MM/DD/
YYYY, and MM/DD/YYYY, respectively (for example, SET DATESTYLE = SQL,
European;).

SEED
Sets the internal random number generator seed. The value may be any floating-
point number between 0 and 1 multiplied by 231–1. This value can also be set via
the PostgreSQL setseed function. For example:

SELECT setseed(value);

SERVER_ENCODING
Enables multibyte server encoding on servers built with multibyte support.

394 | Chapter 3: SQL Statement Command Reference

SET Statement > SQL Server

TIME ZONE {timezone | LOCAL | DEFAULT}
Sets the timezone to timezone, or to the local time zone (i.e., the default for the
server operating system) using either LOCAL or DEFAULT. Refer to the vendor
documentation for the full listing of allowable time zones.

SQL Server
SQL Server supports SET for variable assignments, provided the variables have previ-
ously been created with the DECLARE statement, and to define values for cursor
variables in SQL Server. (SQL Server also uses the SET statement for a variety of other
purposes, such as enabling or disabling session flags like SET NOCOUNT ON.) The
platform-specific syntax is:

SET { { @variable = value }
 | { @cursor_variable = { @cursor_variable | cursor_name
 | { CURSOR [FORWARD_ONLY | SCROLL]
 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
 [TYPE_WARNING]
FOR select_statement
 [FOR { READ ONLY | UPDATE [OF column_name[, ...]] }
] } } } }

The command does not support the DEFAULT keyword, but otherwise supports all
the syntax of the ANSI command. The value for server_name must reference a connec-
tion named in a previous CONNECT statement, either as a literal or as a variable.

SET CONNECTION Statement

The SET CONNECTION statement allows users to switch between several open
connections on one or more database servers.

SQL2003 Syntax
SET CONNECTION {DEFAULT | connection_name}

Keywords
connection_name

Names the connection of the current session. If the connection_name is different
from the current session connection name, the connection context is switched to
the connection_name.

DEFAULT
Switches to the default connection from any other connection. This enables rapid
switching to the default connection without knowing its name.

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Supported, with limitations

Chapter 3: SQL Statement Command Reference | 395

SQLStatem
ent

Com
m

ands
SET CONNECTION Statement > All Platforms

Description
This command does not end a connection. Instead, it switches from the current
connection to the connection named (making it the current connection), or from the
current connection to the default connection. When switching between connections,
the old connection becomes dormant (without committing any changes), while the
new connection becomes active.

Rules at a Glance
SET CONNECTION does not create a connection; it merely switches your connection
context. Use the CONNECT command to create a new connection, and use DISCON-
NECT to terminate a connection.

Programming Tips and Gotchas
The SET CONNECTION command is not frequently used, since many users connect
programmatically via ODBC, JDBC, or some other connectivity method. However, on
those platforms that support SET CONNECTION, the command can be very useful
for rapidly changing connection properties without terminating any existing
connections.

MySQL
Not supported.

Oracle
Not supported.

PostgreSQL
Not supported.

SQL Server
SQL Server supports SET CONNECTION, but only in embedded SQL, not within its
ad hoc querying tool, SQL Query Analyzer. Although SQL Server supports the full
SQL2003 syntax within SQL embedded in other programs, such as a C++ program, it
is not used very often. Most prefer the SQL Server-specific command USE instead. The
platform-specific SET CONNECTION syntax is:

SET CONNECTION connection_name

This command does not support the DEFAULT keyword but is otherwise the same as
the ANSI command. The value for connection_name must reference a connection
named in a previous CONNECT statement, either as a literal or as a variable.

Here is a full T-SQL program in SQL Server that shows CONNECT, DISCONNECT,
and SET CONNECTION:

EXEC SQL CONNECT TO chicago.pubs AS chicago1 USER sa;
EXEC SQL CONNECT TO new_york.pubs AS new_york1 USER read-only;
-- Opens connections to the servers named "chicago" and
 "new_york"
EXEC SQL SET CONNECTION chicago1;
EXEC SQL SELECT name FROM employee INTO :name;
-- Sets the chicago1 connection as active and performs work
 within that session

396 | Chapter 3: SQL Statement Command Reference

SET CONSTRAINT Statement > All Platforms

EXEC SQL SET CONNECTION new_york1;
EXEC SQL SELECT name FROM employee INTO :name;
-- sets the new_york1 connection as active and performs work
 within that session
EXEC SQL DISCONNECT ALL;
-- Terminates all sessions. You could alternately use two
-- DISCONNECT commands, one for each named connection.

See Also
CONNECT
DISCONNECT

SET CONSTRAINT Statement

The SET CONSTRAINT statement defines, for the current transaction, whether a
deferrable constraint is checked after each DML statement or when the transaction is
finally committed. If the session is not currently in an open transaction, the setting
applies to the next transaction.

SQL2003 Syntax
SET CONSTRAINT {constraint_name[, ...] | ALL} {DEFERRED | IMMEDIATE}

Keywords
constraint_name[, . . .] | ALL

Names one or more deferrable constraints where the setting will apply. The
keyword ALL sets the constraint mode for all deferrable constraints of the current
transaction.

DEFERRED
Checks the conditions specified by the deferrable constraint when the transaction
is committed, rather than when the DML statements are issued.

IMMEDIATE
Checks the conditions specified by the deferrable constraint immediately after
each DML statement is issued, rather than when the transaction is committed.

Rules at a Glance
SET CONSTRAINT defines a value for the constraint mode of all deferrable constraints of
the current transaction. If the session is not currently in a transaction, the SET
CONSTRAINT statement applies to the next transaction issued during the session.

The following example sets all deferrable constraints to be checked immediately
following the issuance of each DML statement:

SET CONSTRAINT ALL IMMEDIATE;

Platform Command

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Not supported

Chapter 3: SQL Statement Command Reference | 397

SQLStatem
ent

Com
m

ands
SET PATH Statement > All Platforms

The next example sets two constraints to defer their data modifications until the trans-
action is committed:

SET CONSTRAINT scott.hr_job_title, scott.emp_bonus DEFERRED:

Programming Tips and Gotchas
Constraints, when they are defined, may be specified as DEFERRABLE or NOT
DEFERRABLE. The SET CONSTRAINT statement will fail if it is issued against a
specific constraint that was defined as NOT DEFERRABLE.

MySQL
Not supported.

Oracle
Oracle supports the ANSI standard exactly as described, except that SET
CONSTRAINTS is allowed, as well as SET CONSTRAINT.

PostgreSQL
PostgreSQL supports the ANSI-standard syntax exactly as described. Currently,
however, PostgreSQL allows SET CONSTRAINT only against foreign key constraints,
not check and unique constraints, which are always considered IMMEDIATE.

SQL Server
Not supported.

SET PATH Statement

The SET PATH statement changes the value of the CURRENT PATH setting to one or
more schemas.

SQL2003 Syntax
SET PATH schema_name[, ...]

Keywords
schema_name[, . . .]

Defines one or more schemas as the current path.

Rules at a Glance
SET PATH defines one or more schemas used to qualify an unqualified routine name
(that is, functions, procedures, and methods).

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

398 | Chapter 3: SQL Statement Command Reference

SET ROLE Statement > All Platforms

The following example sets the current path (i.e., schema name) for unqualified
objects to scott:

SET PATH scott;

Then, whenever a routine is referenced during the current session, it will assume the
scott schema if no schema is identified.

Programming Tips and Gotchas
When referencing multiple schema names, all the schemas must belong to the current
database. (The schemas cannot be on a remote database.)

SET PATH does not apply the schema to unqualified objects like tables or views; it
only applies to routines.

SET PATH is not supported on any of the platforms discussed in this book.

See Also
SET SCHEMA

SET ROLE Statement

The SET ROLE statement enables and disables specific roles for the current session.

SQL2003 Syntax
SET ROLE {NONE | role_name}

Keywords
NONE

Assigns the CURRENT ROLE role to the current session.

role_name
Associates the set of privileges associated with the named role with the current
session.

Rules at a Glance
When a user session is opened using the CONNECT statement, issuing the SET ROLE
statement grants that session the privileges associated with a role. The SET ROLE
command can be issued only outside of a transaction.

The value for role_name must reference a valid user role existing on the server. You
may specify the role name either as a literal or through a variable.

Programming Tips and Gotchas
Sessions are created using the CONNECT statement, while roles are created using the
CREATE ROLE statement.

Platform Command

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Not supported

Chapter 3: SQL Statement Command Reference | 399

SQLStatem
ent

Com
m

ands
SET ROLE Statement > All Platforms

Most database platforms offer some method of setting or changing the role used
during a user session. SET ROLE is the ANSI-standard approach to setting the role
used during a user session, but it is not widely supported by the different database
platforms. The following sections detail the analogous commands supported by the
platforms discussed in this book; check your platform’s documentation for more
information.

MySQL
SET ROLE is not supported. An analogous method to control connection settings in
MySQL is controlled in the [client] section of the .my.cnf configuration file in the
home directory. For example:

[client]
host=server_name
user=user_name
password=client_password

To rapidly change between user roles, you can reassign host, user, and password
connection properties, respectively, by assigning new values to MYSQL_HOST, USER
(for Windows only), and MYSQL_PWD (though MYSQL_PWD is insecure in that
other users can view this file).

Oracle
When a user initiates a connection, Oracle explicitly assigns roles to that user. The
role(s) under which the session is operating can be changed with the SET ROLE
command, assuming the user is a member of the assigned role. Oracle uses the MAX_
ENABLED_ROLES initialization parameter (in the INIT.ORA file) to control the
maximum number of roles that can be enabled concurrently. The Oracle syntax is:

SET ROLE { role_name [IDENTIFIED BY password][, ...]
| [ALL [EXCEPT role_name[, ...]]
| NONE };

Options for the SET ROLE command include:

role_name
Declares a valid role name (or names) already created within Oracle, of which the
user must already be a member. Any roles not specified here are unavailable
throughout the current session. You can enable multiple roles by providing a list,
placing a comma between each role listed.

IDENTIFIED BY password
If the role_name has a password, that password must be specified using this
clause.

ALL
Enables all roles that are granted to the current user, including roles that are
granted through other roles. Cannot be used with the IDENTIFIED BY clause.

EXCEPT
Specifies a list of roles to exclude from a SET ROLE ALL command.

NONE
Disables all roles, including the default role.

400 | Chapter 3: SQL Statement Command Reference

SET ROLE Statement > All Platforms

Roles with passwords may be accessed only through the statement SET responsibility
role_name IDENTIFIED BY password. For example, we can use this statement to
enable the specific roles read_only and updater—identified by the passwords editor
and red_marker, respectively—for the current session:

SET ROLE
 read_only IDENTIFIED BY editor,
 updater IDENTIFIED BY red_marker;

To enable all roles except the read_write role, we can issue this command:

SET ROLE ALL EXCEPT read_write;

PostgreSQL
SET ROLE is not supported in PostgreSQL. However, the ANSI SQL command SET
SESSION AUTHORIZATION is supported and can achieve somewhat similar results.

SQL Server
Not supported.

See Also
CONNECT
CREATE ROLE
DISCONNECT
SET SESSION AUTHORIZATION

SET SCHEMA Statement

The SET SCHEMA statement changes the value of the CURRENT SCHEMA setting to
a user-specified schema.

SQL2003 Syntax
SET SCHEMA schema_name[, ...]

Keywords
schema_name[, . . .]

Defines one or more schemas as the current path.

Rules at a Glance
SET SCHEMA defines a user-defined schema to use to qualify an unqualified object,
such as a table or view.

The following example sets the current schema for unqualified objects to scott:

SET SCHEMA scott;

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

Chapter 3: SQL Statement Command Reference | 401

SQLStatem
ent

Com
m

ands
SET SESSION AUTHORIZATION Statement > All Platforms

Then, whenever an object is referenced during the current session, it will assume the
scott schema if no schema is identified.

Programming Tips and Gotchas
The SET SCHEMA statement cannot assign a schema from a remote database as the
CURRENT SCHEMA.

SET SCHEMA does not apply the schema to unqualified routines such as functions,
procedures, and methods; it applies only to database objects such as tables and views.

This command is not supported on any of the platforms discussed in this book.

See Also
SET PATH

SET SESSION AUTHORIZATION Statement

The SET SESSION AUTHORIZATION statement sets the user identifier for the
current session.

SQL2003 Syntax
SET SESSION AUTHORIZATION username

Keywords
username

Sets the session user and the current user of the SQL session to the context of
username, where username may be a literal, a parameter, or a host variable.

Rules at a Glance
This command allows you to switch between users and to run under their permissions.

Programming Tips and Gotchas
Some platforms allow you to use special shortcut keywords like SESSION USER and
CURRENT USER. These are usually the same thing: the username of the currently
active session provided by the client. However, SESSION USER and CURRENT USER
can diverge in a session when SETUID functions and other similar mechanisms are
invoked.

Superuser permissions are required to invoke the SET SESSION AUTHORIZATION
command, but you will still be able to switch back to the initial user session even if the
current user session does not normally have permission to run SET SESSION
AUTHORIZATION.

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Supported

SQL Server Not supported

402 | Chapter 3: SQL Statement Command Reference

SET SESSION AUTHORIZATION Statement > All Platforms

You might also wish to check the value of the SESSION_USER and CURRENT_USER
functions with this SQL statement:

SELECT SESSION_USER, CURRENT_USER;

Normally, you should issue SET SESSION AUTHORIZATION before any transac-
tions, to set the session and current user values for all transactions that follow. It must
be issued as the only command in its transaction batch.

MySQL
Not supported. You must disconnect your session from MySQL and then reconnect to
utilize another set of user privileges.

Oracle
Not supported. Similar functionality is achieved using the CONNECT statement or by
logging off the server and reconnecting.

PostgreSQL
PostgreSQL supports the ANSI standard for this command. The only difference, and it
is a minor one, is that the ANSI standard does not allow this command during a trans-
action, while PostgreSQL does not care one way or the other.

SQL Server
Not supported. Similar functionality is achieved with the CONNECT statement or by
logging off the server and reconnecting.

See Also
CONNECT
GRANT
SESSION_USER

SET TIME ZONE Statement

The SET TIME ZONE statement changes the current session’s time zone if it needs to
be different from the default time zone.

SQL2003 Syntax
SET TIME ZONE {LOCAL | INTERVAL {+ | -}'00:00' [HOUR TO MINUTE]}

Keywords
LOCAL

Sets the current session’s time zone to that of the local server.

Platform Command

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Not supported

Chapter 3: SQL Statement Command Reference | 403

SQLStatem
ent

Com
m

ands
SET TIME ZONE Statement > All Platforms

INTERVAL
Specifies the time zone offset from Coordinated Universal Time (UTC) in terms of
hours and minutes. The offset can be either an increase (with +) or decrease (with –)
in relation to the default time.

HOUR TO MINUTE
Specifies the datatype of the TIME ZONE value.

Rules at a Glance
This is a relatively simple command that either sets the user session time zone to that
of the server (LOCAL), or sets the time zone in relation to Coordinated Universal Time
(formerly Greenwich Mean Time, or GMT). Thus, an INTERVAL of 2 would advance
the time zone two hours greater than UTC, while an INTERVAL of –6 would reduce
the time zone by six hours from UTC to the United States central time zone.

Programming Tips and Gotchas
Like most SET commands, SET TIME ZONE can be executed only outside of an
explicit transaction. In other words, you do not need to encapsulate the command
within a START or BEGIN TRAN and a COMMIT TRAN statement.

MySQL
Not supported.

Oracle
In Oracle9i and higher, you can use the following ALTER SESSION command to set
the session time zone:

ALTER SESSION
 SET TIME_ZONE = {'[+ | -] hh:mm'
 | LOCAL
 | DBTIMEZONE
 | 'region'}

Use LOCAL to revert back to your session’s original default time zone, Use DBTIME-
ZONE to set your session time zone to be the database time zone, and use 'region' to
specify a time zone region name such as ‘EST’ or ‘PST’. Use an offset such as ‘-5:00’ to
specify your time zone in terms of an hour and minute displacement from UTC. A
displacement of ‘-5:00’ means that your time is five hours behind UTC time (e.g., 5:00
A.M. your time is 10:00 A.M. UTC time).

To retrieve a list of valid time zone region names, issue the following query:

SELECT tzname FROM v$timezone_names;

Both of the following commands set the time zone to Eastern Standard Time. The first
command does this by specifying the appropriate displacement from UTC, while the
second command specifies the time zone region name:

ALTER SESSION SET TIME_ZONE = '-5:00';
ALTER SESSION SET TIME_ZONE = 'EST';

Oracle’s time zone support is complex. Steven Feuerstein’s Oracle PL/SQL Program-
ming (O’Reilly) contains a good explanation of it in the chapter on datetime datatypes.

404 | Chapter 3: SQL Statement Command Reference

SET TIME ZONE Statement > All Platforms

PostgreSQL
PostgreSQL allows a session’s time value to be set to the server default by using the
LOCAL or the DEFAULT clause:

SET TIME ZONE {'timezone' | LOCAL | DEFAULT };

There are some variations from the ANSI standard:

'timezone'
Specifies a time zone by name. The possible values for time zone depend on the
operating system. For example, the file /usr/share/zoneinfo contains the database
of time zones for Linux servers.

LOCAL / DEFAULT
Sets the current session’s time values to those of the default time zone as deter-
mined by the local server.

For example, ‘PST8PDT’ is a valid time zone for California on Linux systems, while
‘Europe/Rome’ is a valid time zone for Italy on Linux and other systems. If you specify
an invalid time zone, the command sets the time zone to UTC.

When increasing the time zone over UTC, the plus sign is optional.

The following example sets the PostgreSQL time zone to Pacific Standard Time:

SET TIME ZONE 'PST8PDT';

Next, the time for the current session is returned to the server’s default time zone:

SET TIME ZONE LOCAL;

SQL Server
Not supported.

SET TRANSACTION Statement

The SET TRANSACTION statement controls many characteristics of data modifica-
tion, primarily the read/write characteristics and isolation level of a transaction.

SQL2003 Syntax
SET [LOCAL] TRANSACTION [READ ONLY | READ WRITE]
 [ISOLATION LEVEL {READ COMMITTED | READ UNCOMMITTED |
 REPEATABLE READ | SERIALIZABLE}]
 [DIAGNOSTIC SIZE int]

Keywords
LOCAL

Changes transaction settings for the current session on the local server only. If
this keyword is not specified, the transaction settings for the next transaction are
changed, even if the transaction runs on a remote server.

Platform Command

MySQL Supported, with variations

Oracle Supported, with limitations

PostgreSQL Supported

SQL Server Supported, with variations

Chapter 3: SQL Statement Command Reference | 405

SQLStatem
ent

Com
m

ands
SET TRANSACTION Statement

READ ONLY
Sets the next upcoming transaction as a read-only transaction. Once the next
transaction is complete, transaction behavior reverts to the default settings.

READ WRITE
Sets the next upcoming transaction so it may perform transactions that read and
write data.

ISOLATION LEVEL
Sets the isolation level for the next transaction in the session.

READ COMMITTED
Allows a transaction to read rows written by other transactions only when they
have been committed.

READ UNCOMMITTED
Allows a transaction to read rows that have been written, but not committed, by
other transactions.

REPEATABLE READ
All sessions can see records that are committed before their first transactions were
begun. Other open sessions can see or change only committed rows in the user’s
current session. Consequently, later transactions can add records that might then
be visible to the transactions of earlier sessions, but the other sessions must
requery to see those records.

SERIALIZABLE
All sessions can see records that are committed before their first transactions were
begun. Before that point, open sessions can see records within other user sessions
but cannot insert or update until those sessions’ transactions are completed. This
is the most restrictive isolation level and the default for SQL2003.

DIAGNOSTIC SIZE int
Designates the specific number of error messages (int) to capture for a transac-
tion. The GET DIAGNOSTICS statement retrieves these error messages.

Rules at a Glance
When issued, SET TRANSACTION sets the properties of the next upcoming transac-
tion. Because of this, SET TRANSACTION is an interim statement that should be
issued after one transaction completes and before the next transaction starts. (To begin
a transaction and set its characteristics at the same time, use START TRANSACTION.)
More than one option may be applied with this command, but only one access mode,
isolation level, and diagnostic size may be specified at a time.

The isolation level of a transaction specifies the degree of isolation a transaction has
from other concurrently running sessions. The isolation level controls:

• Whether rows read and updated by your database session are available to other
concurrently running database sessions.

• Whether the update, read, and write activity of other database sessions can affect
your database session.

If you are unfamiliar with isolation levels, be sure to read your platform’s vendor
documentation.

Programming Tips and Gotchas
The ISOLATION LEVEL clause controls a number of behaviors and anomalies in a
transaction concerning concurrent transactions, including the following:

406 | Chapter 3: SQL Statement Command Reference

SET TRANSACTION Statement > MySQL

Dirty reads
Occur when a transaction reads the altered records of another transaction before
the other transaction has completed. This allows a data modification to occur on
a record that might not be committed to the database.

Nonrepeatable reads
Occur when one transaction reads a record while another modifies it. If the first
transaction then attempts to reread the record, it won’t be able to find it.

Phantom records
Occur when transaction A reads a group of records, but transaction B adds or
changes the data so that more records satisfy the query issued by transaction A.
Thus, transaction A may read in the records of transaction B as if they were
committed to the database, when in fact the records from transaction B may still
be rolled back. Since transaction A is reading records that are not yet permanent,
these are called phantom records.

Table 3-6 shows the impact of various isolation level settings on the anomalies just listed.

MySQL
MySQL allows you to set the transaction isolation level for the next individual transac-
tion, the whole session, or globally across the server, as follows:

SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL
[READ UNCOMMITTED |READ COMMITTED | REPEATABLE READ
 | SERIALIZABLE]

By default, MySQL sets the isolation level for the transaction that immediately follows
the statement. The keywords are:

GLOBAL
Sets the transaction isolation level for all subsequent transactions across all user
sessions or system threads.

SESSION
Sets the transaction isolation level for all subsequent transactions of the current
session.

TRANSACTION ISOLATION LEVEL
Sets a specific transaction isolation level, as described earlier in the section
“Keywords.” When omitted, MySQL defaults to the REPEATABLE READ isola-
tion level.

The SUPER privilege is required to set a GLOBAL transaction isolation level. You can
also set the default isolation level via the MYSQL command-line executable using
the -transaction-isolation=” switch. Following is an example that sets all subsequent
threads (both user and system threads) to a serializable transaction isolation level:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Table 3-6. Isolation level and anomaly impact

Isolation level Dirty reads Nonrepeatable reads Phantom records

READ UNCOMMITTED Allowed Allowed Allowed

READ COMMITTED Not allowed Allowed Allowed

REPEATABLE READ Not allowed Not allowed Allowed

SERIALIZABLE Not allowed Not allowed Not allowed

Chapter 3: SQL Statement Command Reference | 407

SQLStatem
ent

Com
m

ands
SET TRANSACTION Statement > Oracle

Oracle
Oracle allows you to set a transaction as read-only or read-write, set the transaction
isolation level, and specify a specific rollback segment for your transactions:

SET TRANSACTION { [READ ONLY | READ WRITE]
| [ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE }]
| [USE ROLLBACK SEGMENT segment_name]
| NAME 'transaction_name' };

where:

READ ONLY
Sets the next transaction as read-only and serializable. This option is not avail-
able to the user SYS. The only statements permitted in read-only sessions are
SELECT, ALTER SESSION, ALTER SYSTEM, LOCK TABLE, and SET ROLE.

READ WRITE
The default transaction style in Oracle. Allows transactions to read and write
data.

READ COMMITTED
The default transaction isolation level in Oracle. The same as the ANSI standard.

SERIALIZABLE
Sets the transaction isolation level to the ANSI serializable level and requires the
COMPATIBLE init parameter to be set to 7.3.0 or higher.

USE ROLLBACK SEGMENT segment_name
Sets the next read/write transaction to be written to a specific Oracle rollback
segment identified by segment_name. Because it applies only to the current transac-
tion, USE ROLLBACK SEGMENT should be the first statement in the
transaction. This option is not compatible with the READ ONLY option. The
rollback segment must already exist, or this statement will fail.

NAME
Assigns a name of 255 characters or less to the current transaction. This option is
useful in distributed transaction processing environments for two-phase commits,
because it lets you easily identify which local transactions belong to a single
distributed transaction.

The USE ROLLBACK SEGMENT variant can be useful for performance tuning, as it
allows you to direct long-running transactions to rollback segments large enough to
hold them, while small transactions can be directed to rollback segments that might be
small enough to be retained in the cache.

The SET TRANSACTION statement should be the first statement in any SQL batch,
but Oracle treats it virtually the same as the START TRANSACTION statement, so
one could be substituted for the other.

In the following example, the query reports from a bi-weekly process on the chicago
server while avoiding any impact from other users who might be updating or inserting
records:

SET TRANSACTION READ ONLY NAME 'chicago';
SELECT prod_id, ord_qty
FROM sales
WHERE stor_id = 5;

408 | Chapter 3: SQL Statement Command Reference

SET TRANSACTION Statement > PostgreSQL

In another case, late-night batch processing might create a huge transaction that would
overflow all but the rollback segment created to support that one transaction:

SET TRANSACTION USE ROLLBACK SEGMENT huge_tran_01;

PostgreSQL
SET TRANSACTION in PostgreSQL impacts only the new transaction you are begin-
ning. Consequently, you may have to issue this statement before each new transaction.
The syntax is:

SET TRANSACTION ISOLATION LEVEL {READ COMMITTED | SERIALIZABLE};

where:

READ COMMITTED
Sets the transaction isolation level to the ANSI level READ COMMITTED. This is
the default.

SERIALIZABLE
Sets the transaction isolation level to the ANSI level SERIALIZABLE.

By default, PostgreSQL supports the READ COMMITTED transaction isolation level.
You can set the default transaction isolation level for all transactions in the session by
using either of the following commands:

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
 { READ COMMITTED | SERIALIZABLE }
SET default_transaction_isolation =
 { 'read committed' | 'serializable' }

Of course, you can then override the isolation level of any subsequent transaction
using the SET TRANSACTION statement.

For example, you can set the next transaction to the serializable transaction isolation
level:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Alternately, you could set all the transactions in an entire session to serializable:

SET SESSION CHARACTERISTICS AS TRANSACTION
 ISOLATION LEVEL SERIALIZABLE;

SQL Server
SET TRANSACTION in SQL Server sets the isolation level for an entire session. All
queries that follow a SET TRANSACTION statement run under the isolation level set
by the statement until it is otherwise changed. The syntax is:

SET TRANSACTION ISOLATION LEVEL
{ READ COMMITTED
| READ UNCOMMITTED
| REPEATABLE READ
| SERIALIZABLE}

where:

READ COMMITTED
Sets the transaction isolation level to the ANSI level READ COMMITTED. This is
the default.

READ UNCOMMITTED
Sets the transaction isolation level to the ANSI level READ UNCOMMITTED.
This has the same effect as the NOLOCK optimizer hint.

Chapter 3: SQL Statement Command Reference | 409

SQLStatem
ent

Com
m

ands
START TRANSACTION Statement

REPEATABLE READ
Sets the transaction isolation level to the ANSI level REPEATABLE READ.

SERIALIZABLE
Sets the transaction isolation level to the ANSI level SERIALIZABLE. Similar
results can be achieved in SQL Server using the HOLDLOCK optimizer hint.

For example, the following command lowers the transaction isolation level for all
SELECT statements during the session from READ COMMITTED to REPEATABLE
READ:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
GO

See Also
COMMIT
ROLLBACK

START TRANSACTION Statement

The START TRANSACTION statement allows you to perform all the functions of SET
TRANSACTION while also initiating a new transaction.

SQL2003 Syntax
START TRANSACTION [READ ONLY | READ WRITE]
 [ISOLATION LEVEL {READ COMMITTED | READ UNCOMMITTED |
 REPEATABLE READ | SERIALIZABLE}]
 [DIAGNOSTIC SIZE int]

Keywords
READ ONLY

Sets the next upcoming transaction as a read-only transaction. Once the next
transaction is complete, transaction behavior reverts to the default settings.

READ WRITE
Sets the next upcoming transaction so it may perform transactions that read and
write data.

ISOLATION LEVEL
Sets the isolation level for the next transaction in the session.

READ COMMITTED
Allows a transaction to read rows written by other transactions only when they
have been committed.

READ UNCOMMITTED
Allows a transaction to read rows that have been written, but not committed, by
other transactions.

Platform Command

MySQL Supported, with limitations

Oracle Not supported

PostgreSQL Not supported; use BEGIN TRANSACTION instead

SQL Server Not supported; use BEGIN TRANSACTION instead

410 | Chapter 3: SQL Statement Command Reference

START TRANSACTION Statement

REPEATABLE READ
All sessions can see records that are committed before their first transactions were
begun. Other open sessions can see or change only committed rows in the user’s
current session. Consequently, later transactions can add records that might then
be visible to the transactions of earlier sessions, but the other sessions must
requery to see those records.

SERIALIZABLE
All sessions can see records that are committed before their first transactions were
begun. Before that point, open sessions can see records within other user sessions
but cannot insert or update until those sessions’ transactions are completed. This
is the most restrictive isolation level and the default for SQL2003.

DIAGNOSTIC SIZE int
Designates the specific number of error messages (int) to capture for a transac-
tion. The GET DIAGNOSTICS statement retrieves these error messages.

Rules at a Glance
According to the ANSI standard, the only difference between SET and START is that
SET is considered outside of the current transaction, while START is considered the
beginning of a new transaction. Thus, SET TRANSACTION settings apply to the next
transaction, while START TRANSACTION settings apply to the current transaction.

While only MySQL supports the START TRANSACTION statement, three of the
vendors (MySQL, PostgreSQL, and SQL Server) support a similar command, BEGIN
[TRAN[SACTION]] and its synonym BEGIN [WORK]. BEGIN TRANSACTION
declares an explicit transaction, but it does not set isolation levels. The only signifi-
cant rule of the START TRANSACTION statement is that it is used to control the
access mode, isolation level, and/or diagnostic size of the current transaction only.
Once a new transaction starts, you must either issue new values for the setting(s) or
rely on the defaults.

Most database platforms allow you to implicitly control transactions, using what is
commonly called autocommit mode. In autocommit mode, the database treats each
statement as a transaction in and of itself, complete with implicit BEGIN TRAN and
COMMIT TRAN statements.

The alternative to autocommit mode is to manually control each transaction. Under
explicit transaction control, you declare each new transaction with the START
TRANSACTION statement. A new transaction may also start implicitly any time a
transaction-initiating statement is issued, such as INSERT, UPDATE, DELETE, or
SELECT. The transaction is not committed or rolled back until either a COMMIT or
ROLLBACK statement is explicitly issued.

Oracle does not support the explicit declaration of a new transaction using START
TRANSACTION, but it does support explicitly committing, savepointing, and rolling
back a transaction. Other platforms, including MySQL, PostgreSQL, and SQL Server,
allow you both to explicitly declare a transaction with START TRANSACTION and to
explicitly commit, savepoint, and roll back the transaction.

Programming Tips and Gotchas
Many of the platforms discussed in this book run in autocommit mode by default.
Therefore, it is a good rule of thumb to use explicitly declared transactions only if you
intend to do so for all transactions in a session. In other words, do not mix implic-
itly declared transactions and explicitly declared transactions in a single session.

Chapter 3: SQL Statement Command Reference | 411

SQLStatem
ent

Com
m

ands
START TRANSACTION Statement > MySQL

Each transaction that is explicitly declared can only be made permanent with the
COMMIT statement. Similarly, any transaction that fails or needs to be discarded must
be explicitly undone with the ROLLBACK statement.

Be sure to issue START in a pair with either COMMIT or ROLL-
BACK. Otherwise, the DBMS may not complete the transaction(s)
until it encounters a COMMIT or ROLLBACK statement. Poor
planning and omitting timely COMMITs (or ROLLBACKs) could
potentially lead to huge transactions.

It is a good idea to issue explicit COMMITs or ROLLBACKs after one or a few state-
ments, because long-running transactions can lock up resources, thus preventing other
users from accessing those resources. Long-running or very large transaction batches
can fill up the rollback segments or transaction logs of a database, even if those files
are small.

MySQL
MySQL normally runs in autocommit mode, which means changes are automatically
saved to disk when completed. If a change fails for any reason, it is automatically
rolled back.

MySQL supports START TRANSACTION and a synonym, BEGIN. You can suspend
autocommit for one or several statements using the BEGIN syntax:

START TRANSACTION [WITH CONSISTENT SNAPSHOT]
BEGIN [WORK]

where:

WITH CONSISTENT SNAPSHOT
Starts a consistent read of data on engines that support consistency of reads
(currently, only InnoDB) when running under a transaction isolation level that
supports consistent reads (i.e., SERIALIZABLE and REPEATABLE READ).

BEGIN [WORK]
Marks the beginning of one or more transactions. WORK is an optional keyword
with no effect.

Issuing the following command can disable autocommit mode for all sessions and
threads:

SET AUTOCOMMIT=0

Once you have disabled autocommit, the COMMIT statement is required to store any
and every data modification to disk, and the ROLLBACK statement is required to
undo changes made during a transaction. Disabling autocommit is only effective with
“transaction-safe tables,” such as InnoDB or BDB tables. Disabling autocommit on
non-transaction-safe tables has no effect—autocommit will still be enabled.

Earlier versions of MySQL use an update log. However, the update
log does not support ANSI transactions unless the tables are
defined as InnoDB or NDB Cluster tables.

412 | Chapter 3: SQL Statement Command Reference

START TRANSACTION Statement > Oracle

Transactions are stored in the binary log in a single write operation when the
COMMIT statement is issued. Here’s an example:

BEGIN;
 SELECT @A := SUM(salary)
 FROM employee
 WHERE type=1;
 UPDATE payhistory SET summmary=@A WHERE type=1;
COMMIT;

Rollbacks issued against non-transactional tables will fail with the error ER_
WARNING_NOT_COMPLETE_ROLLBACK, but transaction-safe tables will be
restored as expected.

Oracle
Not supported. Transactions in Oracle are started implicitly. Refer to the “Oracle”
section in the earlier discussion of SET TRANSACTION for more information about
how Oracle controls individual transactions.

PostgreSQL
PostgreSQL does not support START TRANSACTION. Instead, the PostgreSQL
syntax is:

BEGIN [WORK | TRANSACTION]

where:

BEGIN
Marks the beginning of one or more transactions.

WORK
Is an optional keyword with no effect.

TRANSACTION
Is an optional keyword with no effect.

PostgreSQL normally runs in autocommit mode, where each data-modification state-
ment or query is its own transaction. PostgreSQL applies an implicit COMMIT for any
transaction that completes without an error, and an implicit ROLLBACK for any state-
ment that fails. The BEGIN statement allows explicit COMMIT or ROLLBACK of a
transaction, which may then consist of multiple statements.

Manually coded transactions are much faster in PostgreSQL than autocommitted
transactions. SET TRANSACTION ISOLATION LEVEL should be set to SERIALIZ-
ABLE just after the BEGIN statement to bolster the transaction isolation level.
PostgreSQL allows many data-modification statements (INSERT, UPDATE, DELETE)
within a BEGIN...COMMIT block. However, when the COMMIT command is issued,
either all or none of the transaction is committed, depending on the success or failure
of the command.

BEGIN has a separate usage on database platforms that support
their own procedural languages (namely, Oracle and SQL Server).
On these platforms, BEGIN (without the keyword TRANSAC-
TION), is used to mark a new block of procedural code. For this
reason, you are advised to include the TRANSACTION keyword
for any transactions you write on PostgreSQL. Otherwise, you will
face some complicated migration issues should you ever move your
code to Oracle or SQL Server.

Chapter 3: SQL Statement Command Reference | 413

SQLStatem
ent

Com
m

ands
START TRANSACTION Statement > SQL Server

Following is an example of BEGIN TRANSACTION in PostgreSQL:

BEGIN TRANSACTION;
 INSERT INTO jobs(job_id, job_desc, min_lvl, max_lvl)
 VALUES(15, 'Chief Operating Officer', 185, 135)
COMMIT;

SQL Server
Microsoft SQL Server supports the BEGIN TRANSACTION statement rather than the
ANSI START TRANSACTION statement. It also supports a couple of extensions that
facilitate transaction backup and recovery. The Microsoft SQL Server syntax is:

BEGIN TRAN[SACTION] [transaction_descriptor
 [WITH MARK ['log_descriptor']]]

where:

TRAN[SACTION]
Marks the beginning of a transaction. SQL Server allows either TRAN or
TRANSACTION.

transaction_descriptor
A name or variable string datatype (CHAR, NCHAR, VARCHAR, or NVAR-
CHAR) variable, of up to 32 characters in size, used to identify a transaction.
When working with nested transactions, only name the outermost transaction.

WITH MARK log_descriptor
Tells SQL Server to place a mark of name log_descriptor in the transaction log,
allowing SQL Server to restore a transaction log up to that point. In a sense, this
allows point-in-time recovery based on the name of the mark for databases set to
FULL recovery mode. WITH MARK must be used in conjunction with a named
transaction.

When nesting transactions, only the outermost BEGIN...COMMIT or BEGIN...
ROLLBACK pair should reference the transaction name (if it has one). In general, we
recommend avoiding nested transactions.

Here is a SQL Server set of INSERT statements, all performed as a single transaction:

BEGIN TRANSACTION
 INSERT INTO sales VALUES('7896','JR3435','Oct 28 2003',25,
 'Net 60','BU7832')
 INSERT INTO sales VALUES('7901','JR3435','Oct 28 2003',17,
 'Net 30','BU7832')
 INSERT INTO sales VALUES('7907','JR3435','Oct 28 2003',6,
 'Net 15','BU7832')
COMMIT
GO

If for some reason any one of these INSERT statements had to wait for completion,
they would all have to wait, since they are treated as a single transaction.

See Also
COMMIT
ROLLBACK

414 | Chapter 3: SQL Statement Command Reference

SUBQUERY Substatement

SUBQUERY Substatement

A subquery is a nested query. Subqueries may appear in various places within a SQL
statement.

SQL supports the following types of subquery:

Scalar subqueries
Subqueries that retrieve a single value. These are the most widely supported type
of subquery among the various database platforms.

Table subqueries
Subqueries that retrieve more than one value or row of values.

Nested table subqueries
Subqueries that retrieve more than one column and more than one row.

Scalar and vector subqueries can, on some platforms, appear as part of the expression
in a SELECT list of items, a WHERE clause, or a HAVING clause. Nested table
subqueries tend to appear in the FROM clauses of SELECT statements.

A correlated subquery is a subquery that is dependent upon a value in an outer query.
Consequently, the inner query is executed once for every record retrieved in the outer
query. Since subqueries can be nested many layers deep, a correlated subquery may
reference any level in the main query higher that is than its own level.

Different rules govern the behavior of a subquery, depending on the clause in which it
appears. The level of support amongst the database platforms also varies: some plat-
forms support subqueries in all clauses mentioned earlier (SELECT, FROM, WHERE,
and HAVING), while others support subqueries in only one or two of the clauses.

Subqueries are usually associated with the SELECT statement. Since subqueries may
appear in the WHERE clause, they can be used in any SQL statement that supports a
WHERE clause, including SELECT, INSERT...SELECT, DELETE, and UPDATE
statements.

SQL2003 Syntax
Scalar, table, and nested table subqueries are represented in the following generalized
syntax:

SELECT column1, column2, ... (scalar subquery)
FROM table1, ... (nested table subquery)
 AS subquery_table_name]
WHERE foo = (scalar subquery)
 OR foo IN (table subquery)

Correlated subqueries are more complex because the values of such subqueries are
dependent on values retrieved in their main queries. For example:

Platform Command

MySQL Supported, with limitations

Oracle Supported

PostgreSQL Supported

SQL Server Supported

Chapter 3: SQL Statement Command Reference | 415

SQLStatem
ent

Com
m

ands
SUBQUERY Substatement

SELECT column1
FROM table1 AS t1
WHERE foo IN
 (SELECT value1
 FROM table2 AS t2
 WHERE t2.pk_identifier = t1.fk_identifier)

Note that the IN clause is for example purposes only. Any comparison operator may
be used.

Keywords
scalar subquery

Includes a scalar subquery in the SELECT item list or in the WHERE or HAVING
clause of a query.

nested table subquery
Includes a nested table subquery only in the FROM clause in conjunction with the
AS clause.

table subquery
Includes a table subquery only in the WHERE clause with operators such as IN,
ANY, SOME, EXISTS, or ALL that act upon multiple values. Table subqueries
return one or more rows containing a single value each.

Rules at a Glance
Subqueries allow you to return one or more values and nest them inside a SELECT,
INSERT, UPDATE, or DELETE statement, or inside another subquery. Subqueries
can be used wherever expressions are allowed. Subqueries also can often be replaced
with a JOIN statement. Depending on the DBMS, subqueries may perform less quickly
than joins.

Subqueries are always enclosed in parentheses.

Subqueries may appear in a SELECT clause with an item list containing at least one
item, in a FROM clause for referencing one or more valid tables or views, and in
WHERE and HAVING clauses.

Scalar subqueries can return only a single value. Certain operators in a WHERE clause,
such as =, <, >, >=, <=, and <> (or !=), expect only one value. If a subquery returns
more than one value against an operator that expects a single value, the entire query
will fail. On the other hand, table subqueries may return multiple values, but they are
usable only with multivalue expressions like [NOT] IN, ANY, ALL, SOME, or [NOT]
EXISTS.

Nested table subqueries may appear only in the FROM clause and should be aliased by
the AS clause. The result set returned by the nested table subquery, sometimes called a
derived table, offers similar functionality to a view (see CREATE VIEW). Every column
returned in the derived table need not be used in the query, though they can all be
acted upon by the outer query.

Correlated subqueries typically appear as a component of a WHERE or HAVING
clause in the outer query (and, less commonly, in the SELECT item list) and are corre-
lated through the WHERE clause of the inner query (that is, the subquery).

416 | Chapter 3: SQL Statement Command Reference

SUBQUERY Substatement

(Correlated subqueries can also be used as nested table subqueries, though this is less
common.) Be sure to include in such a subquery a WHERE clause that evaluates based
on a correlating value from the outer query; the example for a correlated query in the
earlier ANSI syntax diagram illustrates this requirement.

It is also important to specify a table alias, called a correlation name, using the AS
clause or other alias shortcut for every table referenced in a correlated query, both in
the outer and inner query. Correlation names avoid ambiguity and help the DBMS
quickly resolve the tables involved in the query.

All ANSI-compliant subqueries comply with the following short list of rules:

• A subquery cannot include an ORDER BY clause.

• A subquery cannot be enclosed in an aggregate function. For example, the
following query is invalid: SELECT foo FROM table1 WHERE sales >=
AVG(SELECT column1 FROM sales_table . . .). You can get around this limita-
tion by performing the aggregation in the subquery rather than in the outer query.

Programming Tips and Gotchas
For most vendor platforms, subqueries should not reference large object datatypes (e.g.,
CLOB or BLOB on Oracle and IMAGE or TEXT on SQL Server) or array datatypes
(such as TABLE or CURSOR on SQL Server).

The platforms all support subqueries, but not every vendor supports every type of
subquery. Table 3-7 tells you whether your platform supports each type of subquery.

Subqueries are not relegated to SELECT statements only. They may also be used in
INSERT, UPDATE, and DELETE statements that include a WHERE clause. Subque-
ries are often used for the following purposes:

• To identify the rows inserted into the target table using an INSERT...SELECT
statement, a CREATE TABLE...SELECT statement, or a SELECT...INTO
statement

• To identify the rows of a view or materialized view in a CREATE VIEW statement

• To identify value(s) assigned to existing rows using an UPDATE statement

• To identify values for conditions in the WHERE and HAVING clauses of
SELECT, UPDATE, and DELETE statements

• To build a view of a table(s) on the fly (i.e., nested table subqueries)

Examples
This section shows subquery examples that are equally valid on MySQL, Oracle, Post-
greSQL, and SQL Server.

Table 3-7. Platform-specific subquery support

Platform MySQL Oracle PostgreSQL SQL Server

Scalar subquery in SELECT item list � � ✗ �

Scalar subquery in WHERE/HAVING clause � � � �

Vector subquery in WHERE/HAVING clause � � � �

Nested table in FROM clause � � � �

Correlated subquery in WHERE/HAVING clause � � � �

Chapter 3: SQL Statement Command Reference | 417

SQLStatem
ent

Com
m

ands
SUBQUERY Substatement

A simple scalar subquery is shown in the SELECT item list of the following query:

SELECT job, (SELECT AVG(salary) FROM employee) AS "Avg Sal"
FROM employee

Nested table subqueries are functionally equivalent to querying a view. In the
following, we query the education level and salary in a nested table subquery, and then
perform aggregations on the values in the derived table in the outer query:

SELECT AVG(edlevel), AVG(salary)
FROM (SELECT edlevel, salary
 FROM employee) AS emprand
GROUP BY edlevel

Remember that this query may fail, depending on the platform,
without the AS clause to associate a name with the derived table.

The following query shows a standard table subquery in the WHERE clause expression.
In this case, we want all project numbers for employees in the department ‘A00’:

SELECT projno
FROM emp_act
WHERE empno IN

(SELECT empno
 FROM employee
 WHERE workdept = 'A00')

The above subquery is executed only once for the outer query.

In the next example, we want to know the names of employees and their level of
seniority. We get this result set through a correlated subquery:

SELECT firstname, lastname,
 (SELECT COUNT(*)
 FROM employee, senior
 WHERE employee.hiredate > senior.hiredate) as senioritype
FROM employee

Unlike the previous subquery, this subquery is executed one time for every row
retrieved by the outer query. In a query like this, the total processing time could be
very long, since the inner query may potentially execute many times for a single result
set.

Correlated subqueries depend on values retrieved by the outer query before being able
to complete the processing of the inner query. They are tricky to master, but they offer
unique programmatic capabilities. The following example returns information about
orders where the quantity sold in each order is less than the average quantity in other
sales for that title:

SELECT s1.ord_num, s1.title_id, s1.qty
FROM sales AS s1
WHERE s1.qty <
 (SELECT AVG(s2.qty)
 FROM sales AS s2
 WHERE s2.title_id = s1.title_id)

For this example, you can accomplish the same functionality using a self-join.
However, there are situations in which a correlated subquery may be the only easy way
to do what you need.

418 | Chapter 3: SQL Statement Command Reference

SUBQUERY Substatement > MySQL

The next example shows how a correlated subquery might be used to update values in
a table:

UPDATE course SET ends =
 (SELECT min(c.begins) FROM course AS c
 WHERE c.begins BETWEEN course.begins AND course.ends)
WHERE EXISTS
 (SELECT * FROM course AS c
 WHERE c.begins BETWEEN course.begins AND course.ends)

Similarly, you can use a subquery to determine which rows to delete. This example
uses a correlated subquery to delete rows from one table based on related rows in
another table:

DELETE FROM course
WHERE EXISTS
 (SELECT * FROM course AS c
 WHERE course.id > c.id
 AND (course.begins BETWEEN c.begins
 AND c.ends OR course.ends BETWEEN c.begins AND c.ends))

MySQL
MySQL supports nested table subqueries as select items and in the WHERE clause.

Oracle
Oracle supports ANSI-standard subqueries, though it uses a different nomenclature. In
Oracle, a nested table subquery that appears in the FROM clause is called an inline
view. That makes sense, because nested table subqueries are basically views built on
the fly. Oracle calls a subquery that appears in the WHERE clause or the HAVING
clause of a query a nested subquery. It allows correlated subqueries in the SELECT item
list and in the WHERE and HAVING clauses.

PostgreSQL
PostgreSQL supports ANSI-standard subqueries in the FROM, WHERE, and HAVING
clauses. However, subqueries appearing in a HAVING clause cannot include ORDER
BY, FOR UPDATE, or LIMIT clauses. PostgreSQL does not currently support subque-
ries in the select item list.

SQL Server
SQL Server supports ANSI-standard subqueries. Scalar subqueries can be used almost
anywhere a standard expression is allowed. Subqueries in SQL Server cannot include
the COMPUTE or FOR BROWSE clauses. They can include the ORDER BY clause if
the TOP clause is also used.

See Also
DELETE
INSERT
SELECT
UPDATE
WHERE

Chapter 3: SQL Statement Command Reference | 419

SQLStatem
ent

Com
m

ands
TRUNCATE TABLE Statement > All Platforms

TRUNCATE TABLE Statement

The TRUNCATE TABLE statement, a non-ANSI statement, irrevocably removes all
rows from a table without logging the individual row deletes. It quickly erases all the
records in a table without altering the table structure, taking up little or no space in
the redo logs or transaction logs. However, since a truncate operation is not logged, the
TRUNCATE TABLE statement cannot be rolled back once it is issued.

De Facto Standard Syntax
Officially, TRUNCATE TABLE is not an ANSI-standard command. However, it is a
commonly supported statement that follows this standard format:

TRUNCATE TABLE table_name

Keywords
table_name

The name of any valid table within the current database or schema context.

Rules at a Glance
The TRUNCATE TABLE statement has the same effect on a table as a DELETE state-
ment with no WHERE clause; both erase all rows in a given table. However, there are
some important differences: TRUNCATE TABLE is faster and it is non-logged,
meaning it cannot be rolled back if issued in error, and TRUNCATE TABLE does not
activate triggers, while the DELETE statement does.

This command should be issued manually. We strongly encourage you not to place it
into automated scripts or production systems that contain irreplaceable data. It cannot
be paired with transaction control statements such as BEGIN TRAN or COMMIT.

Programming Tips and Gotchas
Because the TRUNCATE TABLE statement is not logged, it is generally used only in
development databases. Use it in production databases with caution!

We strongly advise that you do not write TRUNCATE TABLE
statements into the stored procedures or functions of a production
application, because most platforms do not log the operation and
cannot recover an improperly issued TRUNCATE statement.

The TRUNCATE TABLE command will fail if another user has a lock on the table at
the time the statement is issued. TRUNCATE TABLE does not activate triggers but
will work when they are present. However, it won’t work when foreign key constraints
are in place on a given table.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

420 | Chapter 3: SQL Statement Command Reference

TRUNCATE TABLE Statement > All Platforms

MySQL
MySQL versions 3.23 and later support a basic format of the TRUNCATE TABLE
statement:

TRUNCATE TABLE name

MySQL achieves the result of a TRUNCATE TABLE command by dropping and recre-
ating the affected table. Since MySQL stores each table in a file called <table_name>.
frm, the <table_name>.frm file must exist in the directory containing the database files
for the command to work properly.

For example, to remove all data from the publishers table:

TRUNCATE TABLE publishers

Oracle
Oracle allows a table or an indexed cluster (but not a hash cluster) to be truncated.
Oracle’s syntax is:

TRUNCATE { CLUSTER [owner.]cluster
 | TABLE [owner.]table [{PRESERVE | PURGE} MATERIALIZED VIEW LOG] }
[{DROP | REUSE} STORAGE]

TRUNCATE TABLE was first introduced by Oracle, and other platforms soon added
support for the statement. Oracle has added more features to this statement than are
commonly implemented by other vendors. The syntax elements are as follows:

CLUSTER | TABLE
Specifies whether an index cluster or a table will be truncated. An index cluster is
a physical construct that stores related rows of two tables next to each other phys-
ically on disk to speed up joins by lowering I/O. The MATERIALIZED VIEW
LOG and STORAGE options are not available when truncating an index cluster.

{PRESERVE | PURGE} MATERIALIZED VIEW LOG
Maintains any snapshot logs when a master table is truncated (PRESERVE), or
clears out any snapshot logs (PURGE).

{DROP | REUSE} STORAGE
Causes the disk space freed by the deleted rows to be deallocated (DROP), or
causes the space allocated to a table to remain allocated to that table, though
empty (REUSE).

For example:

TRUNCATE TABLE scott.authors
 PRESERVE MATERIALIZED VIEW LOG REUSE STORAGE

This example command erases all records in the table scott.authors. It also maintains
the existing snapshot log and allows the table to keep and reuse the storage space
already allocated to it.

PostgreSQL
PostgreSQL varies little from the de facto industry standard, but it does add the
optional TABLE keyword:

TRUNCATE [TABLE] name

The following command erases all the records in the authors table on a PostgreSQL
database:

TRUNCATE authors

Chapter 3: SQL Statement Command Reference | 421

SQLStatem
ent

Com
m

ands
UNION Set Operator

SQL Server
SQL Server supports the de facto industry standard.

See Also
DELETE

UNION Set Operator

The UNION set operator combines the result sets of two or more queries, showing all
the rows returned by each of the queries as one single result set.

UNION is in a class of keyword known as set operators. Other set operators include
INTERSECT and EXCEPT/MINUS. (EXCEPT and MINUS are functually equivalent;
EXCEPT is the ANSI standard.) All set operators are used to simultaneously manipu-
late the result sets of two or more queries; hence the term “set operators.”

SQL2003 Syntax
There are technically no limits to the number of queries that you may combine with
the UNION statement. The general syntax is:

<SELECT statement1>
UNION [ALL | DISTINCT]
<SELECT statement2>
UNION [ALL | DISTINCT]
...

Keywords
UNION

Determines which result sets will be combined into a single result set. Duplicate
rows are, by default, excluded.

ALL | DISTINCT
Combines duplicate rows from all result sets (ALL) or eliminates duplicate rows
from the final result set (DISTINCT). Columns containing a NULL value are
considered duplicates. If neither ALL nor DISTINCT is used, DISTINCT behavior
is the default.

Rules at a Glance
There is only one significant rule to remember when using UNION: the order,
number, and datatypes of the columns should be the same in all queries.

The datatypes do not have to be identical, but they should be compatible. For
example, CHAR and VARCHAR are compatible datatypes. By default, the result set will
default to the largest of two (or more) compatible datatypes, so a query that unions
three CHAR columns—CHAR(5), CHAR(10), and CHAR(12)—will display the results
in the CHAR(12) format with extra space padded onto the smaller column results.

Platform Command

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

422 | Chapter 3: SQL Statement Command Reference

UNION Set Operator > MySQL

Programming Tips and Gotchas
Even though the ANSI standard calls for INTERSECT to take precedence over other
set operators in a single statement, many platforms evaluate all set operators with
equal precedence. You can explicitly control the precedence of set operators using
parentheses. Otherwise, the DBMS is likely to evaluate them in order from the left-
most to the rightmost expression.

Depending on the platform, specifying DISTINCT can incur a significant performance
cost, since it often involves a second pass through the results to winnow out duplicate
records. ALL can be specified in any instance where no duplicate records are expected
(or where duplicate records are OK) for faster results.

According to the ANSI standard, only one ORDER BY clause is allowed in the entire
query. Include it at the end of the last SELECT statement. To avoid column and table
ambiguity, be sure to alias matching columns in each table with the same respective
aliases. However, for column-naming purposes, only the aliases in the first query are
used for each column in the SELECT...UNION query. For example:

SELECT au_lname AS "lastname", au_fname AS "firstname"
FROM authors
UNION
SELECT emp_lname AS "lastname", emp_fname AS "firstname"
FROM employees
ORDER BY lastname, firstname

Also be aware that even if the queries in your UNION have compatibly datatyped
columns, there may be some variation in behavior across the DBMS platforms, espe-
cially with regard to the length of the columns. For example, if the au_lname column
in the first query is markedly longer than the emp_lname column in the second query,
different platforms may apply different rules as to which length is used. In general,
though, the platforms will choose the longer (and less restrictive) column size for use
in the result set.

Each DBMS may apply its own rules as to which column name is used if the columns
across the tables have different names. In general, the column names of the first query
are used.

MySQL
Not supported.

Oracle
Oracle supports the UNION and UNION ALL set operators using the basic ANSI SQL
syntax:

<SELECT statement1>
UNION [ALL]
<SELECT statement2>
UNION [ALL]
...

Oracle does not support the CORRESPONDING clause. UNION DISTINCT is not
supported, but UNION is the functional equivalent. Oracle does not support UNION
or UNION ALL on the following types of queries:

Chapter 3: SQL Statement Command Reference | 423

SQLStatem
ent

Com
m

ands
UNION Set Operator > SQL Server

• Queries containing columns with LONG, BLOB, CLOB, BFILE, or VARRAY
datatypes.

• Queries containing a FOR UPDATE clause or a TABLE collection expression.

If the first query in the set operation contains any expressions in the select item list,
include the AS statement to associate an alias with the column. Also, only the last
query in the set operation may contain an ORDER BY clause. For example, you could
find out all unique store IDs without duplicates using this query:

SELECT stor_id FROM stores
UNION
SELECT stor_id FROM sales;

PostgreSQL
PostgreSQL supports the UNION and UNION ALL set operators using the basic ANSI
SQL syntax:

<SELECT statement1>
UNION [ALL]
<SELECT statement2>
UNION [ALL]
...

PostgreSQL does not support UNION or UNION ALL on queries with a FOR
UPDATE clause, and it does not support the CORRESPONDING clause. UNION
DISTINCT is not supported, but UNION is the functional equivalent.

The first query in the set operation may not contain an ORDER BY clause or a LIMIT
clause. Subsequent queries in the UNION or UNION ALL set operation may contain
these clauses, but such queries must be enclosed in parentheses. Otherwise, the right-
most occurrence of ORDER BY or LIMIT will be assumed to apply to the entire set
operation.

For example, we could find all authors and all employees whose last names start with
“P” with the following query:

SELECT a.au_lname
FROM authors AS a
WHERE a.au_lname LIKE 'P%'
UNION
SELECT e.lname
FROM employee AS e
WHERE e.lname LIKE 'W%';

SQL Server
SQL Server supports the UNION and UNION ALL set operators using the basic ANSI
SQL syntax:

<SELECT statement1>
UNION [ALL]
<SELECT statement2>
UNION [ALL]
...

SQL Server does not support the CORRESPONDING clause. UNION DISTINCT is
not supported, but UNION is the functional equivalent.

424 | Chapter 3: SQL Statement Command Reference

UPDATE Statement

You can use SELECT...INTO with UNION or UNION ALL, but INTO may appear
only in the first query of the union. Special keywords, such as SELECT TOP and
GROUP BY...WITH CUBE, are usable with all queries in a union, but if you use them
in one query you must use them with all of the queries. If you use SELECT TOP or
GROUP BY...WITH CUBE in only one query in a union, the operation will fail.

Each query in a union must contain the same number of columns. The datatypes of
the columns do not have to be identical, but they must implicitly convert. For
example, mixing VARCHAR and CHAR columns is acceptable. SQL Server uses the
larger of the two columns when evaluating the size of the columns returned in the result
set. Thus, if a SELECT...UNION statement has a CHAR(5) column and a CHAR(10)
column, it will display the data of both columns as a CHAR(10) column. Numeric
columns are converted to and displayed as the most precise datatype in the union.

For example, the following query unions the results of two independent queries that
use GROUP BY...WITH CUBE:

SELECT ta.au_id, COUNT(ta.au_id)
FROM pubs..titleauthor AS ta
JOIN pubs..authors AS a ON a.au_id = ta.au_id
WHERE ta.au_id >= '722-51-5454'
GROUP BY ta.au_id WITH CUBE
UNION
SELECT ta.au_id, COUNT(ta.au_id)
FROM pubs..titleauthor AS ta
JOIN pubs..authors AS a ON a.au_id = ta.au_id
WHERE ta.au_id < '722-51-5454'
GROUP BY ta.au_id WITH CUBE

See Also
EXCEPT
INTERSECT
MINUS
SELECT

UPDATE Statement

The UPDATE statement changes existing data in a table. Use great caution when
issuing an UPDATE statement without a WHERE clause, since the statement then
affects every row in the entire table.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3: SQL Statement Command Reference | 425

SQLStatem
ent

Com
m

ands
UPDATE Statement

SQL2003 Syntax
UPDATE [ONLY] {table_name | view_name}
SET {{column_name = { ARRAY [array_val[, ...]] | DEFAULT |
 NULL | scalar_expression },

column_name = { ARRAY | DEFAULT |
 NULL | scalar_expression }
 [, ...]}
 | ROW = row_expression}
[WHERE search_condition | WHERE CURRENT OF cursor_name]

Keywords
ONLY

Restricts cascading of the updated values to any subtables of the target table or
view. ONLY affects only typed (object-oriented) tables and views. If used with a
nontyped table or view, it causes an error.

table_name | view_name
The target table or view of the UPDATE statement. You need appropriate permis-
sions on the target, according to the rules of the platform. Updates against views
often have special rules. Generally, it is advisable to perform an UPDATE against
a view only if the view is representative of a single table.

SET
Assigns a specific value to a column or row.

column_name
Used in conjunction with SET, as in SET column1 = ‘foo’. Allows you to set a new
value for the specified column. You can update as many columns as you like in
one statement, though you cannot update the same column more than once in a
single statement.

ARRAY [array_val[, . . .]]
Assigns the column to an array value or to an empty array (using ARRAY[]). This
behavior is not widely supported by DBMS platforms.

NULL
Sets the column to NULL.

DEFAULT
Sets the column to its default value as defined by a DEFAULT specification.

scalar_expression
Sets the column to any single value expression, such as a literal string or numeric
value, a scalar function, or a scalar subquery.

ROW
Used in conjunction with SET, is a mutually exclusive option to SET column_name,
as in SET ROW = ROW(‘foo’,’bar’). This behavior is not widely supported by
DBMS platforms.

row_expression
Used to set a value for each and every column in the table.

426 | Chapter 3: SQL Statement Command Reference

UPDATE Statement

WHERE search_condition
Defines search criteria for the UPDATE statement using the search_condition to
ensure that only the target rows are updated. Any legal WHERE clause is accept-
able. Typically, these criteria are evaluated against each row of the table before
the update is applied. If the search criterion is a subquery, the subquery is
executed on each row, which is potentially a long-running process.

WHERE CURRENT OF cursor_name
Restricts the UPDATE statement to the current row of a defined and opened
cursor called cursor_name.

Rules at a Glance
The UPDATE statement can be used to modify the value of one or more columns of a
table or view at a time. Typically, you will update the values in one or more rows at a time.
The new values must be scalar (except in row expressions and arrays). That is, a given
field/column must have a single, constant value at the time the transaction is executed,
though it can be literal or derived from a function call or subquery.

A basic UPDATE statement without a WHERE clause looks like this:

UPDATE authors
SET contract = 0

This example sets the contract status of all authors in the authors table to zero
(meaning they don’t have contracts anymore). Similarly, values can be adjusted mathe-
matically with an UPDATE statement:

UPDATE titles
SET price = price * 1.1

This UPDATE statement would increase all book prices by 10%.

You can also set multiple values in one statement, as shown here, where we set all
author last names and first names to uppercase letters:

UPDATE authors SET au_lname = UPPER(au_lname),
 au_fname = UPPER(au_fname);

Adding a WHERE clause to an UPDATE statement allows records in the table to be
modified selectively:

UPDATE titles
SET type = 'pers_comp',
 price = (price * 1.15)
WHERE type = 'popular_com';

This query makes two changes to any record of the type 'popular_com': it increases the
price by 15% and alters the type to 'pers_comp'.

You can also invoke functions or subqueries to derive the values used in an UPDATE
statement. In some cases, you may wish to update the specific row that is being
processed by a declared and open cursor. The following example shows both
concepts:

UPDATE titles SET ytd_sales = (SELECT SUM(qty)
 FROM sales
 WHERE title_id = 'TC7777')
WHERE CURRENT OF title_cursor;

Chapter 3: SQL Statement Command Reference | 427

SQLStatem
ent

Com
m

ands
UPDATE Statement > MySQL

This query assumes that you have declared and opened a cursor named title_cursor
and that it is processing titles with IDs of 'TC7777'.

Sometimes you need to update values in a given table based on the values stored in
another table. For example, if you need to update the publication date for all the titles
written by a certain author, you might find the author and a list of her titles first
through subqueries:

UPDATE titles
SET pubdate = 'Jan 01 2002'
WHERE title_id IN
 (SELECT title_id
 FROM titleauthor
 WHERE au_id IN
 (SELECT au_id
 FROM authors
 WHERE au_lname = 'White'))

Programming Tips and Gotchas
The UPDATE statement alters values in existing records of a table or view. If you
update a view, the view should include all necessary (NOT NULL) columns, or else
the statement may fail. Columns with a DEFAULT value can usually be safely omitted.

The SET ROW clause is not widely supported among DBMS platforms and should be
avoided. The WHERE CURRENT OF clause is more commonly implemented on
DBMS platforms, but it must be used in conjunction with a cursor. Make sure you
understand the use and functionality of cursors before using this clause.

In an interactive user session, it is good practice to issue a SELECT statement using the
same WHERE clause before issuing the actual UPDATE statement. This precaution
enables you to check all rows in the result set before actually performing the UPDATE,
helping ensure that you don’t alter anything you don’t mean to alter.

MySQL
MySQL supports the ANSI standard with a few variations, including the LOW
PRIORITY clause, the IGNORE clause, and the LIMIT clause:

UPDATE [LOW PRIORITY] [IGNORE] table_name
SET column_name = {scalar_expression}
 [, ...]
WHERE search_conditions
[ORDER BY column_name1 [{ASC | DESC}][, ...]]
[LIMIT integer]

where:

LOW PRIORITY
Tells MySQL to delay the execution of the UPDATE statement until no other
client is reading from the table.

IGNORE
Tells MySQL to ignore any duplicate key errors generated by PRIMARY KEY and
UNIQUE constraints. However, only records that don’t generate such errors will
be updated.

428 | Chapter 3: SQL Statement Command Reference

UPDATE Statement > Oracle

ORDER BY
Tells MySQL to update the rows in the specified order (ascending or descending)
of the columns specified.

LIMIT integer
Restricts the UPDATE action to a specific number of rows, as designated by the
integer value.

MySQL supports DEFAULT value assignment in the INSERT statement, but not
currently in the UPDATE statement.

The following UPDATE increases all prices in the titles table by 1:

UPDATE titles SET price = price + 1;

The next example limits the UPDATE to the first 10 records encountered in the titles
table, according to title_id. Also, the value of price is updated twice. Those two
updates of price are assessed from left to right. First the price is doubled, and then it is
increased by 1:

UPDATE titles
SET price = price * 2,
 price = price + 1
ORDER BY title_id
LIMIT 10;

Oracle
The Oracle implementation of UPDATE allows updates against views, materialized
views, subqueries, and tables in an allowable schema:

UPDATE [ONLY]
 { [schema.]{view_name | materialized_view_name |

table_name}
 [@database_link] [alias]
 {[PARTITION (partition_name)] |
 [SUBPARTITION (subpartition_name)]}

| subquery [WITH { [READ ONLY] | [CHECK OPTION [CONSTRAINT constraint_
name]] }]
 | [TABLE (collection_expression_name) [(+)]] }
SET {column_name1[, ...]} = {expression[, ...] | subquery} |
 VALUE [(alias)] = {value | (subquery)},
 {column_name2[, ...]} = {expression[, ...] | subquery} |
 VALUE [(alias)] = {value | (subquery)},
 [, ...]
{WHERE search_conditions | CURRENT OF cursor_name}
[RETURNING expression[, ...] INTO variable[, ...]];

Syntax elements for Oracle’s version of UPDATE are:

ONLY
Tells Oracle not to update rows from any subviews. Applies only to views that
belong to a hierarchy.

materialized_view_name
Applies the UPDATE statement to a pre-existing snapshot.

Chapter 3: SQL Statement Command Reference | 429

SQLStatem
ent

Com
m

ands
UPDATE Statement > Oracle

@database_link
Applies the UPDATE statement to a view or table on a remote server made avail-
able through a pre-existing database link.

alias
Specifies an alias for the table being updated. Oracle allows table aliases, but it
does not support the AS keyword with UPDATE statements. Aliases can also be
supplied for the VALUE clause of an UPDATE statement.

PARTITION
Applies the update to a named partition, rather than to an entire table. You are
not required to name a partition when updating a partitioned table, but doing so
can, in many cases, help reduce the complexity of your WHERE clause.

SUBPARTITION
Applies the update to a named subpartition, rather than to an entire table.

WITH READ ONLY
Specifies that the subquery cannot be updated. In some cases, an UPDATE trans-
action may actually alter the records used in a subquery. The WITH READ ONLY
clause prevents this from happening.

WITH CHECK OPTION
Tells Oracle to abort any changes to the updated table that would not appear in
the result set of the subquery.

CONSTRAINT
Tells Oracle to further restrict changes based upon a specific constraint.

SET VALUE
Allows you to set the entire row value for any TABLE datatype. The SET VALUE
clause is very similar to the ANSI SET ROW clause. You can also specify a
subquery that retrieves all values needed by the SET VALUE clause.

RETURNING
Retrieves the rows affected by the command, whereas UPDATE normally only
shows the number of rows updated. When used for a single-row update, the
values of the row can be stored in PL/SQL variables and bind variables. When
used for a multirow delete, the values of the rows are stored in bind arrays.

INTO
Indicates the variables into which the values brought back by the RETURNING
clause should be stored.

Oracle has some important rules about issuing UPDATE statements:

• UPDATE statements are not allowed against tables or the base tables of views
containing a domain index with a status of FAILED or IN PROGRESS. UPDATE
statements are also not allowed against any table that has an index partition with
a status of UNUSABLE. (You can avoid the index partition problem by setting the
SKIP_UNUSABLE_INDEXES session parameter to TRUE.)

• Updates against views can be problematic if a view’s defining query contains a
join, an aggregate function, a set operator, the DISTINCT keyword, an ORDER
BY clause, a GROUP BY clause, a CONNECT BY clause, a START WITH clause,
an analytical function, a collection expression, or a subquery. (Under these
circumstances, you can use an INSTEAD OF trigger to update the tables under-
lying a view.)

430 | Chapter 3: SQL Statement Command Reference

UPDATE Statement > PostgreSQL

The following code snippets show some examples of the extensions that Oracle offers
to the UPDATE statement. To begin with, assume that the sales table has grown into a
large partitioned table. You can update a specific partition using the PARTITON
clause. For example:

UPDATE sales PARTITION (sales_yr_2004) s
 SET s.payterms = 'Net 60'
 WHERE qty > 100;

You can also use the SET VALUE clause to supply a new value for each column in the
row identified by the WHERE clause:

UPDATE big_sales bs
 SET VALUE(bs) = (SELECT VALUE(s) FROM sales s
 WHERE bs.title_id = s.title_id)
 AND bs.stor_id = s.stor_id)
 WHERE bs.title_id = 'TC7777';

You can return values for review after an update by using the RETURNING clause.
The following example updates one row, placing the updated values into PL/SQL
variables:

UPDATE employee
 SET job_id = 13, job_level = 140
 WHERE last_name = 'Josephs'
RETURNING last_name, job_id
 INTO :var1, :var2;

PostgreSQL
PostgreSQL supports the ANSI-standard UPDATE syntax with a couple of small varia-
tions: it supports the addition of a FROM clause and supports an array functionality,
but it does not support the ARRAY keyword. PostgreSQL’s UPDATE syntax is:

UPDATE [ONLY] {table_name | view_name}
SET column_name1 = {DEFAULT | NULL | scalar_expression},

column_name2 = {DEFAULT | NULL | scalar_expression}
 [, ...]
[FROM {table1 [AS alias], table2 [AS alias][, ...]}]
[WHERE search_condition | WHERE CURRENT OF cursor_name]

Most of the syntax elements are the same as in the ANSI standard. The only non-stan-
dard element is:

FROM
Provides the ability to build highly selective join-based criteria when determining
which rows to update. FROM is not needed when only one table (the target table)
is used to determine the rows to be updated.

In the following example, we want to update job_lvl for employees who have a job_id
of 12 and a min_lvl of 25. We could do this with a large, complex subquery, or we
could use the FROM clause to enable us to build a join:

Chapter 3: SQL Statement Command Reference | 431

SQLStatem
ent

Com
m

ands
UPDATE Statement > SQL Server

UPDATE employee
 SET job_lvl = 80
 FROM employee AS e, jobs AS j
 WHERE e.job_id = j.job_id
 AND j.job_id = 12
 AND j.min_lvl = 25;

All other aspects of the ANSI standard are fully supported.

SQL Server
SQL Server supports most of the basic components of the ANSI UPDATE statement,
but it does not support the ONLY and ARRAY keywords, nor does it support an array
update functionality. However, SQL Server has extended the capabilities of UPDATE
by adding table hints using the WITH clause, query hints using the OPTION clause, as
well as more robust variable handling, as follows:

UPDATE {table_name | view_name | rowset}
[WITH (hint1, hint2[, ...])]
SET {column_name = {DEFAULT | NULL | scalar_expression}
 | variable_name = scalar_expression
 | variable_name = column_name = scalar_expression}[, ...]
[FROM {table1 | view1 | nested_table1 | rowset1}[, ...]]
 [AS alias]
[JOIN {table2[, ...]}]
WHERE {conditions | CURRENT OF [GLOBAL] cursor_name}
[OPTION (hint1, hint2[, ...])]

SQL Server’s UPDATE syntax elements are as follows:

WITH hint
Allows the use of table hints to override the default behavior of the query opti-
mizer. Since the query optimizer is quite good at choosing query plans, use hints
only with a deep understanding of the tables, indexes, and data affected by the
operation. Without this understanding, including hints could result in a decrease
rather than an increase in performance.

variable_name
SQL Server variables must be declared prior to the UPDATE statement, in the
form DECLARE @variable. The construct SET @variable = column1 =
expression1 sets a variable to the final value of an updated column, whereas SET
@variable = column1, column1 = expression sets the variable to the value of the
column before execution of the UPDATE statement.

FROM
Provides the ability to build highly selective join-based criteria when determining
which rows to update. FROM is not needed when only one table (the target table)
is used to determine the rows to be updated. SQL Server rowset functions are
described later in the section.

AS alias
Allows you to assign an easy-to-use alias to the table, view, nested table subquery,
or rowset function.

432 | Chapter 3: SQL Statement Command Reference

UPDATE Statement > SQL Server

JOIN
Provides the ability to use ANSI-standard syntax for joined tables, in conjunction
with the FROM clause.

GLOBAL
A slight variation on the ANSI-standard WHERE CURRENT OF clause. The
clause WHERE CURRENT OF cursor_name, when used in combination with a
cursor, tells SQL Server to update only the single record where the cursor is
currently positioned. The cursor is assumed to be a local cursor, but it can be
designated a global cursor by using the keyword GLOBAL.

OPTION hint
Allows the use of query hints to override the default behavior of the query opti-
mizer. As with the WITH clause, which uses table hints, use query hints only if
you have a deep understanding of the tables, indexes, and data affected by the
operation. Without this understanding, including hints could result in a decrease
rather than an increase in performance.

The primary extension to the ANSI standard that Microsoft SQL Server offers in an
UPDATE statement is a FROM clause. This FROM clause allows the use of the JOIN
statement to make it especially easy to update rows in the target table by correlating
rows declared in the FROM clause with the rows updated by the UPDATE table_name
component of the statement. The following example shows an update using the ANSI
style and a rather cumbersome subquery, followed by an update using SQL Server’s
FROM clause extension to update the result of a table join. Both statements accom-
plish the same work, but in very different ways:

-- ANSI style
UPDATE titles
SET pubdate = GETDATE()
WHERE title_id IN
 (SELECT title_id
 FROM titleauthor
 WHERE au_id IN
 (SELECT au_id
 FROM authors
 WHERE au_lname = 'White'))
-- Microsoft Transact-SQL style
UPDATE titles
SET pubdate = GETDATE()
FROM authors AS a
JOIN titleauthor AS t2 ON a.au_id = t2.au_id
WHERE t2.title_id = titles.title_id
 AND a.au_lname = 'White'

Performing this update using the Transact-SQL style is simply a matter of joining two
tables—authors and titleauthor—to the titles table. To perform the same operation
using ANSI-compliant code, the au_id in author must first be found and passed up to
the titleauthors table, and then the title_id must be identified and passed up to the
main UPDATE statement.

The following example updates the state column for the first 10 authors from the
authors table:

Chapter 3: SQL Statement Command Reference | 433

SQLStatem
ent

Com
m

ands
WHERE Clause > All Platforms

UPDATE authors
SET state = 'ZZ'
FROM (SELECT TOP 10 * FROM authors ORDER BY au_lname) AS t1
WHERE authors.au_id = t1.au_id

The important thing to note about this example is that it is normally difficult to update
the first n records in an UPDATE statement, unless there is some explicit row
sequence you can identify in the WHERE clause. However, the nested table subquery
in the FROM clause uses a TOP keyword to return the first 10 records, thereby saving
a lot of added programming that would otherwise be required.

See Also
DECLARE
SELECT
WHERE

WHERE Clause

The WHERE clause sets the search criteria for an operation such as SELECT,
UPDATE, or DELETE. Any records in the target table(s) that do not meet the search
criteria are excluded from the operation. The search conditions may include many
variations, such as calculations, Boolean operators, and SQL predicates (for example,
LIKE or BETWEEN).

SQL2003 Syntax
{ WHERE search_criteria | WHERE CURRENT OF cursor_name }

Keywords
WHERE search_criteria

Defines search criteria for the statement to ensure that only the target rows are
affected.

WHERE CURRENT OF cursor_name
Restricts the operation of the statement to the current row of a defined and
opened cursor called cursor_name.

Rules at a Glance
WHERE clauses are found in SELECT statements, DELETE statements, INSERT...
SELECT statements, UPDATE statements, and any statement that might have a query
or subquery (such as DECLARE, CREATE TABLE, CREATE VIEW, and so forth).

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

434 | Chapter 3: SQL Statement Command Reference

WHERE Clause > All Platforms

The search conditions, all of which are described in their own entries elsewhere in this
book, can include:

All records (=ALL, >ALL, <= ALL, SOME/ANY)
For example, to see publishers who live in the same city as their authors:

SELECT pub_name
FROM publishers
WHERE city = SOME (SELECT city FROM authors);

Combinations (AND, OR, and NOT) and evaluation hierarchy
For example, to see all authors with sales in quantities greater than or equal to 75
units, or co-authors with a royalty of greater than or equal to 60:

SELECT a.au_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
WHERE ta.title_id IN (SELECT title_id FROM sales
 WHERE qty >= 75)
 OR (a.au_id IN (SELECT au_id FROM titleauthor
 WHERE royaltyper >= 60)
 AND a.au_id IN (SELECT au_id FROM titleauthor
 WHERE au_ord = 2));

Comparison operators (such as =, < >, <, >, <=, and >=)
For example, to see the last and first names of authors who don’t have a contract
(i.e., authors with contract value of zero):

SELECT au_lname, au_fname
FROM authors
WHERE contract = 0;

Lists (IN and NOT IN)
For example, to see all authors who do not yet have a title in the titleauthor table:

SELECT au_fname, au_lname
FROM authors
WHERE au_id NOT IN (SELECT au_id FROM titleauthor);

NULL comparisons (IS NULL and IS NOT NULL)
For example, to see titles that have NULL year-to-date sales:

SELECT title_id, SUBSTRING(title, 1, 25) AS title
FROM titles
WHERE ytd_sales IS NULL;

Be sure not to specify = NULL in a query. NULL is unknown and
can never be equal to anything. Using = NULL is not the same as
specifying the IS NULL operator.

Pattern matches (LIKE and NOT LIKE)
For example, to see authors whose last names start with a “C”:

SELECT au_id
FROM authors
WHERE au_lname LIKE 'C%';

Chapter 3: SQL Statement Command Reference | 435

SQLStatem
ent

Com
m

ands
WHERE Clause > All Platforms

Range operations (BETWEEN and NOT BETWEEN)
For example, to see authors with last names that fall alphabetically between
“Smith” and “White”:

SELECT au_lname, au_fname
FROM authors
WHERE au_lname BETWEEN 'smith' AND 'white';

Programming Tips and Gotchas
The WHERE clause may require special handling when dealing with certain datatypes,
such as LOBs, or certain character sets, including UNICODE.

Parentheses are used to control evaluation hierarchy within a WHERE clause. Encap-
sulating a clause within parentheses tells the DBMS to evaluate that clause before
others. Parentheses can be nested to create a hierarchy of evaluations. The innermost
parenthetical clause will be evaluated first. You should watch parentheses very care-
fully, for two reasons:

• You must always have an equal number of opening and closing parentheses. Any
imbalance in the number of opening and closing parentheses will cause an error.

• You should be careful where you place parentheses, since misplacing a paren-
thesis can dramatically change the result set of your query.

For example, consider again the following query, which returns six rows in the pubs
database on the SQL Server platform:

SELECT DISTINCT a.au_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
WHERE ta.title_id IN (SELECT title_id FROM sales
 WHERE qty >= 75)
 OR (a.au_id IN (SELECT au_id FROM titleauthor
 WHERE royaltyper >= 60)
 AND a.au_id IN (SELECT au_id FROM titleauthor
 WHERE au_ord = 2))

The output from this query is as follows:

au_id

213-46-8915
724-80-9391
899-46-2035
998-72-3567

Changing just one set of parentheses produces different results:

SELECT DISTINCT a.au_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
WHERE (ta.title_id IN (SELECT title_id FROM sales
 WHERE qty >= 75)
 OR a.au_id IN (SELECT au_id FROM titleauthor
 WHERE royaltyper >= 60))
 AND a.au_id IN (SELECT au_id FROM titleauthor
 WHERE au_ord = 2)

436 | Chapter 3: SQL Statement Command Reference

WHERE Clause > All Platforms

This time, the output will look like this:

au_id

213-46-8915
724-80-9391
899-46-2035

All the platforms discussed in this book support the ANSI standard as described here.

See Also
ALL/ANY/SOME
BETWEEN
DECLARE CURSOR
DELETE
EXISTS
IN
LIKE
SELECT
UPDATE

437

Chapter 4SQL Functions

4
SQL Functions

A function is a special type of command word in the SQL command set, and each
SQL dialect varies in its implementation of that command set. In effect, functions
are one-word commands that return single values. The value of a function can be
determined by input parameters, as with a function that averages a list of data-
base values. However, many functions do not use any type of input parameter.
The function that returns the current system time, CURRENT_TIME, is an
example of such a function.

The ANSI standard supports a number of useful functions. This chapter covers
those functions, providing detailed descriptions and examples for each platform.
In addition, each database maintains a long list of its own internal functions that
are outside the scope of the standard SQL. This chapter provides parameters and
descriptions for each database implementation’s internal functions.

Most database platforms also support the ability to create user-
defined functions (UDFs). For more information on UDFs, refer to
Chapter 3.

Types of Functions
There are different ways to categorize functions into groups. The following
subsections describe distinctions that are critical to understanding how functions
work.

Deterministic and Nondeterministic Functions

Functions can be either deterministic or nondeterministic. A deterministic func-
tion always returns the same results if given the same input values. A
nondeterministic function may return different results every time it is called, even
when the same input values are provided.

438 | Chapter 4: SQL Functions

Why is it important that a given input always returns the same output? It is
important because of how functions may be used within views, in user-defined
functions, and in stored procedures. Restrictions vary across implementations,
but these objects sometimes allow only deterministic functions within their
defining code. For example, SQL Server allows the creation of an index on a
column expression, but only if the expression does not contain any nondetermin-
istic functions. Rules and restrictions vary between the platforms, so check your
platform’s documentation when using functions.

Aggregate and Scalar Functions

Another way of categorizing functions is in terms of whether they operate on values
from just one row at a time, on values from a collection, or on a set of rows. Aggre-
gate functions operate against a collection of values and return a single summarizing
value. Scalar functions return a single value based on scalar input arguments. Some
scalar functions, such as CURRENT_TIME, do not require any arguments.

Window Functions

Window functions are similar to aggregate functions in that they operate over
many rows at one time. The difference lies in how you define those rows. Aggre-
gate functions operate over the sets of rows defined by a query’s GROUP BY
clause. With window functions, you specify the set of rows for each function call,
so different invocations of a function within the same query can execute over
different sets of rows.

ANSI SQL Aggregate Functions
Aggregate functions return a single value based upon a set of other values. If used
among other expressions in the item list of a SELECT statement, the SELECT
must have a GROUP BY or HAVING clause. No GROUP BY or HAVING clause
is required if the aggregate function is the only value retrieved by the SELECT
statement. The aggregate functions supported by the ANSI SQL standard and
their syntax are listed in Table 4-1.

Table 4-1. ANSI SQL aggregate functions

Function Usage

AVG(expression) Computes the average value of a column given by
expression

CORR(dependent, independent) Computes a correlation coefficient

COUNT(expression) Counts the rows defined by the expression

COUNT(*) Counts all rows in the specified table or view

COVAR_POP(dependent, independent) Computes population covariance

COVAR_SAMP(dependent, independent) Computes sample covariance

CUME_DIST(value_list) WITHIN
 GROUP (ORDER BY sort_list)

Computes the relative rank of a hypothetical row within a
group of rows, where the rank is equal to the number of
rows less than or equal to the hypothetical row divided by
the number of rows in the group

ANSI SQL Aggregate Functions | 439

SQL Functions

Technically speaking, ALL, ANY, and SOME are considered aggregate functions.
However, they have been discussed as range search criteria since they are most
often used that way. Refer to Chapter 3 for more information on these functions.

DENSE_RANK(value_list) WITHIN
 GROUP (ORDER BY sort_list)

Generates a dense rank (no ranks are skipped) for a hypo-
thetical row (value_list) in a group of rows gener-
ated by GROUP BY

MIN(expression) Finds the minimum value in a column given by
expression

MAX(expression) Finds the maximum value in a column given by
expression

PERCENT_RANK(value_list) WITHIN
 GROUP (ORDER BY sort_list)

Generates a relative rank for a hypothetical row by
dividing that row’s rank less 1 by the number of rows in
the group

PERCENTILE_CONT(percentile) WITHIN
 GROUP (ORDER BY sort_list)

Generates an interpolated value that, if added to the
group, would correspond to the percentile given

PERCENTILE_DISC(percentile) WITHIN
 GROUP (ORDER BY sort_list)

Returns the value with the smallest cumulative distribu-
tion value greater than or equal to percentile

RANK(value_list) WITHIN
 GROUP (ORDER BY sort_list)

Generates a rank for a hypothetical row (value_list)
in a group of rows generated by GROUP BY

REGR_AVGX(dependent, independent) Computes the average of the independent variable

REGR_AVGY(dependent, independent) Computes the average of the dependent variable

REGR_COUNT(dependent, independent) Counts the number of pairs remaining in the group after
any pair with one or more NULL values has been
eliminated

REGR_INTERCEPT(dependent, independent) Computes the y-intercept of the least-squares-fit linear
equation

REGR_R2(dependent, independent) Squares the correlation coefficient

REGR_SLOPE(dependent, independent) Determines the slope of the least-squares-fit linear
equation

REGR_SXX(dependent, independent) Sums the squares of the independent variables

REGR_SXY(dependent, independent) Sums the products of each pair of variables

REGR_SYY(
dependent, independent)

Sums the squares of the dependent variables

STDDEV_POP(expression) Computes the population standard deviation of all
expression values in a group

STDDEV_SAMP(expression) Computes the sample standard deviation of all
expression values in a group

SUM(expression) Computes the sum of the column values given by
expression

VAR_POP(expression) Computes the population variance of all expression
values in a group

VAR_SAMP(expression) Computes the sample standard deviation of all
expression values in a group

Table 4-1. ANSI SQL aggregate functions (continued)

Function Usage

440 | Chapter 4: SQL Functions

AVG and SUM > All Platforms

The number of values processed by an aggregate function varies depending on the
number of rows queried from the table. This behavior differentiates aggregate
functions from scalar functions, which can only operate on the values of a single
row per invocation.

The general syntax of an aggregate function is:

aggregate_function_name([ALL | DISTINCT] expression)

The aggregate_function_name may be AVG, COUNT, MAX, MIN, or SUM, as
listed in Table 4-1. The ALL keyword, which specifies the default behavior, evalu-
ates all rows when aggregating the value of the function. The DISTINCT keyword
uses only distinct values when evaluating the function.

All aggregate functions except COUNT(*) will ignore NULL values
when computing their results.

AVG and SUM

The AVG function computes the average of values in a column or an expression, and
SUM computes the sum. Both functions work with numeric values and ignore NULL
values. Use the DISTINCT keyword to compute the average or sum of all distinct
values in a column or expression.

ANSI SQL Standard Syntax
AVG([ALL | DISTINCT] expression)
SUM([ALL | DISTINCT] expression)

MySQL, PostgreSQL, and SQL Server
All of these platforms support the ANSI SQL syntax of AVG and SUM.

Oracle
Oracle supports the ANSI SQL syntax and the following analytic syntax:

AVG([ALL | DISTINCT] expression) OVER (window_clause)
SUM([ALL | DISTINCT] expression) OVER (window_clause)

For an explanation of the window_clause, see the “ANSI SQL Window Functions”
section later in this chapter.

Examples
The following query computes average year-to-date sales for each type of book:

SELECT type, AVG(ytd_sales) AS "average_ytd_sales" FROM titles GROUP BY
type;

This query returns the sum of year-to-date sales for each type of book:

SELECT type, SUM(ytd_sales) FROM titles GROUP BY type;

Chapter 4: SQL Functions | 441

SQL Functions
COUNT > All Platforms

CORR

The CORR function returns the correlation coefficient between a set of dependent and
independent variables.

ANSI SQL Standard Syntax
Call the function with two variables, one dependent and the other independent:

CORR(dependent, independent)

Any pair in which either the dependent variable, the independent variable, or both are
NULL is ignored. The result of the function is NULL when none of the input pairs
consists of two non-NULL values.

Oracle
Oracle supports the ANSI SQL syntax, and the following analytic syntax:

CORR(dependent, independent) OVER (window_ clause)

For an explanation of the window_clause, see the “ANSI SQL Window Functions”
section later in this chapter.

PostgreSQL
PostgreSQL supports the ANSI SQL syntax of the CORR function.

MySQL and SQL Server
These platforms do not support any form of the CORR function.

Example
The following CORR example uses the data retrieved by the first SELECT:

SELECT * FROM test2;
 Y X
---------- ----------
 1 3
 2 2
 3 1

SELECT CORR(y,x) FROM test2;
CORR(Y,X)

 -1

COUNT

The COUNT function is used to compute the number of rows in an expression.

ANSI SQL Standard Syntax
COUNT(*)
COUNT([ALL | DISTINCT] expression)

COUNT(*)
Counts all the rows in the target table, regardless of whether they include NULLs.

442 | Chapter 4: SQL Functions

COUNT > All Platforms

COUNT([ALL | DISTINCT] expression)
Computes the number of rows with non-NULL values in a specific column or
expression. When the keyword DISTINCT is used, duplicate values are ignored
and a count of the distinct values is returned. ALL returns the number of non-
NULL values in the expression and is implicit when DISTINCT is not used.

MySQL, PostgreSQL, and SQL Server
All of these platforms support the ANSI SQL syntax of COUNT.

Oracle
Oracle supports the ANSI SQL syntax and the following analytic syntax:

COUNT ({* | [DISTINCT] expression}) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled
“ANSI SQL Window Functions.”

Examples
This query counts all the rows in a table:

SELECT COUNT(*) FROM publishers;

The following query finds the number of different countries where publishers are
located:

SELECT COUNT(DISTINCT country) "Count of Countries"
FROM publishers

COVAR_POP

The COVAR_POP function returns the population covariance of a set of dependent
and independent variables.

ANSI SQL Standard Syntax
Call the function with two variables, one dependent and the other independent:

COVAR_POP(dependent, independent)

The function disregards any pair in which either the dependent variable, the indepen-
dent variable, or both are NULL. If no rows remain in the group after NULL
elimination, the result of the function is NULL.

Oracle
Oracle supports the ANSI SQL syntax and implements the following analytic syntax:

COVAR_POP(dependent, independent) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled
“ANSI SQL Window Functions.”

PostgreSQL
PostgreSQL supports the ANSI SQL syntax of the COVAR_POP function.

MySQL and SQL Server
These platforms do not support any form of the COVAR_POP function.

Chapter 4: SQL Functions | 443

SQL Functions
COVAR_SAMP > All Platforms

Example
The following COVAR_POP example uses the data retrieved by the first SELECT:

SELECT * FROM test2;
 Y X
---------- ----------
 1 3
 2 2
 3 1

SELECT COVAR_POP(y,x) FROM test2;
COVAR_POP(Y,X)

 -.66666667

COVAR_SAMP

The COVAR_SAMP function returns the sample covariance of a set of dependent and
independent variables.

ANSI SQL Standard Syntax
Call the function with two variables, one dependent and the other independent:

COVAR_SAMP(dependent, independent)

The function disregards any pair in which either the dependent variable, the indepen-
dent variable, or both are NULL. The result of the function is NULL when none of the
input pairs consists of two non-NULL values.

Oracle
Oracle supports the ANSI SQL syntax and implements the following analytic syntax:

COVAR_SAMP(dependent, independent) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled
“ANSI SQL Window Functions.”

PostgreSQL
PostgreSQL supports the ANSI SQL syntax of the COVAR_SAMP function.

MySQL and SQL Server
These platforms do not support any form of the COVAR_SAMP function.

Example
The following COVAR_SAMP example uses the data retrieved by the first SELECT:

SELECT * FROM test2;
 Y X
---------- ----------
 1 3
 2 2
 3 1

SELECT COVAR_SAMP(y,x) FROM test2;

444 | Chapter 4: SQL Functions

CUME_DIST > All Platforms

COVAR_SAMP(Y,X)

 -1

CUME_DIST

Computes the relative rank of a hypothetical row within a group of rows, using the
following equation:

(rows_preceding_hypothetical + rows_peered_with_hypothetical) / rows_in_group

Bear in mind that the rows_in_group value includes the hypothetical row that you are
proposing when you call the function.

ANSI SQL Standard Syntax
CUME_DIST(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

Items in the value_list correspond by position to items in the sort_list. Therefore,
both lists must have the same number of expressions.

Oracle
Oracle follows the ANSI SQL syntax and implements the following analytic syntax:

CUME_DIST() OVER ([partioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this
chapter titled “ANSI SQL Window Functions.”

MySQL, PostgreSQL, and SQL Server
These platforms do not implement the CUME_DIST aggregate function.

Example
The following example determines the relative rank of the hypothetical new row
(num=4, odd=1) within each group of rows from test4, where groups are distinguished
by the values in the odd column:

SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, CUME_DIST(4,1) WITHIN GROUP (ORDER BY num, odd)
FROM test4 GROUP BY odd;
 ODD CUME_DIST(4,1)WITHINGROUP(ORDERBYNUM,ODD)
---------- ---
 0 1
 1 .8

Chapter 4: SQL Functions | 445

SQL Functions
DENSE_RANK > All Platforms

In the group odd=0, the new row comes after the three rows (0,0), (2,0), and (4,0). It
will peer with itself. The total number of rows in the group, including the hypothetical
row, will be four. The relative rank, therefore, is computed as follows:

(3 rows preceding + 1 peering) / (3 in group + 1 hypothetical)
= 4 / 4 = 1

In the group odd=1, the new row follows the three rows (1,1), (3,1), and a duplicate
(3,1). Again, there is one peer: the hypothetical row itself. The number of rows in the
group is five, which includes the hypothetical row. The relative rank is thus:

(3 rows preceding + 1 peering) / (4 in group + 1 hypothetical)
= 4 / 5 = .8

DENSE_RANK

Computes a rank in a group for a hypothetical row that you supply. This is a dense
rank, which means rankings are never skipped, even when a group contains rows that
rank identically.

ANSI SQL Standard Syntax
DENSE_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

Items in the value_list correspond by position to items in the sort_list. Therefore,
both lists must have the same number of expressions.

Oracle and SQL Server
Oracle and SQL Server follow the ANSI SQL syntax and implement the following
analytic syntax:

DENSE_RANK() OVER ([partioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this
chapter titled “ANSI SQL Window Functions.”

MySQL and PostgreSQL
These platforms do not implement the DENSE_RANK aggregate function.

Example
The following example determines the dense rank of the hypothetical new row (num=4,
odd=1) within each group of rows from test4, where groups are distinguished by the
values in the odd column:

SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

446 | Chapter 4: SQL Functions

MIN and MAX > All Platforms

SELECT odd, DENSE_RANK(4,1) WITHIN GROUP (ORDER BY num, odd)
FROM test4 GROUP BY odd;
 ODD DENSE_RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)
---------- --
 0 4
 1 3

In the group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is in
position 4. In the group odd=1, the new row follows (1,1), (3,1), and a duplicate
(3,1). In that case, the duplicate occurrences of (3,1) both rank #2, so the new row is
ranked #3. Compare this behavior with RANK, which gives a different result.

MIN and MAX

MIN(expression) and MAX(expression) find the minimum and maximum values of
expression (string, datetime, or numeric) in a set of rows. Either DISTINCT or ALL
may be used with these functions, but they do not affect the result.

ANSI SQL Standard Syntax
MIN([ALL | DISTINCT] expression)
MAX([ALL | DISTINCT] expression)

MySQL
MySQL supports the ANSI SQL syntax of MIN and MAX. MySQL also supports the
functions LEAST and GREATEST, providing the same capabilities.

Oracle
Oracle supports the ANSI SQL syntax and implements the following analytic syntax:

MIN({ALL|[DISTINCT] expression}) OVER (window_clause)
MAX({ALL|[DISTINCT] expression}) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled
“ANSI SQL Window Functions.”

PostgreSQL and SQL Server
These platforms support the ANSI SQL syntax of MIN and MAX.

Examples
The following query finds the best and worst sales for any title on record:

SELECT MIN(ytd_sales), MAX(ytd_sales)
FROM titles;

Aggregate functions are used often in the HAVING clauses of queries with GROUP
BY. The following query selects all categories (types) of books that have an average
price for all books in the category higher than $15.00:

SELECT type 'Category', AVG(price) 'Average Price'
FROM titles
GROUP BY type
HAVING AVG(price) > 15

Chapter 4: SQL Functions | 447

SQL Functions
PERCENT_RANK > All Platforms

PERCENT_RANK

Generates a relative rank for a hypothetical row by dividing that row’s rank less 1 by
the number of rows in the group.

ANSI SQL Standard Syntax
PERCENT_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

Items in the value_list correspond by position to items in the sort_list. Therefore,
both lists must have the same number of expressions.

Oracle
Oracle follows the ANSI SQL syntax and implements the following syntax:

PERCENT_RANK() OVER ([partioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this
chapter titled “ANSI SQL Window Functions.”

MySQL, PostgreSQL, and SQL Server
These platforms do not implement the PERCENT_RANK aggregate function.

Example
The following example determines the percentage rank of the hypothetical new row
(num=4, odd=1) within each group of rows from test4, where groups are distinguished
by the values in the odd column:

SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, PERCENT_RANK(4,1) WITHIN GROUP (ORDER BY num, odd)
FROM test4 GROUP BY odd;
 ODD PERCENT_RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)
---------- --
 0 1
 1 .75

In the group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is in
position 4. The rank computation is (4th rank – 1)/3 rows = 100%. In the group odd=1,
the new row follows (1,1), (3,1), and a duplicate (3,1), and is again ranked at #4.
The rank computation for odd=1 is (4th rank – 1)/4 rows = 3/4 = 75%.

448 | Chapter 4: SQL Functions

PERCENTILE_CONT > All Platforms

PERCENTILE_CONT

Generates an interpolated value corresponding to a percentile that you specify.

ANSI SQL Standard Syntax
In the following syntax, percentile is a number between 0 and 1:

PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY sort_list)
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

Oracle
Oracle allows only one expression in the ORDER BY clause:

PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY expression)

Oracle also allows some use of windowing syntax:

PERCENTILE_CONT(percentile) WITHIN GROUP
(ORDER BY sort_list) OVER (partitioning)

See “ANSI SQL Window Functions,” later in this chapter, for a description of
partitioning.

MySQL, PostgreSQL, and SQL Server
These platforms do not implement PERCENTILE_CONT.

Example
The following example groups the data in test4 by the column named odd and invokes
PERCENTILE_CONT to return a 50th-percentile value for each group:

SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, PERCENTILE_CONT(0.50) WITHIN GROUP (ORDER BY NUM)
FROM test4 GROUP BY odd;
 ODD PERCENTILE_CONT(0.50)WITHINGROUP(ORDERBYNUM)
---------- --
 0 2
 1 3

Chapter 4: SQL Functions | 449

SQL Functions
RANK > All Platforms

PERCENTILE_DISC

Determines the value in a group with the smallest cumulative distribution greater than
or equal to a percentile that you specify.

ANSI SQL Standard Syntax
PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY sort_list)
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

percentile is a number between zero and one.

Oracle
Oracle allows only one expression in the ORDER BY clause:

PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY expression)

Oracle also allows some use of windowing syntax:

PERCENTILE_DISC(percentile) WITHIN GROUP
(ORDER BY sort_list) OVER (partitioning)

See “ANSI SQL Window Functions,” later in this chapter, for a description of
partitioning.

MySQL, PostgreSQL, and SQL Server
These platforms do not implement PERCENTILE_DISC.

Example
The following example is similar to that for PERCENTILE_CONT, except that it
returns, for each group, the value closest to but not exceeding the 60th percentile:

SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, PERCENTILE_DISC(0.60) WITHIN GROUP (ORDER BY NUM)
FROM test4GROUP BY odd;
PERCENTILE_CONT(0.50)WITHINGROUP(ORDERBYNUM)
--
 2
 3

RANK

Computes a rank in a group for a hypothetical row that you supply. This is not a dense
rank. If the group contains rows that rank identically, it’s possible for ranks to be
skipped. If you want a dense rank, use the DENSE_RANK function.

450 | Chapter 4: SQL Functions

RANK > All Platforms

ANSI SQL Standard Syntax
RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

Items in the value_list correspond by position to items in the sort_list. Therefore,
both lists must have the same number of expressions.

Oracle and SQL Server
Oracle and SQL Server follow the ANSI SQL syntax and implement the following
analytic syntax:

RANK() OVER ([partitioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this
chapter titled “ANSI SQL Window Functions.”

MySQL and PostgreSQL
These platforms do not implement the RANK aggregate function.

Example
The following example determines the rank of the hypothetical new row (num=4, odd=1)
within each group of rows from test4, where groups are distinguished by the values in
the odd column:

SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, RANK(4,1) WITHIN GROUP (ORDER BY num, odd)
FROM test4 GROUP BY odd;
 ODD RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)
---------- ------------------------------------
 0 4
 1 4

In both cases, the rank of the hypothetical new row is 4. In the group odd=0, the new
row comes after (0,0), (2,0), and (4,0), and thus it is in position 4. In the group
odd=1, the new row follows (1,1), (3,1), and a duplicate (3,1). In this case, even though
two of the rows are duplicates and so have the same rank, the new row is still ranked #4
because it is preceded by three rows. Compare this behavior with that of DENSE_RANK.

Chapter 4: SQL Functions | 451

SQL Functions
The REGR Family of Functions > All Platforms

The REGR Family of Functions

ANSI SQL defines a family of functions, having names beginning with REGR_, that
relate to different aspects of linear regression. The functions work in the context of a
least-squares regression line.

ANSI SQL Standard Syntax
Following is the syntax and a brief description of each REGR_ function:

 REGR_AVGX(dependent, independent)
Averages (as in AVG(x)) the independent variable values

 REGR_AVGY(dependent, independent)
Averages (as in AVG(y)) the dependent variable values

 REGR_COUNT(dependent, independent)
Counts the number of non-NULL number pairs

 REGR_INTERCEPT(dependent, independent)
Computes the y-intercept of the regression line

 REGR_R2(dependent, independent)
Computes the coefficient of determination

 REGR_SLOPE(dependent, independent)
Computes the slope of the regression line

 REGR_SXX(dependent, independent)
Sums the squares of the independent variable values

 REGR_SXY(dependent, independent)
Sums the products of each pair of values

 REGR_SYY(dependent, independent)
Sums the squares of the dependent variable values

The REGR_ functions only work on number pairs containing two non-NULL values.
Any number pair with one or more NULL values will be ignored.

Oracle and PostgreSQL
Oracle and PostgreSQL support the ANSI SQL syntax for all REGR_ functions. Oracle
also supports the following analytic syntax:

REGR_function(dependent, independent) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled
“ANSI SQL Window Functions.”

MySQL and SQL Server
These platforms do not implement the REGR_ family of functions.

Example
The following REGR_COUNT example demonstrates that any pair with one or more
NULL values is ignored. The table test3 contains three non-NULL number pairs, and
three other pairs that have at least one NULL:

452 | Chapter 4: SQL Functions

STDDEV_POP > All Platforms

SELECT * FROM test3;
 Y X
---------- ----------
 1 3
 2 2
 3 1
 4 NULL
 NULL 4
 NULL NULL

The REGR_COUNT function ignores the pairs containing NULLs, counting only
those pairs with two non-NULL values:

SELECT REGR_COUNT(y,x) FROM test3;
REGR_COUNT(Y,X)

 3

Likewise, all other REGR_ functions filter out any pairs containing NULL values
before performing their respective computations.

STDDEV_POP

Use STDDEV_POP to find the population standard deviation within a group of
numeric values.

ANSI SQL Standard Syntax
STDDEV_POP(numeric_expression)

MySQL, Oracle, and PostgreSQL
MySQL, Oracle, and PostgreSQL support the ANSI SQL syntax. Oracle also supports
the following analytic syntax:

STDDEV_POP(numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled
“ANSI SQL Window Functions.”

SQL Server
Use the STDEVP function.

Example
The following example computes the population standard deviation for the values 1,
2, and 3:

SELECT * FROM test;
 X

 1
 2
 3

SELECT STDDEV_POP(x) FROM test;
STDDEV_POP(X)

 .816496581

Chapter 4: SQL Functions | 453

SQL Functions
VAR_POP > All Platforms

STDDEV_SAMP

Use STDDEV_SAMP to find the sample standard deviation within a group of numeric
values.

ANSI SQL Standard Syntax
STDDEV_SAMP(numeric_expression)

MySQL and PostgreSQL
MySQL and PostgreSQL support the ANSI SQL syntax.

Oracle
Oracle supports the standard syntax. It also provides the STDDEV function, which
operates similarly to STDDEV_SAMP except that it returns zero (instead of NULL)
when there is only one value in the set.

Oracle also supports analytic syntax:

STDDEV_SAMP(numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled
“ANSI SQL Window Functions.”

SQL Server
Use STDEV (with only one D!).

Example
The following example computes the sample standard deviation for the values 1, 2,
and 3:

SELECT * FROM test;
 X

 1
 2
 3

SELECT STDDEV_SAMP(x) FROM test;
STDDEV_SAMP(X)

 1

VAR_POP

Use VAR_POP to compute the population variance of a set of values.

ANSI SQL Standard Syntax
VAR_POP(numeric_expression)

MySQL and PostgreSQL
MySQL and PostgreSQL support the ANSI SQL syntax.

454 | Chapter 4: SQL Functions

VAR_POP > All Platforms

Oracle
Oracle supports the standard syntax. It also supports the following analytic syntax:

VAR_POP(numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled
“ANSI SQL Window Functions.”

SQL Server
Use the VARP function.

Example
The following example computes the population variance for the values 1, 2, and 3:

SELECT * FROM test;
 X

 1
 2
 3

SELECT VAR_POP(x) FROM test;
VAR_POP(X)

.666666667

VAR_SAMP

Use VAR_SAMP to compute the sample variance of a set of values.

ANSI SQL Standard Syntax
VAR_SAMP(numeric_expression)

MySQL and PostgreSQL
MySQL and PostgreSQL support the ANSI SQL syntax.

Oracle
Oracle supports the standard syntax. You may alternatively use the VARIANCE func-
tion, which differs from VAR_SAMP by returning zero (instead of NULL) for sets that
contain only a single value.

Oracle also supports the following analytic syntax:

VAR_SAMP(numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled
“ANSI SQL Window Functions.”

SQL Server
Use the VAR function.

Example
The following example computes the sample variance for the values 1, 2, and 3:

Chapter 4: SQL Functions | 455

SQL Functions
ANSI SQL Window Functions

SELECT * FROM test;
 X

 1
 2
 3

SELECT VAR_SAMP(x) FROM test;
VAR_SAMP(X)

 1

ANSI SQL Window Functions
ANSI SQL2003 allows for a window_clause in aggregate function calls, the addition of
which makes those functions into window functions. Both Oracle and SQL Server
support this window function syntax. This section describes how to use the window_
clause within Oracle and SQL Server.

Oracle tends to refer to window functions as analytic functions.

Window (or analytic) functions are similar to standard aggregate functions in that they
operate on multiple rows, or groups of rows, within the result set returned from a
query. However, the groups of rows that a window function operates on are defined
not by a GROUP BY clause, but by partitioning and windowing clauses. Furthermore,
the order within these groups is defined by an ordering clause, but that order affects
only function evaluation and has no effect on the order in which rows are returned by
the query.

Window functions are the last items in a query to be evaluated,
except for the ORDER BY clause. Because of this late evaluation,
window functions cannot be used within the WHERE, GROUP BY,
or HAVING clauses.

ANSI SQL2003’s Window Syntax
 SQL2003 specifies the following syntax for window functions:

FUNCTION_NAME(expr) OVER {window_name | (window_specification)}
window_specification ::= [window_name] [partitioning] [ordering] [framing]
partitioning ::= PARTITION BY value[, value...] [COLLATE collation_name]
ordering ::= ORDER [SIBLINGS] BY rule[, rule...]
rule ::= {value | position | alias} [ASC | DESC] [NULLS {FIRST | LAST}]
framing ::= {ROWS | RANGE} {start | between} [exclusion]
start ::= {UNBOUNDED PRECEDING | unsigned-integer PRECEDING | CURRENT ROW}
between ::= BETWEEN bound AND bound
bound ::= {start | UNBOUNDED FOLLOWING | unsigned-integer FOLLOWING}
exclusion ::= {EXCLUDE CURRENT ROW | EXCLUDE GROUP |
 EXCLUDE TIES | EXCLUDE NO OTHERS}

456 | Chapter 4: SQL Functions

ANSI SQL Window Functions

Oracle’s Window Syntax
Oracle’s window function syntax is as follows:

FUNCTION_NAME(expr) OVER (window_clause)
window_clause ::= [partitioning] [ordering [framing]]
partitioning ::= PARTITION BY value[, value...]
ordering ::= ORDER [SIBLINGS] BY rule[, rule...]
rule ::= {value | position | alias} [ASC | DESC]
 [NULLS {FIRST | LAST}]
framing ::= {ROWS | RANGE} {not_range | begin AND end}
not_range ::= {UNBOUNDED PRECEDING |
 CURRENT ROW |

value PRECEDING}
begin ::= {UNBOUNDED PRECEDING |
 CURRENT ROW |

value {PRECEDING | FOLLOWING}}
end ::= {UNBOUNDED FOLLOWING |
 CURRENT ROW |

value {PRECEDING | FOLLOWING}}

SQL Server’s Window Syntax
SQL Server’s window function syntax is as follows:

FUNCTION_NAME(expr) OVER ([window_clause])
window_clause ::= [partitioning] [ordering]
partitioning ::= PARTITION BY value[, value...]
ordering ::= ORDER BY rule[, rule...]
rule ::= column [ASC | DESC]

Partitioning
Partitioning the rows operated on by the partitioning clause is similar to using the
GROUP BY expression on a standard SELECT statement. The partitioning clause
takes a list of expressions that will be used to divide the result set into groups. We’ll
use the following table as the basis for some examples:

SELECT * FROM odd_nums;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1

The following results illustrate the effects of partitioning by ODD. The sum of the even
numbers is 2 (0+2), and the sum of the odd numbers is 4 (1+3). The second column of
the result set reports the sum of all values in the partition to which that row belongs,
yet all the detail rows are returned. The query provides summary results in the context
of detail rows:

Chapter 4: SQL Functions | 457

SQL Functions
ANSI SQL Window Functions

SELECT NUM, SUM(NUM) OVER (PARTITION BY ODD) S FROM ODD_NUMS;
NUM S
--------- ----------
0 2
2 2
1 4
3 4

Not using a partitioning clause at all will sum all of the numbers in the NUM column
for each row returned by the query. In effect, the entire result set is treated as a single,
large partition:

SELECT NUM, SUM(NUM) OVER () S FROM ODD_NUMS;
NUM S
--------- ----------
0 6
1 6
2 6
3 6

Ordering
You specify the order of the rows on which an analytic function operates using the
ordering clause. However, this analytic ordering clause does not define the ordering of
the result set. To define the overall result set ordering, you must use the query’s
ORDER BY clause. The following use of Oracle’s FIRST_VALUE function illustrates
the effects of different orderings of the partitions:

SELECT NUM,
 SUM(NUM) OVER (PARTITION BY ODD) S,
 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM ASC) first_asc,
 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM DESC) first_desc
FROM ODD_NUMS;
 NUM S FIRST_ASC FIRST_DESC
---------- ---------- ---------- ----------
 0 2 0 2
 2 2 0 2
 1 4 1 3
 3 4 1 3

As you can see, the ORDER BY clauses in the window function invocations affect the
ordering of the rows in the respective partitions when those functions are evaluated.
ORDER BY NUM ASC orders partitions in ascending order, resulting in 0 for the first
value in the even-number partition and 1 for the first value in the odd-number parti-
tion, while ORDER BY NUM DESC has the opposite effect.

The preceding query also illustrates an important point: using win-
dow functions, you can summarize and order results in many differ-
ent ways in the same query.

458 | Chapter 4: SQL Functions

ANSI SQL Window Functions

Grouping or Windowing
Many analytic functions also allow you to specify a virtual, moving window
surrounding a row within a partition, using the framing clause. Such moving windows
are useful for calculations such as a running total.

The following Oracle-based example uses the framing clause on the analytic variant of
SUM to calculate a running sum of the values in the first column. No partitioning
clause is used, so each invocation of SUM operates over the entire result set. However,
the ORDER BY clause sorts the rows for SUM in ascending order of NUM’s value, and
the BETWEEN clause (which is the windowing clause) causes each invocation of SUM
to include values for NUM only up through the current row. Each successive invoca-
tion of SUM includes yet another value for NUM, in order, from the lowest value of
NUM to the greatest:

SELECT NUM, SUM(NUM) OVER (ORDER BY NUM ROWS
 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) S FROM ODD_NUMS;
NUM S
--------- ----------
0 0
1 1
2 3
3 6

This example’s a bit too easy, as the order of the final result set happens to match the
order of the running total. That doesn’t need to be the case. The following example
generates the same results, but in a different order. You can see that the running total
values are appropriate for each value of NUM, but the rows are presented in a different
order than before. The result set ordering is completely independent of the ordering
used for window function calculations:

SELECT NUM, SUM(NUM) OVER (ORDER BY NUM ROWS
 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) S FROM ODD_NUMS
ORDER BY NUM DESC;
 NUM S
---------- ----------
 3 6
 2 3
 1 1
 0 0

List of Window Functions
ANSI SQL specifies that any aggregate function may also be used as a window func-
tion. Oracle and SQL Server largely follow the standard in that respect, so you’ll find
that you can take just about any aggregate function (certainly the standard ones) and
apply to it the window function syntax described in the preceding sections.

In addition to the aggregate functions, ANSI SQL defines the window functions
described in the following sections. Only Oracle and SQL Server currently implement
these functions. All examples use the following table and data, which is a variation on
the ODD_NUMS table used earlier to illustrate the concepts of partitioning, ordering,
and grouping:

Chapter 4: SQL Functions | 459

SQL Functions
CUME_DIST > All Platforms

SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

Platform-specific window functions for Oracle (there are none for SQL Server) are
included in the lists found in the section “Platform-Specific Extensions,” later in this
chapter.

CUME_DIST

Calculates the cumulative distribution, or relative rank, of the current row with regard
to other rows in the same partition. The calculation for a given row is as follows:

number of peer or preceding rows / number of rows in partition

Because the result for a given row depends on the number of rows preceding that row
in the same partition, it’s important to always specify an ORDER BY clause when
invoking this function.

ANSI SQL Standard Syntax
CUME_DIST() OVER {window_name|(window_specification)}

Oracle
Oracle does not allow the framing portion of the windowing syntax. It requires the
ordering clause:

CUME_DIST() OVER ([partitioning] ordering)

SQL Server
SQL Server does not support CUME_DIST.

Example
The following Oracle-based example uses CUME_DIST to generate a relative rank for
each row, ordering by NUM, after partitioning the data by ODD:

SELECT NUM, ODD, CUME_DIST() OVER
 (PARTITION BY ODD ORDER BY NUM) cumedist
FROM test4;
 NUM ODD CUMEDIST
---------- ---------- ----------
 0 0 .333333333
 2 0 .666666667
 4 0 1
 1 1 .25
 3 1 .75
 3 1 .75
 5 1 1

460 | Chapter 4: SQL Functions

DENSE_RANK > All Platforms

Following is an explanation of the calculation behind the rank for the row in which
NUM=0:

1. Because of the ORDER BY clause, the rows in the partition are ordered as
follows:

NUM=0
NUM=2
NUM=4

2. There are no rows preceding NUM=0.

3. There is one row that is a peer of NUM=0, and that is the NUM=0 row itself.
Thus, the divisor is 1.

4. There are three rows in the partition as a whole, making the dividend 3.

5. The result of 1/3 is .33 repeating, as shown in the example output.

DENSE_RANK

Assigns a rank to each row in a partition, which should be ordered in some manner.
The rank for a given row is computed by counting the number of rows preceding the
row in question and then adding 1 to the result. Rows with duplicate ORDER BY
values will rank the same. Unlike with RANK, gaps in rank numbers will not result
from two rows sharing the same rank.

ANSI SQL Standard Syntax
DENSE_RANK() OVER {window_name | (window_specification)}

Oracle and SQL Server
Oracle and SQL Server also require the ordering clause and do not allow the framing
clause:

DENSE_RANK() OVER ([partitioning] ordering)

Example
Compare the results from the following Oracle-based example to those shown in the
section on the RANK function:

SELECT NUM, DENSE_RANK() OVER (ORDER BY NUM) rank
FROM test4;
 NUM RANK
---------- ----------
 0 1
 1 2
 2 3
 3 4
 3 4
 4 5
 5 6

The two rows where NUM=3 are both ranked at #3, and the next-higher row is
ranked at #4. Rank numbers are not skipped, hence the term “dense.”

Chapter 4: SQL Functions | 461

SQL Functions
RANK > All Platforms

PERCENT_RANK

Computes the relative rank of a row by dividing that row’s rank less 1 by the number
of rows in the partition, also less 1:

(rank - 1) / (rows - 1)

Compare this calculation to that used for CUME_DIST.

ANSI SQL Standard Syntax
PERCENT_RANK() OVER ({window_name | (window_specification)}

Oracle
Oracle also requires the ordering clause and does not allow the framing clause:

PERCENT_RANK() OVER ([partitioning] ordering)

SQL Server
SQL Server does not support PERCENT_RANK.

Example
The following Oracle-based example assigns relative ranks to the values of NUM,
partitioning the data on the ODD column:

SELECT NUM, ODD, PERCENT_RANK() OVER
 (PARTITION BY ODD ORDER BY NUM) cumedist
FROM test4;
 NUM ODD CUMEDIST
---------- ---------- ----------
 0 0 0
 2 0 .5
 4 0 1
 1 1 0
 3 1 .333333333
 3 1 .333333333
 5 1 1

Following is an explanation of the calculation behind the rank for the row in which
NUM=2:

1. Row NUM=2 is the second row in its partition; thus, it ranks #2.

2. Subtract 1 from 2 to get a divisor of 1.

3. The dividend is the total number of rows in the partition, or 3.

4. Subtract 1 from 3 to get a dividend of 2.

5. The result of 1/3 is .33 repeating, as shown in the example output.

RANK

Assigns a rank to each row in a partition, which should be ordered in some manner.
The rank for a given row is computed by counting the number of rows preceding the
row in question and then adding 1 to the result. Rows with duplicate ORDER BY
values will rank the same, leading to gaps in rank numbers.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

462 | Chapter 4: SQL Functions

RANK > All Platforms

ANSI SQL Standard Syntax
RANK() OVER {window_name | (window_specification)}

Oracle and SQL Server
Oracle and SQL Server also require the ordering clause and do not allow the framing
clause:

RANK() OVER ([partitioning] ordering)

Example
The following Oracle-based example uses the NUM column to rank the rows in the
test4 table:

SELECT NUM, RANK() OVER (ORDER BY NUM) rank
FROM test4;
 NUM RANK
---------- ----------
 0 1
 1 2
 2 3
 3 4
 3 4
 4 6
 5 7

Because both rows where NUM=3 rank the same (at #4), the next-higher row will be
ranked at #6. The #5 rank is skipped.

ROW_NUMBER

Assigns a unique number to each row in a partition.

ANSI SQL Standard Syntax
ROW_NUMBER() OVER ({window_name | (window_specification)}

Oracle and SQL Server
Oracle and SQL Server also require the ordering clause and do not allow the framing
clause:

ROW_NUMBER() OVER ([partitioning] ordering)

Example
SELECT NUM, ODD, ROW_NUMBER() OVER
 (PARTITION BY ODD ORDER BY NUM) cumedist
FROM test4;
 NUM ODD CUMEDIST
---------- ---------- ----------
 0 0 1
 2 0 2
 4 0 3
 1 1 1
 3 1 2
 3 1 3
 5 1 4

Chapter 4: SQL Functions | 463

SQL Functions
ANSI SQL Scalar Functions > All Platforms

ANSI SQL Scalar Functions
The ANSI SQL scalar functions return a single value each time they are invoked. The
SQL standard provides many scalar functions that can be used to manipulate date and
time types, strings, and numbers, as well as to retrieve system information such as the
current user or login name. Scalar functions fall into the categories listed in Table 4-2.

Built-in Scalar Functions
ANSI SQL built-in scalar functions identify both the current user session and its char-
acteristics, such as the current session privileges. Built-in scalar functions are always
nondeterministic. The CURRENT_DATE, CURRENT_TIME, and CURRENT_
TIMESTAMP functions listed in Table 4-3 are built-in functions that fall into the date-
and-time category of functions. Although the four platforms discussed in this book
provide many additional functions beyond these SQL built-ins, the SQL standard
defines only those listed in Table 4-3.

MySQL
MySQL supports all the ANSI SQL built-in scalar functions. In addition, MySQL
supports NOW as a synonym of the function CURRENT_TIMESTAMP.

Table 4-2. Categories of scalar functions

Function category Explanation

Built-in Performs operations on values or settings built into the database.
Oracle uses the term “built-in” to describe all the specialty functions that it provides and
that are thus “built into” the DBMS. This is a distinct and separate usage from the “built-
in” scalar functions described here.

CASE and CAST While these two functions operate on scalar input values, they are in a category all their
own. CASE supplies IF/THEN logic to SQL statements, and CAST can convert values from
one datatype to another.

Date and time Performs operations on temporal datatypes and returns values in a temporal datatype
format. There is no SQL2003 function that operates on a temporal datatype and returns
a temporal result. The closest function is EXTRACT (covered in “Numeric Scalar Func-
tions” later in this chapter), which operates on temporal values and returns numeric
values. Functions returning temporal values but operating on no arguments are covered
in the later section “Built-in Scalar Functions.”

Numeric Performs operations on numeric values and returns numeric values.

String Performs operations on character values (e.g., CHAR, VARCHAR, NCHAR, NVARCHAR, and
CLOB) and returns string or numeric values.

Table 4-3. ANSI SQL built-in scalar functions

Function Usage

CURRENT_DATE Returns the current date

CURRENT_TIME Returns the current time

CURRENT_TIMESTAMP Returns the current date and time

CURRENT_USER or USER Returns the currently active user within the database server

SESSION_USER Returns the currently active authorization ID, if it differs from the user’s ID

SYSTEM_USER Returns the currently active user within the host operating system

464 | Chapter 4: SQL Functions

ANSI SQL Scalar Functions > All Platforms

Oracle
Oracle supports USER, CURRENT_DATE, and CURRENT_TIMESTAMP.

PostgreSQL and SQL Server
PostgreSQL and SQL Server support all the built-in scalar functions. In addition, Post-
greSQL supports NOW as a synonym of the function CURRENT_TIMESTAMP.

Examples
The following queries retrieve the values from built-in functions. Notice that the
various platforms return dates in their native formats:

/* On MySQL */
SELECT CURRENT_TIMESTAMP;
'2001-12-15 23:50:26'

/* On Microsoft SQL Server */
SELECT CURRENT_TIMESTAMP
GO
'Dec 15,2001 23:50:26'

/* On Oracle */
SELECT USER FROM dual;
dylan

CASE and CAST Functions
ANSI SQL provides a function named CASE that can be used to create IF/THEN flow-
control logic within queries or UPDATE statements. The CAST function is for
converting between datatypes and is also in the ANSI standard. All of the databases
covered in this book provide ANSI standard support for both the CASE and CAST
functions.

CASE

The CASE function provides IF/THEN/ELSE functionality within a SELECT or
UPDATE statement. It evaluates a list of conditions and returns one value out of
several possible values.

CASE has two usages: simple and searched. Simple CASE expressions compare one
value, the input_value, with a list of other values and return a result associated with
the first matching value. Searched CASE expressions allow the analysis of several
logical conditions and return a result associated with the first one that is true.

All vendors provide the ANSI SQL syntax for CASE.

ANSI SQL Standard Syntax and Description
-- Simple comparison operation
CASE input_value
WHEN when_condition THEN resulting_value
[... n]
[ELSE else_result_value]
END

Chapter 4: SQL Functions | 465

SQL Functions
CASE > All Platforms

-- Boolean searched operation
CASE
WHEN Boolean_condition THEN resulting_value
[... n]
[ELSE else_result_expression]
END

In the simple CASE function, the input_value is evaluated against each WHEN
clause. The resulting_value is returned for the first TRUE instance of input_value =
when_condition. If no when_condition evaluates as TRUE, the else_result_value is
returned. If no else_result_value is specified, NULL is returned.

The structure is essentially the same in the more elaborate Boolean searched opera-
tion, except that each WHEN clause has its own Boolean comparison operation.

In either usage, multiple WHEN clauses are used, though only one ELSE clause is
necessary.

Examples
Here is a simple comparison operation where the CASE function alters the display of
the contract column to make it more understandable:

SELECT au_fname,
 au_lname,
 CASE contract
 WHEN 1 THEN 'Yes'
 ELSE 'No'
 END 'contract'
FROM authors
WHERE state = 'CA'

Here is an elaborate searched CASE function in a SELECT statement that will report
how many titles have been sold in different year-to-date sales ranges:

SELECT CASE
 WHEN ytd_sales IS NULL THEN 'Unknown'
 WHEN ytd_sales <= 200 THEN 'Not more than 200'
 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'
 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'
 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'
 ELSE 'Over 10000'
 END 'YTD Sales',
 COUNT(*) 'Number of Titles'
FROM titles
GROUP BY CASE
 WHEN ytd_sales IS NULL THEN 'Unknown'
 WHEN ytd_sales <= 200 THEN 'Not more than 200'
 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'
 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'
 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'
 ELSE 'Over 10000'
 END
ORDER BY MIN(ytd_sales)

The results are:

466 | Chapter 4: SQL Functions

CAST > All Platforms

YTD Sales Number of Titles
---------------------- ----------------
Unknown 2
Not more than 200 1
Between 201 and 1000 2
Between 1001 and 5000 9
Between 5001 and 10000 1
Over 10000 3

Next is an UPDATE statement that applies discounts to all of the titles. This more
complicated command will discount all personal computer-related titles by 25% and
all other titles by 10%, with the exception of titles with year-to-date sales exceeding
10,000 units, which will receive only a 5% discount. This query uses a searched CASE
expression to perform the price adjustments:

UPDATE titles
SET price = price *
 CASE
 WHEN ytd_sales > 10000 THEN 0.95 -- 5% discount
 WHEN type = 'popular_comp' THEN 0.75 -- 25% discount
 ELSE 0.9 -- 10% discount
 END
WHERE pub_date IS NOT NULL

This example demonstrates completion of three separate UPDATE operations in a
single statement.

CAST

The CAST command explicitly converts an expression of one datatype to another. All
vendors provide the ANSI SQL syntax for CAST.

ANSI SQL Standard Syntax and Description
CAST(expression AS data_type [(length)])

The CAST function converts any expression, such as a column value or variable, into
another defined datatype. The length of the datatype may optionally be supplied, for
those datatypes (such as CHAR or VARCHAR) that support lengths.

Be aware that some conversions, such as DECIMAL values to
INTEGER, will result in rounding operations. Also, some conver-
sion operations may result in an error if the new datatype does not
have sufficient space to display the converted value.

Examples
This example retrieves the year-to-date sales figure as a CHAR and concatenates it
with a literal string and a portion of the title of the book. It converts ytd_sales to
CHAR(5), and it shortens the length of the title to make the results more readable:

SELECT CAST(ytd_sales AS CHAR(5)) + ' Copies sold of ' +
CAST(title AS VARCHAR(30))
FROM titles
WHERE ytd_sales IS NOT NULL
 AND ytd_sales > 10000
ORDER BY ytd_sales DESC

Chapter 4: SQL Functions | 467

SQL Functions
ABS > All Platforms

The results are:

22246 Copies sold of The Gourmet Microwave
18722 Copies sold of You Can Combat Computer Stress
15096 Copies sold of Fifty Years in Buckingham Pala

Numeric Scalar Functions
The list of official ANSI SQL numeric functions is rather small, and the different plat-
forms provide supplementary mathematical and statistical functions. MySQL and
PostgreSQL both support many of the ANSI standard functions. The other database
platforms offer the same capabilities of numeric scalar functions through their own
internally defined functions, but they do not share the same names as those declared
by the SQL standard. The supported numeric functions and syntax are listed in
Table 4-4.

ABS

All platforms support the ANSI standard ABS function.

ANSI SQL Standard Syntax
ABS(expression)

ABS returns the absolute value of the number in expression.

Table 4-4. ANSI SQL numeric functions

Function Usage

ABS Returns the absolute value of a number.

BIT_LENGTH Returns an integer value representing the number of bits in another value.

CEIL or CEILING Rounds a noninteger value upward to the next greatest integer. Returns an integer
value unchanged.

CHAR_LENGTH Returns an integer value representing the number of characters in a string expression.

EXP Raises a value to the power of the mathematical constant known as e.

EXTRACT Allows the datepart to be extracted (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_HOUR, or TIMEZONE_MINUTE) from a temporal expression.

FLOOR Rounds a noninteger value downward to the next least integer. Returns an integer
value unchanged.

LN Returns the natural logarithm of a number.

MOD Returns the remainder of one number divided into another.

OCTET_LENGTH Returns an integer value representing the number of octets in another value. This
value is the same as BIT_LENGTH / 8.

POSITION Returns an integer value representing the starting position of a string within the
search string.

POWER Raises a number to a specified power.

SQRT Computes the square root of a number.

WIDTH_BUCKET Deposits a value into the appropriate bucket from a set of buckets covering a given
range.

468 | Chapter 4: SQL Functions

BIT_LENGTH, CHAR_LENGTH, and OCTET_LENGTH > All Platforms

Example
The following example shows how to use the ABS function:

/* SQL2003 */
SELECT ABS(-1) FROM NUMBERS
1

BIT_LENGTH, CHAR_LENGTH, and OCTET_LENGTH

All platforms stray from the ANSI standard in their support for scalar functions for
determining the length of expressions. While the platform support is nonstandard, the
equivalent functionality exists under different names.

ANSI SQL Standard Syntax
The ANSI SQL scalar functions for getting the length of a value take an expression to
calculate the value and return the length as an integer. The BIT_LENGTH function
returns the number of bits contained within the value of expression, CHAR_LENGTH
returns the number of characters in the string expression, and OCTET_LENGTH
returns the number of octets in the string expression. All three of these functions will
return NULL if expression is NULL:

BIT_LENGTH(expression)
CHAR_LENGTH(expression)
OCTET_LENGTH(expression)

MySQL and PostgreSQL
MySQL and PostgreSQL both support BIT_LENGTH, CHAR_LENGTH, OCTET_
LENGTH, and the ANSI SQL synonym CHARACTER_LENGTH.

Oracle
Oracle supports the LENGTHB function, which returns an integer value representing
the number of bytes in an expression. For the length of an expression in characters,
Oracle provides a LENGTH function as a synonym for CHAR_LENGTH.

SQL Server
SQL Server provides LEN, which performs all three functions.

Example
The following example, shown for different databases, determines the length of a
string and a value retrieved from a column:

/* On MySQL and PostgreSQL */
SELECT CHAR_LENGTH('hello');
SELECT OCTET_LENGTH(book_title) FROM titles;

/* On Microsoft SQL Server */
SELECT DATALENGTH(title) FROM titles
WHERE type = 'popular_comp'
GO

/* On Oracle */
SELECT LENGTH('HORATIO') "Length of characters"
FROM dual;

Chapter 4: SQL Functions | 469

SQL Functions
EXP > All Platforms

CEIL

The CEIL function returns the smallest integer greater than an input value that you
specify.

ANSI SQL Standard Syntax
ANSI SQL supports the following two forms of the function:

CEIL(expression)
CEILING(expression)

MySQL and PostgreSQL
MySQL and PostgreSQL support both CEIL and CEILING.

Oracle
Oracle supports only CEIL.

SQL Server
SQL Server supports only CEILING.

Examples
When you pass a positive, non-integer number, the effect of CEIL is to round up to the
next highest integer:

SELECT CEIL(100.1) FROM dual;
CEIL(100.1)

 101

Remember, though, that with negative numbers, rounding “up” results in a lower
absolute value:

SELECT CEIL(-100.1) FROM dual;
CEIL(-100.1)

 -100

Use FLOOR to get behavior opposite to that of CEIL.

EXP

The EXP function returns the value of the mathematical constant e (approximately
2.718281) raised to the power of a specified number.

ANSI SQL Standard Syntax
All platforms support the ANSI SQL standard syntax:

EXP(expression)

Example
The following example uses EXP to return an approximation of e:

470 | Chapter 4: SQL Functions

EXTRACT > MySQL

SELECT EXP(1) FROM dual;
 EXP(1)

2.71828183

Use LN to go in the opposite direction.

EXTRACT

The ANSI SQL scalar function for extracting parts from a date is EXTRACT.

ANSI SQL Standard Syntax
The ANSI SQL EXTRACT function takes a date_part and an expression that evalu-
ates to a datetime value. MySQL, Oracle, and PostgreSQL support the ANSI SQL
standard syntax:

EXTRACT(date_part FROM expression)

MySQL
MySQL’s implementation extends somewhat beyond the ANSI standard. The ANSI
standard does not have a provision for returning multiple fields from the same call to
EXTRACT (e.g., DAY_HOUR). The MySQL extensions try to accomplish what the
combination DATE_TRUNC and DATE_PART do in PostgreSQL. MySQL supports
the dateparts listed in Table 4-5.

Table 4-5. MySQL dateparts

Type value Meaning

MICROSECOND Microseconds

SECOND Seconds

MINUTE Minutes

HOUR Hours

DAY Days

WEEK Weeks

MONTH Months

QUARTER Quarter

YEAR Years

SECOND_MICROSECOND Seconds and microseconds

MINUTE_MICROSECOND Minutes and microseconds

MINUTE_SECOND Minutes and seconds

HOUR_MICROSECOND Hours and microseconds

HOUR_SECOND Hours, minutes, and seconds

HOUR_MINUTE Hours and minutes

DAY_MICROSECOND Days and microseconds

DAY_SECOND Days, hours, minutes, and seconds

DAY_MINUTE Days, hours, and minutes

DAY_HOUR Days and hours

YEAR_MONTH Years and months

Chapter 4: SQL Functions | 471

SQL Functions
EXTRACT > PostgreSQL

Oracle
Oracle supports the ANSI SQL syntax with the dateparts listed in Table 4-6.

PostgreSQL
PostgreSQL supports the ANSI SQL syntax with a few extra dateparts. The dateparts it
supports are listed in Table 4-7.

Table 4-6. Oracle dateparts

Type value Meaning

DAY The day of the month field (1–31)

HOUR The hour field (0–23)

MINUTE The minutes field (0–59)

MONTH The month field (1–12)

SECOND The seconds field (0–59)

TIMEZONE_HOUR The hour component of the time zone offset

TIMEZONE_MINUTE The minute component of the time zone offset

TIMEZONE_REGION The current time zone name

TIMEZONE_ABBR The abbreviation of the current time zone

YEAR The year field

Table 4-7. PostgreSQL dateparts

Type value Meaning

CENTURY Before version 8.0, returned the year field divided by 100. After version 8.0, returns
the correct numbering used by Gregorian calendar countries, where the first century
starts in 0001 and there is no century numbered 0 (zero).

DAY The day of the month field (1-31).

DECADE The year field divided by 10.

DOW The day of the week field (0–6, where Sunday is 0). This type only works for TIMES-
TAMP values.

DOY The day of the year field (1–366). The maximum returned value is only 365 for years
that are not leap years. This type can only be used on TIMESTAMP values.

EPOCH The number of seconds between the epoch (1970-01-01 00:00:00-00) and the
supplied value. The result can be negative for values before the epoch.

HOUR The hour field (0–23).

MICROSECONDS The seconds field (including fractional parts) multiplied by 1,000,000.

MILLENNIUM Before version 8.0, returned the year field divided by 1000. After version 8.0, returns the
correct numbering used by Gregorian calendar countries, where the first millennium
starts in 0001 and there is no century numbered 0 (zero). The year 1001 is the start of the
second millennium, while the year 2001 is the start of the third millennium.

MILLISECONDS The seconds field (including fractional parts) multiplied by 1,000.

MINUTE The minutes field (0–59).

MONTH The month field (1–12).

QUARTER The quarter of the year (1–4) in which the value occurs. This type can only be used
with TIMESTAMP values.

SECOND The seconds field (0–59).

472 | Chapter 4: SQL Functions

EXTRACT > SQL Server

SQL Server
SQL Server provides the function DATEPART(date_part, expression) as a synonym
for the ANSI SQL function EXTRACT(date_part FROM expression). SQL Server
supports the dateparts listed in Table 4-8.

Example
This example extracts dateparts from several datetime values:

/* On MySQL */
SELECT EXTRACT(YEAR FROM "2013-07-02");
2013
SELECT EXTRACT(YEAR_MONTH FROM "2013-07-02 01:02:03");

TIMEZONE The time zone offset in seconds.

TIMEZONE_HOUR The hour component of the time zone offset.

TIMEZONE_MINUTE The minute component of the time zone offset.

WEEK The number of the week within the year in which the value falls.

YEAR The year field.

Table 4-8. SQL Server dateparts

Date part value Meaning

day The day of the month for the datetime expression. The abbreviations d and dd can also
be used.

dayofyear The day of the year for the datetime expression. The abbreviations y and dy can also
be used.

hour The hour of the day for the datetime expression. The abbreviation hh can also be used.

ISO_WEEK The ISO 8601 week number (1–53). The abbreviations isowk and isoww can also be
used.

microsecond The microseconds (0–999999) for the datetime expression. The abbreviation mcs can
also be used.

millisecond The milliseconds for the datetime expression. The abbreviation ms can also be used.

minute The minute of the hour for the datetime expression. The abbreviations n and mi can
also be used.

month The month (1–12). The abbreviations m and mm can also be used.

nanosecond The number of nanoseconds (0–999999999). The abbreviation ns can also be used.

quarter The quarter of the year in which the datetime expression falls. The abbreviations q
and qq can also be used.

second The second of the minute for the datetime expression. The abbreviations s and ss can
also be used.

TZoffset The time zone. The abbreviation tz can also be used.

week The week of the year for the datetime expression. The abbreviations wk and ww can
also be used.

weekday The day of the week for the datetime expression. The abbreviation dw can also be used.

year The year field of the datetime expression. The abbreviations yy and yyyy can also be
used for two-digit and four-digit years, respectively.

Table 4-7. PostgreSQL dateparts (continued)

Type value Meaning

Chapter 4: SQL Functions | 473

SQL Functions
LN > All Platforms

201307
SELECT EXTRACT(DAY_MINUTE FROM "2013-07-02 01:02:03");
20102

/* On PostgreSQL */
SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
20

FLOOR

The FLOOR function returns the largest integer less than an input value that you
specify.

ANSI SQL Standard Syntax
All platforms support the ANSI SQL syntax:

FLOOR(expression)

Examples
When you pass a positive number, the effect of FLOOR is to eliminate anything after
the decimal point:

SELECT FLOOR(100.1) FROM dual;
FLOOR(100.1)

 100

Remember, though, that with negative numbers going in the “less-than” direction
corresponds to increasingly larger absolute values:

SELECT FLOOR(-100.1) FROM dual;
FLOOR(-100.1)

 -101

Use CEIL to get behavior opposite to FLOOR.

LN

The LN function returns the natural logarithm of a number, which is the power to
which you would need to raise the mathematical constant e (approximately 2.718281)
in order to get the number in question as the result.

ANSI SQL Standard Syntax
LN(expression)

MySQL, Oracle, and PostgreSQL
MySQL, Oracle, and PostgreSQL support the ANSI SQL syntax for the LN function.
MySQL and PostgreSQL also support the use of LOG as a synonym for LN.

SQL Server
SQL Server calls its natural logarithm function LOG:

LOG(expression)

474 | Chapter 4: SQL Functions

MOD > All Platforms

Example
The following Oracle-based example shows the natural logarithm of a number closely
approximating the mathematical constant known as e:

SELECT LN(2.718281) FROM dual;
LN(2.718281)

 .999999695

Use the EXP function to go in the other direction.

MOD

The MOD function returns the remainder of a dividend divided by a divider. All plat-
forms support the ANSI SQL syntax for the MOD function.

ANSI SQL Standard Syntax
MOD(dividend, divider)

The standard syntax for the MOD function is to return the remainder of the dividend
divided by the divider; it returns the dividend if the divider is 0.

Example
The following example shows how to use the MOD function from within a SELECT
statement:

SELECT MOD(12, 5) FROM NUMBERS
2

POSITION

The POSITION function returns an integer that indicates the starting position of a
string within the search string.

ANSI SQL Standard Syntax
POSITION(string1 IN string2)

The standard syntax for the POSITION function is to return the first location of
string1 within string2. POSITION returns 0 if string1 does not occur within string2
and NULL if either argument is NULL.

MySQL and PostgreSQL
MySQL and PostgreSQL support the ANSI SQL syntax for the POSITION function.

Oracle
Oracle’s equivalent function is called INSTR.

SQL Server
Instead of POSITION, SQL Server supports CHARINDEX and PATINDEX functions.
CHARINDEX and PATINDEX are very similar, except that PATINDEX allows the use
of wildcard characters in the search criteria.

Chapter 4: SQL Functions | 475

SQL Functions
SQRT > All Platforms

Examples
/* On MySQL */
SELECT LOCATE('bar', 'foobar');
4

/* On MySQL and PostgreSQL */
SELECT POSITION('fu' IN 'snafhu');
0

/* On Microsoft SQL Server */
SELECT CHARINDEX('de', 'abcdefg')
GO
4
SELECT PATINDEX('%fg', 'abcdefg')
GO
6

POWER

Use POWER to raise a number to a specific value.

ANSI SQL Standard Syntax
All platforms support the ANSI SQL syntax:

POWER(base, exponent)

The result of the POWER function is base raised to the exponent power, or
baseexponent. If base is negative, exponent must be an integer.

Examples
Raising a positive number to an exponent is straightforward:

SELECT POWER(10,3) FROM dual;
POWER(10,3)

 1000

Anything raised to the 0th power evaluates to 1:

SELECT POWER(0,0) FROM dual;
POWER(0,0)

 1

Negative exponents move the decimal point to the left:

SELECT POWER(10,-3) FROM dual;
POWER(10,-3)

 .001

SQRT

The SQRT function returns the square root of a number.

476 | Chapter 4: SQL Functions

WIDTH_BUCKET > All Platforms

ANSI SQL Standard Syntax
All platforms support the ANSI SQL syntax:

SQRT(expression)

Example

SELECT SQRT(100) FROM dual;
 SQRT(100)

 10

WIDTH_BUCKET

The WIDTH_BUCKET function assigns values to buckets (individual segments) in an
equiwidth histogram.

ANSI SQL Standard Syntax
In the following syntax, expression represents a value to be assigned to a bucket. You
would typically base expression on one or more columns returned by a query:

WIDTH_BUCKET(expression, min, max, buckets)

The buckets argument specifies the number of buckets to create over the range defined
by min through max. min is inclusive, whereas max is not. The value from expression is
assigned to one of those buckets, and the function then returns the corresponding
bucket number. When expression falls outside the range of buckets, the function
returns either 0 or max + 1, depending on whether expression is lower than min or
greater than or equal to max.

MySQL and SQL Server
MySQL and SQL Server do not support WIDTH_BUCKET.

Oracle and PostgreSQL
Oracle and PostgreSQL support the ANSI SQL syntax for WIDTH_BUCKET.

Examples
The following example divides the integer values 1 through 10 into two buckets:

SELECT x, WIDTH_BUCKET(x,1,10,2)
FROM pivot;
 X WIDTH_BUCKET(X,1,10,2)
---------- ----------------------
 1 1
 2 1
 3 1
 4 1
 5 1
 6 2
 7 2
 8 2
 9 2
 10 3

Chapter 4: SQL Functions | 477

SQL Functions
Concatenation Operator > All Platforms

This next example is more interesting. It divides 11 values (from 1 through 10) into
three buckets and illustrates the distinction between min being inclusive and max being
noninclusive:

SELECT x, WIDTH_BUCKET(x,1,10,3)
FROM pivot;
 X WIDTH_BUCKET(X,1,10,3)
---------- ----------------------
 1 1
 2 1
 3 1
 4 2
 5 2
 6 2
 7 3
 8 3
 9 3
 9.9 3
 10 4

Pay particular attention to the results for X=1, X=9.9, and X=10. An input value of min
(1, in this example) falls into the first bucket, proving that the lower end of the range
for bucket #1 is defined as x >= min. An input value of max, however, falls outside the
highest bucket. In this example, 10 falls into the overflow bucket numbered max + 1.
The value 9.9, on the other hand, falls into bucket #3, illustrating that the upper end
of the range for the highest bucket is defined as x < max.

String Functions and Operators
Basic string functions and operators offer a number of capabilities and return string
values as their results. Some string functions are dyadic, indicating that they operate on
two strings at once. ANSI SQL supports the string functions listed in Table 4-9.

Concatenation Operator

ANSI SQL defines a concatenation operator (||), which joins two distinct strings into
one string value.

Table 4-9. SQL string functions and operators

Function or operator Usage

Concatenation operator Appends two or more literal string expressions, column values, or variables together
into one string

CONVERT Converts a string to a different representation within the same character set

LOWER Converts a string to all lowercase characters

OVERLAY Returns the result of replacing a substring of one string with another

SUBSTRING Returns a portion of a string

TRANSLATE Converts a string from one character set to another

TRIM Removes leading characters, trailing characters, or both from a character string

UPPER Converts a string to all uppercase characters

478 | Chapter 4: SQL Functions

Concatenation Operator > All Platforms

MySQL
MySQL supports CONCAT as a synonym for the ANSI SQL concatenation operator
and uses the || operator for logical OR.

Oracle and PostgreSQL
Oracle and PostgreSQL support the ANSI SQL double vertical bar (||) concatenation
operator. Oracle also supports CONCAT as a synonym for the ANSI SQL operator.

SQL Server
SQL Server uses the plus sign (+) as a synonym for the ANSI SQL concatenation oper-
ator. SQL Server has the system setting CONCAT_NULL_YIELDS_NULL, which can
be set to alter the behavior when NULL values are used in the concatenation of string
values.

Examples
/* ANSI SQL Syntax */
'string1' || 'string2' || 'string3'
'string1string2string3'

/* On MySQL */
CONCAT('string1', 'string2')
'string1string2'

If any of the concatenation values are NULL, the entire returned string is NULL. Also,
if a numeric value is concatenated, it is implicitly converted to a character string.

SELECT CONCAT('My ', 'bologna ', 'has ', 'a ', 'first ', 'name...');
'My bologna has a first name...'
SELECT CONCAT('My ', NULL, 'has ', 'first ', 'name...');
NULL

CONVERT and TRANSLATE

The CONVERT function alters the representation of a character string within its char-
acter set and collation. For example, CONVERT might be used to alter the number of
bits per character.

TRANSLATE alters the character set of a string value from one base character set to
another. Thus, TRANSLATE might be used to translate a value from the English char-
acter set to a Kanji (Japanese) or Cyrillic (Russian) character set. The translation must
already exist, either by default or by virtue of having been created using the CREATE
TRANSLATION command.

ANSI SQL Standard Syntax
CONVERT(char_value USING conversion_char_name)

TRANSLATE(char_value USING translation_name)

CONVERT converts char_value to the character set with the name supplied in
conversion_char_name. TRANSLATE converts char_value to the character set provided
in translation_name.

Chapter 4: SQL Functions | 479

SQL Functions
CONVERT and TRANSLATE > All Platforms

MySQL
MySQL supports the ANSI SQL syntax for CONVERT but does not support
TRANSLATE.

Oracle
Oracle supports CONVERT and TRANSLATE with the same meaning as ANSI SQL.
The Oracle syntax follows:

CONVERT(char_value, target_char_set, source_char_set)

TRANSLATE(char_value USING {CHAR_CS | NCHAR_CS})

Under Oracle’s implementation, the CONVERT function returns the text of char_
value in the target character set. char_value is the string to convert, target_char_set is
the name of the character set into which the string is to be converted, and source_
char_set is the name of the character set in which char_value was originally stored.

Oracle’s TRANSLATE function follows the ANSI syntax, but it supports only two
arguments for the character set: you can choose between the database character set
(CHAR_CS) and the national character set (NCHAR_CS).

Oracle also supports a different function named TRANSLATE,
which omits the USING keyword. That version of TRANSLATE
has nothing to do with character set translation.

Both the target and source character set names can be passed either as literal strings, in
variables, or in columns from a table. Note that replacement characters might be
substituted when converting from or to a character set that does not support a repre-
sentation of all the characters used in the conversion.

Oracle supports several common character sets, including US7ASCII, WE8DECDEC,
WE8HP, F7DEC, WE8EBCDIC500, WE8PC850, and WE8ISO8859P1. For example:

SELECT CONVERT('Gro2', 'US7ASCII', 'WE8HP')FROM DUAL;
Gross

PostgreSQL
PostgreSQL supports the ANSI standard CONVERT, and conversions can be defined
by using CREATE CONVERSION. PostgreSQL’s implementation of the TRANSLATE
function offers a large superset of functions that can convert any occurrence of one
text string to another within a specified string:

TRANSLATE(character_string, from_text, to_text)

Here are some examples:

SELECT TRANSLATE('12345abcde', '5a', 'XX');
'1234XXbcde'

SELECT TRANSLATE(title, 'Computer', 'PC')
FROM titles
WHERE type = 'Personal_computer'

SELECT CONVERT('PostgreSQL' USING iso_8859_1_to_utf_8)
'PostgreSQL'

480 | Chapter 4: SQL Functions

CONVERT and TRANSLATE > All Platforms

SQL Server
SQL Server does not support TRANSLATE. SQL Server’s implementation of
CONVERT is a very rich utility that alters the base datatype of an expression but is
otherwise dissimilar to the ANSI SQL CONVERT function. It is functionally equiva-
lent to the CAST function:

CONVERT (data_type[(length) | (precision, scale)], expression[, style])

The style clause is used to define the format of a date conversion. Refer to the SQL
Server documentation for more information. Following is an example:

SELECT title, CONVERT(char(7), ytd_sales)
FROM titles
ORDER BY title
GO

LOWER and UPPER

The functions LOWER and UPPER allow the case of a string to be altered quickly and
easily, so that all the characters are lower- or uppercase, respectively. These functions
are supported in all the database implementations covered in this book. The different
database platforms also support a variety of other text formatting functions that are
specific to their implementations.

ANSI SQL Standard Syntax
LOWER(string)
UPPER(string)

LOWER converts string into a lowercase string. UPPER is the uppercase counterpart
of LOWER.

MySQL
MySQL supports the ANSI SQL UPPER and LOWER scalar functions, as well as the
synonyms UCASE and LCASE.

Oracle, PostgreSQL, and SQL Server
These platforms all support the ANSI SQL UPPER and LOWER scalar functions.

Example
SELECT LOWER('You Talkin To ME?'), UPPER('you talking to me?!');
you talkin to me?, YOU TALKING TO ME?!

OVERLAY

The OVERLAY function embeds one string into another and returns the result.

ANSI SQL Standard Syntax
OVERLAY(string PLACING embedded_string FROM start
[FOR length])

If any of the inputs are NULL, the OVERLAY function returns NULL. The embedded_
string replaces the length characters in string, starting at the character position start.

Chapter 4: SQL Functions | 481

SQL Functions
SUBSTRING > All Platforms

If the length is not specified, the embedded_string will replace all the characters in
string after start.

MySQL, Oracle, and SQL Server
These platforms do not support the OVERLAY function. You can simulate the
OVERLAY function on these platforms by using a combination of SUBSTRING and
the concatenation operator.

PostgreSQL
PostgreSQL supports the ANSI standard for OVERLAY.

Examples
This is an example of how to use the OVERLAY function:

/* ANSI SQL and PostgreSQL */
SELECT OVERLAY('DONALD DUCK' PLACING 'TRUMP' FROM 8) FROM NAMES;
'DONALD TRUMP'

SUBSTRING

The SUBSTRING function allows one character string to be returned from another.

ANSI SQL Standard Syntax
SUBSTRING(extraction_string FROM starting_position [FOR length]
[COLLATE collation_name])

If any of the inputs are NULL, the SUBSTRING function returns NULL. The
extraction_string is the source from which the character value is to be extracted. It
may be a literal string, a column in a table with a character datatype, or a variable with
a character datatype. The starting_position is an integer value telling the function at
which position to begin performing the extraction. The optional length is an integer
value that tells the function how many characters to extract, starting at the starting_
position. If the optional FOR keyword is omitted, the substring starting at starting_
position and continuing to the end of the extraction_string is returned.

MySQL
MySQL largely supports the ANSI standard, but it does not accept the COLLATE
clause. MySQL’s implementation assumes that the characters are to be extracted from
the starting position and will continue to the end of the character string. The syntax is
as follows:

SUBSTRING(extraction_string [FROM starting_position] [FOR length])

Oracle
Oracle’s implementation, SUBSTR, largely functions the same way as ANSI SQL’s
SUBSTRING, but Oracle does not support the COLLATE clause. When the starting_
position is a negative number, Oracle counts from the end of the extraction_string. If
length is omitted, the remainder of the string (starting at starting_position) is
returned. The syntax is:

SUBSTR(extraction_string, starting_position[, length])

482 | Chapter 4: SQL Functions

SUBSTRING > All Platforms

PostgreSQL
PostgreSQL largely supports the ANSI standard, but it does not accept the COLLATE
clause. The PostgreSQL syntax is:

SUBSTRING(extraction_string [FROM starting_position] [FOR length])

SQL Server
SQL Server’s implementation is similar to the ANSI standard, except that it does not
support the COLLATE clause. SQL Server allows this command to be applied to text,
image, and binary datatypes; however, the starting_position and length represent the
number of bytes rather than the number of characters to count. The SQL Server syntax
follows:

SUBSTRING(extraction_string [FROM starting_position] [FOR length])

Examples
These examples generally work on any one of the five database platforms profiled in
this book. Only the second Oracle example, with a negative starting position, fails on
the others (assuming, of course, that Oracle’s SUBSTR is translated into
SUBSTRING):

/* On Oracle, counting from the left */
SELECT SUBSTR('ABCDEFG',3,4) FROM DUAL;
'CDEF'

/* On Oracle, counting from the right */
SELECT SUBSTR('ABCDEFG',-5,4) FROM DUAL;
'CDEF'

/* On MySQL */
SELECT SUBSTRING('Be vewy, vewy quiet' FROM 5);
'wy, vewy quiet'

/* On PostgreSQL or SQL Server */
SELECT au_lname, SUBSTRING(au_fname, 1, 1)
FROM authors
WHERE au_lname = 'Carson'
Carson C

TRIM

The TRIM function removes leading characters, trailing characters, or both from a
specified character string or BLOB value. This function also removes other types of
characters from a specified character string. The default behavior is to trim the speci-
fied character from both sides of the character string. If no removal character is
specified, TRIM removes spaces by default.

ANSI SQL Standard Syntax
TRIM([[{LEADING | TRAILING | BOTH}] [removal_char] FROM]
target_string

 [COLLATE collation_name])

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Platform-Specific Extensions | 483

SQL Functions

The removal_char is the character to be stripped out, and the target_string is the char-
acter string from which characters are to be stripped. If no removal_char is specified,
TRIM strips out spaces. The COLLATE clause forces the result set of the function into
another pre-existing collation set.

MySQL, Oracle, and PostgreSQL
These platforms support the ANSI SQL syntax of TRIM.

SQL Server
SQL Server provides the functions LTRIM and RTRIM to trim off leading spaces or
trailing spaces, respectively. On SQL Server, LTRIM and RTRIM cannot be used to
trim other types of characters.

Examples
SELECT TRIM(' wamalamadingdong ');
'wamalamadingdong'

SELECT LTRIM(RTRIM(' wamalamadingdong '));
'wamalamadingdong'

SELECT TRIM(LEADING '19' FROM '1976 AMC GREMLIN');
'76 AMC GREMLIN'

SELECT TRIM(BOTH 'x' FROM 'xxxWHISKEYxxx');
'WHISKEY'

SELECT TRIM(TRAILING 'snack' FROM 'scooby snack');
'scooby '

Platform-Specific Extensions
The following sections provide a full listing and description of each vendor-
supported function. The functions are platform-specific. Thus, a MySQL func-
tion, for example, is not guaranteed to be supported by any other vendor.

MySQL-Supported Functions

This section provides an alphabetical listing of MySQL-supported functions, with
examples and corresponding results.

ACOS(number)
Returns the arccosine of number, ranging from –1 to 1. The result ranges from
0 to π and is expressed in radians. For example:

SELECT ACOS(0) -> 1.570796

ADDDATE(date, days)
Returns date with days added to it. For example:

SELECT ADDDATE('2008-05-14', 1) -> '2008-05-15'

484 | Chapter 4: SQL Functions

ADDDATE(date, INTERVAL expr unit)
Returns date with expr units of unit added. For example:

SELECT ADDDATE('2008-05-14', INTERVAL 1 DAY) -> '2008-05-15'

AES_DECRYPT(crypt_str, key_str)
Returns crypt_str decrypted using AES and the key key_str.

AES_ENCRYPT(str, key_str)
Returns str encrypted with AES using the key key_str. For example:

SELECT AES_DECRYPT(AES_ENCRYPT('secret sauce', 'password'), 'password')
-> 'secret sauce'

ASCII(text)
Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

ASIN(number)
Returns the arcsine of number, ranging from –1 to 1. The resulting value
ranges from –π/2 to π/2 and is expressed in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)
Returns the arctangent of any number. The resulting value ranges from –π/2 to
π/2 and is expressed in radians. For example:

SELECT ATAN(3.1415) -> 1.262619

ATAN2(x, y)
Returns the arctangent of the two variables x and y. ATAN2(x, y) is similar to
ATAN(y/x), with the exception that the signs of x and y are used to deter-
mine the quadrant of the result. For example:

ATAN2(3.1415, 1) -> 1.262619

BENCHMARK(count, expr)
Executes the expression expr count times. The result value is always 0. For
example:

BENCHMARK(1000000,ATAN2(3.1415, 1)) -> 0

BIN(number)
Returns a string containing the binary value of number, where number is a
BIGINT.

BINARY(string)
Casts string to a binary string.

BIT_AND(expr)
Aggregate function that returns the bitwise AND of all bits in expr. The calcu-
lation is performed with 64-bit (BIGINT) precision. The value –1 is returned
when no matching rows are found. For example:

BIT_AND(mycolumn) -> 0

BIT_COUNT(number)
Returns the number of bits that are set in number. For example:

BIT_COUNT(5) -> 2

Platform-Specific Extensions | 485

SQL Functions

BIT_OR(expr)
Aggregate function that returns the bitwise OR of all bits in expr. The calcula-
tion is performed with 64-bit (BIGINT) precision. The value 0 is returned
when no matching rows are found. For example:

BIT_OR(mycolumn) -> 1

BIT_XOR(expr)
Aggregate function that returns the bitwise XOR of all bits in expr. The calcu-
lation is performed with 64-bit (BIGINT) precision. The value 0 is returned
when no matching rows are found. For example:

BIT_XOR(mycolumn) -> 1

CHAR(number[, . . .])
Returns a string consisting of the characters given by the ASCII code values in
the arguments. Any NULL values are ignored. For example:

CHAR(120,121,122) -> 'xyz'

CHARSET(str)
Returns the character set of the string argument str. For example:

CHARSET('oolong') -> 'latin1'

COALESCE(list)
Returns the first non-NULL element in the list. For example:

COALESCE(NULL, 1, 2) -> 1

COERCIBLITY(expr)
Returns the collation coercibility value of expr, which is an integer value
between 0 and 5; the lowest values have the highest precedence. For example:

COERCIBILITY('darjeeling') -> 4

COLLATION(str)
Returns the collation of str. For example:

COLLATION(_utf8'assam') -> 'utf8_general_ci'

COMPRESS(string)
Returns a compressed version of string.

CONCAT_WS(separator, str1, str2[, . . .])
A special form of CONCAT that inserts separator between every pair of string
arguments concatenated. If separator is NULL, the result is NULL. For
example:

CONCAT_WS(', ', au_lname, au_fname) -> 'Jefferson, Thomas'

CONNECTION_ID()
Returns the connection ID for the connection. Every connection has its own
unique ID. For example:

CONNECTION_ID() -> 305102

CONV(number, from_base, to_base)
Returns a string representation of the number number, converted from base
from_base to base to_base. If any argument is NULL, the result is NULL. For
example:

CONV(12,10,2) -> 1100

486 | Chapter 4: SQL Functions

COS(number)
Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

COT(number)
Returns the cotangent of number as an angle expressed in radians. For
example:

SELECT COT(0) -> NULL

CRC32(expr)
Returns the CRC32 checksum of expr. For example:

SELECT CRC32('mysql') -> 2501908538

CURDATE()
Returns today’s date as a value in YYYY-MM-DD or YYYYMMDD format,
depending on whether the function is used in a string or numeric context. For
example:

CURDATE() -> '2003-06-24'

CURTIME()
Returns the current time as a value in HH:MM:SS or HHMMSS format,
depending on whether the function is used in a string or numeric context. For
example:

CURTIME() -> '20:40:20'

DATABASE()
Returns the current database name. For example:

DATABASE() -> 'PUBS'

DATE_ADD(date, INTERVAL expr type)

DATE_SUB(date, INTERVAL expr type)

ADDDATE(date, INTERVAL expr type)

SUBDATE(date, INTERVAL expr type)
These functions perform date arithmetic calculations. ADDATE and
SUBDATE are synonyms for DATE_ADD and DATE_SUB. DATE_ADD
returns the result of adding the INTERVAL to the date expression. DATE_
SUB returns the result of subtracting the INTERVAL from the date expres-
sion. For example:

DATE_ADD('1999-04-15', INTERVAL 1 DAY) -> '1999-04-16'
DATE_SUB('1999-04-15', INTERVAL 1 DAY) -> '1999-04-14'

DATE_ FORMAT(date, format)
Formats the date value according to the format string. For example:

DATE_FORMAT('2008-04-15', '%M-%D-%Y') -> 'April-15th-2008'

Table 4-10 lists the available specifiers for format and their meanings.

Platform-Specific Extensions | 487

SQL Functions

DAYNAME(date)
Returns the name of the weekday for date. For example:

DAYNAME('1999-04-15') -> 'Thursday'

DAYOFMONTH(date)
Returns the day of the month for date, in the range 1 to 31. For example:

DAYOFMONTH('1999-04-15') -> 15

Table 4-10. MySQL format specifiers

Format specifier Meaning

%a Abbreviation of the day (Sun–Sat)

%b Abbreviation of the month (Jan–Dec)

%c Month number (1–12)

%D Day of month with a suffix (1st, 2nd, 3rd, . . .)

%d Two-digit day of month (01, 02, . . .)

%e Day of month (1, 2, 3, . . .)

%H Hour (00–23)

%h Hour (01–12)

%I Hour (01–12)

%i Minute (00–59)

%j Day of year (001–366)

%k Hour (0–23)

%l Hour (1–12)

%M Full month name (January–December)

%m Month (01–12)

%p AM or PM

%r Twelve-hour time (hh:mm:ss AM or PM)

%S or %s Seconds (00–59)

%T Twenty-four-hour time (hh:mm:ss)

%U Week number (00–53, Sunday being the first day of the week)

%u Week number (00–53, Monday being the first day of the week)

%V Week number (01–53, Sunday being the first day of the week)

%v Week number (01–53, Monday being the first day of the week)

%W Name of the day (Sunday–Saturday)

%w Day of the week (0–6, 0 being Sunday and 6 being Saturday)

%X Four-digit year with Sunday being the first day of the week

%x Four-digit year with Monday being the first day of the week

%Y Four-digit year

%y Two-digit year

%% Literal “%”

488 | Chapter 4: SQL Functions

DAYOFWEEK(date)
Returns the weekday index for date (1 = Sunday, 2 = Monday, . . . 7 =
Saturday). For example:

DAYOFWEEK('1999-04-15') -> 5

DAYOFYEAR(date)
Returns the day of the year for date, in the range 1 to 366. For example:

DAYOFYEAR('1999-04-15') -> 105

DECODE(crypt_str, pass_str)
Decrypts the encrypted string crypt_str using pass_str as the password;
crypt_str should be a string returned from ENCODE. For example:

DECODE(ENCODE('foo','bar'),'bar') -> 'foo'

DEFAULT(column_name)
Returns the default value of the column column_name. For example:

SELECT DEFAULT(a_column) FROM a_table -> 0

DEGREES(number)
Returns the argument number converted from radians to degrees. For
example:

DEGREES(3.1415926) -> 179.99999692953

DES_DECRYPT(crypt_str, key_str)
Returns crypt_str decrypted using DES and the key key_str.

DES_ENCRYPT(str, key_str)
Returns str encrypted with DES using the key key_str. For example:

SELECT DES_DECRYPT(DES_ENCRYPT('secret sauce', 'password'), 'password')
-> 'secret sauce'

ELT(n, str1, str2, str3[, . . . n])
Returns str1 if n = 1, str2 if n = 2, and so on. If n is less than 1 or greater than
the number of arguments, this function returns NULL. ELT is the comple-
ment of FIELD. For example:

ELT(1, 'Hi', 'There') -> 'Hi'ELT(2, 'Hi', 'There') -> 'There'

ENCODE(str, pass_str)
Encrypts str using pass_str as the password. To decrypt the result, use
DECODE. The result is a binary string the same length as the string. For
example:

DECODE(ENCODE('foo','bar'),'bar') -> 'foo'

ENCRYPT(str[, salt])
Encrypts str using the Unix crypt system call. The salt argument should be a
string with two characters. For example:

ENCRYPT('password') -> 'ZB7yqPUHvNnmo'

EXPORT_SET(bits, on, off,[separator,[number_of_bits]])
Returns a string where every bit in bits that is set gets an on string and every
unset bit gets an off string. Each string is separated with separator; the
default is a comma (,). number_of_bits is optional; when omitted, the default
is 64. For example:

Platform-Specific Extensions | 489

SQL Functions

EXPORT_SET(4,'T','F')
F,F,T,F,
F,F

EXTRACTVALUE(xml, xpath)
Extracts text from the XML fragment given by xml corresponding to the
matching XPath in xpath. For example:

EXPORT_SET('<catalog><tea>oolong</tea><tea>darjleeing</tea></catalog>',
 '/catalog/tea')
'oolong darjeeling'

FIELD(str, str1, str2, str3[, . . .])
Returns the index of str in the given string arguments, or 0 if str is not found.
FIELD is the complement of ELT. For example:

FIELD('GOOSE','DUCK','DUCK','GOOSE','DUCK') -> 3

FIND_IN_SET(str, strlist)
Returns the index of str within the strlist, where strlist is a list of strings
separated by commas. This function is equivalent to calling FIELD(str,
CONCAT_WS(',', str1, str2, str3[, . . .])). For example:

FIND_IN_SET('b','a,b,c,d') -> 2

FORMAT(number, decimals)
Formats the number number to a format like #,###,###.##, rounded to
decimals decimals. If decimals is 0, the result has no decimal point or frac-
tional part. For example:

FORMAT(12345.2132,2) -> 12,345.21
FORMAT(12345.2132,0) -> 12,345

FOUND_ROWS()
Returns the number of rows that would have been returned by a query that
was previously executed with the LIMIT clause. The query of FOUND_
ROWS must be done immediately after the limited query is executed. For
example:

SELECT FOUND_ROWS() -> 31415926

FROM_DAYS(number)
Given a day number, returns a DATE value. This function should not be used
for values that precede the advent of the Gregorian calendar (1582), due to
the days lost when the calendar was changed. For example:

FROM_DAYS(888888) -> 2433-09-10

FROM_UNIXTIME(unix_timestamp)
Returns a representation of the unix_timestamp argument as a value in YYYY-
MM-DD HH:MM:SS or YYYYMMDDHHMMSS format, depending on
whether the function is used in a string or numeric context. For example:

FROM_UNIXTIME(888123892) -> 1998-02-21 21:04:52

FROM_UNIXTIME(unix_timestamp, format)
Returns a string representation of the unix_timestamp, formatted according to
the format string. format may contain the same specifiers as those listed in the
entry for the DATE_FORMAT function. For example:

FROM_UNIXTIME(888123892,'%Y %D %M') -> '1998 21st February'

490 | Chapter 4: SQL Functions

GET_LOCK(str, timeout)
Tries to obtain a lock with a name given by the string str, with a time-out of
timeout seconds. Returns 1 if the lock is obtained successfully, or NULL if an
error occurs or the attempt to acquire the lock times out. For example:

GET_LOCK('lochness',10) -> 1

GREATEST(x, y[, . . .])
Returns the largest argument. For example:

GREATEST(8,2,4) -> 8

GROUP_CONCAT([DISTINCT] expr [ORDER BY order [ASC | DESC]]
[SEPARATOR sep])
Returns a concatenation of non-NULL values from a grouping where expr is
the expression to use in the concatenation, order is the expression to use in
the ordering, and sep is the string to insert between concatenated values. For
example:

SELECT estate, GROUP_CONCAT(tea SEPARATOR ';') FROM catalog GROUP BY estate

HEX(number)
Returns a string representation of the hexadecimal value of number. This is
equivalent to CONV(number, 10, 16). For example:

HEX(255) -> FF

HOUR(time)
Returns the hour for time, in the range 0 to 23. For example:

HOUR('08:20:15') -> 8

IF(expr1, expr2, expr3)
Returns expr2 if expr1 is TRUE; otherwise, returns expr3. For example:

IF(1,'yes','no') -> 'yes'
IF(0,'yes','no') -> 'no'

IFNULL(expr1, expr2)
Returns expr1 if expr1 is not NULL; otherwise, returns expr2. For example:

IFNULL(0,'NULL') -> 0
IFNULL(NULL,'NULL') -> 'NULL'

INET_ATON(expr)
Returns a numeric representation of a network IP address found in expr. For
example:

INET_ATON('127.0.0.1') -> 2130706433

INET_NTOA(num)
Returns the network IP address as a string decoded from the numeric value
num. For example:

INET_NTOA(2130706433) -> '127.0.0.1'

INSERT(str, pos, len, newstr)
Returns the string str with newstr inserted at character position pos for
length len. For example:

INSERT('paper',2,3,'ea') -> 'pear'

Platform-Specific Extensions | 491

SQL Functions

INSTR(str, substr)
Returns the position of the first occurrence of the substring substr in the
string str. For example:

INSTR('ducks','c') -> 3

INTERVAL(num1, num2, num3, num4[, . . . n])
Returns 0 if num1 < num2, 1 if num1 < num3, and so on. It is required that num2
< num3 < num4 < ... < numN. For example:

INTERVAL(5,1,6) -> 1
INTERVAL(5,2,3,7,9) -> 2

IS_FREE_LOCK(lock)
Returns 1 if lock is free and 0 if the lock is currently in use. The function may
return NULL on error conditions. For example:

IS_FREE_LOCK('lochness') -> 0

IS_USED_LOCK(lock)
Returns the connection identifier if the lock with the ID lock is taken, and
NULL otherwise. For example:

IS_USED_LOCK('lochness') -> 0

ISNULL(expr)
If expr is NULL, IFNULL returns 1; otherwise, it returns 0. For example:

ISNULL(1) -> 0
ISNULL(NULL) -> 1

LAST_DAY(expr)
Returns the last day in the month for the date found in expr. For example:

LAST_DAY('2012-01-01') -> '2012-01-31'

LAST_INSERT_ID([expr])
Returns the last automatically generated value that was inserted into an
AUTO_INCREMENT column. For example:

LAST_INSERT_ID() -> 0

LCASE(str)
Synonym for lower(str). For example:

LCASE('DUCK') -> 'duck'

LEAST(X, Y[, . . . n])
With two or more arguments, returns the smallest (minimum-valued) argu-
ment. For example:

LEAST(10,5,3,7) -> 3

LEFT(str, len)
Returns the leftmost len characters from the string str. For example:

LEFT('Ducks', 4) -> 'Duck'

LENGTH(str)
Returns the length of the string str. For example:

LENGTH('DUCK') -> 4

492 | Chapter 4: SQL Functions

LOAD_FILE(file_name)
Reads the file identified by file_name and returns the file contents as a string.
The file must be on the server, and the user must specify the full pathname to
the file and have permission to access the file.

LOCATE(substr, str), POSITION(substr IN str)
Returns the position of the first occurrence of the substring substr in the
string str; returns 0 if substr is not in str. LOCATE is a synonym for the
standard POSITION(substr IN str). For example:

LOCATE('al','Donald') -> 4
POSITION('al' IN 'Donald') -> 4

LOCATE(substr, str, pos)
Returns the position of the first occurrence of the substring substr in the
string str, starting at position pos; returns 0 if substr is not in str. For
example:

LOCATE('World', 'Hello, World!') -> 8

LOG(X)
Returns the natural logarithm of X. For example:

LOG(50) -> 3.912023

LOG2(X)
Returns the base-2 logarithm of X. For example:

LOG2(50) -> 5.64386

LOG10(X)
Returns the base-10 logarithm of X. For example:

LOG10(50) -> 1.698970

LPAD(str, len, padstr)
Returns the string str, left-padded with the string padstr until str is len char-
acters long. For example:

LPAD('ucks',6,'d') -> 'dducks'

LTRIM(str)
Returns the string str with leading-space characters removed. For example:

LTRIM(' Howdy! ') -> 'Howdy! '

MAKE_SET(bits, str1, str2[, . . .n])
Returns a set (a string containing substrings separated by commas)
consisting of the string arguments that have the corresponding bit in bits set;
str1 corresponds to bit 0, str2 to bit 1, etc. NULL strings in str1, str2, . . .
are not appended to the result. For example:

MAKE_SET(1 | 4,'hello','nice','world') -> 'hello,world'

MAKEDATE(y, n)
Returns a date corresponding to the year y and the day number n. For
example:

MAKEDATE(2008, 1) -> '2008-01-01'

Platform-Specific Extensions | 493

SQL Functions

MAKETIME(hour, minute, second)
Returns a time matching hour:minute:second. For example:

MAKETIME(2, 30, 0) -> '02:30:00'

MATCH(col1, col2, . . .) AGAINST (expr [search_modifier])
Performs a full-text search looking for expr in the supplied columns. See the
MySQL documentation for more information on full-text searching.

MD5(string)
Calculates an MD5 checksum for the string. The value is returned as a 32-
digit-long hex number. For example:

MD5('somestring') -> 1f129c42de5e4f043cbd88ff6360486f

MICROSECOND(time)
Returns the microseconds for time, in the range 0 to 999999. For example:

MICROSECOND('08:20:15.000050') -> 50

MID(str, pos, len)
Synonym for SUBSTRING(str, pos, len).

MINUTE(time)
Returns the minute for time, in the range 0 to 59. For example:

MINUTE('08:20:15') -> 20

MONTH(date)
Returns the month for date, in the range 1 to 12. For example:

MONTH('1999-04-15') -> 4

MONTHNAME(date)
Returns the name of the month for date. For example:

MONTHNAME('1999-04-15') -> 'April'

NOW(), SYSDATE()
Returns the current date and time as a value in YYYY-MM-DD HH:MM:SS
or YYYYMMDDHHMMSS format, depending on whether the function is
used in a string or numeric context. For example:

NOW() -> 2003-06-24 20:40:24
SYSDATE() -> 2003-06-24 20:40:24
CURRENT_TIMESTAMP -> 2003-06-24 20:40:24

NULLIF(expr1, expr2)
Returns NULL if expr1 is equal to expr2; otherwise, returns expr1. For
example:

NULLIF(2,29) -> 2NULLIF(29,29) -> NULL

OCT(n)
Returns an octal value equivalent of n, where n is a number. This is equiva-
lent to CONV(N,10,8). Returns NULL if n is NULL. For example:

OCT(255) -> 377

494 | Chapter 4: SQL Functions

OLD_PASSWORD(str)
Calculates a password string from the plain-text password str. This is the
function that is used for encrypting MySQL passwords. The “OLD_” prefix
was added in version 4.1, when the password hashing changed to improve
security. For example:

OLD_PASSWORD('password') -> '5d2e19393cc5ef67'

ORD(str)
Returns the character ordinal of the multibyte character string str. The value
is calculated using the following formula: ((first byte ASCII code) * 256 +
(second byte ASCII code) * 256 * 256) (third byte ASCII code) * 256 * 256 *
256[, ...]. If str isn’t a multibyte character, this function returns the same
value as the ASCII function. For example:

ORD('29') -> 50

PASSWORD(str)
Calculates a password string from the plain-text password str. This is the
function that is used for encrypting MySQL passwords. For example:

PASSWORD('password') -> '5d2e19393cc5ef67'

PERIOD_ADD(period, months)
Adds the number of months found in months to the period in period (in the
format YYMM or YYYYMM). Returns a value in the format YYYYMM. For
example:

PERIOD_ADD(9902,3) -> 199905

PERIOD_DIFF(period1, period2)
Returns the number of months between period1 and period2. period1 and
period2 should be in the format YYMM or YYYYMM. For example:

PERIOD_DIFF(9902,9905) -> -3

PI()
Returns the value of π. For example:

PI() -> 3.141593

POW(X, Y), POWER(X, Y)
Returns the value of X raised to the power of Y. For example:

POW(2, 8) -> 256.000000

QUARTER(date)
Returns the quarter of the year for date, in the range 1 to 4. For example:

QUARTER('1999-04-15') -> 2

QUOTE(str)
Returns str with special characters properly escaped for usage within a SQL
statement. For example:

QUOTE('\'start and end with quote\'') -> '\'start and end with quote\''

RADIANS(X)
Returns the argument X, converted from degrees to radians. For example:

RADIANS(180) -> 3.1415926535898

Platform-Specific Extensions | 495

SQL Functions

RAND(), RAND(N)
Returns a random floating-point value in the range 0 to 1.0. If an integer
argument N is specified, it is used as the seed value. For example:

RAND() -> 0.29588872501244

expr REGEXP pat, expr RLIKE pat
Returns 1 if expr matches the regular expression pattern in pat; otherwise,
returns 0. For example:

SELECT 'oolong' REGEXP '^[a-z]' -> 1

RELEASE_LOCK(str)
Releases the lock named by the string str that was obtained with GET_
LOCK. Returns 1 if the lock is released, or NULL if the named lock doesn’t
exist or isn’t locked by this thread (in which case the lock is not released). For
example:

RELEASE_LOCK('lochness') -> 1

REPEAT(str, count)
Returns a string consisting of the string str repeated count times. For
example:

REPEAT('Duck', 3) -> 'DuckDuckDuck'

REPLACE(str, from_str, to_str)
Returns the string str with all occurrences of the string from_str replaced by
the string to_str. For example:

REPLACE('change', 'e', 'ing') -> 'changing'

REVERSE(str)
Returns the string str reversed. For example:

REVERSE('STOP') -> 'POTS'

RIGHT(str, int)
Returns the rightmost 10 characters of the string str. For example:

RIGHT('Hello, World!', 6) -> 'World!'

ROUND(X[, D])
Returns the argument X, rounded to a number with D decimals. If D is 0, the
result has no decimal point or fractional part. For example:

ROUND(12345.6789, 2) -> 12345.68

ROW_COUNT()
Returns the number of rows updated in the previous statement. For example:

SELECT ROW_COUNT() -> 4

RPAD(str, len, padstr)
Returns the string str, right-padded with the string padstr until str is len
characters long. For example:

RPAD('duck',6,'s') -> 'duckss'

RTRIM(str)
Returns the string str with trailing space characters removed. For example:

RTRIM(' welcome ') -> 'welcome '

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

496 | Chapter 4: SQL Functions

SCHEMA()
Synonym for DATABASE.

SEC_TO_TIME(seconds)
Returns the seconds argument, converted to hours, minutes, and seconds, as
a value in HH:MM:SS or HHMMSS format, depending on whether the func-
tion is used in a string or numeric context. For example:

SEC_TO_TIME(256) -> 00:04:16

SECOND(time)
Returns the seconds for time, in the range 0 to 59. For example:

SECOND('08:20:15') -> 15

SESSION_USER()
Synonym for USER.

SHA(X) or SHA1(X)
Returns a SHA1 160-bit checksum for X. For example:

SHA('abc') -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SIGN(X)
Returns the sign of the argument as –1, 0, or 1, depending on whether X is
negative, zero, or positive. For example:

SIGN(-3.1415926) -> -1

SIN(number)
Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SLEEP(s)
Sleeps for s seconds. For example:

SLEEP(60) -> 0

SOUNDEX(str)
Returns a soundex string from str. For example:

SOUNDEX('thimble') -> 'T514'

expr1 SOUNDS LIKE expr2
Synonymous with the expression:

SOUNDEX(expr1) = SOUNDEX(expr2)

SPACE(n)
Returns a string consisting of n space characters. For example:

SPACE(5) -> ' '

STD(expr), STDDEV(expr)
Returns the standard deviation of expr. The STDDEV form of this function is
provided for Oracle compatibility. For example:

STD(5) -> NULL

Platform-Specific Extensions | 497

SQL Functions

STR_TO_DATE(str, format)
Returns a date parsed from str using the format specifiers found in the
format argument. This is the reverse of DATE_FORMAT; please see the
DATE_FORMAT coverage for a list of the supported specifiers. For example:

STR_TO_DATE('28/08/1976', '%d/%m/%Y') -> '1976-08-28'

STRCMP(expr1, expr2)
STRCMP returns 0 if the strings are the same, –1 if the first argument is
smaller than the second according to the current sort order, and 1 otherwise.
For example:

STRCMP('DUCKY', 'DUCK') -> 1
STRCMP('DUCK', 'DUCK') -> 0

SUBSTRING(str, pos), SUBSTRING(str FROM pos)
Returns a substring from the string str starting at the position pos. For
example:

SUBSTRING('Hello, World!', 8) -> 'World!'
SUBSTRING('Hello, World!' FROM 8) -> 'World!'

SUBSTRING(str, pos, len), MID(str, pos, len)
Returns a substring len characters long from the string str, starting at the
position pos. These functions are synonyms for the ANSI SQL92 function
SUBSTRING(str FROM pos FOR len). For example:

SUBSTRING('Hello, World!', 8, 10) -> 'World!'
SUBSTRING('Hello, World!' FROM 8 FOR 10) -> 'World!'

SUBSTRING_INDEX(str, delim, count)
Returns the substring str after count occurrences of the delimiter delim. For
example:

SUBSTRING_INDEX('www.mysql.com', '.', 2) -> 'www.mysql'

SUBTIME(expr1, expr2)
Returns the result of subtracting expr2 from expr1. For example:

SUBTIME('2008-01-31 16:30:00.999999', '0 0:30:0.999996') -> '2008-01-31
16:00:00.000003'

TAN(number)
Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TIME(expr)
Returns the time portion of the value found in expr. For example:

TIME('1976-08-28 08:20:15') -> '08:20:15'

TIME_FORMAT(time, format)
Used like DATE_FORMAT, but the format string may contain only those
format specifiers that handle hours, minutes, and seconds. Other specifiers
produce a NULL value or 0. See DATE_FORMAT for a list of the available
format specifiers. For example:

TIME_FORMAT('2003-04-15 08:20:15', '%r') -> 08:20:15 AM

498 | Chapter 4: SQL Functions

TIME_TO_SEC(time)
Returns the time argument, converted to seconds. For example:

TIME_TO_SEC('08:20:15') -> 30015

TIMEDIFF(expr1, expr2)
Returns the difference between expr1 and expr2. For example:

TIMEDIFF('1976-08-28 08:20:15', '1976-08-28 08:20:16') ->
'00:00:01.000000'

TIMESTAMP(expr1[, expr2])
Returns a timestamp value where the date comes from expr1 and the time
component comes from expr2. For example:

TIMESTAMP('1976-08-28', '08:20:16') -> '1976-08-28 08:20:16'

TIMESTAMPADD(unit, interval, expr)
Returns a timestamp constructed by adding interval to the date expression
expr. The units for interval are specified by unit. For example:

TIMESTAMPADD(DAY, 2, '1976-08-28') -> '1976-08-30 00:00:00'

TIMESTAMPDIFF(unit, expr1, expr2)
Returns an integer that is the result of subtracting expr1 from expr2. The
units of the result are specified by unit. For example:

TIMESTAMPADD(DAY, '1976-08-30', '1976-08-28') -> -2

TO_DAYS(date)
Given a date, returns a day number (the number of days since the year 0). For
example:

TO_DAYS('1999-04-15') -> 730224

TRUNCATE(X, D)
Returns the number X, truncated to D decimal places. If D is 0, the result has
no decimal point or fractional part. For example:

TRUNCATE('123.456', 2) -> '123.45'
TRUNCATE('123.456', 0) -> '123'
TRUNCATE('123.456', -1) -> '120'

UCASE(str)
Synonym for UPPER(str). For example:

UCASE('duck') -> 'DUCK'

UNCOMPRESS(string)
Returns an uncompressed version of string.

UNCOMPRESS_LENGTH(string)
Returns the length of string in its uncompressed form.

UNHEX(str)
Returns a binary string constructed from hex characters in str.

UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)
If called with no argument, returns a Unix timestamp (seconds since 1970-
01-01 00:00:00 GMT). If called with a date argument, returns the value of the
argument as seconds since 1970-01-01 00:00:00 GMT. For example:

Platform-Specific Extensions | 499

SQL Functions

UNIX_TIMESTAMP() -> 1056512427
UNIX_TIMESTAMP('1999-04-15') -> 924159600

UPDATEXML(xml_target, xpath_expr, new_xml)
Returns the XML fragment in xml_target with new_xml at locations specified
by the XPath expression xpath_expr. For example:

UPDATEXML('<c><v>unknown</v></c>', '//v', '<v>Acme</v>') -> '<c><v>
Acme</v></c>'

USER(), SYSTEM_USER(), SESSION_USER()
These functions return the current MySQL username. For example:

USER() -> 'login@machine.com'
SYSTEM_USER() -> 'login@machine.com'
SESSION_USER() -> 'login@machine.com'

UTC_DATE()
Returns the current UTC date. For example:

UTC_DATE() -> '2008-05-15'

UTC_TIME()
Returns the current UTC time. For example:

UTC_TIME() -> '01:01:00'

UTC_TIMESTAMP()
Returns the current UTC date and time. For example:

UTC_TIMESTAMP() -> '2008-05-15 01:01:00'

UUID()
Returns a Universal Unique Identifier. For example:

UUID() -> '1ae84bc9-5e4d-8f22-1f2e-123456789abc'

VARIANCE(expr)
Synonym for VAR_POP.

VERSION()
Returns a string indicating the MySQL server version. For example:

VERSION() -> '4.0.12-standard'

WEEK(date), WEEK(date, first)
With a single argument, returns the week for date, in the range 1 to 53. (The
beginning of a week 53 is possible during some years.) The two-argument
form of WEEK allows the user to specify whether the week starts on Sunday
(0) or Monday (1). For example:

WEEK('1999-04-15') -> 15

WEEKDAY(date)
Returns the weekday index for date (0 = Monday, 1 = Tuesday, . . .6 =
Sunday). For example:

WEEKDAY('1999-04-15') -> 3

WEEKOFYEAR(date)
Returns the calendar week for date, where the calendar week is an integer
between 1 and 53, inclusive. For example:

WEEKOFYEAR('2008-01-01') -> 1

500 | Chapter 4: SQL Functions

op1 XOR op2
Returns the logical XOR of op1 and op2. For example:

SELECT 1 XOR 1, 1 XOR 0 -> 0, 1

YEAR(date)
Returns the year for date, in the range 1,000 to 9,999. For example:

YEAR('1999-04-15') -> 1999

YEARWEEK(date), YEARWEEK(date, first)
Returns the year and week for date. The second argument works exactly like
the second argument to WEEK. Note that the year may be different from the
year in the date argument for the first and the last week of the year. For
example:

YEARWEEK('1999-04-15') -> 199915

Oracle-Supported Functions

This section provides an alphabetical listing of the SQL functions specific to
Oracle, with examples and corresponding results.

ACOS(number)
Returns the arccosine of number ranging from –1 to 1. The result ranges from
0 to π and is expressed in radians. For example:

SELECT ACOS(0) FROM DUAL -> 1.570796

ADD_MONTHS(date, int)
Returns the date plus int months. For example:

SELECT ADD_MONTHS('15-APR-1999', 3) FROM DUAL -> 15-JUL-99

APPENDCHILDXML(xml_fragment, xpath, value[, namespace])
Injects value into the XML fragment xml_fragment at the location specified by
the XPath expression xpath and returns the result. The optional namespace
argument provides the namespace information for the XPath expression. For
example:

SELECT APPENDCHILDXML('<a>B', '/a', '<c>C</c>') FROM DUAL
'<a>B<c>C</c>'

ASCII(text)
Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') FROM DUAL -> 120

ASCIISTR(text)
Converts text from any character set into an ASCII equivalent. Characters in
text that have no equivalent in ASCII will be replaced with the string \XXXX,
where XXXX represents the UTF-16 code unit. For example:

SELECT ASCIISTR('ÄBC') FROM DUAL -> '\00C4BC'

ASIN(number)
Returns the arcsine of number ranging from –1 to 1. The resulting value ranges
from –π/2 to π/2 and is expressed in radians. For example:

SELECT ASIN(0) FROM DUAL -> 0.000000

Platform-Specific Extensions | 501

SQL Functions

ATAN(number)
Returns the arctangent of any number. The resulting value ranges from –π/2 to
π/2 and is expressed in radians. For example:

SELECT ATAN(3.1415) FROM DUAL -> 1.262619

ATAN2(number, nbr)
Returns the arctangent of number and nbr. ATAN2(x, y) is similar to ATAN(y/x),
with the exception that the signs of x and y are used to determine the quad-
rant of the result. For example:

SELECT ATAN2(3.1415, 1) FROM DUAL -> 1.26261873

BFILENAME(directory, filename)
Returns a BFILE locator associated with a physical LOB binary file on the
server’s filesystem in directory with the name filename.

BIN_TO_NUM(expr[, . . . n])
Returns a decimal number equivalent of the binary bit vector contained in the
expr arguments. For example:

SELECT BIN_TO_NUM(1,0,1) FROM DUAL -> 5

BITAND(integer1, integer2)
Returns the bitwise AND of the two integer arguments. For example:

SELECT BITAND(101, 2) FROM DUAL -> 0
SELECT BITAND(column1, 1) FROM DUAL -> 1

CARDINALITY(nested_table)
Returns the number of elements (cardinality) of the nested_table. If the
nested_table is empty, returns NULL. For example:

SELECT CARDINALITY(mytable) FROM DUAL -> 6

CHARTOROWID(char)
Converts a value from a character datatype (CHAR or VARCHAR2 datatype)
to a ROWID datatype.

CHR(number [USING NCHAR_CS])
Returns the character having the binary equivalent to number in either the
database character set (if USING NCHAR_CS is not included) or the national
character set (if USING NCHAR_CS is included).

CLUSTER_ID(), CLUSTER_PROBABILITY(), CLUSTER_SET()
Support data mining features. See the documentation for the Oracle Data
Mining Java API or the DBMS_DATA_MINING package for more details on
these functions.

COALESCE(list)
Returns the first non-NULL element in the list. For example:

SELECT COALESCE(NULL, 1, 2) FROM DUAL -> 1

COLLECT(column)
Creates for each group a nested table consisting of all the values in the
column. This is an aggregate function.

COMPOSE(string)
Returns string as a fully normalized UNICODE string.

502 | Chapter 4: SQL Functions

CONCAT(string1, string2)
Returns string1 concatenated with string2. CONCAT is equivalent to the
concatenation operator (||). For example:

SELECT CONCAT(au_lname, au_fname) FROM AUTHORS -> 'JeffersonThomas'

CONVERT(char_value, target_char_set, source_char_set)
Converts a character string from one character set to another; returns char_
value in the target_char_set after converting char_value from the source_
char_set.

CORR_K(expr1, expr2[, return_type])

CORR_S(expr1, expr2[, return_type])
CORR_K returns Kendall’s tau-b correlation coefficient, and CORR_S returns
Spearman’s rho correlation coefficient for a set of numbered pairs (expr1 and
expr2). The return_type argument, a VARCHAR2, can be omitted or can one
of the following values: ‘COEFFICIENT’, ‘ONE_SIDED_SIG’, or ‘TWO_
SIDED_SIG’. The value ‘COEFFICIENT’ (the default if this argument is
omitted) returns the coefficent of the correlation. The values ‘ONE_SIDED_
SIG’ and ‘TWO_SIDED_SIG’ return the one- and two-tailed significance of
the correlation, respectively.

COS(number)
Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) FROM DUAL -> 1.000000

COSH(number)
Returns the hyperbolic cosine of number. For example:

SELECT COSH(180) FROM DUAL -> 7.4469E+77

COT(number)
Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

CUBE_TABLE('expr')
Extracts a two-dimensional relational view from an OLAP cube or dimen-
sion. See the Oracle OLAP documentation for more information.

CV([dimension_column])
Relevant only in the inter-row calculations performed within the MODEL
clause of a SELECT statement, this function returns the current value of the
dimension_column. CV can only be used in the righthand side of a rule, since it
returns the value of the dimension_column from the lefthand side of the same
rule.

DATAOBJ_TO_PARTITION(table, partition_id)
Returns the partition identifier for the system-partitioned table specified by
the arguments. See the Oracle documentation for more information on this
function.

DBTIMEZONE
Returns the time zone offset from UTC time for the database server. For
example:

SELECT DBTIMEZONE FROM DUAL -> +00:00

Platform-Specific Extensions | 503

SQL Functions

DECODE(expr, search, result[, search, result[, . . . n]][, default])
Compares expr to the search value; if expr is equal to search, it returns the
result. For example:

DECODE ('B','A',1,'B',2,...'Z',26,'?') -> 2

Without a match, DECODE returns default, or NULL if default is omitted.
Refer to the Oracle documentation for more details. Consider using CASE
instead, as CASE is part of the ANSI SQL standard.

DECOMPOSE(string [{CANONICAL | COMPATIBILITY}])
Returns string decomposed into UNICODE code-points. The second argu-
ment specifies the type of decomposition performed. CANONICAL, which
specifies the default behavior, allows the original UNICODE string to be
recomposed.

DELETEXML(xml_fragment, xpath[, namespace])
Deletes nodes within xml_fragment that match the XPath expression xpath
and returns the result. The optional namespace parameter specifies the
namespace for the XPath expression. For example:

SELECT DELETEXML('<a>Sifl<c>Olly</c>', '/a/c') FROM DUAL
'<a>Sifl'

DEPTH(number)
Returns the depth of the path specified by the UNDER_PATH condition in
an XML query. See the Oracle SQL Reference for more information.

DEREF(expression)
Returns the object referenced by expression, where expression must return a
REF to an object.

DUMP(expression[, return_format[, starting_at[, length]]])
Returns a VARCHAR2 value containing a datatype code, length in bytes, and
internal representation of expression. The resulting value is returned in the
format of return_format. For example:

SELECT DUMP('abc', 1016) FROM DUAL
Typ=96 Len=3 CharacterSet=AL32UTF8: 61,62,63

EMPTY_BLOB(), EMPTY_CLOB()
Returns an empty LOB locator that can be used to initialize a LOB variable. It
can also be used to initialize a LOB column or attribute to empty in an
INSERT or UPDATE statement.

EXISTSNODE(instance, xpath[, namespace])
Returns 1 if applying the XPath query in xpath would return any nodes from
instance; otherwise, returns 0. The optional namespace parameter specifies
the XML namespace in the query. For more information on XML queries,
refer to the Oracle SQL Reference.

EXTRACT(instance, xpath[, namespace])
Returns the XML nodes from instance returned by running the XPath query
contained in the xpath parameter. The optional namespace parameter speci-
fies the XML namespace in the query. For more information on XML queries,

504 | Chapter 4: SQL Functions

refer to the Oracle SQL Reference. (Oracle also supports an EXTRACT func-
tion for date values, which was covered earlier in this chapter.) For example:

SELECT EXTRACT(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),
 '/foo/bar') from DUAL
<bar>Hello, World!</bar>

EXTRACTVALUE(instance, xpath[, namespace])
Returns the value from an XML node returned by running the XPath query
contained in the xpath parameter. The optional namespace parameter speci-
fies the XML namespace in the query. For more information on XML queries,
refer to the Oracle SQL Reference. For example:

SELECTEXTRACTVALUE(XMLTYPE('<foo><bar>Hello,World!</bar></foo>'),
 '/foo/bar') from DUAL
Hello, World!

FEATURE _ID(), FEATURE _SET(), FEATURE_VALUE()
Support data mining features. See the documentation for the Oracle Data
Mining Java API or the DBMS_DATA_MINING package for more details on
these functions.

FIRST
Aggregate function that returns a specified value from the row that ranks
first, given the order specified in the ORDER BY clause. The syntax is:

aggregate(aexpr) KEEP (DENSE_RANK FIRST ORDER BY expr[, ... n])

where the syntax of expr is:

expr := [ASC | DESC] [NULLS {FIRST | LAST}]

The first ranking row following the order specified by expr will be used in the
aggregate function aggregate. aexpr is the expression passed to the aggregate
function. For example:

SELECT MAX(c1) KEEP (DENSE_RANK FIRST ORDER BY c2) FROM FIVE_NUMS
1

FIRST_VALUE(expression IGNORE NULLS) OVER (window_clause)
Returns the first value in an ordered set of values. FIRST_VALUE is an
analytic function. See the “ANSI SQL Window Functions” section, earlier in
this chapter, for a detailed explanation of the window_clause. For example:

SELECT FIRST_VALUE(col1) OVER () FROM NUMS
1
1
1
1

FROM_TZ(timestamp, timezone)
Returns timestamp converted to a TIMESTAMP WITH TIME ZONE value,
where timestamp is a TIMESTAMP value and timezone is a string in the
TZH:TZM format. For example:

SELECT FROM_TZ(TIMESTAMP '2004-04-15 23:59:59', '8:00') FROM DUAL
'15-APR-04 11.59.59 PM +08:00'

Platform-Specific Extensions | 505

SQL Functions

GREATEST(expression[, . . . n])
Returns the greatest of the list of expressions. All expressions after the first
are implicitly converted to the datatype of the first expression before the
comparison. For example:

SELECT GREATEST(8,2,4) FROM DUAL -> 8

GROUP_ID()
Returns a positive value for each duplicate group returned by a query
containing a GROUP BY clause. This function is useful in filtering out dupli-
cate groups created when using CUBE, ROLLUP, or another GROUP BY
extension (see GROUPING).

GROUPING(column_name)
Returns 1 when a row is added by CUBE, ROLLUP, or another GROUP BY
extension; otherwise, returns 0. For example:

SELECT royalty, SUM(advance) 'total advance',
GROUPING(royalty) 'grp'
FROM titles
GROUP BY royalty WITH ROLLUP
royalty total advance grp
--------- --------------------- ---
NULL NULL 0
10 57000.0000 0
12 2275.0000 0
14 4000.0000 0
16 7000.0000 0
24 25125.0000 0
NULL 95400.0000 1

GROUPING_ID(column_name1[, column_name2, . . .])
Returns the base-10 number that is equal to the binary value constructed by
concatenating the GROUPING values on each of the parameters.
GROUPING_ID is useful when returning a query containing multiple levels
of aggregation created by GROUP BY expressions. Consider using the
GROUPING_ID function instead of multiple GROUPING functions within
one query. This function is a shorthand equivalent of:

BIN_TO_NUM(GROUPING(column_name1)[, GROUPING(column_name2), ...])

HEXTORAW(string)
Converts a string containing hexadecimal digits into a raw value. For
example:

SELECT HEXTORAW('0FE') FROM DUAL -> '00FE'

INITCAP(string)
Returns string, with the first letter of each word in uppercase and all other
letters in lowercase. For example:

SELECT INITCAP('thomas jefferson') FROM DUAL -> 'Thomas Jefferson'

INSERTCHILDXML(xml_fragment, xpath, child_expr, value_expr[, namespace])
Injects the nodes specified by child_expr within value_expr into xml_fragment
at the location given by the XPath query xpath, and returns the result. The
optional namespace argument provides the namespace for the XPath query.
For example:

506 | Chapter 4: SQL Functions

SELECT INSERTCHILDXML('<a>', '/a', 'b', 'B1B2')
FROM DUAL
'<a>B1B2'

INSERTXMLBEFORE(xml_fragment, xpath, value_expr[, namespace])
Injects value_expr into xml_fragment at the location given by the XPath query
xpath and returns the result. The optional namespace argument provides the
namespace for the XPath query. For example:

SELECT INSERTXMLBEFORE('<a>B2', '/a/b', 'B1') FROM DUAL
'<a>B1B2'

INSTR(string1, string2[, start_at[, occurrence]])
Returns the position of string2 within string1. INSTR searches string1 from
a starting position of start_at (an integer), looking for the specified
occurrence of string2. For example:

SELECT INSTR('foobar', 'o', 1, 1) FROM DUAL -> 2

Use INSTRB for bytes, INSTRC for UNICODE complete characters, INSTR2
for UNICODE UCS2 code points, and INSTR4 for UNICODE UCS4 code
points.

ITERATION_NUMBER
Relevant only in the inter-row calculations performed within the MODEL clause
of a SELECT statement, this function returns the number of times the rules
within the MODEL clause have been executed while processing the query.

LAG(expression[, offset][, default]) OVER (window_clause)
Analytic function that provides access to more than one row of a table at the
same time without a self-join. LAG provides a “lagging” value in the result set
that lags offset rows behind the current row. The default value is used for
the first offset rows in the result set, since the “lagging” value is undefined
for these rows. See “ANSI SQL Window Functions,” earlier in this chapter,
for a detailed explanation of the window_clause. For example:

SELECT c1, LAG(c1, 2, 0) OVER (ORDER BY c1) FROM FIVE_NUMS
1 0
2 0
3 1
4 2
5 3

LAST
Returns the row that ranks last given the order specified in the ORDER BY
clause. The syntax is:

aggregate(aexpr) KEEP (DENSE_RANK LAST ORDER BY expr[, ... n])

where the syntax of expr is:

expr := [ASC | DESC] [NULLS {FIRST | LAST}]

The last ranking row following the order specified by expr will be used in the
aggregate function aggregate. The aexpr is the expression passed to the aggre-
gate function. For example:

SELECT MIN(c1) KEEP (DENSE_RANK LAST ORDER BY c1) FROM FIVE_NUMS
5

Platform-Specific Extensions | 507

SQL Functions

LAST_DAY(date)
Returns the date of the last day of the month that contains date. For example:

SELECT LAST_DAY('15-APR-1999') FROM DUAL -> 30-APR-99

LAST_VALUE(expression [IGNORE NULLS]) OVER (window_clause)
Returns the last value in an ordered set of values. See “ANSI SQL Window
Functions,” earlier in this chapter, for a detailed explanation of the window_
clause. For example:

SELECT c1, LAST_VALUE(c1) OVER (ORDER BY c1) FROM FIVE_NUMS
1 5
2 5
3 5
4 5
5 5

LEAD(expression[, offset][, default]) OVER (window_clause)
Analytic function that provides access to more than one row of a table at the
same time without a self-join. LEAD provides a “leading” value in the result
set that is offset rows ahead of the current row. The default value is used for
the last offset rows in the result set, since the “leading” value is undefined
for these rows. See “ANSI SQL Window Functions,” earlier in this chapter,
for a detailed explanation of the window_clause. For example:

SELECT c1, LEAD(c1, 2) OVER (ORDER BY c1) FROM FIVE_NUMS
1 3
2 4
3 5
4
5

LEAST(expression[, . . . n])
Returns the least of the list of expressions. For example:

SELECT LEAST(10,5,3,7) FROM DUAL -> 3

LENGTH(string)
Returns the integer length of string, or NULL if string is NULL. For
example:

SELECT LENGTH('DUCK') FROM DUAL -> 4

LENGTHB(string)
Returns the length of char in bytes; otherwise, the same as LENGTH. For
example:

SELECT LENGTHB('DUCK') FROM DUAL -> 4

Use LENGTHB for bytes, LENGTHC for UNICODE complete characters,
LENGTH2 for UNICODE UCS2 code points, and LENGTH4 for UNICODE
UCS4 code points.

LNNVL(condition)
Returns TRUE if condition is false or if one of the operands in condition is
NULL; otherwise, returns FALSE. For example:

SELECT COUNT(*) FROM authors WHERE LNNVL(contract <> 1) -> 4

508 | Chapter 4: SQL Functions

LOCALTIMESTAMP[(precision)]
Returns a TIMESTAMP value for the current date and time. This function is
similar to CURRENT_TIMESTAMP, with the exception that this function
does not return a TIME ZONE value with the TIMESTAMP. For example:

SELECT LOCALTIMESTAMP FROM DUAL -> '15-APR-05 03.15.00 PM'

LOG(base_number, number)
Returns the logarithm of any base_number of number. For example:

SELECT LOG(50,10) FROM DUAL -> .58859191

LPAD(string1, number[, string2])
Returns string1, left-padded to length number using characters in string2;
string2 defaults to a single blank. For example:

SELECT LPAD('ucks',5,'d') FROM DUAL -> 'ducks'

LTRIM(string[, set])
Removes all characters in set from the left of string. set defaults to a single
blank. For example:

SELECT LTRIM(' Howdy! ',' ') FROM DUAL -> 'Howdy! '

MAKE_REF({table_name | view_name}, key[, . . . n])
Creates a reference (REF) to a row of an object view or a row in an object
table whose object identifier is primary key-based.

MEDIAN(expression) OVER (partitioning)
Returns the median value in an ordered set of numeric or datetime values. See
“ANSI SQL Window Functions,” earlier in this chapte,r for a detailed expla-
nation of the partitioning clause. For example:

SELECT MEDIAN(c1) FROM FIVE_NUMS -> 3

MONTHS_BETWEEN(date1, date2)
Returns the number of months between the dates date1 and date2. When
date1 is later than date2, the result is positive. When it is earlier, the result is
negative. For example:

SELECT MONTHS_BETWEEN('15-APR-2000', '15-JUL-1999') FROM DUAL -> 9

NANVL(a, b)
Returns b when a is not a number (NaN); returns a otherwise. The expres-
sion a must evaluate to a BINARY_FLOAT or BINARY_DOUBLE number,
which are the only number types that permit storing NaN. For example:

SELECT c1, NANVL(c1, 0) FROM NUMS
1.0E+000 1.0E+000
2.0E+000 2.0E+000
Nan 0

NCHAR(number)
Synonym for CHR(number) USING NCHAR_CS.

NEW_TIME(date, time_zone1, time_zone2)
Returns the date and time in time_zone2, using date as the input date/time
and using time_zone1 as the originating time zone. For example:

Platform-Specific Extensions | 509

SQL Functions

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH12:MI:SS'
SELECT NEW_TIME(TO_DATE('04-15-99 08:22:31', 'MM-DD-YY HH12:MI:SS'),
'AST', 'PST')
FROM DUAL
15-APR-2099 04:22:31

time_zone1 and time_zone2 may be any of these text strings:

‘AST’, ‘ADT’
Atlantic Standard or Daylight Time

‘BST’, ‘BDT’
Bering Standard or Daylight Time

‘CST’, ‘CDT’
Central Standard or Daylight Time

‘EST’, ‘EDT’
Eastern Standard or Daylight Time

‘GMT’
Greenwich Mean Time

‘HST’, ‘HDT’
Alaska-Hawaii Standard or Daylight Time

‘MST’, ‘MDT’
Mountain Standard or Daylight Time

‘NST’
Newfoundland Standard Time

‘PST’, ‘PDT’
Pacific Standard or Daylight Time

‘YST’, ‘YDT’
Yukon Standard or Daylight Time

NEXT_DAY(date, string)
Returns the date of the first weekday named by string that is later than date.
The argument string must be either the full name or the abbreviation of a
day of the week in the date language of the session. For example:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY'
SELECT NEXT_DAY('15-APR-1999', 'SUNDAY') FROM DUAL
18-APR-1999

NLS_CHARSET_DECL_LEN(bytecnt, csid)
Returns the declaration width (bytecnt) of an NCHAR column using the
character set ID (csid) of the column.

NLS_CHARSET_ID(text)
Returns the NLS character set ID number corresponding to text.

NLS_CHARSET_NAME(number)
Returns the VARCHAR2 name for the NLS character set corresponding to the
ID number.

510 | Chapter 4: SQL Functions

NLS_INITCAP(string[, nlsparameter])
Returns string with the first letter of each word in uppercase and all other
letters in lowercase. The nlsparameter offers special linguistic sorting
features.

NLS_LOWER(string[, nlsparameter])
Returns string with all letters in lowercase. The nlsparameter offers special
linguistic sorting features.

NLS_UPPER(string[, nlsparameter])
Returns string with all letters in uppercase. The nlsparameter offers special
linguistic sorting features.

NLSSORT(string[, nlsparameter])
Returns the string of bytes used to sort string. The nlsparameter offers
special linguistic sorting features.

NTILE(expression) OVER ([partitioning] ordering)
Divides an ordered data set into a number of groups numbered from 1 to
expression and assigns the appropriate group number to each row. Rows are
allocated to each group so that the number of rows per group varies by no
more than 1. See “ANSI SQL Window Functions,” earlier in this chapter, for
details on the partitioning and ordering clauses. For example:

SELECT c1, NTILE(4) OVER (ORDER BY c1) FROM FIVE_NUMS
1 1
2 1
3 2
4 3
5 4

NULLIF(expr1, expr2)
Returns NULL if expr1 is equal to expr2; otherwise, returns expr1. When
passing a NULL value as one of the expressions, it can only be specified as
the second expression (expr2). For example:

SELECT c1, c2, NULLIF(c1, c2) FROM NUMS
1 2 1
2 2
3 2 3

NUMTODSINTERVAL(number, string)
Converts number to an INTERVAL DAY TO SECOND literal, where number is
a number or an expression resolving to a number, such as a numeric datatype
column. The second argument, string, specifies how to interpret number: it
can be ‘DAY’, ‘HOUR’, ‘MINUTE’, or ‘SECOND’. For example:

SELECT NUMTODSINTERVAL(100, 'DAY') FROM DUAL
+000000100 00:00:00.000000000

NUMTOYMINTERVAL(number, string)
Converts number to an INTERVAL YEAR TO MONTH literal, where number is
a number or an expression resolving to a number, such as a numeric datatype
column. The second argument, string, specifies how to interpret number: it
can be ‘YEAR’ or ‘MONTH’. For example:

Platform-Specific Extensions | 511

SQL Functions

SELECT NUMTOYMINTERVAL(100, 'YEAR') FROM DUAL
+000000100-00

NVL(expression1, expression2)
If expression1 is NULL, expression2 is returned in place of that NULL value.
Otherwise, expression1 is returned. expression1 and expression2 may be any
datatype. For example:

SELECT NVL(2,29) FROM DUAL -> 2

NVL2(expression1, expression2, expression3)
Similar to NVL, except that if expression1 is not NULL, expression2 is
returned, and if expression1 is NULL, expression3 is returned. The expres-
sions may be any datatype except LONG. For example:

SELECT NVL2(1,3,5) FROM DUAL -> 3

ORA_HASH(expression[, buckets[, seed]])
Computes a hash value from expression and returns a bucket number based
on the computed hash value. The optional buckets argument is the maximum
bucket number to use, which is one less than the total number of buckets,
since the bucket numbering starts at 0. The default for buckets is
4,294,967,295. The optional seed value is used to seed the hashing function
so that multiple results can be produced from the same data by changing only
the seed value. The seed value defaults to 0. This example pseudorandomly
assigns all numbers to one of two buckets and returns those assigned to the
first bucket, which will be a sample of roughly half of the values:

SELECT C1 FROM FIVE_NUMS WHERE
 ORA_HASH(C1, 1, TO_CHAR(SYSTIMESTAMP, 'SSSS.FF')) = 0
1
5

PATH(number)
Returns the path specified by the UNDER_PATH condition with the correla-
tion variable number in an XML query. See the Oracle SQL Reference for more
information.

POWERMULTISET(nested_table)

POWERMULTISET_BY_CARDINALITY(nested_table, cardinality)
Return a nested table of nested tables of all nonempty subsets of the input
nested table in the nested_table parameter. POWERMULTISET_BY_
CARDINALITY has an additional parameter that can be used to limit the
subsets returned to a specified minimum cardinality. For more informa-
tion, see the Oracle SQL Reference.

PREDICTION(), PREDICTION_BOUNDS(), PREDICTION_COST(),
PREDICTION_DETAILS(), PREDICTION_PROBABILTY(),
PREDICTION_SET()
Support Oracle’s data mining features. See the documentation for the Oracle
Data Mining Java API or the DBMS_DATA_MINING package for more
details on these functions.

512 | Chapter 4: SQL Functions

PRESENTNNV(cell_reference, expr1, expr2)
Relevant only in the inter-row calculations performed within the MODEL
clause of a SELECT statement, this function returns expr1 when cell_
reference exists and is not NULL; otherwise, it returns expr2.

PRESENTV(cell_reference, expr1, expr2)
Relevant only in the inter-row calculations performed within the MODEL
clause of a SELECT statement, this function returns expr1 when cell_
reference exists; otherwise, it returns expr2.

PREVIOUS(cell_reference)
Relevant only in the inter-row calculations performed within the ITERATE...
[UNTIL] section of a SELECT’s MODEL clause, this function returns the
value held by cell_reference at the beginning of the iteration.

RATIO_TO_REPORT(value_exprs) OVER (partitioning)
Computes the ratio of a value in value_exprs to the sum of all value_exprs
with each partition. If value_exprs is NULL, the ratio-to-report value is also
NULL. See “ANSI SQL Window Functions,” earlier in this chapter, for
details on the partitioning clause. For example:

SELECT c1, RATIO_TO_REPORT(c1) OVER () FROM FIVE_NUMS
1 .066666667
2 .133333333
3 .2
4 .266666667
5 .333333333

RAWTOHEX(raw)
Converts a raw value to a string (character datatype) of its hexadecimal equiv-
alent. For example:

SELECT RAWTOHEX('Hi') FROM DUAL -> 4869

RAWTONHEX(raw)
Converts a raw value to an NVARCHAR2 (character datatype) of its hexadec-
imal equivalent.

REF(table_alias)
Takes a table alias associated with a row from an object table or an object
view. A special reference value is returned for the object instance that is
bound to the variable or row.

REFTOHEX(expression)
Converts expression to a character value containing its hexadecimal
equivalent.

REGEXP_INSTR(string, pattern[, start_at[, occurrence[, roption[, mparam]]]])
Searches string from a starting position of start_at (an integer greater than
0) looking for the specified occurrence of the regular expression pattern, and
returns the character position within string matching pattern. Both the
start_at and occurrence parameters default to 1. The roption parameter can
be 0 or 1 and specifies whether the position returned is the first character
matching the pattern or the character after, respectively. The default for
roption is 0. The mparam argument can be used to modify the matching

Platform-Specific Extensions | 513

SQL Functions

behavior of the function and can be set to one or more of the following
characters:

'i' Matching is case insensitive.

'c' Matching is case sensitive.

'n' The “.” character matches newline characters.

'm' Treats the input string as multiple lines; use “^” to match the beginning
of a line and “$” to match the end of a line.

For example:

SELECT REGEXP_INSTR('Hello, World!', '([^]*)!', 1, 1) FROM DUAL
8

REGEXP_REPLACE(string, pattern[, newstr[, start_at[, occurrence[,
mparam]]]])
Searches string from a starting position of start_at (an integer greater than
0) looking for the specified occurrence of the regular expression pattern, and
returns the result of replacing all occurrences of pattern within string with
another string, newstr. Both the start_at and occurrence parameters default
to 1. The mparam argument can be used to modify the matching behavior of
the function and can be set to one or more of the following characters:

'i' Matching is case-insensitive.

'c' Matching is case-sensitive.

'n' The “.” character matches newline characters.

'm' Treats the input string as multiple lines; use “^” to match the beginning
of a line and “$” to match the end of a line.

For example:

SELECT REGEXP_REPLACE('Hello, World!', '([^]*!)', 'Reader!') FROM DUAL
'Hello, Reader!'

REGEXP_SUBSTR(string, pattern[, start_at[, occurrence[, mparam]]])
Searches string from a starting position of start_at (an integer greater than
0) looking for the specified occurrence of the regular expression pattern, and
returns the substring within string matching pattern. Both the start_at and
occurrence parameters default to 1. The mparam argument can be used to
modify the matching behavior of the function and can be set to one or more
of the following characters:

'i' Matching is case insensitive.

'c' Matching is case sensitive.

'n' The “.” character matches newline characters.

'm' Treats the input string as multiple lines; use “^” to match the beginning
of a line and “$” to match the end of a line.

For example:

SELECT REGEXP_SUBSTR('Hello, World!', '([^]*!)') FROM DUAL
'World!'

514 | Chapter 4: SQL Functions

REMAINDER(m, n)
Returns the remainder of m divided by n. This return value is equivalent to the
expression:

m-n*ROUND(m/n)

The function MOD uses FLOOR instead of ROUND. For example:

SELECT REMAINDER(11, 4), MOD(11, 4) FROM DUAL
-1 3

REPLACE(string, search_string[, replacement_string])
Returns string with every occurrence of search_string replaced with
replacement_string. For example:

SELECT REPLACE('change', 'e', 'ing') FROM DUAL -> 'changing'

ROUND(date[, format])
Returns the date rounded to the unit specified by the format model. When
format is omitted, the date is rounded to the nearest day. (For more on valid
format specifiers, see the TO_CHAR function.) For example:

SELECT ROUND(TO_DATE('15-APR-1999'), 'MONTH') FROM DUAL
01-APR-1999

ROUND(number[, decimal])
Returns number rounded to decimal places to the right of the decimal point.
When decimal is omitted, number is rounded to an integer. Note that decimal,
an integer, can be negative to round off digits to the left of the decimal point.
For example:

SELECT ROUND(12345.6789, 2) FROM DUAL -> 12345.68

ROWIDTOCHAR(rowid), ROWIDTONCHAR(rowid)
ROWIDTOCHAR converts the rowid value to an 18-character-long
VARCHAR2 value; ROWIDTONCHAR converts rowid to an 18-character-
long NVARCHAR2 value. For example:

SELECT ROWIDTOCHAR(ROWID) FROM NUMS
ABAsxDAAKAAAAEqAAA
ABAsxDAAKAAAAEqAAB
ABAsxDAAKAAAAEqAAC
ABAsxDAAKAAAAEqAAD

RPAD(string1, number[, string2])
Returns string1, right-padded to the length number with the value of string2,
repeated as needed. string2 defaults to a single blank. For example:

SELECT RPAD('duck',8,'s') FROM DUAL -> 'duckssss'

RTRIM(string[, set])
Returns string, with all the rightmost characters that appear in set removed;
set defaults to a single blank. For example:

SELECT RTRIM(' welcome ', ' ') FROM DUAL -> ' welcome'

SCN_TO_TIMESTAMP(scn)
Returns the timestamp associated with the system change number (scn) argu-
ment. For example:

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) FROM NUMS WHERE c1 = 1
15-APR-04 02.56.05.000000000 PM

Platform-Specific Extensions | 515

SQL Functions

SESSIONTIMEZONE
Returns the session’s time zone offset. For example:

SELECT SESSIONTIMEZONE FROM DUAL -> -06:00

SET(nested_table)
Returns a nested table of distinct elements from the input nested_table. For
more information, see the Oracle SQL Reference.

SIGN(number)
When number < 0, returns –1. When number = 0, returns 0. When number > 0,
returns 1. For example:

SELECT SIGN(-3.1415926) FROM DUAL -> -1

SIN(number)
Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SINH(number)
Returns the hyperbolic sine of number. For example:

SELECT SINH(180) FROM DUAL -> 7.4469E+77

SOUNDEX(string)
Returns a character string containing the phonetic representation of string.
This function allows words that are spelled differently but sound alike in
English to be compared for equality. For example:

SELECT SOUNDEX('thimble') FROM DUAL -> 'T514'

STATS_BINOMIAL_TEST, STATS_CROSSTAB, STATS_F_TEST, STATS_KS_
TEST, STATS_MODE, STATS_MW_TEST, STATS_ONE_WAY_ANOVA,
STATS_T_TEST_INDEP, STATS_T_TEST_INDEPU, STATS_T_TEST_ONE,
STATS_T_TEST_PAIRED, STATS_WSR_TEST
Oracle provides many sophisticated statistical functions. For further informa-
tion on the STATS_* functions, see the Oracle SQL Reference.

STDDEV([DISTINCT | ALL] expression) [OVER (window_clause)]
Returns a sample standard deviation of a set of numbers shown as
expression. See “ANSI SQL Window Functions,” earlier in this chapter, for
details on the window_clause. For example:

SELECT STDDEV(col1) FROM NUMS -> 5.71547607

STDEV_POP(expression) [OVER (window_clause)]
Computes the population standard deviation and returns the square root of
the population variance. See “ANSI SQL Window Functions,” earlier in this
chapter, for details on the window_clause. For example:

SELECT STDDEV_POP(col1) FROM NUMS -> 4.94974747

STDDEV_SAMP(expression) [OVER (window_clause)]
Computes the cumulative sample standard deviation and returns the square
root of the sample variance. See “ANSI SQL Window Functions” earlier in
this chapter for details on the window_clause. For example:

SELECT STDDEV_SAMP(col1) FROM NUMS -> 5.71547607

516 | Chapter 4: SQL Functions

SUBSTR(string, start [FROM starting_position] [FOR length])
Refer to the earlier section on SUBSTRING under “String Functions and
Operators.” For example:

SELECT SUBSTR('Hello, World!',8,10) FROM DUAL -> 'World!'

SUBSTRB(extraction_string[, length])
Returns the portion of string beginning at the position start and continuing
for length characters. If length is omitted, all characters from start onward
are returned. If start is negative, it represents an offset from the right edge of
the string. For example:

SELECT SUBSTR('Hello, World!', 8) FROM DUAL -> World!

Use SUBSTRB for bytes, SUBSTRC for UNICODE complete characters,
SUBSTR2 for UNICODE UCS2 code points, and SUBSTR4 for UNICODE
UCS4 code points.

SYS_CONNECT_BY_PATH(column, char)
For hierarchical queries, SYS_CONNECT_BY_PATH returns the path from
the root to the node with the column name specified by the column param-
eter. The char parameter specifies the node separator for the return path. For
more on Oracle hierarchical queries, refer to the Oracle SQL Reference.

SYS_CONTEXT(namespace, attribute[, length])
Returns the value of the attribute associated with the context namespace,
usable in both SQL and PL/SQL statements. The length parameter option-
ally defines the size of the value returned by the function; it defaults to up to
256 bytes, but you may specify a value of between 1 and 4,000 bytes. For
example:

SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER') FROM DUAL
'LOGIN'

SYS_DBURIGEN(column[, rowid][, . . .][, ‘text()’])
Returns a URL that can be used as a unique reference to the row specified by
the column parameter. For columns that don’t hold unique values, a rowid can
be used directly after the column it identifies to guarantee that the URL only
points to one row. Use the ‘text()’ option if you want the URL to point to the
text within an XML document, instead of the document itself.

SYS_EXTRACT_UTC(datetime)
Returns the datetime argument converted to a UTC datetime value. For
example:

SELECT SYS_EXTRACT_UTC(TIMESTAMP '2004-04-15 11:59:59.00 -08:00')
FROM DUAL
'15-APR-04 07.59.59.000000000 PM'

SYS_GUID()
Generates and returns a globally unique identifier (RAW value) made up of
16 bytes. For example:

SELECT SYS_GUID() FROM DUAL -> C0FD3FDC30148EAEE030440A49096A41

SYS_TYPEID(object_value)
Returns the type ID of the object_value parameter.

Platform-Specific Extensions | 517

SQL Functions

SYS_XMLAGG(expr[, format])
Returns a single XML document created by aggregating the XML documents
or fragments in the expr parameter. The optional format parameter can be
used to format the XML document. For more information, refer to the Oracle
SQL Reference.

SYS_XMLGEN(expression[, format])
Returns a single XML document created from the expression. The optional
format parameter can be used to format the XML document. For more infor-
mation, refer to the Oracle SQL Reference.

SYSDATE
Returns the current date and time on the system in which the database is
hosted. The value returned is of type DATE. For example:

SELECT SYSDATE FROM DUAL -> 26-JUN-2003

SYSTIMESTAMP
Returns the current date and time on the system in which the database is
hosted. The value returned is of type TIMESTAMP. For example:

SELECT SYSTIMESTAMP FROM DUAL
26-JUN-2003 11.15.00.000000 PM -06:00

TAN(number)
Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) FROM DUAL -> -0.000093

TANH(number)
Returns the hyperbolic tangent of number. For example:

SELECT TANH(180) FROM DUAL -> 1

TIMESTAMP_TO_SCN(timestamp_value)
Returns the approximate system change number (SCN) associated with the
timestamp_value. The return value is of type NUMBER.

TO_BINARY_DOUBLE(expr[, format[, nls_parameter]])
Converts expr to a BINARY_DOUBLE, optionally in the format specified by
the format parameter. If expr is a character expression, the format and nls_
parameter options have equivalent meanings, as they do in the TO_CHAR
function. If expr is a numeric expression, format and nls_parameter must be
omitted. For example:

SELECT c1, TO_BINARY_DOUBLE(c1) FROM NUMS
1 1.0E+000
2 2.0E+000
3 3.0E+000

TO_BINARY_FLOAT(expr[, format[, nls_parameter]])
Converts expr to a BINARY_FLOAT, optionally in the format specified by the
format parameter. If expr is a character expression, the format and nls_
parameter options have equivalent meanings, as they do in the TO_CHAR
function. If expr is a numeric expression, format and nls_parameter must be
omitted. For example:

518 | Chapter 4: SQL Functions

SELECT c1, TO_BINARY_FLOAT(c1) FROM NUMS
1 1.0E+000
2 2.0E+000
3 3.0E+000

TO_CHAR(character_expr)
Converts character_expr to the database character set. For example:

SELECT TO_CHAR('Howdy') FROM DUAL
Howdy

TO_CHAR(date | interval[, format[, nls_parameter]])
Converts date or interval to a VARCHAR2 in the format specified by format.
When format is omitted, date is converted to the default date format. The
nls_parameter option offers additional control over formatting. For example:

SELECT TO_CHAR(TO_DATE('15-APR-1999') ,'MON-DD-YYYY') FROM DUAL
APR-15-1999

Table 4-11 lists the available specifiers for format and their meanings.

Table 4-11. Oracle format specifiers

Format specifier Meaning

AD or A.D. AD indicator

AM or A.M. Meridian indicator

BC or B.C. BC indicator

D Day of week (1–7)

DAY Name of day

DD Day of month (1–31)

DDD Day of year (1–366)

DL Long date format

DS Short date format

DY Abbreviated name of day

FF Fractional seconds; to specify the precision, include a number (1–9) after the FF specifier

HH or HH12 Hour (1–12)

HH24 Hour (0–23)

J Julian day; the number of days since January 1, 4713 BC

MI Minute (0–59)

MM Month (01–12)

MON Abbreviated name of month

RM Roman numeral month (I–XII)

SS Second (0–59)

SSSSS Seconds past midnight (0–86,399)

SYYY Four-digit year; BC dates are prefixed with a minus sign

TS Short time format

TZD Daylight savings information (example: PST versus PDT)

TZH Time zone hour

Platform-Specific Extensions | 519

SQL Functions

TO_CHAR(number[, format[, nls_parameter]])
Converts number to a VARCHAR2 in the format specified. When format is
omitted, number is converted to a string long enough to hold the number. The
nls_parameter option offers additional control over formatting options. For
example:

SELECT TO_CHAR(123.45, '$999.99') FROM DUAL -> $123.45

TO_CLOB(expr)
Converts the character expression given by expr to the CLOB datatype. For
example:

SELECT LENGTH(TO_CLOB('I am a SQL nut!')) FROM DUAL -> 15

TO_DATE(string[, format[, nls_parameter]])
Converts string (a CHAR or VARCHAR2) to the DATE datatype. The nls_
parameter option offers additional control over formatting options. For
example:

SELECT TO_DATE('15/04/1999', 'DD/MM/YYYY') FROM DUAL
15-APR-1999

TO_DSINTERVAL(string[, nls_parameter])
Converts the character expression given by string to the INTERVAL DAY
TO SECOND datatype. The nls_parameter option offers additional control
over formatting options. For example:

SELECT CURRENT_DATE, CURRENT_DATE-TO_DSINTERVAL('14 00:00:00')
FROM DUAL
15-APR-2003 01-APR-2003

TO_LOB(long_column)
Converts LONG or LONG RAW values in the column long_column to LOB
values. Usable only by LONG or LONG RAW expressions and only in the
SELECT list of a subquery in an INSERT statement.

TO_MULTI_BYTE(string)
Returns string with all of its single-byte characters converted to their corre-
sponding multibyte characters.

TO_NCHAR(expr[, format[, nls_parameter]])
Synonymous with the TO_CHAR function, except the return datatype is
NCHAR. For more on valid format specifiers, see the TO_CHAR function.

TZM Time zone minute

TZR Time zone region

X Local radix character

Y, YY, or YYY One-, two-, or three-digit year

Y,YYY Year with comma

YYYY Four-digit year

Table 4-11. Oracle format specifiers (continued)

Format specifier Meaning

520 | Chapter 4: SQL Functions

TO_NCLOB(expr)
Converts the character expression given by expr to the NCLOB datatype. For
example:

SELECT LENGTH(TO_NCLOB('I am a SQL nut!')) FROM DUAL -> 15

TO_NUMBER(string[, format[, nls_parameter]])
Converts a numeric string (a CHAR or VARCHAR2) to the NUMBER
datatype, optionally in the format specified by the format parameter. The
nls_parameter option offers additional control over formatting options. For
example:

SELECT TO_NUMBER('12345') FROM DUAL -> 12345

TO_SINGLE_BYTE(string)
Returns string with all of its multibyte characters converted to their corre-
sponding single-byte characters.

TO_TIMESTAMP(string[, format[, nls_parameter]])
Converts the character expression provided by string to the TIMESTAMP
datatype, optionally in the format specified by the format parameter. The
nls_parameter option offers additional control over formatting options. (For
more on valid format specifiers, see the TO_CHAR function.) For example:

SELECT TO_TIMESTAMP(CURRENT_DATE) FROM DUAL -> 04-MAY-04 12.00.00 AM

TO_TIMESTAMP_TZ(string[, format[, nls_parameter]])
Converts the character expression provided by string to the TIMESTAMP
WITH TIME ZONE datatype, optionally in the format specified by the format
parameter. The nls_parameter option offers additional control over format-
ting options. (For more on valid format specifiers, see the TO_CHAR
function.) For example:

SELECT TO_TIMESTAMP_TZ('15-04-2006', 'DD-MM-YYYY') FROM DUAL
15-APR-06 12.00.00.000000000 AM -07:00

TO_YMINTERVAL(string)
Converts the character expression provided by string to the INTERVAL
YEAR TO MONTH datatype. For example:

SELECT TO_DATE('29-FEB-2000')+TO_YMINTERVAL('04-00') FROM DUAL
29-FEB-04

TRANSLATE(char_value, from_text, to_text)
Returns char_value with each occurrence of a character in from_text replaced
by its corresponding character in to_text. For example:

SELECT TRANSLATE('foobar', 'fa', 'bu') FROM DUAL -> 'boobur'

TRANSLATE(text USING [CHAR_CS | NCHAR_CS])
Converts text into the character set specified. Use CHAR_CS to convert text
to the CHAR datatype or NCHAR_CS to convert text to the NCHAR
datatype. For example:

SELECT TRANSLATE(N'foobar' USING CHAR_CS) FROM DUAL
'foobar'

Platform-Specific Extensions | 521

SQL Functions

TREAT(expr AS [REF] [schema.]type)
Converts expr from its declared type to the type specified by the type para-
meter. For more information on the usage of this function, please look to the
SQL Reference for the Oracle Database.

TRUNC(base[, number])
Returns base truncated to number decimal places. When number is omitted,
base is truncated to an integer. number can be negative to truncate (make zero)
digits to the left of the decimal point. For example:

SELECT TRUNC('123.456', 2) FROM DUAL -> 123.45

TRUNC(date[, format])
Returns date truncated to the unit specified by format. When format is
omitted, date is truncated to the nearest whole day. (For more on valid
format specifiers, see the TO_CHAR function.) For example:

SELECT TRUNC(TO_DATE('15/04/1999', 'MM/DD/YYYY'), 'YYYY') FROM DUAL
1999

TZ_OFFSET({expr | SESSIONTIMEZONE | DBTIMEZONE})
Returns the time zone offset corresponding to the argument. The character
expression expr can either be the name of the time zone or a time zone offset.
The SESSIONTIMEZONE and DBTIMEZONE arguments provide the time
zone for the session or database, respectively. For example:

SELECT TZ_OFFSET('+08:00'), TZ_OFFSET(SESSIONTIMEZONE) FROM DUAL
+08:00 -07:00

UID
Returns an integer that uniquely identifies the currently logged-on session
user. No parameters are needed. For example:

SELECT UID FROM DUAL -> 47

UNISTR(string)
Converts string to the NCHAR datatype, while converting any UNICODE-
encoded values within string. For example:

SELECT UNISTR('El Ni\00F1o') FROM DUAL -> 'El Niño'

UPDATEXML(instance, xpath, expr[, namespace])
Updates the values held by nodes within instance to the new value in expr.
Only those nodes returned by the XPath query contained in the xpath para-
meter are updated. The optional namespace parameter specifies the XML
namespace in the query. For more information on XML queries, refer to the
Oracle SQL Reference. For example:

SELECT UPDATEXML(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),
 '/foo/bar', '<bar>Bye, World!</bar>') from DUAL
Bye, World!

USERENV(option)
Returns information about the current session in the VARCHAR2 datatype.
This function has been deprecated and is only provided for backward compati-
bility. USERENV is a synonym for SYS_CONTEXT(‘USER_ENV’, option).

522 | Chapter 4: SQL Functions

Refer to the SYS_CONTEXT function with the USERENV namespace for
current functionality. For example:

SELECT USERENV('LANGUAGE') "Language" FROM DUAL
'AMERICAN_AMERICA.AL32UTF8'

VALUE(table_alias)
Takes a table_alias associated with a row in an object table and returns the
object instance stored within the object table for that row.

VAR_POP(expression) [OVER (window_clause)]
Returns the population variance of the set of numbers represented by
expression after discarding the NULLs in the set. See “ANSI SQL Window
Functions,” earlier in this chapter, for details on the window_clause. For
example:

SELECT VAR_POP(col1) FROM NUMS -> 24.5

VAR_SAMP(expression) [OVER (window_clause)]
Returns the sample variance of the set of numbers represented by expression
after discarding the NULLs in the set. See “ANSI SQL Window Functions,”
earlier in this chapter, for details on the window_clause. For example:

SELECT VAR_SAMP(col1) FROM NUMS -> 32.6666667

VARIANCE([DISTINCT] expression) [OVER (window_clause)]
Returns the variance of expression, calculated as follows: 0 if the number of
rows in expression = 1, and VAR_SAMP if the number of rows in expression >
1. See “ANSI SQL Window Functions,” earlier in this chapter, for details on
the window_clause. For example:

SELECT VARIANCE(col1) FROM NUMS -> 32.6666667

VSIZE(expression)
Returns the number of bytes in the internal representation of expression.
When expression is NULL, returns NULL. For example:

SELECT vsize(1) FROM DUAL -> 2

 XMLAGG(instance[, order_by])
Aggregate function that returns an XML document from a table of XML frag-
ments contained in instance. The optional order_by clause allows the XML
fragments in the result to be ordered. For more information on XML queries,
refer to the Oracle SQL Reference.

XMLCAST(value AS datatype)
Casts the value to the type datatype and returns the result. For more informa-
tion on XML queries, refer to the Oracle SQL Reference.

XMLCDATA(value)
Returns value as an XML CDATA section. For more information on XML
queries, refer to the Oracle SQL Reference.

XMLCOLATTVAL(expr [AS alias][, . . .])
Returns an XML fragment from the expr arguments. The optional AS clause
can be used to change the value of the name attribute. For more information
on XML queries, refer to the Oracle SQL Reference.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Platform-Specific Extensions | 523

SQL Functions

XMLCONCAT(instance[, . . .])
Returns an XML instance that is the union of all XML instance parameters.
For more information on XML queries, refer to the Oracle SQL Reference.

XMLDIFF(xml1, xml2[, hashlevel, flags])
Returns an Xdiff schema that’s the result of diffing xml1 and xml2. For more
information on XML queries, refer to the Oracle SQL Reference.

XMLELEMENT([NAME] name[, XMLATTRIBUTES(expr [AS alias][, . . .])][,
value[, . . .]])
Returns an XMLELEMENT with the name specified in the name parameter
and the attributes specified in the optional XMLATTRIBUTES clause. The
value parameters provide the values of the XMLELEMENT result. For more
information on XML queries, refer to the Oracle SQL Reference.

XMLEXISTS(xquery[, passing_clause])
Returns TRUE if the XQuery specified in xquery returns a nonempty XQuery
result, and FALSE otherwise. For more information on XML queries, refer to
the Oracle SQL Reference.

XMLFOREST(value [AS alias][, . . .])
Returns an XML fragment constructed from the values provided in the value
parameter list. The optional AS clause can be used to change the enclosing
tag name. For more information on XML queries, refer to the Oracle SQL
Reference.

XMLPARSE([DOCUMENT | CONTENT] value [WELLFORMED])
Returns an XML instance constructed as a result of parsing the XML docu-
ment in value. For more information on XML queries, refer to the Oracle
SQL Reference.

XMLPATCH(xml, xdiff)
Returns an XML instance as a result of patching the XML document in xml
with the Xdiff found in xdiff. For more information on XML queries, refer to
the Oracle SQL Reference.

XMLPI()
Generates an XML processing instruction, commonly used to provide appli-
cation instructions associated with all or part of an XML document. For more
information on XML queries, refer to the Oracle SQL Reference.

XMLQUERY(query)
Returns the results of executing the XMLQuery found in query. For more
information on XML queries, refer to the Oracle SQL Reference.

XMLROOT(value, VERSION [version | NO VALUE][, STANDALONE {YES |
NO | NO VALUE})
Returns a new XML document using value as the body and the version infor-
mation for the XML document prolog. For more information on XML
queries, refer to the Oracle SQL Reference.

524 | Chapter 4: SQL Functions

XMLSEQUENCE(instance)
Returns an array of XML fragments constructed from the top-level nodes in
the XML instance provided by the instance parameter. For more information
on XML queries, refer to the Oracle SQL Reference.

XMLSERIALIZE(...)
Returns an XML expression serialized to a string. For more information on
XML queries, refer to the Oracle SQL Reference.

XMLTABLE(...)
Maps the result of an XQuery into a two-dimensional, relational view. For
more information on XML queries, refer to the Oracle SQL Reference.

XMLTRANSFORM(instance, stylesheet)
Returns the result of applying the XSL stylesheet in the stylesheet parameter
to the XML document contained in instance. For more information on XML
queries, refer to the Oracle SQL Reference.

PostgreSQL-Supported Functions

This section lists the functions specific to PostgreSQL, with examples and corre-
sponding results.

ABSTIME(timestamp)
Converts the timestamp value to the ABSTIME type. This function is provided
for backward compatibility and may be removed in future versions. For
example:

SELECT ABSTIME(CURRENT_TIMESTAMP) -> 2003-06-24 00:19:17-07

ACOS(number)
Returns the arccosine of number, ranging from –1 to 1. The result ranges from
0 to π and is expressed in radians. For example:

SELECT ACOS(0) -> 1.570796

AGE(timestamp)
Has the same meaning as AGE(CURRENT_DATE, timestamp).

AGE(timestamp, timestamp)
Returns the time between the two timestamp values. For example:

SELECT AGE('2003-12-31', CURRENT_TIMESTAMP)
6 mons 7 days 00:34:41.658325

AREA(object)
Returns the area of an item. For example:

SELECT AREA(BOX '((0,0),(1,1))') -> 1

ARRAY_APPEND(array, element)
Returns the result of appending element to array. For example:

SELECT ARRAY_APPEND(ARRAY[1,2], 3) -> {1,2,3}

Platform-Specific Extensions | 525

SQL Functions

ARRAY_CAT(array1, array2)
Returns the result of appending array2 to array1. For example:

SELECT ARRAY_CAT(ARRAY[1,2], ARRAY[3,4]) -> {1,2,3,4}

ARRAY_DIMS(array)
Returns the dimensions of array. For example:

SELECT ARRAY_DIMS(ARRAY[1,2]) -> '[1:2]'

ARRAY_LOWER(array, i)
Returns the lower bound of the dimension i of array. For example:

SELECT ARRAY_LOWER(ARRAY[1,2], 1) -> 1

ARRAY_PREPEND(i, array)
Returns the result of prepending i to array. For example:

SELECT ARRAY_PREPEND(0, ARRAY[1,2]) -> {0,1,2}

ARRAY_TO_STRING(array, delimiter)
Returns a string that is constructed by concatenating the elements of array,
with delimiter used as a delimiter between each element. For example:

SELECT ARRAY_TO_STRING(ARRAY[1,2,3], ';') -> '1;2;3'

ARRAY_UPPER(array, i)
Returns the upper bound of the dimension i of array. For example:

SELECT ARRAY_UPPER(ARRAY[1,2], 1) -> 2

ASCII(text)
Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

ASIN(number)
Returns the arcsine of number, ranging from –1 to 1. The resulting value
ranges from –π/2 to π/2 and is expressed in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)
Returns the arctangent of any number. The resulting value ranges from –π/2 to
π/2 and is expressed in radians. For example:

SELECT ATAN(3.1415) -> 1.262619

ATAN2(float1, float2)
Returns the arctangent of the two float values. ATAN2(x, y) is similar to
ATAN(y/x), with the exception that the signs of x and y are used to deter-
mine the quadrant of the result. For example:

SELECT ATAN2(3.1415926, 0) -> 1.5707963267949

BIT_AND(expression)

BIT_OR(expression)
Returns the bitwise AND or OR of every non-NULL value in expression. For
example:

SELECT BIT_AND(column1) FROM table
0

526 | Chapter 4: SQL Functions

BOOL_AND(expression)
BOOL_OR(expression)

Returns the logical AND or OR of every non-NULL value in expression. For
example:

SELECT BOOL_OR(column1) FROM table
true

BOX(box, box)
Returns a BOX created by the intersection of the two boxes. If the two boxes
do not intersect, the return value is NULL. For example:

SELECT BOX(BOX '((-1,-1),(1,1))', BOX '((0,0),(1,1))')
(1,1),(0,0)

BOX(circle)
Returns a BOX with vertices that intersect circle so that the box is the
maximum size that can be fully contained within circle. For example:

SELECT BOX(CIRCLE '((0,0),2.0)')
(1.41421356237309,1.41421356237309),
(-1.41421356237309,-1.41421356237309)

BOX(point, point)
Returns a BOX with the two point arguments as opposite corners. For
example:

SELECT BOX(POINT(0,0), POINT(1,1)) -> (1,1),(0,0)

BOX(polygon)
Converts polygon to a BOX. For example:

SELECT BOX(POLYGON '((0,0),(1,1),(2,0))') -> (2,1),(0,0)

BROADCAST(inet)
Constructs a broadcast address as text. For example:

SELECT BROADCAST('192.168.1.5/24') -> '192.168.1.255/24'

BTRIM(s, c)
Return s without the characters found in c. For example:

SELECT BTRIM('<<<trim_me>>>', '><') -> 'trim_me'

CBRT(float8)
Returns the cube root of float8. For example:

SELECT CBRT(8) -> 2

CENTER(object)
Returns a POINT object to the center of the argument. For example:

SELECT CENTER(CIRCLE '((0,0), 2.0)') -> (0,0)

CHAR(text)
Converts text to the CHAR type.

CHAR_LENGTH(string) or CHARACTER_LENGTH(string)
Returns the length of string in characters.

CIRCLE(box)
Returns a CIRCLE contained within box. For example:

SELECT CIRCLE(BOX '((0,0),(1,1))') -> <(0.5,0.5),0.707106781186548>

Platform-Specific Extensions | 527

SQL Functions

CIRCLE(point, float8)
Converts point to a CIRCLE with float8 for the radius. For example:

SELECT CIRCLE(POINT '(0,0)', 2.0) -> <(0,0),2>

CLOCK_TIMESTAMP()
Returns the current date and time, which can change within a single SQL
statement execution.

COALESCE(list)
Returns the first non-NULL value in list. For example:

SELECT COALESCE(NULL,1,2,3,NULL) -> 1

COS(number)
Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

COT(number)
Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

CURRVAL(s)
Returns the current value of the sequence named s. For example:

SELECT CURRVAL('myseq') -> 99

DATE_PART(text, value)
Equivalent to EXTRACT(text, value); for more details on the usage of
EXTRACT, see the section on EXTRACT earlier in “ANSI SQL Scalar
Functions.”

DATE_TRUNC(precision, timestamp)
Truncates timestamp to the specified precision. For example:

SELECT DATE_TRUNC('hour', TIMESTAMP '2003-04-15 23:58:30')
2003-04-15 23:00:00

DECODE(s, type)
Decodes an encoded string s. The type can be ‘base64’, ‘hex’, or ‘escape’. For
example:

SELECT DECODE(ENCODE('darjeeling', 'base64'), 'base64') -> 'darjeeling'

DEGREES(float8)
Converts radians to degrees. For example:

SELECT DEGREES(3.1415926) -> 179.999996929531

DIAMETER(circle)
Returns the diameter of circle. For example:

SELECT DIAMETER(CIRCLE(POINT '(0,0)', 2.0)) -> 4

ENCODE(s, type)
Encodes a string s. The type can be ‘base64’, ‘hex’, or ‘escape’. For example:

SELECT DECODE(ENCODE('darjeeling', 'base64'), 'base64') -> 'darjeeling'

EVERY(expression)
Synonym for BOOL_AND(expression).

528 | Chapter 4: SQL Functions

FLOAT(int)
Converts int to a floating point.

FLOAT4(int)
Converts int to a floating point.

HEIGHT(box)
Returns the vertical size of box. For example:

SELECT HEIGHT(BOX '((0,0),(1,1))') -> 1

HOST(inet)
Extracts the host address as text. For example:

SELECT HOST('192.168.1.5/24') -> '192.168.1.5'

INITCAP(text)
Converts the first letter of each word to uppercase. For example:

SELECT INITCAP('my name is inigo montoya.')
'My Name Is Inigo Montoya.'

INTEGER(float)
Converts a floating point to integer.

INTERVAL(reltime)
Converts reltime to an INTERVAL.

ISCLOSED(path)
Returns 't' if path is closed, and 'f' if it’s open. For example:

SELECT ISCLOSED(PATH '((0,0),(1,1),(2,0))') -> 't'
SELECT ISCLOSED(PATH '[(0,0),(1,1),(2,0)]') -> 'f'

ISFINITE(interval)
Returns 'f' if interval is open, and 't' otherwise. For example:

SELECT ISFINITE(INTERVAL '4 hours') -> 't'

 ISFINITE(timestamp)
Returns 'f' if timestamp is either invalid or infinite, and 't' otherwise. For
example:

SELECT ISFINITE(TIMESTAMP '2001-02-16 21:28:30') -> 't'

ISOPEN(path)
Returns an open path. For example:

SELECT ISOPEN(PATH '((0,0),(1,1),(2,0))') -> 'f'
SELECT ISOPEN(PATH '[(0,0),(1,1),(2,0)]') -> 't'

JUSTIFY_DAYS(interval)
Returns the number of 30-day time periods within interval. For example:

SELECT JUSTIFY_DAYS(INTERVAL '90 days') -> 3

JUSTIFY_HOURS(interval)
Returns the number of 24-hour time periods within interval. For example:

SELECT JUSTIFY_HOURS(INTERVAL '48 hours') -> 2

Platform-Specific Extensions | 529

SQL Functions

JUSTIFY_INTERVAL(interval)
Returns the number of 30-day time periods and remaining 24-hour time
periods within interval. For example:

SELECT JUSTIFY_HOURS(INTERVAL '2 mon – 12 hour') -> '59 days 12:00:00'

LENGTH(object)
Returns the length of object. For example:

SELECT LENGTH('Howdy!') -> 6
SELECT LENGTH(PATH '((-1,0),(1,0))') -> 4

LOG(float8[, b])
Returns a base-10 logarithm, unless b is specified, in which case it returns the
logarithm of base base. For example:

SELECT LOG(100) -> 2

LPAD(exp1, int, exp2)
Returns the string 'text', left-padded to the specified (int) length. For
example:

SELECT LPAD('Duck', 10, 's') -> 'ssssssDuck'

LSEG(box)
Converts a box diagonal to a line segment. For example:

SELECT LSEG(BOX '((-1,0),(1,0))') -> [(1,0),(-1,0)]

LSEG(point, point)
Converts points to a line segment. For example:

SELECT LSEG(POINT '(-1,0)', POINT '(1,0)') -> [(-1,0),(1,0)]

LTRIM(text)
Returns text with all leading whitespace removed. For example:

SELECT LTRIM(' Howdy! ') -> 'Howdy! '

MASKLEN(cidr)
Returns the netmask length of cidr. For example:

SELECT MASKLEN('192.168.1.5/24') -> 24

MD5(s)
Returns the MD5 hash of s.

NETMASK(inet)
Returns the netmask for inet. For example:

SELECT NETMASK('192.168.1.5/24') -> '255.255.255.0'

NETWORK(inet)
Returns the network part of inet. For example:

SELECT NETWORK('192.168.1.5/24') -> '192.168.1.0/24'

NEXTVAL(s)
Returns the next number in the sequence named s. For example:

SELECT NEXTVAL('myseq') -> 100

NPOINTS(object)
Returns the number of points in object. For example:

SELECT NPOINTS(POLYGON '((1,1),(0,0))') -> 2

530 | Chapter 4: SQL Functions

NULLIF(input, value)
Returns NULL if input = value; otherwise, returns input. For example:

SELECT NULLIF(5, 6), NULLIF(5, 5)
5 NULL

PATH(polygon)
Converts polygon to a path. For example:

SELECT PATH('((0,0),(1,1),(2,0))')
((0,0),(1,1),(2,0))

PCLOSE(path)
Converts path to a closed path. For example:

SELECT PCLOSE(PATH '[(0,0),(1,1),(2,0)]')
((0,0),(1,1),(2,0))

PI()
Returns the constant π.

POLYGON(path)
Converts path to a POLYGON. For example:

SELECT POLYGON(PATH '((0,0),(1,1),(2,0))')
((0,0),(1,1),(2,0))

POINT(circle)
Returns the center of circle. For example:

SELECT POINT(CIRCLE '((0,0), 2.0)') -> (0,0)

POINT(lseg1, lseg2)
Returns the intersection of two line segments. For example:

SELECT POINT(LSEG '((-1,0),(1,0))', LSEG '((-2,-2),(2,2))')
(0,0)

POINT(polygon)
Returns the center point of polygon. For example:

SELECT POINT(POLYGON '((0,0),(1,1),(2,0))')
(1,0.333333333333333)

POLYGON(box)
Returns a four-point polygon. For example:

SELECT POLYGON(BOX '((0,0),(1,1))')
((0,0),(0,1),(1,1),(1,0))

POLYGON(circle)
Synonym for POLYGON(12, circle).

POLYGON(npts, circle)
Returns an approximation of circle as a polygon with npts vertices. For
example:

SELECT POLYGON(6, CIRCLE '((0,0),2.0)')
((-2,0),
(-0.999999999994107,1.73205080757228),
(1.00000000001179,1.73205080756207),

Platform-Specific Extensions | 531

SQL Functions

(2,-2.04136478690279e-11),
(0.999999999976428,-1.73205080758249),
(-1.00000000002946,-1.73205080755187))

POPEN(path)
Converts path to an open path. For example:

SELECT POPEN(PATH '((0,0),(1,1),(2,0))')
[(0,0),(1,1),(2,0)]

POW(number, exponent)
Raises number to the specified exponent. For example:

SELECT POW(2, 3) -> 8

QUOTE_IDENT(s)
Returns s properly escaped so that it can be used as an identifier in a SQL
statement. For example:

SELECT QUOTE_IDENT('tea') -> '"tea"'

QUOTE_LITERAL(s)
Returns s properly escaped so that it can be used as a string literal in a SQL
statement. For example:

SELECT QUOTE_LITERAL('you\'re here') -> 'you"re here'

RADIANS(float8)
Converts degrees to radians. For example:

SELECT RADIANS(180) -> 3.14159265358979

RADIUS(circle)
Returns the radius of circle. For example:

SELECT RADIUS(CIRCLE '((0,0), 2.0)') -> (0,0)

RANDOM()
Returns a random value between 0.0 and 1.0. For example:

SELECT RANDOM() -> 0.785398163397448

REGEXP_MATCHES(s, pattern[, flags])
Returns substrings within s matching the regular expression pattern. The
optional flags argument can select non-default processing by the regular
expression matching engine. The most common options for flags are 'i' for
case-insensitive matching, 'n' for newline-sensitive matching, and 'g' for
global matching. For example:

SELECT REGEXP_MATCHES('catfish, cowfish', 'c..') -> 'cat'

REGEXP_REPLACE(s, pattern, replacement[, flags])
Returns s with all substrings matching the regular expression pattern
replaced with the string found in replacement. The optional flags argument
can select non-default processing by the regular expression matching engine.
The most common options for flags are 'i' for case-insensitive matching, 'n'
for newline-sensitive matching, and 'g' for global matching. For example:

SELECT REGEXP_REPLACE('abcabcabc', 'bc', 'nt') -> 'antabcabc'
SELECT REGEXP_REPLACE('abcabcabc', 'bc', 'nt', 'g') -> 'antantant'

532 | Chapter 4: SQL Functions

REGEXP_SPLIT_TO_ARRAY(s, pattern[, flags])
Returns s split into an array using the regular expression pattern as the
delimiter for array elements. The optional flags argument can select non-
default processing by the regular expression matching engine. The most
common options for flags are 'i' for case-insensitive matching, 'n' for
newline-sensitive matching, and 'g' for global matching. For example:

SELECT REGEXP_SPLIT_TO_ARRAY('a b c', E'\\s+')
{a,b,c}

REGEXP_SPLIT_TO_TABLE(s, pattern[, flags])
Returns s split into a table using the regular expression pattern as the delim-
iter for rows. The optional flags argument can select non-default processing
by the regular expression matching engine. The most common options for
flags are 'i' for case-insensitive matching, 'n' for newline-sensitive matching,
and 'g'for global matching. For example:

SELECT REGEXP_SPLIT_TO_TABLE('a b c', E'\\s+')
'a'
'b'
'c'

RELTIME(interval)
Converts interval to a RELTIME. Provided for backward compatibility and
may be removed in a future release.

ROUND(number[, p])
Rounds number to p decimal places. The optional p argument defaults to 0 for
classic rounding of integers. For example:

SELECT ROUND(5.5) -> 6
SELECT ROUND(5.5555, 2) -> 5.56

RPAD(text, length, char)
Pads text to the specified length using char. For example:

SELECT RPAD('Duck', 10, 's') -> 'Duckssssss'

RTRIM(text)
Returns text with all trailing whitespace removed. For example:

SELECT RTRIM(' St. Lucia ') -> ' St. Lucia'

SET_MASKLEN(inet, size)
Sets the netmask length for inet to size. For example:

SELECT SET_MASKLEN('192.168.1.5/24',16)
'192.168.1.5/16'

SETSEED(i)
Seeds the random number generator with i.

SETVAL(s, i)
Sets the next number in the sequence named s to i. For example:

SETVAL('myseq', 0)

SIGN(number)
Returns the sign of number. For example:

SELECT SIGN(-69), SIGN(69)
-1,1

Platform-Specific Extensions | 533

SQL Functions

SIN(number)
Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

STATEMENT_TIMESTAMP()
Returns the date and time at which the SQL statement began execution.

STRING_TO_ ARRAY(str1, delimiter)
Returns an array that is constructed by extracting the elements of str1 using
delimiter as a delimiter between each element. For example:

SELECT STRING_TO_ARRAY('1;2;3', ';') -> {1,2,3}

SUBSTRING(string [FROM start] [FOR bytes]), SUBSTR(string, start[, bytes])
Extracts a substring of length bytes from string starting at the character posi-
tion start. If bytes is omitted, the length returned is the remainder of the
string from the start position. For example:

SELECT SUBSTRING('Inigo Montoya' FROM 7 FOR 4) -> 'Mont'

TAN(number)
Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TEXT(char)
Converts char to the TEXT type.

TIMEOFDAY()
Returns the current timestamp (using CLOCK_TIMESTAMP) as a string.

TIMESTAMP(date[, time])
Converts date to a timestamp.

TO_CHAR(expression, text)
Converts expression to a string. For example:

SELECT TO_CHAR(NUMERIC '-125.8', '999D99S') -> 125.80-
SELECT TO_CHAR (interval '15h 2m 12s','HH24:MI:SS') -> 15:02:12

TO_DATE(string, format)
Converts string to a date using the second argument for the input format.
For example:

SELECT TO_DATE('05 Dec 2000', 'DD Mon YYYY') -> 2000-12-05
Table 4-12 lists the available specifiers for format and their meanings.

Table 4-12. PostgreSQL format specifiers

Format specifier Meaning

AD or A.D. AD indicator

AM or A.M. Meridian indicator

BC or B.C. BC indicator

CC Two-digit century

D Day of week (1–7)

DAY Full uppercase day name

534 | Chapter 4: SQL Functions

Day Full camel case day name

day Full lowercase day name

DD Day of month (01–31)

DDD Day of year (001–366)

DY Abbreviated day name

Dy Abbreviated camel case day name

dy Abbreviated lowercase day name

HH or HH12 Hour (01–12)

HH24 Hour (00–23)

I Last digits of ISO year

IW ISO week number of year

IY, IYY, IYYY Last 2 digits, 3 digits, or all digits of ISO year, respectively

J Julian day number (days since January 1, 4713 BC)

MI Minute (00–59)

MM Month (01–12)

MON Abbreviated month name

Mon Abbreviated camel case month name

mon Abbreviated lowercase month name

MONTH Full uppercase month name

Month Full camel case month name

month Full lowercase month name

MS Milliseconds (000–999)

PM or P.M. Meridian indicator

Q Quarter of the year

RM Roman Numeral month (I–XII)

rm Lowercase Roman Numeral month (i–xii)

SS Second (00–59)

SSSS Seconds past midnight (0–86,399)

SYYY Four-digit year; BC dates are prefixed with a minus sign

TS Short time format

TZ Uppercase time zone name

tz Lowercase time zone name

US Microseconds (000000–999999)

W Week of month (1–5)

WW Week of year (1–53)

Y, YY, YYY, YYYY One-, two-, three-, or four-digit year, respectively

Y,YYY Year with comma

Table 4-12. PostgreSQL format specifiers (continued)

Format specifier Meaning

Platform-Specific Extensions | 535

SQL Functions

TO_NUMBER(string, format)
Converts string to a numeric value using the second argument for the input
format. For example:

SELECT TO_NUMBER('12,454.8-', '99G999D9S') -> -12454.8

TO_TIMESTAMP(text, format)
Converts text to a timestamp value using the second argument for the input
format. (For more on valid format specifiers, see the TO_DATE function.)
For example:

SELECT TO_TIMESTAMP('05 Dec 2000', 'DD Mon YYYY') ->
2000-12-05 00:00:00-08

TRANSACTION_TIMESTAMP()
Returns the date and time at which the current transaction was started.

TRANSLATE(text, from, to)
Converts the characters found in text that also exist in from to the corre-
sponding characters in to. For example:

SELECT TRANSLATE('foo', 'fo', 'ab') -> 'abb'

TRUNC(float8)
Truncates (toward zero). For example:

SELECT TRUNC(PI()) -> 3

VARCHAR(string)
Converts string to a VARCHAR.

WIDTH(box)
Returns the width of box. For example:

SELECT WIDTH(BOX '((0,0),(3,1))') -> 3

SQL Server-Supported Functions

This section provides an alphabetical listing of Microsoft SQL Server-supported
functions, with examples and corresponding results.

ACOS(number)
Returns the arccosine of number, ranging from –1 to 1. The result ranges from
0 to π and is expressed in radians. For example:

SELECT ACOS(0) -> 1.570796

APP_NAME()
Returns the application name for the current session, set by the application.
For example:

SELECT APP_NAME() -> 'SQL Enterprise Manager'

ASCII(text)
Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

536 | Chapter 4: SQL Functions

ASIN(number)
Returns the arcsine of number, ranging from –1 to 1. The resulting value
ranges from –π/2 to π/2 and is expressed in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)
Returns the arctangent of any number. The resulting value ranges from –π/2 to
π/2 and is expressed in radians. For example:

SELECT ATAN(3.1415) -> 1.262619

ATN2(float1, float2)
Returns the angle (in radians) whose tangent is float1/float2. For example:

SELECT ATN2(35.175643, 129.44) -> 0.265345

BINARY_CHECKSUM(* | expression[, . . .n])
Returns the binary checksum for a list of expressions or for a row of a table.
This example returns a list of user IDs where the stored password checksum
doesn’t match the current password’s checksum:

SELECT userid AS 'Changed' FROM users
WHERE NOT password_chksum = BINARY_CHECKSUM(password)

CHAR(integer_expression)
Converts a numeric ASCII code to a character. For example:

SELECT CHAR(78) -> 'N'

CHARINDEX(substring, string[, start_location])
Returns the position of the first occurrence of substring in string, optionally
from the given start_location. For example:

SELECT CHARINDEX('he', 'Howdy, there!') -> 9

CHECKSUM(* | expression[, . . .n])
Returns a checksum (computed over row values or expressions provided).
The following example returns a list of user IDs for which the stored pass-
word checksum doesn’t match the current password’s checksum:

SELECT userid AS 'Changed' FROM users
WHERE NOT password_chksum = CHECKSUM(password)

CHECKSUM_AGG([ALL | DISTINCT] expression)
Returns the checksum of the values in a group. For example:

SELECT CHECKSUM_AGG(BINARY_CHECKSUM(*)) FROM authors -> 67

COALESCE(expression[, . . .n])
Returns the first non-NULL argument from a list of arguments. For example:

SELECT COALESCE(NULL, 1, 3, 5, 7) -> 1

COL_LENGTH(table, column)
Returns the length of column in bytes. For example:

SELECT COL_LENGTH('authors', 'au_fname') -> 50

Platform-Specific Extensions | 537

SQL Functions

COL_NAME(table_id, column_id)
Returns the column name, given table_id and column_id. For example:

SELECT COL_NAME(OBJECT_ID('authors'), 1)

CONTAINS({column | *}, contains_search_condition)
Searches column for exact or “fuzzy” matches of the contains_seach_
condition. CONTAINS is an elaborate function used to perform full-text
searches; refer to the vendor documentation for more information. This
example returns all product IDs from the products table that contain the
words “peanut” and “butter” in close proximity to each other.

SELECT productid FROM products
WHERE CONTAINS(productname, ' "peanut" NEAR "butter" ')

CONTAINSTABLE(table, column, contains_search_condition)
Returns a table with exact and “fuzzy” matches to contains_search_
condition. CONTAINSTABLE is an elaborate function used to perform full-
text searches. The following example returns all product ID’s from the products
table that contain the words “peanut” and “butter” in close proximity to each
other:

SELECT productid FROM products
WHERE CONTAINS(products, productname, ' "peanut" NEAR "butter" ')

CONVERT(data_type[(length)], expression[, style])
Converts data in expression from one datatype to another. For example:

SELECT CONVERT(VARCHAR(50), CURRENT_TIMESTAMP, 1) -> '06/29/03'

COS(number)
Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

COT(number)
Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

COUNT_BIG({ [ALL | DISTINCT] expression } | *)
Operates the same as COUNT, except the return type is a BIGINT. For
example:

SELECT COUNT_BIG(names) FROM people -> 26743

DATABASEPROPERTYEX(database, property)
Returns a database option or property. For example:

SELECT DATABASEPROPERTYEX('pubs', 'Version') -> 539

DATALENGTH(expression)
Returns the number of bytes in a character or binary string. For example:

SELECT MAX(DATALENGTH(au_fname)) FROM authors -> 11

DATEADD(datepart, number, date)
Adds a number of dateparts (e.g., days) to a datetime value. For example:

SELECT DATEADD(Year, 10, CURRENT_TIMESTAMP) -> 2013-06-29 19:47:15.270

538 | Chapter 4: SQL Functions

DATEDIFF(datepart, startdate, enddate)
Calculates the difference between two datetime values expressed in the speci-
fied datepart. For example:

SELECT DATEDIFF(Day, CURRENT_TIMESTAMP,
 DATEADD(Year, 1, CURRENT_TIMESTAMP))
366

DATENAME(datepart, date)
Returns the name of a datepart (e.g., month) of a datetime argument. For
example:

SELECT DATENAME(month, GETDATE()) -> 'June'

DATEPART(datepart, date)
Returns the value of a datepart (e.g., year) of a datetime argument. For
example:

SELECT DATEPART(year, GETDATE()) -> 2003

DAY(date)
Returns an integer value representing the day of the date provided as a
parameter. For example:

SELECT DAY('04/15/2004') -> 15

DB_ID([database_name])
Returns the database ID when provided with a database_name. For example:

SELECT DB_ID() -> 5

DB_NAME(database_id)
Returns the database name when provided with a database_id. For example:

SELECT DB_NAME(5) -> 'pubs'

DEGREES(numeric_expression)
Converts radians to degrees. For example:

SELECT DEGREES(PI()) -> 180

DIFFERENCE(character_expression, character_expression)
Compares how two arguments sound and returns a number from 0 to 4, with
a higher result indicating a better phonetic match. For example:

SELECT DIFFERENCE('moe', 'low') -> 3

FILE_ID(file_name)
Returns the file ID for the logical file_name. For example:

SELECT FILE_ID('master') -> 1

FILE_NAME(file_id)
Returns the logical filename for the file_id. For example:

SELECT FILE_NAME(1) -> 'master'

FILEGROUP_ID(filegroup_name)
Returns the filegroup ID for the logical filegroup_name. For example:

SELECT FILEGROUP_ID('PRIMARY') -> 1

Platform-Specific Extensions | 539

SQL Functions

FILEGROUP_NAME(filegroup_id)
Returns the logical filegroup name for filegroup_id. For example:

SELECT FILEGROUP_NAME(1) -> 'PRIMARY'

FILEGROUPPROPERTY(filegroup_name, property)
Returns the filegroup property value for the specified property. For example:

SELECT FILEGROUPPROPERTY('PRIMARY', 'IsReadOnly') -> 0

FILEPROPERTY(file, property)
Returns the file property value for the specified property. For example:

SELECT FILEPROPERTY('pubs', 'SpaceUsed') -> 160

FORMATMESSAGE(msg_number, param_value[, . . . n])
Constructs a message from an existing message in the SYSMESSAGES table
(similar to RAISEERROR). For example:

sp_addmessage 50001, 1, 'Table %s has %s rows.'
SELECT FORMATMESSAGE(50001, 'AUTHORS', (SELECT COUNT(*) FROM AUTHORS))
'Table AUTHORS has 23.'

FREETEXT({column | *}, freetext_string)
Used for full-text searches. Returns rows with column values that match the
meaning, but not exactly the value, of freetext_string.

FREETEXTTABLE(table, {column | *}, freetext_string[, top_n_by_rank])
Used for full-text searches. Returns rows from table with column values that
match the meaning, but not exactly the value, of freetext_string. For
example:

SELECT * from FREETEXTTABLE (authors, *, 'kev')

FULLTEXTCATALOGPROPERTY(catalog_name, property)
Returns the full-text catalog properties. For example:

SELECT FULLTEXTCATALOGPROPERTY('Cat_Desc', 'LogSize')

FULLTEXTSERVICEPROPERTY(property)
Returns the full-text service-level properties. For example:

SELECT FULLTEXTSERVICEPROPERTY('IsFulltextInstalled') -> 1

GETANSINULL([database])
Returns the default nullability setting for new columns. For example:

SELECT GETANSINULL() -> 1

GETDATE()
Returns the current date and time. For example:

SELECT GETDATE() -> 2003-06-27 19:26:59.893

GETUTCDATE()
Returns the current date as a Coordinated Universal Time (UTC) date. For
example:

SELECT GETUTCDATE() -> 2003-06-28 02:26:46.720

540 | Chapter 4: SQL Functions

GROUPING(column_name)
Returns 1 when a row is added by CUBE or ROLLUP; otherwise, returns 0.
For example:

SELECT royalty, SUM(advance) 'total advance', GROUPING(royalty) 'grp'
FROM titles GROUP BY royalty WITH ROLLUP
royalty total advance grp
--------- --------------------- ---
NULL NULL 0
10 57000.0000 0
12 2275.0000 0
14 4000.0000 0
16 7000.0000 0
24 25125.0000 0
NULL 95400.0000 1

HOST_ID()
Returns the workstation ID. For example:

SELECT HOST_ID() -> 216

HOST_NAME()
Returns the process host name. For example:

SELECT HOST_NAME() -> 'PLATO'

IDENT_CURRENT(table_name)
Returns the last identity value generated for the specified table. For example:

SELECT IDENT_CURRENT('jobs') -> 876

IDENT_INCR(table_or_view)
Returns an identity column increment value. For example:

SELECT IDENT_INCR('jobs') -> 1

IDENT_SEED(table_or_view)
Returns an identity seed value. For example:

SELECT IDENT_SEED('jobs') -> 1

IDENTITY(data_type[, seed, increment]) AS column_name
Used in a SELECT INTO statement to insert an identity column into the
destination table. For example:

SELECT IDENTITY(int, 1,1) AS IDINTO NewTableFROM OldTable

INDEX_COL(table, index_id, key_id)
Returns an index column name given a table name, an index ID, and the
sequential number of the column in the index key. For example:

SELECT INDEX_COL(OBJECT_ID('authors'), 1, 1) -> NULL

INDEXPROPERTY(table_id, index, property)
Returns an index property (such as FILLFACTOR). For example:

SELECT INDEXPROPERTY(OBJECT_ID('authors'), 'UPKCL_auidind', 'IsPadIndex')
0

Platform-Specific Extensions | 541

SQL Functions

IS_MEMBER({group | role})
Returns true or false (1 or 0) depending on whether or not the user is a
member of the specified Windows NT group or SQL Server role. For
example:

SELECT IS_MEMBER('db_owner') -> 0

IS_SRVROLEMEMBER(role[, login])
Returns true or false (1 or 0) depending on whether or not the user is a
member of the specified server role. For example:

SELECT IS_SRVROLEMEMBER('sysadmin') -> 0

ISDATE(expression)
Validates whether a character string can be converted to DATETIME. For
example:

SELECT ISDATE(NULL), ISDATE(GETDATE())
0 1

ISNULL(check_expression, replacement_value)
Returns the first argument if it is not NULL; otherwise, returns the second
argument. For example:

SELECT ISNULL(NULL, 'NULL') -> 'NULL'

ISNUMERIC(expression)
Validates whether a character string can be converted to NUMERIC. For
example:

SELECT ISNUMERIC('3.1415'), ISNUMERIC('IRK')
1 0

LEFT(character_expression, integer_expression)
Returns the leftmost integer_expression characters of character_expression.
For example:

SELECT LEFT('Wet Paint', 3) -> 'Wet'

LEN(string_expression)
Returns the number of characters in the expression. For example:

SELECT LEN('Wet Paint') -> 9

LOG(float_expression)
Returns the natural logarithm. For example:

SELECT LOG(PI()) -> 1.1447298858494002

LOG10(float_expression)
Returns the base-10 logarithm. For example:

SELECT LOG10(PI()) -> 0.49714987269413385

LTRIM(character_expression)
Trims leading space characters. For example:

SELECT LTRIM(' beaucoup ') -> 'beaucoup '

MONTH(date)
Returns the month part of the date provided. For example:

SELECT MONTH(GETDATE()) -> 6

542 | Chapter 4: SQL Functions

NCHAR(integer_expression)
Returns the UNICODE character with the given integer code. For example:

SELECT NCHAR(120) -> 'x'

NEWID()
Creates a new unique identifier of type UNIQUEIDENTIFIER. For example:

SELECT NEWID() -> '32B35185-F55E-4FE0-B2C8-B57B35815C12'

NULLIF(expression, expression)
Returns NULL if the two specified expressions are equivalent. For example:

SELECT NULLIF(5, 5) -> NULL

OBJECT_ID(object)
Returns the object ID of object. For example:

SELECT OBJECT_NAME (OBJECT_ID('authors')) -> 8

OBJECT_NAME(object_id)
Returns the object name of the object with the given object ID. For example:

SELECT OBJECT_NAME (OBJECT_ID('authors')) -> 'authors'

OBJECTPROPERTY(id, property)
Returns the properties of objects in the current database. For example:

SELECT OBJECTPROPERTY (object_id('authors'),'ISTABLE') -> 1

OPEN {{[GLOBAL] cursor_name} | cursor_variable_name}
Opens a local or global cursor.

OPENDATASOURCE(provider_name, init_string)
Makes a connection to a data source without using a linked server name. For
examples, refer to the “Loaders” section of the SQL Server User’s Guide.

OPENQUERY(linked_server, query)
Queries a remote data source previously configured as a linked server. For an
example, refer to the “Loaders” section of the SQL Server User’s Guide.

OPENROWSET(provider_name, {datasource, user_id, password | provider_
string}, {[catalog.][schema.]object | query})
Queries a remote data source without setting it up as a linked server.

PARSENAME(object_name, object_piece)
Returns the database name, owner name, server name, or object name for the
object specified. object_piece is an integer between 1 and 4. For example:

SELECT PARSENAME('pubs..authors', 1) -> 'authors'
SELECT PARSENAME('pubs..authors', 2) -> NULL
SELECT PARSENAME('pubs..authors', 3) -> 'pubs'
SELECT PARSENAME('pubs..authors', 4) -> NULL

PATINDEX(‘'%pattern%’, expression)
Returns the position of the first occurrence of a pattern in a string. For
example:

SELECT PATINDEX('%Du%', 'Donald Duck') -> 8

Platform-Specific Extensions | 543

SQL Functions

PERMISSIONS([object_id[, column]])
Returns a numeric value representing a bitmap with the current user’s
permissions on the specified object or column. For example:

SELECT PERMISSIONS(OBJECT_ID('authors'))&8 -> 8

PI()
Returns the constant pi. For example:

SELECT 2*PI() -> 6.2831853071795862

RADIANS(numeric_expression)
Converts degrees to radians. For example:

SELECT RADIANS(90.0) -> 1.570796326794896600

RAND([seed])
Returns a pseudorandom FLOAT type value between seed and 1. For
example:

SELECT RAND(PI()) -> 0.71362925915543995

REPLICATE(character_expression, integer_expression)
Repeats a string a number of times. For example:

SELECT REPLICATE('FOOBAR', 3) -> 'FOOBARFOOBARFOOBAR'

REPLACE(string_expression1, string_expression2, string_expression3)
Performs a search-and-replace on string_expression1, replacing each occur-
rence of string_expression2 with string_expression3. For example:

SELECT REPLACE('Donald Duck', 'Duck', 'Trump') -> 'Donald Trump'

REVERSE(character_expression)
Reverses the characters of a string. For example:

SELECT REVERSE('Donald Duck') -> 'kcuD dlanoD'

RIGHT(character_expression, integer_expression)
Returns the rightmost integer_expression characters of character_
expression. For example:

SELECT RIGHT('Donald Duck', 4) -> 'Duck'

ROUND(number, decimal[, function])
Returns number rounded to decimal places to the right of the decimal point.
Note that decimal, an integer, can be negative to round off digits to the left of
the decimal point. If a nonzero integer is provided for function, the return
value will be truncated; otherwise, the value is rounded. For example:

SELECT ROUND(PI(), 2) -> 3.1400000000000001

ROWCOUNT_BIG()
Returns the number of rows affected by the most recent query. (Same as
@@ROWCOUNT, but returns a BIGINT type.) For example:

SELECT ROWCOUNT_BIG() -> 1

RTRIM(character_expression)
Trims trailing space characters from the expression. For example:

SELECT RTRIM(' beaucoup ') -> ' beaucoup'

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

544 | Chapter 4: SQL Functions

SIGN(numeric_expression)
Returns –1 if the argument is negative, 0 if it is zero, and 1 if the argument is
positive. For example:

SELECT SIGN(-PI()) -> -1.0

SIN(number)
Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SOUNDEX(character_expression)
Returns a four-character code based on how the argument string sounds. For
example:

SELECT SOUNDEX('char') -> 'C600'

SPACE(integer_expression)
Returns a string consisting of a given number of space characters. For
example:

SELECT SPACE(5) -> ' '

STATS_DATE(table_id, index_id)
Returns the date and time that index statistics were last updated. For
example:

SELECT i.name, STATS_DATE(i.id, i.indid)FROM sysobjects o, sysindexes i
WHERE o.name = 'authors' AND o.id = i.id
UPKCL_auidind 2000-08-06 01:34:00.153
aunmind 2000-08-06 01:34:00.170

STDEV(expression)
Returns the standard deviation of the values in expression. For example:

SELECT STDEV(qty) FROM sales -> 16.409201831957116

STDEVP(expression)
Returns the standard deviation for the population of values in expression.
For example:

SELECT STDEVP(qty) FROM sales -> 16.013741264834152

STR(number[, length[, decimal]])
Converts number to a character string with length length and decimal decimal
places.

STUFF(string1, start, length, string2)
Replaces the length characters within string1, starting with the character in
the start position, with those in string2. For example:

SELECT STUFF('Donald Duck', 8, 4, 'Trump') -> 'Donald Trump'

SUBSTRING(string, start, length)
Extracts length characters from string, starting at the character in the start
position. For example:

SELECT SUBSTRING('Donald Duck', 8, 4) -> 'Duck'

SUSER_ID([login])
Returns the system user ID of a given login name. This function will always
return NULL with SQL Server 2000 or later, so you should avoid using it.

Platform-Specific Extensions | 545

SQL Functions

SUSER_SID([login])
Returns the security ID (SID) for the current user, or for the specified login.
The SID is retuned in binary format. For example:

SELECT SUSER_SID('montoyai')
0x68FC17A71010DE40B005BCF2E443B377

SUSER_SNAME([server_user_sid])
Returns the login name for the current user, or for the specified login SID.
For example:

SELECT SUSER_SNAME() -> 'montoyai'

TAN(number)
Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TEXTPTR(column)
Returns a pointer to a TEXT, NTEXT, or IMAGE column in VARBINARY
format. For example:

SELECT TEXTPTR(pr_info)FROM pub_info WHERE pub_id = '0736'ORDER BY pub_id
0xFEFF6F00000000005C00000001000100

TEXTVALID(table.column, text_ptr)
Returns true or false (1 or 0), depending on whether or not the provided
pointer to a TEXT, NTEXT, or IMAGE column is valid. For example:

SELECT pub_id, 'Valid (if 1) Text data'
 = TEXTVALID('pub_info.logo', TEXTPTR(logo)) FROM pub_infoORDER BY pub_id
0736 1
0877 1
1389 1
1622 1
1756 1
9901 1
9952 1
9999 1

TYPEPROPERTY(datatype, property)
Returns information about datatype properties. The datatype argument can
contain the name of any datatype, and property can be a string containing
one of the following:

Precision
The precision of the datatype is the number of digits or characters that it
can store.

Scale
The scale is the number of decimal places for a numeric datatype. A
NULL value will be returned if datatype is not a numeric datatype.

For example:

SELECT TYPEPROPERTY('decimal', 'PRECISION') -> 38

546 | Chapter 4: SQL Functions

UNICODE(ncharacter_expression)
Returns the UNICODE code point for the first character of the input para-
meter. For example:

SELECT UNICODE('Hello!') -> 72

USER_ID([user])
Returns the user ID for user in the current database. If user is omitted, the
current user’s ID will be returned. For example:

SELECT USER_ID() -> 2

USER_NAME([id])
Returns the username of the user identified by id or, if no ID is provided, of
the current user. For example:

SELECT USER_NAME() -> 'montoyai'

VAR(expression)
Returns the statistical variance for the values represented by expression. For
example:

SELECT VAR(qty) FROM sales -> 269.26190476190476

VARP(expression)
Returns the statistical variance for the population represented by all values of
expression in a group. VARP is an aggregate function. For example:

SELECT VARP(qty) FROM sales -> 256.43990929705217

YEAR(date)
Returns an integer that is the YEAR part of the specified date. For example:

SELECT YEAR(CURRENT_TIMESTAMP) -> 2003

547

AppendixKeywords

APPENDIX

Shared and Platform-Specific
Keywords

The following tables display the keywords in the ANSI standard, and in the four
platform-specific implementations of SQL that are discussed in this book, with
the Sybase Adaptive Server. The keyword tables appear in the following order:

• Shared keywords

• SQL2003 keywords

• MySQL keywords

• Oracle keywords

• PostgreSQL keywords

• SQL Server keywords

Table A-1. Shared keywords

ADD ALL ALTER AND

AS ASC BY CHECK

COLUMN CREATE DATE DEFAULT

DELETE DESC DROP FOR

FROM IN INTO IS

LIKE NOT NULL ON

OR ORDER REVOKE SELECT

SET TABLE THEN TO

UNIQUE UPDATE WITH

Table A-2. SQL2003 keywords

ABSOLUTE ACTION ADD ADMIN

AFTER AGGREGATE ALIAS ALL

ALLOCATE ALTER AND ANY

548 | Appendix: Shared and Platform-Specific Keywords

ARE ARRAY AS ASC

ASSERTION AT ATOMIC AUTHORIZATION

BEFORE BEGIN BIGINT BINARY

BIT BLOB BOOLEAN BOTH

BREADTH BY CALL CASCADE

CASCADED CASE CAST CATALOG

CHAR CHARACTER CHECK CLASS

CLOB CLOSE COLLATE COLLATION

COLLECT COLUMN COMMIT COMPLETION

CONDITION CONNECT CONNECTION CONSTRAINT

CONSTRAINTS CONSTRUCTOR CONTAINS CONTINUE

CORRESPONDING CREATE CROSS CUBE

CURRENT CURRENT_DATE CURRENT_PATH CURRENT_ROLE

CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER CURSOR

CYCLE DATA DATALINK DATE

DAY DEALLOCATE DEC DECIMAL

DECLARE DEFAULT DEFERRABLE DELETE

DEPTH DEREF DESC DESCRIPTOR

DESTRUCTOR DIAGNOSTICS DICTIONARY DISCONNECT

DO DOMAIN DOUBLE DROP

ELEMENT END-EXEC EQUALS ESCAPE

EXCEPT EXCEPTION EXECUTE EXIT

EXPAND EXPANDING FALSE FIRST

FLOAT FOR FOREIGN FREE

FROM FUNCTION FUSION GENERAL

GET GLOBAL GOTO GROUP

GROUPING HANDLER HASH HOUR

IDENTITY IF IGNORE IMMEDIATE

IN INDICATOR INITIALIZE INITIALLY

INNER INOUT INPUT INSERT

INT INTEGER INTERSECT INTERSECTION

INTERVAL INTO IS ISOLATION

ITERATE JOIN KEY LANGUAGE

LARGE LAST LATERAL LEADING

LEAVE LEFT LESS LEVEL

LIKE LIMIT LOCAL LOCALTIME

LOCALTIMESTAMP LOCATOR LOOP MATCH

MEMBER MEETS MERGE MINUTE

MODIFIES MODIFY MODULE MONTH

MULTISET NAMES NATIONAL NATURAL

NCHAR NCLOB NEW NEXT

NO NONE NORMALIZE NOT

Table A-2. SQL2003 keywords (continued)

Shared and Platform-Specific Keywords | 549

Keyw
ords

NULL NUMERIC OBJECT OF

OFF OLD ON ONLY

OPEN OPERATION OPTION OR

ORDER ORDINALITY OUT OUTER

OUTPUT PAD PARAMETER PARAMETERS

PARTIAL PATH PERIOD POSTFIX

PRECEDES PRECISION PREFIX PREORDER

PREPARE PRESERVE PRIMARY PRIOR

PRIVILEGES PROCEDURE PUBLIC READ

READS REAL RECURSIVE REDO

REF REFERENCES REFERENCING RELATIVE

REPEAT RESIGNAL RESTRICT RESULT

RETURN RETURNS REVOKE RIGHT

ROLE ROLLBACK ROLLUP ROUTINE

ROW ROWS SAVEPOINT SCHEMA

SCROLL SEARCH SECOND SECTION

SELECT SEQUENCE SESSION SESSION_USER

SET SETS SIGNAL SIZE

SMALLINT SPECIFIC SPECIFICTYPE SQL

SQLEXCEPTION SQLSTATE SQLWARNING START

STATE STATIC STRUCTURE SUBMULTISET

SUCCEEDS SUM SYSTEM_USER TABLE

TABLESAMPLE TEMPORARY TERMINATE THAN

THEN TIME TIMESTAMP TIMEZONE_HOUR

TIMEZONE_MINUTE TO TRAILING TRANSACTION

TRANSLATION TREAT TRIGGER TRUE

UESCAPE UNDER UNDO UNION

UNIQUE UNKNOWN UNTIL UPDATE

USAGE USER USING VALUE

VALUES VARCHAR VARIABLE VARYING

VIEW WHEN WHENEVER WHERE

WHILE WITH WRITE YEAR

ZONE

Table A-3. MySQL keywords

ACCESSIBLE ADD ALL ALTER

ANALYZE AND AS ASC

ASENSITIVE BEFORE BETWEEN BIGINT

BINARY BLOB BOTH BY

CALL CASCADE CASE CHANGE

CHAR CHARACTER CHECK COLLATE

Table A-2. SQL2003 keywords (continued)

550 | Appendix: Shared and Platform-Specific Keywords

COLUMN CONDITION CONSTRAINT CONTINUE

CONVERT CREATE CROSS CURRENT_DATE

CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATABASE DATABASES DAY_HOUR DAY_MICROSECOND

DAY_MINUTE DAY_SECOND DEC DECIMAL

DECLARE DEFAULT DELAYED DELETE

DESC DESCRIBE DETERMINISTIC DISTINCT

DISTINCTROW DIV DOUBLE DROP

DUAL EACH ELSE ELSEIF

ENCLOSED ESCAPED EXISTS EXIT

EXPLAIN FALSE FETCH FLOAT

FLOAT4 FLOAT8 FOR FORCE

FOREIGN FROM FULLTEXT GRANT

GROUP HAVING HIGH_PRIORITY HOUR_MICROSECOND

HOUR_MINUTE HOUR_SECOND IF IGNORE

IN INDEX INFILE INNER

INOUT INSENSITIVE INSERT INT

INT1 INT2 INT3 INT4

INT8 INTEGER INTERVAL INTO

IS ITERATE JOIN KEY

KEYS KILL LEADING LEAVE

LEFT LIKE LIMIT LINEAR

LINES LOAD LOCALTIME LOCALTIMESTAMP

LOCK LONG LONGBLOB LONGTEXT

LOOP LOW_PRIORITY MASTER_SSL_VERIFY_
SERVER_CERT

MATCH

MEDIUMBLOB MEDIUMINT MEDIUMTEXT MIDDLEINT

MINUTE_MICROSECOND MINUTE_SECOND MOD MODIFIES

NATURAL NO_WRITE_TO_BINLOG NOT NULL

NUMERIC ON OPTIMIZE OPTION

OPTIONALLY OR ORDER OUT

OUTER OUTFILE PRECISION PRIMARY

PROCEDURE PURGE RANGE READ

READ_ONLY READ_WRITE READS REAL

REFERENCES REGEXP RELEASE RENAME

REPEAT REPLACE REQUIRE RESTRICT

RETURN REVOKE RIGHT RLIKE

SCHEMA SCHEMAS SECOND_MICROSECOND SELECT

SENSITIVE SEPARATOR SET SHOW

SMALLINT SPATIAL SPECIFIC SQL

Table A-3. MySQL keywords (continued)

Shared and Platform-Specific Keywords | 551

Keyw
ords

SQL_BIG_RESULT SQL_CALC_FOUND_ROWS SQL_SMALL_RESULT SQLEXCEPTION

SQLSTATE SQLWARNING SSL STARTING

STRAIGHT_JOIN TABLE TERMINATED THEN

TINYBLOB TINYINT TINYTEXT TO

TRAILING TRIGGER TRUE UNDO

UNION UNIQUE UNLOCK UNSIGNED

UPDATE USAGE USE USING

UTC_DATE UTC_TIME UTC_TIMESTAMP VALUES

VARBINARY VARCHAR VARCHARACTER VARYING

WHEN WHERE WHILE WITH

WRITE XOR YEAR_MONTH ZEROFILL

Table A-4. Oracle keywords

ACCESS ADD ALL ALTER

AND ANY AS ASC

AUDIT BETWEEN BY CHAR

CHECK CLUSTER COLUMN COMMENT

COMPRESS CONNECT CREATE CURRENT

DATE DECIMAL DEFAULT DELETE

DESC DISTINCT DROP ELSE

EXCLUSIVE EXISTS FILE FLOAT

FOR FROM GRANT GROUP

HAVING IDENTIFIED IMMEDIATE IN

INCREMENT INDEX INITIAL INSERT

INTEGER INTERSECT INTO IS

LEVEL LIKE LOCK LONG

MAXEXTENTS MINUS MLSLABEL MODE

MODIFY NOAUDIT NOCOMPRESS NOT

NOWAIT NULL NUMBER OF

OFFLINE ON ONLINE OPTION

OR ORDER PCTFREE PRIOR

PRIVILEGES PUBLIC RAW RENAME

RESOURCE REVOKE ROW ROWID

ROWNUM ROWS SELECT SESSION

SET SHARE SIZE SMALLINT

START SUCCESSFUL SYNONYM SYSDATE

TABLE THEN TO TRIGGER

UID UNION UNIQUE UPDATE

USER VALIDATE VALUES VARCHAR

Table A-3. MySQL keywords (continued)

552 | Appendix: Shared and Platform-Specific Keywords

Table A-5. PostgreSQL keywords

ABORT ADD ALL ALLOCATE

ALTER ANALYZE AND ANY

ARE AS ASC ASSERTION

AT AUTHORIZATION AVG BEGIN

BETWEEN BINARY BIT BIT_LENGTH

BOTH BY CASCADE CASCADED

CASE CAST CATALOG CHAR

CHAR_LENGTH CHARACTER CHARACTER_LENGTH CHECK

CLOSE CLUSTER COALESCE COLLATE

COLLATION COLUMN COMMIT CONNECT

CONNECTION CONSTRAINT CONTINUE CONVERT

COPY CORRESPONDING COUNT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_SESSION

CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATE DEALLOCATE DEC DECIMAL

DECLARE DEFAULT DELETE DESC

DESCRIBE DESCRIPTOR DIAGNOSTICS DISCONNECT

DISTINCT DO DOMAIN DROP

ELSE END ESCAPE EXCEPT

EXCEPTION EXEC EXECUTE EXISTS

EXPLAIN EXTEND EXTERNAL EXTRACT

FALSE FETCH FIRST FLOAT

FOR FOREIGN FOUND FROM

FULL GET GLOBAL GO

GOTO GRANT GROUP HAVING

IDENTITY IN INDICATOR INNER

INPUT INSERT INTERSECT INTERVAL

INTO IS JOIN LAST

LEADING LEFT LIKE LISTEN

LOAD LOCAL LOCK LOWER

MAX MIN MODULE MOVE

NAMES NATIONAL NATURAL NCHAR

NEW NO NONE NOT

NOTIFY NULL NULLIF NUMERIC

OCTET_LENGTH OFFSET ON OPEN

OR ORDER OUTER OUTPUT

OVERLAPS PARTIAL POSITION PRECISION

PREPARE PRESERVE PRIMARY PRIVILEGES

PROCEDURE PUBLIC REFERENCES RESET

REVOKE RIGHT ROLLBACK ROWS

SCHEMA SECTION SELECT SESSION

SESSION_USER SET SETOF SHOW

Shared and Platform-Specific Keywords | 553

Keyw
ords

SIZE SOME SQL SQLCODE

SQLERROR SQLSTATE SUBSTRING SUM

SYSTEM_USER TABLE TEMPORARY THEN

TO TRAILING TRANSACTION TRANSLATE

TRANSLATION TRIM TRUE UNION

UNIQUE UNKNOWN UNLISTEN UNTIL

UPDATE UPPER USAGE USER

USING VACUUM VALUE VALUES

VARCHAR VARYING VERBOSE VIEW

WHEN WHENEVER WHERE WITH

WORK WRITE

Table A-6. SQL Server keywords

ADD ALL ALTER AND

ANY AS ASC AUTHORIZATION

BACKUP BEGIN BETWEEN BREAK

BROWSE BULK BY CASCADE

CASE CHECK CHECKPOINT CLOSE

CLUSTERED COALESCE COLLATE COLUMN

COMMIT COMPUTE CONSTRAINT CONTAINS

CONTAINSTABLE CONTINUE CONVERT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR DATABASE

DBCC DEALLOCATE DECLARE DEFAULT

DELETE DENY DESC DISK

DISTINCT DISTRIBUTED DOUBLE DROP

DUMP ELSE END ERRLVL

ESCAPE EXCEPT EXEC EXECUTE

EXISTS EXIT EXTERNAL FETCH

FILE FILLFACTOR FOR FOREIGN

FREETEXT FREETEXTTABLE FROM FULL

FUNCTION GOTO GRANT GROUP

HAVING HOLDLOCK IDENTITY IDENTITY_INSERT

IDENTITYCOL IF IN INDEX

INNER INSERT INTERSECT INTO

IS JOIN KEY KILL

LEFT LIKE LINENO LOAD

NATIONAL NOCHECK NONCLUSTERED NOT

NULL NULLIF OF OFF

OFFSETS ON OPEN OPENDATASOURCE

OPENQUERY OPENROWSET OPENXML OPTION

Table A-5. PostgreSQL keywords (continued)

554 | Appendix: Shared and Platform-Specific Keywords

OR ORDER OUTER OVER

PERCENT PIVOT PLAN PRECISION

PRIMARY PRINT PROC PROCEDURE

PUBLIC RAISERROR READ READTEXT

RECONFIGURE REFERENCES REPLICATION RESTORE

RESTRICT RETURN REVERT REVOKE

RIGHT ROLLBACK ROWCOUNT ROWGUIDCOL

RULE SAVE SCHEMA SECURITYAUDIT

SELECT SESSION_USER SET SETUSER

SHUTDOWN SOME STATISTICS SYSTEM_USER

TABLE TABLESAMPLE TEXTSIZE THEN

TO TOP TRAN TRANSACTION

TRIGGER TRUNCATE TSEQUAL UNION

UNIQUE UNPIVOT UPDATE UPDATETEXT

USE USER VALUES VARYING

VIEW WAITFOR WHEN WHERE

WHILE WITH WRITETEXT

Table A-6. SQL Server keywords (continued)

555

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Chapter 2

2
Index

Symbols
+ (addition arithmetic operator), 24, 27
= (assignment operator), 24
:= (assignment operator), Oracle, 24
@ (at sign), prefixing parameters, SQL

Server, 114
& (bitwise AND operator), 24
^ (bitwise exclusive OR operator), 24
~ (bitwise NOT unary operator), 26
| (bitwise OR operator), 24
[...] (brackets), enclosing delimited

identifiers, 20
-- (comments, single-line), 29
/*...*/ (comments, multiline), 29
+ (concatenation operator, SQL

Server), 27
|| (concatenation operator), 477
/ (division arithmetic operator), 24, 27
"..." (double quotes), enclosing delimited

identifiers, 19, 20, 28
= (equal to comparison operator), 25,

27
> (greater than operator), 25, 28
>= (greater than or equal to

operator), 25, 28
. (identifier qualifier separator), 28
< (less than operator), 25, 28
<= (less than or equal to operator), 25,

28
, (list item separator), 28

% (modula arithmetic operator), 24
* (multiplication arithmetic

operator), 24, 27
- (negative unary operator), 26
<> (not equal to operator), 25, 27
!= (not equal to operator), 25, 27
!> (not greater than operator), 25
!< (not less than operator), 25
(...) (parentheses), affecting operator

precedence, 26, 28
+ (positive unary operator), 26
(pound symbol)

prefixing temporary procedures, SQL
Server, 114

prefixing temporary tables, SQL
Server, 190

- (range indicator in CHECK
constraint), 27

'...' (single quotes)
enclosing delimited identifiers, 20
enclosing string literals, 22, 28

–(subtraction arithmetic operator), 24, 27
_ (underscore), in identifiers, 18
_ (wildcard operator, matches any

character), 317
% (wildcard operator, matches any

string), 28, 317
[...] (wildcard operator, matches in set,

SQL Server), 319
[^...] (wildcard operator, matches not in

set, SQL Server), 319

556 | Index

A
abbreviations in identifiers, 18
ABS function, 467
ABSTIME function, PostgreSQL, 524
access control, 5
ACOS function

MySQL, 483
Oracle, 500
PostgreSQL, 524
SQL Server, 535

ADDDATE function, MySQL, 483, 486
addition arithmetic operator (+), 24, 27
ADD_MONTHS function, Oracle, 500
AES_DECRYPT function, MySQL, 484
AES_ENCRYPT function, MySQL, 484
AGE function, PostgreSQL, 524
aggregate functions, 358, 438–454

AVG, 440
CORR, 441
COUNT, 441
COVAR_POP, 442
COVAR_SAMP, 443
CUME_DIST, 444, 459
DENSE_RANK, 445, 460
MAX, 446
MIN, 446
PERCENTILE_CONT, 448
PERCENTILE_DISC, 449
PERCENT_RANK, 447, 461
RANK, 449, 461
REGR_, 451
STDDEV_POP, 452
STDDEV_SAMP, 453
SUM, 440
VAR_POP, 453, 522
VAR_SAMP, 454, 522
as window functions, 458
(see also GROUP BY clause;

HAVING clause)
aliases

assigning, 24
WHERE clause joins and, 354

ALL operator, 25, 60, 63–65, 358
ALTER DATABASE statement, 61,

75–101
MySQL, 76
Oracle, 76–91
PostgreSQL, 91
SQL Server, 93–101

ALTER DOMAIN statement, 60

ALTER FUNCTION statement,
61, 101–117

MySQL, 106
Oracle, 107–110
PostgreSQL, 110
SQL Server, 112–117

ALTER INDEX statement, 61, 117–133
Oracle, 120–128
PostgreSQL, 128–130
SQL Server, 130–133

ALTER METHOD statement, 61, 133
ALTER PROCEDURE statement,

61, 101–117
MySQL, 106
Oracle, 107–110
PostgreSQL, 110
SQL Server, 112–117

ALTER ROLE statement, 61
Oracle, 136
PostgreSQL, 137
SQL Server, 138

ALTER SCHEMA statement, 61, 141
ALTER SESSION statement,

Oracle, 403
ALTER TABLE statement, 61, 142–191

MySQL, 148–156
Oracle, 156–185
PostgreSQL, 185–187
SQL Server, 187–191

ALTER TRIGGER statement,
61, 191–204

Oracle, 195–199
PostgreSQL, 199
SQL Server, 200–204

ALTER TYPE statement, 61, 204–216
Oracle, 207–213
PostgreSQL, 213–215

ALTER VIEW statement, 61, 216–225
MySQL, 220
Oracle, 220–223
SQL Server, 223–225

ampersand (&), bitwise AND
operator, 24

analytic functions (see window functions)
AND operator, 25, 357
angle brackets (see left angle bracket;

right angle bracket)
ANSI standard for SQL (see SQL

standard)
ANY operator, 25, 60, 63–65, 358
Any Type datatypes, Oracle, 39

Index | 557

APPENDCHILDXML function,
Oracle, 500

APP_NAME function, SQL Server, 535
AREA function, PostgreSQL, 524
arithmetic operators, 24
ARRAY_APPEND function,

PostgreSQL, 524
ARRAY_CAT function,

PostgreSQL, 525
ARRAY_DIMS function,

PostgreSQL, 525
ARRAY_LOWER function,

PostgreSQL, 525
ARRAY_PREPEND function,

PostgreSQL, 525
ARRAY_TO_STRING function,

PostgreSQL, 525
ARRAY_UPPER function,

PostgreSQL, 525
ASCII function

MySQL, 484
Oracle, 500
PostgreSQL, 525
SQL Server, 535

ASCIISTR function, Oracle, 500
ASIN function

MySQL, 484
Oracle, 500
PostgreSQL, 525
SQL Server, 536

assertions, 5
assignment operator (=), 24
assignment operator (:=), Oracle, 24
asterisk (*), multiplication arithmetic

operator, 24, 27
at sign (@), prefixing parameters, SQL

Server, 114
ATAN function

MySQL, 484
Oracle, 501
PostgreSQL, 525
SQL Server, 536

ATAN2 function
MySQL, 484
Oracle, 501
PostgreSQL, 525

ATN2 function, SQL Server, 536
attributes (see columns)
AuthorizationID (user), 5
AVG DISTINCT function, 358
AVG function, 358, 440

B
BEGIN statement, PostgreSQL, 412
BEGIN TRANSACTION statement,

SQL Server, 413
BENCHMARK function, MySQL, 484
BETWEEN operator, 25, 60, 65, 357
BFILE datatype, Oracle, 32, 39
BFILENAME function, Oracle, 501
BIGINT datatype, 32

MySQL, 35
PostgreSQL, 42
SQL Server, 46

BIGSERIAL datatype, PostgreSQL, 33,
42, 45

BIN function, MySQL, 484
BINARY datatype, 32

MySQL, 35
SQL Server, 46

binary datatypes, 30
BINARY function, MySQL, 484
BINARY_CHECKSUM function, SQL

Server, 536
BINARY_DOUBLE datatype,

Oracle, 32, 39
BINARY_FLOAT datatype, Oracle,

32, 39
Bindings:1999 section, SQL99, 10
BIN_TO_NUM function, Oracle, 501
BIT datatype, 32

deleted from SQL99, 10
MySQL, 35
PostgreSQL, 42
SQL Server, 46

BIT VARYING datatype
deleted from SQL99, 10
PostgreSQL, 32, 42

BIT_AND function
MySQL, 484
PostgreSQL, 525

BITAND function, Oracle, 501
BIT_COUNT function, MySQL, 484
BIT_LENGTH function, 468
BIT_OR function

MySQL, 485
PostgreSQL, 525

bitwise AND operator (&), 24
bitwise exclusive OR operator (^), 24
bitwise NOT unary operator (~), 26
bitwise operators, 24
bitwise OR operator (|), 24
BIT_XOR function, MySQL, 485

558 | Index

BLOB datatype, 32
MySQL, 35
Oracle, 39

books and publications
“A Relational Model of Data for

Large Shared Data Banks”
(Codd), 2

(see also SQL standard)
BOOL datatype, 32

MySQL, 35
PostgreSQL, 42

BOOL_AND function, PostgreSQL, 526
BOOLEAN datatype, 30, 32, 42
Boolean literals, 22
BOOL_OR function, PostgreSQL, 526
BOX datatype, PostgreSQL, 32, 43
BOX function, PostgreSQL, 526
brackets ([...])

enclosing delimited identifiers, 20
wildcard operator, matches in set,

SQL Server, 319
brackets, caret ([^...]), wildcard

operator, matches not in set,
SQL Server, 319

BROADCAST function,
PostgreSQL, 526

BTRIM function, PostgreSQL, 526
built-in scalar functions, 463
BYTEA datatype, PostgreSQL, 32, 43

C
CALL statement, 61, 66–68
Call-Level Interfaace (CLI), package

containing, 12
candidate key (see UNIQUE constraints)
Cantor, Georg (set theory developed

by), 8
CARDINALITY function, Oracle, 501
caret (^), bitwise exclusive OR

operator, 24
CASE function, 464–466
case of identifiers, 18
case sensitivity of identifiers, 21
CAST function, 466
catalogs, 4, 17
CBRT function, PostgreSQL, 526
CEIL function, 469
CENTER function, PostgreSQL, 526
CHAR datatype, 32

MySQL, 36
Oracle, 40

PostgreSQL, 43
SQL Server, 47

CHAR FOR BIT DATA datatype, 32
CHAR function

MySQL, 485
PostgreSQL, 526
SQL Server, 536

CHAR VARYING datatype, 34
Oracle, 41
SQL Server, 50

CHARACTER datatype, 32
Oracle, 40
PostgreSQL, 43
SQL Server, 47

character sets, 5
character string datatypes, 30
character string literals, 22
CHARACTER VARYING datatype, 34

Oracle, 41
PostgreSQL, 46
SQL Server, 50

CHARACTER_LENGTH function,
PostgreSQL, 526

CHARINDEX function, SQL
Server, 536

CHAR_LENGTH function, 468, 526
CHARSET function, MySQL, 485
CHARTOROWID function,

Oracle, 501
CHECK constraints, 57
CHECKSUM function, SQL Server, 536
CHECKSUM_AGG function, SQL

Server, 536
CHR function, Oracle, 501
CIDR datatype, PostgreSQL, 32, 43
CIRCLE datatype, PostgreSQL, 32, 43
CIRCLE function, PostgreSQL, 526
classes (see statement classes)
CLI (Call-Level Interface), package

containing, 12
CLOB datatype, Oracle, 32, 40
CLOCK_TIMESTAMP function,

PostgreSQL, 527
CLOSE CURSOR statement, 61, 68–70
CLUSTER_ID function, Oracle, 501
CLUSTER_PROBABILITY function,

Oracle, 501
clusters, 4, 17
CLUSTER_SET function, Oracle, 501
COALESCE function

MySQL, 485
Oracle, 501

Index | 559

PostgreSQL, 527
SQL Server, 536

Codd, E. F.
relational database rules by, 2–9
relational database theory by, 2
research by, leading to SEQUEL, 1

code examples, permission to use, x
COERCIBLITY function, MySQL, 485
COLLATION function, MySQL, 485
collations, 5
COLLECT function, Oracle, 501
collection datatypes, 30
COL_LENGTH function, SQL

Server, 536
COL_NAME function, SQL Server, 537
colon, equal sign (:=), assignment

operator, Oracle, 24
column-level constraints, 50
columns, 2, 4

assertions for, 5
constraints for, 5, 50–57, 144
datatypes of, 5, 29

comma (,), list item separator, 28
comments, 29
COMMIT statement, 61, 70–73
comparison operators, 24, 357
COMPOSE function, Oracle, 501
composite (concatenated) indexes,

118, 119
COMPRESS function, MySQL, 485
compressed tables, Oracle, 170
COMPUTE clause, SQL Server, 388
CONCAT function, Oracle, 502
concatenated indexes, 118, 119
concatenation operator (||), 477
concatenation operator (+), SQL

Server, 27
CONCAT_WS function, MySQL, 485
CONNECT BY clause, Oracle, 373
CONNECT statement, 61, 73–75
connection statements, 14
CONNECTION_ID function,

MySQL, 485
constraints, 5, 50–57, 144

CHECK, 57
FOREIGN KEY, 52–55
PRIMARY KEY, 51
scope of, 50
setting (see SET CONSTRAINT

statement)
syntax for, 50
UNIQUE, 56

CONTAINS function, SQL Server, 537
CONTAINSTABLE function, SQL

Server, 537
control statements, 14
CONV function, MySQL, 485
CONVERT function, 478

Oracle, 502
SQL Server, 537

CORR function, 441
correlated subqueries, 414, 415
CORR_K function, Oracle, 502
CORR_S function, Oracle, 502
COS function

MySQL, 486
Oracle, 502
PostgreSQL, 527
SQL Server, 537

COSH function, Oracle, 502
COT function

MySQL, 486
Oracle, 502
PostgreSQL, 527
SQL Server, 537

COUNT DISTINCT function, 359
COUNT function, 358, 441
COUNT_BIG function, SQL

Server, 537
COVAR_POP function, 442
COVAR_SAMP function, 443
covering index, 118
covering query, 118
CRC32 function, MySQL, 486
CREATE DATABASE statement,

61, 75–101
MySQL, 76
Oracle, 76–91
PostgreSQL, 91
SQL Server, 93–101

CREATE DOMAIN statement, 60
CREATE FUNCTION statement,

61, 101–117
MySQL, 106
Oracle, 107–110
PostgreSQL, 110
SQL Server, 112–117

CREATE INDEX statement, 61, 117–133
MySQL, 119
Oracle, 120–128
PostgreSQL, 128–130
SQL Server, 130–133

CREATE METHOD statement,
61, 105, 133

560 | Index

CREATE PROCEDURE statement,
61, 101–117

MySQL, 106
Oracle, 107–110
PostgreSQL, 110
SQL Server, 112–117

CREATE ROLE statement, 61, 135–139
CREATE SCHEMA statement,

61, 139–142
CREATE TABLE statement, 61, 142–191

MySQL, 148–156
Oracle, 156–185
PostgreSQL, 185–187
SQL Server, 187–191

CREATE TRIGGER statement,
61, 191–204

MySQL, 195
Oracle, 195–199
PostgreSQL, 199
SQL Server, 200–204

CREATE TYPE statement, 61, 204–216
Oracle, 207–213
PostgreSQL, 213–215
SQL Server, 215

CREATE VIEW statement, 61, 216–225
MySQL, 220
Oracle, 220–223
PostgreSQL, 223
SQL Server, 223–225

cross joins, 309, 311, 356
CUBE subclause, 360
CUBE_TABLE function, Oracle, 502
CUME_DIST function, 444, 459
CURDATE function, MySQL, 486
CURRENT_DATE function, 463
CURRENT_TIME function, 463
CURRENT_TIMESTAMP

function, 463
CURRENT_USER function, 463
CURRVAL function, PostgreSQL, 527
CURSOR datatype, SQL Server, 32, 47
cursors, 226, 227–229, 261

closing (see CLOSE CURSOR
statement)

creating (see DECLARE CURSOR
statement)

opening (see OPEN statement)
retrieving records from (see FETCH

statement)
CURTIME function, MySQL, 486
CV function, Oracle, 502

D
dashes (--), single-line comment, 29
Data Control Language (DCL), 13
Data Definition Language (DDL), 13
Data Manipulation Language

(DML), 13
data statements, 14
data structures, 2, 3–5
database, 17

altering (see ALTER DATABASE
statement)

connecting to (see CONNECT
statement)

connections, switching between (see
SET CONNECTION
statement)

creating (see CREATE DATABASE
statement)

design of, 142
disconnecting from (see

DISCONNECT statement)
normalization of, 142

DATABASE function, MySQL, 486
database links, Oracle, 21
DATABASEPROPERTYEX function,

SQL Server, 537
DATALENGTH function, SQL

Server, 537
DATALINK datatype, 32
datalink datatype, 30
DATAOBJ_TO_PARTITION function,

Oracle, 502
datatypes, 5, 29

MySQL, 35–38
Oracle, 39–42
platform comparisons of, 31–34
PostgreSQL, 42–46
SQL Server, 46–50
SQL2003, 30–31

date and time datatypes
arithmetic operations on, 24
list of, 31

DATE datatype, 32
MySQL, 36
Oracle, 40
PostgreSQL, 43
SQL Server, 47

date literals, 22
DATE_ADD function, MySQL, 486
DATEADD function, SQL Server, 537
DATEDIFF function, SQL Server, 538

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Index | 561

DATE_FORMAT function,
MySQL, 486

DATENAME function, SQL Server, 538
DATE_PART function,

PostgreSQL, 527
DATEPART function, SQL Server, 538
DATE_SUB function, MySQL, 486
DATETIME datatype, 32

MySQL, 36
SQL Server, 47

DATETIME2 datatype, SQL Server, 47
DATETIMEOFFSET datatype, SQL

Server, 32, 47
DATE_TRUNC function,

PostgreSQL, 527
DAY function, SQL Server, 538
DAYNAME function, MySQL, 487
DAYOFMONTH function,

MySQL, 487
DAYOFWEEK function, MySQL, 488
DAYOFYEAR function, MySQL, 488
DBCLOB datatype, 32
DB_ID function, SQL Server, 538
DB_NAME function, SQL Server, 538
DBTIMEZONE function, Oracle, 502
DCL (Data Control Language), 13
DDL (Data Definition Language), 13
DEC datatype, 32, 47
DECIMAL datatype, 32

MySQL, 36
Oracle, 40
PostgreSQL, 43, 44
SQL Server, 47

declarative processing, 7
DECLARE CURSOR statement, 61,

226–234
MySQL, 229
Oracle, 229
PostgreSQL, 230, 326
SQL Server, 231–234

DECODE function
MySQL, 488
Oracle, 503
PostgreSQL, 527

DECOMPOSE function, Oracle, 503
DEFAULT function, MySQL, 488
DEGREES function

MySQL, 488
PostgreSQL, 527
SQL Server, 538

DELETE privilege, 266

DELETE statement, 61, 234–242
DELETEXML function, Oracle, 503
delimited (quoted) identifiers, 19–21, 28
delimiters, system, 27
DENSE_RANK function, 445, 460
DEPTH function, Oracle, 503
DEREF function, Oracle, 503
DES_DECRYPT function, MySQL, 488
DES_ENCRYPT function, MySQL, 488
deterministic functions, 437
diagnostic statements, 14
dialects, SQL, 14
DIAMETER function, PostgreSQL, 527
DIFFERENCE function, SQL

Server, 538
DISCONNECT statement, 61, 242
distributed partitioned views, SQL

Server, 225
division arithmetic operator (/), 24, 27
DML (Data Manipulation

Language), 13
DOUBLE datatype, 32, 36
DOUBLE PRECISION datatype, 32

MySQL, 36
Oracle, 40
PostgreSQL, 43
SQL Server, 47

double quotes ("..."), enclosing delimited
identifiers, 19, 20, 28

DROP DATABASE statement, 61
MySQL, 246
Oracle, 247
PostgreSQL, 250
SQL Server, 251

DROP DOMAIN statement,
PostgreSQL, 61, 250

DROP FUNCTION statement, 61
MySQL, 246
Oracle, 247
PostgreSQL, 250
SQL Server, 252

DROP INDEX statement, 62
MySQL, 246
Oracle, 248
PostgreSQL, 250
SQL Server, 252

DROP METHOD statement, 62
DROP PROCEDURE statement, 62

MySQL, 246
Oracle, 248
SQL Server, 252

562 | Index

DROP ROLE statement, 62
Oracle, 248
PostgreSQL, 250
SQL Server, 252

DROP SCHEMA statement, 62
MySQL, 246
PostgreSQL, 250
SQL Server, 252

DROP statements, 244–253
DROP TABLE statement, 62

MySQL, 247
Oracle, 248
PostgreSQL, 250
SQL Server, 252

DROP TRIGGER statement, 62
MySQL, 247
Oracle, 249
PostgreSQL, 251
SQL Server, 253

DROP TYPE statement, 62
Oracle, 249
PostgreSQL, 251
SQL Server, 253

DROP VIEW statement, 62
MySQL, 247
Oracle, 249
PostgreSQL, 251
SQL Server, 253

DUMP function, Oracle, 503

E
ELT function, MySQL, 488
EMPTY_BLOB function, Oracle, 503
EMPTY_CLOB function, Oracle, 503
ENCODE function

MySQL, 488
PostgreSQL, 527

ENCRYPT function, MySQL, 488
entities (see tables)
ENUM datatype, 32, 36
equal sign (=)

assignment operator, 24
comparison operator, 25, 27

EVERY function, PostgreSQL, 527
examples, permission to use, xii
EXCEPT set operator, 62, 254–257
exclamation point, equals sign (!=), not

equal to operator, 25, 27
exclamation point, left angle bracket

(!<), not less than operator, 25

exclamation point, right angle bracket
(!>), not greater than
operator, 25

EXECUTE privilege, 266
EXECUTE statement, 67
EXISTS operator, 25, 62, 64, 258, 357
EXISTSNODE function, Oracle, 503
EXP function, 469
explicit transactions, 70
EXPORT_SET function, MySQL, 488
eXtensible Markup Language (XML)

in SQL2006, 10
in SQL3, 12, 13

EXTRACT function, 470–472, 503
EXTRACTVALUE function

MySQL, 489
Oracle, 504

F
FEATURE_ID function, Oracle, 504
FEATURE_SET function, Oracle, 504
FEATURE_VALUE function,

Oracle, 504
FETCH statement, 62, 259–265
FIELD function, MySQL, 489
FILEGROUP_ID function, SQL

Server, 538
FILEGROUP_NAME function, SQL

Server, 539
FILEGROUPPROPERTY function, SQL

Server, 539
FILE_ID function, SQL Server, 538
FILE_NAME function, SQL Server, 538
FILEPROPERTY function, SQL

Server, 539
files (devices), SQL Server, 97
filtering checks, 64
FIND_IN_SET function, MySQL, 489
FIRST function, Oracle, 504
FIRST_VALUE function, Oracle, 504
flashback queries, Oracle, 373, 376
FLOAT datatype, 32

MySQL, 36
Oracle, 40
SQL Server, 47, 48

FLOAT function, PostgreSQL, 528
FLOAT4 datatype, PostgreSQL, 32, 43
FLOAT4 function, PostgreSQL, 528
FLOAT8 datatype, PostgreSQL, 32, 43
FLOOR function, 473
FOR XML clause, SQL Server, 390

Index | 563

FOREIGN KEY constraints, 52–55
FORMAT function, MySQL, 489
FORMATMESSAGE function, SQL

Server, 539
Foundation:1999 section, SQL99, 10
FOUND_ROWS function, MySQL, 489
FREETEXT function, SQL Server, 539
FREETEXTTABLE function, SQL

Server, 539
FROM_DAYS function, MySQL, 489
FROM_TZ function, Oracle, 504
FROM_UNIXTIME function,

MySQL, 489
full joins, 309, 313, 356
FULLTEXTCATALOGPROPERTY

function, SQL Server, 539
FULLTEXTSERVICEPROPERTY

function, SQL Server, 539
functions, 437

aggregate, 358, 438–454
deterministic, 437
MySQL supported, 483–500
nondeterministic, 437
Oracle supported, 500–524
PostgreSQL supported, 524–535
scalar, 438, 463–483
SQL Server supported, 535–546
window, 438, 455–462
(see also specific functions)

functions, user-defined (see user-defined
function (UDF))

G
GEOGRAPHY datatype, 32
GEOMETRY datatype, 32
GET DIAGNOSTIC statement, 67
GETANSINULL function, SQL

Server, 539
GETDATE function, SQL Server, 539
GET_LOCK function, MySQL, 490
GETUTCDATE function, SQL

Server, 539
GRANT statement, 62, 265–290

MySQL, 268–273
Oracle, 273–282
PostgreSQL, 282–284
SQL Server, 284–290

GRAPHIC datatype, 32
greater than operator (>), 25, 28
greater than or equal to operator

(>=), 25, 28

GREATEST function
MySQL, 490
Oracle, 505

GROUP BY clause, 358–364
GROUP_CONCAT function,

MySQL, 490
GROUP_ID function, Oracle, 505
GROUPING function

Oracle, 505
SQL Server, 540

GROUPING SETS subclause, 360–364
GROUPING_ID function, Oracle, 505

H
HAVING clause, 364
heaps, Oracle, 181
HEIGHT function, PostgreSQL, 528
HEX function, MySQL, 490
HEXTORAW function, Oracle, 505
hierarchic queries, Oracle, 373
HIERARCHYID datatype, SQL

Server, 32, 47
HOST function, PostgreSQL, 528
HOST_ID function, SQL Server, 540
HOST_NAME function, SQL Server, 540
HOUR function, MySQL, 490

I
IDENT_CURRENT function, SQL

Server, 540
identifier qualifier separator (.), 28
identifiers, 17, 17–22

case sensitivity of, 21
characters allowed in, 20
delimited (quoted), 19, 20, 21, 28
naming conventions for, 18
reserved, 20
rules for, 18, 19–22
size of, 19
uniqueness of, 21

IDENT_INCR function, SQL
Server, 540

IDENTITY function, SQL Server, 540
IDENT_SEED function, SQL Server, 540
IF function, MySQL, 490
IFNULL function, MySQL, 490
IMAGE datatype, SQL Server, 32, 48
implicit transactions, 70
IN operator, 25, 62, 290–292, 358
INDEX_COL function, SQL Server, 540

564 | Index

indexes, 117, 118
altering (see ALTER INDEX

statement)
concatenated, 119
creating (see CREATE INDEX

statement)
index-organized table (IOT),

Oracle, 127
INDEXPROPERTY function, SQL

Server, 540
INET datatype, PostgreSQL, 32, 43
INET_ATON function, MySQL, 490
INET_NTOA function, MySQL, 490
INITCAP function

Oracle, 505
PostgreSQL, 528

INIT.ORA file, Oracle, 90
inner joins, 309, 311, 356
INSERT function, MySQL, 490
INSERT privilege, 266
INSERT statement, 62, 292–304

MySQL, 295
Oracle, 296–300
PostgreSQL, 301
SQL Server, 301–304
(see also MERGE statement)

INSERTCHILDXML function,
Oracle, 505

INSERTXMLBEFORE function,
Oracle, 506

instances, 17
INSTR function

MySQL, 491
Oracle, 506

INT datatype, 32
MySQL, 37
PostgreSQL, 44
SQL Server, 48

INT2 datatype, 32
INT4 datatype, PostgreSQL, 32, 44
INT8 datatype, PostgreSQL, 42
INTEGER datatype, 32

MySQL, 37
Oracle, 40
PostgreSQL, 44

INTEGER function, PostgreSQL, 528
INTERSECT set operator,

62, 255, 304–307
interval datatype, 30
INTERVAL datatype, PostgreSQL, 32, 44

INTERVAL DAY TO SECOND
datatype, 33, 40

INTERVAL function
MySQL, 491
PostgreSQL, 528

INTERVAL YEAR TO MONTH
datatype, 33, 40

IOT (index-organized table), Oracle, 127
IS NULL or IS NOT NULL

condition, 357
IS operator, 62, 307
ISCLOSED function, PostgreSQL, 528
ISDATE function, SQL Server, 541
ISFINITE function, PostgreSQL, 528
IS_FREE_LOCK function, MySQL, 491
IS_MEMBER function, SQL Server, 541
ISNULL function

MySQL, 491
SQL Server, 541

ISNUMERIC function, SQL Server, 541
isolation levels (see SET

TRANSACTION statement;
START TRANSACTION
statement)

ISOPEN function, PostgreSQL, 528
IS_SRVROLEMEMBER function, SQL

Server, 541
IS_USED_LOCK function, MySQL, 491
ITERATION_NUMBER function,

Oracle, 506

J
Java Routines and Types (JRT), package

containing, 13
JOIN subclause, 9, 62, 308–316, 355

MySQL, 368
Oracle, 374
PostgreSQL, 383

joins, 8, 9, 355
aliases and, 354
cross joins, 309, 311, 356
full joins, 309, 313, 356
inner joins, 309, 311, 356
left joins, 309, 312, 356
natural joins, 313
outer joins, 309, 312, 356
partitioned outer joins, 375
right joins, 309, 312, 356
straight joins, 366
theta joins, 9
union joins, 309

Index | 565

JRT (Java Routines and Types), package
containing, 13

JUSTIFY_DAYS function,
PostgreSQL, 528

JUSTIFY_HOURS function,
PostgreSQL, 528

JUSTIFY_INTERVAL function,
PostgreSQL, 529

K
keywords, 17, 29, 547–554

MySQL, 549
Oracle, 551
shared, 547
SQL Server, 553
SQL2003, 547

L
LAG function, Oracle, 506
LAST function, Oracle, 506
LAST_DAY function

MySQL, 491
Oracle, 507

LAST_INSERT_ID function,
MySQL, 491

LAST_VALUE function, Oracle, 507
LCASE function, MySQL, 491
LEAD function, Oracle, 507
LEAST function

MySQL, 491
Oracle, 507

left angle bracket (<), less than
operator, 25, 28

left angle bracket, equal sign (<=), less
than or equal to operator,
25, 28

left angle bracket, right angle bracket
(<>), not equal to
operator, 25, 27

LEFT function
MySQL, 491
SQL Server, 541

left joins, 309, 312, 356
LEN function, SQL Server, 541
LENGTH function

MySQL, 491
Oracle, 507
PostgreSQL, 529

LENGTHB function, Oracle, 507
less than operator (<), 25, 28
less than or equal to operator (<=),

25, 28
levels of conformance, 11
LIKE operator, 25, 62, 316–320, 357
LINE datatype, PostgreSQL, 33, 44
list item separator (,), 28
literals, 17, 22
LN function, 473
LNNVL function, Oracle, 507
LOAD_FILE function, MySQL, 492
local partitioned views, SQL Server, 225
LOCALTIMESTAMP function,

Oracle, 508
LOCATE function, MySQL, 492
LOG function

MySQL, 492
Oracle, 508
PostgreSQL, 529
SQL Server, 541

LOG10 function
MySQL, 492
SQL Server, 541

LOG2 function, MySQL, 492
logfiles

Oracle, 90
SQL Server, 97

logical operators, 25
LONG datatype, Oracle, 33, 40
LONG RAW datatype, Oracle, 33, 40
LONG VARCHAR datatype, 33
LONG VARGRAPHIC datatype, 33
LONGBLOB datatype, MySQL, 33, 37
LONGTEXT datatype, MySQL, 33, 37
LOWER function, 480
LPAD function

MySQL, 492
Oracle, 508
PostgreSQL, 529

LSEG datatype, PostgreSQL, 33, 44
LSEG function, PostgreSQL, 529
LTRIM function

MySQL, 492
Oracle, 508
PostgreSQL, 529
SQL Server, 541

566 | Index

M
MACADDR datatype, PostgreSQL,

33, 44
MAKEDATE function, MySQL, 492
MAKE_REF function, Oracle, 508
MAKE_SET function, MySQL, 492
MAKETIME function, MySQL, 493
Management of External Data (MED),

package containing, 12
MASKLEN function, PostgreSQL, 529
MATCH function, MySQL, 493
MAX function, 359, 446
MD5 function

MySQL, 493
PostgreSQL, 529

MED (Management of External Data),
package containing, 12

MEDIAN function, Oracle, 508
MEDIUMBLOB datatype, MySQL,

33, 37
MEDIUMINT datatype, MySQL, 33, 37
MEDIUMTEXT datatype, MySQL,

33, 37
MERGE statement, 62, 320–324
metadata, 6
methods, 105, 134

altering (see ALTER METHOD
statement)

creating (see CREATE METHOD
statement)

MICROSECOND function,
MySQL, 493

Microsoft SQL Server (see SQL Server)
MID function, MySQL, 493, 497
MIN function, 359, 446
MINUS set operator, Oracle, 256
minus sign (–)

negative unary operator, 26
range indicator in CHECK

constraint, 27
subraction arithmetic operator,

24, 27
MINUTE function, MySQL, 493
MOD function, 474
MODEL clause, Oracle, 377–381
modula arithmetic operator (%), 24
MONEY datatype, 33

PostgreSQL, 44
SQL Server, 48

MONTH function
MySQL, 493
SQL Server, 541

MONTHNAME function, MySQL, 493
MONTHS_BETWEEN function,

Oracle, 508
Multimedia datatypes, Oracle, 39
multiplication arithmetic operator (*),

24, 27
MySQL, 16

ALL/ANY/SOME operators, 64
ALTER DATABASE statement, 76
ALTER FUNCTION statement, 106
ALTER PROCEDURE

statement, 106
ALTER TABLE statement, 148–156
ALTER VIEW statement, 220
bitwise operators, 24
COMMIT statement, 71
CREATE DATABASE statement, 76
CREATE FUNCTION

statement, 106
CREATE INDEX statement, 119
CREATE PROCEDURE

statement, 106
CREATE SCHEMA statement, 140
CREATE TABLE

statement, 148–156
CREATE TRIGGER statement, 195
CREATE VIEW statement, 220
datatypes, 35–38
DECLARE CURSOR statement, 229
DELETE statement, 235
DROP statements, 246
FETCH statement, 262
functions, 483–500
GRANT statement, 268–273
identifier rules, 19
INSERT statement, 295
JOIN subclause, 314, 368
keywords, 549
ORDER BY clause, 329
RETURN statement, 332
REVOKE statement, 337–339
ROLLBACK statement, 346
SELECT statement, 365–369
SET statement, 392
SET TRANSACTION

statement, 406
SQL statements, 60–63

Index | 567

START TRANSACTION
statement, 411

straight joins, 366
TRUNCATE TABLE stateme nt, 420
UPDATE statement, 427
website resources for, viii

N
naming conventions, 18
NANVL function, Oracle, 508
NATIONAL CHAR datatype, 33

Oracle, 41
SQL Server, 48

NATIONAL CHAR VARYING
datatype, 33

Oracle, 40
SQL Server, 48

NATIONAL CHARACTER
datatype, 33

Oracle, 41
SQL Server, 48

NATIONAL CHARACTER VARYING
datatype, 33

Oracle, 40
SQL Server, 48

NATIONAL TEXT datatype, SQL
Server, 33, 48

natural joins, 313
NCHAR datatype, 33

MySQL, 37
Oracle, 41
SQL Server, 48

NCHAR function
Oracle, 508
SQL Server, 542

NCHAR VARYING datatype, 33, 40
NCLOB datatype, 33, 41
negative unary operator (–), 26
nested table subqueries, 414, 415
nested tables, Oracle, 170
NETMASK function, PostgreSQL, 529
NETWORK function, PostgreSQL, 529
NEWID function, SQL Server, 542
NEW_TIME function, Oracle, 508
NEXT_DAY function, Oracle, 509
NEXTVAL function, PostgreSQL, 529
NLS_CHARSET_DECL_LEN function,

Oracle, 509
NLS_CHARSET_ID function,

Oracle, 509

NLS_CHARSET_NAME function,
Oracle, 509

NLS_INITCAP function, Oracle, 510
NLS_LOWER function, Oracle, 510
NLSSORT function, Oracle, 510
NLS_UPPER function, Oracle, 510
nondeterministic functions, 437
normalization, 2, 142
not equal to operator (!=), 25
not equal to operator (<>), 25, 27
not greater than operator (!>), 25
not less than operator (!<), 25
NOT operator, 25, 357
NOW function, 463, 464, 493
NPOINTS function, PostgreSQL, 529
NTEXT datatype, SQL Server, 33, 48
NTILE function, Oracle, 510
NULL values, 5
NULLIF function

MySQL, 493
Oracle, 510
PostgreSQL, 530
SQL Server, 542

NUMBER datatype, 33, 41
NUMERIC datatype, 33

MySQL, 37
PostgreSQL, 43, 44
SQL Server, 47, 48

numeric datatypes, 31
numeric functions, 11, 467–477
numeric literals, 22
NUMTODSINTERVAL function,

Oracle, 510
NUMTOYMINTERVAL function,

Oracle, 510
NVARCHAR datatype, 33

MySQL, 37
SQL Server, 48

NVARCHAR2 datatype, Oracle, 33, 41
NVL function, Oracle, 511
NVL2 function, Oracle, 511

O
Object Language Binding (OBJ),

package containing, 12
OBJECT_ID function, SQL Server, 542
OBJECT_NAME function, SQL

Server, 542
OBJECTPROPERTY function, SQL

Server, 542

568 | Index

objects, 4, 17
OCT function, MySQL, 493
OCTET_LENGTH function, 468
OID datatype, PostgreSQL, 33, 44
OLAP (Online Analytical Processing)

functions, 11
OLD_PASSWORD function,

MySQL, 494
Online Analytical Processing (OLAP)

functions, 11
OPEN function, SQL Server, 542
open source movement, vii
OPEN statement, 62, 324–326
OPENDATASOURCE function, SQL

Server, 542
OPENQUERY function, SQL

Server, 542
OPENROWSET function, SQL

Server, 542
operators, 17, 23, 27

ALL/ANY/SOME operators, 63–65
arithmetic operators, 24
assignment operators, 24
BETWEEN operator, 65
bitwise operators, 24
comparison operators, 24
concatenation operator (||), 477
logical operators, 25
precedence for, 26
unary operators, 26
in WHERE clause, 357
wildcard operator (_), matches any

character, 317
wildcard operator (%), matches any

string, 28, 317
wildcard operator ([...]), matches in

set, 319
wildcard operator ([^...]), matches

not in set, 319
OR operator, 25, 357
Oracle, 16

ALL/ANY/SOME operators, 64
ALTER DATABASE

statement, 76–91
ALTER FUNCTION

statement, 107–110
ALTER INDEX statement, 120–128
ALTER PROCEDURE

statement, 107–110

ALTER ROLE statement, 136
ALTER SESSION statement, 403
ALTER TABLE statement, 156–185
ALTER TRIGGER

statement, 195–199
ALTER TYPE statement, 207–213
ALTER VIEW statement, 220–223
assignment operator (:=), 24
basics, 90
CALL statement, 67
COMMIT statement, 72
compressed tables, 170
CONNECT BY clause, 373
CONNECT statement, 74
CREATE DATABASE

statement, 76–91
CREATE FUNCTION

statement, 107–110
CREATE INDEX

statement, 120–128
CREATE PROCEDURE

statement, 107–110
CREATE ROLE statement, 136
CREATE SCHEMA statement, 140
CREATE TABLE

statement, 156–185
CREATE TRIGGER

statement, 195–199
CREATE TYPE statement, 207–213
CREATE VIEW statement, 220–223
database links, 21
datatypes, 39–42
DECLARE CURSOR statement, 229
DELETE statement, 237–239
DISCONNECT statement, 243
DROP statements, 247–249
FETCH statement, 262
flashback queries, 373, 376
functions, 500–524
GRANT statement, 273–282
heaps, 181
hierarchic queries, 373
identifier rules, 19
index-organized table (IOT), 127
INIT.ORA file, 90
INSERT statement, 296–300
INTERSECT operator, 306
JOIN subclause, 315, 374
keywords, 551

Index | 569

LIKE operator, 318
logfiles, 90
MERGE statement, 322
MINUS set operator, 256
MODEL clause, 377–381
nested tables, 170
OPEN statement, 326
ORDER BY clause, 329
organized tables, 181
PARTITION clause, 373
partitioned outer joins, 375
partitioned tables, 170–181
primary databases, 90
RETURN statement, 333
REVOKE statement, 339–341
ROLLBACK statement, 347
SELECT statement, 369–381
SET CONSTRAINT statement, 397
SET ROLE statement, 398
SET TIME ZONE statement, 403
SET TRANSACTION

statement, 407
spatial data, 39
SQL statements, 60–63
standby databases, 90
subqueries, 418
system privileges, 277–282
TRUNCATE TABLE statement, 420
UNION set operator, 422
UPDATE statement, 428–430
website resources for, x
window function syntax, 456
XMLType tables, 182

ORA_HASH function, Oracle, 511
ORD function, MySQL, 494
ORDER BY clause, 62, 327–330, 364
organized tables, Oracle, 181
outer joins, 309, 312, 356
OVERLAY function, 480

P
parentheses ((...)), affecting opeator

precedence, 26, 28
PARSENAME function, SQL

Server, 542
PARTITION clause, Oracle, 373
partitioned outer joins, Oracle, 375
partitioned tables, Oracle, 170–181

partitioned views, SQL Server, 225
partitioning clause, 456
PASSWORD function, MySQL, 494
PATH datatype, PostgreSQL, 33, 45
PATH function

Oracle, 511
PostgreSQL, 530

PATINDEX function, SQL Server, 542
PCLOSE function, PostgreSQL, 530
percent sign (%)

modula arithmetic operator, 24
wildcard operator, matches any

string, 28, 317
PERCENTILE_CONT function, 448
PERCENTILE_DISC function, 449
PERCENT_RANK function, 447, 461
period (.), identifier qualifier

separator, 28
PERIOD_ADD function, MySQL, 494
PERIOD_DIFF function, MySQL, 494
permissions, 5
PERMISSIONS function, SQL

Server, 543
Persistent Stored Modules (PSM),

package containing, 12, 15
PG_CONNECT statement,

PostgreSQL, 74
PI function

MySQL, 494
PostgreSQL, 530
SQL Server, 543

platform comparisons
datatypes, 31–34
SQL statements, 60–63
(see also specific platforms)

platforms included in this book, 16
PL/pgSQL, 15
PL/SQL, 15
plus sign (+)

addition arithmetic operator, 24, 27
concatenation operator, SQL

Server, 27
positive unary operator, 26

POINT datatype, PostgreSQL, 33, 45
POINT function, PostgreSQL, 530
POLYGON datatype, PostgreSQL, 33, 45
POLYGON function, PostgreSQL, 530
POPEN function, PostgreSQL, 531
POSITION function, 474, 492

570 | Index

positional deletes, 234
positive unary operator (+), 26
PostgreSQL, 16

ALTER DATABASE statement, 91
ALTER FUNCTION statement, 110
ALTER INDEX statement, 128–130
ALTER PROCEDURE

statement, 110
ALTER ROLE statement, 137
ALTER SCHEMA statement, 141
ALTER TABLE statement, 185–187
ALTER TRIGGER statement, 199
ALTER TYPE statement, 213–215
BEGIN statement, 412
bitwise operators, 24
CLOSE CURSOR statement, 69
COMMIT statement, 72
CREATE DATABASE statement, 91
CREATE FUNCTION

statement, 110
CREATE INDEX

statement, 128–130
CREATE PROCEDURE

statement, 110
CREATE ROLE statement, 137
CREATE SCHEMA statement, 141
CREATE TABLE

statement, 185–187
CREATE TRIGGER statement, 199
CREATE TYPE statement, 213–215
CREATE VIEW statement, 223
datatypes, 42–46
DECLARE CURSOR statement, 230
DELETE statement, 239
DROP statements, 250
EXCEPT set operator, 257
FETCH statement, 263
functions, 524–535
GRANT statement, 282–284
identifier rules, 19
INSERT statement, 301
INTERSECT operator, 306
keywords, 551
LIKE operator, 319
ORDER BY clause, 329
PG_CONNECT statement, 74
RETURN statement, 333
REVOKE statement, 341
ROLLBACK statement, 347

SELECT statement, 381–384
SET CONSTRAINT statement, 397
SET SESSION AUTHORIZATION

statement, 401
SET statement, 393
SET TIME ZONE statement, 404
SET TRANSACTION

statement, 408
SPI_CONNECT statement, 74
SQL statements, 60–63
subqueries, 418
TRUNCATE TABLE statement, 420
UNION set operator, 423
UPDATE statement, 430
website resources for, viii

pound symbol (#)
prefixing temporary procedures, SQL

Server, 114
prefixing temporary tables, SQL

Server, 190
POW function

MySQL, 494
PostgreSQL, 531

POWER function, 475, 494
POWERMULTISET function,

Oracle, 511
POWERMULTISET_BY_

CARDINALITY function,
Oracle, 511

PREDICTION_ functions, Oracle, 511
prefixes for identifiers, 18
PRESENTNNV function, Oracle, 512
PRESENTV function, Oracle, 512
PREVIOUS function, Oracle, 512
primary databases, Oracle, 90
PRIMARY KEY constraints, 51
privileges

assigning (see GRANT statement)
list of, 266
revoking (see REVOKE statement)
roles for (see roles)

procedural programming, 7
procedures, stored (see stored

procedures)
projections, 8

(see also SELECT clause)
PSM (Persistent Stored Modules),

package containing, 12, 15

Index | 571

Q
QUARTER function, MySQL, 494
queries, multiple (see set operators)

(see also SELECT statement)
QUOTE function, MySQL, 494
quoted identifiers (see delimited

identifiers)
QUOTE_IDENT function,

PostgreSQL, 531
QUOTE_LITERAL function,

PostgreSQL, 531
quotes (see double quotes; single

quotes)

R
RADIANS function

MySQL, 494
PostgreSQL, 531
SQL Server, 543

RADIUS function, PostgreSQL, 531
RAND function

MySQL, 495
SQL Server, 543

RANDOM function, PostgreSQL, 531
range indicator in CHECK constraint

(–), 27
RANK function, 449, 461
RATIO_TO_REPORT function,

Oracle, 512
RAW datatype, Oracle, 33, 41
RAWTOHEX function, Oracle, 512
RAWTONHEX function, Oracle, 512
RDBMS (Relational Database

Management System), 2
REAL datatype, 33

MySQL, 37
Oracle, 41
PostgreSQL, 43
SQL Server, 48

records (rows), 2, 4
deleting (see DELETE statement;

TRUNCATE TABLE
statement)

inserting (see INSERT statement)
querying (see SELECT statement)
updating (see UPDATE statement)

REF function, Oracle, 512
REFERENCES privilege, 266

REFTOHEX function, Oracle, 512
REGEXP function, MySQL, 495
REGEXP_INSTR function, Oracle, 512
REGEXP_MATCHES function,

PostgreSQL, 531
REGEXP_REPLACE function

Oracle, 513
PostgreSQL, 531

REGEXP_SPLIT_TO_ARRAY function,
PostgreSQL, 532

REGEXP_SPLIT_TO_TABLE function,
PostgreSQL, 532

REGEXP_SUBSTR function,
Oracle, 513

REGR_ functions, 451
Relational Database Management

System (RDBMS), 2
relational databases

history of, 1
rules of, 2–9

“A Relational Model of Data for Large
Shared Data Banks” (Codd), 2

RELEASE SAVEPOINT statement, 62,
330

RELEASE_LOCK function,
MySQL, 495

RELTIME function, PostgreSQL, 532
REMAINDER function, Oracle, 514
REPEAT function, MySQL, 495
REPLACE function

MySQL, 495
Oracle, 514
SQL Server, 543

REPLICATE function, SQL Server, 543
reserved identifiers, 20
reserved words, 17, 29
RETURN statement, 62, 332–334
REVERSE function

MySQL, 495
SQL Server, 543

REVOKE statement, 62, 334–345
right angle bracket (>), greater than

operator, 25, 28
right angle bracket, equal sign (>=),

greater than or equal to
operator, 25, 28

RIGHT function
MySQL, 495
SQL Server, 543

572 | Index

right joins, 309, 312, 356
RLIKE function, MySQL, 495
roles, 135

changing (see ALTER ROLE
statement)

creating (see CREATE ROLE
statement)

deleting (see DROP ROLE statement)
ROLLBACK statement, 62, 345–349
ROLLUP subclause, 360
ROUND function

MySQL, 495
Oracle, 514
PostgreSQL, 532
SQL Server, 543

routines (see stored procedures; user-
defined functions (UDFs))

row processing, 7
ROW_COUNT function, MySQL, 495
ROWCOUNT_BIG function, SQL

Server, 543
ROWID datatype, Oracle, 33, 41
ROWIDTOCHAR function,

Oracle, 514
ROWIDTONCHAR function,

Oracle, 514
ROW_NUMBER function, 462
rows (see records)
ROWVERSION datatype, SQL

Server, 33, 48
RPAD function

MySQL, 495
Oracle, 514
PostgreSQL, 532

RTRIM function
MySQL, 495
Oracle, 514
PostgreSQL, 532
SQL Server, 543

S
sampling, 11
SAVE statement, SQL Server, 350
SAVEPOINT statement, 62, 349–351
savepoints

releasing (see RELEASE SAVEPOINT
statement)

rolling back to (see ROLLBACK
statement)

setting (see SAVEPOINT statement)

scalar aggregates, 359
scalar functions, 438, 463–483

ABS, 467
BIT_LENGTH, 468
built-in, 463
CASE, 464–466
CAST, 466
CEIL, 469
CHAR_LENGTH, 468
CONVERT, 478
CURRENT_DATE, 463
CURRENT_TIME, 463
CURRENT_TIMESTAMP, 463
CURRENT_USER, 463
EXP, 469
EXTRACT, 470–472
FLOOR, 473
LN, 473
LOWER, 480
MOD, 474
NOW, 463, 464
numeric, 467–477
OCTET_LENGTH, 468
OVERLAY, 480
POSITION, 474
POWER, 475
SESSION_USER, 463
SQRT, 475
string, 477–483
SUBSTRING, 481
SYSTEM_USER, 463
TRANSLATE, 478
TRIM, 482
UPPER, 480
USER, 463
WIDTH_BUCKET, 476

scalar subqueries, 414, 415
SCHEMA function, MySQL, 496
schema statements, 14
schemas, 4, 17, 139, 140

creating (see CREATE SCHEMA
statement)

setting for unqualified objects (see
SET PATH statement)

setting (see SET SCHEMA statement)
Schemata package, 10, 12
SCN_TO_TIMESTAMP function,

Oracle, 514
search deletes, 234
SECOND function, MySQL, 496

Index | 573

SEC_TO_TIME function, MySQL, 496
SELECT clause, 9
SELECT privilege, 266
SELECT statement, 62, 351–391

Codd’s rules in, examples of, 8
GROUP BY clause, 358–364
HAVING clause, 364
JOIN subclause, 9, 62, 308–316, 355
MySQL, 365–369
Oracle, 369–381
ORDER BY clause, 62, 327–330, 364
PostgreSQL, 381–384
SQL Server, 384–391
WHERE clause (see WHERE clause)

selections, 8, 9
(see also WHERE clause)

SEQUEL (Structured English Query
Language), 1

SERIAL datatype, 33
MySQL, 38
PostgreSQL, 45

SERIAL4 datatype, 33, 45
SERIAL8 datatype, PostgreSQL, 33, 45
session statements, 14
sessions, 73
SESSIONTIMEZONE function,

Oracle, 515
SESSION_USER function, 463, 496, 499
SET AUTHORIZATION statement, 62
SET CONNECTION statement, 62, 394
SET CONSTRAINT statement, 62, 396
SET datatype, MySQL, 33, 38
SET function, Oracle, 515
set operations, 7
set operators

EXCEPT, 254–257
INTERSECT, 255, 304–307
MINUS, Oracle, 256
UNION, 255, 421–424

SET PATH statement, 62, 397
SET ROLE statement, Oracle, 62, 398
SET SCHEMA statement, 62, 400
SET SESSION AUTHORIZATION

statement, PostgreSQL, 401
SET statement, 62, 391–394
SET TIME ZONE statement,

62, 402–404
SET TRANSACTION statement,

63, 404–409

SET_MASKLEN function,
PostgreSQL, 532

SETSEED function, PostgreSQL, 532
SETVAL function, PostgreSQL, 532
SHA function, MySQL, 496
SHA1 function, MySQL, 496
SIGN function

MySQL, 496
Oracle, 515
PostgreSQL, 532
SQL Server, 544

SIN function
MySQL, 496
Oracle, 515
PostgreSQL, 533
SQL Server, 544

single quotes (‘...’)
enclosing delimited identifiers, 20
enclosing string literals, 22, 28

SINH function, Oracle, 515
slash (/), division arithmetic

operator, 24, 27
slash, asterisk (/*...*/), enclosing

multiline comments, 29
SLEEP function, MySQL, 496
SMALLDATETIME datatype, SQL

Server, 33, 48
SMALLINT datatype, 34

MySQL, 38
Oracle, 41
PostgreSQL, 45
SQL Server, 49

SMALLMONEY datatype, SQL
Server, 34, 49

SOME operator, 25, 60, 63–65, 358
sorting rules (see collations)
SOUNDEX function

MySQL, 496
Oracle, 515
SQL Server, 544

SPACE function
MySQL, 496
SQL Server, 544

spatial data
MySQL, 35
Oracle, 39

SPI_CONNECT statement,
PostgreSQL, 74

SQL (Structured Query Language)
alternatives to, 7
history of, 1

574 | Index

SQL Server, 17
ALL/ANY/SOME operators, 65
ALTER DATABASE

statement, 93–101
ALTER FUNCTION

statement, 112–117
ALTER INDEX statement, 130–133
ALTER PROCEDURE

statement, 112–117
ALTER ROLE statement, 138
ALTER TABLE statement, 187–191
ALTER TRIGGER

statement, 200–204
ALTER VIEW statement, 223–225
BEGIN TRANSACTION

statement, 413
bitwise operators, 24
CLOSE CURSOR statement, 69
COMMIT statement, 72
COMPUTE clause, 388
CONNECT statement, 74
CREATE DATABASE

statement, 93–101
CREATE FUNCTION

statement, 112–117
CREATE INDEX

statement, 130–133
CREATE PROCEDURE

statement, 112–117
CREATE ROLE statement, 138
CREATE SCHEMA statement, 141
CREATE TABLE

statement, 187–191
CREATE TRIGGER

statement, 200–204
CREATE TYPE statement, 215
CREATE VIEW statement, 223–225
database roles, 289
datatypes, 46–50
DECLARE CURSOR

statement, 231–234
DELETE statement, 240–242
DISCONNECT statement, 244
DROP statements, 251–253
EXCEPT set operator, 257
FETCH statement, 264
files (devices), 97
FOR XML clause, 390
functions, 535–546
GRANT statement, 284–290

identifier rules, 19
INSERT statement, 301–304
INTERSECT operator, 307
JOIN subclause, 316
keywords, 553
LIKE operator, 319
logfiles, 97
MERGE statement, 323
modula arithmetic operator (%), 24
OPEN statement, 326
ORDER BY clause, 330
partitioned views, 225
RETURN statement, 333
REVOKE statement, 343
ROLLBACK statement, 348
SAVE statement, 350
SELECT statement, 384–391
SET CONNECTION statement, 395
SET statement, 394
SET TRANSACTION

statement, 408
SQL statements, 60–63
subqueries, 418
system privileges, 287–288
system roles, 288
temporary procedures, 114
temporary tables, 190
UNION set operator, 423
UPDATE statement, 431–433
website resources for, viii
window function syntax, 456

SQL standard
history of, 10
levels of conformance to, 11
sorting requirements of, 5
(see also specific standards)

SQL statements, platform support
for, 60–63

SQL2 (SQL92), 10, 11
SQL2006, 1, 10
SQL3 (SQL2003)

compliance with, 13
new features, 10
statement classes, 13
supplemental features packages, 11

SQL99, 10
SQL/CLI (Call-Level Interface)

package, 12
SQL/Foundation package, 12
SQL/Framework package, 12

Index | 575

SQL/JRT (Java Routines and Types)
package, 13

SQL/MED (Management of External
Data) package, 12

SQL/OBJ (Object Language Binding)
package, 12

SQL/PSM (Persistent Stored Modules)
package, 12

SQL/PSM (Persistent Stored Module)
package, 15

SQL/Schemata package, 12
SQL_VARIANT datatype, SQL

Server, 34, 49
SQL/XML package, 13, 12
SQRT function, 475
square brackets (see brackets)
standby databases, Oracle, 90
START TRANSACTION statement,

63, 409–413
STATEMENT_TIMESTAMP function,

PostgreSQL, 533
STATS_ functions, Oracle, 515
STATS_DATE function, SQL

Server, 544
STD function, MySQL, 496
STDDEV function

MySQL, 496
Oracle, 515

STDDEV_POP function, 452
STDDEV_SAMP function, 453

Oracle, 515
STDEV function, SQL Server, 544
STDEVP function, SQL Server, 544
STDEV_POP function, Oracle, 515
stored procedures, 101, 104, 106

altering (see ALTER PROCEDURE
statement)

calling (see CALL statement)
creating (see CREATE PROCEDURE

statement)
return status of, 67
returning from (see RETURN

statement)
STR function, SQL Server, 544
straight joins, MySQL, 366
STRCMP function, MySQL, 497
string concatenation operator, 477
string functions, 477–483
string literals, 28
STRING_TO_ARRAY function,

PostgreSQL, 533

STR_TO_DATE function, MySQL, 497
structured data (see data structures)
STUFF function, SQL Server, 544
SUBDATE function, MySQL, 486
subqueries, 63, 414–418
SUBSTR function, Oracle, 516
SUBSTRB function, Oracle, 516
SUBSTRING function, 481

MySQL, 497
PostgreSQL, 533
SQL Server, 544

SUBSTRING_INDEX function,
MySQL, 497

SUBTIME function, MySQL, 497
subtraction arithmetic operator (–),

24, 27
suffixes for identifiers, 18
SUM DISTINCT function, 359
SUM function, 359, 440
SUSER_ID function, SQL Server, 544
SUSER_SID function, SQL Server, 545
SUSER_SNAME function, SQL

Server, 545
SYS_CONNECT_BY_PATH function,

Oracle, 516
SYS_CONTEXT function, Oracle, 516
SYSDATE function

MySQL, 493
Oracle, 517

SYS_DBURIGEN function, Oracle, 516
SYS_EXTRACT_UTC function,

Oracle, 516
SYS_GUID function, Oracle, 516
system delimiters, 27
SYSTEM_USER function, 463, 499
SYSTIMESTAMP function, Oracle, 517
SYS_TYPEID function, Oracle, 516
SYS_XMLAGG function, Oracle, 517
SYS_XMLGEN function, Oracle, 517

T
TABLE datatype, SQL Server, 34, 49
table-level constraints, 50
tables, 2, 3, 4, 142

altering (see ALTER TABLE
statement)

creating (see CREATE TABLE
statement)

design of, 142
TABLESAMPLE clause, 11

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

576 | Index

TAN function
MySQL, 497
Oracle, 517
PostgreSQL, 533
SQL Server, 545

TANH function, Oracle, 517
temporal (date and time) datatypes

arithmetic operations on, 24
list of, 31

TEXT datatype, 34
MySQL, 38
PostgreSQL, 45
SQL Server, 49

TEXT function, PostgreSQL, 533
TEXTPTR function, SQL Server, 545
TEXTVALID function, SQL Server, 545
theta joins, 9
tilde (~), bitwise NOT unary

operator, 26
TIME datatype, 34

MySQL, 38
PostgreSQL, 45
SQL Server, 49

time datatypes (see date and time
datatypes)

TIME function, MySQL, 497
time zone, changing (see SET TIME

ZONE statement)
TIMEDIFF function, MySQL, 498
TIME_FORMAT function,

MySQL, 497
TIMEOFDAY function,

PostgreSQL, 533
TIMESPAN datatype, 34
TIMESTAMP datatype, 34

MySQL, 38
Oracle, 41
PostgreSQL, 46
SQL Server, 49

TIMESTAMP function
MySQL, 498
PostgreSQL, 533

TIMESTAMP WITH TIME ZONE
datatype, 34

TIMESTAMPADD function,
MySQL, 498

TIMESTAMPDIFF function,
MySQL, 498

TIMESTAMP_TO_SCN function,
Oracle, 517

TIMESTAMPTZ datatype, 34
TIME_TO_SEC function, MySQL, 498

TIMETZ datatype, PostgreSQL, 34, 46
TINYBLOB datatype, 34, 38
TINYINT datatype, 34, 49
TINYTEXT datatype, MySQL, 34, 38
TO_BINARY_DOUBLE function,

Oracle, 517
TO_BINARY_FLOAT function,

Oracle, 517
TO_CHAR function

Oracle, 518, 519
PostgreSQL, 533

TO_CLOB function, Oracle, 519
TO_DATE function

Oracle, 519
PostgreSQL, 533

TO_DAYS function, MySQL, 498
TO_DSINTERVAL function,

Oracle, 519
TO_LOB function, Oracle, 519
TO_MULTI_BYTE function,

Oracle, 519
TO_NCHAR function, Oracle, 519
TO_NCLOB function, Oracle, 520
TO_NUMBER function

Oracle, 520
PostgreSQL, 535

TO_SINGLE_BYTE function,
Oracle, 520

TO_TIMESTAMP function
Oracle, 520
PostgreSQL, 535

TO_TIMESTAMP_TZ function,
Oracle, 520

TO_YMINTERVAL function,
Oracle, 520

transaction statements, 14
transactions

closing and making changes
permanent (see COMMIT
statement)

implicit and explicit, 70
savepoints in, releasing (see

RELEASE SAVEPOINT
statement)

savepoints in, setting (see
SAVEPOINT statement)

settings for (see SET
TRANSACTION statement)

starting (see START
TRANSACTION statement)

undoing (see ROLLBACK statement)

Index | 577

TRANSACTION_TIMESTAMP
function, PostgreSQL, 535

Transact-SQL, 15
TRANSLATE function, 478

Oracle, 520
PostgreSQL, 535

TREAT function, Oracle, 521
TRIGGER privilege, 266
triggers, 191, 193–195

altering (see ALTER TRIGGER
statement)

creating (see CREATE TRIGGER
statement)

TRIM function, 482
TRUNC function

Oracle, 521
PostgreSQL, 535

TRUNCATE function, MySQL, 498
TRUNCATE TABLE statement, 63,

235, 419–421
tuples (see records)
TYPEPROPERTY function, SQL

Server, 545
TZ_OFFSET function, Oracle, 521

U
UCASE function, MySQL, 498
UDF (see user-defined function)
UDT (see user-defined type)
UID function, Oracle, 521
unary operators, 26
UNCOMPRESS function, MySQL, 498
UNCOMPRESS_LENGTH function,

MySQL, 498
UNDER privilege, 266
underscore (_)

in identifiers, 18
wildcard operator, 317

UNHEX function, MySQL, 498
UNICODE function, SQL Server, 546
UNION JOIN clause, deleted from

SQL99, 10
union joins, 309
UNION set operator, 63, 255, 421–424
UNIQUE constraints, 56
UNIQUEIDENTIFIER datatype, SQL

Server, 34, 49
UNISTR function, Oracle, 521
UNIX_TIMESTAMP function,

MySQL, 498

UNSIGNED datatype attribute,
MySQL, 35

UPDATE privilege, 266
UPDATE statement, 63, 424–433

MySQL, 427
Oracle, 428–430
PostgreSQL, 430
SQL Server, 431–433
(see also MERGE statement)

UPDATE...SET ROW statement,
deleted from SQL99, 10

UPDATEXML function
MySQL, 499
Oracle, 521

UPPER function, 480
UROWID datatype, Oracle, 34, 41
USAGE privilege, 266
user (AuthorizationID), 5
USER function, 463, 499
user-defined function (UDF),

101, 104, 106
altering (see ALTER FUNCTION

statement)
creating (see CREATE FUNCTION

statement)
returning from (see RETURN

statement)
user-defined type (UDT), 206

altering (see ALTER TYPE statement)
creating (see CREATE TYPE

statement)
USERENV function, Oracle, 521
USER_ID function, SQL Server, 546
USER_NAME function, SQL Server, 546
UTC_DATE function, MySQL, 499
UTC_TIME function, MySQL, 499
UTC_TIMESTAMP function,

MySQL, 499
UUID function, MySQL, 499

V
VALUE function, Oracle, 522
VAR function, SQL Server, 546
VARBINARY datatype, 34

MySQL, 38
SQL Server, 50

VARBIT datatype, PostgreSQL, 32, 42
VARCHAR datatype, 34

Oracle, 41
PostgreSQL, 46
SQL Server, 50

578 | Index

VARCHAR FOR BIT DATA
datatype, 34

VARCHAR function, PostgreSQL, 535
VARCHAR2 datatype, Oracle, 34, 42
VARGRAPHIC datatype, 34
variables

declaring (see DECLARE statement)
setting (see SET statement)

VARIANCE function
MySQL, 499
Oracle, 522

VARP function, SQL Server, 546
VAR_POP function, 453, 522
VAR_SAMP function, 454, 522
vector aggregates, 359
VERSION function, MySQL, 499
vertical bar (|), bitwise OR operator, 24
views, 4, 7, 216, 218–220
virtual tables (see views)
VSIZE function, Oracle, 522

W
website resources

for this book, x
MySQL, viii
open source movement, v
Oracle, viii
PostgresSQL, viii
SQL Server, viii

WEEK function, MySQL, 499
WEEKDAY function, MySQL, 499
WEEKOFYEAR function, MySQL, 499
WHERE clause, 9, 63, 353, 356, 433–436

aliases and, 354
comparison operators in, 25
logical operators in, 25
theta joins in, 9

WIDTH function, PostgreSQL, 535
WIDTH_BUCKET function, 476
wildcard operator (_), matches any

character, 317
wildcard operator (%), matches any

string, 28, 317
wildcard operator ([...]), matches in set,

SQL Server, 319
wildcard operator ([^...]), matches not

in set, SQL Server, 319
window functions, 438, 455–462

aggregate functions as, 458
CUME_DIST, 444, 459

DENSE_RANK, 445, 460
framing clause, 458
Oracle syntax, 456
ordering clause, 457
partitioning clause, 456
PERCENT_RANK, 447, 461
RANK, 449, 461
ROW_NUMBER, 462
SQL Server syntax, 456

X
XML (eXtensible Markup Language)

in SQL2006, 10
in SQL3, 12, 13

XML datatype, 31, 34, 50
XMLAGG function, Oracle, 522
XMLCAST function, Oracle, 522
XMLCDATA function, Oracle, 522
XMLCOLATTVAL function,

Oracle, 522
XMLCONCAT function, Oracle, 523
XMLDIFF function, Oracle, 523
XMLELEMENT function, Oracle, 523
XMLEXISTS function, Oracle, 523
XMLFOREST function, Oracle, 523
XMLPARSE function, Oracle, 523
XMLPATCH function, Oracle, 523
XMLPI function, Oracle, 523
XMLQUERY function, Oracle, 523
XMLROOT function, Oracle, 523
XMLSEQUENCE function, Oracle, 524
XMLSERIALIZE function, Oracle, 524
XMLTABLE function, Oracle, 524
XMLTRANSFORM function,

Oracle, 524
XMLTYPE datatype, Oracle, 34, 42
XMLType tables, Oracle, 182
XOR function, MySQL, 500

Y
YEAR datatype, MySQL, 34, 38
YEAR function

MySQL, 500
SQL Server, 546

YEARWEEK function, MySQL, 500

Z
ZEROFILL datatype attribute,

MySQL, 35

About the Authors

Kevin E. Kline is the director of SQL Server Solutions at Quest Software, a leading
provider of award-winning tools for database management and application moni-
toring on the SQL Server platform. Kevin is also the president of the international
Professional Association for SQL Server (PASS) and frequently contributes to data-
base technology magazines, web sites, and discussion forums. He is the coauthor of
Transact-SQL Programming (O’Reilly) and three other books on database technolo-
gies. Kevin is a top-rated speaker, appearing at international conferences such as
Microsoft TechEd, DevTeach, PASS, Microsoft IT Forum, and SQL Connections.

Daniel Kline (Ph.D., Indiana University, 1997) specializes in Middle English
literature and culture; Chaucer; literary and cultural theory; critical pedagogy;
and digital medievalism. An associate professor of English at the University of
Alaska, Anchorage, he is widely published in academic journals and is the
author/webmaster of The Electronic Canterbury Tales (www.kankedort.net).

Brand Hunt is a director in architecture and engineering at Merrill Lynch. Beyond
work, Brand enjoys board games, pinochle, and snowboarding with his family and
friends.

Colophon

The animal on the cover of SQL in a Nutshell, Third Edition, is a chameleon.
There are approximately 85 species of chameleons existing in the world today.
They are mostly indigenous to Africa, although there are a few species found in
Asia and in Europe. Most are tree dwellers. The chameleon is relatively small; the
average adult size is between 6 and 12 inches. It lives mostly on insects and uses
its long tongue to capture its prey. Indeed, the tongue is a critical tool. It can
stretch up to 1.5 times the lizard’s body length, and there is an adhesive pad on
the end on which the insects are trapped. There are several other characteristics
common to all species of chameleons. For example, its eyes are large and
protruding, and the lizard can see 360 degrees without moving its head or body.
Its toes are on either side of its feet, usually three on one side and two on the
other. This is ideal for moving quickly and efficiently through tree branches.

Chameleons are best known for their ability to change their appearance to adapt
to their physical environment. Actually, several types of reptiles can change their
skin color, but the chameleon is far and away the most accomplished. This skill,
which is moderated by the nervous system, obviously is invaluable for hunting
prey and avoiding predators, and also helps to stabilize body temperature. The
extent of this camouflage capability is related to the gender, age, and species of
the lizard.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans MonoCondensed.

	Table of Contents
	Preface
	Why This Book?
	Who Should Read This Book?
	How This Book Is Organized
	How to Use This Book
	Resources
	Changes in the Third Edition
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments
	Kevin E. Kline’s Acknowledgments
	Daniel Kline’s Acknowledgments
	Brand Hunt’s Acknowledgments

	SQL History and Implementations
	The Relational Model and ANSI SQL
	Codd’s Rules for Relational Database Systems
	Data structures (rules 1, 2, and 8)
	NULLs (rule 3)
	Metadata (rules 4 and 10)
	The language (rules 5 and 11)
	Views (rule 6)
	Set operations (rules 7 and 12)

	Codd’s Rules in Action: Simple SELECT Examples

	History of the SQL Standard
	What’s New in SQL2006
	What’s New in SQL2003 (SQL3)
	Levels of Conformance
	Supplemental Features Packages in the SQL3 Standard
	SQL3 Statement Classes

	SQL Dialects

	Foundational Concepts
	Database Platforms Described in This Book
	Categories of Syntax
	Identifiers
	Naming conventions
	Identifier rules

	Literals
	Operators
	Arithmetic operators
	Assignment operators
	Bitwise operators
	Comparison operators
	Logical operators
	Unary operators
	Operator precedence
	System delimiters and operators

	Keywords and Reserved Words

	SQL2003 and Platform-Specific Datatypes
	MySQL Datatypes
	Oracle Datatypes
	PostgreSQL Datatypes
	SQL Server Datatypes

	Constraints
	Scope
	Syntax
	PRIMARY KEY Constraints
	FOREIGN KEY Constraints
	UNIQUE Constraints
	CHECK Constraints

	SQL Statement Command Reference
	How to Use This Chapter
	SQL Platform Support
	SQL Command Reference
	ALL/ANY/SOME Operators
	BETWEEN Operator
	CALL Statement
	CLOSE CURSOR Statement
	COMMIT Statement
	CONNECT Statement
	CREATE/ALTER DATABASE Statement
	CREATE/ALTER FUNCTION/PROCEDURE Statements
	CREATE/ALTER INDEX Statement
	CREATE/ALTER METHOD Statement
	CREATE ROLE Statement
	CREATE SCHEMA Statement
	CREATE/ALTER TABLE Statement
	CREATE/ALTER TRIGGER Statement
	CREATE/ALTER TYPE Statement
	CREATE/ALTER VIEW Statement
	DECLARE CURSOR Command
	DELETE Statement
	DISCONNECT Statement
	DROP Statements
	EXCEPT Set Operator
	EXISTS Operator
	FETCH Statement
	GRANT Statement
	IN Operator
	INSERT Statement
	INTERSECT Set Operator
	IS Operator
	JOIN Subclause
	LIKE Operator
	MERGE Statement
	OPEN Statement
	ORDER BY Clause
	RELEASE SAVEPOINT Statement
	RETURN Statement
	REVOKE Statement
	ROLLBACK Statement
	SAVEPOINT Statement
	SELECT Statement
	SET Statement
	SET CONNECTION Statement
	SET CONSTRAINT Statement
	SET PATH Statement
	SET ROLE Statement
	SET SCHEMA Statement
	SET SESSION AUTHORIZATION Statement
	SET TIME ZONE Statement
	SET TRANSACTION Statement
	START TRANSACTION Statement
	SUBQUERY Substatement
	TRUNCATE TABLE Statement
	UNION Set Operator
	UPDATE Statement
	WHERE Clause

	SQL Functions
	Types of Functions
	Deterministic and Nondeterministic Functions
	Aggregate and Scalar Functions
	Window Functions

	ANSI SQL Aggregate Functions
	AVG and SUM
	CORR
	COUNT
	COVAR_POP
	COVAR_SAMP
	CUME_DIST
	DENSE_RANK
	MIN and MAX
	PERCENT_RANK
	PERCENTILE_CONT
	PERCENTILE_DISC
	RANK
	The REGR Family of Functions
	STDDEV_POP
	STDDEV_SAMP
	VAR_POP
	VAR_SAMP

	ANSI SQL Window Functions
	ANSI SQL2003’s Window Syntax
	Oracle’s Window Syntax
	SQL Server’s Window Syntax
	Partitioning
	Ordering
	Grouping or Windowing
	List of Window Functions
	CUME_DIST
	DENSE_RANK
	PERCENT_RANK
	RANK
	ROW_NUMBER

	ANSI SQL Scalar Functions
	Built-in Scalar Functions
	CASE and CAST Functions
	CASE
	CAST

	Numeric Scalar Functions
	ABS
	BIT_LENGTH, CHAR_LENGTH, and OCTET_LENGTH
	CEIL
	EXP
	EXTRACT
	FLOOR
	LN
	MOD
	POSITION
	POWER
	SQRT
	WIDTH_BUCKET

	String Functions and Operators
	Concatenation Operator
	CONVERT and TRANSLATE
	LOWER and UPPER
	OVERLAY
	SUBSTRING
	TRIM

	Platform-Specific Extensions
	MySQL-Supported Functions
	Oracle-Supported Functions
	PostgreSQL-Supported Functions
	SQL Server-Supported Functions

	Shared and Platform-Specific Keywords
	Index

