MongoDB
ReciPES

With Data Modeling and Query

Building Strategies

Subhashini Chellappan
Dharanitharan Ganesan

ApPress’

ww.allitebooks.co

http://www.allitebooks.org

MongoDB Recipes

With Data Modeling and Query
Building Strategies

Subhashini Chellappan
Dharanitharan Ganesan

Apress’

vww . allitebooks.con

http://www.allitebooks.org

MongoDB Recipes: With Data Modeling and Query Building Strategies

Subhashini Chellappan Dharanitharan Ganesan
Bangalore, India Krishnagiri, Tamil Nadu, India
ISBN-13 (pbk): 978-1-4842-4890-4 ISBN-13 (electronic): 978-1-4842-4891-1

https://doi.org/10.1007/978-1-4842-4891-1

Copyright © 2020 by Subhashini Chellappan and Dharanitharan Ganesan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestine Suresh John
Development Editor: Matthew Moodie

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-4890-4. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-4891-1
http://www.allitebooks.org

Table of Contents

About the AUtROrS.....ccciuussssmnmmmssssssnmmssssssnmsssssssnssssssssnsssssnnnnsssssnnnnnsssnnns ix
About the Technical REVIEWETcuusssssssmsssssnssssssssssnssssssssnssssssnnnsssssnns xi
Acknowledgments........cccuunisssmmmmnmmmmmsssssssssssssssessssssssssssnssssesssssnnnnnns Xiii
Introductionccccunsnmmmmmssssnnnnmssssssnnsssssnsnnessssnnnnssssnnnnsssssnnnnnsssnnnnnnnssn XV
Chapter 1: MongoDB Features and Installation..........ccccusseeenrnssnnnnnnns 1
The Need for NOSQL DAtabaSESccoceeruererernerererereneses e se e seenes 2
What Are NOSQL DAtabases?ccovrererrerernseresesesreneressesessesessesesessesessesessssessnns 2
(072 T -1 o O 3
BASE APPIOACH ...ccuevuerieiiriere st sesse st se s sse s se s s sae s s e ssesaesassessesaesassesessenaes 4
Types 0f NOSQL DAtabaSescccvververrerrerinnensesensssessesesessssessessessssessessesssssssessees 5
MONQODB FEALUIES........ceueriereereererer e st s e e s se s e e s s s s e s re s s e s saesnesaenanans 5
Document DAtab@SEccoeerermrnererneneree e 6
MoNQODB IS SCNEMAIESSccecererrerrrrerrererrersssere e sse s ssessssessessessssessesseses 6
MOoNGODB USES BSONcovvvriererrerrrrerserersesessessessesssssssessesssssssessessesssssssessenes 7

Rich QUErY LANQUAGEcocvveverreerinerinene s s se e ses s ses s ssanes 8
Aggregation FrameworK.........ccoevivinnenieniensen s see e sesse s s ssessssssesaessenns 8
1110 L= o S 8
GHIAFS ...t 9

(32T 0]z 10 o 9

S 1 T] T RS 9

The MONGO SNEIL.....coiirerere e nes 9

iii

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Terms Used in MONGODB.........ccoc i 10
Data Types in MONQGODB ... s sneas 11
MongoDB Installation.........c.cccceeirninnnn e ———— 12
Recipe 1-1. Install MongoDB on Windowscccvveerrenerencrnsesessesesesesessenens 12
Recipe 1-2. Install MongoDB on UbUntucccovevniennenmnese e 14
Recipe 1-3. Install MongoDB Compass on Windows.........c.ccueeveverserserenensensensens 15
Working with Database COmMmMands........c.ccoeevvrerverierenensensessesesessessessessssessessenes 18
Recipe 1-4. Create DAtabaseccvvevererrerererensereressssessessessesessessessessssessessens 18
Recipe 1-5. Drop Database............ccocvvivninininnnsne s sesesnens 20
Recipe 1-6. Display List of Databasesccovvvrvriennnnsnennnsnsnesessssessennens 21
Recipe 1-7. Display the Version of MongoDB.............cccuoeerenrnnennneneseserensenenns 22
Recipe 1-8. Display a List of Commandsccccvrvrernenenenesnsesensesesesesessesenns 23

Chapter 2: MongoDB CRUD Operations........cccuseemmmssssensmmssssssnssssssnsnnns 29

iv

0] 1T (o 26
Recipe 2-1. Create a ColleCtioN...........cccovevererernrcrrcerre e 26
Recipe 2-2. Create Capped ColleCtions..........cocuvvvvveriennsensenenn s sesesnens 27
Create OPerations ... s 31
Recipe 2-3. Insert DOCUMENTScccoevvinininn s sessesnens 31
Read OPErationsS......c.ccvvververereserseriesesessessesessesessessessessssessessessesessessessessssessessens 33
Recipe 2-4. Query DOCUMENTScccovvevnerirenensse s 34
Update OPerationscccveveerererserierenessessesessssssessessessssessessessssessessessessssensessens 37
Recipe 2-5. Update DOCUMENLSccovvrvreninnnsnness e ssesnens 37
Delete OPErations ... 40
Recipe 2-6. Delete DOCUMENLSccccevivririeninninsre e snens 4
MongoDB Import and EXPOrt ... 43
Recipe 2-7. Work with Mongo IMport ... sesesaens 43

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Recipe 2-8. Work with Mongo EXpOri........cccccvvevnininnnnnsnsesse s ssessesnas 45
Embedded Documents in MongoDB............cccovrvninnnnncncne e 46
Recipe 2-9. Query Embedded DOCUMENTScccorrecrerenereerenesese e 47
WOrKing With ArTaYS.......ccceeeerrnerereserresesesesese s sesse s sessesessesesessssesssaens 48
Recipe 2-10. Working With Arrays.........coueererrenmssesnsesssesssesesssssssssessssssessssesenns 49
Recipe 2-11. Query an Array of Embedded Documents..........cocuvvvrceriennseniennens 56
Project Fields to Return from QUErY..........ccovvevrrrrniennesne e 59
Recipe 2-12. Restricting the Fields Returned from a QUErYccccvvereverreriernens 59
Query for Null or Missing Fields...........ccouvvrenrnnrnienneserese e ses e 62
Recipe 2-13. To Query Null or Missing Fieldsc.c.ccovrenererernsennsesesenerensenenns 62
RErate @ CUISONcccceeveeriecr s e 64
Recipe 2-14. Herate @ CUISOF........ccccvveernerrsresesssesrsse e s se e ssssesens 64
Working with the limit() and skip() Methods........ccccvvvrvririennnnrnieness e 69
Recipe 2-15. limit() and skip() Methods...........cccccvvrinnnnininsnse e 69
Working with Node.js and MongoDB...........cccoucrvneninnsnncnnese s 71
Recipe 2-16. Node.js and MongoDB ..o sesesnens 72
Chapter 3: Data Modeling and Aggregation.........ccccuseemmmsssssnnssssssnnnns 79
Data MOGEIS ... e 79
Embedded Data Models...........ccoorerrnencerenesrsere e 80
Normalized Data MOdEISccccvererenernennnesese s 81
Data Model Relationship Between DOCUMENTS........ccccevvververerenensersesesessensenaens 81
Recipe 3-1. Data Model Using an Embedded Documentccccocvvnverccrenne. 81
Recipe 3-2. Data Model Using Document References.........ccccoevvnvrierennnseniennens 84
Modeling Tree STrUCLUIES......covcrcrrrerr e 89
Recipe 3-3. Model Tree Structure with Parent References.........ccccevveevererenne. 89

TABLE OF CONTENTS

AQGregation........cocvieriririersee s e 95
Aggregation PIPElINE ..o s 95
Recipe 3-4. Aggregation Pipeline...........cccririinnsnnniennsnsesese s sesesnens 95
Map-REAUCE ..ot s 98
Recipe 3-5. Map-REAUCEcccvvrirerrrinrre e snens 98
Single-Purpose Aggregation Operations..........ccccoovvnnniniennsnsnsenesensensennes 100
Recipe 3-6. Single-Purpose Aggregation Operations.........c.ccccoveernsererenereenes 100
SQL Aggregation Terms and Corresponding MongoDB
Aggregation OPEratorsS......c.cuvrrcrinn s s 102
Recipe 3-7. Matching SQL Aggregation to MongoDB
Aggregation OPErationsc..cvevvvverrevessrerseresssserese s ssessssessesaes 103
Chapter 4: INAeXES...cuuuusmmrrsssnmrssanssssanssssansssssnsesssnsesssnnesssnsssssnnssssnnssss 105
Recipe 4-1. Working with INdeXescceerrrcnriererere e 106
Recipe 4-2. INAEX TYPES ..cocerrerrerirrerire s s s s s srs s 110
Recipe 4-3. IndeX Properties......cccuvevnnnienieninsensessese s s sessessessessssessessenes 115
Recipe 4-4. Indexing Strategies.......ccouvvvrrerernsnieriere s ses s sesse s 120
Chapter 5: Replication and Sharding..........ccccusssemmnmsssssnnnmsssssnnnsssssnns 127
RePlCAtION ..o 127
Recipe 5-1. Set Up @ Replica Set.......cccovecrrvcnrercre e 128
6] 1= 0 11 o TS 140
Recipe 5-2. ShArdingc.ccoverernsmsensesessnerssesessessssse s e sessessssssessnnes 140
Chapter 6: Multidocument Transactions.........uusseeeennnneessssssssssssnnnnns 157
Multidocument Transactions in MONGODB...........cccccviiernennennese e 157
Limitations of Transactions.........cccucuervvevnennisensse s 158
Transactions and SESSIONScccvvrernsrnnesese s s 159

TABLE OF CONTENTS

Recipe 6-1. Working with Multidocument Transactions.............ccocvvrvvneniennen. 159
Recipe 6-2. Isolation Test Between Two Concurrent Transactions.................... 163
Recipe 6-3. Transactions with Write Conflictscccvvvnininincncninnsnienen 166
Recipe 6-4. Discarding Data Changes with abortTransaction..........c.ccccoceeenee. 168
Chapter 7: MongoDB Monitoring and Backupcccceseerssssssssssnnnnnnas 173
MOoNGODB MONITOMINGcevveerrirerinseresesessse s srenes 173
LOG FilB v 173
Recipe 7-1. Working with MongoDB Log FileSc.cceevvrvrieriennnnseneneesensensenns 173
MongoDB PerfOrmancCecccveerererserieressnsesesessssessessessessssessessessssessessens 182
Recipe 7-2. Working with Database Profiler........c..ccccvvvvnvnnnnininsnsnnencennen, 183
Recipe 7-3. View Database Profilerc.cccovvvnirinininsnnniesssesesess s 186
Recipe 7-4. Working with mongostat..........c.cccoomvniniininicnincnr i 193
Recipe 7-5. Working with mongotop.........ccccoveernenrenrnseneneseresessesese s 196
Recipe 7-6. Working with db.statS()........c.ccccvrvrermreneriesrinsnnesersse s 197
Recipe 7-7. Working with db.serverStatus()c.ccoeerrvvervrieriennsensessenesensenenns 199
Backup and Restore with MongoDB TOOISccveererevernerseriensnsensesessesessessenns 200
Recipe 7-8. Working with mongodump.........ccccevrvrreneninienne s 201
Automatic and Regular Backup Scheduling Using mongodumpcccev... 203
Recipe 7-9. Working with mongorestorecccccvevvvnnnnniennsnsenese s 204
Recipe 7-10. Working with mongodb Query Plans...........ccccovmnnnennnnnenns 206
Chapter 8: MongoDB Security..........cccummsssmmnmmsssssnnnmsssssnsssssssassnsssssnns 215
Authentication and Authorization...........c.ccovevrnsnnenne s 215
ACCESS CONIOL.....cerrireerreerissesesese s 216
310 T TSR 216
Recipe 8-1. Creating a Superuser and Authenticating a User.........cccocveevvernene. 218

vii

TABLE OF CONTENTS

Recipe 8-2. Authenticating a Server in a Replica Set Using a Key File............. 221
Recipe 8-3. Modifying Access for the Existing USerccccceeeevervrverrercriennns 229
Recipe 8-4. Change the Password for the Existing USer........cccccceevverveerercennns 234
Recipe 8-5. Track the Activity of Users in @ ClUSTerccovveeerencrnserencnernnnes 236
Recipe 8-6. ENCryption.......c.ccoovvrvriennninnnsene s ssssessesse s 238
INA@X . iiiiisssnnnnnnnnnnnnsssssssnnnnnnnnnssssssssnnnnnnnnnssssssssnnnnnnnnenssssssnsnnnnnnnnesssssnnn 243

viii

About the Authors

Subhashini Chellappan is a technology
enthusiast with expertise in the big data and
cloud space. She has rich experience in both
academia and the software industry. Her
areas of interest and expertise are centered
on business intelligence, big data analytics,
and cloud computing.

Dharanitharan Ganesan has an MBA in
technology management with high level

of exposure and experience in big data—
Apache Hadoop, Apache Spark, and various
Hadoop ecosystem components. He has a
proven track record of improving efficiency
and productivity through the automation of

various routine and administrative functions

in business intelligence and big data
technologies. His areas of interest and expertise are centered on machine
learning algorithms, blockchain in big data, statistical modeling, and
predictive analytics.

ix

About the Technical Reviewer

Manoj Patil has been working in the software
industry for nearly 20 years. He holds an
engineering degree from COEP, Pune (India) and
since then has enjoyed an exciting IT journey.

As a Principal Architect at TatvaSoft,
Manoj has undertaken many initiatives in
the organization ranging from training and
mentoring teams leading the data science and

machine learning practice, to successfully
designing client solutions from different
functional domains.

Starting as a Java programmer, he is one of the fortunate to have
worked on multiple frameworks with multiple languages as a full-
stack developer. In last five years, he has worked extensively in the
field of business intelligence, big data, and machine learning with
the technologies like Hitachi Vantara (Pentaho), Hadoop ecosystem,
tensorflow, Python-based libraries, and more.

He is passionate about learning new technologies, trends, and
reviewing books. When he is not working, he is either working out or
reading infinitheism literature.

Manoj would like to thank Apress for providing this opportunity to
review this title and his two daughters Ayushee and Ananyaa for their
understanding during the process.

Acknowledgments

The making of this book was a journey that we are glad we undertook. The
journey spanned a few months, but the experience will last a lifetime. We
had our families, friends, colleagues, and other well-wishers onboard for this
journey and we wish to express our deepest gratitude to each one of them.

We would like to express our special thanks to our families, friends,
and colleagues who provided the support that allowed us to complete this
book within a limited time frame.

Special thanks are extended to our technical reviewers for the vigilant
review and filling in with their expert opinion.

We would like to thank Celestin Suresh John at Apress for signing us
up for this wonderful creation. We wish to acknowledge and appreciate all
our coordinating editors and the team who guided us through the entire
process of preparation and publication.

xiii

Introduction

Why This Book?

MongoDB is an open source, document-oriented NoSQL database written
in C++. MongoDB provides high availability, automatic scaling, and high
performance. The book has the following within its scope:

¢ Introduction to NoSQL databases, features of
MongoDB, and installation procedures

e Complete CRUD operations and MongoDB query
language examples

o Demonstrations of the aggregation framework to group
data and perform aggregation operations

o Indexing details to improve the performance of a query

e Replication and sharding features to increase data
availability and avoid data loss in case of a failure

o Monitoring the database and backup strategies

o Security features to implement proper authentication
and authorization

INTRODUCTION

Who Is This Book For?

The audience for this book includes all levels of IT professionals and
anyone who wants to get a good understanding of MongoDB.

How Is This Book Organized?

Chapter 1 describes NoSQL databases, various features of MongoDB, the
installation procedure, and how to interact with MongoDB.

Chapter 2 describes MongoDB'’s rich query language to support create,
read, update, and delete (CRUD) operations.

Chapter 3 describes the aggregation framework to perform
aggregation operations. The aggregation framework can group data and
perform a variety of operations on that grouped data.

Chapter 4 describes indexes, types of index, index properties, and the
various indexing strategies to be considered. Indexes are used to improve
the performance of a query.

Chapter 5 describes the various replication and sharding strategies in
MongoDB. Replication is the process of creating and managing a duplicate
version of a database across servers to provide redundancy and increase
the availability of data. Sharding distributes data across servers to increase
availability.

Chapter 6 describes the multi-document transactions feature. Multi-
document transactions help us to achieve all-or-nothing execution to
maintain data integrity.

Chapter 7 describes the details of various tools to monitor a MongoDB
database and procedures for backup operations. These MongoDB
monitoring tools help us to understand what is happening with a database
atvarious levels.

Chapter 8 describes the various security features in MongoDB to verify
the identity of the user and access controls to determine the verified user’s
access to resources and operations.

XVi

INTRODUCTION

How Can | Get the Most Out of This Book?

It is easy to leverage this book for maximum gain by reading the chapters
thoroughly. Get hands-on by following the step-by-step instructions
provided in the recipes. Do not skip any of the demonstrations. If need be,
repeat them a second time or until the concept is firmly etched in your

mind. Happy learning!

Subhashini Chellappan
Dharanitharan Ganesan

xvii

CHAPTER 1

MongoDB Features
and Installation

This chapter describes NoSQL databases, various features of MongoDB,
and how to interact with MongoDB. We are going to focus on the
following topics:

e WhyNoSQL?

¢ What are NoSQL databases?

e CAP theorem.

e BASE approach.

o Types of NoSQL databases.

e MongoDB features.

e MongoDB installation on Windows.
e MongoDB installation on Linux.

e MongoDB Compass installation on Windows.
e Terms used in MongoDB.

e Data types in MongoDB.

¢« Database commands.

© Subhashini Chellappan and Dharanitharan Ganesan 2020
S. Chellappan and D. Ganesan, MongoDB Recipe:s,
https://doi.org/10.1007/978-1-4842-4891-1_1

CHAPTER 1 MONGODB FEATURES AND INSTALLATION

The Need for NoSQL Databases

There are several database challenges for modern applications, including
the following.

e Modern application storage capacity exceeds the
storage capabilities of the traditional relational
database management system (RDBMS).

e Modern applications require unknown level of
scalability.

e Modern applications should be available 24/7.
o Dataneeds to be distributed globally.
e Users should be able to read and write data anywhere.

e Users always seek reduction of software and
hardware costs.

All these challenges have given birth to the NoSQL databases.

What Are NoSQL Databases?

NoSQL databases are open source, nonrelational, distributed databases
that allow organizations to analyze huge volumes of data.
The following are some of the key advantages of NoSQL databases:

e Availability.
o Fault tolerance.

o Scalability.

CHAPTER1 MONGODB FEATURES AND INSTALLATION

NoSQL databases have the following characteristics:

They do not use SQL as a query language.
Most NoSQL databases are designed to run on clusters.

They operate without a schema, freely adding fields to
the database without having to define any changes in
structure first.

They are polygot persistent, meaning there are different
ways to store the data based on the requirements.

They are designed in such a way that they can be
scaled out.

CAP Theorem

The CAP theorem states that any distributed system can satisfy only two of

these three properties:

Consistency implies that every read fetches the

last write.

Availability implies that reads and writes always
succeed. In other words, each nonfailing node will
return a response in a reasonable amount of time.

Partition tolerance implies that the system will
continue to function even when there is a data loss or
system failure.

CHAPTER 1 MONGODB FEATURES AND INSTALLATION
Figure 1-1 is a graphical representation of the CAP theorem.

Availability

RDBMSs, Greenplum Cassandra, CouchDB, Voldmort, Riak

/
Consistency£ % Partition Tolerance

HBase, MongoDB, Redis, MemcacheDB, BigTable

Figure 1-1. CAP theorem

CAP therorem categorizes a system according to three categories:
1. Consistency and availability.
2. Consistency and partition tolerance.

3. Availability and partition tolerance.

Note The partition tolerance property is a must for NoSQL databases.

BASE Approach

NoSQL databases are based on the BASE approach. BASE stands for:

e Basic availability: The database should be available
most of the time.

e Soft state: Tempory inconsistency is allowed.

o Eventual consistency: The system will come to a
consistent state after a certain period.

CHAPTER1 MONGODB FEATURES AND INSTALLATION

Types of NoSQL Databases

NoSQL databases are generally classified into four types, as shown in
Table 1-1.

Table 1-1. Types of NoSQL Databases

Data Model Example Description

Key/Value Store Dynamo DB, Riak e [east complex NoSQL options.
e Key and a value.

Column Store HBase, Big Table e Also known as wide column store.
e Storing data tables as sections of
columns of data.

Document Store . MongoDB, CouchDB e Extends key/value idea.
e Storing data as a document.
e Complex NoSQL options.
e Each document contains a unique
key that is used to retrieve the
document.

Graph Database Neo4j e Based on graph theory.
e Storing data as nodes, edges, and
properties.

MongoDB Features

MongoDB is an open source, document-oriented NoSQL database written
in C++. MongoDB provides high availability, automatic scaling, and high
performance. The following sections introduce the features of MongoDB.

CHAPTER 1 MONGODB FEATURES AND INSTALLATION

Document Database

In MongoDB, a record is represented as a document. A document is a
combination of field and value pairs. MongoDB documents are similar
to JavaScript Object Notation (JSON) documents. Figure 1-2 represents a

document.
{
name:"Taanushres A S", — field:value
age:10, D field:value
groups: ["dance","music"] A— field:value

}

Figure 1-2. A document

These are the advantages for using documents.

e Inmany programming languages, a document
corresponds to native data types.

o Embedded documents help in reducing expensive joins.

MongoDB Is Schemaless

MongoDB is a schemaless database, which means a collection (like a table
in an RDBMS) can hold different documents (like records in an RDBMS).
This way, MongoDB provides flexibility in dealing with the schemasin a
database. Refer to the following collection, Person.

{name:"Aruna M S", age:12 } //document with two fields.

{ssn:100023412, name:"Anbu M S",groups:["sports”,"news"]}
//document with three fields.

Here, the collection Person has two documents, each with different
fields, contents, and size.

CHAPTER1 MONGODB FEATURES AND INSTALLATION

MongoDB Uses BSON

JSON is an open source standard format for data interchange. Document
databases use JSON format to store records. Here is an example of a JSON
document.

{

name:"John",
addresses:|

{
address:"123,River Road",
status:"office"

b

{
address:"345,Mount Road",
status:"personal”

}

}

MongoDB represents JSON documents in a binary-encoded format,
Binary JSON (BSON), behind the scenes. BSON extends the JSON model
to provide additional data types such as dates that are not supported by
JSON. BSON uses the _id field called ObjectId as the primary key. The
value of the _id field is generated either by the MongoDB service or by an
application program. Here is an example of ObjectId:

" id": ObjectId("12e6789f4b01d67d71da3211")

CHAPTER 1 MONGODB FEATURES AND INSTALLATION

Rich Query Language

MongoDB provides a rich query language to support create, read, update,
and delete (CRUD) operations, data aggregation, and text searches. Let
us understand how to query a collection in MongoDB with an example.
Consider the following collection, Employee.

{_id: 10001, name:"Subhashini",unit:"Hadoop"}
{_id: 10002, name:"Shobana", unit:"Spark"}

To display employee details, the MongoDB query would be
db.Employee.find();

We discuss MongoDB query language in detail in Chapter 2.

Aggregation Framework

MongoDB provides an aggregation framework to perform aggregation
operations. The aggregation framework can group data from multiple
documents and perform variety operations on that grouped data.
MongoDB provides an aggregation pipeline, the map-reduce function, and
single-purpose aggregation methods to perform aggregation operations.
We discuss the aggregation framework in detail in Chapter 3.

Indexing

Indexes improve the performance of query execution. MongoDB uses
indexes to limit the number of documents scanned. We discuss various
indexes in Chapter 4.

CHAPTER1 MONGODB FEATURES AND INSTALLATION

GridFS

GridFS is a specification for storing and retrieving large files. GridFS can
be used to store files that exceed the BSON maximum document size of

16 MB. GridFS divides the file into parts known as chunks and stores them
as separate documents. GridFS divides the file into chunks of 255 KB,
except the last chunk, the size of which is based on the file size.

Replication

Replication is a process of copying an instance of a database to a different
database server to provide redundancy and high availability. Replication
provides fault tolerance against the loss of a single database server. In
MongoDB, the replica set is a group of mongod processes that maintain the
same data set. We discuss how to create replica sets in Chapter 5.

Sharding

A single server can be a challenge when we need to work with large data
sets and high throughput applications in terms of central processing

unit (CPU) and inout/output (I/O) capacity. MongoDB uses sharding to
support large data sets and high-throughput operations. Sharding is a
method for distributing data across multiple systems, discussed in detail in
Chapter 5.

The mongo Shell

The mongo shell is an interactive JavaScript interface to MongoDB. The
mongo shell is used to query, update data, and perform administrative
operations. The mongo shell is a component of MongoDB distributions.
When you start the mongod process, the mongo shell will be connected to a
MongoDB instance.

CHAPTER 1 MONGODB FEATURES AND INSTALLATION

Terms Used in MongoDB

Let us understand the terms used in MongoDB, provided in Table 1-2.

Table 1-2. MongoDB Terms

Terms MongoDB
MongoDB server mongod
MongoDB client mongo

Table 1-3 shows the equivalent terms used in RDBMS and MongoDB.

Table 1-3. Equivalent Terms for RDBMS and MongoDB

RDBMS MongoDB

Database Database

Table Collection

Record Document

Columns Fields or key/value pairs
ACID transactions ACID transactions

Secondary index
JOINs
GROUP_BY

Secondary index
Embedded document, $1ookup
Aggregation pipeline

10

CHAPTER1 MONGODB FEATURES AND INSTALLATION

Data Types in MongoDB

Table 1-4 provides a description of the data types in MongoDB.

Table 1-4. MongoDB Data Types

String

Integer
Double
Arrays

Timestamps

Date

Objectld

Binary data
Null

Strings are UTF-8

Can be 32-bit or 64-bit

To store floating-point values

To store a list of values into one key

For MongoDB internal use; values are 64-bit
Record when a document has been modified or added

A 64-bit integer that represents the number of milliseconds since
the Unix epoch (January 1, 1970)

Small, unique, fast to generate, and ordered
Consist of 12 bytes, where the first four bytes are a timestamp that
reflects the Objectld’s creation

To store binary data (images, binaries, etc.)

To store NULL value

Note Refer to the following link for data types in MongoDB:
https://docs.mongodb.com/manual/reference/bson-types/

11

https://docs.mongodb.com/manual/reference/bson-types/

CHAPTER 1 MONGODB FEATURES AND INSTALLATION

MongoDB Installation

Let us learn how to install MongoDB.

Recipe 1-1. Install MongoDB on Windows

In this recipe, we are going to discuss how to install MongoDB on
Windows.

Problem

You want to install MongoDB on Windows.

Solution

Download the MongoDB ms1i installer from https://www.mongodb.com/
download-center#tenterprise.

How It Works

Let’s follow the steps in this section to install MongoDB on Windows.

Step 1: Install the msi Installer

Right-click the Windows installer, select Run as Administrator, and follow
the instructions to install MongoDB.

Step 2: Create a Data Directory

Create \data\db directory in C: \ to store MongoDB data. Directory looks
like “C:\data\db”

12

https://www.mongodb.com/download-center#enterprise
https://www.mongodb.com/download-center#enterprise

CHAPTER1 MONGODB FEATURES AND INSTALLATION

Step 3: Start the MongoDB Server

Open the command prompt and navigate to the MongoDB installation
folder. Issue the following command to start the MongoDB server, as
shown in Figure 1-3.

mongod.exe

C:\Program Files\MongoDB\Server\4.08\bin>mongod.exe

2018-P9-25T19:53:00.113+8538 I CONTROL [main] Automatically disabling TLS 1.8, to force-
enable TLS 1.9 specify --sslDisabledProtocols ‘none’

2918-09-25T19:53:00.690+853@ I CONTROL [initandlisten] MongoDB starting : pid=552 port=2
7817 dbpath=C:\data\db\ 64-bit host=BDC8-LX-JICIPZM2

2018-99-25T19:53:00.690+853@ I CONTROL [initandlisten] targetMin0S: Windows 7/Windows Se
rver 2088 R2

2018-09-25T19:53:00.691+053@ I CONTROL [initandlisten] db version v4.8.2
2818-89-25T19:53:00.691+853@ I CONTROL [initandlisten] git version: fcl573bal8aee42f97a3
bbl3be7af7d837826b47

2818-99-25T19:53:06.691+8538 I CONTROL [initandlisten] allocator: tcmalloc

Figure 1-3. Starting MongoDB Server

You should get a message that states “Waiting for connection on port 27017

Step 4: Start the MongoDB Client

Open another command prompt and navigate to the MongoDB
installation folder. Issue the following command to start the MongoDB
client, as shown in Figure 1-4.

mongo.exe

13

CHAPTER 1 MONGODB FEATURES AND INSTALLATION

C:\Program Files\MongoDB\Server\4.@\bin>mongo.exe

MongoDB shell version v4.0.2

connecting to: mongodb://127.8.8.1:27817

MongoDB server version: 4.0.2

Server has startup warnings:

2018-09-25T19:28:14.33448530 I CONTROL [initandlisten]

2018-09-25T19:28:14.334+8530 I CONTROL [initandlisten] ** WARNING: Access control is
enabled for the database.

2018-89-25T19:28:14.334+408530 I CONTROL [initandlisten] #** Read and write acc
to data and configuration is unrestricted.

2018-89-25T19:28:14.334+8530 I CONTROL [initandlisten]

Enable MongoDB's free cloud-based monitoring service, which will then receive and disg

Figure 1-4. Starting MongoDB Client

We can see the mongo shell.
This confirms, we have installed MongoDB on windows.

Recipe 1-2. Install MongoDB on Ubuntu

In this recipe, we are going to discuss how to install MongoDB on Ubuntu.

Problem

You want to install MongoDB on Ubuntu.

Solution

Download the MongoDB tarball from https://www.mongodb.com/
download-center/community.

How It Works

Let’s follow the steps in this section to install MongoDB on Ubuntu.

Step 1: Extract the tarball

Issue the following command to untar the tarball:

tar -xzf mongodb-linux-x86_64-ubuntu1604-4.0.8.tgz

14

https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community

CHAPTER1 MONGODB FEATURES AND INSTALLATION

Step 2: Create a Data Directory

Create a /data/db directory as shown in Recipe 1-1.

Step 3: Start the MongoDB Server

Open the terminal, navigate to the MongoDB installation folder, and issue
the following command to start the MongoDB server.

./mongod --dbpath <data directory path>

Step 4: Start the MongoDB Client

Open another terminal, navigate to the MongoDB installation folder, and
issue the following command to start the MongoDB client.

./mongo.exe

Recipe 1-3. Install MongoDB Compass
on Windows

In this recipe, we are going to discuss how to install MongoDB Compass on
Windows. MongoDB Compass is a simple-to-use graphical user interface
(GUI) for interacting with MongoDB.

Problem

You want to install MongoDB Compass on Windows.

Solution

Download the MongoDB Compass msi installer from https://www.
mongodb . com/download-center#compass.

15

https://www.mongodb.com/download-center#compass
https://www.mongodb.com/download-center#compass

CHAPTER 1 MONGODB FEATURES AND INSTALLATION

How It Works

Let’s follow the steps in this section to install MongoDB Compass on
Windows.

Step 1: Install the MongoDB Compass msi Installer

Right-click the MongoDB Compass Windows installer, select Run as
Administrator, and follow the instructions to install MongoDB Compass.
Figure 1-5 shows the MongoDB Compass GUL

¥ MongoDE Compass - Connect = o b4
Conrct View Help

Welcome to MongoDB Compass

Performance Charts.

Figure 1-5. MongoDB Compass GUI

Step 2: Start the MongoDB Server

Open the command prompt, navigate to the MongoDB installation folder,
and issue the following command to start the MongoDB server.

mongod.exe

16

CHAPTER1 MONGODB FEATURES AND INSTALLATION

You should see a message that states “Waiting for connection on
port 27017

Note The default port number for MongoDB is 27017.

Step 3: Connect MongoDB Compass with MongoDB
Server

Click the New Connection tab. Enter the required details, as shown in
Figure 1-6.

Connect to Host
Hostname Iocahas]
SRV Record
Authentication

Replica Set Name

Read Preference

SSH Tunnel

Faverite Name

Figure 1-6. New Connection page

17

CHAPTER 1 MONGODB FEATURES AND INSTALLATION

Click Connect to connect to the MongoDB Server as shown in
Figure 1-7.

| ¥ MengoDB Compass - localhost27017 _ a w
Connedt View Help

4 localhostIT0TT | STANDALONE MangoDB 4.0.2 Communit

Databases

Database Name Storage Size Collections Indexes

Figure 1-7. Connecting MongoDB Compass to the MongoDB server

We have now connected MongoDB Compass to the MongoDB server.

Working with Database Commands

Next, we discuss database commands in MongoDB.

Recipe 1-4. Create Database

In this recipe, we are going to discuss how to create a database in
MongoDB.

Problem

You want to create a database in MongoDB.

18

CHAPTER1 MONGODB FEATURES AND INSTALLATION

Solution

Use the following syntax to create a database in MongoDB.

use <database name»

How It Works

Let’s follow the steps in this section to create a database in MongoDB.

Step 1: Create a database

To create a database named mydb, use this command:
use mydb

Here is the output,

> use mydb
switched to db mydb
>

To confirm the existence of the database, type the following command
in the mongo shell.

> db
mydb
>

This shows that you are working in the mydb database, so you know we
have created a database by that name.

19

CHAPTER 1 MONGODB FEATURES AND INSTALLATION

Recipe 1-5. Drop Database

In this recipe, we are going to discuss how to drop a database in MongoDB.

Problem

You want to drop a database in MongoDB.

Solution

Use the following syntax to drop a database in MongoDB.

db.dropDatabase()

How It Works

Let’s follow the steps in this section to drop a database in MongoDB.

Step 1: Drop a Database

To drop a database, first ensure that you are working in the database that
you want to drop. Use the db.dropDatabase() method.

use mydb
Here is the output,

> use mydb
switched to db mydb
>

> db.dropDatabase()
"ok" : 1}

20

CHAPTER1 MONGODB FEATURES AND INSTALLATION

We have thus dropped the database named mydb.

Note If no database is selected, the default database test is dropped.

Recipe 1-6. Display List of Databases

In this recipe, we are going to discuss how to display a list of databases.

Problem

You want to display a list of databases.

Solution

Use the following syntax to display a list of databases.

show dbs
show databases

How It Works

Let’s follow the steps in this section to display a list of databases.

Step 1: Display a List of Databases
Type the following command in the mongo shell.
show dbs

show databases

21

CHAPTER 1 MONGODB FEATURES AND INSTALLATION
Here is the output,

> show dbs
admin 0.000GB
config 0.000GB
local 0.000GB
test 0.000GB
>

> show databases;
admin 0.000GB
config 0.000GB
local 0.000GB
>

We can now see the list of databases.

Note The newly created database mydb is not shown in the list.
This is because the database needs to have at least one collection to
display in the list. The default database is test.

Recipe 1-7. Display the Version of MongoDB

In this recipe, we are going to discuss how to display the version of
MongoDB.

Problem

You want to display the version of MongoDB.

22

CHAPTER1 MONGODB FEATURES AND INSTALLATION

Solution

Use the following syntax to display the version of MongoDB.

db.version()

How It Works

Let’s follow the steps in this section to display the version of MongoDB.

Step 1: Display the Version of MongoDB
Type the following command in the mongo shell.
db.version()

Here is the output,

> db.version()
4.0.2
>

We can see that the version of MongoDB is 4.0.2.

Recipe 1-8. Display a List of Commands

In this recipe, we are going to see how to display the list of MongoDB
commands.

Problem

You want to display the list of MongoDB commands.

23

CHAPTER 1 MONGODB FEATURES AND INSTALLATION

Solution

Use the following syntax to display a list of commands.

db.help()

How It Works

Let’s follow the steps in this section to display a list of commands.

Step 1: Display a List of Commands
Type the following command in the mongo shell.
db.help()

Here is the output,

> db.help()

dB methods:
db.adminCommand (nameOrDocument) - switches to 'admin’
db, and runs command [just calls db.runCommand(...)]

We can now see the list of MongoDB commands.

Note A few scenarios where we can apply MongoDB are
e-commerce product catalogs, blogs, and content management.

In next chapter, we discuss how to perform CRUD operations using
MongoDB query language.

24

CHAPTER 2

MongoDB CRUD
Operations

In Chapter 1, we discussed MongoDB features and how to install MongoDB
on Windows and Linux. We also discussed terms used in MongoDB

and how to create a database. In this chapter, we are going to discuss

how to perform create, read, update, and delete (CRUD) operations in
MongoDB. This chapter also describes how to work with embedded
document and arrays. We are going to discuss the following topics:

e Collections.

e MongoDB CRUD operations.

e Bulkwrite operations.

e MongoDB import and export.

o Embedded documents.

e Working with arrays.

e Array of embedded documents.

e Projection.

e Dealing with null and missing values.
o Working with 1imit() and skip().

o Working with Node. js and MongoDB.

© Subhashini Chellappan and Dharanitharan Ganesan 2020 25
S. Chellappan and D. Ganesan, MongoDB Recipe:s,
https://doi.org/10.1007/978-1-4842-4891-1_2

CHAPTER2 MONGODB CRUD OPERATIONS

Collections

MongoDB collections are similar to tables in RDBMS. In MongoDB,
collections are created automatically when we refer to them in a
command. For an example, consider the following command.

db.person.insert({_id:100001,name:"Taanushree A S",age:10})

This command creates a collection named person if it is not present.
If it is present, it simply inserts a document into the person collection.

Recipe 2-1. Create a Collection

In this recipe, we are going to discuss how to create a collection.

Problem

You want to create a collection named person using the db.
createCollection() command.

Solution

Use the following syntax to create a collection.

db.createCollection (<namej)

How It Works

Let’s follow the steps in this section to create a collection named person.

26

CHAPTER2 MONGODB CRUD OPERATIONS

Step 1: Create a Collection

To create a collection by the name person use the following command.
db.createCollection("person™)
Here is the output,

> db.createCollection("person™)
{ IIOkII : 1 }
>

To confirm the existence of the collection, type the following command
in the mongo shell.

> show collections
person
>

We can now see the collection named person.

Recipe 2-2. Create Capped Collections

In this recipe, we are going to discuss what a capped collection is and how
to create one. Capped collections are fixed-size collection for which we
can specify the maximum size of the collection in bytes and the number of
documents allowed. Capped collections work similar to a circular buffer:
Once it fills its allocated space, it makes room for new documents by
overwriting the oldest documents in the collection.

There are some limitations of capped collections:

e You can’t shard capped collections.

e You can’t use the aggregation pipeline operator $out to
write results to a capped collection.

27

CHAPTER2 MONGODB CRUD OPERATIONS

e You can’t delete documents from a capped collection.

e Creating an index allows you to perform efficient
update operations.

Problem

You want to create a capped collection named student using the db.
createCollection() method.

Solution

Use the following syntax to create a collection.

db.createCollection (<name»,{capped:<booleans,size:<numbery,max
:<numbers})

How It Works

Let’s follow the steps in this section to create a capped collection named
student.

Step 1: Create a Capped Collection
To create a capped collection named student, use the following command.
db.createCollection("student”,{capped: true,size:1000,max:2})

Here, size denotes the maximum size of the collection in bytes and
max denotes the maximum number of documents allowed.

Here is the output,

> db.createCollection("student",{capped: true,size:1000,max:2})
{ "ok" : 1}
>

28

CHAPTER2 MONGODB CRUD OPERATIONS

To check if a collection is capped, type the following command in the
mongo shell.

> db.student.isCapped()
true
>

We can see that the student collection is capped. Now, we will insert
few documents into the student collection, as shown next.

db.student.insert([{ " _id" : 10001, "name" : "Taanushree A S",
"age" : 10 },{ "_id" : 10002, "name" : "Aruna M S", "age" : 14 }])

Here is the output,

> db.student.insert([{ " _id" : 10001, "name" : "Taanushree A
S", "age" : 10 },{ " id" : 10002, "name" : "Aruna M S", "age" :
14 }1)
BulkWriteResult({

"writeErrors" : [],

"writeConcernkErrors" : [],

"nInserted" : 2,

"nUpserted" : 0,
"nMatched" : o,
"nModified" : 0,
"nRemoved" : 0,
"upserted” : []

1)

Step 2: Query a Capped Collection
To query a capped collection, use the following command.

db.student.find()

29

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

> db.student.find()

{ " _id" : 10001, "name" : "Taanushree A S", "age" : 10 }
{ " id" : 10002, "name" : "Aruna M S", "age" : 14 }
>

Here, MongoDB retrieves the results in the order of insertion. To
retrieve documents in the reverse order, use sort() and set the $natural
parameter to -1 as shown here.

> db.student.find().sort({$natural:-1})

{ " id" : 10002, "name" : "Aruna M S", "age" : 14 }
{ " id" : 10001, "name" : "Taanushree A S", "age" : 10 }
>

We can see the results are now in the reverse order.

Step 3: Insert a Document into a Full Capped Collection

Let’s see what happens when we try to insert a document into a capped
collection that has reached its capacity already using the following

command.
db.student.insert({ id:10003,name:"Anba V M",age:16})
Here is the output,

> db.student.insert({ id:10003,name:"Anba V M",age:16})
WriteResult({ "nInserted" : 1 })

To query the student collection, use the following command.

> db.student.find()

{ "_id" : 10002, "name" : "Aruna M S", "age" : 14 }
{ " _id" : 10003, "name" : "Anba V M", "age" : 16 }
>

30

CHAPTER2 MONGODB CRUD OPERATIONS

Notice that the first document is overwritten by the third document,
as the maximum number of documents allowed in the student capped
collection is two.

Create Operations

Create operations allow us to insert documents into a collection. These
insert operations target a single collection. All write operations are atomic
at the level of a single document.

MongoDB provides several methods for inserting documents, listed in
Table 2-1.

Table 2-1. Insert Methods

db.collection.insertOne Inserts a single document
db.collection.insertMany Inserts multiple documents

db.collection.insert Inserts a single document or multiple documents

Recipe 2-3. Insert Documents

In this recipe, we are going to discuss various methods to insert documents
into a collection.

Problem

You want to insert documents into the collection person.

31

CHAPTER2 MONGODB CRUD OPERATIONS

Solution

Use the following syntax to insert documents.

db.collection.insertOne()
db.collection.insertMany()

How It Works

Let’s follow the steps in this section to insert documents into the collection
person.

Step 1: Insert a Single Document

To insert a single document into the collection person, use the following
command.

db.person.insertOne({ id:1001,name:"Taanushree AS",age:10})
Here is the output,

> db.person.insertOne({ id:1001,name:"Taanushree AS",age:10})
{ "acknowledged" : true, "insertedId" : 1001 }
>

insertOne() returns a document that contains the newly inserted
document’s _id.

If you don’t specify an _id field, MongoDB generates an _1id field with
an ObjectId value. The id field act as the primary key.

32

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is an example:

> db.person.insertOne({name:"Aruna MS",age:14})

{

"acknowledged" : true,
"insertedId" : ObjectId("5bac7a5113572c1fb994d2fe™)

Step 2: Insert Multiple Documents

To insert multiple documents into the collection person, use the following
command.

db.person.insertMany([{ id:1003,name:"Anba V M",age:16},{ id:10
04,name: "shobana",age:44}])

Pass an array of documents to the insertMany() method to insert
multiple documents.
Here is the output,

> db.person.insertMany([{_id:1003,name:"Anba V M",age:16},{ id:
1004, name: "shobana",age:44}])

{ "acknowledged" : true, "insertedIds" : [1003, 1004] }

>

Read Operations

Read operations allow us to retrieve documents from a collection.
MongoDB provides the find() method to query documents.
The syntax for the find() command is

db.collection.find()

33

CHAPTER2 MONGODB CRUD OPERATIONS

You can specify query filters or criteria inside the find() method to
query documents based on conditions.

Recipe 2-4. Query Documents

In this recipe, we are going to discuss how to retrieve documents from a
collection.

Problem

You want to retrieve documents from a collection.

Solution

Use the following syntax to retrieve documents from a collection.

db.collection.find()

How It Works

Let’s follow the steps in this section to query documents in a collection.

Step 1: Select All Documents in a collection

To select all documents in a collection, use the following command.
db.person.find({})

You need to pass an empty document as a query parameter to the
find() method.

34

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

> db.person.find({})

{ " _id" : 1001, "name" : "Taanushree AS", "age" : 10 }

{ " _id" : ObjectId("5bac86dc773204ddade95819"), "name" : "Aruna
MS", "age" : 14 }

{ " id" : 1003, "name" : "Anba V M", "age" : 16 }

{ "_id" : 1004, "name" : "shobana", "age" : 44 }

Step 2: Specify Equality Conditions

To specify an equality condition, you need to use <field>:<value>
expressions in the query to filter documents.

To select a document from the collection person where the name
equals "shobana", here is the command:

db.person.find({name:"shobana"})
Here is the output,

> db.person.find({name: "shobana"})
{ " id" : 1004, "name" : "shobana", "age" : 44 }
>

Step 3: Specify Conditions Using Query Operator

To select all documents from the collection person where age is greater
than 10, here is the command:

db.person.find({age:{$gt:10}})

35

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

> db.person.find({age:{$gt:10}})

{ "_id" : ObjectId("5bac86dc773204ddade95819"), "name" : "Aruna
Ms*", "age" 114 }

{ "_id" : 1003, "name" : "Anba V M", "age" : 16 }

{ " _id" : 1004, "name" : "shobana", "age" : 44 }

Step 4: Specify AND Conditions

In a compound query, you can specify conditions for more than one field.
To select all documents in the person collection where the name equals
"shobana" and the age is greater than 10, here is the command:

db.person.find({ name:"shobana",age:{$gt:10}})
Here is the output,

> db.person.find({ name:"shobana",age:{$gt:10}})

{ " _id" : 1004, "name" : "shobana", "age" : 44 }

>

Step 5: Specify OR Conditions

You can use $0r in a compound query to join each clause with a logical or
conjunction.

The operator $or selects the documents from the collection that match
at least one of the selected conditions.

To select all documents in the person collection where the name
equals "shobana" or age equals 20, here is the command:

db.person.find({ $or: [{ name: "shobana" }, { age: { $eq: 20
Fr1})

36

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

> db.person.find({ $or: [{ name: "shobana" }, { age: { $eq:
20} }11})

{ " id" : 1004, "name" : "shobana", "age" : 44 }

>

Update Operations

Update operations allow us to modify existing documents in a collection.
MongoDB provides the update methods listed in Table 2-2.

Table 2-2. Update Methods

db.collection.updateOne To modify a single document
db.collection.updateMany To modify multiple documents
db.collection.replaceOne To replace the first matching document in the

collection that matches the filter

In MongoDB, update operations target a single collection.

Recipe 2-5. Update Documents

In this recipe, we are going to discuss how to update documents.

Problem

You want to update documents in a collection.

37

CHAPTER2 MONGODB CRUD OPERATIONS

Solution

The following methods are used to update documents in a collection.

db.collection.updateOne()
db.collection.updateMany()
db.collection.replaceOne()

Execute the following code in the mongo shell to create the student
collection.

db.student.insertMany([{ id:1001,name:"John",marks:{english:35,
maths:38},result:"pass"},{ id:1002,name:"Jack",marks:{english:1
5,maths:18},result:"fail"},{ id:1003,name:"John",marks:{english
:25,maths:28},result: "pass"},{ id:1004,name:"James",marks:{engl
ish:32,maths:40},result:"pass"},{ id:1005,name:"Joshi",marks:{e
nglish:15,maths:18},result:"fail"},{ id:1006,name:"Jack",marks:
{english:35,maths:36},result:"pass"}])

How It Works

Let’s follow the steps in this section to update documents in a collection.

Step 1: Update a Single Document

MongoDB provides modify operators to modify field values such as $set.
To use the update operators, pass to the update methods an update
document of the form:

{

<update operator>: { <field1>: <valuel>, ... },
<update operator>: { <field2>: <value2>, ... },

38

CHAPTER2 MONGODB CRUD OPERATIONS

To update the first document where name equals joshi, execute the
following command.

db.student.updateOne({name: "Joshi"},{$set:{"marks.english": 20}})
Here is the output,

> db.student.updateOne({name: "Joshi"},{$set:{"marks.english": 20}})
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }
>

Confirm that the field marks has been updated in the student collection:
> db.student.find({name:"Joshi"})
{ " _id" : 1005, "name" : "Joshi", "marks" : { "english" : 20,

"maths" : 18 }, "result" : "fail" }
>

Note You cannot update the _id field.

Step 2: Update Multiple Documents

Use the following code to update all documents in the student collection
where result equals fail.

db.student.updateMany({ "result":"fail" }, { $set: { "marks.
english": 20, marks.maths: 20 } })

Here is the output,

> db.student.updateMany({ "result":"fail" }, { $set: {"marks.
english": 20, "marks.maths": 20 }})

{ "acknowledged" : true, "matchedCount" : 2, "modifiedCount" : 2 }
>

39

CHAPTER2 MONGODB CRUD OPERATIONS

Here, the modifiedCount is 2, which indicates that the preceding
command modified two documents in the student collection.

Step 3: Replace a Document

You can replace the entire content of a document except the _id field
by passing an entirely new document as the second argument to db.
collection.replaceOne() as shown here.

Execute the following command to replace the first document from the
student collection where name equals "John".

db.student.replaceOne({ name: "John" }, { id:1001,name:"John",
marks:{english:36,maths:39},result:"pass"})

Here is the output,

> db.student.replaceOne({ name: "John" }, { id:1001,name:"John
",marks:{english:36,maths:39},result:"pass"})

{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" :
1}

>

Note Do not include update operators in the replacement
document. You can omit the _id field in the replacement document
because the _id field is immutable. However, if you want to include
the _id field, use the same value as the current value.

Delete Operations

Delete operations allow us to delete documents from a collection.
MongoDB provides two delete methods, as shown in Table 2-3.

40

CHAPTER2 MONGODB CRUD OPERATIONS

Table 2-3. Delete Methods

db.collection.deleteOne To delete a single document

db.collection.updateMany To delete multiple documents

In MongoDB, delete operations target a single collection.

Recipe 2-6. Delete Documents

In this recipe, we discuss how to delete documents.

Problem

You want to delete documents from a collection.

Solution

The following methods are used to delete documents from a collection.

db.collection.deleteOne()
db.collection.deleteMany()

How It Works

Let’s follow the steps in this section to delete documents in a collection.

Step 1: Delete Only One Document That Matches
a Condition

To delete a document from the collection student where name is John, use
this code.

db.student.deleteOne({name: "John"})

41

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

> db.student.deleteOne({name: "John"})
{ "acknowledged" : true, "deletedCount" : 1 }
>

Step 2: Delete All Documents That Match a Condition

To delete all documents from the collection student where name is Jack,
use this code.

db.student.deleteMany({name: "Jack"})
Here is the output,

> db.student.deleteMany({name: "Jack"})
{ "acknowledged" : true, "deletedCount" : 2 }
>

Step 3: Delete All Documents from a Collection

To delete all documents from the collection student, pass an empty
filter document to the db.student.deleteMany() method.

db.student.deleteMany({})
Here is the output,

> db.student.deleteMany({})
{ "acknowledged" : true, "deletedCount" : 3 }
>

42

CHAPTER2 MONGODB CRUD OPERATIONS

MongoDB Import and Export

The MongoDB import tool allows us to import content from JSON,
comma-separated value (CSV), and tab-separated value (TSV) files.
MongoDB import only supports files that are UTF-8 encoded.

The MongoDB export tool allows us to export data stored in MongoDB
instances as JSON or CSV files.

Recipe 2-7. Work with Mongo Import

In this recipe, we are going to discuss how to import data from a CSV file.

Problem

You want to import data from the student. csv file to the students collection.

Solution

The following command is used to perform a Mongo import.

mongoimport

Note To work with the Mongo import command, start the mongod
process and open another command prompt to issue the mongo
import command.

How It Works

Let’s follow the steps in this section to work with Mongo import.

43

CHAPTER2 MONGODB CRUD OPERATIONS

Create a student. csv file using the following data in the C: \Sample\
directory.

_id,name,class
1,John,II
2,James,ITI
3,Joshi,I

Execute the following command to import data from the student.csv
file to the students collection.

mongoimport --db student --collection students --type csv
--headerline --file c:\Sample\student.csv

Here is the output,

C:\Program Files\MongoDB\Server\4.0\bin>mongoimport --db
student --collection students --type csv --headerline --file
c:\Sample\student.csv

2018-09-28T07:00:20.909+0530 connected to: localhost
2018-09-28T07:00:20.969+0530 imported 3 documents

C:\Program Files\MongoDB\Server\4.0\bin>

To confirm the existence of the students collection, issue the following
commands.

> use student

switched to db student

> show collections

students

> db.students.find()

{ " id" : 1, "name" : "John", "class" : "II" }

{ " id" : 3, "name" : "Joshi", "class" : "I" }

{ " id" : 2, "name" : "James", "class" : "III" }
>

44

CHAPTER2 MONGODB CRUD OPERATIONS

Recipe 2-8. Work with Mongo Export

In this recipe, we are going to discuss how to export data from the
students collection to a student. json file

Problem

You want to export data from the students collection to a student. json file.

Solution
The following command is used to perform a Mongo export.

mongoexport

Note To work with the Mongo export command, start the mongod
process and open another command prompt to issue the Mongo
export command.

How It Works

Let’s follow the steps in this section to work with Mongo export.
Execute the following command to export data from the students
collection to a student. json file

mongoexport --db student --collection students --out C:\Sample\
student.json

45

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

C:\Program Files\MongoDB\Server\4.0\bin>mongoexport --db
student --collection students --out C:\Sample\student.json
2018-09-28T07:11:19.446+0530 connected to: localhost
2018-09-28T07:11:19.459+0530 exported 3 records

The confirm the export, open the student. json file.

{" id":1,"name":"John","class":"II"}
{"_id":2,"name":"James","class":"III"}

{" id":3,"name":"Joshi","class":"I"}

Embedded Documents in MongoDB

Using embedded documents allows us to embed a document within
another document. Consider this example.

{_id:1001,name:"John" ,marks:{english:35,maths:38},result: "pass"}

Here, the marks field contains an embedded document.
Execute the following code to create an employee database and
employee collection.

use employee

db.employee.insertMany([{ id:1001,name:"John",address:{previous
:"123,1st Main",current:"234,2nd Main"},unit: "Hadoop"},
{_id:1002,name:"Jack", address:{previous:"Cresent
Street",current:"234,Bald Hill Street"},unit:"MongoDB"},
{_id:1003,name:"James", address:{previous:"Cresent
Street",current:"234,Hill Street"},unit:"Spark"}])

46

CHAPTER2 MONGODB CRUD OPERATIONS

Recipe 2-9. Query Embedded Documents

In this recipe, we are going to discuss how to query embedded documents.

Problem

You want to query embedded documents.

Solution
The following command is used to query embedded documents.
db.collection.find()

You need to pass the filter document {<field>:<value>} to the find()
method where <value> is the document to match.

How It Works

Let’s follow the steps in this section to query embedded documents.

Step 1: Match an Embedded or Nested Document

To perform an equality match on the embedded document, you need to
specify the exact match document in the <value> document, including the
field order.

To select all documents where the address field equals the document
{previous:"Cresent Street",current:"234,Bald Hill Street"}:

db.employee.find({ address: { previous:"Cresent
Street",current:"234,Bald Hill Street" }})

47

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

> db.employee.find({ address: { previous:"Cresent
Street",current:"234,Bald Hill Street" }})

{ " id" : 1002, "name" : "Jack", "address" : { "previous" :
"Cresent Street", "current" : "234,Bald Hill Street" }, "unit"
: "MongoDB" }

Step 2: Query on a Nested Field

We can use dot notation to query a field of the embedded document.
To select all documents where the previous field nested in the address
field equals "Cresent Street",

db.employee.find({ "address.previous": "Cresent Street" })
Here is the output,

> db.employee.find({ "address.previous": "Cresent Street" })

{ " id" : 1002, "name" : "Jack", "address" : { "previous" :
"Cresent Street", "current" : "234,Bald Hill Street" }, "unit"
: "MongoDB" }

{ " id" : 1003, "name" : "James", "address" : { "previous" :
"Cresent Street", "current" : "234,Hill Street" }, "unit" :
"Spark" }

>

Working with Arrays

In MongoDB, we can specify field values as an array.

48

CHAPTER2 MONGODB CRUD OPERATIONS

Recipe 2-10. Working with Arrays

In this recipe, we are going to discuss how to query an array.

Problem

You want to query an array.

Solution

The following command is used to query an array.

db.collection.find()

How It Works

Let’s follow the steps in this section to query embedded documents.

Step 1: Match an Array

Execute the code shown here to create the employeedetails collection
under the employee database.

db.employeedetails.insertMany([
{ name: "John", projects: ["MongoDB", "Hadoop","Spark"],
scores:[25,28,29] }, { name: "James", projects: [
"Cassandra","Spark"], scores:[26,24,23]}, { name: "Smith",
projects: ["Hadoop","MongoDB"], scores:[22,28,26]}])

To specify an equality condition on an array, you need to specify
the exact array to match in the <value> of the query document
{«field>:<value>}.

49

CHAPTER2 MONGODB CRUD OPERATIONS

To select all documents where the projects value is an array with
exactly two elements, "Hadoop" and "MongoDB", in the specified order, use
the following commands.

db.employeedetails.find({ projects: ["Hadoop", "MongoDB"] })
Here is the output,

> db.employeedetails.find({ projects: ["Hadoop", "MongoDB"] })
{ " _id" : ObjectId("5badcbd5f10ab299920f072a"), "name" :
"Smith", "projects" : ["Hadoop", "MongoDB"], "scores" : [22,
28, 26] }

>

Step 2: Query an Array for an Element

To query all documents where projects is an array that contains the string
"MongoDB" as one of its elements, execute the following command.

db.employeedetails.find({ projects: "MongoDB" })
Here is the output,

> db.employeedetails.find({ projects: "MongoDB" })

{ "_id" : ObjectId("5badcbd5f10ab299920f0728"), "name" :

"John", "projects" : ["MongoDB", "Hadoop", "Spark"], "scores"
: [25, 28, 29]}

{ " id" : ObjectId("sbadcbd5f10ab299920f072a"), "name" : "Smith",
"projects” : ["Hadoop", "MongoDB"], "scores" : [22, 28, 26] }
>

50

CHAPTER2 MONGODB CRUD OPERATIONS

Step 3: Specify Query Operators

To query all documents where the scores field is an array that contains at
least one element whose value is greater than 26 we can use the $gt operator.

db.employeedetails.find({ scores:{$gt:26} })
Here is the output,

> db.employeedetails.find({ scores:{$gt:26} })

{ "_id" : ObjectId("5badcbd5f10ab299920f0728"), "name" :

"John", "projects" : ["MongoDB", "Hadoop", "Spark"], "scores"
: [25, 28, 29]}

{ "_id" : ObjectId("5badcbd5f10ab299920f072a"), "name" : "Smith",
"projects" : ["Hadoop", "MongoDB"], "scores" : [22, 28, 26] }
>

Step 4: Query an Array with Compound Filter
Conditions on the Array Elements

A compound filter condition on the array can be specified as shown here.
db.employeedetails.find({ scores: { $gt: 20, $1t: 24 } })
Here is the output,

> db.employeedetails.find({ scores: { $gt: 20, $1t: 24 } })
{ "_id" : ObjectId("sbadcbd5f10ab299920f0729"), "name" :
"James", "projects" : ["Cassandra", "Spark"], "scores" :

[26, 24, 23] }

{ " id" : ObjectId("sbadcbd5f10ab299920f072a"), "name" :
"Smith", "projects" : ["Hadoop", "MongoDB"], "scores" :

[22, 28, 26] }

>

51

CHAPTER2 MONGODB CRUD OPERATIONS

Here, one element of the scores array can satisfy the greater than 20
condition and another element can satisfy the less than 24 condition, or a
single element can satisfy both the conditions.

Step 5: Using the $elemMatch operator

The $elemMatch operator allows us to specify multiple conditions on the
array elements such that at least one array element should satisfy all of the
specified conditions.

db.employeedetails.find({ scores: { $elemMatch: { $gt: 23,
$1t: 27 1 }+ })

Here is the output,

> db.employeedetails.find({ scores: { $elemMatch: { $gt: 23,
$1t: 27 } }+ })

{ "_id" : ObjectId("5badcbd5f10ab299920f0728"), "name" :

"John", "projects" : ["MongoDB", "Hadoop", "Spark"], "scores"
: [25, 28, 29]}

{ " id" : ObjectId("5badcbd5f10ab299920f0729"), "name" : "James",
"projects" : ["Cassandra", "Spark"], "scores" : [26, 24, 23] }
{ "_id" : ObjectId("sbadcbd5f10ab299920f072a"), "name" : "Smith",
"projects” : ["Hadoop", "MongoDB"], "scores" : [22, 28, 26] }
>

Step 6: Query an Array Element by Index Position

Use dot notation to query an array element by its index position.
Use this code to select all documents where the third element in the
scores array is greater than 26.

db.employeedetails.find({ "scores.2": { $gt: 26 } })

52

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

> db.employeedetails.find({ "scores.2": { $gt: 26 } })

{ "_id" : ObjectId("5badcbd5f10ab299920f0728"), "name" :
"John", "projects" : ["MongoDB", "Hadoop", "Spark"], "scores"
:[25,28,29]}

Step 7: Using the $size Operator

You can use the $size operator to query an array by number of elements.
To select all documents where the projects array has two elements,
use this code.

db.employeedetails.find({ "projects": { $size: 2 } })
Here is the output,

> db.employeedetails.find({ "projects": { $size: 2 } })

{ " id" : ObjectId("5badcbd5f10ab299920f0729"), "name" :
"James", "projects" : ["Cassandra", "Spark"], "scores" : [
26, 24, 23] }

{ " _id" : ObjectId("5badcbd5f10ab299920f072a"), "name" :
"Smith", "projects" : ["Hadoop", "MongoDB"], "scores" : [22,
28, 26] }

Step 8: Using the $push Operator

You can use the $push operator to add a value to an array.
To add work location details, use this code.

db.employeedetails.update({name:"James"},{$push:{Location: "US"}})

53

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the query to check the result:

> db.employeedetails.find({name:"James"})

{ "_id" : ObjectId("5c04bef3540€90478dd92f4e"), "name" :
"James", "projects" : ["Cassandra", "Spark"], "scores" :
[26, 24, 23], "Location" : ["US"] }

To append multiple values to an array, use the $each operator.

db.employeedetails.update({name: "Smith"},{$push:{Location:{$ea
ch: [IIUSII’IIUK"]}}})

Here is the query to check the result:

> db.employeedetails.find({name:"Smith"})

{ "_id" : ObjectId("5c04bef3540€90478dd92f4f"), "name" :
"Smith", "projects" : ["Hadoop", "MongoDB"], "scores" : [22,
28, 26], "Location" : ["US", "UK"] }

>

Step 9: Using the $addToSet Operator

You can use the $addToSet operator to add a value to an array. $addToSet
adds a value to an array only if a value is not present. If a value is present, it
does not do anything.

To add hobbies to the employeedetails collection, use this code.

db.employeedetails.update({name: "James"}, { $addToSet:
{hobbies: ["drawing", "dancing"]} })

54

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the query to check the result:

> db.employeedetails.find({name:"James"})

{ " _id" : ObjectId("5c04bef3540e90478dd92f4e"), "name" : "James",
"projects” : ["Cassandra", "Spark"], "scores" : [26, 24, 23],
"Location" : ["US"], "hobbies" : [["drawing", "dancing"]] }
>

Step 10: Using the $pop Operator

You can use the $pop operator to remove the first or last element of an array.
To remove the first element in the scores array, use this code.

db.employeedetails.update({name: "James"},{ $pop:
{scores:-1}})

Here is the query to check the result:

> db.employeedetails.find({name:"James"})

{ " id" : ObjectId("5c04bef3540e90478dd92f4e"), "name" :
"James", "projects" : ["Cassandra", "Spark"], "scores" : [
24, 23], "Location" : ["US"], "hobbies" : [["drawing",
"dancing" 11 }

>

To remove the last element in the scores array, use this code.
db.employeedetails.update({name: "James"},{ $pop: {scores:1}})
Here is the query to check the result:

> db.employeedetails.find({name:"James"})

{ "_id" : ObjectId("5c04bef3540€90478dd92f4e"), "name" :
"James", "projects" : ["Cassandra", "Spark"], "scores" : [24],
"Location" : ["US"], "hobbies" : [["drawing", "dancing"]] }
>

55

CHAPTER2 MONGODB CRUD OPERATIONS

Recipe 2-11. Query an Array of Embedded
Documents

In this recipe, we are going to discuss how to query an array of embedded
documents.

Problem

You want to query an array of embedded documents.

Solution

The following command is used to query an array of embedded
documents.

db.collection.find()

How It Works

Let’s follow the steps in this section to query an array of embedded
documents.

Step 1: Query for a Document Nested in an Array

Execute the following code to create a student database and studentmarks
collection.

> use student

> db.studentmarks.insertMany([{name:"John",marks:[{cla

ss: "II", total: 489},{ class: "III", total: 490 }]},{name:
"James",marks:[{class: "III", total: 469 },{class: "IV",
total: 450}]},{name:"Jack",marks:[{class:"II", total: 489 },{

56

CHAPTER2 MONGODB CRUD OPERATIONS

class: "III", total: 390}]},{name:"Smith", marks:[{class:
"III", total: 489}, {class: "IV", total: 490}]},
{name:"Joshi",marks:[{class: "II", total: 465}, { class: "III",
total: 470}]}])

The command shown here selects all documents in the array field
marks that match the specified document.

db.studentmarks.find({ "marks": {class: "II", total: 489}})
Here is the output,

> db.studentmarks.find({ "marks": {class: "II", total: 489}})
{ " _id" : ObjectId("5bae10e6f10ab299920f073f"), "name" :
"John", "marks" : [{ "class" : "II", "total" : 489 }, {
"class" : "III", "total" : 490 } | }

{ " id" : ObjectId("5bae10e6f10ab299920f0741"), "name" : "Jack",
"marks" : [{ "class" : "II", "total" : 489 }, { "class" :
"III", "total" : 390 }] }

>

Note Equality matching on the array of an embedded document
requires an exact match of the specified document, including field order.

Step 2: Query for a Field Embedded in an Array
of Documents

You can use dot notation to query a field embedded in an array of
documents. The following command selects all documents in the marks
array where at least one embedded document contains the field total that
has a value that is less than 400.

db.studentmarks.find({ 'marks.total': { $1t: 400 } })

57

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

> db.studentmarks.find({ 'marks.total': { $1t: 400 } })
{ "_id" : ObjectId("5bae10e6f10ab299920f0741"), "name" :
"Jack", "marks" : [{ "class" : "II", "total" : 489 }, {
"class" : "III", "total" : 390 }] }

>

Step 3: Array Index to Query for a Field
in the Embedded Document

The command shown here selects all the documents in the marks array
where the first element of the document contains the field class, which
has a value that is equal to "II".

db.studentmarks.find({ 'marks.o.class': "II" })
Here is the output,

> db.studentmarks.find({ 'marks.o.class': "II" })

{ " _id" : ObjectId("5bae10e6f10ab299920f073f"), "name" :
"John", "marks" : [{ "class" : "II", "total" : 489 },

{ "class" : "III", "total" : 490 }] }

{ " _id" : ObjectId("5bae10e6f10ab299920f0741"), "name" :
"Jack", "marks" : [{ "class" : "II", "total" : 489 },

{ "class" : "III", "total" : 390 }] }

{ "_id" : ObjectId("5bae10e6f10ab299920f0743"), "name" :
"Joshi", "marks" : [{ "class" : "II", "total" : 465 },
{ "class" : "III", "total" : 470 }] }

>

58

CHAPTER2 MONGODB CRUD OPERATIONS

Project Fields to Return from Query

By default, queries in MongoDB return all fields in matching documents.
You can restrict the fields to be returned using a projection document.

Execute the following code to create a studentdetails collection
under the student database.

db.studentdetails.insertMany([{name: "John", result: "pass"”,
marks: { english: 25, maths: 23, science: 25 }, grade: [{
class: "A", total: 73 }] },{name: "James", result: "pass"”,
marks: { english: 24, maths: 25, science: 25 }, grade: [{
class: "A", total: 74 }] },{name: "James", result: "fail",
marks: { english: 12, maths: 13, science: 15 }, grade: [{
class: "C", total: 40 }] }])

Recipe 2-12. Restricting the Fields Returned
from a Query

In this recipe, we are going to discuss how to restrict the fields to return
from a query.

Problem

You want to restrict the fields to return from a query.

Solution

The following command is used to restrict the fields to return from a query.

db.collection.find()

59

CHAPTER2 MONGODB CRUD OPERATIONS

How It Works

Let’s follow the steps in this section to restrict the fields to return from a
query.

Step 1: Return the Specified Fields and the _id
Field Only

You can project the required fields by setting the <field> value to 1 in the
projection document.

The command shown here returns only the _id, marks, and result
fields where name equals "John" in the result set.

db.studentdetails.find({ name: "John" }, { marks: 1, result: 1

1)

Here is the output,

> db.studentdetails.find({ name: "John" }, { marks: 1, result:

1})

{ " id" : ObjectId("5bae3ed2f10ab299920f0744"), "result" :
"pass", "marks" : { "english" : 25, "maths" : 23, "science" :
25 } }

>

Step 2: Suppress the _id Field

You can suppress the _id field by setting its exclusion <field> to 0 in the
projection document.
The following command suppresses the _id field in the result set.

db.studentdetails.find({ name: "John" }, { marks: 1, result:
1, id:0 })

60

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

> db.studentdetails.find({ name: "John" }, { marks: 1, result:
1, id:0 })

{ "result" : "pass", "marks" : { "english" : 25, "maths" : 23,
"science" : 25 } }

>

Step 3: Exclude More Than One Field

You can exclude fields by setting <field> to 0 in the projection document.
The following command suppresses the id and result fields in the
result set.

db.studentdetails.find({ name: "John" }, { result:o, id:0 })
Here is the output,

> db.studentdetails.find({ name: "John" }, { result:0, id:0 }
)

{ "name" : "John", "marks" : { "english" : 25, "maths" : 23,
"science" : 25 }, "grade" : [{ "class" : "A", "total" : 73 }]

}
>

Step 4: Return a Specific Field in an Embedded
Document

You can use dot notation to refer to the embedded field and set the
<field> to 1 in the projection document.
Here is an example:

db.studentdetails.find({ name: "John }, { result:1, grade: 1,
"marks.english": 1 })

61

CHAPTER 2 MONGODB CRUD OPERATIONS
Here is the output,

> db.studentdetails.find({ name: "John" }, { result:1, grade:
1, "marks.english": 1 })

{ " id" : ObjectId("5bae3ed2f10ab299920f0744"), "result" : "pass",
"marks" : { "english" : 25 }, "grade" : [{ "class" : "A",
"total" : 73 }] }

>

Query for Null or Missing Fields

Execute the following code to create the sample collection.

db.sample.insertMany([{ _id: 1, name: null }, { _id: 2 }])

Recipe 2-13. To Query Null or Missing Fields

In this recipe, we are going to discuss how to query null or missing values
in MongoDB.

Problem

You want to query null or missing values.

Solution

The following command is used to query null or missing values.

db.collection.find()

62

CHAPTER2 MONGODB CRUD OPERATIONS

How It Works

Let’s follow the steps in this section to query null or missing values.

Step 1: Equality Filter

The {name:null} query matches documents that either contain the name
field with a value of null or do not contain the name field.

db.sample.find({ name: null })
Here is the output,

> db.sample.insertMany([{ _id: 1, name: null }, { _id: 2 }])
{ "acknowledged" : true, "insertedIds" : [1, 2] }
>

Here, it returns both the documents.

Step 2: Type Check

The query shown here returns the documents that only contain the name
field with a value of null. In BSON, set the null value to 10.

db.sample.find({ name: { $type: 10 } })
Here is the output,

> db.sample.find({ name: { $type: 10 } })
{ " id" : 1, "name" : null }
>

63

CHAPTER2 MONGODB CRUD OPERATIONS

Step 3: Existence Check

You can use the $exist operator to check for the existence of a field.
The following query returns the documents that do not contain the
name field.

db.sample.find({ name: { $exists: false } })
Here is the output,

> db.sample.find({ name: { $exists: false } })
{"did" : 2}
>

lterate a Cursor

The db.collection.find() method of MongoDB returns a cursor. You
need to iterate a cursor to access the documents. You can manually iterate
a cursor in the mongo shell by assigning a cursor returned from the find()
method to a variable using the var keyword.

If you are not assigning a cursor to a variable using the var keyword, it
is automatically iterated up to 20 times to print the first 20 documents.

Recipe 2-14. Iterate a Cursor

In this recipe, we are going to discuss how to iterate a cursor in the mongo shell.

Problem

You want to iterate a cursor in the mongo shell.

64

Solution

The following syntax is used to iterate a cursor.

CHAPTER 2

var myCursor = db.collection.find()
myCursor

How It Works

Let’s follow the steps in this section to iterate a cursor. First, create a

numbers collection.

db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.

numbers.
numbers.

numbers

numbers.
numbers.
numbers.

numbers

numbers.
numbers.
numbers.

numbers

numbers.
numbers.
numbers.
numbers.

numbers

numbers.
numbers.
numbers.

numbers

numbers.

insert({ id:
insert({ id:
.insert({ id:
insert({ id:
insert({ id:
insert({ id:
.insert({ id:
insert({ id:
insert({ id:
insert({ id:
.insert({ id:
insert({ id:
insert({ id:
insert({ id:
insert({ id:
.insert({ id:
insert({ id:
insert({ id:
insert({ id:
.insert({ id:
insert({ id:

1,number:
2,number:
3, humber
4,number:
5,number:
6,number :
7,number :
8,number:
9,number:
10, number:
11, number:
12,number:
13, number:
14 ,number :
15, number:
16, number:
17, number:
18,number:
19, number:
20, number:
21,number:

1});
2});
:3});
4});
51);
6});
71);
8});
91);

10});
11});
12});
13});
14});
15});
16});
17});
18});
19});
20});
21});

MONGODB CRUD OPERATIONS

65

CHAPTER2 MONGODB CRUD OPERATIONS

db.numbers.insert({ id:22,number:22});
db.numbers.insert({ id:23,number:23});
db.numbers.insert({ id:24,number:24});
db.numbers.insert({ id:25,number:25});

Issue the following commands to iterate a cursor.

var myCursor = db.numbers.find()
myCursor

Here is the output,

> var myCursor = db.numbers.find()
> myCursor

{ " id" : 1, "number" : 1 }

{ " id" : 2, "number" : 2 }

{ " id" : 3, "number" : 3}

{ " id" : 4, "number" : 4 }

{ " id" : 5, "number" : 5 }

{ " id" : 6, "number" : 6 }

{ " id" : 7, "number" : 7 }

{ " id" : 8, "number" : 8 }

{ " id" : 9, "number" : 9 }

{ " id" : 10, "number" : 10 }
{ " id" : 11, "number" : 11 }
{ " id" : 12, "number" : 12 }
{ " id" : 13, "number" : 13 }
{ " id" : 14, "number" : 14 }
{ " id" : 15, "number" : 15 }
{ " id" : 16, "number" : 16 }
{ " id" : 17, "number" : 17 }
{ " id" : 18, "number" : 18 }
{ " id" : 19, "number" : 19 }

66

CHAPTER2 MONGODB CRUD OPERATIONS

{ " id" : 20, "number" : 20 }

Type "it" for more

> it

{ " id" : 21, "number" : 21 }
{ " id" : 22, "number" : 22 }
{ " id" : 23, "number" : 23 }
{ "_id" : 24, "number" : 24 }
{ " id" : 25, "number" : 25 }
>

You can also use the cursor method next () to access the document.

var myCursor=db.numbers.find({});
while(myCursor.hasNext()){
print(tojson(myCursor.next()));

}

Here is the output,

> var myCursor=db.numbers.find({});
> while(myCursor.hasNext()){

... print(tojson(myCursor.next()));
-}

" id" : 1, "number" : 1}
" id" : 2, "number" : 2}
" id" : 3, "number" : 3 }
" id" : 4, "number" : 4 }
" id" : 5, "number" : 5 }
" id" : 6, "number" : 6 }
" id" : 7, "number" : 7 }
" id" : 8, "number" : 8 }
" id" : 9, "number" : 9 }
" id" : 10, "number" : 10 }

N e T e S N N T N
.

67

CHAPTER2 MONGODB CRUD OPERATIONS

{ " id" : 11, "number" : 11 }
{ " id" : 12, "number" : 12 }
{ " id" : 13, "number" : 13 }
{ "_id" : 14, "number" : 14 }
{ " id" : 15, "number" : 15 }
{ " id" : 16, "number" : 16 }
{ "_id" : 17, "number" : 17 }
{ " id" : 18, "number" : 18 }
{ " id" : 19, "number" : 19 }
{ " id" : 20, "number" : 20 }
{ " id" : 21, "number" : 21 }
{ " id" : 22, "number" : 22 }
{ " id" : 23, "number" : 23 }
{ " id" : 24, "number" : 24 }
{ " id" : 25, "number" : 25 }
>
You can also use forEach to iterate the cursor and access the

document.

var myCursor = db.numbers.find()
myCursor.forEach(printjson);

var myCursor = db.numbers.find()
myCursor.forEach(printjson);

" id" : 1, "number" : 1}

" id" : 2, "number" : 2}

" id" : 3, "number" : 3 }

" id" : 4, "number" : 4 }

" id" : 5, "number" : 5 }

" id" : 6, "number" : 6 }

" id" : 7, "number" : 7 }

P N T P N S T A Y2

68

"_id"

D e T e T e e S N N T P S S =Sy

" id"
" id"
" id"
" id"
" id"
" id"
" id"
" id"
" id"
" id"

g, "
9, "
10,
11,
12,
13,
14,
15,
16,
17,

¢ 18,
" id"
" id"
" id"
" id"
" id" :
" id"
" id" :

19,
20,
21,
22,
23,
24,
25,

number" : 8 }

number" : 9 }

"number" : 10 }
"number" : 11 }
"number" : 12 }
"number" : 13 }
"number" : 14 }
"number" : 15 }
"number" : 16 }
"number" : 17 }
"number" : 18 }
"number" : 19 }
"number" : 20 }
"number" : 21 }
"number" : 22 }
"number" : 23 }
"number" : 24 }
"number" : 25 }

CHAPTER2 MONGODB CRUD OPERATIONS

Working with the 1imit() and skip()
Methods

The 1imit() method is used to limit the number of documents in

the query results and the skip() method skips the given number of

documents in the query result.

Recipe 2-15. 1imit() and skip() Methods

In this recipe, we are going to discuss how to work with the 1imit() and
skip() methods.

69

CHAPTER2 MONGODB CRUD OPERATIONS

Problem

You want to limit and skip the documents in a collection.

Solution

The following syntax is used to limit the number of documents in the
query result.

db.collection.find().limit(2)

The following syntax is used to skip a given number of documents in
the query result.

db.collection.find().skip(2)

How It Works

Let’s follow the steps in this section to work with the 1imit() and skip()
methods. Consider the numbers collection created in Recipe 2-14.
To display the first two documents, use this code.

db.numbers.find().1limit(2)
Here is the output,

> db.numbers.find().limit(2)
{ " id" : 1, "number" : 1 }
{ " id" : 2, "number" : 2 }
>

To skip the first five documents, use this code.

db.numbers.find().skip(5)

70

Here is the output,

> db.numbers.
{ " id" : 6,
{"id" : 7,
{ " id" : 8,
{ " id" : 9,
{ " id" : 10,
{ " id" : 11,
{ " id" : 12,
{ " id" : 13,
{ " id" : 14,
{ " id" : 15,
{ " id" : 1e,
{ " id" : 17,
{ " id" : 18,
{ " id" : 19,
{ " id" : 20,
{ " id" : 21,
{ " id" : 22,
{ " id" : 23,
{ " id" : 24,
{ " id" : 25,
>

find().skip(5)
"number" : 6 }
"number" : 7 }
"number” : 8 }
"number" : 9 }
"number" : 10 }
"number" : 11 }
"number" : 12 }
"number" : 13 }
"number" : 14 }
"number" : 15 }
"number" : 16 }
"number" : 17 }
"number" : 18 }
"number" : 19 }
"number" : 20 }
"number" : 21 }
"number" : 22 }
"number" : 23 }
"number" : 24 }
"number" : 25 }

CHAPTER2 MONGODB CRUD OPERATIONS

Working with Node. js and MongoDB

MongoDB is one of the most popular databases used with Node. js.

71

CHAPTER2 MONGODB CRUD OPERATIONS

Recipe 2-16. Node. js and MongoDB

In this recipe, we are going to discuss how to work with Node. js and
MongoDB.

Problem

You want to perform CRUD operations using Node. js.

Solution

Download the Node. js installer from https://nodejs.org/en/download/
and install it.

Note The given link might be changed in the future.

Next, open the command prompt and issue the below command to
install mongodb database driver.

npm install mongodb

How It Works

Let’s follow the steps in this section to work with Node. js and MongoDB.

Step 1: Establishing a Connection and Creating
a Collection

Save the following code in a file named connect. js.

var MongoClient = require('mongodb').MongoClient;
var url = "mongodb://localhost:27017/";

72

https://nodejs.org/en/download/

CHAPTER2 MONGODB CRUD OPERATIONS

MongoClient.connect(url,{useNewUrlParser:true,useUnifiedTopolog
y:true},function(err, db) {
if (err) throw err;
var mydb = db.db("mydb");
mydb.createCollection("employees"”, function(err, res) {
if (err) throw err;
console.log("Collection created!");
db.close();
1;
D;

Run the code by issuing this command at the terminal.
node connect.js
Here is the output,

C:\Users\DHARANI\Desktop>node connect.js
Collection created!

C:\Users\DHARANI\Desktop>node connect.’js
Collection created!

Step 2: Insert a Document
Save the code shown here in a file called insert. js.

var MongoClient = require('mongodb').MongoClient;
var url = "mongodb://localhost:27017/";

MongoClient.connect(url, {useNewUrlParser:true, useUnifiedTopol
ogy:true},function(err, db) {

if (err) throw err;

var mydb = db.db("mydb");

73

CHAPTER2 MONGODB CRUD OPERATIONS

var myobj = { name: "Subhashini", address: "E 603 Alpyne" };
mydb.collection("employees").insertOne(myobj, function
(err, res) {

if (err) throw err;

console.log("Inserted");

db.close();

};
};

Run the code by issuing the following command at the command
prompt.

node insert.js
Here is the output,

> show collections

mydb

> db.employees.find()

{ " id" : ObjectId("5c050dd8c63a253134cbd375"), "name" :
"Subhashini", "address" : "E 603 Alpyne" }

>

To insert multiple documents, use this command.

var myobj = [{name:"Shobana",address: "E 608
Alpyne"},{name:"Taanu", address:"Valley Street"}];

Step 3: Query a Document
Save the following code in a file called find. js.

var MongoClient = require('mongodb').MongoClient;
var url = "mongodb://localhost:27017/";

74

CHAPTER2 MONGODB CRUD OPERATIONS

MongoClient.connect(url, {useNewUrlParser:true,
useUnifiedTopology:true}, function(err, db) {
if (err) throw err;
var mydb = db.db("mydb");
var query = {name:"Subhashini" };
mydb.collection("employees").find(query).toArray(function
(err, result) {
if (err) throw err;
console.log(result);
db.close();
1;
1);

Run the code by issuing this command at the command prompt.
node find.js
Here is the output,

[{ _id: 5c050dd8c63a253134cbd375,
name: 'Subhashini’,
address: 'E 603 Alpyne' }]

Step 4: Update a Document
Save the code shown here in a file called update. js.

var MongoClient = require('mongodb').MongoClient;
var url = "mongodb://127.0.0.1:27017/";

MongoClient.connect(url, {useNewUrlParser:true,
useUnifiedTopology:true}, function(err, db) {
if (err) throw err;
var mydb = db.db("mydb");
var query = {address:"E 603 Alpyne" };

75

CHAPTER2 MONGODB CRUD OPERATIONS

var newvalues = { $set: {address:"New Street"}};
mydb.collection("employees").updateOne(query, newvalues,
function(err, res) {
if (err) throw err;
console.log("Document Updated");
db.close();
D;
1;

Run the code by issuing the following command at the command
prompt.

node update.js
Here is the output,

> db.employees.find({name:"Subhashini"})
{ " id" : ObjectId("5c050dd8c63a253134cbd375"), "name" :
"Subhashini", "address" : "New Street" }

>

Step 5: Delete a Document
Save the code shown here in a file called delete. js.

var MongoClient = require('mongodb').MongoClient;
var url = "mongodb://localhost:27017/";

MongoClient.connect(url, {useNewUrlParser:true,
useUnifiedTopology:true}, function(err, db) {
if (err) throw err;
var mydb = db.db("mydb");
var query = {name:"Subhashini"};
mydb.collection("employees").deleteOne(query, function(err, obj) {
if (err) throw err;

76

CHAPTER2 MONGODB CRUD OPERATIONS

console.log("Document deleted");
db.close();

};
;s

Run the code by issuing the following command at the command
prompt.

node delete.js
Here is the output,

Document deleted

77

CHAPTER 3

Data Modeling
and Aggregation

In Chapter 2, we discussed MongoDB CRUD operations, embedded

documents, and arrays. In this chapter, we cover the following topics.

e Data models.

o Data model relationship between documents.
¢ Modeling tree structures.

o Aggregation operations.

e SQL aggregation terms and corresponding MongoDB
aggregation operations.

Data Models

MongoDB provides two data model designs for data modeling:
o Embedded data models.

¢ Normalized data models.

© Subhashini Chellappan and Dharanitharan Ganesan 2020
S. Chellappan and D. Ganesan, MongoDB Recipe:s,
https://doi.org/10.1007/978-1-4842-4891-1_3

79

CHAPTER 3 DATA MODELING AND AGGREGATION

Embedded Data Models

In MongoDB, you can embed related data in a single document. This
schema design is known as denormalized models. Consider the example
shown in Figure 3-1.

_id: 10001,

studName:"John",

marks: { D] Embedded
english:24 sub document
maths:25
science:23

}

Figure 3-1. A denormalized model

This embedded document model allows applications to store
the related piece of information in the same records. As a result, the
application requires only few queries and updates to complete common
operations.

We can use embedded documents to represent both one-to-one
relationships (a “contains” relationship between two entities) and one-to-
many relationships (when many documents are viewed in the context of
one parent).

Embedded documents provide better results in these cases:

o Forread operations.

e When we need to retrieve related data in a single
database operation.

Embedded data models update related data in a single atomic
operation. Embedded document data can be accessed using dot notation.

80

CHAPTER 3 DATA MODELING AND AGGREGATION

Normalized Data Models

Normalized data models describe relationships using references, as
illustrated in Figure 3-2.

student document marks document

{ _id: <ObjectId2>,

{ _id: <ObjectIdl>, studId:<Objectidl>,
name : "John" —ly english:24,

1 maths:25,

science:23

Figure 3-2. Normalized data model

Normalized data models can best be used in the following

circumstances:

e When embedding data model results duplication
of data.

o To represent complex many-to-many relationships.
e Tomodellarge hierarchical data sets.

Normalized data models do not provide good read performance.

Data Model Relationship Between Documents

Let’s explore a data model that uses an embedded document and references.

Recipe 3-1. Data Model Using an Embedded
Document

In this recipe, we are going to discuss a data model using an embedded

document.

81

CHAPTER 3 DATA MODELING AND AGGREGATION

Problem

You want to create a data model for a one-to-one relationship.

Solution

Use an embedded document.

How It Works

Let’s follow the steps in this section to design a data model for a one-to-
one relationship.

Step 1: One-to-One Relationships

Consider this example.

{
_id: "James",
name: "James William"

}

{
student_id: "James",
street: "123 Hill Street",
city: "New York",
state: "US",

}

Here, we have student and address relationships in which an address
belongs to the student. If we are going to retrieve address data with the
name frequently, then referencing requires multiple queries to resolve
references. In this scenario, we can embed address data with the student
data to provide a better data model, as shown here.

82

CHAPTER 3 DATA MODELING AND AGGREGATION

{
_id: "James",
name: "James William",
address: {
street: "123 Hill Street",
city: "New York",
state: "US",
}
}

With this data model, we can retrieve complete student information
with one query.

Step 2: One-to-Many Relationships

Consider this example.

{
_id: "James",
name: "James William"
}
{
student_id: "James",
street: "123 Hill Street",
city: "New York",
state: "US",
}
{
student_id: "James",
street: "234 Thomas Street",
city: "New Jersey",
state: "US",
}

83

CHAPTER 3 DATA MODELING AND AGGREGATION

Here, we have a student and multiple address relationships (a student
has multiple addresses). If we are going to retrieve address data with the
name frequently, then referencing requires multiple queries to resolve
references. In this scenario, the optimal way to design the schema is to
embed address data with the student data as shown here.

{
_id: "James",
name: "James William",
address: [{
street: "123 Hill Street",
city: "New York",
state: "US",

1

street: "234 Thomas Street",
city: "New Jersey",
state: "US",

1]

This data model allows us to retrieve complete student information
with one query.

Recipe 3-2. Data Model Using Document
References

In this recipe, we are going to discuss a data model using document
references.

84

CHAPTER 3 DATA MODELING AND AGGREGATION

Problem

You want to create a data model for a one-to-many relationship.

Solution

Use a document reference.

How It Works

Let’s follow the steps in this section to design a data model for a one-to-

many relationship.

Step 1: One-to-Many Relationships

Consider the following data model that maps a publisher and book
relationship.

{
title: "Practical Apache Spark",

author: ["Subhashini Chellappan", "Dharanitharan Ganesan"],
published date: ISODate("2018-11-30"),
pages: 300,
language: "English",
publisher: {
name: "Apress”,
founded: 1999,
location: "US"

85

CHAPTER 3 DATA MODELING AND AGGREGATION

{
title: "MongoDB Recipes”,
author: ["Subhashini Chellappan"],
published date: ISODate("2018-11-30"),
pages: 120,
language: "English",
publisher: {
name: "Apress",
founded: 1999,
location: "US"
}
}

Here, the publisher document is embedded inside the book document,
which leads to repetition of the publisher data model.

In this scenario, we can document references to avoid repetition of
data. In document references, the growth of relationships determines
where to store the references. If the number of books per publisher is
small, then we can store the book reference inside the publisher document
as shown here.

{
name: "Apress",
founded: 1999,
location: "US",
books: [123456, 456789, ...]
}
{
_id: 123456,
title: "Practical Apache Spark",
author: ["Subhashini Chellappan", "Dharanitharan Ganesan"
1,

86

CHAPTER 3 DATA MODELING AND AGGREGATION

published date: ISODate("2018-11-30"),
pages: 300,
language: "English"

_id: 456789,

title: "MongoDB Recipes”,

author: ["Subhashini Chellappan"],
published date: ISODate("2018-11-30"),
pages: 120,

language: "English"

If the number of books per publisher is unbounded, this data model
would lead to mutable, growing arrays. We can avoid this situation by
storing the publisher reference inside the book document as shown here.

{
_id:"Apress",
name: "Apress",
founded: 1999,
location: "US"

_id: 123456,

title: "Practical Apache Spark",

author: ["Subhashini Chellappan”, "Dharanitharan Ganesan"],
published date: ISODate("2018-11-30"),

pages: 300,

87

CHAPTER 3 DATA MODELING AND AGGREGATION

language: "English",
publisher id: "Apress"

_id: 456789,

title: "MongoDB Recipes”,

author: ["Subhashini Chellappan"],
published date: ISODate("2018-11-30"),
pages: 120,

language: "English",

publisher id: "Apress"

Step 2: Query Document References

Let’s discuss how to query document references. Consider the following
collections.

db.publisher.insert({ id:"Apress",name: "Apress", founded:
1999, location:"US"})

db.authors.insertMany([{ id: 123456,title: "Practical Apache
Spark",author:["Subhashini Chellappan", "Dharanitharan Ganesan"
], published date: ISODate("2018-11-30"),pages: 300,language:
"English",publisher id: "Apress"},{ id: 456789,title: "MongoDB
Recipes", author: ["Subhashini Chellappan"],published

date: ISODate("2018-11-30"), pages: 120,language:
"English",publisher id: "Apress"}])

To perform a left outer join, use $1ookup as shown here.

db.publisher.aggregate([{$lookup:{from:"authors",localField:" id",
foreignField:"publisher id",as:"authors docs"}}])

88

CHAPTER 3 DATA MODELING AND AGGREGATION
Here is the output,

> db.publisher.aggregate([{$lookup:{from:"authors",localFie
1d:" id",

... foreignField:"publisher id",as:"authors docs"}}])

{ " id" : "Apress", "name" : "Apress", "founded" : 1999,
"location" : "US", "authors docs" : [{ " id" : 123456,
"title" : "Practical Apache Spark", "author" : ["Subhashini
Chellappan”, "Dharanitharan Ganesan"], "published date" :
ISODate("2018-11-30T00:00:00Z"), "pages" : 300, "language"
: "English", "publisher id" : "Apress" }, { " _id" : 456789,
"title" : "MongoDB Recipes", "author" : ["Subhashini
Chellappan”], "published date" : ISODate("2018-11-
30T00:00:00Z"), "pages" : 120, "language" : "English",
"publisher id" : "Apress" }] }

>

Modeling Tree Structures

Let’s look at a data model that describes a tree-like structure.

Recipe 3-3. Model Tree Structure
with Parent References

In this recipe, we are going to discuss a tree structure data model using

parent references.

Problem

You want to create a data model for a tree structure with parent references.

89

CHAPTER 3 DATA MODELING AND AGGREGATION

Solution

Use the parent references pattern.

How It Works

Let’s follow the steps in this section to design a data model for a tree
structure with parent references.

Step 1: Tree Structure with Parent References

The parent references pattern stores each tree node in a document; in
addition to the tree node, the document stores the _id of the node’s parent.
Consider the following author tree model with parent references.

db.author.insert({ _id: "Practical Apache Spark", parent:
"Books" })

db.author.insert({ _id: "MongoDB Recipes", parent: "Books" })
db.author.insert({ _id: "Books", parent: "Subhashini" })
db.author.insert({ _id: "A Framework For Extracting
Information From Web Using VID-XML ' s XPath", parent:
"Article" })

db.author.insert({ _id: "Article", parent: "Subhashini" })
db.author.insert({ _id: "Subhashini", parent: null })

The tree structure of this author collection is shown in Figure 3-3.

90

CHAPTER 3 DATA MODELING AND AGGREGATION

l Subhashini |

Bocks Article
I I A Framework For Extracting Information From
Web Using VID-XML
Practical MongoDBE
Apache Spark Recipes

Figure 3-3. Tree structure for the author collection

The following command retrieves the parent of a node MongoDB
Recipes.

db.author.findOne({ _id: "MongoDB Recipes" }).parent
Here is the output,

> db.author.findOne({ _id: "MongoDB Recipes" }).parent
Books
>

The next command retrieves the immediate children of the parent.
db.author.find({ parent: "Subhashini" })
Here is the output,

> db.author.find({ parent: "Subhashini" })

{ " id" : "Books", "parent" : "Subhashini" }

{ "_id" : "Article", "parent" : "Subhashini" }
>

91

CHAPTER 3 DATA MODELING AND AGGREGATION

Step 2: Tree Structure with Child References

The child references pattern stores each tree node in a document; in
addition to the tree node, the document stores in an array the _id value(s)
of the node’s children.

Consider the following author tree model with child references.

db.author.insert({ _id: "Practical Apache Spark", children: [] })
db.author.insert({ _id: "MongoDB", children: [] })
db.author.insert({ _id: "Books", children: ["Practical Apache
Spark", "MongoDB Recipes"] })

db.author.insert({ _id: " A Framework For Extracting
Information From Web Using VID-XML ' s XPath ", children: [] })
db.author.insert({ _id: "Article", children: [" A Framework For
Extracting Information From Web Using VTD-XML ' s XPath "] })
db.categories.insert({ _id: "Subhashini", children: [
"Books","Article"] })

The following command retrieves the immediate children of node Books.
db.author.findOne({ _id: "Books" }).children
Here is the output,

> db.author.findOne({ _id: "Books" }).children
["Practical Apache Spark", "MongoDB Recipes”]
>

The next command retrieves the MongoDB Recipes parent node and its
siblings.

db.author.find({ children: "MongoDB Recipes” })

92

CHAPTER 3 DATA MODELING AND AGGREGATION
Here is the output,

> db.author.find({ children: "MongoDB Recipes" })

{ " _id" : "Books", "children" : ["Practical Apache Spark",
"MongoDB Recipes"] }

>

Child references are a good choice to work with tree storage when
there are no subtree operations.

Step 3: Tree Structure with an Array of Ancestors

The array of ancestors pattern stores each tree node in a document; in
addition to the tree node, the document stores in an array the _id value(s)
of the node’s ancestors or path.

Consider this author tree model with an array of ancestors.

db.author.insert({ _id: "Practical Apache Spark", ancestors: [
"Subhashini", "Books"], parent: "Books" })

db.author.insert({ _id: "MongoDB Recipes", ancestors: [
"Subhashini", "Books"], parent: "Books" })

db.author.insert({ _id: "Books", ancestors: ["Subhashini"],
parent: "Subhashini" })

db.author.insert({ _id: " A Framework For Extracting
Information From Web Using VTD-XML ", ancestors: [
"Subhashini", "Article"], parent: "Article" })
db.author.insert({ _id: "Article", ancestors: ["Subhashini"
], parent: "Subhashini" })

db.author.insert({ _id: "Subhashini", ancestors: [], parent:
null })

The array of ancestors field stores the ancestors field and reference to
the immediate parent.

93

CHAPTER 3 DATA MODELING AND AGGREGATION

To retrieve the ancestors, use this command.
db.author.findOne({ _id: "MongoDB Recipes" }).ancestors
Here is the output,

> db.author.findOne({ _id: "MongoDB Recipes" }).ancestors
["Subhashini", "Books"]
>

Use this command to find all its descendants.
db.author.find({ ancestors: "Subhashini" })
Here is the output,

> db.author.find({ ancestors: "Subhashini" })

{ " _id" : "Practical Apache Spark", "ancestors" : [
"Subhashini", "Books"], "parent" : "Books" }

{ "_id" : "MongoDB Recipes", "ancestors" : ["Subhashini",
"Books"], "parent" : "Books" }

{ " id" : "Books", "ancestors" : ["Subhashini"], "parent" :
"Subhashini" }

{ " id" : " A Framework For Extracting Information From Web

Using VID-XML ", "ancestors" : ["Subhashini", "Article"],
"parent" : "Article" }

{ " id" : "Article", "ancestors" : ["Subhashini"], "parent" :
"Subhashini" }

>

This pattern provides an efficient solution to find all descendants and
the ancestors of a node. The array of ancestors pattern is a good choice for
working with subtrees.

94

CHAPTER 3 DATA MODELING AND AGGREGATION

Aggregation

Aggregation operations group values from multiple documents and can
perform variety of operations on the grouped values to return a single
result. MongoDB provides following aggregation operations:

o Aggregation pipeline.
e Map-reduce function.

o Single-purpose aggregation methods.

Aggregation Pipeline

The aggregation pipeline is a framework for data aggregation. It is modeled
based on the concept of data processing pipelines. Pipelines execute

an operation on some input and use that output as an input to the next
operation. Documents enter a multistage pipeline that transforms them
into an aggregated result.

Recipe 3-4. Aggregation Pipeline

In this recipe, we are going to discuss how the aggregation pipeline works.

Problem

You want to work with aggregation functions.

Solution
Use this method.

db.collection.aggregate()

95

CHAPTER 3 DATA MODELING AND AGGREGATION

How It Works

Let’s follow the steps in this section to work with the aggregation pipeline.

Step 1: Aggregation Pipeline
Execute the following orders collection to perform aggregation.

db.orders.insertMany([{custID:"10001",amount:500,status:"A"},{c
ustID:"10001",amount:250,status:"A"},{custID:"10002",amount:200
,status:"A"},{custID:"10001",amount: 300, status:"D"}]);

To project only customer IDs, use this syntax.
db.orders.aggregate([{ $project : { custID : 1, id: 0} } 1)

Here is the output,

> db.orders.aggregate([{ $project : { custiD : 1, id : 0}
1)
{ "custID" : "10001" }
{ "custID" : "10001" }
{ "custID" : "10002" }
{ "custID" : "10001" }
>
To group on custID and compute the sum of amount use the following
command.

db.orders.aggregate({$group:{ id:"$custID",TotalAmount:{$sum:"$
amount"}}});

In the preceding example, the value of the variable is accessed by using
the $ sign.

96

CHAPTER 3 DATA MODELING AND AGGREGATION
Here is the output,

> db.orders.aggregate({$group:{ id:"$custID",TotalAmount:{$sum:
"$amount"}}});

{ " id" : "10002", "TotalAmount" : 200 }
{ " id" : "10001", "TotalAmount" : 1050 }
>

To filter on status: "A"and then group it on "custID" and compute
the sum of amount, use the following command.

db.orders.aggregate({$match: {status:"A"}},{$group:
{ id:"$custID",TotalAmount:{ $sum:"$amount"}}});

Here is the ouput:

>db.orders.aggregate({$match:{status:"A"}},{$group:
{ id:"$custID",TotalAmount:{ $sum:"$amount"}}});

{ " id" : "10002", "TotalAmount" : 200 }
{ " id" : "10001", "TotalAmount" : 750 }
>

To group on "custID" and compute the average of the amount for each
group, use this command.

db.orders.aggregate({$group:{ id:"$custID",AverageAmount:
{$avg:"$amount"}}});

Here is the output,

> db.orders.aggregate({$group:{ id:"$custID",AverageAmount:
{$avg:"$amount"}}});

{ " _id" : "10002", "AverageAmount" : 200 }
{ "_id" : "10001", "AverageAmount" : 350 }
>

97

CHAPTER 3 DATA MODELING AND AGGREGATION

Map-Reduce

MongoDB also provides map-reduce to perform aggregation operations.
There are two phases in map-reduce: a map stage that processes each
document and outputs one or more objects and a reduce stage that
combines the output of the map operation.

A custom JavaScript function is used to perform map and reduce
operations. Map-reduce is less efficient and more complex compared to
the aggregation pipeline.

Recipe 3-5. Map-Reduce

In this recipe, we are going to discuss how to perform aggregation
operations using map-reduce.

Problem

You want to work with aggregation operations using map-reduce.

Solution

Use a customized JavaScript function.

How It Works

Let’s follow the steps in this section to work with map-reduce.

98

CHAPTER 3 DATA MODELING AND AGGREGATION

Step 1: Map-Reduce

Execute the following orders collection to perform aggregation operations.

db.orders.insertMany([{custID:"10001",amount:500,status:"A"},{c
ustID:"10001",amount:250,status:"A"},{custID:"10002",amount:200
,status:"A"},{custID:"10001",amount: 300, status:"D"}]);

To filter on status:"A" and then group it on custID and compute the
sum of amount, use the following map-reduce function.
Map function:

var map = function(){
emit (this.custID, this.amount);}

Reduce function:
var reduce = function(key, values){ return Array.sum(values) ; }
To execute the query:

db.orders.mapReduce(map, reduce,{out: "order
totals",query:{status:"A"}});

db.order totals.find()
Here is the output,

> var map = function(){
. emit (this.custID, this.amount);}
> var reduce = function(key, values){ return Array.sum(values)
.
> db.orders.mapReduce(map, reduce,{out: "order
totals",query:{status:"A"}});
{
"result" : "order totals",
"timeMillis" : 82,

99

CHAPTER 3 DATA MODELING AND AGGREGATION

"counts" : {
"input" : 3,
"emit" : 3,
"reduce" : 1,
"output" : 2
}J

Ilokll : 1

db.order totals.find()
" id" : "10001", "value" : 750 }
" id" : "10002", "value" : 200 }

N N R

Single-Purpose Aggregation Operations

MongoDB also provides single-purpose aggregation operations such
asdb.collection.count() and db.collection.distinct(). These
aggregate operations aggregate documents from a single collection. This
functionality provides simple access to common aggregation processes.

Recipe 3-6. Single-Purpose Aggregation
Operations

In this recipe, we are going to discuss how to use single-purpose

aggregation operations.

Problem

You want to work with single-purpose aggregation operations.

100

CHAPTER 3 DATA MODELING AND AGGREGATION

Solution

Use these commands.

db.collection.count()
db.collection.distinct()

How It Works

Let’s follow the steps in this section to work with single-purpose
aggregation operations.

Step 1: Single-Purpose Aggregation Operations

Execute the following orders collection to perform single-purpose
aggregation operations.

db.orders.insertMany([{custID:"10001",amount:500,status:"A"},{c
ustID:"10001",amount:250,status:"A"},{custID:"10002",amount:200
,status:"A"},{custID:"10001",amount: 300, status:"D"}]);

Use the following syntax to find a distinct "custID".
db.orders.distinct("custID")
Here is the output,

> db.orders.distinct("custID")
["10001", "10002"]
>

101

CHAPTER 3 DATA MODELING AND AGGREGATION

To count the number of documents, use this code.
db.orders.count()
Here is the output,

> db.orders.count()

4
>

SQL Aggregation Terms and Corresponding
MongoDB Aggregation Operators

Table 3-1 shows SQL aggregation terms and their corresponding MongoDB
aggregation operators.

Table 3-1. SQL Aggregation Terms and
Corresponding MongoDB Operators

SQL Term MongoDB Operator
WHERE $match

GROUP BY $group

HAVING $match

SELECT $project

ORDER BY $sort

LIMIT $limit

SuMm $sum

COUNT $sum

JOIN $lookup

102

CHAPTER 3 DATA MODELING AND AGGREGATION

Recipe 3-7. Matching SQL Aggregation
to MongoDB Aggregation Operations

In this recipe, we are going to discuss examples of matching MongoDB
operations to equivalent SQL aggregation terms.

Problem

You want to understand the equivalent of MongoDB queries for any SQL

queries.

Solution

Refer to Table 3-1 and use the equivalent MongoDB operator for a
respective SQL clause.

How It Works

Let’s follow the steps in this section to understand the MongoDB queries
for certain SQL operations.

Step 1: Converting SQL Aggregation Operations
to MongoDB

Execute the following query to check the details of the orders collection.

> db.orders.find()

103

CHAPTER 3 DATA MODELING AND AGGREGATION
Here is the output,

> db.orders.find()

{ "_id" : ObjectId("5d636112eea2dccfdeata522"), "custID" :
"10001", "amount" : 500, "status" : "A" }

{ " id" : ObjectId("5d636112eea2dccfdeafa523"), "custID" :

"10001", "amount" : 250, "status" : "A" }
{ "_id" : ObjectId("5d636112eea2dccfdeafa524"), "custID" :
"10002", "amount" : 200, "status" : "A" }
{ " id" : ObjectId("5d636112eea2dccfdeata525"), "custID" :
"10001", "amount" : 300, "status" : "D" }

Now, let’s find the count of records from the orders colletion.
Imagine this is the same as an orders table in any RDBMS and the SQL
to get the count of records from the table is as follows:

SELECT COUNT(*) AS count FROM orders

Use the following query to get the count of documents from the
collection in MongoDB.

> db.orders.aggregate([{ $group: { _id: null, count: {
$sum: 1} } } 1)

Here is the output,

> db.orders.aggregate([{ $group: { _id: null, count: {

$sum: 1} } } 1)
{ " id" : null, "count" : 4 }

104

CHAPTER 4

Indexes

In Chapter 3, we discussed data modeling patterns and the aggregation
framework. In this chapter, we to discuss the following topics:

e Indexes.

o Types of indexes.

e Index properties.

o Thevarious indexing strategies to be considered.

Indexes are used to improve the performance of the query. Without
indexes, MongoDB must search the entire collection to select those
documents that match the query statement. MongoDB therefore uses
indexes to limit the number of documents that it must scan.

Indexes are special data structures that store a small portion of the
collection’s data set in an easy-to-transform format. The index stores a set
of fields ordered by the value of the field. This ordering helps to improve
the performance of equality matches and range-based query operations.

MongoDB defines indexes at the collection level and indexes can be
created on any field of the document. MongoDB creates an index for the
_idfield by default.

Note MongoDB creates a default unique index _id field, which
helps to prevent inserting two documents with the same value of the
_id field.

© Subhashini Chellappan and Dharanitharan Ganesan 2020 105
S. Chellappan and D. Ganesan, MongoDB Recipe:s,
https://doi.org/10.1007/978-1-4842-4891-1_4

CHAPTER 4 INDEXES

Recipe 4-1. Working with Indexes

In this recipe, we are going to discuss how to work with indexes in
MongoDB.

Problem

You want to create an index.

Solution

Use the following command.

db.collection.createIndex()

How It Works

Let’s follow the steps in this section to create an index.
Consider the following employee collection.

db.employee.insert({empId:1,empName:"John",state:"KA",country:"
India"})
db.employee.insert({empId:2,empName:"Smith",state:"CA",country:
"Us"})
db.employee.insert({empId:3,empName:"James",state:"FL",country:
"USs"})
db.employee.insert({empId:4,empName:"Josh",state:"TN",country:"
India"})
db.employee.insert({empId:5,empName:"Joshi",state:"HYD",country
:"India"})

106

CHAPTER 4 INDEXES

Step 1: Create an Index
To create single-field index on the empId field, use the following command.
db.employee.createIndex({empId:1})

Here, the parameter value “1” indicates that empId field values will be
stored in ascending order.
Here is the output,

> db.employee.createIndex({empId:1})

{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1

To create an index on multiple fields, known as a compound index, use
this command.

db.employee.createIndex({empId:1,empName:1})
Here is the output,

> db.employee.createIndex({empId:1,empName:1})
{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 2,
“numIndexesAfter" : 3,
"ok" : 1

107

CHAPTER 4 INDEXES

To display a list of indexes, this is the syntax.
db.employee.getIndexes()
Here is the output,

> db.employee.getIndexes()

[
{
w2,
"key" : {
"id" r 1
})
"name" : " id ",
"ns" : "test.employee"
}J
{
"v' o2,
"key" : {
"empId" : 1
1
"name" : "empId 1",
"ns" : "test.employee"
}J
{
w2,
"key" : {
"empId" : 1,

"empName" : 1

1

108

CHAPTER 4

"name" : "empId 1 _empName_ 1",
ns" : "test.employee"

To drop a compound index, use the following command.
db.employee.dropIndex({empId:1,empName:1})
Here is the output,

> db.employee.dropIndex({empId:1,empName:1})
{ "nIndexesWas" : 3, "ok" : 1}
>

To drop all the indexes, use this command.
db.employee.dropIndexes()
Here is the output,

> db.employee.dropIndexes()

{
"nIndexesWas" : 2,
"msg" : "non-_id indexes dropped for collection",
"ok" : 1

}

>

INDEXES

Note We can’tdrop _id indexes. MongoDB creates an index for the

_id field by default.

109

CHAPTER 4 INDEXES

Recipe 4-2. Index Types

In this recipe, we are going to discuss various types of indexes.

Problem

You want to create different types of indexes.

Solution

Use the following command.

db.collection.createIndex()

How It Works

Let’s follow the steps in this section to create the different types of indexes
shown in Figure 4-1.

Single Field Indexes

Ty p e S Of Compound Indexes

MultiKey Indexes

I n d exe S Text Indexes

Hashed Indexes

2dSphere Indexes

Figure 4-1. Types of indexes

110

CHAPTER 4 INDEXES

Step 1: Multikey Index

Multikey indexes are useful to create an index for a field that holds an array
value. MongoDB creates an index key for each element in the array.

Consider the below collection, you can create if the collection is not
available.

db.employeeproject.insert({empId:1001,empName:"John",projects:|
"Hadoop", "MongoDB"]})
db.employeeproject.insert({empId:1002,empName:"James",projects:
["MongoDB", "Spark"]})

To create an index on the projects field, use the following command.
db.employeeproject.createIndex({projects:1})
Here is the output,

> db.employeeproject.createIndex({projects:1})

{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1
}

Note You can’t create a compound multikey index.

Step 2: Text Indexes

MongoDB provides text indexes to support text search queries on string
content. You can create a text index on a field that takes as its value a string
or an array of string elements.

111

CHAPTER 4 INDEXES
Consider this post collection.

db.post.insert({
"post_text": "Happy Learning",
"tags": [
"mongodb",
"10gen”
]
1)

To create text indexes, use the following command.
db.post.createIndex({post text:"text"})

This command creates a text index for the field post_text.
Here is the output,

> db.post.createIndex({post_text:"text"})

{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1

To perform a search, use the command shown here.
db.post.find({$text:{$search:"Happy"}})
Here is the output,

> db.post.find({$text:{$search:"Happy"}})
{ "_id" : ObjectId("5bb215286d8d957bcedc225e"), "post text" :
"Happy Learning", "tags" : ["mongodb", "10gen"] }
>

112

CHAPTER 4 INDEXES

Step 3: Hashed Indexes

The size of the indexes can be reduced with the help of hashed indexes.
Hashed indexes store the hashes of the values of the indexed field. Hashed
indexes support sharding using hashed shard keys. In hashed-based
sharding, a hashed index of a field is used as the shard key to partition data
across the sharded cluster. We discuss sharding in Chapter 5.

Hashed indexes do not support multikey indexes.

Consider the user collection shown here.

db.user.insert({userId:1,userName:"John"})
db.user.insert({userId:2,userName:"James"})
db.user.insert({userId:3,userName:"Jack"})

To create a hashed-based index on the field userId, use the following

command.
db.user.createIndex({ userId: "hashed" })
Here is the output,

> db.user.createIndex({ userId: "hashed" })

{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1

113

CHAPTER 4 INDEXES

Step 4: 2dsphere Index

The 2dsphere index is useful to return queries on geospatial data.
Consider the schools collection given here.

db.schools.insert({
name: "St.John's School",
location: { type: "Point", coordinates: [-73.97, 40.77] },
})s
db.schools.insert({
name: "St.Joseph's School",
location: { type: "Point", coordinates: [-73.9928, 40.7193] },
})s
db.schools.insert({
name: "St.Thomas School",
location: { type: "Point", coordinates: [-73.9375, 40.8303] },

)

Use the following syntax to create a 2dsphere index.
db.schools.createIndex({ location : "2dsphere" })

The following code uses the $near operator to return documents that
are at least 500 meters from and at most 1,500 meters from the specified
GeoJSON point.

db.schools.find({location:{$near:{$geometry: { type:
"Point", coordinates: [-73.9667, 40.78] },$minDistance:
500, $maxDistance: 1500}}})

114

CHAPTER 4 INDEXES
Here is the output,

> db.schools.find({location:{$near:{$geometry: { type:
"Point", coordinates: [-73.9667, 40.78] },$minDistance:
500, $maxDistance: 1500}}})

{ " id" : ObjectId("5ca47a184b034d4cc1345f45"), "name" : "St.
John's School", "location" : { "type" : "Point", "coordinates"
: [-73.97, 40.77] } }

Recipe 4-3. Index Properties

Indexes can also have properties. The index properties define certain
characteristics and behaviors of an indexed field at runtime. For example,
a unique index ensures the indexed fields do not support duplicates. In
this recipe, we are going to discuss various index properties.

Problem

You want to work with index properties.

Solution

Use this command.

db.collection.createIndex()

How It Works

Let’s follow the steps in this section to work with index properties.

115

CHAPTER 4 INDEXES

Step 1: TTL Indexes

Time to Live (TTL) indexes are single-field indexes that are used to
remove documents from a collection after a certain amount of time. Data
expiration is useful for certain types of information such as logs, machine-
generated data, and so on.

Consider the sample collection shown here.

db.credit.insert({credit:16})
db.credit.insert({credit:18})
db.credit.insert({credit:12})

To create a TTL index on the field credit, issue the following command.
db.credit.createIndex({ credit: 1 }, { expireAfterSeconds: 35 });
Here is the output,

> db.credit.createIndex({ credit: 1 }, { expireAfterSeconds:35

)
{

"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,

"numIndexesAfter" : 2,

"ok" : 1

Step 2: Unique Indexes

A unique index ensures that the indexed fields do not contain any duplicate
values. By default, MongoDB creates a unique index on the _id field.

116

CHAPTER 4 INDEXES

Consider the following student collection.

db.student.insert({ id:1,studid:101,studname:"John"})
db.student.insert({ id:2,studid:102,studname:"Jack"})
db.student.insert({ id:3,studid:103,studname:"James"})

To create unique index for the field studId, use this command.
db.student.createIndex({"studid":1}, {unique:true})
Here is the output,

> db.student.createIndex({"studid":1}, {unique:true})

{

"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,

"numIndexesAfter" : 2,

"ok" : 1

When we try to insert the value studid:101,
db.student.insert([{ id:1,studid:101,studname:"John"}])
throws the following error message:
"errmsg" : "E11000 duplicate key error collection: test.student
index: _id_dup key: { : 1.0 }",
Step 3: Partial Indexes

Partial indexes are useful when you want to index the documents in a
collection that meet a specific filter condition. The filter condition could
be specified using any operators. For example, db.person.find({ age:
{ $gt: 15 } }) canbe used to find the documents that have an age

117

CHAPTER 4 INDEXES

greater than 15 in the person collection. Partial indexes reduce storage
requirements and performance costs because they store only a subset of
the documents.

Use the db.collection.createIndex() method with the
partialFilterExpression option to create a partial index.

The partialFilterExpression option accepts a document that
specifies the filter condition using:

o equality expressions (i.e., field: value or using the $eq
operator).

o $exists: true expression.

o $gt, $gte, $1t, and $1te expressions.
o $type expressions.

e $and operator at the top level only.

Consider the following documents of a person collection.

db.person.insert({personName:"John",age:16})
db.person.insert({personName:"James",age:15})
db.person.insert({personName: "John",hobbies:["sports","music"]})

To index only those documents in the person collection where the
value in the age field is greater than 15, use the following command.

db.person.createIndex({ age: 1},{partialFilterExpression: {
age: { $gt: 15 }}})

The query shown here uses a partial index to return those documents
in the person collection where the age value is greater than 15.

db.person.find({ age: { $gt: 15 } })

118

CHAPTER 4 INDEXES
Here is the output,

> db.person.find({ age: { $gt: 15 } })

{ "_id" : ObjectId("5ca453954b034d4cc1345f3b"), "personName" :
"John", "age" : 16 }

>

Step 4: Sparse Indexes

Sparse indexes store entries only for the documents that have the indexed
field, even if it contains null values. A sparse index skips any documents
that do not have the indexed field. The index is considered sparse because
it does not include all the documents of a collection.

Consider the following person collection.

db.person.insert({personName:"John",age:16})
db.person.insert({personName:"James",age:15})
db.person.insert({personName:"John",hobbies:["sports", "mus

ic"1})
To create a sparse index on the age field, issue this command.
db.person.createIndex({ age: 1 }, { sparse: true });

Here is the output,

> db.person.createIndex({ age: 1 }, { sparse: true });
{
"createdCollectionAutomatically” : false,
“numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1

119

CHAPTER 4 INDEXES

To return all documents in the collection named person using the
index on the age field, use hint () to specify a sparse index.

db.person.find().hint({ age: 1 }).count();
Here is the output,

> db.person.find().hint({ age: 1 }).count();
2
>

To perform a correct count, use this code.
db.person.find().count();
Here is the output,

> db.person.find().count();
3
>

Note Partial indexes determine the index entries based on the filter

condition, whereas sparse indexes select the documents based on
the existence of the indexed field.

Recipe 4-4. Indexing Strategies

We must follow different strategies to create the right index for our
requirements. In this recipe, we are going to discuss various indexing
strategies.

120

CHAPTER 4 INDEXES

Problem

You want to learn about indexing strategies to ensure you are creating the
right type of index for different purposes.

Solution

The best indexing strategy is determined by different factors, including
» Type of executing query.
e Number of read/write operations.
e Available memory.

Figure 4-2 illustrates the different indexing strategies.

[N

Create Index to support your | Use Index to sort the query
qgueries results

{ INDEXING STRATEGIES }

Indexes to fit in RAM, i.e. Indexes to ensure selectivity,
Index to cache the recent i.e. Queries to limit number
values in memory of possible documents

Figure 4-2. Indexing strategies

How It Works

Let’s follow the steps in this section to work with different indexing
strategies.

121

CHAPTER 4 INDEXES

Step 1: Create an Index to Support Your Queries

Creating the right index to support the queries increases the query
execution performance and results in great performance.

Create a single-field index if all the queries use the same single key to
retrieve the documents.

> db.employee.createIndex({empId:1})

Create a multifield compound index if all the queries use more than
one key (multiple filter condition) to retrieve the documents.

> db.employee.createIndex({empId:1,empName:1})

Step 2: Using an Index to Sort the Query Results

Sort operations use indexes for better performance. Indexes determine the
sort order by fetching the documents based on the ordering in the index.
Sorting can be done in the following scenarios:

e Sorting with a single-field index.

o Sorting on multiple fields.

Sorting with a Single-Field Index

The index can support ascending or descending order on a single field

while retrieving the documents.
> db.employee.createIndex({empId:1})
The preceding index can support ascending order sorting.

> db.employee.find().sort({empId:1})

122

CHAPTER 4 INDEXES

Here is the output,
MongoDB Enterprise > db.employee.createIndex({empId:1})
{

"createdCollectionAutomatically" : false,

"numIndexesBefore" : 1,

"numIndexesAfter" : 2,

"ok" : 1
}
MongoDB Enterprise > db.employee.find()
{ "_id" : ObjectId("5d50ed688dcf280c50fde439"), "empId" : 1,
"empName" : "John", "state" : "KA", "country" : "India" }
{ " id" : ObjectId("5d50ed688dcf280c50fde43a"), "empId" : 2,
"empName" : "Smith", "state" : "CA", "country" : "US" }
{ "_id" : ObjectId("5d50ed688dcf280c50fde43b"), "empId" : 3,
"empName" : "James", "state" : "FL", "country" : "US" }
{ "_id" : ObjectId("5d50ed688dcf280c50fde43c"), "empId" : 4,
"empName" : "Josh", "state" : "TN", "country" : "India" }
{ " id" : ObjectId("5d50ed688dcf280c50fde43d"), "empId" : 5,
"empName" : "Joshi", "state" : "HYD", "country" : "India" }
MongoDB Enterprise > db.employee.find().sort({empId:1})
{ " id" : ObjectId("5d50ed688dcf280c50fde439"), "empId" : 1,
"empName" : "John", "state" : "KA", "country" : "India" }
{ "_id" : ObjectId("5d50ed688dcf280c50fde43a"), "empId" : 2,
"empName" : "Smith", "state" : "CA", "country" : "US" }
{ " id" : ObjectId("5d50ed688dcf280c50fde43b"), "empId" : 3,
"empName" : "James", "state" : "FL", "country" : "US" }
{ "_id" : ObjectId("5d50ed688dcf280c50fde43c"), "empId" : 4,
"empName" : "Josh", "state" : "TN", "country" : "India" }
{ "_id" : ObjectId("5d50ed688dcf280c50fde43d"), "empId" : 5,
"empName" : "Joshi", "state" : "HYD", "country" : "India" }

123

CHAPTER 4 INDEXES

The same index can also support sorting of documents in descending
order.

MongoDB Enterprise > db.employee.find().sort({empId:-1})
{ " id" : ObjectId("5d50ed688dcf280c50fde43d"), "empId" : 5,

"empName" : "Joshi", "state" : "HYD", "country" : "India" }
{ " id" : ObjectId("5d50ed688dcf280c50fde43c"), "empId" : 4,
"empName" : "Josh", "state" : "TN", "country" : "India" }

{ "_id" : ObjectId("5d50ed688dcf280c50fde43b"), "empId" : 3,
"empName" : "James", "state" : "FL", "country" : "US" }

{ "_id" : ObjectId("5d50ed688dcf280c50fde43a"), "empId" : 2,
"empName" : "Smith", "state" : "CA", "country" : "US" }

{ " id" : ObjectId("5d50ed688dcf280c50fde439"), "empId" : 1,
"empName" : "John", "state" : "KA", "country" : "India" }

Sorting on Multiple Fields

We can create a compund index to support sorting on multiple fields.
> db.employee.createIndex({empId:1,empName:1})

Here is the output,

MongoDB Enterprise > db.employee.createIndex({empId:1,empName:1})
{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 2,
“numIndexesAfter" : 3,
"ok" : 1
}
MongoDB Enterprise > db.employee.find().
sort({empId:1,empName:1})
{ "_id" : ObjectId("5d50ed688dcf280c50fde439"), "empId" : 1,
"empName" : "John", "state" : "KA", "country" : "India" }

124

CHAPTER 4 INDEXES

{ " id" : ObjectId("5d50ed688dcf280c50fde43a"), "empId" : 2,
"empName" : "Smith", "state" : "CA", "country" : "US" }
{ " id" : ObjectId("5d50ed688dcf280c50fde43b"), "empId" : 3,

"empName" : "James", "state" : "FL", "country" : "US" }
{ "_id" : ObjectId("5d50ed688dcf280c50fde43c"), "empId" : 4,
"empName" : "Josh", "state" : "TN", "country" : "India" }

{ " id" : ObjectId("s5d50ed688dcf280c50fde43d"), "empId" : 5,
"empName" : "Joshi", "state" : "HYD", "country" : "India" }

Index to Hold Recent Values in Memory

When using multiple collections, we must consider the size of indexes on
all collections and ensure the index fits in memory to avoid the system
reading the index from the disk.

Use the following query to check the size of the index for any
collection.

> db.employee.totalIndexSize()

When we ensure the index fits entirely into the RAM, that ensures
faster system processing.
Here is the output,

MongoDB Enterprise > db.employee.totalIndexSize()
49152
Create Queries to Ensure Selectivity

The ability of any query to narrow down the results using the created
index is called selectivity. Writing queries that limit the number of possible
documents with the indexed field and the queries that are appropriately
selective relative to your indexed data ensures selectivity.

> db.employee.find({empId:{$gt:1},country:"India"})

125

CHAPTER 4 INDEXES

This query must scan all the documents to return the result of empId
values greater than 1.
Here is the output,

MongoDB Enterprise > db.employee.find({empId:{$gt:1},
country:"India"})

{ "_id" : ObjectId("5d50ed688dcf280c50fde43c"), "empId" : 4,
"empName" : "Josh", "state" : "TN", "country" : "India" }

{ " id" : ObjectId("s5d50ed688dcf280c50fde43d"), "empId" : 5,
"empName" : "Joshi", "state" : "HYD", "country" : "India" }
> db.employee.find({empId:4})

This query must scan only one document to return the result empId:
Here is the output,

MongoDB Enterprise > db.employee.find({empId:4})
{ "_id" : ObjectId("5d50ed688dcf280c50fde43c"), "empId" : 4,
"empName" : "Josh", "state" : "TN", "country" : "India" }

126

CHAPTER 5

Replication
and Sharding

In Chapter 4, we discussed various indexes in MongoDB. In this chapter,
we cover the following topics:

o Replication.

o Sharding.

Replication

Replication is the process of creating and managing a duplicate version
of a database across servers to provide redundancy and increase
availability of data.

In MongoDB, replication is achieved with the help of a replica set, a
group of mongod instances that maintain the same data set. A replica set
contains one primary node that is responsible for all write operations and
one or more secondary nodes that replicate the primary’s oplog and apply
the operations to their data sets to reflect the primary’s data set. Figure 5-1
is an illustration of a replica set.

© Subhashini Chellappan and Dharanitharan Ganesan 2020 127
S. Chellappan and D. Ganesan, MongoDB Recipe:s,
https://doi.org/10.1007/978-1-4842-4891-1_5

CHAPTER 5 REPLICATION AND SHARDING

Client Applications

Read Write
Operation Operation

Primary

N

Secondary Secondary

Figure 5-1. A replica set

Recipe 5-1. Set Up a Replica Set

In this recipe, we are going to discuss how to set up a replica set (one
primary and two secondaries) in Windows.

Problem

You want to create a replica set.

Solution

Use a group of mongod instances.

How It Works

Let’s follow the steps in this section to set up a three-member replica set.

128

CHAPTER 5 REPLICATION AND SHARDING

Step 1: Three-Member Replica Set

First, create three data directories:

md c:\mongodb\repset\rs1
md c:\mongodb\repset\rs2
md c:\mongodb\repset\rs3

Here is the output,

c:\>md c:\mongodb\repset\rs1
c:\>md c:\mongodb\repset\rs2
c:\>md c:\mongodb\repset\rs3

Next, start three mongod instances as shown here (see Figures 5-2, 5-4,
and 5-6).

start mongod --bind_ip hostname --dbpath c:\mongodb\repset\rsi
--port 20001 --replSet myrs

C:\Program Files\MongoDB\Server\4.0\bin>start mongod --bin
d_ip localhost --dbpath c:\mongodb\repset\rsl --port 20001
--replSet myrs

Figure 5-2. Starting mongod with replica set 1

Note hostname must be replaced as with ipaddress or
localhost if it is the same local machine.

Refer to Figure 5-3 for a mongod instance that is waiting for connection
on port 20001.

129

CHAPTER 5 REPLICATION AND SHARDING

¥ ci\Program Files\MongoDB\Server\d.0\bin\mongod.exe -= o x

1818-108-81T87:14:13.426+8538 I STORAGE [initandlisten] WiredTiger message [1538358253:425623][28820:148712839244112], i~
kn-recover: Set global recovery timestamp: @

PO18-10-01T07:14:13.440+0530 T RECOVERY [initandlisten] WiredTiger recoveryTimestamp. Ts: Timestamp(@, @)
e18-10-817T07:14:13.471+0538 1 CONTROL [initandlisten]

D818-10-01707:14:13.471+0538 I CONTROL [initandlisten] "* WARNING: Access control is not enabled for the database.
DB18-10-01T07:14:13.471+0538 I CONTROL [initandlisten] ** Read and write access to data and configuration is y
hrestricted.

00918-10-81T87:14:13.471+0538 1 CONTROL [initandlisten]
DO18-10-01T87:14:13.474+0538 1 STORAGE [initandlisten] createCollection: local.startup_log with generated UUID: beSdead
H-16ef-deba-a3ca-48a98a64c3b8
2018-10-01707:14:13.918+0538 I FIDC [initandlisten] Initializing full-time diagnostic data capture with directory 'd
: fmongodb/repset/rsl/diagnostic.data’
Pe18-10-01T07:14:13,921+0538 I STORAGE [initandlisten] createCollection: local.replset.oplogTruncateAfterPoint with gen
prated WID: 759cd3db-eddd-416e-bfSe-9ebc7adic2cl
018-10-91T87:14:13.943+8538 I STORAGE [initandlisten] createCollection: local.replset.minvalid with generated UUID: d3
pe8f14-40ba-4a05-bf74-3755790ee61

DA18-10-01T87:14:13.967+8538 T REPL [initandlisten] Did not find local voted for document at startup.
1018-10-01T787:14:13.968+0538 I REPL [initandlisten] Did not find local Rollback ID document at startup. Creating ond

DB18-10-01T07:14:13.968+0538 T STORAGE [initandlisten] createCollection: local.system.rollback.id with generated UUID:
bic9a2cl-fada-4652-91ce-bdas637edfde

018-10-91787:14:13,992+8538 1 REPL [initandlisten] Initialized the rollback ID to 1

0018-10-91T87:14:13.992+0538 I REPL [initandlisten] Did not find local replica set configuration document at startug
NoMatchingDocument: Did not find replica set configuration document in local.system.replset
818-10-01T787:14:13.997+8538 1 CONTROL [LogicalSessionCacheRefresh] Sessions collection is not set up; waiting until neg
bt sessions refresh interval: Replication has not yet been configured

PB18-10-91T87:14:13.997+8538 T CONTROL [LogicalSessionCacheReap] Sessions collection is not set up; waiting until next
kessions reap interval: Replication has not yet been configured

Pe18-10-81T07:14:13,998+0538 I NETWORK [initandlisten] waiting for connections on port 20081

Figure 5-3. mongod instance waiting for connection on port 20001

start mongod --bind_ip hostname --dbpath c:\mongodb\repset\rs2
--port 20002 --replSet myrs

C:\Program Files\MongoDB\Server\4.0\bin>start mongod --bin
d_ip localhost --dbpath c:\mongodb\repset\rs2 --port 20002
--replSet myrs

Figure 5-4. Starting mongod with replica set 2

Refer to Figure 5-5 for a mongod instance that is waiting for connection
on port 20002.

130

CHAPTER 5 REPLICATION AND SHARDING

¥ c\Program Fil \4.0\bi = o x

pn-recover: Set global recovery timestamp: @ -
PO18-168-01T07:18:33.595+8538 I RECOVERY [initandlisten] WiredTiger recoveryTimestamp. Ts: Timestamp(8, @)
PO18-10-81T07:18:33.627+853@ I CONTROL [initandlisten]

PO18-16-61T87:18:33.627+8538 T CONTROL [initandlisten] ** WARNING: Access control is not enabled for the database.
PO18-10-81T87:18:33,627+8538 I CONTROL [initandlisten] * Read and write access to data and configuration is
restricted.

PO18-10-01T87:18:33.627+8530 I CONTROL [initandlisten]

PO18-10-81T87:18:33.630+48538 T STORAGE [initandlisten] createCollection: local.startup_log with generated UUID: Ze7e6bé
b-b78d-4c6f -bddc-F1f16a85206d

P0O18-10-01T87:18:33.982+40530 I FTDC [initandlisten] Initializing full-time diagnostic data capture with directory '
- fmongodb/repset/rs2/diagnostic.data’

PO18-10-01T7:18:33.985+8538 I STORAGE [initandlisten] createCollection: local.replset.oplogTruncateAfterPoint with gen
prated UUID: b51c668a-bbcS-4179-ad19-78d882116d2a

PO18-10-81T87:18:34.004+8538 W REPL [ftdc] Rollback ID is not initialized yet.

PO18-168-01T07:18:34.011+8538 I STORAGE [initandlisten] createCollection: local.replset.minvalid with generated UUID: 9§
F548cc-6299-4023-82d8-4a7fdabbbT1c

Po18-10-81T87:18:34.031+8530 I REPL [initandlisten] Did mot find local voted for docusent at startup.
PO18-18-81T87:18:34.031+8530 I REPL [initandlisten] Did not find local Rollback ID document at startup. Creating one

"

DO18-10-91T07:18:34,.032+853@ I STORAGE [initandlisten] createCollection: local.system.rollback.id with generated UUID:

LO6A3c15- 2656 -417e-bed2-25258c942b8Ba

PO18-10-81T07:18:34. 85540530 I REPL [initandlisten] Initialized the rollback ID to 1

PO18-10-81T07:18:34.055+8538 I REPL [initandlisten] Did not find local replica set configuration document at startug
NoMatchingDocument: Did not find replica set configuration document in local.system.replset

PO18-18-01T87:18:34.0859+8538 I CONTROL [LogicalSessionCacheRefresh] Sessions collection is not set up; waiting until ne

kt sessions refresh interval: Replication has not yet been configured

PO18-10-01T87:18:34.059+48538 T CONTROL [LogicalSessionCacheReap] Sessions collection is not set up; waiting until next

kessions reap interval: Replication has not yet been configured

PO18-10-81T7.18:34.060+8530 I NETWORK [initandlisten] waiting for connections on port 20002

Figure 5-5. mongod instance waiting for connection on port
20002

start mongod --bind ip hostname --dbpath c:\mongodb\repset\rs3
--port 20003 --replSet myrs

C:\Program Files\MongoDB\Server\4.0\bin>start mongod --bin
d_ip localhost --dbpath c:\mongodb\repset\rs3 --port 20003
--replSet myrs

Figure 5-6. Starting mongod with replica set 3

Refer Figure 5-7 for a mongod instance that is waiting for connection on
port 20002.

131

CHAPTER 5 REPLICATION AND SHARDING

¥)\Program Files\M DB\Serveryd.0\bir exe = 5] *

818-10-01797:10:55.484+0530 1 STORAGE [initandlisten] WiredTiger message [1538358505:483818][30148:140712039244112], 4
n-recover: Set global recovery timestamp: @

§18-18-01T87:19:55.496+@530 1 RECOVERY [initandlisten] WiredTiger recoveryTimestamp. Ts: Timestamp(@, @)
§18-16-01T87:19:55.525+@530 I CONTROL [initandlisten]

818-10-01787:19:55.525+0530 1 CONTROL [initandlisten] ** WARNING: Access control is not enabled for the database.
818-18-01707:19:55.526+0530 1 CONTROL [initandlisten] ** Read and write access to data and configuration is u

restricted.

'818-10-01797:19:55.526+@530 1 CONTROL [initandlisten]
B18-18-01T87:19:55.529+@530 I STORAGE [initandlisten] createCollection: lecal.startup_log with generated UUID: a9214c3
-27b5-434d-b98c - f72e4b89bA92
$18-18-01T07:19:55.364+0530 1 FTDC [initandlisten] Initializing full-time diagnostic data capture with directory 'd
: /mongodb/repset/rsi/diagnostic.data’”
918-10-01T87:19:55.866+0530 1 STORAGE [initandlisten] createCollection: lecal.replset.oploglruncateAfterPoint with gen
rated WID: 5e45239d-bbb5-47c0-b662-e065643db5ab
818-18-01707:19:55.891+0530 I STORAGE [initandlisten] createCollection: local.replset.minvalid with generated UUID: a6
f881-5cdc-4c94-aleb-aeb59b1bBd3a

B18-10-01T87:19:55.912+0538 I REPL [initandlisten] Did not find local voted for document at startup.
$18-18-01T07:19:55.912+05386 I REPL [initandlisten] Did not find local Rellback ID document at startup. Creating one

B18-18-817T87:19:55.913+0530 1 STORAGE [initandlisten] createCollection: lecal.system.rollback.id with generated UUID:
14efdal-daTc-A4dc-ale2-bBbd1e484158

B18-18-01T07:19:55.936+0530 I REPL [initandlisten] Initialized the rollback ID to 1

B18-18-81T87:19:55.936+0538 1 REPL [initandlisten] Did not find local replica set configuration document at startup
; MoMatchingDocument: Did not find replica set configuration document in local.system.replset
918-10-017T97:19:55.941+0530 I CONTROL [LogicalSessionCacheRefresh] Sessions collection is not set up; waiting until ne
sessions refresh interval: Replication has not yet been configured

818-18-01T87:19:55.942+0530 1 CONTROL [LogicalSessionCacheReap] Sessions collection is not set up; waiting until next
essions reap interval: Replication has not yet been configured

$18-10-01T07:19:55.942+0530 I NETWORK [initandlisten] waiting for connectiens on port 20003

>

Figure 5-7. mongod instance waiting for connection on port 20003

Next, issue the following command to connect to a mongod instance
running on port 20001.

mongo hostname:20001

Figure 5-8 shows the mongo shell that is running on port 20001.

132

CHAPTER 5 REPLICATION AND SHARDING

C:\Program Files\MongoDB\Server\4.@\bin>mongo localhost:20001

MongoDB shell version v4.0.11

connecting to: mongodb://localhost:20001/test?gssapiServiceNam

e=mongodb

Implicit session: session { "id" : UUID("58718da2-749c-410e-9e

3b-336ee8ae5a3a") }

MongoDB server version: 4.0.11

Server has startup warnings:

2019-09-23T13:41:53.790+0530 I CONTROL [initandlisten]

2019-09-23T13:41:53.791+0530 I CONTROL [initandlisten] ** WAR

NING: Access control is not enabled for the database.

2019-09-23T13:41:53.792+0853@ I CONTROL [initandlisten] **
Read and write access to data and configuration is unres

tricted.

2019-09-23T13:41:53.792+0530 I CONTROL [initandlisten]

MongoDB Enterprise >

Figure 5-8. Connect to mongo instance on port 20001

Issue the following command in the mongo shell to create a three-

member replica set.

rs.initiate(); // to initiate replica set

Here is the output,

> rs.initiate();

{

"info2" : "no configuration specified. Using a default
configuration for the set”,

"me" : "hostname:20001",

"ok" : 1,

"operationTime" : Timestamp(1538362864, 1),
"$clusterTime" : {
"clusterTime" : Timestamp(1538362864, 1),
"signature" : {

133

CHAPTER 5 REPLICATION AND SHARDING

"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)

After initiating the replica set, we can add the secondary node by using
this command.

rs.add("hostname:20002"); // to add secondary
Here is the output,

myrs:SECONDARY> rs.add("hostname:20002");

{
"ok" : 1,
"operationTime" : Timestamp(1538362927, 1),
"$clusterTime" : {
"clusterTime" : Timestamp(1538362927, 1),
"signature" : {
"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)
}
}
}

myrs : PRIMARY>

Here, the mongod instance running on port 20001 becomes primary.
We can add another secondary node by using the following command.

rs.add("hostname:20003"); // to add secondary

134

CHAPTER 5 REPLICATION AND SHARDING
Here is the output,

myrs:PRIMARY> rs.add("hostname:20003");

{
"ok" : 1,
"operationTime" : Timestamp(1538362931, 1),
"$clusterTime" : {
"clusterTime" : Timestamp(1538362931, 1),
"signature" : {
"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)
}
}
}

myrs : PRIMARY>

Now, you can check the status of the replica set by issuing the following
command.

rs.status()

Next, create a collection named employee using the primary replica
node.

db.employee.insert({ id:10001,name: 'Subhashini'});
db.employee.insert({ id:10002,name: 'Shobana'});

Here is the output,

myrs:PRIMARY> db.employee.insert({_

id:10001,name: 'Subhashini'});

WriteResult({ "nInserted" : 1 })

myrs:PRIMARY> db.employee.insert({ id:10002,name: 'Shobana'});
WriteResult({ "nInserted" : 1 })

myrs:PRIMARY>

135

CHAPTER 5 REPLICATION AND SHARDING

Now, connect to the mongo shell running on port 20002 by issuing this

command.
mongo hostname:20002
Here is the output,
myrs : SECONDARY>
Now, issue the following command to find all employees as shown here.

myrs :SECONDARY> db.employee.find()
Error: error: {
"operationTime" : Timestamp(1538364766, 1),
"ok" : 0,
"errmsg" : "not master and slaveOk=false",
"code" : 13435,
"codeName" : "NotMasterNoSlaveOk",
"$clusterTime" : {
"clusterTime" : Timestamp(1538364766, 1),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)

}
}
}
myrs : SECONDARY>
The output Exror: error: { } shows that we are

getting an error message because we are trying to read data from the
secondary node.

136

CHAPTER 5 REPLICATION AND SHARDING

Issue the following command to perform a read operation from a
secondary node.

myrs :SECONDARY> rs.slaveOk()

myrs:SECONDARY> db.employee.find()
{ " id" : 10001, "name" : "Subhashini" }
{ " id" : 10002, "name" : "Shobana" }

Next, try to perform a write operation from a secondary node.

myrs:SECONDARY> db.employee.insert({ id:10003,name:"Arunaa MS"})
WriteCommandExrror ({
"operationTime" : Timestamp(1538364966, 1),

"ok" : 0,

"errmsg" : "not master",
"code" : 10107,
"codeName" : "NotMaster",

"$clusterTime" : {
"clusterTime" : Timestamp(1538364966, 1),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)

)
myrs : SECONDARY>

In the preceding output, WriteCommandError { } shows
that we are getting an error message because we can’t perform write
operations in a secondary node. We can perform write operations only in
the primary node.

137

CHAPTER 5 REPLICATION AND SHARDING

All the secondary nodes replicate the primary’s log and apply their
operations to ensure the secondary’s data set reflects the primary’s data
set, as shown in Figure 5-9.

Primary
§ %
Y 7
N %
<& @
TN v
HEART BEAT
Secondary “ » Secondary

Figure 5-9. Replication strategy

Step 2: Auto Failover—High Availability

Kill the primary running on port 20001 and press Enter in the mongo shell

running on ports 20002 and 20003 (Figure 5-10). Any one of the secondary

nodes can become primary now.

Figure 5-10. Primary failover

138

CHAPTER 5 REPLICATION AND SHARDING

When a primary does not communicate with other members in the

replica set for a configured period (10 seconds by default), an eligible

secondary node calls for an election to nominate itself as the new primary

and resume its normal operation (Figure 5-11).

N, Z

Primar%(

Election for new primary

|

I HEART BEAT

| Secondary < » Secondary

|

.-
New primary elected &

e e e e e o — — — — — — — — — — — — — — o — — —

|

| REPLICATION .

| Primary HEART BEAT ; Secondary

1 * >

|

Figure 5-11. Primary failover and new primary election

To enable free monitoring, run the following command.

db.enableFreeMonitoring()

To permanently disable this reminder, run the following command.

db.disableFreeMonitoring()
To check the status of free monitoring, use this command.

db.getFreeMonitoringStatus()

139

CHAPTER 5 REPLICATION AND SHARDING

Sharding

Sharding is a method for distributing data across multiple machines. There
are two methods for addressing system growth: vertical and horizontal

scaling.

o Vertical scaling: We need to increase the capacity of
a single server such as using a more powerful CPU,
adding more RAM, or increasing the amount of storage

space.

e Horizontal scaling: We need to divide the data set and
distribute the workload across the servers by adding
additional servers to increase the capacity as required.

MongoDB supports horizontal scaling through sharding. A MongoDB
sharded cluster consists of the following components:

1. Shard: Each shard contains a subset of the sharded
data. Each shard can be deployed as a replica set.

2. mongos: The mongos acts as a query router, providing
an interface between client applications and the

sharded cluster.

3. Config servers: Config servers store metadata and
configuration settings for the cluster.

Recipe 5-2. Sharding

In this recipe, we are going to discuss how to create sharding to distribute

data across servers.

140

CHAPTER 5 REPLICATION AND SHARDING

Problem

You want to create sharding to distribute data across servers.

Solution

The solution is a group of mongod instances.

How It Works

Let’s follow the steps in this section to set up a sharding.

Step 1: Sharded Cluster

First, create data directories for three shards as shown here.
shard1

md c:\shard data\shardi\data1
md c:\shard data\shardi\data2
md c:\shard_data\shardi\data3

shard?2

md c:\shard_data\shard2\data1
md c:\shard data\shard2\data2
md c:\shard data\shard2\data3

shard3

md c:\shard data\shard3\data1
md c:\shard_data\shard3\data2
md c:\shard_data\shard3\data3

141

CHAPTER 5 REPLICATION AND SHARDING
Next, start the shards as shown here.
shardi

start mongod.exe --shardsvr --port 26017 --dbpath "c:\shard_
data\shardi\data1" --replSet shardi replset
start mongod.exe --shardsvr --port 26117 --dbpath "c:\shard_
data\shardi\data2" --replSet shardi replset
start mongod.exe --shardsvr --port 26217 --dbpath "c:\shard_
data\shardi\data3" --replSet shardi replset

Figure 5-12 shows the execution of commands.

C:\Program Files\MongoDB\Server\4.@\bin>start mongod.exe --shardsvr
--port 26017 --dbpath "c:\shard_data\shardl\datal" --replSet shardl_
replset

C:\Program Files\MongoDB\Server\4.@\bin>start mongod.exe --shardsvr
--port 26117 --dbpath "c:\shard_data\shardl\data2" --replSet shardil_
replset

C:\Program Files\MongoDB\Server\4.@\bin>start mongod.exe --shardsvr
--port 26217 --dbpath "c:\shard_data\shardi\data3" --replSet shardil_
replset

Figure 5-12. Starting the shard1 server

shard2

start mongod.exe --shardsvr --port 28017 --dbpath "c:\shard_
data\shard2\data1" --replSet shard2 replset
start mongod.exe --shardsvr --port 28117 --dbpath "c:\shard_
data\shard2\data2" --replSet shard2 replset
start mongod.exe --shardsvr --port 28217 --dbpath "c:\shard_
data\shard2\data3" --replSet shard2_replset

142

CHAPTER 5 REPLICATION AND SHARDING

Figure 5-13 shows the execution of commands.

C:\Program Files\MongoDB\Server\4.@\bin>start mongod.exe --shardsvr
--port 28017 --dbpath "c:\shard_data\shard2\datal" --replSet shard2_
replset

C:\Program Files\MongoDB\Server\4.@\bin>start mongod.exe --shardsvr
--port 28117 --dbpath "c:\shard data\shard2\data2" --replSet shard2
replset

C:\Program Files\MongoDB\Server\4.@\bin>start mongod.exe --shardsvr
--port 28217 --dbpath "c:\shard_data\shard2\data3" --replSet shard2_
replset

Figure 5-13. Starting the shard2 server

shard3

start mongod.exe --shardsvr --port 29017 --dbpath "c:\shard
data\shard3\data1" --replSet shard3 replset
start mongod.exe --shardsvr --port 29117 --dbpath "c:\shard_
data\shard3\data2" --replSet shard3_replset
start mongod.exe --shardsvr --port 29217 --dbpath "c:\shard_
data\shard3\data3" --replSet shard3_replset

Figure 5-14 shows the execution of commands.

IC:\Program Files\MongoDB\Server\4.@\bin>start mongod.exe --shardsvr
--port 29017 --dbpath "c:\shard_data\shard3\datal" --replSet shard3_
replset

IC:\Program Files\MongoDB\Server\4.0\bin>start mongod.exe --shardsvr
--port 29117 --dbpath "c:\shard data\shard3\data2" --replSet shard3
replset

IC:\Program Files\MongoDB\Server\4.0\bin>start mongod.exe --shardsvr
--port 29217 --dbpath "c:\shard_data\shard3\data3" --replSet shard3_
replset

Figure 5-14. Starting the shard3 server

143

CHAPTER 5 REPLICATION AND SHARDING

Now, connect to one of the shard servers to enable a replica set as
shown here and in Figure 5-15.

mongo.exe hostname:26017

C:\Program Files\MongoDB\Server\4.0\bin> mongo.exe
localhost:26017

C:\Program Files\MongoDB\Server\4.@\bin>mongo.exe localhost:26017
MongoDB shell version v4.0.11

connecting to: mongodb://localhost:26017/test?gssapiServiceName=mong
odb

Figure 5-15. Connect the shard1 server

Next initiate the replica by using the following command in mongo shell
as shown here.

MongoDB Enterprise > rs.initiate(

{

_id: "shardi_replset”,

members: [

{ _id : 0, host:"hostname:26017" },
{ _id : 1, host:"hostname:26117" },
{ _id : 2, host:"hostname:26217" }]}

)

144

CHAPTER 5 REPLICATION AND SHARDING

Figure 5-16 is the snapshot for reference.

MongoDB Enterprise > rs.initiate(

coo il

... _id: "shardl replset",

... members: [

... { _id : 0, host:"hostname:26017" },
... { _id : 1, host:"hostname:26117" },

... { _id : 2, host:"hostname:26217" }]}

Figure 5-16. Initiating the replica on the shard1 server

Now connect to another shard and initiate the replica.

C:\Program Files\MongoDB\Server\4.0\bin> mongo.exe
hostname:28017

MongoDB Enterprise > rs.initiate(

{

_id: "shard2_replset",

members: [

{ _id : o, host:"hostname:28017" },

{ _id : 1, host:"hostname:28117" },

{ _id : 2, host:"hostname:28217" }

]
}
)
Now connect to the third shard and initiate the replica,.

C:\Program Files\MongoDB\Server\4.0\bin> mongo.exe
hostname:29017

MongoDB Enterprise > rs.initiate(

145

CHAPTER 5 REPLICATION AND SHARDING

{

_id: "shard3 replset",

members: [

{ _id : o, host:"hostname:29017" },
{ _id : 1, host:"hostname:29117" },
{ _id : 2, host:"hostname:29217" }

]
}
)
Now, start the config servers by using the commands that follow.

Create data directories for the config servers.

md c:\shard data\config serveri\datal
md c:\shard data\config serveri\data2
md c:\shard_data\config serveri\data3

Start the config server with a replica set.

start mongod.exe --configsvr --port 47017 --dbpath "c:\shard_
data\config serverildatal" --replSet configserveri replset

start mongod.exe --configsvr --port 47117 --dbpath "c:\shard_
data\config serverildata2" --replSet configserveri replset

start mongod.exe --configsvr --port 47217 --dbpath "c:\shard_
data\config_serverildata3" --replSet configserveri replset

146

CHAPTER 5 REPLICATION AND SHARDING

Figure 5-17 is a snapshot for reference to start config servers.

C:\Program Files\MongoDB\Server\4.@\bin>start mongod.exe --configsvr
--port 47017 --dbpath "c:\shard_data\config_serverl\datal” --replSe
it configserverl replset

IC:\Program Files\MongoDB\Server\4.e\bin>

IC:\Program Files\MongoDB\Server\4.@\bin>start mongod.exe --configsvr
--port 47117 --dbpath "c:\shard_data\config_serverl\data2" --replSe

it configserverl replset

IC:\Program Files\MongoDB\Server\4.e\bin>

IC:\Program Files\MongoDB\Server\4.0\bin>start mongod.exe --configsvr
--port 47217 --dbpath "c:\shard data\config serverl\data3" --replSe

it configserverl replset

Figure 5-17. Starting the config servers

Now we can connect to config servers to enable the replica set.

C:\Program Files\MongoDB\Server\4.0\bin> mongo.exe
hostname:47017

Then initiate the replica set.

MongoDB Enterprise > 1rs.initiate(

{

_id: "configserverl replset”,
configsvr: true,

members: [

{ _id : o, host : "hostname:47017" },
{ id : 1, host : "hostname:47117" },
{ _id : 2, host : "hostname:47217" }

]
}
)

147

CHAPTER 5 REPLICATION AND SHARDING
Start mongos as shown here.

start mongos.exe --configdb configserveri replset/hostname:
47017,hostname:47117,hostname:47217 --port 1000

Now it is time to perform sharding. Here, we are going to use one query
router, one config server, and three shards.
Connect to the query router as shown here.

mongo.exe localhost:1000
Here is the output,

2018-10-01T12:47:08.929+0530 I CONTROL [main]
mongos>

Next, add the three shard servers to the config server as shown here.

sh.addShard("shard1_replset/localhost:26017,localhost:26117,1loc
alhost:26217")

Here is the output for the first shard:

mongos> sh.addShard("shardl replset/localhost:26017,localhost:2
6117,localhost:26217")
{
"shardAdded" : "shardl replset”,
"ok" : 1,
"operationTime" : Timestamp(1538378773, 7),
"$clusterTime" : {
"clusterTime" : Timestamp(1538378773, 7),
"signature" : {
"hash™ : BinData(0, "AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),

148

CHAPTER 5 REPLICATION AND SHARDING

"keyId" : NumberLong(0)

}

mongos>

sh.addShard("shard2_replset/localhost:28017,localhost:28117,1loc
alhost:28217")

Here is the output for the second shard.

mongos> sh.addShard("shard2_replset/localhost:28017,localhost:2
8117,localhost:28217")

{
"shardAdded" : "shard2 replset”,
"ok" : 1,
"operationTime" : Timestamp(1538378886, 4),
"$clusterTime" : {
"clusterTime" : Timestamp(1538378886, 6),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)
}
}
}
mongos>

sh.addShard("shard3_replset/localhost:29017,localhost:29117,
localhost:29217")

149

CHAPTER 5 REPLICATION AND SHARDING
Here is the output for the third shard.

mongos> sh.addShard("shard3_replset/localhost:29017,localhost:
29117,localhost:29217")

{
"shardAdded" : "shard3 replset”,
"ok" : 1,
"operationTime" : Timestamp(1538378938, 4),
"$clusterTime" : {
"clusterTime" : Timestamp(1538378938, 4),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)
}
}
}

Issue the following command to check the status of the sharding.
mongos> sh.status()

Now, to enable sharding for a database, use this command.
mongos> sh.enableSharding("demos")

To enable sharding for a collection, use this code.

mongos> sh.shardCollection("demos.users",{"id":1}

150

CHAPTER 5 REPLICATION AND SHARDING

Here is the output,

mongos> sh.shardCollection("demos.users",{"id":1})
{
"collectionsharded" : "demos.users",
"collectionUUID" : UUID("0122f602-212e-4c79-8be7-
5c7a63676c8b"),
"ok" : 1,
"operationTime" : Timestamp(1538379345, 15),
"$clusterTime" : {
"clusterTime" : Timestamp(1538379345, 15),
"signature" : {
"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)

Next we can create a huge collection using the following commands.
mongos> use demos;

for(var i=0;i<10000;i++){db.users.insert({id: Math.random(),
count:i, date: new Date()})}

Issue the next command to count the number of users.

mongos> db.users.count()
10000

151

CHAPTER 5 REPLICATION AND SHARDING
Issue the following command to see the distribution of the user collection.

mongos> sh.status()
--- Sharding Status ---
sharding version: {
"id" : o1,
"minCompatibleVersion" : 5,
"currentVersion" : 6,
"clusterId" : ObjectId("sbbic63e9bbb23ade7b2dd9s")

}

shards:
{ "_id" : "shardi replset", "host" : "shardi_ replset/
localhost:26017,localhost:26117,localhost:26217",
"state" : 1}
{ "_id" : "shard2_replset", "host" : "shard2_ replset/
localhost:28017,1localhost:28117,localhost:28217",
"state" : 1}
{ " id" : "shard3 replset", "host" : "shard3 replset/
localhost:29017,1localhost:29117,localhost:29217",
"state" : 1}

active mongoses:
"4.0.2" : 1

autosplit:
Currently enabled: yes

balancer:

Currently enabled: yes
Currently running: no
Failed balancer rounds in last 5 attempts: o0
Migration Results for the last 24 hours:
No recent migrations

152

CHAPTER 5

databases:
{ "_id" : "config", “primary" :
"config", ‘"partitioned" : true }
config.system.sessions

shard key: { " id" :

unique: false
balancing: true
chunks:

REPLICATION AND SHARDING

1}

shard1l _replset 1
{ " id" : { "$minKey" : 1 } } -->>
{ " id" : { "$maxKey" : 1 } } on :
shard1l replset Timestamp(1, 0)
{ " id" : "demos", "primary" : "shard2 replset",

"partitioned" : true, "version" :

{ "uuid" : UUID

("52ced1e7-6afd-4554-a310-609d62c11450"), "lastMod" :

1}}

demos.users

shard key: { "id" :

unique: false
balancing: true
chunks:

1}

shard2 replset 1
{ "id" : { "$minKey" : 1 } } -->>
{ "id" : { "$maxKey" : 1} } on :
shard2_replset Timestamp(1, 0)

This shows that user data is distributed to shard1 and shard2.

Note All these demos are executed in a Windows environment.

153

CHAPTER 5 REPLICATION AND SHARDING

Next, to shard a collection using hashed sharding, enable sharding for

a database as shown here.
sh.enableSharding("sample")
Here is the output,

mongos> sh.enableSharding("sample")

{
"ok" : 1,
"operationTime" : Timestamp(1554705786, 5),
"$clusterTime" : {
"clusterTime" : Timestamp(1554705786, 5),
"signature" : {
"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)
}
}
}
Finally, use the following command to shard a collection using hashed
sharding.

sh.shardCollection("sample.users",{"id": "hashed"})
Here is the output,

mongos> sh.shardCollection("sample.users",{"id":"hashed"})
{
"collectionsharded"” : "sample.users",
"collectionUUID" : UUID("4fb2750a-ec5d-4ae0-be8f-
a8fbea8294ab"),
"ok" : 1,
"operationTime" : Timestamp(1554705891, 13),

154

CHAPTER 5 REPLICATION AND SHARDING

"$clusterTime" : {
"clusterTime" : Timestamp(1554705891, 25),
"signature" : {
"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)

155

CHAPTER 6

Multidocument
Transactions

In Chapter 5, we discussed replica sets and sharding in MongoDB. In this
chapter, we are going to discuss multidocument transactions in MongoDB,
a new feature introduced in MongoDB 4.0.

Multidocument Transactions in MongoDB

In MongoDB, a write operation on single document is atomic, even if
the write operation modifies multiple embedded documents within a
single document. When a single write operation (e.g., db.collection.
updateMany()) modifies multiple documents, the modification of each
document is atomic, but the operation as a whole is not.

Starting with version 4.0, MongoDB provides multidocument
transactions for replica sets. Multidocument transactions help us to
achieve all-or-nothing execution to maintain data integrity.

The multidocument transactions are atomic.

e When a transaction commits, all data changes made
in the transaction are saved and visible outside the
transaction. The data changes are not visible outside
the transaction until the transaction is committed.

© Subhashini Chellappan and Dharanitharan Ganesan 2020 157
S. Chellappan and D. Ganesan, MongoDB Recipe:s,
https://doi.org/10.1007/978-1-4842-4891-1_6

CHAPTER6 MULTIDOCUMENT TRANSACTIONS

e When a transaction aborts, all data changes made in the
transaction are discarded without ever becoming visible.

Note Multidocument transactions are available only for a replica
set. If we try to use multidocument transactions on a nonreplica set,
we would get the error “Transaction numbers are only allowed on a
replica set member or mongos,” as shown in Figure 6-1.

WriteCommandError({
"ok" : @,
"errmsg" : "Transaction numbers are only allowed on a replica set member or mongos”,
"code" : 20,
"codeName" : "IllegalOperation”
}

Figure 6-1. Error on usage of multidocument transaction on a
nonreplica set

Limitations of Transactions

Transactions do have some limitations, which are given here.

e You can specify CRUD operations only on existing
collections. The collections can be in different
databases.

e You cannot perform read/write operations on config,
admin, and local databases.

e You cannot write to system. * collections.
e You cannot create or drop indexes inside a transaction.

¢ You cannot perform non-CRUD operations inside a

transaction.

e You cannot return an operation’s query plan (i.e., explain).

158

CHAPTER6 MULTIDOCUMENT TRANSACTIONS

Transactions and Sessions

In MongoDB, transactions are associated with sessions. MongoDB's
sessions provide a framework that supports consistency and writes that
can be retried. MongoDB's sessions are available only for replica sets
and shared clusters. A session is required to start the transaction. You
cannot run a transaction outside a session, and a session can run only one
transaction at a time. A session is essentially a context.

There are three commands that important in working with

transactions.

o session.startTransaction(): To start a new
transaction in the current session.

o session.commitTransaction(): To save changes
made by the operations in the transaction.

e session.abortTransaction(): To abort the
transaction without saving it.

Recipe 6-1. Working with Multidocument
Transactions

In this recipe, we are going to discuss how to work with multidocument
transactions.

Problem

You want to work with multidocument transactions.

Solution

Use session.startTransaction(), session.commitTransaction(), and
session.abortTransaction().

159

CHAPTER6 MULTIDOCUMENT TRANSACTIONS

How It Works

Let’s follow the steps in this section to work with multidocument transactions.

Step 1: Multidocument Transactions

To work with multidocument transactions, first we create an employee
collection under the employee database as shown here.

use employee
db.createCollection("employee")
Here is the output,

myrs:PRIMARY> use employee
switched to db employee
myrs:PRIMARY> db.createCollection("employee™)

{
"ok" : 1,
"operationTime" : Timestamp(1552385760, 1),
"$clusterTime" : {
"clusterTime" : Timestamp(1552385760, 1),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)
}
}
}

Next, insert a few documents as shown here.

db.employee.insert([{ id:1001, empName:"Subhashini"},{ id:1002,
empName: "Shobana"}])

160

CHAPTER6 MULTIDOCUMENT TRANSACTIONS

Here is the output,

myrs:PRIMARY> db.employee.insert([{_ id:1001,
empName: "Subhashini"},{ id:1002, empName:"Shobana"}])

BulkWriteResult({
"writeErrors" : [],
"writeConcernErrors" : [],
"nInserted" : 2,

“nUpserted" : 0,
"nMatched" : o,
"nModified" : o,
"nRemoved" : 0,
"upserted" : []

1)

Now, create a session as shown here.
session = db.getMongo().startSession()
Here is the output,

myrs:PRIMARY> session = db.getMongo().startSession()
session { "id" : UUID("55d56ef2-cab1-40c0-8d01-c2f75b5696b5") }

Next, start the transaction and insert a few documents as shown here.

session.startTransaction()
session.getDatabase("employee").employee.insert([{_
id:1003,empName: "Taanushree"},{ id:1004, empName:"Aruna M S"}])

161

CHAPTER6 MULTIDOCUMENT TRANSACTIONS
Here is the output,

myrs:PRIMARY> session.startTransaction()

myrs:PRIMARY> session.getDatabase("employee").employee.
insert([{ id:1003,empName: "Taanushree"},{ id:1004,
empName: "Aruna M S"}])

BulkWriteResult({
"writeErrors" : [],
"writeConcernErrors" : [],

"nInserted" : 2,
"nUpserted" : 0,
"nMatched" : 0,
"nModified" : 0,
"nRemoved" : 0,
"upserted” : []

)

Now, we try to read the collection from inside and outside of the
transactions. First, we will read the collection from inside the transaction.

session.getDatabase("employee").employee.find()
Here is the output,

myrs :PRIMARY> session. getDatabase(‘employee”).employee.find()

{ " id" : 1001, "empName" : "Subhashini" }
{ " id" : 1002, "empName" : "Shobana" }

{ " _id" : 1003, "empName" : "Taanushree" }
{ " id" : 1004, "empName" : "Aruna M S" }

We can see the modifications from inside the transaction.

162

CHAPTER6 MULTIDOCUMENT TRANSACTIONS

Second, we will try to read the collection from outside of the transaction.

db.employee.find()

myrs:PRIMARY> db.employee.find()

{ " _id" : 1001, "empName" : "Subhashini" }
{ " id" : 1002, "empName" : "Shobana" }

Because the transactions are not committed, we cannot see
modifications outside the transaction.
Issue the following command to commit the transaction.

session.commitTransaction()
Here is the ouput:
myrs :PRIMARY> session.commitTransaction()
Now, we can see the modifications outside of the transaction also.

myrs:PRIMARY> db.employee.find()
{ " id" : 1001, "empName" : "Subhashini" }

{ " id" : 1002, "empName" : "Shobana" }
{ "_id" : 1003, "empName" : "Taanushree" }
{ " id" : 1004, "empName" : "Aruna M S" }

Recipe 6-2. Isolation Test Between Two
Concurrent Transactions

In this recipe, we are going to discuss how to perform an isolation test
between two concurrent transactions.

163

CHAPTER6 MULTIDOCUMENT TRANSACTIONS

Problem

You want to perform an isolation test between two concurrent

transactions.

Solution

Use session.startTransaction(), session.commitTransaction() and
session.abortTransaction().

How It Works

Let’s follow the steps in this section to perform an isolation test between
two concurrent transactions.

Step 1: Isolation Test Between Two Concurrent
Transactions

Create a first connection as shown here.

var sessionl = db.getMongo().startSession()
sessioni.startTransaction()
sessionl.getDatabase("employee").employee.update({ id:1003},
{$set:{designation: "TL" }})

Here is the output,

myrs:PRIMARY> var sessionl = db.getMongo().startSession()
myrs:PRIMARY> sessionl.startTransaction()

myrs:PRIMARY> sessionl.getDatabase("employee").employee.
update({ id:1003},{$set:{designation: "TL" }})

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

164

CHAPTER 6 MULTIDOCUMENT TRANSACTIONS
Next, read the collection as shown here.
sessionl.getDatabase("employee").employee.find()
Here is the output,

myrs:PRIMARY> sessioni.getDatabase("employee").employee.find()

{ " id" : 1001, "empName" : "Subhashini" }

{ " id" : 1002, "empName" : "Shobana" }

{ " id" : 1003, "empName" : "Taanushree", "designation" : "TL" }
{ "_id" : 1004, "empName" : "Aruna M S" }

Now, create a second connection and update the documents as
shown here.

var session2 = db.getMongo().startSession()
session2.startTransaction()
session2.getDatabase("employee").employee.update({ id:{$in:
[1001,1004]}},{$set:{designation:"SE"}},{multi:"true"})

Here is the output,

myrs:PRIMARY> var session2 = db.getMongo().startSession()
myrs:PRIMARY> session2.startTransaction()

myrs:PRIMARY> session2.getDatabase("employee").employee.
update({_id:{$in:[1001,1004]}},{$set:{designation:"SE"}},{multi
:"true"})

WriteResult({ "nMatched" : 2, "nUpserted" : 0, "nModified" : 2 })

Next, read the collection as shown here.

session2.getDatabase("employee").employee.find()

165

CHAPTER6 MULTIDOCUMENT TRANSACTIONS
Here is the output,

myrs:PRIMARY> session2.getDatabase("employee").employee.find()

{ " _id" : 1001, "empName" : "Subhashini", "designation" : "SE" }
{ " id" : 1002, "empName" : "Shobana" }

{ "_id" : 1003, "empName" : "Taanushree" }

{ " _id" : 1004, "empName" : "Aruna M S", "designation" : "SE" }

Here, the transactions are isolated, and each transaction shows the
modification that it has made itself.

Recipe 6-3. Transactions with Write
Conflicts

In this recipe, we are going to discuss write conflicts with transactions.

Problem

You want to see the error message for write conflicts that occurs when two
transactions try to modify the same document.

Solution

Use session.startTransaction(), session.commitTransaction() and
session.abortTransaction().

How It Works

Let’s follow the steps in this section to manage write conflicts between two

concurrent transactions.

166

CHAPTER6 MULTIDOCUMENT TRANSACTIONS

Step 1: Transactions with Write Conflicts

Create a first connection as shown here.

var sessionl = db.getMongo().startSession()
sessionl.startTransaction()
sessionl.getDatabase("employee").employee.update({empName:
"Subhashini"},{$set:{empName: "Subha" }})

Here is the output,

myrs:PRIMARY> var sessionl = db.getMongo().startSession()
myrs:PRIMARY> sessioni.startTransaction()

myrs:PRIMARY> sessionl.getDatabase("employee").employee.update(
{empName: "Subhashini"},{$set:{empName: "Subha" }})
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
myrs :PRIMARY>

Now, create a second connection and try to update the same
document as shown here.

var session2 = db.getMongo().startSession()
session2.startTransaction()
session2.getDatabase("employee").employee.update({empName:
"Subhashini"}, {$set:{empName: "Subha" }})

Here is the output,

myrs:PRIMARY> var session2 = db.getMongo().startSession()
myrs:PRIMARY> session2.startTransaction()
myrs:PRIMARY> session2.getDatabase("employee").employee.update(
{empName: "Subhashini"},{$set:{empName: "Subha" }})
WriteCommandError ({
"errorLabels" : [
"TransientTransactionError"

167

CHAPTER6 MULTIDOCUMENT TRANSACTIONS

]J

"operationTime" : Timestamp(1552405529, 1),
"ok" : 0,

"errmsg" : "WriteConflict",

"code" : 112,

"codeName" : "WriteConflict",

"$clusterTime" : {
"clusterTime" : Timestamp(1552405529, 1),
"signature" : {
"hash" : BinData(0, "AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)

1)

Here, MongoDB detects a write conflict immediately, even though the

transactions are not yet committed.

Recipe 6-4. Discarding Data Changes
with abortTransaction

In this recipe, we are going to discuss how to discard data changes with
abortTransaction

Problem

You want to discard data changes with abortTransaction

168

CHAPTER6 MULTIDOCUMENT TRANSACTIONS

Solution

Use session.startTransaction(), session.commitTransaction(), and
session.abortTransaction().

How It Works

Let’s follow the steps in this section to discard data changes using the
abortTransaction method.

Step 1: Discard Data Changes
Create a student collection under the student database as shown here.

use student;
db.createCollection("student")

Here is the output,

myrs:PRIMARY> use student;
switched to db student
myrs :PRIMARY> db.createCollection("student")

{
"ok" : 1,
"operationTime" : Timestamp(1552406937, 1),
"$clusterTime" : {
"clusterTime" : Timestamp(1552406937, 1),
"signature" : {
"hash" : BinData(0,"AAAAAAAAAAAAAAAAAAA
AAAAAAAA="),
"keyId" : NumberLong(0)
}
}
}

myrs : PRIMARY>
169

CHAPTER 6 MULTIDOCUMENT TRANSACTIONS
Next, insert a few documents as shown here.

db.student.insert({ id:1001,name:"subhashini"})
db.student.insert({ id:1002,name:"shobana"})

Start a transaction and insert a document.

var sessionl = db.getMongo().startSession()
sessioni.startTransaction()
sessionl.getDatabase("student").student.insert({ id:1003,
name: "Taanushree"})

Here is the output,

myrs:PRIMARY> var sessionl = db.getMongo().startSession()
myrs:PRIMARY> sessionil.startTransaction()

myrs:PRIMARY> sessionl.getDatabase("student").student.insert
({_id:1003,name: "Taanushree"})

WriteResult({ "nInserted" : 1 })

myrs:PRIMARY>

Now, find the document from the collection and session.
db.student.find()
Here is the output,

myrs:PRIMARY> db.student.find()

{ " id" : 1001, "name" : "subhashini" }

{ " id" : 1002, "name" : "shobana" }
myrs:PRIMARY>sessionl.getDatabase("student™").student.find()
myrs:PRIMARY> sessioni.getDatabase("student").student.find()

{ " id" : 1001, "name" : "subhashini" }
{ " id" : 1002, "name" : "shobana" }
{ " id" : 1003, "name" : "Taanushree" }

myrs : PRIMARY>

170

CHAPTER6 MULTIDOCUMENT TRANSACTIONS

Now, you can discard the data changes with abortTransaction as
shown here.

sessioni.abortTransaction()
Here is the output,
myrs:PRIMARY> sessionl.abortTransaction()

Now, you can find the collection as shown here.

db.student.find()

myrs:PRIMARY> db.student.find()

{ " _id" : 1001, "name" : "subhashini" }
{ " id" : 1002, "name" : "shobana" }

Here, the data changes are discarded.

Note Multidocument transactions are only available for
deployments that use WiredTiger storage engine.

171

CHAPTER 7

MongoDB Monitoring
and Backup

In Chapter 6, we discussed transactions in MongoDB. In this chapter, we
are going to discuss the following topics:

e MongoDB monitoring tools.

e Backup and restore with MongoDB.

MongoDB Monitoring

MongoDB provides various tools to monitor the database. These
MongoDB monitoring tools help us to understand what is happening with
a database at various levels.

Log File

The first basic tool is the log file.

Recipe 7-1. Working with MongoDB Log Files

In this recipe, we are going to discuss MongoDB log files.

© Subhashini Chellappan and Dharanitharan Ganesan 2020 173
S. Chellappan and D. Ganesan, MongoDB Recipe:s,
https://doi.org/10.1007/978-1-4842-4891-1_7

CHAPTER 7 MONGODB MONITORING AND BACKUP

Problem

You want to see the MongoDB log file and set the log level.

Solution
The MongoDB log file is present in the following installation path:
c:\Program Files\MongoDB\Server\4.0\log>

Use the db.setLoglevel function to set the log level.

How It Works

Let’s follow the steps in this section to see the log file in mongo shell.

Step 1: To Display the Log File Content
and Set the Log Level

Type the following command in the mongo shell.
show logs
Here is the output,

> show logs
global
startupWarnings

You can see the log entries by typing the next command.
show log global

We cannot filter the log messages in the console.

174

CHAPTER7 MONGODB MONITORING AND BACKUP

MongoDB has several logging levels, which can be set using the db.
setlLoglevel function.
The syntax for db.setLogLevel is

db.setLoglLevel(<level>, <component>)

Here, level indicates the log verbosity level, which ranges from 0
to 5. The default log level is 0, which includes informational messages.
Levels 1 to 5 increase the verbosity level to include debug messages. The
second argument, component, is optional. This refers to the name of the
component for which you want to set the verbosity level. The component
name corresponds to the <name> from the corresponding systemLog.
component.<name>.verbosity setting:

accessControl
command
control

ftdc

geo

index

network

query
replication
recovery
sharding
storage
storage.journal
transaction
write

To set the log level to 2 on the topic query, issue the following
command.

db.setLoglLevel(2, "query")

175

CHAPTER 7 MONGODB MONITORING AND BACKUP

Here is the output,

> db.setloglevel(2,"query")

{

was

176

o

"verbosity" : 0,
"accessControl” : {

"verbosity" : -1
1
"command" : {
"verbosity" : -1
1
"control" : {
"verbosity" : -1
b
"executor" : {
"verbosity" : -1
b
Ilgeoll : {
"verbosity" : -1
b
"index" : {
"verbosity" : -1
b
"network" : {
"verbosity" : -1,
"asio" : {
"verbosity" :
1
"bridge" : {
"verbosity" :
}
}s

-1

-1

CHAPTER7 MONGODB MONITORING AND BACKUP

"query" : {
"verbosity" : -1
})
"replication” : {
"verbosity" : -1,
"heartbeats" : {
"verbosity" :
})
"rollback" : {
"verbosity" :
}
b
"sharding" : {
"verbosity" : -1
b
"storage" : {
"verbosity" : -1,
"recovery" : {
"verbosity" :
}J
"journal" : {
"verbosity" :
}
1
"write" : {
"verbosity" : -1
1
"ftdc" @ {
"verbosity" : -1
1

177

CHAPTER 7 MONGODB MONITORING AND BACKUP

"tracking" : {
"verbosity" : -1
1
"transaction" : {
"verbosity" : -1
}
b
Ilokll : 1

MongoDB echoes back the previous configuration before the new
setting was applied. At the top, you can see the default level, which
indicates that any components that are not set will log at this level. Here, it
will override only the query component. The -1 verbosity indicates that it
inherits the default level from its parent.

To see the current level, issue the following command.

db. getLogComponents
Here is the output,

> db.getLogComponents ()
{

"verbosity" : 0,
"accessControl" : {

"verbosity" : -1
b
"command" : {
"verbosity" : -1
b

"control" : {
"verbosity" : -1

b

178

CHAPTER 7
"executor" : {
"verbosity" : -1
}J
"geo" : {
"verbosity" : -1
}J
"index" : {
"verbosity" : -1
}J
"network" : {
"verbosity" : -1,
"asio" : {
"verbosity" :
15
"bridge" : {
"verbosity" :
}
})
"query" : {
"verbosity" : 2
})
"replication” : {
"verbosity" : -1,
"heartbeats" : {
"verbosity" :
})
"rollback" : {
"verbosity" :
}
}J

MONGODB MONITORING AND BACKUP

179

CHAPTER 7 MONGODB MONITORING AND BACKUP

"sharding" : {
"verbosity" : -1
b
"storage" : {
"verbosity" : -1,
"recovery" : {
"verbosity" : -1
1
"journal™ : {
"verbosity" : -1
}
b
"write" : {
"verbosity" : -1
b
"ftdc" @ {
"verbosity" : -1
b
"tracking" : {
"verbosity" : -1
b
"transaction" : {
"verbosity" : -1
}

Here, the query level is set to 2.
Now, issue the following query, which we’ll use to add an entry to the
log file:

> db.demos.find()
>

180

CHAPTER7 MONGODB MONITORING AND BACKUP

This query will not return any results because there is no collection
named demos in the test database.
Now, issue this command to see the log file.

> show log global
Here are the last few lines of log file output,

2019-02-17T16:08:43.681+0530 D QUERY [conn1]

Collection test.demos does not exist. Using EOF plan: query: {}
sort: {} projection: {}

2019-02-17T16:09:03.805+0530 D QUERY [conn1] Collection
test.demos does not exist. Using EOF plan: query: {} sort: {}
projection: {}

2019-02-17T16:09:31.633+0530 D QUERY [LogicalSessionCache
Refresh] Using idhack: { _id: { id: UUID("9d7def64-8b49-4c85-
9392-01f7ab88e019"), uid: BinData(0, E3B0C44298FC1C149AFBF4C8
996FB92427AE41E4649B934CA495991B7852B855) } }

You can see some additional information about the query.
Now set the query log level as -1:

> db.setloglevel(-1,"query")

Then, issue the following query and observe the details in the log file as
explained further later.

> db.demos.find({y:1})
Now check the log file by using the following command.
> show log global

Now check the end of the log file: We cannot see the extra logging
information for this find query.
Use db.setLoglevel(0) to turn off the logging level.

181

CHAPTER 7 MONGODB MONITORING AND BACKUP

If we do not specify the option as query or write or anything, it will be
applied for all options.

The log level 5 is very detailed; levels 1 to 3 are more useful options and
these are recommended unless you need all of the detailed information
provided by the highest log level of 5.

Also, setting the appropriate log level helps us to improve the
performance of queries by identifying the query plans logged in the log file
and also by identifying the slow operations by checking the time taken to
execute a query.

Note Refer to Recipe 7-10 to learn more about MongoDB query plans.

MongoDB Performance

It is mandatory to analyze the performance of the database when we
develop new applications with MongoDB. Performance degradation could
happen due to hardware availability issues, number of open database
connections, and database access strategies.

Performance issues indicate the database is operating at full capacity
and abnormal traffic load due to an increase in the number of connections.

The database profiler can help us to understand the various operations
performed on the database that cause performance degradation.

Database Profiler

The database profiler is used to collect information about the commands
that are executed against a running mongod instance. The database profiler
writes all the collected data to the system.profile capped collection in
the admin database.

182

CHAPTER7 MONGODB MONITORING AND BACKUP

MongoDB also has a Performance Advisor tool that automatically
monitors slow queries and suggests new indexes to improve query
performance. A query is considered to be slow if it takes more than 100
milliseconds to execute.

Note The Performance Advisor tool is available in the MongoDB
Atlas cluster. MongoDB Atlas is the global cloud database service for
modern applications.

The profiler is turned off by default. It can be enabled on a per-database
or per-instance basis at any one of the profiling levels mentioned in Table 7-1.

Table 7-1. Profiling Levels

Level Description

0 The profiler is off and does not collect any data. This is the default profiler
level.
1 The profiler collects data for operations that take longer than the value of

the slowms parameter.

2 The profiler collects data for all operations.

Recipe 7-2. Working with Database Profiler

In this recipe, we are going to discuss how to enable database profiler and
how to set the profiling level.

Problem

You want to enable database profiling with a profile level.

183

CHAPTER 7 MONGODB MONITORING AND BACKUP

Solution

Use the db.setProfilinglevel() helper in the mongo shell.

How It Works

Let’s follow the steps in this section to enable the database profiler.

Step 1: Enable and Configure Database Profiler

To enable the database profiler to collect all database information use the

following command.
db.setProfilinglevel(2)
Here is the output,

> db.setProfilinglevel(2)
"was" : 0, "slowms" : 100, "sampleRate" : 1, "ok" : 1 }

was is the key/value pair indicating the previous level of profiling.
You can specify the threshold for slow operations using the next command.

db.setProfilinglevel(1, { slowms: 30 })
Here is the output,

> db.setProfilinglevel(1, { slowms: 30 })
"was" : 2, "slowms" : 100, "sampleRate" : 1, "ok" : 1 }

Here, the slow operation threshold is 30 milliseconds.
To profile a random sample of slow operations, use the following
command.

db.setProfilinglevel(1, { sampleRate: 0.53 })

184

CHAPTER7 MONGODB MONITORING AND BACKUP

That code sets the profiler to sample 53% of all slow operations.

Note The default threshold value for the slow operation is 100
milliseconds.

You can get the profiling level by issuing the following command.
db.getProfilingStatus()
Here is the output,

> db.getProfilingStatus()
"was" : 1, "slowms" : 30, "sampleRate" : 1 }

The was field indicates the current profiling level.
To disable the database profiler, use this command.

db.setProfilinglLevel(0)
Here is the output,

> db.setProfilinglevel(0)
"was" : 1, "slowms" : 30, "sampleRate" : 1, "ok" : 1 }

To enable profiling for an entire mongod instance, pass the following
option to the mongod instance at the time of starting it.

mongod --profile 1 --slowms 20 --slowOpSampleRate 0.5

This command sets the profiling level to 1, the slow operation
threshold to 20 milliseconds, and it profiles only 50% of the slow

operations.

185

CHAPTER 7 MONGODB MONITORING AND BACKUP

Recipe 7-3. View Database Profiler

In this recipe, we are going to discuss how to view database profiler.

Problem

You want to view database profiler information.

Solution

Use db.system.profile.find() in the mongo shell.

How It Works

Let’s follow the steps in this section to view database profiler information.

Step 1: Enable and Configure Database Profiler

The database profiler logs information in the system.profile collection.
You need to query system.collection to view profiling information.
Create an employee collection in the example database as shown here.

> use example;
switched to db example
> db.setProfilinglevel(2)
"was" : 0, "slowms" : 100, "sampleRate" : 1, "ok" : 1 }
> show collections
> db.employee.insert({ id:1001,name:"Subhashini"})
WriteResult({ "nInserted" : 1 })
> db.employee.insert({ id:1001,name:"Shobana"})
WriteResult({
"nInserted" : 0,
"writeError" : {

186

CHAPTER7 MONGODB MONITORING AND BACKUP

"code" : 11000,

"errmsg" : "E11000 duplicate key error
collection: example.employee index:
id dup key: { : 1001.0 }"

}
1)
> db.employee.find()
{ " id" : 1001, "name" : "Subhashini" }

The profiler stores details in their respective keys as follows:
o op: Component type (i.e., query or command).
e ts: Timestamp.
e ns: Collection details where the query is executed.

These options can be used to filter or sort as in the queries that follow.
To return operations performed on the employee collection, issue the
following command.

> db.system.profile.find({ ns : 'example.employee' }
).pretty()

Here is the output,

{

op" : "insert",
"ns" : "example.employee",
"command" : {
"insert" : "employee",
"ordered" : true,
"lsid" : {
"id" : UUID("93b33e8d-f561-46a1-8310-
0f62d31442f1")

b

187

CHAPTER 7 MONGODB MONITORING AND BACKUP

"$db" : "example"
})
"ninserted" : 1,
"keysInserted" : 1,
"numYield" : o,

"locks" : {
"Global" : {
"acquireCount" : {
"r" : NumberLong(3),
"w" : NumberLong(3)
}
b
"Database" : {
"acquireCount"” : {
"w" : NumberLong(2),
"W" : NumberLong(1)
}
})
"Collection" : {
"acquireCount" : {
"w" : NumberLong(2)
}
}
})
"responselength" : 45,
"protocol” : "op msg",

"millis" : 21,

"ts" : ISODate("2019-01-14T06:08:38.838Z"),
"client" : "127.0.0.1",

"appName" : "MongoDB Shell",

"allUsers" : [],

"user" : ""

188

CHAPTER7 MONGODB MONITORING AND BACKUP

"op" : "insert",

"ns" : "example.employee",

"command" : {
"insert" : "employee",
"ordered" : true,
"lsid" : {

"id" : UUID("93b33e8d-f561-46a1-8310-
0f62d31442f1")

1

"$db" : "example"
b
"ninserted" : 0,

"keysInserted" : 0,
"numYield" : o,
"locks" : {
"Global" : {
"acquireCount"” : {

r" : NumberlLong(1),

w" : NumberLong(1)

}s
"Database" : {
"acquireCount" : {

w" : NumberLong(1)

}s
"Collection" : {
"acquireCount"” : {

w" : NumberLong(1)

189

CHAPTER 7 MONGODB MONITORING AND BACKUP

}
b

"responselength" : 194,

"protocol” : "op_msg",

"millis" : 2,

"ts" : ISODate("2019-01-14T06:08:50.297Z"),
"client" : "127.0.0.1",

"appName" : "MongoDB Shell",

"allUsers" : [],

"user" :
}
{
"op" : "query",
"ns" : "example.employee",
"command" : {
"find" : "employee",
“filter" : {
1
"lsid" : {
"id" : UUID("93b33e8d-f561-46a1-8310-
0f62d31442F1")
1
"$db" : "example"
b

"keysExamined" : 0,
"docsExamined" : 1,
"cursorExhausted" : true,
"numYield" : o,
"nreturned” : 1,
"locks" : {

"Global" : {

190

CHAPTER7 MONGODB MONITORING AND BACKUP

"acquireCount" : {
"r" : NumberLong(1)

15
"Database" : {
"acquireCount"” : {

r" : NumberLong(1)

}s
"Collection" : {
"acquireCount" : {

r" : NumberLong(1)

b

"responselength” : 147,

"protocol” : "op_msg",

"millis" : o,

"planSummary" : "COLLSCAN",

"execStats" : {
"stage" : "COLLSCAN",
"nReturned" : 1,
"executionTimeMillisEstimate" : o,
"works" : 3,
"advanced" : 1,
"needTime" : 1,
"needYield" : o,
"saveState" : 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,

191

CHAPTER 7 MONGODB MONITORING AND BACKUP

"direction" : "forward",
"docsExamined" : 1
}J
"ts" : ISODate("2019-01-14T06:22:07.873Z"),
"client" : "127.0.0.1",

“appName" : "MongoDB Shell",
"allUsers" : [],

"user" :

To return the most recent five log entries, issue the following
command.

> db.system.profile.find().limit(5).sort({ ts : -1}
).pretty()

Note ts specifies the timestamp and the value -1 specifies to
sort in descending order. We can specify 1 for ascending or -1 for
descending order.

To return operations slower than 5 milliseconds, use this syntax.

> db.system.profile.find({ millis : { $gt : 5 } }).pretty()

mongostat

mongostat is a monitoring utility that provides information about a mongod
instance if you are working on a single mongod instance. If you are working
on a shared cluster, it shows information about a mongos instance.

192

CHAPTER7 MONGODB MONITORING AND BACKUP

Recipe 7-4. Working with mongostat

In this recipe, we are going to discuss how to use mongostat to monitor the
MongoDB server.

Problem

You want to see the details of a MongoDB server.

Solution

Use the mongostat tool, which is available in the installation directory.
Usually the installation directory is C: \Program Files\MongoDB\
Server\4.0\bin or the custom path specified during your installation
process.

Avoid navigating to the directory each time to use the mongostat tool
and add the directory path to your PATH environment variable.

How It Works

Let’s follow the steps in this section to view server information using
mongostat.

Step 1: mongostat Command

Issue the mongostat command by specifying the hostname and port of
MongoDB server.

193

CHAPTER7 MONGODB MONITORING AND BACKUP
Here is the output,

c:\Program Files\MongoDB\Server\4.0\bin>mongostat --host
localhost:27017

insert query update delete getmore command dirty used flushes

vsize res qrw arw net_in net out conn time
*0 *0 *0 *0 0 146|0 0.0% 0.0% 0
4.97G 28.0M 0|0 1|0 11.6k 4.49m 2 Feb 17 16:59:19.131
*0 *0 *0 *0 0 2|0 0.0% 0.0% 0
4.97G 28.0M 0|0 1|0 163b 63.6k 2 Feb 17 16:59:20.095
*0 *0 *0 *0 0 2|0 0.0% 0.0% 0
4.97G 28.0M 0|0 1|0 158b 61.7k 2 Feb 17 16:59:21.090
*0 *0 *0 *0 0 1|0 0.0% 0.0% 0
4.97G 28.0M 0|0 1|0 157b 61.3k 2 Feb 17 16:59:22.090
*0 *0 *0 *0 0 1|0 0.0% 0.0% 0
4.97G 28.0M 0|0 1|0 157b 61.2k 2 Feb 17 16:59:23.093
*0 *0 *0 *0 0 2|0 0.0% 0.0% 0
4.97G 28.0M 0|0 1|0 158b 61.4k 2 Feb 17 16:59:24.092
*0 *0 *0 *0 0 2|0 0.0% 0.0% 0
4.97G 28.0M 0|0 1|0 159b 62.1k 2 Feb 17 16:59:25.080
*0 *0 *0 *0 0 1|0 0.0% 0.0% 0
4.97G 28.0M 0|0 1|0 157b 61.2k 2 Feb 17 16:59:26.082
*0 *0 *0 *0 0 1|0 0.0% 0.0% 0
4.97G 28.0M 0|0 1|0 157b 61.0k 2 Feb 17 16:59:27.088
*0 *0 *0 *0 0 2|0 0.0% 0.0% 0

4.97G 28.0M 0|0 1|0 158b 61.6k 2 Feb 17 16:59:28.083

Note 27017 is the default port. We can simply use mongostat
without any options if we want to connect and get statistics of
localhost and default port 27017. To connect a different or remote
instance, specify the option -host as shown.

194

CHAPTER7 MONGODB MONITORING AND BACKUP

You can see that there are multiple columns in the output.

insert/query/update/delete: These columns show
the number of insert, query, update, and delete
operations per second.

getmore: This column shows the number of times the
getmore operation is executed in one second.

command: This column shows the number of commands
executed on the server in one second.

flushes: This column shows the number of times data
was flushed to disk in one second.

mapped: This column shows the amount of memory
used by the mongo process against a database. It is the
same as the size of the database.

vsize (virtual size): This column represents virtual
memory allocated to the entire mongod process.

res (resident memory): This column represents the
physical memory used by MongoDB.

faults: This column shows the number of Linux page
faults per second.

qr | gw: This column shows queued-up reads and writes
that are waiting for the chance to be executed.

ar | aw: This column shows number of active clients.

netIn and netOut: These columns show the network
traffic in and out of the MongoDB server within a given
time frame.

195

CHAPTER 7 MONGODB MONITORING AND BACKUP

e conn: This column shows the number of open
connections.

o time: This column shows the time frame in which
operations are performed.

mongotop

mongotop provides a method to track the amount of time spent by the
mongod process during reads and writes. mongotop provides statistics on a
per-collection level.

Recipe 7-5. Working with mongotop

In this recipe, we are going to discuss how to use mongotop to track the
amount of time spent by the mongod process during reads and writes.

Problem

You want to see the amount of time spent by the mongod process during
reads and writes.

Solution

Issue the mongotop command in the installation path of MongoDB.

How It Works

Let’s follow the steps in this section to view the amount of time spent
during reads and writes.

196

CHAPTER7 MONGODB MONITORING AND BACKUP

Step 1: mongotop Command
Issue the following command.

c:\Program Files\MongoDB\Server\4.0\bin>mongotop
2019-02-17T21:51:25.975+0530 connected to: 127.0.0.1

ns total read write 2019-02-

17721
51:26+
05:30
admin.system.roles oms oms oms
admin.system.version oms oms oms
config.system.sessions oms oms oms
emp.employee oms oms oms
employee.author oms oms oms
employee.authors oms oms oms
employee.categories oms oms oms
employee.employee oms oms oms
employee.employeedetails oms oms oms
employee.names oms oms oms
db.stats()

db.stats() provides the statistics of a single database.

Recipe 7-6. Working with db.stats()

In this recipe, we are going to discuss how to get the statistics for a single
database.

Problem

You want to see the disk and memory usage estimates for a database.

197

CHAPTER 7 MONGODB MONITORING AND BACKUP

Solution

Use the db.stats command to display the statistics for a database.

How It Works

Let’s follow the steps in this section to view the statistics for the database.

Step 1: db.stats() Command

Issue the following commands to display the statistics for a database
named employee.

> use employee

switched to db employee

> db.stats()

{
"db" : "employee",
"collections" : 12,
"views" : 0,
"objects" : 40,
"avgObjSize" : 90.875,
"dataSize" : 3635,
"storageSize" : 401408,
"numExtents" : 0,
"indexes" : 12,
"indexSize" : 212992,
"fsUsedSize" : 208018800640,
"fsTotalSize" : 509929914368,
"ok" : 1

198

CHAPTER7 MONGODB MONITORING AND BACKUP

The details such as data size and storage size are given in bytes. To see
the information in megabytes, issue the following command.

> db.stats(1000000)

{
"db" : "employee",
"collections” : 12,
"views" : 0,
"objects" : 40,
"avgObjSize" : 90.875,
"dataSize" : 0.003635,
"storageSize" : 0.401408,
"numExtents" : 0,
"indexes" : 12,
"indexSize" : 0.212992,
"fsUsedSize" : 208020.402176,
"fsTotalSize" : 509929.914368,
"ok" : 1
db.serverStatus()

db.serverStatus() returns a document that provides statistics for the
state of a database process.

Recipe 7-7. Working with
db.serverStatus()

In this recipe, we are going to discuss the db. serverStatus() command.

199

CHAPTER 7 MONGODB MONITORING AND BACKUP

Problem

You want to see the memory status of a database.

Solution

Use the db.serverStatus() command.

How It Works

Let’s follow the steps in this section to view the statistics for the memory
status of a database.

Step 1: db.serverStatus() Command
Issue following command to view the memory statistics for a database.

> db.serverStatus().mem

{
"bits" : 64,
"resident" : 85,
"virtual" : 5089,
"supported" : true,
"mapped" : 0,
"mappedWithJournal” : 0

Backup and Restore with MongoDB Tools

MongoDB provides mongodump and mongorestore utilities to work with
BSON data dumps. These utilities are useful for creating backups for small
deployments. To create resilient and nondisruptive backups for large
deployments, we can use file system or block-level disk snapshot methods.

200

CHAPTER7 MONGODB MONITORING AND BACKUP

We should use a system-level tool to create a copy of the device file
system that holds MongoDB files. The file system snaphots or the disk-
level snapshot backup method require additional system configuration
outside of MongoDB, so we do not cover this in depth in this book.

When deploying MongoDB in production, we should have a backup
and failover strategy for capturing and restoring backups in the case of
data loss events.

Recipe 7-8. Working with mongodump

In this recipe, we are going to discuss how to back up data using
mongodump.

Problem

You want to back up data using mongodump.

Solution

Use the mongodump command.

How It Works

Let’s follow the steps in this section to back up data.

The mongodump utility makes a backup by connecting to a running
mongod or mongos instance.

When you run the mongodump command without specifying any
arguments, it connects to the mongodb running on localhost on port 27017
and creates a database backup named dump in the current directory.

201

CHAPTER 7 MONGODB MONITORING AND BACKUP

Let us discuss how to issue the mongodump command to create a backup.
1. Ensure mongod is running.

2. Open a command prompt with administrator
privileges, navigate to the mongodb installation
folder, and type mongodump as shown here.

c:\Program Files\MongoDB\Server\4.0\bin>mongodump

3. You can see the dump folder in the current directory
as shown in Figure 7-1.

0SDisk (C:) » Program Files > MongoDB > Server » 40 » bin > dump v il

i Name Date modified Type Size

admin 14-01-2019 15:5

emp 14-01-20
employee
example
mydb
student

test 14-01-2019 15:50

Figure 7-1. MongoDB installation folder

You can specify the output directory by issuing the following command.

mkdir "c:\Program Files\MongoDB\Server\4.0\dump"
mongodump --out "c:\Program Files\MongoDB\Server"\4.0\dump

To create a backup of a collection, issue the following command.

mongodump --collection employee --db example --out "c:\Program
Files\MongoDB\Server"\4.0\backup

Here is the output,

c:\Program Files\MongoDB\Server\4.0\bin>mongodump --collection
employee --db example --out "c:\Program Files\MongoDB\
Server"\4.0\backup

202

CHAPTER7 MONGODB MONITORING AND BACKUP

2019-01-14T18:36:28.460+0530 writing example.employee to
2019-01-14T18:36:28.465+0530 done dumping example.employee
(1 document)

You can make a backup from a remote host by specifying host and
port arguments as shown here.

mongodump --host sample.net --port 5017 --username user
--password "pass"

Automatic and Regular Backup Scheduling
Using mongodump

It is good practice to perform a regular backup of all databases in case
of any hard failover. Follow these steps to perform a regular backup at a
specific interval.

1. We can create scripts to create the backup directory
for the current date and time and export the
database to the same directory.

For Windows, create a bat (batch script) file with the
commands shown in Figure 7-2.

~

set DIRECTORY=backup_ %date:~-4,4%%date:~-10,2%%date:~7,2%
mkdir %DIRECTORY%

mongodump -h <your_database_host> -d <your_database_name> -u <username> -
p <password> -o %DIRECTORY?%

- J

Figure 7-2. Creating a batch script file in Windows

203

CHAPTER 7 MONGODB MONITORING AND BACKUP

For Unix/Linux machines, create a shell script file
with the commands shown in Figure 7-3.

~

DIRECTORY= backup_"date +%m%d%y"
mkdir $DIRECTORY

mongodump -h <your database_host> -d <your_database _name> -u <username> -
p <password> -o $DIRECTORY

- J

Figure 7-3. Creating a shell script file in Unix/Linux

2. Schedule the script file to execute at a certain
interval. Use task scheduler or any other scheduler
for Windows, and use the CRON schedule for Unix/

Linux.

Recipe 7-9. Working with mongorestore

In this recipe, we are going to discuss how to restore data using
mongorestore.

Problem

You want to restore data using mongorestore.

Solution

Use the mongorestore command.

204

CHAPTER7 MONGODB MONITORING AND BACKUP

How It Works

Let’s follow the steps in this section to restore data.

Step 1: Restore Data Using mongorestore

To restore data, open a command prompt and navigate to the mongodb
installation folder, then issue the following command.

c:\Program Files\MongoDB\Server\4.0\bin>mongorestore dump/

Here, mongorestore imports the data present in the dump directory
to the running mongod instance. By default, mongorestore looks for a
database backup in the dump/ directory. We can connect to a different port
of the active mongod instance and a different backup path by using this

command.

mongorestore --port <port number> <path to the backup>

Step 2: Restore Data Using mongorestore to Remote
Instances

By default, mongorestore connects to running instance on localhost and
default port number 27017. To restore to a different host and different port,
we can specify the same using the --host and - -port options as shown
here.

mongorestore --host <example.net> --port <myportNumber>
--username myuser --password 'mypass' /backup/mongodumpfile

Specify the username and password using options --user and
- -password only if the remote mongod instance requires authentication.

205

CHAPTER 7 MONGODB MONITORING AND BACKUP

Recipe 7-10. Working with mongodb Query
Plans

In this recipe, we are going to discuss query plans to understand the
MongoDB query execution details with query planner and query

optimizer.

Problem

You want to understand the query execution plan.

Solution

Use the cursor.explain() command.

How It Works

Let’s follow the steps in this section to understand the query plan.

Step 1: Using explain() to Understand the Query Plan

To see the query plan during the MongoDB command execution, use
cursor.explain(). Let’s assume the employee collection is available in the
authors database with the data shown here.

MongoDB Enterprise > use authors

switched to db authors

MongoDB Enterprise > db.employee.find()

{ " id" : ObjectId("5d50ed688dcf280c50fde439"), "empId" : 1,
"empName" : "John", "state" : "KA", "country" : "India" }

{ " id" : ObjectId("5d50ed688dcf280c50fde43a"), "empId" : 2,
"empName" : "Smith", "state" : "CA", "country" : "US" }

206

CHAPTER7 MONGODB MONITORING AND BACKUP

{ " id" : ObjectId("5d50ed688dcf280c50fde43b"), "empId" : 3,

"empName" : "James", "state" : "FL", "country" : "US" }

{ "_id" : ObjectId("5d50ed688dcf280c50fde43c"), "empId" : 4,
"empName" : "Josh", "state" : "TN", "country" : "India" }

{ "_id" : ObjectId("5d50ed688dcf280c50fde43d"), "empId" : 5,
"empName" : "Joshi", "state" : "HYD", "country" : "India" }

To get the query plan while executing the command db.employee.
find(), use .explain() as shown here.

MongoDB Enterprise > db.employee.find().explain()
Here is the output,

MongoDB Enterprise > db.employee.find().explain()
{
"queryPlanner"” : {
"plannerVersion" : 1,
"namespace"” : "authors.employee",
"indexFilterSet" : false,
"parsedQuery" : {

})
"winningPlan" : {
"stage" : "COLLSCAN",
"direction" : "forward"
b

"rejectedPlans” : []
b

"serverInfo" : {
"host" : "DESKTOP-MEISTBV",
"port" : 27017,
"version" : "4.0.11",

207

CHAPTER 7 MONGODB MONITORING AND BACKUP

"gitVersion" : "417d1a712e9f040d54beca8e4943edc
e218e9a8c"

b

"ok" : 1

Observe in this output that there is no parsedQuery in the query
planner, and the winning plan says that it involves the complete collection
scan.

Now, let’s try to add a filter to the same query and observe the query plan.

MongoDB Enterprise > db.employee.find({country:"India"})
{ "_id" : ObjectId("5d50ed688dcf280c50fde439"), "empId" : 1,

"empName" : "John", "state" : "KA", "country" : "India" }
{ "_id" : ObjectId("5d50ed688dcf280c50fde43c"), "empId" : 4,
"empName" : "Josh", "state" : "TN", "country" : "India" }
{ " id" : ObjectId("5d50ed688dcf280c50fde43d"), "empId" : 5,
"empName" : "Joshi", "state" : "HYD", "country" : "India" }

We have added the filter condition to retrieve only country:India.
Now check the query plan for the same query with the filter condition.

MongoDB Enterprise> db.employee.find({country:"India"}).explain()
Here is the output,

MongoDB Enterprise > db.employee.find({country:"India"}).
explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace"” : "authors.employee",
"indexFilterSet" : false,

"parsedQuery” : {

208

CHAPTER7 MONGODB MONITORING AND BACKUP

"country" : {

"$eq" : "India"
}
})
"winningPlan" : {
"stage" : "COLLSCAN",
"filter" : {
"country" : {
"$eq" : "India"
}
})
"direction" : "forward"
})

"rejectedPlans" : []

})

"serverInfo" : {
"host" : "DESKTOP-MEISTBV",
"port" : 27017,

"version" : "4.0.11",
"gitVersion" : "417d1a712e9f040d54beca8e4943e
dce218e9a8c"
}J
"ok" : 1

Observe in the preceding output that there is a parsed query added by
the query planner as

"parsedQuery” : { "country" : {"$eq" : "India" } }

209

CHAPTER 7 MONGODB MONITORING AND BACKUP

Step 2: Understanding Different Modes in explain()

The explain() method accepts queryPlanner, executionStats,
or allPlansExecution as the operating mode. The default mode is
queryPlanner if we don’t specify otherwise.

Use the following command to use explain() with any of these

parameters as a mode.
db.employee.find().explain("queryPlanner")
Here is the output,

MongoDB Enterprise > db.employee.find().explain("queryPlanner")
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "authors.employee",
"indexFilterSet" : false,
"parsedQuery" : {

}s
"winningPlan" : {
"stage" : "COLLSCAN",
"direction” : "forward"
})

"rejectedPlans" : []
b

"serverInfo" : {
"host" : "DESKTOP-MEISTBV",
"port" : 27017,
"version" : "4.0.11",

210

CHAPTER7 MONGODB MONITORING AND BACKUP

"gitVersion" : "417d1a712e9f040d54beca8eq943ed
ce218e9a8c”

1

"ok" : 1

Now use executionStats as a operation mode to the explain()
method as shown here.

db.employee.find().explain("executionStats")
Here is the output,

MongoDB Enterprise > db.employee.find().
explain("executionStats")
{
"queryPlanner"” : {
"plannerVersion" : 1,
"namespace"” : "authors.employee",
"indexFilterSet" : false,
"parsedQuery" : {

})
"winningPlan" : {
"stage" : "COLLSCAN",
"direction" : "forward"
b

"rejectedPlans” : []

}J

"executionStats" : {
"executionSuccess" : true,
"nReturned" : 5,
"executionTimeMillis" : o,
"totalKeysExamined" : 0,

211

CHAPTER 7 MONGODB MONITORING AND BACKUP

"totalDocsExamined" : 5,

"executionStages" : {
"stage" : "COLLSCAN",
"nReturned" : 5,
"executionTimeMillisEstimate" : 0,
"works" : 7,
"advanced" : 5,
"needTime" : 1,
"needYield" : o,
"saveState" : 0,
"restoreState" : 0,
"{SEOF" : 1,
"invalidates" : 0,
"direction" : "forward",
"docsExamined" : 5

b

"serverInfo" : {
"host" : "DESKTOP-MEISTBV",
"port" : 27017,

"version" : "4.0.11",
"gitVersion" : "417d1a712e9f040d54beca8e4943ed
ce218e9a8c”
1
"ok" i1

}

MongoDB Enterprise >

212

CHAPTER7 MONGODB MONITORING AND BACKUP

In this output, observe the following:

o '"executionSuccess" : true: This shows whether the
query is successfully executed or not.

e "nReturned" : 5:This is the number of rows returned.

o "executionTimeMillis" : 0:Thisis the execution
time in milliseconds.

If the executionTimeMillis value is more, then it could be considered
a slow query and we must rewrite the query to optimize the executiuon
time by adding the required filters to retrieve only the required data. We
could also consider using an index on keys for better performance.

213

CHAPTER 8

MongoDB Security

In Chapter 7, we discussed monitoring and backup methods in
MongoDB. In this chapter, we are going to discuss the security features of
MongoDB.

Authentication and Authorization

Authentication is the process of verifying the identity of the user, whereas
authorization or access control determines the verified user’s access to
resources and operations.

MongoDB supports the following various authentication mechanisms
for verifying the identity of the user.

e SCRAM: This is the default authentication mechanism
for MongoDB. It verifies the user against their
username, password, and authentication database.

e x.509 certificates: This mechanism uses x.509 certificates
for authentication. MongoDB supports a number of
authentication mechanisms that clients can use to verify
their identity. These mechanisms allow MongoDB to
integrate into an existing authentication system.

In addition to this, MongoDB Enterprise Edition also supports
Lightweight Directory Access Protocol (LDAP) proxy authentication and
Kerberos authentication.

© Subhashini Chellappan and Dharanitharan Ganesan 2020 215
S. Chellappan and D. Ganesan, MongoDB Recipe:s,
https://doi.org/10.1007/978-1-4842-4891-1_8

CHAPTER 8 MONGODB SECURITY

Note Replica sets and shared clusters require internal
authentication between members when access control is enabled.
Refer to Recipe 8-2 to understand the authentication process for
replica sets.

Access Control

MongoDB enforces authentication to identify users and their permissions
to access resources only if access control is enabled. The upcoming recipes
explain the procedure to create various roles and the mechanisms to
enable access control.

When you install MongoDB, it has no users. First, therefore, we need to
create the admin user, which can be used to create other users.

Roles

In MongoDB, roles grant users access to MongoDB resources. MongoDB
has certain built-in roles, listed in Figure 8-1, which can be assigned to any
user to access resources. We can also create user-defined roles.

DB User Roles

MongODB Cluster Admin Roles
BUllt In DB Admin Roles
RO | es Super User Roles

All Databases Roles

Figure 8-1. MongoDB built-in roles

First, let’s look at the commonly used built-in roles.

216

CHAPTER 8 MONGODB SECURITY

MongoDB User Roles
read

The read role gives the holder access to read all of the user-created
collections.

readwrite

The readwrite role gives access to read all of the user-created collections
and also the ability to modify the nonsystem (i.e., user-created) collections.

MongoDB Admin Roles

dbAdmin

The dbAdmin role could help us to perform administrative tasks such as
schema-related tasks, indexing, and collecting statistics. We cannot use
this role to grant privileges for users and others’ role management.

dbOwner

We can perform any administrative tasks on a database using the dbOwner
role. This role also includes the other role previliges such as the readWrite,
dbAdmin, and userAdmin roles.

userAdmin

We can create and modify roles and users on the current active database.

217

CHAPTER 8 MONGODB SECURITY
Cluster Admin Roles

clusterAdmin

The clusterAdmin role provides cluster management access. This role also
includes other role privileges, such as clusterManager, clusterMonitor,
and hostManager roles.

clusterManager

This role helps us to manage and monitor user actions on the mongodb cluster.

Recipe 8-1. Creating a Superuser
and Authenticating a User

In this recipe, we are going to discuss how to create a superuser and
authenticate a user.

Problem

You want to create a superuser and authenticate a user.

Solution

Here are the commands:

db.createUser()

mongo --username username --password password
--authenticationDatabase databasename
db.auth()

How It Works

Let’s follow the steps in this section to create a superuser.

218

CHAPTER 8 MONGODB SECURITY

Step 1: Create a Superuser

Connect to a mongod instance and type the following command.

> use admin
> db.createUser({user: "superUserAdmin",pwd:"1234",roles:
[{role: "userAdminAnyDatabase",db:"admin"}]})

Here is the output,

> use admin

switched to db admin

> db.createUser ({user:"superUserAdmin",pwd: "1234",roles:[{role:
"userAdminAnyDatabase",db:"admin"}]})

Successfully added user: {

"user" : "superUserAdmin",
"roles" : [
{
"role" : "userAdminAnyDatabase",
"db" : "admin"
}

To authenticate using the mongo shell, do with either of the following.

e Use MongoDB command-line authentication
options (i.e., --username, - -password, and -
authenticationDatabase) when connecting to a
mongod or mongos instance.

o Connect to amongod or mongos instance, then run the
db.auth method against the authentication database.

219

CHAPTER 8 MONGODB SECURITY

Step 2: Authenticate a User

Type the following command in the terminal (command prompt) while
connecting to a mongo shell.

> mongo --username superUserAdmin --password 1234
--authenticationDatabase admin

You will be connected to mongoshell. You can also use db.auth() to
authenticate a user.
Connect to a mongod instance by issuing the following command.

> use admin
> db.auth("superUserAdmin","1234")

Here is the output,

> use admin

switched to db admin

> db.auth("superUserAdmin”,"1234")
1

>

Step 3: Create a New User with Read and Write Access
Control

Type the following command to create a new user with read and write
access control for the admin database.

> db.createUser(

{

user: "user1000",pwd: "abc123",
roles: [{ role: "readWriteAnyDatabase", db:"admin" }]

220

CHAPTER 8 MONGODB SECURITY

Here is the output,

> db.createUser(
{
user: "user1000",
pwd: "abc123",
roles: [{ role: "readWriteAnyDatabase", db:"admin" }]

cee)}
cer)
Successfully added user: {
"user" : "user1000",
"roles" : [
{
"role" : "readWriteAnyDatabase",
"db" : "admin"
}
]

Now, you can restart your MongoDB with access control enabled as

shown here.

mongod.exe --auth

Recipe 8-2. Authenticating a Server
in a Replica Set Using a Key File

In this recipe, we are going to discuss how to authenticate a server in a

replica set using a key file.

221

CHAPTER 8 MONGODB SECURITY

Problem

You want to authenticate a server in a replica set using a key file.

Solution

Use areplica set and a key file.

How It Works

Let’s follow the steps in this section to authenticate a server in a replica set
using a key file.

Step 1: Authenticate a Server in a Replica Set Using
a Key File

First, we will create a three-member replica set by following the procedure
given here.
Create three data directories as shown here.

md c:\mongodb\repset\rsi
md c:\mongodb\repset\rs2
md c:\mongodb\repset\rs3

Here is the output,

c:\>md c:\mongodb\repset\rsi
c:\>md c:\mongodb\repset\rs2
c:\>md c:\mongodb\repset\rs3

Next, start three mongod instances as shown here.

start mongod --bind_ip hostname --dbpath c:\mongodb\repset\rsi
--port 20001 --replSet myrs

222

CHAPTER 8 MONGODB SECURITY

Figure 8-2 shows a mongod instance that is waiting for a connection on
port 20001.

start mongod --bind_ip hostname --dbpath c:\mongodb\repset\rs2
--port 20002 --replSet myrs

¥ cAProgram | gaDB\Server\4.0\bin d i [u] ®

019-03-14T12:36:38.004+8530 I STORAGE [initandlisten] WiredTiger message [1552547198:4671][33352:148736398313952], tx
-recover: Set glebal recovery timestamp: @

DR19-03-14T12:36:38.022+8530 I RECOVERY [initandlisten] WiredTiger recoveryTimestamp. Ts: Timestamp(@, @)
©19-83-14T12:36:38,073+8530 1 CONTROL [initandlisten]

0019-03-14T12:36:38.073+0530 I CONTROL [initandlisten] "™ WARNING: Access control is not enabled for the database.
0019-03-14T12:36:38,.073+0530 I CONTROL [initandlisten] ** Read and write access to data and configuration is y
hrestricted.

2819-83-14T12:36:38.874+8530 I CONTROL [initandlisten]
D@19-03-14T12:36:38.081+0530 1 STORAGE [initandlisten] createCollection: local.startup log with generated UUID: 4ddcdad
£ -dfed-abfe-a7se-8276745Te20e
D@19-03-14T12:36:38.448+8530 I FTDC [initandlisten] Initializing full-time diagnostic data capture with directory 'g
: /fmongodb/repset/rsl/diagnostic.data’

P019-03-14T712:36:38.451+8530 I STORAGE [initandlisten] createCollection: local.replset.oplogTruncateAfterPoint with ger
erated WID: f2c39fe8-4785-488b-915¢e-5d1f0c6badbe

DB19-03-14T12:36:38,.480+8530 I STORAGE [initandlisten] createCollection: local.replset.minvalid with generated UUID: 67
1 f@ab2-bbac-41d5-9bbf-9a3d3Beso980

0019-03-14T12:36:38.519+0530 I REPL [initandlisten] Did not find local voted for document at startup.
D819-03-14T12:36:38.519+0530 1 REPL [initandlisten] Did not find local Rellback ID document at startup. Creating ong

>

»

0@819-03-14T12:36:38.521+8530 I STORAGE [initandlisten] createCollection: local.system.rollback.id with generated UUID:
B3ibaBccf-3bad-4573-b9le-4f@deb576e8c

819-03-14T712:36:35.561+8538 I REPL [initandlisten] Initialized the rollback ID to 1

2819-03-14T712:36:38.562+8530 I REPL [initandlisten] Did not find local replica set configuration document at startup
NoMatchingDocument: Did not find replica set configuration document in local.system.replset
P019-03-14T712:36:38.568+8530 I CONTROL [LogicalSessionCacheRefresh] Sessiens cellection is not set up; waiting until ne
et sessions refresh interval: Replication has not yet been configured

©19-03-14712:36:38.569+0530 1 CONTROL [LogicalSessionCacheReap] Sessions collection is not set up; waiting until next
sessions reap interval: Replication has not yet been configured

2019-03-14T12:36:38.569+0530 I NETWORK [initandlisten] waiting for connections on port 20001

Figure 8-2. A mongod instance waiting for connection on port
20001

Figure 8-3 shows a mongod instance that is waiting for connection on
port 20002.

start mongod --bind_ip hostname --dbpath c:\mongodb\repset\rs3
--port 20003 --replSet myrs

223

CHAPTER 8 MONGODB SECURITY

B\Serverid.Obint

¥ c\Program F g

(m] kS

019-03-14T12:37:54,217+0530 1
h-recover: Set global recovery
Pe19-03-14T12:37:54,232+0538 1
819-93-14712: L270+0538 1
£e19-93-14T12:3 .270+8538 1
819-93-14T712:37:54.271+8538 1
hrestricted.
2019-01-14T12:37:54.271+8530 1
e19-03-14T12:37:54.276+0530 1
P -83a3-4e3e-b782-7885F85e466a
E19-03-14T12:37:54.633+0538 1 FTIC

: fmongodb/repset/rs2/diagnostic.data’
2019-03-14T712:37:54.636+0538 1 STORAGE

STORAGE

w

CONTROL
CONTROL
CONTROL

CONTROL
STORAGE

1019-03-14T12:37:54.674+0538 1 STORAGE
b f6e00-b295-4760-9e63-82707bdac 71
0819-03-14T12:37:54.709+0538 1 REPL
U819-83-14712:37:54. 789+0538 1 REPL

019-03-14T12:37:54.711+8538 1 STORAGE
bfl9cebe-b3ld-2a61-b951-10615316990d
2019-03-14712: 37:54, 74540538 1 REPL
[2019-03-14T12:37:54.745+8538 1 REPL

819-03-14T712:37:54.751+0530 I CONTROL

[initandlisten]

timestamp: @
RECOVERY [initandlisten]

[initandlisten]
[initandlisten]
[initandlisten]

[initandlisten]
[initandlisten]

[initandlisten]

[initandlisten]

prated WWID: 4caldBad-8a9c-4c?a-aaldd-47B55c748755

[initandlisten]

[initandlisten]
[initandlisten]

[initandlisten]

[initandlisten]
[initandlisten]

NoMatchingDocument: Did not find replica set configuration document in local.system.replset
[LogicalSessionCacheRefresh] Sessions collection is not set up; waiting until neg
bt sessions refresh interval: Replication has not yet been configured

P819-83-14T12:37:54.751+0538 I CONTROL [LogicalSessionCacheReap] Sessions collection is not set up; waiting until next
kessions reap interval: Replication has not yet been configured

D019-03-14T12:37:54,752+0530 1 NETWORK [initandlisten] waiting for conmections on port 20002

WiredTiger message [1552547274:216277][1712:148736398313952], t
WiredTiger recoveryTimestamp. Ts: Timestamp(@, @)

** WARNING: Access control is not enabled for the database.
* Read and write access to data and configuration is u

»

createCollection: local.startup_log with generated UUID: 5524874
Initializing full-time diagnostic data capture with directory '
createCollection: local.replset.oplogTruncateAfterPoint with gen
createCollection: local.replset.minvalid with generated UUID: 8q

Did not find local voted for document at startup.
Did not find local Rellback ID document at startup. Creating one

createCollection: local.system.rollback.id with generated UUID:

Initialized the rollback ID to 1
Did not find local replica set configuration document at startup

>

Figure 8-3. A mongod instance waiting for connection on port 20002

Figure 8-4 shows a mongod instance that is waiting for connection on

port 20003.

¥ c\Program Files\MongoDB\Server\d 0\ bin\mongod.exe

o >

2019-03-14T12:39:21.509+8530 1 STORAGE

D019-03-14T12:39:21.525+0530 1
0919-93-14T712:39:21 56040530 1
2019-93-14T12:39:21.560+8530 1
2819-03-14712:39:21.56048530 I
hrestricted.
019-03-14T12:359:21.560+8530 1
2019-03-14T12:39:21.564+8530 I
f-9211-4d97-8al8-Bedd544c8292
019-83-14T12:39:21.920+8530 1 FTDC

: fmongodb/repset/rs3/diagnostic.data’
0019-03-14T12:39:21.923+0530 1 STORAGE

CONTROL
CONTROL
CONTROL

CONTROL
STORAGE

@19-83-14T12:39:21.952+8530 1 STORAGE
Bdeld-eacd-40el-achc-c5008dedbith
2019-03-14T12:39:21.990+8530 1 REPL
Pe19-83-14T12:39:21,991+8530 1 REPL

2019-03-14T12:39:21.995+8530 1 STORAGE
219898b0-109¢ - 40b2-920a-%edad6fe6 o4
819-93-14T712:39:22.03348530 I REPL
[1019-03-14T712:39:22.034+8530 1 REPL
2019-03-14T12:39:22.041+0530 I CONTROL
019-83-14T12:39:22.841+0530 1 CONTROL

0@19-03-14T12:39:22.042+0530 1 NETWORK

[initandlisten]

kn-recover: Set global recovery timestamp: @
RECOVERY [initandlisten]

[initandlisten]
[initandlisten]
[initandlisten]

[initandlisten]
[initandlisten]

[initandlisten]

[initandlisten]

Frated WID: 74cdSa@a-9db8-4543-8ada-f3c556f4ah2a

[initandlisten]

[initandlisten]
[initandlisten]

[initandlisten]

[initandlisten]
[initandlisten]

WiredTiger message [1552547361:5@9276][16476:140736398313952], Y
WiredTiger recoveryTimestamp. Ts: Timestamp(@, @)

** WARNING: Access control is not enabled for the database.
* Read and write access to data and configuration is u

»

createCollection: local.startup_log with generated UUID: dfeal2d
Initializing full-time diagnostic data capture with directory 'q
createCollection: local.replset.oplogTruncateAfterPoint with ger|
createCollection: local.replset.minvalid with generated WID: ad

Did not find local voted for document at startup.
Did not find local Rollback ID document at startup. Creating ong

createCollection: local.system.rollback.id with generated LUID:

Initialized the rollback ID to 1
Did not find local replica set configuration document at startup

NoMatchingDocument: Did not find replica set configuration document in local.system.replset

[LogicalSessionCacheRefresh] Sessions collection is not set up; waiting until ng

it sessions refresh interval: Replication has not yet been configured

[LogicalSessionCacheReap] Sessions collection is not set up; waiting until next

[initandlisten]

kessions reap interval: Replication has not yet been configured

waiting for connections on port 20043

>

Figure 8-4. A mongod instance waiting for connection on port 20003

224

CHAPTER 8 MONGODB SECURITY

Issue the following command to connect to a mongod instance running
on port 20001.

mongo hostname:20001

Issue the following commands in the mongo shell to create a three-
member replica set.

rs.initiate(); // to initiate replica set

rs.add("hostname:20002"); // to add secondary

rs.add("hostname:20003"); // to add secondary
NOW, create a superuser as shown here.

use admin
db.createUser(
{
user: "subhashini",
pwd: "abc123",
roles: [{ role: "userAdminAnyDatabase", db: "admin" }]

}
)

Here is the output,

myrs:PRIMARY> use admin
switched to db admin
myrs:PRIMARY> db.createUser(
{
user: "subhashini",
pwd: "abc123",
roles: [{ role: "userAdminAnyDatabase", db: "admin" }]
eee)}
)

225

CHAPTER 8 MONGODB SECURITY

Successfully added user: {

"user" : "subhashini",
"roles" : [
{
"role" : "userAdminAnyDatabase",
"db" : "admin"
}

}
myrs : PRIMARY>

Next, shut down all the servers. To shut down a mongod, connect each
mongod using a mongo shell and issue the db.shutdownServer() on the
admin database as shown here.

use admin
db. shutdownServer()

Next, generate a key file using the openss1l method as shown here and
copy the key file to each replica member.

openssl rand -base64 756 > /home/anyPath/keyfile
chmod 400 /home/anyPath/keyfile

Note We can use any method to generate the key file. To use the
openssl method, you need to install openssl. Go to https://
indy.fulgan.com/SSL/ to download and install the openssl
package (note that this link might be changed in the future).

226

https://indy.fulgan.com/SSL/
https://indy.fulgan.com/SSL/

CHAPTER 8 MONGODB SECURITY

Figure 8-5 shows the files in the extracted openssl package.

This PC > Windows (C)) » Users > DHARANI > Downloads > openssl-1.0.25-x64_86-wint4

[0 Name Date modified Type Size
[} Hashinfo 31-05-2019 20:53 2KB
| libeay32.dll 31-
[} OpenssL License 31-08-2016 1643 Text Document 7KB
[~](=] openssl 31-05-2019 20:52 Application 536 KB
| ReadMe 31-05-2019 20:53 Text Document 3KB
[2] ssleay32.dil 31-05-2019 20:53 Application extens... 378 KB

Figure 8-5. Extracted files of the openssl package

Use openssl.exe to generate the keys as mentioned earlier. Also, in
Windows, the generated key file permissions will not be checked. Only on
the Unix platform, the key file should not have group or other permissions.

Now, start the mongod instance with access control enabled as shown here.

start mongod --bind_ip hostname --dbpath c:\mongodb\repset\rsi
--keyFile c:\mongodb\repset\rsi\keyfile --port 20001 --replSet
myrs

start mongod --bind_ip hostname --dbpath c:\mongodb\repset\rs2
--keyFile c:\mongodb\repset\rs2\keyfile --port 20002 --replSet
myrs

start mongod --bind ip hostname --dbpath c:\mongodb\repset\rs3
--keyFile c:\mongodb\repset\rs3\keyfile --port 20003 --replSet
myrs

Next, connect to the mongo shell and list the databases as shown here.
mongo hostname:20001

show dbs;

227

CHAPTER 8 MONGODB SECURITY
You might see the error message shown here.

myrs:PRIMARY> show dbs;
2019-03-14T13:08:48.704+0530 E QUERY [js] Error:
listDatabases failed:{

"operationTime" : Timestamp(1552549127, 1),

"ok" : 0,

"errmsg" : "command listDatabases requires
authentication”,

"code" : 13,

"codeName" : "Unauthorized",

"$clusterTime" : {
"clusterTime" : Timestamp(1552549127, 1),
"signature" : {
"hash" : BinData(0,"OURBFn1xm2E642Ftlh
SIHV7SXoA="),
"keyId" : NumberLong("666814134357694
8737")

}o:

_getErrorWithCode@src/mongo/shell/utils.js:25:13
Mongo.prototype.getDBs@src/mongo/shell/mongo.js:67:1
shellHelper.show@src/mongo/shell/utils.js:876:19
shellHelper@src/mongo/shell/utils.js:766:15
@(shellhelp2):1:1

myrs:PRIMARY>

To resolve the issue, we need to authenticate to list databases as follows.

use admin
db.auth("subhashini","abc123")
show dbs;

228

CHAPTER 8
Here is the output,

myrs:PRIMARY> use admin

switched to db admin

myrs:PRIMARY> db.auth("subhashini","abc123")
1

myrs:PRIMARY> show dbs;

admin 0.000GB

config 0.000GB

local 0.000GB

myrs:PRIMARY>

Recipe 8-3. Modifying Access
for the Existing User

MONGODB SECURITY

In this recipe, we are going to discuss how to modify access for the

existing user.

Let us use the superUserAdmin user, which we created in Recipe 8-1.

Problem

We want to modify the access for superUserAdmin (created earlier).

Solution

Check the granted access (i.e., assigned roles and privileges) of the user,

then revoke the permissions that are not needed or grant the new roles and

privileges.

229

CHAPTER 8 MONGODB SECURITY

How It Works

Let’s follow the steps in this section to modify the access of
superUserAdmin

Step 1: Connect to the Instance with User
superUserAdmin and to admin Database

Use the following syntax.

mongo --username superUserAdmin --password 1234
--authenticationDatabase admin

Here is the output,

> mongo --username superUserAdmin --password 1234
--authenticationDatabase admin

MongoDB shell version v4.0.11

connecting to: mongodb://127.0.0.1:27017/?authSource=admin8gssa
piServiceName=mongodb

Implicit session: session { "id" : UUID("9f31da4d-ac50-438a-
8dds-2ebdafefadbb”) }

MongoDB server version: 4.0.11

>

Step 2: Identify the User’s Existing Roles

use <dbName>
db.getUser("<userName">)

Use the following commands to get the roles of superUserAdmin in the
admin database.

> use admin

> db.getUser("superUserAdmin™)

230

CHAPTER 8 MONGODB SECURITY
Here is the output,

> show dbs;

admin 0.000GB
config 0.000GB
local 0.000GB

> use admin

switched to db admin

> db.getUser("superUserAdmin")

{
" id" : "admin.superUserAdmin",
"userId" : UUID("f109b62e-5138-487b-aa13-f183f977398c"),
"user" : "superUserAdmin",
"db" : "admin",
"roles" : [
{
"role" : "userAdminAnyDatabase",
"db" : "admin"
}
]J
"mechanisms” : [
"SCRAM-SHA-1",
"SCRAM-SHA-256"
]
}

This output clearly shows the user superUserAdmin has "role" :
"userAdminAnyDatabase".

231

CHAPTER 8 MONGODB SECURITY

Note userAdminAnyDatabase is a built-in role that provides the
ability to perform administration operations as userAdmin on all
databases except local and config.

Step 3: Grant an Additional Role to the User

Use the following commands to assign the read role for the local database
for superUserAdmin.

> use admin

> db.grantRolesToUser(
"superUserAdmin",

[
{ role: "read", db: "local" }

]

Repeat the preceding step to identify the roles and to verify the newly
added role to the user superUserAdmin.
Here is the output,

> use admin
switched to db admin
> db.grantRolesToUser(
"superUserAdmin”,
[

{ role: "read", db: "local" }
.]

)

> db.getUser("superUserAdmin™)

232

CHAPTER 8 MONGODB SECURITY

" id" : "admin.superUserAdmin",
"userId" : UUID("f109b62e-5138-487b-aa13-f183f977398c"),
"user" : "superUserAdmin",
"db" : "admin",
"roles" : [

{

"role" : "read", "db" : "local"
}J
{
"role" : "userAdminAnyDatabase","db" : "admin"

}
]’
"mechanisms" : [

"SCRAM-SHA-1","SCRAM-SHA-256"

Asyou can observe, "role" : "read" is added to the "db" : "local" for
the superUserAdmin user.

Step 4: Revoke an Existing Role from the User

Use this step to revoke the "role":"userAdminAnyDatabase" from the
superUserAdmin user.

> use admin

> db.revokeRolesFromUser (

"superUserAdmin”,

{ role: "userAdminAnyDatabase", db: "admin" }

233

CHAPTER 8 MONGODB SECURITY

Now check the existing roles by repeating the earlier step and verify
that the role is removed.

> db.getUser("superUserAdmin")
Here is the output,

> db.getUser("superUserAdmin")

{
" id" : "admin.superUserAdmin",
"userId" : UUID("f109b62e-5138-487b-aa13-f183f977398c"),
"user" : "superUserAdmin",
"db" : "admin",
"roles" : [
{
"role" : "read","db" : "local"
}
])
"mechanisms" : [
"SCRAM-SHA-1",
"SCRAM-SHA-256"
]
}
You can see that "role" : "userAdminAnyDatabase" is removed to the
"db" : "admin" for the superUserAdmin user.

Recipe 8-4. Change the Password
for the Existing User

In this recipe, we are going to discuss how to change the password for the
superUserAdmin user.

234

CHAPTER 8 MONGODB SECURITY

Problem

You want to change the password for a specific user.

Solution

Use changeUserPassword() with the new password.

How It Works

Let’s follow the steps in this section to change the password of a user.

Step 1: Connect to the Instance with User
superUserAdmin and to the admin Database

mongo --username superUserAdmin --password 1234
--authenticationDatabase admin

Here is the output,

> mongo --username superUserAdmin --password 1234
--authenticationDatabase admin

MongoDB shell version v4.0.11

connecting to: mongodb://127.0.0.1:27017/?authSource=admin&
gssapiServiceName=mongodb

Implicit session: session { "id" : UUID("9f31da4d-ac50-438a-
8dds-2ebd4fefadbb”) }

MongoDB server version: 4.0.11

>

235

CHAPTER 8 MONGODB SECURITY

Step 2: Change the Password
> db.changeUserPassword("superUserAdmin”, "newpwd@123")

Now disconnect the instance and connect with the new password to
ensure that the password has been changed.
Here is the output,

> exit

bye

C:\Program Files\MongoDB\Server\4.0\bin> mongo --username super
UserAdmin --password newpwd@123 --authenticationDatabase admin
MongoDB shell version v4.0.11

connecting to: mongodb://127.0.0.1:27017/?authSource=adming
gssapiServiceName=mongodb

Implicit session: session { "id" : UUID("9676d897-719d-4857-
9570-af7e982e10fe") }

MongoDB server version: 4.0.11

>

Recipe 8-5. Track the Activity of Users
in a Cluster

In this recipe, we are going to discuss how to track the various activities of
different users.

Problem

You want to track user activity.

Solution

Use the auditing feature.

236

CHAPTER 8 MONGODB SECURITY

Note The auditing feature is available in MongoDB Enterprise
Edition only.

How It Works

Let’s follow the steps in this section to enable the auditing feature and store
the audit information in different output formats like writing audit events
to the console, a JSON file, or a BSON file.

We can record the operations shown in Figure 8-6 using the auditing
feature

. Schema (DDL) operations
Audit

Replica set and shared cluster activities
Events
User authentication information
User authorization information to various mongo resources

Various CRUD operations

Figure 8-6. Audlit events

Step 1: Enable and Configure Audit Events

We can use auditDestination to enable the auditing feature and specify
the output location of audit information.
Use the syslog output to print the audit events to syslog.

> mongod --dbpath data/testDB --auditDestination syslog

Note This syslog option is not available for Windows.

237

CHAPTER 8 MONGODB SECURITY
Use the console output to print the audit events to the console.
> mongod --dbpath data/testDB --auditDestination console

Use the auditFormat JSON output to print the audit events to a
separate JSON file in any path.

> mongod --dbpath data/testDB --auditDestination file
--auditFormat JSON --auditPath data/testDB/auditlog.json

Step 2: Create an Audit Filter

Audit filters help us to enable audit features for only certain operations.
Let us say, for example, that we want to create an audit filter to log only the
audit events related to authenticatation operations that are performed on
the local database. Use the following filter.

{ atype: "authenticate", "param.db": "test" }

Here, atype refers to the action type and param. db refers to the
monitoring database.

Use the following command to set the filter while enabling the audit
feature.

> mongod --dbpath data/testDB --auth --auditDestination file
--auditFilter '{atype: "authenticate", "param.db": "local"}'
--auditFormat JSON --auditPath data/testDB/auditlog.json

Recipe 8-6. Encryption

In this recipe, we are going to discuss how to encrypt the data in MongoDB.

Problem

You want to encrypt the data stored or moved into MongoDB.

238

CHAPTER 8 MONGODB SECURITY

Solution

Use encryption at the file level and the whole database level.

Note The auditing feature is available in MongoDB Enterprise
Edition only.

How It Works

Let’s follow the steps in this section to encrypt the data stored and decrypt
while reading.

Step 1: Understanding Different Encryption Options
MongoDB offers encryption at two levels:
¢ Encrypting data in motion.

o Encrypting data in rest.

Encrypting Data in Motion

MongoDB Enterprise Edition supports Transport Layer Security (TLS) and
Secure Sockets Layer (SSL) encryption techniques to secure the data being
sent or received over the networks.

Encrypting Data in Rest

MongoDB Enterprise Edition supports a native storage-based symmetric
key encryption technique to secure the data available on the storage
system. It also provides Transparent Data Encryption (TDE), which is used
to encrypt the whole database.

239

CHAPTER8 MONGODB SECURITY
Step 2: Encrypting the Data at Rest Using Local Key
Management

Create a 16- or 32-character string base64-encoded key file using any
appropriate method. We use the openssl method as shown here.

> openssl rand -base64 32 > mongo-encryption-file
Here is the output,

C:\Users\DHARANI\Downloads\openssl-win>
openssl rand -base64 32 > mongo-encryption-file

Now we can see in Figure 8-7 the encryption file created in the same
directory.

is PC > Windows (C:) » Users > DHARANI > Downloads * openssl-1.0.2s-x64_86-win64

P

[0 Name v Date modified Type Size
.| Hashinfo 31-05-2019 20:53 Text Document 2 KB
| libeay32.dil 31-05-2019 20:53 Application extens. 2,234 KB
_| mongo-encryption-file 29-07-2019 15:58 File 1KB
| OpenSSL License 31-08-2016 16:43 Text Document 7KB
[openssl 31-05-2019 20:52 Application
| ReadMe 31-05-2019 20:53 Text Document
) ssleay32.dil 31-05-2019 20:53 Application extens 378 KB

Figure 8-7. The new encryption file

Now to use the encryption file to encrypt the data in the storage

engine, start MongoDB with the following options.

--enableEncryption

--encryptionKeyFile <path to encryption keyfile>

> mongod --enableEncryption --encryptionKeyFile " C:\Program
Files\MongoDB\Server\4.0\mongo-encryption-file"

240

CHAPTER 8 MONGODB SECURITY

The output is shown in Figure 8-8.

C:\Program Files\MongoDB\Server\4.0\bin>mongod
--enableEncryption --encryptionKeyFile "C:\Program
Files\MongoDB\Server\4.0\mongo-encryption-file"

CONTROL [main] Automatically disabling TLS 1.0, to
force-enable TLS 1.0 specify --sslDisabledProtocols 'none'
CONTROL [initandlisten] MongoDB starting : pid=13576
port=27017 dbpath=C:\data\db\ 64-bit host=DESKTOP-MEISTBV
STORAGE [initandlisten] Encryption key manager
initialized with key file: C:\Program
Files\MongoDB\Server\4.0\mongo-encryption-file

CONTROL [initandlisten] ** server with --bind_ip
127.0.0.1 to disable this warning.

CONTROL [initandlisten]

STORAGE [initandlisten] createCollection:
admin.system.version with provided UUID:
1d5bf83b-7b47-4496-9985-1886c70£f16cd

NETWORK [initandlisten] waiting for connections on port
27017

Figure 8-8. The encryption output

We can check for the following line in the log to ensure the encryption
key manager is successfully initialized with the specified key file.

2019-07-27T16:07:51.50040530 I STORAGE [initandlisten]
Encryption key manager initialized with key file: C:\Program
Files\MongoDB\Server\4.0\mongo-encryption-file

Note Encrypting the data using the local key file is not
recommended, as the secure management of the local key file is
critical.

241

Index

A

Aggregation operations, 95
map-reduce, 98, 100
pipeline, 95-97
single-purpose, 100, 101, 103
SQL aggregation (see SQL

aggregation)

Array, MongoDB, 49, 50
compound filter

conditions, 51, 52
index position, 52
match, 49
query operator, 50, 51
$addToSet operator, 54
$elemMatch operator, 52
$pop operator, 55
$push operator, 53
$size operator, 53

Authentication
access control, 216
admin roles, 217
built-in roles, 216
cluster admin roles, 218
process, 215
user roles, 217

BASE approach, 4
Binary JSON (BSON), 7

C

CAP theorem, 3-4
Comma-separated
value (CSV), 43
Concurrent transactions, 163-166
Create, read, update, and delete
(CRUD), 25
CRUD operations, 158

D

Database, MongoDB
creation, 18, 19
displaying list, 21, 22
drop, 20, 21
version, 22

Database profiler
mongostat, 192
view, 186-192
working, 183-185

© Subhashini Chellappan and Dharanitharan Ganesan 2020 243
S. Chellappan and D. Ganesan, MongoDB Recipes,
https://doi.org/10.1007/978-1-4842-4891-1

https://doi.org/10.1007/978-1-4842-4891-1

INDEX

Data model
document references, 84
one-to-many
relationships, 85-88
query, 88, 89
embedded document, 81
one-to-many
relationship, 83, 84
one-to-one
relationship, 82, 83
db.createCollection() method, 28
db.dropDatabase() method, 20

E

Embedded data models, 80
Encryption, 238
data in motion, 239
data in rest, 239
local key management, 240
options, 240
output, 241
Existing user
change password, 234-236
modifying access, 229
assign the read role, 232, 233
revoke, 233, 234
roles, 230, 231
superUserAdmin, 230

F,G

find() method, 33

244

H

Horizontal scaling, 140

Indexes, 106
creation, 107, 109
hashed, 113
multikey, 111
properties, 115
partial, 117,118
sparse, 119, 120
TTL, 116
unique, 116, 117
strategies, 120, 121
multiple field
index, 124, 125
selectivity, 125
single field
index, 122, 124
sorting, 122
values in memory, 125
text, 111, 112
2dsphere, 114
types, 110
insertMany() method, 33
Isolation test, 163-166

J,K
JavaScript Object
Notation (JSON), 6

L

Lightweight Directory Access
Protocol (LDAP), 215

Model tree structure, parent
references, 89
array of ancestors, 93, 94
author collection, 90, 91
child references, 92
MongoDB
aggregation framework, 8
array (see Array, MongoDB)
BSON, 7
capped collection, 27
creation, 28, 29
document insertion, 30, 31
query, 29, 30
collection creation, 26, 27
commands, 23, 24
Create, read, update, and delete
(CRUD) operations, 8
database (see Database,
MongoDB)
data types, 11
delete method, 40-42
document, 6
embedded documents,
46, 56, 57, 59
equality, 47, 48
GridFS, 9
import, 43-45

INDEX

insert methods, 31
multiple, 33
single, 32
installation
compass on Windows, 15-18
Ubuntu, 14, 15
Windows, 12-14
iterate cursor, 64-69
limit() and skip()
methods, 69-71
mongo shell, 9
Node.js (see Node.js, MongoDB)
null or missing values, 62, 64
read operations, 33
replication, 9
restrict fields, 59-61
retrieve documents, 34
AND conditions, 36
equality conditions, 35
OR conditions, 36
query operator, 35
schemaless database, 6
sharding, 9
terms, 10
update methods, 37
multiple, 39
replace, 40
single, 38, 39

mongostat command, 193, 195, 196
Monitoring

database profiler, 182, 183
db.serverStatus()
command, 199, 200

245

INDEX

Monitoring (cont.)
db.stats() command, 197-199

log files working, 173, 174
mongodb
cursor.explain(), 206-209
explain() method, 210-213
mongodump, 201-203
mongorestore, 204
data restore, 205
remote instances, 205
mongostat, 193, 195, 196
mongotop, 196, 197
performance
degradation, 182
set the log level,
174-178, 180, 182
Multidocument
transactions, 157-163

N,O,P,Q

Node.js, MongoDB, 71
collection creation, 72, 73
delete document, 76, 77
insert document, 73, 74
query document, 74, 75
update document, 75, 76

Normalized data

models, 81

NoSQL databases
advantages, 2
challenges, 2
characteristics, 3

types, 5

246

Regular backup scheduling,
mongodump, 203, 204
Relational database management
system (RDBMS), 2
Replica set using a key file, 221
data directories, 222
error message, 228
list databases, 228
mongod instance
port 20001, 223
port 20002, 224
port 20003, 224
openssl package, 227
shut down, 226
Replication
auto failover, 138, 139
data directories
instance waiting for
connection, 130-132
connect to mongo
instance, 133
starting mongod, 129-131
three-member replica set,
133-137
definition, 127
strategy, 138

S

SCRAM, 215
session.commitTransaction(), 169
session.startTransaction(), 169

Sharding
data directories
config servers, 146, 147
connect shardl server, 144
query router, 148-150
replica on shard1 server, 145
shardl server, 142
shard2 server, 143
shard3 server, 143
data distribution, 153, 154
definition, 140
mongod instances, 141
sh.status(), 150
user collection, 152, 153
SQL aggregation
MongoDB, 103, 104
terms, 102
Superuser and authenticate
a user, 218, 220
access control, 220
creation, 219

INDEX

T, U
Tab-separated value (TSV), 43
Track user activity, 236
audit events, 237
create audit filter, 238
enable and configure, 237
Transaction
discard data changes, 168-171
limitations, 158
multidocument,
working, 159-163
sessions, 159
write conflicts, 166-168

vV, W

Vertical scaling, 140

XY, Z

x.509 certificates, 215

247

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: MongoDB Features and Installation
	The Need for NoSQL Databases
	What Are NoSQL Databases?
	CAP Theorem
	BASE Approach
	Types of NoSQL Databases
	MongoDB Features
	Document Database
	MongoDB Is Schemaless
	MongoDB Uses BSON
	Rich Query Language
	Aggregation Framework
	Indexing
	GridFS
	Replication
	Sharding
	The mongo Shell

	Terms Used in MongoDB
	Data Types in MongoDB
	MongoDB Installation
	Recipe 1-1. Install MongoDB on Windows
	Problem
	Solution
	How It Works
	Step 1: Install the msi Installer
	Step 2: Create a Data Directory
	Step 3: Start the MongoDB Server
	Step 4: Start the MongoDB Client

	Recipe 1-2. Install MongoDB on Ubuntu
	Problem
	Solution
	How It Works
	Step 1: Extract the tarball
	Step 2: Create a Data Directory
	Step 3: Start the MongoDB Server
	Step 4: Start the MongoDB Client

	Recipe 1-3. Install MongoDB Compass on Windows
	Problem
	Solution
	How It Works
	Step 1: Install the MongoDB Compass msi Installer
	Step 2: Start the MongoDB Server
	Step 3: Connect MongoDB Compass with MongoDB Server

	Working with Database Commands
	Recipe 1-4. Create Database
	Problem
	Solution
	How It Works
	Step 1: Create a database

	Recipe 1-5. Drop Database
	Problem
	Solution
	How It Works
	Step 1: Drop a Database

	Recipe 1-6. Display List of Databases
	Problem
	Solution
	How It Works
	Step 1: Display a List of Databases

	Recipe 1-7. Display the Version of MongoDB
	Problem
	Solution
	How It Works
	Step 1: Display the Version of MongoDB

	Recipe 1-8. Display a List of Commands
	Problem
	Solution
	How It Works
	Step 1: Display a List of Commands

	Chapter 2: MongoDB CRUD Operations
	Collections
	Recipe 2-1. Create a Collection
	Problem
	Solution
	How It Works
	Step 1: Create a Collection

	Recipe 2-2. Create Capped Collections
	Problem
	Solution
	How It Works
	Step 1: Create a Capped Collection
	Step 2: Query a Capped Collection
	Step 3: Insert a Document into a Full Capped Collection

	Create Operations
	Recipe 2-3. Insert Documents
	Problem
	Solution
	How It Works
	Step 1: Insert a Single Document
	Step 2: Insert Multiple Documents

	Read Operations
	Recipe 2-4. Query Documents
	Problem
	Solution
	How It Works
	Step 1: Select All Documents in a collection
	Step 2: Specify Equality Conditions
	Step 3: Specify Conditions Using Query Operator
	Step 4: Specify AND Conditions
	Step 5: Specify OR Conditions

	Update Operations
	Recipe 2-5. Update Documents
	Problem
	Solution
	How It Works
	Step 1: Update a Single Document
	Step 2: Update Multiple Documents
	Step 3: Replace a Document

	Delete Operations
	Recipe 2-6. Delete Documents
	Problem
	Solution
	How It Works
	Step 1: Delete Only One Document That Matches a Condition
	Step 2: Delete All Documents That Match a Condition
	Step 3: Delete All Documents from a Collection

	MongoDB Import and Export
	Recipe 2-7. Work with Mongo Import
	Problem
	Solution
	How It Works

	Recipe 2-8. Work with Mongo Export
	Problem
	Solution
	How It Works

	Embedded Documents in MongoDB
	Recipe 2-9. Query Embedded Documents
	Problem
	Solution
	How It Works
	Step 1: Match an Embedded or Nested Document
	Step 2: Query on a Nested Field

	Working with Arrays
	Recipe 2-10. Working with Arrays
	Problem
	Solution
	How It Works
	Step 1: Match an Array
	Step 2: Query an Array for an Element
	Step 3: Specify Query Operators
	Step 4: Query an Array with Compound Filter Conditions on the Array Elements
	Step 5: Using the $elemMatch operator
	Step 6: Query an Array Element by Index Position
	Step 7: Using the $size Operator
	Step 8: Using the $push Operator
	Step 9: Using the $addToSet Operator
	Step 10: Using the $pop Operator

	Recipe 2-11. Query an Array of Embedded Documents
	Problem
	Solution
	How It Works
	Step 1: Query for a Document Nested in an Array
	Step 2: Query for a Field Embedded in an Array of Documents
	Step 3: Array Index to Query for a Field in the Embedded Document

	Project Fields to Return from Query
	Recipe 2-12. Restricting the Fields Returned from a Query
	Problem
	Solution
	How It Works
	Step 1: Return the Specified Fields and the _id Field Only
	Step 2: Suppress the _id Field
	Step 3: Exclude More Than One Field
	Step 4: Return a Specific Field in an Embedded Document

	Query for Null or Missing Fields
	Recipe 2-13. To Query Null or Missing Fields
	Problem
	Solution
	How It Works
	Step 1: Equality Filter
	Step 2: Type Check
	Step 3: Existence Check

	Iterate a Cursor
	Recipe 2-14. Iterate a Cursor
	Problem
	Solution
	How It Works

	Working with the limit() and skip() Methods
	Recipe 2-15. limit() and skip() Methods
	Problem
	Solution
	How It Works

	Working with Node.js and MongoDB
	Recipe 2-16. Node.js and MongoDB
	Problem
	Solution
	How It Works
	Step 1: Establishing a Connection and Creating a Collection
	Step 2: Insert a Document
	Step 3: Query a Document
	Step 4: Update a Document
	Step 5: Delete a Document

	Chapter 3: Data Modeling and Aggregation
	Data Models
	Embedded Data Models
	Normalized Data Models

	Data Model Relationship Between Documents
	Recipe 3-1. Data Model Using an Embedded Document
	Problem
	Solution
	How It Works
	Step 1: One-to-One Relationships
	Step 2: One-to-Many Relationships

	Recipe 3-2. Data Model Using Document References
	Problem
	Solution
	How It Works
	Step 1: One-to-Many Relationships
	Step 2: Query Document References

	Modeling Tree Structures
	Recipe 3-3. Model Tree Structure with Parent References
	Problem
	Solution
	How It Works
	Step 1: Tree Structure with Parent References
	Step 2: Tree Structure with Child References
	Step 3: Tree Structure with an Array of Ancestors

	Aggregation
	Aggregation Pipeline

	Recipe 3-4. Aggregation Pipeline
	Problem
	Solution
	How It Works
	Step 1: Aggregation Pipeline

	Map-Reduce

	Recipe 3-5. Map-Reduce
	Problem
	Solution
	How It Works
	Step 1: Map-Reduce

	Single-Purpose Aggregation Operations

	Recipe 3-6. Single-Purpose Aggregation Operations
	Problem
	Solution
	How It Works
	Step 1: Single-Purpose Aggregation Operations

	SQL Aggregation Terms and Corresponding MongoDB Aggregation Operators
	Recipe 3-7. Matching SQL Aggregation to MongoDB Aggregation Operations
	Problem
	Solution
	How It Works
	Step 1: Converting SQL Aggregation Operations to MongoDB

	Chapter 4: Indexes
	Recipe 4-1. Working with Indexes
	Problem
	Solution
	How It Works
	Step 1: Create an Index

	Recipe 4-2. Index Types
	Problem
	Solution
	How It Works
	Step 1: Multikey Index
	Step 2: Text Indexes
	Step 3: Hashed Indexes
	Step 4: 2dsphere Index

	Recipe 4-3. Index Properties
	Problem
	Solution
	How It Works
	Step 1: TTL Indexes
	Step 2: Unique Indexes
	Step 3: Partial Indexes
	Step 4: Sparse Indexes

	Recipe 4-4. Indexing Strategies
	Problem
	Solution
	How It Works
	Step 1: Create an Index to Support Your Queries
	Step 2: Using an Index to Sort the Query Results
	Sorting with a Single-Field Index
	Sorting on Multiple Fields
	Index to Hold Recent Values in Memory
	Create Queries to Ensure Selectivity

	Chapter 5: Replication and Sharding
	Replication
	Recipe 5-1. Set Up a Replica Set
	Problem
	Solution
	How It Works
	Step 1: Three-Member Replica Set
	Step 2: Auto Failover—High Availability

	Sharding
	Recipe 5-2. Sharding
	Problem
	Solution
	How It Works
	Step 1: Sharded Cluster

	Chapter 6: Multidocument Transactions
	Multidocument Transactions in MongoDB
	Limitations of Transactions
	Transactions and Sessions

	Recipe 6-1. Working with Multidocument Transactions
	Problem
	Solution
	How It Works
	Step 1: Multidocument Transactions

	Recipe 6-2. Isolation Test Between Two Concurrent Transactions
	Problem
	Solution
	How It Works
	Step 1: Isolation Test Between Two Concurrent Transactions

	Recipe 6-3. Transactions with Write Conflicts
	Problem
	Solution
	How It Works
	Step 1: Transactions with Write Conflicts

	Recipe 6-4. Discarding Data Changes with abortTransaction
	Problem
	Solution
	How It Works
	Step 1: Discard Data Changes

	Chapter 7: MongoDB Monitoring and Backup
	MongoDB Monitoring
	Log File

	Recipe 7-1. Working with MongoDB Log Files
	Problem
	Solution
	How It Works
	Step 1: To Display the Log File Content and Set the Log Level

	MongoDB Performance
	Database Profiler

	Recipe 7-2. Working with Database Profiler
	Problem
	Solution
	How It Works
	Step 1: Enable and Configure Database Profiler

	Recipe 7-3. View Database Profiler
	Problem
	Solution
	How It Works
	Step 1: Enable and Configure Database Profiler
	mongostat

	Recipe 7-4. Working with mongostat
	Problem
	Solution
	How It Works
	Step 1: mongostat Command
	mongotop

	Recipe 7-5. Working with mongotop
	Problem
	Solution
	How It Works
	Step 1: mongotop Command
	db.stats()

	Recipe 7-6. Working with db.stats()
	Problem
	Solution
	How It Works
	Step 1: db.stats() Command
	db.serverStatus()

	Recipe 7-7. Working with db.serverStatus()
	Problem
	Solution
	How It Works
	Step 1: db.serverStatus() Command

	Backup and Restore with MongoDB Tools
	Recipe 7-8. Working with mongodump
	Problem
	Solution
	How It Works
	Automatic and Regular Backup Scheduling Using mongodump

	Recipe 7-9. Working with mongorestore
	Problem
	Solution
	How It Works
	Step 1: Restore Data Using mongorestore
	Step 2: Restore Data Using mongorestore to Remote Instances

	Recipe 7-10. Working with mongodb Query Plans
	Problem
	Solution
	How It Works
	Step 1: Using explain() to Understand the Query Plan
	Step 2: Understanding Different Modes in explain()

	Chapter 8: MongoDB Security
	Authentication and Authorization
	Access Control
	Roles
	MongoDB User Roles
	read
	readwrite

	MongoDB Admin Roles
	dbAdmin
	dbOwner
	userAdmin

	Cluster Admin Roles
	clusterAdmin
	clusterManager

	Recipe 8-1. Creating a Superuser and Authenticating a User
	Problem
	Solution
	How It Works
	Step 1: Create a Superuser
	Step 2: Authenticate a User
	Step 3: Create a New User with Read and Write Access Control

	Recipe 8-2. Authenticating a Server in a Replica Set Using a Key File
	Problem
	Solution
	How It Works
	Step 1: Authenticate a Server in a Replica Set Using a Key File

	Recipe 8-3. Modifying Access for the Existing User
	Problem
	Solution
	How It Works
	Step 1: Connect to the Instance with User superUserAdmin and to admin Database
	Step 2: Identify the User’s Existing Roles
	Step 3: Grant an Additional Role to the User
	Step 4: Revoke an Existing Role from the User

	Recipe 8-4. Change the Password for the Existing User
	Problem
	Solution
	How It Works
	Step 1: Connect to the Instance with User superUserAdmin and to the admin Database
	Step 2: Change the Password

	Recipe 8-5. Track the Activity of Users in a Cluster
	Problem
	Solution
	How It Works
	Step 1: Enable and Configure Audit Events
	Step 2: Create an Audit Filter

	Recipe 8-6. Encryption
	Problem
	Solution
	How It Works
	Step 1: Understanding Different Encryption Options
	Encrypting Data in Motion
	Encrypting Data in Rest

	Step 2: Encrypting the Data at Rest Using Local Key Management

	Index

