

ADMINISTRATION
for ORACLE® DBAs

Microsoft® SQL Server® 2008

About the Authors
Mark Anderson is a data platform technical specialist working in the Enterprise and
Partner Group at Microsoft UK. Specializing in the SQL Server relational engine,
Mark works with Microsoft’s top enterprise customers and partners, helping them
to design and architect Tier-1 solutions on the Microsoft platform. Migrating and
integrating with non-Microsoft platforms such as Oracle and IBM also form part
of his role. Mark holds certification in both the Microsoft and Oracle database
platforms. He can be contacted at markand@microsoft.com.

James Fox is an independent consultant and director of Datagility, a company
dedicated to helping businesses make their information work harder using the
Microsoft Business Intelligence platform, including SQL Server and SharePoint.
Prior to this, James has worked for Microsoft and Oracle partners, building and
supporting data-driven solutions and providing SQL Server training to experienced
Oracle DBAs. He can be contacted at dba@datagility.co.uk.

Christian Bolton is the technical director for Coeo Ltd., a leading provider
of SQL Server consulting and managed support services in the UK and Europe.
Prior to this, Christian worked for five years at Microsoft, leading the SQL Server
Premier Field Engineering team in the UK. He is a Microsoft Certified Architect,
Master, and MVP for SQL Server, and lead author of Professional SQL Server 2008
Internals and Troubleshooting. Christian works out of London and lives in the south
of England with his wife and children. He can be contacted at christian@coeo.com.

About the Technical Editor
David Browne is a technology architect at the Microsoft Technology Center in
Dallas, focusing on SQL Server solutions. He is a developer and has been writing
solutions in SQL Server, .NET, Java, and Oracle for over ten years.

Mark Anderson
James Fox
Christian Bolton

New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore
Sydney Toronto

Microsoft® SQL Server® 2008

ADMINISTRATION
for ORACLE® DBAs

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-170065-8

MHID: 0-07-170065-X

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-170064-1,
MHID: 0-07-170064-1.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and
is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use of
this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate,
sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial
and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these
terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in
the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be
liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill
and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability
to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or
cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Art Tennick is an expert consultant and trainer in SSAS cubes, data mining, MDX,
DMX, XMLA, Excel 2010 PowerPivot, and DAX. His website is www.MrCube.net.

Packed with Hundreds of
Powerful, Ready-to-Use Queries

Available everywhere computer books are
sold, in print and ebook formats.

I wish to dedicate this book to two people; f irstly, to my wife and best friend, Wendy,
and secondly, to a constant in my life who was there when I started this book

but sadly not when I f inished it: “Nana” Lillian O’Conner, 1925–2010.

—Mark Anderson

This is for Caroline and Charlie, who helped me in their own ways from the start,
and for Chloe and Alice, who only arrived when we were nearly f inished.

—James Fox

For my parents, the often unsung heroes of my career, who I always strive to make proud.

—Christian Bolton

This page intentionally left blank

vii

Contents at a Glance

Chapter 1 Introduction to the SQL Server Platform . 1

Chapter 2 SQL Server Architecture . 27

Chapter 3 Installing and Configuring SQL Server . 67

Chapter 4 Database Objects . 111

Chapter 5 Security . 165

Chapter 6 Data Access and Transaction Control . 211

Chapter 7 Backup and Recovery . 251

Chapter 8 Performance Tuning and Optimization . 305

Chapter 9 High Availability and Disaster Recovery . 347

Chapter 10 Scheduling, Automation, and Alerting . 379

Chapter 11 Data Movement . 437

Chapter 12 Upgrading and Migrating to SQL Server . 515

Index . 547

This page intentionally left blank

ix

Contents
Acknowledgments . xv

Introduction . xvii

Chapter 1 Introduction to the SQL Server Platform . 1

SQL Server Editions . 2

Premium Editions . 3

Core Editions . 3

Specialized Editions . 3

Free Editions . 4

SQL Azure (SQL Server in the Cloud) . . 4

Data Warehousing with SQL Server . 4

SQL Server—What’s in the Box? . 6

RDBMS Features . 7

SQL Server Tools . 7

Business Intelligence with SSIS, SSRS, and SSAS . . 16

Complex Event Processing with StreamInsight . 17

Operating System Platforms . . 18

SQL Server Documentation and Sample Databases . . 19

SQL Server Books Online . 19

AdventureWorks Sample Databases . . 22

SQL Server Resources, Support, and Software Patches . . 23

Online Resources . . 23

Official Microsoft Support and Software Patches . 25

Chapter 2 SQL Server Architecture . 27

High-Level Architecture Overview . 28

Database Architecture . 32

Database Storage Model . 32

Physical Implementation . 38

System Databases . 44

master/Resource . . 44

tempdb . 45

msdb . . 45

x M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

model . 46

distribution . 46

Database Snapshots . . 46

Instances . 48

Inside the Instance . . 49

Client/Server Communication . 60

Chapter 3 Installing and Configuring SQL Server . 67

Installing SQL Server . 68

Media and Licensing . . 68

Software Prerequisites . 69

SQL Server Components . . 69

Instance Objects . 72

Installation Locations and Conventions . . 74

Security Considerations . 76

Software Installation . 80

Configuring SQL Server . 92

Networking Overview . 92

Network Configuration . 93

Basic Administration Tasks . 100

Server Configuration . . 102

Chapter 4 Database Objects . 111

Schemas . 112

Working with Schemas . 116

Synonyms . . 117

Schema Objects . 118

Programmatic Objects . . 119

Tables, Indexes, and Views . 123

Data Types . 127

Working with Data Objects . . 134

Creating Tables . . 136

Creating Constraints . . 139

Creating Indexes . 141

Rebuilding and Reorganizing Indexes . . 147

Creating Relationships . 149

Creating Views . 154

C o n t e n t s x i

Filegroups and Partitioning . 156

Creating Files and Filegroups . . 156

Partitioning . . 160

Chapter 5 Security . 165

Security Objects . 166

Server Security . 166

Database Security . 178

Protecting SQL Server Databases . 187

Proxy Accounts . 188

Encryption . . 189

Auditing . . 197

Policy-Based Management and Security . 208

Chapter 6 Data Access and Transaction Control . 211

The T-SQL Language . 212

Query Execution . 216

Parsing . 216

Optimization . 216

Execution . 218

Fetching . . 218

Execution Plans . . 218

Optimizer Hints . . 222

Plan Guides . 223

Monitoring Query Execution . 225

Transaction Management . 228

Auto-Commit Transactions . 229

Implicit Transactions . . 229

Explicit Transactions . . 230

Distributed Transactions . 230

Errors During Transaction Processing . 231

Rollback Behavior . 231

Transaction Isolation . 232

Locking . 236

Lock Granularity . 236

Lock Types . . 236

Lock Compatibility . . 237

Lock Hints . 238

x i i M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Lock Escalation . 241

Deadlocks . 242

Monitoring Locking . 244

Chapter 7 Backup and Recovery . 251

Recovery Models . . 252

FULL . 253

BULK_LOGGED . 253

SIMPLE . . 254

Backup . 255

Logical Backups . 255

Physical Backups . 255

Performing Backups . 259

Backup History . 271

Backup Permissions . 272

Securing Backups . 272

Backup Scheduling . . 273

SQL Server Maintenance Plans . 273

Back Up Using SSMS . 273

Backup of System Databases . 277

Example Backup Scenarios . 278

Restore and Recovery . . 281

Restoring and Recovering a Database . . 285

RESTORE—WITH Options . 295

Restore Permissions . 297

Restore History Tables . . 297

Restoring System Databases . 298

Restoring Using SSMS . 298

Example Restore Scenarios . 301

Further Reading . 303

Chapter 8 Performance Tuning and Optimization . 305

Windows Performance Monitor . 306

Overview . 306

Getting Started . . 307

What to Look For . . 313

Going Beyond the Built-in Functionality . 317

C o n t e n t s x i i i

SQL Server Activity Monitor . 317

Processes . 318

Resource Waits . 319

Data File I/O . . 320

Recent Expensive Queries . . 320

Dynamic Management Views . 321

What Is SQL Server Waiting For? . . 321

Viewing I/O Latency by Database File . . 327

Finding Missing Indexes . . 328

SQL Server Profiler and SQL Trace . 330

Event Hierarchy: Categories, Classes, and Columns . 330

How to Reduce the Impact of Tracing . 331

Analyzing SQL Traces . 335

Database Engine Tuning Advisor . 338

The Management Data Warehouse . . 341

What MDW Doesn’t Do . 341

MDW Architecture . 341

Chapter 9 High Availability and Disaster Recovery . 347

Evaluating Business Continuity Solutions . 348

Cold Standby Solutions . 349

Warm Standby Solutions . . 349

Log Shipping . 350

Database Mirroring (High-Performance Mode) . 353

Replication . 356

Hot Standby Solutions . 356

Failover Clustering . . 357

Database Mirroring (High-Safety Mode with Automatic Failover) 366

Database Mirroring Walkthrough . 367

Chapter 10 Scheduling, Automation, and Alerting . 379

SQL Server Agent . 380

Database Mail . 381

Operators . 383

Jobs . 386

Job Execution Context . . 392

Job Categories . 396

x i v M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Shared Schedules . 397

Job Monitoring and Execution History . 398

Alerts . 401

Maintenance Plans . 410

Policy-Based Management . . 424

Policy Evaluation . . 428

Exporting and Importing Policies . 434

Chapter 11 Data Movement . 437

Importing and Exporting Data . . 438

Bulk Copy Program . 439

BULK INSERT Statement (T-SQL) . . 446

SQL Server Integration Services . 449

Import and Export Wizard . 462

SQL Server Management Studio . 471

Performance Considerations for Importing and Exporting Data 474

Moving or Copying an Entire Database . . 478

Detach-Copy/Move-Attach Method . 479

Scripting the Database . 485

Copy Database Wizard . . 487

Backup and Restore . 492

Querying Across Servers and Data Sources . . 496

Data Replication . 506

Replication Architecture . . 506

Replication Types . 508

Peer-to-Peer Replication . 511

Chapter 12 Upgrading and Migrating to SQL Server . 515

Upgrading from Older Versions . 516

Upgrade Considerations . . 516

SQL Server Upgrade Advisor . 524

The Upgrade Process . . 528

Migrating from Other Databases . 533

Migration Tasks . 534

SQL Server Migration Assistant . . 535

Index . 547

xv

Acknowledgments

The list of people to thank is huge, but without a shadow of a doubt, my first
thanks must go to my wife Wendy. For over a year, Wendy has had to put up
with my spending all of our weekends glued to my laptop writing this book.

As a result, I need to also say thank you to all my family and friends for being so patient
with us when they heard the regular excuse of “Sorry, we can’t come over. Mark needs to
work on the book this weekend.”

Thanks also go to my co-authors, James Fox and Christian Bolton, with a special
thank you to James, who, following the joint delivery of one of our SQL Server for
Oracle DBA training courses, thought I was initially joking when I said, “We should
write a book about this!” Christian, thank you for joining us on this journey and for
writing two great chapters.

In addition to the official technical editor, David Browne, who has done an amazing
job and provided great wisdom and insight, we would also like to thank Benjamin
Wright-Jones and Jens K. Süßmeyer, two of Microsoft’s top SQL Server consultants
from the UK and Germany, respectively, for reviewing the book and providing feedback
and ideas as well as ensuring technical accuracy.

A huge thanks must go to David Stewart, the Microsoft UK Librarian. Those of you
who have seen Steven Seagal films know that he often masquerades as a normal guy but
then turns out to be some form of Navy SEAL or other special forces operative; David
is a real-life version of this, masquerading as a librarian hidden away in Building 1 of
the Microsoft UK Campus, but ultimately a “Navy SEAL” of book knowledge. David,
your insight, guidance, and ability to help me translate some of my technobabble into
something that someone other than myself can read have been invaluable. Writing a
book has been an amazing experience, which would have been much harder if it was not
for your assistance, and I truly thank you.

The list of other people who have all played their part is huge. From colleagues
in Microsoft to friends in the industry and customers with whom I have worked,
I apologize for not being able to name you all, but you know who you are! There are
a few people for whom I want to make a special mention. In no particular order, I would
like to say thank you to Graeme Scott, John Plummer, Shaun Beasley, Ken England,
Paul West, Gareth Ford, Simon Eckford, and all of the Microsoft Application Platform
Team in the UK.

x v i M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

A mention must go to the core team at McGraw-Hill, Wendy Rinaldi and Joya
Anthony. Wendy and Joya, thank you both for your guidance and patience in guiding
me through writing my first book.

The final thank you must go to you for reading this book! This book has taken many
hours of work from all involved, and we hope you enjoy reading it and that it inspires
you to want to learn more about SQL Server.

—Mark Anderson

Thanks are due to everyone who has had to listen to me talk about this book,
everyone who put up with something I didn’t do because I was writing it, and all the
clients and training course attendees who acted as unknowing guinea pigs for the
content.

—James Fox

First and foremost, I would like to thank my wife, Gemma, for her support and patience
for yet another authoring project; I wouldn’t be anywhere without her never-ending
support for my “crazy” ideas. I’d also like to thank my children, Ava and Leighton, for
helping me to balance work with home life by pulling me away from my desk to oversee
a princess wedding or to be a volunteer patient for two trainee doctors.

I’d like to thank Mark Anderson for allowing me to be involved in this book and for
his limitless patience.

Finally, I’d like to thank my parents, to whom I have dedicated my contribution to
this book. As a parent of two young children, I am now fully aware of the sacrifices they
made for my sister and me when we were young, and I want them to know how much I
appreciate it.

—Christian Bolton

xvii

Introduction

It is said that during a polite dinner conversation, the topics of politics and religion
should be left alone because they can be emotionally charged subjects that can
lead to heated conversation and the ruination of a good evening meal. Discussing

the choice of database platform among DBAs and architects of different backgrounds
also falls into this category! For that reason alone, this book is not about who has more
widgets and features or who can hold the most data.

These days, many organizations run multivendor database environments. DBAs who
traditionally administered systems from only one vendor, such as Oracle, are now being
asked to administer other environments as well, such as Microsoft SQL Server. A DBA
who has skills in more than one database platform is very attractive to potential new
employers. It is probably due to one or both of these reasons that you decided to read
this book.

The authors of this book have worked with many Oracle DBAs over the years who
have made the transition to becoming cross-skilled as SQL Server DBAs. When an
Oracle DBA is introduced to SQL Server, they naturally make constant references to
their base knowledge of terms and concepts in the Oracle platform. For example, as
you would expect, both platforms have the concept of an entity known as a “database,”
and although the comparison of a “database” in both platforms may initially seem
to be logical, you will soon realize that the comparison is not so straightforward and
the feature or function is not comparable. In the book, we will make clear where any
comparisons start and end, thus capitalizing on your existing knowledge while making
sure it is not a hindrance.

This book has been written to give you an understanding of the principles of
how SQL Server works in comparison to Oracle. We will guide you through the
architecture of SQL Server, through basic administration tasks, and through advanced
scenarios such as high availability and performance tuning. The first two chapters
give you an overview of the components and toolset of the SQL Server platform
and an understanding of the relational engine architecture. With this foundational
knowledge, Chapter 3 walks you through installing and configuring an instance of
SQL Server. Chapter 4 explores the database objects, such as schemas, tables, views,
and programmable objects. You then need to make sure your SQL Server database is
secure, and in Chapter 5 we show you how to do this by creating users and roles and
encrypting data. In Chapter 6 we address how you access data, control transactions,

x v i i i M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

and perform DML operations through the T-SQL language. As a DBA, backing up
is fundamental to everything you do, so to ensure you don’t lose your data (and your
job!), Chapter 7 covers SQL Server backup and explains recovery techniques from full
database recovery to fine-grained repair in the event that you suffer a database failure.

Chapter 8 looks at how you maintain and monitor the health and performance of
your database server to give your users the best possible service. We move on to evaluate
various business continuity solutions in Chapter 9 to show you how SQL Server can
be implemented in high availability and disaster recovery scenarios. In Chapter 10, we
introduce the automation and scheduling capabilities alongside the alerting mechanisms
built into the core SQL Server product.

As a DBA, you’ll likely need to import and export data between line-of-business
applications as well as move and copy data to test and develop environments. Chapter
11 covers the tools and techniques available within SQL Server. We finish in Chapter
12 by looking at how you upgrade between different releases of SQL Server as well as
how you migrate to SQL Server from Oracle.

We recommend that you begin by reading the first two chapters to give you an overview
of the components and toolset of the SQL Server platform and an understanding of the
relational engine architecture. The rest of the chapters can be read in any order, such that
you can concentrate on areas of specific interest. Thus, to fully grasp what is being said in
later chapters, you need the foundation given in the first two chapters. For example, if you
were tasked with backing up a SQL Server database, you would want to read Chapter 7
for the relevant information. However, you will need to have read Chapters 1 and 2 for an
introduction to the tools and concepts discussed in Chapter 7.

After reading this book, when you are tasked with a SQL Server job, you will have
enough understanding of the tools and skills required to complete the task and how
they relate to your existing Oracle skills and experience.

Mark Anderson and James Fox have both been delivering cross-platform database
training courses for several years. The “Oracle DBA Q&A” sections in this book have
been drawn directly from real questions raised by students in their classes or by Oracle
DBAs who were involved in the review process for this book.

The “On the Job” sections offer tips, tricks, and advice arising from the authors’
experiences of architecting, administering, and troubleshooting database platforms in a
wide variety of customer environments.

In This Chapter

SQL Server Editions

SQL Server—What’s in

the Box?

Operating System Platforms

SQL Server Documentation

and Sample Databases

SQL Server Resources,

Support, and Software

Patches

Introduction to the
SQL Server Platform

Chapter 1

2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Before delving into the technical side of Microsoft SQL Server, it is worth taking
time to look at what exactly SQL Server is. Most people know SQL Server as
a relational database engine, but the SQL Server brand is now an overarching

banner for the Microsoft Data Platform vision. Today, the Microsoft SQL Server brand
encompasses more than just a relational database engine that you install on your own
servers; it now includes business intelligence features, a complex event-processing engine,
highly scalable data warehousing solutions, and a version of SQL Server running in the
cloud.

This chapter takes a look at the various editions of SQL Server that are available
today, what is included out of the box, and where to go for help and assistance.

SQL Server Editions
As with Oracle, SQL Server is available in multiple editions. Each SQL Server edition
is targeted at different scenarios that span from mobile and embedded devices through
to data center environments and into the cloud.

For SQL Server 2008 R2, Microsoft breaks down the editions into five categories
with the following editions:

Premium editions

Datacenter

Parallel Data Warehouse

Core editions

Enterprise

Standard

Specialized editions

Workgroup

Web

Developer

Free editions

Express

Compact

Cloud services

SQL Azure

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 3

This book concentrates on the core editions, and in particular Enterprise Edition,
but the skills gained from this book are transferable up and down the editions stack.

Premium Editions
Datacenter is the top SQL Server offering from Microsoft and currently allows for
scale of up to 256 processing cores. (Note: The 256-core restriction is imposed by the
operating system; SQL Server Datacenter edition will support more cores as the OS
is able to support more cores.) Datacenter Edition is targeted at Tier-1 applications,
which typically have high data volume, user concurrency, and availability requirements.

Parallel Data Warehouse is a scale-out data warehousing solution aimed at large-scale
data warehouses. It is covered in detail in the “Data Warehousing with SQL Server”
section of this chapter.

Core Editions
The core editions of SQL Server are likely to be the editions that you encounter most
frequently in your data center environments. Enterprise Edition is targeted at business-
critical applications that require enterprise-class availability and scalability. Enterprise
Edition supports up to 8 CPUs with a total of up to 64 cores of processing power and
contains features such as table and index partitioning, data compression, transparent
database encryption, and online re-indexing, all of which are included in the license.

Standard Edition is targeted at small- to medium-scale OLTP (online transaction
processing) applications and is limited to 4 CPUs. It does not contain features such
as online re-indexing and table partitioning, which would typically be required in the
larger databases with 24×7 database availability requirements.

It should be noted that in the previous paragraphs we have spoken about CPUs and
cores. When licensing SQL Server using the per processor licensing model, Microsoft
only charges per physical socket not per core or a percentage of core as per other vendors.
Therefore, a server with 8 sockets each with 8 cores would only be 8 CPU licenses.

Specialized Editions
Workgroup Edition with its limit of 2 CPUs and 4GB RAM is targeted at small
organizations and remote branch scenarios. For example, a retail organization that
has many stores may use Workgroup Edition because it allows the organization not
only to store and report sales and stock data locally at the retail branch level, but also
to synchronize data back to the corporate headquarters for sending sales figures back,
downloading the latest product price lists, and so forth.

Web Edition is targeted at web-hosting scenarios and is primarily aimed at Internet
service providers (ISPs). It can only be used to support public, Internet-accessible web
pages, sites, applications, and services. It cannot be used for line-of-business applications.

4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Developer Edition is effectively SQL Server 2008 R2 Datacenter Edition but is
licensed for development, demonstration, and testing purposes only, meaning it cannot
be used for production systems.

Free Editions
The two free editions of SQL Server are Compact and Express. Compact Edition
is an embedded database used for developing mobile phone or desktop applications.
Compact Edition is a different codebase from the server editions of SQL Server, and
is an embedded database engine rather than a client/server database (like Oracle).
Compact has a very small client footprint—just a couple of DLL libraries—and
supports only a subset of T-SQL (the SQL Server version of PL/SQL). It does not
have stored procedures or views, and is used mainly for applications that need to take
relatively simple datasets offline and synchronize them back with the central server.

SQL Server Express Edition is the free edition of the full SQL Server relational
database engine. It shares the same codebase with the Core and Premium editions, and to
an application developer or a DBA it behaves like those editions. Express Edition has a
database size limit of 10GB and will only use one CPU and up to 1GB RAM per instance.
Express is used both as a desktop database for applications that need the full power of
SQL Server locally, and as a client/server database engine to support small workgroup or
branch office scenarios. It is quite commonly redistributed by independent software vendors
(ISVs) that want to embed a small amount of database capability within their applications.

SQL Azure (SQL Server in the Cloud)
In recent years, the trend of cloud-based computing has gained traction. Microsoft’s brand
of cloud-based computing components is called the Windows Azure platform. As part
of that platform, Microsoft provides a SQL Server offering called Microsoft SQL Azure.
SQL Azure provides a relational database service in the cloud. When running in the SQL
Azure cloud, you no longer need to worry about server management and elements such
as scalability, high availability, fault tolerance, and patch management because these are
provided by the platform. From a development perspective, the database still uses T-SQL
for development as per a normal on-premise database solution.

To manage databases both on premise and off premise, the database management tools
provided with Microsoft SQL Server 2008 R2 allow a DBA to connect to a database
hosted in the cloud in the same way they would to one hosted on their local machine.

Data Warehousing with SQL Server
For building data warehousing solutions using SQL Server, there are two approaches
that can be taken. The first is a scale-up, single-server approach, and the second is
a scale-out approach that utilizes the power of multiple servers.

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 5

Scale-up data warehousing is achieved using the off-the-shelf Enterprise and
Datacenter editions of SQL Server (it is possible to use Standard Edition, but most
of the data warehousing features such as partitioning, star join optimization, and data
compression are only available in Enterprise Edition and above). To help accelerate
scale-up data warehousing projects, Microsoft provides a series of reference architectures
that have been developed by the Microsoft Data Warehouse Product Unit in conjunction
with various hardware vendors. These reference architectures, known as Fast Track
reference architectures, specify a complete system kit list, including the disks, storage
array, storage area network (SAN) components, CPU, and memory for a given workload
and data volume requirement. In addition, Fast Track describes how to set up and
lay out SQL Server on top of this hardware. The Fast Track specification is designed
around a concept known as a “balanced architecture.” This means that each component
in the solution, from disk to CPU, is able to supply the next component with the right
amount of throughput, therefore ensuring that you have not over- or underspecified
a component. The idea behind Fast Track is to provide a system that can be installed
very quickly to deliver consistent data warehouse performance at a known price point.
A balanced architecture helps to make sure you get the right price/performance—there
is no point in having fast multicore CPUs and a huge array of disks if the networking
infrastructure is so slow that the disks and CPUs spend their time idle, and yet this type
of setup is all too common. Fast Track focuses on getting the balance right so you don’t
overspend on any particular component.

The Fast Track whitepapers, implementation guides, and best practices are available
for free download at the Microsoft website. The hardware specified in the Fast Track
architectures is standard hardware available from (at the time of writing) HP, Dell/
EMC, IBM, and Bull.

ON THE JOB
To give you a real-world example, I worked with a customer that spent many weeks of their data warehousing

project time in test labs building different combinations of server and storage configurations to try to find

the optimal configuration for their workload. After settling on a design and deploying it into production, they

found that the hardware choices were incorrect; many months of adding and swapping various hardware

components eventually led to a solution that was massively oversized for the workload. The additional cost and

downtime that was introduced into the project could have been avoided with a Fast Track solution. The Fast Track

architectures have been designed and tested by both Microsoft and the hardware vendor engineers to ensure

that the system performs from disk through to the CPU and that SQL Server is configured to make best use of the

hardware. Even if you don’t buy the specified hardware solution, the Fast Track methodology available in the

free-to-download whitepapers will help you to build your own design or maybe tweak an existing solution.

For scale-out data warehousing, there is a specific edition of SQL Server called SQL
Server Parallel Data Warehouse Edition that is aimed at high-volume, high-performance

6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

data warehousing workloads. It provides a linear scale-out solution that stretches from
the tens to hundreds of terabytes of data using a massively parallel processing (MPP)
architecture. Parallel Data Warehouse has been specifically tuned to manage complex,
mixed-query workloads, and also has a particular focus on hub/spoke architectures where
it can interoperate very effectively with either standard SQL Server or SQL Server Fast
Track spokes. In this architecture, the hub acts as a powerful aggregation, calculation,
and query engine, rapidly publishing data to the spokes for user analysis. Parallel Data
Warehouse is an appliance-type solution similar to Oracle Exadata from the point
of view that you buy it as a complete solution that has been preconfigured with both
hardware and software. At the time of writing, Parallel Data Warehouse solutions are
available from hardware vendors including HP, Dell/EMC, IBM, and Bull.

SQL Server—What’s in the Box?
SQL Server comes with all the components that you need to set up and manage the
SQL Server Data Platform. As you read in the previous section, Microsoft breaks down
its editions in almost the same way as Oracle, with Express, Standard, and Enterprise
editions being the main products. Unlike Oracle, Microsoft does not have additional
Enterprise options that can be purchased separately, such as Partitioning, Spatial,
OLAP, and Data Mining. Instead, Microsoft bundles all its features into the base
product, and which edition you buy determines which features are available to you in
the product. For example, if you wanted table partitioning, then you would need to buy
at least the Enterprise Edition of the product.

In the interest of balance, there is an argument that says that, in some instances, what
Oracle provides in its chargeable options is greater than what Microsoft provides out of
the box. For example, Microsoft does not charge extra for the table partitioning feature
that comes with its Enterprise (and above) Edition of the product, whereas in Oracle you
need to purchase the partitioning pack. However, SQL Server only has range partitioning,
whereas the Oracle partitioning pack contains range, list, and interval partitioning, among
others. In other areas, such as online analytical processing (OLAP), it can be argued that
Microsoft has the upper hand in the functionality and capability it provides.

You can break down what is provided out of the box in SQL Server into several
categories:

RDBMS features

Tooling

Business intelligence

Complex event processing

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 7

RDBMS Features
Listing every RDBMS feature would be a very long and tiresome task. Every edition
contains the basic capabilities for data management, security, backup, and so forth that
you would expect an RDBMS solution to provide, but as you move up the edition stack,
more features are included, as previously noted. For building enterprise-class, Tier-1
applications, the Enterprise and Datacenter editions of SQL Server contain all the data
management, security, high-availability, and scalability features required to build these
types of solutions; there are no additional options to purchase.

SQL Server Tools
Out of the box, SQL Server comes with a set of tools for management, tuning,
monitoring, development, configuration, and data movement, all of which will be
discussed and used throughout this book.

The tools that are used by a DBA include

sqlcmd command-line interface

SQL Server Management Studio (SSMS)

SQL Server Configuration Manager

SQL Server Profiler

SQL Server Database Tuning Advisor

Third-party tools

sqlcmd
sqlcmd is similar to SQL*Plus in Oracle. It is a command-line tool for issuing
statements and queries against a SQL Server. However, unlike the relationship that
Oracle DBAs have with SQL*Plus, which tends to be their preferred tool when issuing
commands and queries against Oracle, SQL Server DBAs tend to use sqlcmd only
for executing scripts in batch processes and for connecting to a SQL Server when the
Management Studio tool is not available. Figure 1-1 shows sqlcmd connecting to
a local SQL Server and issuing a query.

SQL Server Management Studio
When managing SQL Server, the main tool is SQL Server Management Studio
(SSMS). SSMS can be thought of as the functionality of Oracle Enterprise Manager,
SQL Developer, and SQL*Plus all rolled into one application. SSMS allows you to

8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

graphically manage your SQL Server servers and instances across your estate and
issue T-SQL statements and queries. The relationship that SQL Server DBAs have
with SSMS is comparable to the relationship that Oracle DBAs tend to have with
SQL*Plus.

SSMS is fully customizable, so you can lay out the look and feel as well as shortcut
keys to suit your way of working. If you prefer to see only the query window and results,
then you can close or collapse your other windows to the side of the tool.

Figure 1-2 shows SSMS in action with a typical window layout. The registered
servers and server objects are located on the left side, and a connection to the server
with the window to issue SQL statements and retrieve results is located on the right.

ON THE JOB
As you become more familiar with working with SSMS and SQL Server, you will come up with your own preferred

window layout. This can also depend on the screen resolution at which you run your workstation. If you run at

a high resolution, then you can probably keep more windows open, whereas working with a low resolution will

probably mean you want to keep the number of visible windows to a minimum to allow for more workspace

when typing queries and so forth.

Because SSMS is a graphical tool, it allows you to retrieve properties and details
of objects by right-clicking the object as you would when working in most Microsoft
Windows–based applications. For example, to retrieve the properties that are currently

Figure 1-1 sqlcmd connected to a local SQL Server and issuing a basic query

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 9

set for a database, you can either issue a T-SQL query or right-click the database
and select Properties. Figure 1-3 shows the Database Properties window of the
AdventureWorks database with the Options page selected, showing the current values
for the database options.

In addition to the RDBMS side of SQL Server, SSMS is used to manage the
Business Intelligence components of the stack. It can also be used to manage SQL
Server Compact Edition databases and SQL Azure databases.

SSMS is extensible such that you can also write your own add-ins using Microsoft
.NET (VB, C#, C++) to perform additional tasks.

Figure 1-2 SSMS—Typical window layout

1 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

ON THE JOB
In my experience, many Oracle DBAs prefer to use the SQL*Plus command-line tool instead of the graphical tools

provided with Oracle (that is, SQL Developer and Oracle Enterprise Manager). Common reasons DBAs give for not

wanting to use the graphical tools are that they think the tools provided by Oracle are not up to the job and not

very user friendly, or they simply think that graphical tools “de-skill” a DBA because the DBA no longer needs to

memorize the syntax.

Whatever the reason for avoiding graphical tools when working in Oracle, as an Oracle DBA learning SQL

Server, it is worth trying out the very good set of SQL Server graphical tools. Even if you don’t want to use the

property pages and check boxes approach to management, you can still issue your T-SQL statements and queries

in the SSMS tool to get nicely formatted output.

Figure 1-3 Database Properties window in SSMS

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 1 1

I do not fully agree with the argument that using graphical tools “de-skills” an individual, because as

a DBA, the most important thing is to get the task done as quickly and efficiently as possible. I agree that you do

need to understand the syntax and the detail behind what you are doing. In the graphical tools, if you just check

boxes, adjust values, and click OK without understanding the ramifications of your actions, this will eventually

lead to mistakes and potential outages of service. Equally, when working with a command-line tool, it is just as

dangerous to copy syntax from a book, copy scripts from the Internet, or even just guess at the syntax for

a command. Ultimately, you need to understand what it is that you are doing when running a command.

SSMS has a great feature that is a mix of the two approaches of GUI and command line when working

with dialog boxes. Instead of clicking OK to perform an action, you can ask SSMS to script the action to a new

query window, file, or the Windows Clipboard, or even to take the command and schedule it as a job to run later.

That way, you get to see what SSMS was going to do had you clicked OK.

As an example, Figure 1-4 shows the Server Properties dialog box, which allows you to adjust instance

parameters. In this example, we changed the Minimum Server Memory value to 1000MB. Instead of clicking OK,

Figure 1-4 Choosing a script action in SSMS

1 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

we are selecting Script | Script Action to New Query Window, which causes SSMS to launch a new query window

and place the commands that it was going to execute within it, as shown in Figure 1-5. In this case, it is a call to

the sp_configure stored procedure.

The scripting option, which is available in almost every dialog box in SSMS, provides a great way of

getting up to speed quickly on syntax and understanding how the tool works. Other examples of dialog boxes

from which you can script out the results include those for creating new databases, running a backup, creating or

rebuilding an index, and adjusting server parameters.

I strongly recommend that you spend more time working with SSMS than sqlcmd unless you have

a real aversion to graphical utilities. Graphical tools are provided to make you more productive! If you are

really a die-hard command-line junkie, try PowerShell. It is the next-generation command-line environment

for administering Windows and Microsoft Server products. Everything that you can do in SSMS can be done

in PowerShell, because both SSMS and PowerShell use the same underlying libraries, called the SQL Server

Management Objects (SMO). SSMS builds a GUI on top of them, and PowerShell gives you an interactive scripting

environment to work with them.

Figure 1-5 Script Action to New Query window result

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 1 3

SQL Server Configuration Manager
SQL Server Configuration Manager is used to configure and manage the networking
protocols that SQL Server responds to and the service accounts under which the SQL
Server services (processes) run. The SQL Server Configuration Manager is covered in
more detail in Chapter 3.

Figure 1-6 shows SQL Server Configuration Manager with the SQL Server Services
selected.

SQL Server Profiler
There are times when you want to monitor and log events that are taking place inside the
engine, to troubleshoot performance issues, audit database activity, or capture a workload
to replay into performance-tuning tools. For this, SQL Server contains a feature known as
SQL Trace. SQL Trace allows you to specify which events you are interested in and any
filters—for example, all stored procedure calls by user Fred. A SQL Trace can be defined
in code using a set of system stored procedures, but a more intuitive and interactive way to
do this is through SQL Server Profiler to create a trace definition that can then be set to
run on the server side.

Figure 1-6 SQL Server Configuration Manager

1 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

SQL Profiler can also be used on the client side and run interactively with SQL
Server to watch real-time activity on a SQL Server server. More information on using
SQL Trace and SQL Server Profiler for performance tuning is available in Chapter 8.

Figure 1-7 shows SQL Server Profiler in action capturing events.

SQL Server Database Engine Tuning Advisor
The SQL Server Database Engine Tuning Advisor (DTA) is used to analyze a
workload against the physical implementation of one or more databases in order to
make recommendations upon how best to tune the database based on the workload
provided. Workloads can be provided as SQL Trace outputs (to capture real-world
usage of the system) or as a script containing T-SQL statements.

Figure 1-7 SQL Server Profiler capturing events interactively on the client side

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 1 5

DTA can recommend physical changes to your database design, such as the addition
or removal of indexes, the implementation of a partitioning strategy, or simply the
addition of statistics. DTA is covered in Chapter 8.

Figure 1-8 shows DTA’s Tuning Options tab, where you can select what design
decisions you allow DTA to consider.

Third-Party Tools
The ecosystem for third-party management and monitoring tools for SQL Server is
very rich. Vendors such as Idera, Red Gate, and Quest, to name a few, all create tools
that either fill gaps or extend existing functionality within the SQL Server product.

Figure 1-8 Database Engine Tuning Advisor, Tuning Options tab

1 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Some tools that are popular on the Oracle platform such as Toad from Quest
Software also have SQL Server equivalents. Therefore, if you use Toad on Oracle you
can still keep the same familiar interface by using Toad for SQL Server.

Business Intelligence with SSIS, SSRS, and SSAS
SQL Server Integration Services (SSIS), SQL Server Reporting Services (SSRS),
and SQL Server Analysis Services (SSAS) are the three components that make up
the Business Intelligence (BI) part of the SQL Server stack. The structure of your
organization will dictate how many of these components you will have exposure to, as
you may have BI developers and analysts who are more likely to use these products than
you are as a DBA—although it is highly likely you will be involved in administering
some of the infrastructure to support these components.

SQL Server Integration Services
SSIS was introduced in SQL Server 2005 to replace a feature called Data Transformation
Services (DTS). SSIS is an enterprise-class extract, transform, and load (ETL) product. To
draw a comparison, think of SSIS as being in the same category as SAP BusinessObjects
Data Integrator, Ab Initio, Informatica PowerCenter, and Oracle Data Integrator
Enterprise Edition (formerly known as Oracle Warehouse Builder and Oracle Data
Integrator).

SSIS can be used to build complex data movement operations. Its package format
in which SSIS packages are saved and the execution engine for executing the packages
is also used by some of the core SQL Server RDBMS features such as the Import and
Export data wizards and SQL Server Maintenance Plans. We will take a brief look at
SSIS in Chapter 11 when we discuss data movement. As a DBA, you may or may not
get involved in creating SSIS packages, as this may fall to a data integration team. Even
if you do not get involved in the development, it is highly likely you will be involved
in the execution and monitoring of package execution. The SQL Server Maintenance
Plans feature, which is aimed at DBAs for creating automated database maintenance
tasks, also uses SSIS as its package format and uses the SSIS engine to execute them.

SQL Server Reporting Services
SSRS is Microsoft’s enterprise reporting tool. It allows for the design, publishing,
subscription, and delivery of reports. SSRS also contains features that allow end users
to design, build, and publish their own reports using an application known as Report
Builder. Again, to draw a comparison to competitive products, think of SSRS as being
similar to SAP BusinessObjects Web Intelligence, Crystal Reports, and MicroStrategy
Report Services. As with the SSIS packages, you may or may not be involved in

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 1 7

the creation and development of the SSRS reports, but you will be involved in the
backup and recovery of the databases that are part of the SSRS solution. SSRS has
two databases, which by default are named ReportServer and ReportServerTempdb.
These databases contain information such as report definitions, execution statistics,
subscriptions, security settings, and other data associated with the SSRS solution.
Although you may not create line-of-business reports, it should be noted that SSMS
also hosts SSRS reports for reporting system status information such as disk space, top
queries by CPU, etc. Therefore, if you want to extend SSMS with your own custom
reports it is worth understanding how to write SSRS reports.

SQL Server Analysis Services
SSAS is the Microsoft OLAP engine. SSAS is used to create multidimensional
data cubes that can support fast ad hoc querying. SSAS also incorporates data
mining functionality to perform data analysis, looking for patterns in data for use in
applications such as targeted marketing, retail basket analysis, and fraud detection.
Comparison products include Oracle OLAP and IBM Cognos PowerPlay.

ON THE JOB
Microsoft has proven to be very strong in the Business Intelligence arena, and companies who are predominantly

Oracle commonly use for their RDBMS platform SQL Server just for its BI tools. I have worked with customers who

run their data warehouse on Oracle 11g but use SSIS to extract data from source systems and load it into Oracle,

and then use SSAS to provide OLAP data analysis and SSRS for reporting over the top of the Oracle warehouse.

All the components are interchangeable; a customer who uses SQL Server as the data warehouse can use other

products to load, report, and analyze data. You can pick and choose which components to use.

Complex Event Processing with StreamInsight
In SQL Server 2008 R2, Microsoft introduced StreamInsight into the SQL Server
technology stack. StreamInsight is a platform for developing and deploying complex
event processing (CEP) applications. CEP applications are typically built for real-time
data scenarios where there are very large data volumes with very low latency response time
requirements. An example of a CEP application would be an algorithmic trading system
used in financial services environments to make decisions to buy or sell assets rapidly
based on data feeds from many different systems. A StreamInsight CEP application
would be able to handle in near real time the high-speed event streams, filtering,
and decision making based on this data. This type of processing speed and decision
making would not be possible within any standard RDBMS platform. StreamInsight is
a stand-alone solution in a similar way to SSAS and SSIS in that it can be used either
independently or together with the RDBMS part of the platform. As a DBA, it is highly

1 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

unlikely that you would be responsible for developing StreamInsight applications, as
this would fall to a .NET developer, but you may be required to perform some of the
management tasks. StreamInsight is not covered in this book.

Operating System Platforms
SQL Server is only available on the Microsoft Windows platform. The Enterprise
and Datacenter editions of SQL Server are only able to run on the Windows Server
platform (the Developer, Standard, Workgroup, and Express editions are able to run on
a client operating system such as Windows 7). The choice of Windows Server version
and edition is generally dependent on a few parameters.

Ideally, when choosing the version of Windows Server to use, you would
automatically choose the latest supported edition because it contains the most recent
advances in the operating system. However, in many enterprise environments, the
choice of operating system can sometimes be restricted to the available (internally)
supported operating systems. If your Windows deployment team does not currently
have a build of the latest version of Windows Server, then you may have to raise an
exception request or settle for an older version.

ON THE JOB
Sometimes it can be a real battle to obtain the latest operating system for a new project if the team managing

the deployments does not yet have a build for that version, but in some areas it really is worth the fight. For

example, in Windows Server 2008, the failover clustering capability and the TCP/IP stack were completely

rewritten and simplified. In Windows Server 2008 R2, significant changes were made to the kernel that resulted

in faster performance for SQL Server workloads. If your Windows team only supports Windows Server 2003, you

will be sacrificing all these new features and performance enhancements.

The choice of which Windows Server edition—Standard, Enterprise, or
Datacenter—to use usually boils down to two main criteria. First, choose the edition
that matches your CPU and memory requirements. Second, decide whether you want
to set up SQL Server in a high-availability failover cluster. Table 1-1 lists the various
editions and the associated CPU and RAM limits.

Windows Server 2008 R2 Edition CPU Sockets RAM

Standard 4 32GB

Enterprise 8 2TB

Datacenter 64 (max. 256 cores) 2TB

Table 1-1 Windows Server 2008 R2 CPU and RAM Limits

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 1 9

If you want to build SQL Server into a Windows Server failover cluster, you need the
Windows Server Enterprise Edition or above in order to have the Failover Clustering
feature. It is worth noting that Windows Server 2008 R2 is only available on the x64
processor architecture or the Intel Itanium architecture (using Windows Server 2008 R2
for Itanium-Based Systems edition). If you require an x86 32-bit operating system, you
need to select Windows Server 2008.

ON THE JOB
As a consultant working with some of the world’s largest organizations who currently do not use Microsoft

solutions in their Tier-1 environments, I often come across statements from Unix and mainframe professionals

such as “The Windows Server platform is not a Tier-1 operating system” and “Windows Server is buggy, is not

secure, and has to be constantly rebooted." As a consultant in the early days of Windows Server NT 3.51 and

NT 4, I probably would have agreed that this was a fairly strong argument when comparing Windows Server to

Unix-based solutions. However, Windows Server has evolved since then. Windows Server has made significant

strides in the areas of performance, scalability, and security, with Windows Server 2008 R2 now supporting

up to 256 cores of processing power. The old argument against the use of Windows Server in an enterprise

environment is, in my opinion, now very much dated. A quick tour of the Microsoft Case Studies website (www.

microsoft.com/casestudies/) will show that there are major well-known financial, retail, manufacturing, and

government organizations running their mission-critical Tier-1 business applications on the Windows Server

platform.

SQL Server Documentation
and Sample Databases
The documentation that is provided with SQL Server is a stand-alone application
known as SQL Server Books Online. The sample databases are called AdventureWorks.

SQL Server Books Online
Throughout this book, SQL Server Books Online is cited several times as a point of
reference for further information on SQL Server features; this is done not because the
authors are being lazy, but simply because this book focuses on the features and their
most commonly used scenarios. To include in-depth information about every feature
mentioned would probably have quadrupled the size of the book! At last count, Books
Online contains in excess of 70,000 electronic pages of information for the SQL Server
2008 R2 platform. Becoming familiar with navigating and using SQL Server Books
Online will save you time and help you become more productive. Figure 1-9 shows the
SQL Server Books Online application.

2 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

An example of using Books Online is shown in Figure 1-10. For this example,
we want to know more about the dynamic management view (DMV) sys.dm_os_
schedulers (DMVs are the SQL Server equivalent of V$ views). Because we know
what the feature is called, we can simply use the index lookup facility. Therefore, if
we start typing sys.dm_os_sche in the Look For box, the index results jump to the
closest match. Clicking the index entry takes us to the DMV’s details—in this case,
a description of the object and the details behind the return values, the permissions
required to use it, and examples of usage.

NOTE
Books Online is also the help system for SSMS; therefore, typing the full DMV name in a query window and

pressing F1 will take you to the same entry.

Figure 1-9 SQL Server Books Online

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 2 1

The Books Online application also has a search facility. It will (if you permit it) search
the Microsoft MSDN website, the MSDN forums, and a selection of non-Microsoft SQL
Server community sites such as www.sqlservercentral.com and www.sqlserverfaq.com.

Figure 1-11 shows the available search options, which you access by selecting
Tools | Options from the toolbar menu.

ON THE JOB
Books Online is updated and released independently of the main SQL Server release schedule. Therefore, it is

quite probable that the version you install from the SQL Server media is already out of date. The latest, up-to-

date version is available for free download from the Microsoft website. Visit www.microsoft.com/downloads and

search for SQL Server Books Online. Books Online is also available as online documentation at the Microsoft

MSDN website, http://msdn.microsoft.com.

Figure 1-10 Using the SQL Server Books Online index to look up DMV information

2 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

AdventureWorks Sample Databases
In Oracle, the sample schemas include HR, SH, and PM, each designed to showcase
different features and to provide a learning platform. SQL Server provides sample
databases (note that schemas in Oracle are fairly analogous to databases in SQL Server;
you’ll read much more about this in Chapter 2). In older versions of SQL Server, you
may notice sample databases called Northwind and Pubs; these have been superseded
as of SQL Server 2005 with a set of sample databases known as AdventureWorks. The
AdventureWorks databases, of which there are several types, including OLTP and data
warehouse, are based on a fictitious company called AdventureWorks Cycles that sells
bicycles and accessories. Microsoft uses this fictitious company to provide samples not
only for databases but also for SSRS and SSAS. There are also SSIS packages that show
how to ETL data from the AdventureWorks OLTP database to the data warehouse.

Figure 1-11 Books Online search options

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 2 3

Figure 1-12 shows the AdventureWorks databases installed on a SQL Server
instance.

The majority of the code samples in this book use the AdventureWorks databases.
The samples can be found at http://sqlserversamples.codeplex.com/ (CodePlex is
a Microsoft open source website; more on this shortly).

SQL Server Resources,
Support, and Software Patches
The amount of SQL Server help and resources that are available is vast, from online
community websites and blogs through to official, fee-based Microsoft support and
independent consultancy and training.

Online Resources
If you are looking for less-formal support (that is, free!), there are many online resources
available, including official Microsoft websites, forums, and community websites and
blogs.

Figure 1-12 AdventureWorks sample databases installed

2 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The main official Microsoft resources include

TechNet SQL Server TechCenter http://technet.microsoft.com/sqlserver/

MSDN SQL Server Online Resources http://msdn.microsoft.com/sqlserver/

Microsoft Support http://support.microsoft.com/

Data Platform Insider http://blogs.technet.com/dataplatforminsider/

SQL Server Customer Advisory Team http://sqlcat.com/

CodePlex www.codeplex.com/

MSDN Forums http://social.msdn.microsoft.com/Forums/en/category/sqlserver/

TechNet and MSDN are the Microsoft equivalent of the Oracle Technology Network,
providing online versions of the product documentation and best practice whitepapers
and guidance. The Microsoft Support site is a searchable knowledge base of known issues,
with details of how to fix or work around the problems.

To keep up to date with the latest SQL Server product announcements, the Data
Platform Insider blog is regularly updated with news related to the Microsoft Data
Platform.

The CodePlex website is a Microsoft-hosted open source site where developers can
upload their projects for community involvement. It is worth looking there for SQL
Server–related projects because there are many add-ins for tools such as SSMS and
Business Intelligence Development Studio. Also, as mentioned in the previous section,
CodePlex is used by Microsoft as the release mechanism for product samples such as
the sample databases for SQL Server.

Some of the most interesting SQL Server articles come from the SQL Server
community MVPs (Microsoft Most Valuable Professionals). MVPs are members of the
SQL Server community who have been recognized by Microsoft as experts in the field
and are regular contributors to educating the SQL Server community. The following
list contains some of the authors’ favorite MVP and Microsoft blogs (in alphabetical
order by first name):

Aaron Bertrand http://sqlblog.com/blogs/aaron_bertrand/

Brent Ozar www.brentozar.com/

Buck Woody http://blogs.msdn.com/buckwoody/

Cindy Gross http://blogs.msdn.com/cindygross/

Erland Sommarskog www.sommarskog.se/

Jens K. Suessmeyer http://blogs.msdn.com/Jenss/

C h a p t e r 1 : I n t r o d u c t i o n t o t h e S Q L S e r v e r P l a t f o r m 2 5

Kalen Delaney http://sqlblog.com/blogs/kalen_delaney/

Kimberley Tripp www.sqlskills.com/blogs/kimberly/

Paul Randal www.sqlskills.com/blogs/paul/

SQL Server Storage Engine Team http://blogs.msdn.com/
sqlserverstorageengine/

Tony Rogerson http://sqlblogcasts.com/blogs/tonyrogerson

ON THE JOB
If you encounter a problem or a question you cannot solve or answer, even after reading through Books Online

and searching the Internet, try the MSDN SQL Server Forums at http://social.msdn.microsoft.com/Forums/

en-US/category/sqlserver. Many of the MVPs just listed, as well as a huge number of other knowledgeable and

helpful SQL Server professionals, monitor these forums. In addition to the MSDN Forums, there are also several

Usenet forums named microsoft.public.sqlserver.*, accessible with a Usenet news reader or via Google Groups.

As you search the Web, you will find the content from the MSDN and Usenet forums copied over and over again

by content-aggregation websites, which is fine for searching. But if you want a question answered, post it on the

MSDN or Usenet forums directly (after searching to make sure it hasn’t been answered already).

Official Microsoft Support and Software Patches
For official Microsoft support, there is a range of options available depending on your
requirements. The range is from e-mail and phone support for which you pay for each
incident by credit card at the time of raising the support request, through to support
contracts that have strict service-level agreements and dedicated support coordinators
and personnel.

If you experience a problem with SQL Server that you cannot fix yourself, then it is
time to contact Microsoft Support. If the problem turns out to be a software bug, you
will be provided with a fix for that issue if one is available. Microsoft publishes several
types of software fixes, ranging from the immediate fix of a critical problem through to
the incremental service releases generally available to everyone.

The most granular type of patch is known as a hotfix. Hotfixes are fixes to a problem
or set of problems that causes a specific issue (hotfixes are cumulative, so they may
well contain other fixes for other issues.) Microsoft has two types of hotfix: Critical
On-Demand and On-Demand. The hotfixes are categorized based on certain criteria
such as whether a workaround is available and the effect the issue is having on the
customer. Hotfixes by their nature are turned around in a short period of time and
therefore do not go through long testing cycles before delivery to the customer. It is
strongly recommended that you do not apply hotfixes unless instructed to do so by
a Microsoft product support engineer.

2 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

A more predictable approach to hotfix availability is the Cumulative Update (CU)
package. A CU is a rollup of all Critical On-Demand hotfixes to date as well as other
hotfixes that meet the hotfix acceptance criteria (a workaround does not exist, the code
that must be changed is complex and affects large parts of the system, and so forth).
CUs have also been through better integration testing and engineering procedures
than the stand-alone fixes. A CU is released every two months but you should not be
compelled to install every CU released unless there is a fix contained in the CU that
will repair a problem you are experiencing. It should be noted that CUs are based on
Service Pack level, i.e., the CU3 for the RTM (Release To Manufacturing) version is
not the same as the CU3 for SP1. You should always name the CU version along with
Service Pack level.

A Service Pack is a rollup of CUs. Service Packs are fully regression tested by Microsoft
and have been through extensive community testing through the Beta programs that allow
customers to test and provide feedback on Service Packs before they are fully released. It
is recommended that you apply Services Packs as they become available; the Service Pack
level you are running at can affect the support you receive from Microsoft.

Finally, the last type of fix that Microsoft supplies is a General Distribution Release
(GDR). A GDR is released when an issue or set of issues is found that has a broad
customer impact or security implications. GDRs have no release cycle, as they are only
released when Microsoft determines that the impact is great enough to produce a fix
outside of the normal release cycle. GDRs are made available through the Microsoft
Download Center website and also through the Windows Update capability available
in the Microsoft Windows platform.

Hotfixes and CUs are only available through contacting Microsoft Support, but there
is no charge for the supply of the fixes. Service Packs and GDRs are made publicly
available for download on the Microsoft website, removing the need to contact Microsoft
Support.

This approach to patch delivery is known as the Incremental Servicing Model (ISM).
More information on the ISM can be found in the following Microsoft Support article:
http://support.microsoft.com/kb/935897.

ON THE JOB
Unless the hotfix or CU addresses an issue you are experiencing, then it is a good idea to stay away from them.

There is no point in trying to fix a problem you don’t have, as you may break something else as a result. Service

Packs, on the other hand, are always worth applying, especially because they can affect the support you receive

from Microsoft. As of SQL Server 2008, it is possible to uninstall a Service Pack if you find that it introduces a

problem; this was not possible in earlier versions of SQL Server. If you contact Microsoft for support, as part of

the problem-resolution process, you might be asked to apply the latest CU by the Microsoft support engineer

investigating your issue. CUs can also be uninstalled via the Add\Remove Programs facility in Windows.

SQL Server Architecture

Chapter 2

In This Chapter

High-Level Architecture
Overview

Database Architecture

System Databases

Database Snapshots
Instances

Client/Server
Communication

2 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

A s an Oracle DBA, you appreciate that understanding the concepts of instances,
the SGA, databases, tablespaces, data files, and so on is vital to effectively
managing an Oracle database solution. In this chapter we introduce you to the

SQL Server architecture. SQL Server and Oracle have many concepts in common, some
identical, others similar. There are also some concepts unique to each platform. There are
areas where entities have the same name but mean something very different.

ON THE JOB
Naming this chapter “SQL Server Architecture” has given it the potential to turn itself into a book of its own.

The aim of the chapter is to address the architecture at a level that enables you to get started with SQL Server.

Therefore, some concepts have been loosely coupled for a “good enough” comparison, but if you dig deep

enough, they would eventually differ.

 For a deeper understanding of the SQL Server architecture, read Microsoft SQL Server 2008 Internals

by Kalen Delaney.

High-Level Architecture Overview
In Oracle, if we consider high-level architecture, we think about a client, where a
client is the consumer of the data, be that an end user, web server, or application tier.
When the client wants to interact with the data stored in the database, it does so by
connecting to an instance. The instance is a set of processes and memory structures that
is responsible for handling the client request and returning results through interacting
with the database. The database itself is a set of data files that reside on disk containing
the actual data (see Figure 2-1).

At a very high level, Oracle and SQL Server would appear identical in that they both
have the concept of instances and databases, and clients interact with an instance to get
data from a database.

If we delve deeper, instances in Oracle and SQL Server are still identical in
concept—they are the components responsible for servicing client requests and for
interacting with the database data files. This conceptual equivalency does not hold
completely true for the term “database,” however, and this can be the first point of
confusion when moving from Oracle to SQL Server. Both Oracle and SQL Server
have the concept of an entity known as a “database” for storing data, which we described
earlier as a set of files on disk containing the data that the instance connects to, but the
role of the database in each technology differs.

In Oracle, the relationship between an instance and database is that an instance
connects to only one database (or multiple instances connect to one database in
a RAC configuration). The Oracle database then consists of multiple schemas.
It has system-related schemas (for example, SYS), which contain information such
as the data dictionary, and user schemas, which contain the user or application data.

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 2 9

In SQL Server, an instance always connects to multiple databases, of which there are
system databases and user databases. Therefore, it is a good idea to conceptually think
of schemas in Oracle as databases in SQL Server. For example, if you were to move the
HR sample schema from Oracle to SQL Server, it would end up as the HR database in
SQL Server. Conversely, if you were to migrate the AdventureWorks sample database
from SQL Server to Oracle, it would be converted to the AdventureWorks schema.

Figure 2-2 shows the SQL Server Management Studio (SSMS) tool connected to
an instance with the Databases node expanded. Under the databases node the user

Figure 2-1 Client, instance, and database

Client

Instance

Database

Memory

Process

Process

Logs
Data

Server

Temp

Process

Process

Process

Figure 2-2 SQL Server databases in SSMS

databases such as AdventureWorks and HR are listed; also note the System Databases
node, which separately groups the system databases together.

Each database is a physically separate entity in that it has its own set of data and
transaction (redo and undo) log files. Figure 2-3 shows the default DATA directory
containing all the data and log files. Note that the AdventureWorks database has an
AdventureWorks_Data data file and an AdventureWorks_Log log file. More detail on
the physical database architecture will be covered later in this chapter.

Now that you have grasped the concept that instances to databases is a one-to-many
relationship in SQL Server, we need to consider the concept of schemas. In Oracle,
a schema is a collection of objects owned by a user, and the schema has the same name
as the user. In SQL Server, a schema is a namespace for a collection of objects within a
database and is not tied to a user (although schemas do have owners). Think of a SQL
Server schema as a container for objects inside a SQL Server database. For example,
Figure 2-4 shows the AdventureWorks database expanded to show a filtered list of tables.
In this example, SSMS is set to filter all tables with the word “Address” in the table name.
Notice that there are five tables from four different schemas: HumanResources, Person,
Purchasing, and Sales. The idea is that in the AdventureWorks application database, the
schemas are used to group together all tables related to a specific focus area such as sales
or human resources.

To help visualize this, Figure 2-5 shows the relationships of instance to database to
schema for both Oracle and SQL Server.

3 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 2-3 Database data and log files in the default DATA directory

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 3 1

Figure 2-4 Schemas inside a database

Figure 2-5 Oracle and SQL: instance, database, and schema comparison

Oracle 11g

Instance

Database

Object

Schema

Object

Object

Schema

Object

Object

Schema

Object

SQL Server 2008 R2

Instance

Database

Object

Schema

Object

Object

Schema

Object

Database

Object

Schema

Object

Instance x Instance x

3 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

ON THE JOB
When teaching SQL Server architecture to Oracle DBAs, one key confusing issue is the aforementioned

fundamental difference in the implementation of schemas in each platform. As we have explained, in Oracle,

a schema is a collection of objects owned by a user and the schema has the same name as the user, whereas in

SQL Server, a schema is a namespace for a collection of objects within a database not tied to a user (although

schemas do have owners). This highlights one area where prior knowledge of Oracle can be a potential

hindrance.

Schemas are covered in more detail in Chapter 4.

Database Architecture
Previously, we described a database in SQL Server as being analogous to a schema in
Oracle. This was to enforce the point that a database in SQL Server can be thought
of as a container of data and objects related to one specific application or function. For
example, the HR sample schema in Oracle would translate to being an HR database
in SQL Server. The analogy between Oracle schemas and SQL Server databases
makes sense on the surface (that is, a container of objects related to an application),
but the analogy becomes less appropriate when you look deeper into the SQL Server
implementation of a database in comparison to an Oracle schema.

Each database in SQL Server is an autonomous unit in that each has its own
set of data files for objects in addition to maintaining its own transaction log for
recovery purposes (that is, its own version of redo log/undo tablespace). As a result,
each database within an instance can use different recovery models and is backed up
independently of other databases. This is the equivalent of having some databases in
ARCHIVELOG mode and others in NOARCHIVELOG mode, each with its own
backup strategy. This level of isolation makes moving databases between instances and
servers fairly simple; you will see examples of how to do this in later chapters.

Database Storage Model
As an Oracle DBA you already understand the concept of separating the logical
presentation of storage from the physical implementation through the use of
tablespaces and data files; that is, when users place objects in tablespaces, they
do not need to understand or even be aware of the underlying physical data file
implementation. The placement of objects within tablespaces removes the user’s
need to be aware of physical data file locations by creating a logical layer over the
underlying storage.

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 3 3

Figure 2-6 shows the Oracle and SQL Server logical and physical models side by
side. First, let’s remind ourselves of the Oracle storage model. At the top level we have
tablespaces where objects are logically placed. Tablespaces contain segments such as
table and index segments, which are the tables and indexes. Segments consist of one

Oracle DBA Q&A

Q: In Oracle, when I do a full database backup, I back up not only all of my
user data, but also my system tablespace containing my critical data dictionary
information. If you are saying that in SQL Server all databases are separate
entities, what happens when I do a full database backup? Does my SQL
equivalent of the system tablespace also get backed up?

A: First, it should be noted that although there is a system database in SQL
Server known as the master database, it does not hold exactly the same information.
The master database in SQL Server holds information about the instance-level
objects such as logins and the databases connected to it. Each database, regardless
of whether it is a user or system database, contains its own data dictionary; that
is, objects such as tables, procedures, permissions, and so forth. Therefore, making
a change to a procedure in a user database does not require that you back up the
master. Making system-level changes (adding logins and so on) does require that
you back up the master. More detail on what needs to be backed up and how to back
up is covered in Chapter 7.

Q: What is the limit to the number of databases you can have in a single SQL
Server instance? And how many would you typically put in the same instance?

A: It depends. The physical limit is 32,767 databases per instance, but in practice
it is much lower than this. The limit is really a practical one. That is to say, how
many can you efficiently manage in one instance? With regard to how many you
would put in an instance, this very much depends on the type of database you are
hosting. For small, departmental-type databases that are up to a few gigabytes
in size, you can normally consolidate many of these together in a single instance
(subject to available system resources). In general, corporate customers tend to
group these small databases together up to a maximum of around 150 in a single
instance. At the other end of the scale, if you are looking at a mission-critical
application such as the corporate SAP implementation, you would place this
database (or set of application databases) in an instance of its own.

3 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

or more allocated extents, and extents are made up of blocks. At a physical level, a
tablespace consists of one or more data files.

In SQL Server the model is similar but with a few exceptions. Filegroups are at the
top level and can be thought of as comparable to tablespaces in Oracle, as this is the
level at which users place objects. Moving a level down, there is no equivalent concept
to a segment within SQL Server. Tables and indexes are allocated space directly from
extents. Extents are made up of pages, which are the SQL Server equivalent of Oracle
blocks, and finally, a filegroup is physically made up of one or more data files.

If we move a little deeper, this time starting from the bottom of the storage model
working our way up, the lowest level of storage in SQL Server is the page, which is
the equivalent of a block in Oracle. In SQL Server, pages are always a fixed size of 8K
(8192 bytes), whereas in Oracle you can choose to set your database block size from a
range of different sizes. Pages are then grouped together to create extents, and in SQL
Server, extents are always made up of eight pages, making an extent 64K (8×8K). Each
page that is assigned to an extent is physically consecutive in the data file.

Moving up the logical storage model, we are now at the point where in Oracle we
would be at segments, but in SQL Server there is no equivalent structure to a segment.
Tables and indexes are allocated space directly from extents. As previously mentioned,
extents in SQL Server are always 64K in size, but there are two different types of
extent, which means that extents are not always a one-for-one mapping with an object
(or segment) as in Oracle. The two different types of extent in SQL Server are known

Figure 2-6 Oracle and SQL Server database storage models

Tablespaces

Extents

Blocks

Data Files

O/S Blocks

Segments

Oracle SQL Server

Logical Physical Logical Physical

Filegroups

Extents

Pages

Data Files

O/S Blocks

Index/Heap

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 3 5

as mixed and uniform. When an object such as a table is initially created, it is allocated
a single 8K page of storage from a mixed extent and, up until its ninth single page
allocation, all pages come from mixed extents. This is to ensure that small objects do
not take up entire extents of 64K. Several different tables and indexes can be allocated
pages from the same mixed extent. Once it is time for the ninth page allocation for an
object, SQL Server then allocates space to it from that point on using only uniform
extents. A uniform extent is an extent that is entirely dedicated to only one object.

ON THE JOB
Although we have said that extent sizes and allocation are fixed, there are some advanced ways to control

extents such as allocating a larger number of extents from each file in a filegroup (useful for data warehousing

scenarios) and removing the single-page allocation behavior. These types of options are implemented using

special startup parameters and are considered to be advanced options for use in very specific scenarios.

Filegroups are at the top level of the logical storage model and are where objects are
logically placed. Every SQL Server database will always consist of at least one filegroup,
known as the primary filegroup. It is possible to create additional filegroups within a
database to create logical (and physical) separation of objects. For example, you may create
a filegroup to contain all your data and create another one to hold binary large object data.
Another common usage is to use filegroups to create logical separation of data that may
be partitioned; for example, creating a filegroup per archive year (2010, 2009, and so on).
It is possible for a database to consist of just the primary filegroup and for all user objects
to be placed within it. As your databases become more complex and you have different
performance and backup/recovery requirements, filegroups play a greater role in the
design of your database. Chapter 4 demonstrates the use of filegroups in conjunction with
table partitioning strategies, and Chapter 7 shows how spreading data among different
filegroups can be used to devise more advanced backup and restore approaches.

One filegroup within a database will always be marked as the default, which means
that any objects that are created without explicitly specifying the destination filegroup
as part of the CREATE syntax will automatically be created in the default filegroup.
When you initially create the database, the primary filegroup will have the DEFAULT
attribute, but this can be changed to a user-created filegroup. It is also possible to mark
user-created filegroups as read-only to prevent accidental modification of data.

At the physical level, filegroups are made up of data files. A filegroup can consist of
one of more data files, which can be on the same disk or in different disk locations. To
understand how SQL Server allocates space to objects and keeps track of free space using
data files, we need to look in more detail at how a data file works.

When data files are added to a database, you specify information such as the logical file
name, physical location and details of the initial size, growth settings, maximum size, and
the filegroup with which it will be associated. At the point of creation, the file is assigned

3 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

a unique file ID. Within each data file, the space is divided up into 8K pages, which are
numbered contiguously from 0 to x, where x is the last page in the file.

Figure 2-7 graphically depicts two data files: the primary data file with a file ID of 01
and pages numbered up to 511, and a secondary data file with a file ID of 03 and pages
numbered up to 1279. As a point of interest, notice the correlation between file size and
the last page number; the primary file is 4MB, which is 8K×512 pages = 4096K.

The 8K pages are not just used to store user data such as tables and indexes; they
are also used to store system information such as page free space and extent allocation.
There are also system pages, which are used to keep track of extents that have changed
since the last backup or minimally logged operation. Table 2-1 lists some of the
different page types that are used in data files.

Figure 2-8 represents the start of a data file and notes the first few system pages.
Page 0 in every file is always the File Header, which stores various file attributes.
The page following the File Header is page 1, which is the Page Free Space (PFS)
page. The PFS page is used to track page allocation and free space information. Page
free space is only tracked and maintained for Data and Text/Image pages and is used
by SQL Server when it needs to find a page to hold a newly inserted piece of data.
A PFS page uses 1 byte of storage per page it is tracking and records if the page is
allocated. This is followed by tracking percentage full values of 1–50, 51–80, 81–95,
and finally 96–100. Using 1 byte per page means that a single PFS page tracks 8000
pages within the file; therefore, there is a PFS page for every 8000 pages in a data file.

Pages 2 and 3 contain the Global Allocation Map (GAM) and Shared Global
Allocation Map (SGAM) pages. GAM pages are used to track which extents are

Figure 2-7 Data files and pages

Primary Data File: File ID = 01

Page
01:0000

Page
01:0001

Page
01:0002

Page
01:0511

Page
01:xxxx

Secondary Data File: File ID = 03

Page
02:0000

Page
02:0001

Page
02:0002

Page
02:1279

Page
02:xxxx

4MB

10MB

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 3 7

currently free or allocated. Each extent is represented in the GAM page with a bit value
of 0 for in use or 1 for free. SGAM pages track mixed extents. If an extent is currently
being used as a mixed extent and has at least one free page, it is marked with a bit value
of 1; if the extent is not being used as a mixed extent or has no free pages, then it has a
value of 0. Both GAM and SGAM pages cover 64,000 extents per page and appear at
every 511,230-page interval, which is approximately at every 4GB of a file.

When an object needs to be allocated more space, SQL Server uses the GAM pages
to quickly identify an unused extent. In the case of the allocation needing to come
from a mixed extent, SQL Server can review SGAM pages to look for a mixed extent
that has a free page that can be allocated. If no free mixed extents can be found on the
SGAM page, SQL Server will find a free extent within the GAM page and allocate it

Page Type Description

Data Data rows with all data, except: text, ntext, image, nvarchar(max), varchar(max),

varbinary(max), and xml data, when text in row is set to ON.

Index Index entries

Text/Image Large object data types: text, ntext, image, nvarchar(max), varchar(max),

varbinary(max), and xml data. Variable-length columns when the data row

exceeds 8K: varchar, nvarchar, varbinary, and sql_variant.

Page Free Space (PFS) Information about page allocation and available free space on pages.

Global Allocation Map (GAM)

Shared Global Allocation Map (SGAM)

Information about extent allocation.

Bulk Change Map (BCM) Information about extents modified using a bulk operation since the last BACKUP

LOG statement.

Differential Change Map (DCM) Information about extents that have changed since the last BACKUP DATABASE

command was issued.

Table 2-1 Page Types Used in Data Files

Figure 2-8 System pages within a data file

Data File: File ID = x

Page
x:0000

Page
x:0001

Page
x:0002

Page
x:0003

File
Header

PFS GAM SGAM

Page
x:0006

DCM

Page
x:0007

BCM

3 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

as a mixed extent. If SQL Server cannot find any free space in the GAM and SGAM
pages, then the file is full.

The Differential Change Map (DCM) and Bulk Change Map (BCM) pages are not
used to track space, unlike the PFS, GAM, and SGAM pages. Their purpose is to track
extents that have changed over time.

The first DCM page of a file is located on page 6 and tracks all extents that have
changed since the last BACKUP DATABASE command was issued. The DCM page
can be thought of as similar to the block change tracking feature in Oracle in that it is
used to quickly identify areas of the file that have changed, for backup, without having
to read the entire file. The DCM page is different from block change tracking in that it
is always on; tracking is internal to the file, and it tracks extents as opposed to blocks or
pages. When a differential backup command is issued, the backup reads all the DCM
pages (1 for every 64,000 extents) and if an extent is represented with a bit value of 1
then it has changed since the last backup; a value of 0 indicates no change.

The BCM page is only applicable when the database is using the BULK_LOGGED
recovery model. Full details behind how this recovery model works and when to use
it are covered in Chapter 7. Without going into detail of BULK_LOGGED recovery
but to help explain why BCM pages are used, we need to briefly cover what a bulk-
logged operation is. When an operation is carried out that is bulk (minimally) logged,
the transaction log file (redo file) only tracks which extents have been allocated to the
operation, not the data. Therefore, to fully recover the database using transaction log
backups, the backup must also contain the data images. BCM pages keep track of any
extents that have been allocated or modified as part of a bulk-logged operation. When
a BACKUP LOG command is issued, it checks the BCM pages for extents that have
been modified and includes them in the log backup. As per the DCM page, there is
1 BCM page for every 64,000 extents.

Finally, if the data file is the primary data file, then one of the system pages also
contains the boot page for the database, and this boot page contains all the information
about the database.

Physical Implementation
The physical implementation of a database consists of three types of file: primary
and secondary data files, and log files. A database always consists of at least two files:
a primary data file and a log file. There is only one primary data file per database
and it is part of the primary filegroup. Its main function is to hold the system tables
containing the database catalog and boot information. The primary data file can, and
in many cases does, also contain user data. The log file is the database transaction log
that holds all information required to recover the database and is analogous to the
redo log/undo tablespace (more details on the transaction log later in this section).

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 3 9

By default, primary data files have an .mdf file extension and log files have an .ldf
extension. Any additional data files that are added to a database are known as secondary
data files and by default have an .ndf file extension. Secondary files can be added to the
primary filegroup as well as any user-created secondary filegroups. A data file only ever
belongs to one filegroup.

ON THE JOB
The naming convention of .mdf, .ndf, and .ldf for file extensions for primary, secondary, and log files, respectively,

is not enforced or required by SQL Server. It is a good idea to follow this convention for two reasons: first, it makes

it easy when browsing the files on the file system to work out what type of file it is; second, many of the dialog

boxes in SSMS filter based on using these extensions. Therefore, if you don’t use the naming conventions, you are

just making life more difficult for yourself and others who may inherit your system. In addition, when running

antivirus software on machines running SQL Server, you should add the SQL Server data files to the exception

list so that they are not being constantly scanned. Therefore, using the standard extensions means that you only

need to add *.mdf, *.ndf, and *.ldf files to the exception list. I have still to come up with a good reason not to

follow this.

Figure 2-9 shows an example of a database called HR; the HR database has a single
primary data file and a single log file. It also contains a secondary filegroup, which is
made up of three data files.

Table 2-2 summarizes the limitations of a SQL Server database with regard to the
number of files and filegroups, and the sizes of the files. Note that these figures place
the largest theoretical size of a SQL Server database at 524,272TB (524PB).

Figure 2-9 A user database with a secondary filegroup and additional data files

Primary Filegroup

HR_data.mdf

Log File

HR_log.ldf

Secondary Filegroup
HR_FG1_data1.ndf
HR_FG1_data2.ndf
HR_FG1_data3.ndf

4 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Just as in Oracle, where you would use multiple data files for a tablespace to spread
disk I/O across multiple disks, or use tablespaces as a unit of grouping for objects and
also as a unit of backup and restore, the same principles apply to files and filegroups in
SQL Server.

ON THE JOB
If you are working with small databases (up to several gigabytes), it is highly likely the database will consist of

just the primary filegroup containing only the primary data file and a single transaction log file. Don’t worry,

you have not inherited a badly designed database! For databases of this size, there is nothing wrong with this

approach. It actually makes administration of the database much easier. There is no need to introduce multiple

files and filegroups to the setup unless you need to start distributing the database across disks for performance,

storage, or backup and recovery reasons.

As with data files in Oracle, a file in SQL Server can have an automatic growth
increment and maximum file size specified. If there are multiple files in a filegroup,
then autogrow will not take place until all files are full, at which point the files will be
increased in size in a round-robin approach.

Although we are focusing on data and log files in this section, when you are using
features such as full text indexing (similar to Oracle Text) and FILESTREAM (similar
to BFILE), there are other files and configuration options to be aware of. Both of these
features are outside the scope of this book, but you can find more details in SQL Server
Books Online.

Transaction Log Files
The roles of undo and redo with respect to transaction logging and recovery in Oracle
are treated as separate entities through redo log files and undo tablespaces. In SQL
Server, both of these roles are performed by the transaction log file. The transaction log
is responsible for tracking all activity in the database such that it can be recovered in
the event of system failure (crash recovery). This therefore includes tracking operations

Table 2-2 Database Limits

Object Number of/Size

Files per database 32,767

Filegroups per database 32,767

Maximum data file size 16TB

Maximum log file size 2TB

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 4 1

such as the start and end of every transaction, DDL operations, page and extent
allocation/deallocation, as well as other activities. The other role that the transaction
log provides in SQL Server is its transaction rollback capability for any transaction that
is aborted or rolled back; SQL Server uses the transaction log to follow the chain of
events associated with a transaction, allowing it to undo any work that the transaction
had created up to the point of a rollback being issued.

Every database has its own transaction log file, which means that each database
is responsible for its own recovery. This also allows each database within an instance
to operate using different recovery models (that is, the SQL Server equivalent of
ARCHIVELOG and NOARCHIVELOG mode).

Logically, the transaction log operates as a sequential string of incrementing log records
identified by log sequence numbers (LSNs), which are similar to System Change Numbers
(SCNs) in Oracle. Each record contains the transaction ID to which it is associated. To
facilitate rollback operations, all log records that are associated with a particular transaction
are individually linked backward to provide a chain of pointers to allow SQL Server to
quickly follow a chain of actions to undo.

In Oracle we must always have at least two redo log files, but in many cases a system
will have more than this. In SQL Server only one transaction log file is required. The
internals of a SQL Server transaction log file are analogous to having multiple redo
log files in Oracle, where log files are used in a circular fashion. In Oracle the redo
log currently in use is marked as CURRENT, any redo logs that are still required for
recovery are marked as ACTIVE, and if the redo log is no longer required for instance
recovery, it is marked as INACTIVE and can be reused. In SQL Server the approach
is similar, except SQL Server uses a single transaction log file (multiple log files can
be used; more on this later) and logically divides the log file internally into a series of
smaller virtual log files (VLFs), the size and number of which is controlled by SQL
Server dynamically when it creates or extends log files. See Figure 2-10.

Figure 2-10 Transaction log file with virtual log files

reusable active active active reusable reusable

VLF 1 VLF 2 VLF 3 VLF 3 VLF 4 VLF 5

Start of logical log End of logical log

Min LSN Last checkpoint

4 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

As operations occur, SQL Server adds the log records sequentially, appending each
record at the end of the logical log. Remembering that transaction log files in SQL
Server are required for transaction rollback as well as recovery, the min LSN represents
the oldest open transaction in the log that is still required to perform any rollback
operations. The last checkpoint indicates when the last database checkpoint took place
to secure dirty buffer pages to the data files. As the min LSN moves forward by older
transactions completing, VLFs become candidates for truncation and reuse. Upon
a checkpoint operation, SQL Server is able to truncate the VLFs that are no longer
required for database recovery or transaction rollback and can mark them as reusable.

When the end of the logical log file reaches the end of the physical log, SQL Server
wraps back around to the start of the log, as shown in Figure 2-11. In this example,
once VLF 5 was full, SQL Server wrapped back around to VLF 1.

Provided the end of the logical log does not meet the start of the logical log, then
SQL Server has enough log space to continually log in a circular fashion. If the two
points do meet, then either the log file will automatically grow as per the growth
settings you specified for the log file (provided there is enough physical space on disk)
or the database will generate an error indicating it can no longer continue.

The explanation of transaction log file reuse just given assumes that the database was
using the SIMPLE recovery model, which is akin to operating in NOARCHIVELOG
mode in Oracle. It should be noted that how the log file is truncated depends upon the
recovery model being used. If the database is using the SIMPLE recovery model and
a database checkpoint is issued, or if the log file itself gets to 70 percent full (at which
point it triggers a database checkpoint), then the log file will truncate the inactive portion
of the log, making the log file self-maintaining. If the database is running in the FULL

Figure 2-11 Transaction log file used in a circular fashion

VLF 3 VLF 3 VLF 4 VLF 5

Start of logical logEnd of logical log

Min LSN Last checkpoint

VLF 1 VLF 2

truncated

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 4 3

(or BULK_LOGGED) recovery model, which is similar to ARCHIVELOG mode,
then the transaction log file is unable to truncate the inactive portion of the log until a
log file backup has taken place. If a truncation was to take place before the log file was
backed up, this would break the chain of log records, which would prevent point-in-time
recovery in the same way that reusing a redo log file marked as INACTIVE before it was
archived would also break the log sequence. When running in a recovery model other
than SIMPLE, only a BACKUP LOG command can truncate and clear down the log.
Therefore, if you were to never back up your log file, it would continue to grow until you
ran out of space.

ON THE JOB
Although the previous text mentioned that the SIMPLE recovery model is “self-maintaining” when it comes to

the transaction log, this is only true to a point. If the log were to have a long-running transaction that remained

open, then the log would be unable to truncate. The default growth settings for the log file are to grow by

10 percent with unrestricted growth, which means that the log file will continue to grow until it runs out of

disk space. Also, even if your log file that normally is 5MB were to grow to, say, 250MB because of an open

transaction that you subsequently spotted and rolled back or committed, the log file would physically remain

at 250MB, although it would be logically truncated internally. To get the log file back down to size, you would

have to issue a command to physically shrink it back down. On another point, autogrowth operations are bad:

every time an autogrow takes place, all transactions are halted while the file expands. See this Microsoft Support

knowledge base article for more details: http://support.microsoft.com/kb/315512.

SQL Server allows you to have more than one log file per database, and log files
are used in a sequential manner. That is to say, in a database that has two log files,
SQL Server will only move to the second log file when the first log file is full. Due
to the internal circular nature of a transaction log file, it is possible that SQL Server
never moves to the second log file if the VLFs in the first log file are cleared and made
available.

ON THE JOB
It is rare to see a SQL Server database with more than one transaction log file as there is no great advantage

(such as performance or resilience) to having additional files. The only scenario that springs to mind is if you

were going to perform an operation that you knew would grow the log to a point that is greater than the disk

volume it resides on. If you were to create an additional log file on another drive this would allow the transaction

to continue once it had filled the initial log file by moving onto the second file. In this scenario, you probably

should look at other potential alternatives, such as changing the recovery model (which can be done online in

SQL Server), if possible, to a model that minimally logs the operation.

4 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

System Databases
By this point it should be ingrained that, logically, an Oracle schema tends to map onto
a SQL Server database. This also applies to system-related schemas and tablespaces. In
Oracle, the data dictionary is stored in the SYS schema in the SYSTEM tablespace and
operations that require temporary space use the temporary tablespaces. In SQL Server
these functions are moved into system databases, described next.

master/Resource
As with the System tablespace in Oracle, the master and Resource databases are
essential to SQL Server operation. The function of the System tablespace with regard to
maintaining system catalog information and holding all system-related objects (system
procedures and packages etc.) in SQL Server are split between the master and Resource
databases. In SQL Server, the master database is responsible for holding all instance-wide
settings, including information such as the databases currently attached to the instance,

Oracle DBA Q&A

Q: Can you multiplex your log files as you can with redo log files in Oracle?

A: SQL Server does not have the ability to multiplex transaction log files. To
protect your transaction log files from physical disk failure, you should place them
on resilient storage, such as RAID 1. If the database is critical, such that you
need to protect against complete loss of the transaction log file, then you should
have your database configured to use a high-availability feature such as database
mirroring. High availability is covered in Chapter 9.

Q: In write-intensive systems, can the log file in SQL Server suffer the
same way redo logs do in Oracle in that they can become a bottleneck since all
transactions must be secured to the log?

A: Yes, it’s exactly the same. Therefore, for databases in which you expect there
to be a lot of Insert, Update, and Delete operations, it is important to ensure that
your log file resides on a disk array that can provide the required performance.
Ideally, this would be a separate volume from your data files.

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 4 5

login accounts, file allocation and usage, and other system settings; the Resource database
holds all of the system objects, such as system stored procedures and so forth. The master
database does not hold the catalog information for each database, such as the tables
and so forth contained within each database; this is stored at the database level, where
each database has its own catalog. This is an important point to note because one of its
consequences is that it allows SQL Server to perform DDL operations inside a transaction,
which Oracle prohibits because of the shared nature of the catalog.

Unlike the master database, which appears within the SSMS tools alongside other
system databases, the Resource database is not visible or accessible. Prior to SQL
Server 2005, the master database held all of the system configuration and objects. In
SQL Server 2005, Microsoft split the executable system objects into the Resource
database. This allowed for quicker and easier upgrades, because to update executable
system objects, you simply needed to replace the Resource database rather than make
modifications to the master database. Although the Resource database is actually a real
database with a data and log file, it resides in the Binn directory alongside all other
libraries and executables, not with the other system and user databases, which hints
toward its contained functionality; that is, it’s more like a library of functions and
procedures.

tempdb
The tempdb database performs the same function as the temporary tablespace in
Oracle: it is used as temporary workspace. Operations that require temporary storage,
such as those that use temporary tables, row versioning and sorting operations for
queries, and so forth, all use tempdb. It is important to note that tempdb is re-created
every time SQL Server is restarted; therefore, any objects you place in tempdb will not
survive a restart of the instance.

ON THE JOB
Configuring tempdb correctly is an important task. The performance of tempdb can and will impact the

operation of your SQL Server instance, especially if you make heavy use of features such as temporary tables

and row versioning. If you search the Microsoft TechNet website (http://technet.microsoft.com), you’ll find

whitepapers and best practice articles for working with tempdb. A recent trend is to also use solid-state drives

(SSDs) or RAM drives to host tempdb for maximum performance.

msdb
The msdb database does not have a directly equivalent Oracle tablespace. The msdb
database is predominately used by SQL Server Agent (SQL Server’s scheduling
and automation capability, covered more fully in Chapter 10) for storing job and

4 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

alert definitions, and is also used by features such as Database Mail (for sending
e-mail) and Service Broker (the SQL Server version of Oracle Advanced Queuing).
All database backup and restore history information is also stored in msdb. In
addition, if you are using SQL Server Integration Services (SSIS) and maintenance
plans, they can also be stored in msdb.

model
The model database, as with msdb, does not have a direct Oracle equivalent. The model
database, as the name suggests, is used as a template or model for all new databases
that get created within the instance. Therefore, if you have a common set of objects or
settings that you want all new databases to inherit, then you place or set them in the
model database.

distribution
The distribution database is a special case. It is only present on the system when the
instance is (or was at some time) performing the Distributor role in a SQL Server Data
Replication setup. SQL Server Replication is a technology used for publishing and
subscribing to data. It is introduced in Chapter 11.

Database Snapshots
A database snapshot is a way to provide a static, read-only, point-in-time view of an
existing user database. Database snapshots appear as normal databases from the point
of view of being able to query them with SELECT statements and so forth. A database
snapshot, when created, consists of a sparse file, which is, over time, populated with
pages from the source database when they are updated for the first time since the
snapshot was created. A database snapshot is dependent upon its source database as it
only contains the changed pages and not the full original source.

From a management perspective, database snapshots appear in SSMS under the
Database Snapshots subfolder, as shown in Figure 2-12.

Database snapshots are primarily used for reporting, as they allow a consistent view
of a database at a particular point in time. They can also be used to revert a database to
an earlier state by restoring the snapshot over the source database. It is also possible to
create multiple snapshots of the same database representing different points in time.

Figure 2-13 shows what happens when you query a snapshot database (Step 1),
when a page in the source data is updated (Step 2), and then finally when you reissue
the same query (Step 3). In Step 1 a query is issued against the HR_9AM snapshot
database. At this point there has been no change to the data in the source HR database,

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 4 7

so the query passes through to the HR source. In Step 2 an update is issued to the HR
source database, causing the before image of the updated page to be copied over to the
HR_9AM snapshot. In Step 3 the same query that was issued in Step 1 is once again
issued against the snapshot. This time the query uses both the source and the snapshot
database to create the point-in-time view of the database.

Figure 2-12 Database snapshots in SSMS

Figure 2-13 Querying a snapshot database

PagesPages
HR

UPDATESELECT

HR_9AM
Source DB Sparse file

PagesPages
HR HR_9AM

Source DB Sparse file

PagesPages
HR HR_9AM

Source DB Sparse file

SELECT

STEP 1 STEP 2 STEP 3

4 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

ON THE JOB
It is possible to revert a database to a point in time using a database snapshot, but this should not be substituted

for database backups. A snapshot only contains pages that have changed since the snapshot was created, and

not the entire database. Reverting to a database snapshot is most useful to provide a quick way to undo an

upgrade or a test scenario.

Instances
As previously stated, SQL Server and Oracle instances are identical in concept, in that
they are responsible for servicing client requests by interacting with the database data
files. By this point it should be clear that, unlike Oracle, where an instance is associated
with only one database, in SQL Server the instance is associated with multiple system
and user databases.

Like Oracle, SQL Server supports multiple instances hosted on the same physical
machine. Unlike Oracle, which gives you the option to have instances that can share
the same binaries, each SQL Server instance is always an independent installation.
Each instance is installed as a separate Windows service and, when started, has its own
process, threads, and memory allocation independent of any other instances running on
the same machine. This level of isolation allows instances of different versions (SQL
Server 2005/2008/R2), editions (Enterprise, Standard, and so on), and Service Pack
levels to run alongside each other.

NOTE
Some binaries are shared between the installations, such as the client tools. Installing instances is covered in

detail in Chapter 3.

When installing SQL Server instances onto a machine, there is the concept of a
“default” instance and a “named” instance. A server can have only one default instance
but multiple named instances. Default and named instances are identical with regard
to the artifacts that get installed, such as binaries, registry keys, and so forth. The only
thing that makes a default instance special is that it can be addressed from a client
using only the server name, whereas a named instance must be addressed with the
server and instance name. For example, if your server is called SVR-PROD-01, you
can connect to the default SQL Server instance by specifying only SVR-PROD-01
in your client tools, whereas to connect to a named instance called DEV on the same
server, you would address the server with SVR-PROD-01\DEV. Client connectivity is
covered in more detail later in this chapter.

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 4 9

ON THE JOB
Default instances are by far the most popular type of installation on stand-alone servers, and in the majority of

cases, the default server port of 1433 is also used. This means that to connect to a SQL Server, you only need to

specify the machine name (and the relevant credentials). As you move to more consolidated environments where

multiple instances are running on the same machine and in clusters, named instances are essential since you can

only have one default instance. Even with multiple instances, you can configure multiple IP addresses on a server

and configure each instance to listen on port 1433 on its own IP address.

The resources that an instance can consume on a server can be managed by setting
limits for the individual instance or they can be set to allow access to all available
resources. Each running instance can be left to share and contend for the same available
resources, such as CPU and memory. Setting boundaries for CPUs is done through
setting an affinity mask, which instructs SQL Server as to which of the available CPUs
in the server it can use. Memory settings are controlled by setting a minimum and
maximum memory limit that the instance can use.

Unlike Oracle, where automatic memory-management features have been introduced
only within the past few releases, the SQL Server platform has always used automatic
management of memory and, as such, has only a small number of configurable
parameters that can be set to control memory allocation. Allocation of memory to the
various caches is dynamically controlled by SQL Server based on demand. The most
notable of the available settings are the Min Server Memory and Max Server Memory
parameters. A default out-of-the-box installation sets the SQL Server Min and Max
Server Memory settings to allow SQL Server as much memory as it requires without
creating problems for the OS it is running on. This is achieved by SQL Server receiving
notifications from the Windows OS when it is starting to experience memory-pressure
issues. When a notification is received, SQL Server reviews its memory allocation and
releases memory back to the OS when it can do so.

Inside the Instance
Internally, SQL Server is broken down into four main components: the protocol layer,
the relational engine, the storage engine, and SQLOS. Figure 2-14 shows the four layers
and the components found at each layer. The diagram is by no means an exhaustive list
of all the components but it does highlight the major elements found at each layer.

Protocol Layer
At the top of the stack, the protocol layer is responsible for receiving the client requests
over the various protocols such as TCP/IP; it also unpacks the request (or T-SQL
language event, as it is known) and passes it to the relational engine for processing.
(Client connectivity is covered later in this chapter.)

5 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Relational Engine
The relational engine (also known as the query processor) is the layer that takes the
T-SQL language event from the protocol layer and interprets, optimizes, and executes
the command. The components at this stage are similar to the components found in
Oracle, where SQL statements are processed using a parser, optimizer, row source
generator, and, finally, SQL execution engine. The command parser component initially
checks the command for syntax errors. Assuming the command passes this check, it
then breaks down the command into its constituent parts, which produces a query
tree. Once the command parser has completed, it then passes the query tree to the
query optimizer for processing. The query optimizer in both Oracle and SQL Server
is cost-based. The job of the optimizer component is to determine the optimum plan
to execute the command. The plan itself is based on the evaluation of elements such as
table and index statistics and how much CPU and I/O the query will take to complete.
The resultant output of the query optimizer is an execution plan that is then passed to
the Query Executor.

Figure 2-14 SQL Server Engine

Protocol Layer

Relational Engine

Storage Engine

SQLOS

(Query Processor)

Query Optimizer Query ExecutionCommand Parser

Access Methods
Row and Index Operations

Page Allocation
Versioning

Transaction Manager
Lock Manager
Log Manager

File Manager

Buffer Manager

Worker Threads
Lazy Writer

Lock Monitor
Resource Monitor
Scheduler Monitor

Scheduling Buffer Pool

SQLOS Hosting APII/O Manager Synchronization Services

Lock Manager

Shared Memory TCP/IP Named Pipes VIA

Memory Manager

Utilities – DBCC/Backup etc

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 5 1

ON THE JOB
The query optimizer is the most complex part of SQL Server. Understanding how it works is the key to optimal

query performance. There are several good books on this subject; one of our favorite authors is Itzik Ben-Gan,

who has a series of books on T-SQL querying and programming.

The query executor is the final component at this layer and, as the name suggests, it
is responsible for stepping through and executing the plan. In the majority of cases, the
command will involve interacting with the storage engine to read or manage data and
to manage functions such as transactions and locking. Interaction between the relational
and storage engines is done using an OLE DB interface.

Other components at the relational engine layer that are not shown on the diagram
include the components that are responsible for caching query plans. Also, the
components that interact with the databases for metadata that is required for query
compilation are also handled at this layer.

Storage Engine
The next layer down is the storage engine. It is at this layer that SQL Server interacts
with the database files. When data needs to be located, the access methods component
is responsible for returning OLE DB row sets (the results) to the relational engine.
Likewise, when the relational engine needs to insert or update data, it passes the
access methods component an OLE DB row set for processing. The access methods
component does not fetch the actual data or index pages requested; it does this via the
buffer manager. The buffer manager is responsible for the data cache (SQL Server’s
version of the buffer cache). The buffer manager first checks to see if the requested page
is available in the data cache. If it’s not, then it performs the relevant I/O operation
to retrieve the page from disk and place it in the data cache. The access methods
component is also responsible for page allocation and row versioning operations.

As a DBA you should already understand the basic principles of ACID and
transactions: all transactions must be atomic, consistent, isolated, and durable. The
transaction manager is the part of the storage engine responsible for ensuring ACID
is implemented. The transaction manager consists of two main components: the lock
manager and the log manager. When a transaction needs to work with a piece of
data, it needs to know that another transaction is not going to change the data that it
is currently working with. Since it is highly likely your database will have more than
one user and, therefore, multiple transactions taking place, the locking of resources
is essential to maintain consistency of data and results. The lock manager is the
component responsible for controlling these locks. Coordination, escalation of locks
(such as from a row lock to a table lock), and deadlock resolution are all services of the
lock manager. In addition to just locking data, it is essential that data can be recovered

5 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

in the event of a system failure. SQL Server uses write-ahead logging to ensure that
modifications to the database are first stored in the transaction log before the data is
stored in a data file. This is the same principle as with redo log files in Oracle. Write-
ahead logging is the responsibility of the log manager.

Other components that reside at the storage engine layer include utilities such as
the backup and restore functionality, bulk loading, and DBCC commands. DBCC
commands are Database Console Commands that Microsoft provides to perform
tasks such as database maintenance, validation, and display of system information. For
example, DBCC CHECKDB checks the logical and physical integrity of a database
and its objects.

SQLOS
The final layer is the SQLOS layer. The role of SQLOS is to provide operating system
services to SQL Server such as scheduling, memory management, exception handling,
and deadlock detection. It also provides a hosting layer for components such as the
common language runtime (CLR). The CLR provides the ability to use the .NET
programming language within the database, similar to the Java functionality in Oracle.

SQLOS creates a powerful API that all other components of the SQL Server engine
can consume. Therefore, the SQL Server developers within Microsoft, who look after the
other components within the engine, write their code to consume resources via SQLOS.
SQLOS then takes care of any optimizations that are required for running on different
hardware architectures, such as taking advantage of servers that use non-uniform memory
access (NUMA, more information on which can be found at http://msdn.microsoft.com/
en-us/library/ms178144.aspx). An added benefit of using this layer to access resources is
that it creates a common point from which resources can be monitored.

Two of the main functions of SQLOS are scheduling and memory management.
The approach that the Windows OS takes to scheduling and execution of work is to
provide each request with a fixed time slice within which to execute on a CPU. This
time slice is called a quantum, and each request will be scheduled to have one or more
quantums in which to run, after which they will be stopped to allow something else to
run. This allocation of time slices is necessary to provide the illusion of multitasking
because a single CPU can only ever do one thing at a time.

The way in which Windows manages the scheduling of work is referred to as
preemptive scheduling. In the early versions of SQL Server, the SQL Server development
team soon found that a general-purpose preemptive scheduler was not going to provide
the level of performance required, so they decided to build a scheduler within SQL
Server itself. This was introduced into the product in SQL Server 6.5 and later became
part of SQLOS. The scheduler type employed by SQLOS is cooperative as opposed to
preemptive. In the cooperative scheduler model, threads voluntarily yield when they are

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 5 3

at an appropriate point, whereas in the preemptive model they are removed from the
scheduler when their quantum is finished. This does create an onus on the Microsoft
developers to write efficient code that does not allow the thread to monopolize the
scheduler on which it is running, but the benefit of this approach provides greater
scalability than does the generic Windows scheduler. Using the cooperative model,
a thread can run until it hits a point where it is waiting for a resource such as a network
or disk I/O. As soon as it hits a point where it needs to wait for a resource, it will be
put aside while another thread that is waiting for time on the scheduler can run. This
approach to scheduling ensures efficient CPU utilization by ensuring that no threads
sit idle, tying up CPU time while simply waiting for something else. Monitoring SQL
Server waiting for an operation to complete is a great way to troubleshoot performance
problems and is covered in detail in Chapter 8.

Execution of work is accomplished in SQL Server using schedulers and worker
threads. When SQL Server starts up, a scheduler is created for each logical CPU
that is presented to the Windows OS. The scheduler is set to be either ONLINE
or OFFLINE depending upon the affinity mask settings for the instance. For each
scheduler, a set of worker threads is created that is bound to that scheduler. Worker
threads, as the name suggests, are the threads that perform tasks such as queries, DML
statements, and so forth. A task is tied to a worker thread until it is completed. The
number of worker threads that exist at any one time is dynamically controlled by SQL
Server based on system load. If the current number of worker threads is not able to
cope with the demand, then the scheduler is able to create more until it hits its limit.
Likewise, when the workload is low and schedulers sit idle for greater than 15 minutes,
the worker may be closed down to recover system resources. Although the number of
worker threads available is dynamically handled by SQL Server based on system load
and processor architecture (more worker threads can be created on 64-bit systems), it
is possible to limit the number of worker threads that it can create. As a result, when
the number of query requests is less than the maximum worker threads value, then each
request is handled by just one thread. When the number of query requests exceeds the
limit of worker threads, then SQL Server will pool the worker threads to service the
workload.

Background Processes Whereas in Oracle there are background processes such
as SMON, PMON, RECO, CKPT, DBWn, and other monitoring and task-oriented
processes, in SQL Server the equivalent processes run as background threads. One of
the main differences between SQL Server and Oracle is the amount of control you
have over these threads. In SQL Server there is very little that you need to set because
the engine is dynamic and self-managing. Examples of parameters that you do have
control over in SQL Server include the checkpoint process and the maximum number
of worker threads (the equivalent of shared server processes).

5 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

There are many background tasks that run in SQL Server, but the following are
some of the most common ones that you should be aware of:

Lazywriter Data and Index pages can only be accessed after they have been
retrieved into the data cache. Ensuring that the data cache always has a list of
available buffers into which the pages can be read is important to performance.
With no list of free buffers, the data cache would need to be constantly scanned
to locate one. The lazywriter is responsible for periodically checking the free buffer
list and, if the value is below a predetermined threshold (which SQL Server has
dynamically set), scanning the data cache to check the usage history of each page.
If the usage history of the page indicates that it is a candidate for removal, it will
be placed on the free buffer list. If the page happens to be dirty (that is, it has been
modified but not yet written to the data file), the lazywriter will also write the page
to disk. This could be compared to the database writer (DBWn) processes in Oracle.

Checkpoint The checkpoint process, as in Oracle, is the process responsible
for performing checkpoint operations, which consist of scanning the data cache
looking for dirty pages to flush to disk. Checkpoints can be issued manually with
a CHECKPOINT statement or they can be triggered by certain operations, such
as a clean shutdown of SQL Server, performing a database backup, or issuing an
ALTER DATABASE statement. Automatic checkpoints also occur when the
database transaction log reaches 70 percent full or the database engine estimates
that reprocessing the number of records in the transaction log following a crash is
going to take longer than the time specified in the Recovery Interval setting. The
Recovery Interval is the equivalent of the MTTR setting in Oracle.

Log writer The same concept as the log writer (LGWR) in Oracle, the log
writer thread is responsible for writing data to the transaction logs.

Deadlock/Lock monitor When two threads are deadlocked—that is, neither
can progress because they are both trying to lock a resource that the other thread
already has locked—something needs to intervene to resolve the situation. The
lock monitor thread is responsible for detecting deadlocks and resolving them.
The lock monitor will wake up every five seconds to check the system for deadlock
situations. Upon finding a deadlock, the lock monitor chooses a deadlock victim
and terminates it, rolling back any work carried out by the victim. The victim is
chosen based on which thread has the least estimated cost to roll back the work
already carried out. A record of the deadlock is recorded in the SQL Server error
log. After a deadlock has been detected and dealt with, deadlock searches are
immediately triggered for the first few lock wait events in the system following
the previous deadlock. This is to ensure that if another deadlock occurs in quick
succession, the system does not have to wait for the five-second standard wait
interval before being able to deal with it.

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 5 5

Scheduler monitor The Scheduler monitor is a task that runs continuously,
checking the health state of all schedulers. Its responsibilities include ensuring
that the number of worker threads is balanced across all of the available
schedulers. It also ensures that work is evenly distributed between the schedulers.
By keeping track of the workload across all of the schedulers, it is able to update
system information that allows new tasks to be routed to the schedulers with the
least load.

Resource monitor As previously mentioned, when SQL Server is left to
dynamically use as much memory as it needs on a machine, it can receive
notifications from the Windows OS when it is starting to experience memory
pressure. The Resource Monitor thread is responsible for receiving these
notifications, as well as internal notifications when cache areas are under pressure.
The Resource Monitor is responsible for sending notifications to the various
caches to instruct them to review the amount of memory they require and to
reduce the memory usage where possible.

Other system threads include the network thread responsible for network
communication and threads that control background tasks such as automatic shrinking
of databases (when enabled), which can be loosely compared to the system monitor
process (SMON).

SQL Server also has services that are external to the SQL Server engine that in
Oracle would normally be background processes. Two of the most common ones are
SQL Server Agent and the Microsoft Distributed Transaction Coordinator (MSDTC).
SQL Server Agent is an external service (which is dependent on the SQL Server
service) responsible for automation and alerting. One of its main functions is the
running of jobs, which in Oracle would be done using the job queue (CJQ0) and job
processor (J000) processes. MSDTC is a Windows service that SQL Server uses for
distributed transactions, which in Oracle would be handled by the recoverer process
(RECO).

Although you don’t have much control over the behavior of most of the background
threads in SQL Server, you can see how they are performing by using dynamic
management views (DMVs, the equivalent of V$ views) and performance counters.
Using DMVs and performance counters for performance monitoring and tuning is
covered in Chapter 8.

Memory Before looking at how SQL Server uses memory, it is important to understand
how Windows works with memory and how that can differ between 32-bit and 64-bit
platforms, as this can have an effect on how SQL Server operates.

ON THE JOB
With 64-bit hardware now prevalent, the use of 32-bit is quickly diminishing. Windows Server 2008 was the last

32-bit server-based OS from Microsoft. Windows Server 2008 R2 and beyond are now only available as 64-bit,

although SQL Server is still available in both 32- and 64-bit versions. In our experience, for the past few years it

has been very rare to find anyone deploying new SQL Servers on anything other than 64-bit Windows and SQL

Server. This section of the chapter describing the behavior of 32-bit systems is included for completeness and for

those who are managing older SQL Server solutions. 64-bit really does simplify and release some of the shackles

the 32-bit version imposed on SQL Server.

In Windows, as with other operating systems, when a process is started it is assigned
a Virtual Address Space (VAS). The VAS provides the process with a range of virtual
memory addresses within which it can operate. The size of the VAS is dictated by the
processor architecture (32-bit or 64-bit). 32-bit CPUs can only directly address up
to 4GB of RAM. With an out-of-the-box installation of Windows, the top 2GB of
this 4GB is reserved for the OS, leaving only 2GB for an application, as shown on the
left side of Figure 2-15. It is possible to adjust this balance such that the OS reserves
only 1GB of RAM and the application, such as SQL Server (or Oracle), can have the
remaining 3GB. This is achieved by setting an OS boot parameter switch known as the
/3GB switch.

It is possible for a 32-bit machine to have greater than 4GB of RAM installed, in
which case it needs a way to address this additional RAM. Physical Address Extensions
(PAE) is a technology introduced by the processor manufacturers to increase the
address bus from 32 bits to 36 bits, allowing for access of up to 64GB of RAM.

5 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 2-15 32-bit 4GB address space is divided between OS and application

0xFFFFFFFF

0xC0000000

0x80000000

0x00000000

Operating System
(2GB)

Application
(2GB)

Operating System
(1GB)

Application
(3GB using/3GB Switch)

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 5 7

Windows can take advantage of PAE through the setting of a /PAE boot switch.
Although, setting /PAE only allows Windows to use greater than 4GB of physical
RAM; it does not affect the size of the VAS, so processes are still restricted to 4GB of
VAS. To bypass this, Microsoft introduced Addressing Windows Extensions (AWE), a
set of programming interfaces that allows developers to write programs that can address
more memory than the standard 4GB.

For 64-bit CPUs the story is much simpler, as the VAS address space has a
theoretical size in the exabyte range, though it is currently limited by Windows at 8TB.
The 3GB and PAE options no longer play a part in using this additional RAM.

Now that you have an understanding of how Windows uses memory, let’s look at
how SQL Server uses its VAS. When SQL Server is first started, the VAS for the
SQL Server process is divided into two areas, one for the buffer pool and the other as
Reserved Address Space. Most of the memory allocations that reside in the SGA and
PGA in Oracle are controlled by the buffer pool in SQL Server. The buffer pool is
almost akin to a combined SGA and PGA where allocation for caches such as the SQL
Server equivalents of the buffer cache and library cache and the workspace for queries
all use memory allocated from the buffer pool. The buffer pool itself consists of 8KB
buffers and is the provider for all SQL Server memory allocations that require less than
an 8KB contiguous page of memory. This includes but is not limited to data cache, plan
cache, connections, locks, and query workspace. If an allocation of greater than 8KB
is required, or memory is being requested by a component that is unable to interact
with the buffer pool, then this is found in the VAS outside of what is allocated to
the buffer pool.

How the VAS is used by SQL Server differs between the 32-bit and 64-bit
platforms. Figure 2-16 graphically depicts memory usage by SQL Server on a 32-bit
platform with 4GB VAS.

Figure 2-16 SQL Server memory usage on 32-bit platforms

Operating System

Pl
an

 C
ac

h
e

Q
u

er
y

W
o

rk
sp

ac
e

Lo
ck

s

D
at

a
C

ac
h

e

O
th

er

Thread Stacks

MemToLeave

0xFFFFFFFF

0x00000000

SQ
L

Se
rv

er

B
u

ff
er

 P
o

o
l

AWE
(Data Cache Only)

5 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Because VAS on a 32-bit machine is limited to either 2GB or 3GB (depending on
whether the /3GB switch is used), SQL Server ensures at startup that it reserves areas
of memory before the buffer pool is allocated, as shown in Figure 2-16. Under the
default memory-management settings for SQL Server, the buffer pool will continue
to dynamically grow until it uses all of the available VAS. This will not leave any space
for objects that require an allocation of memory from outside of the buffer pool, such
as a linked server (the SQL Server version of Oracle database links) or an extended
stored procedure (external DLL called from within SQL Server). Due to this behavior,
SQL Server has to ensure it has memory available for non–buffer pool allocations. It
does this by initially reserving an area of memory called Reserved Address Space (more
commonly known as MemToLeave) at startup. Once this area has been reserved and
the buffer pool has been allocated, the MemToLeave area is released by SQL Server so
that it can be used by any non–buffer pool memory allocations. The MemToLeave area
is 256MB plus the amount of memory required by the worker threads.

The Thread Stacks area of memory is used by the worker threads in SQL Server.
Each worker thread on a 32-bit system uses 0.5MB of memory. The maximum number
of worker threads that can be spawned is calculated based on the number of logical
CPUs available. For less than or equal to four logical CPUs, the maximum number of
worker threads is 256, making the maximum amount of memory used by the thread
stacks 128MB. As the number of logical CPUs increases, the maximum number of
worker threads also increases. Using the formula MaxWorkerThreads = 256 + [(# of
logical CPUs – 4)×8], you can work out the maximum amount of thread stack space
required. Therefore, if the maximum number of worker threads has been set to 256,
then the Reserved Address Space will be 256MB in addition to the maximum number
of worker threads multiplied by their size, that is, (256×512KB = 128MB), which in
total equals 384MB of Reserved Address Space.

Figure 2-16 also shows the use of AWE. As previously mentioned, AWE is a
programming interface for Windows that allows application developers to access
memory outside of the 4GB VAS restriction. SQL Server has been written such that
it can use AWE, but it is restricted to only using it for the data cache area of the buffer
pool. Other caches, such as connections and query plans, and other areas, such as thread
stacks, are unable to use this additional memory made available via AWE.

When using 64-bit SQL Server, the concept of the Reserved Address Space no
longer exists because the VAS for 64-bit is 8TB. Therefore, there is no need to reserve
such a small amount of memory. The thread stacks on 64-bit also slightly differ in that
each thread stack uses 2MB and the maximum thread value is double that of the 32-bit
equivalent—that is, less than or equal to four processors has a maximum of 512 threads.
The 8TB VAS on 64-bit also means that there is no need for AWE and that all data
caches and external components can take advantage of the extra memory beyond the

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 5 9

4GB barrier, allowing for a greater number of connections, cache plans, and other
non-AWE-capable components.

Although you can set SQL Server minimum Min Server Memory and Max Server
Memory settings, it is important to note that it is not actually possible to completely
control the amount of memory that SQL Server will use. The minimum and maximum
memory settings only control the size of the buffer pool and have no effect on other
areas such as thread stacks or other allocations made outside of the buffer pool.

Setting Min Server Memory sets the minimum amount of memory that an instance
should allocate to the buffer pool, although when an instance first starts up, SQL Server
dynamically determines how much memory it requires. Therefore, it is possible that
the amount of memory that is allocated is less than the Min Server Memory. As the
system is used, the buffer pool will dynamically grow. Once the buffer pool allocation
has surpassed the Min Server Memory value, SQL Server will not drop below the Min
Server Memory setting from that point on. The Max Server Memory value represents
the maximum amount of memory that can be allocated to the SQL Server buffer pool.

Inside the Buffer Pool Figure 2-16 provided a view of the types of memory
consumers that reside in the buffer pool. Let’s drill into them in a little more detail.

The data cache performs the same function as the buffer cache in Oracle and is
where the mass majority of memory is allocated. It is where pages that are retrieved
from disk are placed in memory to be worked with by the engine. The plan cache (also
known as the procedure cache) in SQL Server maps to the library cache in Oracle.
This cache is responsible for storing all execution plans for SQL statements, stored
procedures, and so forth. The memory used by the plan cache is dynamically controlled
by SQL Server. The locks cache is responsible for keeping track of all locks acquired
within the instance. There are no configurable options for the amount of memory that
the locks cache can use, although you can influence how much is used by changing the
default locking behavior of SQL Server; note, however, that this could have knock-on
effects on concurrency, taking out page locks where row locks would have sufficed.

Although it’s not explicitly shown in Figure 2-16 because it falls into the Other
category, there is an equivalent of the Oracle redo buffers known as the log cache. Each
database within SQL Server has its own log cache. There are no user-configurable
options for the log cache in SQL Server, although you can monitor its performance.

So far, the various pools and caches we have compared map onto the SGA in
Oracle; we have not covered where the equivalent function of the PGA fits in. The
PGA in Oracle, which is responsible for performing operations such as sorting and
hash joins on user queries, is known as query memory or workspace memory in SQL
Server. Query memory is allocated out of the buffer pool and is dynamically managed
by SQL Server. It can consume between 25 percent and 75 percent of the buffer pool.

6 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

It is possible to configure the “minimum memory per query” option, which sets the
minimum amount of memory a query will be allocated. By default, this value is set to
1024KB, although in most queries that have hash and sort operations, the amount of
memory required will exceed this. Setting a value too high for this option can also lead
to unnecessary memory pressure because wasted amounts of memory are allocated.

ON THE JOB
In general, for most “every day” departmental systems, the DBA normally only sets the Min Server Memory

and Max Server Memory settings for SQL Server. It is also possible to leave those settings at their defaults, in

which case SQL Server will work with whatever memory is available in the machine. One complaint from both

inexperienced DBAs and Windows administrators when looking at the SQL Server process running on a machine

is something along the lines of, “This SQL Server is using 500MB of RAM and it’s not even doing anything!” This

behavior is by design—if SQL Server has acquired that memory and nothing else on the same machine needs

it, then why release it? The SQL Server process has mapped out that chunk of memory, which is now ready for

immediate use. If it were to keep releasing that memory, it would have to go through the acquisition process

every time it needed more RAM. Therefore, don’t just rely on looking at the top-level counters you see in utilities

such as Task Manager; you need to understand what is going on inside that block of 500MB, or whatever has

been mapped, to see how much is actually being used. Then if you know it only uses 300MB and you don’t want

it to grab 500MB, simply set the Max Memory limit.

Client/Server Communication
When working with an Oracle database, communication between client and server is
provided through the use of Oracle Net Services and the Listener Service. Oracle Net
provides the capabilities to establish and maintain a connection between the client and
server and then allows exchange of information between these endpoints.

Connecting to an Oracle database requires Oracle Net client software to be installed
at the client and server. The Oracle Net foundation layer packages the requests from
a client application (such as a SELECT query or command) into a proprietary Oracle
format ready to be sent to the server. In order to send the request across to the server,
the request must be encapsulated by the Oracle Protocol Support layer into a standard
communications protocol provided by the platform such as TCP/IP or Named Pipes.
The same process is repeated in reverse for returning information to the client.

At the server side, connections are initially established by first reaching the listener
service, which is responsible for setting up the connection to the RDBMS. Once
a connection has been established, the listener plays no further part in the conversation.
Figure 2-17 depicts the communications stack from application through to RDBMS on
both the client and server, including the listener service used for initial connection.

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 6 1

Client requests within Oracle can be handled using either dedicated or shared server
processes. In dedicated mode, each client connection has its own dedicated server
process that is responsible for servicing its requests. In the shared server architecture,
clients connect to a dispatcher that is responsible for placing the request in a work
queue from which a pooled set of server processes picks up work items. Once the work
item is completed, the results are then returned to the client.

The equivalent of Oracle Client is SQL Server Native Client (SNAC), which allows
connection to SQL Server using OLE DB and ODBC programming interfaces. SNAC
comes with the SQL Server installation and is also available for separate download
from the Microsoft website. It was created and is maintained by the SQL Server
development team, ensuring that it supports all the latest features and functionality. We
will assume that you are using this method, although it is important to note that there
are other ways to connect to SQL Server without using SNAC. In particular, Microsoft
provides two other client libraries: the .NET SqlClient for use in Microsoft .NET
programming languages, and the Microsoft SQL Server JDBC Driver.

It does not matter if your application is using OLE DB, ODBC, or ADO.NET as
the data access programming method, because ultimately any command or query that
is sent to SQL Server will be formatted into a Microsoft request format known as a
TDS (Tabular Data Stream) packet. TDS packets themselves must be encapsulated
inside some form of communications protocol to allow transmission to an endpoint.
This functionality is provided by the SQL Server Network Interface (SNI) protocol
layer. The SNI is used by both SNAC at the client side and SQL Server at the server
side to pack and unpack the requests into TDS packets. It is also responsible for

Figure 2-17 Oracle network communication

Application

Oracle Net
Foundation

Layer

Oracle
Protocol
Support

Listener

TCP/IP

RDBMS

Oracle Net
Foundation

Layer

Oracle
Protocol
Support

Client Server

6 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

encapsulating the packets for transmission across the network using protocols such as
TCP/IP (see Figure 2-18).

At the server side, SQL Server does not have a separate service that compares to
the listener in Oracle; instead, SQL Server has TDS endpoints. The TDS endpoints
are configured to listen over different protocols for incoming client requests. There are
different types of endpoints available for different types of operations. Connections to
the instance for standard database services such as SQL queries and commands are
done through TSQL TDS endpoints. For services such as database mirroring

Oracle DBA Q&A

Q: Is SNAC available on other platforms such as Linux/Unix? If not, then
how do you connect to SQL Server from non-Windows platforms?

A: At present Microsoft only provides the JDBC Driver for connectivity from
non-Windows platforms. There are third-party organizations such as DataDirect
that have developed ODBC drivers for non-Windows platforms connecting to
SQL Server. In addition, there is also an open source project known as FreeTDS
(www.freetds.org) that provides a set of libraries for Unix and Linux to talk
directly to Microsoft SQL Server.

Figure 2-18 SQL Server network communication

TDS
EndPoint

Application

SQL Network
Interface

SNAC Network
Library

TCP/IP

RDBMS

SQL Network
Interface

Client Server

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 6 3

(high-availability feature) and Service Broker (SQL Server version of Oracle Advanced
Queuing), there are special endpoint types known as Database Mirroring and Service
Broker endpoints, respectively. When SQL Server is installed, a set of system endpoints
is created for the four protocols that are supported, including a special type of endpoint
known as the Dedicated Administrator Connection (DAC, covered in Chapter 3).
Figure 2-19 shows the system endpoints listed in SSMS. It is also possible to review
the available endpoints by querying the sys.endpoints system catalog view. By default,
all users have permissions to access the TSQL endpoints unless they have had their
permissions revoked or have been denied permission.

NOTE
Figure 2-19 also shows a type listed as a SOAP endpoint. SOAP endpoints enable SOAP over HTTP access to SQL

Server, which allows administrators to expose functionality within SQL Server as web services. This functionality

has now been marked as deprecated from SQL Server and will be removed in a future version. Therefore, it should

be avoided in any new development.

For TSQL endpoints, connection to SQL Server can be made using four different
types of protocol: Shared Memory, TCP/IP, Named Pipes, and Virtual Interface
Adapter (VIA). TCP/IP and Named Pipes will be familiar to you as they are also
supported by Oracle. Shared Memory is only applicable when you are working on the
same machine that SQL Server is installed on, as it does not require any networking
since all communication uses shared memory segments to communicate between

Figure 2-19 Endpoints in SSMS

6 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

the client process and SQL Server. VIA is a protocol used by specific hardware that
supports the VIA specification, and is used in specialized scenarios to create a dedicated
high-performance link between SQL Server and a client.

In order to connect to these endpoints, the protocol associated with the endpoint
must first be enabled. For example, to use the TSQL Default TCP endpoint shown
in Figure 2-19, you must first configure and enable the TCP/IP protocol using SQL
Server Configuration Manager. Note that we are assuming that TCP/IP is already
installed and configured at the Windows Server OS level.

The default instance of SQL Server is configured to use TCP port 1433 or named
pipe \sql\query if either of these protocols is enabled. Because these are well-known
values that the client-side libraries are aware of, you do not have to specify them when
connecting to the server. When you have multiple instances of SQL Server installed
on the same machine, each instance must use a unique TCP/IP address or a unique
port number and a uniquely named pipe. Although these values can be manually set,
it is possible to have dynamic assignment of these values upon startup of SQL Server.
In order to connect to SQL Server, the client must know the full details of where to
connect (for example, in the case of TCP/IP, the client must know the IP address and
port number). If the port number assignment is dynamic, then this value may change
during each service restart.

The SQL Server Browser service is a Windows service that runs on port 1434
and is aware of all the SQL Server instances installed on the machine, including full
details of how to connect to them. Therefore, when a client tries to connect to the
server using only the server name and instance name, the client-side network library
sends a message using UDP to port number 1434 of the server requesting the port or
pipe details for the specific instance. The SQL Server Browser service responds with
the relevant details, and the client then connects and continues with its operation. It is
possible to use SQL Server with multiple instances without the SQL Server Browser
service, but each client must know the full connection details of how to reach the
specific instance (connection methods are covered in more detail in Chapter 3).

Now that you understand how to establish a connection and communicate between
client and server, the next step is to understand how the client requests are processed
within SQL Server. As mentioned at the start of this section, Oracle has two methods
of servicing client requests using either dedicated or shared server mode where OS-level
processes (or threads on Windows) are created, which carry out the work.

The way in which SQL Server fulfills client requests is similar to the shared
server model in Oracle. As we discussed in the SQLOS section, SQL Server uses a
cooperative scheduling model where SQL Server creates a scheduler for each available
CPU. For each scheduler, SQL Server creates a set of worker threads. These worker
threads are used to carry out a client request or task such as a query or command.

C h a p t e r 2 : S Q L S e r v e r A r c h i t e c t u r e 6 5

Connections to SQL Server are identified by session IDs (SPIDs), as shown in
Figure 2-20. When a SPID is created by a user connection, it is assigned a preferred
scheduler, which is calculated based on current system workload. As a request is
received by SQL Server over that SPID, the task is then bound to a worker thread
from the associated scheduler to complete the required task. The task remains bound to
that worker thread until it is completed. Once the task is complete, the worker thread
is released. Provided the system load characteristics remain the same, any new requests
on the same SPID will continue to use a worker thread from the pool available to
its preferred scheduler. In the case where system load changes (for example, another
schedule has a lower workload factor than its preferred scheduler), the request can be
routed to a worker thread from that scheduler for execution.

Although the number of worker threads available is dynamically handled by SQL
Server based on system load and processor architecture, it is possible to limit the
number of worker threads that it can create. As a result, when the number of query
requests is less than the maximum worker threads value, each request is handled by just
one thread. When the number of query requests exceeds the limit of worker threads,
SQL Server will pool the worker threads to service the workload.

Figure 2-20 Query against sys.dm_exec_connections, showing sessions and connect information

This page intentionally left blank

Installing and
Configuring SQL Server

Chapter 3

In This Chapter

Installing SQL Server

Configuring SQL Server

6 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

This chapter covers installing the SQL Server software and client tools and then
identifies the utilities and commands available to perform basic administrative
tasks against a SQL Server instance and to make server configuration changes.

Whereas Chapter 2 identified the different components of SQL Server and how these
components consume and manage operating system resources, this chapter shows
administrators how to create a SQL Server instance and then implement changes that
alter the behavior of its components.

Installing SQL Server
Although installing SQL Server is a largely automated process that can be carried out
without a large degree of product knowledge, it is still important to understand the
choices that are available to an administrator when installing SQL Server and how
these choices influence the resulting system.

Media and Licensing
Oracle software and manuals are available for download without any restrictions,
such as license keys, from the Oracle Technology Network (OTN) website. It is an
individual’s or company’s responsibility to ensure that they purchase appropriate licenses
for the Oracle software that they use.

It is possible to purchase SQL Server through Microsoft resellers or, in many
countries, directly from Microsoft via the http://store.microsoft.com website, although
many organizations have in place a Volume Licensing agreement or similar agreement
that makes it possible to download licensed copies of Microsoft software, including
SQL Server, as and when they are needed.

Whether SQL Server has been bought in a physical or digital format, the resulting
set of files (see Figure 3-1) will be referred to here as the SQL Server installation media.

Oracle DBA Q&A

Q: Can I download and install the SQL Server software without restrictions
in the same way that I can download and install the Oracle database software?

A: Microsoft makes freely available a 180-day evaluation of SQL Server
Enterprise Edition, which can be downloaded from either the TechNet or
MSDN website. In addition, an unrestricted copy of SQL Server Express
Edition can also be freely downloaded from the same locations. For all other SQL
Server editions, the appropriate license must be purchased prior to the installation
of the software—at which point a license key must be provided.

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 6 9

Software Prerequisites
SQL Server requires only a few software components to be installed on the machine
prior to installation (see Chapter 1 for details). The SQL Server Installation Center,
discussed later in the chapter, can download and install these prerequisite components
on an administrator’s behalf if required (see Figure 3-2).

SQL Server Components
When installing SQL Server, several additional products are available on the same
set of installation media as the Database Engine. These components are listed and
described in Table 3-1. It is a key point to note that each of these components is
available in each edition (excluding Express).

Figure 3-1 SQL Server installation media

Figure 3-2 Prerequisites can be automatically installed.

For a fuller description of these components, see Chapter 1.
This chapter makes no further reference to Analysis Services, Reporting Services,

or Integration Services other than how they influence the naming of instance objects.
Please see TechNet for further details on installing these products.

The SQL Server product itself is made up of various components, all available to
install from the installation media. Some of these components support the work of
a SQL Server instance and can be installed multiple times on the same computer to
create multi-instance installations, whereas others are shared between instances of the
same version of SQL Server and so can be installed only once on a given computer.

The shared tools and libraries available for installation from the SQL Server
installation media are listed and described in Table 3-2.

Also available for installation are the following documentation sets:

SQL Server Books Online Core documentation for SQL Server. This is also available at http://technet.microsoft.com/

en-gb/library/ms130214.aspx.

Programming Reference Programming reference material for SQL Server developers.

NOTE
Samples are no longer supplied with the installation of SQL Server. Samples and Community Projects can be

found at http://sqlserversamples.codeplex.com/.

7 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Table 3-1 SQL Server Products on Installation Media

Server Component Description

SQL Server Database Engine Includes the Database Engine, the core service for storing, processing, and

securing data, Replication, Integrated Full-Text Search, and tools for managing

relational and XML data.

SQL Server Analysis Services (SSAS) Includes the tools for creating and managing multidimensional online analytical

processing (OLAP) and data mining applications.

SQL Server Reporting Services (SSRS) Includes server and client components for creating, managing, and deploying

tabular, matrix, graphical, and free-form reports. Reporting Services is also an

extensible platform that you can use to develop report applications.

SQL Server Integration Services (SSIS) A set of graphical tools and programmable objects for moving, copying, and

transforming data.

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 7 1

The installation options that include or omit some or all of the preceding components
are described later in this chapter. These client tools and documentation sets can be
installed independently of the Database Engine and are well suited to running on a
separate client machine.

SQL Server Version Identifiers
Versions of SQL Server following SQL Server 7.0 have all been identified by a year
(2000, 2005, 2008, and 2008 R2). However, within these later versions, reference is still
made to a numbering that has continued from 7.0. Hence, 2000 is identified as 8.0,
2005 as 9.0, 2008 as 10.0, and 2008 R2 as 10.5.

These numeric identifiers can be found in various places in a SQL Server
installation, including in file and folder names. Often the decimal point is omitted, so
you will see labels such as 80, 90, 100, and 10_50 used to denote the particular versions.

Although shared features cannot be installed multiple times for a given version of
SQL Server, they may be present at each version level, if required. For example, SQL
Server 2000 Management Studio may reside on the same computer as SQL Server
2008 Management Studio. See Chapter 12 for a discussion of how SQL Server 2008
and SQL Server 2008 R2 are something of a special case in this respect.

Table 3-2 Shared Components and Management Tools on Installation Media

Client Components Description

Connectivity Components Components for communication between clients and servers, including SQL

Native Client (SNAC) and network libraries for ODBC, and OLE DB (and DB Library,

although Microsoft has stated that a future version of the Database Engine will

drop support for connections from DB Library).

Management Tools

SQL Server Management Studio An integrated environment for accessing, configuring, managing, administering,

and developing all components of SQL Server.

SQL Server Configuration Manager Provides basic configuration management for SQL Server services, server

network protocols, client network protocols, and client network aliases.

SQL Server Profiler Provides a graphical user interface (GUI) for monitoring an instance of the

Database Engine or an instance of Analysis Services.

Database Engine Tuning Advisor (DTA) Helps create optimal sets of indexes, indexed views, and partitions.

Services

SQL Server Browser service See Chapter 2 for a detailed description.

7 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Instance Objects
SQL Server allows the installation of multiple instances of the Database Engine on the
same machine. There can be one instance that is not given an explicit name at installation
time (the “default instance”) but the rest must be named instances.

In terms of the installed artifacts, both named and default instances are identical;
both result in files, registry keys, and Windows services being created on the host server,
and to support the side-by-side installation of multiple instances, both use an instance
identifier to differentiate these items. For named instances, a label denoting the server
component that the instance represents is prefixed to the given instance name to create
the instance identifier. These labels are

For the Database Engine MSSQL followed by the major version number and
a period

For Analysis Services MSAS followed by the major version number and a period

For Reporting Services MSRS followed by the major version number and
a period

For the default instance, the alias MSSQLSERVER is added to the preceding label
to form the instance identifier. Examples of instance identifiers can be found in the
registry key examples given next. The MSRS and MSAS labels are introduced only
to help administrators identify directories and other artifacts that might relate to this
product in existing installations.

Registry Keys
For each SQL Server Database Engine instance, a registry hive is created under
HKLM\Software\Microsoft\Microsoft SQL Server\MSSQL10_50.inst for instance-
aware components. For example:

HKLM\Software\Microsoft\Microsoft SQL Server\MSSQL10_50.INST01

HKLM\Software\Microsoft\Microsoft SQL Server\MSSQL10_50.INST02

HKLM\Software\Microsoft\Microsoft SQL Server\MSSQL10_50
.MSSQLSERVER

NOTE
These registry keys can yield useful information with regard to a SQL Server installation, such as the location of

installed components. However, it is not common practice for administrators to make any system change through

amending registry information.

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 7 3

Database Engine Services
The SQL Server Database Engine itself comprises the following Windows services,
which combine to provide the functionality associated with the core SQL Server
database product.

Component Service Name Description

SQL Server MSSQLSERVER The service for the SQL Server relational database.

SQL Server Agent SQLSERVERAGENT The service that executes scheduled administrative tasks and other user-defined

tasks against a SQL Server instance (for example, backups and integrity checks).

For each instance of SQL Server, there is a dedicated instance of the SQL Server

Agent service.

Full-Text Engine MSSQLFDLauncher The service that provides the functionality needed to issue full-text queries

against plain character-based data in SQL Server tables. Full-text queries can

include words and phrases, or multiple forms of a word or phrase. For each

instance of SQL Server, there is a dedicated instance of the Full-Text Engine,

including dedicated components such as word breakers and filters, resources

such as memory, and configuration such as service-level settings at the

instance level.

SQL Server Browser SQLBrowser The SQL Server Browser service lets users connect to instances of the Database

Engine that are not listening on the default port, without knowing the port

number.

These services can be viewed like any others, in Service Control Manager (see
Figure 3-3). You’ll recall that MSSQLSERVER denotes the default instance, so the
first three services in the preceding table relate to that instance on the server. Also,
remember that the SQL Server Browser service is a shared feature.

Directory Structures
The directory structures that are created during instance installation are discussed in
detail in the following sections. However, it is important to note that in SQL Server,
instances can never share binaries; they are always executed as a unique set of binaries

Figure 3-3 SQL Server services in Service Control Manager

7 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

under a discrete root directory known as the instance directory. For implications
regarding updating instances, see the section “Service Packs and Hotfixes” later in the
chapter. The directory into which shared features are installed is referred to as the
shared feature directory and it can be completely separate from any instance directory,
but all shared features for a version of SQL Server must reside under this root.

NOTE
Where utilities can be installed per-instance and multiple instances have been installed, the version of the utility

launched from the program group in the Start menu is from the first instance of SQL Server installed on the

computer.

When installing SQL Server the five system databases, master, model, msdb, tempdb,
and resource, are always automatically created. However, user and application databases
can only be created post-installation.

Installation Locations and Conventions
Oracle administrators are often experienced in implementing the Optimal Flexible
Architecture (OFA) standard. To summarize the aims of the standard, OFA is designed to

Organize large amounts of complicated software and data on disk, to avoid device
bottlenecks and poor performance.

Facilitate routine administrative tasks such as software and data backup, which are
often vulnerable to data corruption.

Facilitate administrators switching between multiple Oracle databases.

Adequately manage and administer database growth.

Help eliminate fragmentation of free space in the data dictionary, isolate other
fragmentation, and minimize resource contention.

Oracle DBA Q&A

Q: Is there an OFA for SQL Server?

A: There are many reference architectures for SQL Server but nothing that
seeks to work at the level of detail of OFA. However, many aspects of a SQL
Server installation are in keeping with the aims of OFA.

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 7 5

Oracle promotes OFA as a set of guidelines that you should adopt when organizing
Oracle directories and files on your computer. All Oracle components on the
installation media are compliant with OFA. This means that Oracle Universal Installer
places Oracle Database components in directory locations that follow OFA guidelines.
In doing this, the goal is to maintain good database health as your database grows in
size or you expand to have multiple databases.

A detailed treatment of the OFA standard is outside the scope of this book, but key
recommendations are

Database files are named so that they are easy to distinguish from other files.

Files belonging to one database are easy to distinguish from files that belong to
another database.

Control files, redo log files, and data files can be identified as such.

The association of data file to tablespace is clearly indicated.

Tablespace contents are separated to minimize tablespace free space
fragmentation and minimize I/O request contention.

I/O loads are tuned across all drives.

SQL Server has not traditionally been aligned with efforts such as OFA to
standardize deployed artifacts. There are probably many reasons for this but they
include the fact that SQL Server has only ever been available for the Windows
operating system and that, historically, there have been relatively few options available
to those installing SQL Server with regard to system component location and naming.
This meant that either the defaults were accepted or that administrators put in
some considerable effort post-installation to move and rename SQL Server files and
components to adhere to a required design or corporate standard.

Fortunately, SQL Server now provides a great deal of flexibility to those looking
to establish non-default configurations, and these options are specified at install time.
The result of these choices (discussed later, in the section “The Installation Center”)
is that independent subdirectories and files are separated by categories and instances
to minimize effects upon each other and to ease navigation. Table 3-3 identifies
for each SQL Server component the default path and whether that path is fixed or
configurable.

In Table 3-3, inst stands for the name of the SQL Server instance. For any instance,
the MSSQL10_50.inst folder may be placed in any available location, and elsewhere
we will refer to the MSSQL10_50.inst folder (wherever it has been installed) as the
instance directory. Note that both SQL Server 2008 and SQL Server 2008 R2 install

7 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

shared components to a directory called 100 and the location of this directory can be set
once only (when the first shared component is installed). Wherever installed, this is the
shared feature directory for these versions of SQL Server.

SQL Server supports the aims of OFA in the following additional areas:

Integrity of home directories SQL Server keeps the software separate from
the data files, which allows the software to be moved, deleted, and so on without
affecting the application.

Separation of administrative information for each database System data is
stored in the master and resource databases separate from other data.

Separation of tablespace (or filegroup content) Every instance of SQL Server
is installed with the system databases master, model, msdb, tempdb, and resource.
Unlike the other system databases, the resource database is not visible.

Tuning I/O load across all disks SQL Server implements filegroups, each
with potentially multiple data files that provide identical advantages to Oracle
tablespaces. In addition, storage allocated to an object is distributed relatively
evenly across all data files belonging to a filegroup.

Security Considerations
An installation that is secure—that is, one that is not vulnerable to malicious usage
or likely to cause loss or damage through unintended operations—should be a key
consideration of any database installation, and the decisions that should be taken to
maximize security when installing SQL Server are not unique to SQL Server.

Component Default Path

Configurable or

Fixed Path

Database Engine server components \Program Files\Microsoft SQL Server\MSSQL10_50.

inst\MSSQL\Binn\

Configurable

Database Engine data files \Program Files\Microsoft SQL Server\MSSQL10_50.

inst\MSSQL\Data\

Configurable

Client Components Program Files\Microsoft SQL Server\100\Tools\ Configurable

Replication and server-side COM objects Program Files\Microsoft SQL Server\100\COM\ Fixed path

SQL Server Browser service, WMI providers \Program Files\Microsoft SQL Server\100\Shared\ Fixed path

Other components that are shared between

all instances of SQL Server

\Program Files\Microsoft SQL Server\100\Shared\ Fixed path

Table 3-3 Default Installation Paths for SQL Server Components

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 7 7

As well as physical security (ensuring that physical access to the server is granted
only to those who require it and that the server is protected from physical damage), the
main areas for consideration at installation time are securing networking via firewalls
and assigning service identifiers to services.

Firewalls
Firewalls play an important part in helping to secure the SQL Server installation. The
recommended firewall guidelines for SQL Server installations are

Install databases in the secure zone of the corporate intranet and do not connect
your SQL Servers directly to the Internet.

Put a firewall between the server and the Internet. Enable your firewall. If your
firewall is turned off, turn it on. If your firewall is turned on, do not turn it off.

Divide the network into security zones separated by firewalls. Block all traffic, and
then selectively admit only what is required.

In a multitier environment, use multiple firewalls to create screened subnets.

For a complete list of firewall requirements for the principal SQL Server
components, see the Books Online article “Configuring the Windows Firewall to Allow
SQL Server Access.”

Windows authentication is an authentication model commonly used in SQL
Server installations. It is discussed in detail in Chapter 5. It functions in the same
way as Oracle External Authentication (ops$) in that it allows database users to be
authenticated using their Windows identity (logon). When installing SQL Server
to use Windows authentication, interior firewalls (those between clients, servers,
and Windows domain controllers with which they are both communicating) must
be configured to allow Windows authentication. Fortunately, enabling Windows
authentication is an area that is well understood by Windows server and network
administrators and one for which there is built-in support within Windows itself.

Using dynamic ports complicates connecting SQL Server through a firewall because the
port number may change when SQL Server is restarted, requiring changes to the firewall
settings. To avoid connection problems through a firewall, configure each SQL Server
instance to use a static port, and ensure that clients are aware of the correct port numbers.

Services and Identities
As previously discussed, the various SQL Server components are installed to run as a
set of Windows services, which in itself reduces the risk that one compromised service

7 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

could be used to compromise others. Furthermore, this also gives an administrator the
opportunity to assign an individual Windows identity to each of these services and for
these identities to have only the least privileges required for them to function correctly.

Service identities may be defined either locally or at a domain level, and when they
are specified at install time, the SQL Server installer grants those rights and access
permissions required for the given service to run under that identity. Therefore, making
SQL Server service identities high-privilege users or groups is not required (and is
actively discouraged). However service identities are defined, they should be created
with passwords that comply with accepted practice with regard to password strength.

Windows Server 2008 and later creates a special per-service security account for
these service identities, called a Service ID (SID). This SID is derived from the service
name and is unique to that service. Privileges granted to a SID are available only to
that service and are active regardless of what account started the service. SQL Server
2008 and later assign the privileges necessary to run SQL Server to its SID instead of
the account used to start the service. During installation, SQL Server Setup creates a
service group for each component of SQL Server, and on Windows Server 2008 and
later, it is the SID that is added to the local security group instead of the SQL Server
service account. Table 3-4 details the operating system permissions granted to SQL
Server services, and Table 3-5 details the file system permissions.

Table 3-4 Permissions Granted to SQL Server Services

Service Permissions

SQL Server Log on as a service (SeServiceLogonRight)

Replace a process-level token (SeAssignPrimaryTokenPrivilege)

Bypass traverse checking (SeChangeNotifyPrivilege)

Adjust memory quotas for a process (SeIncreaseQuotaPrivilege)

Start SQL Server Active Directory Helper

Start SQL Writer

Read the Event Log service

Read the Remote Procedure Call service

SQL Server Agent Log on as a service (SeServiceLogonRight)

Replace a process-level token (SeAssignPrimaryTokenPrivilege)

Bypass traverse checking (SeChangeNotifyPrivilege)

Adjust memory quotas for a process (SeIncreaseQuotaPrivilege)

Full-Text Search Log on as a service (SeServiceLogonRight)

SQL Server Browser service Log on as a service (SeServiceLogonRight)

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 7 9

In order for these access permissions to be evaluated, the target disk subsystem must
use the NTFS file system (NTFS). During installation, SQL Server will set appropriate
ACLs on registry keys and files if it detects NTFS. These permissions should not be
changed. Although the FAT file system is currently still supported, future releases of
SQL Server will likely not support it.

It should be noted that if a SQL Server service cannot access the SQL Server
portion of the Windows Registry, the service might not start properly.

Table 3-5 File System Access Granted to SQL Server Services

Service Location Access

SQL Server instance directory\MSSQL\backup Full Control

instance directory\MSSQL\binn Read, Execute

instance directory\MSSQL\data Full Control

instance directory\MSSQL\FTData Full Control

instance directory\MSSQL\Install Read, Execute

instance directory\MSSQL\Log Full Control

instance directory\MSSQL\Repldata Full Control

shared feature directory\100\shared Read, Execute

SQL Server Agent instance root\MSSQL\binn Full Control

instance root\MSSQL\Log Read, Write, Delete, Execute

shared feature directory\100\com Read, Execute

shared feature directory\100\shared Read, Execute

shared feature directory\100\shared\Errordumps Read, Write

Full-Text Search instance directory\MSSQL\FTData Full Control

instance directory\MSSQL\FTRef Read, Execute

shared feature directory\100\shared Read, Execute

shared feature directory\100\shared\Errordumps Read, Write

instance directory\MSSQL\Install Read, Execute

instance directory\MSSQL\jobs Read, Write

SQL Server Browser shared feature directory\100\shared\ASConfig Read

shared feature directory\100\shared Read, Execute

shared feature directory\100\shared\Errordumps Read, Write

8 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Software Installation
SQL Server can be installed in either of two ways: interactively and unattended. To
create an unattended installation, you must provide all of the required information as
parameters to the executable setup.exe found on the SQL Server installation media. For
example:

Setup.exe /q /ACTION=Install /FEATURES=SQL,AS,RS,IS,Tools,BIDS,BOL

/INSTANCENAME=MSSQLSERVER /SECURITYMODE=SQL /SQLSYSADMINACCOUNTS="Builtin\

Administrators" /SAPWD="StrongPassword" /SQLSVCACCOUNT="DomainName\

UserName" /SQLSVCPASSWORD="StrongPassword" /AGTSVCACCOUNT="DomainName\

UserName" /AGTSVCPASSWORD="StrongPassword" /ASSYSADMINACCOUNTS="Builtin\

Administrators" /ASSVCACCOUNT="DomainName\UserName"

/ASSVCPASSWORD="StrongPassword" /RSSVCACCOUNT="DomainName\UserName"

/RSSVCPASSWORD="StrongPassword" /SQLBROWSERACCOUNT="DomainName\UserName"

/SQLBROWSERPASSWORD="StrongPassword" /ISSVCACCOUNT="NT Authority\Network

Service"

This chapter discusses interactive installation only; however, the options that must
be specified for either installation method are identical and it is only the means by
which this information is gathered that changes. Therefore, an administrator with a
good understanding of the purpose of the installation options will find that building
unattended installations is a simple task. For further information, see “How to: Install
SQL Server 2008 R2 from the Command Prompt” at http://technet.microsoft.com/en-
gb/library/ms144259.aspx.

The Installation Center
Administrators who are familiar with Oracle’s Universal Installer will find immediate
similarities in the SQL Server Installation Center, shown in Figure 3-4. As with its
Oracle counterpart, the Installation Center can assess a target environment with regard
to its suitability for hosting SQL Server; it can automatically detect dependencies
among components, drive complex installation logic that carries out consistency checks
throughout the install, and roll back in the case of failure. This chapter concentrates on
using the Installation Center to perform a new installation of SQL Server; however, it
can also be used to

Add features to an existing installation.

Upgrade a SQL Server 2000 or SQL Server 2005 instance to SQL Server 2008 or
SQL Server 2008 R2.

Add or remove a node to/from a high-availability cluster (see Chapter 9).

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 8 1

Repair a damaged installation.

Upgrade an edition of a SQL Server instance (where permitted—for example,
from Developer to Enterprise).

Selecting the first option, New SQL Server Stand-alone Installation or Add Features
to an Existing Installation, launches the SQL Server Setup program, shown in Figure 3-5,
which is a wizard that performs the prerequisite checks on the target system and gathers
the information required to complete the installation. This section details the options
available to you at installation time.

As previously discussed, for all editions of SQL Server, with the exception of the free
and trial editions, a product key must be specified at installation time. The product key
provided must represent the edition you wish to install. If a key is not provided at this
point, you can proceed using the trial edition and provide the system with a key at any
time during the trial period. After you enter the product key, click Next.

The following screen asks you to accept SQL Server license terms. These terms are
copied to the local computer when SQL Server is installed. When multiple instances
of the same SQL Server edition and language are installed on the same computer, a
single copy of the license terms is deemed to apply to all instances of that edition and
language.

Figure 3-4 The SQL Server Installation Center

8 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

After you click Next, a set of supporting files is then loaded and the system
prerequisite checks are carried out. Each individual check can result in a pass, a
breaking failure, or a warning (see Figure 3-6). If no corrections are required, click Next.

The Feature Selection page, shown in Figure 3-7, allows you to select the required
components for the installation. A description for each component group appears in the
right pane after you select the feature name. You can select any combination of check
boxes during the first SQL Server installation on a given server.

The Features box is organized into Instance Features, Shared Features, and
Redistributable Features.

Everything listed under Instance Features can be installed multiple times on a single
server, with the proviso that every instance must be installed to a unique instance root.
To install multiple instances of SQL Server components, you return to the installation

Figure 3-5 Specifying a product key

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 8 3

media and run setup.exe to launch the Installation Center exactly as you did for the
first installation, specifying the options detailed in the following pages as required for
that instance. As with the Management Tools, instances of SQL Server 2000, SQL
Server 2005, and later versions can be installed on the same hardware, although it is
recommended (for both instance and shared components) that previous versions are
installed before any later versions to avoid any forward-compatibility issues.

You can specify the directory for shared components using the Shared Feature
Directory field at the bottom of the page. To change the installation path for shared
components, update the path name in the field manually or click the browse button
(three dots) to navigate to an installation directory. The default installation path is C:\
Program Files\Microsoft SQL Server\, and this can only be changed the first time that
a shared feature is installed. Click Next after you have specified the directory.

Figure 3-6 Setup Support Rules page

8 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

On the Instance Configuration page, shown in Figure 3-8, specify whether to install
a default or a named instance. For more information on the exact nature of named and
default instances, see Chapter 2.

Whether you choose to install a named or default instance, there are some additional
options that determine how the instance will be identified and where components are
installed. These are:

Instance ID By default, the instance name is used as the instance ID suffix. This
is used to identify installation directories and registry keys for your instance of
SQL Server. As shown in Figure 3-8, for a default instance, the instance name and
instance ID suffix become MSSQLSERVER. To use a non-default instance ID
suffix, enter a value in the Instance ID field.

Figure 3-7 Feature Selection page

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 8 5

Instance root directory By default, the instance root directory (the instance
directory) is C:\Program Files\Microsoft SQL Server\. To specify a non-default
instance directory, use the field provided or click the browse button (three dots) to
locate an installation folder.

Installed instances Shows instances of SQL Server that are already installed on
this server.

After you have configured the instance, click Next to move to the Disk Space
Requirements page, shown in Figure 3-9, which calculates the required disk space for the
features you specify. It then compares requirements to the available disk space. Click Next.

On the Server Configuration page, shown in Figure 3-10 with the Service Accounts
tab displayed, specify login accounts for SQL Server services. The actual services that
are configured on this page depend on the features you selected to install.

Figure 3-8 Instance Configuration page

8 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

You can assign the same login account to all SQL Server services, although it is
recommended that you configure each service account individually, as previously discussed
in the section “Security Considerations.” By default, services are installed to run under the
built-in Local System identity. You can also specify whether services start automatically,
are started manually, or are disabled.

The Collation tab allows you to specify non-default collations for the Database
Engine. Collations in SQL Server provide sorting rules and case- and accent-sensitivity
properties for its data and can be specified at a database, table, and even column level. By
specifying a collation at this point, you are assigning the default for new database objects
(including databases) and also specifying the rules that will be enforced for the system
catalog.

After you click Next, the Database Engine Configuration page, shown in Figure 3-11,
allows you to specify engine configuration relating to data directories, the security model,
and FILESTREAM access.

Figure 3-9 Disk Space Requirements page

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 8 7

The following are the options on the Account Provisioning tab:

Authentication Mode Select Windows Authentication Mode or Mixed Mode
for your instance of SQL Server. These modes are described in detail in Chapter 5;
review the section “Security Considerations” earlier in this chapter for the
installation implications of this selection.

Specify SQL Server Administrators You must specify at least one system
administrator for the instance of SQL Server. In versions of SQL Server previous
to 2008, the account under which setup was run was always granted sysadmin
privileges; now another account can be specified. To add the account under which
SQL Server Setup is running, click Add Current User. To add or remove accounts
from the list of system administrators, click Add or Remove, and then edit the
list of users, groups, or computers that will have administrator privileges for the
instance of SQL Server.

Figure 3-10 Server Configuration page

8 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The Data Directories tab options are as follows (see Figure 3-12):

Data root directory A directory to be used as the root directory for all instance-
specific data files (as opposed to product binaries) for this installation. The
locations specified in the following options are set to be subfolders of an instance
directory at this location unless otherwise specified. Changing this location from
the default is common in larger installations where it is a requirement to separate
binaries and data files.

System database directory The directory in which system database (excluding
tempdb) data and log files are created.

User database directory The default directory in which user or application database
data files are created unless otherwise specified at database creation time.

Figure 3-11 Database Engine Configuration page, Account Provisioning tab

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 8 9

User database log directory The default directory in which user or application
database log files are created unless otherwise specified at database creation time.

Temp DB directory The directory in which the tempdb system database data
files are created. Special consideration is often given to the location of tempdb for
performance reasons—see Chapter 8 for details.

Temp DB log directory The directory in which the tempdb system database log
files are created.

Backup directory The default directory for SQL Server database backups.

CAUTION
If you specify non-default installation directories, you must ensure that the installation folders are unique to this

instance of SQL Server. None of the directories specified on this tab should be shared with directories from other

instances of SQL Server.

Figure 3-12 Data Directories tab

9 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

FILESTREAM integrates the SQL Server Database Engine with an NTFS file
system by storing binary object data as files on the file system. Transact-SQL statements
can insert, update, query, search, and back up FILESTREAM data while the Win32
file system interfaces provide streaming access to the data. FILESTREAM needs to be
enabled only if you plan to access data in this fashion.

The following are the options on the FILESTREAM tab of the Database Engine
Configuration page:

Enable FILESTREAM for Transact-SQL access Select to enable
FILESTREAM for Transact-SQL access. This control must be checked before
the other control options will be available.

Enable FILESTREAM for file I/O streaming access Select to enable Win32
streaming access for FILESTREAM.

Windows share name Enter the name of the Windows share in which the
FILESTREAM data will be stored.

Allow remote clients to have streaming access to FILESTREAM data Select
this control to allow remote clients to access this FILESTREAM data on this
server.

Clicking Next presents the Error and Usage Reporting page, where you have the
option to allow information regarding your installation experience to be sent to Microsoft.
Clicking Next again presents the Installation Rules page, where the System Configuration
Checker will run one more set of rules to validate your computer configuration against the
SQL Server features you have specified, as shown in Figure 3-13. Click Next.

The Ready to Install page displays a tree view of installation options that were specified
during Setup. Click Next.

During installation, the Installation Progress page provides status so you can monitor
installation progress as Setup proceeds. For local installations, you must run Setup as an
administrator. If you install SQL Server from a remote share, you must use a domain
account that has Read and Execute permissions on the remote share.

Each execution of SQL Server Setup creates log files with a new time-stamped log
folder at shared feature directory\Microsoft SQL Server\100\Setup Bootstrap\Log\.
When Setup is run in an unattended mode, the logs are created at temp\sqlsetup*.log.

Service Packs and Hotfixes
Because instances of all SQL Server components are executed as entirely isolated sets
of binaries, individual instances of SQL Server of the same major version (for example,
SQL Server or SQL Server 2005) may have Service Packs applied independently

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 9 1

of other instances on the same server. The Service Pack installer will prompt the
administrator to choose the instance that is to be upgraded by this execution of the
installer.

ON THE JOB
Service Packs may contain updates to shared components. These updates can be applied only once because

only one copy of these shared components exists. Because incompatibilities might be created between, say,

Management Tools and Database Engine instances if these two sets of components exist at different minor

version (Service Pack) levels, it is common for installations that comprise both client and server components to

have all server components instances upgraded together.

Since SQL Server 2008 Service Pack 1, it has been possible to uninstall the Service
Pack separately from the database release. It is also possible to slipstream Service Packs

Figure 3-13 Installation Rules page

9 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

and cumulative updates into the SQL Server install media; see the Microsoft Support
article “How to Update or Slipstream an Installation of SQL Server 2008” (Article ID:
955392).

While it is good practice to maintain SQL Server instances at the most recent Service
Pack or hotfix level, remember that client applications may require thorough testing before
the upgrade is put into production. Where applications are supplied by third parties,
the vendor should be consulted prior to implementing the change.

Configuring SQL Server
Having installed the SQL Server software the job of creating a system that meets the
business requirements has only just begun. Changes will likely be made to the instance
and databases through the life of the system and some need to be made immediately to
allow users and applications to begin interacting with their databases. The remainder of
this chapter looks at these initial configuration tasks and then introduces the commands
and built-in features that SQL Server administrators use to configure SQL Server
instances.

Networking Overview
Unlike Oracle, SQL Server does not store client configuration information in operating
system files. In fact, such configuration files are not used by any component of a SQL
Server installation. This information is stored in the registry keys (described earlier in
the “Registry Keys” section) and in the system catalog. However, as an administrator, it
is expected that the only way you will interact with this configuration information is by
using the tools described in the section “Network Configuration.”

For SQL Server Express or Developer Edition, after installation the SQL Server
instance is configured to listen only to Shared Memory, for security protection.
Therefore, the SQL Server system is not exposed in any way to the network
environment. In providing this functionality, TDS endpoints exhibit some similarity
with Listeners; however, there are a couple of key differences: endpoints cannot be
added to or removed from an instance—they are only enabled or disabled—and
endpoints cannot be started and stopped independently of the instance itself.

SQL Server Configuration Manager (described a bit later in the chapter) is used
to configure SQL Server instances and clients to use these networking protocols
correctly.

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 9 3

Network Configuration
Once SQL Server has been installed, the first configuration task is usually to make sure
that clients can effectively communicate with the new instance. This section looks at
the tools and options available to allow the correct network configuration to be created.

Client Network Configuration
Oracle uses an alias (also called a net service name) to refer to an instance of a database.
Resolving the service name can be accomplished by several methods, the most
common of which is to use a tnsnames.ora file on every client to provide the required
information. The other methods include directory naming (central directory), Oracle
Names (centralized server), host naming (host file), external naming (NIS, CDS, and so
on), and EZCONNECT.

Clients connecting to SQL Server must specify exactly the same kind of information
as Oracle clients, and the most verbose format for this is

Protocol:ComputerName\InstanceName,Port

In certain circumstances, the protocol, instance name, and port can be omitted. The
port need not be specified if communication occurs on the default port, or if a named
instance is being addressed and it is configured to use dynamic ports. The instance
name can be omitted when it is the default instance that is being addressed or a named
instance configured to listen on the default port of 1433. So, the following are all
correct forms of address:

SERVER01 Connecting to the default or named instance on SERVER01 over
port 1433

SERVER01, 8888 Connecting to the default or named instance on SERVER01
over port 8888

Oracle DBA Q&A

Q: If there is no Listener, what should I do if I want to disallow client connections
but connect myself to administer a database?

A: Start the instance in single-user mode (see the section “Basic Administration
Tasks” later in the chapter), or disable the TCP/IP or Named Pipes connections in
SQL Server Configuration Manager.

9 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

SERVER01\INST01 Connecting to a named instance on SERVER01 over
port 1433 (or where INST01 is using dynamic ports)

SERVER01\INST01,8888 Connecting to a named instance on SERVER01
over port 8888

Where a client cannot provide this information directly, the SQL Native Client
Configuration tools in SQL Server Configuration Manager (see Figure 3-14) can be
used to set up for SQL Server alias names that can be resolved to an IP address (and
port) or a Named Pipes address.

SQL Server Configuration Manager can also be used to enable or disable and
configure network protocols for connections from remote clients.

Client protocols are given an order of precedence, and communication is first attempted
using the lowest-numbered protocol, followed by the other enabled protocols in the order
in which they are specified, until a connection is established or all protocols have been tried.
Also, you can force the protocol within the connection string; for example, tcp:ServerName
for TCP and np:ServerName for Named Pipes.

Figure 3-14 SQL Server Configuration Manager—Client Protocols

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 9 5

For the TCP/IP protocol, the available client properties (accessed by right-clicking
TCP/IP in the list of client protocols and selecting Properties) are shown in Figure 3-15
and described here:

Default Port Specifies the port that the TCP/IP libraries will use to attempt
to connect to the target instance of SQL Server. When connecting to a named
instance of the Database Engine, the client will attempt to obtain the port number
from the SQL Server Browser service running on the server computer. If the SQL
Server Browser service is not running, the port number must be provided through
this setting, or as part of the connection string.

Enabled Specifies whether the TCP/IP protocol is available to clients when
communicating with SQL Server.

Keep Alive This parameter (in milliseconds) controls how often TCP attempts
to verify that an idle connection is still intact by sending a keep-alive packet. The
default is 30000 milliseconds.

Keep Alive Interval This parameter (in milliseconds) determines the interval
separating keep-alive retransmissions until a response is received. The default is
1000 milliseconds.

Figure 3-15 Client TCP/IP Properties dialog box

Creating SQL Aliases Right-clicking the Aliases entry and selecting New Alias… in
Configuration Manager opens the Alias – New dialog box, which allows you to specify
the required information to create a server alias in SQL Server. The available options
are shown in Figure 3-16 and described here:

Alias Name The name (alias) that you want to use to refer to this connection.

Pipe Name/Port No/VIA Parameters In this example, we are creating a TCP/
IP alias, so the Port No option is presented. If this alias was to use any of the
other protocols, then options specific to those protocols would be presented here.
Providing a port number results in that TCP port being used whenever a client
uses the alias to address the SQL Server instance.

Protocol The protocol used for the connection.

Server The name of the Microsoft SQL Server instance being connected to.
Remember the rules previously discussed for whether an instance name must be
specified as well as the computer name.

Using aliases requires that the SQL Server client components are installed on each
client computer and that the alias configuration is set for each client.

9 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 3-16 Creating a new SQL Server alias

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 9 7

The Dedicated Administrator Connection
If an administrator requires access to a running instance of the SQL Server Database
Engine to troubleshoot and resolve problems even when the server is unresponsive
to other client connections, SQL Server has available the Dedicated Administrator
Connection (DAC).

The DAC is available through the sqlcmd utility and SQL Server Management
Studio (both are described a bit later in the chapter) and, by default, the connection
is only allowed from a client running on the server. Network connections are not
permitted unless they are configured by using the sp_configure stored procedure with
the ‘remote admin connections’ option.

To use the DAC, the server is addressed in a fashion similar to that described in the
preceding section “Client Network Configuration,” but the label ADMIN: is prefixed
to the server instance. For example:

ADMIN:SERVER01\INST01

To guarantee that there are resources available for the connection, only one DAC
is allowed per instance of SQL Server. If a DAC connection is already active, any new
request to connect through the DAC is denied with an error.

NOTE
Connecting via the DAC to a named instance, or to the default instance if you’re not using TCP/IP port 1433, will

not work without the SQL Server Browser service.

Server Network Configuration
SQL Server Configuration Manager also allows administrators to configure TDS
endpoints for server communications. Server protocols have no order of precedence—they
are simply enabled (listening) or disabled (see Figure 3-17). For TCP/IP connections, the
configuration options are organized into Protocol and IP Address.

The Protocol options are as follows:

Enabled Possible values are Yes and No.

Keep Alive Specify the interval (milliseconds) in which keep-alive packets are
transmitted to verify that the computer at the remote end of a connection is still
available.

Listen All Specify whether SQL Server will listen on all the IP addresses that are
bound to network cards on the computer. If set to No, configure each IP address
separately using the Properties dialog box for each IP address. If set to Yes, the
settings of the IPAll Properties dialog box will apply to all IP addresses. The default
value is Yes.

9 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

It is possible to create different configurations for each and every network adapter
present on the host computer or to have configuration options apply across all adapters.
SQL Server Configuration Manager uses the term IPAll to refer to the configuration
for all adapters.

Following are the options on the IP Addresses tab (see Figure 3-18):

Active Indicates that the IP address is active on the computer.

Enabled If the Listen All property in the Protocol tab is set to No, this property
indicates whether SQL Server is listening on this particular IP address. If the
Listen All property on the TCP/IP Properties dialog box (Protocol tab) is set to
Yes, this property is disregarded.

IP Address View or change the IP address used by this connection. The IP
address can be in either IPv4 or IPv6 format.

TCP Dynamic Ports Blank, if dynamic ports are not enabled. To use dynamic
ports, set to 0.

TCP Port View or change the port on which SQL Server listens (if dynamic
ports are enabled, this displays the port currently assigned).

Figure 3-17 SQL Server Configuration Manager—server protocols

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 9 9

Following are the IPAll options:

TCP Dynamic Ports Blank, if dynamic ports are not enabled. To use dynamic
ports, set to 0.

TCP Port View or change the port on which SQL Server listens (if dynamic
ports are enabled, this displays the port currently assigned).

A SQL Server instance can listen on multiple ports on the same IP address. To
configure this, list the ports, separated by commas, in the format 1433, 8888, 8889. To
configure a single IP address to listen on multiple ports, the Listen All parameter must
also be set to No.

SQL Server Configuration Manager displays the IP addresses that were available at
the time SQL Server was installed. The available IP addresses can change when network
cards are added or removed, when a dynamically assigned IP address expires, when the
network structure is reconfigured, or when the computer changes its physical location. To
change an IP address, edit the IP Address field, and then restart SQL Server.

Figure 3-18 Server TCP/IP Properties dialog box—IP Addresses tab

1 0 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Basic Administration Tasks
In addition to being used to configure SQL Server networking, SQL Server Configuration
Manager is also used to carry out fundamental administration tasks against a SQL Server
instance.

Starting and Stopping Services
As previously discussed, the SQL Server Database Engine is implemented as a
collection of Windows services, which can be viewed in Windows Service Manager.
SQL Server Configuration Manager also provides a view of these services (in fact, it
displays only the SQL Server services present on the target computer). Hence, the
service state (start, pause, or stop) can be set using any of the following options:

Service Manager

SQL Server Configuration Manager

Management Studio

Net commands such as

net start mssqlserver

However, there are properties regarding SQL Server services that are only available
in SQL Server Configuration Manager, as shown in Figure 3-19. These are discussed
next.

Changing Service Logins
Within SQL Server Configuration Manager, the Properties dialog box for a given
service allows you to change the account used by the service, or to change the provided
password for the account. When this is carried out using Configuration Manager,
in addition to changing the account name, Configuration Manager also performs
configuration such as setting permissions in the Windows Registry so that the new
account can read the SQL Server settings. Other tools such as Windows Service
Manager can change the account name but do not change the other associated settings;
therefore, you should only use Configuration Manager for this task.

Setting Startup Parameters
When SQL Server is installed, Setup writes a set of default startup options for SQL
Server to the Windows Registry. You can use these startup options to specify an alternate
master database data file, master database log file, or error log file. These default startup

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 1 0 1

options can be changed if required using SQL Server Configuration Manager by
selecting the Startup Parameters option on the Advanced tab of the service’s Properties
dialog box.

Under normal operation, these three parameters are the only ones passed to the SQL
Server instance as it starts. However, in addition to these defaults, there are a number of
parameter options available to an administrator to alter the behavior of a SQL Server
instance on startup. Examples of these behaviors are starting an instance in single-user
mode or overriding a setting such the amount of available memory used by the instance.
See http://technet.microsoft.com/en-us/library/ms190737.aspx for a complete list of
additional startup parameters.

Figure 3-19 SQL Server Configuration Manager—service properties

1 0 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Also, SQL Server uses trace flags to temporarily set specific server characteristics
or to switch off a particular behavior. These flags, which are detailed in the Books
Online article “Trace Flags (Transact-SQL),” are not normally applied to SQL Server
instances, but they can be useful in diagnosing performance issues and are often used by
Microsoft Support when resolving customer problems.

If you are going to use a startup parameter temporarily (usually as part of a
troubleshooting exercise), it is recommended that you start the service from the
command prompt. For example, the following starts the default instance in single-user
mode:

net start mssqlserver –m

If you expect one or more startup parameters to remain in use permanently, it is
recommended that you add them to the Startup Parameters option within Configuration
Manager.

Server Configuration
Having established communications between the SQL Server instance and its clients,
there will usually be further configuration required to ensure that the instance behaves
exactly as required and can support the workload expected of it. In reality, configuring
an instance is not something carried out once, post-installation, but instead may take
place many times through the life of the instance. Therefore, an understanding of
the options that represent optimal SQL Server configuration in a given environment
can take years to gain. This section provides a brief look at the tools and commands
available to an administrator when configuring SQL Server instances and databases.

SQL Server Management Studio
SQL Server Management Studio is an integrated environment for accessing,
configuring, managing, administering, and developing all components of SQL Server
and is the environment in which most SQL Server administrators carry out the
majority of their tasks. Administrators familiar with current and past Oracle tools such
as Database Control, Enterprise Manager, and PL/SQL Developer will find elements
of all these utilities combined in a single environment.

Functionality within Management Studio for carrying out each specific administration
task will be highlighted in the corresponding chapter that discusses the given task. This
section introduces the basic Management Studio functionality to connect to an instance
and carry out simple interactions.

Although Management Studio allows you to construct queries without first
establishing a connection to a data source, most other tasks require you to first connect to

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 1 0 3

a SQL Server instance. When Management Studio starts, it opens the Connect to Server
dialog box and prompts you to connect to a server, as shown in Figure 3-20. The Connect
to Server dialog box retains the connection settings from the last time it was used.

Again, bear in mind the rules discussed earlier in the chapter regarding specifying
instance names and port numbers when supplying the Server Name information.

Object Explorer (see Figure 3-21), a component of SQL Server Management Studio,
connects to SQL Server instances and provides a view of all the objects in the server
and presents a user interface to manage them.

You can use the Connect button on the Object Explorer toolbar to connect to
additional instances, in which case each instance is represented as a separate top-level
node in the Object Explorer tree. Object Explorer can also connect to instances of SQL
Server 2000 and SQL Server 2005; however, not all Management Studio functionality
will be accessible when working with older versions.

Figure 3-20 Connecting to a SQL Server instance

Figure 3-21 Object Explorer

1 0 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

NOTE
Object Explorer does not update automatically. If you add or delete databases or database objects, you need to

click the Refresh button on the Object Explorer toolbar to see the result of this change in Object Explorer.

The high-level information given by the label of the top-level node for an instance in
Object Explorer includes the following:

Server and instance name (omitting the instance name if it is the default instance).

The version of SQL Server. The last part of this (the build number) denotes the
Service Pack or hotfix level of the instance.

The credentials used to connect.

ON THE JOB
From an administrative point of view, it is worth knowing that Object Explorer maintains its own connection

to the target SQL Server instance, independent of any connection subsequently used to execute queries. This

is despite connection information being only collected once. This can cause issues for the unaware when

attempting to work with an instance in single-user mode (because Object Explorer will be using the only

available connection, leaving none free for queries). In situations where you need to pay particular attention to

the number of connections in use, consider using the sqlcmd utility, described at the end of the chapter.

Executing SQL Commands and Scripts
Within SQL Server Management Studio, selecting New Query, either from the
Management Studio toolbar or from the context menu (right-click) of the top-level
instance node in Object Explorer, opens a new query window in which SQL commands
can be constructed. Using Management Studio to build and execute SQL commands is
discussed in detail in later chapters; at this point, it is sufficient to note that the contents
of a query window are executed against the currently connected instance when you click
Execute from the Management Studio toolbar (see Figure 3-22).

Management Studio Server Reports
SQL Server provides graphical reports for monitoring system health and performance.
While there have always been various means, such as queries and stored procedures, to
gather system statistics, none brought this information together in a single graphical
report as we now have available (see Figure 3-23).

NOTE
The Management Studio reports are built using SQL Server Reporting Services (SSRS), but SSRS is not required to

be installed to run and view them.

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 1 0 5

Server reports are accessed from the context menu (right-click) of the instance node
in Object Explorer, under a submenu called Reports.

The built-in server reports include the following:

Server Dashboard (shown in Figure 3-23)

Configuration Changes History

Schema Changes History

Scheduler Health

Memory Consumption

All Blocking Transactions

Batch Execution Statistics

Top Queries by Average CPU Time

The built-in reports cover a range of types of static and dynamic information.
However, it is also possible to use SSRS to construct custom reports and have these
installed within Management Studio.

Figure 3-22 Executing SQL commands in SQL Server Management Studio

1 0 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Setting Server Options
In Oracle, the initialization parameter file (init.ora or spfile) is used to store values for
the various parameters that characterize the instance and the database. SQL Server
provides equivalent functionality, though not an equivalent to every initialization
parameter, through its configuration options. These options can be configured as
server properties using SQL Server Management Studio or using the sp_configure
system stored procedure. As mentioned previously, you should not expect to amend any
configuration files when working with SQL Server.

Figure 3-23 The Server Dashboard report

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 1 0 7

The functionality of sp_configure is similar to Oracle’s ALTER SYSTEM and
ALTER DATABASE commands. The syntax of sp_configure is

sp_configure [option, [value]]

For example:

sp_configure 'show advanced options', 1

GO

RECONFIGURE

GO

In the preceding example, the RECONFIGURE statement allows an administrator
to call sp_configure repeatedly to make multiple configuration changes and to have all
of these configuration changes applied as a single batch when RECONFIGURE is
issued.

Depending upon the option set, configuration options take effect either immediately
after setting the option and issuing the RECONFIGURE statement, or after
performing the preceding actions and restarting the instance of SQL Server.

Of SQL Server’s configuration options, a subset is considered user configurable
and an additional set is considered advanced. Advanced options, which are similar
to Oracle’s hidden parameters, are either self-configuring or should be manipulated
only by experienced administrators (Microsoft recommends a certified SQL Server
technician). Parameters such as Max Server Memory and Min Server Memory are good
examples of self-configuring advanced options. SQL Server configures these parameters
dynamically based on factors such as available system memory and demand.

Any option deemed to be advanced is not available for configuration using sp_configure
until the 'show advanced options' option has itself been set to 1 (the default is 0) as shown
in the previous example (setting this option will also list those options deemed to be
advanced). For example, simply issuing

sp_configure 'fill factor', 100;

GO

RECONFIGURE;

GO

results in the following error if 'show advanced options' has not been previously set:

Msg 15123, Level 16, State 1, Procedure sp_configure, Line 51

The configuration option 'fill factor' does not exist, or it may be an

advanced option.

1 0 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

All server options can be configured using sp_configure, and a subset of these
options is also presented to an administrator in the Server Properties dialog box,
shown in Figure 3-24, which is accessible by right-clicking the instance node in Object
Explorer and selecting Properties.

As Figure 3-24 shows, the Server Properties dialog box is organized into pages.
However, somewhat confusingly, options deemed advanced for sp_configure are located
on these pages and not just on the Advanced page! There is no requirement for setting
the 'show advanced options' option when working with the Server Properties dialog
box. For example, from the Database Settings page, it is possible to make a change to
the 'fill factor' option, which was shown to give an error when set using sp_configure—
the configuration is accepted with no warning other than that this change will not take

Figure 3-24 Server Properties dialog box

C h a p t e r 3 : I n s t a l l i n g a n d C o n f i g u r i n g S Q L S e r v e r 1 0 9

effect until the instance is restarted. In the Server Properties dialog box, clicking OK
has the effect of issuing the RECONFIGURE statement.

On each page of the Server Properties dialog box, it is possible to use the radio
buttons Configured Values and Running Values to inspect whether there are any
pending changes—that is, configuration changes that will come into effect following
the next instance restart. Any option that has a pending change will show a different
value when Running Values is selected rather than Configured Values. These radio
buttons can be seen in Figure 3-25, which shows the memory properties for an instance.

A list of the available SQL Server configuration options is available at http://msdn
.microsoft.com/en-us/library/ms189631.aspx.

Figure 3-25 Configured memory properties

1 1 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

NOTE
A useful element of the Server Dashboard Management Studio report shown in Figure 3-23 is the Non Default

Configuration Options section, which lists all changes to server options (whether from sp_configure or server

property changes) since instance installation. The default value and the currently running value are reported.

The sqlcmd Utility
Chapter 1 introduced the sqlcmd utility. This section highlights some of the parameters
that are most useful to administrators when running the tool:

The server option (-S) Identifies the instance of SQL Server to which sqlcmd
connects.

Authentication options (-E, -U, -P) Specify the credentials that sqlcmd uses to
connect to the instance of SQL Server. -E requests that Windows authentication
be used, and -U and -P allow a SQL Server username and password to be
supplied.

Input options (-Q , -q, -i) Identify the location of the input to sqlcmd.

The output option (-o) Specifies the file in which sqlcmd is to put its output.

For example:

sqlcmd -S SERVER01\INST01

or

sqlcmd -i C:\Scripts\MyScript.sql -o C:\Scripts\MyOutput.txt

In This Chapter

Schemas

Schema Objects

Working with Data Objects

Filegroups and Partitioning

Database Objects

Chapter 4

1 1 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

In larger organizations, often the lines between those building database applications
and those ensuring the day-to-day smooth running of those applications are very
clearly defined—usually to the point where these individuals belong to different

departments. Even in smaller organizations, many database administrators encounter
databases only after they have been designed, built, and tested by someone else. In the
past, SQL Server’s heritage as a database that tended to support smaller applications
perhaps led this line between application developers and professional administrators to
be less clearly defined. In more recent versions, the fact that SQL Server Management
Studio is a powerful tool for both those carrying out development and those in charge
of administration may have continued this trend despite the fact that SQL Server now
commonly supports enterprise-level workloads.

SQL Server now resides in the data center, and many new SQL Server administrators
will be less concerned with building database objects than with enforcing security,
ensuring high performance, and maximizing availability. However, an understanding
of the objects that manage data and those that facilitate access to it is important for
any database, so, with this in mind, this chapter looks at the principal objects available
within SQL Server databases and the operations that administrators will commonly
perform on those objects. It is not a complete reference—especially when it comes to the
programmatic objects—but it should serve as a good foundation for working with SQL
Server database objects.

Schemas
While we’ve already seen that in SQL Server many of the characteristics of the Oracle
schema are exhibited by the database itself, SQL Server does still implement a schema
object. Schemas provide security and administrative functions (both described in
Chapter 5); however, the way most administrators first encounter them is as a way of
creating logical groupings of database objects.

Database objects such as tables and views (and programmatic objects such as stored
procedures and functions) all belong to a schema. In the AdventureWorks sample
databases, schemas such as Human Resources and Sales have been created, and you can
immediately see how adding an object to such a schema imparts information as to the
intent or purpose of the object, aiding future maintenance. However, there are more
concrete implications to objects belonging to schemas:

Object names within a given schema must be unique (but may be duplicated
across more than one schema).

Because of the preceding rule, the schema name must be provided when referencing
the object (although there are exceptions to this, described later in this section).

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 1 3

When you create an object in a SQL Server database, it is good practice to add the
object to a previously created schema that groups this object with other related objects.
However, if you choose not to do this, your object will be assigned to your default
schema, which if you are the database owner or in a role of sysadmin will typically be
dbo. Exactly how default schemas are used is also explained later in this section.

ON THE JOB
Before SQL 2005, there was a one-to-one mapping between database users and schemas, much like in Oracle.

User-schema separation and the ability to assign a User’s default schema were introduced to SQL Server in

version 2005, so many SQL Server administrators and developers are still not used to working with them. It is

therefore not uncommon to see SQL Server databases where all of the objects reside in the dbo schema. These

databases are not “wrong” and will function perfectly correctly.

The full syntax for addressing a database object (from a connection to the instance or
from any other object within that instance) is

[database].[schema].[object]

For example:

[AdventureWorks2008].[HumanResources].[Employee]

Notes on Object Naming
The square bracket notation allows us to specify SQL Server identifiers that are
themselves reserved words (such as a column called “Index”) or contain characters
such as spaces. However, there is no penalty in using them when not required,
(indeed, the brackets can help SQL Server in recognizing a word as an identifier)
so many examples and the output of scripting tools will include them as a matter
of course. Having said this, you should adhere to commonly-held best practice and
avoid using reserved identifiers. Whether or not SQL Server object names are case
sensitive is dependent upon the collation order of the database in which the object
resides. If you choose a case-sensitive collation order, you have a case-sensitive
catalog; otherwise, object names are not case sensitive. See the section “Character
Data” later in the chapter for more information on collation in SQL Server. In
Oracle, object names not specified in double quotes are automatically converted to all
capital letters. SQL Server doesn’t do this because it natively supports case-insensitive
collations.

1 1 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Furthermore, SQL Server allows us to create linked servers (equivalent to an Oracle
database link), which allow us to address objects in other SQL Server instances and,
indeed, other providers such as Oracle, Excel, or flat files, as if they were local objects.
(Linked servers are discussed in detail in Chapter 11.) In this case, the syntax becomes

[server].[database].[schema].[object]

For example:

[REMOTEINSTANCE].[ManufacturingDB].[UK].[Products]

SQL Server provides the USE directive, which can be issued in the format

USE AdventureWorks2008

This instructs SQL Server to connect to the given database and resolve object names
relative to that database if no database name is specified when addressing an object; this
directive persists for the life of the user session or until another USE directive is issued.
The same functionality can be achieved in SQL Server Management Studio using
the Available Databases drop-down box (shown in Figure 4-1), and is also known as
“setting the database context.”

As a last note on addressing databases, each SQL Server login is assigned a default
database (master if none is specified), and SQL Server will work against this database
where no database name is given and no USE directive is issued. (See Chapter 5 for
a detailed look at logins and Users.)

So, a database name need only be provided when addressing SQL Server objects
when no USE directive has been issued and the object does not reside in the User’s
default database.

ON THE JOB
Pay particular attention to database context when executing DDL statements. There is nothing to stop you from

creating or editing objects in the system databases (assuming you have the appropriate permissions). It is not

uncommon to find non-system objects in the Master database because a script has been run without setting

the appropriate application database context. Be sure to test before removing such objects from a production

database, as Users with a default database of Master may be using them without realizing it.

Figure 4-1 The Available Databases drop-down box

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 1 5

A similar approach is taken to providing a schema name when addressing objects.
Database Users have default schemas assigned to them, and if none is specified, dbo is
assigned as their default. If an object is addressed without giving a schema name, SQL
Server first attempts to find the object within the User’s default schema, and then, if
unsuccessful, looks in dbo; it will only return an error if the object still can’t be found.

So, if we consider the objects

AdventureWorks2008.dbo.ErrorLog

AdventureWorks2008.HumanResources.Employee

and the Users

Support (default Schema: dbo)

HRAdmin (default Schema: HumanResources)

we can see how various object calls would succeed or fail (in all cases, the database
context has already been set to AdventureWorks2008). This is set out in Table 4-1.

NOTE
The built-in schemas that are created when you install SQL Server are identified in Chapter 3.

User Call Result

HRAdmin SELECT * FROM HumanResources.Employee Succeed

HRAdmin SELECT * FROM Employee Succeed (default schema)

Support SELECT * FROM dbo.ErrorLog Succeed

Support SELECT * FROM ErrorLog Succeed (default schema)

HRAdmin SELECT * FROM ErrorLog Succeed (dbo schema)

Support SELECT * FROM Employee Fail (no schema name and not in default schema or dbo)

HRAdmin SELECT * FROM HumanResources.ErrorLog Fail (object isn’t in this schema!)

Table 4-1 Addressing Schema Objects

1 1 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

To talk briefly about how other applications may connect to a SQL Server database,
applications can specify what database to connect to as part of their connection string.
It is a best practice for applications to explicitly connect to their target database, and to
only specify three-part object names when accessing objects in a different database.

Working with Schemas
Creating a schema is simply a case of specifying a schema name and the schema owner
(if none is specified, then the owner will default to the dbo User). You can do this
from the Schema – New dialog box (see Figure 4-2), which you can access either from

Figure 4-2 The Schema – New dialog box

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 1 7

the context menu of the Schemas node in Object Explorer or by using the CREATE
SCHEMA statement. For example:

CREATE SCHEMA Accounts AUTHORIZATION AccountsAdmin

Moving Objects Between Schemas
Objects may be moved between schemas in SQL Server, but doing so causes any
permissions explicitly set on that object (see Chapter 5) to be dropped. The object’s
schema can be reassigned from the object’s designer pages in Management Studio (see
the section Working with Data Objects for examples covering multiple object types) or
by using the following script:

USE AdventureWorks2008

GO

ALTER SCHEMA HumanResources TRANSFER Person.Person

GO

Synonyms
Another SQL Server object that is likely to catch the eye of the Oracle administrator,
but is far from commonly used by SQL Server administrators, is the synonym.

As with Oracle, synonyms are aliases or alternative names by which tables, views,
stored procedures, and other programmatic objects can be addressed. Synonyms can
refer to remote objects, making them appear local, and can make objects in one schema
appear as if they reside in another. While SQL Server DBAs have not traditionally used
synonyms to support addressing objects outside of schemas or databases (like schemas,
synonyms were introduced in version 2005), they can be very useful in abstracting
changes to the location of underlying objects from clients. In this scenario, the moved
object is replaced by a synonym in the old location that references the object in the
new location. Figure 4-3 shows creating a synonym that would allow the failing call by
HRAdmin described in Table 4-1 to succeed.

1 1 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Schema Objects
As you can see in the following table, the objects that are found in SQL Server
databases will be very familiar to Oracle administrators, with the majority of the
principal object types having exact counterparts in SQL Server.

Figure 4-3 Creating a new synonym

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 1 9

Oracle SQL Server

Table Table

Index Index

View View

Synonym Synonym

Sequence N/A*

Procedure Stored procedure

Function Function

Package N/A

*The SQL Server objects that provide some of the capabilities of Oracle sequences are described in the section “Identity Columns and

Sequences” later in the chapter.

The fact that SQL Server does not implement anything that acts as an Oracle
package will mostly be of interest to those who are familiar with this functionality in
Oracle and are now looking to build applications in SQL Server. As demonstrated
above, SQL Server schemas give application developers a means of creating logical
groupings of objects, and while this does not provide a way of passing application state
between objects in the same way as package-scoped variables, there are means available
to SQL Server developers to achieve the same end. A common solution is to use
temporary tables, which are discussed later in the chapter.

After we take a brief look at the programmatic objects available in SQL Server, the
remainder of this section looks at those objects that allow developers and administrators
to effectively store data in a SQL Server database, namely the types of tables and
indexes available and how views can be used to aid data retrieval and modification. The
next section looks at some common administrative tasks associated with these objects.

Programmatic Objects
SQL Server provides many types of objects to allow complex business functionality
to be built into the database. In Object Explorer, these objects can be found under the
Programmability node, as shown in Figure 4-4.

Stored Procedures
SQL Server store procedures are very similar to equivalent constructs in other databases
and other programming languages. They are written in the Transact-SQL (T-SQL)
language; some of the high-level concepts of this language are covered in Chapter 6.

1 2 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Briefly, SQL Server stored procedures can

Query and modify data in the database, call system functions and procedures,
and call other procedures. Sets of data rows may be passed back to the calling
procedure or query directly.

Accept parameters. These may be input, output, or both. Additionally, an optional
single return status value is passed back from a stored procedure (this is additional
to any output parameters and any data rows).

To differentiate them from system stored procedures, user-defined stored procedures
are termed user procedures. Following is an example of creating a user procedure in the
Accounts schema to return invoices for a given customer:

CREATE PROCEDURE [Accounts].[uspGetCustomerInvoices]

 -- Parameters

 @CustomerID int,

 @InvoiceDateStart datetime2,

 @InvoiceDateEnd datetime2

AS

BEGIN

 -- Execute the query, directly returning the results

 -- as a Result Set

 SELECT InvoiceNo, CustomerID, InvoiceDate,

 InvoiceDueDate, CustomerRefNo, HeaderText

Figure 4-4 Programmatic objects

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 2 1

 FROM Accounts.Invoice

 WHERE (CustomerID = @CustomerID AND (InvoiceDate

 BETWEEN @InvoiceDateStart AND @InvoiceDateEnd))

END

GO

This procedure can then be executed using the EXECUTE statement:

EXECUTE [AdventureWorks2008].[Accounts].[uspGetCustomerInvoices]

 1,

 '2010-02-01',

 '2010-02-28'

GO

CLR Procedures In previous versions of SQL Server, the term extended procedure
(or XP) was used to describe stored procedures written outside of SQL Server in C or
C++. These procedures allowed access to the additional features of these programming
languages and could interact with objects outside of SQL Server, such as the file system.
The extended procedure APIs will be removed in a future version of SQL Server and
have been replaced by common language runtime (CLR) procedures. CLR procedures
are written in a Microsoft .NET language such as C# or VB.NET, compiled into
assemblies, and registered with the SQL Server database. They can then be accessed in
queries exactly as with user procedures.

Functions
Two types of user-defined functions can be created in SQL Server, scalar and table-
valued. Scalar functions return a single value and table-valued functions return a set
of rows as a user-defined data type. Scalar functions can be executed directly in SQL
statements, for example,

DECLARE @ReturnValue varchar(8)

EXECUTE @ReturnValue = dbo.ufnLeadingZeros @Value = 99

Both scalar and table-valued functions can be executed inline within SELECT,
INSERT, UPDATE, and DELETE statements and also within views. Table-valued
functions are referenced in the FROM clause of these queries. To use an example from
the AdventureWorks sample database:

SELECT ContactID, FirstName, LastName, JobTitle, ContactType

FROM dbo.GetContactInformation(2200);

GO

1 2 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

It should be noted that SQL Server places greater restrictions on the actions
permitted within functions than it does with stored procedures (and greater restrictions
than Oracle places on function). The actions carried out within a function must not
change the state of objects outside of the function and this includes database tables.
Furthermore, schema objects cannot be created or modified by functions and functions
cannot execute stored procedures (although they may consume other functions).

Functions may also be defined within CLR assemblies and registered with the
database.

Triggers
SQL Server provides two types of trigger that may be executed as a result of Data
Manipulation Language (DML) operations: the AFTER trigger and the INSTEAD
OF trigger. The INSTEAD OF trigger is not a direct equivalent of Oracle’s BEFORE
trigger in that it genuinely replaces the functionality of the operation that fired the
trigger.

Other key characteristics of SQL Server AFTER triggers include the following:

They can only be applied to tables.

Multiple triggers can be associated with each DML operation (INSERT,
UPDATE, and DELETE), in which case the order of execution can be enforced
only so far as the first and last to fire can be specified.

INSTEAD OF triggers have these other key characteristics:

They can be applied to tables and views.

Only one trigger may be associated with each DML operation.

They are not allowed on tables that are the targets of cascading referential integrity
constraints.

NOTE
In Figure 4-4, the Database Triggers node shown in Object Explorer would contain database triggers, which may

be fired by Data Definition Language (DDL) operations at a database level such as changing user permissions or

dropping a table. DML triggers are found under the table or view to which they belong.

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 2 3

Tables, Indexes, and Views
The following table lists the types of tables available in Oracle and their direct
equivalents in SQL Server, where they exist.

Oracle SQL Server

Heap-organized table Heap table

Clustered table N/A

Partitioned table Partitioned table

Nested table N/A

Temporary table Temporary table

External table N/A*

Object table N/A

Index-organized table Clustered index

*The linked server feature in SQL Server can be used to implement functionality similar to that offered by the external table feature in Oracle

insomuch as the referenced server need not be another relational database—it could be a spreadsheet or a text file or anything else for

which the appropriate provider exists. Chapter 11 gives more details.

Partitioning, including how it can be applied to tables, is discussed at the end of this
chapter.

Heap Tables
As with Oracle, SQL Server can store table data in an unordered manner, with
rows being placed within data pages wherever there is free space. Although it is less
commonly used than with Oracle databases, the term heap still accurately describes
these unordered SQL Server tables. Queries against heap tables do not return data
in the order in which the rows were inserted and, as you would expect, can be very
inefficient to execute if only a subset of the table data is to be returned or if the results
need to be ordered.

Temporary Tables
SQL Server allows those writing queries to create and use temporary tables that can
be either local or global in scope. The scope of a temporary table (and the fact that it
is a temporary table at all) is governed by a naming convention: local temporary tables
have their names prefixed with the pound or hash character (#) and are visible only to
the session that creates the table. Local temporary tables are dropped from the database
when the session disconnects. Global temporary tables are prefixed with a double

1 2 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

pound or hash (##) and may be referenced by other sessions. Global temporary tables
are not dropped until all sessions referencing the table have disconnected. In all cases,
temporary table data is stored in the tempdb system database.

The syntax for creating temporary tables is exactly the same as for a regular table
(an example of which is given later in this chapter), with the addition of the appropriate
prefix to the table name.

Identity Columns and Sequences
Oracle sequences are a powerful feature for application developers, allowing
automatically generated numbers to be managed in a flexible way across multiple tables
and other objects; there is no exact equivalent in SQL Server.

What SQL Server does allow us to do is apply the Identity property to a column
(such a column is commonly referred to as an identity column) and, in doing so,
specify a seed value and an increment. Having done this, for new rows in the table,
an automatically generated number will be applied to the identity column with the
sequence of numbers starting with the seed and increasing by the increment value.
There can be only one identity column per table, and the values are always specific to
that table.

The seed and increment values must be integers but can be negative or positive
depending on the data type of the column.

Programmatic access to identity values is limited (we cannot, for example, inspect the
next available value in a trigger), but the IDENT_CURRENT('table_name') function
can be used to return the last-used identity value for a given table across all sessions, or
the SCOPE_IDENTITY() function can be used to return the last-inserted identity
value for the session, which is useful for retrieving the key value of a row you have just
inserted.

Ordinarily you can’t insert values into an identity column (or update them), but the
command SET IDENTITY_INSERT (ON | OFF) can be used to disable automatic
number generation and allow rows with this column already populated to be inserted
into the table. An example of using an identity column is given later in the chapter, in
the section “Working with Data Objects.”

Clustered Indexes
The equivalent of the index-organized table in SQL Server is the clustered index. Both
clustered and nonclustered indexes are implemented as balanced trees (b-trees). In a
clustered index, nodes at the leaf level contain the actual data pages of the underlying
table. A clustered index specifies the order in which the actual rows are stored in the
table and, because of this, there can be only one clustered index for a table.

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 2 5

Clustered indexes do not need to be defined based on a primary key in SQL Server;
they can be defined on any column (including those that accept null values), but adding
a primary key to a table automatically creates a clustered index by default. Clustered
indexes are recommended for situations where column values increase by fixed amounts
row-by-row, are unique and comprise small data types which stay static over the life
of a row; thus, SQL Server tables can often be seen with a primary key defined on an
identity column. This is certainly the approach displayed by many SQL Server samples
and learning materials.

However it is defined, it is recommended that every table should have a clustered
index in the following scenarios:

Queries regularly use ORDER BY or GROUP BY on key columns.

Queries regularly return a range of values using clauses like BETWEEN, >, and <.

Queries are expected to return large result sets.

Nonclustered Indexes
A nonclustered index is a stand-alone storage structure with each row in the leaf level
of the b-tree containing a key value and a row locator. This locator points to the data
row in the clustered index or heap having the key value. The rows in the index are
stored in the order of the index key values, but the data rows to which they point are
not guaranteed to be in any particular order unless a clustered index is also created
on the table. Up to 1000 nonclustered indexes may be applied to a table (or 999 if a
nonclustered index is also present).

Both clustered and nonclustered indexes in SQL Server can exhibit the following
qualities:

Composite—can contain more than one column in the index key

Can be unique or nonunique

Can be sorted in either ascending or descending order on the key columns

Clustered and nonclustered indexes are visited again later in the chapter, in the
section “Working with Data Objects.”

Functional Indexes
Oracle enables you to build indexes on the results of applying some function to the
column in question (a common example would be indexing on UPPER(LastName)).
SQL Server does not support this capability exactly, but it is possible to index computed

1 2 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

(or derived) columns in SQL Server. Therefore, we could add to our table a column
called ULastName whose default value was specified as the result of UPPER(LastName)
and then use this as a key column in an index. Examples of defining tables and indexes
and specifying default constraints are given in the section “Working with Data Objects.”

Views
All aspects of SQL Server views will be familiar to Oracle administrators, so we only
need to note a few general points here before visiting them from a practical standpoint
later in this chapter.

Views can be updated (that is, we can INSERT, UPDATE, and DELETE against
the base tables by referencing the view), although certain rules apply:

Modifying statements must reference columns from only one base table. Where
more complex modifications are required, INSTEAD OF triggers on views can be
used.

The columns that are being modified in the view must reference the underlying
data in the table columns directly. They cannot be derived in any other way, such
as through an aggregate function (for example, AVG or MAX) or being computed
based on other columns.

As with Oracle, the WITH CHECK option can be specified when a view is created,
the result being that the view will not allow any modifications that cause data that
previously met the criteria of the view to now not be returned by the view. For example,
if the WHERE clause of a view specified InvoiceDate < '2010-12-31', then attempting
to use the view to update the InvoiceDate value for a row to '2011-01-01' would fail.
TOP cannot be used anywhere in the SELECT statement of the view when WITH
CHECK OPTION is also specified.

SQL Server views can be indexed and, as such, function in exactly the same way
as Oracle’s materialized views. Indexed views are created by applying a clustered
index to the view and using this to store the view’s result set as if it were a table.
There are a couple of benefits from doing this: First, for a standard view, the overhead
of dynamically building the result set for each query that references a view can be
significant if the view involves complex processing of large numbers of rows or joining
many tables. This overhead is avoided when the view is indexed, although there is a new
cost in updating the clustered index as the underlying data changes. The second benefit
is that the SQL Server query optimizer will consider an indexed view for inclusion
in an execution plan as if it were any other index, i.e., even when the view is not
specifically named in the FROM clause. This can potentially benefit existing queries
without having to re-write them (although this automatically considering indexed

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 2 7

views is an Enterprise Edition feature). See Chapter 6 for more details on the query
optimizer.

Data Types
SQL Server provides native data types that allow us to efficiently store and effectively
work with the wide range of data required by modern business applications. Although
recent versions of SQL Server have added types such as those required by applications
working with geospatial data and XML, this section concentrates on the “traditional”
categories of database data type: character, numeric, date, and binary.

In-Row and Out-of-Row Data
As earlier chapters have covered, the smallest unit of logical storage within a SQL
Server data file is the fixed 8KB page. With the exception of special circumstances
described later in this section, SQL Server does not allow row chaining (that is, all
row data must fit into a single page) and, taking into account the overhead required for
header and directory information within the page, this means the maximum size of any
row of data is 8060 bytes.

This can be demonstrated by attempting to execute the following:

CREATE TABLE [Accounts].[BigData]

(

 Col1 char(2500),

 Col2 char(2500),

 Col3 char(2500),

 Col4 char(2500)

) ON [PRIMARY]

The resulting error is

Msg 1701, Level 16, State 1, Line 1

Creating or altering table 'BigData' failed because the minimum row size

would be 10007, including 7 bytes of internal overhead. This exceeds the

maximum allowable table row size of 8060 bytes.

While this restriction might seem like a severe limitation, subsequent to very early
versions of SQL Server, changes have been made that, in practice, enable you to easily
avoid this row size restriction. The first of these is that SQL Server provides dedicated
large object (LOB) data types (and LOB variants of other data types that are properly
known as large-value data types) that store columns using these types outside of the
regular data page on their own LOB pages. In these cases, a 16-byte pointer is stored in
the data row, indicating the location of the actual LOB data.

ON THE JOB
These LOB data types are identified in the individual sections that follow and should always be used for any

single column that might be required to store more than 8000 bytes. The default for the newer LOB types is

to store data in-row when it is smaller than 8000 bytes and out-of-row when larger. If required, the default

behavior can be changed to force LOB data to be stored out-of-row even if it is small.

The second enhancement to SQL Server in this area is to allow columns defined
with regular variable-width data types (those whose size is determined by the amount
of data stored, rather than the column definition) to behave in a similar fashion to
LOB types and overflow onto separate pages if the 8060-byte row limit is encountered.
When inserting a row that would not fit into a regular data page, SQL Server moves
variable-width columns (starting with the largest) onto row-overflow pages. These are
separate from LOB pages and, unlike LOB columns, variable-width columns are always
stored in-row until they need to overflow. Additionally, if space is freed within a row,
SQL Server will move data from a row-overflow page back to the original data page
to help optimize performance. Again, the variable-width types are identified in the
following sections.

Character Data
In storing and working with character data, SQL Server stores each character as either
1 or 2 bytes depending on whether it is non-Unicode or Unicode data. In each case,
the byte or bytes represent a single character as defined in a code page. SQL Server
supports a number of different code pages that map Latin (Western), Cyrillic, Arabic,
and Asian characters, among others, and the code page that SQL Server uses when
reading and writing character data is dependent upon the collation order in place.

Collation Orders Collations specify the rules for how strings of character data are
sorted and compared, based on the norms of particular languages and locales. These
rules are used by SQL Server in ordering query results and in building and organizing
indexes. Collation orders can be specified at different levels, from the instance to
the database and column or statement, and the order most specific to the data being
evaluated will be used. The instance collation order is specified when the instance is
installed, and this becomes the default for new databases; the collation order for the
database (either the instance default or a collation order specified when the database
was created) will be used as a default for columns in new tables.

When a collation is specified for non-Unicode character data, a particular code page
is associated with the collation. For example, if a char column in a table is defined with

1 2 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 2 9

the Latin1_General collation, the data in that column is interpreted and displayed by
SQL Server using the 1252 Latin 1 (ANSI) code page.

The full list of collation orders and code pages supported by SQL Server can be found
in Books Online.

The details of SQL Server’s character data types are shown in Table 4-2. Unicode
types have the “n” prefix before their names and use 2 bytes to store each character.

NOTE
The ntext and text data types will be removed in a future version of Microsoft SQL Server. Avoid using these data

types in new development work, and plan to modify applications that currently use them. Use nvarchar(max)

and varchar(max) instead.

Numeric Types
At first glance, SQL Server seems to provide a large number of different data types
for storing numeric data. These are, in fact, variations on three categories of data type:
those that store varying sizes of exact integer data, those that store exact versions of
decimal values at varying sizes and precisions, and those that store floating-point
approximations of numbers. A summary of these data types is given in Table 4-3.

Table 4-2 SQL Server Character Data Types

Data Type Size Storage Can Overflow

char 1 to 8000 bytes (fixed; but variable

when nullable)

In-row No

nchar 1 to 4000 bytes (fixed; but variable

when nullable)

In-row No

varchar 1 to 8000 bytes (variable) In-row Yes

varchar(max) 1 to (2^31) − 1 bytes (variable) In-row or out-of-row (large value) N/A

nvarchar 1 to 4000 bytes (variable) In-row Yes

nvarchar(max) 1 to (2^31) − 1 bytes (variable) In-row or out-of-row (large value) N/A

text 1 to (2^31) − 1 bytes (variable) In-row or out-of-row (LOB) N/A

ntext 1 to (2^30) − 1 bytes (variable) In-row or out-of-row (LOB) N/A

1 3 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

All numeric storage is fixed (even for numeric data types whose maximum storage
size is dependent upon their precision) and is stored in-row. You may see reference to
a SQL Server data type called vardecimal offering variable-length numeric storage, but
be aware that this has always been referred to as a storage format rather than a data
type and has been marked for deprecation.

Table 4-3 SQL Server Numeric Data Types

Data Type Range Storage Size Notes

bigint –2^63 to 2^63 − 1 8 bytes

int –2^31 to 2^31 − 1 4 bytes

smallint –2^15 to 2^15 − 1 2 bytes

tinyint 0 to 255 1 byte

decimal

(precision, scale)

10^38 +1 to 10^38 – 1 Between 5 and 17

bytes depending upon

the precision

Use the decimal data type to store

numbers with decimals when the

data values must be stored exactly

as specified.

numeric The numeric data type is functionally

equivalent to the decimal data type.

float –1.79*10^308 to –2.23*10^ − 308;

0; 2.23*10^308 to 1.79*10^308

Between 4 and 8 bytes

depending upon the

precision

The float and real data types are

approximate numeric data types and

do not store the exact values specified

for many numbers. In many cases, the

tiny difference between the specified

value and the stored approximation

is not noticeable. Be aware, however,

that at times the difference becomes

noticeable.

real –3.40*10^38 to –1.18*10^ − 38; 0;

1.18*10^ − 38 to 3.40*10^38

4 bytes

money –922,337,203,685,477.5808 to

922,337,203,685,477.5807

8 bytes Values can be inserted into Money

and Smallmoney columns, including a

recognized currency symbol (e.g., $),

without the need to enclose the value

in quotes. However, the currency

symbol is not stored, only the numeric

value. Money and Smallmoney are

limited to four decimal points. Use

the decimal data type if more decimal

points are required.

smallmoney –214,748.3648 to 214,748.3647 4 bytes

bit 0 to 1 1 bit Storage can be shared between bit

columns; that is, up to eight 1-bit

columns can share a single byte of

storage.

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 3 1

In SQL Server 2008 a data compression option called ROW COMPRESSION can
be used to convert all column data into variable-width storage. For large and wide tables,
this can reduce storage size significantly and provide similar storage characteristics to
Oracle, where all numeric types are stored in a variable-width format.

Date and Time Types
For older SQL Server databases, the stock data type for storing date and time information
was called datetime. This type is equivalent to Oracle’s timestamp time insomuch as it
stores both date and time data in a single structure (two 4-byte integers, the first to store
the number of days before or after January 1, 1900, represented by the date element and
the second to store the number of milliseconds after midnight that corresponds to any time
part). Alongside this we have the smalldatetime type, which uses two 2-byte integers to
store dates in a much smaller range and with lower precision in storing time data.

datetime has been considered limited for some time, not least for the reason that the
earliest date that can be stored using this type is January 1, 1753, making it acceptable for,
say, an HR system, but not so good for cataloging historic monuments. For this reason,
SQL Server now has the datetime2 type, which can be considered as an extension of the
existing datetime type and should be used for all new applications as it has a larger date
range and a greater (and user-defined) precision.

The characteristics of SQL Server’s date and time data types are shown in Table 4-4.

Table 4-4 SQL Server Date and Time Data Types

Data Type Range Storage Size Notes

datetime January 1, 1753 to

December 31, 9999

8 bytes Precise to one three-hundredth of a second

datetime2(n) January 1, 0001 to

December 31, 9999

Between 6 and 8 bytes

depending upon the precision

User-defined precision up to a maximum of

100 nanoseconds

datetimeoffset January 1, 0001 to

December 31, 9999

10 bytes As above and adds time zone awareness

(although it has no daylight saving awareness). By

this we mean that a time zone offset (−14 to 14)

can be stored with the date and time data.

smalldatetime January 1, 1900 to

June 6, 2079

4 bytes Precise to one minute

date January 1, 0001 to

December 31, 9999

3 bytes Precise to one day (stores no time information)

time 00:00:00.0000000 to

23:59:59.9999999

5 bytes User-defined precision up to a maximum of

100 nanoseconds

1 3 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Binary Types
As with character data, binary data types in SQL Server can be either fixed or
variable in length and may be stored either in-row or out-of-row depending upon the
data type chosen and table options. SQL Server’s binary data types are summarized
in Table 4-5.

NOTE
The image data type will be removed in a future version of Microsoft SQL Server. Use varbinary(max) instead.

Oracle DBA Q&A

Q: I’ve seen reference to a timestamp data type in SQL Server; how does this
relate to Oracle’s timestamp type?

A: It does not relate at all. SQL Server’s timestamp data type is now deprecated
and has been replaced by rowversion. Even so, neither of these types is related to the
SQL-92 timestamp as implemented by Oracle; they are binary types that are used
to version-stamp table rows. Another common misconception is that timestamp
can be used to create a human-readable record of when a row was created. To create
such a timestamp, you would use your required date data type from Table 4-4 and
the GETDATE() function in conjunction with a default constraint (an example of
this is given later in this chapter).

Data Type Size Storage Can Overflow

binary 1 to 8000 bytes (fixed) In-row No

varbinary 1 to 8000 bytes (variable) In-row Yes

varbinary(max) 1 to (2^31) − 1 bytes (variable) In-row or out-of-row (large value) N/A

image 1 to (2^31) − 1 bytes (variable) In-row or out-of-row (LOB) N/A

Table 4-5 SQL Server Binary Data Types

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 3 3

Other Data Types
Other data types of note that don’t fit into any of the preceding categories are

uniqueidentifier A data type that can store a Globally Unique Identifier
(GUID), a 16-byte binary value that is guaranteed to be unique across all
computers. The NEWID() and NEWSEQUENTIALID() functions generate
such an identifier. NEWSEQUENTIALID() generates monotonically increasing
values and can only be specified in a column default.

sql_variant A data type that can store values of multiple different SQL Server
data types, including character, numeric, date, and binary types. It cannot store,
however, LOB or large-value data types, timestamp, sql_variant itself, or user-
defined data types.

User-Defined Data Types
SQL Server allows administrators and developers to create three kinds of user-defined
data types:

User-defined data types Take system types and specialize them to create new
types. To take an example from the AdventureWorks2008 sample database, the
syntax for creating such a type is

CREATE TYPE [dbo].[Phone] FROM [nvarchar](25) NULL

User-defined table types Allow us to define in-memory table structures that
can be used to work with sets of data in a similar fashion to cursors but, crucially,
also allow these structures to be passed between programmatic elements such as
stored procedures and functions. For example:

CREATE TYPE dbo.ContactInformation AS TABLE
(
 [PersonID] int NOT NULL,
 [FirstName] [nvarchar](50) NULL,
 [LastName] [nvarchar](50) NULL,
 [JobTitle] [nvarchar](50) NULL,
 [BusinessEntityType] [nvarchar](50) NULL
)
GO

User-defined types (as opposed to user-defined data types) Defined outside of
SQL Server using a CLR programming language such as C# or VB.NET; they
may contain multiple elements and may even encapsulate behaviors that then
become available in queries.

1 3 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Querying the System Catalog
As discussed earlier, SQL Server provides a large number of system catalog views to
enable administrators to inspect all aspects of the objects within a database. Following is
a selection of those views that would prove useful in querying for the objects described
in this chapter:

sys.objects sys.tables

sys.columns sys.views

sys.computed_columns sys.default_constraints

sys.check_constraints sys.filegroups

sys.foreign_keys sys.foreign_key_columns

sys.identity_columns sys.indexes

sys.index_columns sys.key_constraints

sys.synonyms sys.partitions

sys.partition_schemes sys.sql_dependencies

ON THE JOB
A very useful resource to guide administrators as to how to construct queries across these various views is the

SQL Server System Views Map, which is a poster showing the key system views included in SQL Server and,

perhaps more importantly, the relationships between them. You can find the map by searching for “SQL Server

2008 System Views Map” using your favorite search engine.

Working with Data Objects
SQL Server Management Studio provides a great deal of support for administrators
working with data objects. Several specific tasks are described through the course of this
section and we will take a quick look at some others here:

Read and update tables From the right-click context menu of any table or view,
you can choose Select Top 1000 Rows or Edit Top 200 Rows, either of which
opens a grid that allows you to read or update the contents. The actual number of
rows in each case can be customized through setting Management Studio options.

Script DDL and DML for objects The options vary depending upon the
type of object, but the context menu of each SQL Server object allows you to
create scripts for the object’s CREATE, DROP, and (potentially) ALTER DDL
statements. Additionally, DML scripts representing the actions relevant for that

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 3 5

object type (for example, INSERT, SELECT, UPDATE, and DELETE for tables
and EXECUTE for stored procedures) can also be scripted. The scripts can be
sent to file, the clipboard, or to a new query window in Management Studio.

View dependencies From the context menu of any SQL Server object, you can
select View Dependencies and either list those objects that depend on the selected
object or vice versa. The output is shown in Figure 4-5.

Rename and drop objects From the context menu of any SQL Server
object, you can drop the object from the database by selecting Delete or, where
appropriate, you can rename the option by selecting Rename.

Figure 4-5 Object Dependencies dialog box

1 3 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Creating Tables
This section describes using SQL Server Management Studio to create tables.

Selecting New Table from the context menu of the Tables node of Object Explorer
opens the Table Designer, shown in Figure 4-6. From here, you can add columns to the
table, specifying for each a name, a data type, and some additional properties.

However, while the Column Properties pane is always visible, the right-hand pane
showing properties for the table itself may not be. If this is closed, make sure you have
focus on the Table Designer and then select View | Properties Window from the
Management Studio menu bar.

From the Properties window, you can

Set the table name (if you don’t specify a name at this point, you will be prompted
to name the table at the point you apply your changes).

Figure 4-6 The Table Designer

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 3 7

Add a description for the table.

Set the schema for the table.

Specify the filegroup to which this table will belong (both for “regular” data and
for out-of-row large-value types).

The remaining property, Lock Escalation, is discussed in Chapter 6.
In this example, the InvoiceNo column is an identity column seeded at 1 and

increasing in increments of 1. This is set from the Column Properties pane for the
column, as shown in Figure 4-7.

To create the table, or to apply any subsequent changes made in the Table Designer,
you need to click the Save button on the Table Designer toolbar (see Figure 4-8) or
press ctrl-S.

However, before saving a change, it is worth knowing that you can script the proposed
changes out to a file, perhaps for review or approval before applying them. In this case,
click the Generate Change Script button on the toolbar, shown in Figure 4-9.

The following is the script generated from creating the table shown in Figure 4-6
using the Table Designer:

BEGIN TRANSACTION

GO

CREATE TABLE Accounts.Invoice

 (

 InvoiceNo int NOT NULL IDENTITY (1, 1),

 CustomerID int NOT NULL,

 InvoiceDate datetime NOT NULL,

 InvoiceDueDate datetime NOT NULL,

 HeaderText nvarchar(512) NULL

) ON [PRIMARY]

GO

ALTER TABLE Accounts.Invoice SET (LOCK_ESCALATION = TABLE)

GO

COMMIT

Note that, unlike Oracle, SQL Server supports running a DDL statement in a
transaction, which enables the DBA to write more reliable change scripts.

Whenever you’re creating a new object in SQL Server, you may need to refresh
Object Explorer to see the new object in the tree. The location of the Refresh button is
shown in Figure 4-10.

1 3 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 4-8 Saving in the Table Designer

Figure 4-9 Generate Change Script button

Figure 4-7 Column Properties pane

Figure 4-10 The Object Explorer Refresh button

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 3 9

Once you have applied changes and closed the Table Designer, you can reopen it for an
existing object by selecting Design from the context menu for the table in Object Explorer.

Creating Constraints
The Table Designer makes applying a certain kind of constraint—whether or not a
column may accept NULL values—extremely simple by providing the Allow Nulls
check box, as seen in Figure 4-6. Other constraints, such as key constraints and unique
constraints, are implemented as indexes and are discussed in the next section. Here, we
will look at creating check constraints using the Table Designer.

Clicking the Check Constraints button on the Table Designer toolbar (see Figure 4-11)
opens the Check Constraints dialog box (see Figure 4-12).

For a new check constraint, you need to specify an expression to describe the
constraint and you need to allow or prevent the following rules:

Check Existing Data On Creation Or Re-Enabling

Enforce For INSERTs And UPDATEs

Enforce For Replication

Figure 4-11 The Table Designer Check Constraints button

Figure 4-12 The Check Constraints dialog box

1 4 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

In this example, the expression specified is

InvoiceDueDate > InvoiceDate

By way of a test, executing the following query gives the error that this constraint has
been violated:

INSERT INTO [AdventureWorks2008].[Accounts].[Invoice]

 ([CustomerID]

 ,[InvoiceDate]

 ,[InvoiceDueDate])

 VALUES

 (2

 ,'2010-02-11'

 ,'2010-02-10')

GO

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the CHECK constraint "CK_Invoice".

The conflict occurred in database "AdventureWorks2008", table "Accounts.

Invoice".

The statement has been terminated.

Although not always thought of as constraints, you can also add default value
specifications to your columns in the Table Designer. This time the default value or
the expression used to compute it is specified in the Column Properties pane for the
column in question. Figure 4-13 shows the GETDATE() function being used to write

Figure 4-13 Using a function in a default value

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 4 1

today’s date to the InvoiceDate column by default. Default constraints are applied only
when no value is provided for the column upon insert and will not be applied if NULL
is specified for the column (this is not considered the same as not providing a value).

Figure 4-14 shows both of the items created as constraints in this section in Object
Explorer (DF_Invoice_InvoiceDate is the name of the default value definition).

Creating Indexes
As mentioned in the previous section, key constraints are implemented as indexes; in
fact, the most common way that clustered indexes are applied to SQL Server tables is
by creating a primary key on the table. You should remember that you can apply
a clustered index to a table without creating a primary key, but, however it is created,
there can be only one clustered index for a given table.

In the Table Designer, you can select a column (or use the ctrl key to select more
than one column) and click the Add Primary Key button on the Table Designer toolbar,
shown selected in Figure 4-15.

The key symbol should appear next to the required column, as shown in Figure 4-16.
After you have done this, Object Explorer displays the new object as both a key and

an index, as shown in Figure 4-17. The script for this new primary key is given at the
end of this section.

Figure 4-14 Constraints in Object Explorer

Figure 4-15 The Table Designer Add Primary Key button

1 4 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

To create a nonclustered index or to create a clustered index without a primary
key, you can use the Indexes/Keys dialog box, which you open by clicking the
Manage Indexes and Keys button on the Table Designer toolbar (selected in
Figure 4-18).

However, it is simpler to select New Index from the context menu of the Indexes
node of Object Explorer to open the New Index dialog box. The same dialog box is also
used to edit an existing index and in this case it is called the Index Properties dialog
box, as shown in Figure 4-19.

Figure 4-19 shows the General page of the Index Properties dialog box during the
process of creating a nonclustered index named IX_Invoice_InvoiceDueDate on the
table [Accounts].[Invoice]. This index is being created with the following example
query in mind:

SELECT CustomerRefNo FROM Accounts.Invoice WHERE

 (CustomerID = 1 AND InvoiceDueDate = '2010-02-21')

Figure 4-16 A Primary Key column in the Table Designer

Figure 4-17 A Primary Key in Object Explorer

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 4 3

From the General page, you can specify

Table name

Index name

Index type—Clustered or Nonclustered

Unique—whether the index is to be used to create a Unique constraint

A list of index key columns (up to 16)

Figure 4-18 The Table Designer Manage Indexes and Keys button

Figure 4-19 The Index Properties dialog box

1 4 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The Options page offers the following options:

Option Description

Automatically recompute statistics Specifies whether distribution statistics are automatically recomputed for the

index. The default value is ON.

Use row locks when accessing the index Allows SQL Server to acquire row locks on the index when accessing it. The

default is ON.

Use page locks when accessing the index Allows SQL Server to acquire page locks across the index when accessing it. The

default is ON.

Store intermediate sort results in tempdb Specifies whether the intermediate sort results that are used to build the index

are stored in the tempdb system database. This may reduce the time required to

create an index if tempdb is on a different set of disks from the user database.

However, this increases the amount of disk space that is used during the index

build. The default is OFF.

Set fill factor Determines the percentage of space on each leaf-level page to be filled with

data, reserving the remainder on each page as free space for future growth. The

default is 0, which SQL Server interprets as “fill each leaf-level page to capacity.”

Allow online processing of DML

statement while creating the index

Specifies whether data in the underlying table is available for modification

while the index is created or rebuilt. See the upcoming section “Rebuilding and

Reorganizing Indexes” for more information.

Set maximum degree of parallelism Can be used to override the instance-wide setting governing the number of

processors that SQL Server will use to process queries using this index when the

execution plan allows for parallel operations. The default is 0, which instructs

SQL Server to use the instance option or to determine the degree of parallelism

depending upon the instance workload. A value of 1 suppresses parallel plan

generation, and any other value specifies the number of processors to be used.

Use index Allows an index to be disabled. A disabled index is not considered by the

optimizer when generating execution plans, and the index is not maintained.

If the index is a clustered index, then data in the underlying table becomes

unavailable.

Chapter 6 describes concepts such as execution plans, statistics, and locks in more
detail.

Included Columns
SQL Server allows columns to be used by the index without being key columns. These
columns, called included columns, are added only to the leaf level of the index. This has
the benefit of giving administrators and developers the best chance of covering their

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 4 5

queries (ensuring that all of the columns referenced in the query are part of an index)
while optimizing index size by making sure that the intermediate level of the index is
not “bloated” with columns that are not part of the search criteria. Furthermore, included
columns overcome the 16-column limit applied to key columns since the maximum
number of included non-key columns for an index is 1023. Included columns can be
used with nonclustered indexes only.

The Included Columns page of the Index Properties dialog box allows the list of
included columns to be specified. In our example index, the column CustomerRefNo
has been included.

The Storage page of the Index Properties dialog box allows you to associate this new
index with a Filegroup.

Filtered Indexes
A filtered index is a nonclustered index that uses a filter expression to index only
a portion of rows in a table. This could be a range of values, such as a date range.
However, filtered indexes are perhaps best suited to queries that select from tables that
contain a smaller subset of data. For example, when the values in a column are mostly
NULL and the query selects only from the non-NULL values, you can create a filtered
index for the non-NULL data rows. The resulting index will be smaller and cost less
to maintain than a nonclustered index on the same key columns. Or, a “sliding” index
might be created that indexes only rows relating to the previous month or year.

The Filter page of the Index Properties dialog box allows you to specify a filter
expression for an index. This expression cannot reference a computed column or use
the LIKE operator.

Like the majority of dialog boxes in the SQL Server Management Studio, the Index
Properties dialog box has a Script menu, as shown in Figure 4-20, which allows an
administrator to script the action about to be applied to various destinations.

Figure 4-20 The Script menu in the Index Properties dialog box

1 4 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The resulting script for our example index is

CREATE NONCLUSTERED INDEX [IX_Invoice_InvoiceDueDate]

 ON [Accounts].[Invoice]

(

 [CustomerID] ASC,

 [InvoiceDueDate] ASC

)

INCLUDE ([CustomerRefNo])

WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF,

 DROP_EXISTING = OFF, ONLINE = OFF,

 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY]

GO

This index with a filter expression might look like this:

CREATE NONCLUSTERED INDEX [IX_Invoice_InvoiceDueDate]

 ON [Accounts].[Invoice]

(

 [CustomerID] ASC,

 [InvoiceDueDate] ASC

)

INCLUDE ([CustomerRefNo])

WHERE ([InvoiceDueDate]>'2010-01-01')

WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF,

 DROP_EXISTING = OFF, ONLINE = OFF,

 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY]

GO

As a final point, it is interesting to compare the syntax for creating a Primary Key
and a clustered index on the same columns:

CREATE UNIQUE CLUSTERED INDEX [IX_Invoice]

 ON [Accounts].[Invoice]

(

 [InvoiceNo] ASC

)

WITH (STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF,

 DROP_EXISTING = OFF, ONLINE = OFF,

 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 4 7

ON [PRIMARY]

GO

ALTER TABLE [Accounts].[Invoice]

 ADD CONSTRAINT [PK_Invoice] PRIMARY KEY CLUSTERED

(

 [InvoiceNo] ASC

)

WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF,

 ONLINE = OFF, ALLOW_ROW_LOCKS = ON,

 ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY]

GO

This should confirm that creating a Primary Key is equivalent to a CREATE
UNIQUE CLUSTERED INDEX statement within an ALTER TABLE statement.

Rebuilding and Reorganizing Indexes
Indexes can be either rebuilt or reorganized to improve query performance by reducing
fragmentation—that is, where the logical ordering of the index does not match the
physical ordering within the data file.

These two techniques can be described as follows:

Reorganizing The physical reordering of leaf-level pages to match the logical order.

Rebuilding Dropping the index and creating a new one. The physical ordering
of this new index matches the logical ordering, and the index rows are positioned
in contiguous pages. This has the additional benefit of acting to reduce the number
of page reads required to return the required index data.

The system function sys.dm_db_index_physical_stats can be used to return
information that is useful in determining which of the preceding methods is most
appropriate in defragmenting a particular index (or indexes, including indexed view,
which are discussed later in the chapter).

The result set returned by the sys.dm_db_index_physical_stats function includes the
following columns:

Column Description

avg_fragmentation_in_percent The percent of logical fragmentation (out-of-order pages in the index)

fragment_count The number of fragments (physically consecutive leaf pages) in the index

avg_fragment_size_in_pages Average number of pages in one fragment in an index

1 4 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Based on the value returned in the avg_fragmentation_in_percent column, the
recommendation is that where fragmentation is between 5 percent and 30 percent,
the index should be reorganized, and where fragmentation is greater than 30 percent,
the index should be rebuilt. Where fragmentation is less than 5 percent, the cost of either
rebuilding or reorganizing the index almost always outweighs the benefits.

From SQL Server Management Studio, you can rebuild or reorganize an index from
the context menu of that index in Object Explorer, as shown in Figure 4-21.

The following are the equivalent scripts for rebuilding and reorganizing the table
[Accounts].[Invoice].

Rebuild:

ALTER INDEX [IX_Invoice_InvoiceDueDate] ON

 [Accounts].[Invoice] REBUILD PARTITION = ALL

WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON,

 ONLINE = OFF, SORT_IN_TEMPDB = OFF,

 DATA_COMPRESSION = NONE)

GO

Figure 4-21 The index context menu

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 4 9

Reorganize:

ALTER INDEX [IX_Invoice_InvoiceDueDate] ON

 [Accounts].[Invoice] REORGANIZE

WITH (LOB_COMPACTION = ON)

GO

ON THE JOB
Reorganizing indexes is always an online operation (that is, one that can be performed while the database

processes queries against the index’s underlying table). Rebuilding an index can potentially be performed either

online or offline, with the default being offline. To rebuild an index online, you need to specify the ONLINE = ON

option as part of the WITH clause and, crucially, you need SQL Server Enterprise Edition because this is considered

a high-availability feature and is not present in other editions.

Modifying Indexes
Only a few changes can be made to an existing index. The ALTER INDEX statement
allows for certain options to be set, but not for any changes to the structure of the index.
To modify an index in this way, you need to drop and re-create the index, although the
CREATE INDEX statement does, at least, allow you to carry this out in one step using
the WITH DROP EXISTING = ON option. For example:

CREATE NONCLUSTERED INDEX [IX_Invoice_InvoiceDueDate]

 ON [Accounts].[Invoice]

(

 [CustomerID] ASC,

 [InvoiceDueDate] ASC

)

INCLUDE ([CustomerRefNo])

WITH (DROP_EXISTING = ON, PAD_INDEX = OFF,

 STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF,

 ONLINE = OFF, ALLOW_ROW_LOCKS = ON,

 ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY]

GO

Creating Relationships
Let’s imagine that we want to create a Foreign Key relationship between the [Accounts].
[Invoice] table and a new table described in the following CREATE TABLE statement:

CREATE TABLE Accounts.InvoiceLine

 (

 InvoiceNo int NOT NULL,

1 5 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

 InvoiceLineNo int NOT NULL,

 ProductID int NOT NULL,

 Quantity int NOT NULL,

 UnitPrice money NOT NULL,

 InvoiceLineDesc nvarchar(50) NULL

) ON [PRIMARY]

GO

Having created this table, we can click the Relationships button on the Table
Designer toolbar (highlighted in Figure 4-22) to open the Foreign Key Relationships
dialog box.

NOTE
Make sure that the relationship is created from the “child” table.

In the Foreign Key Relationships dialog box (shown in Figure 4-23), we can specify
a name for the relationship and, by clicking the ellipsis (...) button next to the Tables
And Columns Specification label, use the Tables and Columns dialog box to define
on which columns the relationship between [Accounts].[Invoice] and [Accounts]
.[InvoiceLine] will be built.

As shown in Figure 4-24, for our example we can use the Tables and Columns dialog
box to give the relationship a name, pick the Invoice table as the Primary Key table, and
identify the InvoiceNo column in both tables as the key column.

You can now see the relationship in Object Explorer, as shown in Figure 4-25.
The equivalent script for this Foreign Key is

ALTER TABLE [Accounts].[InvoiceLine] WITH CHECK ADD CONSTRAINT

 [FK_InvoiceLine_Invoice] FOREIGN KEY([InvoiceNo])

REFERENCES [Accounts].[Invoice] ([InvoiceNo])

GO

If we want to inspect relationships within a SQL Server database, we can use
Management Studio to view dependencies between objects, as described earlier in

Figure 4-22 The Table Designer Relationships button

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 5 1

this chapter, or we can use the following system catalog and dynamic management
views:

sys.sq_dependencies

sys.sql_expression_dependencies

sys.dm_sql_referenced_entities

sys.dm_sql_referencing_entities

Figure 4-23 The Foreign Key Relationships dialog box

Figure 4-24 The Tables and Columns dialog box

1 5 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

We can also use a SQL Server Management Studio feature called database diagrams.
These provide a graphical representation of the relationships between some or all of
the tables in a database and can be created by selecting New Database Diagram from
the context menu of the Database Diagrams node in Object Explorer. Working with
database diagrams also allows us to edit the table definitions and relationships.

The Add Table dialog box (see Figure 4-26) allows us to select the tables we require
in our diagram, the resulting output of which is shown in Figure 4-27. In this case,
additional relationships have been created between the Invoice and Customer tables
and between the InvoiceLine and Product tables.

Figure 4-25 A Foreign Key relationship in Object Explorer

Figure 4-26 The Add Table dialog box for creating database diagrams

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 5 3

Be aware that when you’re creating a database diagram for the first time within a
SQL Server database, you are prompted to create some required objects. The objects
that SQL Server automatically creates within the database are listed here:

Object Type Name

Function fn_diagramobjects

Stored procedure sp_alterdiagram

Stored procedure sp_creatediagram

Stored procedure sp_dropdiagram

Stored procedure sp_helpdiagramdefinition

Stored procedure sp_renamediagram

Stored procedure sp_upgradediagrams

All of these objects are created in the dbo schema.

Figure 4-27 A Database Diagram

1 5 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Creating Views
The syntax for creating a view in SQL Server is almost identical to that in Oracle (an
example of which is given later in this section). However, SQL Server Management
Studio provides a graphical designer (which is in certain ways similar to the Database
Diagram functionality described previously) that can be used as an alternative to
“handcrafting” the scripts to create and modify views.

The View Designer is similar to the Table Designer in that it is accessed by selecting
New View from the Views node in Object Explorer or by selecting Design from the
context menu of an existing view. For a new view, the Add Table dialog box is opened
automatically as when constructing a Database Diagram, although in this case you
can select views, functions (table-valued), and synonyms as well as tables. With tables
selected, the View Designer is shown, and it will look similar to Figure 4-28.

Figure 4-28 The View Designer

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 5 5

In the View Designer, you can check columns to include them in the view, and you
can use the center grid to specify filter expressions and aliases for columns and include
them in the ORDER BY clause. The SELECT statement on which the view is based is
generated and updated automatically. Clicking Execute from the View Designer toolbar
causes this statement to be executed and the results to be returned in the lower pane of
the View Designer.

As with tables, you need to ensure that the Properties pane for the view is visible by
selecting View | Properties Window from Management Studio, so that you can specify
properties such as the schema in which the view will be created. You must click Save for
changes to be applied.

This same graphical view can be used when creating ad hoc SELECT queries in
Management Studio. Right-clicking in any white space in a query window allows you
to select Design Query in Editor. This opens the Add Table dialog box, in which you
select base tables and then select columns and specify filter expressions, causing the
SELECT statement to be built automatically.

CREATE VIEW [Accounts].[CustomerInvoices]

AS

SELECT Sales.Customer.CustomerID, Sales.Customer.AccountNumber,

 Accounts.Invoice.InvoiceDate, Accounts.Invoice.CustomerRefNo,

 Accounts.InvoiceLine.ProductID,

 Accounts.InvoiceLine.Quantity,

 Accounts.InvoiceLine.UnitPrice, Accounts.InvoiceLine.InvoiceLineDesc

FROM Sales.Customer INNER JOIN

 Accounts.Invoice ON Sales.Customer.CustomerID =

 Accounts.Invoice.CustomerID INNER JOIN

 Accounts.InvoiceLine ON Accounts.Invoice.InvoiceNo =

 Accounts.InvoiceLine.InvoiceNo

WHERE (Sales.Customer.CustomerID = 1)

GO

Creating Indexed Views
To create an indexed view, the view definition must include the WITH
SCHEMABINDING option, as follows, which instructs SQL Server to check any
modifications to objects on which the view depends (such as the underlying tables) and
disallow modifications that would render the view invalid:

CREATE VIEW [Accounts].[CustomerInvoices]

WITH SCHEMABINDING

AS

...

1 5 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Once this has been done, an index may be applied to the view in the same way
that it would be for the table, either using SQL Server Management Studio or in
script—although only unique clustered indexes are allowed for views. For example:

CREATE UNIQUE CLUSTERED INDEX [IX_CustomerInvoices] ON

[Accounts].[CustomerInvoices]

(

 [CustomerID] ASC,

 [InvoiceDate] ASC

ON [PRIMARY]

GO

Indexed Views vs. Filtered Indexes
Given that a fundamental characteristic of views is that they can use a predicate to
return a subset of the underlying data, an indexed view and a filtered index have a
large amount of functional equivalence. However, filtered indexes have a number of
performance advantages over indexed views, namely that they require fewer CPU
resources when updated and are more likely to be considered by the optimizer when
building query plans (see Chapter 6). Also, filtered indexes can be rebuilt as an online
operation, whereas indexed views cannot. Finally, filtered indexes offer the flexibility of
using non-unique indexes, which is not possible with indexed views.

Having said this, there will be circumstances in which only a view gives you the required
functionality, such as when you want to reference more than one underlying table or want
to use computed columns, or when the predicate expression (the WHERE clause) is more
complex than could be applied to a filtered index.

Filegroups and Partitioning
As described in Chapter 2, filegroups provide an interface between objects that store
data and SQL Server’s data files, and if you want to implement a physical data design
that separates sets of data across more than one physical file location, you need to create
additional files and filegroups within your databases.

Creating Files and Filegroups
Files and filegroups can both be created from the Database Properties dialog box.
Because data files must always belong to a filegroup, it is necessary to create the new
filegroup before creating the files that it will manage. The Filegroups page of the
Database Properties dialog box is shown in Figure 4-29.

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 5 7

As the dialog box indicates, two types of filegroup exist, Rows and Filestream. Rows
filegroups manage data in tables and indexes. Filestream filegroups are a means of
presenting an interface to binary data (varbinary(max)) objects stored outside of SQL
Server, directly on the NTFS file system. Filestream filegroups are not described here;
we will look only at Rows filegroups.

Clicking Add on the Filegroups page creates a new blank row in the list of
filegroups, allowing you to specify a name for the new filegroup. It is created when you
click OK. Having done this, you can use the Files page of the Database Properties
dialog box (see Figure 4-30) to add data files to this filegroup. Again, clicking Add

Figure 4-29 Filegroups in the Database Properties dialog box

1 5 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

creates a new row in the list of files but this time, you need to specify slightly more
information, namely:

Logical Name The name used by SQL Server to refer to the file.

Physical Name This will default to a combination of the default data directory,
the logical name, and the file extension .ndf.

Initial Size The initial size of the new file.

Autogrowth Whether the file may auto-grow as it becomes full, the increment
by which it will grow if autogrowth is enabled and, optionally, a maximum file size.

Figure 4-30 Files in the Database Properties dialog box

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 5 9

The script for creating a new filegroup named IndexData and adding three new data
files to it would look like this:

USE [master]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILEGROUP [IndexData]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILE (NAME = N'IndexData1',

 FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\IndexData1.ndf',

 SIZE = 2048KB , FILEGROWTH = 1024KB) TO FILEGROUP [IndexData]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILE (NAME = N'IndexData2',

 FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\IndexData2.ndf',

 SIZE = 2048KB , FILEGROWTH = 1024KB) TO FILEGROUP [IndexData]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILE (NAME = N'IndexData3',

 FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\IndexData3.ndf',

 SIZE = 2048KB , FILEGROWTH = 1024KB) TO FILEGROUP [IndexData]

GO

Having done this, you can add tables or indexes to this filegroup in accordance with
your data design. Existing tables cannot be moved between filegroups and, strictly
speaking, neither can indexes; however, by using the DROP_EXISTING =ON option,
you can re-create an index on your new filegroup like so:

CREATE NONCLUSTERED INDEX [IX_Invoice_InvoiceDueDate]

 ON [Accounts].[Invoice]

(

 [CustomerID] ASC,

 [InvoiceDueDate] ASC

)

INCLUDE ([CustomerRefNo])

ON [IndexData]

GO

1 6 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Keep in mind that if the index is a clustered index then recreating it on a new filegroup
will, in effect, move the table to which the index belongs to the new filegroup. For a new
table, the CREATE TABLE statement would simply reference the new filegroup just as
the preceding example does.

Partitioning
Tables, indexes, and indexed views can have their storage partitioned across multiple
filegroups. This can provide several benefits, including improved performance because
the SQL Server optimizer is partition-aware and will design data access plans
accordingly when partitions are found. Furthermore, various maintenance operations
can be carried out at the partition level, including recovery from backup.

Much like in Oracle, tables and indexes are partitioned “horizontally,” meaning that
all partitions contain the same columns (and, in the case of tables, the same constraints)
but rows are divided between partitions based upon a set of rules known as a partition
scheme.

In this example, the index IX_Invoice_InvoiceDueDate will be partitioned across
four filegroups, each containing data belonging to a calendar quarter of the year 2010.
The first step is to create the filegroups and data files:

ALTER DATABASE [AdventureWorks2008]

 ADD FILEGROUP [2010Q1]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILEGROUP [2010Q2]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILEGROUP [2010Q3]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILEGROUP [2010Q4]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILE (NAME = N'2010Q1',

 FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\2010Q1.ndf',

 SIZE = 2048KB , FILEGROWTH = 1024KB) TO FILEGROUP [2010Q1]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILE (NAME = N'2010Q2',

 FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\2010Q2.ndf',

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 6 1

 SIZE = 2048KB , FILEGROWTH = 1024KB) TO FILEGROUP [2010Q2]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILE (NAME = N'2010Q3',

 FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\2010Q3.ndf',

 SIZE = 2048KB , FILEGROWTH = 1024KB) TO FILEGROUP [2010Q3]

GO

ALTER DATABASE [AdventureWorks2008]

 ADD FILE (NAME = N'2010Q4',

 FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\2010Q4.ndf',

 SIZE = 2048KB , FILEGROWTH = 1024KB) TO FILEGROUP [2010Q4]

We now need to define the rules that determine how rows are divided among the
filegroups:

CREATE PARTITION FUNCTION PF_InvoiceInvoiceDueDate(datetime2)

AS

RANGE RIGHT FOR VALUES

('20100101','20100301','20100601','20100901')

GO

This partition function object states that when the column in question is inspected,
rows will be placed in either the first, second, third, or fourth partition based on
whether the column value is greater or less than the specified boundary values. The
RANGE RIGHT option instructs SQL Server that each boundary value belongs
to the partition on its right, so values from Midnight, March 1, 2010, and less than
Midnight, June 1, 2010, will belong to partition number 3. Note that all values earlier
than 20100101 (January 1, 2010) will belong to the first partition.

A partition scheme object can now be created to tie our partition function ranges to
the filegroups that we created earlier:

CREATE PARTITION SCHEME PS_InvoiceInvoiceDueDate

AS

PARTITION PF_InvoiceInvoiceDueDate

TO ([PRIMARY],

 [2010Q1],[2010Q2],[2010Q3],[2010Q4])

GO

Multiple tables can share the same partition scheme or partition function. And a
table’s indexes can be located on the same partition scheme as the table, in which case

1 6 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

they are called “partition aligned,” or the indexes can be unpartitioned or stored on a
different partition scheme. In SQL Server, a table can only be partitioned on a single
column, and cannot be subpartitioned.

There is also a wizard in the GUI to partition an existing table, available in the
context menu for the table under Storage | Create Partition. Existing partition schemes
and partition functions can be viewed in Object Explorer, as shown in Figure 4-31.

Tables and indexes can now be assigned to this partition scheme in exactly the same
way as specifying a standard filegroup. In doing this, we need to specify which column
will provide the values that will be evaluated as rows are placed in partitions:

CREATE NONCLUSTERED INDEX [IX_Invoice_InvoiceDueDate]

 ON [Accounts].[Invoice]

(

 [CustomerID] ASC,

 [InvoiceDueDate] ASC

)

INCLUDE ([CustomerRefNo])

ON [PS_InvoiceInvoiceDueDate] ([InvoiceDueDate])

GO

To give an example of a common operation performed against a single partition, we
can now rebuild only the latest partition of this index. To do this we need to determine

Figure 4-31 Partition Schemes and Functions in Object Explorer

C h a p t e r 4 : D a t a b a s e O b j e c t s 1 6 3

a value known as the destination_id for the partition, for which we can use the following
query (which aliases this column as Partition No.):

SELECT

 ds.name AS [Filegroup],

 dds.destination_id AS [Partition No],

 ps.name AS [Scheme]

FROM

 sys.data_spaces ds

 JOIN

 sys.destination_data_spaces dds

 ON

 (ds.data_space_id = dds.data_space_id)

 JOIN

 sys.partition_schemes ps

 ON

 (ps.data_space_id = dds.partition_scheme_id)

ORDER BY ds.name, ps.name ASC

The result of running this query is shown in Figure 4-32.
We can now use this value when rebuilding the index:

ALTER INDEX IX_Invoice_InvoiceDueDate

 ON [Accounts].[Invoice]

 REBUILD PARTITION = 5

GO

The $PARTITION function can also be very useful when working with partitions
or when testing new partition functions, as it can return the partition number for
a given value or set of values. For example:

ALTER INDEX IX_Invoice_InvoiceDueDate

 ON [Accounts].[Invoice]

 REBUILD PARTITION = $partition.PF_InvoiceInvoiceDueDate('20100901')

GO

Figure 4-32 Identifying partitions

This page intentionally left blank

Security

Chapter 5

In This Chapter

Security Objects

Protecting SQL Server
Databases

1 6 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

This chapter describes the features available in SQL Server that allow
administrators to effectively control access to database objects and data. It also
describes the database features that can further enhance security within a SQL

Server installation. Where there are security implications for administrators in carrying
out tasks that are described elsewhere in this book, those implications are discussed in
the relevant chapters.

This chapter does not attempt to highlight every aspect of SQL Server that, through
misconfiguration or improper deployment, can act to create security vulnerabilities,
nor does it try to list every tool or technique for addressing these vulnerabilities. Put
simply, there are so many factors outside of any database system that can influence its
operational security, from physical access through to operating system and network
configuration, that becoming an expert in this field takes many years and is beyond the
scope of this book.

NOTE
The chapter introduces a SQL Server object called a User. To differentiate this object from a person initiating a

database request, the SQL Server object is always capitalized (“User”) and the more general term is written in

lowercase (“user”).

Security Objects
The model for controlling access to a SQL Server database is built from a combination
of many types of objects, from those working at a very high level, representing people
or applications, to very fine-grained objects that allow us to associate the granting or
denying of individual privileges (permissions) with objects such as tables and columns.
The way these objects come together will be very familiar to Oracle administrators,
with possibly two subtle differences to keep in mind:

To control access to SQL Server database objects, a combination of security
objects at both the instance and database level is required.

There is no logical 1:1 relationship between SQL Server Users and schemas (or
the functional equivalent of the Oracle schema, the SQL Server database).

Server Security
In security terms, the SQL Server instance acts as the “front door”—without the
granting of some degree of access at this point, no request will be fulfilled (and the user
or application will certainly not get as far as their intended database). So we will first
take a look at the instance-level objects that control user access: principals, logins, roles
and permissions.

C h a p t e r 5 : S e c u r i t y 1 6 7

Principals
The term principal is applied to an entity that can request access to SQL Server. Very
often, these relate directly to individual users or applications and can also represent
groups of users. Instance-level principals are called logins, while database-level
principals are called Users. These two levels of principals are necessary because a SQL
Server instance can have any number of databases, each of which can have a completely
separate security model.

There are two types of instance-level principals:

Windows principals:

Domain or Local Users

Domain or Local Group

SQL Server principals:

SQL Server login

These two types of principals are the result of two different authentication
models that can be used in SQL Server: Windows authentication and SQL Server
authentication. In SQL Server authentication, a login object is defined along with a
password, which is stored in the master database (the password is hashed), and this
login name and password are passed to SQL Server for evaluation at the point the
client connection is requested. SQL Server authenticates the user (establishes that they
are who they say they are, in this case by hashing the provided password and matching
it against the stored hash). In Windows authentication, a login object is also created
and stored in the master database; however, no password is supplied and the login is
associated with a preexisting Windows principal. Now, it is Windows that authenticates
the user prior to the client request being made, and evidence of this authentication (a
Kerberos ticket) is passed to SQL Server as the connection is requested to allow SQL
Server to carry out authorization. Note that in both cases, a login object represents
the instance-level permissions granted to the principal; the difference is only whether
the login is mapped to a Windows principal or whether it represents a SQL Server
principal in its own right. To keep things simple, we’ll refer to these two types of login
as Windows logins and SQL Server logins, respectively.

SQL Server authentication can be enabled and disabled for an instance, whereas
Windows authentication is always enabled.

NOTE
Even if SQL Server authentication is not enabled, SQL Server logins can still be created; however, they will not be

able to connect.

Logins
As previously stated, a login object is required in all cases to connect to a SQL Server
instance. Certain logins are automatically created when the SQL Server instance is
installed (as shown in Figure 5-1) and are added to groups that give certain privileges;
these groups are detailed later in this section.

Earlier versions of SQL Server created logins associated directly with the Windows
accounts under which the instance service and the SQL Server Agent service were
configured to run. As discussed in Chapter 3, the SQL Server installer now creates
per-service identities (SIDs) and adds them to the appropriate SQL Server service
groups in Windows. Remember that there are two different Windows identities
associated with any Windows service: the service account and the per-service SID.
The service account is the user who starts the service and owns the service process.
The per-service SID is a special account that represents the service itself. It has no
password, and can be used to assign privileges to a service directly, instead of having to
assign them to the service account. Per-service SIDs are referred to with a name of the
form NT SERVICE\SERVICE NAME, where SERVICE NAME is the name of the
service. The groups created to support the database engine are

SQLServerMSSQLUser$Server Name$Instance Name The group of SIDs
representing the SQL Server instance services on a given server

SQLServerSQLAgentUser$Server Name$Instance Name The group of SIDs
representing the SQL Server Agent services on a given server

NOTE
Remember that the default instance will have the name MSSQLSERVER.

The logins that are created to map to these principals (the Windows groups) are
named slightly differently from the groups themselves (presumably to aid readability):

NT SERVICE\MSSQLSERVER for a default instance

NT SERVICE\MSSQL$INSTANCE NAME for a named instance

NT SERVICE\SQLSERVERAGENT for a default instance

NT SERVICE\SQLAGENT$INSTANCE NAME for a named instance

Regardless of whether SQL Server authentication is enabled or not, a SQL Server
login called sa is created by the installer. This login can be thought of as literally the
“system administrator” and is a member of the sysadmin group. The sa login cannot

1 6 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

C h a p t e r 5 : S e c u r i t y 1 6 9

be dropped but it can be disabled, and usually should be. When sa is disabled, it can’t be
used to connect to SQL Server, but it can still own objects such as databases and SQL
Agent jobs. It’s often better to have sa own these objects than to have them owned by
the Windows login of a particular administrator. It is possible to rename the sa login
and this is advisable for security reasons unless a particular application is dependent on
it being named sa.

When installing SQL Server, you must specify at least one account to act as an
administrator of the instance, and Windows logins are created for each of these
accounts (in Figure 5-1 this is the login SERVER01\Administrator, meaning that
the local Administrator account was the only one specified during installation). These
logins can be modified or dropped, but be careful to ensure that doing either of them
doesn’t render the instance inaccessible to everyone.

Figure 5-1 Automatically created Logins

Oracle DBA Q&A

Q: Should I use this sa login to manage SQL Server? Is there some way I can
connect ‘AS’ this user?

A: No on both counts. Even if SQL Server authentication is enabled, the
recommendation is still to create Windows logins for those users who need to
act as database administrators and then to add these logins to the sysadmin group.
See the section “Creating Logins” for instructions on how to carry out these actions.

1 7 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

ON THE JOB
Okay, suppose that even after reading the preceding warning, you’ve deleted the only login with permissions

to administer the instance. What can you do? Fortunately, all members of the Windows Administrators local

group have access to SQL Server when SQL Server is started in single-user mode. After specifying the -m startup

parameter (see Chapter 3), a member of this group can use sqlcmd.exe to connect to the instance. From there,

the member can re-create logins and add logins to groups to restore normal access. See the upcoming sections

“Creating Logins” and “Managing Logins” for details of how to carry out these actions.

A number of logins are created for a SQL Server instance with names enclosed in
double hashes (##). These logins are for internal system use only. Those present will
vary depending upon the features installed, and they are created from certificates when
the instance is installed. The full list is

##MS_SQLResourceSigningCertificate##

##MS_SQLReplicationSigningCertificate##

##MS_SQLAuthenticatorCertificate##

##MS_AgentSigningCertificate##

##MS_PolicyEventProcessingLogin##

##MS_PolicySigningCertificate##

##MS_PolicyTsqlExecutionLogin##

These logins cannot be used to connect to SQL Server and should not be modified
or deleted.

Finally, the NT AUTHORITY\SYSTEM built-in Windows group is granted a
login with and added to the sysadmin group. It is used by Service Packs and hotfixes
(among other things) and should not be modified or deleted.

Creating Logins You can create a new SQL Server login using the Login – New
dialog box (see Figure 5-2), accessed from the context menu of the Logins node (under
Security) for the instance in Object Explorer.

Before specifying a name for the login, you need to determine whether this will be
a Windows login or a SQL Server login. For a Windows login, you need to provide
the name of an existing Windows account in the format DOMAIN\USERNAME.
Instead of typing the name in the Login Name field, you can click the Search button to
search either locally or in Active Directory for the required account.

For a SQL Server login, you specify the new login name at this point and provide
a password. If there is a password policy defined for your organization (either locally on

C h a p t e r 5 : S e c u r i t y 1 7 1

the machine on which SQL Server is installed or at a domain level), then this can be
enforced by SQL Server for SQL Server logins. The available options are seen in Table 5-1.

NOTE
Windows password policies are managed outside of SQL Server using the Security Policy tool (SecPol.msc).

As you can see in Figure 5-2, as well as creating Windows logins and SQL Server
logins, you also have the option to create logins mapped to other kinds of principals,
namely certificates and asymmetric keys; however, although you can create these logins,
they cannot be used to connect to SQL Server. Logins created from certificates or
asymmetric keys are used only for code signing and won’t be discussed here.

The option Map to Credential allows you to associate credentials managed outside
of SQL Server (typically a username and password) with your new login. These
credentials can then be passed to some external system when bespoke functionality in
your database calls that system within a session started by this login.

The final two dialog box options allow you to provide defaults to be used for this
Login. The Default Database drop-down list box specifies how the database context
will be set if this login opens a connection without specifying an “initial catalog” (or
similar) value and does not issue any USE directive. This option can be useful in
ensuring that users and applications do not inadvertently issue commands against
inappropriate databases. The Default Language drop-down list box guides the database
engine as to how to apply locale-specific formatting (for example, for dates and
numbers) in the absence of any other directive.

Table 5-1 SQL Server Login Password Policy Options

Option Description

Enforce password policy Specifies whether SQL Server should enforce the password policy. If this is

enabled, new passwords will be evaluated to ensure they meet complexity

requirements.

Enforce password expiration Password expiration as defined in the password policy will be enforced for this

login.

User must change password at next login SQL Server will prompt the user for a new password the first time the new login

is used. Note that the SQL Server management tools will present a dialog box

that allows the user to change their password—other applications will need to

capture the particular error returned by SQL Server and respond accordingly.

1 7 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Managing Logins Because SQL Server doesn’t manage any authentication information
(passwords) for Windows logins, it is very simple to move or copy logins between
instances. They can be scripted using SQL Server Management Studio as follows, for
example:

CREATE LOGIN [SERVER01\Administrator] FROM WINDOWS WITH

 DEFAULT_DATABASE=[master], DEFAULT_LANGUAGE=[us_english]

This script can then be run on the target instance. However, if you attempt to have
SQL Server script a SQL Server login in the same way, it will create a script containing
a random password (and a disabled login), for obvious security reasons. If you want to

Figure 5-2 The Login – New dialog box

C h a p t e r 5 : S e c u r i t y 1 7 3

move a SQL Server login between instances without having to reset passwords, there
are two options available. You can use either the Copy Database Wizard from within
Management Studio or use SQL Server Integration Services and the Transfer Logins
task. See Chapter 11 for further details on these tools.

The Login Properties dialog box for an existing login is identical to the Login – New
dialog box shown in Figure 5-2. From the Status page, you can make a number of security
settings for a login, including these two:

Permission to connect to database engine Can be set to Grant or Deny

Login Can be set to Enabled or Disabled

Setting either of these options to Deny or Disabled, respectively, effectively renders
that user unable to connect to the instance. However, enabling or disabling a login is
an action that is reflected in both Object Explorer and in the catalog views listed in the
section Viewing Login Details making this a much more manageable option. Choosing
Deny for Permission to Connect to the Database Engine acts to deny a permission
called CONNECT SQL, and this can be harder to trace after the option has been set.

If a SQL Server login has been expired due to the password policy in force, the Status
page will display this through the Login Is Locked Out check box, but it cannot be reset
from within the property pages. Instead, you have to issue an ALTER LOGIN statement.
For example, to unlock the account by specifying a new password (recommended), use

ALTER LOGIN [NewLogin] WITH PASSWORD='NewPassword01' UNLOCK

To unlock the account without specifying a new password, use

ALTER LOGIN [NewLogin] WITH CHECK_POLICY = OFF

GO

ALTER LOGIN [NewLogin] WITH CHECK_POLICY = ON

GO

Note that with the second approach, you will lose any password history for the login.
See the full syntax of the ALTER LOGIN statement in SQL Server Books Online for
full details of the operations that can be performed on a login.

The following catalog views can be used to return details of logins created for an
instance:

sys.server_principals Returns general information, including that specified
when the login was created, as previously described

sys.sql_logins Inherits the columns of sys.server_principals and adds columns
specific only to SQL Server logins: is_policy_checked, is_expiration_checked, and
password_hash

1 7 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Fixed Server Roles
A role is a named group of permissions that can represent common tasks or the actions
associated with particular jobs. A role can be assigned to users or applications as a
single unit, reducing the management overhead of granting commonly used sets of
permissions. In SQL Server, roles exist at an instance level and at a database level. If
you want to assign a role’s permissions to a user or application, you need to make the
relevant login a member of the required role.

The prebuilt instance (or server) roles are described in Table 5-2. These roles cannot
be modified or dropped, and you cannot create additional server roles. The sysadmin
fixed server role has the highest level of privilege and can access any database and carry
out any action on any object or any data; as such, logins should only be added to this
role after careful consideration.

Every SQL Server login belongs to the public server role. Where a login is required
to work with database objects and data only (as is usually the case for applications and
non-admin users), the login should remain a member of this role only.

Viewing Role Membership and Permissions As shown in Figure 5-3, you can view
the membership for a server role from the Properties dialog box of the role in question
(by clicking Properties in the context menu of the Roles node in Object Explorer).

Table 5-2 Fixed Server Roles

Fixed Server Role Role Name Description

sysadmin System Administrator Can perform any activity in SQL Server. The permissions of this

role span all of the other fixed server roles.

serveradmin Server Administrator Can configure instance-wide settings.

setupadmin Setup Administrator Can add and remove linked servers and execute some system

stored procedures.

securityadmin Security Administrator Can create and manage logins.

processadmin Process Administrator Can manage processes running in an instance of SQL Server.

dbcreator Database Administrator Can create and alter databases.

diskadmin Disk Administrator Can manage physical database files.

bulkadmin Bulk Insert Administrator Can execute the BULK INSERT statement.

public Public No elevated instance-level permissions.

C h a p t e r 5 : S e c u r i t y 1 7 5

Additionally, the following system stored procedures, functions, and views can also
be used to view the membership of fixed server roles in SQL Server and to inspect the
permissions held by those roles:

Name Type Description

sp_helpsrvrole System procedure Displays a list of server roles

sp_srvrolepermission System procedure Displays the permissions assigned to a server role

sp_helpsrvrolemember System procedure Displays a list of members of a fixed server role

is_srvrolemember System function Indicates whether a login is part of a role

sys.server_role_members Catalog view Returns one row for each member of each server role

Figure 5-3 Server Role Properties dialog box

1 7 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Adding Logins to Roles To add a login to a built-in server role, access the Login
Properties pages and select the Server Roles page, as shown in Figure 5-4.

Alternatively, you can use the following system procedures:

sp_addsrvrolemember Adds a login account to a fixed server role

sp_dropsrvrolemember Removes a login account from a fixed server role

Logins may belong to many roles and may be added to or removed from roles at
any time.

Figure 5-4 The Server Roles page

C h a p t e r 5 : S e c u r i t y 1 7 7

Server Permissions
Although you cannot modify the prebuilt server roles, for a given login, you can add or
(effectively) remove permissions from the list that makes up each of the server roles to
fine-tune a role to better suit that login. Or, you can avoid using roles altogether and
assign instance permissions directly to logins.

Working with Server Permissions From the Securables page of the Login Properties
pages (see Figure 5-5), you can grant, revoke, or deny any of the individual instance
permissions to a login. At this point, you need to be aware of how doing this may impact
the permissions already held by the login as a result of belonging to one or more groups.
Throughout SQL Server (not just relating to server roles) the rules are as follows:

Permissions granted are combined. A login receives the sum of all the permissions
granted through role membership or directly.

Denying a permission always takes precedence over granting it. If role
membership grants a permission but either another role or an explicit Deny
elsewhere denies it, then the login is denied that permission.

NOTE
An exception to the preceding rule is that you cannot deny any permission from a login belonging to the

sysadmin role.

To use the Securables page to grant or deny permissions, click the Search button to
find the objects you wish to grant or deny permission—for server roles, this is likely
to be the current instance (the other options are endpoints and logins). As shown in
Figure 5-5, there are a large number of individual permissions on an instance that
can be granted or denied for a login; see Books Online for a full list. Any permission
assigned With Grant, as shown in Figure 5-5 will allow that login to grant the
permission to other logins.

The catalog view sys.server_permissions can be used to return details as to exactly which
server permissions have been directly granted or denied to which logins. You can check the
effective permissions for the current user with the fn_my_permissions function. But how
do you check for the effective permissions for another user? A sysadmin can impersonate
any login or database User and run queries as that user. So if you want to check the
effective server permissions for a Windows login, you could use a query like this:

EXECUTE AS LOGIN='SERVER01\AnotherLogin'

 SELECT * FROM sys.fn_my_permissions(null,'SERVER')

REVERT

GO

1 7 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Database Security
All of the objects described in the previous section are used to control access to a
SQL Server instance only. If a user or application needs to work with a database (as is
usually the case), then you use another set of objects at the database level to represent
the database permissions you wish to associate with the user. Inbound requests are not
authenticated by the database (this only happens at the instance level or outside of the
instance), but there is another authorization stage because (with the exception of logins
that belong to the sysadmin role) instance permissions held by logins do not imply any
database permissions—even the ability to connect to the database.

Figure 5-5 The Login Securables page

C h a p t e r 5 : S e c u r i t y 1 7 9

SQL Server database-level principals that are used to control access are

Database User

Database role

Application role

Users
Users are database-level objects that act as an identifier and as a permissions container for
logins within a particular database. A User usually is associated with a login (as orphaned
Users would serve no useful purpose), and this association is called a mapping. There are
a few exceptions to this rule: you can get orphaned Users when you restore a database
to an instance with different logins; you can explicitly create database Users without an
associated login; and you can have multiple logins associated with a single User, called an
alias. But orphaned Users are a problem that needs correcting, Users without logins are
rarely used, and aliases are deprecated and will be removed from a future version of SQL
Server. So the basic rule is that each User is associated with one login.

However, logins need not be mapped to any User if the intention is for that login to
work only with the instance—for example, a login belonging to the securityadmin role
that allows an administrator to create and manage other logins. In the most common
case, a login is mapped to a User of the same name defined in a database, and where
the login requires access to more than one database, the login will be mapped to Users
defined in each of these databases, each User having the same name.

A number of Users are created automatically for a new SQL Server database:

dbo A User called dbo (Database Owner) is present in every SQL Server
database and has the permissions to perform any activity and grant any permission
inside the database. This User is mapped either to the login that created the
database or to another login that was specified at the time of creation. The login
mapped to dbo is also referred to as the owner of the database. However, a
member of the sysadmin group can still connect to any database and will always
connect as dbo, regardless of which login is the database owner.

INFORMATION_SCHEMA and sys These Users are used internally by SQL
Server and are, in fact, not database principals at all. They cannot be modified or
dropped.

Guest If the Guest User is enabled in a database, then all logins that do not
have associated users in the database become mapped to this User and can access
the database. Enabling the Guest User is not recommended for security reasons.

1 8 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Creating Users You have two options for creating new database Users using
Management Studio, both of which achieve exactly the same results. The first is to return
to the Properties pages for a login and select the User Mapping page (see Figure 5-6).
Selecting one or more databases from here and optionally requesting role membership
within those databases will cause User objects to be created in the specified databases.
The created User(s) will have the same name as the login.

Alternatively, you can create new database Users from the Database User – New
dialog box, accessed from the context menu of the Users node (under Security) of
the database in Object Explorer (see Figure 5-7). The only mandatory settings are a
name for the User and the login to which it maps. In this case, the User name doesn’t

Figure 5-6 The User Mapping page

C h a p t e r 5 : S e c u r i t y 1 8 1

have to be the same as that of the login, but from the point of view of simplifying
administration, keeping them the same is recommended. The ellipsis (...) button next
to the Login Name text box allows you to search for existing instance logins to map to
the User.

You also can use the CREATE USER statement to create a new User. For example:

CREATE USER NewUser FOR LOGIN NewLogin

A list of database Users can be returned using the sys.database_principals catalog
view.

Figure 5-7 The Database User – New dialog box

1 8 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Fixed and User-Defined Database Roles
As with the prebuilt server roles, a number of fixed database roles exist in each SQL
Server database and their scope is limited to that database only. As before, these roles
serve to represent common database user functions. However, at a database level we can
create new roles to represent the activities of users or applications specific to our own
organizations.

Table 5-3 shows the fixed database roles. Note that many Users may belong to the
db_owner fixed role and act as if they were the database owner; this does not change
the fact that the database can only ever be genuinely owned by one login (mapped to
the dbo User).

As with server roles, every database User is added to the public role. However, it is
not usual for Users to remain a member of this role only, because without any further
role membership or additional permissions, they will not be able to carry out any useful
task within the database.

Privileges that are dynamically added to or dropped from a role will dynamically take
effect for Users belonging to that role.

Table 5-3 The Fixed Database Roles

Fixed Database Role Name Description

db_owner Owner Can perform all maintenance and configuration activities in the database.

The permissions of this role span all the other fixed database roles.

db_accessadmin Access Admin Can add or remove access for logins for a database.

db_datareader Data Reader Can read all data from all user tables in the database.

db_datawriter Data Writer Can insert, update, or delete data from all user tables in the database.

db_ddladmin DDL Admin Can add, modify, or drop objects in the database.

db_securityadmin Security Admin Can manage database roles and role members and manage statement

and object permissions in the database.

db_backupoperator Backup Operator Has permission to back up the database.

db_denydatareader Deny Data Reader Cannot read data from user tables in the database.

db_denydatawriter Deny Data Writer Cannot insert, delete, or change data of user tables in the database.

public Public Every database user belongs to the public database role. When a user

has not been granted or denied specific permissions on a securable, the

user inherits the permissions granted to public on that securable.

C h a p t e r 5 : S e c u r i t y 1 8 3

Application Roles
Application roles are a special case of database role that allow you to separate the
permissions given to an application that connects to SQL Server from those belonging
to the User that connects to the database.

Once an application role has been created, the process for authorizing an application
request would be as follows:

1. The application connects to SQL Server using the appropriate login, which is
mapped to a User in the target database.

2. The application sets (requests) the Application role, specifying a password that
was set when the role was created.

3. For the life of the current session, the application now has the privileges
associated with the Application role, not with the login and User used to connect.

Oracle DBA Q&A

Q: Why would I ever use a role like Deny Data Writer? Wouldn’t I just not
grant any write permissions in that case?

A: Be aware that, unlike the sysadmin server role, you can deny permissions
from the db_owner database role and any user-defined roles (and remember that
a Deny always overrides a Grant). A user might be made a member of a privileged
role in order to carry out administration and maintenance on a database, but the
organization might wish to ensure that, in this particular instance, the user doesn’t
modify any data. Adding the user to db_denydatawriter as well as the privileged
role would achieve this. Note that db_denydatareader can be used in the same way,
but this will cause many actions performed using Object Explorer to fail because
the User will not have permission to select from the system catalog. Note also
that while it is possible to deny permissions from the db_owner role, anyone who
belongs to this role can manage their own role membership and permissions and
so could just grant themselves whatever they liked.

Q: Can roles be password protected, like in Oracle databases?

A: In SQL Server, database roles cannot be password protected, and all of a
User’s roles are always active. For password-protected roles that can be activated
on demand, SQL Server has application roles.

1 8 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The syntax for creating an application role is:

CREATE APPLICATION ROLE application_role_name

 WITH PASSWORD = 'password'

The system stored procedure sp_setapprole can be used to set an application role in a
particular user session:

EXEC sp_setapprole 'SalesApprole', 'AsDeF00MbXX';

GO

Adding Users to Roles Users can be added to one or more database roles at the time
that they are created (see the Database Role – New dialog box, shown in Figure 5-8)

Figure 5-8 Database Role – New dialog box

C h a p t e r 5 : S e c u r i t y 1 8 5

or subsequently. To add an existing User to a role, simply open the Database User
Properties pages and select the required Role(s), as shown in Figure 5-8.

Alternatively, you can use the system procedure sys.sp_addrolemember to add a
database User to a database role.

For a list of Users belonging to database roles, you can use the catalog view
sys.database_role_members.

Creating Database Roles To create a new database role, you need to specify a name
and an owner (if none is provided, it will default to the dbo User). You do this in the
Database Role – New dialog box (see Figure 5-8), which you access from the context
menu of the Schemas node for the database in Object Explorer.

Alternatively, you can pass exactly the same information to the CREATE ROLE
statement. For example:

CREATE ROLE NewDatabaseRole AUTHORIZATION dbo

The process for assigning permissions and schema ownership to database roles and
to Users is identical and is detailed next.

Database and Object Permissions
The Properties pages for both Users and database roles have identical Securables pages
(the page for a User is shown in Figure 5-9). From here you can follow exactly the
same process as described in the previous section “Server Permissions” to grant or deny
individual permissions to a User or role. The rules governing the precedence of Deny
over Grant are also exactly as described in that section.

There are, however, a larger number of object categories that you can choose from
when searching for the objects to which you wish to grant or deny user permissions.

Figure 5-9 shows the results of searching across tables, views, and stored procedures
in the AdventureWorks sample database; the full list of object types is much larger than
this, as it includes every type of object available in a SQL Server database, including
schemas and the database itself. The permissions that may be set on an object vary
depending upon the object type. See Books Online for a complete list of object and
permission types.

The syntax for granting, revoking, and denying permissions is practically identical:

GRANT ALTER ON [dbo].[ErrorLog] TO [NewUser]

or

REVOKE ALTER ON [dbo].[ErrorLog] TO [NewUser]

1 8 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

or

DENY ALTER ON [dbo].[ErrorLog] TO [NewUser]

The catalog view sys.database_permissions returns all permissions granted to all
Users in a database.

Schemas
Schemas are very much a primary object in Oracle and represent a number of “hard”
logical and functional boundaries. As described in Chapter 4, things are slightly different

Figure 5-9 The User Securables page

C h a p t e r 5 : S e c u r i t y 1 8 7

in SQL Server. As well as the benefits of using schemas in SQL Server described in
earlier chapters, two of the most compelling drivers behind using schemas in SQL
Server are both security related. The first of these is to solve a problem faced by
administrators of previous versions of SQL Server (and, as such, we won’t dwell on it
too long here), and that is that database objects used to be owned by Users. The problem
would arise when it became time to drop a User that owned objects—the ownership
would need to be reassigned before the User could be dropped, and when a large number
of objects were involved, this was a very time-consuming task. Furthermore, these named
Users would be referenced in queries as part of the object name (for example, James.
Employee), meaning that many additional references would also need to be changed.
Now, objects aren’t owned by Users; instead they belong to schemas, which, in turn, have
owners. So, if the HumanResources schema is owned by the User James and it is time to
drop that User, all that is required is to reassign ownership of the schema and the User
can be dropped.

The second driver is that schemas can be used to create dynamic security
“zones” within SQL Server databases. At the simplest level, the owner of a schema
automatically receives dbo permissions for that schema’s objects. However, a more
sophisticated model can be built by assigning object-level permissions (as described in
the section Database and Object Permissions) to schemas themselves. While slightly
more involved than using database roles alone, you can fine-tune these roles at a
schema level or assign permissions at this level directly. For example, the User James
may have the database role db_datareader but may then be issued Insert, Update, and
Delete permissions for the schema Human Resources, meaning he can read from all
database objects but has full DML permissions for objects in the Human Resources
schema. Crucially, this would continue to be the case as new objects were created in
the databases—no further management would be required to assign permissions to
these new objects. So in the same way that roles are containers of permissions for Users,
schemas are containers for objects, and a permission granted at the schema level applies
to all objects in that schema.

See Chapter 4 for details on creating schemas, assigning ownership, and moving
objects between schemas.

Protecting SQL Server Databases
Having looked at the objects that allow administrators to design and implement
databases that effectively control user access to data, the rest of this chapter looks at
other features available in SQL Server that can be used to further enhance database
security.

1 8 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Proxy Accounts
The Windows identities under which the SQL Server instance service and the SQL
Server Agent service run require sufficient privileges to carry out the tasks required of
them. In the case of the instance service, the required privileges are ordinarily relatively
low (see Chapter 3 for details); however, SQL Server provides a facility for executing
command-line statements from within database procedures, and this suggests the
granting of a much wider set of permissions. Fortunately, these permissions do not need
to be granted to the identity running SQL Server because you can specify a server proxy
account for use in this case, meaning that your least-privileges approach toward the
SQL Server’s service accounts can be preserved.

Specifying a Server Proxy Account
The procedure xp_cmdshell is used to execute Windows command-line statements
from within procedures; it is disabled after installation and must be enabled before it
can be used. You can specify an account for use by xp_cmdshell by providing an account
name and password on the Security page of the Server Properties dialog box (accessible
by selecting Properties from the context menu of the instance in Object Explorer), as
shown in Figure 5-10. Setting this property causes SQL Server to impersonate the
specified account when calling xp_cmdshell.

Alternatively, the procedure sp_xp_cmdshell_proxy_account can be used to set up a
proxy account. The syntax is

sp_xp_cmdshell_proxy_account [NULL | { 'account_name' , 'password' }]

NOTE
Passing the NULL parameter causes the proxy account to be deleted.

SQL Agent Proxy Accounts
A more common use for proxy accounts in SQL Server is to use them in conjunction
with the SQL Server Agent. Tasks defined as SQL Server Agent jobs or as part of
maintenance plans are often required to access network resources or external systems
(for example, when copying backup files or importing and exporting data) or carry out

Figure 5-10 Server proxy account details

C h a p t e r 5 : S e c u r i t y 1 8 9

other activities that suggest a high level of privilege. If you don’t want to grant the sum
of all of these permissions to the SQL Server Agent service simply so that a few tasks
can succeed, you can specify proxy accounts for use by those tasks only. Additionally, the
SQL Server Agent service account (or per-service SID) always belongs to the sysadmin
group, and there may be cases where you may want an Agent job to connect to the SQL
instance as a non-sysadmin login.

See Chapter 10 for details of creating SQL Server Agent jobs using proxy accounts.

Encryption
As well as making sure that permissions are correctly managed and that system access is
protected both physically and using firewalls, you should consider encrypting sensitive
data within the database. SQL Server provides encryption features that help you to
protect against three types of attack or vulnerability:

The “wiretap” You can encrypt the traffic that passes between SQL Server and
its users and applications so that if somebody manages to capture these network
packets, they won’t be able to inspect them to reveal data.

A snooping user If you can’t deny overly curious users access to a particular
resource but would rather they didn’t take notice of its contents, you can encrypt
the contents.

Lost media If either a database’s data files or its backups fall into the wrong
hands, a malicious party can attach or restore the database and browse it at their
leisure. If these files are encrypted, then this isn’t possible.

While we have a lot of out-of-the box functionality at our disposal, this kind of
protection must be planned in advance. To discuss encryption (and decryption), we first
need to establish how the following terms are used in SQL Server. These definitions are
taken from SQL Server Books Online.

Symmetric keys A symmetric key is one key that is used for both encryption
and decryption. Encryption and decryption by using a symmetric key is fast, and
suitable for routine use with sensitive data in the database.

Asymmetric keys An asymmetric key is made up of a private key and the
corresponding public key. The public key can be used to encrypt data that can
only be decrypted by the private key. Asymmetric encryption and decryption
are relatively resource-intensive, but they provide a higher level of security than
symmetric encryption. An asymmetric key can be used to encrypt a symmetric key
for storage in a database.

1 9 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Certificates A public key certificate, usually just called a certificate, is a
digitally-signed statement that binds the value of a public key to the identity of
the person, device, or service that holds the corresponding private key. Certificates
are issued and signed by a certification authority (CA). The entity that receives a
certificate from a CA is the subject of that certificate…This signature attests to
the validity of the binding between the public key and the identifier information
of the subject. (The process of digitally signing information entails transforming
the information, as well as some secret information held by the sender, into a tag
called a signature.) A primary benefit of certificates is that they relieve hosts of
the need to maintain a set of passwords for individual subjects. Instead, the host
merely establishes trust in a certificate issuer, which may then sign an unlimited
number of certificates.

Encrypted Connections
SQL Server can be configured to use Secure Sockets Layer (SSL) to encrypt the data
that is sent between an instance and a client user or application and, additionally, to
validate the identity of a server to the client.

If the instance of SQL Server is running on a computer that has been assigned
a certificate from a public CA, the identities of that computer and the instance of
SQL Server are vouched for by the chain of certificates that leads to the trusted
root authority. Such server validation requires that the computer on which the client
application is running be configured to trust the root authority of the certificate that is
used by the server.

Enabling SSL encryption increases the security of data transmitted across
networks between instances of SQL Server and applications. However, enabling
encryption does slow performance. When all traffic between SQL Server and a client
application is encrypted using SSL, the following additional processing is required,
namely that an extra network roundtrip is required as the connection is established,
and that the client and server network libraries must carry out the encryption and
decryption of packets. On Windows Server 2008 and later operating systems, the
level of encryption is 128 bit.

The following procedure describes how to configure SSL for SQL Server:

1. Install a certificate in the Windows certificate store of the server computer.

2. In SQL Server Configuration Manager, right-click the Protocols for... node for
the required instance and select Properties to open the Protocols for Instance
Properties dialog box (see Figure 5-11).

C h a p t e r 5 : S e c u r i t y 1 9 1

3. On the Flags tab, you can force the instance to always use SSL by setting the Force
Encryption option to Yes. If this option is set, all client/server communication is
encrypted and clients that cannot support encryption are denied access. If the option
is set to No (the default), encryption can be requested by the client application but is
not required. The Flags tab also allows you to specify that this particular instance will
not allow users to discover its port number using the SQL Server Browser Service, by
setting Hide Instance to Yes.

4. On the Certificate tab, you can associate this instance with the certificate that you
installed in step 1.

Regardless of any networking configuration, the credentials that are transmitted
when a client connects to SQL Server are always encrypted. SQL Server will use an
installed certificate from a trusted CA if available, and if a trusted certificate is not
installed, SQL Server will generate a self-signed certificate when the instance is started
and use the self-signed certificate to encrypt the credentials. This self-signed certificate
helps increase security but it does not provide protection against identity spoofing
by the server. If no trusted certificate is installed and the Force Encryption option is
set to Yes, all data transmitted across a network between SQL Server and the client
application will be encrypted using the self-signed certificate.

Figure 5-11 The Protocols for Instance Properties dialog box

1 9 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Encryption Functions
If you’re looking to encrypt data within your SQL Server databases rather than just the
traffic that is sent between the server and its clients, then you need to be aware of two
types of symmetric key used by SQL Server to enable this encryption and decryption:

The Service Master Key (SMK) is automatically created the first time that an
instance is started. This key is itself encrypted by Windows APIs on the local
computer using a key derived from the local computer’s credentials (binding the
key to that machine) and the SQL Server service account. The SMK can only be
decrypted by the service account under which it was created or by a principal that
has access to the machine’s credentials.

Database Master Keys are used to protect the private keys of certificates and
asymmetric keys that are present in a given database. When it is created, the
Database Master Key is encrypted by using the Triple DES algorithm and a user-
supplied password. To enable the automatic decryption of the Database Master
Key, a copy of the key is encrypted by using the SMK. It is stored in both the
database where it is used and in the master system database.

While you cannot simply enable the encryption of particular data columns in SQL
Server, you can use built-in functions to encrypt values as they are inserted or updated
and then decrypt these values as they are read.

Encrypting Columns The steps you need to follow to encrypt data in this way are

1. Create a Database Master Key (if one hasn’t been created already).

2. Create a certificate.

3. Create a symmetric key, encrypted using the certificate.

4. “Open” the key (make it available for use by SQL Server).

5. Encrypt the value and write it to the column (this could be in a stored procedure
or trigger).

The following code shows how to encrypt a column by using a symmetric key:

--If there is no master key, create one now.

Step 1

IF NOT EXISTS

 (SELECT * FROM sys.symmetric_keys WHERE symmetric_key_id = 101)

 CREATE MASTER KEY ENCRYPTION BY

 PASSWORD = '<password>'

C h a p t e r 5 : S e c u r i t y 1 9 3

GO

Step 2

CREATE CERTIFICATE HumanResources037

 WITH SUBJECT = 'Employee Social Security Numbers';

GO

Step 3

CREATE SYMMETRIC KEY SSN_Key_01

 WITH ALGORITHM = AES_256

 ENCRYPTION BY CERTIFICATE HumanResources037;

GO

Step 4

-- Open the symmetric key with which to decrypt the data.

OPEN SYMMETRIC KEY SSN_Key_01

 DECRYPTION BY CERTIFICATE HumanResources037;

Step 5

UPDATE HumanResources.Employee

SET EncryptedNationalIDNumber = EncryptByKey(Key_GUID('SSN_Key_01'),

 NationalIDNumber);

GO

To decrypt the value, you need to

1. Ensure that the key used to encrypt the data is open.

2. Decrypt the value and return it (for example, in a stored procedure or view):

-- Now list the original ID, the encrypted ID, and the
-- decrypted ciphertext. If the decryption worked, the original
-- and the decrypted ID will match.
Step 1
-- We will assume that the key is already open
Step 2
SELECT NationalIDNumber, EncryptedNationalIDNumber
 AS 'Encrypted ID Number',
 CONVERT(nvarchar, DecryptByKey(EncryptedNationalIDNumber))
 AS 'Decrypted ID Number'
 FROM HumanResources.Employee;
GO

ON THE JOB
As soon as you have completed the preceding steps (assuming this is the first time that encryption has been

employed within this instance), you should back up the Service Master Key. Without this key, you won’t be able

to decrypt your encrypted data if you have to restore your database to a new instance. See the upcoming section

“Managing Keys and Encrypted Data.”

The cryptographic functions used in the preceding procedure can also be provided
with an optional “authenticator” value to make the process even more secure. This value
would likely be a GUID or Identity value for the row being written or read and would
act to bind the encrypted value to that particular row, meaning that decryption would
fail if someone with access to the encrypted data were to simply update one encrypted
value with another from another row.

There are variations on this approach available: the functions EncryptByPassPhrase
and DecryptByPassPhrase allow for temporary encryption and decryption keys to
be created and used based on a pass phrase provided as the data is written or read.
However, this approach suggests that application builders or users are responsible for
keeping pass phrases private, so unless the requirement is for system administrators
to not be able to decrypt application data (since this is another implication of this
approach), the recommendation would be to use the functions given in the examples.

Database Encryption
Transparent Data Encryption is a term well known to many Oracle administrators
because it is the name given to Oracle’s facilities for encrypting some or all of the data
in a database within an easy-to-manage encryption infrastructure. Fortunately, the same
term is used to describe SQL Server’s implementation of the same features; however,
we will see that there are some key differences to be aware of.

Transparent data encryption (TDE) in SQL Server is a special case of encryption
that uses a symmetric key and allows us to avoid having to build any of the encryption/
decryption functionality described in the previous section. TDE encrypts an entire
database using a symmetric key, called the database encryption key (DEK), which is
secured using a certificate stored in the master database and protects data “at rest.”
This mean there is page-level encryption and decryption of data and log files as they
are written to disk or read into memory, ensuring that even if these files (or backups
of these files) fall into the wrong hands, the database cannot be attached or restored
without the appropriate certificate.

1 9 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Oracle DBA Q&A

Q: In an Oracle database, if you want to encrypt only a certain set of tables,
you put them in a tablespace and only encrypt that tablespace. Can you do
something similar using filegroups in SQL Server to just select certain tables
for encryption?

A: No, when TDE is enabled in SQL Server, it affects the entire database; there
is no way to select individual tables within a database.

C h a p t e r 5 : S e c u r i t y 1 9 5

ON THE JOB
After enabling TDE, you should immediately back up the certificate and the private key associated with

the certificate (assuming that you’ve already backed up your SMK). Also, the encrypting certificate should

be retained even if TDE is no longer enabled on the database, because it may need to be accessed for some

operations (such as restoring an encrypted backup).

The code to back up a certificate is

BACKUP CERTIFICATE <certname> TO FILE = '<path_to_file>'

 [WITH PRIVATE KEY

 (

 FILE = '<path_to_private_key_file>' ,

 ENCRYPTION BY PASSWORD = '<password>'

)

]

The <password> value is used to encrypt the key as it is written to the file.
To use TDE, follow these steps:

1. Create a Database Master Key (if one doesn’t already exist).

2. Create a certificate protected by the Database Master Key.

3. Create a Database Encryption Key, encrypted using the certificate.

4. Enable database encryption.

The following code details how to carry out these steps:

--Step 1

USE master;

GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<password>';

GO

--Step 2

CREATE CERTIFICATE MyServerCert WITH SUBJECT = 'My DEK Certificate'

GO

--Step 3

USE AdventureWorks

GO

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES_128

ENCRYPTION BY SERVER CERTIFICATE MyServerCert

GO

--Step 4

1 9 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

ALTER DATABASE AdventureWorks

SET ENCRYPTION ON

GO

Enabling database encryption can also be carried out from the Options page of the
database property pages, as shown in Figure 5-12.

Managing Keys and Encrypted Data
In order to recover an instance where TDE has been used, you will need a copy of the
SMK. This copy can be created by generating a backup to file like so:

BACKUP SERVICE MASTER KEY TO FILE = '<path_to_file>'

ENCRYPTION BY PASSWORD = '<password>'

Figure 5-12 The Database Properties page

C h a p t e r 5 : S e c u r i t y 1 9 7

In this case the supplied password is used to encrypt the key in the resulting file. To
restore this key into a new instance, you can use

RESTORE SERVICE MASTER KEY FROM FILE = '<path_to_file>'

DECRYPTION BY PASSWORD = '<password>'

Restoring or Attaching an Encrypted Database If you are restoring an encrypted
database to the same instance from which the backup was taken (or if the instance has
been recovered and the original SMK restored, as in the preceding example), then there
are no additional considerations beyond those you would normally take into account.
The same is true of reattaching an encrypted database to its original instance. However,
if the database is being restored or attached to a new instance, that instance must have
access to the certificate used to encrypt the DEK. You can use the following code to
import this certificate from a backup:

CREATE CERTIFICATE <certname>

 FROM FILE = '<path_to_file>'

 WITH PRIVATE KEY (

 FILE = '<path_to_private_key_file>'

 , DECRYPTION BY PASSWORD = '<password>'

)

A final point to note is that the tempdb system database will be automatically
encrypted if any other database on the instance of SQL Server is encrypted by using
TDE. This might have a performance effect for unencrypted databases on the same
instance of SQL Server.

Auditing
Another key element to operating secure systems is the ability to record the activities
that take place within those systems. Often we’re interested in this information because
we want to improve performance or enhance functionality. The act of recording this
data is often referred to as tracing. The term auditing is used in many industries to
refer to reviewing past activities or transactions to ensure that some behavior has been
in keeping with the mandated regulations or standards. SQL Server provides several
features that enable us to audit database activity against both predefined standards
relating to information systems security and other standards that we might adopt or
develop within our own organizations.

While Oracle’s auditing support allows for audit records to be stored in the database
audit trail or in files on the operating system, the recommendation is that the audit trail
be written to the operating system files, as this configuration imposes the least amount

1 9 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

of overhead on the source database system. This is also the approach taken with SQL
Server’s prebuilt auditing features, which, as administrators, provides us the best chance
that audit information will be available to us even after some catastrophic database failure.

Login Auditing
The simplest, or most lightweight, SQL Server auditing option is Login auditing. As
the reference to logins (as opposed to Users) should suggest, this is configured at an
instance level and allows us to record who has connected to SQL Server and, perhaps
more importantly, who has tried to connect and failed.

Login auditing is available from the Server Properties dialog box, on the Security
page, as shown in Figure 5-13. Note that it is also from this page that SQL Server
authentication can be enabled or disabled as described at the beginning of this chapter.

Figure 5-13 Server Properties dialog box

C h a p t e r 5 : S e c u r i t y 1 9 9

The options under Login Auditing are

None Turns off login auditing.

Failed logins only Audits unsuccessful logins only.

Successful logins only Audits successful logins only.

Both failed and successful logins Audits all login attempts.

The default setting is Failed Logins Only; changing the audit level requires restarting
the service. Login audit records are stored in the Windows application log, an example
of which is given in Figure 5-14.

C2 Audit and Common Criteria
Without reference to any particular system or vendor, the U.S. Department of Defense
(DoD) has established a set of ratings for the security levels of computer systems, based
on their ability to govern and audit usage and access. These ratings range from D
(Minimum Protection) through to A1 (the most secure, Verified Design, which requires
features such as labeled data and the passing of formal functional analysis procedures).

Figure 5-14 A SQL Server event

2 0 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

A C2 rating, Controlled Access Protection, is an absolute security minimum required
for implementation in U.S. government agencies. It is awarded to systems that pass the
DoD’s Trusted Computer System Evaluation Criteria (TCSEC) tests and requires that
auditing goes beyond successful and failed login attempts, extending it to successful and
failed use of permissions when accessing individual database objects and executing all
SQL statements. SQL Server has held a C2 rating since version 2000.

As not all organizations have a requirement to adhere to the U.S. government
security standards, C2-level auditing is not enabled by default in SQL Server. C2 Audit
is enabled or disabled from the Security page of the Server Properties dialog box (refer
to Figure 5-13) or by using the “c2 audit mode” option with sp_configure.

C2 Audit records contain the following:

A timestamp

The login that raised the event

The server name

The event type

An indication of the result (success or failure)

Application name (if present)

The SQL Server process ID of the user request

Audit logs are stored in the Data folder under the instance Root and are named
AuditTrace_yyyymmddhhmmss.trc, with the timestamp part of the name indicating
the date and time the log file was created. C2 Audit log files are limited to 200MB, and
new files are generated automatically when the previous one is full. If the audit log can’t
be written (potentially because there is insufficient disk space), the instance will shut
down.

ON THE JOB
Because the amount of data written to C2 Audit log files can be substantial, running out of disk space is a real

possibility if there is no process in place for archiving older files. If SQL Server cannot start because no space

can be freed for new log files, you can use the startup parameter -f, which causes SQL Server to disregard audit

settings.

The contents of the audit files can be viewed using SQL Server Profiler (see
Figure 5-15) or by using the built-in function sys.fn_trace_gettable, which displays
the content of a trace file as a result set (see Figure 5-16).

C h a p t e r 5 : S e c u r i t y 2 0 1

Figure 5-15 Audit records in SQL Server Profiler

Figure 5-16 Results of fn_trace_gettable

2 0 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

As well as support for the C2 security standard, SQL Server also provides a built-in
implementation of another set of standards known as the Common Criteria for Information
Technology Security Evaluation (usually shortened to just Common Criteria). Common
Criteria is managed by a membership that includes government agencies and industry
bodies from around the world, and the requirements go beyond auditing. With this in mind,
Common Criteria has come to effectively supersede the C2 standard.

Common Criteria compliance is also disabled by default in SQL Server and can be
enabled from the Security page of the Server Properties dialog box (refer to Figure 5-13)
or by using the “common criteria compliance enabled” option with sp_configure. Changing
this value requires an instance restart.

The “common criteria compliance enabled” option changes the following aspects of
SQL Server:

Criteria Description

Residual Information Protection

(RIP)

RIP requires a memory allocation to be overwritten with a known pattern of bits before

memory is reallocated to a new resource. Meeting the RIP standard can contribute to

improved security; however, overwriting the memory allocation can slow performance.

The ability to view login statistics Each time a user successfully logs into SQL Server, information about the last successful

login time, the last unsuccessful login time, and the number of attempts between the

last successful and current login times is made available. These login statistics can be

viewed by querying the sys.dm_exec_sessions dynamic management view (DMV).

That column GRANT should not

override table DENY

After the common criteria compliance enabled option is enabled, a table-level DENY

takes precedence over a column-level GRANT. When the option is not enabled, a

column-level GRANT takes precedence over a table-level DENY.

Common Criteria compliance in SQL Server does not log audit records outside of
SQL Server; it simply causes additional login information to be captured, which can
then be viewed using the DMV referenced in the preceding table. Figure 5-17 shows a
call to sys.dm_exec_sessions shortly after enabling Common Criteria compliance.

SQL Server Instance and Database Audit
For organizations that have different audit requirements from those met by the
previous options, bespoke, fine-grained auditing can be created in SQL Server. In older
versions of SQL Server, using DML and DDL triggers was a recommended approach
for building this kind of functionality, but now SQL Server Audit gives administrators
the tools to define, enable, store, and view audits on various server and database objects.

NOTE
Unlike the other auditing features previously described, SQL Server Audit is an Enterprise Edition feature.

C h a p t e r 5 : S e c u r i t y 2 0 3

The objects that require configuration in order for SQL Server Audit to produce the
required output are

Audit Defines general audit properties such as the output location and the
required behavior if the output can’t be written. You can define multiple Audit
objects for a given SQL Server instance.

Audit Specification Defined either at an instance or database level and bound
to an Audit. There can be only one Audit Specification per Audit at the instance
level and one Audit Specification per database per Audit at the database level.
Audit Specification acts as a container for multiple Audit Actions.

Audit Action Depending upon whether the Audit Specification is for an instance
or database, the Audit Action type specifies the instance or database events to
include in the audit.

A new Audit is created in a disabled state, and does not automatically produce any
output. After the Audit is enabled, the audit destination receives the defined events.

Creating SQL Server Audit Objects You can create an Audit by selecting New
Audit from the context menu of the Audits node of the instance in Object Explorer,
which opens the Create Audit dialog box (see Figure 5-18).

Figure 5-17 Viewing sys.dm_exec_sessions

2 0 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The required settings are listed and described in Table 5-4.
No additional configuration is required when the Audit Destination field is set to

the Windows application log because any authenticated user can read and write to this
log (however, keep in mind that this makes the application log intrinsically less secure
than the Windows Security event log).When the Audit Destination field is set to the
Windows Security log, you need to additionally configure two Windows Security settings:

Enable the “Audit object access security” policy for both Success and Failure.
In Windows Server 2008 and later, this is achieved by using the Audit Policy
utility (AuditPol.exe). For more information about the AuditPol.exe program, see
Knowledge Base article 921469, “How to Use Group Policy to Configure Detailed
Security Auditing.”

Configure the local or domain security policy to add the account that SQL
Server is running under to the “Generate security audits” policy (by default, Local
System, Local Service, and Network Service are already part of this policy). This
setting can be configured by using the Security Policy snap-in (SecPol.msc).

Figure 5-18 The Create Audit dialog box

C h a p t e r 5 : S e c u r i t y 2 0 5

Table 5-4 Create Audit Dialog Box Settings

Settings Description

Audit name The name by which you will refer to this Audit object.

Queue Delay (in milliseconds) Allows for audit records to be written either synchronously or asynchronously by

specifying the amount of time in milliseconds that can elapse before audit actions

are forced to be processed. A value of 0 indicates synchronous delivery. The default

minimum value is 1000 (1 second).

Shut down server on audit log failure When enabled, forces instance shutdown if audit events cannot be written to their

destination.

Audit destination The destination to which audit events will be written. The options are as follows:

File (binary)

Security log

Application log

Further details on using the Windows Security and application logs are given in

the text accompanying this table.

The remaining settings apply only when the Audit Destination field is set to File.

File path Specifies the location of the folder where audit data is written. The audit log

filename is automatically constructed using the following elements:

AuditName The name of the audit provided when the audit is created

AuditGUID The GUID that identifies the audit that is stored in the

metadata

PartitionNumber A number generated by SQL Server Extended Events to

partition file sets

TimeStamp A 64-bit integer generated by converting the UTC time when

the audit file is created

File extension .sqlaudit

Maximum rollover By default there is no restriction on the number of audit files kept in the audit

destination (where the Audit Destination field is File). By removing the check

from the Unlimited check box and specifying a value, you can enforce a maximum

number of files to be retained.

Maximum file size By default there is no restriction placed on the maximum size for an audit file. By

removing the check from the Unlimited check box, you can enforce a maximum

size. When this size is reached, new files are created in accordance with the

Maximum Rollover settings.

Reserve disk space Can only be used when the Maximum file size option is set and causes SQL Server

to reserve space in the audit destination equivalent to the specified Maximum File

Size when creating a new audit file.

2 0 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Having created an Audit, you can create an Audit Specification by selecting New
Audit Specification from the context menu of the Audit Specifications node of either
the instance or a database in Object Explorer, which opens the Create Server Audit
Specification dialog box (see Figure 5-19).

You specify a previously created Audit and can then add multiple Actions to define
those events that will be included in the Audit. Actions are built from Audit Action
Type items that can refer to either a group of actions, such as Server_Object_Change_
Group (which, for example, includes CREATE, ALTER, and DROP for any server
object), or individual actions, such as SELECT operations on a table.

The elements that make up an Audit Specification Action are outlined in Table 5-5.
Once created, an Audit can be enabled (and disabled) from the context menu of the

audit object, as shown in Figure 5-20.
From the same menu, you can view the contents of an Audit log. Selecting View

Audit Logs opens Log File Viewer, shown in Figure 5-21, allowing you to browse the
contents of either a log file, the Windows application log, or the Windows Security log.
Naturally, the two Windows logs can also be viewed using other Windows tools such as
Event Viewer.

Figure 5-19 The Create Server Audit Specification dialog box

C h a p t e r 5 : S e c u r i t y 2 0 7

Table 5-5 Audit Specification Action Elements

Column Name Description

Audit Action Type The class of event or group of events to capture. For a full list of the available instance and database-level

events, see the SQL Server Books Online article “SQL Server Audit Action Groups and Actions.”

Object Class For individual events (such as SELECT), you can set the scope of the event to one of the following:

Database

Object

Schema

This field is not available when the Audit Action Type is a group.

Object Name For individual events, the name of the object to be audited. This field is not available when the Audit

Action Type is a group.

Object Schema This field is automatically completed to give the schema in which the object specified in the preceding

row resides.

Principal Name Allows the audit to be filtered to include only the actions of a specified principal (User, database role,

or application role).

Figure 5-20 Enabling auditing

2 0 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

As with C2 Audit, the -f startup parameter can be used to disable auditing and allow
an instance to start in the case where audit failure is forcing a shutdown. Additionally,
an administrator can bypass any audit-induced shutdown by starting SQL Server
in single-user mode using the -m startup parameter. Starting in single-user mode
downgrades any audit where “Shutdown server on audit log failure” is enabled so that it
runs in that session with the setting disabled. If a failure to write the Audit event does
not trigger the SQL Server instance to shut down, Audit events are buffered in memory
until they can be written to the target. If the records fill the memory buffer and still
cannot be written to the Audit log, the instance will block any new activity that would
result in an Audit event being written until the buffer space is freed up or the audit is
disabled.

Policy-Based Management and Security
SQL Server’s Policy-Based Management allows administrators to create and enforce
policies governing many aspects of SQL Server usage at a database or instance level or
even across many instances (see Chapter 10 for a more-detailed look at Policy-Based
Management).

Figure 5-21 Audit records in Log File Viewer

C h a p t e r 5 : S e c u r i t y 2 0 9

Policies that act to increase SQL Server security can

Test for security-related configuration options. For example, you can use the
Login facet to test whether the password policy is enforced, or use the Database
facet to detect whether all databases are owned by sa. Other facets can be used to
test the properties of user connections or whether Common Criteria compliance
or C2 auditing are enabled.

Test for and enable or disable features that increase the attack surface area of
a SQL Server instance, such as Ad Hoc Remote Queries, xp_cmdshell, and
Database Mail.

Enforce segregation of duties. For example, a policy might state that members of
the dbcreator role may not also be part of the diskadmin role.

Be automatically evaluated and re-evaluated as the server estate grows and
changes, generating alerts where noncompliance is detected or even automatically
reconfiguring instances that breach the policy.

Oracle DBA Q&A

Q: Can Policy-Based Management be used to “lock down” a SQL Server
estate?

A: No. In most cases policies can be bypassed or violated by users with the
appropriate permissions, and these users will be able to reconfigure options set as
part of a security policy. Policy-Based Management should be treated as a useful
tool to help evaluate security and detect potential vulnerabilities, not as a security
enforcement feature.

This page intentionally left blank

Data Access and
Transaction Control

Chapter 6

In This Chapter

The T-SQL Language

Query Execution

Transaction Management

Locking

2 1 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

This chapter details the activities carried out by the SQL Server Database
Engine in executing user queries and ensuring that SQL Server can
support applications that require the highest levels of concurrent access

while ensuring that the actions of any user attempting to work with the same data as
another user do not cause application errors by allowing these user actions to unduly
interfere with each other. We will look at the SQL Server features that allow
administrators to ensure that SQL Server databases manage data access as efficiently
as possible, and we will give insight into exactly what the Database Engine is doing on
behalf of users.

Underpinning SQL Server data access is the programmatic language that allows
administrators and developers to create potentially complex queries and even express
application logic. A detailed look at this language is outside the scope of this book;
however, we will take the opportunity to introduce this language and describe some
high-level concepts.

The T-SQL Language
Like all commonly implemented relational database management systems, SQL Server
allows users to access and manipulate data and modify database objects and behavior
using the Structured Query Language (SQL). The SQL language defines several
categories of statements, including Data Manipulation Language (DML) statements,
Data Definition Language (DDL) statements, and transaction control statements.

DML statements are used to retrieve and manipulate data. As in Oracle, these
statements are

Action Statement

Create INSERT

Read SELECT

Update UPDATE

Delete DELETE

In addition, both SQL Server and Oracle provide the MERGE statement to query
the database and insert, update, or delete data depending upon the result of the query.
All relational data access and manipulation in SQL Server, however complex the
query, is carried out as a combination of these DML statements; how the Database

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 1 3

Engine acts to manage this statement execution forms the bulk of the remainder of
this section.

DDL statements, listed next, are used to modify database objects such as tables,
views, and stored procedures:

Action Statement

Create object CREATE

Modify object ALTER

Drop object DROP

Oracle DBA Q&A

Q: In Oracle, when creating objects it is possible to specify CREATE OR
REPLACE, which will overwrite an object if it already exists or create it afresh
if it doesn’t. Does SQL Server have the same functionality?

A: No, SQL Server does not have a CREATE OR REPLACE statement.
Instead, the same result is achieved (albeit not as gracefully) by checking whether
the object exists and, if so, then dropping it, and if not, then continuing with the
CREATE statement. The following example shows the code that is used to do an
IF EXISTS check, followed by a DROP PROCEDURE if it does exist, followed
by the creation. Keep in mind, though, that for changing existing tables, views,
stored procedures, and functions, the T-SQL ALTER statement is the usual
approach.

IF EXISTS (SELECT * FROM sys.objects WHERE object_id =

OBJECT_ID(N'[dbo].[MyTestProc]') AND type in (N'P', N'PC'))

DROP PROCEDURE [dbo].[MyTestProc]

GO

CREATE PROCEDURE [dbo].[MyTestProc]

AS

BEGIN

 SELECT @@VERSION

END;

Transaction control statements, listed next, give greater control over the work done
by batches of DML statements. They are discussed in greater detail later in this chapter.

Type Oracle SQL Server

System control ALTER SYSTEM EXEC sp_configure

ALTER DATABASE ALTER DATABASE

EXEC sp_dboption

Session control ALTER SESSION SET

Refer to Chapter 3 for more details on configuring SQL Server instances using
sp_configure. Refer to SQL Server Books Online for details on using SET to govern
session settings in SQL Server (settings that persist only for the lifetime of a given
connection).

While the statements just described allow administrators, developers, and users
to carry out powerful set-based data manipulation, they do not provide for other
functionality more commonly associated with procedural programming languages:

Defining stored procedures, triggers, scalar-valued user-defined functions, and
table-valued user-defined functions.

Control-flow constructs such as loops and conditional branches (IF, THEN, ELSE).

The ability to pass state between programmatic elements using variables, parameters,
and subprocedures.

Exception handling. Older SQL Server functionality based upon inspecting the
value of a built-in function to determine whether an operation returned an error
has been superseded by the ability to use TRY…CATCH blocks more commonly
found in languages such as Java and C#.

The ability to inspect and work with individual rows within a set of results using
cursors.

SQL Server provides these capabilities (and many others) by implementing a set of
statements in addition to the SQL statements previously described. This superset of
programming functionality is known as the Transact-SQL, or T-SQL, language. To put
this another way, instead of having two separate but interoperable languages (as with
SQL and PL/SQL), SQL Server has a single server-side programming language. Clients
always communicate with SQL Server by sending T-SQL batches. A T-SQL batch
is similar to a PL/SQL anonymous block in that it can contain multiple statements,

2 1 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 1 5

embedded SQL, and parameters to pass data back and forth, but it can also return one or
more result sets to the client and error and information messages.

To make a brief point about cursors, they can be used in SQL Server in exactly
the same way as they can in Oracle—to navigate through sets of rows, inspecting and
potentially modifying them. However, one area in which cursors cannot be used in SQL
Server is in returning sets of results to clients (or procedures further up the call stack).
Result sets are passed directly out of SQL Server procedures without the need to define
a parameter of type Cursor and direction Out; hence, it is very common to see SQL
Server procedures such as

CREATE PROCEDURE [HumanResources].[uspUpdateEmployeeHireInfo]

 @EmployeeID [int],

 @Title [nvarchar](50),

 @HireDate [datetime],

 @RateChangeDate [datetime],

 @Rate [money],

 @PayFrequency [tinyint],

 @CurrentFlag [dbo].[Flag]

AS

BEGIN

 BEGIN TRY

 BEGIN TRANSACTION

 UPDATE HumanResources.Employee

 SET Title = @Title

 ,HireDate = @HireDate

 ,CurrentFlag = @CurrentFlag

 WHERE EmployeeID = @EmployeeID

 INSERT INTO HumanResources.EmployeePayHistory

 (EmployeeID

 ,RateChangeDate

 ,Rate

 ,PayFrequency)

 VALUES (@EmployeeID, @RateChangeDate, @Rate, @PayFrequency)

 SELECT HumanResources.Employee.EmployeeID,

 HumanResources.Employee.NationalIDNumber,

 HumanResources.EmployeePayHistory.RateChangeDate,

 HumanResources.EmployeePayHistory.Rate,

 HumanResources.EmployeePayHistory.PayFrequency,

 HumanResources.EmployeePayHistory.ModifiedDate

 FROM HumanResources.Employee INNER JOIN

 HumanResources.EmployeePayHistory ON

 HumanResources.Employee.EmployeeID =

2 1 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

 HumanResources.EmployeePayHistory.EmployeeID

 WHERE HumanResources.Employee.EmployeeID = @EmployeeID

 COMMIT TRANSACTION

 END TRY

 BEGIN CATCH

 -- Roll back any active or uncommittable transactions before

 -- inserting information in the ErrorLog

 IF @@TRANCOUNT > 0

 BEGIN

 ROLLBACK TRANSACTION

 END

 EXECUTE [dbo].[uspLogError]

 END CATCH

END

In this example in which multiple DML statements are grouped together to form
a single transaction, TRY and CATCH statements are used to detect and handle
exceptions, and (in the successful case) the procedure ends by simply SELECT-ing
a set of results to the caller.

Query Execution
The tasks that the Database Engine carries out as users submit queries and results are
(potentially) returned can be divided into four categories:

Parsing

Optimization

Execution

Fetching

Parsing
During this phase, the SQL statements issued by the user or application are checked for
syntactic and semantic correctness and then broken down into logical elements such as
keywords, identifiers, operators, and parameters. Security checks such as the validation
of access rights are also performed at this stage.

Optimization
During optimization, the Database Engine determines the most efficient sequence
of operations to access the data required by the query; this sequence is called an

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 1 7

execution plan. SQL Server analyzes the different index and join strategies available
to it, taking into account statistics describing the distribution of column data where
they are available, to establish an execution plan with the lowest cost, where cost is
generally a measure of response time. While the query optimizer will take into account
CPU usage and memory pressure, the optimizer mostly tries to minimize the amount
of logical I/O required to process the query. Logical I/O is a main consumer of CPU
time, and minimizing logical I/O also minimizes physical I/O. As a rule of thumb, the
optimizer will also try to find the plan that completes the query execution soonest.

Notes on Statistics
SQL Server maintains statistical information about the distribution of the key
values in each index; however, administrators can create statistics on non-indexed
columns by using the CREATE STATISTICS statement.

By default, the AUTO_UPDATE_STATISTICS database option is set to ON,
meaning that the Database Engine will automatically update statistics information
as the data changes. A random sample across data pages is used to evaluate whether
the statistical information still accurately represents the nature of the data, and
this (instead of analyzing all the data) minimizes the cost of automatic statistical
updates. Having said this, it is still possible for an administrator to disable AUTO_
UPDATE_STATISTICS, with the recommendation being that statistics updates
should be built into a regular maintenance plan (see Chapter 10).

Unlike Oracle’s now-deprecated rules-based optimization, SQL Server has never
offered a facility to assign priorities to indexes in order to guide optimizer choices;
however, it is possible for administrators and developers to instruct the optimizer using
hints or plan guides (see “Plan Guides” later in the chapter).

As optimization can require some complex processing on the part of the Database
Engine, SQL Server attempts to minimize the need to optimize queries by caching
execution plans once they have been created. The goal for a well-performing database is
for as many queries to be executed against plans retrieved from the procedure cache as
possible, compared with those for which an optimized plan needs to be created afresh.
For a cached plan to be used, the SQL statement must match exactly the one that
generated the plan. Also, as the data in a database changes over time and the statistics
fail a test as to their accuracy, new optimizations will be performed for previously
cached plans (note that this failure will cause a recomputation of the statistics in
question).

2 1 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Execution
Whether the execution plan was cached or not, during execution the Database Engine
steps through the logical operations defined in the plan, carrying out each one.

Fetching
Where queries contain SELECT statements, execution is followed by a fetch
phase, which actually returns the results of the query to the user or application. Any
formatting required for values such as dates and times and certain numeric values is
carried out during this phase.

Execution Plans
SQL Server execution plans are a representation of the data access paths chosen by
the query optimizer and show the sequence of data access operations and the cost
associated with them in various formats. Being able to see the choices made by the
optimizer is vital to administrators looking to understand where performance issues are
occurring or where performance can be further improved.

You can generate execution plans for the queries you execute using the following
syntax:

SET SHOWPLAN_TEXT {ON|OFF} Produces a textual representation of the execution plan as a set of rows that forms a

hierarchical tree representing the steps taken by the SQL Server query processor as it

executes each statement. The format is similar to Oracle’s EXPLAIN PLAN.

SET SHOWPLAN_ALL {ON|OFF} Produces a more verbose version of the preceding syntax, designed for applications

able to handle this output not for readability.

SET SHOWPLAN_XML {ON|OFF} Produces an XML document describing the execution plan, which can be used by the

Management Studio and other applications to provide a graphical representation of

the plan. See the following example.

NOTE
In all cases, the execution plan is returned for the query without actually executing the query.

Example Execution Plan

SET SHOWPLAN_TEXT ON

GO

USE AdventureWorks2008

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 1 9

GO

SELECT TOP 5sp.Name, st.TaxRate

FROM Sales.SalesTaxRate st

JOIN Person.StateProvince sp

 ON st.StateProvinceID = sp.StateProvinceID

WHERE sp.CountryRegionCode = 'US'

ORDER BY st.TaxRate desc

Executing the preceding example produces the results shown in Figure 6-1.
Viewing the output at this level of detail, the results using SHOWPLAN_ALL will

be very similar to those shown in Figure 6-1.

XML Showplans
Perhaps the most useful Showplan format for administrators (and the one that is
recommended for use going forward in SQL Server) is the XML Showplan. The XML
created by this Showplan can be interpreted by SQL Server Management Studio so
that the execution plan is displayed using icons rather than the tabular representation
produced by the SET SHOWPLAN_ALL and SET SHOWPLAN_TEXT
statements. This graphical approach is very useful for understanding the performance
characteristics of a query.

XML Showplans can be created using the syntax shown in the preceding example or
by using the SQL Server Management Studio features highlighted in Figure 6-2.

Figure 6-1 SHOWPLAN_TEXT results

Figure 6-2 Management Studio support for execution plans

2 2 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

In Figure 6-2, the toolbar button marked 1 is Display Estimated Execution Plan and
the button marked 2 is Display Actual Execution Plan. Display Estimated Execution
Plan works in the same fashion as the SET SHOWPLAN_ statements in that it
causes an execution plan to be returned without executing the query. If Display Actual
Execution Plan is clicked, the query is executed prior to the execution plan being
returned.

Whether the Showplan is created using SET SHOWPLAN_XML or by selecting
either of the Management Studio toolbar options, the output generated for a sample
query is shown in Figure 6-3.

The individual data access operations are displayed as icons, with the operational
sequence represented as a flow and each icon accompanied by summary information
detailing

The type of operation

The object name, where applicable

The cost of the operation, relative to the other operations within the batch

If a batch contains multiple queries, the execution plan is returned in multiple rows
(the example in Figure 6-3 contains one query and shows one such row). In this case,
the relative overall cost for each query within the batch is displayed.

Each icon in an XML Showplan can be made to reveal much more information with
regard to the operation than initially displayed in the execution plan window. To do
this, right-click the icon and select Properties; this opens the Properties dialog box for
the operation, an example of which is shown in Figure 6-4.

Figure 6-3 SHOWPLAN_XML results

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 2 1

ON THE JOB
Comparing the estimated properties for an execution plan with the actual properties can be a useful exercise. For

example, if the Estimated Number of Rows property is very different from the Actual Number of Rows property,

this is a good indicator that statistics are out of date.

XML Showplans can be saved in their entirety by right-clicking any white space in
the execution plan window and selecting Save Execution Plan As. A saved execution
plan can be opened in any instance of SQL Server Management Studio by selecting
File | Open; doing so re-creates all of this rich, graphical information exactly as it was
originally displayed, making XML Showplans very useful when execution information
needs to be shared between administrators or between administrators and application
developers.

Figure 6-4 Properties for a Clustered Index Seek operation

2 2 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

As a final point, it is also possible to retrieve XML Showplans for queries already
executed by querying the plan column of the sys.dm_exec_query_plan dynamic
management view (DMV). For example:

select st.text,

 qs.execution_count,

 qs.total_logical_reads,

 qs.total_worker_time/1024 total_cpu_ms,

 qp.query_plan

from sys.dm_exec_query_stats qs

cross apply sys.dm_exec_sql_text(qs.sql_handle) st

cross apply sys.dm_exec_query_plan(qs.plan_handle) qp

order by total_logical_reads desc

Optimizer Hints
SQL queries can include directives that limit the access paths that will be considered
by the optimizer. This can force the optimization phase to choose particular indexes or
access table data in accordance with a particular locking model, and also has the effect
that changes in the statistical information regarding the data in the tables and their
indexes will be disregarded.

There are different types of hints, which fall into the following categories:

Table hints

Join hints

Query hints

The SQL Server syntax is

{SELECT|INSERT|DELETE|UPDATE} statement ::=

 <query_expression>

 [OPTION(<query_hint> [,...n])]

A detailed discussion of all the available hints is outside the scope of this book, but
the Books Online article “Hints (Transact-SQL)” gives a full description of them.

In all cases, it is recommended that you thoroughly test any use of optimizer hints
prior to putting them into production, as the execution path chosen by the query
optimizer will be the best in most cases, and using hints can, in fact, degrade rather than
improve performance. Additionally, you should monitor and periodically reevaluate your
use of hints to ensure that the hints remain valid as your data changes.

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 2 3

Plan Guides
Although optimizer hints give administrators a great deal of control over the exact
way in which the Database Engine executes particular queries, not all queries can be
modified with optimizer hints. For example, administrators often can’t make direct
changes to queries generated by a third-party application or during a database upgrade.
In such cases, though, optimizer hints can still be used to direct the chosen execution
plan. This is achieved using plan guides.

Plan guides are database objects that allow optimizer hints or a fixed query plan to
be associated with a query. They can be used to apply query hints to a query, control
query plan compilation, or specify the exact plan that a query will use. They are useful
in database upgrades to redress query plan regressions, as a tuning option for third-
party applications, and in the scenario where the data environment is highly volatile
(large sets of data are being modified, added, or deleted frequently and statistics rapidly
become stale) and a set of queries is being reoptimized far more frequently than is
desirable. In these situations, you can associate a fixed plan with a query in the hope
that any performance penalty of executing a suboptimal plan will be outweighed by
saving the cost of repeated recompilation.

Different types of plan guides can be created to match queries that are executed in
different contexts:

An OBJECT plan guide matches queries that execute in the context of Transact-
SQL stored procedures, certain user-defined functions, and triggers.

A SQL plan guide matches queries that execute in the context of stand-alone
Transact-SQL statements and batches that are not part of a database object.

A TEMPLATE plan guide matches stand-alone queries that parameterize
to a specified form. These plan guides are used to override the current
PARAMETERIZATION database SET option of a database for a class of
queries.

Creating a Plan Guide to Use Optimizer Hints
In SQL Server Management Studio, plan guides are found under Programmability.
Right-clicking Plan Guides and selecting New Plan Guide opens the New Plan Guide
dialog box (see Figure 6-5).

The required values are

Name A name for the Plan Guide.

Statement The SQL statement to which hints should be applied. You must
provide this text exactly as the Database Engine will receive the batch.

2 2 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Scope type One of the three query contexts previously described: OBJECT,
SQL, or TEMPLATE.

Scope batch Allows you to specify a larger SQL batch, within which the
Statement value is provided. Again, this batch must match exactly, character for
character.

Scope schema name When the Scope Type is OBJECT, the name of the
database schema in which the object can be found.

Figure 6-5 The New Plan Guide dialog box

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 2 5

Scope object name When the Scope Type is OBJECT, the name of the object.

Parameters When the Scope Type is SQL or TEMPLATE, the names and
data types of all parameters in the Statement.

Hints The optimizer hints to be applied to the statement. In Figure 6-5, a table
hint is directing the optimizer to use a particular index whenever the query matches
the one specified in the Statement field.

The system procedure sp_create_plan_guide can be called to create a plan guide and
you must pass in the preceding information when calling it. See Books Online for the
syntax.

Creating a Plan Guide to Use a Fixed Plan
The procedure for creating a plan guide to “pin” a fixed execution plan to a query is
identical to that described in the preceding section except that the XML representation
of the execution plan is specified in the Hints field (in place of any optimizer hint).

The XML plan representation (the XML Showplan) for the query is obtained by
querying the sys.dm_exec_query_stats DMV in conjunction with dm_sec_sql_text and
dm_exec_text_query_plan:

SELECT query_plan

FROM sys.dm_exec_query_stats AS qs

CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS st

CROSS APPLY sys.dm_exec_text_query_plan(qs.plan_handle, DEFAULT, DEFAULT)

AS qp

WHERE st.text LIKE N'SELECT City, StateProvinceID, PostalCode

FROM Person.Address ORDER BY PostalCode DESC;%')

In this example, the XML Showplan for the query referenced in the WHERE clause
is returned.

Monitoring Query Execution
The DMV sys.dm_exec_requests returns information about each request that is executing
within SQL Server. For the exact structure of this view, see Books Online. Table 6-1 lists
and describes the columns most commonly of interest.

In addition, SQL Server Activity Monitor can be used to give an interactive view
of the processes that are executing within an instance (see the section “Monitoring
Locking” later in this chapter).

2 2 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Column Name Description

session_id ID of the session to which this request is related.

start_time Timestamp when the request arrived.

status Status of the request. This can be one of the following:

Background

Running

Runnable

Sleeping

Suspended

command Identifies the current type of command that is being processed. Common command types

include the following:

SELECT

INSERT

UPDATE

DELETE

The text of the request can be retrieved by using sys.dm_exec_sql_text with the corresponding

sql_handle for the request.

database_id ID of the database the request is executing against.

user_id ID of the user who submitted the request.

connection_id ID of the connection on which the request arrived.

blocking_session_id ID of the session that is blocking the request. If this column is NULL, the request is not

blocked, or the session information of the blocking session is not available (or cannot be

identified).

wait_time If the request is currently blocked, this column returns the duration, in milliseconds, of the

current wait.

wait_resource If the request is currently blocked, this column returns the resource for which the request is

currently waiting.

open_transaction_count Number of transactions that are open for this request.

open_resultset_count Number of result sets that are open for this request.

cpu_time CPU time, in milliseconds, that is used by the request.

total_elapsed_time Total time elapsed, in milliseconds, since the request arrived.

reads Number of reads performed by this request.

writes Number of writes performed by this request.

transaction_isolation_level Isolation level with which the transaction for this request is created.

lock_timeout Lock time-out period, in milliseconds, for this request.

Table 6-1 Selected Columns from the DMV sys.dm_exec_requests

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 2 7

Performance Counters
The Perfmon counters listed and described in Table 6-2 can be useful to administrators
looking to understand query execution within a SQL Server database.

Built-in Reports
Among the built-in SQL Server Management Studio reports, the following give
insight into query execution:

All Sessions

Activity – Top Sessions (shown in Figure 6-6)

Performance – Top Queries by Average CPU Time

Performance – Top Queries by Average IO

Performance – Top Queries by Total CPU Time

Performance – Top Queries by Total IO

Counter Description

SQL Server SQL Statistics: Batch Requests/Sec The number of batch requests that SQL Server receives per second, and is

generally a measure of how busy a server’s CPUs are.

SQL Server Plan Cache: Cache Hit Ratio Ratio between cache hits and lookups. Essentially this is the percentage

of queries for which a cached plan was executed.

SQL Server SQL Statistics: SQL Compilations/Sec The number of times per second that the Database Engine is generating

new execution plans.

SQL Server Access Methods: Full Scans/sec Number of unrestricted full scans. These can either be base table or full

index scans.

SQL Server SQL Statistics: Guided Executions/sec Number of plan executions per second in which the query plan has been

generated by using a plan guide.

SQL Server Buffer Manager: Page Reads/sec Number of physical database page reads issued.

SQL Server Buffer Manager: Page Writes/sec Number of physical database page writes issued.

SQL Server Databases: Transactions/sec Number of transactions started for the database.

Table 6-2 Windows Performance Monitor Counters Useful in Analyzing Query Execution

2 2 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Transaction Management
A transaction is a logical unit of work that comprises one or more SQL statements
executed by a single user. According to the ANSI definition, a transaction begins with the
first executable statement and ends when it is explicitly committed or rolled back. Starting
with a consistent database state, all modification attempts made by transactions have to
complete (commit or roll back), leaving the database in a consistent state regardless of
whether the modification attempt was successful or not.

SQL Server transactions exhibit the four qualities that qualify a unit of work as
a transaction:

Atomicity A transaction must act as a single block of work; either all of its data
modifications are performed or none of them are performed.

Consistency When completed, a transaction must leave all data in a consistent
state. In a relational database, all rules must be applied to the transaction’s
modifications to maintain all data integrity.

Figure 6-6 The Activity – Top Sessions report

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 2 9

Isolation Modifications made by transactions must be isolated from the
modifications made by any other concurrent transactions.

Durability After a transaction has completed, its effects are permanently in
place in the system. The modifications persist even in the event of a system failure.

Auto-Commit Transactions
The default behavior of SQL Server is for INSERT, UPDATE, and DELETE
statements to be wrapped in a transaction that automatically commits as soon as the
statement is executed (unless an explicit transaction is created, as described a bit later).
An application or user does not need to do anything to commit the transaction, and the
transaction cannot be rolled back.

Implicit Transactions
The Transact-SQL SET IMPLICIT_TRANSACTIONS statement can be used to
slightly modify the behavior just described (and bring it closer to that described by the
ANSI definition). To Oracle administrators, this transaction management mode is more
familiar than auto-commit mode.

For a connection that has issued SET IMPLICIT_TRANSACTIONS ON, the
Database Engine still automatically starts a new transaction as with auto-commit
transactions; users continue to do nothing to mark the start of a transaction. However,
implicit transactions can be committed or rolled back as required using transaction
control statements.

When running in implicit transaction mode, the Database Engine automatically
starts a transaction when it first executes DML or DDL statements, including

SELECT

INSERT

UPDATE

DELETE

CREATE

ALTER TABLE

DROP

The transaction remains in effect until the user or application issues a COMMIT or
ROLLBACK statement. After the first transaction is committed or rolled back, SQL
Server automatically starts a new transaction the next time any of these statements is
executed by the connection.

2 3 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Explicit Transactions
In an explicit transaction, the user or application explicitly defines both the start and
end of the transaction, either through an API call or by issuing the Transact-SQL
transaction control statements. Explicit transactions are the most common method for
scoping transactions in SQL Server. The transaction control statements are as follows:

BEGIN TRANSACTION Marks the starting point of an explicit transaction for a session.

COMMIT TRANSACTION Used to end a transaction successfully if no errors were encountered. All data modifications

made in the transaction become a permanent part of the database. Resources held by the

transaction are freed.

ROLLBACK TRANSACTION Used to erase a transaction. All data modified by the transaction is returned to the state it

was in at the start of the transaction. Resources held by the transaction are freed.

In SQL Server, stored procedures do not have any inherent transactional semantics.
If you need a multistatement transaction in a stored procedure, you must use implicit or
explicit transactions.

Distributed Transactions
SQL Server is able to participate in distributed transactions—that is, transactions
that need to govern data updates in two or more systems. These systems may be two
instances of SQL Server or they may include another database server such as Oracle or
any other system that supports the X/Open XA specification for distributed transaction
processing. A transaction involving two different SQL Server databases in the same
SQL Server instance is not considered a distributed transaction.

In SQL Server, each instance involved in a distributed transaction is termed a
resource manager. The coordinator is a Windows component called the Microsoft
Distributed Transaction Coordinator (MSDTC) or another transaction manager that
supports the X/Open XA specification. MSDTC is managed outside of SQL Server.
A “two-phase commit” is used to complete transactions in a distributed system (either
commit or rollback) and ensures data integrity and accuracy within the distributed
databases through synchronized locking of all pieces of a transaction.

MSDTC manages in-doubt distributed transactions (where one or more
participating systems does not return a success or failure notice) by periodically
checking to see whether the remote server has become available before eventually
instructing resource managers to commit or roll back.

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 3 1

Errors During Transaction Processing
If an error prevents the successful completion of a transaction, SQL Server automatically
rolls back the transaction and frees all resources held by the transaction.

Rollback Behavior
If a statement-level run-time error (such as a constraint violation) occurs in a query,
the default behavior is for the Database Engine to roll back only the statement that
generated the error. Statements following the error will be successfully committed if no
further errors occur.

This behavior can be modified by administrators and developers using the XACT_
ABORT option, the syntax of which follows:

SET XACT_ABORT {ON | OFF}

XACT_ABORT is off by default. Issuing SET XACT_ABORT ON causes any
run-time statement errors to automatically roll back all of the current transaction.

SQL Server transactions can be nested. This means that within transactions, you
may start further transactions, and within those subsequent transactions, you may
start still more transactions. You can name transactions to aid readability, or simply let
the Database Engine interpret the relationships between transactions on your behalf.
Naming multiple transactions in a series of nested transactions with a transaction
name has little effect on the transaction. Only the first (outermost) transaction name is
registered with the system. A rollback to any other name generates an error. You need to
bear this in mind when looking at rollback behavior in nested transactions.

For example:

1. USE AdventureWorks2008

2. GO

3. BEGIN TRANSACTION

4. UPDATE Production.ProductInventory SET

5. ProductID = 1,

6. LocationID = 6,

7. Shelf = 'A',

8. Quantity = 100

9. WHERE (ProductID = 1 AND LocationID = 6 AND Shelf = 'A')

10. BEGIN TRANSACTION

11. INSERT INTO Production.TransactionHistory

12. (ProductID, ReferenceOrderID, TransactionDate,

13. TransactionType, Quantity, ActualCost)

2 3 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

14. VALUES (1, 42000, '2009-10-31', 'S', 2, 241.23)

15. ROLLBACK TRANSACTION

16. COMMIT TRANSACTION

In this case the INSERT statement that begins on line 11 executes within a transaction
that is nested within the transaction that contains the UPDATE statement that begins on
line 4. Line 15 rolls back this inner transaction and line 16 commits the outer transaction.

In SQL Server, with regard to nested transactions, the ROLLBACK TRANSACTION
statement rolls back all inner transactions to the outermost BEGIN TRANSACTION
statement. Therefore, when line 15 is executed (or if XACT_ABORT were set to
ON and some failure occurred between lines 10 and 15), the transaction started on
line 3 would also be rolled back, not just the transaction started on line 10.

In fact, in this example, line 16 would raise the following error:

The COMMIT TRANSACTION request has no corresponding BEGIN TRANSACTION.

If you want to modify this behavior and perform a partial rollback, you need to use
the SAVE TRANSACTION statement. If the relevant lines in the preceding example
were to read as follows, then you could roll back to a point after the first (UPDATE)
statement:

10. SAVE TRANSACTION BeforeInsert

15. ROLLBACK TRANSACTION BeforeInsert

It is important to understand this behavior when administering SQL Server
databases that make use of transactions.

Transaction Isolation
As previously described, users and applications interact with the database using transactions.
Consistency becomes an issue when multiple transactions attempt to read and modify the
same data concurrently. These potential conflicts can give rise to a number of undesirable
outcomes (or phenomena) that SQL Server administrators need to be aware of, outlined in
Table 6-3.

If any explicit transaction is employed, the lost update can never be allowed in SQL
Server, but the remaining phenomena can be permitted or disallowed, as required, by
choosing an appropriate transaction isolation level as is discussed in the upcoming
“Isolation Levels” section.

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 3 3

Types of Concurrency Control
Both Oracle and SQL Server offer optimistic and pessimistic methods of concurrency
control:

Optimistic concurrency control Users do not lock data when they read it.
When a user updates data, the user checks to see if another user changed the data
after it was read. If another user updated the data, an error is raised. Typically,
the user receiving the error rolls back the transaction and starts over. This is
called “optimistic” because it is mainly used in environments where there is low
contention for data, and where the cost of occasionally rolling back a transaction is
lower than the cost of locking data when read. This model is typically used where
end users are selecting and later updating data.

Pessimistic concurrency control A system of locks prevents users from
modifying data in a way that affects other users. After a user performs an action
that causes a lock to be applied, other users cannot perform actions that would
conflict with the lock until the owner releases it. This is called pessimistic control
because it is mainly used in environments where there is high contention for data,
where the cost of protecting data with locks is less than the cost of rolling back
transactions if concurrency conflicts occur. This model is typically used inside
short-lived stored procedures on the database server.

Table 6-3 Potential Inconsistencies in Concurrently-Modified Databases

Phenomenon Occurs When…

Lost updates Two or more transactions select the same row and then update the row based on the value

originally selected. Each transaction is unaware of the other transactions. The last update

overwrites updates made by the other transactions, which results in lost data.

Dirty read A transaction can read data that is written but not yet committed by another transaction.

The transaction that wrote the data may roll back the change so that it was never really

in the database and was not meant to be read, or it may be that the data is only part of a

larger change and the other related changes haven’t been made yet, so the data you read is

inconsistent. In either case, the data is in an intermediate state and is considered “dirty.”

Nonrepeatable (fuzzy) read A transaction re-reads data at different intervals in the same transaction and sees changes

committed by another transaction. The data changes between reads, so it seems that the

reads are inconsistent.

Phantom read An insert or delete action is performed against a row that belongs to a range of rows being

read by a transaction. The transaction’s first read of the range of rows shows a row that

no longer exists in the second or succeeding read as a result of a deletion by a different

transaction. Similarly, the transaction’s second or succeeding read shows a row that did not

exist in the original read as the result of an insertion by a different transaction.

2 3 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

In Oracle’s READ COMMITTED isolation level, pessimistic locking is achieved by
using the FOR UPDATE clause as part of the SELECT query. SQL Server’s Transact-
SQL does not have a FOR UPDATE clause (although we’ll see that the UPDLOCK
table hint can be used to accomplish the same thing), and whether a transaction uses
optimistic or pessimistic concurrency is generally a product of the transaction isolation
level in place. The table in the following section describes when pessimistic locking is
the default for SQL Server when using the available transaction isolation levels.

It should be noted that even when pessimistic locking is in place, in SQL Server,
readers will still not block other readers, only attempts to write to the same data. For a
read operation to block another read, an explicit lock hint must be used (see the section
“Locking” later in this chapter).

Isolation Levels
Avoiding all of the phenomena mentioned in Table 6-3 would require that transactions
appear to be run sequentially, with each having sole access to the data whenever there
could be a conflict—that is, they are serialized. With this in mind, it can be seen that a
trade-off must exist between achieving a highly concurrent transactional environment
and maintaining data consistency. The higher the level of consistency desired (the level
of isolation), the lower the amount of concurrency possible. The SQL-99 standard
defines four levels of isolation, giving administrators and developers control over the
database behavior that best suits their requirements. SQL Server adds two more to this
list. The following table lists these isolation levels, shows which of the three permissible
inconsistency phenomena are possible with each, and identifies the concurrency model
used when implemented in SQL Server:

Isolation Level Dirty Read Nonrepeatable Read Phantom Read Concurrency Model

Read Uncommitted Yes Yes Yes Pessimistic

Read Committed No Yes Yes Pessimistic

Read Committed (Snapshot) No Yes Yes Optimistic

Repeatable Read No No Yes Pessimistic

Snapshot No No No Optimistic

Serializable No No No Pessimistic

SQL Server does not have an equivalent to Oracle’s Read-Only isolation level. In
SQL Server, Read-Only is a state into which an administrator may place an entire
database where no updates are allowed, only reads. The equivalent of Oracle’s Read
Committed isolation level in SQL Server is Read Committed (Snapshot), and the
equivalent of Oracle’s Serializable isolation level is Snapshot.

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 3 5

Setting the Isolation Level
In SQL Server the default isolation level can be changed at a transaction level by issuing
SET TRANSACTION ISOLATION LEVEL before the BEGIN TRANSACTION
statement:

SET TRANSACTION ISOLATION LEVEL {READ COMMITTED |

 READ UNCOMMITTED | REPEATABLE READ |

 SERIALIZABLE | SNAPSHOT}

Snapshot Isolation
Earlier versions of SQL Server provided the four SQL-99 levels of isolation: Read
Uncommitted, Repeatable Read, Read Committed, and Serializable.

SQL Server has since added Snapshot and Read Committed Snapshot isolation,
which, in effect, provide alternate implementations of Serializable and Read Committed
levels of isolation, respectively, and use optimistic locking rather than pessimistic locking
to control concurrent access. These two Snapshot isolation levels are implemented on
a row versioning model that is built upon having multiple copies of the data. When
reading data, the read happens against a copy, and no locks are held. When writing the
data, the write happens against the “real” data, and it is protected with a write lock. In
this way, we get the real concurrency benefit that writers do not block readers when
using Snapshot isolation.

Unlike the other transaction isolation levels, before Snapshot or Read Committed
Snapshot isolation can be used, they must be enabled within the SQL Server database.
The syntax for these options is

ALTER DATABASE databasename SET ALLOW_SNAPSHOT_ISOLATION {ON|OFF}

ALTER DATABASE databasename SET READ_COMMITTED_SNAPSHOT {ON|OFF}

Having enabled Snapshot isolation, users and application developers can now
request Snapshot isolation when beginning queries using the SET TRANSACTION
ISOLATION LEVEL syntax shown in the preceding section. Enabling Read
Committed Snapshot is only possible when the database is in single-user mode and
is different in that the effect of this setting is to change the default Read Committed
isolation level from the traditional pessimistic behavior to the newer optimistic, row
versioning implementation. As this is a persistent database change to the isolation level
used when no other level is requested, administrators should be aware of the following
note before making this change.

Considerations for Snapshot Isolation
While row versioning can increase concurrency, there are also potential drawbacks that
administrators need to be aware of. The row versions that are generated whenever a
record is updated under Snapshot isolation are stored in the tempdb system database

2 3 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

and there is a cost associated with this even if no read operations are executing. Having
implemented row versioning for a database, the size of the tempdb database may
increase significantly, and if tempdb runs out of space, then uncommitted transactions
will fail. Furthermore, in highly concurrent environments, the act of writing to the
tempdb database’s transaction log can become a performance bottleneck that will cause
administrators to, at least, look to move this database and its log onto a separate disk set.

Locking
SQL Server, in common with Oracle, implements the isolation levels described in the
previous section (apart from the Snapshot isolation implementations) by managing
concurrent access to shared resources using locks. A SQL Server lock is an in-memory
structure detailing the object being shared, those transactions using the object, and the
type of object usage required by those transactions.

Lock Granularity
Transactions acquire locks on different-sized objects depending upon their requirements,
and this size is known as the lock granularity. Whereas in Oracle the available granularities
are row and table, in SQL Server the granularities are (in increasing order of size) row or
key (a row within an index), page, extent, partition, table, and database. The default lock
granted to a transaction is a row lock.

Lock Types
The main types of lock available in SQL Server are

Lock Type Purpose

Shared (S) Used for operations that do not change data.

Exclusive (X) Used for data-modification operations, such as INSERT, UPDATE, or DELETE. Ensures that multiple

updates cannot be made to the same resource at the same time.

Update (U) Prevents a common form of deadlock called a lock conversion deadlock that occurs when multiple

sessions are reading, locking, and then potentially updating resources later. Only one session can

acquire an update lock on a resource and whilst this lock still needs to be converted to an exclusive

(X) lock before any update can take place, the session holding the update lock can be certain that

it will receive the X lock as soon as all other locks are released and that no change can have been

made to the data that it read before the update takes place.

Intent Used to establish a lock hierarchy. The types of intent locks are intent shared (IS), intent exclusive

(IX), and shared with intent exclusive (SIX).

Schema modification

(Sch-M)

Used for performing DDL operations.

Bulk update (BU) Used for bulk copying data into a table.

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 3 7

SQL Server uses intent locks to protect placing a shared (S) lock or exclusive (X) lock
on a resource lower in the lock hierarchy. Intent locks are named intent locks because they
signal intent to place locks at a lower level. In doing this they prevent other transactions
from modifying the higher-level resource in a way that would invalidate the lock at the
lower level.

For example, a shared intent lock is requested at the table level before S locks are
requested on pages or rows within that table. Setting an intent lock at the table level
prevents another transaction from acquiring an X lock on the table containing that page
or rows for the duration of the intent lock. During this time, the other transaction is still
likely to be able to acquire the S locks that it needs.

Lock Compatibility
As shown in the Lock Types section, certain locks can be applied to individual database
objects in conjunction with other locks granted to other sessions. The following table
lists the possible combinations of locking modes in SQL Server. Where the combination
is not possible, the session requesting the lock type on the left will have to wait for the
lock at the top to be released.

Mode IS S U IX SIX X

IS Yes Yes Yes No No No

S Yes Yes Yes Yes Yes No

U Yes Yes No No No No

IX Yes No No Yes No No

SIX Yes No No No No No

X No No No No No No

In SQL Server, the SET option LOCK_TIMEOUT can be used to govern the way
that a transaction will wait for an earlier transaction to release locks or time out.

Both granularity and type of lock impact when transactions will be required
to wait for other locks to be released on shared objects. Locks with too large a
granularity will cause more objects to be locked than absolutely required, and
locks of an inappropriate type can cause transactions to wait unnecessarily before
their own locks are granted. With this in mind, ensuring that the required level of
protection is achieved using the smallest, most permissive locks possible is a key
aim for developers and administrators.

2 3 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Lock Hints
The choice of isolation level changes the types of locks implicitly acquired by the
database and the duration for which they are held, with READ UNCOMMITED
being the least restrictive and SERIALIZABLE the most. In addition, the user can
explicitly acquire locks above those automatically requested in accordance with the
isolation level. The syntax for acquiring such locks is

SELECT ... statement ... WITH ({ {NOLOCK | READUNCOMMITTED}

 | ROWLOCK | PAGLOCK | TABLOCK | TABLOCKX | UPDLOCK

 | XLOCK | {HOLDLOCK | SERIALIZABLE} | REPEATABLEREAD })

It is recommended that the default locking choices made by the Database Engine
should be overridden by use of lock hints in SQL Server only after significant testing,
to avoid unforeseen concurrency issues. Table 6-4 provides the types of locking hints
that can be used with SQL Server.

Oracle DBA Q&A

Q: If I can’t use SELECT...FOR UPDATE, how can I stop other session
seeing rows that users or applications have already read?

A: This is not immediately obvious in SQL Server and requires the use of locking
hints. The remainder of this section discusses such a scenario.

To better understand how locking hints might be used, consider the following query
(Query 1):

1. SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

2. BEGIN TRANSACTION

3. SELECT Name FROM TestTable WHERE Id = 1

4. UPDATE TestTable SET Name = 'James' WHERE Id = 1

5. COMMIT

Table 6-5 shows that the Repeatable Read isolation level implies pessimistic
concurrency control, so you may think that the following query (Query 2) would

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 3 9

Hint Description

HOLDLOCK Hold a shared lock until completion of the transaction instead of releasing the lock as soon as the

required table, row, or data page is no longer required. HOLDLOCK is equivalent to SERIALIZABLE.

NOLOCK Do not issue shared locks and do not honor exclusive locks. When this option is in effect, it is possible

to read an uncommitted transaction or a set of pages that is rolled back in the middle of a read. Dirty

reads are possible. Only applies to the SELECT statement.

PAGLOCK Use page locks where a single table lock would usually be taken.

READCOMMITTED Perform a scan with the same locking semantics as a transaction running at the READ COMMITTED

isolation level. By default, SQL Server operates at this isolation level but any other isolation level will

be overridden for this statement.

READPAST Skip locked rows. This option causes a transaction to skip rows locked by other transactions that

would ordinarily appear in the result set, rather than block the transaction waiting for the other

transactions to release their locks on these rows. The READPAST lock hint applies only to transactions

operating at READ COMMITTED isolation and will read only past row-level locks. Applies only to the

SELECT statement.

READUNCOMMITTED Equivalent to NOLOCK.

REPEATABLEREAD Perform a scan with the same locking semantics as a transaction running at the REPEATABLE READ

isolation level.

ROWLOCK Use row-level locks instead of the coarser-grained page- and table-level locks.

SERIALIZABLE Perform a scan with the same locking semantics as a transaction running at the SERIALIZABLE

isolation level. Equivalent to HOLDLOCK.

TABLOCK Use a table lock instead of the finer-grained row- or page-level locks. SQL Server holds this lock until

the end of the statement. However, if you also specify HOLDLOCK, the lock is held until the end of the

transaction.

TABLOCKX Use an exclusive lock on a table. This lock prevents others from reading or updating the table and is

held until the end of the statement or transaction.

UPDLOCK Use update locks instead of shared locks while reading a table, and hold locks until the end of

the statement or transaction. UPDLOCK has the advantage of allowing you to read data (without

blocking other readers) and update it later with the assurance that the data has not changed since

you last read it.

XLOCK Use an exclusive lock that will be held until the end of the transaction on all data processed by the

statement. This lock can be specified with either PAGLOCK or TABLOCK, in which case the exclusive

lock applies to the appropriate level of granularity.

Table 6-4 SQL Server’s Locking Hints

be blocked by the SELECT on line 3 if it were issued before the UPDATE on
line 4:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN TRANSACTION

SELECT Name FROM TestTable WHERE Id = 1

COMMIT

This is not, in fact, the case. Query 2 is only blocked by the UPDATE on line 4, so if
Query 1 performed some long-running task between lines 3 and 4, then Query 2 would
still be able to read the row in question during that period. This may be undesirable if
your intention is for Query 1 to select and later update the row and for other users to
not be able to see old values for the row once this operation has started (in other words,
classic SELECT ... FOR UPDATE behavior).

The reason that Query 2 is not blocked after Query 1 executes line 3 is that, at this
point, even running under REPEATABLE READ, the SELECT only places a shared
lock on the row.

If you want a SELECT to acquire an exclusive lock on an object (such as a row
or table), you need to use an explicit hint regardless of what the current transaction
isolation level is. So, you might change line 3 of Query 1 to read

3. SELECT Name FROM TestTable WITH (XLOCK) WHERE Id = 1

This would have the effect of causing Query 2 to wait for this lock to be released (for
the Query 1 transaction to complete) before it could read the required row. However,
you now need to make sure that you only have exclusive locks on those objects that you
hope to have locked. Imagine Query 2 was amended to read

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN TRANSACTION

SELECT Name FROM TestTable WHERE Id = 2

GO

SELECT Name FROM TestTable WHERE Id = 1

GO

COMMIT

You would hope that the first SELECT would return and that only the second
SELECT would cause the query to wait on the completion of Query 1. In practice,
with more complex queries, poor query design or missing indexes can cause more

2 4 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 4 1

rows or keys to be locked than you expect, and in high-concurrency environments,
locks will be escalated (see the next section, “Lock Escalation”). This would likely
cause the revised Query 2 to find the row with Id of 2 to be locked as well and cause
your application not to perform as expected. See the section “Monitoring Locking”
for a discussion on how to track exactly which locks have been granted to objects and
transactions and which locks are waiting to be released.

In a similar vein, a common use of explicit lock hints in SQL Server is to allow
certain operations to implement pessimistic concurrency when running under
SNAPSHOT or READ COMMITTED SNAPSHOT isolation. The following query
will not cause any locks to be acquired (as SNAPSHOT causes the row to be versioned
instead):

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

BEGIN TRANSACTION

SELECT Name FROM TestTable WHERE Id = 1

COMMIT

However, you can force a shared lock to be granted if you so desire by changing the
query to read

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

BEGIN TRANSACTION

SELECT Name FROM TestTable WITH (REPEATABLEREAD) WHERE Id = 1

COMMIT

This causes the query to request locks as if the transaction were running under
REPEATABLE READ isolation, even though SNAPSHOT is in place.

Lock Escalation
A key point for SQL Server administrators to appreciate is that, in attempting to best
manage the memory overhead associated with the locks held for a given transaction,
SQL Server can “escalate” a set of small granularity locks into a single larger lock.
SQL Server automatically attempts to escalate row locks and page locks into partition
locks or table locks when a transaction exceeds a set “escalation threshold.” Locks only
escalate from row or page to partition or table in SQL Server; it does not attempt to
escalate row locks to page locks, for example.

2 4 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Default lock escalation behavior can be altered using the LOCK_ESCALATION
option of the ALTER TABLE statement:

SET (LOCK_ESCALATION = { AUTO | TABLE | DISABLE })

The available options are

AUTO Allows the Database Engine to select the lock escalation granularity that is appropriate for the table schema. If

the table is partitioned, lock escalation will be allowed to partition. After the lock is escalated to the partition

level, the lock will not be escalated later to TABLE granularity. If the table is not partitioned, the lock escalation

will be done to the TABLE granularity.

TABLE Lock escalation will be done at table-level granularity regardless of whether the table is partitioned or not

partitioned. This behavior is the same as in SQL Server 2005. TABLE is the default value.

DISABLE Prevents lock escalation in most cases. Table-level locks are not completely disallowed. For example, when

you are scanning a table that has no clustered index under the serializable isolation level, the Database Engine

must take a table lock to protect data integrity.

For a detailed discussion of the lock escalation thresholds used by a SQL Server
database, see the Books Online topic “Lock Escalation (Database Engine).”

Deadlocks
Deadlocking is a situation where two or more users are waiting on locks held by each
other—no session can complete without another session completing first. SQL Server
automatically detects deadlocks, and acts immediately to resolve the problem by rolling
back one of the transactions (be it auto-commit, implicit, or explicit). SQL Server
determines the victim transaction based on the cost associated with rolling back the
transaction. So a transaction that has updated a small number of rows will likely be
chosen over one that has updated a much larger number of rows.

If a deadlock situation is created in SQL Server Management Studio, an error is
generated, as shown in Figure 6-7.

The full error message is

Msg 1205, Level 13, State 51, Line 11

Transaction (Process ID 66) was deadlocked on lock resources

 with another process and has been chosen as the deadlock victim.

 Rerun the transaction.

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 4 3

SQL Server Profiler can be used to trace deadlocks and provide information to
administrators and developers as to their exact circumstances. An example of this is
shown in Figure 6-8.

The available SQL Server Profiler events for reporting deadlocks are

Lock: Deadlock Indicates that two concurrent transactions have deadlocked each other by trying to obtain

incompatible locks on resources that the other transaction owns.

Lock: Deadlock Chain Produced for each of the events leading up to the deadlock.

Deadlock Graph Occurs simultaneously with the Lock: Deadlock event class. The deadlock graph event class

provides an XML description of the deadlock.

Figure 6-7 Deadlock in SQL Server Management Studio

2 4 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The last of these events is potentially the most interesting, as it creates an XML
representation of the deadlock event that can be interpreted by SQL Server Profiler to
give the graphical representation shown in Figure 6-8, complete with full details as to
the processes involved, the locked objects, and the statements issued. This event can be
saved as an XML file and then opened in Management Studio, allowing this deadlock
information to be effectively communicated, say, between an administrator and an
application developer.

Monitoring Locking
An inefficient use of locks is a common cause of poor database application performance.
Therefore, database administrators often need to know exactly how locks are being used

Figure 6-8 A deadlock graph event in SQL Server Profiler

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 4 5

within a system. There are several options available to SQL Server administrators who
need to get this information.

The DMV sys.dm_tran_locks can be queried to return information about currently
active lock manager resources. Each row in the view represents a currently active request
to the lock manager for a lock that has been granted or is waiting to be granted.

Imagine stepping through the following query to the point just after the SELECT
(or place a WAITFOR DELAY statement into the code immediately after the
UPDATE to cause execution to pause):

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN TRANSACTION

SELECT Name FROM TestTable WITH (XLOCK) WHERE Id = 1

UPDATE TestTable SET Name = 'James' WHERE Id = 1

COMMIT

You can then query sys.dm_tran_locks to view the granted locks:

SELECT resource_type, request_mode, request_status,

 request_session_id, request_owner_type

FROM sys.dm_tran_locks

This gives the results shown in Figure 6-9.
Interestingly, this result set shows that the SELECT has actually caused a lock against

each of the rows in the table to be granted to the transaction (there are only three rows,
so this is only a very simplistic example), as opposed to only the row with an Id of
1—something that might already be giving you clues to the cause of some performance
issue. The result set shown in Figure 6-9 shows only a subset of the columns of the view;
see Books Online for a full description of the structure of the view. The columns of
particular interest to administrators are listed and described in Table 6-5.

Figure 6-9 Results of querying sys.dm_tran_locks

2 4 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Because the data in this view corresponds to live lock manager state, the data can
change at any time and rows are added and removed as locks are acquired and released.
The view has no historical information.

Table 6-6 lists the resources that are represented in the resource_associated_entity_id
column.

Table 6-5 Selected Columns from the DMV sys.dm_tran_locks

Column Name Description

resource_type Represents the resource type. The value can be one of the following: DATABASE, FILE,

OBJECT, PAGE, KEY, EXTENT, RID, APPLICATION, METADATA, HOBT, or ALLOCATION_UNIT.

resource_subtype Represents a subtype of resource_type. Not all resource types have subtypes.

resource_database_id ID of the database to which the resource belongs.

resource_description Description of the resource that contains only information that is not available from other

resource columns.

resource_associated_entity_id ID of the entity in a database with which a resource is associated. Depending upon the

type of resource, this ID can be used to query the system catalog for details of the entity.

request_mode Mode of the request. For granted requests, this is the granted mode; for waiting requests,

this is the mode being requested.

request_status Current status of this request. Possible values are GRANTED, CONVERT, or WAIT.

A granted request status indicates that a lock has been granted on a resource to the

requestor. A waiting request indicates that the request has not yet been granted.

A convert request status indicates that the requestor has already been granted a request for

the resource and is currently waiting for an upgrade to the initial request to be granted.

request_session_id Session ID that currently owns this request. The owning session ID can change for

distributed and bound transactions. A value of -2 indicates that the request belongs to

an orphaned distributed transaction. A value of -3 indicates that the request belongs to a

deferred recovery transaction, such as a transaction for which a rollback has been deferred

at recovery because the rollback could not be completed successfully.

request_owner_type Entity type that owns the request. Lock manager requests can be owned by a variety of

entities. Possible values are

TRANSACTION = The request is owned by a transaction.

CURSOR = The request is owned by a cursor.

SESSION = The request is owned by a user session.

SHARED_TRANSACTION_WORKSPACE = The request is owned by the shared part of the

transaction workspace.

EXCLUSIVE_TRANSACTION_WORKSPACE = The request is owned by the exclusive part of

the transaction workspace.

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 4 7

Viewing Session Activity with Activity Monitor
You can use Activity Monitor in SQL Server Management Studio to perform ad
hoc monitoring of an instance of SQL Server (see Figure 6-10). This enables you
to determine, at a glance, the volume and general types of activity on the system; for
example, you can view the following:

Currently blocked and blocking transactions

Currently connected users on an instance of SQL Server, and the last statement
executed

Locks that are in effect

From the Processes pane, you can view the sessions (SQL Server processes, denoted
by a server process ID, or SPID) currently associated with a SQL Server instance,
including both user and background processes and processes in states such as Running
and Suspended.

Note that the User Processes column is filtered by default to show only user
processes and not background processes. Remove this filter to see all processes.

The Activity Monitor columns that are useful in monitoring lock usage are listed
and described in Table 6-7.

Table 6-6 Resources That Can be Locked in SQL Server

Resource Type Description

ALLOCATION_UNIT Represents a set of related pages, such as an index partition.

APPLICATION Represents an application-specified resource.

DATABASE Represents a database.

EXTENT Represents a data file extent.

FILE Represents a database file. This file can be either a data or a log file.

HOBT Represents a heap or a B-tree. These are the basic access path structures.

KEY Represents a row in an index.

METADATA Represents metadata information.

OBJECT Represents a database object. This object can be a data table, view, stored procedure, extended

stored procedure, or any object that has an object ID.

PAGE Represents a single page in a data file.

RID Represents a physical row in a heap.

2 4 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 6-10 SQL Server Activity Monitor

Table 6-7 Session Attributes Relating to Locks Available in the Activity Monitor

Column Name Description

Session ID A unique integer (int) that is assigned to each user connection when the connection is made.

Login The SQL Server login name under which the session is currently executing.

Database The name of the database that is included in the connection properties of processes that are currently

running.

Task State The state of the task. For tasks in a runnable or sleeping state, the task state is blank. Otherwise, this

can be one of the following values:

Background

Running

Suspended

Command The kind of command that is being processed under the task.

Application The name of the application program that created the connection.

Wait Time (ms) The length of time, in milliseconds, that this task has been waiting for a resource. When the task is not

waiting, the wait time is 0.

Wait Type The name of the last or current wait type.

Wait Resource The name of the resource that is needed.

Blocked By If there are blocking sessions, the ID of the session that is blocking the task.

C h a p t e r 6 : D a t a A c c e s s a n d Tr a n s a c t i o n C o n t r o l 2 4 9

From Activity Monitor, an administrator can terminate a running process (for example,
a very long-running process that can be seen to be locking resources upon which other
processes are waiting) by right-clicking the process in the Processes pane and selecting
Kill Process. This corresponds with issuing the KILL statement.

Performance Counters
The Perfmon counters listed and described in Table 6-8 can be used to trace lock usage
in SQL Server.

Built-in Reports
Among the built-in SQL Server Management Studio reports, the following can help
give a detailed view as to lock and transaction activity within a SQL Server instance:

Top Sessions

All Transactions

All Blocking Transactions (shown in Figure 6-11)

Table 6-8 Selected Windows Performance Monitor Counters Useful in Analyzing Locking

Counter Description

SQL Server Locks: Average Wait Time (ms) The average amount of wait time (milliseconds) for each lock request

that resulted in a wait.

SQL Server Locks: Lock Requests/sec Number of new locks and lock conversions requested from the lock

manager.

SQL Server Locks: Lock Timeouts (timeout > 0)/sec Number of lock requests that timed out. This does not include requests

for NOWAIT locks.

SQL Server Locks: Lock Timeouts/sec Number of lock requests that timed out. This includes requests for

NOWAIT locks.

SQL Server Locks: Lock Wait Time (ms) Total wait time (milliseconds) for locks in the last second.

SQL Server Locks: Lock Waits/sec Number of lock requests that could not be satisfied immediately and

required the caller to wait before being granted the lock.

SQL Server Locks: Number of Deadlocks/sec Number of lock requests that resulted in a deadlock.

SQL Server Access Methods: Table Lock

Escalations/sec

Number of times row or page locks are escalated to table locks.

2 5 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The “raw” information that these reports are built upon can also be returned by
executing the sp_who system procedure, which returns columns very similar to those
presented by the Activity Monitor. The full details for sp_who can be found in Books
Online; however, there is an additional, undocumented procedure called sp_who2 that
adds in performance information such as CPU time to the sp_who columns.

Automated Alerts
Counters such as Deadlocks/sec are very commonly used to build automated SQL
Server Alerts that notify an administrator (usually by e-mail or pager) of some behavior
within a database that requires his or her attention. This subject is covered in detail in
Chapter 10.

Figure 6-11 The All Blocking Transactions report

Backup and Recovery

Chapter 7

In This Chapter

Recovery Models

Backup

Restore and Recovery

Further Reading

2 5 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

As a DBA, if you do not back up your databases and they experience failure or
corruption, you will probably be looking for a new job! It really is fundamental
to everything you do.

In Oracle, RMAN is probably the most popular option for backup and recovery
of an Oracle system. In SQL Server, backup and recovery is all done within the SQL
Server Database Engine using T-SQL and the BACKUP and RESTORE statements;
there is no separate tool such as RMAN.

There are many third-party backup and recovery tools and utilities available in the
market for SQL Server, each providing its own value-add functionality over the base
SQL Server functionality. In the main, most of the tools ultimately make calls to the
SQL Server BACKUP and RESTORE commands and the Virtual Device interfaces
(VDI), which is why it is important to understand the basics of these commands.
The added functionality of these tools tends to focus on centralized administration,
scheduling, tape management, and other utilities such as compression and encryption.

It is worth noting that many large or mission-critical databases tend to use some
form of storage area network (SAN) to host the SQL Server databases. When this
is the case, you will find that many of the main vendors have their own SAN backup
utilities that can interoperate with SQL Server through the SQL Server backup APIs.
It is worth checking with your SAN vendor.

In this chapter we will cover recovery models, backup, and recovery.

Recovery Models
Before looking at how to back up a database, it is important to understand the different
recovery models available in SQL Server. The choice of recovery model can be likened
to choosing to use either ARCHIVELOG mode or NOARCHIVELOG mode in
Oracle. The choice of recovery model determines how and to what point you can
recover a database following media failure or accidental damage. The recovery model
will also influence your backup regime and the amount of DBA effort required to
maintain the database. It is important to note, as in Oracle, the recovery model does not
affect crash recovery.

There are three recovery models in SQL Server:

FULL

BULK_LOGGED

SIMPLE

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 5 3

FULL
The FULL recovery model is akin to ARCHIVELOG mode in Oracle in that it
supports granular recovery of the database to a particular point in time. All details of
every transaction are fully logged into the database transaction log, enabling complete
recovery and redo of any transaction.

When running in ARCHIVELOG mode in Oracle, an archiver process copies the
redo log files to an archive location before they can be reused and overwritten. In SQL
Server, the backup of the log is a process that the DBA needs to manage. In the FULL
recovery model, the database transaction log is not truncated until it has been backed
up using a log backup command. Therefore, if the transaction log is never backed up,
it will continue to grow as per the file growth settings for the file, which will inevitably
stop once the disk it resides on runs out of space.

Even if you do not require granular recovery capabilities for your database, there
are some features within SQL Server that require the database to run in the FULL
recovery model such as transaction log shipping and database mirroring (covered in
Chapter 9). However, unlike in Oracle, FULL recovery is not required to take online
database backups. Also, because of SQL Server’s multi-database architecture, you can
mix and match the recovery models of different databases in an instance.

BULK_LOGGED
The BULK_LOGGED recovery model is intended to be used alongside the FULL
recovery model. Large data-loading processes such as BULK INSERT and SELECT
INTO or operations such as creating or rebuilding indexes can cause the transaction log
to grow significantly in the FULL recovery model. The BULK_LOGGED recovery
model is intended for temporary use during these large loading or index maintenance
operations. BULK_LOGGED uses a concept called minimal logging. Minimal logging
records only the database page allocations for the operation, not the data that makes up
the pages, thereby notably reducing the size of the transaction log and increasing the
speed of the operation.

Although BULK_LOGGED provides benefits such as reducing the amount of
required log space, it does affect the recoverability of the database because only page
allocations are recorded. Therefore, your recovery point is your last transaction log
backup. Once a log backup is taken following a minimally logged operation, the log
backup contains all the altered pages from the minimally logged operation; therefore,
even though the transaction log file may be small, the backup may be considerably
larger.

For a full list of minimally logged operations, please refer to SQL Server Books
Online.

ON THE JOB
Just because you are doing an operation that can be minimally logged does not mean that you must switch to

the BULK_LOGGED recovery model. If the additional temporary log growth (until the log is backed up) does not

cause you a problem and the total time to execute is acceptable, then it is easier to leave the database in the

FULL recovery model. Switching to the BULK_LOGGED recovery model does not always produce a performance

improvement for a bulk load operation. At the end of a minimally logged transaction, SQL Server forces a flush

of the new data pages to disk to ensure they are secured in the data files, which in turn causes a flood of I/O

operations. In comparison, running in FULL recovery does not force a data page flush at the end of the operation

as full details of the transaction are already secured in the transaction log and, in the event of a crash, can be

recovered from the log.

SIMPLE
The SIMPLE recovery model can be likened to NOARCHIVELOG mode in Oracle.
In the SIMPLE recovery model the database is protected to the point of the last full
(or differential) database backup; transaction logs are treated in the same way as online
redo logs in that they are not backed up or archived.

Even though it is not possible to back up the transaction log in the SIMPLE
model, that does not mean you do not need to manage or monitor the transaction
log. Whenever a database checkpoint is issued, the transaction log is truncated and
the reclaimed log space is then ready for reuse. Because the transaction log will only
truncate as far back as the oldest open transaction, a long-running transaction may
prevent the log from truncating and cause the log to grow (as per your file growth
settings). In addition, once a log file has grown, even if the space is internally reclaimed,
the physical file will remain the same size and therefore will need to be manually
shrunk by the DBA.

The SIMPLE recovery model also supports minimal logging for bulk-logged
operations as per the BULK_LOGGED model.

ON THE JOB
For databases that do not require granular recovery to a point in time or where the work can be redone or

replayed, then the SIMPLE recovery model is very useful. For example, a data warehouse may benefit from

SIMPLE recovery where the database is backed up on a nightly basis and any data recovery can be replayed by

re-importing any data files.

2 5 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 5 5

Backup
SQL Server contains all the tools you require to back up a database and supports all of
the backup methods you would expect, such as online, offline, logical, and physical. This
section covers all these elements.

Logical Backups
Logical backups of schema and data in Oracle are normally achieved through the use
of Data Pump Export for backup and Data Pump Import for restoring. In SQL Server,
the same methods can be applied using utilities such as Bulk Copy Program (BCP),
SQL Server Integration Services (SSIS), and the Script Generation Wizards. These are
the same tools that are used for general import and export of data between systems and
are therefore covered in detail in Chapter 11.

Physical Backups
It is possible to take offline and online (also referred to as cold and hot backups
respectively) backups within SQL Server, although all backup types within SQL Server
can be performed online regardless of the recovery model being used.

SQL Server database backups are always portable across platforms, and a backup
from an older version of SQL Server can be restored on a newer SQL instance. Because
of this and because the practice in SQL Server is for applications to have their own

Oracle DBA Q&A

Q: When moving between ARCHIVELOG mode and NOARCHIVELOG
mode in Oracle, you need to close the database to change modes. Do you need to
do something similar in SQL Server?

A: No, you can change between recovery models while the database is up and
running. This can be a good and bad thing. It is good because the system remains
online during the operation and users are not affected. It is bad because changing
between models breaks backup chains. For example, if a DBA accidentally
switches from FULL to SIMPLE and then, upon realizing her mistake, switches
back to FULL, she will have caused the log to truncate by switching to SIMPLE,
will have broken your log file backup chain, and will need to take new full backup.

2 5 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

databases, SQL Server database backups are also very commonly used to move data
from one system to another.

Offline Backups
As with Oracle, an offline backup can be performed by stopping the instance service
and taking operating system–level copies of the data and transaction log files. Another
approach available within SQL Server, one that does not require the SQL instance to
be stopped, is to perform a database detach operation. A database detach operation
disconnects the database in question from the instance and closes any file locks it has
on the database, leaving the database in a consistent state allowing you to copy the data
and log files. Detaching a database affects only the database you are interested in and
leaves all others online and operational. It is not possible to use the detach method on
system databases. The database detach/attach operation is covered in Chapter 11.

Offline backups are almost never used in SQL Server. If a backup utility wants to
take a volume-level backup of SQL Server, such as using a snapshot utility on a SAN,
it will typically integrate with the Microsoft Windows Volume Shadow Copy Service,
which enables the backup utility to request that SQL Server place all of the files in a
consistent state for backup, while remaining online.

Online Backups
Online backups are by far the most common type of backup on the SQL Server
platform. There are several types of backup in SQL Server, all of which are online
operations regardless of the recovery model:

Full

Differential

Full and differential—partial backup

Transaction log (not available in the SIMPLE recovery model)

File and filegroup (Note: SIMPLE recovery model only supports read-only files
and filegroups)

Full Backup Full database backups, as the name suggests, back up all the objects
within the database and provide a complete copy of the database.

Since a full backup is an online operation and data pages may change during
the backup operation, the backup file contains both the data and a portion of the
transaction log. The transaction log is used during the restore of the backup to bring
the backup to a consistent point in time. A full backup is consistent as of the end of

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 5 7

the backup. Therefore, if you start a backup at 2:00 a.m. and it finishes at 3:30 a.m., the
backup will restore to a consistent view of the database as it was at 3:30 a.m.

Differential Backup Differential backups are used in conjunction with full backups.
Differential backups are cumulative and copy all changes to the database since the last
full backup. Differential backups should not be confused with incremental backups as
incremental backups are not available in SQL Server. A differential backup grows over
time, whereas an incremental backup only contains changes since the last incremental
(or full) backup. If comparing to Oracle, a differential backup is the same concept as a
cumulative incremental backup in Oracle.

The advantage of differential backups is that they only back up data that has changed
since the last full backup regardless of the number of times the data has changed. This
is different from transaction log backups, which would capture every individual update
to the same piece of data.

Differential backups are initially smaller and faster than full backups, but as time
goes by and data is added or changed, the differential backup becomes larger and will
eventually lose its speed and size advantage. At that point, a new full backup should be
taken to create a new differential base, and then the process would start again.

As is the case with full backups, differential backups also contain a portion of the
transaction log for recovery meaning that they restore to the time of when the backup
completed.

Full and Differential—Partial Backup In databases that contain read-only
filegroups (the SQL Server equivalent of read-only tablespaces), such as large data
warehouses containing historical data, the data in the read-only filegroups is static and
therefore does not need backing up every time a database backup is taken. Partial and
differential partial backups allow for the backup of the read-write filegroups while
leaving the read-only filegroups out of the backup.

A partial backup covers all the data in the PRIMARY filegroup and the data in all
read-write filegroups. Read-only filegroups are excluded unless explicitly specified. A
differential partial backup covers the data that has changed since the last partial backup
on the same set of filegroups.

If you perform a partial backup on a read-only database, then just the PRIMARY
filegroup is backed up. Partial backups are available in all recovery models.

Transaction Log Backup As discussed in previous chapters, the transaction log is
the SQL Server undo/redo log mechanism. The transaction log is a sequential record
of all changes to the database (each change is recorded with a log sequence number
[LSN], which is comparable to the System Change Number [SCN] in Oracle) and is
used to restore a database to any point in time.

2 5 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

A transaction log backup captures all changes since the last transaction log backup
and, once complete, truncates the log, allowing reuse of the truncated space. As with
archive log backups, transaction log backups are sequential and create what is known as
a log chain. If you lose any part of the chain, you can only restore your log backup as far
as the backup prior to the missing link in the chain.

Transaction log backups are performed independently of full or differential backups,
although log backups are used in conjunction with full and differential backups for
“point in time” recovery. For example, for a complete database restore, you would restore
the last full backup (and most recent differential if applicable) and then restore all
transaction log files in sequence to the point at which you wish to recover.

Transaction log backups are only applicable when operating in the FULL or BULK_
LOGGED recovery model. Transaction log backups take all information in the log
up until the point of when the BACKUP LOG statement was issued. This is different
from full and differential backups, which are consistent as of the end of the backup
process. A final point to note is that it is also possible to back up a transaction log even
if the main database has suffered serious media failure and has gone offline. This is
called a tail-log backup and allows you to recover a log file up until the point of system
failure (provided the log is still accessible) to ensure no work is lost.

Transaction log backups are also used in conjunction with high availability and
disaster recovery techniques such as log shipping, where a copy of the most recent log
backup is copied to another server and restored to a standby or reporting database (log
shipping is covered in further detail in Chapter 9).

File and Filegroup Backup For larger and more complex databases, SQL Server
supports the backup of individual files or filegroups. For example, if you have split a
large data warehouse database into multiple filegroups and files, you may rotate which
filegroup you back up on a nightly basis.

Implementing individual file and filegroup backup into your backup regime does
add complexity to your backup management and therefore should only be used when
the other backup approaches do not provide the required flexibility. It is included here
for completeness, but we will not go into detail on creating backup plans using this
method.

NOTE
You do not need to have done an individual file or filegroup backup to perform an individual file or filegroup

restore. These restores can come from a full database backup and will be covered later in the “Restore” section of

the chapter.

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 5 9

Performing Backups
As previously mentioned, online backups are the most common method in SQL Server,
and therefore we will concentrate on this approach.

Backing up a SQL Server database is done through the T-SQL language and the
BACKUP statement. There are several ways to execute a backup, including directly from
a script, using the SQL Server Management Studio (SSMS) interface, and via SQL
Server Maintenance Plans. Ultimately they all make a call to the BACKUP statement.

The BACKUP statement is quite comprehensive, with several command arguments
and options for selection of backup type, location, resilience, media, and monitoring
options, to name a few. The full statement syntax is covered in detail in SQL Server
Books Online, so instead of repeating all the information here, we will use the rest of
this section to demonstrate the use of the BACKUP statement through examples.

The BACKUP statement supports both database and log backups.

Database Backups
Broken down into its most simple form, the syntax for backing up a database is as
follows:

BACKUP DATABASE database_name

TO backup_location

WITH options

The database name and the backup location are the only mandatory parts of the
statement. The “WITH options” all have default values, which will be covered shortly. First
let’s walk through some examples for performing full, differential, and partial backups.

It is possible to make a complete full database backup using just the database name
and the filename to which you want to back up; there is no need to specify the backup
type, as a full backup is the default action for the statement. The following statement will
create a full database backup and will place the backup called AdventureWorks_Full.bak
in the default SQL Server backup folder which on a default instance installation would
be: \MSSQL10_50.MSSQLSERVER\MSSQL\Backup

NOTE
It is possible to use any file extension for the backup file, but the standard is .bak for database files and .trn for

transaction logs. It is a good idea to use these because the SSMS tool uses these as file filters for dialog boxes.

BACKUP DATABASE AdventureWorks

TO DISK = 'AdventureWorks_Full.bak'

2 6 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Differential backups are created by using a WITH option. Appending WITH
DIFFERENTIAL to the BACKUP statement creates a differential backup that
contains all the changes to the data since the last full backup:

BACKUP DATABASE AdventureWorks

TO DISK = 'AdventureWorks_Diff.bak'

WITH DIFFERENTIAL

Partial backups, which by default include the PRIMARY filegroup and any read-write
filegroups, are created by adding the READ_WRITE_FILEGROUPS argument
following the database name:

BACKUP DATABASE AdventureWorks READ_WRITE_FILEGROUPS

TO DISK = 'AdventureWorks_Partial.bak'

As part of a partial backup, you can also optionally specify any read-only filegroups
to include in the backup. For example, to include the read-only filegroup FG_2009_
ARCHIVE, the statement would look like this:

BACKUP DATABASE AdventureWorks READ_WRITE_FILEGROUPS,

FILEGROUP='FG_2009_ARCHIVE'

TO DISK = 'AdventureWorks_Partial.bak'

A partial differential backup is created by simply appending WITH DIFFERENTIAL
to the statement:

BACKUP DATABASE AdventureWorks READ_WRITE_FILEGROUPS

TO DISK = 'AdventureWorks_Partial_Diff.bak'

WITH DIFFERENTIAL

ON THE JOB
Partial backups can only be created using your own custom T-SQL scripts, as the SSMS interface and the SQL

Server Maintenance Plans features do not give you the option to create partial backups.

Finally, the last type of database backup is the backup of individual files and/or filegroups.
As previously mentioned, individual file and filegroup backups can complicate your backup
and restore routine and tend to only be used to manage large databases. To perform a full
backup of an individual file or filegroup, you specify each one of interest using the FILE
and FILEGROUP parameters following the database name. For example:

BACKUP DATABASE AdventureWorks

FILEGROUP = 'FG_2009_Archive',

FILEGROUP = 'FG_2008_Archive'

TO DISK = 'AdventureWorks_FG2008_FG2009.bak'

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 6 1

When you specify a filegroup, all of the files within the filegroup are backed up. If
you are backing up an individual file, you must use the logical filename, not its physical
one. Therefore, a file that is part of the FG_2009_Archive filegroup with the logical
name of FG_2009_Archive_File1 will be backed up using the following:

BACKUP DATABASE AdventureWorks

FILE = 'FG_2009_Archive_File1'

TO DISK = 'AdventureWorks_FG2009_File1.bak'

FILE and FILEGROUP backups also support the WITH DIFFERENTIAL
option. Also, remember that when running in the SIMPLE recovery model, file and
filegroup backups are restricted to secondary read-only files and filegroups only.

Transaction Log Backups
Transaction log backups only apply when using the FULL and BULK_LOGGED
recovery models. Backing up the transaction log follows the same basic syntax as the
database backup statement with just one difference—the replacement of the argument
of DATABASE with LOG:

BACKUP LOG database_name

TO backup_location

WITH options

Therefore, a simple example of a log backup for AdventureWorks would be

BACKUP LOG AdventureWorks

TO DISK = 'AdventureWorks.trn'

As with the BACKUP DATABASE statement, there is a series of common WITH
options (covered shortly) for specifying options such as media information and whether
to use compression or not. BACKUP LOG also has three WITH options, which only
apply to LOG backups: NORECOVERY, NO_TRUNCATE, and STANDBY. These
options are used in conjunction with a type of backup known as a tail-log backup. A
tail-log backup is taken prior to performing a restore operation on your database to
capture any transactions that have not yet been backed up by your normal transaction
log backup process.

When performing a restore operation on a database that is still online, a tail-log
backup is taken using the NORECOVERY option. This option will back up the
transaction log and place the database in a RESTORING state, ready for you to start
your restore process.

2 6 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

NO_TRUNCATE, as the name suggests, will stop the transaction log from
being truncated following the backup. It is also used in the scenario where the
database has suffered damage such that it will not start or has missing data files. The
NO_TRUNCATE option allows you to back up the tail of the log even without the
database being online:

BACKUP LOG AdventureWorks

TO DISK = 'AdventureWorks_TailLog.trn'

WITH NO_TRUNCATE

ON THE JOB
If you are not sure when to use NORECOVERY or NO_TRUNCATE, think of it like this: NORECOVERY is used when

you want to perform a tail-log backup on a database that is still online; NO_TRUNCATE is used when the

database is damaged and you need to recover the tail of the log. The CONTINUE_AFTER_ERROR option can also

be used in place of NO_TRUNCATE when trying to back up the transaction log of a damaged database.

The final option of STANDBY will perform a tail-log backup and place the database
into a standby read-only state. The STANDBY option performs a rollback operation
on the open transactions and places this data into a standby file that you specify with
the STANDBY option. The WITH STANDBY option is the same as performing
a BACKUP LOG WITH NORECOVERY followed by a RESTORE WITH
STANDBY. To perform a backup using STANDBY, the statement would look like this:

BACKUP LOG AdventureWorks

TO DISK = 'AdventureWorks_TailLog.trn'

WITH STANDBY = 'AdventureWorks_Standby.trn'

ON THE JOB
A word of caution here when using BULK_LOGGED as the recovery model. If you are partway through a

minimally logged transaction and experience a disaster which means you need to back up the tail of the log,

unless the data files are still available, you will not be able to. This applies even when using NO_TRUNCATE as

the log would only contain details of the modified extents, not the actual data.

Backup Destinations
In the examples so far, we have used the SQL Server default backup location for the
backup files by simply providing a filename. There are three backup destination options
available for the BACKUP statement: local disks, remote disk, and tape.

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 6 3

To use a local disk destination other than the default backup location, you must
specify the full path and filename of the backup file:

BACKUP DATABASE AdventureWorks

TO DISK = 'F:\SQLBackup\AdventureWorks.bak'

To use a remote destination, you can use a Windows UNC path. The following
example shows the use of a UNC path:

BACKUP DATABASE AdventureWorks

TO DISK = '\\FileSvr01\SQLBackup\AdventureWorks.bak'

ON THE JOB
It is possible to use a Windows mapped drive as a backup location, such as z:\ mapping to \\Server1\Backups.

However, mapped drive settings are not system wide and in some cases may require different credentials to

be passed to them. It can be tricky to get a Windows Service (for example, SQL Server) to use mapped drives

correctly. Therefore, it is better to steer clear of them and use a full UNC path. If you want to abstract the full

backup location from the backup statement, then use a backup device (covered shortly).

Finally, the last option is to back up directly to a tape device:

BACKUP DATABASE AdventureWorks

TO TAPE = '\\.\Tape0'

The tape option has been included here for completeness; be aware that it has been
marked for removal from a future version of SQL Server and therefore should be
avoided.

ON THE JOB
Backing up to a local volume is by far the most popular option. SQL DBAs tend to back up the database to a

local volume and then rely on the corporate backup software to pick up the backup files as normal files from the

volume. Backing up to a network share is probably the second most popular method, but you need to ensure that

you have good network connectivity between the two servers.

It is possible to abstract the details of the physical backup device to a logical backup
device that can be referenced by name in a backup script, hiding the device type,
location, and filename. The logical backup devices are known as backup devices and
can be found in SSMS under the Server Objects node. Backup devices can be created
graphically in SSMS or in script by calling the sp_addumpdevice stored procedure.

2 6 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The following example creates a backup device for our AdventureWorks database
called AdventureWorksData and is mapped to a local file:

EXEC master.dbo.sp_addumpdevice

@devtype = N'disk', @logicalname = N'AdventureWorksData',

@physicalname = N'W:\SQLBackup\AdventureWorksData.bak'

To use the backup device, we simply reference it by name as the backup location. For
example, to perform a full database backup to the backup device:

BACKUP DATABASE AdventureWorks

TO AdventureWorksData

The examples shown all reference a database backup as opposed to a log backup, but
backup devices can also be used for log backups.

Backup Performance
Backup performance is dependent mainly on two factors: how fast SQL Server can read
the data from disk, and how fast it can write the data to the backup device.

Although your database data files may be on fast volumes, your backup locations
probably do not have the same speed characteristics. Therefore, just as in RMAN where
you can set multiple channels and parallelism options, SQL Server provides the option
to stripe your backup set across multiple backup devices. The following statement
creates a stripe set of the AdventureWorks database backup across three devices, each
located on different volumes:

BACKUP DATABASE AdventureWorks

TO DISK = 'F:\SQLBackup\AdventureWorks_1.bak',

DISK = 'G:\SQLBackup\AdventureWorks_2.bak',

DISK = 'H:\SQLBackup\AdventureWorks_3.bak'

Oracle DBA Q&A

Q: Is the default backup location the same as the Flash Recovery Area?

A: You could compare the two from the point of view that they can be used as
default backup storage locations, although the default backup location does not
have automatic quota management like the Flash Recovery Area. It is possible to
use features such as SQL Maintenance Plans to automatically clean up old and
expired backup sets, in addition to writing your own scripts.

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 6 5

A cautionary note about stripe sets is that although they may help reduce your
overall backup times, you must have all the backup files available for the restore. If you
lose one, the backup set is useless.

ON THE JOB
If your backups are not performing as you would expect and you are not sure whether it is the reading of the

database or the writing of the backup file that is at fault, then a NUL backup destination may assist in the fault-

finding process. A NUL destination is specified in place of a backup filename and does not physically write the

data out to disk; for example, BACKUP DATABASE AdventureWorks TO DISK = 'NUL'. If you find that this backup

completes faster than a normal backup, then the problem lies with the backup destination; if the times are no

different, this excludes the writing of the backup file.

Backup Resilience
Losing part of your backup set can affect your ability to restore a database. SQL Server
provides the ability to mirror a backup to up to four locations. Although all mirror
locations must be present at the time of performing the backup, when restoring a
backup if a problem is found with one copy of the media it is possible to select the
media from any other mirror backup set.

The following example mirrors the stripe set used in the previous example:

BACKUP DATABASE AdventureWorks

TO DISK = 'F:\SQLBackup\AdventureWorks_1.bak',

DISK = 'G:\SQLBackup\AdventureWorks_2.bak',

DISK = 'H:\SQLBackup\AdventureWorks_3.bak'

MIRROR TO DISK = 'I:\SQLBackup\AdventureWorks_1.bak',

DISK = 'J:\SQLBackup\AdventureWorks_2.bak',

DISK = 'K:\SQLBackup\AdventureWorks_3.bak'

General WITH Options
We have already seen use of WITH options in a BACKUP statement in some of the
previous examples. The options we have used so far have been specific to that particular
variation of the statement, such as using WITH DIFFERENTIAL, which only
applies to database backups, and WITH NO_TRUNCATE, which only applies to log
backups. There are several general options that are used to specify details such as the
backup media set, media management options, and the enabling of features such as
compression and integrity checking.

Some WITH options are dependent on factors such as the type of physical backup
device you are using. For example, when backing up directly to tape, the WITH options

2 6 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

include elements such as REWIND and UNLOAD for tape management, which will
have no effect when using a disk-based location. In this section we will look at some of
the more common options used.

ON THE JOB
Many of the options have default values, although it is usually a good idea to put the values of interest into

a statement to ensure you get the behavior you expect. For example, if you do not want a backup to use the

compression feature, then ordinarily you do not need to call that out in the statement, as the default value for

compression is to not compress the backup. However, if the server-wide setting for compression has been set to

always compress and you have not explicitly marked the backup as not to compress, then the backup will pick up

the server-wide setting.

Media and Backup Sets Every time you perform a backup, you are creating what is
referred to as a “backup set.” The backup set either resides on a single file or is striped
across multiple files (or tapes), which is referred to as the “media set.” A media set can
contain many backup sets. In the examples so far, we have been backing up to a single
file destination. Using the default WITH options with a BACKUP statement and
specifying the same backup filename each time, your backup will result in a media set
that contains many backup sets—that is, every time you execute a backup to the same
file, it will be appended to the existing file. A media set can contain full, differential,
and log file backup sets all in the same media set.

Table 7-1 shows a list of the common media set options for creating and overwriting
media information.

Option Description

NOINIT | INIT NOINIT appends the backup to the existing media set. INIT overwrites all backup sets but

preserves the media set header.

NOSKIP | SKIP NOSKIP ensures that backup set expiration dates are checked before overwriting existing backups.

SKIP disables any checking of backup set expiration dates.

NOFORMAT | FORMAT FORMAT overwrites all media header and backup set information and creates a new media set.

MEDIANAME The name of the media set (128 characters max).

MEDIADESCRIPTION Backup set description (255 characters max).

Table 7-1 Common Media Set Options

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 6 7

The following example uses the ‘AdventureWorks_Full.bak’ file with the INIT
option, which specifies it should overwrite all existing backup sets within the file. This
is useful if you just want to replace the file with the new backup.

BACKUP DATABASE AdventureWorks

TO DISK = 'AdventureWorks_Full.bak'

WITH INIT

Each backup set within the media set can also have options set, the most common
ones being the name and description, as noted in Table 7-2.

To specify a name for the backup set, use the following:

BACKUP DATABASE AdventureWorks

TO DISK = 'AdventureWorks_Full.bak'

WITH INIT, NAME = 'AdventureWorks Full Backup'

ON THE JOB
If you were using a tape device as your backup destination, then it is highly likely you will take advantage of the

media set features, as you will combine multiple backup sets on one piece of tape media and use the labeling

features. However, as mentioned previously, many DBAs these days back up to local files on disk and like to

keep one backup per file—that is, each media set contains only one backup set. Combining this with a naming

convention for your backup files makes it very quick and easy to see what backups you have available by just

browsing the directory. If you look at features such as SQL Server Maintenance Plans that can automate the backup

process, these tools also follow the one backup set per file method because it also makes cleaning up old and

expired backup sets easier. Figure 7-1 shows the directory where a SQL Server Maintenance Plan produces a daily

full backup of msdb, one full backup per file, and then names the file using the database name, date, and time.

 Of the backup set options, the Name and Description fields can be especially useful when browsing the

backup and restore history tables in msdb. For example, taking an ad hoc backup and naming it ‘Ad Hoc Backup’

with description ‘Backup taken prior to executing price increase script’ can make it easy to work out why a full

backup was taken outside of the normal backup schedule.

Option Description

NAME The name of the backup set (128 characters max)

DESCRIPTION Backup set description (255 characters max)

PASSWORD Password to protect the backup set

Table 7-2 Common Backup Set Options

2 6 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Copy-Only Backups There are occasions where you may want to take an ad hoc
backup of the system outside of the normal backup schedule; for example, a developer
might want a copy of the live database to restore to the development system. If you were
using the FULL recovery model with a combination of full and differential backups and
the developer performs a full backup of the database and takes the backup file with him to
the test system, he will have reset the differential base. This means that any differentials you
take from that point going forward will be useless since you don’t have the last full backup.

Using the WITH COPY_ONLY option on a full database or log backup creates a
backup but does not reset any part of the chain and therefore does not affect recovery.

Backup Compression The ability to compress a backup prior to SQL Server
2008 was solely through the use of third-party software. In SQL Server 2008, backup
compression was introduced as an Enterprise Edition–only feature, but as of SQL
Server 2008 R2, it is now available in the Standard Edition. A compressed backup
can be restored to any edition of SQL Server, even if that edition, such as SQL Server
Express, does not contain the backup compression feature.

Compression is enabled using the WITH option called COMPRESSION.
Conversely, it can be explicitly switched off (to override any global backup compression
settings) using NO_COMPRESSION. The following statement enables compression
for the backup of the AdventureWorks database:

BACKUP DATABASE AdventureWorks

TO DISK = 'AdventureWorks.bak'

WITH COMPRESSION

Figure 7-1 Each backup in its own file

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 6 9

Figure 7-2 shows a simple example of backing up the AdventureWorks database,
first with compression off and then with it on. The results show that the standard
backup was approximately 122MB and the compressed version was 33MB, which
is approximately 3.5 times smaller than the noncompressed version. In addition,
since backup duration is often constrained by the speed of the backup destination,
compressed backups will often be faster as well as smaller.

The compression rate achieved varies depending upon the type of data in the
database. Databases that are encrypted or contain large binary objects don’t compress as
well as databases that are predominantly character and numerical data.

Figure 7-2 Compressed and noncompressed backups

2 7 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Backup compression can be specified as a setting at the server level so that all
backups compress by default, but be aware that when performing a compressed backup,
the CPU utilization will be greater than for the equivalent noncompressed backup
because the system has to perform the compression calculations.

NOTE
A media set cannot contain compressed and noncompressed backup sets. If you try to add a compressed backup

to a noncompressed media set, you will get an error explaining that you need to reformat the media set, which

will remove all existing backup sets.

ON THE JOB
There is a temptation to just enable backup compression as the default at the server level so that all databases

back up with compression (unless explicitly specified not to compress). Although this may seem like a great time

saver, it may be a waste of system resources. Certain types of data, such as binary blobs, do not compress very

well and, therefore, compressing them will yield little or no gain in reduced disk space—although the server will

still have to do the same amount of CPU work to compress the backup regardless of the resultant file size. If the

vast majority of your databases do benefit from backup compression, then you may just want to explicitly turn

off compression in the BACKUP statement on the databases that are affected using WITH NO_COMPRESSION.

Backup Integrity The BACKUP syntax contains a WITH option called
CHECKSUM. When CHECKSUM is enabled for a backup, the page (block)
checksum or torn-page indicator is checked for each page prior to writing the data
to the backup media. Secondly, BACKUP creates a checksum over the entire backup
that can be used at restore time to ensure the integrity of the backup has not been
compromised prior to restore.

The following example shows how to enable CHECKSUM:

BACKUP DATABASE AdventureWorks

TO DISK = 'AdventureWorks.bak'

WITH INIT, CHECKSUM

Be aware that switching on CHECKSUM will increase the overhead of performing
the backup. Also, backing up WITH CHECKSUM is the default behavior when using
backup compression.

While performing a backup WITH CHECKSUM, it is also possible to specify
what BACKUP should do if it encounters an error such as an invalid checksum or torn
page. STOP_ON_ERROR is the default, which will halt the backup upon finding a
problem. To ignore any errors, use the CONTINUE_AFTER_ERROR option, which
will allow the backup to continue, but be aware that using CONTINUE_AFTER_
ERROR means that your backup could contain damaged data.

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 7 1

Backup History
Backup history and the details behind the backup are stored in the msdb system
database. The system tables related to backup are listed in Table 7-3. Every time a
backup is taken, the details of the backup are stored in these tables. Even if you are
using a third-party solution, provided it uses the SQL Server Virtual Device Interface
(VDI), details of the backup are recorded.

Although the SSMS tool can be used to surface data from these tables in the GUI,
as a DBA you may want to create your own custom scripts that are specific to your way
of working. The complete table schema and all the details behind what indicator values
mean are available in SQL Server Books Online.

Let’s look at a quick example of how to use the backup tables. The following query
returns the date of the last full database backup for every database in the instance by
joining the sysdatabases table from the master database and the backupset table from
the msdb database:

SELECT db.name AS [Database], MAX(backup_finish_date) AS [LastBackup]

FROM

 master.dbo.sysdatabases db

 LEFT OUTER JOIN

 msdb.dbo.backupset bks

ON

 bks.database_name = db.name

WHERE bks.type = 'D'

GROUP BY db.name

ORDER BY db.name

Table Description

dbo.backupmediaset All available media sets.

dbo.backupmediafamily A record of all media families (backup devices).

dbo.backupset A record of each successful backup.

dbo.backupfile Each time the database is backed up, a row for each database file is created describing its

configuration at the time of backup, regardless of whether it was included in the backup.

dbo.backupfilegroup Each time the database is backed up, a row is added for every filegroup present in the

database at the time of backup.

dbo.logmarkhistory A record of every committed marked transaction.

Table 7-3 Backup-Related System Tables

2 7 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Over time, the backup-related system tables will continue to grow with information
about every backup that has been performed. Therefore, it is important as a DBA to
control the growth of the backup history.

If you want to clear down the backup history tables, there are two stored procedures
in msdb that will delete the data from the tables for you:

sp_delete_backuphistory

sp_delete_database_backuphistory

sp_delete_backuphistory will delete history for all databases older than a specified
date. sp_delete_database_backuphistory will remove all backup history for a specific
database.

Another option is to use the SQL Server Maintenance Plans feature (covered
shortly) and create a plan to clear out old backup history information.

Backup Permissions
To back up a database, you must have the BACKUP DATABASE permission, and to
backup log files, you must have BACKUP LOG permission. The database owner (dbo)
members of the db_owner and db_backupoperator database roles and the sysadmin
fixed server role all inherit these permissions.

Securing Backups
Aside from ensuring the physical security of your backup media in safes and offsite
storage, for sensitive data, it is important to consider securing the actual data, not just
the media on which it resides.

In Oracle, using RMAN, it is possible to encrypt a backup as it is created and then
decrypt it as part of the restore process. Creating encrypted backups of nonencrypted
databases is not available as a feature within the SQL Server out-of-the-box product,
although there are many third-party software vendors that do provide additional
backup encryption capabilities for SQL Server.

SQL Server does provide encrypted out-of-the-box backups when the transparent
database encryption feature is enabled (TDE is covered in Chapter 5) as the database
itself is encrypted. The result of backing up a TDE-enabled database is that the backup
file is also encrypted. The database backup cannot be restored without the relevant keys
that were used to encrypt the database.

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 7 3

ON THE JOB
There are two very important things to note when using TDE with respect to restore. The first is to ensure that

you have backed up your encryption keys. If you lose your keys, you ultimately lose your data (and probably your

job!). The second may seem obvious, but do not store or transport your encrypted backups and their associated

keys together. That’s a bit like writing down your login and password on the lid of your laptop!

You may notice that the T-SQL BACKUP syntax at present allows for a backup to
be secured with a password. The protection provided by this feature is weak and the
functionality is due to be removed in a future version of SQL Server; therefore, you
should avoid using it as your primary means of data protection.

ON THE JOB
The password capability within the BACKUP statement may not be very good at securing the backup from

unauthorized access, but some people use it as a safeguard to prevent accidental restore of the wrong database

since the password has to be provided to perform the restore.

Backup Scheduling
To schedule a backup script, you would use either SQL Server Agent or an external
scheduling tool and make a call to SQLCMD to execute the script. SQL Server Agent
and job scheduling are covered in detail in Chapter 10; for now, think of SQL Server
Agent as a SQL Server version of DBMS_SCHEDULER.

SQL Server Maintenance Plans
To remove the burden of having to create scripts and to simplify and automate the
process of database backup, SQL Server provides a graphical way to describe a backup
plan through the use of Maintenance Plans. A Maintenance Plan is a graphical
representation of a series of database maintenance tasks that can be organized to run
in a workflow style. One of the main tasks available within a Maintenance Plan is a
Backup task. Using a Maintenance Plan to describe your backup routine and schedule
SQL Server will generate the relevant scheduled jobs and T-SQL code to execute your
backup. Maintenance Plans are covered in detail in Chapter 10, including examples on
using them for backup.

Back Up Using SSMS
Now that we have looked at using the BACKUP statement in script, let’s take a quick
look at how to use SSMS to perform a database backup. Within SSMS, right-click the
database you wish to back up and select Tasks | Back Up, as shown in Figure 7-3.

2 7 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The Back Up Database dialog box, shown in Figure 7-4, is a way of graphically
describing a backup, which, when executed, will convert your selections into a
BACKUP statement. The dialog box has two options pages, General and Options,
which are accessed by the page selector on the left side of the window. The General
page is shown first and allows you to select source database, backup set, and destination
information, all of which should be familiar to you by now from the previous examples
of using the BACKUP statement.

If you select the Options page, as shown in Figure 7-5, additional backup options
are displayed. All the options on here should be familiar to you as they effectively map
onto the WITH options for the BACKUP statement, with the exception of one check

Figure 7-3 Creating a backup using SSMS

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 7 5

box in the Reliability section, Verify Backup when Finished. When checked, this option
will attempt to perform a RESTORE VERIFYONLY statement following a successful
backup. We will cover the RESTORE statement in greater detail in the next section of
this chapter. For now, just note that the RESTORE VERIFYONLY statement is used
to verify that the backup file is usable for a database restore operation without actually
performing a full restore.

As with most of the dialog boxes in SSMS, once you have selected and set all your
options, you can either click OK, which will execute the action immediately, or use the
Script options to have the action scripted out for you.

Figure 7-4 Back Up Database dialog box—General page

2 7 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

ON THE JOB
If the world of SQL Server backup is new to you, it is worth taking a look at how the Back Up Database dialog

box creates its T-SQL syntax. Select options and click the Script button at the top of the window. If you choose the

Verify Backup when Finished option and then review the script, you will see an example of how SQL Server first

uses the BACKUP statement, followed by reading data from the backup history tables, and then provides that

information to a RESTORE statement. It should provide you with ideas for how you can create your own dynamic

backup scripts.

Figure 7-5 Back Up Database dialog box—Options page

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 7 7

Backup of System Databases
The tools for backing up system databases are no different from those for backing up
standard databases; the T-SQL BACKUP and RESTORE methods still apply. What
you need to be aware of is how often you need to back up the databases.

The master database is essential to server operation and should be backed up
whenever changes are made to the system, such as adding and removing logins or
databases or changing server configuration. The master database runs using the
SIMPLE recovery model and therefore only supports full database backups. Regular
backup of this database is essential.

The msdb database keeps track of all backup and recovery history, job execution
details, operators and alert definitions, and potentially SSIS (ETL) packages (if using
the msdb storage method). In addition, SQL Server Agent and SSMS both use the
msdb database as a storage mechanism for settings and configuration. The default
recovery model for msdb is set to SIMPLE, although if you use msdb for tracking
backup and restore history and other tasks, it is recommended that you change it to
the FULL recovery model and create an appropriate backup regime such as full with
transaction log (or full, differential, and transaction log) and take regular backups.

The model database, which is used as a template for all new databases, is only ever
updated by you. SQL Server will not make any changes to the model database and
therefore you only need to back up the database when you make changes to it.

There is no need to back up tempdb since the database is transient and is re-created
every time the instance is started.

The last system database to be aware of is the distribution database, which is created
when using the SQL Server Replication feature. Its backup and recovery method can
differ depending on which type of replication is being used. For more details on using
this feature, see SQL Server Books Online.

ON THE JOB
Backing up the master database should become habitual following any modifications to SQL Server that affect

the master database (creating logins, linked servers, databases, and so on). If you do not back up the master

database and experience a failure, you will have no option but to rebuild the master database and you will end

up with a database server that will look like it did when you first installed it—empty! To compare to Oracle,

think losing SYS and SYSAUX!

 In contrast to my paranoid approach to master database backup, I remember a conversation with a DBA

who told me he never runs a backup of his master database and instead keeps every change he makes as a set

of scripts that can be used to restore the master database in the event of failure. Although commendable that he

maintained this information, as you should always keep a track of changes you make to the system, I personally

find relying on this approach contains potential for errors. All it takes is for another DBA to make a change and

not update your scripts library and you have a problem. It also seems very time consuming compared to a simple

restore operation.

2 7 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Chapter 10 shows an example of how to create a SQL Server Maintenance Plan that
will automatically back up the core system databases on a regular schedule.

Example Backup Scenarios
Let’s walk through a couple of example scenarios on choosing the right recovery model
and backup type.

Scenario 1: The Company Data Warehouse
The company uses a central data warehouse for reporting operations within the
organization. The warehouse is loaded with data from the line-of-business systems on
a nightly basis using SQL Server Integration Services to perform a bulk import.

The agreed recovery point objective (RPO) for the database following a database server
problem, such as media failure, is to recover the database to the most recent data import.

Before you look at the type of backup strategy you need, the first step is to think
about the recovery model; in this scenario the data is only updated once per evening
with a bulk load of data. Following the nightly load, the data is static throughout the
day. Therefore, the SIMPLE recovery model seems to best suit your requirements since
it uses minimal logging (as per the BULK_LOGGED model), reducing transaction log
file overhead for the bulk import operation, and the transaction log file management is
simplified through its ability to self-truncate.

Moving to the backup options, the first and simplest approach is to perform a full
backup every evening. Although the daily full backup approach may be the simplest to
set up, it will also be the approach that uses the most space and takes the most time to
execute. Another approach would be to use a combination of full and differential backups.

Figure 7-6 shows a Sunday through Sunday timeline. Using a full database backup at
the start of the week establishes a base for the differential backups, and then each evening

Full

Diff Diff Diff

S M T W T F S

Diff Diff Diff

S

Full

Figure 7-6 Weekly full backup with daily differential

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 7 9

a differential backup would be taken following the data load process. Each differential
backup would contain all changes since the last full backup (depicted by the increasing
size of the differential icon). The following Sunday a full backup would again be taken
and the differential base would be reset.

Let’s look at one approach to creating this backup regime.
The first step would be to create the weekly full database backup using a SQL Server

Agent Job (covered in Chapter 10) that performs a T-SQL step to execute the backup
code on a Sunday evening. The following code used to perform the backup dynamically
creates the backup filename using the database name, today’s date, the word “Full”
to identify the backup as a full backup, and the file extension convention of .bak; for
example, 'CorporateDW_23012010_Full.bak'. The backup is placed in the default
backup location and uses the compression feature.

--Full Backup

DECLARE @BackupFile nvarchar(50)

SET @BackupFile = 'CorporateDW_' +

 replace(convert(varchar, getdate(), 103), '/', '') + '_Full.bak'

BACKUP DATABASE CorporateDW

TO DISK = @BackupFile

WITH INIT, COMPRESSION

The next step is to create the daily differential backup; the same approach is taken to
creating the filename dynamically, with the exception of replacing the word “Full” with
“Diff.” The code would again run in a SQL Server Agent Job set to run every evening
except Sunday.

--Differential Backup

DECLARE @BackupFile nvarchar(50)

SET @BackupFile = 'CorporateDW_' +

 replace(convert(varchar, getdate(), 103), '/', '') + '_Diff.bak'

BACKUP DATABASE CorporateDW

TO DISK = @BackupFile

WITH INIT, DIFFERENTIAL, COMPRESSION

In this scenario, if the database server were to suffer a failure that required a complete
database restore, then a combination of the Sunday full backup and the most recent
differential backup would restore to the most recent data load.

ON THE JOB
The scenario and solution described in the previous example is valid for the majority of small data warehouse or

data mart implementations. However, if you were implementing a large, multi-terabyte data warehouse, your

design would more than likely include data management approaches such as data partitioning that could be

spread across multiple filegroups. Other techniques would include marking filegroups read-only, which could

lead to the use of partial full and differential backups or individual file and filegroup backups.

Scenario 2: The Line-of-Business Application
The company uses a Customer Relationship Management (CRM) application to record
all customer engagement activity. The system is used by agents in the call center and by
sales representatives in the stores. Due to the volume of activity on this application,
the business leaders have deemed this system to be important to business operation.
As such, the recovery point objective following a disaster is to lose no greater than
15 minutes of activity from the point of failure. Speed of recovery is also important to
this solution because it is used by customer-facing agents.

To support this level of recovery, the database should use the FULL recovery model.
Using the FULL recovery model will make it possible to take frequent transaction log
backups to secure data to the granularity of the 15-minute window. Also, depending on
the type of disaster, if the transaction log is still available, it will be possible to recover
the system to the point of the last committed transaction.

Before looking at the database backup, let’s consider the log backup options. To
support 15-minute recoverability, the transaction log will need to be backed up every
15 minutes. Over a 24-hour period, that equates to 96 transaction log backups per day,
assuming either a full or differential backup is taken nightly. Therefore, as an example,
if the system were to fail at 19:30, it would take the restore of the database backup (full
or full + differential) and then 76 sequential log file restores, or 77 if you can recover
the tail of the log. Not only does this mean you have to deal with a large number of
transaction log file backups, but it also increases the chances of losing data because
if one of the transaction log file backups was to be corrupted or damaged you would
only be able to restore up to the point of the damaged backup. A better approach to
this would be to take differential backups at frequent periods throughout the day, as
this would then require fewer transaction log restores. Also, there would be no need to
retain more than one differential backup since the log chain could be used as a backup
for point-in-time restore.

Taking into account all the requirements just described, an appropriate backup
regime for this database would consist of a daily full database backup accompanied by
differential backups taken every four hours, with the transaction logs being backed up
every 15 minutes. This would mean that in the event of a restore, it would take the last
full and differential backups and no greater than 16 log backups to recover the system.

2 8 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 8 1

ON THE JOB
The purpose of the previous scenario is to highlight how the backup and recovery regime for an important system

may be configured to support disaster recovery. Try not to confuse this with its high availability requirements,

which such a system is likely to have. In a real-world scenario, this system would probably be running in a cluster

or mirroring configuration to provide fast failover and zero data loss capabilities. High availability is covered

in Chapter 9.

Oracle DBA Q&A

Q: I am a little confused, if a full backup is only consistent as of when it
completes, how can I achieve point-in-time recovery for a time that is during the
full backup window? For example, if my full backup starts at 1:00 a.m. and takes
one hour to complete, how can I recover to 1:20 a.m.? I assume that I would still
continue to run transaction log backups while the full backup is taking place.
The reason I am confused is that you said a full backup requires a portion of the
transaction log to make it consistent and that a transaction log backup truncates
the transaction log. Therefore, how can I run these at the same time?

A: The assumption that log backups can take place while a full backup is taking
place is correct. This is how you would still be able to provide the point-in-time
recovery to a point during the full backup cycle. SQL Server allows transaction log
backups to be taken while a full backup is in progress by deferring the truncation
of the log until the end of the full backup. This avoids the issue of not having
enough of the log available to complete the full backup. You should always ensure
that your log file has sufficient disk space to grow while the full backup is in
progress since you will be unable to truncate it until the end of the full backup.

Restore and Recovery
The process of recovering a database from a backup includes restoring the affected parts
of the database (putting the files back on disk) and then recovering them to a usable
state (rolling forward any completed transactions and rolling back any incomplete
ones). Although restore and recovery are separate activities, they are controlled by the
same statement.

SQL Server has the ability to perform everything from a full database recovery, through
to individual file- and filegroup-level repair, all the way down to very fine page-level
(block-level) online repair. Whatever the scope of the recovery, SQL Server always restores
the database to a single consistent point in time. You cannot restore just part of a database

2 8 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

to a different point in time. However, you can restore a second copy of the database to an
earlier point in time and use the data extract and load tools to copy data from the earlier
version of the database (Chapter 11 covers data movement tools in detail).

The T-SQL statement used to restore and recover a database is RESTORE. As per
the previous “Backup” section of this chapter, we are not going to cover the full range
of arguments and options in detail for the statement. Instead we will look at the basics
of the statement, review the most common options, and work through several examples
of using RESTORE.

Unlike BACKUP, which effectively has just two main arguments, DATABASE and
LOG, the RESTORE statement is used not only to restore the database or elements of
it but also when you want to inspect the contents of a backup file or check the backup
integrity without actually restoring the database to disk.

The arguments available with a RESTORE statement are

RESTORE (DATABASE or LOG)

RESTORE LABELONLY

RESTORE HEADERONLY

RESTORE REWINDONLY

RESTORE FILELISTONLY

RESTORE VERIFYONLY

The first one of the RESTORE arguments is DATABASE or LOG. This is the
argument that will perform the actual restore and recovery operations. Before we move
into the actual process of restoring a database, let’s look at the other arguments that
relate to reading the information within the media sets. We need to know what we have
before we can restore it!

Even though the backup history tables in msdb keep track of the backup sets that
have been taken, the files within them, and the media sets that are contained within,
we still need the option to be able to inspect a backup file or tape to work out what it
contains. This would be especially useful if the backup history within msdb was lost or
accidentally deleted.

Figure 7-7 shows the RESTORE LABELONLY and RESTORE HEADERONLY
commands in operation against a single disk-based media set. The detail returned
by RESTORE LABELONLY contains information about the backup media, and
RESTORE HEADERONLY returns all the backup sets contained on the backup
device. Figure 7-7 only shows a subset of the returned fields.

RESTORE REWINDONLY is used only with tape devices and is the equivalent of
issuing RESTORE LABELONLY FROM TAPE = tape_device WITH REWIND.

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 8 3

RESTORE FILELISTONLY returns a list of the database data and log files
contained in the backup set and is used alongside the WITH FILE = n option, where n
is the backup set position number in the media set (the Position column is returned in
the RESTORE HEADERONLY statement, as shown in Figure 7-7).

Figure 7-8 shows the RESTORE FILELISTONLY statement executed twice to
return information about the two backup sets. Notice that backup set 2 contains an

Figure 7-7 RESTORE LABELONLY and RESTORE HEADERONLY in action

2 8 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

additional database file; this is because, in between the first and second backup, an
additional file was added to the database, which was subsequently picked up in the
second full backup.

RESTORE VERIFYONLY is used to check that the backup media is readable
without having to do an actual restore. RESTORE VERIFYONLY used against a
backup that was not backed up using WITH CHECKSUM performs a simple check
that the media is readable but does not guarantee that the data is consistent. When
the backup has been taken using the WITH CHECKSUM option, RESTORE
VERIFYONLY WITH CHECKSUM will check every data page by reading and

Figure 7-8 RESTORE FILELISTONLY for two backup sets

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 8 5

recalculating the page checksum and will compare it to the recorded page check in the
backup to ensure file integrity.

The following is an example of a backup and restore check using checksums:

BACKUP DATABASE AdventureWorks

TO DISK = 'AdventureWorks.bak'

WITH CHECKSUM

GO

RESTORE VERIFYONLY

FROM DISK = 'AdventureWorks.bak'

WITH CHECKSUM

GO

Restoring and Recovering a Database
The RESTORE statement not only restores the database data files, but also is
responsible for recovering the database to make it consistent and accessible.

The basic syntax for a RESTORE statement is as follows:

RESTORE DATABASE | LOG database_name

FROM backup_location

WITH recovery_options, general options

Database Recovery
It may seem strange to talk about recovery before we look at the restore, but every
time you issue a RESTORE, you need to specify whether or not the restore you are
performing should have recovery applied. Remembering that full and differential
backups contain database pages from different points in time and a portion of the
transaction log, and that transaction log backups can contain open transactions, the
recovery options are used to specify whether the restore operation should bring the
database to a consistent state following the restore operation or keep it in a state that
can have further backup files applied. The three available recovery options are

RECOVERY

NORECOVERY

STANDBY

The option of RECOVERY is the default option and will be used if you do not
specify one of the others. Using RECOVERY will place the database in an online,
usable state by performing recovery on the database at the end of the restore.

2 8 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

When restoring a database using a chain of backups, such as starting with a full
followed by a differential backup and finally restoring any transaction log files, you
must ensure that after each restore you leave the database in a state in which it can
have the next backup in the sequence applied. Performing recovery on the database
would remove any open transactions and therefore would break the transaction LSN
chain when you attempt to restore the next backup in the sequence, preventing you
from restoring further backups. Using NORECOVERY leaves the database in a
RESTORING state and able to accept further backup files.

The final option of STANDBY brings the database online by running recovery on
the database. Instead of discarding the incomplete transactions, it places the data that it
has undone in a separate file so that at a later stage it can be reapplied to the database
along with the next backup in the sequence. Restoring a database using STANDBY
places the database in a read-only mode so that there is no write activity that would
break the transaction log sequence. An example scenario in which you could use
STANDBY would be on a database used for reporting that holds the data generated
from copying and restoring the transaction log backups from your line-of-business
application. Users could use the reporting database to run their queries and then, when
the DBA wants to update the reporting system, could restore the next set of transaction
log backups from the line-of-business application.

ON THE JOB
If you are restoring from a single full backup (or the last backup in your chain), you do not need to specify WITH

RECOVERY to bring the database online since that is the default action. However, it is a good idea to specify

it as a matter of course just to get into the habit of always specifying some recovery option with the RESTORE

statement. There is nothing worse than restoring a large full backup knowing you have other differential and log

backups to apply and realizing you didn’t specify the WITH NORECOVERY option, because the only thing you can

do in that situation is to start again! A top DBA tip is to always specify WITH NORECOVERY on all your restores

so that, when you are sure you have finished, you can issue the statement RESTORE database_name WITH

RECOVERY to bring the database online.

Restoring from Backups
For complete database recovery, the process starts with the most recent full backup,
followed by the latest differential, and then all transaction log backups since the
differential, in sequence.

Let’s start with a simple example of restoring a full database backup. In this example,
you will be restoring a database back to its original location following accidental deletion.
The statement will take the most recent backup set from the AdventureWorks.bak file
and restore it back into the instance.

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 8 7

RESTORE DATABASE AdventureWorks

FROM DISK = 'AdventureWorks.bak'

WITH RECOVERY

NOTE
In the “Backup” section, we covered using one backup set per media set, the common method of backup (that is,

one backup per file). If the restore is using a media set that contains multiple backup sets, then you must specify

which backup set you want to use by specifying the WITH FILE = n option, where n is the position of the backup

set (RESTORE HEADERONLY returns backup set position numbers). For example, if the media set has five backup

sets and you wish to restore the second backup set, then the statement would look as follows:

RESTORE DATABASE AdventureWorks
FROM DISK = 'AdventureWorks.bak'
WITH RECOVERY, FILE = 2

For the rest of the chapter, all examples assume one backup set per media set,
removing the need to specify the FILE option.

If you are using full and differential backups together, you would start by restoring
the full backup first using WITH NORECOVERY, followed by the most recent
differential backup using WITH RECOVERY:

RESTORE DATABASE AdventureWorks

FROM DISK = 'AdventureWorks_Full.bak'

WITH NORECOVERY

GO

RESTORE DATABASE AdventureWorks

FROM DISK = 'AdventureWorks_Diff.bak'

WITH RECOVERY

If your database was using the SIMPLE recovery model, you only have the options
for full and differential backup restore (ignoring partial recovery for now). If on the
other hand your database was running in the FULL or BULK_LOGGED recovery
model, then your restore would probably include restoring transaction log file backups
taken since the last differential backup, making the restore process as follows:

-- Most Recent Full

RESTORE DATABASE AdventureWorks

FROM DISK = 'AdventureWorks_Full.bak'

WITH NORECOVERY

GO

-- Most Recent Differential

2 8 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

RESTORE DATABASE AdventureWorks

FROM DISK = 'AdventureWorks_Diff.bak'

WITH NORECOVERY

GO

-- First log since last Differential

RESTORE LOG AdventureWorks

FROM DISK = 'AdventureWorks_logbackup1.trn'

WITH NORECOVERY

GO

< REPEATED FOR EACH LOG FILE IN SEQUENCE >

-- Last Log file in sequence

RESTORE LOG AdventureWorks

FROM DISK = 'AdventureWorks_logbackup5.trn'

WITH RECOVERY

Point-in-Time Recovery
Restoring the log file has some additional options to allow point-in-time recovery.
STOPAT, STOPATMARK, and STOPBEFOREMARK all allow you to recover to a
specific point. These options are similar to restore points in Oracle, which enable you to
specify points in time, log sequence numbers (SCNs in Oracle), or named markers.

STOPAT is used to recover to a specific date and time:

RESTORE LOG AdventureWorks

FROM DISK = 'AdventureWorks_logbackup.trn'

WITH RECOVERY,

STOPAT = 'Jan 16, 2010 07:38:00 PM'

STOPATMARK and STOPBEFOREMARK, as the names suggest, stop recovery
at or before a marker within the transaction log. The marker can be an LSN or custom
transaction marker.

Custom markers are placed in the transaction log by naming a transaction and
specifying the WITH MARK option on a transaction:

BEGIN TRANSACTION transaction_name

WITH MARK transaction_description

<DO SOME WORK>

COMMIT TRANSACTION transaction_name

For example, if you were performing an update to your Products table, increasing all
your prices by 10 percent, you may decide to mark that transaction as a point to which

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 8 9

you can recover. Therefore, when issuing the UPDATE statement, you would mark the
transaction as follows:

BEGIN TRANSACTION ProductPriceIncrease

WITH MARK '10% Product Price increase update'

UPDATE Store.Products SET Price = Price*1.1

COMMIT TRANSACTION ProductPriceIncrease

STOPATMARK and STOPBEFOREMARK can now use this transaction log
marker for point-in-time recovery:

RESTORE LOG AdventureWorks

FROM DISK = 'AdventureWorks_logbackup.trn'

WITH RECOVERY,

STOPBEFOREMARK = 'ProductPriceIncrease'

When a log mark is placed in a transaction log, it is recorded in the dbo.
logmarkhistory table in the msdb database, and therefore you can browse the available
log marks by querying the table.

You may notice that the STOPAT, STOPATMARK, and STOPBEFORE marks
can also be specified when performing a RESTORE DATABASE. It is important to
note that this will not restore a database to that point. They are used as a mechanism to
check that your database restore is earlier than the point to which you wish to recover.
If the backup is later than the target point and cannot be used, an error will be returned.

Oracle DBA Q&A

Q: Does SQL Server have its own version of LogMiner to allow you to inspect
the transaction log?

A: No, there is no formal tool like LogMiner in SQL Server. There is, however,
an undocumented function called fn_dblog, the details of which you can easily
find via a quick search of the Internet. A quick example that will pull back all the
information in the current log file is 'SELECT * FROM ::fn_dblog(null, null)'.
Most of the fields returned are self-explanatory, and there are many websites
and blogs that have good examples of using this function. If you are looking for
something a little more formal, you can find log inspection tools from third-party
vendors on the Internet.

2 9 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Restoring to the Last Committed Transaction
In the “Backup” section, we covered tail-log backups. The tail-log backup is used when
you want to recover the database to the last committed transaction. For example,
suppose your database has suffered serious damage to the media holding the data files
and requires a complete database restore. Without a tail-log backup, your recovery
point is to your last transaction log backup, but, provided that the media containing
the transaction log files has survived and SQL Server is still up and running, a tail-log
backup can be taken. The tail-log backup will allow you to capture the log file that
has not yet been backed up. Once the tail log has been captured, the database can be
restored and recovered as normal:

-- Backup the tail of the log

BACKUP LOG AdventureWorks

TO DISK = 'AdventureWorks_taillog.trn'

WITH NORECOVEY, NO_TRUNCATE

-- Restore the most recent Full

RESTORE DATABASE AdventureWorks

FROM DISK = 'AdventureWorks_Full.bak'

WITH NORECOVERY

GO

-- Restore the log files

RESTORE LOG AdventureWorks

FROM DISK = 'AdventureWorks_logbackup.trn'

WITH NORECOVERY

GO

< REPEATED FOR EACH LOG FILE IN SEQUENCE >

-- Restore the tail-log and run recovery

RESTORE LOG AdventureWorks

FROM DISK = 'AdventureWorks_ taillog.trn'

WITH RECOVERY

Filegroup-, File-, and Page-Level Restore
Up until now we have looked at how to perform a complete restore of a database. SQL
Server also supports repairing parts of the database such as the filegroup, file, and page.

Restoring an individual filegroup or file does not have to come from an individual
file or filegroup backup. The files can be extracted from a full backup. The process to
recover the files includes taking a tail-log backup, restoring the files from a full backup,
applying the most recent differential backup if used, and then applying all log files in
sequence, including the tail log.

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 9 1

The following example shows how to restore an individual file using its logical
filename (the other steps have been added as comments, as they have been shown in
previous examples):

-- Backup the tail of the log

-- Restore the missing file

RESTORE DATABASE AdventureWorks

FILE = 'FG_2009_Archive_File1'

FROM DISK = 'AdventureWorks_Full.bak'

WITH NORECOVERY

GO

-- Restore all log backups since full in sequence

-- Restore the tail-log and run recovery

To restore a filegroup, simply use FILEGROUP in place of the FILE option. It is
also possible to specify several files and filegroups at the same time by adding additional
FILE and FILEGROUP parameters to the statement.

RESTORE DATABASE AdventureWorks

FILE = 'FG_2009_Archive_File1'

FILE = 'FG_2009_Archive_File2'

FILEGROUP = 'FG_2008_Archive'

FROM DISK = 'AdventureWorks_Full.bak'

WITH NORECOVERY

GO

If you are running in the SIMPLE recovery model, then you can only restore read-
only files and filegroups because you have no transaction log backups available to roll
forward a read-write file or filegroup.

The lowest level of granularity for SQL Server storage is the page, and SQL Server
supports page-level restores. In the scenario where a data page has become corrupted, it
is possible to replace just that page instead of restoring the complete file or filegroup.
A page can be restored from a full, file, or filegroup backup, followed by restoring all log
file backups (taken since the file used to perform the restore was created) including a
tail log.

NOTE
Although in the previous statement it made reference to restoring the log file backups, it is not actually restoring

all of the content of the log files. The restore process performs a scan of the log looking for changes that affect

the page you have restored.

2 9 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The following is an example of restoring a page, in this case in File 3, page 763:

RESTORE DATABASE AdventureWorks

PAGE = '3:763'

FROM DISK = 'AdventureWorks_Full.bak'

<Apply all transaction log backups and the tail log>

Page restores cannot be used for all types of page. System pages such as file headers,
global allocation maps, and boot pages cannot be individually restored and can only be
repaired using a full file or filegroup restoration.

NOTE
When a query is issued that hits a page that is detected by SQL Server to be faulty (error codes 823 and 824), it is

recorded in the dbo.suspect_pages table in the msdb database.

ON THE JOB
Page-level restore is an excellent feature, but that doesn’t mean you always have to resort to it. For example, if

the page that has become corrupted belongs to a nonclustered index, then it may be better to rebuild the index

than resort to performing a restore. There is less risk in an index rebuild than there is in a restore operation and

SQL Server supports online index rebuilds.

 In addition, just because a page appears in the suspect_pages table, that doesn’t mean it must be restored;

it is worth checking if the DBCC CHECKDB command can fix the issue first.

Piecemeal Restore
Piecemeal restore is best described through an example. If you have a 20TB data
warehouse and experience a disaster that requires a complete restore, then your total
outage time is equal to how quickly you can restore and recover the entire 20TB.
Restoring 20TB is going to take some time even if you own a top-of-the-range
expensive SAN solution. One possible answer to this problem is piecemeal restore.

Piecemeal restore allows you to recover the database in stages, bringing parts of the
database online and available for use before you have finished the complete restore.
Piecemeal restore options differ depending on whether you are using the SIMPLE or
FULL recovery model.

When running in the SIMPLE recovery model, piecemeal recovery stipulates
that you must recover your PRIMARY filegroup and all read-write filegroups before
restoring any read-only filegroups. Once the PRIMARY and all read-write filegroups

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 9 3

are online, users can start to access the database and start using the data while you
restore the read-only filegroups in the background. If the user tries to access data in a
filegroup that is not yet online, an error message will be returned to the client.

Let’s take a look at an example of piecemeal restore of a data warehouse database
using SIMPLE recovery. The database uses filegroups to hold data archives that relate
to the year the data was entered. When one year ends, the filegroup becomes read-only
and only the current year is read-write:

-- Restore the primary filegroup and the 2010 read-write filegroup

RESTORE DATABASE CorporateDW READ_WRITE_FILEGROUPS

FROM DISK = 'CorporateDW_RWFG.bak'

WITH PARTIAL, RECOVERY

GO

/* The database is now online and 2010 data can be accessed by users

2009 and 2008 data is still unavailable and is marked as offline. */

-- Restore and recover the 2009_Data Filegroup

RESTORE DATABASE CorporateDW

FILEGROUP='2009_Data'

FROM 'CorporateDW_RO_2009.bak'

WITH RECOVERY

GO

/* Users can now query the data in the 2010 and 2009 filegroups. */

-- Restore and Recover the 2008_Data Filegroup

RESTORE DATABASE CorporateDW

FILEGROUP='2008_Data'

FROM 'CorporateDW_RO_2008.bak'

WITH RECOVERY

GO

Performing a piecemeal restore when using the FULL recovery model differs in that
it uses log file restores to roll forward the filegroup as they are recovered. Although
this is a slightly longer process, it does allow you to get a database up and running
after restoring only the PRIMARY filegroup instead of having to restore all read-write
filegroups as in the SIMPLE model.

For example (some steps have been commented, as they appear in other examples):

-- Backup the tail of the log

-- Restore the PRIMARY Filegroup, using PARTIAL and NORECOVERY

2 9 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

RESTORE DATABASE AdventureWorks

FILEGROUP='PRIMARY'

FROM DISK = 'AdventureWorks_Partial.bak'

WITH PARTIAL, NORECOVERY

GO

-- Restore all log file backups since the full backup was taken

-- Apply the tail-log backup WITH RECOVERY

/* The PRIMARY Filegroup is now online and the database is accessible,

all other filegroups remain offline. */

-- Restore the secondary Filegroup(s)

RESTORE DATABASE AdventureWorks

FILEGROUP='SALES'

FROM DISK = 'AdventureWorks_SalesFG.bak'

WITH NORECOVERY

GO

-- Restore all log file backups since the full backup was taken

-- Apply the tail-log backup WITH RECOVERY

/* The secondary filegroup is now online, repeat the secondary

Filegroup(s) restore process until all Filegroups are online. */

To take real advantage of piecemeal restore, you should review your physical database
design and think about the use of filegroups and how you distribute your objects.
For FULL recovery databases, your goal should be to enable quick recovery of your
PRIMARY filegroup, followed by the other filegroups in order of importance. In the
SIMPLE recovery model, your aim is to restore the PRIMARY and all read-write
filegroups as quickly as possible. Thus, a review of whether your filegroups can be made
read-only is advisable.

ON THE JOB
Although they can’t be used as a primary method of recovery, SQL Server database snapshots (mentioned in

Chapter 2) can be used to “wind back” a database to a previous point in time. As a DBA, database snapshots

are useful tools to use prior to making any updates to the database as they can be used as a quick way to put

the database back to the point in time prior to your making changes. For example, suppose you take a database

snapshot of AdventureWorks at 9:00 A.M., prior to performing your database update, and then, following your

update, you realize that it didn’t go according to plan and you need to revert the database back to how it looked

at 09:00 A.M. You can use the database snapshot to wind back the database to that point in time. The syntax is as

follows:

RESTORE DATABASE database_name FROM DATABASE_SNAPSHOT =
snapshot_database

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 9 5

 Therefore, to restore AdventureWorks using the AdventureWorks_9AM database snapshot:

RESTORE DATABASE AdventureWorks FROM DATABASE_SNAPSHOT =
AdventureWorks_9AM

 There are caveats and things you should be aware of around reverting to a snapshot, such as it will rebuild

the transaction log and break the backup chain. Full details on using snapshots can be found in SQL Server Books

Online. Also, it should be noted that in this example you should still perform a proper backup prior to the update;

the snapshot simply provided a quick way to revert the database without resorting to a restore from backup.

RESTORE—WITH Options
As with the BACKUP statement, there are several general WITH options for a
RESTORE statement. This section covers the most commonly used ones.

Restoring to Alternate Locations
When you are restoring a database, the default action is to restore the database files
back to their original location as recorded in the backup set. In the scenario of restoring
to an alternate server that may not have the same disk configuration or restoring to the
same server but having to use a different disk location, you need to specify where to
move the files to by using the WITH MOVE option:

WITH MOVE 'logical_filename' TO 'new_location'

In the AdventureWorks database, the logical filename 'AdventureWorks_Data' is
used for the primary mdf file and 'AdventureWorks_Log' is used for the ldf log file. To
restore a backup of AdventureWorks moving these files to a new location, the syntax is
as follows:

RESTORE DATABASE AdventureWorks

FROM DISK = 'AdventureWorks_Full.bak'

WITH RECOVERY,

MOVE 'AdventureWorks_Data' TO 'E:\SQLData\AdventureWorks_Data.mdf',

MOVE 'AdventureWorks_Log' TO 'F:\SQLLogs\Adventureworks_Log.mdf'

Replacing Existing Databases
When using the FULL or BULK_LOGGED recovery model and restoring a database
when it already exists within the instance, the following message may appear:

Msg 3159, Level 16, State 1, Line 1

The tail of the log for the database "AdventureWorks" has not been

backed up. Use BACKUP LOG WITH NORECOVERY to backup the log if it

contains work you do not want to lose. Use the WITH REPLACE or

2 9 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

WITH STOPAT clause of the RESTORE statement to just overwrite the

contents of the log.

Msg 3013, Level 16, State 1, Line 1

RESTORE DATABASE is terminating abnormally.

The message is telling you that you have not performed a tail-log backup and that
your restore operation would result in losing any transactions currently contained within
the transaction log that have not been backed up. SQL Server then aborts the database
restore. If you are restoring to a previous point in time covered by the backup and have
no interest in preserving the transactions within the log, then using the REPLACE
option will override the message:

RESTORE DATABASE AdventureWorks

FROM DISK = 'AdventureWorks_Full.bak'

WITH RECOVERY, REPLACE

Checking Restore Integrity
In the “Backup” section, we covered the use of CHECKSUM for verifying the integrity
of the data pages as part of the backup process. When performing a restore of a backup
that used the CHECKSUM option, the default action is to re-verify the checksums
on restore and, upon encountering any errors, to stop the restore process (STOP_ON_
ERROR is the default option). If you want the restore to continue through any errors,
specifying CONTINUE_AFTER_ERROR will continue with the restore and report
which pages contain errors at the end of the process.

The following restore will verify the backup checksums and will continue through
any errors it finds:

RESTORE DATABASE AdventureWorks

FROM DISK = 'AdventureWorks_Full.bak'

WITH RECOVERY, CHECKSUM, CONTINUE_AFTER_ERROR

It is possible to disable checksum verification by specifying NO_CHECKSUM.
Also, if your backup did not use checksums and you specify that the restore should use
the CHECKSUM feature, then the restore operation will fail and an error message will
be displayed.

Restricted User
When restoring a database, you may not want users to be able to access the database
as soon as you have brought it online, as you may need to perform other operations on

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 9 7

the database. The RESTRICTED_USER option ensures that following a restore, only
members of the sysadmin, db_owner, or dbcreator roles have access to the database:

RESTORE DATABASE AdventureWorks

FROM DISK = 'AdventureWorks_Full.bak'

WITH RECOVERY, RESTRICTED_USER

Restore Permissions
The fixed server role of sysadmin has all the required permissions to perform a
database restore. For administrative users who are not sysadmins, consider making
them members of the dbcreator fixed server role. This role is equivalent to granting
the ALTER ANY DATABASE server permission and will allow a login to CREATE,
DROP, and RESTORE any database on the instance. Logins having only the
CREATE ANY DATABASE permission can create new databases and RESTORE
and DROP only their own databases.

All of the metadata reading operations, such as RESTORE LABELONLY and
RESTORE FILELISTONLY, require the CREATE DATABASE permission.

Restore History Tables
As with the backup history tables, all data relating to restore operations is stored within
msdb.

Table 7-4 lists the restore tables with brief descriptions.
Using these tables, it is possible to write scripts to return details of any restore

operations that have taken place on your database.
Following is a quick example of how to check what type of restore operations have

taken place on the AdventureWorks database and when they were performed and by
whom:

SELECT rh.restore_date, rh.restore_type, rh.user_name

FROM msdb.dbo.restorehistory rh

WHERE rh.destination_database_name = 'AdventureWorks'

ORDER BY rh.restore_history_id DESC

Table Description

dbo.restorehistory A row for each restore operation

dbo.restorefilegroup A row per restored filegroup

dbo.restorefile A row per restored file

Table 7-4 Restore-Related History Tables

2 9 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

This example query could be joined to other tables to provide full details of the
restore such as the name of the file and whether or not it was restored to its original
location.

Finally, when using tape devices, an additional DMV called sys.dm_io_backup_tapes
is available in the master database and will show the status of each tape device.

Restoring System Databases
In the “Backup” section, we covered which of the system databases you should back up
and which backup method to use. The restore process for most of the system databases
does not differ from that of restoring a standard user database. To restore the model and
msdb databases, you would use a standard database restore operation as we have shown
in previous examples. A point to note when attempting to restore msdb is to make sure
that the SQL Server Agent service is stopped; otherwise, it will hold open a connection
to the database, preventing it from being restored.

Restoring the master database is the exception. The master database is fundamental
to the operation of SQL Server and, as such, has a specific restore method. If SQL
Server is still operational, to restore the master database the server must be started in
single-user mode. Once SQL Server is up and running in single-user mode, a normal
full restore and recovery of the database can take place.

If SQL Server has suffered a severe failure of the master database, and as such will
not start, it is possible to perform a master database rebuild operation using the SQL
Server setup media. The rebuild operation replaces the damaged master database and
also the model and msdb databases. Once they are all rebuilt and SQL Server is able to
start again, you can then attach the user databases or restore the databases using your
last backup set.

Restoring Using SSMS
As you would expect, it is also possible to perform a restore without having to write
any T-SQL code, by using SSMS. The Restore Database dialog box is accessed either
by right-clicking the Databases node and selecting Restore Database (if the database
you are restoring does not already exist) or by right-clicking the database of interest
and selecting Tasks | Restore. Both methods take you to the same dialog box, although
when you start from a database, the dialog box is pre-populated with information
specific to that database, including the backup history as recorded in the msdb backup
history tables.

Figure 7-9 shows the dialog box launched after selecting AdventureWorks as the
database of interest. Instead of using the backup history stored in msdb, the dialog box
shows that the 'AdventureWorks_Full.bak' file has been explicitly selected, and the dialog

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 2 9 9

box shows the results of a RESTORE HEADERONLY operation on the file. This
dialog box allows you to restore over the original database or to specify a new database
name. A point in time to recover to (if restoring transaction logs) can also be selected here.

The Options page, shown in Figure 7-10, should look familiar as it allows you to
choose the recovery option (RECOVERY, NORECOVERY, or STANDBY) along
with options such as moving the files to an alternate location (MOVE) by specifying a
new path in the Restore As text box and overwriting existing databases (REPLACE)
by checking the 'Overwrite existing database' check box.

Figure 7-9 Restore Database dialog box—General page

3 0 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

SSMS is great for performing simple restores and saves you time by not
requiring you to write any code, but it does not allow you to perform the
advanced restore scenarios such as partial restores and the STOPATMARK and
STOPBEFOREMARK options.

ON THE JOB
For both backup and restore operations, SSMS is useful for performing quick, simple backup and restore

operations, although when it comes to a topic like backup and recovery, which is fundamental to the DBA role,

it is important to understand the details behind the operations the GUI is performing for you.

Figure 7-10 Restore Database dialog box—Options page

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 3 0 1

Example Restore Scenarios
In the “Backup” section, we covered two example backup scenarios; let’s revisit them
following a series of disasters!

Scenario 1: The Company Data Warehouse
It’s Wednesday at 4:25 p.m. and a serious disk problem on the array holding your data
warehouse database has resulted in the complete loss of the database data files. The rest
of your server is up and running, and SQL Server is operational as its system databases
were stored on a different disk array.

Your backup regime consisted of weekly full backups followed by daily differential
backups that were taken following your load process. The RPO following a media
failure is to recover the database to the point of the most recent data load. Therefore,
to restore the database you need the full backup from the previous Sunday and
the differential backup that was taken following the Tuesday evening data load. To
complicate matters, the server hardware engineer is delayed and unable to get to the site
to repair the faulty array, and you are under pressure to restore the database so that users
can finish running their reports.

The array on which the database data files used to reside was 500GB in total,
although the database only consumed 180GB of the available space. Luckily, your server
had recently been provisioned with a 200GB disk array in preparation to hold a new
data mart that was due to be deployed in the coming months. Therefore, you are able to
use this new array to hold your database data file until the hardware engineer can repair
your primary location.

You can perform the restore starting with the most recent full backup, which in
this case is Sunday, January 17, 2010. Since you are going to be applying a differential
backup to this following the full backup, you need to specify NORECOVERY.
Additionally, you are moving the primary data file to a new drive array, so you use the
MOVE option:

RESTORE DATABASE CorporateDW

FROM DISK = 'CorporateDW_17012010_Full.bak'

WITH NORECOVERY,

MOVE 'CorpDW_Data' TO 'J:\SQLData\CorpDW_Data.mdf'

GO

RESTORE DATABASE CorporateDW

FROM DISK = 'CorporateDW_19012010_Diff.bak'

WITH RECOVERY

GO

The database is now fully restored and up and running on the new disk array.

3 0 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Scenario 2: The Line-of-Business Application
A recent unexpected cold spell of weather resulted in some water pipes in your building
freezing and bursting. Unfortunately one of those pipes was situated above the data
center where your database server is hosted. When the pipes began to thaw, water
dripped from the ceiling tiles onto your server, causing a short circuit resulting in the
electrical system cutting power to the server.

Following some emergency repairs to the pipes, you are able to get to the server to
assess the damage. After a visual inspection you decide it is safe to switch on the server
to assess the damage. The server switches on and boots into the operating system, but
after you log into the system, it seems that SQL Server has failed to start. A check
of the server error logs reveals that several disk arrays have been damaged, including
the array which holds the system tempdb data and log files and the data files for your
CRM application. The arrays holding your CRM transaction log files and other system
databases have survived. The hardware engineer replaces the faulty drive arrays and you
now need to recover the system.

The first problem is that SQL Server will not start unless it can create the tempdb
database. Since tempdb is re-created every time SQL Server is started, you need to
re-create the directory structure that tempdb resided in on the repaired drive arrays.
A quick look at the Windows Server application error log reveals that SQL Server is
trying to create the tempdb data files in 'E:\SQLData\' and the log in 'F:\SQLLogs\'.
After creating these directories, you try to start SQL Server, SQL Server starts up, and
you can assess the damage to the CRM database.

The CRM database fails to start, which, according to the SQL Server error log, is
because it is unable to find the data files due to the array being replaced. The array
on which the transaction log files resided is still intact. Therefore, before performing
a restore, you should be able to back up the tail of the log. The outage to the system
occurred at 12:43 p.m. and to get the database back online, you need last night’s full
backup, the differential backup from 12:00 p.m., and all log files up until 12:30 p.m.
followed by the tail log:

--Backup the tail of the log

BACKUP LOG CRM

TO DISK = 'CRM_TailLog.trn'

WITH NO_TRUNCATE

--Restore full backup

RESTORE DATABASE CRM

FROM DISK = 'CRM_25012010_Full.bak'

WITH NORECOVERY

C h a p t e r 7 : B a c k u p a n d R e c o v e r y 3 0 3

--Restore the differential from 12:00

RESTORE DATABASE CRM

FROM DISK = 'CRM_26012010_Diff_1200.bak'

WITH NORECOVERY

--Restore the Log files

RESTORE LOG CRM

FROM DISK = 'CRM_26012010_1215.trn'

WITH NORECOVERY

RESTORE LOG CRM

FROM DISK = 'CRM_26012010_1230.trn'

WITH NORECOVERY

--Restore the tail-log backup

RESTORE LOG CRM

FROM DISK = 'CRM_TailLog.trn'

WITH RECOVERY

The CRM database is now fully recovered to the point of the last committed
transaction prior to the outage.

Further Reading
This chapter has covered the basics of backup and restore within SQL Server and
has enough detail to get you started. In our examples, we have been looking at
straightforward, “traditional” databases—the ones that contain tables, views, indexes,
stored procedures, and all the other types of standard objects you would expect. It is
important to note that using features such as replication, Service Broker, and full text
indexes can have an impact on how you perform any backup and recovery. Also, as you
may have come to realize while reading this chapter, your database design and layout
can also have a profound effect on your backup and recovery strategy, and therefore
understanding the SQL Server files and filegroup architecture will help you design a
good backup and recovery strategy.

SQL Server Books Online contains details on how to use these features, and there
are also many good books available on the subject.

This page intentionally left blank

Performance Tuning
and Optimization

Chapter 8

In This Chapter

Windows Performance
Monitor

SQL Server Activity Monitor

Dynamic Management Views

SQL Server Profiler and
SQL Trace

Database Engine Tuning
Advisor

The Management Data
Warehouse

3 0 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Performance monitoring, tuning, and optimization are regular activities for the
Oracle DBA, and the SQL Server DBA is no different, except that in many
cases, with smaller SQL Server solutions, the level of automation included with

SQL Server means the solution “just runs.” There will always come a point where some
fault detection and diagnosis is required, especially when running the larger, mission-
critical, Tier-1 solutions for which performance and uptime are critical. This chapter
provides an introduction to the tools available in SQL Server for monitoring and tuning
performance. The aim of this chapter is to provide you with the knowledge to develop
a professional approach to SQL Server performance tuning using the built-in tools that
are provided in the Windows Platform and within SQL Server at no extra cost.

In this chapter you will learn

How to check the health of your SQL Server with Windows Performance
Monitor

Where to find out what each user connection is currently doing

What DMVs are and which ones are most useful for troubleshooting performance

How to use SQL Server Profiler and SQL Trace

About tuning workloads with Database Engine Tuning Advisor

About consolidating performance data collection using the management data
warehouse

Windows Performance Monitor
Performance Monitor (Perfmon) is a Windows tool for capturing and displaying real-
time performance data for the operating system and various applications, including SQL
Server. Understanding how to use Performance Monitor will help you to narrow the
scope of a performance issue to a specific server in a solution, a particular component, or
an exact resource within a server. When used with an educated eye, Perfmon can yield
quick, accurate results that can form partial or even complete evidence of the underlying
cause of a performance issue.

Overview
Performance Monitor was first introduced in Windows NT 4.0 and was renamed
System Monitor in Windows Server 2003, although the functionality that enabled you
to capture data to a file for offline analysis kept the moniker of Performance Monitor.

In Windows Server 2008 (and clients from Vista onward), what we originally
called Performance Monitor has become part of a tool called Windows Reliability and
Performance Monitor, which has a much wider scope.

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 0 7

Reliability and Performance Monitor has three main components: Monitoring
Tools, Data Collector Sets, and Reports. The Monitoring Tools consist of Performance
Monitor, which is used for viewing real-time data, and Resource Monitor, which reports
on system stability. Data Collector Sets are used for capturing data over an extended
period for offline viewing. The final element which is Reports allow reports to be
generated based on data collected by the Data Collector sets providing an easier method
to consume and interpret the data collected. Moving forward as you collect more data it
is possible to keep just the reports giving you access to performance data without having
to retain the full data sets from the original Data Collectors. This chapter focuses on
using Performance Monitor and Data Collector Sets in Windows Server 2008, although
the principles of what to collect and what to look for are largely relevant regardless of the
version of Windows that you’re using.

Getting Started
You can launch Reliability and Performance Monitor by choosing Start | All Programs |
Administrative Tools | Reliability and Performance Monitor or by simply searching for
“perfmon” on the Start button and running the executable that is found.

Resource Overview
When you launch the tool, you’ll be presented with the Resource Overview windows,
similar to Figure 8-1, which shows a real-time view of the usage of the four key hardware
elements: CPU, Disk, Network, and Memory. Each of these can be expanded to break
down resource usage and performance by process, and even by file in the case of the
Disk view.

Figure 8-2 shows an expanded Disk view on a live server running SQL Server
showing I/O details by file and ordered by write throughput. It shows that the SQL
Server process is responsible for most write activity during this snapshot, and the
database files involved are data files for tempdb and transaction log files. The Response
Time column shows the latency, in milliseconds, for I/O requests to each file and is an
important metric for disk performance; it is discussed in the section “What to Look
For” later in the chapter.

Real-Time Activity Monitoring with Performance Monitor
When you expand the Monitoring Tools and click on Performance Monitor, you’re
accessing the viewer for real-time server activity that provides you with instant data on
the server’s workload, performance, and resource consumption.

When you first load the tool, you’ll see a line graph showing % Processor Time
from the local machine. To add additional counters, right-click anywhere in the chart

3 0 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 8-1 The Resource Overview window in Reliability and Performance Monitor

area and choose Add Counters. Figure 8-3 shows the Add Counters dialog box, which
shows counters from the Local computer being added in this case. In the box below
that, the list of counters under the Memory object has been expanded and the Available
MBytes counter has been selected and added.

There are lots of counters available to add, even on a basic installation of Windows,
and new counters are installed when you set up new applications or roles on a system.
For example, every SQL Server instance installed will add its own set of counters to the
available list.

Figure 8-2 Expanded Disk view

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 0 9

After you’ve added a few counters (recommendations are given in the “What to Look
For” section coming up), you can use the highlight feature by selecting a counter and
pressing ctrl-h to make the line graph for that counter stand out. This is very useful
when you’re watching many counters simultaneously and want to focus on just one.

Another nice feature (only available in Windows Server 2008 and later) is the ability
to scale selected counters to make the graph easier to read. When comparing counters
on the same chart, they very often have vastly different scales, which makes viewing
difficult. You can access this feature by selecting one or more counters, right-clicking,
and selecting Scale Selected Counters.

Data Collector Sets
Data Collector Sets are groups of data-gathering tools that may include kernel tracing,
performance logs, and configuration data. Windows Server 2008 has three preconfigured
Data Collector Sets, including a System Performance collector, which consists of a Kernel

Figure 8-3 The Add Counters dialog box in Performance Monitor

3 1 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

trace and Performance Monitor log. To use a preconfigured Data Collector Set, expand
Data Collector Sets, System, and then right-click System Performance and select Start.

The Data Collector Set will run for 60 seconds and, when it’s complete, you’ll be
able to view a preconfigured report of the data by navigating to Reports | System |
System Performance. A sample report is shown in Figure 8-4.

User Defined Data Collector Sets
In addition to using the System Data Collector Sets you’ve just seen, you can create
your own customized versions known as User Defined Data Collector Sets. If you
view data only in real time, identifying patterns and trends in performance that may
be influencing a problem condition is very difficult. A much better way is to capture
performance data over a fixed period and analyze the data afterward.

To create a User Defined Data Collector Set, expand Data Collector Sets, right-
click User Defined, select New, and select Data Collector Set. A wizard will take you
through the creation process. The first choice will be to create from an existing template
or manually. There are three templates available, Basic, System Diagnostics, and System
Performance, that you can use to start from, but from a SQL Server perspective,
it’s easier just to select 'Create manually' and add all the counters yourself (see the
upcoming section “Counters to Capture”).

Figure 8-4 System Performance report

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 1 1

The Impact of Data Capture on the Server
It is impossible to monitor something without affecting it in some way, so the goal is
to minimize the overhead of data capture wherever possible. Fortunately, Performance
Monitor is a very lightweight tool in terms of overhead because the counters themselves
are constantly being updated by the relevant application whether you’re monitoring
them or not. The overhead from capturing therefore primarily comes from writing the
data to disk during data collection.

The perceived impact of running Performance Monitor on a live server will be more
acute on a server that already has resource constraints, and there are a number of factors
to consider when trying to minimize the overhead.

The sample interval controls the frequency at which the data is captured. The default
is 15 seconds, which is quite reasonable for data captures running for a few hours, but
you might want to shorten it to 5 seconds if you’re running a short capture (at the
expense of additional overhead) or make it longer (maybe 60 seconds) to capture data
over tens of hours or even days.

Capturing a large number of counters can also affect the size of the data collection
on very busy servers, so you may be able to reduce overhead by being more selective
with your chosen counters.

You should also consider the disk to which you’re writing the log file and ensure that,
at the very least, you’re not using a drive that has any file on it that SQL Server uses.
Otherwise, your disk performance measurements will be affected by the data collection.

Counters to Capture
For a general-purpose baseline of a server running SQL Server, all counters from the
following counter groups will provide everything you need to profile the performance of
a server:

IP SQL Server:Access Methods

LogicalDisk SQL Server:Backup Device

Memory SQL Server:Buffer Manager

NBT Connection SQL Server:Buffer Node

Network Interface SQL Server:Buffer Partition

Objects SQL Server:Databases

PhysicalDisk SQL Server:General Statistics

Process SQL Server:Latches

Processor SQL Server:Locks

3 1 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The groups prefixed with 'SQL Server' refer to a “default” instance of SQL
Server. When using “named” instances, the counter groups will be prefixed with
MSSQL$<instance name>. You should capture all counters from all instances for a
complete server baseline. See Chapter 2 for a description of default versus named
instances.

You can remove groups if you know they are not relevant to a server (like replication
groups, for example) or choose specific counters within the groups to further filter the
collection, but the preceding list provides a solid, all-purpose data collection that is ideal
for establishing a baseline and for analyzing results (see the section “Going Beyond the
Built-in Functionality” later in the chapter for coverage of a tool to help with this).

Figure 8-5 shows a screenshot of the Create New Data Collector Set wizard with the
previously mentioned counter groups added and the default sample size of 15 seconds
set. We would expect this data collection to be no more than a few hundred megabytes
in size after a few hours.

Oracle DBA Q&A
Q: Slightly off topic, but I have run Oracle on Windows before and have never
seen any performance counters for Oracle listed in the available counters. Does
Oracle just not supply them?

A: Oracle does ship Performance Monitor counters for its database when
installed on Windows, but the counters are not installed by default like SQL
Server counters are. They have to be registered and configured on the machine
before they will appear in the Performance Counters list. Search for “Performance
Monitor” in the Oracle documentation or visit http://download.oracle.com/
docs/cd/B28359_01/win.111/b32010/monitor.htm, which takes you to the
“Monitoring a Database on Windows” documentation.

SQL Server:Memory Manager SQL Server:Replication Merge

SQL Server:Plan Cache SQL Server:Replication Snapshot

SQL Server:Replication Agents SQL Server:Resource Pool Stats

SQL Server:Replication Disto SQL Server:SQL Statistics

SQL Server:Replication Logreader SQL Server:Workload Group Stats

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 1 3

What to Look For
When reviewing the performance of a server running SQL Server, it’s a good idea to
first look at the utilization of the hardware resources on the server, the core of which are
memory, storage, and CPU.

If you can imagine those three resources in a stack starting with memory, you want
to start at the top of the stack, ruling out issues as you work your way down, because
resource problems further up the stack can cause issues further down the stack.

For example, under low memory conditions you will be likely to see an increase
in storage activity as the system page file starts to be used as a temporary store for
committed memory. This can also drive up CPU utilization, as Windows needs to
manage the process of paging.

What you might notice first is that the system is running with high CPU utilization
or that the storage system is running slower than normal. Don’t be tempted to add more
CPUs or faster disks on this evidence alone because, in this example, you’ll be missing
the underlying problem, which is a lack of physical memory.

Figure 8-5 Adding counters to a User Defined Data Collector Set

3 1 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

It is for this reason that when you troubleshoot performance problems or review an
existing system, you look at the resources in the order of memory, storage, and then
CPU. As you work your way down the stack, you should be trying to rule out resource
problems as much as find the underlying cause.

What you’re looking for are some quick and easy checks that will highlight any
obvious problems so that you can drill down and investigate further or rule out a
resource and move further down the stack. Performance Monitor is ideal for this and,
starting with memory, what follows are the counters and thresholds you can use to rule
a resource into or out of your performance problem. The counters and target thresholds
covered in this section are summarized in the following table for easy reference.

Counter Group Counter Target

Memory Available MBytes Sustained value greater than 100MB at minimum

SQLServer:Memory Manager Target Server Memory (KB) Should be very close to or the same as the Total Server

Memory counter

Total Server Memory (KB) Should be very close to or the same as the Target Server

Memory counter

Buffer Manager Page Life Expectancy Greater than 300 seconds for transactional systems

LogicalDisk Avg. Disk sec/Transfer Less than 0.020, ideally less than 0.010

Processor % Processor Time Less than 90%

% Privileged Time Less than 30% of % Processor Time

% User Time Greater than 70% of % Processor Time

Process % Processor Time:sqlservr High percentage of % Processor Time on a server

dedicated to running SQL Server

Memory/Available MBytes
This counter indicates the amount of free physical memory available for Windows. You
should aim to keep this at a few hundred megabytes on a busy system, to be sure that
there’s always enough memory for any unexpected requirements.

If you really want to squeeze every bit of performance out of the server, however,
then keeping this counter consistently above 100MB will suffice as long as the server is
stable and consistent.

If this counter is consistently low, then you should lower the SQL Server setting for
Max Server Memory or review other potential memory consumers on the server.

SQLServer:Memory Manager/Target Server Memory (KB)
This counter represents the amount of memory that SQL Server wants to have. It
directly relates to the Max Server Memory setting, if one has been configured, or the
equivalent dynamic value if you’ve left SQL Server to manage memory.

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 1 5

This counter doesn’t tell you much on its own, but when you compare it to the next
counter you’ll understand why it’s useful.

SQLServer:Memory Manager/Total Server Memory (KB)
This counter represents the amount of memory that SQL Server actually has. It is closely
related to the previous counter and you should compare the two to see whether there is a
significant difference between what SQL Server wants and what SQL Server has.

As long as SQL Server has been running for a while or has been busy enough to grow
the memory usage, then you should expect these values to be very close if not identical.

If SQL Server doesn’t have all the memory that it wants, then make a note that there
could be external memory pressure or the Max Server Memory setting might just be
too high.

Buffer Manager: Page Life Expectancy
The Page Life Expectancy (PLE) counter was introduced in one of the later Service
Packs for SQL Server 2000 and is a great indicator of memory pressure within SQL
Server. It will show you the amount of time, in seconds, that SQL Server expects to be
able to keep unreferenced pages in cache. If SQL Server doesn’t have enough memory
to process its workload, then pages will be dropped from cache much quicker than
when SQL Server has lots of memory.

On an OLTP system, Microsoft recommends that PLE is at least 300 seconds,
which means that SQL Server expects to be able to keep unreferenced pages cached for
5 minutes.

In a data warehousing (DW) environment, it’s a bit harder to be so prescriptive
because you expect many large queries, which will frequently be causing cache flushes,
and that’s normal. However, PLE can still be useful as an indicator of how well SQL
Server is coping with its current memory allocation, and even in a DW environment
you should expect to be averaging a PLE of at least 100 seconds.

Another counter used often to indicate memory pressure before Page Life Expectancy
was introduced was Buffer Cache Hit Ratio, which shows the percentage of page requests
that were found in cache rather than having to be read from disk. This sounds like a great
counter, but the reality is that most servers will always report a very high cache hit ratio,
which doesn’t fluctuate enough under memory pressure to be of much use. Also, as in
Oracle, a high Cache Hit Ratio can indicate poorly tuned queries that are performing
an unnecessarily large number of logical I/Os against cached database pages, which can
drive the Cache Hit Ratio very close to 100 percent even if workloads are suffering from
significant I/O waits.

3 1 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

LogicalDisk:Avg. Disk sec/Transfer
Moving on to look at storage performance, this counter is a measure of the amount
of time, in seconds, that it takes Windows to make a transfer to or from disk, which
provides a useful high-level indicator of storage performance.

For disks that contain SQL Server database files, you want your disk transfers to be
consistently under 20 ms (0.020 second) and ideally under 10 ms.

If you’re not getting these performance levels, then you can break down this
measurement further to see the split between read and writes by checking these two
counters:

LogicalDisk:Avg. Disk sec/Read

LogicalDisk:Avg. Disk sec/Write

If there’s a significant difference between read and write performance, you can then
check the controller cache and the RAID level to see if there’s anything you can do to
rebalance the cache or recommend a faster RAID type.

Processor:% Processor Time
Your main concern when looking at CPU usage is the split between user and kernel
mode CPU utilization and the amount of CPU time being consumed by the SQL
Server service.

To start with, this counter is just a measure of how busy your CPUs are. Whether
or not this value is bad will depend on a lot of factors. Generally, a consistent value
>90 percent is considered to be bad, as the server is working very hard and there is very
little room for additional workload.

However, if you had just deployed new hardware and saw a consistent value of
70 percent, you might also consider that bad because it might not provide enough
headroom for growth.

All you’re concerned about at this stage is to find out how busy the CPUs are. Then,
you’re going to check what they are working on.

Processor:% Privileged Time
This counter will tell you how much of the % Processor Time is spent handling kernel
mode operations, which is useful to know because it’s a measure of the amount of time
Windows is spending managing its resources rather than running applications.

Microsoft guidelines indicate a threshold of 30 percent for this counter, so anything
over that could be a problem. A classic example of a problem causing this counter to be
high was introduced at the start of this chapter: a low memory condition.

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 1 7

When Windows is low on memory, data will start to be paged out to disk, and
the CPU will be working in kernel/privileged mode to handle this. The Processor: %
Privileged Time counter will show an increase in value, so whenever you see this you
should also check for memory pressure (which is why we review memory first).

Processor:% User Time
This counter, along with Processor:% Privileged Time, makes up the total % Processor
Time. Whereas Privileged Time represents time working on kernel mode operations,
User Time represents time spent working on applications (like SQL Server), which is
what you want the CPU to be spending most of its time on.

Microsoft guidelines indicate that 70 percent or greater is a good value for this counter.

Process:% Processor Time:sqlservr
When you measure CPU utilization, observe high % Processor Time, and see most of
that time is spent running user mode applications, it’s a good idea to check to see if
SQL Server is using the bulk of processor time. You don’t want to dive straight into the
guts of SQL Server before confirming that’s where the problems lies, and this counter is
how you can check the CPU utilization for the SQL Server process itself.

There is no threshold for this counter, really. What you’re looking for when
troubleshooting high CPU utilization is that SQL Server is using more than any other
process. If it isn’t, then you should be troubleshooting the process that is using the most
CPU time.

Going Beyond the Built-in Functionality
Windows Reliability and Performance Monitor is a great tool for capturing performance
data, but analyzing it is much harder, particularly when you have an obscure performance
problem. To help you analyze Performance Monitor logs more easily, you can download a
free open source tool written by engineers at Microsoft, called Performance and Analysis
of Logs, from http://codeplex.com/pal. It not only analyzes the data for you but also
provides a full report with charts highlighting performance problems and full descriptions
of the counters and thresholds involved.

SQL Server Activity Monitor
Activity Monitor provides a quick and easy way to discover who is doing what on a SQL
Server instance and how busy the instance is. Activity Monitor was completely rewritten
and redesigned for SQL Server 2008 and provides far more features and information

3 1 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

than was possible in its previous incarnation. You access the tool by right-clicking the
instance name in SQL Server Management Studio and selecting Activity Monitor,
which opens the Overview panel, as shown in Figure 8-6.

You’re immediately presented with four charts:

% Processor Time Plots the amount of CPU being used by the SQL Server
instance that you’re connected to, which is particularly useful under high CPU
usage conditions to confirm that it is actually SQL Server that’s responsible.

Waiting Tasks Plots the number of tasks that are currently waiting for
something. This is good to give you a heads-up that something is going wrong.

Database I/O Plots the I/O throughput for all your data and transaction log
files, which indicates how much load is on your underlying storage.

Batch Requests/sec Plots the number of batch requests that SQL Server is
processing every second, which shows how busy SQL Server is.

Beneath the charts you’ll notice four expandable sections, explained in turn next.

Processes
The Processes panel is the place that you most commonly visit once you start using
Activity Monitor. It presents a view of all current connections with lots of details, a few
of which can be seen in Figure 8-7.

Figure 8-6 SQL Server Activity Monitor Overview panel

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 1 9

The following are the three most useful uses for this view:

You can filter on any column by clicking the drop-down arrow for that column
and selecting an option. For instance, you can quickly restrict your view to one
particular database, login, or computer name. You can also use it to view all
connections that are currently experiencing one particular wait type, are being
blocked by another process, or are at the head of a blocking chain. Powerful stuff!

Once you’ve identified the sessions that interest you, you can quickly kill a
troublesome connection by right-clicking the connection in Activity Monitor and
selecting Kill Process. But before you do that, you might want to see what the
process is working on. To do that, you right-click and select Details to see the last
T-SQL batch that was run on that connection, helping you to target the area of
the application that caused a problem.

If viewing the last T-SQL batch doesn’t give you enough detail, then you can
right-click a session and select Trace Process in SQL Server Profiler to launch
Profiler using the standard template but with an automatic filter on the session
that you’re interested in.

Resource Waits
The Resource Waits panel provides aggregated information for current waits by
wait type and also shows the cumulative wait time for each wait type. You can read
more about SQL Server waits and wait types in the upcoming section “Dynamic
Management Views.”

Figure 8-7 SQL Server Activity Monitor, Processes panel

3 2 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Data File I/O
The Data File I/O panel of Activity Monitor provides an excellent view of I/O load
and performance that can be ordered by database and even filename. You can see an
example snapshot of this in Figure 8-8.

This view makes it very easy to determine which files in which databases currently
have the heaviest I/O requirements and, most importantly, the I/O response times for
those files, which indicates the latency between SQL Server making an I/O request and
actually receiving it.

The response times should be less than 5 ms for a transaction log file and less than
10 ms for a data file on a system that is performing well; anything consistently over 20 ms
should be considered unacceptable if you’re having perceived performance problems.

Recent Expensive Queries
Finally, the Recent Expensive Queries panel shows you the most expensive queries run
in the past 30 seconds. You can view a sample of this in Figure 8-9, which also shows
the right-click menu that provides the ability to see the full query text and even to pull
the execution plan used out of cache and view it in a graphical format.

Figure 8-8 SQL Server Activity Monitor, Data File I/O panel

Figure 8-9 SQL Server Activity Monitor, Recent Expensive Queries panel

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 2 1

Dynamic Management Views
Dynamic management views (DMVs) were introduced in SQL Server 2005 and
provide much greater visibility into the workings of SQL Server than was possible with
prior versions of the product. They are basically just views on top of the system tables
and internal memory structures, but abstracting away from the physical implementation
allows Microsoft to provide a massive amount of useful information through them.
They are the SQL Server equivalent of V$ views in Oracle.

The standard naming convention starts with sys.dm_, which indicates that it’s a
DMV (there are also dynamic management functions, but DMV is still the collective
term in popular use), followed by the area about which the DMV provides information.
For example, sys.dm_os_ for SQLOS, sys.dm_db_ for database, and sys.dm_exec_ for
query execution.

The last part of the name describes the actual content accessible within the view;
sys.dm_db_missing_index_details and sys.dm_os_waiting_tasks are both examples that
you’ll come across in this section.

What Is SQL Server Waiting For?
One of the most useful strategies available for performance tuning in SQL Server is
the analysis of SQL Server “waits,” and to understand why, you first need to understand
some fundamental concepts about how SQL Server manages the scheduling and
execution of work.

To recap on the architecture that was discussed in Chapter 2, Microsoft SQL
Server only runs on Microsoft Windows, and Windows is designed as an all-purpose
operating system, which means that it’s not optimized for any particular scenario
because it has to provide good performance for a very broad range of applications.

The approach that Windows takes to scheduling and execution of work is to provide
each request with a fixed time slice within which to execute on a CPU. This time slice
is called a quantum, and each request will be scheduled to have one or more quantums
in which to run and then they will be stopped to allow something else to run. This
allocation of time slices is necessary to provide the illusion of multitasking because
a single CPU can only ever do one thing at a time. The way Windows manages the
scheduling of work is referred to as preemptive scheduling.

Back in the very early days of SQL Server, the Windows scheduler was used by SQL
Server to schedule work requests, but the development team soon found that a general-
purpose preemptive scheduler wasn’t going to provide the level of performance that the
product needed so they decided to build SQL Server its very own scheduler.

User Mode Scheduler (UMS) was introduced in SQL Server 6.5 and, in SQL Server
2005, became a part of what we now call the SQLOS. This new scheduling method for

3 2 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

SQL Server is called a cooperative scheduler because the execution of work is governed by
the fact that workers will voluntarily yield their time on the CPU whenever they have
to wait for something other than the CPU.

Wait time is dead time, so if you can see what you’re waiting for and for how long
and then aggregate that across every other worker thread, then you’ve got a list of the
bottlenecks that are impacting SQL Server’s performance.

SQLOS uses schedulers to manage the execution of workers, which in turn are
assigned to execute a user request. The number of schedulers defaults to the number of
logical CPUs in the server because a single CPU can only ever execute one thing at a
time, which means that it only needs a single scheduler.

Within a scheduler, the workers assigned to it can be in one of four states: Init,
Running, Runnable, and Suspended. Init is used when initializing a worker, but it’s the
other three states that we’re interested in to help understand how waits work.

Only one worker can be in the Running state in a scheduler at a time, and that is
the worker that is currently using the CPU. All other workers waiting for time on the
CPU are queued in the Runnable state, and any worker waiting for anything other than
the CPU is in the Suspended state. Whenever a worker is in the Suspended state, it is
considered to be “waiting” and is assigned a “wait type.” This is illustrated in Figure 8-10.

In the diagram you can see that session_id 55 is currently executing, four sessions
are waiting on resources (which you’ll see descriptions of later in this chapter), and two

SQL Server “wait”

Signal Wait

52 PAGEIOLATCH_SH

54 CXPACKET

60 LCK_M_S

61 LCK_M_S

56 Runnable

53 Runnable

55 Running

Running Scheduler 1

Runnable Scheduler 1

Suspended Scheduler 1

Figure 8-10 The lifecycle of workers within a scheduler

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 2 3

sessions are in the Runnable queue. The Runnable queue contains sessions that are
waiting to be scheduled some CPU time, so this represents a pure wait on the CPU,
which we can translate into CPU pressure. Time in the Runnable queue is measured as
“signal wait” time, and is charged to the wait type that the session was in just before it
became Runnable.

All waits in SQL Server are categorized into wait types and can be grouped into
three areas:

Resource waits Occur when the requested resource is unavailable

Queue waits Occur when a worker is idle, waiting for work

External waits Occur when waiting for an external event

Resource waits, which include I/O, locking, and memory, tend to be the most
common and provide the most actionable information.

All this talk of waiting makes it sound like a horrendous thing to find on your
system. In fact, it’s perfectly normal and expected to see waits. This is how SQL Server
scales so efficiently. You’re really looking for unexpected waits and large wait times
when troubleshooting performance.

The important thing about waits is that they relate directly to users’ perceived
performance. The total elapsed time of a query is CPU time plus wait time; so if
users are complaining about slowness, the wait stats can break down the waits. This is
critical because you might look at a system and see high CPU utilization and slow disk
response, but 90 percent of the users’ waits might be lock waits. Without breaking down
the waits by wait type and focusing on the largest waits, you risk optimizing the wrong
thing. You might spend a lot of time and money reducing the physical I/O waits by
50 percent, but if physical I/O waits only make up 10 percent of the user waits, then
that can only produce a 5 percent improvement in user wait time!

Viewing Wait Information
There are three DMVs available that allow you to view waits directly. You can use
sys.dm_exec_requests to view information at the session level, sys.dm_os_waiting_tasks
to view information at the task/worker level, and sys.dm_os_wait_stats to see an
aggregation of all the wait types and times since the last SQL Server service restart.

sys.dm_exec_requests This DMV shows all the waiting and blocking information
that you would have queried the sysprocesses system table for in SQL Server 2000.
However, both sysprocesses and sys.dm_exec_requests are based at the session level,
and a better view of performance can be obtained by looking at the task level. System

3 2 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

processes can run tasks without a session, so they wouldn’t be represented here, and
parallel queries are harder to troubleshoot when only a single wait is shown at the
session level. Following is a sample script that shows wait information and the T-SQL
currently running in each session where available:

SELECT er.session_id,

 er.database_id,

 er.command,

 er.blocking_session_id,

 er.wait_type,

 er.wait_time,

 er.wait_resource,

 st.text

FROM sys.dm_exec_requests er

OUTER APPLY sys.dm_exec_sql_text(er.sql_handle) st

sys.dm_os_waiting_tasks sys.dm_os_waiting_tasks lists all tasks that are currently
waiting on something and is the most accurate for viewing current waits. It contains
information to identify a task, an associated session, details of the wait, and blocking
tasks as well. However, a task only has an entry for as long as it’s waiting, so sys.dm_os_
waiting_tasks tends to be used for interactive investigations rather than for monitoring
purposes. Here is a sample script that shows all the information for waiting tasks with
the T-SQL currently running where there is a session_id available:

SELECT wt.*,

 st.text

FROM sys.dm_os_waiting_tasks wt LEFT JOIN sys.dm_exec_requests er

ON wt.waiting_task_address = er.task_address

OUTER APPLY sys.dm_exec_sql_text(er.sql_handle) st

ORDER BY wt.session_id

sys.dm_os_wait_stats This DMV is an aggregation of all wait times from all queries
since SQL Server started and is ideal for monitoring and server-wide tuning. You can
reset the wait statistics by running DBCC sqlperf ('sys.dm_os_wait_stats',clear) from
SQL Server Management Studio. The following sample script provides a way to check
for CPU pressure by comparing signal wait times (CPU wait) with resource wait times:

Select signalWaitTimeMs=sum(signal_wait_time_ms)

 ,'%signal waits' = cast(100.0 * sum(signal_wait_time_ms) /

 sum (wait_time_ms) as numeric(20,2))

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 2 5

 ,resourceWaitTimeMs=sum(wait_time_ms - signal_wait_time_ms)

 ,'%resource waits'= cast(100.0 * sum(wait_time_ms -

 signal_wait_time_ms) / sum (wait_time_ms)

 as numeric(20,2))

from sys.dm_os_wait_stats

If you want to clear the historical data before you run the workload to monitor, don’t
forget you can run DBCC sqlperf ('sys.dm_os_wait_stats',clear) to clear out data that
you’re not interested in and give you a fairly clean measurement.

Common or Noteworthy Wait Types
The following wait types are worthy of mention because of their regularity in a system
or because their meaning should be understood. For descriptions of more of the wait
types, search in SQL Server Books Online for sys.dm_os_wait_stats.

CXPACKET This wait type means that the task is waiting on the synchronization
of a parallel execution and is very often the reason for an “all processors running at
100%” scenario. When you see this wait type, it means you have some big queries
running that you may want to try to optimize.

I/O_COMPLETION, ASYNC_I/O_COMPLETION These wait types
occur when waiting for non–data page I/Os to complete, and you may see them
during a long-running I/O-bound operation such as BACKUP. These wait types
can also indicate a disk bottleneck.

LCK_M_* This wait type indicates a wait to gain a lock on a resource and is
one of the reasons why monitoring waits is so effective for performance tuning; it
doesn’t just highlight resource constraints, but will provide evidence of blocking
locks as well.

LAZYWRITER_SLEEP When the lazywriter process is inactive it is considered
to be in a sleep state. LAZYWRITER_SLEEP is the amount of time that it has
been sitting in this state. It should not be considered in a performance profile.

PAGEIOLATCH_* A PAGEIOLATCH is a measure of the time it takes to
retrieve a data page from disk into memory and is one of the most likely waits
you’ll see on a system with a strained I/O subsystem.

RESOURCE_SEMAPHORE All hash, sort, bulk copy, and index creation
operations require space in what is called workspace memory, which is dynamically
managed between 25 percent and 75 percent of SQL Server’s memory. This wait
represents time spent pending a memory grant in workspace memory and should
be correlated with the Memory Grants Pending Perfmon counter. A consistent

3 2 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

non-zero value indicates memory pressure and the wait time tells you how much
time you are losing.

RESOURCE_SEMAPHORE_QUERY_COMPILE This wait type is set
when SQL Server throttles the number of concurrent compiles in the system
to limit the amount of memory being used by the optimizer in response to too
many compilation requests. If you see this wait type, either reduce the number of
compilations by parameterizing queries so that the query plans can be reused in
cache or review scenarios that would cause frequent recompiles.

SLEEP_BPOOL_FLUSH In SQL Server 2005 and later, checkpoint operations
are throttled to prevent them from overloading the disk subsystem, and waiting for
this operation is represented by this wait type.

SOS_SCHEDULER_YIELD This wait type occurs when a task voluntarily
yields processor time and waits to be scheduled again. This cooperative scheduling
model was explained earlier in this section. High waits here indicate CPU
pressure, in which case further evidence should be obtained by totaling the signal
waits (signal_wait_time_ms column in sys.dm_os_waiting_tasks or sys.dm_os_
wait_stats).

SQLTRACE_BUFFER_FLUSH When the system is waiting for a SQL Trace
buffer to be written to disk, a wait state of SQLTRACE_BUFFER_FLUSH is
recorded. You will see this on most servers in SQL Server 2005 because a rolling
100MB trace runs permanently by default in the background and is used by the
management reports in SQL Server Management Studio. You can normally
discount this wait as an ever present feature.

WAITFOR A WAITFOR wait state is the resulting wait after issuing the
WAITFOR T-SQL command. It is a deliberately instigated wait and shouldn’t be
considered a performance issue unless its use is a mistake.

WRITELOG This also indicates a disk problem, as it’s a wait writing to the
transaction log file.

Wait Types in SQL Server 2008
SQL Server waits are a great way to troubleshoot performance problems, and Microsoft
thinks so too, because it introduced around 250 extra wait types in SQL Server 2008
over what was available in SQL Server 2005.

The most interesting ones were the new PREEMPTIVE wait types. Any code that
needs to execute outside SQL Server has to go outside the control of SQL Server’s
cooperative scheduler (as you’ve already read) and will use the preemptive scheduling
model used by Windows.

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 2 7

Typically these external executions would be very difficult to troubleshoot using
wait types because they would either come under a single wait like OLEDB, for
example, or wouldn’t be tracked at all, like Windows-level functions. The level of
detail provided by the wait types even covers areas such as the latency of SQL Server
communicating with a Windows domain controller through the PREEMPTIVE_OS_
AUTHENTICATIONOPS wait type. In earlier versions of SQL Server, this type of
issue would have been extremely difficult to detect and diagnose.

Another common wait that was difficult to diagnose in SQL Server prior to SQL
Server 2008 was the creation or expansion of data files. In particular, database auto-
growth, which wouldn’t be logged as a wait at all in SQL Server 2005, with SQL Server
2008 we now have the PREEMPTIVE_OS_WRITEFILEGATHER wait type.
Being able to track this wait type can help identify the problems associated with the
database not being appropriately sized.

Viewing I/O Latency by Database File
In the “Windows Performance Monitor” section, you read about the value of measuring
disk latency to assess I/O performance. The counter for this is Avg. Disk sec/Transfer,
which provides a Windows view of storage performance, but you can also drill down
into SQL Server to look at storage performance more accurately.

The sys.dm_io_virtual_file_stats DMV allows you to view the I/O details for all
your database files, and by using the following script, you can view the read and write
latency that SQL Server encountered on the files themselves:

SELECT DB_NAME(database_id) AS 'Database Name',

 file_id,

 io_stall_read_ms / num_of_reads AS 'Avg Read Transfer/ms',

 io_stall_write_ms / num_of_writes AS 'Avg Write Transfer/ms'

FROM sys.dm_io_virtual_file_stats(-1, -1)

WHERE num_of_reads > 0

 AND num_of_writes > 0

Here is sample output from the preceding script run on a SQL Server instance hosting
databases for SQL Server Reporting Services and Microsoft Operations Manager:

Database Name file_id Avg Read Transfer/ms Avg Write Transfer/ms

Master 1 7 2

Master 2 2 1

Tempdb 1 0 2

Tempdb 2 0 1
(Continued)

3 2 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Database Name file_id Avg Read Transfer/ms Avg Write Transfer/ms

Tempdb 3 0 2

Model 1 6 1

Model 2 3 0

Msdb 1 24 1

Msdb 2 5 0

ReportServer$SQL01 1 9 1

ReportServer$SQL01 2 1 0

ReportServer$SQL01TempDB 1 9 0

ReportServer$SQL01TempDB 2 1 0

OperationsManager 1 12 2

OperationsManager 2 6 0

OperationsManagerDW 1 76 137

OperationsManagerDW 2 3 1

Entries with a file_id of 1 show the primary data file for that database, and entries with
a file_id of 2 show the transaction log. The only potential cause for concern in these results
is the performance of the OperationsManagerDW database primary main data file; with
read latency of 76 ms and write latency of 137 ms, it’s well outside our target of 20 ms.

In this situation, the first thing to do is to find out who uses this database and ask
them if they perceive any performance problems; you don’t want to spend time optimizing
something when the users don’t need it to be faster. Also, the fact that the database is a
data warehouse suggests that it will be subject to a large amount of writes during data
loads and a large amount of reads when reports are being run. The high latency in this
case may be normal because of the heavy I/O pattern and not a cause for concern at all.

Finding Missing Indexes
Whenever you execute a query, the optimizer (whose job is to find a good execution
plan for your query) will analyze the best indexes for the query. If the indexes don’t
exist, then the optimizer will have to use a less efficient execution plan. However, in
SQL Server 2005 and later, the information about these “missing” indexes is also stored
and is accessible using DMVs and within SQL Server execution plans.

Missing indexes can be viewed by joining together the following DMVs:

sys.dm_db_missing_index_details

sys.dm_db_missing_index_group_stats

sys.dm_db_missing_index_groups

sys.dm_db_missing_index_columns

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 2 9

Here is a sample query that produces CREATE INDEX statements from the
preceding DMVs and displays the expected performance improvement so that you
can target the missing indexes that will have the biggest positive impact to query
performance:

SELECT

gs.avg_total_user_cost * gs.avg_user_impact *

(gs.user_seeks + gs.user_scans) AS improvement_measure ,

'CREATE INDEX idx_MissingIndex ON '

+ d.statement

+ ' (' + ISNULL (d.equality_columns,'')

+ CASE WHEN d.equality_columns IS NOT NULL

AND d.inequality_columns IS NOT NULL THEN ',' ELSE '' END + ISNULL

(d.inequality_columns, '')

+ ')'

+ ISNULL (' INCLUDE (' + d.included_columns + ')', '')

AS create_index_statement

FROM sys.dm_db_missing_index_groups g

INNER JOIN sys.dm_db_missing_index_group_stats gs ON

gs.group_handle = g.index_group_handle

INNER JOIN sys.dm_db_missing_index_details d ON

g.index_handle = d.index_handle

ORDER BY gs.avg_total_user_cost * gs.avg_user_impact * (gs.user_seeks +

gs.user_scans) DESC

In addition to the missing-index DMVs introduced in SQL Server 2005, SQL
Server 2008 also displays missing-index information within the graphical execution
plan, as shown in Figure 8-11.

Although the missing-index feature in SQL Server is without doubt a very welcome
feature, it should also be used with caution. You shouldn’t blindly apply all missing
indexes but instead should try to justify each index by looking at the query that you
think it will fix.

If you go ahead and create all the missing indexes SQL Server reports, you’ll likely
end up with lots of infrequently used indexes and/or overlapping indexes that create
unnecessary overhead for SQL Server to maintain.

A better approach is to find your top ten worst-performing queries and check the
missing-index DMVs to see if there are any recommendations on the tables used by those
queries. Once you’ve established that, you can check your filtered recommendations for
indexes with overlapping requirements that you may be able to merge together.

Finally, you should check the execution plans to see where the recommended indexes
should help before applying them to the database and testing the results.

3 3 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Information in the DMVs is reset every time SQL Server is restarted, so you should
also make sure that your missing-indexes data includes a representative business cycle to
help you get an accurate view.

SQL Server Profiler and SQL Trace
SQL Server Profiler is a GUI tool built around a technology called SQL Trace, which
provides access to 180 events that you can collect data on to help you peak inside SQL
Server and see what the engine is doing. In this section you’ll read about how to reduce
the impact of tracing and how to analyze the results, but first you’ll learn about the
event hierarchy in order to help frame the rest of the section.

Event Hierarchy: Categories, Classes, and Columns
SQL Trace events are grouped logically into event categories, some examples of which
are Performance, TSQL, and Errors and Warnings. In all, there are 21 different event
categories in SQL Server 2008.

The events themselves are bound to applicable columns to create an event class.
When you set up a SQL Trace, you select the event classes and columns within it that
you want to capture.

Figure 8-11 Missing-index details in an execution plan

Execute showing Estimated
or Actual plan

Hover mouse over missing
index to get details

You can also right-click and select Missing
Index Details to get the create statement

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 3 1

For example, if you want to see how often sort operations spill into tempdb, you
would choose all applicable columns for the Sort Warnings event class in the Errors
and Warnings event category.

Figure 8-12 shows the Trace Properties window in SQL Server Profiler with the
Sort Warnings event class selected with all available columns; note the check boxes to
show all events and all columns.

Knowing what to capture in Profiler is made a bit easier through the use of built-
in templates that you can choose from when you define a new trace. The templates
contain a preselected list of event classes and columns applicable to what you’re trying
to achieve. For example, the TSQL_Locks template contains event classes to capture
information on lock timeouts, deadlocks, and lock escalations as well as the start and
completion events for statements within stored procedures and T-SQL batches so that
you can correlate the lock events to what was being executed.

How to Reduce the Impact of Tracing
The impact that your tracing has on the server that you’re monitoring will vary
depending on exactly what event classes and columns you’re capturing. However, the
biggest difference you can make to reduce the overhead is not to use Profiler.

Figure 8-12 SQL Server Profiler Trace Properties window

Make sure these are ticked
so you can see everything

3 3 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Profiler runs as a process separate from the SQL Server process, and transferring
each event to Profiler takes time and resources, which can lead to severe performance
degradation of any live applications and sometimes missing events as SQL Server tries
to keep up. This is called client-side tracing.

The alternative is to run the SQL Trace stored procedures directly, which keeps the
tracing within the SQL Server process and reduces the overhead required to capture
a trace. This is called server-side tracing.

After reading that you might wonder why we have Profiler at all, if it’s so bad, but
there are still a few scenarios where Profiler comes in very handy:

Running quick traces with very few events Setting up and running a trace
using the tracing stored procedures isn’t a quick operation, so sometimes Profiler
can be useful to quickly get some information, as long as you have plenty of
free resources on the server. Still, be wary of using it on important production
environments.

Analyzing SQL traces After you’ve collected your server-side trace, you can
copy it to your desktop and open it in Profiler. See the next section, “Analyzing
SQL Traces.”

Creating server-side traces, the easy way The major drawback to server-side
tracing is the complexity in setting it up, but you can actually define your trace in
Profiler and then export that definition to a script that you can then run. You can
see the correct export option selected in Profiler in Figure 8-13.

Figure 8-13 Export SQL Server Profiler Trace definition

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 3 3

Running a Server-Side Trace
Figure 8-14 shows an annotated image of an export of the Tuning trace template
definition from Profiler, which is all you need to run a server-side trace. However, there
are a couple of edits you need to make before you start.

First of all, the default max file size is 5MB. This isn’t very much at all, so you’ll
nearly always want to change this to be a reasonable size that you can still copy between
machines easily and maybe load into Profiler for viewing. Either 256MB or 512MB is a
common value here.

Next, you’ll want to set the destination for your trace file. This means specifying
the drive letter, folders, and filename (the .trc extension is automatically added); for
example, C:\test\mytrace.

Leaving the rest as is and executing the script will run a SQL trace until the output
file reaches @maxfilesize and then it will stop. However, defining your data capture
simply by the size of the output file isn’t that useful, as you’ll typically want to wait for
your problem condition to occur or to trace for a fixed duration. This is where enabling
TRACE_FILE_ROLLOVER comes in handy; instead of stopping when the output
file gets to @maxfilesize, SQL Server just starts a new file and keeps going.

Enabling TRACE_FILE_ROLLOVER then creates the problem of exactly how
to stop the trace other than by running out of disk space. When you run a server-side
trace, it doesn’t run in the context of your query window, so stopping it isn’t as simple
as just stopping your query. You need to run sp_trace_setstatus, which is already in the
script and used to start the trace.

When the trace is started by running the script, the trace_id is output to the screen.
You’ll need to know the trace_id to be able to stop it, so make a note of it. If you lose it,
run this code to see the details of all currently running traces to get the trace_id of your
trace:

SELECT *

FROM sys.fn_trace_getinfo(0)

When you have the trace_id, you can use sp_trace_setstatus to stop the trace and
then delete the definition from the server. Here is the syntax:

EXEC sp_trace_setstatus @traceid,@status

Use your trace_id for @traceid, and @status can be 0 to stop the trace, 1 to start it, or
2 to delete the trace definition from the server.

3 3 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 8-14 A server-side trace created from Profiler

Set the size in MB
for each trace file

Set this to 0 to stop
the trace and then 2 to

delete the definition
from the server

Set your trace file
destination here

Change this value to
2 to enable

TRACE_FILE_ROLLOVER

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 3 5

ON THE JOB
Here are a great bunch of tips for running SQL Server traces:

The less you capture, the less impact there will be on the server, so only capture event classes that are necessary.

Avoid very frequent events like Lock:Acquired and Lock:Released. There will be an overwhelming number of

them even on servers with light usage.

Avoid statement-level events like SQL:StmtStarting and SP:StmtCompleted unless you definitely need them.

They are expensive to capture and can be very frequent on busy servers.

Completed events like RPC:Completed have nearly all the same information as the corresponding Starting

events plus all the runtime details, so you can reduce your trace load by capturing just the completed events.

The Show Plan Statistics events provide a great level of information but have a much larger CPU cost than

most other events, so use them with care.

Use column filters to reduce the I/O cost and trace file size at the expense of CPU overhead.

Always trace to a locally attached disk that doesn’t contain any files that SQL Server uses.

If you must use Profiler for data capture, use it locally from the server, not from a remote computer.

Test, test, test. Run your traces in a test environment or during a quiet period before running a quick test

during a peak period so you know what to expect when you plan your data collection.

Analyzing SQL Traces
Deciding what events to collect, how to collect them, and for how long is just the first
challenge. Let’s assume now that you have expertly gathered the information that
contains everything you need. How do you analyze it?

Using SQL Server Profiler for Analysis
Your first port of call for analyzing a trace may well be Profiler, and for good reason.
Profiler makes reading a trace easy and has a number of features that can help with
your analysis.

First of all, filters. It’s unlikely that you’ll have a nice, clean, short trace to scroll through
when looking to troubleshoot a problem, so you’re going to want to filter it several different
ways as you try to narrow down the problem. The column filters work exactly the same way
as when you set them up for a data collection, only this time you’re filtering captured data
on your own machine, so you don’t need to worry about any CPU overhead.

3 3 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

There’s also a nice feature that allows you to load a Performance Monitor log into
Profiler and to step through it inline with the trace data. You can see an example of this
in Figure 8-15.

Figure 8-15 Viewing a Perfmon log with your trace data in SQL Server Profiler

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 3 7

Things to Note when Viewing Traces in Profiler

There are two important things you should be aware of when viewing traces in
SQL Profiler. Use the EventSequence column to check the exact sequence in
which SQL Server executed everything in the trace. Hundreds of events can occur
within the same millisecond, and only the EventSequence column can be relied
upon to show the order in which things happened.

Profiler displays the data in the Duration column in milliseconds even though
the data is captured in microseconds. You need to be aware of this if you use other
tools than Profiler to analyze the data, as the granularity isn’t made clear.

Using Additional Tools
There a several freely available tools that can help you to take your troubleshooting
skills further, including:

Perf Stats Script This script is a wrapper for a tool called SQLDIAG, which in
turn collects Perfmon logs and server-side traces along with other configuration
details. The script itself adds to SQLDIAG’s features by incorporating a custom
data collection that collects information from many more DMVs, including those
related to wait stats. Microsoft Customer Support Services uses a version of this
script to collect data during customer support requests. It takes a lot of hassle out
of creating server-side traces because it’s driven entirely by an XML configuration
file in which you simply enable the events that you want collected.

SQLNexus This tool analyzes the data collected by the perfstats scripts and
produces SQL Server Reporting Services reports on wait stats, blocking chains,
and aggregated trace data, among other things. It uses Microsoft’s ReadTrace tool
to analyze traces, which is part of the freely available RML Utilities download.

Figure 8-16 shows an output report from SQLNexus detailing the top ten queries by
Total CPU, Total Duration, Total Reads, and Total Writes aggregated across an entire
SQL Trace file or files.

3 3 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Database Engine Tuning Advisor
Database Engine Tuning Advisor (DTA) is a very useful tool for finding performance
tuning recommendations based on specific workloads without having to be a SQL
Server expert. You can provide the workload to be analyzed as a SQL Server Profiler
trace or as a SQL Server script, which allows you to either check for recommendations
based on a workload that’s representative of a busy period on the server or to narrow it
down to a few key pieces of T-SQL that you know are expensive to run.

Figure 8-16 SQLNexus Top Unique Batches report

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 3 9

DTA will generate recommendations on the best mix of indexes, indexed views,
and statistics for the workload, whether or not table partitioning would help, and
what effects you can expect to achieve if you apply the recommendations. You can
see an example report from a DTA analysis in Figure 8-17, which shows a query cost
improvement of 99 percent if the highlighted index and multicolumn statistics are
created (the auto-create statistics database option only creates single-column statistics).

The tool achieves this by creating a range of different indexes, statistics, views,
partition functions, and schemes and uses the optimizer to see what effect they would
have on the execution plans required for your workload. From this information, DTA
can report on any recommendations that produce performance improvements as well
as what level of improvement to expect. To save on the overhead of analyzing lots of
real indexes, DTA uses what are called hypothetical indexes, which are actually just SQL
Server statistics. All the other objects, though, are real.

Figure 8-17 SQL Server Database Engine Tuning Advisor report

Multi-column statistics
recommendation

Index recommendation

ON THE JOB
As with many things that remove all the “hard work,” you should use DTA with caution, so here are a few tips to

help you use the tool safely and effectively:

Never use it in a live production environment The process of creating and dropping all the objects

required to test the performance can take time and requires locks that may block users of the system for

quite some time. Stopping DTA when it’s causing a problem is very difficult and will leave many of the

temporary objects in place unless it’s stopped cleanly.

Do not blindly apply recommendations Always try to understand why the recommendations were

made and what they hope to fix. You’ll have a far better experience if you use the tool to clarify your

understanding rather than using it to replace any thought or logic on your part.

Rename any recommendations Applying the recommendations “as is” will create objects with

names prefixed with “_DTA” that aren’t very user friendly. Applying the recommendations with a standard

naming convention helps to show that you’ve looked at what’s being applied rather than blindly applying

recommendations and also helps to differentiate your new indexes and other recommendations from what

existed before and from any hypothetical indexes or other objects that may be hanging around from a

forcefully aborted DTA session.

Remove objects left over from an aborted DTA session DTA will always clean up after itself if left

to run its course, but occasionally you’ll find that people didn’t follow tip #1, ran DTA in production, and then

had to forcefully kill everything DTA was doing. When this happens, you can be left with a few unnecessary

objects. Although the optimizer will ignore them, it’s always better to clean them up.

 All the objects that DTA uses during processing will be prefixed by _DTA, so if you follow rule #3, then you’ll

be able to spot these objects quickly and simply drop them. There is no difference between the statistics, views,

partition functions, and partition schemes that DTA uses during processing and the real objects, so knowing which

objects should be there is very hard if you don’t follow rule #3.

 Indexes are slightly different because DTA’s use of hypothetical indexes makes these easier to pick out.

 Assuming you normally rename any recommendations, you can use this query to find any objects left over from

an aborted DTA session:

SELECT [name] AS 'DTA Leftovers'
FROM sys.objects
WHERE [name] LIKE ('_DTA_%')

You can also find just the hypothetical indexes by querying sys.indexes:

SELECT OBJECT_NAME(object_id) AS 'Prent Object',
 name AS 'Hypothetical Index',
 *
FROM sys.indexes
WHERE is_hypothetical = 1

3 4 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 4 1

The Management Data Warehouse
One of the limitations with dynamic management views is that the data accessible
through them does not persist through restarts of the SQL Server service. While
the data is very useful for systems that have been running for a long time, getting a
consistent view of performance data across multiple servers with different levels of
uptime requires a solution that goes beyond the capabilities of the native DMVs.

The Management Data Warehouse (MDW) is a centralized repository for performance
data from SQL Servers throughout an organization and provides an out-of-the-box
solution for anyone responsible for SQL Server performance and capacity planning.

The MDW is populated by data collectors, three of which are provided out of the
box, and you can configure your own if required. There is also a customizable reporting
solution that is ready to use with minimal effort.

What MDW Doesn’t Do
You cannot configure alerts or acceptable performance thresholds for the collectors or
reports, so the MDW can’t be used as a monitoring solution. It also doesn’t provide a
real-time view of performance data (which you can get from DMVs anyway) as it’s
intended to provide a longer-term view of server performance.

The MDW also doesn’t allow for an overview of all the servers that data is being
collected on, which would be useful for consolidation projects in large SQL Server
estates, but it still provides very useful historical performance data on a server-by-server
basis with very little setup time.

Finally, the MDW can only collect data from instances of SQL Server 2008 and
greater, so it doesn’t provide a complete solution for environments containing previous
versions of SQL Server, although there are third-party products available that can
provide this if required.

MDW Architecture
Logically, the MDW is built around three components:

Data collection sets

Data warehouse

Reports

SQL Server Agent Jobs (covered in Chapter 10) are used to schedule data collection,
SQL Server Integration Services (SSIS, covered in Chapter 11) is used to load data into

3 4 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

the relational data warehouse, and SQL Server Reporting Services (SSRS) drives the
reports.

Data Collection Sets
Data Collection Sets are broken down into two categories: System Data Collections and
Custom Data Collections. System Data Collections are preconfigured as part of the MDW
setup, and Custom Data Collections are the user-defined sets that you configure yourself.

There are three System Data Collections: Disk Usage, Query Statistics, and Server
Activity. Each has one or more collection items that define what is collected.

The Disk Usage collection has two collection items, one for data files and one for
transaction log files. Both of these collection items use the Generic T-SQL collector
type to gather details about the data and log file sizes. By default, they gather the data
every 60 seconds, upload it to the data warehouse every 6 hours, and retain it in the data
warehouse for 730 days.

The Query Statistics collection has a single collection item to gather information on
the most expensive queries. It runs every 10 seconds, uploads to the data warehouse
every 15 minutes, and retains data from the past 14 days.

The Server Activity collection set has two collection items. One gathers data from
the following DMVs:

sys.dm_io_virtual_file_stats

sys.dm_os_latch_stats

sys.dm_os_memory_nodes

sys.dm_os_process_memory

sys.dm_os_schedulers

sys.dm_waiting_tasks

The other item gathers data from Performance Monitor counters like Memory,
Logical Disk, and Processor for the server as well as counters like Buffer Manager\Page
Life Expectancy and SQL Statistics\Batch Requests/sec from SQL Server.

If you want to create your own custom data collections, there are four collection types
to choose from:

T-SQL Query Runs a query and stores the result

SQL Trace Collects data from a SQL trace (see the earlier section “SQL Server
Profiler and SQL Trace”)

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 4 3

Performance Counters Collects data from Performance Monitor counters

Query Activity Captures the query text and execution plan for specific queries

For each Data Collection Set, you’ll find two SQL Server Agent Jobs on each of
the servers to be monitored, one for data collection and one for data upload to the data
warehouse.

Data Warehouse
The data warehouse is the database repository for all the data being captured from your
monitored SQL Server instances. It is a normal SQL Server database that needs to be
managed in the same way as any other database.

The data warehouse is purged by a SQL Server Agent Job called mdw_purge_
data[MDW], which is installed by default and removes expired data from the data
warehouse based on the retention policy set in each collection set. It is scheduled to
run daily at 2 a.m., which can be changed or even run manually on an ad hoc basis,
although this won’t reduce the size of an overinflated data warehouse because only
expired data is removed, and that is controlled by the configuration of the collection set.

Reports
The MDW reports are SQL Server Reporting Services (SSRS) reports that run against
the data collected and stored in the data warehouse. Three reports are provided as standard
to provide reporting for the three system data collectors that are set up by default:

Server Activity History

Disk Usage Summary

Query Statistics History

The Server Activity History report, shown in Figure 8-18, shows resource utilization
charts for CPU, memory, disk I/O throughput, and network I/O throughput. It also
shows the distribution of wait types and duration, to help you identify server bottlenecks,
and general activity details like logins/sec, batches/sec, and compilations/sec. The charts
also provide the ability to click through for more-granular details on what makes up that
measurement. For example, clicking on the Memory Usage chart takes you to another
chart that shows the Working Set and Page Reads/sec.

The Disk Usage Summary report, shown in Figure 8-19, shows data and log file growth
for all the databases on the reported instance. It includes a trend line to help highlight
databases that are growing quickly and the average growth statistics in megabytes per day,
which is useful to help with planning your future storage requirements.

3 4 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 8-18 The Server Activity History report

C h a p t e r 8 : P e r f o r m a n c e Tu n i n g a n d O p t i m i z a t i o n 3 4 5

Finally, the Query Statistics History report, shown in Figure 8-20, shows the top ten
worst-performing queries and allows you to click through to view more details about
the execution statistics for a particular query, including the execution plan.

Figure 8-19 The Disk Usage Summary report

Oracle DBA Q&A
Q: We decided to use the Spotlight and Foglight products from Quest
Software to do our performance monitoring and alerting instead of using the
Oracle toolset. Are there similar third-party tools for SQL Server?

A: There are many third-party monitoring and alerting tools available on the
market. Taking your example of Spotlight and Foglight, SQL Server versions of
these products are available from Quest; therefore, if you want to use the same
approach for monitoring SQL Server as you already do for Oracle, then you can
do so. This also expands into the management tools; if you use Quest’s Toad for
management, you can also use the SQL Server version of Toad.

3 4 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 8-20 The Query Statistics History report

High Availability and
Disaster Recovery

Chapter 9

In This Chapter

Evaluating Business
Continuity Solutions

Cold Standby Solutions

Warm Standby Solutions

Hot Standby Solutions

3 4 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

When we think about high availability and disaster recovery (HA/DR)
technologies in Oracle, we tend to think about the two main ones: Real
Application Clusters (RAC) and Data Guard. RAC provides clustering

capabilities around a single database, and Data Guard provides the ability to create
multiple standby databases. This chapter will help you to understand the available HA/
DR technologies that are included out of the box with the Enterprise and Datacenter
editions of SQL Server to enable business continuity. In this chapter, we cover

How to evaluate business continuity solutions

Cold standby solutions

Warm standby solutions

Hot standby solutions

ON THE JOB
HA/DR capabilities are also included with SQL Server Standard Edition, but just as with Oracle standard edition,

there are some limitations to be aware of, such as the number of nodes that can participate in a cluster, the

available operating modes (for example, synchronous/asynchronous), and the restriction of certain features to

single-threaded operation. Therefore, choose your edition carefully when building a solution that requires some

form of HA/DR.

Evaluating Business Continuity Solutions
Microsoft SQL Server has many features out of the box that can be used in part or in
whole for high availability and disaster recovery. As you are probably aware, there are
many requirements to analyze before you reach the solution that meets your needs. For
example:

Automatic or manual detection of errors

Automatic or manual failover

The amount of data loss you can accept (recovery point objective)

The time it takes to fail over (recovery time objective)

The number of failures you need to be able to survive

Granularity: instance, database, table, page, row

Cost: hardware, network, additional management

Complexity

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 4 9

At a minimum, you need to understand your requirements and the capabilities of
each technology to meet specific recovery point objectives (RPOs) and recovery time
objectives (RTOs):

RPO requirement The amount of acceptable data loss that the solution must
provide. For example, if your RPO is 15 minutes, you must be able to restore all
the data up to 15 minutes prior to a system failure. The RPO is not concerned with
how long it takes to get your data back, only how much of it you can get back.

RTO requirement The maximum amount of time that can elapse between a
system failure and restoration of the service.

Understanding your RPO and RTO requirements is a critical part of business
continuity planning and will help you to choose the most appropriate technology to
meet your needs.

Note that although SQL Server provides many solutions for HA/DR out of the
box, there are many solutions available that enhance or replace SQL Server features
in an HA/DR solution. For example, SAN hardware-level replication technology
that integrates with SQL Server can be used for cross-site disaster recovery, and
virtualization solutions like Windows Server Hyper-V can move workloads between
servers in case of a hardware failure.

Cold Standby Solutions
A cold standby solution in SQL Server is one that requires a restore to bring your data
back online. It is a perfectly valid solution if your RTO requirements are very flexible
and your RPO is reasonable enough to implement with a scheduled backup.

Even if your requirements are greater than those provided by a backup and restore
strategy, you should always incorporate a backup solution into your design regardless of
which high-availability technology you choose. So, restoring to a cold standby forms the
baseline for recoverability in any environment. You can read about SQL Server backups
in Chapter 7.

Warm Standby Solutions
A warm standby solution is one where most if not all of the data required to bring
the service back online to meet your RPO is already restored or available on a server
waiting to be used. Warm standby solutions might not have failure detection and do not
have automatic failover; they require manual intervention to fail over, to redirect users,
or to finalize the recovery process. The technologies available in SQL Server to support

warm standby include log shipping, database mirroring (high-performance mode), and
SQL Server Replication.

Log Shipping
In Chapter 7 you read about SQL Server’s backup and recovery models and learned
about full backups and transaction log backups. Log shipping at a fundamental level is
simply the continual process of copying and restoring transaction log backups taken of
a database to another server until you need to use it. For example, if you want to log
ship from Server A to Server B, you would need to

1. Restore a full backup of the database WITH NORECOVERY from Server A to
Server B

2. Take transaction log backups of the database on Server A and copy them to
Server B

3. Restore each transaction log backup onto Server B WITH NORECOVERY

This is illustrated in Figure 9-1. The restores are made WITH NORECOVERY to
enable subsequent transaction log backups to be restored, and when you need to use the

3 5 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 9-1 Fundamental log shipping design

Database
restoring...

Live database

Transaction log
backup

Server A Server B

Transaction log
restores

Log backups copied to destination

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 5 1

database, you restore the last transaction log backup WITH RECOVERY or simply
execute this code to force the recovery:

RESTORE DATABASE [database name] WITH RECOVERY

This basic model of log shipping has been around almost as long as transaction
log backups, and many companies have written their own procedures to automate the
process.

The RPO for log shipping is controlled by the frequency of your transaction log
backups and the time it takes to copy the backups to the destination server. For example,
if you took transaction log backups every 15 minutes and shipped them to another server,
you might consider that solution to provide no more than 30 minutes of data loss during
a failure. This would allow for a failure just before (or during) a transaction log backup
and the previous transaction log backup having not made it to the destination.

The RTO is influenced by the time it takes to finish restoring any transaction log
backups on the destination that have yet to be applied, recovering the database, and
redirecting your applications to the database on the new server. It is the manual process
of recovery and redirection of application traffic that makes this solution a warm
standby.

Built-in Log Shipping
To make things easier for you, Microsoft has built a set of processes to help automate
the log shipping process, all nicely wrapped up and accessed through a wizard that takes
you through all the required steps to get up and running. This built-in solution also
enables you to set up a third server to act as a monitor for the solution and keep track of
all the details in the process, such as when log backups were taken and restored and also
backup failures.

ON THE JOB
The fundamental concept of log shipping is very straightforward: it is the continual process of copying and

restoring transaction log backups from one source database to either one or multiple destinations. Writing your

own scripts to perform this is not too difficult, and in the early versions of SQL Server, that is exactly what DBAs

did. Now that the built-in wizard is available, you can build it far quicker than writing your own implementation.

Also, using the wizard helps to minimize the risk of the solution because the processes that you’re using are

supported by Microsoft.

Reporting on the Destination Server
When using log shipping, the database on the destination server is inaccessible because
it’s running with NORECOVERY. However, it is possible to access the database for

3 5 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

read-only purposes between transaction log backups by using the recovery option
STANDBY, which was covered in detail in Chapter 7. Using STANDBY places the
database in a read-only state by performing recovery on the transaction log restore, but
instead of discarding the open and incomplete transactions, they are saved to a file and
are later replayed when restoring the next transaction log in sequence to ensure the
transaction log chain is maintained. Using the log shipping wizard, this is very easy to
implement, as illustrated in Figure 9-2.

The database is read-only when running in standby mode, but SQL Server requires
exclusive access to the database to restore a transaction log backup, so you will need to
decide whether to kick out all the users from the read-only database before each restore
or to let the restores fail and then catch up when the users have finished their queries. The
wizard also makes light work of implementing these choices, as shown in Figure 9-2.

Figure 9-2 Log shipping wizard

Select to automatically kick out all
users before each log restore

Used to make destination database
accessible for read-only queries

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 5 3

Other Log Shipping Benefits
As well as all the features and benefits described so far, log shipping can also take
advantage of backup compression (see Chapter 7), which was first introduced as an
Enterprise-only feature in SQL Server 2008 but then became a Standard Edition
feature with SQL Server 2008 R2. Smaller transaction log backups take less time to
create, copy across the network, and restore on the destination server, so the benefits in
a log shipping scenario are obvious.

Finally, it’s very easy for log shipping to support multiple destination servers. Given
the fact that the core architecture is so simple, adding another destination is no more
complicated than copying the backup files to two different places or having two
destination servers read them from the same location. In fact, it’s even easier than that
because the log shipping wizard will deal with it all for you. All you need to do is to
specify all the destination servers that you want to set up.

ON THE JOB
A common pattern for log shipping with multiple destinations is to have multiple destinations that operate with

a different time lag; for example, you may log ship to two destinations, with site A only 15 minutes behind the

main database as the primary DR site. Site B then may have a delay of six hours or greater for the secondary

DR point. This way, if a corruption such as a large amount of data being deleted or incorrectly updated goes

unnoticed before the change makes its way to the primary DR site, you have a greater chance of catching it

before it is applied to the secondary DR, giving you options to switch to another database while you resolve the

problem.

Database Mirroring (High-Performance Mode)
Database mirroring is a feature that was introduced in SQL Server 2005 SP1 and can be
thought of as similar to Oracle Data Guard with Redo Apply. Using a similar approach
to Data Guard, database mirroring operates by streaming and reapplying transaction log
records from the primary (principle) database to the secondary database (mirror).

Just like Data Guard, database mirroring has different modes of operation:

High-performance mode Two SQL Server instances are required, and
data synchronization between the principal and mirror databases is executed
asynchronously to minimize the overhead.

High-safety mode without automatic failover Two SQL Server instances are
required, and replication between the principal and mirror databases is executed
synchronously to guarantee no data loss. This mode is usually just a temporary
state when the ability to automatically fail over is lost due to the loss of a third
server, known as the witness.

3 5 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

High-safety mode with automatic failover Three SQL Server instances are
required, and replication between the principal and mirror databases is executed
synchronously to guarantee no data loss. The third server, the witness, is required
to enable automatic failover. See the section “Hot Standby Solutions” for more
details on this mode of operation.

Database mirroring in high-performance mode is comparable to Data Guard
operating in its maximum performance mode and is considered to be a warm
standby solution because it requires manual intervention to initiate failover and client
redirection. It is only available with the Enterprise and Datacenter editions of SQL
Server. Figure 9-3 helps to illustrate the basic concept.

With SQL Server 2008 and the introduction of compression into many areas of
the product, the log records that are copied across to the mirror are automatically
compressed, which uses less network bandwidth and enables faster processing of log
records.

Reporting on the Mirror Database
Like log shipping, the destination database can also be used for reporting purposes, but this
is achieved slightly differently from log shipping. To be able to read a mirrored database,
you need to take a database snapshot (database snapshots were covered in Chapter 2),
which is a read-only, point-in-time view of the mirror database, and then read from the
snapshot. The advantage to this is that you can take multiple snapshots of the database at
different times and continue to use them without affecting the mirroring process or having
to disconnect all your users. Figure 9-4 shows a topology in which multiple snapshots have
been taken on a mirrored database for reporting purposes.

Figure 9-3 Asynchronous database mirroring basic topology

Mirror
database

Principal
databaseTransaction committed

when written to principal

Compressed
log stream

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 5 5

Figure 9-4 Reporting on a database mirror

Mirror
database

Principal
database

Snapshot 1 at 9 am

Snapshot 2 at 12 pm

Reporting
user

Reporting
user

Reporting
user

Reporting
user

Reporting
user

Compressed
log stream

Snapshot 3 at 6 pm

Oracle DBA Q&A

Q: Is it possible to mirror one database to multiple destinations like in Data
Guard?

A: It is not possible to have multiple mirror destinations, but you can mix
technologies together to achieve a similar approach. For example, you could use
database mirroring to mirror the AdventureWorks database from Server A to
Server B and then use log shipping to create one or more additional copies on
Servers C, D, and E, etc.

3 5 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Automatic Page Repair
A new feature for SQL Server 2008, automatic page repair will try to fix corrupt pages
automatically between a pair of mirrored databases. When a page corruption error is
encountered on the principal database (by a user attempting to read the data), details
of the corrupt page are written to the suspect_pages table in the msdb database. The
principal then requests a copy of the page from the mirror and restores it automatically.

If the page corruption is detected on the mirror, then mirroring will be suspended
until the corrupt page is successfully copied again from the principal, after which
mirroring will automatically resume.

You can use the sys.dm_db_mirroring_auto_page_repair DMV to track pages that
were repaired automatically.

Replication
The last warm standby solution is SQL Server Replication, which is comparable to
Oracle Streams or Data Guard with SQL Apply. Replication is particularly useful
where there is a requirement to duplicate data and handle write requests from multiple
locations. Peer-to-peer replication fits this requirement nicely and allows for multiple
copies of the data to be made and writes to be handled from all copies.

The process of committing a transaction on one server and it being replicated to
another server is asynchronous; therefore, it is not suitable for zero data loss requirements,
and has no automatic failure detection or failover so is considered to be a warm standby
solution.

You can read more about replication and peer-to-peer replication topologies in
Chapter 11.

ON THE JOB
Although replication can form part of an HA/DR solution, it is mainly used for building data distribution

architectures, such as a head office distributing product data to its many stores, or road warriors with laptops

containing subsets of customer data synchronizing back to the main database when they are online. Introducing

replication can in some cases, depending on the setup, require changes to the actual database schema, such as

ensuring tables have primary keys and so forth. Therefore, it requires greater consideration than the other HA/DR

solutions.

Hot Standby Solutions
Hot standby solutions have built-in failure detection and automatic failover with no
manual interaction required. They are used in business and mission-critical systems
where the RTO is very short and the RPO is very small. In Oracle, this is normally

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 5 7

when technologies such as RAC or Data Guard operating in maximum protection and
maximum availability modes would be used.

Failover Clustering
Failover clustering has been around since Windows NT 4.0 and SQL Server 7,
and although the implementation of it has changed significantly over the years, the
underlying concept and technology should be considered mature. Failover clustering
is a service provided by the Windows Server platform, and SQL Server is able to be
installed in such a way that it utilizes the failover capabilities of the platform.

This feature is widely used and aims to provide redundancy at the server level in
the same way that multiple power supplies (for example) provide redundancy at the
component level.

The basic architecture consists of two or more servers (called nodes) connected to
a shared disk array, such as a SAN that contains the data for an application (which in
our case are the database files and logs for SQL Server). If the server that is running
SQL Server experiences an outage, another “node” in the cluster will take control of the
disks, start the SQL Server service, and everything is back up and running again. It is
important to note that failover clustering uses a “shared disk” architecture, but that only
one node is running the SQL Server instance and has control of the associated disk
resources at any one time. Figure 9-5 illustrates this basic design.

A failover cluster typically uses a minimum of two networks, one for internal cluster
communications (commonly known as the private network), and one for external
communications so that users and applications can connect (commonly known as the
public network).

Oracle DBA Q&A

Q: Just to clarify, only one node is controlling the instance at any one time. In
RAC you can have multiple nodes serving the database at once; can you do that
with Windows clustering and SQL Server?

A: You are correct; only one node has control of the instance at any one time.
That is why the feature is known as failover clustering: your running instance “fails
over” to another node. You can have multiple instances running in the cluster but
they all serve their own set of databases, there is no concept of being able to serve
a database from multiple machines at the same time such as in RAC.

3 5 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

With the introduction of Windows Server 2008, building supported failover clusters
is much easier than it used to be. Prior to Windows Server 2008, all the hardware in
your design had to be certified as having been tested for use in a failover cluster, even
down to specific firmware revisions; moreover, the complete cluster solution needed to
be certified, not just the individual components. This list of approved failover cluster
hardware solutions was found on the Microsoft Hardware Compatibility List (HCL),
which caused lots of issues for hardware vendors, Microsoft, and Microsoft customers
because the list was hard to keep up to date. Inevitably, this meant that the majority of
failover cluster installations were running on hardware that was not on the HCL.

The solution to this problem came in the form of self-certification in Windows
Server 2008, whereby the installation of a failover cluster requires successful completion
of the built-in cluster validation tool. This means that you can build a failover cluster
with various different components and firmware levels and self-certify that it all works.
Figure 9-6 shows part of a validation report. This also means that you can expand a

Figure 9-5 Failover cluster basic architecture

Clients

Shared storage for
the database (SAN)

Cluster
Node A

Cluster
Node B

Clustered
SQL Server

instance

The instance is running
on NodeA.

In the event of a failure,
NodeB would take
control of the shared
disk and start the SQL
Server instance.

Private network for
cluster comms

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 5 9

Figure 9-6 Windows Server 2008 cluster validation tool

3 6 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

failover cluster over time as your needs increase. For instance, you might start with a
two-node cluster, with one passive node and one active node. Later you might add a
third server to the cluster, and have two active nodes and a single passive node. This is
often referred to as an N+1 cluster, with N (where N = 1 to 15) active nodes protected
by one passive node.

Failover Detection and Split Brain
One of the most important jobs of a failover cluster is failure detection. As well as
detecting hardware failures that affect the availability of the service like losing access to
the public network, the failover cluster needs to be able to decide which node should be
running the live service in the event of failure.

For example, imagine you have a failover cluster containing two servers named Node A
and Node B. Both nodes are going to be in constant communication with each other to
make sure that they are both up and running. This check is known as a heartbeat.

If Node A fails to respond to several heartbeat requests from Node B, then Node B
will assume that Node A has failed and that it should take control of the resources that
were running on Node A.

That’s a perfect plan until we come across the scenario where Node A isn’t actually
down (and is working perfectly serving user requests across the public network) but
the inter-node communications are down. This scenario where both nodes are working
but can’t communicate with each other is known as a split-brain scenario because
both nodes think that they are the only working node and should be running all the
clustered resources. Fortunately, this problem was solved many years ago with the use of
a shared disk resource called the quorum, and Windows Server 2008 has several quorum
configuration options to make cluster deployments even more flexible:

Node Majority In order to keep running, each node must be able to contact
the majority of the nodes in the cluster. For example, in a five-node cluster where
Nodes A, B, and C cannot contact Nodes D and E, and vice versa, Nodes D and E
will stop even if they can still service users because they cannot see enough nodes
to form a quorum.

Node and Disk Majority This quorum configuration also uses Node Majority
but adds a quorum disk as an additional safeguard. For example, using just Node
Majority in a four-node cluster, the whole cluster will fail if Nodes A and B
cannot contact Nodes C and D because they no longer have a majority. Adding a
quorum disk ensures that an additional “vote” can be used so that if Nodes A and
B can contact each other and one of them can take control of the quorum disk
resource, then they have the majority and can continue running.

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 6 1

Node and File Share Majority Each node plus the file share can participate in
voting, which achieves the same goal as the previous scenario without requiring
a shared disk resource.

No Majority, Disk Only This is the traditional architecture for failover
clustering prior to Windows Server 2008 and only uses a shared disk called the
quorum to avoid split-brain scenarios. However, it is not considered to be robust
enough for many deployment scenarios.

Choosing the best quorum model is usually straightforward, and Windows Server
2008 even gives you advice on which model to choose. You can use Table 9-1 as
a guide.

A multisite cluster is one in which the cluster nodes are located in different
geographical areas. For example, Nodes A, B, and C are in Seattle and Nodes D and
E are in Vancouver. To build a multisite cluster for SQL Server, you need to have
enabled synchronously replicated storage between the two sites. This technology is
largely provided by your specific storage vendor, so their involvement is necessary to
implement this type of failover cluster (which is also sometimes called a geo-cluster or
a stretch cluster). A more common solution is to use failover clustering to provide high
availability within a single data center, and use mirroring, log shipping, or asynchronous
SAN replication to copy the data to a standby data center.

Installation of SQL Server on a Failover Cluster
Chapter 3 covered how to install a stand-alone version of SQL Server. Installing
a clustered instance of SQL Server 2008 is fairly similar and is quite straightforward
once you have a working Windows failover cluster.

NOTE
To run the installation process, you need to use a domain user account with local administrator access to each of

the cluster nodes.

Table 9-1 Cluster Quorum Recommendations

Description of Cluster Quorum Recommendation

Odd number of nodes Node Majority

Even number of nodes Node and Disk Majority

Even number of nodes, multisite cluster Node and File Share Majority

Even number of nodes, no shared storage1 Node and File Share Majority

1 SQL Server requires shared storage, so this scenario won’t occur for SQL Server.

3 6 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

There are two options for installation:

Standard installation This option allows you to install a SQL Server failover
cluster instance on one node. You can then run setup again and select the Add
Node to a SQL Server Failover Cluster function to add additional nodes. These
functions are illustrated in Figure 9-7 for a SQL Server 2008 R2 installation.

Advanced installation This option consists of two steps: cluster preparation and
cluster completion. The preparation step prepares all the nodes to be operational for
the SQL Server failover cluster instance and is run on each node. The completion
step, which is run on the node that owns the disk resources, makes the cluster
operational. These functions are shown in Figure 9-8 for a SQL Server 2008 R2
installation.

Figure 9-7 Integrated cluster installation and “add node” function

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 6 3

The most common installation method is to use the integrated installation option
where you start installing on one node of the cluster using the New SQL Server
Failover Cluster Installation option. Once you have installed the cluster on one node,
you then visit each node in turn, this time using the Add Node to a SQL Server
Failover Cluster option, which joins each node to the SQL Server cluster. To remove
a node from a cluster, use the equivalent removal option on the Maintenance tab of
the SQL Server Installation Center, labeled Remove Node from SQL Server Failover
Cluster.

Both cluster installation options can be installed through the command prompt
rather than the Windows GUI. See SQL Server Books Online for details.

Figure 9-8 Advanced cluster preparation and completion functions

3 6 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

To install a clustered instance, you need the following:

A Windows Server Cluster Validation Report that shows that all tests were
passed. This is a prerequisite check that is run at the start of the SQL Server
cluster installation process.

At least one shared storage volume with a drive letter assigned. SQL Server 2008
supports the use of mount points, but you still need a root drive letter to access
them.

Domain user accounts for the SQL Server service accounts.

An IP address to assign to the clustered instance (although, DHCP can be used).

A network name and instance name that are both unique in the cluster. For
example, in a cluster with two nodes named Node A and Node B and a
requirement to install two instances, these instance names would be valid:

SQL1\VSQL1 and SQL2\VSQL2

Eurocamp\DesOrmes and Keycamp\LesMenhirs

However, these instance names would not be valid:

NodeA\VSQL1

Eurocamp\DesOrmes and Eurocamp\LesMenhirs

Figure 9-9 shows Windows Server 2008 Failover Cluster Manager connected to a
failover cluster running a SQL Server 2008 failover cluster instance.

SQL Server and Windows Server Edition

Requirements for Clusters
The Enterprise and Datacenter editions of Windows Server are the only editions that
support Windows Failover Clustering. Both editions support up to 16 nodes in a single
cluster using Windows Server 2008 R2.

Standard Edition of SQL Server 2008 R2 supports failover clustering up to two
nodes, which is by far the most common deployment size. Enterprise Edition and the
new Datacenter Edition available in SQL Server 2008 R2 both support failover clusters
of up to 16 nodes. Also note that the Enterprise and Datacenter editions also both
support a feature known as fast recovery, which makes the database available during the
undo phase of a crash recovery (cluster failover) or a database mirroring failover.

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 6 5

ON THE JOB
Although two-node SQL Server clusters may have traditionally been the most common size of deployment, with

the recent trend of organizations moving toward consolidated SQL Server environments, it is now more common

to see four nodes or more in a single cluster.

Benefits of Clustering SQL Server
A clustered SQL Server instance will typically take tens of seconds to fail over in a busy
production environment, just a bit longer than restarting the SQL Server service, which
is essentially what happens, only on another server. As well as providing a hot standby
should there be a server failure, manually moving the SQL Server instance between
nodes provides you the opportunity to carry out maintenance on the physical server and
Windows installation with very little disruption to your users.

In addition, patching SQL Server is far more efficient and less risk-prone on a
clustered instance of SQL Server 2008 compared with previous clustered SQL Server
versions and even stand-alone installations of SQL Server 2008. This is because you
apply Service Packs and hotfixes to all the nodes that aren’t running the SQL Server
instance first and then manually move the instance to a patched node that will upgrade
the databases automatically and complete the installation.

Figure 9-9 Clustered SQL Server instance viewed with Failover Cluster Manager

Physical servers in the cluster Instance name

Network name

3 6 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Applying a Service Pack to SQL Server can take between 20 and 40 minutes to
complete, all of which is downtime unless you’re patching a SQL Server 2008 clustered
instance which requires tens of seconds of downtime to complete.

Limitations of a SQL Server Failover Cluster
The biggest weakness of a SQL Server failover cluster is that there is only one copy
of your database. It resides on a shared disk, which is controlled by whatever node is
currently running your instance. You mitigate this risk by using RAID levels on the
storage to protect against physical disk failure, but you can also increase your level of
protection by implementing disk-level replication using software from your storage
vendor or by combining other SQL Server technologies with clustering (such as
database mirroring or log shipping) that do provide another copy of the database.

Database Mirroring (High-Safety Mode
with Automatic Failover)
With the addition of a witness server, you can configure database mirroring to execute
synchronously with automatic failover. The role of the witness is to act as a third vote to
avoid the split-brain scenario described in the “Failover Clustering” section.

In the event that the principal and mirror servers lose contact with each other, they
will try to contact the witness server, whose only purpose is to answer the question
“who can you see?” If the mirror contacts the witness and the witness can still see
the principal, then the mirror knows that it doesn’t need to promote itself to be the
principal. However, if the witness can’t see the principal either, then the mirror has two
votes and will promote itself to be the new principal database.

If the previous principal database subsequently comes back online, it will reestablish
the mirroring session as the new mirror.

If the witness server becomes unavailable, then the ability to automatically fail over is
lost; however, mirroring will still occur synchronously, so there is no data loss.

The overhead of being a witness is so light that it can even be run on SQL Server
Express, the free version of SQL Server, which can help reduce licensing costs. The
principal and mirror servers must be SQL Server Standard Edition or greater.

What Is the Overhead?
Running database mirroring synchronously ensures that a transaction is not considered
to be committed unless it has been applied to both sides of the mirror. This represents
overhead for each transaction in the database, which is primarily affected by the round-
trip time and bandwidth of the network between the two databases. The overhead is

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 6 7

lessened significantly in SQL Server 2008 because the log records are compressed, but
having to commit every transaction to two different servers will always add overhead to
your transaction throughput.

The question to ask when deciding whether or not to use synchronous mirroring is
whether performance or zero data loss with automatic failover is the most important
driver for the application. In a high transaction throughput application where speed
is critical, synchronous mirroring may not be feasible for the application despite the
benefits. However, for many applications, a few extra milliseconds on each transaction
may not matter.

ON THE JOB
In high transaction throughput systems, although synchronous mirroring introduces overhead with regard to

network round-trip times, which ultimately affect client response times, these delays can be reduced by ensuring

fast communication between nodes by using technologies such as 10 Gigabit Ethernet or InfiniBand.

How Do the Clients Know About the New Server After Failover?
Automatic failover of the database is only part of the solution; a technology called
transparent client redirection provides the other part of the solution. When a client
connects to SQL Server, the client library caches the name of the mirror server. If
the client loses connection to the principal and fails to reconnect, transparent client
redirection automatically redirects the connection to the mirror server.

You can also specify the principal and mirror servers in the connection string, which
is the preferred method because new clients coming online after failover won’t have the
mirrored server name cached.

You may be thinking, “How fast is it?” The answer is very fast; conservatively, under
five seconds, and typically under two seconds. For a database to fail over and have all
the clients redirected with zero data loss in just a few seconds is very attractive for many
customers despite the potential performance overhead.

Database Mirroring Walkthrough
Now that you’ve read about how mirroring works, this last section is going to take
you through step by step how to set up database mirroring in high-safety mode with
automatic failover and monitor its status and performance.

To support high-safety mode with automatic failover, you need three instances of
SQL Server: a principal, a mirror, and a witness. You also need the database you want
to mirror to be running on the server that will become the principal, and you need the
database to be in the FULL recovery model to ensure that the log records are kept until
they can be copied to the mirror.

3 6 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The next step is to take a full database backup of the database, followed by a transaction
log backup, and restore them both to the mirror server WITH NORECOVERY so that
more log records can be applied. Once this is done, you’re ready to start the Configure
Database Mirroring Security Wizard.

Figure 9-10 shows a quick way to get to the Mirroring page of the Database Properties
dialog box. You can also see that on server1 there is a database called people, which
will become the principal, and that the database and log file have been restored WITH
NORECOVERY onto server3, which will become the mirror. Note also that the server
connections have been made using their fully qualified domain names (FQDNs) to make
things easier during the later stages of the wizard.

Figure 9-10 Accessing the Configure Database Mirroring Security Wizard

Go to the mirroring
page of the database
properties

Note: the destination mirror database has
been restored WITH NORECOVERY

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 6 9

On the Mirroring page of the Database Properties dialog box, you’ll see a Configure
Security button, which you click to start the Configure Database Mirroring Security
Wizard. In Figure 9-11 you can see the Configure Security button behind the first
decision point in the wizard—whether to configure a witness server. As you’ve already
read, you need a witness for automatic failover, so select Yes and click Next.

On the next wizard screen, shown in Figure 9-12, confirm which servers you want
to configure now. As there is no mirroring without a principal and a mirror, the only
available option here is to check or uncheck the Witness Server Instance box. Check it
and then click Next.

The next screen, shown in Figure 9-13, confirms all the details for the principal
server.

Figure 9-11 Configuring a witness to be able to use automatic failover

Click this button to
start the wizard

3 7 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 9-12 Uncheck the witness if you want to configure it later.

Figure 9-13 Confirming all the details for the principal server

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 7 1

There is nothing to configure here because the wizard is being run on the principal
server and is already connected. Click Next to move to the Mirror Server Instance
configuration screen, shown in Figure 9-14, where all you need to do is connect to the
SQL Server instance and then click Next.

In the next screen, shown in Figure 9-15, you need to do exactly the same for the
witness server.

Now that the servers have been configured, you’re presented with the Service
Accounts screen, shown in Figure 9-16, where you need to specify the service accounts
for each instance if you’re running within a domain environment. This is so that the
right permissions can be assigned on all the servers.

Figure 9-14 Connecting to the mirror server

3 7 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 9-15 Connecting to the witness server

Figure 9-16 Specifying service accounts for domain environments

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 7 3

Once you click Next, the endpoints get created, after which you should see three
green check marks in the Details column, as shown in Figure 9-17.

The database hasn’t started mirroring yet; you’ve just created everything you need to
start. Once you click the Close button, you’ll be presented with the Database Properties
dialog box shown in Figure 9-18.

Figure 9-17 Endpoint creation

Figure 9-18 Start mirroring

3 7 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Once you click Start Mirroring, you’ll finally know if you’ve done everything
correctly. In Figure 9-19 you can see the people database on server1 has been marked as
the Principal with a status of Synchronizing, and the database on server3 is labeled as a
Synchronized Mirror.

You can also see in Figure 9-19 that a few more options now are available on the
Mirroring page of the Database Properties dialog box, including a button to force a
failover, meaning that the principal and mirror will swap roles, and radio buttons to
switch between synchronous and asynchronous operating modes.

Figure 9-19 Mirroring is working correctly.

Use this button to force the
mirror to be the principal

Switch to high-performance mode

Mirroring switches to high-safety
mode if you lose the witness

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 7 5

Database Mirroring Monitor
Monitoring the status and performance of a mirrored database is made easy through
the use of Database Mirroring Monitor, which is accessible through the Tasks menu, as
shown in Figure 9-20.

When run against a working database mirroring setup, your monitor will look
something like Figure 9-21. In this example, everything is working fine: new transactions
are being generated at a rate of 23KB/sec on the principal, which is matched by the send
rate and the restore rate on the mirror. Each committed transaction takes an extra
6 milliseconds to run because of the overhead of writing to the mirror synchronously.

Figure 9-20 Launching Database Mirroring Monitor

3 7 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Finally, Figure 9-22 shows the monitor after the principal database has gone offline.
You can see that server3 is now the principal and you can still see the witness server.
Log records are now being generated on server3 but have nowhere to go until server1
comes back up and establishes itself as the new mirror.

The oldest transaction that hasn’t been sent is 1 minute old and approximately
3.5MB of log records have accrued so far.

Figure 9-21 Database Mirroring Monitor

Log records being restored as fast as
they are being sent so no bottleneck

The overhead of synchronous
mirroring in this setup

C h a p t e r 9 : H i g h A v a i l a b i l i t y a n d D i s a s t e r R e c o v e r y 3 7 7

ON THE JOB
This chapter introduced you to the technologies available in SQL Server for high availability and disaster

recovery. To further your understanding of database mirroring and clustering, two recommended books are

Microsoft SQL Server 2008 High Availability with Clustering & Database Mirroring by Michael Otey and Pro

SQL Server 2008 Failover Clustering by Allan Hirt. Also, as previously mentioned, it is always a good idea to

check out your preferred hardware supplier’s available HA/DR features that integrate with Windows Server and

SQL Server. For example, if your preferred hardware supplier is HP and you use the EVA range of SAN solutions,

HP provides StorageWorks Cluster Extensions. These extensions integrate with the Windows Failover Clustering

feature to enable automatic failover of mirrored storage between sites.

Figure 9-22 Database Mirroring Monitor after principal goes offline

3.5MB of log records
queuing up

Still connected to witness so
auto-failover was possible

New principal

This page intentionally left blank

Scheduling, Automation,
and Alerting

Chapter 10

In This Chapter

SQL Server Agent

Jobs

Alerts

Maintenance Plans

Policy-Based Management

3 8 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Looking after a database server can become very time-consuming without
any form of automation, especially since it is likely you are administering
multiple servers. Creating automated routines for tasks such as backup, index

maintenance, and data import or extract routines takes away the burden of having
to manually execute these activities. In addition, you do not want to sit in front of a
monitor continually watching for errors. An automated alerting system can tell you
when the errors or activities you are interested in happen and, importantly, provide a
mechanism to automatically respond to the activity. Finally, keeping your server and
database setup configured as per your corporate standards can also be challenging when
you have several administrators all looking after the same systems.

On the Oracle platform, you would do job scheduling using either DBMS_
SCHEDULER (introduced in 10g) or DBMS_JOBS (if using earlier releases of
Oracle). If you don’t use these internal features, you would probably use a third-party
enterprise-scheduling tool or schedule your jobs using the operating system scheduler.
For alerting, you would use server-generated alerts and notifications to monitor and
notify administrators of issues.

All editions of SQL Server except Express and Compact contain all the required
elements to create scheduled operations and provide automated alerting.

In this chapter we will cover

SQL Server Agent

Database Mail

Operators

Jobs

Alerts

Maintenance Plans

Policy-Based Management

SQL Server Agent
In Oracle, Oracle Scheduler is responsible for providing scheduling capability: system
tables store the job definitions, and the job coordinator process is responsible for
launching slave job processes to execute the scheduled jobs. Within SQL Server, this
capability is provided by SQL Server Agent, which runs as a Windows service and
is responsible for all scheduled tasks within SQL Server. SQL Server Agent uses the
msdb system database to store information on schedules, jobs, and alerts. Unlike Oracle
Scheduler, SQL Server Agent is responsible for more than just job scheduling; it is
also used to provide alerting and can monitor the SQL Server relational engine to

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 3 8 1

provide restart capability should the SQL Server process fail. Therefore, unlike the job
coordinator process, the SQL Server Agent process is constantly running.

SQL Server Agent is set to manual start by default on a new server installation and
therefore has to be started manually; it is possible to set the service to automatically
start using SQL Server Configuration Manager (covered in Chapter 3).

SQL Server Agent is used by many out-of-the-box features in SQL Server, such as
SQL Server Replication, Maintenance Plans, and the SQL Server Import and Export
Wizard. SQL Server Agent is administered through SQL Server Management Studio
(SSMS). Figure 10-1 shows SQL Server Agent in SSMS.

Before moving on to the creation of jobs and alerts, there are two supporting
elements that provide the ability to send out details of events:

Database Mail

Operators

Database Mail
If you are automating processes and alerts, then using e-mail as a delivery mechanism
for sending status information is probably the preferred method. In Oracle, sending
e-mail notifications is done via the mail server and account configured in the Notification
Methods section of Oracle Enterprise Manager Database Control. It is also possible
to programmatically send e-mail in PL/SQL using the UTL_SMTP package to send
e-mail to an SMTP server.

SQL Server also has the ability to send e-mail messages via SMTP using the Database
Mail feature. Within the wider scope of SQL Server, Database Mail is not just used for

Figure 10-1 The SQL Server Agent node in SSMS

3 8 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

sending alerts; it can also be used for any e-mail–related tasks within the database, such
as being used as part of an application to send an acknowledgement e-mail to a customer
when a new order is placed in the orders table.

Database Mail allows for the creation of multiple mail profiles; these can be either
public or private. Public profiles can be used by anyone who is a member of the
DatabaseMailUsersRole role, whereas a private profile is restricted to an individual user.
In order to be able to send mail using the Database Mail feature, the user account must
be a member of the DatabaseMailUsersRole in the msdb database.

Within a mail profile, you specify a mail account. A mail account contains settings such
as e-mail account name, reply address, SMTP server, and any connection credentials. It
is possible to create multiple mail accounts for a single mail profile. Specifying multiple
accounts provides Database Mail with a failover priority capability. For example, if the
first mail account is unable to send e-mail because the SMTP server is unavailable, then
Database Mail will move to the next mail account in the priority list.

To send e-mail programmatically, you use the sp_send_dbmail system stored
procedure located in the msdb database. Making a call to this stored procedure places
the e-mail in a queue that is then asynchronously serviced by a process that is external
to the SQL Server service. If the external service stops, the mail will continue to queue
within SQL Server until the process comes back online.

Oracle DBA Q&A
Q: In Oracle it is quite well known that sending e-mail via UTL_SMTP can
impact application performance if you are waiting for a call to the UTL_SMTP
package to complete. Therefore, the recommended approach is to submit the
action of sending an e-mail to a job that will then send the e-mail asynchronously.
If sp_send_dbmail places the e-mail in queue, does that mean it doesn’t have the
same performance impact?

A: Correct. When sending e-mail via sp_send_dbmail, the call to the stored
procedure places the e-mail in an internal queue that is asynchronously serviced,
so there is no need to wait for the stored procedure to connect to an SMTP
server and all the other actions that can slow down the operation. Another great
difference is that if you make a call to sp_send_dbmail within a transaction and
that transaction is rolled back, the e-mail never gets sent because it is queued in
an internal table that is subject to the same transaction. In UTL_SMTP, if you
perform the send action and then later roll back the transaction, you cannot undo
the sending of the message.

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 3 8 3

Similar to the Notification Methods settings in Database Control, when automated
features such as jobs and alerts need to send e-mail in SQL Server, the Database Mail
profile specified in the settings within SQL Server Agent is used. Figure 10-2 shows
the Alert System page of the SQL Server Agent Properties dialog box (accessed by
right-clicking SQL Server Agent in SSMS and selecting Properties). E-mail capability
has been enabled, and the mail profile SQL Agent Profile has been selected.

Operators
The notification of administrators of events such as jobs completing successfully, jobs
failing, or alerts being raised is provided through the use of operators. Operators are
quite simply aliases for individuals or groups who you want to be notified when an
event has taken place.

Figure 10-2 SQL Server Agent Properties dialog box, Alert System page

3 8 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Later in the chapter, when we explore setting up jobs and alerts, you will see where
operators are used. For now, let’s take a look at where they are located and how to
create them. Figure 10-3 shows the list of operators on the local server, with a mix of
individuals and group aliases such as First Line Support and DBA Team.

There are three system stored procedures for operator maintenance:

sp_add_operator Creates new operators

sp_update_operator Updates existing operators

sp_delete_operator Deletes existing operators

To create an operator graphically, right-click the Operators node in SSMS (shown
in Figure 10-3), select New Operator, and complete the relevant fields. Clicking OK
creates a call to the sp_add_operator stored procedure.

When you create a new operator, you will notice that there are three notification
types that are currently available:

Email

Pager

net send

It is important to note that the Pager and net send options are both due to be
removed in a future version of SQL Server and therefore should not be used for any
new implementations.

Figure 10-3 Listing of available operators

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 3 8 5

ON THE JOB
The Pager and net send options are a bit of a relic from the past. In days gone by, when pagers were the main

method of text-based communication, adding this functionality into SQL Server made sense; these days, with

mobile telephones that can receive e-mail and e-mail servers that can convert e-mail to SMS, these options are

no longer required. For those of you familiar with the Windows platform, you know that net send is a way to

send a message to another Windows workstation. Performing a net send command pops up a dialog box on the

desktop of the target computer. The increase of security in network environments has resulted in most firewalls

blocking the ports used by net send.

Figure 10-4 shows the creation of a new operator and the disabling of an existing
one using T-SQL. The new operator 'Wendy Anderson' has been added using the
sp_add_operator stored procedure. The existing operator 'James Fox' has been disabled
using the sp_update_operator stored procedure. Disabling an operator prevents them
from receiving notifications but does not remove them from the system.

Figure 10-4 Creating a new operator and updating an existing one

3 8 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Jobs
A job in SQL Server is defined as a set of steps, with each step defining a task. There
are many task types, including running an operating system script, a T-SQL code block,
or an SSIS package. A job can run on demand, on a schedule, or in response to an alert
(alerts are covered later in this chapter).

Oracle DBA Q&A
Q: To be clear, in Oracle a job normally just performs one task such as
running a block of PL/SQL or calling out to the OS. If you want multiple jobs
to run in succession with dependencies between them, you create a job chain.
Are you saying that in SQL Server, to create the equivalent of a job chain, you
would create a single job with multiple steps?

A: Yes, that’s correct. You would create a single job with multiple steps. Also, in the
same way as in a job chain in Oracle, you can set some logic to the execution path.
For example, “if step 1 succeeds, move straight to step 3; otherwise go to step 2.”

SQL Server jobs are used extensively by many features within SQL Server for
scheduling, including: the Import and Export Wizard; Maintenance Plans; Policy-Based
Management; SQL Server Integration Services; Transaction Log Shipping; SQL Server
data replication features; and the Change Data Capture functionality. SQL Server creates
jobs to schedule the various activities, which can then be modified by a DBA to add
additional logging information and set up notification and alerts on the job.

The jobs engine within SQL Server is quite rich and has many advanced features
that we will not cover in this book, such as the Master-Target architecture, in which
a single server (Master) can be responsible for holding the job definitions and other
servers (Targets) will receive job definitions to run from the Master and return
execution results. All these features are covered in the SQL Server Books Online
documentation. To get started, let’s walk through the creation of a simple job that will
back up the AdventureWorks database. In this job, we execute the T-SQL backup
command to create a full database backup and we schedule the job to run at 1:00 a.m.
every night.

We start the job creation by right-clicking the jobs node located under SQL Server
Agent in SSMS and selecting New Job. Figure 10-5 shows the New Job dialog box.
We start by giving the job a name and a description. The name is mandatory but the
description is not. For now we will leave the job category as Uncategorized; we will
cover categories later in this chapter.

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 3 8 7

ON THE JOB
It is always a good idea to make the name of a job descriptive and to provide additional detail in the Description

field. I have lost count of the number of times that I have sat in front of a SQL Server looking through the jobs

only to find names such as “Batch Upload” with no other detail either in the name or description. This can leave

you thinking, “Batch upload of what, from where, to where?” Whenever I create a job, I always complete the

Figure 10-5 New Job dialog box, General page

3 8 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Description field to save having to open the steps of the job to work out what the system is doing. Also, I like to

use the Description field to keep brief history notes on changes made; for example:

Name: Customer Address Details Update for AdventureWorks

Description: Nightly upload of latest customer address details from CRM system to the AdventureWorks Database

Mark Anderson - 15th October 2009

Updated source server name to point to new CRM system (CRM-SVR01)

John Plummer - 27th July 2009

Added ‘AlternativeEmail’ field to the import definition.

Now that we have provided a name and description, we select the Steps page on the
left side of the New Job dialog box, which presents us with the list of steps. To create a
new step, click New at the bottom of the window. Figure 10-6 shows the New Job Step
dialog box.

Figure 10-6 New Job Step dialog box

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 3 8 9

In the New Job Step dialog box, on the General page, we define what task we want
to perform. We start by giving the step a name, in this case Backup Database. Next,
we select the step type, T-SQL. In the Command section, we type the command that
we want this step to run. In this scenario, it is the backup command to perform a full
database backup of AdventureWorks. Clicking OK creates the job step and returns
us to the jobs page (see Figure 10-7). From this window, we could also add additional
steps, change the order in which the steps run, or change what happens when a step
successfully completes or fails.

Figure 10-7 Job Steps page

3 9 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Now that we have created the step to back up the database, all we have left to do is
create a schedule that the job will run to. Selecting the Schedules page on the left side
of the New Job dialog box takes us to the scheduling options (see Figure 10-8). At this
point, we are able to create a new schedule or to pick from a shared schedule. Shared
schedules are covered later in this section. For now, we will create a custom schedule for
this Job.

Clicking the New button takes us to the Job Schedule Properties dialog box, shown
in Figure 10-9, where we set the schedule type and the frequency. In this case we want
a recurring schedule that operates daily at 1:00 a.m.

Figure 10-8 Schedules page

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 3 9 1

Click OK to create the schedule and return to the Schedules page. If required, it is
possible to create more than one schedule for a job. For example, you may want the
job to run at 1:00 a.m. every weekday and run in the middle of the day on weekends.
To achieve this, you can create a Monday through Friday schedule and a Saturday and
Sunday schedule.

Click OK again in the New Job dialog box to create the job.

Figure 10-9 Job Schedule Properties dialog box

3 9 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Oracle DBA Q&A
Q: Does SQL Server have the concept of event-based jobs?

A: It is possible to start jobs based on events or, in the case of SQL Server, based
on SQL Server alerts. When an alert is triggered, it is possible to respond to the
alert by executing a job. Alerts in SQL Server can be defined as a performance
condition, a Windows Management Instrumentation (WMI) event, or [defined as]
a response to an error code being raised. Since it is possible to create your own
error codes and to raise them in code, you can create an alert that watches for the
error or event and then responds by launching a job. Alternatively, you can start a
job from T-SQL using the sp_start_job system stored procedure, which you can
call from a stored procedure, DML trigger, DDL trigger, or event notification.

Job Execution Context
When a job is executed by SQL Server Agent, each step within the job needs to
run under a security context. T-SQL job steps, like the one used in the previous job
example, execute in the context of the job owner by default. If you want to make a
job step run as a user who is not the job owner, you can set the 'Run as user' property
on the advanced properties page of the job step. If you are creating the job step using
T-SQL script, then provide the sp_add_jobstep stored procedure with the user account
through the @database_user_name parameter.

When a job step is of any type other than a T-SQL command, such as an operating
system call, then a Run As account on the job step needs to be set. By default, the
only account available for Run As is the SQL Server Agent service account. If you are
following best practice guidelines for service accounts, the SQL Server Agent service
account should be running with a least privilege account and, as such, should not have
permissions to perform many actions. For example, if you are executing a call to the
operating system to create a directory, then the account making the call needs the
relevant permissions to create directories on the target file system; when running least
privilege, it is unlikely that your SQL Server Agent account will have these permissions.

ON THE JOB
It is very tempting to set the SQL Server Agent service account to be a member of a highly privileged group such

as the Windows Administrators group, to make life easy, and on SQL Server systems prior to SQL Server 2005, this

is exactly what many lazy DBAs used to do. This was not a good security practice and left open potential attack

vectors for escalation of privileges. In SQL Server 2005, the concepts of proxy accounts and stored credentials were

introduced to ease the administrative burden. That’s not to say that the lazy DBAs magically started to use them!

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 3 9 3

To provide SQL Server Agent with the ability to change security context for job
steps to an account other than the SQL Server Agent account, proxy accounts are used.
Proxy accounts provide SQL Server Agent with the ability to change security context
using stored credentials (refer to SQL Server Books Online for information on stored
credentials).

Figure 10-10 shows the Proxies node of SQL Server Agent expanded in SSMS.
Below the Proxies node are the available proxy types such as Operating System and
SSIS Package Execution.

Let’s take the example of a job that will import data to SQL Server using data files
located on a remote staging server. The job will contain multiple steps. The first step in
the job needs to be to connect to the remote staging server where the data files ready
for import are stored, and then to copy the files to the local machine. The second step
performs the data import. We are just going to concentrate on the first step, which will
be of the type Operating System and will perform a copy command. The step will need

Figure 10-10 Available proxies

3 9 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

to run under the security context of an account that can connect to the remote server
and read the files and then create a copy of the file locally. The step could simply run as
the SQL Server Agent account, but in our setup we have followed best practice and the
account does not have the relevant permissions to perform the operation. Therefore, we
need to set up a proxy account.

Figure 10-11 shows the New Proxy Account dialog box (launched by right-clicking
Proxies and selecting New Proxy). In the example, the proxy account is called
StagingServerFileCopy and maps to a set of stored credentials called StagingServerAccount.
The stored credentials are for a Windows account that has the relevant file system

Figure 10-11 Creating a proxy account for operating system calls

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 3 9 5

permission to read data from the external server and copy files to the local server. The
account has been marked as available for use with the operating system subsystem.

Now within the job step, the StagingServerFileCopy proxy can be used as the
account under which the job step should run. Figure 10-12 shows the job step with the
Run As account set to the new proxy account.

Figure 10-12 Job step with Run As set to the new proxy account

3 9 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Job Categories
SQL Server creates job categories automatically when you set up features such as
replication to group all the replication jobs together for ease of management. It is
possible to create your own categories and then assign jobs to the categories. For
example, you could create a category of Batch Extracts and place all extract jobs into
the category. To manage job categories, right-click the jobs node in SSMS and select
Manage Categories. Figure 10-13 shows the Manage Job Categories interface. It is
also possible to manage the categories via script using the following system stored
procedures:

sp_add_category

sp_update_category

sp_delete_category

Figure 10-13 Manage Job Categories dialog box

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 3 9 7

Shared Schedules
As you have noticed so far, each job can have its own custom schedule assigned.
Although custom schedules offer the ultimate flexibility, there are scenarios where
you would want several jobs to run to the same schedule. If that schedule needs to
change—for example, you might need to move your backup window—you would only
want to modify one schedule, not the schedule for each individual job. Shared schedules
give you this ability. A shared schedule is a schedule that can be defined once and then
reused by several jobs. Figure 10-14 shows the Manage Schedules dialog box. From
here, you can create new and edit/view existing schedules as well as view how many jobs
depend on a particular schedule. To access these schedules, right-click the Jobs node in
SSMS and select Manage Schedules.

Figure 10-14 Managing Shared Schedules

3 9 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Schedules can also be managed and created by using the following system stored
procedures:

sp_add_schedule

sp_update_schedule

sp_delete_schedule

Oracle DBA Q&A
Q: In Oracle there is the concept of a “maintenance window” schedule where
a job can be set to run at any point during a predetermined window of time.
Oracle decides when the job should start based on available system resources.
Does SQL Server have the same concept?

A: No, SQL Server doesn’t have the concept of “maintenance window” schedules.
A job must be set to run at a preconfigured time. Although not identical, it is worth
mentioning there is a concept in SQL Server of being able to run a job when the
CPU is considered to be idle. The CPU is considered to be idle based on thresholds
that you set. Figure 10-15 shows the Advanced page of the SQL Server Agent
Properties dialog box, at the bottom of which the CPU idle condition has been set
for when the average CPU utilization drops below 10 percent and remains there for
at least 600 seconds (10 minutes).

Job Monitoring and Execution History
To view the current status of jobs and the execution history, two tools are available: Job
Activity Monitor and the Job History logs in Log File Viewer.

Job Activity Monitor can be found under the SQL Server Agent node in SSMS, as
shown in Figure 10-16. Job Activity Monitor shows the current status of each job, such
as whether it is idle or running, when it was last run, whether the run was successful,
and when it is due to run again, in addition to some other details.

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 3 9 9

Job Activity Monitor is launched by double-clicking the Job Activity Monitor node
in SSMS. Figure 10-17 shows Job Activity Monitor.

To view complete history details for jobs, you can right-click the jobs node in SSMS
and select View History to get all jobs listed, or right-click an individual job and select
View History to get just its history. Figure 10-18 shows the viewer with all jobs listed.

Figure 10-15 Defining the CPU idle condition

4 0 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 10-16 Job Activity Monitor in SSMS

Figure 10-17 Job Activity Monitor

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 0 1

Alerts
At an enterprise level, there are many tools that provide network monitoring and
alerting for servers and services. Tools such as Microsoft System Center Operations
Manager (SCOM), IBM Tivoli, and HP OpenView can be used at an enterprise
level to provide the overall view of enterprise operations. Some of the tools, such as
Microsoft SCOM, have management packs that can be installed on the SQL Server
machine to take alert data that’s specific to the SQL Server instance. Although these
enterprise tools exist, it is still very common for DBA teams to set up their own level
of alerting and to define their own metrics, thresholds, and notification channels at the
database server level.

To monitor Oracle, DBAs tend to use server-generated alerts to monitor database
operations and notification rules to wrap the alerts with some form of notification
for administrators and to perform any corrective action. Even if you have never set

Figure 10-18 Job History

4 0 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

up any of your own alerts, there are some default alerts already operating, such as the
percentage of space used for tablespaces (85 percent warning, 97 percent critical).
In SQL Server, the alerts capability is provided by SQL Server Agent. An alert can
be defined as a SQL Server event such as an error code being raised, a SQL Server
performance condition, or a WMI event. An alert has the ability to notify operators of
the event taking place and can also run a SQL Server Agent job in response to perform
any corrective action.

Figure 10-19 shows where the alerts are located in the Object Explorer view within
SSMS.

Let’s walk through the steps to create an alert using SSMS. The alert we are going
to create will notify the DBA Team when available free space in the tempdb system
database (SQL Server’s temporary tablespace) drops below 10MB.

We start by right-clicking the Alerts node in SSMS and selecting New Alert. This
presents us with the New Alert dialog box, as shown in Figure 10-20.

We give the alert a name, in this case “tempdb - Running low on space,” and select
the “SQL Server performance condition alert” type from the Type drop-down list.
Selecting this type changes the details that need to be provided. We select the object
SQLServer:Transactions and the Free Space in tempdb (KB) counter. Then we set our
alert thresholds; in this case we want to be alerted if the counter “falls below” 10240, the
value in kilobytes for 10MB (see Figure 10-21).

Figure 10-19 Alerts are located under SQL Server Agent.

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 0 3

Full details of all performance objects and counters can be found in SQL Server
Books Online. Figure 10-22 shows the details for SQLServer:Transactions in Books
Online.

Clicking on the Response page on the left side of the New Alert dialog box presents us
with a series of options to determine what to do when the alert has been raised, as shown
in Figure 10-23. We have two available options: enable the alert to take corrective action
by executing a job, and notify one or more operators. In this example, we have chosen to

Figure 10-20 New Alert dialog box

4 0 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

notify the DBA Team operator via e-mail that this alert has been raised. On this occasion
we have decided not to automate the response with any corrective action.

Finally, we select the Options page (see Figure 10-24) and choose to include in the
response e-mail the error text from the alert and some text of our own. The last option
on this page is to select the duration of the delay between responses. Depending on the
type of event you are monitoring, the event may occur multiple times in a short period.
Setting the delay between responses ensures that even if the event occurs multiple
times, it will only produce a response to the alert once until the delay period has lapsed.
We set our delay to 60 minutes.

Figure 10-21 New Alert dialog box with completed details

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 0 5

Now that we have completed all the required information for the alert, we click OK.
SQL Server then creates the alert and starts to monitor for the alert condition.

In the previous example, clicking OK on the New Alert dialog box creates and executes
calls to system stored procedures found in msdb. Three system stored procedures are used
for creating, updating, and deleting alerts:

sp_add_alert

sp_update_alert

sp_delete_alert

Figure 10-22 Books Online details for SQLServer:Transactions

4 0 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The notifications are managed separately from an alert and are managed using

sp_add_notification

sp_update_notification

sp_delete_notification

Figure 10-25 shows examples of how to work with alerts using T-SQL script and the
system stored procedures. Notice that the initial call to sp_add_alert creates the alert

Figure 10-23 Response options for the new alert

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 0 7

definition but does not add the notification. The notification is created with a call to
sp_add_notification.

The script also shows how to update the alert using sp_update_alert. In this example,
setting the enabled flag to 0 disables the alert, preventing it from responding, but
without removing the alert definition from the system. Finally, the script shows a call to
sp_delete_alert, which removes the alert from the system. sp_delete_alert also removes

Figure 10-24 Options page

4 0 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

any notifications associated with the alert for you so you do not have to make your own
calls to sp_delete_notification.

To view how many times an alert has been raised and when it was last raised and
responded to, right-click the alert within SSMS and select Properties. On the alert
properties screen, select the History page. Figure 10-26 shows the history of the
'tempdb - Running low on space' alert.

Up to this point we have looked at creating alerts based on predefined conditions.
It is also possible to create and raise your own errors and to then create alerts that can
respond to those events. For example, you may decide to create your own error message

Figure 10-25 Create, update, and delete alerts using system stored procedures

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 0 9

within your application. When the application raises the error, an alert can respond to
the error by running a predefined script configured as a SQL Server Agent job.

NOTE
When a feature such as SQL Server Replication (covered in Chapter 11), which is used to replicate subsets of data,

is used, it will create its own set of custom alerts in a disabled state. As a DBA, you would then enable the alerts

of interest and associate operators with them to receive notifications.

Figure 10-26 Alert history

4 1 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Maintenance Plans
Checking database integrity, performing backups, and reorganizing or rebuilding
indexes are just some of the types of maintenance activity that a DBA needs to perform.
All of these operations generally tend to be scripted by the DBA and set to run as
scheduled tasks.

To remove the burden of having to create scripts and to simplify and automate the
process of database maintenance, SQL Server provides a graphical way to describe
maintenance routines, through the use of Maintenance Plans. A Maintenance Plan is
a graphical representation of a series of maintenance tasks that can be organized to run
in a workflow style. Maintenance plans can be created either manually or through the
use of the Maintenance Plan Wizard, which automates the creation by asking a series
of questions and then producing the Maintenance Plan, which you can subsequently
manually edit and apply additional tasks to.

The Maintenance Plans feature uses the SQL Server Integration Services package
format and execution engine (SSIS is covered in more detail in Chapter 11). Creating
a Maintenance Plan produces an SSIS package that is stored in the msdb database.
Scheduling a Maintenance Plan produces a SQL Server Agent job that in turn creates
a job step that executes the SSIS package. To create Maintenance Plans, you must be a
member of the sysadmin fixed server role.

The Maintenance Plans node can be found under the Management node in SSMS,
as shown in Figure 10-27.

Figure 10-27 Maintenance Plans located under the Management node

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 1 1

Figure 10-28 Maintenance Plan designer surface

As previously mentioned, there are two ways to create a Maintenance Plan: manually,
or by using the Maintenance Plan Wizard.

Let’s walk through creating a plan manually. The first step is to right-click the
Maintenance Plans node and select New Maintenance Plan. You will be prompted for a
name for the new plan; in this case we will call the plan AdventureWorks Maintenance.
Click OK. We are then presented with the Maintenance Plan designer surface, as
shown in Figure 10-28.

Before moving on to the creation of the plan, it’s worth noting that a plan incorporates
the concept of subplans. Each subplan is a collection of tasks that can have its own
schedule or be executed on demand separately from other subplans. By default, a plan
has one subplan.

4 1 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

In our example, we are going to use two subplans for our AdventureWorks
Maintenance plan. The first subplan will run Monday through to Saturday and
performs a full database backup. Our second subplan will run on Sunday night and
perform additional database maintenance, including running database integrity checks,
reorganizing indexes, and updating statistics.

We start by renaming the existing default Subplan_1 by double-clicking the subplan
in the designer. Figure 10-29 shows Subplan_1 being renamed to Daily Backup. Clicking
the calendar icon in the dialog box enables us to select the schedule to which the subplan
will run; in this case, we set it to Monday through Saturday to run at 1:00 a.m., as shown
in Figure 10-30.

Figure 10-29 Renaming the subplan

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 1 3

Now that we have set the name of the subplan and given it a schedule, we can add
the tasks that we want it to perform. The plan is composed by clicking and dragging
Maintenance Plan tasks from the Toolbox onto the designer surface; once on the
surface, the properties of the task are then set.

Figure 10-31 shows a close-up of the Toolbox that contains the tasks that the
Maintenance Plan can perform. The tasks are self-explanatory, such as Back Up
Database Task and Rebuild Index Task.

After each task is placed on the designer surface, it needs to have its properties set.
Some properties have defaults but others require you to input additional information.
For example, if you place a Back Up Database Task on the designer surface, you need

Figure 10-30 Clicking the Calendar icon enables you to set the subplan schedule.

4 1 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

to set which database or databases you want it to back up; all other settings, such as
backup type, location, and compression settings, all have defaults, although in most
scenarios you will probably set all properties to suit your environment.

In our example, we will drag the Back Up Database Task and the Notify Operator
Task onto the designer surface. We right-click the Back Up Database Task and select
Edit, which presents us with the properties we need to set for the database backup.
Figure 10-32 shows the property page. In this case we chose the AdventureWorks
Database, set the backup location, and set the backup compression setting.

Next, we set the properties for the Notify Operator Task. This task will be used to
notify an operator if the backup task fails. We set the operator to notify and set the
message as shown in Figure 10-33.

Now that we have the tasks on the designer surface, we need to join them together
to define the order of execution and the flow of the tasks. The joins between tasks are
known as precedence constraints, and there are three types:

Success constraint Ensures that its path is followed upon the successful
completion of the previous task

Failure constraint Is followed when the previous task failed to execute successfully

Completion constraint Is followed no matter what the outcome of the
previous task

Figure 10-31 Maintenance Plan Tasks Toolbox

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 1 5

It is also possible to create logical AND and OR constraints for a task. For example,
using an AND constraint, a task will only execute if two parallel tasks prior to the next
task both complete.

For our plan, we want the Notify Operator Task to execute only when the Back Up
Database Task fails. When a task is selected on the designer surface, an arrow icon
appears at the bottom of the task, which allows it to be linked to another task. Therefore,
we drag the arrow icon from the bottom of the Back Up Database Task and join it to

Figure 10-32 Back Up Database Task properties

4 1 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

the Notify Operator Task. By default, this will create a Success constraint; that is, the
Notify Operator Task will execute when the backup succeeds. To change it to a Failure
constraint, right-click the constraint and select Failure, as shown in Figure 10-34.

Our Daily Backup subplan is now complete. We next create the Sunday night
subplan, which will perform a series of checks and maintenance. We start by clicking
the Add Subplan button in the designer. We then give the subplan the name Weekly
Maintenance and set the schedule to run on Sunday nights at 21:00. Next we add the
following tasks to the new designer surface: Check Database Integrity Task, Reorganize
Index Task, Update Statistics Task, Back Up Database Task, and finally Maintenance
Cleanup Task. Next, we join the tasks together to flow in the order in which they were

Figure 10-33 Setting the Operators to notify

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 1 7

added followed by setting the properties of each task. In the case of the Reorganize
Index Task and the Update Statistics Task, we simply let the tasks work with all indexes
and statistics. The Maintenance Cleanup Task is set to remove backup sets older than
two weeks.

The resulting subplan is shown in Figure 10-35.
At runtime, the T-SQL required for each task is dynamically generated before

execution. This ensures that the “catch all” tasks for example on the Update Statistics

Figure 10-34 Joining the tasks together with a Failure constraint

4 1 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Task which update all statistics picks up if more statistics have been added since the
creation of the plan. To see what T-SQL would be generated if the plan were run
now, simply double-click the task (or right-click and select Edit) and then click View
T-SQL. Figure 10-36 shows the T-SQL that would be generated for the Update
Statistics Task.

Figure 10-35 Weekly Maintenance subplan

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 1 9

Our Maintenance Plan for the AdventureWorks database is now complete. Saving
the plan creates the associated SQL Agent jobs to run the Maintenance Plan.
Figure 10-37 shows SQL Server Agent with the two subplans for the AdventureWorks
Maintenance plan.

It should be noted that a Maintenance Plan does not have to be scheduled, although
creating a plan always creates a SQL Server Agent job (a nonscheduled plan is a job but

Figure 10-36 Generated T-SQL for Update Statistics Task

4 2 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 10-37 Associated jobs created for the Maintenance Plan schedule

with no schedule). After a plan is created, it can then be run on demand either by right-
clicking the plan in the Maintenance Plans section of SSMS and selecting Execute
or by starting the job in SQL Server Agent. If a plan has multiple subplans, then to
manually start the subplan, you must use the SQL Server Agent job.

To view the execution history for a Maintenance Plan you can right-click the
Maintenance Plan and select View History. Figure 10-38 shows the history for the
AdventureWorks Maintenance plan.

The history shown in the Maintenance Plans log of Log File Viewer comes from
the log files generated by the Maintenance Plan. By default, a text file will be generated
each time the Maintenance Plan is executed and the file will be located in the default

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 2 1

log directory location for SQL Server alongside the SQL Server error logs (see
Chapter 3 for default installation locations). It is possible to change the logging level
and location for each plan by selecting the Reporting and Logging icon within the
Maintenance Plan designer. Figure 10-39 shows the Reporting and Logging dialog
box with the options to switch off report generation, create a new file per execution,

Figure 10-38 Maintenance Plan history

4 2 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

or append each execution detail to a single file. The option to change the location
of the report file is also available. Other options include logging additional detailed
information, sending log details to a remote server, and e-mailing an operator with
the report details. Depending on the options chosen for reporting and the logging
level for each package, daily, weekly, and monthly executions can result in a large
number of report files being generated. To clean up the old and unwanted reports, the
Maintenance Plan task Maintenance Cleanup Task can be used to remove old report
files. Figure 10-40 shows an example of the setting for the Maintenance Cleanup Task
removing report files older than four weeks.

Figure 10-39 Reporting and Logging details

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 2 3

ON THE JOB
As every good DBA knows, backing up the system databases is essential. Although, there are still many instances

of where the DBA has done a good job of creating backup routines, either by using simple T-SQL scripts or by

using Maintenance Plans, for their user databases but has neglected to back up their system databases. With

Maintenance Plans, you can create a plan that will back up all system databases in less than two minutes!

 Figure 10-41 shows a Maintenance Plan that will back up all system databases (master, model, and msdb)

every night at midnight. On successful execution of the Back Up Database Task, the plan cleans up any backup

sets older than two weeks; on failure of the Back Up Database Task, the Notify Operator Task will e-mail the DBA

team so that they can come and fix the problem.

Figure 10-40 Maintenance Cleanup Task removing Maintenance Plan reports

4 2 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Policy-Based Management
As a DBA you will have either your own standards or a corporate set of standards
specifying how your database environment should be configured and managed. For
example, there will be rules concerning the placement of log and data files, enabling and
disabling database options, and creating objects in certain schemas. Just as Maintenance
Plans help with the move away from having to create maintenance routines using
scripts, Policy-Based Management allows for the creation of policies that describe your
SQL Server environment and the way in which you want it to be, and stay, configured
without having to resort to creating scripts to do initial server setup and then retrospective
checking of the configuration to make sure nobody has changed your settings.

Figure 10-41 System database backup

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 2 5

Policies are stored in the msdb database, and in order to administer policies, you
must be a member of the PolicyAdministratorRole role. Policy Management can be
found in SSMS under the Management node, as shown in Figure 10-42.

There are five elements to be aware of for Policy-Based Management:

Facets Define a group of logically related properties for a particular
management area of SQL Server. For example, the Database facet exposes
properties related to the database such as the settings for AutoClose, AutoShrink,
and AutoUpdateStatistics.

Conditions Used to describe the desired state of a single facet. For example,
you could create a condition known as 'Standard Database Options' that would
describe the desired state of various properties of the Database Options facet such
as AutoClose = False, AutoShrink=False, AutoUpdateStatisticsEnabled = True.

Policies Take the Condition and specify the target to which the condition
should apply. In addition, it also dictates how the policy should be evaluated such
as on demand or to a schedule. Polices can also contain information to surface to
a user when a policy is violated such as any help text or URLs.

Targets Specify the entities to which the policies apply. For example, you may
want a policy to only apply to objects in a certain schema within a particular
database.

Figure 10-42 Policy-Based Management in SSMS

4 2 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Categories Allow for the grouping together of policies. For example, you may
create a category called Highly Confidential that contains your policies for database
encryption, auditing, and user access. For a database on your server that is classed as
containing highly confidential information, you can simply add the database to the
Highly Confidential category and all the relevant policies will be applied.

To demonstrate how all these elements work together, let’s walk through an example
of creating a policy that ensures our corporate database backup standards are being
followed. In this scenario, our standards dictate that as a minimum for every database
in our environment, the database backup files must reside on a different logical volume
from the data files and that the last backup of the database must be less than one day old.

To create this policy we need to start by creating a condition to evaluate the
properties of a facet that exposes the data and backup file locations and the last recorded
backup properties for a database. In SSMS, we right-click the Conditions node under
Policy Management and select New Condition. In the Create New Condition dialog
box, as shown in Figure 10-43, we add the name Database Backup Standards and

Figure 10-43 Creating a new set of conditions for backup standards

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 2 7

select the Database Maintenance facet. The Database Maintenance facet exposes two
properties that we are interested in: @DataAndBackupOnSeparateLogicalVolumes,
which returns a value of 'true' if the data and backup files are on separate logical volumes
and 'false' if they are not, and the @LastBackupDate, which exposes the date of the last
database backup.

To check the properties we are interested in, we start by selecting the
@DataAndBackupOnSeparateLogicalVolumes property in the Field drop-down
menu and setting the evaluation operator to = with a value of True. Next we select
the @LastBackupDate field, choose the >= operator, and this time set the value to
an expression—in this case, DateAdd('day', -1, GetDate()) to return the date of the
previous day based on the current date. Therefore, if the date is greater than or equal
to yesterday at this time, then the condition will return 'true'. Our condition is now
complete, so we create it by clicking OK.

Now that we have the condition created, the next step is to create a policy based on the
condition. In SSMS we right-click the Policies node and select New Policy. Figure 10-44
shows the Create New Policy dialog box, in which we give the policy the name Database
Backup Standards Policy. Next we select the check condition we just created from the
Check Condition drop-down menu. The Assigned Targets section allows us to create a
condition that will determine which objects should be subject to this check condition; in
this case, the default of Every Database is selected. We next select the evaluation mode
(we will cover evaluation modes shortly). This type of operation has only two types of
evaluation mode available, On Demand and On Schedule. We want our policy to be
evaluated automatically every day, so we select the On Schedule evaluation mode and
then create a new schedule by clicking the New button. The schedule creation screen
is the standard one used for creating schedules for jobs. It is also possible to select an
existing shared schedule by clicking the Pick button.

Next we move to the Description page of the Create New Policy dialog box, as
shown in Figure 10-45. The Description page allows us to put text detail in the policy
that will be visible at runtime. Although the detail page is not mandatory, it will assist
anyone who encounters the policy by helping them to understand why the policy exists
and how and why they may be violating it. We want to provide assistance to anyone
who encounters the policy, so we start by providing a description of what the policy is
for, and then we complete the additional help text with details of why they have been
flagged as being in violation of the policy. Finally, we add a link to an intranet site
that contains details about the policy. The last step is to set the policy category. Since
this is our first policy, we click the New button. When prompted, we enter the name
Corporate Database Standards. This category can now be used to group together any
other policies we create relating to standards.

4 2 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Finally, we click OK and the policy is created along with a SQL Server Agent Job
that evaluates the policy according to the schedule we defined. Figure 10-46 shows the
new policy and condition created within SSMS.

Policy Evaluation
In the previous example, the policy was created using the On Schedule evaluation
mode. The evaluation modes available are dependent on the type of facet being used.
Policies have four different evaluation modes:

Figure 10-44 Create New Policy dialog box

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 2 9

On Schedule

On Demand

On Change: Log Only

On Change: Prevent

All facets support policies using the On Schedule and On Demand evaluation
modes. On Schedule uses SQL Server Agent to create a job that will evaluate the policy
on a scheduled basis. On Demand policies are effectively manual policies and are only
evaluated when a user explicitly selects a policy for evaluation. If the facet being used

Figure 10-45 Create New Policy dialog box, Description page

4 3 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

is exposing properties that when changed are captured by system event tracking or are
encapsulated within DDL triggers, then the On Change: Log Only and On Change:
Prevent evaluation modes are made available. On Change: Log only watches for policy
violations as they happen and will record the violation in the SQL Server error log and
the Windows application log. On Change: Prevent uses DDL triggers to intercept the
action to roll back the changes.

Figure 10-47 shows an example of an On Change: Prevent policy in action. The
policy prevents a user from creating stored procedures with the prefix sp_ in the name.
In the example, the attempt to create a new procedure not conforming to the rules
is intercepted by the policy engine, the user is given feedback on why their operation
failed—with a description of the policy and a link to an intranet site for further detail—
and the user is then notified that their attempt to create the object has failed and the
transaction has been rolled back.

ON THE JOB
As you may have noticed, all SQL Server system stored procedures start with sp_; therefore, it is strongly

recommended that you do not start the names of your own objects with sp_, for two reasons. First, the potential

exists for naming one of your own procedures with the same name as a system procedure, which may produce

undesirable results. Second, it may be confusing to anyone who is new to administering the system who may

think your user created stored procedure is a system stored procedure.

Figure 10-46 Database Backup Standards Policy and Condition in SSMS

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 3 1

Figure 10-47 On Change: Prevent policy preventing a policy for being violated

Oracle DBA Q&A
Q: So I guess I could use Policy-Based Management to help implement a
SQL Server version of the OFA (Optimal Flexible Architecture) guidelines,
which could be proactively enforced?

A: Yes, you can use Policy-Based Management to describe how your server
should be configured and set up, and then the Policy-Based Management engine
will be able to alert you to any setup that does not comply with your SQL Server
version of the OFA guidelines.

4 3 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Even if a policy is set to be scheduled, it can also be evaluated on an ad hoc basis.
It can be run by right-clicking the policy in SSMS and selecting Evaluate, which will
then run the policy, covering its entire scope as defined in the Targets section of the
policy; or you can evaluate a policy against an individual database by right-clicking the
database and selecting Policies | Evaluate, as shown in Figure 10-48.

Selecting Evaluate presents the user with a dialog box that has all the possible
policies that can be run against the database. As an example, Figure 10-49 shows the
dialog box that’s presented when evaluating policies against the AdventureWorks
database. Each policy has a check box next to it, enabling you to select the policies you
are interested in running. Once you have selected policies, clicking the Evaluate button
will then check the policy against the database.

Once completed, the dialog box will present the results of the evaluation; a red circle
with a white × indicates the policy failed, and a green circle with a white check indicates
success. Figure 10-50 shows that the policy evaluation failed. In the Target Details
section, the Details column contains a hyperlink that, when clicked, will show the
detailed results of the evaluation and will highlight which elements failed and which
passed. Figure 10-51 shows the detailed view of the policy evaluation.

Figure 10-48 Selecting an ad-hoc Policy evaluation for the AdventureWorks database

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 3 3

Figure 10-49 AdventureWorks available policies

Figure 10-50 Failed Policy evaluation

4 3 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

In Figure 10-51, the detailed results show that the policy checked two properties
and that one of them did not comply with the policy. Below the results, the policy
description and the additional help text and hyperlink that were set in the policy
definition are displayed to provide guidance on why the policy failed. Clicking the
Close button and returning to the Evaluate Policies window, the option to apply the
policy to the noncompliant target is available. Selecting the check box next to the
noncompliant target and clicking Apply as per Figure 10-52 will produce a dialog box
warning that the policy will then modify all properties that do not comply with the
policy to the desired configuration, in this example by setting the AutoClose property
to False.

Exporting and Importing Policies
Once policies have been created, it is possible to copy them to other servers in the
enterprise by using the export and import options within SSMS. To export a policy, you
simply right-click the policy in SSMS and select Export. Exporting the policy will take
all the details about the condition and the facet used to create the policy and will create

Figure 10-51 Policy results, detailed view

C h a p t e r 1 0 : S c h e d u l i n g , A u t o m a t i o n , a n d A l e r t i n g 4 3 5

an XML file describing the policy. To Import a policy, right-click the Policies node in
SSMS, select Import, and point SSMS to the XML policy definition.

ON THE JOB
Microsoft ships a tool free of charge called the SQL Server Best Practices Analyzer which is available from the

Microsoft download site (www.microsoft.com/downloads). You can load this tool on your desktop and connect it

to your SQL Server, it then determines if the configuration of your SQL Server is set according to the recommended

best practices. The tool produces a report and indicates potential problems in the installed instance of SQL Server.

The tool also provides solutions to the problems that it finds.

 The best practices are also shipped as a set of policies that you can import into the SQL Server Policy engine.

This approach now allows you to pick and choose which of the best practices you want to implement or monitor

automatically. You can also make your own tweaks and modifications, which is a great way to get started with

Policy-Based Management.

 The policies are installed onto the local server and can be found at %Program Files%\Microsoft SQL

Server\100\Tools\Policies\DatabaseEngine\1033.

Figure 10-52 Applying changes to the noncompliant target

This page intentionally left blank

Data Movement

Chapter 11

In This Chapter

Importing and Exporting
Data

Moving or Copying an
Entire Database

Querying Across Servers
and Data Sources

Data Replication

4 3 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

“Data movement” can mean many different things, ranging from the simple import
or export of a single table through to the setup and administration of complex
data-replication architectures to support the publishing of datasets. Regardless of
the specific type, some form of data movement tends to be part of the DBA’s daily
activity. Even if your organization has a data team that is responsible for data quality
and movement, it is still highly likely you will be moving or copying databases for
development and test environments or using data export techniques to create logical
data backups. The aim of this chapter is to introduce you to the various methods
available within the Microsoft SQL Server platform for moving data.

In this chapter we will cover the basics:

Importing and exporting data

Moving and copying databases

Querying across databases and servers

Data replication

Importing and Exporting Data
Let’s start with the basics of importing and exporting data to or from a SQL Server
database. Several tools and methods are available for performing these tasks:

BCP (Bulk Copy Program)

BULK INSERT statement (Import Only)

SQL Server Integration Services (SSIS)

SQL Server Import and Export Wizard

SQL Server Management Studio (SSMS)

In addition to habit and familiarity, factors that might drive you toward a particular
method of import or export include the complexity requirements of the load or extract,
the environment you want to work in (command line or GUI), the performance
requirements, and even the repeatability of the operation (is this an ad hoc request or
will it be a regular activity?). For example, if you simply need to extract a few hundred
rows of data, you might use SSMS to write a quick query and then copy and paste the
results into a document. If your requirement is to import several million rows of data
every few hours, you would use SSIS, BCP, or BULK INSERT.

C h a p t e r 1 1 : D a t a M o v e m e n t 4 3 9

Bulk Copy Program
In Oracle, the simplest method available for bulk importing data into an Oracle
database is to use SQL*Loader. SQL*Loader is a command-line tool that takes a flat
file containing data and a format file describing the data—along with a few additional
options, such as the security type and method of import—and then imports the data
into the database.

For import operations in SQL Server, BCP is analogous to SQL*Loader in Oracle.
BCP has been in SQL Server since before Microsoft and Sybase parted ways; in fact,
Sybase still has its own implementation of BCP in its product today. Although tools
such as SSIS (covered shortly) are reported to be the new favorite for data movement,
BCP is a fairly simple command-line-driven tool. Due to its simplicity and ease of use,
it is still widely used by the DBA community today. BCP uses the bulk-copy APIs of
SQL Server Native Client (SNAC) to transfer data to SQL Server and uses ODBC to
read data from SQL Server.

One area where BCP differs from SQL*Loader is that it also has the ability to
export data as well as import. The export can be a straightforward extract of an entire
SQL Server table or it can be the result of a query.

Before moving into the details of the syntax for BCP, let’s start with a quick example
of BCP in operation. The example in Figure 11-1 shows two BCP commands: the
first exports all data from the Employee table in the AdventureWorks database on
the default SQL Server instance to a file called hr-emp.dat, and the second command

Figure 11-1 BCP import and export

imports the file containing the employee data into the Employee table in the HR
database on the DEV instance of SQL Server. Both tables are identical in their schema.

Breaking down the commands, the first command starts by calling BCP followed
by the object of interest. Using its fully qualified name (database.schema.object), in
this case the adventureworks.humanresources.employee table, the 'out' clause indicates
an export operation and hr-emp.dat is the name of the file to export to. The -n switch
indicates to BCP to use the native BCP file format, -T instructs BCP to connect to
SQL Server using a trusted connection (Windows authentication), and finally -S
indicates the server to connect to, in this case localhost, which is the default instance.

The second command performing the import calls BCP. As with the first command,
this is followed by calling the object of interest, in this example hr.humanresources.
employee. 'in' indicates an import operation, with -n indicating the file is in native
format. As before, the -T instructs BCP to use a trusted connection. This command
also has the -S switch followed by the server name, localhost\dev, which indicates that
the server to connect to is the DEV instance on the local machine.

Moving into the detail of the syntax for BCP, a quick and easy way to see the syntax and
available switches is to go to a command prompt and type bcp, as shown in Figure 11-2.

Table 11-1 breaks down the bcp {dbtable | query} {in | out | queryout | format}
datafile command into its various components, including an explanation of each part.

After the datafile parameter, you only need to specify the connection and credential
details to start BCP. The connection parameter can use defaults but the credentials are
mandatory: you must specify either a trusted connection or the username and password
of a SQL Login. Table 11-2 covers the switches you should be aware of.

4 4 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Component Description

dbtable database.schema.object, where both database and schema are optional (if omitted, they will

default to the logins default database and the database users default schema, respectively) and

object can be either a table or a view.

query A T-SQL statement used to extract your data. This could be a SELECT statement or a call to a stored

procedure. If you use this parameter, you must also specify the parameter queryout. Note: your

query text must be in double quotes.

in Specifies that this is an import process.

out Specifies that this is an export process.

queryout Must be specified when using the T-SQL query option for an export process.

format Creates a format file based on the switch setting of either -N, -c, -w, or -n.

datafile Specifies the name of the file to import or the name of the file that will be created during an

export. This can be the full path name up to 255 characters. The datafile can contain a maximum of

2,147,483,647 rows.

Table 11-1 BCP Command Components

C h a p t e r 1 1 : D a t a M o v e m e n t 4 4 1

There are two ways to run BCP for import and export. The first is interactively, and
the second is with a format file.

If you run an import or export operation and do not use either the -c, -w, -n, or -N
switch (covered shortly), the process will start interactively, prompting you to specify
details such as the storage type, prefix length, and field terminator for the file you are
importing from or exporting to. Using a format file eliminates the need to enter all
the column and field details, as the prompts are answered in the format file. If you run
in the interactive mode and answer all the prompts, at the end of the process you are
prompted to save the format file for future use to avoid having to re-enter the details.
You can also create a format file without performing an import or export by using the
format parameter, covered in Table 11-1.

The remaining switches all provide control over elements such as the format file
to use, batch sizes, starting points, and hints. Table 11-3 provides a brief description

Figure 11-2 BCP available switches

Table 11-2 BCP Connection and Security Parameters

Parameter Description

-S ServerName Sets the server and instance for BCP to connect to. If this is omitted, BCP will connect to the

default instance on the machine you are executing BCP from. Otherwise, -S is used in the format

ServerName\Instance.

-T Uses a trusted connection to SQL Server, which means that BCP will attempt to connect to SQL

Server in the security context of the user that executes BCP. Trusted connections are considered

best practice from a security perspective.

-U UserID When not using a trusted connection, -U sets the SQL Server login username to connect to the

database with, it is used in conjunction with -P for providing the password.

-P Password Used to specify the password to connect to the database.

4 4 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Table 11-3 BCP Parameters

Parameter Description

-e err_file The full path to an error file in which BCP can place rows that it cannot import into the database.

-m max_errors The number of errors BCP can sustain before it cancels the operation. Errors include data conversion

and constraint violations. The default is 10.

-f format_file When using a format file for an in or out (import or export) operation -f allows you to specify the

location of the format file to use. When -f is used with the format for creating a format file the

option is used to specify the location that the format file will be created in.

-x When used with the -f switch and format option, it creates the format file using the XML format.

-F first_row The first row in the file to import from or the first row in the table to start the export from. The

default is the first row.

-L last_row The last row to import from the data file or export from a table. The default is the last row.

-b batch_size A batch is committed as a single transaction. Specifying a batch size creates a transaction around

each batch of rows. If a batch fails, only the failing batch is rolled back. Omitting this parameter will

insert the entire import as a single batch. Do not use this at the same time as the -h ROWS_PER_

BATCH option.

-V (70 |80 | 90) Allows data types from earlier versions of SQL Server to be used for the bulk copy operation

(70 = SQL 7, 80 = SQL 2000, 90 = SQL 2005).

-a packet_size Overrides the server setting for the number of bytes per network packet sent to and from the server.

-k Preserves null values.

-R Specifies that all currency, date, and time data should adopt the locale of the client machine.

-C codepage Specifies the codepage of the data in the data file. The default is to use the client codepage.

-E Uses the identity values specified in the import file for the identity column (similar in concept to an

Oracle sequence) in place of the server-generated values.

-h loadhints Specifies hints that can be used in the load process, including ORDER, ROWS_PER_BATCH,

KILOBYTES_PER_BATCH, TABLOCK, CHECK_CONSTRAINTS, and FIRE_TRIGGERS.

-q Sets the use of quoted identifiers; use this option when a database, schema, or table name contains

a space or single quotation mark.

-r rowterminator Sets the row terminator; by default, a newline character (\n) is used.

-f fieldterminator Sets the field terminator; by default, a tab character (\t) is used.

-c Specifies character mode for transferring data in ASCII format.

-w Specifies wide mode for transferring data in Unicode format.

-n Specifies native data mode for SQL to SQL transfer.

-N Specifies native data mode for SQL to SQL transfer but with character data converted to Unicode

format.

C h a p t e r 1 1 : D a t a M o v e m e n t 4 4 3

of these. An in-depth explanation of all parameters can be found in the SQL Server
Books Online documentation.

As indicated at the end of Table 11-3, there are three main operating modes for BCP:

Character mode (-c)

Wide mode (-w)

Native mode (-n and -N)

Character mode and wide mode represent data in ASCII and Unicode, respectively.
These modes would typically be used when importing data from or moving data to
another platform such as Oracle or if the end user wants to export data into a tool such
as Microsoft Excel for processing.

If you are transferring data between Oracle systems, then you would normally use Data
Pump, as it has its own native file format, negates the need to perform conversions, and
is often the better choice for performance. SQL Server has the equivalent in the native
mode file format. As well as providing performance benefits, if you are using native mode
and the destination table is the same structure (number of columns, names, data types
etc.) as the source table, then you need not specify a format file as part of the import.
Using this method increases performance because there is no need for conversion of data
types and character formats. If the two structures are different, native mode can still be
used with a format file to provide the column mapping. The -n switch should be used

Oracle DBA Q&A

Q: In SQL*Loader, do you have the option of using DirectPath, which
bypasses the database cache and appends the data above the high-water mark in
the data file? Also, where is that option in BCP?

A: Like SQL*Loader, BCP has a fast mode and a slow mode. The fast mode is
the default where CHECK_CONSTRAINTS and FIRE_TRIGGERS are set
to off and TABLOCK is on, meaning that the load process will bypass any check
constraints on the table and will not fire any triggers, and the TABLOCK hint
will take out a table lock to ensure it has exclusive access to the table. Switching
off TABLOCK and turning on CHECK_CONSTRAINTS and FIRE_
TRIGGERS forces BCP to behave like a normal client, similar to SQL*Loader
conventional path load, which is useful for loading data while other workloads are
concurrently accessing the table. No matter what data load type you use, you do
not have the option to bypass the data cache.

4 4 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

for transferring data between non-Unicode systems, whereas -N is used for double-byte
character systems; in the -N mode, BCP keeps non-character data fields as the native
database types and converts the character data fields to Unicode character format.

There are certain security requirements at the server and database level for executing
BCP. For export operations, the SELECT permission is required on the referenced
tables and views; the EXECUTE permission is required on a stored procedure if a stored
procedure is being used via the queryout option. For import operations, the minimal
permissions are SELECT and INSERT on the destination table or view. The ALTER
TABLE permission is required if the default behavior for CHECK_CONSTRAINTS
and FIRE_TRIGGERS is used. In addition if the -E switch is used to enable inserting
into identity columns then ALTER TABLE is also needed. ALTER TABLE is required
in this situation because BCP needs to make schema modifications to prevent things like
constraints being checked. Permissions to read or write the import or export files on the
relevant file systems are also required.

Now that we have looked at the switches and syntax in detail, let’s take a look at
another example of how BCP can be used to export a subset of data from a table
using a query. The example in Figure 11-3 shows BCP using a SELECT query with
a WHERE clause to extract a subset of data and then outputting the data into an
ASCII file format using a comma for the field delimiter and a newline character for
the row terminator. Connection to the server is omitted, indicating the default instance
on the server it is executing, and -T is used to access the SQL Server using Windows
authentication.

Oracle DBA Q&A

Q: I like to supplement my RMAN backups with logical backups of certain
tables. I normally use Data Pump to create these backup files. Would you
suggest using BCP for the same purpose of logical backups?

A: Absolutely, you can use BCP to create logical backups of your data. Just note
that if you decide to use BCP as a logical backup mechanism for your data, it is
important to create a format file because a BCP extract contains no information
about the schema or format from where it was exported. Therefore, if a table is
dropped and you want to use BCP to restore the data, you may not be able to do
so without the destination schema and format of the export.

C h a p t e r 1 1 : D a t a M o v e m e n t 4 4 5

Finally, because BCP is a command-line tool, it can be used as part of a Windows
batch process or as part of another scripted operation such as a Windows PowerShell
script. Figure 11-4 shows an example BCP batch script to extract all the tables in the
HumanResources schema within AdventureWorks using the native extract format and
a trusted connection.

Figure 11-3 Using a SELECT query to extract data

Figure 11-4 Windows batch file making calls to BCP

4 4 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

BULK INSERT Statement (T-SQL)
If you want to import data from a file as part of a T-SQL script or batch process or to
wrap the import within a user-defined transaction, then the BULK INSERT statement
is a good way to do this.

BULK INSERT is similar to BCP with regard to the switch options of the
command, but a major difference exists in the way it interacts with SQL Server: BULK
INSERT is a T-SQL statement that executes inside the SQL Server engine. Source
data files are opened directly by the SQL Server process and the data is converted into
an OLE DB row set, which is then inserted into the table by the query processor. There
is no client process interaction as there is with BCP. BCP is no different from a client
application connecting to SQL Server.

From a security perspective, there are some additional considerations over those
found with BCP. First, in order to execute the BULK INSERT statement, the user’s
login must have the ADMINISTER BULK OPERATIONS server-level permission.
If the login isn’t a sysadmin, you can add the login to the bulkadmin fixed server role or
grant permission directly. The second consideration involves how the account executing
the BULK INSERT statement reads the source and format files. If you are connecting
to SQL Server using a SQL Server login and you execute a BULK INSERT statement,
it will try to open the source file using the security credentials of the SQL Server
service account, whereas if the login account uses Windows authentication, the
credentials of the user executing the statement will be used to open the file. This could
present a challenge if you are using SQL Server logins and your SQL Server service
account is running as “least privilege” (at least you should be following that principle if
you are adhering to best practice security guidelines!), as you would have to grant the
service account access to the location where the files are located.

If the file you wish to import is located on a remote server, BULK INSERT will
allow you to open files from remote machines, but you must specify the file path
using its full UNC (Universal Naming Convention) path. From a security perspective,
the same rules apply. A Windows authentication account will have its credentials
impersonated to the remote machine in order to access the file, and a SQL Server
Login will use the SQL Server service account user.

The syntax for BULK INSERT contains arguments that are almost identical to the
BCP switches; for example, KEEPNULLS is the same as -k, and BATCHSIZE is the
same as -b batch_size.

A full list of all the switches and options can be found in the SQL Server Books
Online documentation by using the Index and typing in BULK INSERT, as shown in
Figure 11-5.

C h a p t e r 1 1 : D a t a M o v e m e n t 4 4 7

Figure 11-5 SQL Server Books Online BULK INSERT syntax reference

Oracle DBA Q&A

Q: So if BCP and BULK INSERT are very similar, which one should I use to
import my data?

A: The general best-practice advice is that if you are importing from flat files
located on the SQL Server, then BULK INSERT is the better choice, and if
you are importing from remote files, use BCP or SSIS, although it is advised to
benchmark each method.

4 4 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 11-6 shows the importing of the Employee data we extracted in the BCP
example. The Employee table was extracted from the HR live database in a native
format, and Figure 11-6 shows importing that data into the development system using
the BULK INSERT statement. Because the destination table is identical to the source
table and we exported in native format, we don’t need to specify a format file.

Figure 11-6 Using BULK INSERT in SSMS

C h a p t e r 1 1 : D a t a M o v e m e n t 4 4 9

SQL Server Integration Services
SSIS is the Microsoft extract, transform, and load (ETL) offering in the SQL Server
product stack. If you are looking for a comparison to the Oracle product set, it is
analogous to Warehouse Builder, although SSIS in SQL Server can be used for much
more than just moving data.

Developing SSIS packages for data movement may or may not be something that
you do as a DBA, depending on how involved you get in data movement operations.
Some organizations have data teams that deal with all the data movement and general
master data management, and they would probably be the ones creating the SSIS
packages. Your job as a DBA would be to host, schedule, and monitor the packages.
Because of this and (mainly) because SSIS is such a large product, it deserves an entire
book of its own (and there are many SSIS books out there). The purpose of this section
is to give you a high-level overview of the concepts and the tools used to build and edit
packages.

Even if you do not build packages from scratch, you will encounter the SSIS format
when using maintenance plans, the Import and Export Wizard, and the Copy Database
Wizard. Having this basic knowledge will allow you to make further modifications to
and customize these system-generated packages.

Oracle DBA Q&A

Q: Oracle external tables allow me to look inside and query a file without
actually importing it into the database; this is really useful when I want to browse
the contents of the file using SELECT statements, and it allows me to pick out
data of interest to import it, such as to restore pieces of data from a logical backup
following accidental deletion. How can I do that in SQL Server?

A: In SQL Server, there is a method of opening a file and browsing the contents
without having to import it into the database. OPENROWSET allows you to
return data from an OLE DB data source in an ad hoc fashion. Using this method,
you can specify the file you want to open with a format file that describes the data
layout. From there, you can query the data using SELECT statements or use it as
part of an import using an INSERT with a sub SELECT statement. Figure 11-7
shows two statements; the first is opening the employees export file and searching
for items that match a WHERE clause, and the second is performing an INSERT
into the Employee table using a sub SELECT statement that is reading from the
export file.

4 5 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

There are three parts to SSIS:

SSIS package An XML-based file defining the data or maintenance operation

SSIS engine Executes the packages

SSIS Windows service Allows management of the packages through SSMS

To create, design, and debug an SSIS package, you would use Business Intelligence
Development Studio (BIDS), which is installed as part of the SQL Server client tools.

Figure 11-7 Using OPENROWSET to open and query a file

C h a p t e r 1 1 : D a t a M o v e m e n t 4 5 1

BIDS uses the Microsoft Visual Studio development environment shell to develop
SSIS packages and the other Business Intelligence components of SQL Server, namely
the reports for SQL Server Reporting Services and the OLAP cubes for SQL Server
Analysis Services (SSAS). BIDS lets you create your SSIS packages and then save them
to the file system or publish them into a SQL Server repository.

ON THE JOB
SSIS does not have to be used exclusively for moving data in and out of SQL Server. We have worked with

customers who have adopted SSIS as their choice of ETL tool and are using it to move data between systems such

as Oracle, DB2, and Teradata without a SQL Server source or destination in sight.

Creating SSIS Packages
An SSIS package is the unit of work for SSIS. It contains a workflow of operations that
can range from maintenance tasks and server operations through to data movement
and manipulation tasks. SSIS packages are created graphically using a drag-and-drop
interface in the BIDS tool and ultimately are saved as an XML-based file with a .dtsx
extension.

The following are the main components to the design of an SSIS package:

Control Flow

Data Flow

Tasks

Precedence Constraints

Connection Managers

Figure 11-8 shows a blank SSIS package created in BIDS. The Control Flow tab
in the center panel is currently selected and therefore the Toolbox panel on the left
side shows Control Flow Tasks. The panel below the Control Flow design surface is
the Connection Managers panel, and the two panels to the right show the properties
of the selected item or task and the details of the SSIS project.

The first two elements of an SSIS package, Control Flow and Data Flow, are used
to orchestrate the ETL process and data movement of the SSIS package. Think of
the Control Flow as a visual scripting language for ETL processes. In a control flow,
you can manipulate files, execute processes and other SSIS packages, and run SQL
commands, to name but a few operations. A Data Flow is a data movement pipeline,
where data is moved from a source, through zero or more transformations, and sent to
one or more destinations.

4 5 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

In Oracle it is very common to use a combination of shell scripts, SQL*Loader, and
SQL*Plus to implement an ETL process. In SSIS the Control Flow is analogous to the
shell script, and the Data Flow is roughly analogous to the SQL*Loader or SQL*Plus
calls.

A package has only one control flow but can have as many Data Flow components
as it requires. It is quite common to see an SSIS package that has just one component
on the Control Flow, which is a Data Flow component. Within the Data Flow
component, the extract, import, or other relevant data task takes place.

Tasks are the operations that take place on both the Control Flow and Data Flow
elements of the package. Which tasks are available for use depends on whether you are
working on the Control Flow or Data Flow design surface.

Figure 11-8 New SSIS package

C h a p t e r 1 1 : D a t a M o v e m e n t 4 5 3

When working on the Control Flow part of the package, the Toolbox contains
tasks such as FTP, Send Mail, Execute SQL, and Data Flow components (Data Flow
components are containers for the set of Data Flow Tasks). Control Flow also has
containers such as For Loop and Foreach Loop, which allow looping operations over a
set of tasks placed inside them. For example, suppose you want to create a package that
imports the data from all files in a directory into a table. This could be accomplished by
placing a Foreach Loop container on the Control Flow and configuring the loop setting
to “Foreach file in this directory.” Inside the container, a Data Flow component would
be placed with the import operation defined within it. Then, as the loop iterates over
the files in the directory, the name of the file would be passed as a variable through to
the import process. The Toolbox also includes a section of Maintenance Plan Tasks for
operations such as backing up databases, rebuilding indexes, and updating statistics.

When working on a Data Flow, the Toolbox of tasks changes to data-orientated
operations, such as source and destination objects for reading and writing data, and
tasks for data manipulation and cleansing, such as sorting, aggregation, fuzzy lookup,
splitting, and merging. A Data Flow streams data from a source, runs it through a
transformation pipeline in the SSIS engine, and loads it to a destination. Source and
destination can be flat files or any OLE DB, ODBC, or ADO.NET data source. A
Data Flow can actually contain multiple sources and multiple destinations, and SSIS
will try to run them all in parallel. As powerful as the SSIS transformation pipeline
is, some SSIS packages don’t use Data Flows at all, instead preferring to use Control
Flows to bulk load data from flat files into staging tables, and manipulate it using SQL
statements and stored procedures on the destination system.

Precedence Constraints only apply to the Control Flow and are the wiring for the
various tasks. There are three types of precedence constraints: On Success, On Failure,
and On Completion. Control Flow Tasks can be joined together in a workflow style
using these constraints to create a logical path through the package. An example of
the On Success and On Failure options could be an FTP task that has two possible
branches. The first is an On Success branch, which means the files have been
transferred successfully and can then move to the next stage in the process. The second
branch is an On Failure constraint that is linked to an e-mail task. On failure of the
FTP task, an e-mail is sent to the administrator to warn them of a problem. The final
constraint, On Completion, moves to the next stage no matter what the outcome of the
previous step was.

Finally, the last components to SSIS package design we are going to cover are
Connection Managers. Connection Managers are used within SSIS to define connections
to data sources. They contain details such as the data provider to use and the connection
credentials. Connection Managers are then referenced by tasks on the Control Flow and
Data Flow tabs. Centralizing these connections makes connection management easier

4 5 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

and allows for changing of connection criteria at run time. Working with connection
managers is a common task for production DBAs, as the SSIS packages need connection
details and credentials for production environments that may not be available to the
person developing the package. Packages can use external configuration files to contain
connection details, or the DBA can override the connection details in a package when it
is scheduled to run in SQL Agent or on the command line through dtexec.exe (more on
package execution later in this section).

Let’s review an example of an existing package. Figure 11-9 shows an SSIS package
opened in BIDS. The package is used to create a development version of a database, first by
dropping any existing tables in the destination database, then re-creating the tables in the
development system, and finally populating the tables with data from another database.

Figure 11-9 SSIS Control Flow

C h a p t e r 1 1 : D a t a M o v e m e n t 4 5 5

Figure 11-9 shows the Control Flow tab. In this control flow, there are three steps.
The first two steps execute blocks of T-SQL script. The first Execute SQL Task is
called Drop Tables. This step runs the T-SQL DROP TABLE commands. On success
of this component, the package moves on to the next stage. The Create Tables step
re-creates the tables. On success of the Create Tables statement, the control flow moves
to run the Import Data Data Flow component. Double-clicking the Import Data Data
Flow task moves the designer to the Data Flow tab.

Figure 11-10 shows the Data Flow tab opened. This data flow has five pairs of
source and destination objects to move data into the five destination tables. Because
this is a simple export/import operation, moving data from one identical table schema

Figure 11-10 SSIS Data Flow

4 5 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

to another, the data flow is quite straightforward. The source component reads the
data, and the destination component inserts the data into the destination.

Because these five pairs are not chained together in a serial fashion, all export/import
operations will run in parallel, but the data flow step itself will not complete until the
last export/import operation has finished.

At the bottom of both Figure 11-9 and Figure 11-10 you will see a panel that shows
the connection managers for this package. Each of the steps on both the Control Flow
and Data Flow tabs that need to interact with a database, such as the Drop Tables
step or the Import Data step, references the connections in the connection manager.
Therefore, if you needed to change the source server, you would only need to change
the connection manager, not all of the individual components.

Each task on the design surface has properties that can be set to configure the task.
The Execute SQL Task, for example, has properties for the connection to use and the
script block it needs to execute. Figure 11-11 shows the properties dialog box for one of
the data destination objects. The dialog box shows the connection manager it is using to
import the data and the data access mode and the destination. If you are eagle-eyed, you
may spot that the options for this data load look familiar. That is because the “Table or
view – fast load” mode selected uses the same bulk-loading APIs that BCP uses.

As you can see, the main difference between an SSIS package and BCP or BULK
INSERT is that an SSIS package can be used to implement and orchestrate an entire
ETL process, including file management, pulling data from enterprise data sources,
loading multiple tables (in parallel), calling stored procedures to do bulk operations on
the destination, and performing cleanup operations.

Managing and Executing SSIS Packages
Once an SSIS package has been created, you need to find somewhere to store it and
a way of executing it.

The easiest way to store packages, which could be called the “unmanaged approach,”
is to simply store the packages on the server in any folder of your choice. The second
approach, which could be called the “managed approach,” is to run the SSIS service,
which runs as a Windows service and allows the management of SSIS via SSMS.

Running the SSIS service provides the ability to perform the following tasks with
SSMS:

Import and export SSIS packages to and from a managed storage location

Execute SSIS packages

Stop SSIS packages

View currently running packages

C h a p t e r 1 1 : D a t a M o v e m e n t 4 5 7

There are two managed storage options for SSIS packages: store your packages on
the file system in a location that the SSIS service is aware of, or store the packages in
the msdb system database.

Storing your packages on the file system means your packages are treated as normal
files, and therefore backing up your packages must be done outside of SQL Server

Figure 11-11 OLE DB Destination Editor properties dialog box

4 5 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

using your normal file backup methods. By default, the location on the file system in
which packages will be placed when using the file system option through SSMS is
%ProgramFiles%\Microsoft SQL Server\100\DTS\Packages\. It is possible to change
this path to your own custom location, such as F:\ssis\pacakges, but to do this you need
to edit the XML configuration file MsDtsSrvr.ini.xml, located in the %ProgramFiles%\
Microsoft SQL Server\100\DTS\Binn directory, and change the <StorePath> value to
your preferred location.

Storing packages in the msdb system database places the packages in a table called
sysssispackages. Using the msdb approach has the added benefit of providing a security
wrapper over the packages and also allows for the packages to be backed up when you
back up msdb.

There are other pros and cons to each storage approach. For example, importing
packages in the file system approach can be done by simply placing the package definition
in the monitored folder location, whereas storing it in msdb requires the use of the import
routine. The choice of which method to use is purely one of preference on how you wish
to administer the system.

Figure 11-12 shows SSMS connected to the SSIS Windows service. The Object
Explorer pane is connected to the local SSIS service with two packages, one stored
in the file system and the other located in the msdb store. The right panel shows
information about the ADW – Data Transfer package.

There are three ways to run an SSIS package:

Use a SQL Server Agent Job

From the command line (dtexec.exe)

Use the Execute Package Utility (dtexecui.exe)

SQL Server Agent, which is used for server scheduling and automation, has a Job
step type specifically for executing SSIS packages and is generally used as a way of
executing an SSIS package on a scheduled basis (for example, running a nightly import
process). Underneath the covers, when the job executes, it calls the dtexec.exe program.
More information on SQL Server Agent can be found in Chapter 10.

To run a package manually, you would use either the command-line option or the
Execute Package Utility. The command-line tool dtexec.exe is used to execute an
SSIS package at a command prompt, but to use it you must build the execution string,
including all the various switches and options. The easiest method is to use
the Execute Package Utility, shown in Figure 11-13, which allows you to set the
options for executing the package graphically. The utility can also be used to build

C h a p t e r 1 1 : D a t a M o v e m e n t 4 5 9

the command-line string that can be used with dtexec.exe. To open the utility,
right-click the package in SSMS and select run package. From there, you can set a
variety of options and then execute the package.

It is important to note that, as a DBA, you will more than likely be running SSMS
and the other tools on your admin workstation connecting to remote SQL Servers
in the data center. If you run dtexec.exe or dtexecui.exe from your workstation, the
process will execute the SSIS package on your local workstation and all data will flow
from the source through your workstation to the destination. For small datasets and

Figure 11-12 SSMS connected to the SSIS Windows service

4 6 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

one-time operations, such as importing a small file or exporting some data to a file
on your workstation, this probably isn’t an issue, but for large datasets, such as batch
uploads or where some real data crunching and manipulation is required with server-
class hardware resources, this is going to slow down the operation. To ensure that the
package runs at the server, either schedule the execution as a SQL Server Agent Job at
the server or log onto the server where SSIS is installed and execute the package.

Figure 11-13 Execute Package Utility

C h a p t e r 1 1 : D a t a M o v e m e n t 4 6 1

Advanced SSIS Topics
In this section, we’ve covered the basics of a package and how to schedule and execute
packages, but to fully exploit the power of SSIS, there are many other features that you
should be aware of, including:

Package configurations

Checkpoints

Creating custom components

Event-driven activities

Error handling

Logging

All of these features can be used to develop ETL packages that can deal with the
most demanding and complex of requirements. Detailed information is available
through many reference books and through SQL Server Books Online.

Moving from Data Transformation Services
SSIS is the successor to a feature called Data Transformation Services (DTS), which
was introduced in SQL Server 7 and continued into SQL Server 2000. DTS provided a
simple way to graphically describe simple data flow and transformation. It also allowed
you to add some of your own logic using either T-SQL or ActiveX scripting. Although
now deprecated, DTS is worth knowing about as you may inherit SQL Server instances
that have been upgraded from older versions such as 7 and 2000 and it is possible that
there may be some DTS packages around running in Legacy mode.

In SQL Server 2005/2008, Microsoft provides a Legacy hosting option for DTS.
The idea behind the Legacy hosting option is to ensure that DTS will not hold up
a migration to the latest platform due to packages having to be rewritten.

Although at the time of writing, Microsoft has not announced the deprecation date
of this hosting feature, you would be wise to start migrating or rewriting DTS packages
in SSIS. Apart from the obvious reasons for doing so—that it will soon disappear and
you will have no way of running the packages if you upgrade—there are many benefits
to SSIS, including performance, management, and simplicity.

It should be noted that although the migration tool provides a good way of upgrading
packages, you should consider reviewing the design of the upgraded packages. The wizard
will move the package from the old format to the new format, but it will not rewrite the
package to take advantage of new features.

4 6 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Import and Export Wizard
When importing and exporting data in Oracle, you would normally use Data Pump
Import and Data Pump Export to move the data to or from either operating system
files or directly from database to database across a network link.

The SQL Server equivalent is the Import and Export Wizard, which walks you
through the steps of an import or export operation. The wizard is a stand-alone tool
that you can either find in the SQL Server program group on the Start menu or launch
from within SSMS by right-clicking a database, selecting Tasks, and choosing either
Import Data or Export Data (SSMS simply launches the stand-alone tool).

The Import and Export Wizard creates an SSIS package, which can be run
immediately, saved and scheduled through SQL Server Agent, or run later using
dtexec.exe.

Unlike Data Pump, where initiating a Data Pump job launches server-side processes,
it is important to note that if you select the “run immediately” option and/or save the
package locally and use the client-side execution tools for the package, the process
will run as a client-side application as per the same behavior described in the SSIS
section. Therefore, the wizard is normally used on the client side to create the package
definition and then the package is moved to the server for execution.

Because the wizard uses the standard SSIS package format, it is possible to make
your own modifications to the package once the wizard has finished, by opening it in
BIDS. This allows you to build other actions around the basic import/export operation,
such as manipulating or obfuscating the data on its way to the test system or adding
e-mail tasks that notify people that the operation has taken place.

Out of the box, the wizard allows connections to data sources (and destinations) such
as flat files, Excel, Access, SQL Server, Oracle, and other OLE DB providers. If you
have installed SQL Server on a 64-bit server, then both 32- and 64-bit versions of the
Import and Export Data Wizard are available. At the time of writing, data sources such
as Access and Excel only have 32-bit drivers available and therefore will not work using
the 64-bit version of the wizard.

C h a p t e r 1 1 : D a t a M o v e m e n t 4 6 3

To use the wizard, certain permissions are required, which can include the following:

Permission to connect to the source and destination location database server or
file share

Permission to read data from the source file or database (SELECT permission on
source tables or views, read permission on files)

Permission to write data to the destination file or database (INSERT permission
on the destination table, write permission on files)

CREATE TABLE/CREATE DATABASE permission if you are using the
wizard to create the destination in SQL Server, or the permission to write to the
file system if using a file destination

Permissions on the SSIS store to save the package into the SSIS repository

There are several ways to launch the Import and Export Wizard:

From the Start menu, choose All Programs | SQL Server 2008 | Import and
Export Data.

In SSMS, right-click a database and choose Tasks | Import Data (or Export Data).

At a command prompt, type DTSWizard.exe.

Let’s walk through an example of using the Import and Export Wizard to copy
a subset of data from the AdventureWorks database located on the default instance.
Using the wizard, we will copy all tables that exist in the HumanResources schema
over to a new database called HR on the SQL instance called DEV. At the end of the
wizard, we will execute the package immediately.

The first step is to launch the wizard. In SSMS, right-click the AdventureWorks
database and select Tasks | Export Data, as shown in Figure 11-14.

4 6 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The Import and Export Wizard launches and presents us with an initial Welcome
screen that describes what the wizard does. Click Next to progress to the Choose
a Data Source step (see Figure 11-15). Because we launched the wizard from the
right-click menu on the database, the server and database details are prepopulated
for us, so simply click Next.

The next page, Choose a Destination (see Figure 11-16), asks us to choose our
destination server and database. We set the server to localhost\dev and the database to
the HR database. If the destination database did not already exist, this screen would
allow you to create a new database on the destination server by clicking New; instead,
click Next to continue.

Figure 11-14 Launching the SQL Server Import and Export Wizard using SSMS

C h a p t e r 1 1 : D a t a M o v e m e n t 4 6 5

The wizard now asks whether we wish to copy data from existing tables and views or
write a query to specify the data we want to export (see Figure 11-17). In our scenario,
we want to select the first option, as shown, and then click Next.

NOTE
Selecting to copy data from a view does not create the view definition. In the remote database, it creates a table

using the view definition and populates this with the relevant data.

Figure 11-15 Choosing a data source

We are now presented with a list of tables and views that are available to copy.
Because we are performing a straight table copy into an empty database, we simply
select all the tables in the HumanResources schema (see Figure 11-18) and click
Next. If you wanted to map to tables with different names, remove columns, or tell the
wizard to drop the destination table if it already exists, then you would click the Edit
Mappings button, which provides a dialog box in which to customize these properties
and others on the destination table.

4 6 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 11-16 Choosing a data destination

C h a p t e r 1 1 : D a t a M o v e m e n t 4 6 7

NOTE
When creating destination tables, the Import and Export Wizard just creates a simple table with matching

columns; it does not script out the source table and re-create it on the destination. To create a full-fidelity copy

of an existing table, you need to script the table using another method, such as right-clicking the table in SSMS,

selecting Script Table As, and then selecting Create to… for an individual table, or using the Generate SQL Server

Scripts Wizard to script multiple tables at once. (The wizard is launched by right-clicking a database, selecting

Tasks followed by Generate Scripts.)

Figure 11-17 Choosing to copy one or more tables

4 6 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

We have now provided the wizard with enough detail on what we want to move and
where to. In the next step (see Figure 11-19) we are presented with the option to run
the package immediately or save the package into the SSIS package store. We want to
run the package now, so choose Run Immediately and click Next.

Figure 11-18 Selecting the tables to copy

C h a p t e r 1 1 : D a t a M o v e m e n t 4 6 9

The wizard now has enough information and is ready to execute, so it displays a
final summary screen (see Figure 11-20) for us to check that we have selected the right
options. After reviewing the options, click Finish.

The wizard starts to execute the package and displays a progress screen while the
package executes. Once the package completes, the status of the actions and details
such as row counts are reported back to the user. Figure 11-21 shows the package has
completed successfully.

Figure 11-19 Choosing to run the package immediately

4 7 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 11-20 Import and Export Wizard summary screen

Oracle DBA Q&A

Q: How do I transfer objects other than data from tables, such as stored
procedures, functions, and so forth?

A: If you just want to script out one or two objects, then you can simply
right-click the object in SSMS and select Script object_type As. Right-clicking
a stored procedure presents a Script Stored Procedure As option, shown in
Figure 11-22, from which you can select the type of script (in this case, a CREATE
script) and select where you want the script to go, such as to the Windows Clipboard
or to a file. If you want to script out multiple objects, then right-click the database
and select Tasks | Generate Scripts, which launches the Generate SQL Server Scripts
Wizard allowing you to script the entire database.

C h a p t e r 1 1 : D a t a M o v e m e n t 4 7 1

SQL Server Management Studio
While we are discussing importing and exporting data, it is worth mentioning a few
quick tips for using SSMS to extract a small amount of data as an ad hoc operation.
These options are great for when you decide that using tools like BCP and SSIS is too
much work for the small amount of data you require.

The previous options discussed for exporting data require some sort of setup or
configuration to extract the data. What if we just want to write a query, execute it, and
copy the results into a file or even just paste them into an e-mail?

Figure 11-21 Import and Export Wizard execution information

4 7 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Similar to using SQL Developer in Oracle, where you would write/execute your
query, right-click the results set, select Export Data, and choose the format options,
you have a similar approach within SSMS to output a query result set to a text file.
Figure 11-23 shows selecting the option in SSMS for sending the results of the query
to a file. When the query is executed, a File Save dialog box appears for you to enter
the filename and, if required, to set the encoding format (UTF8, ANSI, Unicode, or
Chinese Simplified).

Figure 11-22 Using SSMS to script a stored procedure

C h a p t e r 1 1 : D a t a M o v e m e n t 4 7 3

If sending the results to a file is still too much work for you, then SSMS also allows
you to copy result sets from the output grid to the Windows Clipboard. Figure 11-24
shows a simple query with the results grid. Right-clicking the Name column presents
the option to Copy or Copy with Headers the data, which will then be copied to
the Windows Clipboard in the same way as any other copy operation in Windows.
Selecting the top-left cell of the results grid selects all columns and data, as shown in
Figure 11-24.

Figure 11-23 Choosing to send query results to a file in SSMS

4 7 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Performance Considerations for
Importing and Exporting Data
Having covered the various techniques available within SQL Server for importing and
exporting data, we will spend a moment discussing what can affect the performance of
an import or export operation.

Performance tuning the export of data from SQL Server is quite straightforward;
if you are exporting data, you are in effect performing a SELECT query on the
database, so normal performance-tuning rules for reading data from a database apply.

Figure 11-24 Copying results sets to the Windows Clipboard

C h a p t e r 1 1 : D a t a M o v e m e n t 4 7 5

Importing data, on the other hand, has many more considerations; it is important to
understand the various dependencies for achieving an optimal import performance.

Obvious server-level performance considerations are whether the CPU has enough
spare cycles, whether there is sufficient memory, and whether the disk subsystem
performs sufficiently. Assuming your server is sized correctly and has enough capacity to
meet the hardware requirements, then other areas that you need to look at include the
client side of the import, the destination database, and the table you are importing into.

Many factors can affect a loading process, but the following tend to be the places you
should look first before delving deep into the engine. Let’s start with the database and
table to identify potential bottlenecks and then move to the client side.

At the database level, there are two main things to consider: the database recovery
model, and the amount of space currently allocated to the data files. As discussed
in Chapter 7, the database recovery model affects how transactions are logged in
the database. During a bulk import operation, the FULL recovery model can cause
the transaction log file to grow quite large, quite quickly, because it fully logs all
transactions. This might not be too much of a problem until you run out of space for
the transaction log and find yourself having to roll back the entire load. The other
two recovery models, SIMPLE and BULK_LOGGED, are better for bulk-logged
operations because they both support minimal logging.

Minimal logging in SQL Server means that SQL Server records in the transaction
log that an operation took place and the details of the space it allocated, not the
data itself. Before moving between different recovery models, it is essential that you
understand the effect it could have on your backup or, to be precise, any recovery
process should the database fail while you are in BULK_LOGGED mode. For
example, if you normally run in FULL recovery mode, then you should back up
the transaction log before moving to BULK_LOGGED mode; then, when your
loading process has finished and you move back to FULL recovery mode, you should
immediately take another transaction log backup.

Note that in the BULK_LOGGED recovery mode, although the details of your
bulk-logged operations are not captured in the transaction log, they are captured in the
next transaction log backup, and you cannot do a point-in-time restore to any point
covered by a transaction log backup containing bulk-logged operations. This is why
you want to switch to BULK_LOGGED mode just before performing bulk-logged
operations, and take a transaction log backup both before and after.

The second thing to watch at the database level is how much space is allocated to
the data files where the table you will be loading into resides. If you run out of space
and the files have hit their MAXSIZE and cannot grow, then the operation will stop. If
you run out of space and the files are smaller than the MAXSIZE, the files will grow,
but growing files can be expensive because, under the default settings, zeros have to be

4 7 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

written in the new file space before it can be used. During a bulk load operation, this
type of behavior normally presents itself as the process appearing to pause during a load.
Depending on the autogrowth setting, it may take from seconds to several minutes to
grow the data file while your data load is paused.

Figure 11-25 shows the SSMS Disk Usage report. This report shows that during
a recent data load, 5 data file autogrowth events took place at 20MB each, along with

Figure 11-25 Using the Disk Usage report to view autogrowth events

C h a p t e r 1 1 : D a t a M o v e m e n t 4 7 7

11 log file autogrowth events. The length of time each event took to execute is
displayed in milliseconds. On this simple demo database, these autogrowth events lasted
only a few milliseconds, which is not going to cause a problem, but when you multiply
this out to a large-scale database with gigabytes of data being loaded, then setting the
autogrowth settings incorrectly can slow down the overall load process. This can be
mitigated by ensuring the data files are correctly sized before starting the data load.

At the table level, it’s all about the constraints, triggers, and indexes that you have
located on the table. In general, the more of these you have on the table, the more work
the SQL Server Database Engine has to do.

Constraints in SQL Server perform the same function as they do in Oracle. They are
used to enforce business validation rules over the data, such as the format of the data.

By default, BCP and BULK INSERT are both set to ignore constraints during a
bulk load operation, to ensure the fastest load possible. However, doing this marks the
constraint as is_not_trusted, which means the system is not sure whether or not the
data that bypassed the constraint during the load conforms to the constraint definition;
therefore, at some point a revalidation of the constraint across the entire table will need
to take place.

To enable and validate all the constraints on a table, you can use the following
command:

ALTER TABLE table_name WITH CHECK CHECK CONSTRAINT ALL

Because invalidating a constraint will require a complete revalidation of the table,
it is recommended that you enable constraint checking when performing incremental
data loads. In most cases, the performance hit of real-time constraint checking versus
a complete table revalidation will be considerably less, especially if loading data into a
large table. Having said that, there are occasions where disabling constraint validation
during a load makes sense, such as when loading into an empty table where it can be
applied post load, or when loading into a table where you know the data you are loading
violates the constraint but you plan to clean it up following the load process. For the
second example, it would be more efficient to clean the data prior to loading in a tool
such as SSIS and then run with real-time constraint checking on the database.

Triggers in SQL Server are also analogous to triggers in Oracle. They are blocks
of code that fire for a particular type of operation. In the case of loading data, only
INSERT and INSTEAD OF triggers are of interest during an import operation.

For both BCP and BULK INSERT operations, the behavior for triggers is the
same as for constraints; that is, they are disabled by default but can be enabled with
the appropriate switch or argument. When triggers are enabled, they are executed once
for each batch. It is also worth noting that when triggers are enabled for a bulk import,
the inserted/deleted rows are stored in the tempdb database, and therefore the size and
performance characteristics of tempdb should be taken into account.

4 7 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Standard INSERT statements always perform constraint checks and fire INSERT
and INSTEAD OF triggers.

Finally, a point on indexes: indexes are great for improving query performance, but
the more of them you have, the more you have to maintain. Therefore, each row that is
inserted into the table will need to have any corresponding indexes updated accordingly.
You could consider dropping indexes prior to a bulk update, but if you are incrementally
loading into a table, then the cost of rebuilding the indexes after the load may outweigh
the benefits from removing them in the first place. It is possible to disable indexes in
SQL Server, but if you disable an index in order to reenable an index, you must rebuild it.

ON THE JOB
It is generally better to disable and rebuild indexes than to drop and re-create them, because when you drop

an index, you have to store the index-creation DDL and use it to re-create the index. This requires careful

coordination of your index design and ETL process implementation, and it’s easy to lose an index this way.

The last part of the puzzle to cover is the client side of the loading process. Which
tuning techniques you have available depends on the method of import, but in general
there are several things you should consider. When using BCP and BULK INSERT,
there are several optimizer hints and properties that you can set that can affect the
performance of an import operation, for example, setting the batch size. Setting the
batch size determines how often SQL commits the data to the transaction log which
means there is not one large commit process at the end of the load. It is also possible to
add locking hints such as TABLOCK, which will lock the table from all other activity
to ensure your load process has exclusive access to the table to perform its load. You
should also consider, when loading large amounts of data, the possibility of splitting the
data up into smaller imports and running them in parallel from multiple clients.

SQL Server Books Online has detailed information on achieving optimal load
performance.

Moving or Copying an Entire Database
Sometimes you need to move more than just a subset of data in a database and are
required to either move or copy an entire database from one server to another. This
could be for relocation onto a server with greater hardware resources, for making a copy
for development and test environments, or for creating databases for reporting purposes.
In Oracle you would normally achieve this by using features such as Data Pump,
transportable tablespaces, or RMAN to restore to an alternate location.

SQL Server has several methods to accomplish this task. As you would expect, there
are scriptable and graphical wizard-based options that can be run from the SSMS
interface. Some options allow for the source database to remain online while the process

C h a p t e r 1 1 : D a t a M o v e m e n t 4 7 9

takes place, whereas others require the database to be temporarily unavailable while the
copy or move is carried out.

There are four main methods available, each of which has its own set of pros and cons:

Manual Detach-Copy/Move-Attach

Scripting the database

Copy Database Wizard (online/offline)

Backup and restore

It should be noted that if you are using a SAN (Storage Area Network) solution to
host your databases then there are also options available at this level for creating copies
of SQL Server databases. Check with your hardware vendor.

Detach-Copy/Move-Attach Method
The Detach-Copy-Attach method (or Detach-Move-Attach method, depending on
your objective) is a quick way of copying (or moving) a database to an alternate location.
For brevity we will refer to the operation as a copy for the rest of the section, but keep
in mind that it is the same process for a move operation, with the exception of moving
the files and not copying them.

Similar to the concept of transportable tablespaces, it is possible in SQL Server
to detach a database from one instance, copy the data files to another location, and
reattach to another instance. Detaching a database simply removes the reference to the
database from the master system database and releases any locks SQL Server has on
the database files. When a database is detached, it is no longer accessible or visible in
SSMS. Using this method involves downtime for your database but can be significantly
faster than leaving the database online and performing a data export to another system.
Your trade-off for speed is availability.

You have two ways of detaching a database. The first is to right-click the database in
SSMS and select Tasks | Detach Database. This opens a Detach Database dialog box,
where you are presented with two additional options. The first is to drop all current user
connections, and the second is to update the database statistics before disconnecting.
The second option of detaching is to use the sp_detach_db system stored procedure. No
matter which method of the two you use, you are ultimately doing the same action. The
Detach Database option in SSMS creates a call to sp_detach_db. If you have selected
Drop Connections, this will also script the setting of the database to single-user mode,
rolling back any currently open transactions before attempting a detach. Figure 11-26
shows the T-SQL that is created from using the Detach Database option with both
Drop Connections and Update Statistics options selected.

4 8 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Once the database is detached, you can copy the data and log files to the alternate
location. In the case of the AdventureWorks database example, the procedure is quite
straightforward because there is only one data and log file (AdventureWorks_Data.mdf
and AdventureWorks_Log.ldf). In the real world, it is more likely that you would have
added additional file groups and files for spreading the load and separating objects.

Figure 11-26 SSMS-generated code for detaching a database

C h a p t e r 1 1 : D a t a M o v e m e n t 4 8 1

When using the manual detach and attach methods, you need to be aware of which files
make up the database, as you will need to copy them all. There is a dynamic management
view that you can query (before you detach!) that will list all the files associated with the
current database and their locations:

SELECT * FROM sys.database_files

You will need to make a note of these and ensure that all files are copied across to the
new location.

Once you have copied the files to the new location, you are ready to attach the
database files to the instance. Again, as in the detach process, you can use SSMS or
a system stored procedure, but now you also have the alternative to use a CREATE
DATABASE statement with a FOR ATTACH clause. When you use SSMS and ask it
to create the attach script for you, it will use the CREATE DATABASE approach.

NOTE
The stored procedure used for attaching databases, sp_attach_db, has been marked for deprecation in future

releases of SQL Server. Therefore, you should avoid using this and instead use CREATE DATABASE with FOR ATTACH

or the SSMS GUI.

It is possible to make a copy of the database on the same instance to, for example,
create a copy for reporting or to test an upgrade. You can detach the AdventureWorks
database, copy the data files to a new location (or the same location with a different
filename) on the same machine, and then reattach, but since you cannot have two
databases with the same name in an instance, the option to Attach As is available,
which allows you to rename the database as it is joined to the instance.

For now, we will simply reattach the AdventureWorks database that we detached
previously (as shown in Figure 11-26). To attach a database in SSMS, right-click the
Databases node and select Attach to open the Attach Databases dialog box, shown in
Figure 11-27.

To attach a database, you need to point SSMS to the database primary data file (.mdf).
The primary data file contains information on the additional files that make up the
database. Clicking Add presents a dialog box to navigate to the primary data file, as shown
in Figure 11-28. Select the file and click OK.

4 8 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The Database Details pane of the Attach Databases dialog box is now populated
with the files it expects to attach (see Figure 11-29). Because we haven’t moved any
files, the paths that are populated for us are correct, but if they were not, we could
simply point SSMS to the new file location. The Attach Databases dialog box allows
you to attach many databases at once by simply selecting more primary data files. For
now we are happy with just attaching our AdventureWorks database, so click the OK
button.

Figure 11-27 Attach Databases dialog box

C h a p t e r 1 1 : D a t a M o v e m e n t 4 8 3

Figure 11-28 Locating the primary .mdf file

Oracle DBA Q&A

Q: Like transportable tablespaces, are there any additional considerations, such
as file formats, when moving databases to another platform, such as from 32-bit to
64-bit?

A: Because the processor architectures that SQL Server runs on are all little
endian format, no conversion needs to take place. The SQL Server on-disk storage
format is the same for both 32-bit and 64-bit environments. If your production
servers are 64-bit and your development servers are 32-bit, it is possible to just
copy the data files over from one server to the other. Another example would be
if you are running on a 32-bit production server and need to move the database
to a server with greater resources, such as a 64-bit server; it is possible to use this
detach and reattach method without having to make any changes to the data files.

4 8 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

It is important to remember that when moving or copying databases between
instances, there may be dependent objects outside of the database that need to be
re-created on the destination instance, such as logins, maintenance jobs, custom error
messages, and so on. Probably the most common objects that need to be transferred are
Logins. It is possible to create a piece of T-SQL script to transfer the logins, but doing
so is not a trivial task. Microsoft has supplied a set of scripts on its Microsoft Support
website (http://support.microsoft.com) under knowledge base article 918992, which
can be freely downloaded and used. A quick and easy way would be to use SSIS. SSIS
has a Transfer Logins Task that can be quickly set up and executed. If you wanted to

Figure 11-29 Attach Databases dialog box with AdventureWorks details populated

C h a p t e r 1 1 : D a t a M o v e m e n t 4 8 5

be clever, you could create an SSIS package and parameterize the options such that you
could pass it the source, destination, and database for the logins you need to transfer,
and then you could simply execute the package with the three parameters whenever you
needed to transfer logins for a database.

Scripting the Database
If you don’t want to take your database offline to copy it or you simply want to take
a copy of the database schema and objects with no data, SSMS enables you to script
out your entire database using the Generate SQL Server Scripts Wizard. To access the
wizard, right-click the database of interest and select Tasks | Generate Scripts, as shown
in Figure 11-30.

Figure 11-30 Launching the Generate Scripts Wizard in SSMS

4 8 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

The steps of the Generate Scripts Wizard, which generally are self-explanatory,
give you fine-grain control over how the scripts are created. You can choose to script
the entire database or simply a subset of objects. For example, if you want to create a
database to use as a reporting system, you might want to script only all the tables and
views, and not the logic contained in stored procedures and functions.

The wizard also enables you to include the actual data within the scripts. If selected,
the data is placed in the scripts as individual INSERT statements, one per row.
Figure 11-31 shows the option to script the data. As you would expect, adding the

Figure 11-31 Script Data option

C h a p t e r 1 1 : D a t a M o v e m e n t 4 8 7

data as individual INSERT statements to the script potentially will cause the script to
become very large, so you should use this option with caution. A better option would
be to use the Import and Export Wizard to move data.

Copy Database Wizard
The Copy Database Wizard (CDW) in SSMS provides the ability to copy or move
one or more databases either by using the detach and attach method or by scripting
the objects, re-creating the database, and performing an export/import of the data. The
CDW uses the SSIS package and engine to perform this operation in the same way as
the Import and Export Wizard.

The primary difference between the two operating modes is that using the detach
and attach method takes your source database offline temporarily. The second mode
uses SQL Management Objects. This method allows the database to remain online
while the operation takes place by scripting out all the objects and then exporting and
importing the data. This method is normally slower than the detach and attach method,
but it does allow you to avoid database downtime.

Let’s walk through the process of copying the AdventureWorks database from
the default instance to the DEV instance while keeping the database online. Starting
the process in SSMS connected to the default instance, proceed as follows:

1. Right-click the AdventureWorks database and select Copy Database. The Copy
Database Wizard is launched and presents you with a Welcome screen. Click Next.

2. In the next two screens, provide the source and destination servers to connect to
and the credentials to access them. Click Next after each screen.

3. Select the transfer method. You want the source database to remain online, so
select the SQL Management Object method (see Figure 11-32). Click Next.

4. Select the database that you want to include in this run, AdventureWorks, and
select the Copy method (see Figure 11-33). Click Next.

4 8 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

5. Specify the destination database name to use and where the files are to be
located, as shown in Figure 11-34. Notice that the destination folders have been
populated with the default data directory of the destination instance. The CDW
also presents the choice of stopping the transfer if a database with the same name
exists on the destination server (the default) or dropping the existing database and
overwriting any files with the same name. Go with the default and click Next.

Figure 11-32 CDW transfer method selection

C h a p t e r 1 1 : D a t a M o v e m e n t 4 8 9

6. You are now given the choice to select any server-level objects that you need to
copy with the database (see Figure 11-35). This is where the wizard provides
an advantage over the manual methods, because using the manual detach and
attach methods requires you to be aware of the dependencies and move them
independently. The wizard can provide this function. Because you are copying to
a development environment and all you want are the server logins to be created,
accept the defaults and click Next.

Figure 11-33 CDW database selection

4 9 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

7. On the Configure the Package screen (shown in Figure 11-36), give the package a
name and click Next.

8. Now that the package has been defined and saved, you are presented with the
option of running it immediately or setting a schedule (see Figure 11-37). The
schedule could be for a one-time-only operation or to create a recurring job. If
you want to refresh your development database on the DEV instance on a weekly
basis, you could set a weekly recurring job to run this package. Since you want
this to happen now, select Run Immediately. At the bottom of the screen there
is also an option to select the Integration Services Proxy account (proxy accounts
are covered in Chapter 10). The proxy account is required if you are scheduling
the package. The proxy account being used must have the ability to execute SSIS
packages. Click Next.

Figure 11-34 CDW destination database configuration

C h a p t e r 1 1 : D a t a M o v e m e n t 4 9 1

9. You have now provided the CDW with enough information to carry out the copy
operation. The summary screen (see Figure 11-38) provides an overview of the
settings you provided. To start the operation, click Finish.

10. The CDW now executes the package and reports its progress as it runs (see
Figure 11-39).

Figure 11-35 CDW selection of dependent server objects

4 9 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Once the CDW has completed, it is possible to review a detailed report of what has
taken place by selecting the Report button, or you can simply close the dialog box.

Backup and Restore
It is possible to use backup and restore as a method for moving or copying databases
within your environment. Although, as with the detach and attach methods, moving
a database to an alternate server will still require that you also copy other dependent
objects such as logins separately.

Figure 11-36 CDW package configuration

C h a p t e r 1 1 : D a t a M o v e m e n t 4 9 3

The techniques for performing a backup and restore operation are covered in
Chapter 7.

It is very important to note that if you want to create a copy of your database using
your last scheduled backup (that is, the one you use for normal recovery of the database),
the procedure is straightforward: copy the backup you want to use and perform the
recovery at the alternate location. Although, you may decide that you want an “up to date”
copy of your database and therefore since SQL Server allows online backups then what is

Figure 11-37 CDW package scheduling

4 9 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

wrong with running a full backup of the database outside of the normal backup schedule?
The answer to this question depends on what types of backup your backup regime
uses. The problem arises if your backup regime includes the use of differential backups,
then taking a full backup resets the differential base meaning that any differential backups
taken from that point forward (on the normal backup schedule) rely on your 'out of
schedule' full backup. Since the person taking this backup was doing so for refreshing a
test it is highly likely they will move or copy and delete the backup file. Therefore, without
the differential base which you are now missing your differential backups are now useless!

Figure 11-38 CDW summary

C h a p t e r 1 1 : D a t a M o v e m e n t 4 9 5

To avoid breaking the backup chain, there is an option for taking a Copy Only
Backup (see Figure 11-40). A Copy Only Backup is a full database backup that does
not affect the backup chain and is therefore not required for recovery. Restoring a Copy
Only Backup is no different from any other restore operation.

Figure 11-39 CDW progress feedback

4 9 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Querying Across Servers and Data Sources
These days it is highly likely that the database landscape of the organization you work
in has more than one database server, perhaps from more than one database vendor. At
some point, it is quite probable that you will need to integrate the data sources together
without having to extract and import data from one system to the other. For example,
a user working in a sales application may need to query the data in the warehouse
application to check if an item they recently sold has been shipped. Instead of having

Figure 11-40 Back Up Database dialog box with Copy Only Backup selected

C h a p t e r 1 1 : D a t a M o v e m e n t 4 9 7

a process where warehouse shipping data is constantly being extracted and loaded into
the sales system, it would be more efficient to give the sales system the ability to pass
through a query to the remote warehouse system. To set up this type of solution in
Oracle, when both of the databases are Oracle databases, you would use Database Links
to allow a query to be sent to database A and passed through to database B. To query
across to a non-Oracle system, you would use Database Gateways. SQL Server has a
concept similar to Database Links and Database Gateways known as linked servers.

Using SQL Server linked servers enables you to issue distributed queries and
distributed transactions across heterogeneous data sources using OLE DB. Connections
to Oracle and DB2 are available along with a list of Microsoft sources such as SQL
Server, Access, Excel, Exchange Server, and Active Directory. Linked servers are part of
the SQL Server base product and are not a separate, chargeable module. If you need to
connect to systems such as VSAM, Adabas, Enscribe, and other more-exotic platforms,
solutions are available from third-party vendors that plug into SQL Server to extend its
functionality.

Linked servers use OLE DB providers for connections to other data sources. The
OLE DB providers use rowset objects as the mechanism for exposing and manipulating
data in a tabular format (a row set is an internal OLE DB object type for representing
rows and columns). Therefore, whenever a user executes a distributed query, SQL
Server converts the call into a rowset request, which is then sent to the OLE DB
provider. The OLE DB provider services the request and returns the data back to SQL
Server for additional processing before returning the results set to the user.

Because linked servers use OLE DB, there is an asymmetry to the performance
of operations against linked servers. INSERT, UPDATE, and DELETE operations
against a linked server are relatively inefficient as these operations are performed
on a row-by-row basis in OLE DB. However, reading data from a linked server is
substantially more efficient, as a single row set can be used to stream the results from
the linked server. You should be cautious in writing distributed queries that join local
data with linked server data, as they may require the movement of large amounts of
data across the network.

The actions that can be performed using a linked server are dependent upon the
support of certain interfaces by the OLE DB provider. For example, in order to take
part in distributed transactions, the provider must support the ITransactionJoin OLE
DB interface. Without ITransactionJoin support, only read-only operations are allowed.

When performing a distributed transaction across linked servers, you need a distributed
transaction coordinator to manage the overall commit or rollback operation. Distributed
transaction support is provided by the Microsoft Distributed Transaction Coordinator
(MSDTC). MSDTC runs as a Windows Server service (see Figure 11-41). In order to
create distributed transactions, the MSDTC service must be running.

4 9 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Linked servers are created and managed either graphically using SSMS or by calling
system stored procedures. To create and manage linked servers using T-SQL script, you
need to be aware of the following five procedures:

sp_addlinkedserver Adds a linked server

sp_addlinkedsrvlogin Adds login mappings to the linked server

sp_serveroption Sets server options on linked servers

sp_droplinkedserver Drops a linked server

sp_linkedservers Lists existing linked servers

We are not going to cover the syntax for these procedures as they are well
documented in SQL Server Books Online; instead, we are going to look at the use of
SSMS for creating and managing linked servers. Even if you are a script junkie who
likes to do everything using T-SQL, there is an option in SSMS that allows you to fill
in the prompts via a GUI. You can then use the Script button at the top of the dialog
box to script out the T-SQL that would be executed if you were to click the OK button.
This way, you can see what the Microsoft toolset could do on your behalf. Of course,
after scripting you can amend and run this manually if you want to.

In SSMS, linked servers are located under the Server Objects node in Object
Explorer (see Figure 11-42).

Figure 11-41 Windows services management

C h a p t e r 1 1 : D a t a M o v e m e n t 4 9 9

Under the Linked Servers node, any previously created linked servers are listed
alongside the available OLE DB providers. Opening the Providers node lists all the
currently installed data providers and allows you to set any global properties that would
affect all linked servers using that provider, such as allowing nested queries or disabling ad
hoc access. Right-clicking the Linked Servers node in SSMS presents the option to create
a new linked server graphically. Completing the details in the presented New Linked
Server dialog box and clicking OK will make the relevant calls to sp_addlinkserver,
sp_addlinkedsrvlogin, and sp_serveroptions.

An example of creating the equivalent of a database link between two SQL instances
is shown in Figure 11-43. In this example, we will create a linked server on our default
instance connecting to the DEV instance installed on the same machine. For the security
options, we will specify that we want the credentials of the user making the connection
to the linked server to be passed through to the DEV instance. Finally, we will construct
a query that spans the two servers.

Figure 11-43 shows the New Linked Server dialog box. Because the server we are
connecting to is another SQL Server instance, we start by simply selecting the SQL Server

Figure 11-42 Linked Servers node in SSMS Object Explorer

5 0 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

radio button under Server Type. This removes the need to provide any information to the
data provider other than the name of the destination server. In selecting the SQL Server
option, we are required to set the name of the linked server to the name of the SQL
Server instance we wish to connect to. In this case, because the DEV instance is on the
same machine as the default instance, we have set the name to LOCALHOST\DEV. By
comparison, to connect to Oracle we would have to select the relevant Oracle provider and
complete the other property fields to specify the TNS name to use and so forth.

Next, clicking the Security page on the left side of the dialog box presents us with
options for how we pass security credentials to the remote server (see Figure 11-44).
It is possible to list local logins and to map them to the remote server logins or specify
that SQL should impersonate the user at the remote machine. If you choose not to

Figure 11-43 New Linked Server dialog box, General page

C h a p t e r 1 1 : D a t a M o v e m e n t 5 0 1

use this fine-grained method, you have four other options that are global settings for
anyone who is using the linked server or is not defined explicitly in the list.

Not be made Denies connection by any login that is not listed in the login table.

Be made without using a security context Connections are made without any
credentials passed (that is, connections are anonymous, such as when connecting
to an Excel spreadsheet).

Be made using the login’s current security context Connections are made with
the caller’s credentials passed in.

Be made using this security context Enables you to specify an account the
linked server should use when connecting to the remote data source.

Figure 11-44 New Linked Server dialog box, Security page

5 0 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

For our example, since we are connecting to SQL Server with Windows
authentication and we want to use the same credentials to connect to the linked server,
we will not list any users and will instead select Be Made Using the Login’s Current
Security Context. This will pass through the credentials of the user accessing the linked
server and we will only be allowed access to objects on which we have permissions
defined at the remote server.

NOTE
To allow SQL Server to delegate Windows credentials around a network, some additional setup and checks

are required at both the server and user account level. The user account must not have the Account Is Sensitive

and Cannot Be Delegated option selected in Active Directory, and both of the servers must have SPNs (service

principle names) configured; more information on this can be found in SQL Server Books Online. In the real

world, this is normally something that would require the assistance of your Windows administration team.

Selecting the Server Options page now lets us fine-tune the details around certain
options for our connection (see Figure 11-45). For our example, we are going to accept
the default values, but for reference Table 11-4 contains a brief description of the
common Server Options.

Option Description

Collation Compatible For distributed queries. If this option is set to True, SQL Server assumes that the linked server and

local server are using the same character sets and sort orders; therefore, it will send comparisons

on character columns to the provider for evaluation. If this option is set to False, SQL Server will

evaluate any character comparisons locally.

RPC When set to True enable RPC from the linked server.

RPC Out When set to True enable RPC to the linked server.

Use Remote Collation When set to True, the collation of the remote columns is used for SQL Server data sources and

the collation specified in the Collation Name option is used for non–SQL Server data sources.

The default collation of the local server is used when set to False.

Collation Name Sets the name of the collation used by the remote data source. When the Use Remote Collation

option is set to True and the data source is not a SQL Server data source, the name must be one

of the collations supported by SQL Server.

Use this option when accessing an OLE DB data source that is other than SQL Server but whose

collation matches one of the SQL Server collations.

Connection Timeout Timeout period for connecting to the linked server. A value of 0 uses the configured server default.

Query Timeout Time period before a query times out. A value of 0 uses the configured server default.

Lazy Schema Validation A value of True skips checking the schema of the remote tables at the start of a query.

Enable Promotion of

Distributed Transactions

If set to True, MSDTC will be used to start a distributed transaction when calling a remote stored

procedure.

Table 11-4 Common Server Options for Linked Servers

C h a p t e r 1 1 : D a t a M o v e m e n t 5 0 3

Clicking the OK button creates our linked server. Once created, we can view this
in SSMS. Object Explorer shows the Linked Servers node expanded with the new
LOCALHOST\DEV linked server listed (see Figure 11-46). Drilling down into that
node shows the available catalogs (databases). In the “Import and Export Wizard”
section of this chapter, we used the Import and Export Wizard to create an HR
database and populated this database with tables from our AdventureWorks database;
these tables are now visible through the linked server. To show the linked server in
action, the query window to the right of Object Explorer shows a query taking the
Employee table in the AdventureWorks database on the default instance and then

Figure 11-45 New Linked Server dialog box, Server Options page

5 0 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

joining it to the EmployeeAddress table on the DEV instance. Notice the DEV
instance is referenced using the four-part naming convention of linkedserver.database.
schema.object.

One of the Oracle DBA Q&A questions asked in the “Importing and Exporting
Data” section of this chapter is whether SQL Server has equivalent functionality to the
concept of Oracle external tables: the answer is to use the OPENROWSET method,
which allows OLE DB access to external data sources. OPENROWSET can be used
as an ad hoc method of performing queries across data sources without having to set up
a linked server. Figure 11-47 shows two queries with identical results; the first uses an
OPENROWSET function to create an ad hoc connection to the remote server, and the
second uses the linked server we created in the previous example.

Figure 11-46 Querying across two SQL instances using a linked server

C h a p t e r 1 1 : D a t a M o v e m e n t 5 0 5

From a readability and maintainability perspective, linked servers are the better
choice because if you reference them several times in code and then need to change an
option or setting, you would need to change only the linked server definition, not every
query that contains an OPENROWSET method.

Figure 11-47 OPENROWSET vs. linked server

5 0 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Data Replication
Up until now, all the technologies we have looked at for data movement have been
primarily for bulk movement of data or for passing through queries to other data
sources. What about the scenarios where we need to provide a constant stream of
updates in near real time or create a synchronization model where devices containing
data are only occasionally connected to the network? In Oracle you would build these
solutions using Oracle Data Guard or Oracle Streams. SQL Server has its own set of
technologies to provide these solutions: SQL Server Replication.

Replication in SQL Server allows you to create data replication architectures for
building a variety of solutions ranging from near-real-time incremental data replication
through to scheduled complete data refreshes. SQL Server Replication also allows for a
heterogeneous architecture where Oracle can be used as a data source or destination.

Replication Architecture
Let’s first take a look at a high-level architecture diagram for replication in SQL Server.
Figure 11-48 shows the hierarchical replication model with the three main components:
Publisher, Distributor, and Subscribers. Think of the data flowing from the Publisher to
the Distributor and out to the Subscribers. The Publisher, Distributor, and Subscriber
can be on the same or separate servers and, depending on the replication type being
used (covered shortly), a Subscriber can also push data back up to a Publisher.

Taking a closer look at the components, a Publisher is a server with databases
that are made available for replicating to other servers. A Publisher server contains
publications, which in turn contain articles. An article is a database object—for
example, a table of data or a stored procedure—that you want to make available. Many
articles are grouped together to make a publication that is then subscribed to.

Oracle DBA Q&A

Q: Do I need to create a linked server to query across two databases if they are
in the same instance?

A: No, you can simply reference the table using the qualified path of database.
schema.object. You should also note that cross-database queries do not have the
performance concerns of linked-server queries, and do not require MSDTC to
handle transactions because the databases are all managed by a single instance of
SQL Server.

C h a p t e r 1 1 : D a t a M o v e m e n t 5 0 7

The role of the Distributor is to distribute replication data to the subscribers. Each
Publisher connects to a single Distributor. A single Distributor can act on behalf of
several Publishers. When a server is set up as a Distributor, it will contain a system
database called Distribution that keeps track of the status of publications and metadata
and, in some cases, depending on the replication type, stores the actual data for
distribution. A Distributor and Publisher can be on the same machine or they can be
separated onto different servers.

Subscribers are the end consumers of the publication. A Subscriber is the recipient
of a subscription. A subscription defines the data that the Subscriber will receive and on
what schedule. A subscription can be either push or pull. A push subscription is where the
Distributor pushes updates out to the subscribers without the need for the subscriber to

Figure 11-48 Replication hierarchy

Publisher

Distributor

Subscriber Subscriber Subscriber

5 0 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

request data. This frequency at which the updates can be distributed can be continuous,
on-demand, or on a scheduled basis. A pull subscription allows the Subscriber to determine
when it would like to receive new updates. In a push subscription, the agents that are
responsible for data movement reside at the Distributor; when a pull subscription is
being used, the agent is run at the Subscriber. A Subscriber database can contain data
from multiple publications and, in some replication models, can send data back to the
Publisher.

Replication Types
There are three main replication types in SQL Server, listed next. The type that you
choose depends upon several factors, including the amount of data to transfer, whether
the subscribers need to update the data, and the schedule on which data needs to be
refreshed or updated.

Snapshot

Transactional

Merge

Snapshot replication is the most basic of the replication types. The data that is
marked for publication has a snapshot taken of its current state and this is delivered out
to the subscribers. When a refresh of the data is required, a completely new snapshot
is taken and delivered to the subscriber. Snapshot replication is ideally suited to small
volumes of data in which the data does not require regular refreshing. For example, a
corporate headquarters may decide to maintain its product catalog centrally and deliver
a new copy of the catalog to local branches every night by using snapshot replication.
An advantage that snapshot replication has over the other types is that when changes
are made in the publication database, changes to the data do not need to be tracked
because the data will be completely refreshed, which reduces the resource overhead of
replication on the publisher. The disadvantage to this approach is that as data volumes
increase, so does the time and network bandwidth required to deliver the new snapshot.
Snapshot replication is also used to initialize subscriptions for other replication types.

Transactional replication is typically used for server-to-server configurations, such as
when you require data to be available at the subscriber within a short period of time of
the data being inserted, updated, or deleted at the publisher, normally within seconds.
Transactional replication updates are continually being sent from the publisher to the
subscriber in the original order in which they happened. Transactional replication is
initially set up either by using a snapshot to initialize the dataset at the Subscriber or,
for larger implementations, by restoring a database backup to the subscriber before

C h a p t e r 1 1 : D a t a M o v e m e n t 5 0 9

establishing a replication partnership. By default, transactional replication subscriptions
are read-only, although it is possible to configure “Updating Subscribers” that can send
back updates to the master dataset for subsequent replication back out to all other
subscribers. Transactional replication is often used for creating systems to offload
reporting and batch processing from the main database or to push out near-real-time
updates to branches or stores. It can also be used to simply create remote copies of the
database as part of a disaster recovery strategy.

Merge replication is typically used for server-to-client architectures, where a client
may synchronize data while connected to the network, then go and work offline
with the data, and finally reconnect to a network at some point in the future. When
reconnected to the network, any updates made at the client and server are merged
together. An example scenario for merge replication would be where a traveling
salesperson connects his laptop to the corporate network when in the office to
download the latest product and client data, such as client contact details, from the
corporate Sales application. After the salesperson has visited clients, taken new orders,
or amended client contact details, these datasets are merged back into the corporate
Sales application the next time the salesperson is able to establish a connection.

Merge replication is similar to transactional replication in that a new subscriber is
initialized with a snapshot of the dataset. From there, all changes are tracked at both
server and client level. When the client is reconnected to the network, the data that
has changed is sent up to the publisher, where the datasets are merged. With two
disconnected datasets independently updating their own data, it is likely that conflicts
may occur. Merge replication allows you to create conflict-resolution rules that specify
how to deal with a data conflict.

Figure 11-49 shows the replication objects in SSMS. In this example, a selection of
tables (articles in replication terminology) from the AdventureWorks database has been
published under the publication called AdventureWorks - Sales Data as a transactional
publication. A new subscriber database with the name ADW-Sales has been created on
the same machine and a subscription has been created. The ADW-Sales database has
been expanded to show the tables that are being replicated to it, and the Replication
node in Object Explorer has also been expanded to show the AdventureWorks - Sales
Data publication and the subscription objects. Because this server has taken on all roles
(Publisher, Distributor, and Subscriber), the distribution database is present on this
server, as shown in the System Databases node.

Replication in SQL Server has the ability to work in a heterogeneous environment
where both the Publisher and the Subscribers can be swapped for non-Microsoft
platforms.

At the Publisher, SQL Server supports the use of an Oracle database for both the
snapshot and transactional replication types. This provides an architecture in which Oracle
can be used as the main data Publisher with a SQL Server Distributor and Subscribers.

5 1 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 11-49 Replication management in SSMS

C h a p t e r 1 1 : D a t a M o v e m e n t 5 1 1

To use Oracle as a Publisher, Microsoft provides a script to run on the Oracle database
that creates a user account and the relevant permissions on the schemas that you wish to
publish (you can review the script before running). Oracle publication uses triggers and
tracking tables in this new schema to track changes to the published tables. Once the script
has been run, the process can be completely managed from within SSMS. Oracle will be
available as a publisher so that you can publish tables as articles for your Subscribers.

At the Subscriber end of the solution, it is possible to have non–SQL Server
Subscribers. The two supported non-Microsoft Subscriber types that are used are
Oracle and DB2. Both of these platforms can be used to subscribe to snapshot and
transactional publication types using a push subscription.

Peer-to-Peer Replication
Peer-to-peer replication is used to create scale-out solutions where all peers in the
solution maintain their own copy of the database and propagate changes to each other
as they occur.

In a peer-to-peer topology, each machine is in effect its own Publisher and
Distributor, and at the same time is a Subscriber to all of its peers. It is possible to have
a remote central Distributor, but this is not recommended because it creates a single
point of failure. Peer-to-peer replication uses the transactional replication type to
propagate transactions between each peer in the solution in near real time.

Take the example of a call center for a worldwide company. The company operates on
a global basis providing 24×7 support for its customers. The company has three global
call centers, located in New York, London, and Mumbai. As one call center closes, the
next call center comes online to continue providing service. If a customer telephones the
call center and logs a call with a Mumbai agent, the details of the call must be replicated

Oracle DBA Q&A

Q: If Oracle can be used as a Publisher, does this mean I can create SQL
Server data marts using replication as the method of moving data from my
Oracle-based data warehouse?

A: Yes, this is exactly the type of scenario where Oracle-to-SQL replication
would be useful. If your data marts each had a different focus, such as Sales or
Marketing, you could create publications and articles that only publish the subsets
of data that each mart requires for its reporting requirements.

5 1 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

to both London and New York so that at the end of Mumbai agent’s shift, the call details
are available to the agent in London to carry on working with the customer. London can
pass the call to New York and New York back to Mumbai. In this scenario, if we were to
use the standard hierarchical replication architecture with a single publisher and make all
three call center Subscribers the challenge would be where does the Publisher reside? In
a peer-to-peer model everyone has a copy of the data and if one call center has a failure,
two other call centers are available to take over. Figure 11-50 represents the architecture.

Another purpose for which peer-to-peer replication can be used is load balancing.
Consider the scenario of the corporate website that takes orders from the Web and
provides details on company products. Instead of building one large server to handle all
of the requests, it would be possible to put several servers in a peer-to-peer model and
load-balance the web requests across each server. Figure 11-51 shows an example of

Figure 11-50 Peer-to-peer replication model

London

MumbaiNew York

C h a p t e r 1 1 : D a t a M o v e m e n t 5 1 3

a web farm taking requests from the Internet and then pushing the requests via a
network load balancer to a farm of SQL Server instances. This approach allows for
scale-out of the solution and the ability to take servers down for planned maintenance.
It should be noted that peer-to-peer replication has limited conflict resolution, so
when using peer-to-peer replication in a scale-out solution, it is recommended that the
application guarantee that the same data is not modified on multiple nodes in short
succession.

Figure 11-51 Example of using SQL Server peer-to-peer architecture

The Internet

Web Server Farm

Peer-to-peer
SQL Servers

Network Load Balancer

Network Load Balancer

This page intentionally left blank

Upgrading and Migrating
to SQL Server

Chapter 12

In This Chapter

Upgrading from Older

Versions

Migrating from Other

Databases

5 1 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Administrators upgrade SQL Server databases from older versions for exactly the
same reasons as those used as drivers for upgrading any other database system.
These can include ensuring that a system remains under vendor support and

receives security updates, or taking advantage of new features or performance gains.
Equally common is for IT departments to look to reduce the number of versions of
server products and operating systems that they maintain and to make more efficient use
of their hardware resources. This chapter highlights the different approaches that can be
taken when upgrading SQL Server databases and then looks at how a project might be
planned and executed when the aim is not to move from an older version of SQL Server
but from an entirely different database technology.

This chapter is largely concerned with upgrading to SQL Server 2008. At the time
of writing, SQL Server 2008 R2 is the most recent version, but this is a minor-version
release compared to SQL Server 2008. The implications of this being a minor version
release are discussed in this chapter, but this chapter concentrates on how to move
to the most recent major version of SQL Server, which is 2008. The tools, processes,
and guidance presented in this chapter are equally applicable whether the target of an
upgrade from an older version is SQL Server 2008 or SQL Server 2008 R2. In fact,
apart from when this chapter discusses the differences between 2008 and 2008 R2, the
two versions can be considered interchangeable.

NOTE
For the purposes of this chapter, applying a SQL Server Service Pack is not considered to be an upgrade.

Considerations for applying Service Packs are covered in Chapter 3.

Upgrading from Older Versions
Whatever the driver for upgrading a SQL Server database, the process is the same:
identify or create an instance of the newer version and then add the database to this
instance, upgrading it as you do so. SQL Server provides support for automating some
or all of this process. This section discusses the options available to administrators
looking to upgrade a database, the tools available to help ensure that the project runs as
smoothly as possible, and how to perform any manual tasks that may be carried out.

Upgrade Considerations
Strictly speaking, many upgrade projects don’t upgrade a SQL server installation at all;
instead they create a new installation (often on new hardware) and move the required
databases into the new environments. In this section, we look at the relative merits of
upgrading an existing instance and creating a new installation and highlight some key

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 1 7

SQL Server features that administrators will use when choosing an upgrade strategy
and carrying out the upgrade.

In-Place Upgrade
SQL Server provides the in-place upgrade option to automatically upgrade instances of
SQL Server 2000 and SQL Server 2005, including all user and system databases. An
in-place upgrade installs an instance of SQL Server 2008, upgrades all data files to the
newer format, attaches these files to the new instance, and then stops and uninstalls the
older instance from the server (this includes removing the binaries). With an in-place
upgrade, all instance and database configuration options are preserved.

There are a number of prerequisites and considerations for performing an in-place
upgrade:

Your production environment (the hardware and the operating system) must be
supported with SQL Server 2008.

The earliest version of SQL Server for which you can perform an in-place upgrade
is SQL Server 2000, Service Pack 4 (version 8.00.2039).

Cross-version instances of SQL Server are not supported. This means that version
numbers of the Database Engine, Analysis Services, and Reporting Services
components must be the same within a given instance (Integration Services
is not a per-instance component; see Chapter 3). If your installation contains
components other than the Database Engine, then you must plan to migrate and
test artifacts belonging to these additional components at the same time.

It is not possible to downgrade the instance’s edition as part of a version upgrade.
That is, you cannot move from an edition with greater functionality to one with
lesser functionality during the upgrade. An instance upgrade is permitted. Given
that SQL Server editions represent collections of functionality (as well as available
tools and scalability limits), moving to a higher edition should never result in
a previously used feature becoming unavailable, but you should verify that the
functionality you are currently using is supported in the edition to which you are
upgrading.

Cross-platform upgrade is not supported. You cannot upgrade a 32-bit instance of
SQL Server running on 64-bit hardware to native 64-bit.

You cannot add instance components as you upgrade. Any additional features you
require could be installed at the previous version and then upgraded as part of the
instance upgrade, but it is much more likely that you will carry out the upgrade
first and then add the new components to the upgraded instance.

Situations in which an in-place migration might be recommended are

A large amount of instance or database configuration has been carried out in the
older system. This includes supporting objects such a Logins. With an in-place
migration, these objects and settings will be automatically re-established in the
new instance.

The instance contains a large number of user databases and all must be upgraded
together.

No new hardware is available and clients cannot be modified to accommodate a
change in the instance name or network configuration (see the section “Side-by-
Side Installation” for details of how network settings may need to change).

Side-by-Side Installation
In a side-by-side installation upgrade, a new instance of SQL Server 2008 is installed
alongside the older SQL Server 2000 or SQL Server 2005 instance, either on the same
server or on new hardware, and the data files are manually moved between the two. The
databases are automatically upgraded as they are added to the new instance. Because
the requirements and process for installing a SQL Server instance on new hardware
are covered in Chapter 3, the only other installation scenario we will look at here is
installing a newer version of an instance on the same hardware as an older version. A
key characteristic of such an upgrade is that the new instance cannot have the same
name as the older instance, as there will be a period where they coexist on the same
server. Also, if dynamic ports are not in use (see Chapter 3), then the new instance
must be configured to listen on a different IP address or different port from the older
instance.

Hardware and software prerequisites permitting, instances of SQL Server 2008
can exist on the same hardware as instances from versions 2000 onward and, from
an installation point of view, major versions of SQL Server can be treated as separate
entities with very few dependencies or shared components with other major versions.
The components that are shared between different major versions include:

SQL Server Browser service

SQL Server VSS Writer service

These components are automatically upgraded to the latest version when an instance
of a newer version of SQL Server is installed.

5 1 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 1 9

ON THE JOB
To prevent any potential “downgrade” of these components, if you’re creating a multiversion installation of SQL

Server (for example, as part of a hardware-only refresh), you should install SQL Server versions starting with the

earliest required and finishing with the latest.

SQL Server 2008 R2 shares the same major version number (10) with SQL Server
2008, so there are additional considerations if these two versions are installed side by
side. The list of components that are shared between instances with the same version
number is potentially more significant, including:

The management tools

Integration Services

SQL Server Native Client

SQL Server Upgrade Advisor (discussed later in the chapter)

Installing these components for SQL Server 2008 R2 will replace the 2008 versions
(but only if you select them as part of the installation), and you should test your
existing applications that use these components before putting such a deployment into
production.

Components that are installed per-instance are unchanged in that they have no
impact on any instance (at any version, major or minor) already installed on the server.

Situations where a side-by-side installation might be recommended are

Only some of the existing databases need to be upgraded.

The overall downtime for the database(s) must be minimized. Where there are
a large number of user databases, the automatic in-place migration can take a
long time to complete, and the instance is unavailable during this period. For
a side-by-side migration, the database is only unavailable as the data files are
moved between instances, and an administrator has the option to move different
databases at different times.

Complex application testing is required. A side-by-side installation gives the
opportunity to use the new SQL Server instance for testing before upgrading the
production environment.

Some ability to “roll back” an upgrade is required (see the upcoming section
“Compatibility Levels and Database Versions”).

5 2 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Backward Compatibility
SQL Server considers four categories of change when it comes to differences between
major versions of the product:

Behavior change Behavior changes affect how features work or interact with
each other when compared to earlier versions of SQL Server. For example, several
changes have been made to the optimizer since SQL Server 2005.

Breaking change These changes might break applications, scripts, or
functionalities that are based on earlier versions of SQL Server. For example, the
cpu_ticks_in_ms and sqlserver_start_time_cpu_ticks columns have been removed
from the sys.dm_os_sys_info dynamic management view. Queries referencing
these columns will fail.

Deprecated feature These features are scheduled to be removed in the next, or
a future, release of SQL Server. Deprecated features should not be used in new
applications. For example, the WITH PASSWORD option for the BACKUP
statement has been marked as deprecated.

Discontinued feature These features are no longer available in SQL Server 2008.
For example, in earlier versions of SQL Server, an administrator could issue the
command BACKUP TRANSACTION; this is now replaced by BACKUP LOG.

ON THE JOB
Post upgrade, review all queries containing optimizer hints and all plan guides to ensure that they still provide

a performance benefit. If possible, time should also be set aside to check for missing or superfluous indexes.

Compatibility Levels and Database Versions
SQL Server databases have a configurable option called COMPATIBILITY_LEVEL
that governs how the instance executes commands and queries against the database.
Databases created within an instance always have a compatibility level that represents
the version of that instance, but it is possible for databases moved or copied from older
instances to maintain a compatibility level that represents some older version of SQL
Server.

The compatibility level values that might be found for databases attached to SQL
Server 2008 (and SQL Server 2008 R2) are based upon the product major-version
number:

80 = SQL Server 2000

90 = SQL Server 2005

100 = SQL Server 2008 & SQL Server 2008 R2 (R2 is considered a minor release
and so the version for compatibility remains the same)

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 2 1

Where the compatibility level for a database is lower than that of the instance to which
it is attached, this can provide some partial backward compatibility with earlier versions
of SQL Server and potentially allow clients to continue to use the database post-upgrade
without changes. A full list of changed syntax and behaviors that can be preserved in
a database attached to a SQL Server 2008 instance can be found in the SQL Server
Books Online article “ALTER DATABASE Compatibility Level (Transact-SQL),”
but compatibility level should be used only as an interim migration aid to work around
version differences in these behaviors; you should work toward converting applications
that use changed features to work in accordance with SQL Server 2008. The reasons for
using lower compatibility level only temporarily are

Performance may suffer.

The compatibility level will eventually become discontinued, forcing an upgrade to
the current earliest version. If it is possible, it is usually advantageous to carry out
all upgrade testing and modifications in one project.

Maintenance overhead. Administrators and developers working within a
SQL Server instance need to be aware that certain databases exist at a lower
compatibility level and remember the differences between versions.

Changing the compatibility level and upgrading SQL Server versions both require
testing, so it saves time to do both together.

For example, an application targeting a SQL Server 2000 database may use the *=
and =* operators for outer joins. If the database is added to a SQL Server 2008 instance
with the compatibility level left at 80, the application will not need to be changed.
However, as soon as the compatibility level is changed to 100 (or even 90 in this case),
these particular queries will fail with an error.

The syntax for setting the compatibility level for databases under SQL Server 2008 is

SET COMPATIBILITY_LEVEL = { 80 | 90 | 100 }

The following other compatibility levels exist, but they cannot be used by databases
attached to SQL Server 2008 (or R2) instances:

60 = SQL Server 6.0

65 = SQL Server 6.5

70 = SQL Server 7.0

The new compatibility setting for a database takes effect for queries when the
database is next made current (whether as the default database on login or on being

5 2 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

specified in a USE statement). Changing the compatibility level causes all stored
procedures in a database to be automatically recompiled.

To view the compatibility level for a database, you can query the compatibility_level
column of the sys.databases catalog view:

USE master

GO

SELECT compatibility_level FROM sys.databases

 WHERE name='AdventureWorks2008'

GO

When a database from a SQL Server 2000 or SQL Server 2005 instance is attached
or restored to SQL Server 2008, the compatibility level setting from the older version is
preserved. Databases upgraded from versions earlier than 2000 have their compatibility
level set to 80.

Separate from a database’s compatibility level is its internal version number. Whereas
the compatibility level is largely an indication of how statements issued against the
database are parsed and executed, the internal version represents the format of the
database’s physical data files and can never be anything other than a number relating
to the instance to which the database was last attached. The version of a SQL Server
database is stored in the database header (in the primary data file) and can be returned
by the following query:

USE master

GO

SELECT DATABASEPROPERTYEX(

 'AdventureWorks2008','version')

GO

For a database attached to SQL Server 2008, this query returns the value 655, and
this value will not be changed by setting the compatibility level. When a database
from an earlier version is attached or restored to a newer instance of SQL Server, the
database’s data files are automatically reformatted and the internal version number is
updated. There is backward compatibility when it comes to database versions, but no
forward compatibility, so once a database has been moved to a newer instance (and so
upgraded), it cannot be moved back.

The internal version numbers for SQL Server databases from version 2000 onward
are as follows (note that the physical database version has changed between SQL Server
2008 and SQL Server 2008 R2):

539 = SQL Server 2000

611 = SQL Server 2005

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 2 3

655 = SQL Server 2008

660 = SQL Server 2008 R2

NOTE
To date, the database version supported by a SQL Server instance has never been changed by a Service Pack.

As an example, attaching a database created under SQL Server 2000 to a SQL
Server 2008 instance causes the database file format to be modified to the 2008 format.
Leaving the compatibility level at 80 means that this database can continue to use
features changed or discontinued since version 2000; however, you cannot now take
this database and reattach it to the SQL Server 2000 instance—there is no forward
compatibility between database versions. The error returned when attempting to attach
the database will be similar to

The database 'PUBS.MDF' cannot be opened because it is version 655. This

server supports version 611 and earlier

The key point to take from this is that even after a side-by-side upgrade, once a
database has been put into production and new transactions have been processed, this
database cannot be downgraded. The closest thing to a downgrade that can be achieved
is to put the old database back into production at the point at which the original
upgrade was attempted and copy in the newer data manually.

ON THE JOB
An upgrade from SQL Server 2008 to SQL Server 2008 R2 is a somewhat unique case among SQL Server upgrades

in that the compatibility level has not changed, so you should expect no behavior changes or discontinued

features. However, since the internal database version number has changed, thorough testing is still required

because you will not be able to restore or attach the upgraded database to a SQL Server 2008 instance. This

situation likely will become more common going forward, as Microsoft has publicly stated that it is aiming for a

two-year release cycle for SQL Server, meaning we are likely to see more minor-version releases.

See the section “The Upgrade Process” for details on changing the compatibility level
option after upgrade.

Microsoft Assessment and Planning Toolkit
The Microsoft Assessment and Planning Toolkit can be used to discover many
different Microsoft services and products running within an organization and is often
used as part of virtualization projects. It can be used to discover SQL Server instances
and their versions and can aid the planning and analysis phases of large (many instances
and databases) upgrade projects.

5 2 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Specifically, it can

Discover servers and clients. It provides detailed information as to components
installed, including version and edition. It also details the host environment, such
as the hardware platform and the operating system version and edition.

Conduct assessments. Conducts assessments of the upgrade effort, taking into
account the host hardware and operating system environment.

Automatically generate reports and proposals to support the upgrade case.

SQL Server Upgrade Advisor
Microsoft SQL Server 2008 Upgrade Advisor analyzes instances of SQL Server 2000
and SQL Server 2005 in preparation for upgrading to SQL Server 2008. Upgrade
Advisor identifies feature and configuration changes that might affect an upgrade,
and it provides links to documentation that describes each identified issue and how to
resolve it. It is available as a stand-alone download from the Microsoft website or it can
be installed from the SQL Server installation media. Microsoft strongly recommends
that you run Upgrade Advisor before upgrading to SQL Server 2008. SQL Server
2008 R2 Upgrade Advisor will also analyze SQL Server 2008 instances, but as there
are no breaking changes, behavior changes, or deprecated or discontinued features listed
between 2008 and 2008 R2, you should expect only very minor issues to be reported.
These are likely to be that shared components will be upgraded, as described in the
earlier section “Backward Compatibility.”

The location where you should install SQL Server Upgrade Advisor depends on
what you will be analyzing. Upgrade Advisor supports remote analysis of all supported
components except Reporting Services. If you are not scanning instances of Reporting
Services, you can install Upgrade Advisor on any computer that can connect to your
instance of SQL Server. If you are scanning instances of Reporting Services, you must
install Upgrade Advisor on the report server.

Running the Wizard
Upon running Upgrade Advisor from the Start menu, it gives you two options: to
launch the Upgrade Advisor Analysis Wizard, or to launch the Upgrade Advisor
Report Viewer to view the results of a previous analysis.

If you launch the Analysis Wizard, you can specify a server (computer) name and select
which types of SQL Server components should be analyzed, as shown in Figure 12-1.

Clicking Detect causes Upgrade Advisor to preselect each component found on the
server in question, and these components can belong to any of the applicable versions.

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 2 5

There are a couple of prerequisites to analyzing some of the SQL Server 2000
components:

SQL Server 2000 Decision Support Objects (DSO) must be installed on the
Upgrade Advisor computer if you are analyzing Analysis Services. You can install
DSO from the SQL Server 2000 installation media.

SQL Server 2000 client components must be installed on the Upgrade Advisor
computer if you are analyzing Data Transformation Services. You can install the
client components from the SQL Server 2000 installation media.

Clicking Next gives you the opportunity to select a particular SQL Server instance
to analyze. In this example, we will be analyzing a named SQL Server 2000 instance
called LEGACY. In addition, for this example only, SQL Server Database Engine
components are being inspected.

Figure 12-1 Selecting components for analysis

5 2 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

As shown in Figure 12-2, we can now select to analyze some or all of the application
databases present in this instance. In all cases, the system databases master, model,
tempdb, and msdb will also be analyzed. Here we have selected only the pubs database,
which is a sample database shipped with SQL Server 2000; in this example, some
changes have been made to this database to deliberately introduce errors that will be
reported by Upgrade Advisor. Analyzing the pubs database in its original state will
cause fewer errors to be reported than those shown in this section.

Another very useful feature of Upgrade Advisor, also shown in Figure 12-2, is the
facility to provide both trace files and SQL batch files for analysis. While Upgrade
Advisor will inspect procedures, functions, and views found within the target database
for SQL syntax and statements that are incompatible with SQL Server 2008, this
inspection will miss any incompatible SQL embedded within, or generated by, a client
application.

By using SQL Server Profiler (or SQL Trace, as it was known in version 2000) to
trace user activity against the database or, if possible, providing a batch file containing

Figure 12-2 Selecting a database for upgrade analysis

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 2 7

the SQL statements that an application issues, it is possible to include these queries in
the Upgrade Advisor analysis.

Upgrade Advisor can take some time to complete its analysis (for the Database
Engine, over 100 rules are evaluated for each database). The results are automatically
saved as an XML file under your Documents folder.

Viewing Upgrade Reports
The Upgrade Advisor Report Viewer (shown in Figure 12-3) can be launched either
from the Analysis Complete page of the Analysis Wizard or at a later time from the

Figure 12-3 Upgrade analysis results

5 2 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

main screen of Upgrade Advisor. However the Report Viewer is launched, the results of
the last analysis are automatically opened.

As you can see in Figure 12-3, detected issues are categorized as either errors or
warnings and, where appropriate, advice is given as to whether the issue should be
resolved before or after the upgrade is carried out. Of the issues shown in Figure 12-3,
several relate to the Full-Text Search feature, which has undergone significant changes
since version 2000. An administrator will need to ensure that any applications that
use this feature are thoroughly tested prior to an upgrade. The remaining errors and
warnings highlight areas in which the database and instance would need to be changed
(and those changes tested) to ensure a successful upgrade.

Finally, a report might contain an “Other Database Engine upgrade issues” item.
Expanding this item gives a link to a list of issues that are not detected by Upgrade
Advisor but might exist within databases, instances, or applications. This list is in the
help file for Upgrade Advisor. You should review the list of undetectable issues and
determine whether any changes need to be made due to these undetectable issues.

The Upgrade Process
Carrying out an in-place upgrade using the Upgrade Wizard is a relatively simple
process, with a number of screens that capture the required information from you,
followed by an automated process of making the required changes on the target server.
For the sake of brevity, each wizard screen is not described in detail here. We will
continue to use the example scenario of upgrading from SQL Server 2000 to SQL
Server 2008 and look at the options available to the administrator carrying out the
upgrade. The process would be identical if we were upgrading from SQL Server 2005.

Figure 12-4 shows a SQL Server installation root directory (C:\Program Files\
Microsoft SQL Server) containing a default SQL Server 2008 instance root
(MSSQLSERVER) and a named SQL Server 2000 instance root (LEGACY).

To upgrade this SQL Server 2000 instance and all of its system and user databases,
the Upgrade Wizard launches a process that is initially identical to that of using the
SQL Server Installation Center to install a new instance, namely:

1. The upgrade executables are loaded.

2. Setup support rules are checked, this time to identify any potential problems that
would prevent launching the Upgrade Wizard.

3. You are asked to supply a product key for the SQL Server 2008 installation.

You are then asked to select which of the existing SQL Server instances should be
upgraded. As shown in Figure 12-5, all instances and shared components present
on a server are listed, although only those at version 2000 or 2005 are available for
selection.

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 2 9

The remaining process is

4. Provide an Instance ID for the SQL Server 2008 instance. This option is available
because you are upgrading a named instance. The instance name cannot be
changed using the Upgrade Wizard, and the instance ID defaults to the instance
name; however, you are free to choose another ID. Note that you do not need to
supply any version-specific prefix (for example, MSSQL10); this will be added
automatically where necessary.

5. Review the disk space requirements. Note that the Upgrade Wizard leaves all data
and log files in their current location, even though a new instance root will be
created for the SQL Server 2008 binaries.

Figure 12-4 A SQL Server 2000 instance root

5 3 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

6. Review service accounts. The identities associated with SQL Server services will
not be changed by the upgrade process. Where services are installed as part of the
upgrade that did not exist in SQL Server 2000 or SQL Server 2005, these will be
configured to use a default built-in account (usually Local System).

7. Choose how existing full-text catalogs will be upgraded. The options are to import
the catalogs without using the enhanced functionality found in SQL Server 2008,
or allow SQL Server 2008 to repopulate these catalogs using the new features.

8. Based on all of the choices made in the preceding steps, the upgrade rules are
checked to validate whether any issues will cause the upgrade process to fail.

9. The automatic upgrade process starts.

Once complete, any errors are reported to you and are logged to a file. However,
assuming that no errors have been raised, you should now see a SQL Server installation
root, as shown in Figure 12-6.

Figure 12-5 Selecting an instance for upgrade

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 3 1

The SQL Server 2008 instance root MSSQL10.LEGACY has now been created
in addition to the existing MSSQL$LEGACY root. By comparing Figure 12-6
with Figure 12-4, you can see that the SQL Server 2000 root (MSSQL$LEGACY)
no longer contains a Binn directory; these binaries have been removed as part of
uninstalling the SQL Server 2000 instance. However, other directories such as Data
have been preserved, and it is very important to remember that, at this point in the
example, this Data directory still contains your data and log files, despite the fact
that they have been upgraded and added to the new SQL Server 2008 instance.
Also, you have to assume that your backups likely are still being written to the
MSSQL$LEGACY\Backup directory.

Figure 12-6 SQL Server 2000 instance root post-upgrade

5 3 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

ON THE JOB
Clearly, leaving data files and other artifacts in the instance root of an uninstalled instance is undesirable. You

should move database files to the appropriate location in accordance with your physical data design, and you

should review maintenance plans for references to directories within this old root. Moving user databases is

a straightforward process that has been covered in Chapter 11; however, remember that the instance system

databases also will not have been moved during the upgrade. See the Books Online article “Moving System

Databases” for details of how to move these databases to the required new location.

Errors during an instance upgrade are not rolled back. Although data files are not
removed from the older instance directory, thus preserving the data, it is very possible
that the binaries will have been removed and all services will have been uninstalled,
meaning that a new installation is the only way of recovering from the error. This is one
reason that side-by-side upgrades are more common in enterprise environments.

Manual Database Upgrade
If you are carrying out a side-by-side installation or have established a new SQL Server
instance on new hardware (or identified an existing one as a host), then there is no need
to run the Upgrade Wizard. After the new instance has been installed, the remaining
tasks are to ensure that all required features and configurations are present in the new
instance and to move the required user databases(s) (new system databases will have
been created when installing the new instance) to the new environment.

There is no automatic way to re-create the configuration of one SQL Server instance
on another when manually upgrading. If the older system is SQL Server 2005, then
you have features such as the Management Studio built-in reports that can summarize
the configurations applied to a system, but if you are upgrading from SQL Server 2000
or earlier, then you will likely need to use sp_configure (as described in Chapter 3) to
report the configuration options on the older instance, ensure that these options are
valid for your SQL Server 2008 installation, and apply them to this instance.

A very common requirement when moving databases between instances is to re-
create Logins from the source instance in the destination, and this remains true for
manual upgrades. The document “How to Transfer Logins and Passwords Between
Instances of SQL Server” (Article ID: 246133), available from http://support.microsoft.
com, details transferring Logins between instances of SQL Server 2005/2008 and
between older versions and these instances. Additionally, the Transfer Logins Task in
SSIS can be used for this purpose.

Having configured the destination instance, the options for moving user databases
are to move the data and log files by detaching, copying, and reattaching them or to
back up the database in the old instance and restore it to the new instance. Both of
these techniques are described elsewhere—moving a database in Chapter 11, and

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 3 3

backing up and restoring databases in Chapter 7—so we will not detail these processes
here. As covered earlier in the section “Backward Compatibility,” adding a database
from an older instance to an instance of SQL Server 2008 does not automatically
change the compatibility level flag, so at the point that you are ready to make this
change, the recommended procedure is

1. Set the database to single-user access mode.

2. Change the compatibility level of the database.

3. Put the database in multiuser access mode.

Following is an example of the code for this procedure:

ALTER DATABASE Adventureworks2008 SET SINGLE_USER

GO

ALTER DATABASE Adventureworks2008 SET COMPATIBILITY_LEVEL=100

GO

ALTER DATABASE Adventureworks2008 SET MULTI_USER

GO

As a final point, whether upgrading in-place or manually, the document “SQL Server
2008 Upgrade Technical Reference Guide” (available from the Microsoft website)
contains detailed guidance on upgrading from SQL Server 2000 and SQL Server 2005
to SQL Server 2008. This guide includes scenarios such as clustered installations and
also covers migrating Analysis Services, Reporting Services, and Integration Services
components.

Migrating from Other Databases
So far we’ve looked at migrating databases from older versions of SQL Server. In this
section we’ll look at how to migrate a database from another database technology
to SQL Server. The most common scenario in which you might undertake such
a migration is where a business application has been developed in house and
you determine that a change in the database technology can make available new
functionality or realize cost savings. Carrying out a database migration can clearly
be a very complex undertaking and one that requires detailed planning and specialist
resources. However, tools are available that can reduce the required effort in certain
circumstances, and we will look at one of them: the SQL Server Migration Assistant
(SSMA) in this section. Separate tools and processes exist for migrating Reporting
Services, Analysis Services, and Integration Services artifacts.

5 3 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Migration Tasks
Broadly speaking, a database migration project is likely to contain the following phases:

Planning Assessing the business goals and defining the scope of the project;
establishing project roles and responsibilities; carrying out risk assessments; and
developing a project schedule.

Architecture migration Designing and building a SQL Server environment
that is equivalent to that of the existing database. Sufficient hardware and
software resources need to be made available to support the required database
characteristics, and this may include functionality found outside of SQL Server
such as third-party backup products or features of the operating system that
aid resilience and availability. It is likely that particular attention will need to be
paid at this point to configuring storage hardware and developing a physical data
design.

Schema migration Migrating the database objects, including both storage and
programmatic objects.

User migration Ensuring that all users and applications can access the new
database with the required levels of access and privilege.

Data migration Designing the processes and configuring or building the tools
that will move the business data from the old database to the new database. This
may be carried out in phases or all at once, but either way is likely to require a
planned outage of the production environment.

Testing Ensuring that each of the preceding phases has met its aims as defined
in the planning phase.

It is a common mistake for teams to concentrate on only one or two of these
activities at the expense of the others, usually as a result of the background of the team
members (application developers will likely focus on migrating the schema, whereas
server administrators will likely concentrate on establishing the new environment).
Therefore, it is very important to ensure that the project team comprises representatives
of as many different disciplines as possible. On large projects this will include
Project Management, Application Development, Server Administration, Network
Administration, Storage Specialists, and, of course, Database Administration.

Perhaps the other single biggest potential trap is for each of the preceding project
activities to be treated separately or even run consecutively. This kind of approach has
fallen out of fashion in software development projects for many well-documented
reasons that don’t need to be restated here, but there are a couple of reasons specific to

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 3 5

database migration projects that we will look at. Taking an iterative approach to schema
migration, data migration, and testing will reduce project effort in two ways.

First, the iterative approach is likely to identify redundant objects that do not require
migration. This is achieved by taking the applications that interact with the database
as a starting point for identifying the sets of objects to be migrated, rather than simply
working through a list comprising every object in the existing database. The aim is
to break down the application(s) into a list of features, each of which represents a
discrete user interaction—this might be logging on to the system, performing a search,
or running a particular report—and often these features will be closely aligned to
individual screens within the application.

By analyzing the application source or by using the appropriate tools to trace the
interaction between the application and the existing database (for an Oracle database,
the V$SQL table would be a good starting point), it should be possible to identify those
objects that are called as a result of the user actions. Testing will identify further objects
that were missed during the initial analysis, but by taking this approach, only objects
that are in current use by your application(s) will be migrated, not those that belong
to deprecated features, older versions of applications, or even applications that are no
longer in use.

The second way in which the iterative approach reduces effort is that “errors” in the
new database will be identified much sooner and will be much cheaper to fix. In the
scenario where objects are migrated by category (for example, all the user-defined data
types and functions), followed by all the tables, all the views, and then all the procedures,
it is highly likely that nothing can be tested until, at best, procedure migration is under
way. At this point, it can be very difficult to marry subtle behavioral differences between
the old and new databases to migration decisions that were taken several weeks or
months ago, especially where complex combinations of procedures, views, tables, and
indexes are all working together to deliver application functionality. By migrating small
sets of various types of object (and where necessary their data) and testing using an
instance of the application that targets the evolving SQL Server database, it is possible
to pick up functional and performance issues far sooner and correct them far more
effectively.

SQL Server Migration Assistant
SQL Server Migration Assistant (SSMA) is a tool that can automate schema
migration, data migration, and testing tasks when migrating databases to SQL Server
from Oracle, Sybase, MySQL, and Microsoft Access. SSMA is freely available to
download from the Microsoft website.

While it is unlikely that any automated tool will entirely remove the need for manual
effort when migrating databases from one technology to another, there are several

5 3 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

features of SSMA that make it a very useful addition to any SQL Server migration
project:

It can work while disconnected from both the source and destination databases.
SSMA builds an internal representation (which it calls a metabase) of both the
source and destination databases. Once the source metabase has been created, you
are free to disconnect from the source database, potentially minimizing the time
spent impacting a production system and eliminating the need to create a new
database instance to support the migration project. New SQL Server objects are
created in the target metabase and only pushed to the destination SQL Server
database when required.

It can create a detailed assessment of the amount of effort associated with a
database migration, highlighting where manual work will be required and the
exact nature of those elements that will not be automatically migrated. Although
it is unlikely you will build a project schedule around the effort estimates
generated, these assessments are very useful in highlighting frequently occurring
issues in a migration before the project starts.

It can migrate all types of database object, including programmatic objects.
Where an object cannot be migrated entirely (usually in the case of a procedure or
function), a “stub” object is created, making it as easy as possible for a developer or
administrator to visit the object and correct the issue.

This section doesn’t give detailed instructions on using SSMA to migrate a database,
but it does take a high-level look at migrating Oracle’s sample HR schema to SQL
Server. Figure 12-7 shows an SSMA project named LegacyMigration; the schema objects
have been loaded into the source metabase (although we are still connected to the Oracle
database, we could disconnect at this point) and we can now start to set global project
preferences such as how we wish to map Oracle data types to SQL Server data types.

Following are particular points to note for Oracle migrations:

SSMA can create objects to emulate Oracle system views in SQL Server. The
following Oracle system views can be automatically created by SSMA (they will
be created in SQL Server when a reference to the view is encountered in the
source database):

ALL_CONSTRAINTS ALL_SEQUENCES

ALL_INDEXES ALL_SOURCE

ALL_JOBS ALL_SYNONYMS

ALL_OBJECTS ALL_TAB_COLUMNS

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 3 7

ALL_TABLES DBA_INDEXES

ALL_USERS DBA_JOBS

ALL_VIEWS DBA_OBJECTS

DBA_CONSTRAINTS DBA_SEQUENCES

Figure 12-7 Oracle’s HR schema in SSMA

5 3 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

DBA_SOURCE DBA_USERS

DBA_SYNONYMS DBA_VIEWS

DBA_TAB_COLUMNS GLOBAL_NAME

DBA_TABLES V$SESSION

SSMA will create tables and procedures to emulate, as far as possible, Oracle
Sequences. Having done this, queries and procedures can continue to use methods
such as NEXTVAL.

SSMA seeks to migrate packaged procedures and functions (which don’t exist in
SQL Server) by using a naming convention (MyPackage.MyProc becomes a SQL
Server stored procedure called MyPackage$MyProc) and by, again, creating tables
and procedures to emulate the behavior of package-level variables.

Having populated the source metabase, clicking Convert Schema causes SSMA
to build SQL Server representations of the selected (or all) objects within its internal
target metabase. From here, they can be inspected and, depending upon the type of
object, edited or SSMA options can be altered prior to re-running the conversion.
Figure 12-8 shows the result of migrating the HR schema and, in particular, the
procedure SECURE_DML from Oracle to SQL Server (the SQL Server code is in
the lower pane). At this point you can see a reference to a function called to_char_date
that has been created in a database called sysdb and in a schema called ssma_oracle.

To take a slightly more detailed look at migrating PL/SQL code, the Oracle and
SQL Server versions of SECURE_DML are reproduced next.

Oracle:

CREATE OR REPLACE PROCEDURE secure_dml

IS

BEGIN

 IF TO_CHAR (SYSDATE, 'HH24:MI') NOT BETWEEN '08:00' AND '18:00'

 OR TO_CHAR (SYSDATE, 'DY') IN ('SAT', 'SUN') THEN

 RAISE_APPLICATION_ERROR (-20205,

 'You may only make changes during normal office hours');

 END IF;

END secure_dml;

SQL Server:

CREATE PROCEDURE dbo.SECURE_DML

AS

 /*

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 3 9

 * Generated by SQL Server Migration Assistant for Oracle.

 * Contact ora2sql@microsoft.com or visit

 http://www.microsoft.com/sql/migration for more information.

 */

Figure 12-8 SQL Server objects built from the HR schema

5 4 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

 BEGIN

 IF sysdb.ssma_oracle.to_char_date(sysdatetime(), 'HH24:MI')

NOT BETWEEN '08:00' AND '18:00' OR sysdb.ssma_oracle.to_char_date(

sysdatetime(), 'DY') IN ('SAT', 'SUN')

 BEGIN

 DECLARE

 @db_raise_application_error_message nvarchar(4000)

 SET @db_raise_application_error_message = N'ORA' +

CAST(-20205 AS nvarchar) + N': ' + N'You may only make

changes during normal office hours'

 RAISERROR(59998, 16, 1, @db_raise_application_error_message)

 END

 END

GO

This is actually an example of a situation where an administrator might decide that
the generated SQL Server implementation, while faithful to the original PL/SQL, does
not represent the best approach. It is possible to avoid the call to the emulated Oracle
function altogether and simply specify the initial IF statement as

IF DATEPART(hh, sysdatetime()) NOT BETWEEN 8

AND 18 OR DATEPART(dw, sysdatetime()) NOT BETWEEN 2 AND 6

NOTE
Under U.S. English settings, Sunday is considered the first day of the week and Saturday the last. The SET

DATEFIRST option can be used to alter this behavior.

This should highlight that even when tools such as SSMA are able to migrate
database objects, there is usually still a requirement for the output to be reviewed by an
experienced SQL Server developer or administrator.

If there are statements or constructs within a block of PL/SQL code that SSMA
cannot automatically migrate, the procedure or function will still be created within the
target metabase with the code in question inserted at the appropriate point within a
comment block that describes the error. For example:

 /*

 * SSMA error messages:

 * O2SS0404: ROWID column can not be converted in this

context because the referenced table has no triggers and

ROWID column will not be generated.

 SELECT rowid INTO @p_retval

 FROM JOB_HISTORY

 */

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 4 1

Because valid objects are always created (even if they have not been completely
migrated and will not yet function as required), you have the option of carrying out the
required changes within SSMA, in which case you are editing the metabase, or pushing
the procedure to SQL Server as it is and then editing the object. Given the richness
of SQL Server Management Studio and the features for team database development
present in the Visual Studio Team System, the recommendation would usually be to
move partially migrated objects to SQL Server as soon as possible and edit them in
place.

When you are happy that you have built a set of SQL Server objects that you are ready
to test, SSMA can create them in your destination SQL Server instance. Figure 12-9
shows the Synchronize with the Database dialog box, where you can view and alter which
migrated objects will be pushed to your SQL Server database.

In this example, no objects have been created in the SQL Server database yet, so
each object is listed as Not Found in the Database column. Things become more
interesting when objects already exist in SQL Server. In this case, SSMA evaluates
whether the database or the SSMA target metabase contains the newer version of an
object and will synchronize accordingly. This means that you can amend objects in
SQL Server, potentially test them as well, and then have this newer version pushed back
into the metabase. You have manual control over the synchronization of each object,
meaning you can omit objects from synchronization, if required, or force an older
version to replace a newer one (for example, to abandon a change made to an object
in the database). Figure 12-10 shows the migrated HR objects in SQL Server Object
Explorer.

Oracle DBA Q&A

Q: Most applications contain at least some SQL statements embedded into
the application itself. How can SSMA help with migrating these?

A: This will still be a challenge for anyone migrating such an application. SSMA
can’t discover SQL statements in your application, but if they can be found either by
analyzing the code using other tools or by tracing or inspecting session histories, then
these SQL statements can be added to your SSMA project (as Statement objects)
and then included in the automated analysis and conversion. Only you will be able to
determine whether the effort required to capture these statements and add them to
SSMA is outweighed by the savings made in automatically converting them.

5 4 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Data Migration
SSMA can be used to migrate data from the existing database to SQL Server. This
built-in functionality can prove very useful as part of the development cycle to allow
for testing of migrated objects. One thing does need to be kept in mind: data migration
functionality is implemented as a set of procedures and SQL Agent Jobs within the
SQL Server database (the functionality does not reside within SSMA itself). This
means that even though you have not needed any kind of direct connectivity between
your source database and the new SQL Server before now, you will need to establish
such a connection at this point. In our Oracle HR example, SQL Server will use the
.NET Framework Data Provider for Oracle (which, in turn, uses Oracle Call Interface)
to access the data in as efficient a manner as possible. SSMA validates the outcome of
any data migration and presents the results to the user.

Figure 12-9 Creating migrated objects in SQL Server

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 4 3

Before the migration starts, SSMA calculates the number of rows in each table that
will be migrated, and after the migration completes, SSMA compares this with the
target table’s row count. If they are equal, the overall migration result is considered to
be successful. Otherwise, the user is notified of the discrepancy and can view the source
and destination counts.

ON THE JOB
Despite being optimized for efficient data transfer, SSMA’s data migration does not provide any facilities for

validating the content of the transferred data or carrying out any of the other activities that you might associate

with the migration of production business data, such as de-duplication or other kinds of cleansing. For this

reason, many projects include the development of routines in a tool such as SQL Server Integration Services to

carry out complex extract, transform, and load (ETL) tasks as part of the overall project plan. See Chapter 11 for

details of how SSIS can be used to move and copy data.

Figure 12-10 Migrated HR schema objects in SQL Server Object Explorer

Automated Testing
The final way in which SSMA can aid a migration project is by enabling automated
testing of migrated database objects. SSMA users can build libraries of tests against any
or all functions, procedures, tables and views in the evolving SQL Server database (this
test configuration information is stored in a separate SQL Server database that can be
dropped when testing is complete).

Figure 12-11 shows a test being created that makes two different calls to the
procedure ADD_JOB_HISTORY, passing different parameters each time. These
procedure calls will be executed against both the source database and SQL Server and
the results will be compared. Whatever the type of object being tested, SSMA attempts
to analyze the object to determine which other objects may be called and where data
may be changed in the database. In this example, SSMA will determine that the table
JOB_HISTORY is updated as a result of a call to ADD_JOB_HISTORY and, as well
as capturing any exceptions raised as a result of the procedure calls on both the source

5 4 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Figure 12-11 Testing migrated objects using SSMA

C h a p t e r 1 2 : U p g r a d i n g a n d M i g r a t i n g t o S Q L S e r v e r 5 4 5

and destination systems, will also inspect this table on both systems to ensure that the
data is identical at the end of the test.

Test results for each test run are also stored alongside the test configuration data and
can be returned using the SSMA interface at any time. Unfortunately, tests must be run
interactively (there is no facility for scheduling test runs), but this kind of object-level
testing is still a very useful tool during the development of the SQL Server database.
Having said this, another area not covered by SSMA tests is performance—there is no
way to gauge whether calls to supposedly equivalent objects in the source and destination
systems have the same response times, for example. With this in mind, migration
projects will usually still employ significant application-level testing.

The Migration section of the SQL Server website (http://www.microsoft.com/
sqlserver/2008/en/us/migration.aspx) contains many detailed guides on migrating from
other databases to SQL Server.

This page intentionally left blank

547

Index

Numbers
32-bit vs. 64-bit memory, 55–57

A
Account Provisioning tab, of Database Engine

Configuration page, 87

accounts, multiple e-mail, 382

Activity Monitor

Data File I/O panel, 320

monitoring query execution, 225–226

overview of, 317–318

Processes panel, 318–319

Recent Expensive Queries panel, 320

Resource Waits panel, 319–320

viewing session activity with, 247–249

Add Primary Key button, 141–142

Add Table dialog, 152

ADMINISTRATOR BULK OPERATIONS permission, 446

administrators

bulk operations permissions, 446

specifying during SQL Server installation, 87

advanced installation, SQL Server failover cluster, 362

Advanced page, SQL Server Agent, 398–399

AFTER trigger, 122

Alert System page, SQL Server Agent, 383

alerts

automated, 250, 381–383

choosing delay between responses, 404, 407

configuring response options, 403–404, 406

creating, updating and deleting, 405–408

creating for own errors, 408–409

creating with SSMS, 402–403

managing notifications, 406–408

overview of, 401–402

starting jobs based on SQL Server, 392

viewing history, 408–409

aliases

creating, 96

specifying operators in SQL Server Agent as, 383–385

ALTER INDEX statement, 149

ALTER LOGIN statement, 173

ALTER TABLE permission, 444

Analysis Services. See SSAS (SQL Server Analysis Services)

Analysis Wizard. See Upgrade Advisor Analysis Wizard

application roles, 183–184

architecture

client/server communication, 60–65

database. See also database architecture

failover clustering, 357–358

Fast Track reference, 5

high-level, 28–32

instances. See instances

massively parallel processing, 6

MDW (Management Data Warehouse), 341–342

SQL Server replication, 506–508

ARCHIVELOG mode (Oracle), 253, 255

asymmetric keys, 189

ASYNC_I/O COMPLETION wait type, 325

atomicity, in transaction management, 228

Attach Databases dialog box, SSMS, 481–484

Audit Action object, 203

Audit object, 203

Audit Specification object, 203

auditing

C2 ratings and, 199–201

Common Criteria for Information Technology

Security Evaluation, 202

5 4 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

auditing (cont.)

creating SQL Server audit objects, 203–208

login auditing, 198–199

overview of, 197–198

SQL Server instances and, 202–203

types of audit objects, 203

authentication

principals and, 167

selecting Windows Mode or Mixed Mode, 87

auto-commit transactions, 229

automated alerts, 250

automated testing

migration to SQL Server 2008, 544–545

SSMA, 545

automatic failover

overview of, 366–367

setting up, 367–374

automatic page repair, between mirrored databases, 356

available MBytes counter, Perfmon, 314

AWE, 58–59

B
background processes (threads), 53–55

BACKUP statements

destination options, 262–263

WITH options in, 265–266

performing backups, 259

backups. See also recovery

cold standby solutions, 349

compression, 268–270

compression of, 353

copy-only, 268

database, 259–261

destinations for, 262–264

directory for, 89

example scenarios, 278–281

history of, 271–272

integrity of, 270

log shipping, 349–353

logical, 255

maintenance plans and, 273

media used with backup sets, 266–268

moving/copying entire database with, 492–496

offline, 256

online, 256–258

WITH options in BACKUP statements, 265–266

overview of, 252

performing, 259, 264–265

permissions, 272

physical, 255–256

resilience of, 265

scheduling, 273

securing, 272–273

SSMS for performing, 273–276

of system databases, 277–278, 423–424

transaction log backup, 261–262

backward compatibility, compatibility levels and database

versions, 520–521

balanced architecture, Fast Track design, 5

balanced trees (b-trees), for implementing clustered and

nonclustered indexes, 124–125

Batch Requests/sec chart, in Activity Monitor, 318

BCM (Bulk Change Map), 38

BCP (Bulk Copy Program), 444

BULK INSERT statement vs., 446–447

command components, 440

connection and security parameters, 441

example of, 439–440

impact on import/export performance, 477–478

logical backups, 255

operating modes, 443–444

SQL*Loader for Oracle vs., 439

SSIS package vs., 456

switches, 441–442

using SELECT query to extract data, 444–445

Windows batch process using, 445

behavior changes, backward compatibility and, 520

BI (Business Intelligence)

introduction to, 16–17

SSMS managing, 9

strength of Microsoft in, 453

BIDS (Business Intelligence Development Studio)

creating SSIS packages, 451–456

modifying SSIS packages, 462

overview of, 450–451

binary data types, 132

I n d e x 5 4 9

blogs, Microsoft, 460–461

Books Online

achieving optimal load performance, 478

advanced SSIS topics, 461

ALTER DATABASE Compatibility Level, 521

BCP parameters, 443

BULK INSERT, 446–447

creating/managing linked servers in T-SQL script, 498

details of performance counters and objects, 403, 405

introduction to, 457

jobs, 386

breaking changes, backward compatibility and, 520

Browser service, SQL Server, 64, 518–519

b-trees (balanced trees), for implementing clustered and

nonclustered indexes, 124–125

Buffer Manager, 315

buffer pool (Oracle), comparing with data cache in SQL

Server, 59–60

Bulk Change Map (BCM), 38

BULK INSERT statement

impact on import/export performance, 477–478

importing and exporting data with, 446–450

SSIS package vs., 456

BULK_LOGGED recovery model

impacting import/export performance, 475

overview of, 253

transaction log backup and, 261–262

Business Intelligence. See BI (Business Intelligence)

Business Intelligence Development Studio. See BIDS

(Business Intelligence Development Studio)

C
-c (character mode), BCP, 443

C2 (Controlled Access Protection), DoD security ratings,

199–201

Categories, Policy-Based Management, 426

categories, SQL Server jobs, 396

CDW (Copy Database Wizard)

database selection, 487, 489

destination database configuration, 488, 490

getting started, 487

overview of, 487

package configuration, 490, 492

package scheduling, 490, 493

progress feedback, 491, 495

selection of dependent server objects, 489, 491

selection of transfer method, 487–488

summary screen, 491, 494

CEP (complex event processing), with StreamInsight,

453–454

certificates, public key, 190

character data types, 128–129

CHECK_CONSTRAINTS

BCP fast/slow modes and, 443

permissions required for, 444

checkpoints, background tasks in SQL Server, 54

checksum

for testing backup integrity, 270

for testing restore integrity, 296

Choose a Data Source, Import and Export Wizard, 464–465

Choose a Destination, Import and Export Wizard, 464–466

clients

client components available on installation media, 71

client network configuration, 93–96

transparent client redirection following automatic

failover, 367

client/server communication, 60–65

how connections are established, 62–64

in Oracle, 60–61

processing client requests, 64–65

in SQL Server, 61

client-side traces, 332

clipboard, copying result sets in SSMS to Windows

clipboard, 473–474

cloud-based computing, 4

CLR (common runtime language)

procedures, 121

SQLOS layer hosting, 52

clustered indexes, 124–125

clustered servers. See failover clustering

CodePlex website, 460

cold standby solutions, 349

collation order, for character data, 128–129

columns

encrypting, 191–194

identity columns, 124

monitoring query execution and, 225–226

5 5 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

command-line commands

importing/exporting with BCP, 440

running SSIS package with dtexec.exe, 458–459

commands, executing SQL commands and scripts, 104

Common Criteria for Information Technology Security

Evaluation, 202

common runtime language (CLR)

procedures, 121

SQLOS layer hosting, 52

Compact Edition, SQL Server, 4, 9

compatibility, of locks, 237

COMPATIBILITY_LEVEL option, 520

Completion constraint, 414

complex event processing (CEP), with StreamInsight, 453–454

components

designing SSIS package, 451

in-place upgrades, 517

side-by-side installation upgrades, 518–519

Upgrade Advisor Analysis Wizard, selecting, 524–527

compression

backups and, 268–270

log shipping taking advantage of backup

compression, 353

concurrency controls, 233–234

Conditions, Policy-Based Management, 425

Configuration Manager. See SQL Server Configuration Manager

Configure Database Mirroring Security Wizard, 369

configuring SQL Server

client network configuration, 93–96

DAC (Dedicated Administrator Connection), 97

executing SQL commands and scripts, 104

networking and, 92

overview of, 92

reports for monitoring system health and

performance, 104–106

server configuration, 102

server network configuration, 97–99

setting server options, 106–109

SQL Server Configuration Manager, 100–102

sqlcmd command-line interface, 110

SSMS (SQL Server Management Studio), 102–104

Connection Managers, SSIS package design, 453–454, 456

connections, encrypted, 190–191

consistency, in transaction management, 228

constraints

BCP fast/slow modes and, 443

creating, 139–141

impacting import/export performance, 477–478

joining Maintenance Plan tasks using, 414–415

precedence constraints in designing SSIS package, 453

continuity, business. See also high availability and disaster

recovery (HA/DR), 348–349

Control Flow, SSIS package design, 447–455

Controlled Access Protection (C2), DoD security ratings, 199–201

cooperative scheduling, 322

Copy Database Wizard. See CDW (Copy Database Wizard)

Copy Only Backup, 268, 495

copying. See also moving/copying entire database

moving database with Detach-Copy-Attach method,

479–485

tables/views with Import and Export Wizard, 466–468

core editions, of SQL Server, 3

counters

built-in, 314–317

for server performance, 311–313

CPU idle conditions, SQL Server Agent, 398–399

CPU sockets, choosing Windows Server edition, 454

CPUs, setting resource limits and, 49

Create New Condition dialog, Policy-Based

Management, 426

Create New Policy dialog box, 427

CREATE STATISTICS statement, 217

CREATE TABLE statement, 149–153

credentials

creating/managing linked servers, 500–502

Map to Credentials for aligning credentials

with login, 171

Critical On-Demand hotfixes

in Cumulative Update package, 462

overview of, 461

cross-platform upgrades, not supported in SQL Server, 517

cross-versions of SQL Server, in-place upgrades not

applicable to, 517

Cumulative Updates (CUs) packages

overview of, 461

Service Packs as rollup of, 462

I n d e x 5 5 1

CUs (Cumulative Updates) packages

overview of, 461

Service Packs as rollup of, 462

CXPACKET wait type, 325

D
DAC (Dedicated Administrator Connection), 97

data access/transaction control

locks. See locks

overview of, 212

query execution. See query execution

transaction management. See transaction management

T-SQL language and, 212–216

data cache, comparing with buffer cache in Oracle, 59–60

Data Collectors Sets

MDW (Management Data Warehouse) and, 342–343

pre-configured, 309–310

user-defined, 310

Data Definition Language (DDL)

creating/modifying database objects, 212–213

scripting objects, 134

Data Directories tab, Database Engine Configuration

page, 88–89

Data File I/O panel, 320

data files

allocated space impacting import/export performance

and, 475–477

filegroups composed of, 35–36

moving/copying entire database, 480–485

in physical implementation of databases, 38–40

types of pages in, 37

Data Flow, SSIS package design, 451–453, 455–456

Data Manipulation Language. See DML (Data Manipulation

Language)

data marts, using Oracle-to-SQL replication to create, 511

data migration

defined, 534

iterative approach to, 535

overview of, 542–543

data mining, with SSAS, 453

data movement

building with SSIS, 452

data replication. See replication, data

importing and exporting data. See importing and

exporting data

moving or copying entire database.

See moving/copying entire database

overview of, 438

querying across servers/data sources, 496–506

Data Platform Insider blog, 460

Data Pump (Oracle)

Export for backing up, Import for restoring, 255

Import and Export Wizard vs., 462

using native mode file format vs., 443

data root directory, 88

data sources, querying across, 496–506

Data Transformation Services. See DTS (Data Transformation

Services)

data types

binary types, 132

character data, 128–129

date and time types, 131–132

numeric types, 129–131

overview of, 127

in-row and out-of-row data, 127–128

user-defined types, 133

data warehousing

backup scenario, 278–280

building solutions with SQL Server, 4–6

restore scenario, 301

storing MDW captured data, 343

database architecture

database storage model. See database storage model

migration of, 534

overview of, 32

physical implementation of databases, 38–40

snapshots of, 46–48

system databases, 44–46

transaction logs, 40–44

Database Details pane, Attach Databases dialog box, 482–484

database encryption key (DEK), 194–195

Database Engine Configuration page

Account Provisioning tab of, 87

Data Directories tab, 88–89

FILESTREAM tab of, 90

overview of, 86

5 5 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Database Engine, SQL Server, 70, 72–73

Database Engine Tuning Advisor (DTA), 14–15, 338–340

Database Gateways, 497

Database I/O chart, Activity Monitor, 318

Database Links, 497

Database Master Key

creating, 195

encryption functions, 191

database mirroring

automatic page repair, 356

in high-safety mode, 366–367

modes of operation, 353–354

monitoring mirrored databases, 375–377

reporting on the mirror database, 354–355

setting up database mirroring in high-safety mode

with automatic failover, 367–374

Database Mirroring Monitor, 375–377

database objects

binary types, 132

character data, 128–129

CLR procedures, 121

comparing indexed views with filtered indexes, 156

comparing Oracle and SQL Server objects, 118–119

creating constraints, 139–141

creating files and filegroups, 156–160

creating indexed views, 155–156

creating indexes, 141–144

creating relationships, 149–153

creating tables, 136–139

creating views, 154–155

data types, 127

date and time types, 131–132

filtering indexes, 145–147

functions, 121–122

included columns in indexes, 144–145

indexes, 124–126

modifying indexes, 149

moving objects between schemas, 116–117

naming, 113

numeric types, 129–131

overview of, 112

partitioning, 160–163

permissions, 185–186

programmatic objects, 119

querying objects in system catalog, 134

rebuilding and reorganizing indexes, 147–149

in-row and out-of-row data, 127–128

schema objects, 118–119

schemas and, 112–116

stored procedures, 119–121

synonyms, 117–118

tables, 123–124

triggers, 122

user-defined types, 133

views, 126–127

working with, 134–135

working with schemas, 116–117

database owner (dbo), 179

Database Properties window, SSMS, 9–10

database security

auditing. See auditing

database and object permissions, 185–186

encryption. See encryption

overview of, 178–179

policy-based management, 208–209

proxy accounts, 188–189

roles and, 182–185

schemas and, 186–187

users and, 179–181

database servers, querying across, 496–506

database snapshots, 46–48

database storage model

comparing Oracle tablespaces with SQL Server

database storage model, 32–34

DCM and BCM pages, 38

filegroups, 34–35

GAM and SGAM pages, 36–37

mixed and uniform extents in, 34–35

pages, 34

database versions, SQL Server

compatibility levels and, 520–523

for in-place upgrades, 517

in-place upgrades not applicable for cross-versions, 517

databases

backing up with BACKUP, 259–261

backing up with SSMS, 273–276

I n d e x 5 5 3

backup permissions, 272

encryption, 194–197

recovery models, 475

restoring, 285–286

sample, 458–459

selecting in CDW, 487, 489

SSRS (SQL Server Reporting Services), 453

Datacenter Edition, SQL Server

criteria for choosing, 454

failover clustering support, 364

overview of, 3

scale-up data warehousing using, 5

Datacenter Edition, Windows Server, 364

date and time data types, 131–132

dbo (database owner), 179

DCM (Differential Change Map), 38

DDL (Data Definition Language)

creating/modifying database objects, 212–213

scripting objects, 134

deadlocks

background tasks in SQL Server, 54

overview of, 242–243

reporting, 243–244

Decision Support Objects (DSO), in SQL Server 2000, 525

Dedicated Administrator Connection (DAC), 97

DEK (database encryption key), 194–195

Department of Defense (DoD) security ratings, 199–200

dependencies, viewing object, 135

deprecated features, 520

destinations

for backups, 262–264

Choose a Destination, Import and Export

Wizard, 464–466

configuring destination database in CDW, 488, 490

making destination database accessible for read-only

queries, 351–352

Detach Database option, SSMS, 479

Detach-Copy-Attach method, 479–485

Detach-Move-Attach method, 479–485

Developer Edition, SQL Server, 4

differential backups

WITH DIFFERENTIAL option, 260

online backup options, 257

Differential Change Map (DCM), 38

directory structure, installing SQL Server and, 73–74

DirectPath option, SQL*Loader, 443

disaster recovery. See high availability and disaster

recovery (HA/DR)

discontinued features, 520

disk space

Disk Space Requirements page, 85–86

Upgrade Advisor Analysis Wizard, 529

Disk Usage

MDW data collection sets, 342

viewing autogrowth events, 476–477

distributed transactions, 230

distribution database, 46

Distributor

in peer-to-peer replication, 511–513

replication management in SSMS, 509–510

SQL Server replication hierarchy, 506–507

DML (Data Manipulation Language)

for retrieving and manipulating data, 212

scripting objects, 134

triggers executed by, 122

DMVs (dynamic management views)

common wait types, 325–326

finding missing indexes, 328–330

I/O latency by database file, 327–328

overview of, 321

viewing wait information, 323–325

wait types in SQL Server 2008, 326–327

waits analysis, 321–323

documentation

on installation media, 70

introduction, 19–22

SQL Server, 455–457

DoD (Department of Defense) security ratings, 199–200

DSO (Decision Support Objects), in SQL Server 2000, 525

DTA (Database Engine Tuning Advisor), 14–15,

338–340

dtexec.exe program, 458–460

dtexecui.exe (Execute Package Utility), 458–460

DTS (Data Transformation Services)

running Upgrade Advisor Analysis Wizard, 525

SSIS replacing, 452, 461

5 5 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

DTS Package Migration Wizard, 461

durability, in transaction management, 229

dynamic management views. See DMVs

(dynamic management views)

dynamic ports, side-by-side installation upgrades and, 518

E
editions of SQL Server

cloud services, 4

core, 3

criteria for choosing, 454–455

data warehousing, 4–6

free, 4

overview of, 2

in-place upgrades and, 517

premium, 3

specialized, 3–4

e-mail messages, automating processes/alerts with Database

Mail, 381–383

Email notification type, operators, 384

encryption

of backups, 272

database encryption, 194–196

encrypted connections, 190–191

functions, 192–194

managing keys and encrypted data, 196–197

overview of, 189–190

restoring or attaching an encrypted database, 197

Enterprise Edition, SQL Server

criteria for choosing, 454–455

failover clustering support, 364

overview of, 3

scale-up data warehousing using, 5

Enterprise Edition, Windows Server, 364

Error and Usage Reporting page, SQL Server installation, 90

errors

creating own alerts that respond to, 408–409

during instance upgrades, 532

during transaction processing, 231

escalation, of locks, 241–242

E-switch, permissions required for executing BCP, 444

ETL (extract, transform and load). See also SSIS (SQL Server

Integration Services), 451–456

event categories, SQL Trace, 330

event classes, SQL Trace, 330

events

processing with StreamInsight, 17–18

starting jobs based on, 392

Execute Package Utility (dtexecui.exe), 458–460

EXECUTE permission, executing BCP, 444

execution context, SQL Server jobs, 392–395

execution history, SQL Server jobs, 398–401

execution information, Import and Export Wizard, 471

execution phase, in query execution, 218

execution plans

optimizer hints and, 223–225

plan guides, 223

query execution, 218–219

XML Showplans, 219–222

explicit transactions, 230

exporting and importing data

Bulk Copy Program, 439–445

BULK INSERT statement, 446–449

Import and Export Wizard, 462–471

overview of, 438

performance considerations, 474–478

SQL Server Integration Services (SSIS), 449–461

SQL Server Management Studio (SSMS),

471–474

exporting policies, 434–435

Express Edition, SQL Server, 4

external waits, 323

extract, transform and load (ETL). See also SSIS (SQL Server

Integration Services), 451–456

F
Facets, Policy-Based Management, 425

failover clustering

benefits and limitations of, 365–366

choosing Enterprise Edition for, 455

failure detection and split brain scenario, 360–361

installing SQL Server on a failover cluster, 361–364

overview of, 357–360

SQL Server and Windows Server requirements for

clustering, 364–365

validation report, 359

I n d e x 5 5 5

Failure constraint

defined, 414

new Maintenance Plan task, 416–417

failure detection, 360–361

fast mode, BCP, 443

fast recovery, in Enterprise and Datacenter editions, 364

Fast Track reference architecture, in data warehousing, 5

Features Selection page, SQL Server installation, 82–84

fetching phase, in query execution, 218

file and filegroup backup

online backup options, 258

performing, 260–261

file formats, moving databases to another platform

and, 483

file system, storing SSIS packages on, 457–458

filegroups

comparing SQL Server filegroups with Oracle

tablespaces, 34–35

creating, 156–160

recovery at filegroup level, 290–292

separating content of, 76

files

creating, 156–160

moving/copying entire database, 480–485

recovery at file level, 290–292

FILESTREAM tab, of Database Engine Configuration page, 90

filtered indexes, 145–147, 156

FIRE_TRIGGERS

BCP fast/slow modes and, 443

permissions required for, 444

firewalls, installation security and, 77

fixed plan, plan guides and, 225

fixed server roles, 174, 182–183

Foreign Key relationships, 149–152

format parameter, BCP, 440–441

forums, MSDN SQL Server, 460–461

free editions, of SQL Server, 4

full backup, 256–257

FULL recovery model

database mirroring in high-safety mode and, 367

impacting import/export performance, 475

overview of, 253

transaction log backup and, 261–262

full-text catalogs, Upgrade Advisor Analysis Wizard, 530

functional indexes, 125–126

functions

encryption, 192–194

scalar and table valued, 121–122

viewing role membership and permissions, 175

G
GAM (Global Allocation Map), 36–37

GDR (General Distribution Release), 462

General Distribution Release (GDR), 462

General page, New Job dialog box, 386–387

General page, New Linked Server dialog box, 499–500

Generate SQL Server Scripts Wizard, 485–487

Global Allocation Map (GAM), 36–37

granularity, of locks, 236

graphical tools, Oracle vs. SQL Server, 10–11

Guest object, 179

H
HA/DR solutions. See high availability and disaster recovery

(HA/DR)

hardware, side-by-side installation upgrades and, 518

Hardware Compatibility List (HCL), 358

HCL (Hardware Compatibility List), 358

heap tables, 123

heartbeat checks, for failover detection, 360

high availability and disaster recovery (HA/DR)

cold standby solutions, 350–353

database mirroring in high-performance mode,

353–356

database mirroring in high-safety mode, 366–367

evaluating business continuity systems, 348–349

failover clustering. See failover clustering

hot standby solutions, 356–357

log shipping, 350–353

monitoring mirrored databases, 375–377

overview of, 348

setting up database mirroring in high-safety mode

with automatic failover, 367–374

SQL Server replication, 356

warm standby solutions, 349–350

5 5 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

high-level architecture, 28–32

high-performance mode, database mirroring, 353–356

high-safety mode, database mirroring

with automatic failover, 354, 366–367

setting up database mirroring in high-safety mode

with automatic failover, 367–374

without automatic failover, 353

hints, locks, 238–241

history

of backups, 271–272

of recovery, 297–298

history, execution

viewing for alerts, 408–409

viewing for Maintenance Plan, 420–422

viewing job, 399–401

hosting, DTS legacy, 461

hot standby solutions

failover clustering. See failover clustering

overview of, 356–357

hotfixes

installing SQL Server, 90–92

overview of, 461–462

I
identities, installation security and, 77–79

identity columns, tables and, 124

implicit transactions, 229

Import and Export Wizard

Choose a Data Source, 464–465

Choose a Destination, 464–466

execution information, 471

launching, 463–464

overview of, 462

permission requirements, 463

Save and Run Package, 468–469

Select Source Tables and Views, 466–468

Specify Table Copy or Query, 466–467

summary screen, 469

transferring objects other than table data, 470

importing and exporting data

Bulk Copy Program, 439–445

BULK INSERT statement, 446–449

Import and Export Wizard, 462–471

overview of, 438

performance considerations, 474–478

SQL Server Integration Services (SSIS), 449–461

SQL Server Management Studio (SSMS), 471–474

importing policies, 434–435

included columns, non-key columns in indexes, 144–145

Incremental Servicing Model (ISM), 462

indexes

comparing indexed views with filtered indexes, 156

creating, 141–144

creating indexed views, 155–156

filtered indexes, 145–147

finding missing, 328–330

impacting import/export performance, 478

included columns (non-key), 144–145

modifying, 149

overview of, 124–126

partitioning indexed views, 160–163

rebuilding and reorganizing, 147–149

rebuilding vs. dropping and re-creating, 478

index-organized tables (Oracle), 124–125

INFORMATION_SCHEMA object, 179

in-place upgrades, 528–532

input/output (I/O). See I/O (input/output)

in-row data type, 127–128

INSERT permission, executing BCP, 444

installing SQL Server

components, 69–71

database engine services, 73

default installation paths for components, 76

directory structure, 73–74

on a failover cluster, 361–364

firewalls, 77

instance objects, 72

media and licensing, 68–69

OFA standard and, 74–76

overview of, 68

registry keys, 72

security considerations, 76–77

service packs and hotfixes, 90–92

services and identities, 77–79

version identifiers, 71

I n d e x 5 5 7

installing SQL Server software

component selection (Features Selection page), 82–84

Database Engine Configuration page, 86–90

Disk Space Requirements page, 85–86

Error and Usage Reporting page, 90

Instance Configuration page, 84–85

interactive and unattended options, 80

prerequisites for, 69

product key and licensing, 81–82

Server Configuration page, 85–86

SQL Server Installation Center and, 80–81

Instance Configuration page, SQL Server installation, 84–85

instance IDs

installing SQL Server and, 84

Upgrade Advisor Analysis Wizard, 529

instance objects, installing SQL Server and, 72

instance root directory, 85

instances

auditing, 202–203

background processes and, 53–55

buffer pool and, 59–60

comparing SQL Server with Oracle, 30–31

components of, 49

memory and, 55–59

number of allowable databases per instance, 33

overview of, 48–49

protocol layer, 49–50

relational engine (query processor), 50–51

SQLOS layer, 52–53

storage engine, 51–52

viewing installed, 85

INSTEAD OF trigger, 122

Integration Services. See SSIS (SQL Server Integration Services)

integrity, of backups, 270

interactive and unattended options, SQL Server software

installation, 80

internal version numbers, SQL Server databases, 522–523

I/O (input/output)

Database File I/O panel of Activity Monitor, 318, 320

tuning I/O load across all disks, 76

viewing I/O latency by database file, 327–328

I/O_COMPLETION wait type, 325

IP address options, server network configuration, 98–99

ISM (Incremental Servicing Model), 462

isolation

levels, 234–235

snapshot isolation, 235–236

transaction management, 229

transactions, 232–233

iterative approach, reducing migration project effort, 535

ITransactionJoin support, OLE DB interface, 497

J
Job Activity Monitor, SQL Server Agent, 398–400

Job Schedule Properties dialog box, 390–391

jobs

categories, 396

execution context, 392–395

monitoring and execution history, 398–401

shared schedules, 397–398

SQL Server, 386–392

join hints, optimizer hints, 222

K
key columns, primary keys in indexes, 141–142

keys

managing keys and encrypted data, 196–197

symmetric and asymmetric, 189

L
large object (LOB) data types, 127–128

last committed transaction, restoring to, 290

lazywriter, background tasks in SQL Server, 54

LAZYWRITER_SLEEP wait type, 325

LCK_M wait type, 325

Legacy hosting, for DTS, 461

LGWR (log writer), 54

licensing, SQL Server installation, 68–69, 81–82

line-of-business application

backup scenario, 280–281

example restore scenario, 302–303

linked servers

creating and managing, 498

example of creating, 499–503

overview of, 497

5 5 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

performing distributed transaction across, 497–498

querying across data sources without, 60–65

querying across databases in same instance without, 506

querying across two SQL instances using, 503–504

Linked Servers node, SSMS Object Explorer, 498–499

Listener Service, in Oracle, 60

load balancing, using peer-to-peer replication for, 512–513

LOB (large object) data types, 127–128

local disk, backup destinations, 263

locks

automated alerts and, 250

built-in reports and, 249–250

compatibility of, 237

deadlocks, 242–244

escalation of, 241–242

granularity of, 236

hints, 238–241, 478

monitoring, 244–247

overview of, 236

performance counters and, 249

types of, 236–237

viewing session activity using Activity Monitor, 247–249

log files (.ldf)

moving/copying entire database, 480–485

in physical implementation of databases, 38–40

viewing execution history for Maintenance Plan,

420–422

log sequence numbers (LSNs), 41

log shipping

benefits of, 353

built-in, 351

making destination database accessible for read-only

queries, 351–352

overview of, 350–351

log shipping wizard, 352

log writer (LGWR), 54

logical AND and OR constraints, 415

logical backups, 255

Logical Disk Avg. Disk sec/Transfer counter, Perfmon, 316

logins

adding to roles, 176

auditing, 198–199

changing service logins, 100

creating, 170–171

managing, 172–173

server security and, 168–170

transferring during manual upgrades, 532

transferring when moving databases to new platform,

484–485

logs

directories, 88–89

transaction, 40–44

lost media, encryption protecting against, 189

LSNs (log sequence numbers), 41

M
Maintenance Plan Wizard

database maintenance with, 410–411

generating TL-SQL for each task at runtime, 417–419

joining tasks using constraints, 414–416

naming new Maintenance Plan, 411

not scheduling, 419–420

removing Maintenance Plan reports, 422–423

scheduling jobs using subplans, 411–427

setting task properties, 414

setting tasks, 413

for system database backups, 423–424

viewing execution history for, 420–422

maintenance plans

backups and, 273

creating manually, 411–423

locating, 410

overview of, 410

using SSIS package format, 452

maintenance window schedules, 398–399

Manage Job Categories dialog box, 396

Manage Schedules dialog box, 397–398

management tools, available on installation media, 71

manual database upgrade, to SQL Server 2008, 532–533

massively parallel processing (MPP) architecture, 6

master database

comparing with Oracle system tablespace, 33

separating administrative information for each

database, 76

system databases, 44–45

I n d e x 5 5 9

Master-Target architecture, SQL Server, 386

Max Server Memory parameter, 49

MAXSIZE data files, 475–476

.mdf (primary data file), 38–40, 481–483

MDW (Management Data Warehouse)

architecture of, 341–342

Data Collectors Sets and, 342–343

data warehouse for storing captured data, 343

overview of, 341

reports, 343–346

media

backup media, 266–268

installation media, 68–69

memory

AWE, 58–59

buffer pool and, 59–60

how SQL Server uses memory, 55–57

setting limits for resources instances can use, 49

SQLOS layer functions for managing, 52

VAS (Virtual Address Space), 57–58

memory counters, Perfmon

available MBytes counter, 314

Target Server Memory (KB) counter, 314–315

Total Server Memory (KB) counter, 315

merge replication, 509

metabase, SSMA, 536

Microsoft

BI (Business Intelligence), 453

blogs, 460–461

patches, 461–462

scripts to transfer logins, 484–485

Windows. See Windows (Microsoft)

Microsoft Distributed Transaction Coordinator (MSDTC),

230, 497–498

Microsoft Most Valuable Professionals (MVPs), SQL Server

resources, 460–461

migration assistant. See SSMA (SQL Server Migration Assistant)

migration tool, DTS Package Migration Wizard, 461

Min Server Memory parameter, 49

mirroring backups, 265

mirroring databases. See database mirroring

mixed extents, in SQL Server database storage model, 34–35

model database, 46

monitoring. See also Activity Monitor; Performance

Monitor (Perfmon)

locks, 244–247

query execution, 225–226

server performance, 313–314

SQL Server jobs, 398–401

moving/copying entire database

backup and restore for, 492–496

Copy Database Wizard (CDW), 487–492

Detach-Copy-Attach (or Detach-Move-Attach)

method, 479–485

overview of, 478–479

scripting with Generate SQL Server Scripts Wizard,

485–487

MPP (massively parallel processing) architecture, 6

msdb database

SQL Server Agent using, 380

storing SSIS packages in, 458

system databases, 45–46

MSDN SQL Server

forums, 460–461

Online Resources site, 460

MSDTC (Microsoft Distributed Transaction Coordinator),

230, 497–498

MVPs (Microsoft Most Valuable Professionals), SQL Server

resources, 460–461

N
-n and -N (native mode), BCP, 443–444

Named Pipes

client network configuration, 94

connecting to SQL Server via TDS endpoints, 63

naming conventions

alerts, 402–403

creating new job step, 389–390

creating new job with description, 386–388

database objects, 113

migrating procedures/functions with SSMA, 538

new Maintenance Plan, 411

new Maintenance Plan subplans, 412

native mode (-n and -N), BCP, 443–444

net send notification type, operators, 384–385

5 6 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

networking

client network configuration, 93–96

DAC (Dedicated Administrator Connection), 97

overview of, 92

server network configuration, 97–99

New Alert dialog box

creating new alert, 402–404

Options page, 404

response options for, 403–406

Response page, 403–404, 406

New Job dialog box

General page, 386–387

Schedules page, 390–392

Steps page, 388–389

New Job Step dialog box

creating new job step, 389–390

set to new proxy account, 392–395

New Linked Server dialog box

General page, 499–500

Security page, 500–502

Server Options page, 502–503

New Proxy Account dialog box, 394–395

No Majority, Disk Only, quorum options in failover clustering, 361

NOARCHIVELOG mode (Oracle), SIMPLE recovery model

comparable to, 254–255

Node and Disk Majority, quorum options in failover

clustering, 360

Node and File Share Majority, quorum options in failover

clustering, 361

Node Majority, quorum options in failover clustering, 360

nonclustered indexes

filtered indexes and, 145–147

overview of, 125

non-Unicode character data, 128–129

NORECOVERY option, in backup and recovery, 285–286, 351

notification types, operators, 384

notifications, alert, 406

NTFS (NT file system) permissions, 79

numeric data types, 129–131

O
objects

audit objects, 203–208

database objects. See database objects

programmatic. See programmatic objects

security objects, 166

server objects, 489, 491

transferring, 470

user objects. See User object

ODBC, 439

OFA (Optimal Flexible Architecture)

aims of, 74

aligning SQL Server with, 75–76

key recommendations, 75

offline backups, 256

OLAP engine, 453

OLE DB providers, 497

On-Demand hotfixes, 461

one-to-many relationships, 30

online backups, 256–258

online resources

Fast Track architecture, 5

Incremental Servicing Model, 462

introduction, 23–25

Microsoft scripts to transfer logins, 484–485

migrating from other databases to SQL Server, 545

sample databases, 459

SQL Server, 459–460

SQL Server Books Online, 455–457

transferring logins, 532

OPENROWSET

linked servers vs., 504–505

opening and querying file with, 449–450

operating modes, BCP, 443–444

operating system

platforms for SQL Server, 18–19

SQLOS layer and, 52

operators, locating and creating, 384

Optimal Flexible Architecture (OFA). See OFA (Optimal

Flexible Architecture)

optimistic concurrency control, 233

optimization phase, in query execution, 216–218

optimizer hints

creating plan guide to use, 223–225

query execution and, 222

Options page, New Alert dialog box, 404, 407

Oracle

comparing SQL Server with, 28–30

SECURE_DML procedure in, 538

I n d e x 5 6 1

system views, 536–538

using as Publisher, 509, 511

Oracle Client, 61–62

Oracle Net, 60

Oracle Scheduler, 380–385

Oracle Sequences, 538

out-of-row data type, 127–128

output. See I/O (input/output)

P
packages, SSIS

configuring in CDW, 490, 492

scheduling in CDW, 490, 493

PAE (Physical Address Extensions), 56–58

Page Life Expectancy counter, Perfmon, 315

PAGEIOLATCH_* wait type, 325

Pager notification type, operators, 384–385

pages

comparing SQL Server data storage model with Oracle, 34

DCM and BCM, 38

GAM and SGAM, 36–37

recovery at page level, 290–292

types used in data files, 37

Parallel Data Warehouse Edition, SQL Server, 3, 5–6

parameters, SQL Server Bulk Copy Program, 441–443

parsing phase, in query execution, 216

partial backup option, 257

partitioning tables, indexes, and indexed views, 160–163

passwords

login password policy, 171

password-protection for roles, 183–184

patches, 461–462

peer-to-peer replication, 356, 511–513

Perf Stats Script, troubleshooting with, 337

performance

backups and, 264–265

cross-database vs. linked-server queries, 506

importing/exporting data and, 474–478

reports for monitoring system health and

performance, 104–106

performance counters (Perfmon)

lock analysis, 249

query execution, 227

Performance Monitor (Perfmon)

built-in counters, 314–317

counters for server performance, 311–313

going beyond built-in functionality, 317

impact of data capture on the server, 311

MDW data collection sets and, 343

overview of, 306–307

pre-configured Data Collectors Sets,

309–310

real-time monitoring with, 307–309

Resource Overview, 307

user-defined Data Collectors Sets, 310

what to look for in monitoring server performance,

313–314

performance tuning and optimization

Activity Monitor. See Activity Monitor

DMVs (dynamic management views). See DMVs

(dynamic management views)

DTA (Database Engine Tuning Advisor). See DTA

(Database Engine Tuning Advisor)

MDW (Management Data Warehouse). See MDW

(Management Data Warehouse)

overview of, 306

SQL Trace. See SQL Trace

Windows Performance Monitor. See Performance

Monitor (Perfmon)

permissions

backup, 272

BULK INSERT, 446

database and object permissions, 185–186

Import and Export Wizard, 463

recovery, 297

requirements for executing BCP, 444

server security, 177–178

SQL Server services, 78

viewing role membership and permissions,

174–175

pessimistic concurrency control, 233–234

Physical Address Extensions (PAE), 56–58

physical backups, 255–256

physical implementation, of databases

transaction log files, 40–43

types of data files in, 38–40

5 6 2 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

piecemeal restore, 292–295

plan guides

query execution and, 223

using fixed plan, 225

using optimizer hints, 223–225

planning database migration project, 534

PL/SQL, programmatically sending e-mail in, 381

point-in-time recovery, 288–289

policies

evaluating, 428–434

exporting and importing, 434–435

login password policy, 171

policy-based management, 424–428

server security and, 209

PowerShell, 12

precedence constraints

new Maintenance Plan, 414–415

SSIS package design, 453

preemptive scheduling, 321

premium editions, of SQL Server, 3

primary data file (.mdf), 38–40, 481–483

primary keys, creating indexes and, 141–142

principals

mapping logins to, 168

server security and, 167

private profiles, in Database Mail, 382–383

% Privileged Time counter, Perfmon, 316–317

Process counters, Perfmon, 317

processes, automating with Database Mail,

381–383

Processes panel, Activity Monitor, 318–319

Processor counters, Perfmon

% Privileged Time counter, 316–317

% Processor Time counter, 316

% User Time counter, 317

% Processor Time counter, 316

product key, SQL Server installation, 81–82

profiles, specifying Database Mail, 382–383

programmatic objects

functions, 121–122

overview of, 119

stored procedures, 119–121

triggers, 122

progress feedback, CDW, 491, 495

properties

for Maintenance Plan tasks, 414–415

retrieving in SSMS, 8–9

protocol layer, instances and, 49–50

protocols

client network configuration, 94

server network configuration, 97–98

proxy accounts

overview of, 188

specifying, 188

SQL Server Agent job execution with, 392–395

SQL Server Agent proxy accounts, 188–189

public key certificates, 190

public profiles, in Database Mail, 382–383

Publisher

in peer-to-peer replication, 511–513

replication management in SSMS, 509–510

SQL Server replication hierarchy, 506–507

use of Oracle database as, 509, 511

pull subscription, 508

push subscription, 507–508, 511

Q
quantum, of time, 321

queries

across servers/data sources, 496–506

extracting data from table using BCP, 444–445

of objects in system catalog, 134

optimizer hints, 222

Recent Expensive Queries panel, of Activity Monitor, 320

sending results to file in SSMS, 472–473

Query Activity, 343

query execution

built-in reports, 227

categories, 216

creating plan guide to use fixed plan, 225

creating plan guide to use optimizer hints, 223–225

executing, 218

execution plans, 218–219

fetching, 218

monitoring, 225–226

optimization, 216–218

I n d e x 5 6 3

optimizer hints, 222

parsing, 216

performance counters, 227

plan guides, 223

XML Showplans, 219–222

query processor (relational engine), 50–51

Query Statistics, 342

queue waits, 323

quorum, shared disk resources in failover clustering, 360–361

R
R2 Datacenter Edition, SQL Server 2008, 4

RAM, choosing Windows Server edition and, 454

RDBMS, 7

real-time monitoring, with Perfmon, 307–309

Recent Expensive Queries panel, Activity Monitor, 320

recovery. See also backups

BULK_LOGGED recovery model, 253

of database, 285–286

example scenarios, 301–303

filegroup-, file-, and page-level restores, 290–292

FULL recovery model, 253

history of, 297–298

WITH options in RESTORE statements, 295–297

overview of, 281–285

permissions, 297

piecemeal restore, 292–295

point-in-time, 288–289

recovery models, 252

restoring from backups, 286–288

restoring to last committed transaction, 290

SIMPLE recovery model, 254

SSMS for performing, 298–300

of system databases, 298

RECOVERY option, 285–286

recovery point objectives. See RPOs (recovery point objectives)

recovery time objectives. See RTOs (recovery time objectives)

redo, transaction log files, 40–41

redundancy, failover clustering providing at server level, 357

reference architectures, Fast Track, 5

registry keys, installing SQL Server and, 72

relational engine (query processor), 50–51

relationships, creating between database objects, 149–153

remote destination, for backups, 263

replication, data

architecture, 506–508

overview of, 506

peer-to-peer, 511–513

types of, 508–511

replication, SQL Server, 356

Report Builder, 452

Report Server database, SSRS, 453

Report ServerTempdb database, SSRS, 453

Report Viewer. See Upgrade Advisor Report Viewer

Reporting Services. See SSRS (SQL Server Reporting Services)

reports

built-in reports for locks, 249–250

built-in reports for query execution, 227

database snapshots used in, 46

deadlocks, 243–244

MDW (Management Data Warehouse), 343–346

for monitoring system health and performance,

104–106

removing Maintenance Plan, 422–423

using SSRS for, 452–453

viewing SQL Server Upgrade Advisor, 527–528

requirements

Disk Space Requirements page, 85–86

for executing BCP, 444

permissions for importing and exporting, 463

in-place upgrades, 517

SQL Server/Windows Server requirements for

clustering, 364–365

resilience, of backups, 265

resource database

separating administrative information for each

database, 76

system databases, 44–45

resource managers, 230

resource monitor, 55

Resource Overview, Perfmon, 307

resource waits, 323

Resource Waits panel, Activity Monitor, 319–320

RESOURCE_SEMAPHORE wait type, 325–326

RESOURCE_SEMAPHORE_QUERY_COMPILE wait type, 326

resources, setting limits for resources instances can use, 49

5 6 4 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Response page

New Alert dialog box, 403–404, 406

Options page, 407

restore. See recovery

RESTORE statements

syntax of, 285

types of, 282–285

RMAN (Oracle)

backup and recovery solution, 252

encrypting backups with, 272

roles

adding logins to, 176

adding Users to, 184–185

application roles, 183–184

creating, 185

fixed and user-defined, 182–183

fixed server roles, 174

viewing role membership and permissions, 174–175

rollback behavior, transaction management and, 231–232

RPOs (recovery point objectives)

HA/DR solutions, 349

hot standby solutions, 356

log shipping and, 351

RTOs (recovery time objectives)

HA/DR solutions, 349

hot standby solutions, 356

log shipping and, 351

Run As account

job execution context, 392–393

setting to new proxy account, 394–395

S
sample databases, 22–23

SANs (storage area networks)

backup utilities for, 252

failover clustering and, 357

Save and Run Package, Import and Export Wizard, 468–469

scalar functions, 121

scale-out data warehousing, 4–6

scale-up data warehousing, 4–5

scheduler monitor, 55

Schedules page, New Job dialog box, 390–392

scheduling, using SQLOS layer functions, 52–53

scheduling backups, 273

scheduling jobs

cooperative scheduling, 322

creating shared schedules, 397–398

preemptive scheduling, 321

setting for Maintenance Plan subplans, 412–416

with SQL Server Agent. See SQL Server Agent

for SSIS packages, in CDW, 490, 493

schema database migration, 534–535

schemas

built-in, 115

comparing Oracle and SQL Server objects, 118–119

comparing SQL Server with Oracle, 30–31

creating, 116–117

database security and, 186–187

moving objects between, 116–117

overview of, 112–114

SCNSs (System Change Numbers), in Oracle, 41

SCOM (System Center Operations Manager), 401

Script Generation Wizards, 255

scripting

actions in SSMS, 11–12

executing SQL commands and scripts, 104

managing job categories, 396

moving/copying databases, 485–487

search options, Books Online, 456

secondary data files, in physical implementation of

databases, 38

Secure Sockets Layer (SSL), 190–191

SECURE_DML procedure, 538–540

security

of backups, 272–273

BULK INSERT, 446

creating/managing linked servers, 500–502

database security. See database security

firewalls, 77

installing SQL Server, 76–77

job execution context and, 392–395

overview of, 166

requirements for executing BCP, 444

security objects, 166

server security. See server security

services and identities, 77–79

I n d e x 5 6 5

SELECT permission, executing BCP, 444

SELECT statements, opening and querying file with, 449–450

sequences (Oracle), 124

Server Activity, 342

server configuration, 102

Server Configuration page, SQL Server installation, 85–86

Server Dashboard report, 106

server network configuration, 97–99

server objects, selecting in CDW, 489, 491

server options, creating/managing linked servers, 502–503

server security

adding logins to roles, 176

creating logins, 170–171

fixed roles and, 174

logins, 168–170

managing logins, 172–173

overview of, 166

permissions, 177–178

policies, 209

principals and, 167

viewing role membership and permissions, 174–175

server-side traces, 332–335

service accounts, Upgrade Advisor Analysis Wizard, 530

Service Control Manager, 73

Service IDs (SIDs), 78, 168

Service Master Key. See SMK (Service Master Key)

service packs

installing, 90–92

overview of, 462

services

available on installation media, 71

installation security and, 77

locations, 79

permissions, 78

SQL Server Database Engine, 73

starting/stopping, 100

session IDs (SPIDs), 65

sessions, viewing with Activity Monitor, 247–249

SGAM (Shared Global Allocation Map), 36–37

shared disk resources (quorum), in failover clustering, 360–361

Shared Global Allocation Map (SGAM), 36–37

Shared Memory, connecting to SQL Server via TDS endpoints, 63

shared schedules, SQL Server jobs, 397–398

side-by-side installation upgrades, 532–533

SIDs (Service IDs), 78, 168

SIMPLE recovery model, 254, 475

SLEEP_BPOOL_FLUSH wait type, 326

slow mode, BCP, 443

SMK (Service Master Key)

creating a copy for recovering instances, 196–197

encryption functions, 191

restoring or attaching an encrypted database, 197

SMO (SQL Server Management Objects), 12

SMTP, SQL Server sending e-mail via, 381–382

SNAC (SQL Server Native Client)

Bulk Copy Program using, 439

compared with Oracle Client, 61

snapshot isolation, 235–236

snapshot replication, 508–509, 511

snapshots. See database snapshots

snooping users, encryption protecting against, 189

software patches

introduction, 17–18

official Microsoft, 461–462

software prerequisites, for SQL Server installation, 69

SOS_SCHEDULER_YIELD wait type, 326

sp_add_alert, 405–407

sp_add_category, 396

sp_add_jobstep, 392

sp_add_notification, 406–407

sp_add_operator, 384–385

sp_add_schedule, 398

sp_configure, 106–107

sp_delete_alert, 405, 407–408

sp_delete_category, 396

sp_delete_notification, 406, 408

sp_delete_operator, 384

sp_delete_schedule, 398

sp_detach_db, 479

sp_send_dbmail, 382

sp_start_job system, 392

sp_update_alert, 405, 407

sp_update_category, 396

sp_update_notification, 406

sp_update_operator, 384–385

sp_update_schedule, 398

5 6 6 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

specialized editions of SQL Server, 3–4

Specify Table Copy or Query, Import and Export Wizard, 466–467

SPIDs (session IDs), 65

split brain scenario, failover clustering, 360–361

SQL Azure databases

cloud-based computing with, 4

SSMS managing, 9

SQL batch files, Upgrade Advisor analysis of, 525–526

SQL language

DDL and DML in, 212–213

executing SQL commands, 104

SSMA migration of SQL statements, 541

SQL Native Client Configuration tools, 94

SQL Server

Activity Monitor. See Activity Monitor

benefits and limitations of clustering, 365–366

Books Online. See Books Online

Browser service, 64, 518–519

Business Intelligence tools, 16–17

complex event processing with StreamInsight, 17–18

data movement. See data movement

Database Engine, 70, 73

documentation, 19–22

DSO (Decision Support Objects) in SQL Server 2000, 525

editions, 2–6

Microsoft support and software patches, 25–26

online resources, 23–25

operating system platforms, 18–19

overview of, 6

principals, 167

RDBMS features, 7

requirements for failover clustering, 364–365

sample databases, 22–23

SQL Server Configuration Manager, 13

SQL Server Database Engine Tuning Advisor (DTA), 14–15

SQL Server Management Studio (SSMS), 7–12

SQL Server Profiler, 13–14

sqlcmd command-line interface, 7

third-party tools, 15–16

SQL Server 2008 R2

compatibility levels and database versions, 520–523

as minor version release, 516

side-by-side installation upgrades with, 519

upgrade from SQL Server 2008 to, 523

SQL Server Agent

Advanced page, 398–399

alerts capability of, 401

creating new job, 386–392

Database Mail, 381–383

Job Activity Monitor, 398–399

job execution context, 392–395

msdb database used by, 45

operators, 383–385

overview of, 380–381

proxy accounts, 188–189

running SSIS package from, 458

scheduling backups, 273

SQL Server Analysis Services (SSAS)

Business Intelligence with, 453

products available on installation media, 70

SQL Server Configuration Manager

client network configuration, 94–96

configuring SQL Server, 100–102

introduction, 13

server network configuration, 97–99

setting startup parameters, 100–101

starting SQL Server Agent automatically with, 381

SQL Server Installation Center

downloading prerequisite components for, 69

functions of, 80–81

installing SQL Server, steps in software

installation, 80–81

SQL Server Integration Services. See SSIS (SQL Server

Integration Services)

SQL Server Management Objects (SMO), 12

SQL Server Management Studio. See SSMS (SQL Server

Management Studio)

SQL Server Migration Assistant. See SSMA (SQL Server

Migration Assistant)

SQL Server Native Client (SNAC)

Bulk Copy Program using, 439

compared with Oracle Client, 61

SQL Server Profiler

analyzing traces, 335–336

event hierarchy, 330–331

introduction, 12–14

MDW data collection sets and, 342

overview of, 330

I n d e x 5 6 7

reducing the impacting of tracing, 331–332

running server-side traces, 333–335

upgrade analysis of trace/batch files with, 525–526

viewing traces in, 337

SQL Server replication

creating own custom alerts in disabled state, 409

warm standby solutions, 356

SQL Server Reporting Services. See SSRS (SQL Server

Reporting Services)

SQL Server Trace. See also SQL Server Profiler, 12–14

SQL Server Upgrade Advisor

overview of, 524

running wizard, 524–527

viewing upgrade reports, 527–528

SQL Server VSS Writer Service, 518–519

SQL Trace. See SQL Server Profiler

SQL*Loader

BCP vs., 439

DirectPath option, 443

SQL*Plus, Oracle, 7–8

sql_variant data type, 133

SQL-99 standard, 234

sqlcmd command-line interface

introduction, 7

parameters useful to administrators, 110

working with SSMS more than, 12

SQLDIAG tool, 337

SQLNexus, 337

SQLOS layer, 52–53

SQLTRACE_BUFFER_FLUSH wait type, 326

SSAS (SQL Server Analysis Services)

Business Intelligence with, 453

instance identifiers, 72

products available on installation media, 70

SSIS (SQL Server Integration Services)

advanced topics, 461

Business Intelligence with, 452

creating package with Import and Export Wizard,

462–471

creating SSIS packages, 451–456

logical backups, 255

maintenance plans using, 410

managing/executing SSIS packages, 456–461

moving from Data Transformation Services, 461

overview of, 449–451

products available on installation media, 70

SSIS engine, 450

SSIS packages

creating, 451–456

defined, 450

managing/executing, 456–461

using BIDS, 450–451

SSIS Windows service, 450

SSL (Secure Sockets Layer), 190–191

SSMA (SQL Server Migration Assistant)

automated testing in, 544–545

data migration with, 542–543

overview of, 535–542

SSMS (SQL Server Management Studio)

configuring servers, 102–104, 106

creating alerts, 402–409

creating tables, 136–139

creating views, 154

creating/managing linked servers, 498–499

detaching database, 479–485

executing SQL commands and scripts, 104

help system for, 456

importing and exporting data, 471–474

introduction to, 7–12

Job Activity Monitor in, 399–400

launching Import and Export Wizard,

463–464

locating Maintenance Plans, 410

locating Policy Management in, 425

managing/executing SSIS packages, 456–457

performing database backups, 273–276

performing recovery, 298–300

rebuilding and reorganizing indexes, 148–149

reports for monitoring system health and

performance, 104–106

SQL Server Agent node in, 381

using BULK INSERT in, 444

viewing database snapshots, 47

viewing object dependencies, 150

viewing SQL Server databases in, 29–30

SSRS (SQL Server Reporting Services)

Business Intelligence with, 452–453

instance identifiers, 72

5 6 8 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

SSRS (SQL Server Reporting Services) (cont.)

MDW reports, 343–346

products available on installation media, 70

Standard Edition, SQL Server

criteria for choosing, 454–455

failover clustering support, 364

overview of, 3

standard installation, of failover clustering, 362

STANDBY option, in backup and recovery, 285–286, 352

startup parameters, 100–101

statistics, CREATE STATISTICS statement, 217

Steps page, New Job dialog box, 388–389

storage, database. See database storage model

storage engine, 51–52

storage options, SSIS packages, 456–458

stored procedures

creating/managing linked servers in T-SQL script, 498

overview of, 119–121

scripting with SSMS, 471–472

viewing role membership and permissions, 175

StreamInsight, 17–18

subplans, Maintenance Plans

defined, 411

scheduling jobs for, 412–418

subscriptions

in peer-to-peer replication, 511–513

replication architecture and, 507–508

replication hierarchy and, 506–508

replication management in SSMS, 509–510

support for non-SQL, 511

Success constraint

defined, 414

new Maintenance Plan task, 416

summary screen, CDW, 491, 494

summary screen, Import and Export Wizard, 469

support, Microsoft, 461–462

switches

BCP, 441–442

BULK INSERT, 446–447

Sybase, Bulk Copy Program in, 439

symmetric keys, 189

synonyms

creating, 118

overview of, 117

sys object, 179

sysadmin role, SQL Server, 410

sys.dm_exec_requests, 323–324

sys.dm_os_wait_stats, 324

sys.dm_os_waiting_tasks, 324

sys.server_principals, 173

sys.sql.logins, 173

system catalog, 134

System Center Operations Manager (SCOM), 401

System Change Numbers (SCNSs), in Oracle, 41

system databases

backing up, 277–278

directory for, 88

distribution, 46

master and Resource, 44–45

model, 46

msdb, 45–46

overview of, 44

recovery of, 298

tempdb, 45

system health, reporting on, 104–106

System Monitor, 306

T
Table Designer

creating constraints, 139–141

creating indexes, 141–144

creating tables, 136–139

tables

creating, 136–139

creating constraints, 139–141

identity columns, 124

optimizer hints, 222

overview of, 123–124

partitioning, 160–163

reading and updating, 134

selecting to copy, Import and Export Wizard, 466–468

user-defined table types, 133

tablespaces (Oracle), comparing with SQL Server database

storage model, 32–34

table-valued functions, 121–122

TABLOCK

BCP fast/slow modes and, 443

impacting import/export performance, 478

I n d e x 5 6 9

Tabular Data Stream (TDS)

endpoints in SQL Server client/server

communication, 62–63

packets in SQL Server client/server

communication, 61–62

tape device, as backup destination, 263

Target Server Memory (KB) counter, Perfmon, 314–315

Targets, Policy-Based Management, 425

tasks

migration to SQL Server 2008, 534–535

new Maintenance Plan, 413–416

in SSIS package design, 452–453, 456

TCP/IP

client network configuration, 95

connecting to SQL Server via TDS endpoints, 63

TCSEC (Trusted Computer System Evaluation Criteria), 200

TDE (Transparent Data Encryption) (Oracle), 194

TDS (Tabular Data Stream)

endpoints in SQL Server client/server

communication, 62–63

packets in SQL Server client/server

communication, 61–62

TechNet SQL Server TechCenter site, 460

tempdb database, 45, 88–89

temporary tables, 123–124

testing migration

defined, 534

iterative approach to, 535

overview of, 542–543

SSMA automated, 544–545

third-party tools, SQL Server, 15–16

time data types, 131–132

Total Server Memory (KB) counter, Perfmon, 315

Trace. See SQL Trace

trace files, Upgrade Advisor analysis of, 525–526

transaction logs

backing up, 261–262

backup permissions, 272

multiplexing log files, 44

online backup options, 257–258

overview of, 40–43

transaction management

auto-commit transactions, 229

concurrency controls, 233–234

distributed transactions, 230

errors during transaction processing, 231

explicit transactions, 230

implicit transactions, 229

isolation levels, 234–235

list of transaction control statements, 214

overview of, 228–229

rollback behavior, 231–232

snapshot isolation, 235–236

transaction isolation, 232–233

transactional replication, 508–509, 511

Transact-SQL. See T-SQL (Transact-SQL)

transfer method, Copy Database Wizard, 487–488

transparent client redirection, failover clustering and, 367

Transparent Data Encryption (TDE) (Oracle), 194

triggers

impacting import/export performance, 477

overview of, 122

Trusted Computer System Evaluation Criteria (TCSEC), 200

T-SQL (Transact-SQL)

BACKUP and RESTORE statements, 252

batches, 214–215

DDL and DML and, 212–213

MDW data collection sets and, 342

stored procedures written in, 119

transaction control statements, 214

T-SQL script

BULK INSERT statement, 446–450

creating new job step, 389

creating/managing linked servers using, 498

disabling of existing operators using, 385

generating for Maintenance Plan tasks, 417–419

job execution context, 392–395

starting jobs from, 392

U
UMS (User Mode Scheduler), 321

UNC (Universal Naming Convention) path, 446

undo, transaction log files, 40

Unicode character data, 128

uniform extents, in SQL Server database storage model, 34–35

uniqueidentifier data type, 133

Universal Naming Convention (UNC) path, 446

5 7 0 M i c r o s o f t S Q L S e r v e r 2 0 0 8 A d m i n i s t r a t i o n f o r O r a c l e D B A s

Upgrade Advisor Analysis Wizard

launching Upgrade Advisor Report Viewer from, 527–528

running, 524–527

upgrade process, 528–532

Upgrade Advisor Report Viewer, 527–528

Upgrade Advisor, SQL Server. See SQL Server Upgrade Advisor

upgrade to SQL Server 2008

backward compatibility, 520

considerations, 516–517

in-place upgrades, 517–518

side-by-side installation upgrades, 518–519

user database directories, 88–89

User Mode Scheduler (UMS), 321

User object

adding Users to roles, 184–185

creating new, 180–181

overview of, 166, 179

types of, 179

% User Time counter, Perfmon, 317

users

database migration and, 534

user-defined data types, 133

user-defined server roles, 182–183

user-defined stored procedures, 120

UTL_SMTP package, sending e-mail via, 381–382

V
V$ views (Oracle), DMVs compared with, 321

validation report, failover clustering, 359

VAS (Virtual Address Space), 56–58

VDI (Virtual Device Interface), 271

version identifiers, SQL Server, 71

VIA (Virtual Interface Adapter), 63–64

View Designer, 154–155

View History (job), 399–401

views

comparing indexed views with filtered indexes, 156

compatibility level for database, 522

creating, 154–155

creating indexed views, 155–156

overview of, 126–127

viewing role membership and permissions, 175

Virtual Address Space (VAS), 56–58

Virtual Device Interface (VDI), 271

Virtual Interface Adapter (VIA), 63–64

W
-w (wide mode), BCP, 443

WAITFOR wait type, 326

Waiting Tasks, Activity Monitor charts, 318

waits

DMVs for analyzing, 321–323

Resource Waits panel, of Activity Monitor, 319–320

in SQL Server 2008, 326–327

types of, 323, 325–326

viewing wait information, 323–325

Warehouse Builder, 449

warm standby solutions

database mirroring in high-performance mode,

353–356

log shipping, 350–353

overview of, 349–350

SQL Server replication, 356

Web Edition, SQL Server, 3–4

window layout, SSMS, 8–9

Windows (Microsoft)

authentication, 167

batch process, using BCP, 445

clipboard, 473–474

failover clustering on Windows Server,

357–358, 364–365

MSDTC running as Windows service, 497–498

principals, 167

SQL Server available on Windows Server, 454

Windows Reliability and Performance Monitor, 306–307

wiretap, encryption protecting against, 189

WITH options, in BACKUP statements

checksum for testing backup integrity, 270

compression, 268–270

copy-only backups, 268

differential backups, 260–261

overview of, 265–266

WITH options, in RESTORE statements

checksum for testing restore integrity, 296

FILE and FILEGROUP parameters, 291

WITH NORECOVERY option, 350, 368

I n d e x 5 7 1

point-in-time recovery, 288

WITH RECOVERY option, 351

replacing existing databases, 295–296

restoring to alternate locations, 295

restricted users, 296–297

types of recovery options, 285–287

WITH SCHEMABINDING option, creating indexed views, 155

Workgroup Edition, SQL Server, 3

WRITELOG wait type, 326

X
XML Showplans, query execution, 219–222

	Contents
	Acknowledgments
	Introduction
	Chapter 1 Introduction to the SQL Server Platform
	SQL Server Editions
	Premium Editions
	Core Editions
	Specialized Editions
	Free Editions
	SQL Azure (SQL Server in the Cloud)
	Data Warehousing with SQL Server

	SQL Server—What’s in the Box?
	RDBMS Features
	SQL Server Tools
	Business Intelligence with SSIS, SSRS, and SSAS
	Complex Event Processing with StreamInsight

	Operating System Platforms
	SQL Server Documentation and Sample Databases
	SQL Server Books Online
	AdventureWorks Sample Databases

	SQL Server Resources, Support, and Software Patches
	Online Resources
	Official Microsoft Support and Software Patches

	Chapter 2 SQL Server Architecture
	High-Level Architecture Overview
	Database Architecture
	Database Storage Model
	Physical Implementation

	System Databases
	master/Resource
	tempdb
	msdb
	model
	distribution

	Database Snapshots
	Instances
	Inside the Instance

	Client/Server Communication

	Chapter 3 Installing and Configuring SQL Server
	Installing SQL Server
	Media and Licensing
	Software Prerequisites
	SQL Server Components
	Instance Objects
	Installation Locations and Conventions
	Security Considerations
	Software Installation

	Configuring SQL Server
	Networking Overview
	Network Configuration
	Basic Administration Tasks
	Server Configuration

	Chapter 4 Database Objects
	Schemas
	Working with Schemas
	Synonyms

	Schema Objects
	Programmatic Objects
	Tables, Indexes, and Views
	Data Types

	Working with Data Objects
	Creating Tables
	Creating Constraints
	Creating Indexes
	Rebuilding and Reorganizing Indexes
	Creating Relationships
	Creating Views

	Filegroups and Partitioning
	Creating Files and Filegroups
	Partitioning

	Chapter 5 Security
	Security Objects
	Server Security
	Database Security

	Protecting SQL Server Databases
	Proxy Accounts
	Encryption
	Auditing
	Policy-Based Management and Security

	Chapter 6 Data Access and Transaction Control
	The T-SQL Language
	Query Execution
	Parsing
	Optimization
	Execution
	Fetching
	Execution Plans
	Optimizer Hints
	Plan Guides
	Monitoring Query Execution

	Transaction Management
	Auto-Commit Transactions
	Implicit Transactions
	Explicit Transactions
	Distributed Transactions
	Errors During Transaction Processing
	Rollback Behavior
	Transaction Isolation

	Locking
	Lock Granularity
	Lock Types
	Lock Compatibility
	Lock Hints
	Lock Escalation
	Deadlocks
	Monitoring Locking

	Chapter 7 Backup and Recovery
	Recovery Models
	FULL
	BULK_LOGGED
	SIMPLE

	Backup
	Logical Backups
	Physical Backups
	Performing Backups
	Backup History
	Backup Permissions
	Securing Backups
	Backup Scheduling
	SQL Server Maintenance Plans
	Back Up Using SSMS
	Backup of System Databases
	Example Backup Scenarios

	Restore and Recovery
	Restoring and Recovering a Database
	Restore—With Options
	Restore Permissions
	Restore History Tables
	Restoring System Databases
	Restoring Using SSMS
	Example Restore Scenarios

	Further Reading

	Chapter 8 Performance Tuning and Optimization
	Windows Performance Monitor
	Overview
	Getting Started
	What to Look For
	Going Beyond the Built-in Functionality

	SQL Server Activity Monitor
	Processes
	Resource Waits
	Data File I/O
	Recent Expensive Queries

	Dynamic Management Views
	What Is SQL Server Waiting For?
	Viewing I/O Latency by Database File
	Finding Missing Indexes

	SQL Server Profiler and SQL Trace
	Event Hierarchy: Categories, Classes, and Columns
	How to Reduce the Impact of Tracing
	Analyzing SQL Traces

	Database Engine Tuning Advisor
	The Management Data Warehouse
	What MDW Doesn’t Do
	MDW Architecture

	Chapter 9 High Availability and Disaster Recovery
	Evaluating Business Continuity Solutions
	Cold Standby Solutions
	Warm Standby Solutions
	Log Shipping
	Database Mirroring (High-Performance Mode)
	Replication

	Hot Standby Solutions
	Failover Clustering
	Database Mirroring (High-Safety Mode with Automatic Failover)
	Database Mirroring Walkthrough

	Chapter 10 Scheduling, Automation, and Alerting
	SQL Server Agent
	Database Mail
	Operators

	Jobs
	Job Execution Context
	Job Categories
	Shared Schedules
	Job Monitoring and Execution History

	Alerts
	Maintenance Plans
	Policy-Based Management
	Policy Evaluation
	Exporting and Importing Policies

	Chapter 11 Data Movement
	Importing and Exporting Data
	Bulk Copy Program
	BULK INSERT Statement (T-SQL)
	SQL Server Integration Services
	Import and Export Wizard
	SQL Server Management Studio
	Performance Considerations for Importing and Exporting Data

	Moving or Copying an Entire Database
	Detach-Copy/Move-Attach Method
	Scripting the Database
	Copy Database Wizard
	Backup and Restore

	Querying Across Servers and Data Sources
	Data Replication
	Replication Architecture
	Replication Types
	Peer-to-Peer Replication

	Chapter 12 Upgrading and Migrating to SQL Server
	Upgrading from Older Versions
	Upgrade Considerations
	SQL Server Upgrade Advisor
	The Upgrade Process

	Migrating from Other Databases
	Migration Tasks
	SQL Server Migration Assistant

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

