

Microsoft®

Access™ VBA
Programming
for the Absolute
Beginner
Third Edition

MICHAEL VINE

© 2007 Thomson Course Technology, a division of Thomson Learning
Inc. All rights reserved. No part of this book may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage or retrieval
system without written permission from Thomson Course Technology
PTR, except for the inclusion of brief quotations in a review.

The Thomson Course Technology PTR logo and related trade dress are
trademarks of Thomson Course Technology, a division of Thomson
Learning Inc., and may not be used without written permission.

Microsoft, Access, and VBA are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other
countries.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s
technical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted
throughout this book to distinguish proprietary trademarks from de-
scriptive terms by following the capitalization style used by the
manufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of
the fact that the Internet is an ever-changing entity. Some facts may have
changed since this book went to press.

Educational facilities, companies, and organizations interested in
multiple copies or licensing of this book should contact the Publisher
for quantity discount information. Training manuals, CD-ROMs, and
portions of this book are also available individually or can be tailored
for specific needs.

ISBN-10: 1-59863-393-7
ISBN-13: 978-1-59863-393-1

Library of Congress Catalog Card Number: 2007923301

Printed in the United States of America

07 08 09 10 11 TW 10 9 8 7 6 5 4 3 2 1

 Publisher and General
Manager, Thomson Course
Technology PTR:
Stacy L. Hiquet

Associate Director of
Marketing:
Sarah O’Donnell

Manager of Editorial
Services:
Heather Talbot

Marketing Manager:
Mark Hughes

Acquisitions Editor:
Mitzi Koontz

Marketing Assistant:
Adena Flitt

Project Editor:
Jenny Davidson

Technical Reviewer:
Keith Davenport

PTR Editorial Services
Coordinator:
Erin Johnson

Interior Layout Tech:
Digital Publishing Solutions

Cover Designer:
Mike Tanamachi

Indexer:
Katherine Stimson

Proofreader:
Kim V. Benbow

Thomson Course Technology PTR,
a division of Thomson Learning Inc.

25 Thomson Place
Boston, MA 02210

http://www.courseptr.com

eISBN-10: 1-59863-754-1

http://www.courseptr.com

To Sheila: 143

ACKNOWLEDGMENTS

riting any book is not easy, especially a technical programming book. It
takes many great, patient, and talented people to write, edit, design, mar-
ket, finance, and produce a book. Without the assistance of Mitzi Koontz,

Jenny Davidson, and Keith Davenport, it would be impossible for me to share with
you my knowledge of programming in such a professional and fun manner.

W

ABOUT THE AUTHOR

ichael Vine has taught computer programming, web design, and database
classes at Indiana University/Purdue University in Indianapolis, IN, and at
MTI College of Business and Technology in Sacramento, CA. Michael has

over 13 years’ experience in the information technology profession. He currently
works full time in a Fortune 100 company as an IT Project Manager overseeing the
development of enterprise data warehouses.

M

This page intentionally left blank

Contents

An Invitation to Access 2007....................................1CHAPTER 1

What Is Microsoft Access?...1
Microsoft Access 2007 Limitations...2
Microsoft Office Suites...3
System Requirements..4
Working with Older Database Formats...6
What’s New in Access 2007...6

User Interface...7
Templates..9
Datasheet View..11
Layout View..12
Calendar..13
Rich Text..13
Split Forms..14
Multivalued Fields..14
Data Types...15
File Format..16
Help..16

Summary...17

Access Essentials..19CHAPTER 2

Database Normalization...19
1st Normal Form..21
2nd Normal Form...22
3rd Normal Form..23

Creating a New Access 2007 Database...25
Tables and Fields...26
Table Relationships..31
Forms..35

Common Controls..37
Hungarian Notation...42

Queries...43

Summary...46
Programming Challenges...48

Introduction to Access VBA..................................49CHAPTER 3

The Event-Driven Paradigm..49
Object-Based Programming..50
The VBA IDE..51

Introduction to Event Procedures..53
Introduction to VBA Statements...55

Accessing Objects and Their Properties..56
The Forms Collection...57
The Me Keyword..58
Assignment Statements..59
Command and Label Objects...60
Getting User Input with Text Boxes...65

Variables and Beginning Data Types...67
Variable Naming Conventions..70
Variable Scope..71
Option Statements..72

VBA Arithmetic and Order of Operations..73
Chapter Program: Fruit Stand...74
Summary...79
Programming Challenges...80

Conditions...81CHAPTER 4

If Blocks...81
Nested If Blocks...83
Compound If Blocks...84

Select Case Structures..87
Dialog Boxes...88

Message Box..88
Input Box...91

Common Controls Continued...93
Option Group...93
Option Buttons..95
Check Boxes..98
Toggle Buttons...99

Chapter Program: Hangman..101
Summary...107
Programming Challenges...108

Microsoft Access VBA Programming for the Absolute Beginnerviii

Looping Structures..109CHAPTER 5

Introduction to Looping Structures..109
Do While...111
Do Until...112
Loop While..113
Loop Until...114
For...114

List and Combo Boxes..116
Adding Items..117
Removing Items..121
Managing Columns..122

Random Numbers...124
Chapter Program: Math Quiz..126
Summary...129
Programming Challenges...130

Common Formatting and Conversion
Functions..131

CHAPTER 6

String-Based Functions..131
UCase..132
LCase..133
Len..133
StrComp..134
Right...136
Left..137
Mid..137
InStr..138

Date and Time Functions...139
Date..139
Day..140
WeekDay...140
Month..140
Year...140
Time..140
Second..141
Minute...141
Hour...141
Now...142

Conversion Functions..142
Val...142
Str..142

Contents ix

Chr..143
Asc...144

Formatting..144
Formatting Strings...145
Formatting Numbers...145
Formatting Date and Time...146

Chapter Program: Secret Message..148
Summary...151
Programming Challenges...152

Code Reuse and Data Structures.........................153CHAPTER 7

Code Reuse..153
Introduction to User-Defined Procedures..155
Subprocedures...156
Function Procedures..158
Arguments and Parameters...158

Standard Modules...161
Arrays...163

Single-Dimension Arrays..164
Two-Dimensional Arrays...166
Dynamic Arrays...167
Passing Arrays as Arguments..169

User-Defined Types...170
Type and End Type Statements...170
Declaring Variables of User-Defined Type..172
Managing Elements...173

Chapter Program: Dice..176
Summary...183
Programming Challenges...184

Debugging, Input Validation, File Processing,
and Error Handling...185

CHAPTER 8

Debugging..185
Stepping Through Code..186
Breakpoints..187
Immediate Window...188
Locals Window..190
Watch Window..190

Input Validation..192
IsNumeric...192
Checking a Range of Values...194

Microsoft Access VBA Programming for the Absolute Beginnerx

Error Handling..196
The Err Object..199
The Debug Object...200

File Processing...201
About Sequential File Access...202
Opening a Sequential Data File..202
Reading Sequential Data from a File...203
Writing Sequential Data to a File...204
Closing Data Files...205
Error Trapping for File Access...206

Chapter Program: Trivial Challenge..208
Summary...213
Programming Challenges...214

Microsoft Access SQL..215CHAPTER 9

Introduction to Access SQL..215
Data Manipulation Language..218

Simple SELECT Statements..218
Conditions..220
Computed Fields...222
Built-In Functions...223
Sorting...227
Grouping...229
Joins..230
INSERT INTO Statement..232
UPDATE Statement...233
DELETE Statement..234

Data Definition Language..235
Creating Tables..235
Altering Tables..236
DROP Statement...237

Summary...237
Programming Challenges...239

Database Programming with ADO.......................241CHAPTER 10

ADO Overview..241
Connecting to a Database...242
Working with Recordsets...246

Introduction to Database Locks..247
Introduction to Cursors..248
Retrieving and Browsing Data..249
Updating Records...258

Contents xi

Adding Records...261
Deleting Records...262

Chapter Program: Choose My Adventure...264
Summary...274
Programming Challenges...275

Object-Oriented Programming with
Access VBA...277

CHAPTER 11

Introduction to Object-Oriented Programming...277
Creating Custom Objects..278

Working with Class Modules...279
Property Procedures...281
Method Procedures..284
Creating and Working with New Instances..287

Working with Collections..290
Adding Members to a Collection..291
Removing Members from a Collection...292
Accessing a Member in a Collection..292
For Each Loops...293

Chapter Program: Monster Dating Service..294
Summary...300
Programming Challenges...301

Macros and Performance Tuning.......................303CHAPTER 12

Macros..303
Stand-Alone Macros..304
Macro Troubleshooting and Error Handling..311
Converting Macros to VBA...313

Access Database Performance Considerations..315
Forms...316
VBA Code...317
Queries and Indexes...317
Performance Analyzer...318

Summary...320
Programming Challenges...321

Common Character Codes....................................323APPENDIX A

Keyboard Shortcuts for the Code Window......327APPENDIX B

Microsoft Access VBA Programming for the Absolute Beginnerxii

Trappable Errors...329APPENDIX C

Visual Basic Environment Options.....................333APPENDIX D

Reserved Words and Symbols..............................337APPENDIX E

Index.. 345

Contents xiii

INTRODUCTION

ntroduced in the early 1990s, Microsoft Access has become one of the
most powerful and popular applications in the Microsoft Office suite of
applications. Microsoft Access 2007 allows database developers and pro-

grammers to build dynamic and easily portable databases. Access comes with
many easy-to-use features such as graphical forms, database templates, SQL query
builders, as well as a subset of the Visual Basic language known as VBA for building
data-driven applications.

Microsoft Access VBA Programming for the Absolute Beginner, Third Edition, is not a guide
on how to use Access and its many wizards. There are already many books that do
that! Instead, Microsoft Access VBA Programming for the Absolute Beginner concentrates
on VBA programming concepts including variables, conditions, loops, data struc-
tures, procedures, file I/O, and object-oriented programming with special topics
including database programming with ADO, Access SQL, Macros, and Access per-
formance tuning recommendations.

Using Thomson Course Technology PTR’s Absolute Beginner series guidelines’ pro-
fessional insight, clear explanations, examples, and pictures, you learn to program
in Access VBA. Each chapter contains programming challenges, a chapter review,
and a complete program that uses chapter-based concepts to construct a fun and
easily built application.

To work through this book in its entirety, you should have access to a computer
with Microsoft Access installed. The programs in this book were written in
Microsoft Office 2007, specifically Access 2007. Those readers using older versions
of Microsoft Access, such as Access 2002 or Access 2003, will find many of the VBA
programming concepts still apply.

WHAT YOU’LL FIND IN THIS BOOK
To learn how to program a computer, you must acquire a progression of skills. If
you have never programmed at all, or have little to no experience with the
Microsoft Access application, you will probably find it easiest to go through the
chapters in order. Of course, if you are already an experienced programmer or
seasoned user of Access, it might not be necessary to do any more than skim the
earliest chapters. In either case, programming is not a skill you can learn by

I

reading. You’ll have to write programs to learn. This book has been designed to make the
process reasonably painless.

Each chapter begins with a brief introduction to chapter-based concepts. Once inside the
chapter, you’ll look at a series of programming concepts and small programs that illustrate
each of the major points of the chapter. Finally, you’ll put these concepts together to build a
complete program at the end of the chapter. All of the programs are short enough that you
can type them in yourself (which is a great way to look closely at code), but they are also
available via the publisher’s website (www.courseptr.com/downloads). Located at the end of
every chapter is a summary that outlines key concepts learned. Use the summaries to refresh
your memory on important concepts. In addition to summaries, each chapter contains pro-
gramming challenges that will help you learn and cement chapter-based concepts.

Throughout the book, I’ll throw in a few other tidbits, notably the following:

These are good ideas that experienced programmers like to pass on.

There are a few areas where it’s easy to make a mistake. I’ll point them out to you
as we go.

Pay special attention to these areas for clarification or emphasis on chapter concepts.

In the Real World

As you examine concepts in this book, I’ll show you how the concepts are used beyond begin-
ning programming.

T IP

TRAP

What You’ll Find in This Book xv

www.courseptr.com/downloads

WHO THIS BOOK IS FOR
Microsoft Access VBA Programming for the Absolute Beginner, Third Edition is designed for the
beginning Access VBA programmer. Persons with backgrounds in other programming lan-
guages and databases will find this book to be a good tutorial and desk reference for Access
VBA. Specifically this book is for the following groups:

• High school or college students enrolling or enrolled in an Access programming class

• Programming hobbyists and enthusiasts

• Office personnel with beginning database programming responsibilities

• Professional database developers wanting to learn the Microsoft Access VBA language

• Home users wanting to learn more about Access and VBA

Microsoft Access VBA Programming for the Absolute Beginnerxvi

1C H A P T E R

AN INVITATION TO

ACCESS 2007

ntroduced well over a decade ago, Microsoft Access is a fully functional
RDBMS (Relational Database Management System) that has become one of
the most popular and powerful programs in the Microsoft Office suite of

applications.

Originally titled “Office 12”, Microsoft Office 2007 was released to business cus-
tomers in late 2006 and to the general public in early 2007. Part of the Microsoft
Office 2007 Professional, Professional Plus, Ultimate, and Enterprise suites, Access
2007 provides both beginning and professional database developers a cost effective
way to leverage key database functionality with an easy-to-use graphical interface.

As of this writing, Microsoft allows you to download a free 60-day trial of Microsoft
Office 2007 from this site: http://us1.trymicrosoftoffice.com/. Keep in mind that
this is a really large download at around 400 megabytes, so you’ll want to ensure
you download it with a fast Internet connection such as cable modem or DSL.

WHAT IS MICROSOFT ACCESS?
In its rawest digital form, a database is simply a collection of data stored in a file
for future retrieval and analysis. Modern databases have mechanisms for storing
large amounts of data in a structured form and allow for many users to access the
same database and even the same data at the same time. These database programs

I

http://us1.trymicrosoftoffice.com/

often have many other features that include graphical interfaces for end users, reporting and
query tools, security management controls, native programming support (e.g., VBA), and
application interfaces to connect to other programs such as web and application servers.
Microsoft Access is one such modern database that does all of this and more!

Because of its low cost and user-friendly interface, Microsoft Access has become quite popular
for teaching beginning database skills and is just as popular in back office operations for
building quick and relatively simple data management programs. In fact, Microsoft Access is
often considered an upgrade from Microsoft Excel spreadsheets for organizations requiring
data storage and analysis, but unfortunately don’t have software development resources or
the necessary skills to build complex database designs and solutions.

MICROSOFT ACCESS 2007 LIMITATIONS
Prior to designing a database solution, it’s important to understand and consider the benefits
and limitations of the off-the-shelf tools you’re evaluating. Microsoft Access has never been
considered an “enterprise” database solution such as Microsoft SQL Server or Oracle, but
nonetheless, it does satisfy most minor to intermediate organizational database require-
ments. To aid you in your evaluation of Access as a database solution, Table 1.1 describes the
boundaries of Access 2007.

T A B L E 1 . 1 A C C E S S 2 0 0 7 L I M I T A T I O N S

Limitation Value
Access database file size 2 gigabytes
Number of concurrent users 255
Number of database objects (including tables) 32,768
Table size 2 gigabytes
Number of characters in a table name 64
Number of characters in a field name 64
Number of open tables 2,048
Number of characters in a text field 255
Number of characters in a memo field 65,535 entered from UI, 2 gigabyte entered

programmatically
Size of an OLE Object field 1 gigabyte
Number of indexes on a table 32
Number of fields in an index or primary key 10
Number of characters in a validation rule 2,048
Number of characters in a validation message 255

2 Microsoft Access VBA Programming for the Absolute Beginner

MICROSOFT OFFICE SUITES
If you’ve been a user of Access for some time, you’re probably aware that the Access database
system won’t come with every suite of Microsoft Office. If you’re preparing to purchase one

Number of characters in a record (excluding Memo &
OLE Object field) when the UniCodeCompression
property is set to Yes

4,000

Number of characters in a field property setting 255
Number of characters in an object name 64
Number of characters in a password 20
Number of characters in a user or group name 20
Number of open tables 2,048
Number of enforced relationships 32 per table
Number of tables in a query 32
Number of fields in a recordset returned by a query 255
Maximum recordset size 1 gigabyte
Sort limit 255 characters
Number of levels of nested queries 50
Number of characters in a cell in the query design grid 1,024
Number of characters in a parameter in a parameterized
query

255

Number of ANDs in a WHERE or HAVING clause 99
Number of characters in a SQL statement Approx 64,000
Number of characters in a label 2,048
Number of characters in a text box 65,535
Form or report width 22 inches (55.87 cm)
Section height 22 inches (55.87 cm)
Height of all sections 200 inches (508 cm)
Number of levels of nested forms or reports 7
Number of fields or expressions that can be sorted or
grouped in a report

10

Number of headers or footers in a report 1 report header/footer, 1 page header/
footer, 10 section headers/footers

Number of controls and sections added over the
lifetime of a form or report

754

Number of SQL statement characters in a
Recordsource or Rowsource property

32,750

Number of actions in a macro 999
Number of characters in a Macro/VBA condition 255
Number of characters in a Macro/VBA comment 255
Number of characters in an Action Argument 255
Number of form, report, and class modules 1,000

Chapter 1 • An Invitation to Access 2007 3

of the new 2007 Office suites and want to leverage Access, you’ll need to ensure you purchase
or upgrade to the correct Microsoft Office, as shown in Table 1.2.

T A B L E 1 . 2 M I C R O S O F T O F F I C E S U I T E S

Office Suite Includes Access 2007
Microsoft Office Basic 2007 no
Microsoft Office Home & Student 2007 no
Microsoft Office Standard 2007 no
Microsoft Office Small Business 2007 no
Microsoft Office Professional 2007 yes
Microsoft Office Professional Plus 2007 yes
Microsoft Office Ultimate 2007 yes
Microsoft Office Enterprise 2007 yes

SYSTEM REQUIREMENTS
Whether you will be installing Access 2007 by itself or as part of a Microsoft 2007 Office suite,
you’ll need to be aware that system requirements have increased. System requirements for
installing Access 2007 alone are described in Table 1.3.

T A B L E 1 . 3 M I C R O S O F T A C C E S S 2 0 0 7 S Y S T E M R E Q U I R E M E N T S

Component Requirements
Processor 500 megahertz (MHz) or faster processor
Memory 256 MB of RAM or greater
Hard Disk 1.5 gigabytes (GB); a portion of which will be freed after installation
Drive CD-ROM or DVD
Display 1024×768 or higher resolution monitor
Operating System Microsoft Windows XP with SP2, Windows Server 2003 with SP1 or later operating

system

System requirements increase slightly if you plan on installing the entire suite of Microsoft
Office applications that come with Access 2007, including Professional, Professional Plus,
Enterprise, and Ultimate suites, as detailed in Table’s 1.4, 1.5, 1.6, and 1.7, respectively.

4 Microsoft Access VBA Programming for the Absolute Beginner

T A B L E 1 . 6 M I C R O S O F T O F F I C E E N T E R P R I S E 2 0 0 7 S Y S T E M

R E Q U I R E M E N T S

Component Requirements
Processor 500 megahertz (MHz) or faster processor
Memory 256 MB of RAM or greater
Hard Disk 2 gigabytes (GB); a portion of which will be freed after installation
Drive CD-ROM or DVD
Display 1024×768 or higher resolution monitor
Operating System Microsoft Windows XP with SP2, Windows Server 2003 with SP1 or later operating

system

T A B L E 1 . 4 M I C R O S O F T O F F I C E P R O F E S S I O N A L 2 0 0 7 S Y S T E M

R E Q U I R E M E N T S

Component Requirements
Processor 500 megahertz (MHz) or faster processor
Memory 256 MB of RAM or greater
Hard Disk 2 gigabytes (GB); a portion of which will be freed after installation
Drive CD-ROM or DVD
Display 1024×768 or higher resolution monitor
Operating System Microsoft Windows XP with SP2, Windows Server 2003 with SP1 or later operating

system

T A B L E 1 . 5 M I C R O S O F T O F F I C E P R O F E S S I O N A L P L U S 2 0 0 7 S Y S T E M
R E Q U I R E M E N T S

Component Requirements
Processor 500 megahertz (MHz) or faster processor
Memory 256 MB of RAM or greater
Hard Disk 2 gigabytes (GB); a portion of which will be freed after installation
Drive CD-ROM or DVD
Display 1024×768 or higher resolution monitor
Operating System Microsoft Windows XP with SP2, Windows Server 2003 with SP1 or later operating

system

Chapter 1 • An Invitation to Access 2007 5

WORKING WITH OLDER DATABASE FORMATS
To convert an Access 95 or 97 version database (MDB file format), simply open it in Access
2007 to launch the Database Enhancement dialog box that will assist you in upgrading the
database to the new 2007 file format (ACCDB). Once you have converted the older database,
you will be able to make design changes to it, but you will no longer be able to open it in the
version (Access 95 or 97) in which it was originally created.

Access versions 2000, 2002, and 2003 are easily opened in Access 2007 and can be saved in the
new Access 2007 file format (ACCDB) or saved as versions 2000, 2002, or 2003 (MDB file format)
for backward-compatibility purposes.

WHAT’S NEW IN ACCESS 2007
It’s an exciting time to contemplate upgrading your Access database and/or VBA program-
ming skills. As an author, college instructor, and information technology professional, I’ve
been working with Microsoft Access databases for quite some time, and I have to say Access
2007 has matured with a number of enhancements that even the most seasoned database
professional will appreciate, all in a little package.

At first glance, the most noticeable change to Microsoft Access is the user interface, which
Microsoft really turned on its head! It’s a really dramatic change that you might find unnerv-
ing at first, but after working in it for a while, I’m sure you’ll find it quite useful and intuitive,
just like I did.

In addition to the enhanced graphical experience, Microsoft has done a great job of pouring
lots of innovative features into Access 2007 that should give you, an Access developer, the
feeling of driving a more robust database than its predecessors.

T A B L E 1 . 7 M I C R O S O F T O F F I C E U L T I M A T E 2 0 0 7 S Y S T E M

R E Q U I R E M E N T S

Component Requirements
Processor 500 megahertz (MHz) or faster processor
Memory 256 MB of RAM or greater
Hard Disk 3 gigabytes (GB); a portion of which will be freed after installation
Drive CD-ROM or DVD
Display 1024×768 or higher resolution monitor
Operating System Microsoft Windows XP with SP2, Windows Server 2003 with SP1 or later operating

system

6 Microsoft Access VBA Programming for the Absolute Beginner

So far in my analysis of Microsoft Access 2007, my only complaint is that Microsoft removed
support for Data Access Pages. If you’ve used Data Access Pages before in Access, you most
likely appreciated Microsoft’s simple to develop, easy to deliver, and useful Internet interface
for your Access users. Though opening a prior version of Access containing Data Access Pages
in Access 2007 will allow you to view them in Internet Explorer, unfortunately you cannot
do much else. Microsoft’s strategy behind eliminating Data Access Pages is to move web-based
users of Access to Microsoft Windows SharePoint Services. If you’d like more information
about Microsoft SharePoint Services, please visit Microsoft’s SharePoint site: http://
office.microsoft.com/en-us/sharepointserver/default.aspx.

Not withstanding the elimination of Data Access Pages, application developers, instructors,
students, and database hobbyists and enthusiasts will that find Access 2007 not only supports
most of their requirements, but does so in a professional, insightful, and elegant manner.

Without further ado, let’s now take a trek together through a sampling of Access 2007’s new
and enhanced features, including:

• User interface

• Templates

• Datasheet view

• Layout view

• Calendar

• Rich text

• Field List pane

• Split forms

• Multivalued fields

• Data types

• File format

• Help

User Interface
Microsoft has done a great job ensuring the user experience is similar across its most common
of Office applications (Word, Excel, PowerPoint, Outlook, and of course Access), using a new
and common graphical interface. After opening a new database, you’ll notice the Getting
Started with Microsoft Office Access page, as seen in Figure 1.1, that allows you to get started
creating a new database, leverage pre-built templates, and link to useful Access information
online.

Chapter 1 • An Invitation to Access 2007 7

http://office.microsoft.com/en-us/sharepointserver/default.aspx
http://office.microsoft.com/en-us/sharepointserver/default.aspx

FIGURE 1.1

The Getting
Started with

Microsoft Office
Access page.

One of the most visibly different interface changes to Access 2007 is a new graphical dash-
board at the top of the window called the Ribbon, as revealed in Figure 1.2. The Ribbon moves
previously embedded commands from menus to a rich new tabular design. For example, you
only need to click on the Create tab to view options for building forms and reports or click
on the Home tab to sort, filter, and find records.

FIGURE 1.2

The new Ribbon.

Ribbon

Microsoft’s intention of the Ribbon is to allow Office users to focus on what they want to do
through an easily seen common set of operations. Of course, individual experiences may vary
depending on how long it takes you to acclimate to the sleek new design, but as I’ve found

8 Microsoft Access VBA Programming for the Absolute Beginner

and I’m sure you will as well, the Ribbon does what it intends to do, which is to get rid of the
clunky floating windows, multiple menus, and toolbars of old.

Embedded in the new Ribbon are an Office button and a Quick Access toolbar that move
common File commands, such as New, Open, Save, Exit, and many others from a traditional
Windows-driven menu, to easily found locations, as shown in Figure 1.3.

Office Button

Quick Access
Toolbar

FIGURE 1.3

The new Office
button and Quick

Access toolbar.

Also worth noting is the new Navigation pane that lists all of your database objects and the
Tabbed documents window that allow you to visually organize your tables, queries, forms,
reports, and macros. Both the Navigation pane and Tabbed documents window are shown in
Figure 1.4.

If the Navigation pane is collapsed, you will need to expand it or resize it with your mouse.

Templates
A definitive head start for Access application developers is Microsoft’s set of templates, as
shown in Figure 1.5, that include professionally developed out-of-box tables, forms, queries,
and reports. Each template is a complete application that will give you a head start with
database development by leveraging them as is, or modifying them to suit your needs.

Chapter 1 • An Invitation to Access 2007 9

FIGURE 1.4

The new
Navigation pane

and Tabbed
documents

window.

Navigation pane

Tabbed documents
window

FIGURE 1.5

Out of the box
professionally

developed
templates.

You can leverage the Getting Started with Microsoft Office Access page to link
to updated and/or new templates.

Featured Access 2007 database templates include:

• Assets

• Contacts

T IP

10 Microsoft Access VBA Programming for the Absolute Beginner

• Issues

• Events

• Marketing projects

• Projects

• Sales pipeline

• Tasks

• Faculty

• Students

Datasheet View
Using the Create tab of the Ribbon, you can click the Table icon to launch the Datasheet view
that allows you to easily enter new columns, as shown in Figure 1.6. You can then use the
Datasheet tab in the Ribbon to change a field’s (column) data type.

Use the Create tab
to build a new table

Use the Datasheet tab
to change a column’s
data type

Insert a new
field (column)

FIGURE 1.6

Working in the
Datasheet view.

Sorting and filtering capabilities are accessible via menus that become available when right-
clicking a column’s value, as shown in Figure 1.7.

An intelligent design changes the filter menu items based on the data type (numeric, date,
and text) of the field clicked.

Chapter 1 • An Invitation to Access 2007 11

FIGURE 1.7

Filtering rows in
the Datasheet

view.

Layout View
An option from the Ribbon’s view button, the new Layout view allows you to make changes
to a live form or report through various formatting tools and dragging and dropping fields
from the Field List window, as seen in Figure 1.8.

FIGURE 1.8

Developing forms
and reports in real-

time in Layout
view.

Layout
view

Access the field list
Field list

12 Microsoft Access VBA Programming for the Absolute Beginner

I really like the new Layout view because it gives you a WYSIWYG (What You See Is What You
Get) feeling during report and form development that’s not available during Design view.

Calendar
An interactive calendar icon, called the date picker (as shown in Figure 1.9), has been added
to the right of the date fields in the Datasheet view. The date picker allows you to interactively
traverse through a calendar to look up and select date values.

Date Picker

Date Picker icon

FIGURE 1.9

Using the date
picker to look up

and select
calendar date

values.

The date picker can be turned off in Design view by choosing a table’s field and selecting
Never for the Show Date Picker property.

Rich Text
A nice addition to Memo data types is the inclusion of rich text that allows you to create and
format text like you might in a Microsoft Office Word document. This includes font type,
color, size, and other font layouts such as bold, italicize, and underline.

Rich text functionality can be turned off for Memo data types in Design view by changing the
Text Format property to Plain Text.

Chapter 1 • An Invitation to Access 2007 13

Split Forms
The new split forms option allows you to work with a form in Datasheet view and Form view
at the same time. As shown in Figure 1.10, the split form components (Datasheet view and
Form view) connect to the same data source at the same time, allowing you to quickly
find a record and edit it in either Form or Datasheet view providing of course, the record is
updatable.

To enable or create a split form, simply click the Create tab of the Ribbon and choose Split
Form in the Forms section, as shown in Figure 1.10.

FIGURE 1.10

Enabling and
viewing a split

form.

Form view

Datasheet
view

Enable split form

Multivalued Fields
Without having to build a complex database design, Microsoft Access 2007 allows you to
create multivalued fields that store several values for a single field. This is a very interesting
new feature if you consider that not all professional database systems allow this type of func-
tionality without some creative design approaches.

In reality, Access 2007 doesn’t actually store multiple values in a single field even though the
graphical representation shown in Figure 1.11 reveals otherwise. Access actually stores the
multiple values separately in system tables and brings them back as necessary for graphical
display.

Multivalued fields are created from the Ribbon by selecting the Datasheet tab and click-
ing the Lookup Column option from within the Fields and Columns area. As revealed in

14 Microsoft Access VBA Programming for the Absolute Beginner

Figure 1.11, I added a new multivalued field to an Employees table called Inventory Task and
assigned multiple values, in this case inventory tasks, to a single employee.

FIGURE 1.11

Working with
multivalued

fields.

Data Types
A much welcomed enhancement to Access 2007 is the Attachment data type that allows you
store both textual and binary files such as digital pictures or movies. Shown in Figure 1.12,
you can assign multiple attachments to a single record using the Attachment data type.

FIGURE 1.12

Assigning
multiple files to a

field with the
Attachment data

type.

Chapter 1 • An Invitation to Access 2007 15

File Format
The new Office Access 2007 file format has been customized to implement and store multi-
valued lookup fields, Attachment data types, Memo field history tracking, and integration
with Microsoft Outlook 2007 and Microsoft Windows SharePoint Services.

Microsoft Access 2007 introduces the following new file extensions.

• AACCDB—The new Office Access 2007 format, which replaces the MDB file extension.

• AACCDE—Access 2007 execute only file, which replaces the MDE file extension. ACCDE
files have all VBA code removed allowing a user to execute the code, but not modify it.
To create an ACCDE file in Access 2007, open your database, select the Database Tools
tab from the Ribbon, and click the Make ACCDE icon in the Database Tools section.

• AACCDT—Access 2007 database template extension.

• AACCDR—A new file extension that enables a database to open in runtime mode. Created
by simply changing the database’s file extension from ACCDB to ACCDR, the new file
extension allows for a locked-down version of your database.

Help
Access 2007 merged end-user help and VBA developers help into one Help viewer, as shown
in Figure 1.13. This will certainly be a welcome change that eliminates switching back and
forth between multiple help windows to research a question.

FIGURE 1.13

Use the new Help
viewer to access

both end-user and
developer
assistance.

16 Microsoft Access VBA Programming for the Absolute Beginner

SUMMARY
• A database is a collection of data stored in a file for future retrieval and analysis.

• Modern database programs often have features that include graphical interfaces, re-
porting and query tools, security management controls, native programming support
(e.g., VBA), and application interfaces to connect to other programs.

• Access 2007 allows you to convert older versions of Access databases to the new file
format (ACCDB) and save new Access 2007 databases to an older Access format (MDB).

• The Access 2007 database system comes with Microsoft Office 2007 Professional, Profes-
sional Plus, Ultimate, and Enterprise suites.

• System requirements for Access 2007 and Microsoft Office 2007 suites have increased in
CPU, memory, and disk necessities.

• Access 2007 removes support for Data Access Pages.

• Part of the new Office Access 2007 user interface improvements, the Ribbon moves pre-
viously embedded commands from menus to a rich new tabular design.

• A number of free database templates come with Access 2007, which include profession-
ally developed out-of-box tables, forms, queries, and reports.

• Sorting and filtering has been greatly enhanced with the new Datasheet view.

• The new Layout view allows you to make changes to a live form or report.

• The date picker, available in Datasheet view, allows you to interactively traverse through
a calendar to look up and select date values.

• The Memo data type now includes support for rich text.

• The new split forms option allows you to work with a form in Datasheet view and Form
view at the same time.

• Multivalued fields allow you to store multiple values for a single field.

• The new Attachment data type allows you to store both textual and binary files.

• Access 2007 implements new file extensions, ACCDB, ACCDE, ACCDT, and ACCDR that
support numerous enhancements.

• End-user help and VBA development support have been merged into one Help viewer.

Chapter 1 • An Invitation to Access 2007 17

This page intentionally left blank

2C H A P T E R

ACCESS ESSENTIALS

ow that you’ve seen what’s new in Access 2007, it’s time to take a look at
how to design a database through normalization and implement it using
tables, relationships, forms, controls, and queries. I’ll show you how this

is done by designing and building a small database to manage students and
homework.

For those of you already familiar with database normalization, Access databases,
and objects, you may want to skip right to Chapter 3, “Introduction to Access VBA,”
but if this is your first encounter with Access, or if you need a refresher in begin-
ning Access database skills, I strongly recommend this chapter as a prerequisite
for the remainder of this book.

DATABASE NORMALIZATION
A relational database allows developers to link one or more tables using keys.
Before physically creating and linking two tables, however, database developers
model their data, or normalize it, using database normalization techniques.

Database normalization is in essence the process by which one optimizes table
structures to enhance query performance and eliminate data integrity issues by
investigating data requirements and their relationships to each other. To get

N

started, let’s review the following key database normalization terms that are essential to this
chapter and the remainder of the book.

• EEntity—An entity is the main data object for which you are collecting information to be
saved in a table. For example, a student entity would generally be composed of student-
like data such as first name, last name, date of birth, and a student id.

• AAttribute—Attributes are the bits of related information that make up an entity.
Attributes such as first name, last name, and student id make up the student’s entity.

• PPrimary key—A primary key is either a single field or a combined set of fields that
uniquely identifies a single row of data in a table. Examples of unique identifiers that
would make a good candidate for a primary key are social security, ISBN, student id, or
any other value that would uniquely identify every row in a table. Note that most
database management systems, including Microsoft Access, allow you to create a pri-
mary key for each table using a built-in data type called AutoNumber, which increments
automatically each time a new row is entered into the table.

• FForeign key—The foreign key creates the foundation of a relationship between two
tables by inserting the primary key from one table into another table. For example, a
student id from a student’s entity would be placed into a grades entity to show a rela-
tionship between students and their grades.

• OOne-to-one relationship—Though not very common, a one-to-one relationship denotes
that each row of information for one entity relates to exactly one row of information
for another entity. For example, you might want remove sensitive information from an
Employee table and put it into a separate table called Employee_Private to hold private
data such as social security and salary data. In this case, for each record in the
Employee table, there would be one matching record in the Employee_Private table.

• OOne-to-many relationship—The most common of table relationships is the one-to-many
relationship, which is created by adding the primary key (one or more fields) from one
table into a second table that will hold many occurrences of said primary key. For
example, the relationship between an Assignment table and an Assignment_Results table
is one-to-many because for each assignment there will be multiple assignment results
(rows) representing the many students who took the assignment.

• MMany-to-many relationship—To build a many-to-many relationship, you need to create
a third table that breaks the many-to-many relationship into two one-to-many relation-
ships. You accomplish this by inserting the primary key from each of the two tables into
the third table and, as a result, the third table’s primary key is the combination of keys
from the first two tables.

20 Microsoft Access VBA Programming for the Absolute Beginner

Leveraging the terms above and through a series of normal forms (processes), I can model
student and homework data used to create this chapter’s sample database. Before proceeding,
however, let’s take a look at my data requirements, which include:

• Store student information with name, college, and chosen major.

• Store assignment information with a description and assigned grades for each student
for one class.

1st Normal Form
The first form in the database normalization process is rather simple and is most appropri-

ately called 1st Normal Form. The essential rules for the 1st Normal Form are:

• Create separate tables for each group of related data and ensure each row is unique by
identifying a primary key.

• Eliminate duplicate columns from the same table.

Since my goal for this chapter is to create a database that can manage both student and
homework data for a single class, I will create two entities that separate distinct groups
of data.

A Student entity with associated attributes:

• Student_Id (primary key)

• First_Name

• Last_Name

• College

• Major

An Assignment_Results entity with associated attributes:

• Assignment_Id (primary key)

• Student_Id (primary key)

• Assignment_Description

• Assignment_Completed

• Assignment_Score

Entities need to have an identifier (attribute) that will uniquely identify each row of infor-
mation. Remember that unique identifiers in the world of databases are called primary keys.
The primary keys for the student entity will be Student_Id and the primary key for the home-
work results entity will be comprised of two attributes, Assignment_Id and Student_Id. Note

Chapter 2 • Access Essentials 21

primary keys are often a single attribute, but they can be created using more than one
attribute, as in the case of the homework results entity.

2nd Normal Form
Continuing our normalization process, we’ll now look at the 2nd Normal Form, which con-
centrates on removing redundant data from tables. Specifically, the essential rules of the

2nd Normal Form are:

• Meet all requirements of the 1st Normal Form.

• Remove redundant data and place them in separate tables.

• Create relationships between tables through the use of foreign keys.

To demonstrate, let’s look at some sample data for our Assignment_Results table (entity) in
Table 2.1.

T A B L E 2 . 1 S A M P L E D A T A F O R T H E A S S I G N M E N T _ R E S U L T S T A B L E

Assignment_Id Student_Id Assignment_
Description

Assignment_
Completed

Assignment_
Score

1 555-55-5555 Boolean algebra
exercises 10-40

yes 85

1 444-44-4444 Boolean algebra
exercises 10-40

yes 99

1 222-22-2222 Boolean algebra
exercises 10-40

yes 78

2 555-55-5555 Venn diagram
exercises 1-25

yes 89

2 444-44-4444 Venn diagram
exercises 1-25

yes 100

2 222-22-2222 Venn diagram
exercises 1-25

no 0

Please note I’ve migrated from using the term entity to using table, but for the sake of this
discussion they are synonymous with each other.

Looking at Table 2.1 you might notice the existence of duplicate data being stored in my
Assignment_Results table, namely in the Assignment_Description field. Adhering to the

2nd Normal Form rule, I need to remove redundant textual data, which over time will degrade

22 Microsoft Access VBA Programming for the Absolute Beginner

query performance, by defining a new table called Assignment and removing the
Assignment_Description field from the Assignment_Results table. Tables 2.2 and 2.3 demon-
strate sample values from my new Assignments table and updated Assignment_Results tables.

T A B L E 2 . 2 S A M P L E D A T A F O R T H E A S S I G N M E N T S T A B L E

Assignment_Id Assignment_Description
1 Boolean algebra exercises
2 Venn diagram exercises

T A B L E 2 . 3 S A M P L E D A T A F O R T H E A S S I G N M E N T _ R E S U L T S T A B L E

Assignment_Id Student_Id Assignment_Completed Assignment_Score
1 555-55-5555 yes 85
1 444-44-4444 yes 99
1 222-22-2222 yes 78
2 555-55-5555 yes 89
2 444-44-4444 yes 100
2 222-22-2222 no 0

Looking at Tables 2.2 and 2.3, you can see the Assignment_Id field has become a primary key
in the Assignments table and a foreign key in the Assignment_Results table. This association
is considered a one-to-many relationship because for every one Assignment_Id in the
Assignments table, I will have many Assignment_Ids in the Assignment_Results table.

3rd Normal Form
Though not the last form in the database normalization process, the 3rd Normal Form is
typically the last form exercised in beginning database development and, therefore, is the

most appropriate conclusion for this section. The rules for the 3rd Normal Form are:

• Meet all requirements of the 2nd Normal Form.

• Remove all attributes from a table that are not directly dependent on the primary key.

To demonstrate 3rd Normal Form, consider sample data from our Students table in Table 2.4.

Chapter 2 • Access Essentials 23

T A B L E 2 . 4 S A M P L E D A T A F O R T H E S T U D E N T S T A B L E

Student_Id First_Name Last_Name College Major
555-55-5555 Sheila Smith School of Engineering Industrial Engineering
444-44-4444 Michael Vine School of Science Computer Science
222-22-2222 Wyatt Jones School of Science Computer Science

Looking at Table 2.4 not only can we see repeating information, which breaks the rule for
2nd Normal Form, but we also have an attribute, College, that is not directly dependent on
the Students table primary key, Student_Id. Rather, the College attribute is actually dependent
on the Major attribute. To adhere to the rules of the 3rd Normal Form, I will remove the
College attribute from the Students table and replace the Major attribute with a Major_Id field.
My new Students table with sample data is revealed in Table 2.5.

T A B L E 2 . 5 S A M P L E D A T A F O R T H E S T U D E N T S T A B L E

Student_Id First_Name Last_Name Major_Id
555-55-5555 Sheila Smith 1000
444-44-4444 Michael Vine 2000
222-22-2222 Wyatt Jones 2000

As you might expect, additional tables would need to be created to support both college and
major information. I will now define those two new tables with sample data to hold infor-
mation about the colleges and majors and their relationships to each other, as shown in
Tables 2.6 and 2.7.

T A B L E 2 . 6 S A M P L E D A T A F O R T H E M A J O R S T A B L E

Major_Id Major_Description College_Id
1000 Industrial Engineering 111
1001 Civil Engineering 111
2000 Computer Science 222

24 Microsoft Access VBA Programming for the Absolute Beginner

T A B L E 2 . 7 S A M P L E D A T A F O R T H E C O L L E G E S T A B L E

College_Id College_Description
111 School of Engineering
222 School of Science

Now that we’ve defined our data and normalized it, let’s create our database in Access 2007.

CREATING A NEW ACCESS 2007 DATABASE
As mentioned in Chapter 1, Access 2007 comes with a suite of downloadable templates that
you can leverage for creating database solutions. I personally like templates and find that
they can be a time-saving feature during database development. From my professional expe-
rience however, most out-of-the-box database templates don’t meet all your requirements and
thus get altered, which means you need to be familiar enough with the database design you’re
working with to have created the template in the first place! Since this is a database essentials
chapter, we’ll keep away from the templates and create our own database from scratch.

Let’s get started by launching the Access program icon via the Start/Programs menu, or
from any other shortcut you may have created during or after the Microsoft Office (Access)
installation.

Once opened, you should see the Getting Started with Microsoft Office Access page, from
which you click the Blank Database icon in the upper-middle part of the window, as shown
in Figure 2.1.

Once you have clicked on the Blank Database icon, you can now name the database file, select
its location, and click the Create button, as shown in Figure 2.1.

Microsoft Access databases are stored in binary files with the file exten-
sion .accdb. These files store relevant information about your Access database,
including tables, fields, reports, queries, and much more.

After the database has been created by Access, you’ll see a window similar to that shown in
Figure 2.2, which in essence is your blank canvas to begin creating and working with various
Access components such as tables and fields.

T IP

Chapter 2 • Access Essentials 25

FIGURE 2.1

The Getting
Started with

Microsoft Office
Access page.

Select a blank
database

Select the database file
name and location

Click to create the blank
database

FIGURE 2.2

A newly created
Access database.

TABLES AND FIELDS
Each field has a definition that tells Access how the field values should be stored. For example,
an Assignment_Id field is stored as a number as opposed to an Assignment_Description field,
which is stored as text.

26 Microsoft Access VBA Programming for the Absolute Beginner

Each Access table must contain at least one or more fields. Together the fields comprise a row
of data also known as a record. Tables should be assigned a primary key, which identifies each
row of information in the table as unique. For example, the Student_Id field in the Students
table is an excellent candidate for the primary key. The notion of primary keys is essential
for creating relationships between tables in Access.

To create a table in Access 2007, simply click the Table icon from the Create tab of the Ribbon,
as shown in Figure 2.3.

Click the Table icon from the Create
tab to build a new table

FIGURE 2.3

Creating tables in
Access 2007.

Access puts you in the Datasheet view when first creating a table. The Datasheet view allows
you to add fields, lookup columns, relationships, dependencies, and assign data types and
primary keys. Additionally, you can also use the Datasheet view to enter values directly into
your table.

Looking at Figure 2.4, you can see that I’ve added three fields by entering the field names into
the column headers and assigned the appropriate data types to my new table that will ulti-
mately become the physical embodiment of my Students table.

Once your table has been defined with fields, you will name and save your table by clicking
on the Save icon from the Quick Access toolbar also shown in Figure 2.4. When the Save icon
is clicked, you will be prompted to name your table or other Access object, as shown in
Figure 2.5.

Chapter 2 • Access Essentials 27

FIGURE 2.4

Adding fields to a
new table.

Click the Save icon to save
your newly created table Change a field’s data type

FIGURE 2.5

Saving and naming
a newly created

table.

Clicking the Save icon from the Quick Access toolbar, or clicking the Save icon
from the Microsoft Office button only saves the selected (highlighted) table or
Access object. To save a newly created table or object, ensure it’s first selected,
then save or right-click the tab of the newly created object in Datasheet view,
and select the Save option. Access will also prompt you to save all unsaved
objects when closing the current database or the entire Access application.

Now that I’ve saved and named my Students table, it’s worth taking a glance back at Figure 2.4
to discuss the first field in the Students table called ID. Each time you create a new table in
Access 2007, it automatically inserts an AutoNumber data type field that will act as your primary
key. If you prefer not to use the auto-generated ID field, you can change it or remove it by
switching to Design view. Speaking of data types, let’s now take a look at the various data
types that can be assigned to fields in Access 2007, as shown in Table 2.8.

Trying to insert data greater than the maximum size allowed in a Text field type
(255 characters) will generate a database error. If your Text field storage needs
require greater length, use the Memo field type.

To better understand data types and their use, see if you can match the following data
descriptions to an Access data type (shown in Table 2.8).

T IP

CAUTION

28 Microsoft Access VBA Programming for the Absolute Beginner

1 An employee’s social security number.
2 The start time of a test.
3 The number of employees in a company.
4 The annual budget amount allocated to each department in a company.
5 Determines if a user is currently logged into a system.
6 Stores the address of homes.
7 The textual content of an essay.
8 An ID generated each time a new user is created.
9 The cost of a book.

10 An Excel spreadsheet.

T A B L E 2 . 8 A C C E S S 2 0 0 7 D A T A T Y P E S

Data Type Description
Text Used for storing alphanumeric data such as text and numbers. The Text data field can

store up to 255 characters.
Memo Used for storing alphanumeric data. The Memo data field can store up to 2GB of data

(the size limit for an Access 2007 database).
Number Stores numbers with a controllable size from 1 to 16 bytes. Can also be used for

storing primary keys.
Date/Time Stores dates and times
Currency Stores numbers and prevents rounding off during calculations.
AutoNumber An autogenerated number whose values are often used as the table’s primary key.
Yes/No Stores Boolean values (true/false). Access 2007 uses –1 for true values and 0 for no

values.
OLE Object Used for storing images, documents, and other objects from Microsoft Office and

other Windows-based programs and can store up to 2GB of data (the size limit for an
Access 2007 database). To render a stored OLE object, you must have an OLE server
registered on the computer that runs your database. As a general rule, use the
Attachment data type instead, which is more efficient and does not require an OLE
server.

Hyperlink Used to store up to 1GB of web address data.
Attachment New to Office Access 2007, the Attachment data type can store any file type such as

images, documents, spreadsheets, and many more. Moreover, the Attachment data
type allows you to view and edit the attached files, which is a much needed
improvement over the OLE Object data type.

Chapter 2 • Access Essentials 29

The correct data types for the previous storage needs are listed here:

1 Text (If dashes are used when entering data)
2 Date/Time

3 Number

4 Currency

5 Yes/No

6 Text

7 Memo

8 AutoNumber

9 Currency

10 Attachment

Depending on the data type, each field in a table has a number of attributes such as field size,
caption, required input, validation rules, and many others that can be preset and/or updated
in Design view, as shown in Figure 2.6.

FIGURE 2.6

Viewing a field’s
attributes in
Design view.

Use the Primary Key
icon to assign a
field as primary key

The ID field is
assigned the
primary key

Note the presence of the key symbol next to the ID field in Figure 2.6. The key symbol denotes
that field has been assigned as the primary key for the given table. The primary key assign-
ment can be added, changed, or removed by either right-clicking on the field or selecting the
Primary Key icon on the Design view tab of the Ribbon. Also, you may remember from the
“Database Normalization” section that I chose the Student_Id (something similar to a social

30 Microsoft Access VBA Programming for the Absolute Beginner

security number) as the primary key for the Students table. In theory, something similar to a
social security number will work as a primary key because of its uniqueness, but in practice
an auto-generated number such as the one generated by Access’s AutoNumer data type is a much
better choice for the primary key because social security numbers are generally considered
private information and wouldn’t be appropriate for use in public queries and reports.

The remainder of the tables and fields that will be used in our chapter-based database will be
referenced throughout this chapter and can also be found on this book’s accompanying web-
site (www.courseptr.com/downloads).

TABLE RELATIONSHIPS
Remembering that table relationships are the essence of a relational database such as Access,
we must create physical relationships between our tables to bring data back together that we
have separated during the database normalization process. Let’s get started by creating a
relationship in Access between our two tables, Majors and Colleges. We’ll accomplish this
through the Relationships window found under the Database Tools tab of the Ribbon, as
shown in Figure 2.7.

Opens the
Relationships
window

FIGURE 2.7

Creating table
relationships

using the
Relationships

window.

Once the Relationships icon is selected, a Show Table window is launched, shown in
Figure 2.8, that allows you to select the tables and/or queries that will be used to create the
relationship. In my example, I will select both the Majors and Colleges tables to create a rela-
tionship and then click Add.

Chapter 2 • Access Essentials 31

www.courseptr.com/downloads

FIGURE 2.8

Selecting tables
to create a

relationship.

You will now see the Relationships window opened with your selected tables, as revealed in
Figure 2.9.

FIGURE 2.9

The Relationships
window.

From the Relationships window I will click a primary key from one table and drag it to the
foreign key in the other table. To drag more than one field, hold the Ctrl key while selecting
each field then drag. For my purposes, I want to create a relationship between the two tables
(Majors and Colleges) using the College_Id key from each table. When I drag the College_Id
from the Colleges table onto the College_Id from the Majors table, a new window opens to
edit the relationship, as shown in Figure 2.10.

FIGURE 2.10

The Edit
Relationships

window.

32 Microsoft Access VBA Programming for the Absolute Beginner

Click the Enforce Referential Integrity check box to ensure the primary key exists when
entering a foreign key and then click the Create button. I have now created a one-to-many
relationship, which means for every College_Id in the Colleges table, there are many occur-
rences of that College_Id in the Majors table (in other words, each college has many majors).
Moreover, the primary key in the Colleges table, College_Id, has also now become a foreign
key in the Majors table.

Consider the following options from the Edit Relationships window when creating a rela-
tionship between tables:

• Enforce referential integrity, which means values entered into the foreign key must
match values in the primary key.

• Enforce cascading updates between one or more tables, which means related updates
from one table’s fields are cascaded to the other table or tables in the relationship.

• Enforce cascading deletes between the two tables. In short, this means any relevant
deletions from one table cascade in the other table(s).

• Both cascading updates and deletes help enforce referential integrity.

As shown in Figure 2.11, my Relationships window will now have a graphical link depicting
a one-to-many relationship between my two tables and their keys.

Primary key

One symbolMany symbol

Foreign key
primary key

one symbol many
symbol

foreign key
FIGURE 2.11

A table
relationship

established using
primary and

foreign keys.

To better visualize the relationship, I’ll enter a few records into the Colleges table via the
Datasheet view. You will notice that for each record in the Colleges table a small plus sign (+)
exists to the left of the row. Shown in Figure 2.12, I expanded the plus sign by clicking it for

Chapter 2 • Access Essentials 33

one row, which allows me to enter records directly into the Majors table via a one-to-many
relationship.

FIGURE 2.12

Entering records
into tables via a

one-to-many
relationship.

Shown in Figure 2.13, I opened my Majors table in Datasheet view and it reveals the records I
entered earlier via the Colleges table. Also important are the College_Id values in the
Majors table, courtesy of my one-to-many relationship, which have become foreign key values
back to the Colleges table. Very cool!

FIGURE 2.13

Newly created
records via a one-

to-many
relationship.

Foreign key values created by
a one-to-many relationship

34 Microsoft Access VBA Programming for the Absolute Beginner

FORMS
Though careful data analysis is the key to a well-designed and adaptive database, end users
are just as likely to appreciate a well-built user interface time and again. A good interface
leverages forms and controls in a way that is intuitive to users for managing data. User inter-
faces should hide the complexities of a database, such as business rules and relationships.

Access forms are graphical controls that act as containers for other graphical controls such
as text boxes, labels, and command buttons. Though most of the forms in this book will be
created from scratch without the aid of any wizard, Access 2007 has done an excellent job
making simplistic form creation easy through the use of the Form tool, which I’ll show you
next.

To use the Form tool, select the table or query you want available on the form (in my example
it’s the Assignments table) and then click the Form icon from the Create tab of the Ribbon, as
shown in Figure 2.14.

Click the Form
icon on the Create
tab of the Ribbon

Select the table you want
available on the form

FIGURE 2.14

Creating a new
form in Access
using the Form

tool.

The Form tool automatically creates a new form with all the necessary controls to support
data from the selected query or table in Layout view. While in Layout view you can scroll
through the data and adjust the controls, such as the placement and size of a text box. If your
table has a one-to-many relationship to another table, Access places a datasheet onto the new
form as it did for my Assignments table, which has a one-to-many relationship with the
Assignment_Results table, as revealed in Figure 2.15.

Chapter 2 • Access Essentials 35

FIGURE 2.15

Viewing a new
form created by
the Form tool.

After creating a form, ensure you save it by clicking the Save icon in the Quick Access toolbar,
or from the Office button; you can also leverage the keyboard combination Ctrl + S to save
the selected or highlighted objects.

Both forms and controls have properties that describe how they look and behave (attributes).
You can manage these attributes in Design view using the Property Sheet window shown in
Figure 2.16.

FIGURE 2.16

Using the Property
Sheet to manage
form and control

attributes.

Manage form and
control properties via

the Property Sheet

Click to access the Property Sheet

36 Microsoft Access VBA Programming for the Absolute Beginner

If you’re unable to see the Property Sheet window, ensure you’re in Design view and then
choose the Property Sheet icon from the Design tab shown in Figure 2.16.

It’s important to note, not all control properties are accessible or are available through the
Property Sheet in Design view. This means other properties are available only during runtime
through VBA statements.

Common Controls
Controls can be accessed and placed onto your form manually by clicking the control in the
Controls section of the Design tab. Access places the control on your form in a predetermined
shape and size. You can resize controls using your left mouse button, or by clicking the control
and then using the Shift and arrow keys combination to resize the control. Use the Ctrl button
and arrow keys simultaneously to move the control.

Just like data fields, controls have properties that determine the control’s various attributes
or settings. A control’s properties can be accessed by right-clicking the control and selecting
Properties from the menu.

Both the Field List and Property Sheet windows can be moved in and out of the
main Access window. Both windows can also be docked in and around Access
by grabbing the top portions of either window and dragging them to the top,
bottom, or sides of the main Access window.

I’ll now show you four common controls: text boxes, labels, images, and buttons. You can see
in Figure 2.17 a visual depiction of where these common controls are located in the Controls
section of the Design tab.

To get started working with these common controls, I will create a new form called Manage
Students from scratch using the Blank Form option that will allow a user to add, update, and
delete students from my database. By default, Access puts you directly in Layout view after
creating a new table. When creating a form from scratch, it’s better, in my opinion, to switch
directly to Design view. Design view provides, among other features, gridlines that will assist
you in aligning and sizing your controls for a uniform look.

As shown in Figure 2.18, I have created my new Manage Students form from scratch and have
switched to Design view revealing the grid lines.

You may have noticed previously that the Form tool automatically bound both form and
controls (text boxes) to my Students table. I’ll now show you how to create bound controls
from scratch. First, I need to bind my Manage Students form to the Students table by setting

T IP

Chapter 2 • Access Essentials 37

the form’s Record Source property (by selecting it from the Data tab in the Property Sheet
window) to the Students table, as shown in Figure 2.19.

After binding my Manage Students form to the Students table, I now have the ability to bind
other controls, such as text boxes, to the fields in the Students table. First I will place one label
control at the top of the form by clicking the Label Control icon from the Controls section of

FIGURE 2.17

Common controls
including text box,

label, image, and
button.

ImageLabelButton Text Box

FIGURE 2.18

Creating a form
from scratch using

the Blank Form
option.

Create a form from scratch using the Blank Form option

Switch to Design view to reveal the gridlines

38 Microsoft Access VBA Programming for the Absolute Beginner

the Ribbon and dropping it onto the form. This label control is for display purposes only and
will not be bound to any data field. Next, I will set the following label property values via the
All tab of the Property Sheet window:

• Name: lblManageStudents

• Caption: Manage Students

• Font Size: 14

• Text Align: Center

Bind the form to a table by setting the form’s Record Source property

Click to access the property sheet

FIGURE 2.19

Binding the
Manage

Students form to
the Students

table.

Remember that the Property Sheet window displays properties for a single control, unless
you select multiple controls to view common updatable properties. To switch between control
properties, use the drop-down box at the top of the Property Sheet window.

Below the label, I will add three text boxes by clicking on the text box control from the Con-
trols section of the Ribbon and align them on the form, one below the other. Notice after
adding a text box control that you actually get two controls for the price of one. Specifically,
you get one text box and one label control just to the left. Both controls have their own distinct
properties and can be moved and deleted independently of each other.

Assign the following properties to each respective text box via the All tab of the property
sheet:

• Name: txtStudentId

• Control Source: Student_Id

Chapter 2 • Access Essentials 39

• Locked: Yes

• Name: txtFirstName

• Control Source: First_Name

• Locked: No

• Name: txtLastName

• Control Source: Last_Name

• Locked: No

Note that I’ve set the txtStudentId Locked property value to Yes. I did this because the
txtStudentId field is a primary key with a data type of AutoNumber. Since an AutoNumber is
generated automatically by the Access system, it is neither necessary nor advisable to let users
manage this field manually.

Assign the following properties to each respective text box label via the All tab of the property
sheet:

• Name: lblStudentId

• Caption: Student Id:

• Text Align: Right

• Name: lblFirstName

• Caption: First Name:

• Text Align: Right

• Name: lblLastName

• Caption: Last Name:

• Text Align: Right

I’ll now add one image control to the upper-right corner of the form and assign the following
property values. I’ve copied the image used in this control to the book’s website
(www.courseptr.com/downloads) for your convenience.

• Name: imgTeacher

• Picture: teacher.JPG

Last but not least, I’ll add a button to my new form that exits the user from the application
and assigns the following property values:

• Name: cmdQuit

• Caption: Quit Application

40 Microsoft Access VBA Programming for the Absolute Beginner

www.courseptr.com/downloads

When you add a command button to any form, Access launches a wizard that can aid you in
assigning various built-in actions to your command button’s click event. Though I typically
shy away from wizards in this book, this is a good example of when using one is helpful in
assigning a simple action to a control.

As seen in Figure 2.20, I have selected the Application Category and Quit Application Action
from the Command Button Wizard.

FIGURE 2.20

Using the
Command Button
Wizard to assign an
action to a button.

After updating all control property values, I will resize them by left-clicking one of the con-
trol’s re-sizing boxes (re-sizing boxes are the small boxes in and around a control’s outer
boundary) and dragging a side or corner, and I will re-position them by left-clicking the control
and dragging it to its appropriate location.

Now that the controls have been bound to the Students table, users can view, update, and add
student records using the form’s built-in navigation bar shown in Figure 2.21.

Label

Image
control

text box

navigate records
in the table

Command
button

Access Form view
FIGURE 2.21

Managing student
information with
bound controls.

Chapter 2 • Access Essentials 41

You have now seen how to create a table from scratch and bind controls to data fields by hand.
You can of course add bound controls to forms created by scratch by dragging and dropping
table fields from the Field List window, but that wouldn’t give you the necessary insight into
how controls are bound! Nevertheless, the Field List window is available by clicking the Add
Existing Fields icon in the Tools section of the Design tab.

In future chapters I will show you how to further control the relationship between controls,
tables, and fields by harnessing the power of the Access VBA language.

Hungarian Notation
You may have noticed the naming convention I used to assign control names in the previous
section. I recommend using a naming convention for controls to provide readability and
consistency throughout your database and code.

The naming convention I use and recommend is called Hungarian Notation (named after a
computer scientist). To apply this notation, simply modify the Name property of each control
to use a three-letter prefix (all in lowercase) that indicates the control type followed by a
meaningful description. Each word that describes the control (not the prefix) should have its
first letter capitalized.

Table 2.9 shows some sample naming conventions for controls discussed throughout this
book.

T A B L E 2 . 9 C O M M O N C O N T R O L - N A M I N G C O N V E N T I O N S

Control Prefix Example
Check Box chk chkRed
Combo Box cbo cboStates
Command Button cmd cmdQuit
Form frm frmMain
Image img imgLogo
Label lbl lblFirstName
List Box lst lstFruits
Option Button opt optMale
Text Box txt txtFirstName

42 Microsoft Access VBA Programming for the Absolute Beginner

QUERIES
Database queries provide the mechanism by which people can question their data and get
responses. Database queries are typically written using a database language called SQL (Struc-
tured Query Language), which I discuss in Chapter 9, “Microsoft Access SQL.” Nevertheless,
I’ll show you how to create queries using Microsoft’s built-in query designer, which is suffi-
cient for most database queries in Access.

To get started, I will ask my database for the first and last names of all students in my
Students table. First, I will click the Query Design icon from the Other section in the Create
tab of the Ribbon. Next, a Show Table window is opened where I will select and add my
Students table, as shown in Figure 2.22

FIGURE 2.22

Select and add a
table to a query.

Access has now created an empty query object for me in Design view with the Students table
available for field selection. I will now select both last- and first-name fields, displaying them
in ascending order. This can be accomplished in one of three ways: Double-clicking one or
more fields in the Students table, selecting one field at a time in each Fields drop-down box
in the matrix at the bottom of the window, or by dragging and dropping a field from the
graphical depiction of the table. After selecting the Last_Name and First_Name fields, your
query should look like Figure 2.23.

You can easily select all fields in a table for a query by selecting the asterisk (*)
character at the top of a table.

Access allows you to verify the underlying SQL query generated by the Access query designer
by selecting the SQL View item from the View menu. The SQL query generated for my students
query looks like this:

T IP

Chapter 2 • Access Essentials 43

SELECT Students.First_Name, Students.Last_Name

FROM Students

ORDER BY Students.First_Name, Students.Last_Name;

FIGURE 2.23

Selecting fields
from a table to
build a query.

Execute
your query

I will now save my query and name it Retrieve Student Names.

To execute or run a query, simply click the exclamation mark (!) icon in the Results area of
the Design tab. Results from my Retrieve Student Names query are shown in Figure 2.24.

FIGURE 2.24

Viewing the
results of the
Retrieve

Student Names
query.

44 Microsoft Access VBA Programming for the Absolute Beginner

I’ll now create a new query that asks a more pointed question of my student data. Specifi-
cally, my new query should say, “Give me a list of all student names and their grades for the
‘Chapter 1 Exercises - Boolean Algebra’ assignment (Assignment_Id=7).” I will accomplish this
by creating a new query called Chapter 1 Exercise Results and selecting both the Students
and Assignment_Results tables.

Notice in Figure 2.25 that Access displays the relationship between both tables by displaying
a graphical link between the Student_Id primary and foreign keys.

To build the query, select the following fields in the following order by double-clicking each
field from the corresponding table in the query designer.

• Last_Name (ascending order)

• First_Name (ascending order)

• Assignment_Score

• Assignment_Id

My query is almost done, but not yet—I still need to tell the query to limit the results to show
only assignment scores for assignment number 7. I can accomplish this by specifying criteria
(or a condition) of =7. Moreover, since the criteria is applied against the Assignment_Id field,
which I don’t want displayed in the query results, I’ll tell the query designer to not show the
field by unchecking the Show check box. The finished query is depicted in Figure 2.25.

Use criteria to limit
a query’s results

Uncheck to not show
results for a field

FIGURE 2.25

Creating an Access
query with

multiple tables
and a condition.

Chapter 2 • Access Essentials 45

After saving and naming my query, I run (execute) it with results, as shown in Figure 2.26.

FIGURE 2.26

Viewing the
Chapter 1
Exercise

Results query
results.

Access has limited query results based upon my criteria to show all students and their scores
where Assignment_Id=7.

Though I discuss SQL statements later in the book, I would like you to appreciate what hap-
pened behind the scenes in the Chapter 1 Exercise Results query by looking at the following
SQL statements that Access created.

SELECT Students.Last_Name, Students.First_Name,

 Assignment_Results.Assignment_Score

FROM Students INNER JOIN Assignment_Results ON Students.Student_Id =

 Assignment_Results.Student_Id

WHERE (((Assignment_Results.Assignment_Id)=7))

ORDER BY Students.Last_Name, Students.First_Name;

As you can see from the previous SQL query, Access has done a lot of work behind the scenes
in creating the necessary SQL joins and conditions.

SUMMARY
• Database normalization is the process by which one optimizes table structures to

enhance query performance and eliminate data integrity issues by investigating data
requirements and their relationships to each other.

• An entity is generally described as the overall description of a set of data to be saved in
a table.

46 Microsoft Access VBA Programming for the Absolute Beginner

• Attributes are the bits of related information that make up an entity.

• A primary key is either a single field or a combined set of fields that uniquely identifies
a single row of data in a table.

• The foreign key creates the foundation of a relationship between two tables by inserting
the primary key from one table into another table.

• A one-to-one relationship denotes that each row of information for one entity relates to
exactly one row of information for another entity.

• A one-to-many relationship is created by adding the primary key from one table into a
second table that will hold many occurrences of the primary key.

• To build a many-to-many relationship, you need to create a third table that breaks the
many-to-many relationship into two one-to-many relationships.

• Access tables must contain at least one or more fields.

• The AutoNumber data type is an autogenerated number whose values can be incremented
or randomly generated. It is often used as the table’s primary key.

• If you require a number of characters greater than 255 (the maximum size allowed in a
Text field), you need to use the Memo field type.

• Referential integrity means values entered into the foreign key must match values in
the primary key.

• Access forms are graphical controls that act as containers for other graphical controls
such as text boxes, labels, and command buttons.

• Controls have properties that determine how the control will look and behave.

• Access allows you to bind controls to tables, fields, and queries.

• Database queries provide the mechanism by which people can ask their data questions
and get responses.

• You can limit the result set of a query using criteria, also known as conditions.

Chapter 2 • Access Essentials 47

Programming Challenges
1. Create a new table called Teachers that holds the teacher’s

name and a teacher id (primary key). Assign appropriate data
types to each field.

2. Create a new table called Courses that holds a course
description, course id (primary key), and another field to hold
a teacher id. Assign appropriate data types to each field.

3. Create a one-to-many relationship that links the Teachers
table to the Courses table and remember to enforce referential
integrity.

4. Create a new form called Manage Teachers that allows a user to
manage both the Teachers and Courses table. Using the form,
enter sample records into both the Teachers and Courses tables.
Make sure to leave one or more teacher record that does not
have a corresponding entry in the Courses table.

5. Using the data entered into the Teachers and Courses tables
from challenge 4, create a new query called Courses without
Teachers that will list all courses without an assigned teacher.

48 Microsoft Access VBA Programming for the Absolute Beginner

3C H A P T E R

INTRODUCTION TO

ACCESS VBA

ike many professional RDBMS (Relational Database Management Systems),
Microsoft Access comes with its own programming language called VBA
or Visual Basic for Applications. Though VBA supports the look and feel of

Microsoft’s Visual Basic, it is not Visual Basic nor is it Visual Basic .NET. Access VBA
is specifically designed for Microsoft Access. This means it has knowledge of and
support for the Microsoft Access object model. The concept of an object model is
different for each Microsoft Office application. For example, both Microsoft Excel
and Microsoft Word support VBA, but each application has its own object model.

THE EVENT-DRIVEN PARADIGM
The event-driven paradigm is a powerful programming model that allows program-
mers to build applications that respond to actions initiated by the user or system.
Access VBA includes a number of events that are categorized by the objects they rep-
resent. VBA programmers write code in event procedures to respond to user actions
(such as clicking a command button) or system actions (such as a form loading).

To demonstrate the event-driven model, consider a form, which has a correspond-
ing Form object that contains many events such as Click, Load, and MouseUp. As seen
next, both Click and MouseUp events are triggered by the user performing an action
with the mouse on the form.

L

Private Sub Form_Click()

 'write code here to respond to the user clicking the form

End Sub

Private Sub Form_MouseUp(Button As Integer, _

 Shift As Integer, X As Single, Y As Single)

 'write code here to respond to the user releasing a mouse button

End Sub

You, the VBA programmer, write code in these event procedures to respond to user actions.
Moreover, events can be triggered by the system or the program itself. For example, the
Load event shown next is triggered when a form’s Form object is first loaded into memory.

Private Sub Form_Load()

 'write code here to respond to the form loading into memory

End Sub

If you’re new to event-driven programming, this may seem a bit awkward at first. I promise
you, however, it is really not that difficult. In fact, VBA does a great job of providing much of
the detail for you. By the end of this chapter, you will be writing your first Access VBA event-
driven programs with ease.

OBJECT-BASED PROGRAMMING
The key to programming in VBA is using objects. Objects have properties that describe the
object and methods that perform actions. For example, say I have an object called Person.
The Person object contains properties called HairColor, Weight, Height, and Age that describe
the object. The Person object also contains methods that describe an action the object can
perform such as Run, Walk, Sleep, and Eat. As you can see, understanding the concept of objects
is really quite simple!

Many Access VBA objects also contain data structures called collections. In a nutshell, collec-
tions are groupings of objects.

Access VBA supports many objects, such as the Form object, which is simply a window or dialog
box. The Form object contains many properties such as Caption, Moveable, and Visible. Each of
these properties describes the Form object and allows VBA programmers to set characteristics
of a user’s interface. Like the object Person, the Form object contains methods such as Move and
Refresh.

Many objects share common characteristics such as properties and methods. To demonstrate,
the Label object (which implements a label control) shares many of the Form properties, such
as Caption and Visible.

50 Microsoft Access VBA Programming for the Absolute Beginner

Properties and methods of objects are accessed using the dot operator (.), as demonstrated in
the next two VBA statements.

Label1.ForeColor = vbBlue

Label1.Caption = "Hello World"

Realize that properties such as ForeColor and Caption belong to the Label1 object, and they
are accessed using the dot operator. I discuss this in more detail in sections to come.

THE VBA IDE
If you’ve written programs in Visual Basic or VBA before, the Access 2007 VBA integrated devel-
opment environment (IDE) should feel very familiar to you. If not, don’t worry—the VBA IDE is
user-friendly and easy to learn. For ease of use, I will refer to the VBA integrated development
environment simply as the Visual Basic Editor, or VBE, from now on.

The VBE contains a suite of windows, toolbars, and menu items that provide support for text
editing, debugging, file management, and help. Two common ways for accessing the VBE is
with forms and code modules.

After adding and saving a form to your database, make sure your form is highlighted (selected)
in Design view, and then click the Visual Basic icon in the Macro area of the Database Tools
tab of the Ribbon, as shown Figure 3.1.

An easy shortcut to opening the VBE and alternating between Access and the
VBE is by pressing Alt+F11.

Open the Visual
Basic Editor,
or VBE

FIGURE 3.1

Selecting the
Visual Basic Editor

or VBE.

T IP

Chapter 3 • Introduction to Access VBA 51

After selecting the Visual Basic icon, the VBE should open up in a separate window, similar
to the one shown in Figure 3.2.

FIGURE 3.2

Opening the
Visual Basic Editor
or VBE for the first

time.

Project Explorer
window

Toolbar

Code window
Properties
window

Menu

The first time you open the VBE, the Project Explorer and Properties windows may not be
visible, but they can be accessed from the View menu.

There are a few VBE components you should familiarize yourself with right away. Each is
described here and shown in Figure 3.2.

• TToolbars: Toolbars contain shortcuts to many common functions used throughout your
VBA development, such as saving, inserting modules, and running your program code.
Additional toolbars can be added from the View menu.

• MMenus: Menus in the VBE provide you with many development features, such as file
management, editing, debugging, and help.

• PProject Explorer window: The Project Explorer window provides you with a bird’s-eye
view of all files and components that build your Access VBA programming environment.
Notice in Figure 3.2 that my form’s name (Form_Form1) appears under the Microsoft Office
Access Class Objects folder. If I had multiple forms in my database, there would be mul-
tiple form names in this folder. Remember, Microsoft Access stores all components
including forms, queries, reports, and modules in a single .accdb file.

52 Microsoft Access VBA Programming for the Absolute Beginner

• PProperties window: The Properties window shows all available properties for the object
selected in the list box. Most importantly, the Properties window allows you to change
the values of an object’s property during design-time development.

• CCode window: The Code window is where you enter your VBA code and find procedures
and event procedures for objects using the two list boxes at the top of the window.

If you haven’t done so yet, explore each of the previously mentioned components and win-
dows so that you are comfortable navigating the VBE environment.

Introduction to Event Procedures
Procedures are simply containers for VBA code. Access VBA contains four types of procedures:

• Subprocedures

• Function procedures

• Property procedures

• Event procedures

Each type of procedure is designed to accomplish specific tasks. For example, event procedures
are designed to catch and respond to user-initiated events such as a mouse click on a com-
mand button or a system-initiated event such as a form loading. In this section, I concentrate
on event procedures because they are the foundation for an event-driven language such as
VBA. In subsequent chapters, you learn about other types of procedures in detail.

As mentioned, objects such as the Form object contain methods and properties. They also
contain specialized events that are automatically provided after the object has been added to
your database. VBA takes care of naming your object’s events for you. The naming convention
follows.

ObjectName_EventName

For example, a form added to your Access database called Form1 has a number of events,
including the following:

Private Sub Form_Load()

End Sub

Private Sub Form_Unload(Cancel As Integer)

End Sub

Chapter 3 • Introduction to Access VBA 53

Notice the naming convention used for each event procedure: object name followed by the
event name with an underscore in between. The objects and their events in Figure 3.3 are
accessed from the VBE Code window.

FIGURE 3.3

Accessing an
object and its

associated events
in the VBE.

Select available
objects

Events available for
the selected object

The leftmost list box in the Code window identifies available objects. The rightmost list box
contains all available events for the object selected in the left list box. Each time you select
an event, VBA creates the event shell for you automatically. This saves you from having to
manually type each event’s beginning and ending procedure statements.

Each procedure in the VBE Code window is separated by a horizontal line.

Keep in mind that empty event procedures serve no purpose until you write code in them
using VBA statements. More importantly, VBA procedures will not run if Access has blocked
VBA code and macros from executing, which is the default setting after installing Access or
Office 2007. You may remember seeing such a security warning in prior screen shots, but I’ve
highlighted it in Figure 3.4.

To run your VBA code, you must first change the security setting to allow VBA Macro content,
which is accomplished by clicking the Options button in the Security Warning banner. After
which a new Security Options window is displayed where you can change the security setting
to enable the VBA Macro content, as shown in Figure 3.5.

T IP

54 Microsoft Access VBA Programming for the Absolute Beginner

An Access 2007
security setting
prevents VBA
code and macros
from executing

FIGURE 3.4

Access 2007
security setting

that prevents VBA
code from

running.

FIGURE 3.5

Changing a
security setting to
enable VBA Macro

content.

Type the keywords “security” or “trust center” in the Access 2007 Help window for more
information about Office 2007 security settings.

Introduction to VBA Statements
VBA statements are comprised of variables, keywords, operators, and expressions that comprise
an instruction to the computer. Every VBA statement falls into one of three categories:

• DDeclaration statement: Creates variables, data types, and procedures.

• AAssignment statement: Assigns data or values to variables or properties.

• EExecutable statement: Initiates an action such as a method or function.

Chapter 3 • Introduction to Access VBA 55

Most VBA statements fit on one line, but sometimes it is appropriate to continue a VBA state-
ment onto a second (or more) line for readability. To split a single VBA statement into multiple
lines, VBA programmers use the concatenation character (&) and the line continuation char-
acter (_) separated by a space. To demonstrate, the following assignment statement uses the
concatenation and continuation characters to extend a statement across two lines.

Private Sub Label3_Click()

Label3.Caption = "This is a single VBA assignment " & _

 " statement split onto two lines."

End Sub

The term concatenation means to glue or put one or more items together.

One of the best ways to provide understandable VBA statements is with comments. Comments
provide you and other programmers a brief description of how and why your program code
does something. In Access VBA, comments are created by placing a single quote ('), sometimes
called a tick mark, to the left side of a statement. Comments are also created by placing the
keyword REM (short for remark) at the left side of a statement. The following statements
demonstrate both ways of creating VBA comments.

' This is a VBA comment using the single quote character.

REM This is a VBA comment using the REM keyword.

When a computer encounters a comment, it is ignored and not processed as a VBA statement.

ACCESSING OBJECTS AND THEIR PROPERTIES
Besides the Properties window, Microsoft Access provides a number of ways to access objects
and their properties. Each way provides a level of intricacy and detail while providing specific
performance characteristics. In its simplest form, programmers can directly call the name of
an object (such as the Form object) or the name of a control (such as a command button). This
is only applicable when accessing objects and controls that belong to the current scope of a
code module. For example, the next VBA assignment statement updates the form’s Caption
property during the form’s Load event.

Private Sub Form_Load()

 Form.Caption = "Chapter 1"

End Sub

T IP

56 Microsoft Access VBA Programming for the Absolute Beginner

In addition to forms, controls belonging to the current form and scope can be referenced by
simply calling their name.

Private Sub Form_Load()

 lblSalary.Caption = "Enter Salary"

 txtSalary.Value = "50000.00"

 cmdIncrease.Caption = "Increase Salary"

End Sub

There are times, however, when you need to go beyond the current scope and access forms
and controls that do not belong to the current object. There are a number of other reasons
for being more specific about what controls you are referencing, including performance con-
siderations and advanced control access techniques such as enumerating. To accomplish
these goals, I will show you how to access forms and controls using common VBA techniques
with the Me keyword prefix and collections such as the Forms collection.

The Forms Collection
Properties of the Form object can be accessed in the VBE Code window by simply supplying the
form’s Access class name.

Form_Form1.Caption = "updating the form's caption property"

Notice the naming convention used in the keyword Form_Form1. When an Access form is cre-
ated and saved, Microsoft Access refers to it in the VBE as a Microsoft Office Access Class Object
with the name Form representing the standard object name with a trailing underscore (_)
followed by the individual form’s name. Moreover, you can use the form’s Access class name
to not only access its own properties, but controls contained on the form. For example, the
following VBA assignment statement uses the Access form class name to modify a label’s
Caption property.

Form_Form1.Label1.Caption = "update the label's caption property"

If your form name contains spaces, you must surround the Access form class
name using brackets.

[Form_Light Switch].Label1.Caption = “Light Switch”

This approach is convenient when working with small VBA projects. At times, however, you
want to use a more advanced feature (such as the Forms collection) when working with mul-
tiple forms or with multiple controls on a form. Access provides the Forms collection for
specifying which form’s Caption property you are referencing.

CAUTION

Chapter 3 • Introduction to Access VBA 57

The Forms collection contains all open forms in your Access database. To access individual
forms in the Forms collection, simply supply the Forms collection an index or form name as
shown in the next statements.

' Using an index to refer to a form in the collection.

Forms(0).Caption = "Chapter 1"

' Using a form name to reference a form in the collection.

Forms("Form1").Caption = "Chapter 1"

Because form indexes can change, it is considered safer to use the form name
when accessing forms in the Forms collection.

Notice when passing the name of the form to the Forms collection, you must surround the
form name in double quotes. If the form’s name contains one or more spaces, you must use
brackets ([]) to surround the name. After specifying a form in the Forms collection, you can
use the dot operator to reference the individual form’s properties, such as Caption.

The Me Keyword
To make things more interesting, Access provides the Me keyword, which refers to the current
object or form within the scope of the VBE code module. More specifically, I can use the Me
keyword in place of the Access form class name to access the current form’s properties, meth-
ods, and controls.

Me.Caption = "updating the form's caption property"

Me.lblSalary.Caption = "updating the label's caption property"

The Me keyword provides a self-documenting feature for VBA programmers in that it explicitly
tells the reader what object, property, or form you are referring to.

In addition to the dot operator (.), Microsoft VBA provides the exclamation point (!) identifier
for identifying what type of item or object immediately follows.

Me!lblSalary.Caption = "updating the label's caption property"

VBA supports two operators, the dot and exclamation mark, for accessing object properties
and collection items. Because the dot and exclamation mark operators can often be inter-
changed, it can be confusing to remember which serves what purpose and when to use what.
As a general rule of thumb, use the exclamation mark operator prior to accessing an item in

T IP

58 Microsoft Access VBA Programming for the Absolute Beginner

a collection, and use the dot operator when referencing a property of a form or control. To
keep things simple, however, I use the dot operator to reference both items in collections and
properties of forms and controls.

Assignment Statements
You can assign data to object properties, such as the form’s Caption property, using an assign-
ment operator in a VBA assignment statement. The assignment operator is really a fancy term
for the equals (=) sign. However, it’s really more important, as you soon see. To demonstrate,
evaluate the next lines of VBA code, which assign the text "Ouch!" to the Caption property of
the Form1 control.

Form.Caption = "Chapter 1"

Or

Forms("Form1").Caption = "Ouch!"

Or

Forms(0).Caption = "Chapter 1"

Or

Me.Caption = "Ouch!"

Or

Form_Form1.Caption = "Ouch!"

A core concept in most programming languages is to understand the difference between data
assignment and equality testing. This is especially important in programming languages such
as VBA, which use the same operator.

Specifically, the next assignment statement reads: “The Caption property takes the literal
value ouch or the Caption property gets the literal value ouch.”

Me.Caption = "Ouch!"

Either way, the equals sign in an assignment statement is not testing for equality. In other
words, you never want to read the previous assignment as “the Caption property equals
Ouch!”

In the next chapter, I discuss how the equals sign can be used in testing for equality.

Chapter 3 • Introduction to Access VBA 59

Command and Label Objects
I now show you how to put your knowledge of event procedures, VBA statements, objects,
and their properties to work by building two small programs with VBA.

Let’s start by building a program that allows a user to turn off and on a light switch. Begin
by adding a new form to an Access database and naming it Light Switch. Next, add one label
control to the form and assign the following property values to it:

• Name: lblCaption

• Caption: Lights are on

• Font Size: 12

Now I add three image controls to the form, but only one of them is visible during the form’s
runtime. (You’ll see why shortly.) Add the following property values to the image controls:

• Name: imgMain

• Picture: LIGHTON.ICO (Image located on companion website)

• Visible: Yes

• Name: imgOn

• Picture: LIGHTON.ICO (Image located on companion website)

• Visible: No

• Name: imgOff

• Picture: LIGHTOFF.ICO (Image located on companion website)

• Visible: No

Now add two command buttons to the form, which allows the user to turn off and on the
light switch. Do not use the wizard while adding these command buttons.

• Name: cmdOn

• Caption: On

• Name: cmdOff

• Caption: Off

You can turn off and on the Control Wizards (command button Control Wizard)
by clicking the Control Wizards icon in the Controls section of the Design tab,
as shown in Figure 3.6.

T IP

60 Microsoft Access VBA Programming for the Absolute Beginner

Turn off and
on the Control
Wizard

FIGURE 3.6

Viewing the Light
Switch program in

Design view.

When a graphic’s path and filename are assigned to an Image control’s Picture
property, Microsoft Access does not include the image as part of its .accdb file.
To use the Light Switch program located on this book’s companion website, you
must first change the Picture property’s value to a location on your PC. This
caution applies to all programs on the companion website that have references
to images.

A depiction of my completed form in Design view is revealed in Figure 3.6. Sample code from
the Light Switch form is shown next.

Private Sub cmdOff_Click()

 Me.lblCaption.Caption = "Lights are off"

 Me.imgMain.Picture = Me.imgOff.Picture

End Sub

Private Sub cmdOn_Click()

 Me.lblCaption.Caption = "Lights are on"

 Me.imgMain.Picture = Me.imgOn.Picture

End Sub

I use only one image control (imgMain) to display one or the other light bulb image. This is why
I set the other two image control’s Visible properties to No. The final output of my Light
Switch form in runtime mode is seen in Figure 3.7.

CAUTION

Chapter 3 • Introduction to Access VBA 61

FIGURE 3.7

The completed
Light Switch

form in Form view.

You can get rid of the lines and scrollbars on a form in runtime by setting the
following form property values to No:

• DividingLines: Used to separate sections on a form.

• NavigationButtons: Provides access to navigation buttons and a record
number box.

• RecordSelectors: Record selectors display the unsaved record indicator
when a record is being edited in Form view.

I now create a Colors program that allows a user to change the color of a label control and
exit the Access application without the assistance of a control wizard. First, I create my
Colors form and set the following form properties:

• Dividing Lines: No

• Navigation Buttons: No

• Record Selectors: No

I add four command buttons (three to change colors and one to exit the application) and one
label control that displays the color selected by the user:

• Name: cmdExit

• Caption: E&xit

• Name: cmdRed

• Caption: Red

T IP

62 Microsoft Access VBA Programming for the Absolute Beginner

• Name: cmdWhite

• Caption: White

• Name: cmdBlue

• Caption: Blue

• Name: lblDisplay

• Caption: colors

• Font Weight: Bold

• Back Style: Normal

The label’s BackColor property cannot be changed unless the corresponding la-
bel’s BackStyle property is set to Normal.

A picture of the Colors form in design time should look similar to that in Figure 3.8. The VBA
code for each button’s Click event is shown next.

FIGURE 3.8

The completed
Colors form in

Design view.

Private Sub cmdBlue_Click()

 Me.lblDisplay.BackColor = vbBlue

End Sub

CAUTION

Chapter 3 • Introduction to Access VBA 63

Private Sub cmdRed_Click()

 Me.lblDisplay.BackColor = vbRed

End Sub

Private Sub cmdWhite_Click()

 Me.lblDisplay.BackColor = vbWhite

End Sub

The way I used the Me keyword to access the label and its corresponding properties should not
be new to you. What should have caught your attention were the values I used in assigning
BackColor properties. Specifically, VBA provides you access to eight color constants:

• vbBlack

• vbRed

• vbGreen

• vbYellow

• vbBlue

• vbMagenta

• vbCyan

• vbWhite

It’s important to note that BackColor and ForeColor properties actually take a number value,
which each color constant stores representatively. In addition to using VBA color constants,
you can assign numbers representing a multitude of colors using either the RGB function or
by viewing the BackColor or ForeColor properties in design time using the Properties window.

To terminate an Access application, use the DoCmd object, which runs Microsoft Access func-
tionality from VBA code, and access its built-in Quit method as shown in the next command
button Click event procedure.

Private Sub cmdExit_Click()

 DoCmd.Quit

End Sub

The VBA code in the cmdExit_Click() event procedure is similar to the code generated by the
Access Control Wizard to quit an Access application using the DoCmd object and its Quit
method.

64 Microsoft Access VBA Programming for the Absolute Beginner

The ampersand (&) character creates keyboard shortcuts with the Alt key when
placed in the Caption property of certain controls such as command buttons.

Getting User Input with Text Boxes
Text box controls receive all types of input from users such as dates, time, text, and numbers.
VBA programmers (that’s you) write code in procedures to collect the user input and process
it. This may seem trivial, but it’s not.

Consider a simple application that requests a user to enter two numbers, after which the user
clicks a command button to add the two numbers. After adding the numbers, the program
should display its output in a label control.

Private Sub cmdAdd_Click()

 Me.lblOutput.Caption = Me.txtNum1.Value + Me.txtNum2.Value

End Sub

I can use a VBA assignment statement to add the value of both text boxes and assign the result
to the label control’s Caption property. Given this fact, why is the output of this VBA statement
55, as revealed in Figure 3.9, instead of 10?

FIGURE 3.9

Concatenating
two numbers

instead of adding
them.

This is an excellent question and best answered by examining the Value property of a text
box. The text box’s Value property returns or sets the text box’s Text property (more on this
in a moment). Because the Text property returns a string (a textual description of what’s inside
the text box), the output seen in Figure 3.9 is generated because I’ve added two strings together
(“5” and “5” makes “55”). In other words, I concatenated them.

T IP

Chapter 3 • Introduction to Access VBA 65

To accurately process numbers retrieved from text boxes, you use a built-in VBA function
called Val. The Val function is simple to use. It takes a string as input and returns a numeric
value. The next set of VBA code uses the Val function to correct the previous program’s output.

Private Sub cmdAdd_Click()

 Me.lblOutput.Caption = Val(Me.txtNum1.Value) + _

 Val(Me.txtNum2.Value)

End Sub

Notice in this example that each Val function takes a string as input. Specifically, I use two
separate Val functions to convert each text box’s Value property, one at a time, on both sides
of the addition operation. The strings contained in the Value property are converted to
numeric values prior to performing mathematical operations.

Now back to the relationship between the text box’s Value and Text properties. If the Text
property already contains the contents of the text box, then why use the Value property?
Another excellent question! Before I answer, look at the following updated code that uses the
Text property to add two numbers; the output is shown in Figure 3.10.

Private Sub cmdAdd_Click()

 Me.lblOutput.Caption = Val(Me.txtNum1.Text) + _

 Val(Me.txtNum2.Text)

End Sub

FIGURE 3.10

Attempting to use
the Text property

to retrieve user
input from text

boxes.

As Figure 3.10 depicts, VBA does not like this approach. Why? The Text property of a text box
is only accessible once the text box has focus. In other words, the Text property is only current
or valid once the text box has the focus. The Value property, however, is the saved value of the
text box control regardless of its focus.

To clear the text box of all contents, simply assign an empty string, also known as empty
quotes, to the text box’s Value property.

Me.Text1.Value = ""

66 Microsoft Access VBA Programming for the Absolute Beginner

In subsequent chapters, I show you how to validate user input with validation programming
patterns and text box events.

VARIABLES AND BEGINNING DATA TYPES
Paramount in any programming language is the concept of variables. In a nutshell, vari-
ables are pointers to storage locations in memory that contain data. You often hear variables
referred to as containers for data. In reality, they are pointers that represent a memory address
pointing to a memory location.

Though every variable created is unique (unique memory address), all variables share some
common characteristics:

• Every variable has a name.

• Each variable has an associated memory address (hidden in modern programming lan-
guages such as VBA).

• Variables have a data type such as String, Integer, or Boolean.

Variables in Access VBA must begin with a letter and cannot be longer than 255 characters,
nor can they contain periods or spaces. When created, variable names point to a location in
memory that can be managed during the execution of your program.

Demonstrated next, VBA programmers use the Dim keyword (short for dimension) to declare
a new variable in what’s called a declaration statement:

Dim myVariable

Once a variable has been declared, VBA reserves space in memory so you can store and retrieve
data from its memory location using VBA statements. Simply declaring variables is not the
end of the road. It is good programming practice to tell VBA what kind of variable, the data
type, you are creating. When creating variables, you should ask yourself whether your variable
stores numbers, strings, Boolean, dates, or object type data.

VBA provides a number of data types for declaring variables. The more common are listed in
Table 3.1.

By default, VBA initializes your declared variables for you. Specifically, all number-based vari-
ables are initialized to zero (0), strings are initialized to empty string (""), and Boolean
variables are initialized to False. This may seem trivial, but it is a nice feature that is not
offered in every programming language.

To assign a data type to a variable, simply supply a data type name in the variable declaration
using the As clause.

Chapter 3 • Introduction to Access VBA 67

Dim myName As String

With this declaration statement, I’ve created one variable of String data type called myName. I
can now use the myName variable in VBA statements to get and set data inside reserved memory,
to which the variable myName points. This concept is demonstrated in the following statement.

myName = "Emily Elizabeth"

Notice when assigning data to string variables that the data on the right side must be enclosed
with double quotes. Moreover, VBA programmers can use the concatenation operator (&)
to glue two or more strings together. The next few VBA statements reveal VBA string
concatenation.

Dim myTitle As String

myTitle = "Access VBA " & "Programming for the " & "Absolute Beginner"

Me.Caption = myTitle

In the preceding example, I successfully assigned the contents of the myTitle variable to the
Caption property of the form, which works because both the String variable and Caption
property store string data types.

Numbers, however, do not require double quotes when used in assignment statements.

Dim mySalary As Double

mySalary = 50000.55

myBalance = -457.23

T A B L E 3 . 1 C O M M O N D A T A T Y P E S I N V B A

Data Type Description
Boolean True (–1) or False (0)
Currency Useful for money or fixed-point calculations
Date Holds date and time information
Double 64-bit data type that holds double-precision floating-point numbers
Integer Stored as a 16-bit (2-byte) number
Long Stored as a 32-bit number
Single Stores single-precision floating-point 32-bit (4-byte) numbers
String (variable length) Stores 1 to 2 billion characters
String (fixed length) Stores 1 to 64,000 characters
Variant Can store numeric, string, date/time, Null, or Empty data

68 Microsoft Access VBA Programming for the Absolute Beginner

Understanding the difference between string data and string variables is an im-
portant concept in beginning programming. Beginning programmers often for-
get to surround text with double quotes when assigning data to string-based
variables or properties. Forgetting to do so can cause compile-time errors.

Study the next program statement and see if anything strikes you as weird.

Dim mySalary As Double

Me.Caption = mySalary

It’s intriguing that I can assign the variable mySalary (a Double) to a property such as Caption,
which holds String data types. After executing, the value in the Caption property is now
"50000.55" and not 50000.55.

Many languages, such as the C language, would not like the preceding assignment statement
one bit. This is because many languages require you to convert or cast data of one data type
prior to assigning the value to a container of a different data type.

Do not count on VBA to always convert data successfully for you. In fact, it is good program-
ming practice to always use the Val function to convert strings to numbers when performing
numeric calculations on string variables or properties.

In addition to variables, most programming languages, including VBA, provide support for
constants. Unlike variables, constants retain their data values throughout their scope or
lifetime.

Constants are useful for declaring and holding data values that will not change during the
life of your application. Unless they are declared in a standard code module using the Public
keyword, constants cannot not be changed once declared.

In VBA, you must use the Const statement to declare a constant as revealed in the next state-
ment, which creates a constant to hold the value of PI.

Const PI = 3.14

For readability, I like to capitalize the entire constant name when declaring constants in my
VBA code. This way, they really stick out for you and other programmers when seeing their
name among other variable names in program code.

CAUTION

Chapter 3 • Introduction to Access VBA 69

In the Real World

At the lowest computer architecture level, data is represented by electrical states in digital
circuits. These states can be translated into binary representations of 0s and 1s, which modern
day computing systems can understand as machine language. Understanding how data is con-
verted to and from binary codes is beyond the scope of this book. But, it is worth noting that
depending on interpretation, binary codes can represent both a character and an Integer num-
ber. To demonstrate this concept, study Table 3.2.

T A B L E 3 . 2 E X A M P L E B I N A R Y R E P R E S E N T A T I O N S

Binary Code lnteger Equivalent Character Equivalent
01100001 97 a
01100010 98 b
01100011 99 c
01100100 100 d

Interesting! The information in Table 3.2 should trigger a question in your head, which goes
something like this: “If binary codes can represent both characters and numbers, how do I know
what type of data I’m working with?” The notion and application of variables help to answer
this question. Variables provide a storage mechanism that accurately manages the binary rep-
resentations for us. For example, if I store data in an Integer variable, I can feel pretty good
VBA will give me back an Integer number. And, if I store data in a String variable, I feel pretty
good VBA will give me back characters and not a number. Using built-in VBA functions, it is
possible to convert numbers to strings (characters) and strings to numbers.

With the knowledge of how data is represented, consider that data can be stored in varying
types of media such as volatile memory (also known as random access memory or RAM) and
nonvolatile areas such as disk drives. Programmers can easily manage volatile memory areas
using variables with languages like VBA. Nonvolatile memory areas, such as hard drives, are
generally managed (stored) in systems such as files or databases like Microsoft Access.

Variable Naming Conventions
Depending on the programmer and programming language, there are a number of popular
naming conventions for variables. I like to use a single prefix that denotes data type, followed

70 Microsoft Access VBA Programming for the Absolute Beginner

by a meaningful name with first letters capitalized for each word comprising the variable
name. For constants, it is advisable to capitalize the entire name so that it stands out from
the rest of the code. Table 3.3 lists some common data types with a sample variable name and
purpose.

T A B L E 3 . 3 S A M P L E N A M I N G C O N V E N T I O N S

Data Type Purpose Sample Variable Name
Boolean Determines if a user is logged in bLoggedIn
Currency Specifies an employee’s salary cSalary
Date Employee’s hire date dHireDate
Double Result of calculation dResult
Integer Tracks a player’s score iScore
Long Current temperature lTemperature
Single Miles traveled on vacation sMilesTraveled
String Employee’s last name sLastName
Const A constant, which holds the current tax rate TAXRATE

As you program more and observe more programming, you will notice many other popular
naming conventions. The important note is to use a naming convention and stick with it
throughout your code!

Variable Scope
Variable scope is a fancy way of describing how long a variable will hold its data, or in other
words, its lifetime. VBA supports three types of variable scope.

• Procedure-level scope

• Module-level scope

• Public scope

To create a variable with procedure-level scope, simply declare a variable inside of a procedure.

Private Sub Form_Load()

 Dim dProfit As Double

 dProfit = 700.21

End Sub

Chapter 3 • Introduction to Access VBA 71

In the preceding form Load event procedure, I declared a Double variable called dProfit that
will hold its value as long as the current scope of execution is inside the procedure. More
specifically, once program execution has left the form Load procedure, the dProfit variable
is initialized back to 0.

If you need to maintain the value of dProfit for a longer period of time, consider using a
module-level or public variable. Module-level variables are only available to the current mod-
ule from where they are declared, but are available to all procedures contained within the
same module. Moreover, module-level variables are considered private and can be declared
either with the keyword Dim or Private in the general declarations area, as demonstrated next.

Dim dRunningTotal As Double ' module-level variable

Private iScore As Integer ' module-level variable

You can create public variables that are available to the entire project (all code modules) by
declaring a variable using the Public keyword in the general declarations area of a code
module.

Public bLoggedIn As Boolean

The general declarations area is located at the top of a code module and is con-
sidered an area that is outside of any procedure.

Determining variable scope is part of application development—during which you define all
needed variables, their storage type, and scope.

Option Statements
VBA has a few module-level utility statements, known as options, that are used for naming
conventions, string comparisons, and other internal settings. First off, you may have already
noticed the Option Compare Database statement located in the general declarations area of
the VBE Code window.

Per Microsoft, the Option Compare Database statement “performs string comparisons based on
the sort order determined by the locale ID of the database where the string comparisons
occur.” This statement can be modified to either Option Compare Binary or Option Compare
Text instead of Option Compare Database. If your VBE code module does not include an Option
Compare statement, VBA will default to Option Compare Binary, which results in string com-
parisons based on a character’s internal binary representation.

The next option statement, Option Explicit, is more important to beginning VBA program-
mers, as it forces you to explicitly declare all variables before you can use them. This is a

T IP

72 Microsoft Access VBA Programming for the Absolute Beginner

huge, I mean HUGE service to even seasoned VBA programmers. By forcing the explicit dec-
laration of variables, you are saved an often painful process of misspelling or misrepresenting
variables that ultimately lead to program or compile errors.

Unless you tell Microsoft Access to make it so, the Option Explicit statement may not appear
by default in your VBE code module. To have this statement provided in each of your code
modules, simply access the Options window from the VBE Tools menu and select the Require
Variable Declaration setting, as demonstrated in Figure 3.11.

Enforce the declaration
of all variables before
they can be used

FIGURE 3.11

Requiring variable
declaration in the
Options window.

The next option clause is the Option Base statement, which is manually typed into the general
declarations area of each code module. In a nutshell, the Option Base statement defines the
lower bounds for arrays. VBA arrays are by default 0-based arrays, but can start at 1 using an
Option Base statement as seen next.

Option Base 1

I discuss arrays and their upper and lower bounds in more detail in subsequent chapters.

VBA ARITHMETIC AND ORDER OF OPERATIONS
It’s no secret, programming in any language involves some level of math. Though it’s not
necessary to be a mathematical wiz in calculus, algebra, or trigonometry, it is useful to
understand the essential arithmetic operators and order of precedence offered in a given
programming language. For basic mathematical operations, VBA supports the operators
shown in Table 3.4.

In addition to basic math operations, VBA supports what’s known as order of operations using
parentheses. Without parentheses, VBA determines order of operations in the following
order.

Chapter 3 • Introduction to Access VBA 73

1. Exponents
2. Multiplication and division
3. Addition and subtraction

T A B L E 3 . 4 C O M M O N M A T H E M A T I C A L O P E R A T O R S

Operator Purpose Example Result
+ Addition dSalary = 521.9 + 204 725.9
- Subtraction iPoints = 100 20 80
* Multiplication dResult = 5 * 213.78 1068.9
/ Division iResult = 21 / 3 7

Exponentiation iResult = 2 ^ 3 8

When VBA encounters a tie between operators, it performs calculations starting from the
leftmost operation. To get a better handle of the importance of operator precedence and order
of operations, consider the following equation, which calculates a profit.

Profit = (price * quantity) – (fixed cost + total variable cost)

The next VBA assignment statement implements the preceding equation without parentheses
(in other words, without a well-defined order of operations):

dProfit = 19.99 * 704 - 406.21 + 203.85

The result of this calculation is 13870.6. Now study the next VBA statement which implements
the same equation, this time using parentheses to build a well-defined order of operations.

dProfit = (19.99 * 704) - (406.21 + 203.85)

Using parentheses to guide my order of operations, my new profit is 13462.9. That’s a differ-
ence of $407.70 that might have been recorded as inflated profits!

CHAPTER PROGRAM: FRUIT STAND
The Fruit Stand program is a simplified data entry system for a small fruit vendor. It imple-
ments many chapter-based concepts such as variables, constants, and VBA statements.

To build the Fruit Stand program, you’ll need to create a form in Design view, as shown in
Figure 3.12.

74 Microsoft Access VBA Programming for the Absolute Beginner

^

−

FIGURE 3.12

Building the Fruit
Stand program in

Design view.

Controls and properties of the Fruit Stand program are described in Table 3.5.

T A B L E 3 . 5 C O N T R O L S A N D P R O P E R T I E S O F T H E F R U I T S T A N D

P R O G R A M

Control Property Property Value
Form Name Fruit Stand

Caption Fruit Stand
Record Selectors No
Navigation Buttons No
Dividing Lines No

Label Name lblTitle1
Caption Chapter 3

Label Name lblTitle2
Caption The Fruit Stand

Label Name lblQtyApples
Caption Qty Apples:

Label Name lblQtyOranges
Caption Qty Oranges:

Label Name lblBananas
Caption Qty Bananas:

Chapter 3 • Introduction to Access VBA 75

Control Property Property Value
Label Name lblSubTotalCaption

Caption Sub Total:
Label Name lblTaxCaption

Caption Tax:
Label Name lblTotalCaption

Caption Total:
Label Name lblRunningTotalCaption

Caption Running Total:
Text Box Name txtApples
Text Box Name txtOranges
Text Box Name txtBananas
Label Name lblSubTotal

Caption (empty)
Special Effect Sunken

Label Name lblTax
Caption (empty)
Special Effect Sunken

Label Name lblTotal
Caption (empty)
Special Effect Sunken

Label Name lblRunningTotal
Caption (empty)
Special Effect Sunken

Command Button Name cmdCalculateTotals
Caption Calculate Totals

Command Button Name cmdResetFields
Caption Reset Fields

Command Button Name cmdResetRunningTotal
Caption Reset Running Total

Command Button Name cmdExit
Caption E&xit

Image Name imgFruit
Picture
apples.gif
(located on the companion website)

76 Microsoft Access VBA Programming for the Absolute Beginner

All of the code required to build the Fruit Stand program is shown here.

Option Compare Database

Option Explicit

' declare module level variable and constants

Dim dRunningTotal As Currency

Const TAXRATE = 0.07

Const dPricePerApple = 0.1

Const dPricePerOrange = 0.2

Const dPricePerBanana = 0.3

Private Sub cmdCalculateTotals_Click()

 ' declare procedure-level variables

 Dim dSubTotal As Currency

 Dim dTotal As Currency

 Dim dTax As Currency

 ' calculate and apply sub total

 dSubTotal = (dPricePerApple * Val(Me.txtApples.Value)) + _

 (dPricePerOrange * Val(Me.txtOranges.Value)) + _

 (dPricePerBanana * Val(txtBananas.Value))

 Me.lblSubTotal.Caption = "$" & dSubTotal

 ' calculate and apply tax

 dTax = (TAXRATE * dSubTotal)

 Me.lblTax.Caption = "$" & dTax

 ' calculate and apply total cost

 dTotal = dTax + dSubTotal

 Me.lblTotal.Caption = "$" & dTotal

 ' build and apply running total using module-level variable

 dRunningTotal = dRunningTotal + dTotal

Chapter 3 • Introduction to Access VBA 77

 Me.lblRunningTotal.Caption = "$" & dRunningTotal

End Sub

Private Sub cmdExit_Click()

 DoCmd.Quit ' terminates the application

End Sub

Private Sub cmdResetFields_Click()

 ' reset application fields

 Me.txtApples.Value = "0"

 Me.txtOranges.Value = "0"

 Me.txtBananas.Value = "0"

 Me.lblSubTotal.Caption = "$0.00"

 Me.lblTax.Caption = "$0.00"

 Me.lblTotal.Caption = "$0.00"

End Sub

Private Sub cmdResetRunningTotal_Click()

 ' reset running total variable and application field

 dRunningTotal = 0

 Me.lblRunningTotal.Caption = "$0.00"

End Sub

Private Sub Form_Load()

 ' set focus to first text box

 Me.txtApples.SetFocus

 'set default quantities when the form first loads

 Me.txtApples.Value = 0

 Me.txtBananas.Value = 0

 Me.txtOranges.Value = 0

End Sub

78 Microsoft Access VBA Programming for the Absolute Beginner

SUMMARY
• The event-driven paradigm allows programmers to build applications that respond to

actions initiated by the user or system.

• Access VBA includes a number of events that are categorized by the objects they
represent.

• Objects are nouns such as a person, place, or thing.

• Objects have properties that describe the object and methods, which perform actions.

• Properties and methods of objects are accessed using the dot operator (.).

• The VBE (Visual Basic Environment) contains a suite of windows, toolbars, and menu
items that provide support for text editing, debugging, file management, and help.

• Procedures are containers for VBA code.

• VBA statements are comprised of variables, keywords, operators, and expressions that
build a complete instruction to the computer.

• Comment statements are ignored and not processed as a VBA statement by the
computer.

• The Forms collection contains all open forms in an Access database.

• The Me keyword refers to the current object or form within the scope of the VBE code
module.

• The DoCmd object runs Microsoft Access functionality from VBA code.

• Use the Val function to accurately process numbers retrieved from text boxes.

• Variables are declared using the keyword Dim.

• Variables are pointers to storage locations in memory that contain data.

• All number-based variables are initialized to zero (0), string variables are initialized to
empty string (""), and Boolean variables are initialized to False.

• Constants are useful for declaring and holding data values that will not change during
the life of your application.

• The Option Explicit statement forces an explicit declaration before a variable can be
used.

• VBA supports order of operations using parentheses.

Chapter 3 • Introduction to Access VBA 79

Programming Challenges
1. Create a simple word processor that allows a user to enter text

into a large text box. (Hint: Set the Enter Key Behavior property
of a text box to New Line in Field.) The user should be able to
change the foreground and background colors of the text box
using three command buttons representing three different
colors. Also, the user should be able to change the font size of
the text box using up to three command buttons representing
three different font sizes.

2. Build a simple calculator program with an Access form that
allows a user to enter numbers in two separate text boxes. The
Access form should have four separate command buttons for
adding, subtracting, multiplying, and dividing. Write code in
each command button’s click event to output the result in a
label control.

3. Create a discount book program that allows a user to enter an
initial book price, a discount rate (e.g., 10% off), and a sales tax
percentage. The program should display, in labels, the derived
discount price, sales tax amount, and final cost of the book.

80 Microsoft Access VBA Programming for the Absolute Beginner

4C H A P T E R

CONDITIONS

n this chapter I show you how to implement conditions, which allow pro-
grammers to build decision-making abilities into their applications using
If blocks and Select Case structures. In addition, I show you how to lever-

age VBA’s built-in dialog boxes and additional controls to enhance your graphical
interface and your system’s intelligence.

IF BLOCKS
A basic component of a high-level language is the ability to construct a condition.
Most high-level programming languages offer the If block as a way to evaluate an
expression. Before proceeding into If blocks, I discuss what an expression is in
terms of computer programming.

In programming terms, expressions are groupings of keywords, operators, and/or
variables that produce a variable or object. Expressions are typically used to con-
duct calculations and to manipulate or test data. Moreover, expressions can be
used to build conditions, which return a Boolean value of True or False. This is an
important concept, so I am repeating in italics: Expressions can be used to build con-
ditions that evaluate to True or False.

I

VBA programmers can use expressions in an If condition.

If (number1 = number2) Then

 Me.Label1.Caption = "number1 equals number2"

End If

Known as an If block, the preceding code reads “If the variable number1 equals the variable
number2, then assign some text to the Caption property of Label1.” This means the expression
inside the parentheses must evaluate to True for the VBA statement inside the If block to
execute. Note that the parentheses surrounding the expression are not required, but provide
readability.

Also note the inclusion of the Then keyword at the end of the If statement. The Then keyword
is required at the end of each If statement.

Always indent VBA statements inside of a condition or loop to provide easy-to-
read code. A common convention is to indent two or three spaces or to use a
single tab. Doing so implies that the VBA assignment statement belongs inside
the If block.

But what if the expression does not evaluate to True? To answer this question, VBA includes
an Else clause, which catches the program’s execution in the event the expression evaluates
to False. The If/Else block is demonstrated next.

If (number1 = number2) Then

 Me.Label1.Caption = "number1 equals number2"

Else

 Me.Label1.Caption = "number1 does not equal number2"

End If

Given the preceding examples, you might be asking yourself about possibilities for building
simple expressions with operators other than the equals sign. As shown in Table 4.1, VBA
supports many common operators to aid in evaluating expressions.

In addition to the Else clause, VBA provides the ElseIf clause as part of a larger expression.
The ElseIf clause is one word in VBA and is used for building conditions that may have more
than two possible outcomes.

If (number1 = number2) Then

 Me.Label1.Caption = "number1 equals number2"

ElseIf (number1 > number2) Then

 Me.Label1.Caption = "number1 is greater than number2"

T IP

82 Microsoft Access VBA Programming for the Absolute Beginner

ElseIf (number1 < number2) Then

 Me.Label1.Caption = "number1 is less than number2"

End If

Notice in the preceding example that the ElseIf clause must include an expression followed
by the keyword Then, just like an If condition. In addition, you can use the Else clause to
act as a concluding clause in the event that none of the conditions evaluates to True, as seen
next.

If (sColor = "red") Then

 Me.Label1.Caption = "The color is red"

ElseIf (sColor = "white") Then

 Me.Label1.Caption = "The color is white"

ElseIf (sColor = "blue") Then

 Me.Label1.Caption = "The color is blue"

Else

 Me.Label1.Caption = "The color is not red, white or blue"

End If

Nested If Blocks
There are times when you may need to provide one or more conditions inside of another
condition. This concept is known as nested conditions and can often require much thought
regarding the flow of the program.

To exhibit the concept of nested conditions, I build a nested If block, which implements a
simple payroll system.

T A B L E 4 . 1 C O M M O N O P E R A T O R S U S E D I N E X P R E S S I O N S

Operator Description
= Equals
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Chapter 4 • Conditions 83

If (sEmployeeType = "salary") Then

 ' Employee is paid a salary.

 cPay = cSalary

Else

 ' Employee paid hourly wages and has worked 40 or less hours

 If (iHoursWorked <= 40) Then

 cPay = cHourlyRate * iHoursWorked

 Else

 ' Employee earned overtime, which is time and a half

 cOverTime = (iHoursWorked - 40) * (cHourlyRate * 1.5)

 cPay = (cHourlyRate * 40) + cOverTime

 End If

End If

Because I used indenting techniques, you can easily see I have a nested If block inside of the
Else block. This nested If block is executed only if the first If condition evaluates to False. If
the first, or outer, If condition evaluates to True, the employee wage is calculated as a salary,
after which program control is sent to the outer, or last, End If statement.

Without indentation, the preceding nested program code is very difficult to read. Always
indent program statements that include nested If blocks inside conditions.

Compound If Blocks
So far, you’ve seen how to build simple and nested conditions using If blocks. There is, how-
ever, much more to consider if you plan to build more complex decision-making capabilities,
such as compound conditions, into your VBA applications. To build compound expressions,
VBA programmers can use the conditional operators And, Or, and Not.

Conditional operators such as And, Or, and Not are considered reserved keywords
and must be used in an expression. Otherwise, VBA will generate a compile error.

To get a better understanding of the conditional operators And, Or, and Not, I use what’s known
as truth tables to demonstrate possible scenarios and results for each operator. A truth table
must include inputs and their possible results. Each input can evaluate to either True or
False. Using one or more inputs and a corresponding operator, you can build all possible
results in a truth table. Regardless of the number of inputs and type of operator, a compound
expression ultimately results in either True or False.

CAUTION

84 Microsoft Access VBA Programming for the Absolute Beginner

Truth tables are commonly used in mathematic and logic circles such as quantitative analysis,
discrete mathematics, and Boolean algebra. Using logical operators, truth tables allow one to
evaluate all possible results to prove an outcome.

Table 4.2 demonstrates the truth table for the And operator. The And operator uses two inputs
to determine the result for the entire expression.

T A B L E 4 . 2 T R U T H T A B L E F O R T H E A N D O P E R A T O R

Input X Input Y Result
True True True
True False False
False True False
False False False

You can see from the truth table that there is only one occasion when the And operator gen-
erates a True result in an expression—when both inputs are True.

The next program block implements a compound condition in VBA using the And operator.

 If (sEmpType = "salary" And sEmpEvalResult <> "poor") Then

 ' Employee is given a 20% bonus.

 cBonusPay = cSalary * .20

End If

In the preceding example, the employee is given a 20% bonus only if both conditions within
the parentheses are True. If either condition is False, the entire compound condition evaluates
to False, and the employee is not awarded the bonus.

The Or operator in Table 4.3 has a much different effect based on its inputs. More specifically,
the Or operator always generates a True value, provided at least one input is True. The only
time a compound condition using the Or keyword results in a False result is when both inputs
on each side of the Or operator are False.

The next block of code demonstrates a compound condition in VBA using the Or operator.

Chapter 4 • Conditions 85

If (sMonth = "June" Or sMonth = "July") Then

 sSeason = "Summer"

End If

As long as the variable sMonth is either June or July, the variable sSeason is set to Summer. Only
one side of the expression needs to be True for the entire condition to be True.

The truth table for the Not operator (seen in Table 4.4) contains only one input. In a nutshell,
the Not operator reverses the value of its input value such that Not true results in False and
Not false results in True.

T A B L E 4 . 4 T R U T H T A B L E F O R N O T O P E R A T O R

Input X Result
True False
False True

The Not operator is implemented next in VBA, as seen in the next program block.

If Not(5 = 5) Then

 Me.lblResult.Caption = "true"

Else

 Me.lblResult.Caption = "false"

End If

Given the preceding code, what do you think the value of the label’s Caption property will be?
If you said False, you would be correct. Why? To understand, you must look at the result of
the inner expression (5=5) first, which evaluates to True. The outer expression, Not(True) or

T A B L E 4 . 3 T R U T H T A B L E F O R T H E O R O P E R A T O R

Input X Input Y Result
True True True
True False True
False True True
False False False

86 Microsoft Access VBA Programming for the Absolute Beginner

Not(5=5), evaluates to False, which means the statement inside the If condition does not
execute. Instead, the statement inside the Else condition executes.

SELECT CASE STRUCTURES
The Select Case structure is another tool for VBA programmers to use to build conditions.
Specifically, the Select Case structure evaluates an expression only once. It’s useful for com-
paring a single expression to multiple values.

Select Case sDay

 Case "Monday"

 Me.lblDay.Caption = "Weekday"

 Case "Tuesday"

 Me.lblDay.Caption = "Weekday"

 Case "Wednesday"

 Me.lblDay.Caption = "Weekday"

 Case "Thursday"

 Me.lblDay.Caption = "Weekday"

 Case "Friday"

 Me.lblDay.Caption = "Weekday"

 Case Else

 Me.lblDay.Caption = "Weekend!"

End Select

In this case (excuse the pun), the Select Case structure evaluates a string-based variable and
uses five Case statements to define possible expression values. The Case Else statement
catches a value in the top expression that is not defined in a Case statement.

The Case Else statement is not required in a Select Case structure. After code within a Case
or Case Else block is executed, program control is then moved to the End Select statement,
which is required.

The Select Case structure is very flexible. For example, I can simplify the preceding structure
by using Select Case’s ability to place multiple items in a single statement separated by
commas.

Select Case sDay

 Case "Monday", "Tuesday", "Wednesday", "Thursday", "Friday"

 Me.lblDay.Caption = "Weekday"

 Case Else

 Me.lblDay.Caption = "Weekend!"

End Select

Chapter 4 • Conditions 87

In the following code, the Select Case structure also allows you to check for a range of values
using the Is and To keywords.

Select Case dTemperature

 Case Is < 32

 Me.lblTemperature.Caption = "Freezing"

 Case 32 To 45

 Me.lblTemperature.Caption = "Cold"

 Case 46 To 69

 Me.lblTemperature.Caption = "Cool"

 Case 70 To 89

 Me.lblTemperature.Caption = "Warm"

 Case Is > 89

 Me.lblTemperature.Caption = "Hot"

End Select

Using ranges of values and comparison operators, I can easily build logic into my Case state-
ments to determine temperature ranges.

DIALOG BOXES
Dialog boxes are generally small windows that prompt the user for a response. Dialog boxes
can be configured to include one to three command buttons, which provide the user with
various options for interaction. In this section, you learn about two common VBA dialog
boxes: the message box and the input box.

Message Box
VBA’s MsgBox function is a built-in function that can generate a dialog box. The MsgBox function
takes five parameters, separated by commas, as input:

MsgBox Prompt, Buttons, Title, HelpFile, Context

The only argument required by the MsgBox function is the Prompt parameter, which is displayed
on the dialog box to the user. Though not required, the Buttons parameter is very useful. You
can specify various VBA constants to customize the available buttons. The most common of
these constants are shown in Table 4.5.

Another useful but not required parameter is the Title argument, which displays text in the
title bar area of the message box. Using these parameters, I can create and display a simple
dialog box in the Click event of a command button:

88 Microsoft Access VBA Programming for the Absolute Beginner

Private Sub Command1_Click()

 MsgBox "I created a dialog box.", vbInformation, "Chapter 4"

End Sub

T A B L E 4 . 5 B U T T O N S E T T I N G S

Constant Value
vbOKOnly (default) 0
vbOKCancel 1
vbAbortRetryIgnore 2
vbYesNoCancel 3
vbYesNo 4
vbRetryCancel 5
vbCritical 16
vbQuestion 32
vbExclamation 48
vbInformation 64

To successfully use the Buttons parameter of the MsgBox function, you work with variables and
conditions. Specifically, you need to create a variable that holds the user’s response when the
user selects a button on the dialog box. The variable gets its value from the result of the
MsgBox function. That’s right; the MsgBox function not only creates a dialog box, but also
returns a value. This is how VBA programmers determine which button on the dialog box was
clicked. The possible return values are described in Table 4.6.

T A B L E 4 . 6 M S G B O X F U N C T I O N R E T U R N V A L U E S

Constant Value
vbOK 1
vbCancel 2
vbAbort 3
vbRetry 4
vbIgnore 5
vbYes 6
vbNo 7

Chapter 4 • Conditions 89

Remember from Chapter 3, “Introduction to Access VBA,” that constants are containers for
data that cannot be changed. The built-in VBA constants, such as the ones seen in Tables 4.5
and 4.6, hold integer values. This means you can use either the constant name or its value
directly. To see how this works, examine the next program. This program uses the MsgBox
function, one variable, and a Select Case structure to determine what button the user has
pressed.

Private Sub Command1_Click()

 Dim iResponse As Integer

 ' Display a message box to the user

 iResponse = MsgBox("Press a button", _

 vbAbortRetryIgnore, "Chapter 4")

 ' Determine which button was selected.

 Select Case iResponse

 Case vbAbort

 Me.lblResponse.Caption = "You pressed abort."

 Case vbRetry

 Me.lblResponse.Caption = "You pressed retry."

 Case vbIgnore

 Me.lblResponse.Caption = "You pressed ignore."

 End Select

End Sub

Figure 4.1 demonstrates the message display to the user from the preceding code.

FIGURE 4.1

A multibutton
message box.

Linefeed characters can be added in a message box prompt using the Chr(10)
function call.

MsgBox "This prompt demonstrates how to add a" & _

 " line feed character" & Chr(10) & "in a message box."

T IP

90 Microsoft Access VBA Programming for the Absolute Beginner

When using the message box function in an expression such as the following, realize that
parentheses are required to surround parameters, which are values passed to the function
(in this case the MsgBox function).

iResponse = MsgBox("Press a button", _

 vbAbortRetryIgnore, "Chapter 4")

Without parentheses, the VBA compiler complains and prevents further execution. On the
other hand, the VBA compiler does not like the use of parentheses when the MsgBox function
is used by itself.

MsgBox "I created a dialog box.", vbInformation, "Chapter 4"

This is standard operating procedure when working with VBA functions, so it’s worth repeat-
ing again in italics: Functions in expressions require the use of parentheses for their parameters, whereas
functions outside of expressions or by themselves do not.

Input Box
The input box also displays a dialog box, but allows a user to input information (hence the
name). Like the message box, the input box is created with a function call but takes seven
parameters.

InputBox Prompt, Title, Default, XPos, YPos, HelpFile, Context

The most common InputBox parameters are Prompt, Title, and Default, where Prompt and
Title behave similarly to the same parameters of the message box. The Default argument
displays default text in the text box area of the input box. Also note that the InputBox function
does not have a Buttons parameter. The only required parameter is Prompt.

The InputBox function returns a string data type, so you need to declare a String variable to
capture its return value.

In Figure 4.2, I use an input box to prompt a user with a question.

FIGURE 4.2

Using an input box
to prompt a user
for information.

Sample VBA code for Figure 4.2 would look like the following.

Chapter 4 • Conditions 91

Private Sub cmdAskQuestion_Click()

 Dim sResponse As String

 sResponse = InputBox("What is the Capitol of Florida?", _

 "Chapter 4")

 If sResponse = "Tallahassee" Then

 Me.lblResponse.Caption = "That is right!"

 Else

 Me.lblResponse.Caption = "Sorry, that is not correct."

 End If

End Sub

I will now enhance the previous code to ensure the user has clicked the default OK button on
the input box prior to validating the user’s response. More specifically, if the user clicks the
Cancel button, a zero-length string is returned by the InputBox function. To check for this, I
can use an outer If block.

Private Sub cmdAskQuestion_Click()

 Dim sResponse As String

 sResponse = InputBox("What is the Capitol of Florida?", _

 "Chapter 4")

 ' Check to see if the user clicked Cancel.

 If sResponse <> "" Then

 If sResponse = "Tallahassee" Then

 Me.lblResponse.Caption = "That is right!"

 Else

 Me.lblResponse.Caption = "Sorry, that is not correct."

 End If

 End If

End Sub

92 Microsoft Access VBA Programming for the Absolute Beginner

COMMON CONTROLS CONTINUED
Beyond what you’ve already seen from Chapter 3, there are a number of more common
controls available to you in Access. In this chapter, you learn about a few more that can require
the use of conditions. Specifically, I discuss the following common controls, and you can view
them in Figure 4.3:

• Option groups

• Option buttons

• Check boxes

• Toggle buttons

Option Group Toggle Button

Check
Box

Option
Button

FIGURE 4.3

Common controls
continued.

Option Group
The option group control is a container that logically groups controls such as option buttons,
check boxes, and toggle buttons. Though not required, the option group provides a very
effective wizard for grouping your controls inside the option group’s frame.

When first adding an option group to your form, Access initiates the Option Group Wizard.
As shown in Figure 4.4, the first step in the wizard is to add label names for each item in your
group. At this stage, it doesn’t matter what control you’re using—you’re only adding textual
descriptions for each item in the group.

Chapter 4 • Conditions 93

The Option Group Wizard does not activate if you’ve turned off the Control
Wizards item in the Access toolbar.

FIGURE 4.4

Adding label
names for each
control in the
option group.

After you’ve added all label names and clicked Next, the wizard asks you to choose a default
control if one is desired. In Figure 4.5, I’ve asked the wizard to make my item, called Red, the
default control.

FIGURE 4.5

Selecting a default
control.

Figure 4.6 depicts the next step in the wizard, where you set values for each option in the
group. Option values allow VBA programmers to tell which option the user has selected in
the group. The wizard’s default values for each option are acceptable.

FIGURE 4.6

Providing values
for each option.

CAUTION

94 Microsoft Access VBA Programming for the Absolute Beginner

The next wizard screen, displayed in Figure 4.7, allows you to select what type of option
controls are displayed in your option group.

FIGURE 4.7

Choosing an
option control

type for the option
group.

The last screen in the wizard (see Figure 4.8) prompts you to enter a caption for your option
group frame. This caption is actually a property of a label control that automatically sits at
the top of the frame.

FIGURE 4.8

Entering a caption
for the option
group’s label.

In the next three sections I show you specific implementations of option groups.

Option Buttons
Often referred to as radio buttons, option buttons provide a user with a list of selectable choices.
Specifically, the user can select only one option at a time. Individual option buttons comprise
two controls, a label, and an option button. Each has its own properties and can be managed
during design time or runtime via VBA.

After creating an option group either manually or with the Option Group Wizard,
you should change the name of each option control to one that contains a mean-
ingful description. This greatly reduces confusion when working with VBA code.

T IP

Chapter 4 • Conditions 95

To determine which option button has been selected in a group, you use the option group’s
Value property. For this to work, each option button must have been assigned a valid and
unique number in its OptionValue property (set by default in the Option Group Wizard). When
a user clicks an option button, the Value property is set to the same number as the option
button’s OptionValue property. These concepts are demonstrated in the next program code,
which implements the graphical user interface (GUI) in Figure 4.9.

FIGURE 4.9

Using option
buttons to

determine an
employee’s pay

type.

Option Compare Database

Option Explicit

Const SALARY As Double = 350.25

Const HOURLYRATE = 7.75

Private Sub cmdCalculatePay_Click()

Dim dOverTime As Double

Dim dNormalPay As Double

If Me.fraEmployeeType.Value = 2 Then

 ' Employee is paid a salary

96 Microsoft Access VBA Programming for the Absolute Beginner

 Me.lblPay.Caption = "Your weekly salary is $" & SALARY

Else

 ' Employee is paid by the hour

 ' Find out if the employee has worked overtime

 If Val(Me.txtHoursWorked.Value) > 40 Then

 dOverTime = (Val(Me.txtHoursWorked.Value) - 40) _

 * (HOURLYRATE * 1.5)

 dNormalPay = HOURLYRATE * 40

 Me.lblPay.Caption = "Your weekly pay is $" & _

 dNormalPay + dOverTime

 Else

 Me.lblPay.Caption = "Your weekly pay is $" & _

 HOURLYRATE * Val(Me.txtHoursWorked.Value)

 End If

End If

End Sub

Private Sub optHourly_GotFocus()

 Me.txtHoursWorked.Enabled = True

 Me.lblPay.Caption = ""

End Sub

Private Sub optSalary_GotFocus()

 Me.txtHoursWorked.Enabled = False

 Me.lblPay.Caption = ""

End Sub

Chapter 4 • Conditions 97

The option group is really defined as the name of the frame. (An option group is really a frame
control.) Notice that I used the GotFocus method of each option button to disable the Hours
Worked text box. The GotFocus event is triggered whenever the option button receives focus.

Check Boxes
When used in an option group, check boxes behave much like option buttons. If you have
experience in other graphical languages, you might be surprised to learn that a user can select
only one check box at a time when it is located in an option group. Remember that an option
group provides a single selection for any option-based control such as check boxes, option
buttons, and toggle buttons.

To use check boxes in a multiselection facility, you need to add them manually, outside of an
option group. In addition, you need to set each check box’s DefaultValue property to a unique
number during design time.

Implemented in Figure 4.10, the following code demonstrates how one might use check boxes
in a multiselection capacity without an option group.

FIGURE 4.10

Selecting more
than one check

box at a time.

Option Compare Database

Option Explicit

Dim dRunningTotal As Currency

98 Microsoft Access VBA Programming for the Absolute Beginner

Private Sub cmdTotal_Click()

 dRunningTotal = 0

 If Me.chkTShirt.Value = True Then

 dRunningTotal = dRunningTotal + 9.99

 End If

 If Me.chkBaseballCap.Value = True Then

 dRunningTotal = dRunningTotal + 12#

 End If

 If Me.chkSwimmingTrunks.Value = True Then

 dRunningTotal = dRunningTotal + 24.19

 End If

 If Me.chkSunBlock.Value = True Then

 dRunningTotal = dRunningTotal + 3#

 End If

 If Me.chkSunGlasses.Value = True Then

 dRunningTotal = dRunningTotal + 6.99

 End If

 Me.lblTotal.Caption = "Your total is $" & _

 dRunningTotal

End Sub

I can use the Value property of each check box to determine whether the user has selected it.
If the check box has been checked, the Value property is set to True; if not, it is set to False.

Toggle Buttons
When used in an option group, toggle buttons serve the same purpose as option buttons and
check boxes, which allow a user to select one item at a time.

In the next example (seen in Figure 4.11), I use an option group of three toggle buttons to
change label properties.

Chapter 4 • Conditions 99

FIGURE 4.11

Using toggle
buttons in an
option group.

Option Compare Database

Option Explicit

Private Sub tglRed_GotFocus()

 lblOutput.ForeColor = vbRed

 lblOutput.Caption = "Red"

End Sub

 Private Sub tglWhite_GotFocus()

 lblOutput.ForeColor = vbWhite

 lblOutput.Caption = "White"

End Sub

Private Sub tglBlue_GotFocus()

 lblOutput.ForeColor = vbBlue

 lblOutput.Caption = "Blue"

End Sub

Toggle buttons, check boxes, and option buttons behave similarly when used in an option
group. To use one or the other is simply a preference on your part.

100 Microsoft Access VBA Programming for the Absolute Beginner

If your VBA code is not executing for an option group control, ensure the
control’s On Got Focus property has the [Event Procedure] value assigned.

CHAPTER PROGRAM: HANGMAN
Hangman is a game common among school-aged children where a player tries to guess a word
or phrase before a figure of a man (in this case a monster) is hanged. Each time the player
guesses incorrectly, a portion of a body is shown until the body is complete, at which time
the game is over. The player wins by guessing the word or phrase before all body parts are
shown.

To build the Hangman program, simply construct the graphical interface, as seen in Figure 4.12.
The graphic of the monster is really six different graphics files, all of which can be found on
the companion website.

FIGURE 4.12

Using chapter-
based concepts to
build the Hangman

program.

Controls and properties to build the Hangman program are described in Table 4.7.

All of the code required to build the Hangman program is seen next.

Option Compare Database

Option Explicit

' Form level variables to track game results.

Dim iCounter As Integer

Dim letter1 As String

T IP

Chapter 4 • Conditions 101

T A B L E 4 . 7 C O N T R O L S A N D P R O P E R T I E S O F T H E H A N G M A N

P R O G R A M

Control Property Property Value
Form Name Hangman

Caption Hangman
Record Selectors No
Navigation Buttons No
Dividing Lines No

Label Name lblTitle1
Caption Chapter 4

Label Name lblTitle2
Caption Hangman

Line Name Line0
Border Style Solid
Border Color 0
Border Width 2 pt

Line Name Line1
Border Style Solid
Border Color 0
Border Width 2 pt

Line Name Line2
Border Style Solid
Border Color 0
Border Width 2 pt

Line Name Line3
Border Style Solid
Border Color 0
Border Width 2 pt

Command Button Name cmdStart
Caption Start Game

Command Button Name cmdQuit
Caption End Game

Command Button Name cmdVerify
Caption Verify your answer!

Text Box Name txtA
Text Box Name txtB
Text Box Name txtC
Text Box Name txtD
Text Box Name txtE
Text Box Name txtF
Image Name imgHead

Picture head.gif

102 Microsoft Access VBA Programming for the Absolute Beginner

Dim letter2 As String

Dim letter3 As String

Dim letter4 As String

Dim letter5 As String

Dim letter6 As String

Private Sub cmdStart_Click()

 MsgBox "A five letter word for database.", , "Hangman"

 'Reset the game board

 iCounter = 0

 Me.cmdVerify.Enabled = True

 Me.imgHead.Visible = False

 Me.imgBody.Visible = False

 Me.imgLeftArm.Visible = False

 Me.imgRightArm.Visible = False

 Me.imgLeftLeg.Visible = False

Control Property Property Value
Size Mode Stretch

Image Name imgBody
Picture body.gif
Size Mode Stretch

Image Name imgLeftArm
Picture left_arm.gif
Size Mode Stretch

Image Name imgRightArm
Picture right_arm.gif
Size Mode Stretch

Image Name imgLeftLeg
Picture left_leg.gif
Size Mode Stretch

Image Name imgRightLeg
Picture right_leg.gif
Size Mode Stretch

Chapter 4 • Conditions 103

 Me.imgRightLeg.Visible = False

 Me.txtA.Enabled = True

 Me.txtB.Enabled = True

 Me.txtC.Enabled = True

 Me.txtD.Enabled = True

 Me.txtE.Enabled = True

 Me.txtF.Enabled = True

 Me.txtA.Value = ""

 Me.txtB.Value = ""

 Me.txtC.Value = ""

 Me.txtD.Value = ""

 Me.txtE.Value = ""

 Me.txtF.Value = ""

End Sub

Private Sub cmdVerify_Click()

 ' Did the user win?

 If (Me.txtA.Value & Me.txtB.Value & Me.txtC.Value & _

 Me.txtD.Value & Me.txtE.Value & Me.txtF.Value) _

 = "Access" Then

 MsgBox "You won!", , "Hangman"

 Me.cmdStart.SetFocus

 Me.cmdVerify.Enabled = False

 Else

 ' User did not guess the correct letter.

 ' Find an available body part to display.

 If Me.imgLeftLeg.Visible = False Then

 Me.imgLeftLeg.Visible = True

 iCounter = iCounter + 1

 ElseIf Me.imgRightLeg.Visible = False Then

 Me.imgRightLeg.Visible = True

 iCounter = iCounter + 1

 ElseIf Me.imgBody.Visible = False Then

104 Microsoft Access VBA Programming for the Absolute Beginner

 Me.imgBody.Visible = True

 iCounter = iCounter + 1

 ElseIf Me.imgLeftArm.Visible = False Then

 Me.imgLeftArm.Visible = True

 iCounter = iCounter + 1

 ElseIf Me.imgRightArm.Visible = False Then

 Me.imgRightArm.Visible = True

 iCounter = iCounter + 1

 ElseIf Me.imgHead.Visible = False Then

 Me.imgHead.Visible = True

 iCounter = iCounter + 1

 End If

 ' Find out if the user has lost.

 If iCounter = 6 Then

 MsgBox "Sorry, you lost.", , "Hangman"

 Me.txtA.Enabled = False

 Me.txtB.Enabled = False

 Me.txtC.Enabled = False

 Me.txtD.Enabled = False

 Me.txtE.Enabled = False

 Me.txtF.Enabled = False

 Else

 MsgBox "You have " & 6 - iCounter & _

 " chances left!", , "Hangman"

 End If

 End If

End Sub

Private Sub Form_Load()

 ' Start the game by calling an event procedure

 cmdStart_Click

End Sub

Chapter 4 • Conditions 105

Private Sub txtA_LostFocus()

 ' Ensure correct case

 If Me.txtA.Value = "a" Then

 Me.txtA.Value = "A"

 End If

End Sub

Private Sub txtB_LostFocus()

 ' Ensure correct case

 If Me.txtB.Value = "C" Then

 Me.txtB.Value = "c"

 End If

End Sub

Private Sub txtC_LostFocus()

 ' Ensure correct case

 If Me.txtC.Value = "C" Then

 Me.txtC.Value = "c"

 End If

End Sub

Private Sub txtD_LostFocus()

 ' Ensure correct case

 If Me.txtD.Value = "E" Then

 Me.txtD.Value = "e"

 End If

End Sub

Private Sub txtE_LostFocus()

 ' Ensure correct case

 If Me.txtE.Value = "S" Then

 Me.txtE.Value = "s"

 End If

End Sub

106 Microsoft Access VBA Programming for the Absolute Beginner

Private Sub txtF_LostFocus()

 ' Ensure correct case

 If Me.txtF.Value = "S" Then

 Me.txtF.Value = "s"

 End If

End Sub

Private Sub cmdQuit_Click()

 DoCmd.Quit

End Sub

SUMMARY
• Expressions can be used to build conditions that evaluate to True or False.

• VBA conditions are built with If blocks and Select Case structures.

• Compound conditions have two or more conditions and are built using the operators
And, Or, and Not.

• The Select Case structure is useful for checking an expression against a list of values.

• The Case statements in a Select Case structure can check a single value, multiple values,
or a range of values.

• VBA contains the built-in functions MsgBox and InputBox for building dialog boxes.

• The MsgBox function returns an integer value, whereas the InputBox function returns a
string.

• The option group control contains a useful wizard for building groups of option buttons,
check boxes, and toggle buttons.

• In an option group, a user can select only one check box, toggle button, or option button
at a time.

Chapter 4 • Conditions 107

Programming Challenges
1. Construct a simple math quiz that asks a user to answer a math

problem of your choice. On the form, place one text box
(txtAnswer) and two command buttons (cmdAskQuestion and
cmdVerifyAnswer). Store the correct answer as a module-level
constant and assign the user’s answer in a local or procedure-
level variable. Write code in the Click event of one command
button to display a math question to the user with a message
box. Write code in the other command button’s Click event to
compare the user’s response to the module-level constant and
inform the user of the results (correct or incorrect) also using
a message box.

2. Construct another quiz program, this time using an input box
to ask the question and return the user’s answer. Reveal the
user’s result in the form of a message box. Remember to check
for an empty string (user clicks the Cancel button) before
checking the user’s response.

3. Enhance the Hangman program to allow the player multiple
chances to win. More specifically, display a message box that
gives the player a Yes or No option to restart the game only if
the game were lost.

4. Create a simple word processor that allows a user to enter text
into a large text box. (Hint: Set the Enter Key Behavior property
of a text box to New Line in Field.) The user should be able to
change the foreground and background colors of the text box
using option buttons in an option frame. Also, the user should
be able to change the font size of the text box using option
buttons in another option frame.

108 Microsoft Access VBA Programming for the Absolute Beginner

5C H A P T E R

LOOPING STRUCTURES

n this chapter I show you how to build iteration into your programs using
VBA looping structures such as Do and For loops. In addition, you will learn
some new VBA controls for managing groups of items and how to build

random numbers into your programs.

INTRODUCTION TO LOOPING STRUCTURES
To loop, or iterate, computers need instructions known as looping structures, which
determine such things as how many times a loop’s statements will execute and by
what condition the loop exits. Each programming language implements its own
version of looping structures, but most languages, including VBA, support some
variation of Do and For loops. Although the syntax of looping structures varies from
language to language, looping structures share similar characteristics:

• Loops are logical blocks that contain other programming statements.

• Loops can increment a counter.

• Loops implement a condition by which the loop exits.

• Many looping structures support conditions at either the top or bottom of
the loop.

• Special statements can cause the loop to exit prematurely.

I

Before looking at specific VBA implementations, I discuss some possibilities for looping, some
of which may not be so apparent at first. Consider the following list of programming scenar-
ios, each of which requires the use of looping structures:

• Displaying a menu

• Running an autopilot system for a jumbo jet

• Finding a person’s name in an electronic phone book

• Controlling a laser-guided missile

• Applying a 5% raise to all employees in a company

• Spinning the wheels in an electronic slot machine

All of the preceding scenarios have already been implemented by programmers using tech-
niques and concepts similar to the ones I show you in this chapter.

Some scenarios require a predefined number of iterations. For example, if I write a software
program to apply a 5% raise to all employees in a company, I can be sure there are a limited
number of iterations, or so at least the CEO hopes! In other words, the number of times the
loop executes is directly related to the number of employees in the company. Displaying a
menu, however, can be a much different scenario. Take an ATM (automated teller machine)
menu, for example. After a customer withdraws money from the ATM, should the ATM menu
display again for the next customer? You know the answer is yes, but then how many times
should that same menu display and for how many customers? The answer is indefinitely. It
doesn’t happen often, but there are times when a loop needs to be infinite.

Infinite loops are created when a loop’s terminating condition is never met:

Do While 5 = 5

 MsgBox "Infinite loop"

Loop

In the previous code example, the loop will never terminate because the ex-
pression 5 = 5 will always be True. To break out of an endless loop in VBA, try
pressing the Esc key or Ctrl+Break keys simultaneously.

To ensure loops are not endless, each loop has a condition that must be met for the loop to
stop iterating. It’s important to note that loops use expressions to build conditions, just as
an If block or Select Case structure does. Moreover, each loop’s condition evaluates to either
True or False.

CAUTION

110 Microsoft Access VBA Programming for the Absolute Beginner

Many times, a loop’s exiting condition is determined by a counter that is either incremented
or decremented. In VBA, numbers are incremented and decremented using VBA assignment
statements. In a nutshell, you must reassign a variable to itself with either an increment or
decrement expression.

' Increment x by 1

x = x + 1

' Decrement y by 1

y = y 1

After this cursory overview on looping structures, you’re now ready to look at some specific
VBA implementations. Specifically, you learn about the following VBA looping structures:

• Do While

• Do Until

• Loop While

• Loop Until

• For

Do While
The Do While loop uses a condition at the top of the loop to determine how many times state-
ments inside the loop will execute. Because the loop’s condition is checked first, it is possible
that the statements inside the loop never execute.

Dim x As Integer

Dim y As Integer

Do While x < y

 MsgBox "x is less than y"

Loop

In this loop, it’s possible that x is less than y, preventing the statement inside the loop from
ever executing.

In the Do While loop, the statements are executed so long as the condition evaluates to True.
In other words, the loop stops when the condition is False.

Chapter 5 • Looping Structures 111

−

In the next example, the Do While loop uses an increment statement to satisfy the condition,
which allows the loop to iterate five times.

Dim x As Integer

Dim y As Integer

x = 0

y = 5

Do While x < y

 MsgBox "The value of x is " & x

 x = x + 1

Loop

Knowing that the loop executes five times, what do you think the value of x is after the last
iteration? The value of x is 4 after the last iteration. If you’re having trouble seeing this, try
placing this code in the Click event of a command button so you can step through it one
iteration at a time, with each click of the command button.

Do Until
Similarly to the Do While loop, the Do Until loop uses reverse logic to determine how many
times a loop iterates.

Dim x As Integer

Dim y As Integer

Do Until x > y

 MsgBox "Infinite loop!"

Loop

In the preceding example, the statement inside the loop executes until x is greater than y.
Since there is no incrementing of x or decrementing of y, the loop is infinite.

Note that x being equal to y does not satisfy the condition. In other words, the statement still
executes inside the loop. Only when x is greater than y does the looping process stop.

112 Microsoft Access VBA Programming for the Absolute Beginner

Now study the following code and determine how many times the loop iterates and what the
value of x is after the loop terminates.

Dim x As Integer

Dim y As Integer

x = 0

y = 5

Do Until x > y

 MsgBox "The value of x is " & x

 x = x + 1

Loop

This Do Until loop executes six times, and the value of x after the last iteration is 6.

Loop While
Say I wanted to make sure the statements inside a loop execute at least once despite the loop’s
condition. The Loop While loop solves this dilemma by placing the loop’s condition at the
bottom of the loop:

Dim x As Integer

Dim y As Integer

x = 5

y = 2

Do

 MsgBox "Guaranteed to execute once."

Loop While x < y

Because the preceding loop’s condition executes last, the statement inside the loop is guar-
anteed to execute at least once, and in this case, only once.

Chapter 5 • Looping Structures 113

Loop Until
Using logic combined from the Do Until and Loop While loops, the Loop Until loop uses a
reverse logic condition at the end of its looping structure.

Dim x As Integer

Dim y As Integer

x = 5

y = 2

Do

 MsgBox "How many times will this execute?"

 y = y + 1

Loop Until x < y

Using an increment statement, this loop’s statements execute four times. More specifically,
the loop iterates until y becomes 6, which meets the loop’s exit condition of True.

For
The next and last type of looping structure this chapter investigates is For. The For loop is very
common for iterating through a list. It uses a range of numbers to determine how many times
the loop iterates.

Dim x As Integer

For x = 1 To 5

 MsgBox "The value of x is " & x

Next x

Notice that you are not required to increment the counting variable (in this case variable x)
yourself. The For loop takes care of this for you with the Next keyword.

Although it is common to specify the counting variable after the Next keyword,
it is not required. When used by itself, the Next keyword automatically incre-
ments the variable used on the left side of the assignment in the For loop.

T IP

114 Microsoft Access VBA Programming for the Absolute Beginner

Using the For loop, you can dictate a predetermined range for the number of iterations:

Dim x As Integer

For x = 10 To 20

 MsgBox "The value of x is " & x

Next x

You can determine how the For loop increments your counting variable using the Step key-
word. By default, the Step value is 1.

Dim x As Integer

For x = 1 To 10 Step 2

 MsgBox "The value of x is " & x

Next x

The preceding For loop, using the Step keyword with a value of 2, iterates five times, with the
last value of x being 9.

Though it is common to use number literals on both sides of the To keyword, you can also use
variables or property values:

Dim x As Integer

For x = Val(Text1.Value) To Val(Text2.Value)

 MsgBox "The value of x is " & x

Next x

Using the value of two text boxes, I can build a dynamic For loop that obtains its looping range
from a user.

Chapter 5 • Looping Structures 115

LIST AND COMBO BOXES
Both list and combo boxes store a list of items defined in design time, in runtime with VBA,
or through a linked database form such as Access. Shown in Figure 5.1, list and combo boxes
can be added to your forms using the Toolbox.

FIGURE 5.1

Viewing the
combo box and list
box from the VBA

Toolbox.

List box

Combo box

Whether you are building list and combo boxes manually or through a wizard, you must take
into account many properties. The most common properties are listed in Table 5.1.

T A B L E 5 . 1 C O M M O N L I S T A N D C O M B O B O X P R O P E R T I E S

Property Description
ColumnCount Specifies the number of columns
ColumnHeads Determines whether the list or combo box has column headings
ColumnWidths Determines the width of each column, separated by semicolons
ListCount Determines the number of rows in the list or combo box
ListIndex Identifies the item selected in the list or combo box
ListRows Specifies the maximum number of rows to display
MultiSelect Specifies whether the user can select more than one row at a time
RowSource Determines the entries in the list, separated by semicolons
RowSourceType Specifies the type of row: Table/Query, Value List,Field List, or a Visual Basic

function

116 Microsoft Access VBA Programming for the Absolute Beginner

In addition to common properties, both list and combo boxes share two important meth-
ods for adding and removing items. In VBA, they are appropriately called AddItem and
RemoveItem.

In the next subsections, you learn the most common approaches for managing items in both
list and combo boxes.

Adding Items
Depending on the source, adding items with VBA can be a bit different between list and combo
boxes. When used in a straightforward manner, however, both list and combo boxes support
the AddItem method. Before using the AddItem method, you must set your combo or list box’s
RowSourceType property to Value List.

Forgetting to set your list or combo box’s RowSourceType property to Value
List causes a runtime error when using the AddItem method.

The next program, seen in Figure 5.2, uses the form Load event to execute multiple AddItem
methods for both a combo and a list box.

Access the Edit
List Items
window while
in Form view

FIGURE 5.2

Using the
AddItem method
to populate a list

box with fruit and a
combo box with

vegetables.

CAUTION

Chapter 5 • Looping Structures 117

Private Sub Form_Load()

 lstFruits.AddItem "Apples"

 lstFruits.AddItem "Oranges"

 lstFruits.AddItem "Mangos"

 cboVegetables.AddItem "Squash"

 cboVegetables.AddItem "Corn"

 cboVegetables.AddItem "Potato"

End Sub

New to Access 2007 is the Edit List Items icon (seen in Figure 5.2) that appears
when a cursor enters the list or combo box. When clicked, an Edit List Items
window appears that enables you to add, remove, and set the default value of a
list or combo box without VBA while in Form view. This feature can be turned
off by setting the list or combo box’s Allow Value List Edits property to No.

The AddItem method takes two parameters (Item and Index), the first of which is required.

Many times, loops populate list and combo boxes with static data or table information from
a database.

Private Sub Form_Load()

 Dim x As Integer

 ' Add 25 items to the list box.

 For x = 1 To 25

 lstFruits.AddItem "The value of x is " & x

 Next x

End Sub

So far, adding items has been fairly static. To make things more interesting, you can add items
to your list box or combo box based on user input. Before doing so, however, it’s fairly common
to check for duplicates before adding the item, which the following program and its output
in Figure 5.3 demonstrate.

T IP

118 Microsoft Access VBA Programming for the Absolute Beginner

FIGURE 5.3

Checking for a
duplicate item

before adding the
item to a list box.

Option Compare Database
Option Explicit

Private Sub Form_Load()

 ' Add preliminary items to the list box.

 lstFruits.AddItem "Apples"

 lstFruits.AddItem "Oranges"

 lstFruits.AddItem "Mangos"

End Sub

Private Sub cmdAddItem_Click()

 Dim iCounter As Integer

Chapter 5 • Looping Structures 119

 ' Search for a duplicate item.

 ' If none is found, add the item.

 For iCounter = 0 To (lstFruits.ListCount 1)

 If lstFruits.ItemData(iCounter) = txtInput.Value Then

 MsgBox "Duplicate item. Can't add item."

 Exit Sub ' A duplicate was found, exit this procedure.

 End If

 Next iCounter

 ' No duplicate found, adding the item.

 lstFruits.AddItem txtInput.Value

End Sub

A few statements may appear new to you in the preceding program code. First, note the use
of the ListCount property in the For loop. The ListCount property contains the number of items
in a list or combo box. This number starts at 1, but the lowest number in a list box starts with
0. This is why I subtract 1 from the ListCount property in the For loop statement.

To compare what’s in the text box to each item in the list box, I can use the list box’s
ItemData property, which takes an index (in this case the looping variable) as a parameter and
passes back the item’s value.

Last but not least is the presence of the Exit Sub statement. This statement is very common
with Visual Basic and VBA programmers when needing to exit a procedure prematurely. In
my case, I want to exit the procedure prematurely (of course, after letting the user know) if
a duplicate item is found.

If I choose to use a combo box when accepting input from a user, an additional text box
control is not needed because the combo box already contains a text box. In reality a combo
box is really two controls: a list box and text box. To accept new input from a user with a
combo box, your combo box’s LimitToList property must be set to No (the default). When
retrieving user input from the combo box, work with its Value or Text properties (which is
similar to working with a text box).

120 Microsoft Access VBA Programming for the Absolute Beginner

−

Removing Items
Removing items from a list or combo box is quite easy. Specifically, you use the RemoveItem
method, which takes a single parameter called Index as a value. Generally speaking, items are
removed based on a user’s selection. Before removing items, however, it is always a good idea
to ensure that a user has selected an item first. To do so, simply check the list or combo box’s
ListIndex property, as the next program demonstrates. Output is seen in Figure 5.4.

FIGURE 5.4

Checking that an
item has been

selected before
using the

RemoveItem
method.

Option Compare Database
Option Explicit

Private Sub Form_Load()

 ' Add preliminary items to the list box.

 lstMovies.AddItem "Episode I"

 lstMovies.AddItem "Matrix"

 lstMovies.AddItem "Conspiracy Theory"

 lstMovies.AddItem "Men in Black"

End Sub

Chapter 5 • Looping Structures 121

Private Sub cmdRemoveItem_Click()

 ' Has the user selected an item first?

 If lstMovies.ListIndex = 1 Then

 ' The user has not selected an item.

 MsgBox "Select an item to remove."

 Else

 ' The user selected an item, so remove it.

 lstMovies.RemoveItem lstMovies.ListIndex

 End If

End Sub

If no items in a list or combo box have been selected, the ListIndex is set to 1. Otherwise, the
ListIndex contains the index of the currently selected item (starting with index 0 for the first
item). This means you can pass the ListIndex property value to the RemoveItem method. This
is an efficient and dynamic means of using property values to pass parameters to methods.

Managing Columns
Adding and managing columns with your list and combo boxes is really quite easy. The
important rule to remember is that a column header is considered a row or item (index 0) in
a list or combo box. This means the header must be treated as an extra item when deleting
items or searching for items.

To add and manage columns, you work with the following properties either in design time
or through VBA code in runtime:

• ColumnCount: Specifies the number of columns to display

• ColumnHeads: Determines whether the list or combo box has a column header

• ColumnWidths: Specifies the width of each column (separated by semicolons) in inches or
centimeters

Remembering that a column header is treated like another item, a column header is added
using the list or combo box’s AddItem method. Figure 5.5 depicts the visual appearance of
columns and column headers.

122 Microsoft Access VBA Programming for the Absolute Beginner

−

−

FIGURE 5.5

Adding columns
and column

headers to a list
box.

Option Compare Database
Option Explicit

Private Sub Form_Load()

 lstBooks.ColumnCount = 3

 lstBooks.ColumnHeads = True

 lstBooks.ColumnWidths = "1.5in;1in;1in"

 lstBooks.AddItem "Title;Author;ISBN"

 lstBooks.AddItem "Access VBA Programming...;" & _

 "Michael Vine;1592000398"

 lstBooks.AddItem "Visual Basic Programming...;" & _

 "Michael Vine;0761535535"

 lstBooks.AddItem "C Language Programming...;" & _

 "Michael Vine;1931841527"

 lstBooks.AddItem "JavaScript Programming...;" & _

 "Andy Harris;0761534105"

End Sub

When the ColumnHeads property is set to True, the first AddItem method encountered by VBA is
used to populate the column headers. Note that when working with columns, you have to
remember to separate each column or column data with semicolons.

Chapter 5 • Looping Structures 123

Do not confuse the ColumnHeads property with the singular version,
ColumnHead. They are different properties belonging to completely different
controls.

RANDOM NUMBERS
One of my favorite beginning programming concepts is random numbers. Random numbers
allow you to build a wide variety of applications ranging from encryption to games. In this
section, I show you how to build and use random numbers in your programs using two VBA
functions called Randomize and Rnd.

The Randomize function initializes VBA’s internal random number generator. It is only neces-
sary to call this function (no argument required) once during the lifetime of your program.
Most often, the Randomize function is executed during startup routines such as a form Load
event. Without the Randomize function, the Rnd function generates random numbers in a con-
sistent pattern, which of course is not really random at all.

The Rnd function takes a number as an argument and returns a Single data type. When used
in conjunction with the Randomize function, the Rnd function can generate random numbers.
To create a range of Integer-based random numbers, use the following VBA statements:

 Dim x as Integer

x = Int((10 * Rnd) + 1)

The Int function takes a number as argument and converts it to an integer value (whole
number). Remember that the Rnd function returns a Single number type, so the Int function
is used to convert a decimal number into a whole number. Adding 1 to the result of
(10 * Rnd) creates a random number between 1 and 10. Removing the addition of 1 causes the
random number range to be 0 through 9.

One way of utilizing random numbers is through a simulated dice roll. Figure 5.6 reveals the
design-time form I used to simulate this. Note that there are eight images (can be found on
the companion website), six of which have their Visible property set to False. This way only
two dice are visible to the user during runtime.

Set the Size Mode property of the image control to Stretch, which stretches the
image to fit the size of the image control.

T IP

T IP

124 Microsoft Access VBA Programming for the Absolute Beginner

FIGURE 5.6

Using random
numbers and

image-swapping
techniques to

emulate rolling of
the dice.

Option Compare Database
Option Explicit

Private Sub Form_Load()

 Randomize
End Sub

Private Sub cmdRoll_Click()

 Dim iRandomNumber As Integer

 ’ Generate random number (die) for die 1.

 iRandomNumber = Int((6 * Rnd) + 1)

 Select Case iRandomNumber

 Case 1

 imgDie1.Picture = Image1.Picture

 Case 2

 imgDie1.Picture = Image2.Picture

 Case 3

 imgDie1.Picture = Image3.Picture

 Case 4

 imgDie1.Picture = Image4.Picture

 Case 5

Chapter 5 • Looping Structures 125

 imgDie1.Picture = Image5.Picture

 Case 6

 imgDie1.Picture = Image6.Picture

 End Select

 ' Generate random number (die) for die 2.

 iRandomNumber = Int((6 * Rnd) + 1)

 Select Case iRandomNumber

 Case 1

 imgDie2.Picture = Image1.Picture

 Case 2

 imgDie2.Picture = Image2.Picture

 Case 3

 imgDie2.Picture = Image3.Picture

 Case 4

 imgDie2.Picture = Image4.Picture

 Case 5

 imgDie2.Picture = Image5.Picture

 Case 6

 imgDie2.Picture = Image6.Picture

 End Select

End Sub

To simulate the dice roll, I use the Click event of a command button to create a random
number ranging from 1 to 6 for each die. After that, I perform a bit of image swapping based
on a Select Case structure. Image swapping in this case is performed by assigning one
Picture property to another. Remember, to work with programs that use images found on
the website, you will need to change the path of the image’s Picture property to a path on
your local computer.

CHAPTER PROGRAM: MATH QUIZ
The Math Quiz program in Figure 5.7 is a fun way of learning how to incorporate chapter-based
concepts, such as loops, random numbers, and list boxes, into your VBA applications.

126 Microsoft Access VBA Programming for the Absolute Beginner

The program prompts a user for the number of math questions she would like to answer.
Then, Math Quiz prompts the user with a predetermined number of addition questions using
random numbers between 1 and 100. A list box with columns stores each question, the user’s
response, and the result.

FIGURE 5.7

Using chapter-
based concepts

to build the
Math Quiz

program.

Controls and properties to build the Math Quiz program are described in Table 5.2.

T A B L E 5.2 C O N T R O L S A N D P R O P E R T I E S O F T H E M A T H Q U I Z P R O G R A M

Control Property Property Value
Form Name Chapter Program

Caption Chapter Program
Record Selectors No
Navigation Buttons No
Dividing Lines No

Label Name lblTitle
Caption Chapter 5 – Math Quiz

Label Name lblResults
Caption Results

List Box Name lstResults
Row Source Type Value List
Column Count 3
Column Heads Yes

Command Button Name cmdStart
Caption Start Quiz

Command Button Name cmdRemoveItem
Caption Remove Item

Command Button Name cmdQuit
Caption Quit

Chapter 5 • Looping Structures 127

All of the code required to build Math Quiz is seen next.

Option Compare Database
Option Explicit

Private Sub cmdQuit_Click()
 DoCmd.Quit
End Sub

Private Sub Form_Load()
 Randomize
End Sub

Private Sub cmdRemoveItem_Click()

 ' Determine if an item has been selected first
 If lstResults.ListIndex = 1 Then
 MsgBox "Select an item to remove."
 Else
 lstResults.RemoveItem lstResults.ListIndex + 1
 End If

End Sub

Private Sub cmdStart_Click()

 Dim sResponse As String
 Dim sUserAnswer As String
 Dim iCounter As Integer
 Dim iOperand1 As Integer
 Dim iOperand2 As Integer

 ' Determine how many math questions to ask.
 sResponse = InputBox("How many math questions would you like?")

 If sResponse <> "" Then

 ' Add header to each column in the list box if one
 ' hasn't already been added.
 If lstResults.ListCount = 0 Then

128 Microsoft Access VBA Programming for the Absolute Beginner

−

 lstResults.AddItem "Question;Your Answer;Result"
 End If

 ' Ask predetermined number of math questions.
 For iCounter = 1 To Val(sResponse)

 ' Generate random numbers between 0 and 100.
 iOperand1 = Int(100 * Rnd)
 iOperand2 = Int(100 * Rnd)

 ' Generate question.
 sUserAnswer = InputBox("What is " & iOperand1 & _
 " + " & iOperand2)

 ' Determine if user's answer was correct and add an
 ' appropriate item to the multi-column list box.
 If Val(sUserAnswer) = iOperand1 + iOperand2 Then
 lstResults.AddItem iOperand1 & " + " & _
 iOperand2 & ";" & sUserAnswer & ";Correct"
 Else
 lstResults.AddItem iOperand1 & " + " & _
 iOperand2 & ";" & sUserAnswer & ";Incorrect"
 End If

 Next iCounter

 End If

End Sub

SUMMARY
• VBA supports the Do While, Do Until, Loop While, Loop Until, and For loop structures.

• Looping structures use conditions to determine the number of iterations the loop will
execute.

• An infinite, or endless, loop is caused when the loop’s condition is never met.

• Generally, a loop’s exiting condition is determined by a counter that is either incre-
mented or decremented.

• The For loop uses a range of numbers to determine how many times the loop iterates.

• Loops are often used to populate list and combo boxes with static data or table infor-
mation from a database.

Chapter 5 • Looping Structures 129

• To use the AddItem method of a list or combo box, the RowSourceType property value must
be set to Value List.

• The ListIndex property of a list and combo box can be used to determine which item a
user has selected.

• If no items are selected in a list or combo box, the ListIndex property is set to –1.

• Columns can be added to list and combo boxes by setting the ColumnCount, ColumnHeads,
and ColumnWidths properties.

• Columns are managed through runtime with VBA or through design time by separating
individual columns with semicolons.

• VBA uses the Randomize and Rnd functions to generate random numbers.

• The Randomize function initializes VBA’s internal random-number generator.

• The Rnd function takes a number as an argument and returns a Single data type.

Programming Challenges
1. Place a single command button on a form. Write code in the

Click event of the command button to display a message box
five times using a Do While loop. Remember to use a counting
variable in the loop’s condition, which increments each time
the loop iterates.

2. Modify Challenge 1 to use a For loop that iterates 20 times with
a Step value of 3.

3. Add a combo box and command button to a form. In the form’s
Load event, add three items to the combo box using the
AddItem method. In the Click event of the command button,
add input from the combo box’s Value property (input from the
user). Remember to check for duplicate items and turn off the
Edit List Items functionality by setting the combo box’s Allow
Value List Edits property to No.

4. Enhance the Math Quiz program to randomize not only numbers
but the type of math problem. More specifically, use an
additional variable to hold a random number between 1 and 4,
where each number represents addition, subtraction,
multiplication, or division.

130 Microsoft Access VBA Programming for the Absolute Beginner

6C H A P T E R

COMMON FORMATTING

AND CONVERSION

FUNCTIONS

o far you have learned to use some built-in VBA functions such as
InputBox and MsgBox, which provide interactive dialog boxes to the user.
What you might not know is that VBA provides many more intrinsic func-

tions for you to use in your programming efforts. Learning how to leverage the
power of these built-in functions is all-important in VBA programming and is cer-
tainly the key to saving you from unproductive programming time.

To facilitate your learning of VBA functions, this chapter introduces a number of
commonly used functions for formatting strings, dates, time, and for converting
data.

STRING-BASED FUNCTIONS
Someone famous once asked, “What’s in a name?” Someone less famous (yours
truly) once asked, “What’s in a string?” So what is in a string? Well, lots. Strings are
key building blocks in any high-level programming language. More specifically,
they are data structures that contain one or more characters. Note that it is also
possible for strings to be Null (undefined).

S

Groupings of characters and numbers comprise strings. These groupings of characters can
mean different things depending on their use. Many languages, including VBA, provide pop-
ular means for parsing, searching, and managing the individual pieces (characters and
numbers) that make up strings.

In this section, I show you how to parse, search, and manage strings using some very popular
built-in VBA functions, which are described in Table 6.1.

T A B L E 6 . 1 C O M M O N S T R I N G - B A S E D F U N C T I O N S

Function Name Description
UCase Converts a string to uppercase
LCase Converts a string to lowercase
Len Returns the number of characters in a string
StrCom Compares two strings and determines whether they are equal to, less than, or

greater than each other
Right Determines the specified number of characters from the right side of a string
Left Determines the specified number of characters from the left side of a string
Mid Determines the specified number of characters in a string
InStr Finds the first occurrence of a string within another
Format Formats a string based on specified instructions

UCase
The UCase function is an easy function to use. It takes a string as a parameter and returns the
string in uppercase letters.

Private Sub cmdConvert_Click()

 txtOutput.Value = UCase(txtInput.Value)

End Sub

The UCase function can take a string literal ("This is a string literal"), string variable (Dim
sFirstName As String), or string type property (txtFirstName.Value) and provide output like
that in Figure 6.1.

132 Microsoft Access VBA Programming for the Absolute Beginner

FIGURE 6.1

Converting a
string to

uppercase using
the UCase
function.

LCase
The inverse of UCase, the LCase function takes a string parameter and outputs the string in
lowercase. Sample code is demonstrated next, with output seen in Figure 6.2.

Private Sub cmdConvert_Click()

 txtOutput.Value = LCase(txtInput.Value)

End Sub

FIGURE 6.2

Converting a
string to

lowercase using
the LCase
function.

Len
The Len function is a useful tool for determining the length of a string. It takes a string as
input and returns a number of Long data type. The Len function’s return value indicates the

Chapter 6 • Common Formatting and Conversion Functions 133

number of characters present in the string parameter. To demonstrate, the next event
procedure determines the number of characters in a person’s name. Output can be seen in
Figure 6.3.

Private Sub cmdNumberOfCharacters_Click()

 Dim iNumberOfCharacters As Integer

 iNumberOfCharacters = Len(txtFirstName.Value)

 txtOutput.Value = "There are " & iNumberOfCharacters & _

 " characters in your first name."

End Sub

FIGURE 6.3

Using the Len
function to

determine the
number of

characters in a
string.

StrComp
The StrComp function is useful when comparing the sequence of characters in two strings. The
Option Compare statement is used to determine whether binary or textual comparison is done.
If a binary comparison is done, characters are treated with case sensitivity. Textual compar-
isons are not case sensitive.

The StrComp function takes two string parameters and returns one of four values, as explained
in Table 6.2.

134 Microsoft Access VBA Programming for the Absolute Beginner

The next Click event procedure uses the StrComp function to determine the equality of two
strings. Figure 6.4 examines sample output from the event procedure.

FIGURE 6.4

Using the
StrComp function
to compare two

strings for
equality.

Private Sub cmdCompareStrings_Click()

 Dim iResult As Integer

 iResult = StrComp(txtFirstString.Value, txtSecondString.Value)

 Select Case iResult

T A B L E 6 . 2 O U T P U T V A L U E S F O R T H E S T R C O M P F U N C T I O N

Return Value Description
-1 String 1 is less than string 2
0 Both strings are equal
1 String 1 is greater than string 2
Null One of the strings is Null (undefined)

Chapter 6 • Common Formatting and Conversion Functions 135

 Case -1

 MsgBox "The first string is less than the second."

 Case 0

 MsgBox "Both strings are equal."

 Case 1

 MsgBox "The first string is greater than the second."

 Case Else

 MsgBox "One or more strings are Null."

 End Select

End Sub

Right
The Right function takes two parameters and returns a string containing the number of
characters from the right side of a string. The first parameter is the evaluated string. The
second parameter is a number that indicates how many characters to return from the right
side of the string. Sample output is shown in Figure 6.5.

Private Sub cmdExtract_Click()

 txtOutput.Value = Right(txtInput.Value, 3)

End Sub

FIGURE 6.5

Extracting three
characters from

the right side of a
string.

136 Microsoft Access VBA Programming for the Absolute Beginner

Left
Working in the opposite direction of the Right function, the Left function extracts a prede-
termined number of characters from the left side of a string. Like the Right function, the
Left function takes two parameters. The first parameter is the evaluated string. The second
parameter is a number that indicates how many characters to return from the left side of the
string. Sample output is seen in Figure 6.6.

Private Sub cmdExtract_Click()

 txtOutput.Value = Left(txtInput.Value, 3)

End Sub

FIGURE 6.6

Extracting three
characters from
the left side of a

string.

Mid
The Mid function returns a string containing a predetermined number of characters. It takes
three parameters, the first two of which are required. The first parameter is the evaluated
string. The next parameter is the starting position from which characters should be taken.
The last parameter, which is optional, is the number of characters to be returned. If the last
parameter is omitted, all characters from the starting position to the end of the string are
returned.

Dim sString As String

Dim sMiddleWord As String

sString = "Access VBA Programming"

sMiddleWord = Mid(sString, 8, 3) ' Returns "VBA"

Chapter 6 • Common Formatting and Conversion Functions 137

InStr
The InStr function can take up to four parameters and returns a number specifying the start-
ing position of a string’s first occurrence within another string. The required parameters are
two strings, where the first string is being searched and the second parameter is sought after.
The optional parameters determine the starting position of the search and the type of string
comparison made.

In the next code example, I use both the Mid and InStr functions to extract a person’s last
name from a string expression. Output is seen in Figure 6.7.

FIGURE 6.7

Using Mid and
InStr functions

to extract one
string from

another.

Private Sub cmdClickMe_Click()

 Dim sLastName As String

 Dim startPosition

 ' Search the input string for a space character.

 startPosition = InStr(txtInput.Value, " ")

 ' Extract the last name from the string starting

 ' after the space character.

138 Microsoft Access VBA Programming for the Absolute Beginner

 sLastName = Mid(txtInput.Value, startPosition + 1)

 MsgBox "Thanks Mr. " & sLastName

End Sub

DATE AND TIME FUNCTIONS
Access VBA contains numerous date and time functions, such as Date, Time, and Now, for
accessing your system’s date and time. Specifically, I show you how to use the following VBA
date/time functions:

• Date

• Day

• WeekDay

• Month

• Year

• Time

• Second

• Minute

• Hour

• Now

With these functions, you can create date/time stamps, stopwatches, clocks, or custom timer
functions.

Date
The Date function requires no parameter when executed and returns a Variant data type
containing your system’s current date. This is that code:

MsgBox Date

Figure 6.8 demonstrates sample output from the Date function.

FIGURE 6.8

Displaying the
current system’s

date with the
Date function.

Chapter 6 • Common Formatting and Conversion Functions 139

Day
The Day function takes a required date argument, such as the output from the Date function,
and returns a whole number between 1 and 31, which represents a day within the current
month. This is that code:

Day(Date) ' Returns a number between 1 and 31.

WeekDay
The WeekDay function takes two parameters and returns a whole number containing the cur-
rent day of the week. The first parameter is the date (Date function output), which is required.
The second, optional parameter determines the first day of the week. This is that code:

WeekDay(Date) ' Returns a number between 1 and 7.

The default first day of the week is Sunday.

Month
The Month function takes a single parameter, which signifies the current date and returns a
whole number representing the current month in the year. This is that code:

Month(Date) ' Returns a number between 1 and 12.

Year
Much like the preceding date-based functions, the Year function takes a date parameter and
returns a whole number representing the current year. Here is that code:

Year(Date)

Time
The Time function is another easy-to-use function; it requires no parameters as input and
returns a Variant data type with your system’s current time. That code is shown here:

MsgBox Time

When used with other functions and events, the Time function can be quite useful in building
many applications. For example, I can use a form’s Timer event and TimerInterval property to
display the current time updated automatically every second:

T IP

140 Microsoft Access VBA Programming for the Absolute Beginner

Private Sub cmdStop_Click()

 ' Stop the Timer event.

 Me.TimerInterval = 0

End Sub

Private Sub Form_Load()

 Me.TimerInterval = 1000 ' 1000 milliseconds = 1 second

End Sub

Private Sub Form_Timer()

 ' Update the time every 1 second.

 lblTime.Caption = Time

End Sub

Note that setting the form’s TimerInterval property to 0 stops the Timer event from executing.

Second
The Second function requires a time parameter (the output from the Time function) and
returns a whole number from 0 to 59 indicating the current second in the current minute.
That code looks like this:

Second(Time) ' Returns a number from 0 to 59.

Minute
Much like the Second function, the Minute function requires a time parameter (the output
from the Time function) and returns a whole number from 0 to 59, which indicates the current
minute in the current hour. That code looks like this:

Minute(Time) ' Returns a number from 0 to 59.

Hour
The Hour function takes a required time parameter and returns a whole number between 0
and 23, which represents the current hour according to your system’s time. Here is that code:

Chapter 6 • Common Formatting and Conversion Functions 141

Hour(Time) ' Returns a number from 0 to 23.

Now
The Now function incorporates results from both Date and Time functions. It takes no pa-
rameters and returns a Variant data type indicating the system’s current date and time,
respectively.

MsgBox Now

CONVERSION FUNCTIONS
Conversion functions are very powerful; they allow programmers to convert data from one
type to another. Access VBA supports many types of conversion functions. Many common uses
for data conversion involve converting strings to numbers and numbers to strings. To explore
the application of data conversion, I discuss the conversion functions found in Table 6.3.

T A B L E 6 . 3 C O M M O N V B A C O N V E R S I O N F U N C T I O N S

Function Description
Val Converts recognized numeric characters in a string as numbers
Str Converts a recognized number to a string equivalent
Chr Converts a character code to its corresponding character
Asc Converts a character to its corresponding character code

Val
The Val function takes a string as input and converts recognizable numeric characters to a
number data type. More specifically, the Val function stops reading the string when it encoun-
ters a nonnumeric character. The following are some sample return values:

• Val("123") ' Returns 123

• Val("a123") ' Returns 0

• Val("123a") ' Returns 123

Str
The Str function takes a number as argument and converts it to a string representation with
a leading space for its sign (positive or negative). An error occurs in the Str function if a
nonnumeric value is passed as a parameter. The following are some sample return values:

142 Microsoft Access VBA Programming for the Absolute Beginner

• Str(123) ' Returns " 123"

• Str(-123) ' Returns "-123"

Chr
You may remember from earlier chapters that data can take many forms. Specifically, num-
bers can represent both numbers and characters. This means it is up to the programmer to
determine how data is stored—variables and data types—and presented—formatting and con-
version functions.

Many programming languages, including VBA, support the concept of character codes. Char-
acter codes are numbers that represent a single character. For example, the character A is
represented by the character code 65, and the character a (lowercase letter A) is represented
by the character code 97. Appendix A, “Common Character Codes,” contains a table of VBA’s
most common character codes.

To convert a character code to its corresponding character, VBA programmers use the Chr
function. The Chr function takes a single character code as a parameter and returns the cor-
responding character.

Figure 6.9 demonstrates a simple program (given here) that can convert a character code to
its corresponding character.

Private Sub cmdConvert_Click()

 txtOutput.Value = Chr(txtInput.Value)

End Sub

FIGURE 6.9

Converting
character codes to

characters with
the Chr function.

Chapter 6 • Common Formatting and Conversion Functions 143

Note that character codes also represent numeric characters and nonprintable characters
such as space, tab, and linefeed.

Asc
The Asc function works as the inverse of the Chr function. It takes a single character as input
and converts it to its corresponding character code.

Private Sub cmdConvert_Click()

 txtOutput.Value = Asc(txtInput.Value)

End Sub

FORMATTING
It is often necessary to format data to a specific need. For example, you may want to display
a date in long format, or a number with a thousandths separator, or numbers as a currency
or percentage. Each of these scenarios, and many more, can be accomplished with a single
VBA function called Format.

The Format function takes up to four parameters:

Format(expression, format, firstDayOfWeek, firstWeekOfYear)

Table 6.4 describes each of the Format function’s parameters in detail.

T A B L E 6 . 4 F O R M A T F U N C T I O N P A R A M E T E R S

Parameter Description
expression An expression to format. Required.
format A valid user-defined or named expression format. Optional.
firstDayOfWeek A VBA constant that specifies the first day of the week. Optional.
firstWeekOfYear A VBA constant that specifies the first week of the year. Optional.

In the next three sections, I show you how to use the Format function to format strings, num-
bers, dates, and times.

144 Microsoft Access VBA Programming for the Absolute Beginner

Formatting Strings
You have five characters with which to build user-defined strings using the Format function.
Each format character seen in Table 6.5 must be enclosed in quotation marks when passed
as a format expression argument in the Format function.

T A B L E 6 . 5 S T R I N G F O R M A T S

Format Character Description
@ Displays a character or space as a placeholder
& Displays a character or nothing as a placeholder
< Formats all characters in lowercase
> Formats all characters in uppercase
! Placeholders are filled left to right

Note that placeholders are displayed from right to left unless an exclamation point character
is present in the format expression. Consult Microsoft Visual Basic Reference for more infor-
mation on the Format function and format expressions.

In the next code segment, I use the Format function to change a string literal to all uppercase:

' Returns "HI THERE"

Format("hi there", ">")

' Returns "access vba programming"

Format("Access VBA Programming", "<")

Formatting Numbers
Numbers can be displayed with user-defined formatting expressions. The Format function
supports a multitude of formatting characters, which are used in the format argument of the
Format function, for numbers. Table 6.6 reveals these number formats.

The next three statements demonstrate how the Format function can be used to format num-
bers as money, with decimal precision, and as percentage:

• s = Format(12345.6, "$##,##00.00") ' Returns $12,345.60

• s = Format("12345.6", "00.0") ' Returns 12345.6

• s = Format("10", "0.0%") ' Returns 1000.0%

Chapter 6 • Common Formatting and Conversion Functions 145

Formatting Date and Time
One of the most common reasons to format data is to display dates and times. The Format
function supports many named (VBA-defined) and user-defined formatting expressions for
display customization.

Table 6.7 describes many date and time formatting options.

T A B L E 6 . 7 D A T E A N D T I M E F O R M A T S

Format Character Description
: Separates time in hours, minutes, and seconds
/ Separates dates in month, day, and year
d Day displayed as a number without a leading zero
dd Day displayed as a number with a leading zero
ddd Day displayed as an abbreviation
dddd Day displayed with the full name
ddddd Complete date displayed in short format (m/d/yy)
dddddd Complete date displayed in long format (mmm dd, yyyy)
w Day of the week displayed as a number (1 starts on Sunday)
ww Week of the year displayed as a number

T A B L E 6 . 6 N U M B E R F O R M A T S

Format Character Description
0 Displays a digit or 0 as a placeholder
Displays a digit or nothing as a placeholder
. A placeholder that determines how many digits are displayed to the left and

right of the decimal
% Places the percentage character at the location where it appears in the format

expression; multiplies the number by 100
, Separates thousandths from hundreds using the comma character
E- E+ e- e+ Specifies scientific formatting
- + $ () Specifies a literal character
\\ Displays a single backslash

146 Microsoft Access VBA Programming for the Absolute Beginner

In Figure 6.10, sample outputs are shown in a list box from formatting dates and time with
the Format function, as follows.

Private Sub Form_Load()

 lstFormatDateTime.AddItem Format(Date, "d/m/yy")

 lstFormatDateTime.AddItem Format(Date, "dd/mm/yyyy")

 lstFormatDateTime.AddItem Format(Date, "dddd")

 lstFormatDateTime.AddItem Format(Time, "h:m:s")

 lstFormatDateTime.AddItem Format(Time, "hh:mm:ss AM/PM")

 lstFormatDateTime.AddItem Format(Now, "c")

End Sub

Format Character Description
m Month displayed as a number without a leading zero
mm Month displayed as a number with a leading zero
mmm Month displayed as an abbreviation
mmmm Month displayed with full name
q Quarters in year displayed as a number
y Day of the year displayed as a number
yy Year displayed in two-digit format
yyyy Year displayed in four-digit format
h Hour displayed without leading zeros
hh Hour in two digits (00 to 23)
n Minute displayed in one or two digits
nn Minute in two digits
s Second displayed without leading zeros
ss Second displayed with leading zeros
ttttt Time displayed with hour, minute, and second
AM/PM Displays uppercase AM or PM using 12-hour clock
am/pm Displays lowercase am or pm using 12-hour clock
A/P Displays an uppercase A or P using 12-hour clock
a/p Displays a lowercase a or p using 12-hour clock
p Displays the date as ddddd and time as ttttt
c Same as the general predefined date format

Chapter 6 • Common Formatting and Conversion Functions 147

FIGURE 6.10

Using the Format
function and user-

defined
expressions to

format date and
time.

CHAPTER PROGRAM: SECRET MESSAGE
Secret Message uses built-in VBA functions to build a fun encryption program. Moreover, the
Secret Message program uses string-based functions, such as Len and Mid, and conversion
functions Asc and Chr to encrypt and decrypt messages. Figures 6.11 and 6.12 depict sample
input and output from the Secret Message program.

FIGURE 6.11

Using chapter-
based concepts to
build the Secret
Message program.

148 Microsoft Access VBA Programming for the Absolute Beginner

FIGURE 6.12

Using chapter-
based concepts to
encrypt a message

with the Secret
Message program.

Controls and properties to build the Secret Message program are described in Table 6.8.

T A B L E 6 . 8 C O N T R O L S A N D P R O P E R T I E S O F T H E S E C R E T M E S S A G E

P R O G R A M

Control Property Property Value
Form Name Chapter Program

Caption Chapter Program
Record Selectors No
Navigation Buttons No
Dividing Lines No

Label Name lblTitle
Caption Chapter 6 - Secret Message:
Font Size 10

Text Box Name txtMessage
Enter Key Behavior New Line in Field

Command Button Name cmdEncrypt
Caption Encrypt

Command Button Name cmdDecrypt
Caption Decrypt

All of the code required to build the Secret Message program is shown next.

Option Compare Database

Option Explicit

Chapter 6 • Common Formatting and Conversion Functions 149

Private Sub cmdDecrypt_Click()

 Dim sDecryptedMessage As String

 Dim sDecryptedCharacter As String

 Dim iCounter As Integer

 If txtMessage.Value <> "" Then

 ' Iterate through each encrypted character in the message.

 For iCounter = 1 To Len(txtMessage.Value)

 ' Convert one encrypted character at a time to its

 ' equivalent character code.

 sDecryptedCharacter = Asc(Mid(txtMessage.Value, iCounter, 1))

 ' Convert the character code (shifted by -1) back

 ' to a character.

 sDecryptedCharacter = Chr(sDecryptedCharacter - 1)

 ' Add the decrypted character to the new decrypted message.

 sDecryptedMessage = sDecryptedMessage + sDecryptedCharacter

 Next iCounter

 ' Display the decrypted message.

 txtMessage.Value = sDecryptedMessage

 End If

End Sub

Private Sub cmdEncrypt_Click()

 Dim sEncryptedMessage As String

 Dim sEncryptedCharacter As String

 Dim iCounter As Integer

150 Microsoft Access VBA Programming for the Absolute Beginner

 If txtMessage.Value <> "" Then

 ' Iterate through each character in the message.

 For iCounter = 1 To Len(txtMessage.Value)

 ' Convert one character at a time to its equivalent

 ' character code.

 sEncryptedCharacter = Asc(Mid(txtMessage.Value, iCounter, 1))

 ' Convert the character code (shifted by 1) back

 ' to a character.

 sEncryptedCharacter = Chr(sEncryptedCharacter + 1)

 ' Add the encrypted character to the new encrypted message.

 sEncryptedMessage = sEncryptedMessage + sEncryptedCharacter

 Next iCounter

 ' Display the encrypted message.

 txtMessage.Value = sEncryptedMessage

 End If

End Sub

SUMMARY
• String case can be managed with UCase and LCase functions.

• Strings can be extracted from other strings using functions such as Left, Right, and
Mid.

• Strings can be searched and compared with VBA functions InStr and StrComp,
respectively.

• VBA supports a multitude of functions, such as Date, Time, and Now, for displaying dates
and times.

• Forms have a Timer event, which can be triggered automatically and regularly using the
form’s TimerInterval property.

Chapter 6 • Common Formatting and Conversion Functions 151

• Data is represented by both numbers and characters using character codes. VBA uses the
Chr and Asc functions to convert between character codes and characters.

• Data such as strings, numbers, and date/time can easily be formatted using VBA’s
Format function.

Programming Challenges
1. Using the Right function, code the Click event of a command

button to output the last seven characters in the string Access
VBA Programming.

2. Using a form’s Timer event and TimerInterval property, build a
stopwatch with one label control and two command buttons.
Use the Format function, Time function, and format expression
Ss to display seconds only.

3. Create a word search game that allows a user to view a string
of characters for a predetermined amount of time (say 5 to 10
seconds). Build a timer to accomplish this. After time is up, hide
the string of characters and prompt the user to enter one or
more words he saw in the string. For example, the string of
characters keoixakaccessqcinmsboxeamlz contains the words
access and box. Use the InStr function to determine whether
the user’s guess is contained in the word search string.

4. Build a form with one text box and one command button. Allow
the user to enter multiple lines into the text box. In the Click
event of the command button, use a For loop and the Len
function to iterate through each character in the text box.
Every time a space character is found, increment a procedure-
level variable by 1. After the loop has completed, output the
number of spaces found in a message box.

152 Microsoft Access VBA Programming for the Absolute Beginner

7C H A P T E R

CODE REUSE AND DATA

STRUCTURES

n this chapter, I show you how to increase your programming productivity
by building your own procedures for reuse throughout an Access program.
I also show you how to build collections of related information using data

structures such as arrays and user-defined types.

CODE REUSE
Remember that Visual Basic and VBA are event-driven programming languages. This
means VBA programmers could easily duplicate work when writing code in two
or more event procedures. For example, consider a bookstore program that con-
tains three separate graphical interfaces (forms or windows) a user could search
for a book by entering a book title and clicking a command button. As a VBA pro-
grammer, you could easily write the same code in three separate control events.
This approach is demonstrated in the next three event procedures.

Private Sub cmdSearchFromMainWindow_Click(BookTitle As String)

 ' Common code to search for a book based on book title.

I

End Sub

Private Sub cmdSearchFromHelpWindow_Click(BookTitle As String)

 ' Common code to search for a book based on book title.

End Sub

Private Sub cmdSearchFromBookWindow_Click(BookTitle As String)

 ' Common code to search for a book based on book title.

End Sub

The program statements required to search for a book could be many lines long and needlessly
duplicated in each event procedure. To solve this problem, you could build your own user-
defined procedure called SearchForBook, which implements all the required code only once
to search for a book. Then each event procedure need only call SearchForBook and pass in a
book title as a parameter.

To remove duplicate code, I must first build the SearchForBook user-defined procedure.

Public Sub SearchForBook(sBookTitle As String)

 ' Search for a book based on book title.

End Sub

Instead of duplicating the Search statements in each Click event, I simply call the
SearchForBook subprocedure, passing it a book title.

Private Sub cmdSearchFromMainWindow_Click()

 SearchForBook(txtBookTitle.Value)

End Sub

Private Sub cmdSearchFromHelpWindow_Click()

154 Microsoft Access VBA Programming for the Absolute Beginner

 SearchForBook(txtBookTitle.Value)

 End Sub

Private Sub cmdSearchFromBookWindow_Click()

 SearchForBook(txtBookTitle.Value)

End Sub

This new approach eliminates duplicate code and logic by creating what’s known as code-
reuse. Specifically, code reuse is the process by which programmers pull out commonly used
statements and put them into unique procedures or functions, which can be referenced from
anywhere in the application.

Code reuse makes your life as a programmer much easier and more enjoyable. It is an easy
concept to grasp and is really more applied than theoretical. In the world of VBA, code
reusability is implemented as subprocedures and function procedures. Programmers create
user-defined procedures for problems that need frequently used solutions.

Introduction to User-Defined Procedures
In previous chapters, you learned how to use built-in VBA functions (also known as proce-
dures) such as MsgBox and InputBox. You may have wondered how those functions were
implemented. In this section, you learn how to build your own functions using user-defined
procedures.

Access VBA supports three types of procedures: subprocedures, function procedures, and
property procedures. I specifically discuss subprocedures and function procedures in this
chapter and save property procedures for Chapter 11, “Object-Oriented Programming with
Access VBA,” when I discuss object-oriented programming, also known as OOP!

The main difference between subprocedures and function procedures is that subprocedures
do not return values. Many other programming languages, such as C or Java, simply refer to a
procedure that returns no value as a void function.

Chapter 7 • Code Reuse and Data Structures 155

Though different in implementation and use, both subprocedures and function procedures
share some characteristics, such as beginning and ending statements, executable statements,
and incoming arguments. The main difference between the two revolves around a return
value. Specifically, subprocedures do not return a value, whereas function procedures do.

User-defined procedures are added to your Visual Basic code modules manually or with a little
help from the Add Procedure dialog box. To access the Add Procedure dialog box, open the
VBE and make sure the Code window portion has the focus. Select Insert, Procedure from
the menu.

The Procedure menu item appears unavailable (disabled) if the Code window in
the VBE does not have the focus.

The Add Procedure dialog box in Figure 7.1 allows you to name your procedure and select a
procedure type and scope.

FIGURE 7.1

Adding a
procedure with

the Add Procedure
dialog box.

If you select the All Local Variables as Statics check box, your procedure-level
variables maintain their values through your program’s execution.

After creating your procedure, the Add Procedure dialog box tells VBA to create a procedure
shell with Public Sub and End Sub statements, as shown in Figure 7.2.

Subprocedures
Subprocedures must have a Sub statement and corresponding End Sub statement. They can
contain executable Visual Basic statements such as declaration and assignment statements.
Subprocedures can take arguments such as variables, constants, and expressions. If no argu-
ments are provided, the beginning Sub statement must contain an empty set of parentheses:

CAUTION

TIP

156 Microsoft Access VBA Programming for the Absolute Beginner

Public Sub DisplayCurrentTime()

 MsgBox "The time is " & Time

End Sub

User-defined procedure

FIGURE 7.2

An empty
procedure created

with the Add
Procedure dialog

box.

The next procedure implements adding two numbers, which are passed in as arguments.

Public Sub AddTwoNumbers(iNumber1 As Integer, iNumber2 As Integer)

 MsgBox "The result of " & iNumber1 & " and " & iNumber2 & _

 " is " & iNumber1 + iNumber2

End Sub

When executed by itself, the AddTwoNumbers procedure requires no parentheses to surround
its parameter list:

AddTwoNumbers 4, 6

When used in an assignment statement, however, the comma-separated parameter list must
be enclosed in parentheses:

lblOutput.Caption = AddTwoNumbers(4, 6)

Note again that subprocedures only execute statements and do not return a value to the
calling procedure. If a return value is required, consider using a function procedure (discussed
next).

Chapter 7 • Code Reuse and Data Structures 157

Function Procedures
Function procedures are very much like subprocedures in that they consist of Visual Basic
statements and take arguments. Unlike subprocedures, function procedures begin with a
Function statement and end with an End Function statement. Function procedures return
values to the calling procedure by assigning a value to the function name:

Public Function MultiplyTwoNumbers(dNumber1 As Double, dNumber2 As Double)

 MultiplyTwoNumbers = dNumber1 * dNumber2

End Function

The MultiplyTwoNumbers function procedure takes two arguments and assigns the result of
their multiplication to the function name, thereby returning the result to the calling
function.

lblResult.Caption = MultiplyTwoNumbers(6, 9)

To be more dynamic, I could pass Value properties of two text boxes directly in as arguments.

lblResult.Caption = MultiplyTwoNumbers(Val(txtNumber1.Value), _

Val(txtNumber2.Value))

To ensure that the MultiplyTwoNumbers function receives numbers (doubles) as arguments, I
use the Val function inside the parameter list to convert strings to numbers.

Arguments and Parameters
The words arguments and parameters are often used in the same context. They differ in purpose
and definition. Arguments are constants, variables, or expressions that are passed to a proce-
dure, whereas parameters are variables that hold the arguments and can be used in the
procedure that it was passed to. Confusing, I know, but know that there is technically a dif-
ference between the two words.

Many programming languages, including VBA, allow arguments to be passed either by value
or by reference. When arguments are passed by value, VBA makes a copy of the original vari-
able’s contents and passes the copy to the procedure. This means the procedure can’t modify
the original contents of the argument, only the copy.

To pass arguments by value, you need to preface the parameter name with the ByVal keyword
as shown in the Increment procedure.

158 Microsoft Access VBA Programming for the Absolute Beginner

Private Sub cmdProcess_Click()

 Dim iNumber As Integer

 iNumber = 1

 Increment iNumber

 MsgBox "The value of iNumber is " & iNumber

End Sub

Public Sub Increment(ByVal x As Integer)

 x = x + 5

End Sub

Looking at Figure 7.3, you can see that it is not required to give the argument the same name
as the variable passed in.

Variable passed to function

Argument has a different
name than the variable
passed in

FIGURE 7.3

Argument names
need not be the

same as the
variable passed in.

Chapter 7 • Code Reuse and Data Structures 159

When not used in assignment statements, argument lists can’t be enclosed in
parentheses. Here is an example:

Increment iNumber

Keep in mind that Visual Basic does not always produce a runtime error when
parentheses are used and yet not required. Instead, Visual Basic may simply pass
the argument incorrectly, producing unexpected results.

Arguments passed by reference send the procedure a reference to the argument’s memory
location. In a nutshell, a memory address is sent to the procedure when arguments are passed
by reference. This means the procedure is able to modify the original data. Passing arguments
by reference is the default argument behavior in VBA. Moreover, passing arguments by ref-
erence is the most efficient means of passing arguments to procedures because only a
reference (memory address) to the argument is passed, not the data itself.

To pass arguments by reference, simply preface the argument name using the ByRef keyword
or use no preface keyword at all.

Private Sub cmdProcess_Click()

 Dim iNumber As Integer

 iNumber = 1

 Increment iNumber

 MsgBox "The value of iNumber is " & iNumber

End Sub

Public Sub Increment(ByRef x As Integer)

 x = x + 5

End Sub

Arguments are passed by reference automatically. It is not necessary to preface
the argument name with the ByRef keyword.

CAUTION

TIP

160 Microsoft Access VBA Programming for the Absolute Beginner

Passing the iNumber variable by reference allows the Increment procedure to modify the
argument’s value directly.

STANDARD MODULES
Access VBA supports two types of modules: class and standard. Class modules are directly
related to an object, such as a form or report. Form class modules contain event procedures
for the associated controls and objects. Standard modules, however, have no association with
an object. They store a collection of variables and user-defined procedures, which can be
shared among your Access programs.

You can add a standard module from the Visual Basic environment by selecting Insert, Module
from the menu.

To see how you could utilize a standard module, I’ve revised the Secret Message program from
Chapter 6, “Common Formatting and Conversion Functions.” Specifically, I added one stan-
dard module and two public functions called Encrypt and Decrypt. Using public functions
allows me to reuse the code in these functions from anywhere in my application.

To move the Encrypt and Decrypt functionality from event procedures to functions, I first
create the function shells using the Add Procedure dialog box. Next, I add a string parameter
to both functions. This argument is passed into each function when called. Moreover, the
parameter called sMessage replaces the hard-coded text-box value from the previous version
of Secret Message. All occurrences of the text-box name are replaced with the parameter name.
This is truly code reuse, as I can now call these functions and pass my message from anywhere
in my Access application. Last but not least, I assign the function’s output to the function’s
name.

The new standard module code from the enhanced Secret Message program is shown
next.

Option Compare Database

Option Explicit

Public Function Decrypt(sMessage As String)

 Dim sDecryptedMessage As String

 Dim sDecryptedCharacter As String

 Dim iCounter As Integer

 For iCounter = 1 To Len(sMessage)

Chapter 7 • Code Reuse and Data Structures 161

 sDecryptedCharacter = Asc(Mid(sMessage, iCounter, 1))

 sDecryptedCharacter = Chr(sDecryptedCharacter - 1)

 sDecryptedMessage = sDecryptedMessage + sDecryptedCharacter

 Next iCounter

 ' Assign decrypted message to function name.

 Decrypt = sDecryptedMessage

End Function

Public Function Encrypt(sMessage As String)

 Dim sEncryptedMessage As String

 Dim sEncryptedCharacter As String

 Dim iCounter As Integer

 For iCounter = 1 To Len(sMessage)

 sEncryptedCharacter = Asc(Mid(sMessage, iCounter, 1))

 sEncryptedCharacter = Chr(sEncryptedCharacter + 1)

 sEncryptedMessage = sEncryptedMessage + sEncryptedCharacter

 Next iCounter

 ' Assign encrypted message to function name.

 Encrypt = sEncryptedMessage

End Function

With my Encrypt and Decrypt functions implemented in a standard module, I simply need to
call them and pass the Value property from the text box. After the function call is executed,
the function’s return value is assigned back to the text box’s Value property.

Option Compare Database

Option Explicit

162 Microsoft Access VBA Programming for the Absolute Beginner

Private Sub cmdDecrypt_Click()

 ' Call the Decrypt function passing the encrypted

 ' message as an argument. Assign function's result

 ' to the text box's Value property.

 If txtMessage.Value <> "" Then

 txtMessage.Value = Decrypt(txtMessage.Value)

 End If

End Sub

Private Sub cmdEncrypt_Click()

 ' Call the Encrypt function passing the plain text

 ' message as an argument. Assign function's result

 ' to the text box's Value property.

 If txtMessage.Value <> "" Then

 txtMessage.Value = Encrypt(txtMessage.Value)

 End If

End Sub

You should understand that the changes made to the Secret Message program are transparent
to the user. In other words, the use of user-defined functions and standard modules does not
change the way the user interacts with the program, nor does it change the program’s func-
tionality. The important concept is that the changes were made to provide a more modular
program, which implements code reuse through user-defined procedures and modules. The
enhanced Secret Message program can be found on the companion website.

ARRAYS
Arrays are one of the first data structures learned by beginning programmers. Not only
common as a teaching tool, arrays are frequently used by professional programmers to store
like data types as one variable. In short, arrays can be thought of as a single variable that
contains many elements. Moreover, VBA arrays share many common characteristics:

• Elements in an array share the same variable name.

• Elements in an array share the same data type.

• Elements in an array are accessed with an index number.

Chapter 7 • Code Reuse and Data Structures 163

As noted, elements in an array share the same variable name and data type. Individual mem-
bers in an array are called elements and are accessed via an index. Just like any other variable,
arrays occupy memory space. To explain further, an array is a grouping of contiguous memory
segments, as demonstrated in Figure 7.4.

FIGURE 7.4

A five-element
array.

x[0] x[1] x[2] x[3] x[4]

12 -4 39 8 -111
Element’s
data value

Variable name Index number

Notice the five-element array in Figure 7.4 starts with index 0. This is an important concept
to remember, so it’s worth repeating in italics: Unless otherwise stated, elements in an array begin
with index number zero. With that said, there are five array elements in Figure 7.4, starting with
index 0 and ending with index 4.

A common programming error is not accounting for the zero-based index in ar-
rays. This programming error is often called the off-by-one error. Errors like this
are generally not caught during compile time, but rather at runtime when a user
or your program attempts to access an element number in an array that does not
exist. For example, if you have a five-element array and your program tries to
access the fifth element with index number 5, a runtime program error ensues.
This is because the last index in a five-element array is index 4!

Single-Dimension Arrays
Using the keywords Dim, Static, Public, and Private, arrays are created just like any other
variable.

Unless Option Base 1 is specified, or dimensioned, with an explicit range, arrays
by default begin with a zero base index.

• Dim myIntegerArray(5) As Integer ' creates six Integer elements.

• Dim myVariantArray(10) ' creates eleven Variant elements.

• Dim myStringArray(1 to 7) As String ' creates 7 String elements.

In the preceding declarations, the number of elements in an array is determined during array
declaration using either a number or a range of numbers surrounded by parentheses.

CAUTION

TIP

164 Microsoft Access VBA Programming for the Absolute Beginner

A nice feature of VBA is its ability to initialize variables for use. Specifically, VBA initializes
number-based array elements to 0 and string-based array elements to "" (indicating an empty
string).

Individual elements in an array are accessed via an index:

lblArrayValue.Caption = myStringArray(3)

The next Click event procedure initializes a String array using a For loop and adds the array
contents to a list box.

Private Sub cmdPopulateListBox_Click()

 ' Declare a seven element String array.

 Dim myStringArray(1 To 7) As String

 Dim x As Integer

 ' Initialize array elements.

 For x = 1 To 7

 myStringArray(x) = "The value of myStringArray is " & x

 Next x

 ' Add array contents to a list box.

 For x = 1 To 7

 lstMyListBox.AddItem myStringArray(x)

 Next x

End Sub

VBA provides two array-based functions called LBound and UBound for determining an array’s
lower and upper bounds. The LBound function takes an array name and returns the array’s
lower bound. Conversely, the UBound function takes an array name and returns the
array’s upper bound. These functions are demonstrated in this Click event procedure.

Chapter 7 • Code Reuse and Data Structures 165

Private Sub cmdPopulateListBox_Click()

 ' Declare an eleven element Integer array.

 Dim myIntegerArray(10) As Integer

 Dim x As Integer

 ' Initialize array elements using LBound and UBound functions

 ' to determine lower and upper bounds.

 For x = LBound(myIntegerArray) To UBound(myIntegerArray)

 myIntegerArray(x) = x

 Next x

 ' Add array contents to a list box.

 For x = LBound(myIntegerArray) To UBound(myIntegerArray)

 lstMyListBox.AddItem myIntegerArray(x)

 Next x

End Sub

Two-Dimensional Arrays
Two-dimensional arrays are most often thought of in terms of a table or matrix. For example,
a two-dimensional array containing four rows and five columns creates 20 elements, as shown
in Figure 7.5.

Dim x(3, 4) As Integer ' Two dimensional array with 20 elements.

FIGURE 7.5

A two-dimensional
array with 20

elements.

Column Column Column Column Column

Row 0

Row 1

Row 2

Row 3

0 1 2 3 4

x(0,0)

x(1,0)

x(2,0)

x(3,0)

x(0,1)

x(1,1)

x(2,1)

x(3,1)

x(0,2)

x(1,2)

x(2,2)

x(3,2)

x(0,3)

x(1,3)

x(2,3)

x(3,3)

x(0,4)

x(1,4)

x(2,4)

x(3,4)

Row Index Column Index

166 Microsoft Access VBA Programming for the Absolute Beginner

The first index (also known as a subscript) in a two-dimensional array represents the row in a
table. The second index represents the table’s column. Together, both subscripts specify a
single element within an array.

A nested looping structure is required to iterate through all elements in a two-dimensional
array.

Private Sub cmdInitializeArray_Click()

 ' Create a 20 element two dimensional array.

 Dim x(3, 4) As Integer

 Dim iRow As Integer

 Dim iColumn As Integer

 ' Loop through one row at a time.

 For iRow = 0 To 3

 ' Loop through each column in the row.

 For iColumn = 0 To 4

 ' Populate each element with the result of

 ' multiplying the row and column.

 x(iRow, iColumn) = iRow * iColumn

 Next iColumn

 Next iRow

End Sub

As shown in the previous Click event, the outer For loop iterates through one column at a
time. Each time the outer loop is executed, a nested For loop is executed five times. The inner
loop represents each column (in this case five columns) in a row. After each column in a row
has been referenced, the outer loop executes again, which moves the array position to the
next row and the inner loop to the next set of columns.

Dynamic Arrays
Arrays are useful when you know how many elements you need. What if you don’t know how
many array elements your program requires? One way to circumvent this problem is by cre-
ating a huge array that most definitely holds any number of elements you throw at it. I don’t

Chapter 7 • Code Reuse and Data Structures 167

recommend this, however. When arrays are declared (created), VBA reserves enough memory
to hold data for each element. If you’re guessing on the number of elements required, you’re
most certainly wasting memory! A more professional way of solving this dilemma is with
dynamic arrays.

If you’ve worked in other programming languages, such as C, you might be cringing about
the thought of dynamic arrays implemented with linked lists. You will be relieved to learn
that VBA makes building and working with dynamic arrays very easy.

When your program logic uses dynamic arrays, it can size and resize your array while the
application is running. To create a dynamic array, simply eliminate any references to sub-
scripts or indexes in the array declaration.

Option Compare Database

Option Explicit

Dim iDynamicArray() As Integer ' Dynamic array.

Leaving the parentheses empty tells VBA that your array is dynamic. I will be able to use my
dynamic array in all subsequent form-level procedures by dimensioning the dynamic array
in the general declaration area. To set the number of elements in a dynamic array, use the
ReDim keyword.

Private Sub cmdDynamicArray_Click()

 Dim sUserResponse As String

 sUserResponse = InputBox("Enter number of elements:")

 ' Set number of array elements dynamically.

 ReDim iDynamicArray(sUserResponse)

 MsgBox "Number of elements in iDynamicArray is " _

 & UBound(iDynamicArray) + 1

End Sub

Using the ReDim keyword, I can set my array size after the program is running. The only prob-
lem with this approach is that each time the ReDim statement is executed, all previous element
data is lost. To correct this, use the Preserve keyword in the ReDim statement, as follows.

168 Microsoft Access VBA Programming for the Absolute Beginner

Private Sub cmdIncreaseDynamicArray_Click()

 Dim sUserResponse As String

 sUserResponse = InputBox("Increase number of elements by:")

 ' Set number of array elements dynamically, while

 ' preserving existing elements.

 ReDim Preserve iDynamicArray(UBound(iDynamicArray) _

 + sUserResponse)

 MsgBox "Number of elements in iDynamicArray is now " _

 & UBound(iDynamicArray) + 1

End Sub

To preserve current elements while increasing a dynamic array, you must tell VBA to add
elements to the array’s existing upper bound. This can be accomplished using the UBound
function, as demonstrated in the previous Click event procedure cmdIncreaseDynamicArray.

The Preserve keyword allows you to change a dynamic array’s upper bound
only. You cannot change a dynamic array’s lower bound with the Preserve
keyword.

Passing Arrays as Arguments
Passing an array to a function or subprocedure is not as difficult in VBA as one might think.
You must follow a couple of rules, however, to ensure a valid argument pass.

To pass all elements in an array to a procedure, simply pass the array name with no paren-
theses. Next, you must define the parameter name with an empty set of parentheses, as the
next two procedures demonstrate.

Private Sub cmdPassEntireArray_Click()

 Dim myArray(5) As Integer

 HowMany myArray

CAUTION

Chapter 7 • Code Reuse and Data Structures 169

End Sub

Private Sub HowMany(x() As Integer)

 MsgBox "There are " & UBound(x) & " elements in this array."

End Sub

To pass a single element in an array, it is not necessary to define the parameter name as an
array. Rather, simply pass one array element as a normal variable argument:

Private Sub cmdPassArrayElement_Click()

 Dim myArray(5) As Integer

 CheckItOut myArray(3)

End Sub

Private Sub CheckItOut(x As Integer)

 MsgBox "The parameter's value is " & x & "."

End Sub

Passing arrays and elements of arrays as arguments is that easy!

USER-DEFINED TYPES
In other programming languages, such as C, user-defined types are commonly referred to as
structures. User-defined types are collections of one or more related elements, which can be of
different data types. User-defined types must be declared at the module level (also known as
the general declarations area) in a standard module. Programmers can leverage user-defined
types to group like variables as one, much as a record in a database does.

Type and End Type Statements
User-defined types are created with the Type and End Type statements at the module level.
More specifically, user-defined types must be declared outside of any procedure in a standard
module. To demonstrate, I created a user-defined type called EmployeeData.

170 Microsoft Access VBA Programming for the Absolute Beginner

Type EmployeeData

 EmployeeLastName As String

 EmployeeFirstName As String

 EmployeeID As Integer

 EmployeeSalary As Currency

 EmployeeHireDate As Date

End Type

' ...is the same as

Public Type EmployeeData

 Dim EmployeeLastName As String

 Dim EmployeeFirstName As String

 Dim EmployeeID As Integer

 Dim EmployeeSalary As Currency

 Dim EmployeeHireDate As Date

End Type

It is not necessary to use the Dim keyword when declaring variables (members)
inside a user-defined type.

Note that declaring a user-defined type does not instantiate a variable, nor does it reserve any
space in memory. The declaration of a user-defined type simply provides VBA with a blueprint
when variables of your user-defined type are created.

By default, user-defined types are public, though they can be declared using the keyword
Private, which makes them available only to the current module from where they are created.

' Available only in the current module.

Private Type BookData

 Title As String

 ISBN As String

 Author As String

 Publisher As String

T IP

Chapter 7 • Code Reuse and Data Structures 171

 PublishDate As Date

 Price As Currency

End Type

Declaring Variables of User-Defined Type
As mentioned, declaring a user-defined type does not create a variable, but rather defines a
template for VBA programmers to use later. To create variables of your user-defined types,
define a user-defined type in a standard module.

Option Compare Database

Option Explicit

' Define user defined type in a standard module.

Type BookData

 Title As String

 ISBN As String

 Author As String

 Publisher As String

 PublishDate As Date

 Price As Currency

End Type

Then you can create variables of your user-defined type at a module level.

' Declare 5 element array of BookData Type

Dim myFavoriteBook As BookData

Because user-defined types are public by default, you can create type variables in other mod-
ules, such as form class modules:

Private Sub cmdEnterBookData_Click()

' Declare one variable of BookData Type

 Dim myCookingBook As BookData

End Sub

172 Microsoft Access VBA Programming for the Absolute Beginner

Managing Elements
Once a variable has been declared as a user-defined type, you can use it much like any other
variable. To access elements within type variables, simply use the dot notation to assign and
retrieve data, as the next program demonstrates.

Private Sub cmdEnterBookData_Click()

 Dim myBook As BookData ' Declare one variable of BookData Type

 myBook.Title = txtTitle.Value

 myBook.ISBN = txtISBN.Value

 myBook.Author = txtAuthor.Value

 myBook.Publisher = txtPublisher.Value

 myBook.PublishDate = txtPublishDate.Value

 myBook.Price = txtPrice.Value

 MsgBox myBook.Title & " has been entered."

End Sub

Note that a public user-defined type must have already been created in a standard module.

Remember that user-defined types can be thought of as rows in a database table: Both table
rows and user-defined types maintain a grouping of like elements of one or more data types.

So far, you have only seen how to create a single variable of user-defined type (analogous to
a single row in a database). To create multiple variables of the same user-defined type (much
like multiple rows in a database), simply create an array of user-defined type, as shown in the
next program.

Option Compare Database

Option Explicit

Dim myBooks() As BookData ' Declare dynamic array of BookData Type

Dim currentIndex As Integer

Private Sub cmdAddNewBook_Click()

 ' Add one array element to the dynamic array.

Chapter 7 • Code Reuse and Data Structures 173

 ReDim Preserve myBooks(UBound(myBooks) + 1)

 ' Clear text boxes

 txtTitle.Value = ""

 txtISBN.Value = ""

 txtAuthor.Value = ""

 txtPublisher.Value = ""

 txtPublishDate.Value = ""

 txtPrice.Value = ""

End Sub

Private Sub cmdEnterBookData_Click()

 myBooks(UBound(myBooks)).Title = txtTitle.Value

 myBooks(UBound(myBooks)).ISBN = txtISBN.Value

 myBooks(UBound(myBooks)).Author = txtAuthor.Value

 myBooks(UBound(myBooks)).Publisher = txtPublisher.Value

 myBooks(UBound(myBooks)).PublishDate = txtPublishDate.Value

 myBooks(UBound(myBooks)).Price = txtPrice.Value

 MsgBox myBooks(UBound(myBooks)).Title & " has been entered."

End Sub

Private Sub cmdNext_Click()

If currentIndex <= UBound(myBooks) Then

 If currentIndex < UBound(myBooks) Then

 ' Increment index.

 currentIndex = currentIndex + 1

 End If

 txtTitle.Value = myBooks(currentIndex).Title

 txtAuthor.Value = myBooks(currentIndex).Author

 txtISBN.Value = myBooks(currentIndex).ISBN

174 Microsoft Access VBA Programming for the Absolute Beginner

 txtPublisher.Value = myBooks(currentIndex).Publisher

 txtPublishDate.Value = myBooks(currentIndex).PublishDate

 txtPrice.Value = myBooks(currentIndex).Price

End If

End Sub

Private Sub cmdPrevious_Click()

If currentIndex >= 1 Then

 If currentIndex > 1 Then

 ' Decrement index.

 currentIndex = currentIndex - 1

 End If

 txtTitle.Value = myBooks(currentIndex).Title

 txtAuthor.Value = myBooks(currentIndex).Author

 txtISBN.Value = myBooks(currentIndex).ISBN

 txtPublisher.Value = myBooks(currentIndex).Publisher

 txtPublishDate.Value = myBooks(currentIndex).PublishDate

 txtPrice.Value = myBooks(currentIndex).Price

End If

End Sub

Private Sub Form_Load()

 ' Add one array element to the dynamic array.

 ReDim myBooks(1)

 currentIndex = 1

End Sub

Chapter 7 • Code Reuse and Data Structures 175

The Integer variable—called currentIndex in the previous Form_Load event procedure—was
declared in the general declarations section. It therefore can be used throughout the form’s
class module. I use this variable to maintain the current index of the array as I navigate
through the elements in the array. Also note the use of dynamic array techniques to add
elements of BookData type to my array variable in the cmdAddNewBook_Click event procedure.

CHAPTER PROGRAM: DICE
The chapter program Dice in Figure 7.6 is an easy-to-build, fun game. Mimicking basic poker
rules, the player rolls the dice by clicking a command button and hopes for either three of a
kind (worth 10 points) or, better yet, four of a kind (worth 25 points).

FIGURE 7.6

Using chapter-
based concepts to

build the Dice
program.

The Dice program implements code reuse by leveraging chapter-based concepts such as arrays,
user-defined procedures, and standard code modules. In addition to chapter-based concepts,
the Dice program uses random number techniques to simulate a roll. (This is discussed in
Chapter 5, “Looping Structures.”)

Controls and properties that build the Dice program are described in Table 7.1.

T A B L E 7 . 1 C O N T R O L S A N D P R O P E R T I E S O F T H E D I C E P R O G R A M

Control Property Property Value
Form Name Chapter Program

Caption Chapter Program
Record Selectors No
Navigation Buttons No
Dividing Lines No

176 Microsoft Access VBA Programming for the Absolute Beginner

Control Property Property Value
Frame Name fraGameBoard
Command Button Name cmdHowToPlay

Caption How to Play
Command Button Name cmdQuit

Caption End Game
Command Button Name cmdRoll

Caption Roll the Dice!
Label Name lblTitle

Caption Chapter 7 – Dice!
Image Name imgSlot1

Picture blank.jpg
Size Mode Stretch

Image Name imgSlot2
Picture blank.jpg
Size Mode Stretch

Image Name imgSlot3
Picture blank.jpg
Size Mode Stretch

Image Name imgSlot4
Picture blank.jpg
Size Mode Stretch

Image Name imgDice1
Picture die1.jpg
Size Mode Stretch

Image Name imgDice2
Picture die2.jpg
Size Mode Stretch

Image Name imgDice3
Picture die3.jpg
Size Mode Stretch

Image Name imgDice4
Picture die4.jpg
Size Mode Stretch

Image Name imgDice5
Picture die5.jpg
Size Mode Stretch

Image Name imgDice6
Picture die6.jpg
Size Mode Stretch

Chapter 7 • Code Reuse and Data Structures 177

All of the code required to implement the form class module in the Dice program is seen next.

Option Compare Database

Option Explicit

Private Sub cmdQuit_Click()

 DoCmd.Quit

End Sub

Private Sub cmdRoll_Click()

 ' Roll the Dice!

 RollTheDice

 ' Check the player's hand.

 DetermineCurrentHand iCurrentHand

End Sub

Private Sub cmdHowToPlay_Click()

 MsgBox "Dice! Version 1.0" & Chr(13) & _

 "Developed by Michael Vine." & Chr(13) & Chr(13) & _

 "Roll the dice and win points with four of a kind (25 points), " _

 & Chr(13) & _

 "and three of a kind (10 points).", , "Chapter 7 - Dice!"

End Sub

Private Sub Form_Load()

 Randomize

 lblScore.Caption = "Your score is " & iScore

End Sub

The algorithm to roll the dice and check the player’s hand is implemented in a standard code
module, which is shown next.

178 Microsoft Access VBA Programming for the Absolute Beginner

Option Compare Database

Option Explicit

' Public variables available to all procedures in

' all modules

Public iScore As Integer

Public iCurrentHand(3) As Integer

Public Sub DetermineCurrentHand(a() As Integer)

 ' Look for valid hands worth points.

 ' Valid hands with points are:

 ' 3 of a kind - 10 points

 ' 4 of a kind - 25 points

 Dim iCounter As Integer

 ' Holds possibilities of a win
 Dim iNumbers(1 To 6) As Integer

 ' Count the number of occurrences for each die
 For iCounter = 0 To 3
 Select Case a(iCounter)
 Case 1
 iNumbers(1) = iNumbers(1) + 1
 Case 2
 iNumbers(2) = iNumbers(2) + 1
 Case 3
 iNumbers(3) = iNumbers(3) + 1
 Case 4
 iNumbers(4) = iNumbers(4) + 1
 Case 5
 iNumbers(5) = iNumbers(5) + 1
 Case 6

 iNumbers(6) = iNumbers(6) + 1

 End Select

 Next iCounter

Chapter 7 • Code Reuse and Data Structures 179

 ' Determine if player has four of a kind
 If iNumbers(1) = 4 Or iNumbers(2) = 4 Or iNumbers(3) = 4 Or _
 iNumbers(4) = 4 Or iNumbers(5) = 4 Or iNumbers(6) = 4 Then

 MsgBox "Four of a kind! 25 points!"
 iScore = iScore + 25
 Forms("ChapterProgram").lblScore.Caption = _
 "Your score is " & iScore
 Exit Sub

 End If

 ' Player did not have a four of a kind, see if they
 ' have three of a kind.
 If (iNumbers(1) = 3 Or iNumbers(2) = 3 Or iNumbers(3) = 3 Or _
 iNumbers(4) = 3 Or iNumbers(5) = 3 Or iNumbers(6) = 3) Then

 MsgBox "Three of a kind! 10 points!"
 iScore = iScore + 10
 Forms("ChapterProgram").lblScore.Caption = _
 "Your score is " & iScore
 Exit Sub

 End If

End Sub

Public Sub RollTheDice()

 Dim iCounter As Integer

 ' Reset current hand
 For iCounter = 0 To 3
 iCurrentHand(iCounter) = Int((6 * Rnd) + 1)
 Next iCounter

 ' Assign a die to the first slot
 Select Case iCurrentHand(0)
 Case 1
 Forms("ChapterProgram").imgSlot1.Picture =
Forms("ChapterProgram").imgDice1.Picture

180 Microsoft Access VBA Programming for the Absolute Beginner

 Case 2
 Forms("ChapterProgram").imgSlot1.Picture =
Forms("ChapterProgram").imgDice2.Picture
 Case 3
 Forms("ChapterProgram").imgSlot1.Picture =
Forms("ChapterProgram").imgDice3.Picture
 Case 4
 Forms("ChapterProgram").imgSlot1.Picture =
Forms("ChapterProgram").imgDice4.Picture
 Case 5
 Forms("ChapterProgram").imgSlot1.Picture =
Forms("ChapterProgram").imgDice5.Picture
 Case 6
 Forms("ChapterProgram").imgSlot1.Picture =
Forms("ChapterProgram").imgDice6.Picture
 End Select

 ' Assign a die to the second slot
 Select Case iCurrentHand(1)
 Case 1
 Forms("ChapterProgram").imgSlot2.Picture =
Forms("ChapterProgram").imgDice1.Picture
 Case 2
 Forms("ChapterProgram").imgSlot2.Picture =
Forms("ChapterProgram").imgDice2.Picture
 Case 3
 Forms("ChapterProgram").imgSlot2.Picture =
Forms("ChapterProgram").imgDice3.Picture
 Case 4
 Forms("ChapterProgram").imgSlot2.Picture =
Forms("ChapterProgram").imgDice4.Picture
 Case 5
 Forms("ChapterProgram").imgSlot2.Picture =
Forms("ChapterProgram").imgDice5.Picture
 Case 6
 Forms("ChapterProgram").imgSlot2.Picture =
Forms("ChapterProgram").imgDice6.Picture
 End Select

 ' Assign a die to the third slot

Chapter 7 • Code Reuse and Data Structures 181

 Select Case iCurrentHand(2)
 Case 1
 Forms("ChapterProgram").imgSlot3.Picture =
Forms("ChapterProgram").imgDice1.Picture
 Case 2
 Forms("ChapterProgram").imgSlot3.Picture =
Forms("ChapterProgram").imgDice2.Picture
 Case 3
 Forms("ChapterProgram").imgSlot3.Picture =
Forms("ChapterProgram").imgDice3.Picture
 Case 4
 Forms("ChapterProgram").imgSlot3.Picture =
Forms("ChapterProgram").imgDice4.Picture
 Case 5
 Forms("ChapterProgram").imgSlot3.Picture =
Forms("ChapterProgram").imgDice5.Picture
 Case 6
 Forms("ChapterProgram").imgSlot3.Picture =
Forms("ChapterProgram").imgDice6.Picture
 End Select

 ' Assign a die to the fourth slot
 Select Case iCurrentHand(3)
 Case 1
 Forms("ChapterProgram").imgSlot4.Picture =
Forms("ChapterProgram").imgDice1.Picture
 Case 2
 Forms("ChapterProgram").imgSlot4.Picture =
Forms("ChapterProgram").imgDice2.Picture
 Case 3
 Forms("ChapterProgram").imgSlot4.Picture =
Forms("ChapterProgram").imgDice3.Picture
 Case 4
 Forms("ChapterProgram").imgSlot4.Picture =
Forms("ChapterProgram").imgDice4.Picture
 Case 5
 Forms("ChapterProgram").imgSlot4.Picture =
Forms("ChapterProgram").imgDice5.Picture

182 Microsoft Access VBA Programming for the Absolute Beginner

 Case 6
 Forms("ChapterProgram").imgSlot4.Picture =
Forms("ChapterProgram").imgDice6.Picture
 End Select

End Sub

SUMMARY
• Code reuse is implemented as user-defined subprocedures and function procedures.

• Function procedures return a value; subprocedures do not.

• Both subprocedures and function procedures can take one or more arguments.

• Arguments are the data passed into procedures. Parameters are the variables inside the
procedure, which represent the argument data.

• Arguments can be passed by value and by reference.

• Arguments passed by value contain a copy of the original data. This prevents the proce-
dure from modifying the original data.

• Arguments passed by reference contain a reference to the variable’s memory address.
The procedure can modify the original data.

• Arguments are passed by reference automatically.

• Standard modules are used to group commonly referenced user-defined procedures
together.

• Arrays are used to store groupings of like data types as one variable.

• An array is a grouping of contiguous memory segments.

• Variables in an array are called elements.

• Each variable in an array shares the same name.

• Elements in an array are accessed via an index.

• VBA arrays are zero-based by default.

• Arrays are created just like other variables using the keywords Dim, Static, Public, and
Private.

• Two-dimensional arrays are often thought of in terms of a table or matrix.

• Two looping structures (one of which is nested) are required to iterate through each
element in a two-dimensional array.

• Dynamic arrays can be created and managed using the ReDim and Preserve keywords.

• Arrays can be passed as arguments to procedures.

Chapter 7 • Code Reuse and Data Structures 183

• User-defined types are commonly referred to as structures.

• User-defined types are groupings of like information, which can be of different data
types.

• User-defined types are created using the Type and End Type statements.

• User-defined types must be declared in a standard module in the general declarations
area (outside of any procedure).

• Variables of user-defined type are analogous to rows in a database.

Programming Challenges
1. Build a form with two text boxes that receive numbers as input

and one command button that displays a message box
containing the larger of the two numbers. To accomplish this,
write code in the Click event of the command to call a user-
defined function named FindLargestNumber. Pass it two
arguments (text box values) and display the result in a message
box. Write code in the FindLargestNumber function to determine
the larger number and return the result to the calling
procedure (command button Click event in this case).

2. Create a one-dimensional string-based array with five
elements. Assign five different names to the array. Use a For
loop to iterate through each of the array elements, displaying
the names in a message box.

3. Declare a user-defined type called HomeData with elements
StreetAddress, City, State, SquareFootage, LotSize, and
SalePrice in a standard module. Create a form with six text
boxes to add values to each variable type element. In the
general declarations area of the form, create a single variable
ofHomeType to store the user-entered value. Add two command
buttons to the form, one called cmdAddHome and the other
cmdDisplayHomeData. In cmdAddHome Click event, store the data
entered by the user into your user-defined type variable. In the
cmdDisplayHomeData Click event, display each element’s value
in a message box.

4. Update the chapter program Dice to check for two pair.

184 Microsoft Access VBA Programming for the Absolute Beginner

8C H A P T E R

DEBUGGING, INPUT

VALIDATION, FILE

PROCESSING, AND ERROR

HANDLING
his chapter teaches you techniques for preventing runtime errors through
input validation and error handling. You also see how to debug your VBA
code using common VBE debugging windows. In addition, I show you how

VBA manages file input and output (file I/O).

DEBUGGING
Sooner or later, all programmers seek the Holy Grail of debugging. The Holy Grail
of debugging is different for each programming language. VBA programmers are
very lucky the VBE provides a multitude of debugging facilities not found in many
other programming environments.

As a programming instructor, I’ve often encouraged my Visual Basic students to
use the VBE debugging facilities not only to debug programs, but also to see how
the program flows, how variables are populated, and how and when statements
are executed. In other, less friendly languages, programmers must take for granted
the order in which their statements are executed. In VBA, you can actually step
through your application one statement at a time. You can even go back in time
to re-execute statements, something I show you a little later on.

T

In this section, I show you how to leverage each of the following VBE debugging facilities:

• Breakpoints

• Immediate window

• Locals window

• Watch window

What Are Software Bugs?

Debugging can be one of the most challenging processes in software development, and unfor-
tunately it’s sometimes very costly. In a nutshell, debugging is the process by which program-
mers identify, find, and correct software errors.

There are three common types of bugs in software. Syntax errors are the most common form
of software bugs. They are caused by misspellings in the program code and are most commonly
recognized by the language’s compiler. Syntax errors are generally easy to fix.

The next type of bug is called a runtime error. Runtime errors occur once the program is run-
ning and an illegal operation occurs. These errors generally occur because the programmer has
not thought ahead of time to capture them (for example, File Not Found, Disk Not Ready, or
Division by Zero). Runtime errors are most often easy to find and sometimes easy to fix.

The last common type of bug, and the most difficult to identify and fix, is known as the logic
error. Logic errors are not easily identified, because they don’t necessarily generate an error
message. Logic errors are the result of erroneous logic implemented in the program code.
Examples of logic errors include invalid mathematical calculations, the wrong variable used in
an operation, or calling (executing) the wrong procedure.

Stepping Through Code
By now you should be fairly comfortable with the design-time and runtime environments.
Moreover, you may have discovered the break mode environment. As a refresher, the next
bulleted list reviews each type of Access VBA environment.

• DDesign time is the mode by which you add controls to containers (such as forms) and
write code to respond to events.

• The rruntime environment allows you to see your program running the same way a user
would. During runtime you can see all your Visual Basic code, but you cannot modify it.

Microsoft Access VBA Programming for the Absolute Beginner186

• BBreak mode allows you to pause execution of your Visual Basic program (during run-
time) to view, edit, and debug your program code.

The VBE allows you to step through your program code one line at a time. Known as step-
ping or stepping into, this process allows you to graphically see what line of code is currently
executing as well as values of current variables in scope. Using function keys or menu items,
you can navigate through program code with ease. For example, once in break mode, you can
press the F8 key to skip to the next line.

During break mode, it is also possible to step over a procedure without having to graphically ex-
ecute the procedure’s statements one at a time. Known as procedure stepping or stepping over,
this process can be accomplished during break mode by pressing Shift + F8 simultaneously.

Sometimes you might want to skip ahead in program code to a predetermined procedure or
statement. The VBE provides this functionality through the use of breakpoints.

Breakpoints
Breakpoints can be inserted into your Visual Basic procedures during design time or break
mode, as seen in Figure 8.1.

FIGURE 8.1

Inserting
breakpoints on

program
statements.

To create a breakpoint, simply click in the left margin of the Code window where you want
program execution to pause. When your program’s execution reaches the statement where
a breakpoint has been placed, program execution pauses. To continue execution to the next
breakpoint, simply press F5. To continue program execution one statement at a time, with
or without a breakpoint, press the F8 key.

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 187

Breakpoints cannot be placed on empty lines in the Code window or on variable
declarations.

There are occasions when you want to go back in time and re-execute a particular program
statement without having to halt the entire program and re-run it. Believe it or not, the VBE
provides a facility for traveling back in time while in break mode. To do so, simply click the
yellow arrow in the left margin of the Code window (shown in Figure 8.2) and drag it to a
previous program statement.

FIGURE 8.2

Going back in time
to re-execute

program
statements while

in break mode.

The arrow to the far left in Figure 8.2 is the current line of execution. Using your mouse, you
can move the arrow to other valid lines of execution.

Immediate Window
During testing or debugging, it is not always desirable to change the values of variables and
properties by modifying program code. A safer way of testing program code is through the
use of the Immediate window. The Immediate window can be used during design time or
break mode. Most popular in break mode, the Immediate window can be accessed by pressing
Ctrl + G or through the View menu.

The Immediate window allows you to verify and change the values of properties or variables,
as shown in Figure 8.3.

T IP

Microsoft Access VBA Programming for the Absolute Beginner188

Changing the value
of a variable through
the Immediate window

FIGURE 8.3

Changing a
variable’s value

through the
Immediate

window.

Interestingly, you can type statements that do not directly correspond with your current
program execution. For example, in Figure 8.4 I entered the following expression into the
Immediate window.

Print 25 + 25

FIGURE 8.4

Using the Print
keyword to display

results in the
Immediate

window.

After I press the Enter key, the Immediate window produces the result of my expression (in
this case, 50). The keyword Print tells the Immediate window to print the expression’s result
to the Immediate window’s screen.

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 189

You can re-execute a statement in the Immediate window by moving the cursor
to the statement’s line and pressing Enter.

Locals Window
The Locals window, a friendly companion to any VBA programmer, provides valuable infor-
mation about variables and control properties in current scope. Accessed from the View menu
group, the Locals window (seen in Figure 8.5) not only supplies information on variables and
properties, but also allows for the changing of control property values.

FIGURE 8.5

The Locals
window provides

information on
variables and

control properties
in current scope.

To change a property or variable’s value using the Locals window, simply click the item in
the Value column and type a new variable or property value.

Watch Window
In addition to breakpoints, the Watch window can aid you in troubleshooting or debugging
program code. Accessed from the View menu item, the Watch window can track values of
expressions and break when expressions are True or have been changed. In a nutshell, the
Watch window keeps track of Watch expressions, as seen in Figure 8.6.

A basic Watch expression allows you to graphically track the value of an expression through-
out the life of a program. Moreover, you can create a Watch expression that pauses program
execution when an expression has been changed or is True.

For example, let’s say you know a bug occurs in your program because the value of a variable
is being set incorrectly. You know the value of the variable is changing, but you do not know

T IP

Microsoft Access VBA Programming for the Absolute Beginner190

FIGURE 8.6

Tracking Watch
expressions
through the

Watch window.

where in the code it is being changed. Using a Watch expression, you can create an expression
that pauses program execution whenever the value of the variable in question changes.

Though Watch expressions can be created from within the Watch window, it is much easier
to create them by right-clicking a variable or property name in the Code window and choosing
Add Watch.

Figure 8.7 shows the dialog box that appears when you add a watch.

FIGURE 8.7

Adding a Watch
expression.

The Add Watch dialog box provides many options for creating Watch expressions. Essentially,
creating a Watch expression with the Add Watch dialog box is broken into three parts:
Expression, Context, and Watch Type.

An expression is a variable, property, function call, calculation, or combination of valid expres-
sions. By default, the expression’s value is the name of the variable or property you’re trying
to watch. The context is the scope of the variable or property being watched. There are three
values displayed:

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 191

• PProcedure. Defines the procedure where the expression is evaluated.

• MModule. Defines the module where the variable or property resides.

• PProject. Displays the name of the current project.

The Watch Type determines how Visual Basic responds to the expression:

• WWatch Expression. Displays the Watch expression and expression value in the Watch
window.

• BBreak When Value Is True. Visual Basic breaks program execution when the value of
the Watch expression is True.

• BBreak When Value Changes. Visual Basic breaks program execution when the value of
the expression changes.

INPUT VALIDATION
Input validation is a great place to begin learning about error handling and bug fixing. This
is because a good portion of program errors come from unexpected user input or responses.

For example, what do you think would happen if a user entered a letter or character as an
operand into a math quiz game? A better question is, “How do I prevent a user from entering
a letter into a text box intended for numbers?” What about a game that prompts a user for a
level; would testing that the input is a number be enough? Probably not, as most games have
only a few levels, so you would also need to test for a range of numbers. In a nutshell, the art
of input validation depends on a talented programmer with enough foresight to prevent
errors before they happen.

In Microsoft Access, developers can create input validation for forms, tables, and queries with
an input mask. In this section, I show you how to build input validation using VBA.

IsNumeric
Sometimes preventing input errors can be as easy as determining whether a user has entered
a number or a string. There are times when you will want the user to enter his or her name,
or maybe you are looking for a number such as age. Either way, Visual Basic provides the
IsNumeric function for testing such scenarios.

The IsNumeric function takes a variable or expression as a parameter and returns a Boolean
value of True if the variable or expression is a number; False if it is not.

Private Sub cmdCheckForNumber_Click()

 If IsNumeric(txtNumbersOnly.Value) = False Then

Microsoft Access VBA Programming for the Absolute Beginner192

 MsgBox "Enter numbers only please."

 Else

 MsgBox "Thank you for entering numbers."

 End If

End Sub

In the preceding example, you can see that by testing the Value of the text box with the
IsNumeric function, I want the user to enter a number. If the IsNumeric function returns the
Boolean value of False, I know that the user has entered something other than a number.

Conversely, you could use the IsNumeric function to check for a string value. Simply change
the conditional expression in the If statement.

Private Sub cmdCheckForNumber_Click()

 If IsNumeric(txtStringDataOnly.Value) = True Then

 MsgBox "Enter string data only please."

 Else

 MsgBox "Thank you for entering non-numeric data."

 End If

End Sub

Remember that Access 2007 VBA returns a Null value for an empty text box.

When testing for numeric or nonnumeric data, it is also common to test for an empty text
box using the IsNull function, as the next procedure demonstrates.

Private Sub cmdCheckForNumber_Click()

 If IsNull(txtStringDataOnly.Value) Then

T IP

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 193

 MsgBox "Please enter a string value into the text box."

 Exit Sub

 End If

 If IsNumeric(txtStringDataOnly.Value) = True Then

 MsgBox "Enter string data only please."

 Else

 MsgBox "Thank you for entering non-numeric data."

 End If

End Sub

The IsNull function takes an expression as a parameter (in my example, the Value property
of a text box), and returns a Boolean value (True or False), depending on whether or not the
expression is Null.

Checking a Range of Values
You may find at times that testing a value for a particular data type (such as number or string)
is not enough to prevent input errors. Sometimes it is necessary to check for a range of values.
For example, you may wish to prompt a user to enter a number from 1 to 100. Maybe you
want a person to pick a letter from a to z.

Testing for a range of values involves a little more thought from the programmer. Specifically,
your first thought should be to know the range(s) needing to be tested and whether the ranges
are numeric or character based. Testing ranges of values with numbers or strings uses the
same programming constructs consisting of compound conditions.

Let’s take the 1 to 100 example I mentioned earlier. As seen here, I continue to use the
IsNumeric function as part of the overall testing for a range of numbers (1 to 100):

Private Sub cmdCheckRange_Click()

 If IsNumeric(txtInput.Value) = True Then

 If Val(txtInput.Value) >= 1 And _

Microsoft Access VBA Programming for the Absolute Beginner194

 Val(txtInput.Value) <= 100 Then

 MsgBox "You entered a number between 1 and 100."

 Else

 MsgBox "Your number is out of range."

 End If

 Else

 MsgBox "Please enter a number from 1 to 100."

 End If

End Sub

Testing for a range of letters (characters) is not much different, if you remember that all
characters (letters or numbers) can be represented with character codes, also known as ANSI
(American National Standards Institute) values. For example, say I want a user to enter a letter
in the range of a through m (including both uppercase and lowercase letters within the range).
I can still use the IsNumeric function to help me out, but I need to perform some additional
tests.

Private Sub cmdCheckRange_Click()

 If IsNumeric(txtInput.Value) = False Then

 If Asc(UCase(txtInput.Value)) >= 65 And _

 Asc(UCase(txtInput.Value)) <= 77 Then

 MsgBox "You entered a letter between a and m."

 Else

 MsgBox "Your letter is out of range."

 End If

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 195

 Else

 MsgBox "Please enter a letter between a and m."

 End If

End Sub

In the preceding code, I’m looking for the IsNumeric function to return a False value, which
means the input was not a number. Next I use the Asc function, which converts a character
to its corresponding ANSI value.

Using compound conditions, I specifically look for an ANSI range between 65 and 77, the
numbers that represent the capital letters A through M. You may also notice that I used the
function UCase in association with the Asc function. The UCase function converts lowercase
letters to uppercase letters. If I didn’t convert the characters to uppercase, I would have needed
to check for the lowercase letters as well (ANSI numbers 97 to 109).

A list of common ANSI values (character codes) can be found in Appendix A, “Common Char-
acter Codes,” at the end of this book.

ERROR HANDLING
Whenever your program interacts with the outside world, you should provide some form of
error handling to counteract unexpected inputs or outputs. One way of providing error han-
dling is to write your own error-handling routines.

Error-handling routines are the traffic control for your program. Such routines can handle any
kind of programming or human-generated errors you can think of. They should not only
identify the error, but try to fix it—or at least give the program or interacting human a chance
to do so.

To begin error handling in a procedure, use the On Error GoTo statement to signify that you
are going to use an error-handling routine:

On Error GoTo ErrorHandler

This statement can go anywhere in your procedure, but should be placed toward the top,
generally right after any procedure-level variable declarations.

ErrorHandler is the name I’ve chosen for my error-handling routine. Error-handling routines
can be given any name: ErrorBin, ErrorBucket, or whatever you like.

Microsoft Access VBA Programming for the Absolute Beginner196

Where Did GoTo Go?

The keyword GoTo is a carryover from an old programming practice made popular in various
languages such as BASIC and COBOL. A GoTo was regularly used for designing and building
modularized programs. To break programs into manageable pieces, programmers would create
modules and link them together using the keyword GoTo.

After years of programming with GoTo, programmers began to realize that this created messy
“spaghetti-like” code, which at times became nearly impossible to debug. Fortunately, event-
driven and object-oriented programming techniques have virtually eliminated the use of
GoTo.

Once an error handler has been declared, errors generated in the procedure are directed to
the error-handling routine, as demonstrated in this example.

Public Function Verify_Input() As Boolean

On Error GoTo ErrorHandler

 'get Input from user

 Exit Function

ErrorHandler:

 MsgBox ("An error has occurred.")

 Resume

End Function

It is necessary to execute the Exit Function or Exit Sub statements before program execution
enters the error-handling routine. Without these statements, a procedure that executes with-
out errors executes the error handler as well. That’s an important note, so let me repeat it
again in italics: Without an Exit statement, a procedure that executes without errors executes the error-
handling routine as well.

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 197

Error handling begins by typing the name of the error handler followed by a colon. Within
the error handler, you write code to respond to the error. In the previous example, I simply
use a message box to report that an error has occurred.

The Resume keyword takes program execution back to the statement where the error occurred.
Note that there are three possible ways for returning program control to the procedure:

• Resume. By itself, the keyword Resume returns program control to where the error
occurred.

• Resume Next. The Resume Next statement returns program control to the statement after
the statement where the error occurred.

• Resume Label. The Resume Label statement returns program control to a predetermined
line number, as seen in the following code.

Public Function Verify_Input() As Boolean

 On Error GoTo ErrorHandler

 'get Input from user

 BeginHere:

 Exit Function

ErrorHandler:

 MsgBox ("An error has occurred.")

 Resume BeginHere:

End Function

Generally speaking, message boxes are good ways to let a user know an error has occurred.
However, knowing that an error has occurred is not enough; the user also needs to know what
caused the error and possible solutions to resolve the error.

In the next section, you learn how to identify specific and custom errors using the Err object.

Microsoft Access VBA Programming for the Absolute Beginner198

The Err Object
When a user encounters an error in your program, he should be provided with a clear, precise
description of the problem and resolution. The Err object provides VBA programmers with
an accessible means of finding or triggering Microsoft Windows–specific errors.

Essentially the Err (short for error) object maintains information about errors that occur in
the current procedure. This information is stored in the form of properties. The most common
of the Err properties follow:

• Description contains a description of the current error.

• Number contains the error number of the current error (0 to 65,535).

• Source contains the name of the object that generated the error.

Table 8.1 contains just a few of VBA’s more common trappable error numbers and descrip-
tions. For a complete list of error numbers and descriptions, consult Appendix C, “Trappable
Errors.”

T A B L E 8 . 1 C O M M O N E R R O R N U M B E R S A N D D E S C R I P T I O N S

Error Number Error Description
11 Division by 0
53 File Not Found
61 Disk Full
71 Disk Not Ready
76 Path Not Found

In the next program example, I use an error handler to check for division by 0.

Private Sub cmdDivide_Click()

 On Error GoTo ErrorBin

 MsgBox "Result is " & Val(txtOperand1.Value) _

 / Val(txtOperand2.Value)

 Exit Sub

ErrorBin:

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 199

 MsgBox "Error Number " & Err.Number & ", " & Err.Description

 Resume Next

End Sub

There may be times when an error occurs in your program that is similar to that of a given
Err description, but does not trigger the specific Err number. The ability to trigger errors can
be achieved through the Err object’s Raise method.

The Raise method allows you to trigger a specific error condition, thus displaying a dialog
box to the user. The Raise method takes a number as a parameter. For example, the following
statement triggers a Disk Not Ready dialog box:

Err.Raise 71

Besides providing descriptive error messages, error handling prevents many unwanted prob-
lems for your users. In other words, error handling may prevent your program from crashing.
Users expect an error for division by 0, but they don’t expect division by 0 to crash their
applications.

The Debug Object
The Debug object is common with VBA programmers for troubleshooting problems by sending
output to the Immediate window. The Debug object has two methods: Print and Assert. The
Print method prints the value of its parameter and sends it to the Immediate window.

The Assert method conditionally breaks program execution when the method is reached.
More specifically, the Assert method takes an expression as a parameter, which evaluates to
a Boolean value. If the expression evaluates to False, the program’s execution is paused. Oth-
erwise, program execution continues. The next procedure demonstrates the use of the
Assert method.

Private Sub cmdDivide_Click()

 Dim passedTest As Boolean

 On Error GoTo ErrorBin

 If Val(txtOperand2.Value) = 0 Then

 passedTest = False

 Else

Microsoft Access VBA Programming for the Absolute Beginner200

 passedTest = True

 End If

 ' Conditionally pause program execution.

 Debug.Assert passedTest

 MsgBox "Result is " & Val(txtOperand1.Value) _

 / Val(txtOperand2.Value)

 Exit Sub

ErrorBin:

 MsgBox "Error Number " & Err.Number & ", " & Err.Description

 Resume Next

End Sub

FILE PROCESSING
Do you know that you, too, can build your own database to store a collection of data? You
can—and you can do it with file I/O (input/output) and a little help from this chapter.

Within VBA there are many techniques for building and managing file I/O routines. File I/O
is the approach taken by programmers to manage data stored in files. Data files that you
create can be viewed and edited through Microsoft text editors such as Notepad.

Most data files that you work with are built upon a common foundation, much like a database.
The data files you learn about in this chapter share the following relationships and building
blocks:

• DData File. A collection of data that stores records and fields

• RRecord. A row of related data that contains one or more fields, separated by a space, tab,
or comma

• FField. An attribute in a record, which is the smallest component in a data file

An example data file is shown in Figure 8.8. The trivia.dat data file is used in the chapter-
based program. It has five records, with each record containing three fields separated by
commas. This is called a comma-delimited file.

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 201

FIGURE 8.8

A sample data file.

In the sections to come, I show you how to build and manage your own data files using
sequential file access.

About Sequential File Access
Data files created with sequential file access have records stored in a file, one after another,
in sequential order. When you access data files with sequential file access, records must be
read in the same order in which they were written to the file. In other words, if you want to
access the 20th record in a data file, you must first read records 1 through 19.

Sequential file access is useful and appropriate for small data files. If you find that your
sequential file access program is starting to run slowly, you might want to change file access
to an RDBMS such as Microsoft Access.

Opening a Sequential Data File
The first step in creating or accessing a data file is to open it. Microsoft provides an easy-to-
use facility for opening a data file through the Open function.

Open “Filename” For {Input | Output | Append} As #Filenumber [Len = Record Length]

The Open function takes three parameters. Filename describes the name of the file you wish to
open or create. Input|Output|Append is a list from which you pick one to use. #Filenumber is a
number from 1 to 511 that is used for referencing the file. Len is an optional parameter that
can control the number of characters buffered. The sequential access modes are shown in
Table 8.2.

I use the Open method to create a new file for output called quiz.dat.

 Open "quiz.dat" For Output As #1

The Filename attribute can contain paths in addition to filenames. For example,
if you want to create employee records in a file named employee.dat on remov-
able storage, you could use the following syntax.

Open "a:\employee.dat" For Output As #1

T IP

Microsoft Access VBA Programming for the Absolute Beginner202

The result of the Open function varies depending on the initial action chosen. If the Input
parameter is chosen, the Open function searches for the file and creates a buffer in memory.
If the file is not found, VBA generates an error.

A buffer is an area where data is temporarily stored.

If the file specified is not found, a new file is created using the Filename parameter as the
filename. Note that the Output mode always overwrites an existing file. After a data file has
been successfully opened, you can then read from it, write to it, and close it.

Reading Sequential Data from a File
If you want to read records from a data file, you must use the Input parameter with the
Open function.

Open "quiz.dat" For Input As #1

Once the file is opened for input, use the Input function to retrieve fields from the file.

Input #Filenumber, Fields

The Input function takes two parameters: #Filenumber and a list of fields. For example, if you
want to read the first record in a data file called quiz.dat (assuming quiz.dat contains three
fields for each record), you could use the following program statements.

Dim liQuestionNumber as Integer

Dim lsQuestion as String

Dim lsAnswer as String

Open "quiz.dat" For Input As #1

Input #1, liQuestionNumber, lsQuestion, lsAnswer

T IP

T A B L E 8 . 2 S E Q U E N T I A L A C C E S S M O D E S

Mode Description
Input Reads records from a data file
Output Writes records to a data file
Append Writes or appends records to the end of a data file

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 203

Notice that I pass three variables as the field list to the Input function. These variables hold
the contents of the first record found.

By now, you may be thinking, “So far, so good, but how do I read all records in a data file?”
The answer involves something new and something old. First, you must use a loop to search
through the data file. Second, your loop’s condition should use the EOF function.

The EOF (end of file) function tests for the end of the data file. It takes a file number as a
parameter, returning a True Boolean value if the end of the file is found or False if the end of
file has not been reached.

To test for the end of file, the EOF function looks for an EOF marker placed at the end of a file
by the Close function. I discuss closing data files later in the chapter.

Dim liQuestionNumber as Integer

Dim lsQuestion as String

Dim lsAnswer as String

Open "quiz.dat" For Input As #1

Do Until EOF(1)

 Input #1, liQuestionNumber, lsQuestion, lsAnswer

 List1.AddItem "Question number: " & _

 liQuestionNumber & lsQuestion

Loop

The preceding loop iterates until the EOF function returns a True value. Inside the loop, each
record is read one at a time. After a record is read, the print method of a picture box control
is used to output two of the fields (liQuestionNumber and lsQuestion) for display.

Writing Sequential Data to a File
In order to write data to a sequential file, you want to use either the Output mode, which
creates a new file for writing, or the Append mode, which writes records to the end of a data
file. Note that these are two separate lines of code.

Open "quiz1.dat" For Output As #1

Open "quiz.dat" For Append As #1

After opening a file for writing, you can use the Write function to write records.

Write #Filenumber, Fields

Microsoft Access VBA Programming for the Absolute Beginner204

The Write function takes two parameters: #Filenumber and a list of fields. #Filenumber denotes
the file number used in the Open function, and the Fields parameter is a list of strings, num-
bers, variables, and properties that you want to use as fields.

For example, if I want to create a data file and write quiz records to it, I could use the following
syntax.

Open "quiz.dat" For Output As #1

Write #1, 1, “Is Visual Basic an Event Driven language?”, “Yes”

I could also use variable names for my fields list.

Write #1, liQuestionNumber, lsQuestion, lsAnswer

Either way, VBA outputs numbers as numbers and strings as strings surrounded with quota-
tion marks.

Closing Data Files
As you may have guessed, closing a data file is an important part of file processing. Specifi-
cally, closing a data file performs the following operations:

• Writes the EOF marker

• When using the Output or Append mode, writes records to the physical file in the sequen-
tial order in which they were created

• Releases the file number and buffer for memory conservation

To close a data file, simply use the Close function after all file processing has completed.

Close #FileNumber

The Close function takes the file number as its only parameter. For example, to close the file
quiz.dat after writing one record, I could use the Close function:

Open "quiz.dat" For Output As #1

Write #1, 1, “Is Visual Basic an Event Driven language?”, “Yes”

Close 1

If the Close function is used without any parameters, it closes all open sequential data files.

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 205

Error Trapping for File Access
Error trapping is almost always a must when dealing with file I/O. Why? Have you ever tried
to access a CD-ROM from Windows Explorer, only to get an error message because there is no
CD-ROM in the CD-ROM drive? What if the CD-ROM is in the drive, but the file is not found,
or better yet—the file is there but it’s corrupted?

There are all types of potential errors when dealing with data files and file I/O. Your best bet
is to plan ahead and create error-trapping or error-handling routines. In fact, it is safe to
promote error trapping in any procedure that opens, writes, reads, appends, or closes files.

An adequate facility for capturing file I/O errors is to use VBA’s Err object. The Err object
contains preexisting codes for various known errors such as “File Not Found,” “Disk Not
Ready,” and many more that can be used to your advantage.

Here’s an error-handling routine for a quiz game that uses the Err object to check for specific
errors when the game attempts to open a file in the form Load event:

Private Sub Form_Load()

 On Error GoTo ErrorHandler:

Like any other error-handling routine, I start my procedure by declaring an error-handling
label with an On Error GoTo statement. You can insert unique labels throughout your code as
I’ve done here with the BeginHere: label.

 BeginHere:

Labels can serve useful purposes as long as you keep their existence minimal and easy to
follow. As you see later in the code, I choose the BeginHere: label as a good starting point in
this procedure.

Open "quiz.dat" For Input As #1

 Exit Sub

After opening the sequential data file, the procedure is exited, providing no errors have
occurred.

ErrorHandler:

 Dim liResponse As Integer

If an error does occur in opening the file, my guess is that it is one of the following error
conditions (error codes). You can see in the following code that I’m using the Select Case
structure to check for specific Err object codes. If an error code is found, the user is prompted

Microsoft Access VBA Programming for the Absolute Beginner206

with an opportunity to fix the problem. If the user decides to retry the operation, the program
resumes control to the BeginHere: label.

Select Case Err.Number

 Case 53

 'File not found

 liResponse = MsgBox("File not found!", _

 vbRetryCancel, "Error!")

 If liResponse = 4 Then 'retry

 Resume BeginHere:

 Else

 cmdQuit_Click

 End If

 Case 71

 'Disk not ready

 liResponse = MsgBox("Disk not ready!", _

 vbRetryCancel, "Error!")

 If liResponse = 4 Then 'retry

 Resume BeginHere:

 Else

 cmdQuit_Click

 End If

 Case 76

 liResponse = MsgBox("Path not found!", _

 vbRetryCancel, "Error!")

 If liResponse = 4 Then 'retry

 Resume BeginHere:

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 207

 Else

 cmdQuit_Click

 End If

 Case Else

 MsgBox "Error in program!", , "Error"

 cmdQuit_Click

 End Select

End Sub

CHAPTER PROGRAM: TRIVIAL CHALLENGE
The Trivial Challenge program, shown in Figure 8.9, is a fun game that uses chapter-based
techniques and concepts such as data files, sequential file access, and error handling.

Program code for the game is broken into two separate code modules. The standard module
contains a public user-defined type, which stores and manages quiz components such as
question numbers, question, answer, and user’s response. Most of the program code is in the
form class module where the game’s logic is managed.

FIGURE 8.9

Using chapter-
based concepts to
build the Trivial

Challenge
program.

Controls and properties that build the Trivial Challenge program are described in Table 8.3.

Microsoft Access VBA Programming for the Absolute Beginner208

Module-level code defines a public user-defined type.

Option Compare Database

Option Explicit

Public Type Trivia

 QuestionNumber As Integer

 Question As String

 Answer As String

 UserResponse As String

End Type

Shown next is the form class module code for building the remainder of the Trivial
Challenge program.

Option Compare Database

Option Explicit

' Declare dynamic array of Trivia type.

T A B L E 8 . 3 C O N T R O L S A N D P R O P E R T I E S O F T H E T R I V I A L

C H A L L E N G E P R O G R A M

Control Property Property Value
Form Name Chapter 8 - Trivial Challenge

Caption Chapter Program
Record Selectors No
Navigation Buttons No
Dividing Lines No

List Box Name lstResults
Row Source Type Value List
Column Count 2
Column Heads Yes

Command Button Name cmdBegin
Caption Begin Trivial Challenge

Command Button Name cmdQuit
Caption Quit

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 209

Dim myTrivia() As Trivia

Private Sub cmdBegin_Click()

 Dim x As Integer

 ClearListBox ' Call a user-defined procedure

 ' Prompt the user with trivia questions.

 For x = 1 To UBound(myTrivia)

 myTrivia(x).UserResponse = InputBox(myTrivia(x).Question)

 ' Determine if the user's response was right, wrong or empty.

 If LCase(myTrivia(x).UserResponse) = LCase(myTrivia(x).Answer) Then

 Me.lstResults.AddItem myTrivia(x).QuestionNumber _

 & ";" & "Right"

 Else

 If myTrivia(x).UserResponse = "" Then

 ' User did not respond (pressed Cancel on input box).

 Me.lstResults.AddItem myTrivia(x).QuestionNumber _

 & ";" & "No Response"

 Else

 Me.lstResults.AddItem myTrivia(x).QuestionNumber _

 & ";" & "Wrong"

 End If

 End If

 Next x

End Sub

Private Sub cmdQuit_Click()

Microsoft Access VBA Programming for the Absolute Beginner210

 DoCmd.Quit

End Sub

Private Sub Form_Load()

 ' Create initial element in dynamic array.

 ReDim myTrivia(1)

 ' Add header to each column in the list box if one

 ' hasn't already been added.

 If lstResults.ListCount = 0 Then

 Me.lstResults.AddItem "Question #;Result"

 End If

 ' Load trivia questions into memory.

 LoadTrivia

End Sub

Public Sub ClearListBox()

 Dim x As Integer

 ' Clear list box

 For x = 1 To (lstResults.ListCount - 1)

 Me.lstResults.RemoveItem lstResults.ListCount - 1

 Next x

End Sub

Public Sub LoadTrivia()

 On Error GoTo ErrorHandler

 ' Open file for sequential input using

 ' the application's current path.

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 211

 Open Application.CurrentProject.Path & "\" & "trivia.dat" For Input As #1

 ' Read all records until end of file is reached.

 ' Store each question and answer in a user defined type.

 Do While EOF(1) = False

 ' Read trivia data into variables.

 Input #1, myTrivia(UBound(myTrivia)).QuestionNumber, _

 myTrivia(UBound(myTrivia)).Question, _

 myTrivia(UBound(myTrivia)).Answer

 ' Print debug data to the immediate window.

 'Debug.Print myTrivia(UBound(myTrivia)).QuestionNumber, _

 'myTrivia(UBound(myTrivia)).Question, myTrivia(UBound(myTrivia)).Answer

 If EOF(1) = False Then

 ' Increment dynamic array for each next trivia question.

 ReDim Preserve myTrivia(UBound(myTrivia) + 1)

 End If

 Loop

 ' Close the sequential file.

 Close #1

 Exit Sub

ErrorHandler:

 MsgBox "Error number " & Err.Number & Chr(13) & _

 Err.Description

End Sub

Microsoft Access VBA Programming for the Absolute Beginner212

Private Sub lstResults_Click()

 ' Display the selected question back to the user.

 If lstResults.ListIndex = -1 Then

 Exit Sub

 End If

 MsgBox myTrivia(lstResults.ListIndex + 1).Question

End Sub

SUMMARY
• Debugging is the process by which programmers identify, find, and correct software

errors.

• Software bugs are generally grouped into one of three categories: syntax errors, runtime
errors, and logic errors.

• The Visual Basic Environment includes many debugging features such as breakpoints,
the Immediate window, the Locals window, and the Watch window.

• Breakpoints are used to pause program execution.

• The Immediate window can be used to ascertain variable and property values.

• Variable and property values can be altered in the Immediate window.

• Variable and property values within scope can be viewed and managed in the Locals
window.

• Watch expressions can be created and managed in the Watch window.

• Input validation generally involves checking for numeric or nonnumeric data entered
by the user.

• Programmers can use input validation to check for a range of numbers or characters.

• The IsNull function takes an expression as a parameter and returns a Boolean value
(True or False) depending on whether or not the expression is Null.

• VBA programmers often use the Err and Debug objects to aid in debugging and error
handling.

• The Err object contains properties for discerning the current error number and error
description.

• The Debug object contains methods commonly used in conjunction with the Immediate
window for pausing program execution and displaying program output.

Chapter 8 • Debugging, Input Validation, File Processing, and Error Handling 213

• VBA error-handling routines are initiated using the On Error GoTo statement.

• There are three possible ways to return program control to the procedure using the
keywords Resume, Resume Next, and Resume Label.

• Data files contain records and fields.

• In VBA, file processing can be achieved with sequential file access using the Open,
Write, Input, and Close methods.

• Error handling should always be incorporated into file-processing routines.

Programming Challenges
1. Build a form with one text box and one command button. The

text box should receive the user’s name. In the Click event of
the command button, write code to validate that the user has
entered nonnumeric data and display the outcome in a
message box. Test your program by entering numeric data into
the text box.

2. Build a form with one text box and one command button. The
text box should receive a number between 1 and 10. In the
Click event of the command button, write code to validate that
the data entered is a number and that it is in the range of 1 to
10. Use a message box to display the outcome.

3. Create a data file called friends.dat. Insert a few records into
the friends.dat file. The record layout should have three fields
(phone number, first name, and last name), which should look
similar to this:

“111-222-3333”, “Michael”, “Massey”

4. Create a form that allows a user to view all records in the
friends.dat file. Populate a list box on the form with the phone
numbers and names of friends. Remember to use error
handling when opening the friends.dat file.

5. Create a form that allows a user to enter more friends into the
friends.dat file. Retrieve information from the user with text
boxes on the form. Remember to use the Append option when
opening the friends.dat file and use error handling
accordingly.

Microsoft Access VBA Programming for the Absolute Beginner214

9C H A P T E R

MICROSOFT ACCESS

SQL

n this chapter, I show you how to use Microsoft Access SQL for querying
and managing databases without the help of Access wizards. I specifically
show you two subsets of the Access SQL language, called DML and DDL.

If you’re new to database languages such as SQL, consider this chapter a prereq-
uisite for Chapter 10, “Database Programming with ADO.” Even if you’ve worked
with SQL before, you may find this chapter a refresher for Microsoft Access SQL
syntax and common functionality.

INTRODUCTION TO ACCESS SQL
Most databases, including Microsoft Access, incorporate one or more data lan-
guages for querying information and managing databases. The most common of
these data languages is SQL (Structured Query Language), which contains a num-
ber of commands for querying and manipulating databases. SQL commands are
typically grouped into one of two categories known as data manipulation language
(DML) commands and data definition language (DDL) commands.

Microsoft Access SQL follows a standard convention known as ANSI SQL, which
is used by many database vendors, including Microsoft, Oracle, and IBM. Each
manufacturer, however, incorporates its own proprietary language-based

I

functions and syntax. Access SQL is no exception with key differences in reserved words and
data types.

To demonstrate Access SQL, I use Access Queries in SQL View with Microsoft’s sample
Northwind database that can be found in your Access 2007 Local Templates area, as seen in
Figure 9.1.

FIGURE 9.1

Creating the
Microsoft Access
2007 Northwind

database.

You can bypass the default Northwind login form by holding down the Shift key
while simultaneously opening the Northwind database file.

Building queries in Microsoft Access is much like the experience of building tables and forms
in Access. Essentially, Microsoft provides wizards and graphical interfaces for building every-
thing, including queries. In this chapter, I show you how to go beyond Access wizards to build
your own queries using SQL!

To access the SQL window in Access, open a query by double-clicking it, or right-click it and
select either Design View or Open. After the query is opened, right-click the query’s tab and
select SQL View from the menu, which I’ve done for the Top Ten Orders by Sales Amount
query in Figure 9.2.

T IP

216 Microsoft Access VBA Programming for the Absolute Beginner

FIGURE 9.2

Viewing the Top
Ten Orders by
Sales Amount

query in SQL View.

SQL is not considered to be a full-fledged programming language like VBA, C, or Java. In this
author’s mind, a real programming language must, at minimum, contain facilities for cre-
ating variables, as well as structures for conditional logic branches and iteration through
loops. Regardless, SQL is a powerful language for asking the database questions (also known
as querying).

Pronounced sequel, SQL was originally developed by IBM researchers in the 1970s. It has
become the de facto database manipulation language for many database vendors. For database
users, mastering SQL has become a sought-after skill set in the information technology world.
Most persons who master the SQL language have no trouble finding well-paid positions.

To provide readability in the sections to come, I use a preferred syntax nomenclature for SQL:

• All SQL commands and reserved language keywords are in uppercase. For example,
SELECT, FROM, WHERE, and AND are all Access SQL commands and reserved keywords.

• Even though Microsoft Access is not a case-sensitive application, table and column
names used in SQL statements use the same case as defined in the database. For example,
a column defined as EmployeeId is spelled EmployeeId in the SQL query.

• Table and column names that contain spaces must be enclosed in brackets. For example,
the column name Customer Number must be contained in SQL as [Customer Number]. Fail-
ure to do so causes errors or undesired results when executing your queries.

Chapter 9 • Microsoft Access SQL 217

• A query can be written on a single line. For readability, I break SQL statements into
logical blocks on multiple lines. For example, look at this SQL statement:

SELECT [Order Details].OrderID, SUM(CCur([UnitPrice]*[Quantity]*(1-[Discount])/

100)*100) AS Subtotal FROM [Order Details] GROUP BY [Order Details].OrderID;

It should look like this:

SELECT [Order Details].OrderID,

SUM (CCur([UnitPrice]*[Quantity]*(1-[Discount])/100)*100)

AS Subtotal

FROM [Order Details]

GROUP BY [Order Details].OrderID;

DATA MANIPULATION LANGUAGE
SQL contains many natural-language commands for querying, computing, sorting, grouping,
joining, inserting, updating, and deleting data in a relational database. These querying and
manipulation commands fall under the Data Manipulation Language subset, also known
as DML.

Simple SELECT Statements
To retrieve information from a relational database, SQL provides the simple SELECT statement.
A simple SELECT statement takes the following form.

SELECT ColumnName, ColumnName

FROM TableName;

The SELECT clause identifies one or more column names in a database table(s). After identifying
the columns in the SELECT clause, you must tell the database which table(s) the columns live
in using the FROM clause. It is customary in SQL to append a semicolon (;) after the SQL state-
ment to indicate the statement’s ending point.

To retrieve all rows in a database table, the wildcard character (*) can be used like this.

SELECT *

FROM Employees;

You can execute SQL queries in Access in one of a couple of ways. You can simply save your
query and double-click from the Access Objects window. Or, leaving your SQL View window
open, right-click the tab of your query and select Datasheet view from the menu.

218 Microsoft Access VBA Programming for the Absolute Beginner

Another way to execute your SQL queries is to click the red exclamation mark (!) in the Results
area of the Design tab. Either way, the results from the preceding query (SELECT * FROM
Employees;) running against the Northwind database are shown in Figure 9.3.

FIGURE 9.3

Viewing the
results of a simple

query.

A result set is a common phrase used to describe the result or records returned
by a SQL query.

Sometimes it is not necessary to retrieve all columns in a query. To streamline your query,
supply specific column names separated by commas in the SELECT clause.

SELECT [Last Name], [First Name], [Job Title]

FROM Employees;

In the preceding query, I ask the database to retrieve only the last names, first names, and
titles of each employee record. Output is shown in Figure 9.4.

Microsoft Access allows users to create table and column names with spaces.
Use brackets ([]) to surround table and column names with spaces in SQL
queries. Failure to do so can cause errors when running your queries.

You can change the order in which the result set displays columns by changing the column
order in your SQL queries.

SELECT Title, FirstName, LastName

FROM Employees;

Changing the order of column names in a SQL query does not alter the data returned in a
result set, but rather its column display order.

T IP

CAUTION

Chapter 9 • Microsoft Access SQL 219

FIGURE 9.4

Specifying
individual column

names in a SQL
query.

Conditions
SQL queries allow basic conditional logic for refining the result set returned by the query.
Conditions in SQL are built using the WHERE clause.

SELECT [Job Title], [First Name], [Last Name]

FROM Employees

WHERE [Job Title] = 'Sales Representative';

In the preceding query, I use a condition in the WHERE clause to only return rows from the
query where the employee’s title equals Sales Representative. Output from this query is seen
in Figure 9.5.

FIGURE 9.5

Using conditions
in the WHERE

clause to refine
the result set.

220 Microsoft Access VBA Programming for the Absolute Beginner

Note that textual data such as ‘Sales Representative’ in the WHERE clause’s expression must
always be enclosed by single quotes.

SQL conditions work much like the conditions you’ve already learned about in Access VBA in
that the WHERE clause’s condition evaluates to either True or False. You can use the operators
seen in Table 9.1 in SQL expressions.

T A B L E 9 . 1 C O N D I T I O N A L O P E R A T O R S U S E D I N S Q L E X P R E S S I O N S

Operator Description
= Equals
<> Not equal
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

To demonstrate conditional operators, the next query returns the rows in the Products table
where the value for Reorder Level is less than or equal to 5. Output is seen in Figure 9.6.

SELECT *

FROM Products

WHERE [Reorder Level] <= 5;

FIGURE 9.6

Refining the
products result

set with
conditional
operators.

Chapter 9 • Microsoft Access SQL 221

Note that single quotes are not used to surround numeric data when searching
numeric data types.

SQL queries also can contain compound conditions using the keywords AND, OR, and NOT. The
next two SQL queries demonstrate the use of compound conditions in the WHERE clause.

SELECT *

FROM Products

WHERE [Reorder Level] <= 5 AND [List Price] < 10;

SELECT *

FROM Products

WHERE [Reorder Level] <= 5 AND NOT([List Price] = 10);

Before moving on to the next section on SQL, I’d like to share with you a paradigm shift.
Believe it or not, most SQL programmers are the translators for their companies’ information
needs. To better understand this, think of SQL programmers as the intermediaries between
business people and the unwieldy database. The business person comes in to your office and
says, “I’m concerned about products mistakenly listed as discontinued. Could you tell me
what products we have in stock that have been discontinued?” As the SQL programmer, you
smile and say; “Sure, give me a minute.” After digesting what your colleague is asking, you
translate the inquiry into a question the database understands—in other words, a SQL query
such as the following.

SELECT *

FROM Products

WHERE Discontinued = TRUE;

Within seconds, your query executes and you print out the results for your amazed and
thankful colleague.

Computed Fields
Computed fields do not exist in the database as columns. Instead, computed fields are gen-
erated using calculations on columns that do exist in the database. Simple calculations such
as addition, subtraction, multiplication, and division can be used to create computed fields.

When creating computed fields in SQL, the AS clause assigns a name to the computed field.
The next SQL statement uses a computed field to calculate subtotals based on two columns
(Unit Price and Quantity) in the Order Details table. Output is seen in Figure 9.7.

CAUTION

222 Microsoft Access VBA Programming for the Absolute Beginner

SELECT [Order ID], ([Unit Price] * Quantity) AS SubTotals

FROM [Order Details];

FIGURE 9.7

Using SQL to build
computed fields.

Note the presence of the SubTotals column name in Figure 9.7. The SubTotals field does not
exist in the Order Details table. Rather, the SubTotals field is created in the SQL statement
using the AS clause to assign a name to an expression. Although parentheses are not required,
I use them in my computed field’s expression to provide readability and order of operations,
if necessary.

Built-In Functions
Just as VBA incorporates many intrinsic functions such as Val, Str, UCase, and Len, SQL provides
many built-in functions for determining information on your result sets. You learn about
these SQL aggregate functions in this section:

• AVG

• COUNT

• FIRST, LAST

• MIN, MAX

• SUM

• DISTINCT

The AVG function takes an expression, such as a column name for a parameter, and returns
the mean value in a column or other expression.

Chapter 9 • Microsoft Access SQL 223

SELECT AVG([List Price])

FROM Products;

The preceding SQL statement returns a single value, which is the mean value of the List
Price column in the Products table. Output is seen in Figure 9.8.

FIGURE 9.8

Using the AVG
function to

calculate the
mean value of a

column.

Notice in Figure 9.8 that the column heading gives no clue as to the meaning of the SQL
statement’s return value. To correct this, simply use the AS clause.

SELECT AVG([List Price]) AS [Average Unit Price]

FROM Products;

The COUNT function is a very useful function for determining how many records are returned
by a query. For example, the following SQL query uses the COUNT function to determine how
many customer records are in the Customers table.

SELECT COUNT(*) AS [Number of Customers]

FROM Customers;

Figure 9.9 reveals the output from the COUNT function in the preceding SQL statement. Note
that it’s possible to supply a column name in the COUNT function, but the wildcard character
(*) performs a faster calculation on the number of records found in a table.

224 Microsoft Access VBA Programming for the Absolute Beginner

FIGURE 9.9

Displaying the
result of a COUNT

function.

The FIRST and LAST functions return the first and last records in a result set, respectively.
Because records are not necessarily stored in alphanumeric order, the FIRST and LAST func-
tions may produce seemingly unexpected results. The results, however, are accurate. These
functions report the first and last expressions in a result set as stored in a database and
returned by the SQL query.

SELECT FIRST([Last Name]) AS [First Employee Last Name],

 LAST([Last Name]) AS [Last Employee Last Name]

FROM Employees;

The preceding SQL statement uses the FIRST and LAST functions to retrieve the first and
last results on the last name of employee records in the Employees table. Output is seen in
Figure 9.10.

FIGURE 9.10

Using the FIRST
and LAST

functions to
retrieve the first

and last values of a
result set.

Chapter 9 • Microsoft Access SQL 225

To determine the minimum and maximum values of an expression in SQL, use the MIN and
MAX functions, respectively. Like other SQL functions, the MIN and MAX functions take an expres-
sion and return a value. The next SQL statement uses these two functions to determine
the minimum and maximum unit prices found in the Products table. Output is seen in
Figure 9.11.

SELECT MIN([List Price]) AS [Minimum List Price],

 MAX([List Price]) AS [Maximum List Price]

FROM Products;

FIGURE 9.11

Retrieving the
minimum and

maximum values
from an

expression using
the MIN and MAX

functions.

The SUM function takes an expression as argument and returns the sum of values. The SUM
function is used in the next SQL statement, which takes a computed field as an argument to
derive the sum of subtotals in the Order Details table.

SELECT SUM([Unit Price] * Quantity) AS [Sum of Sub Totals]

FROM [Order Details];

Output from the SQL statement using the SUM function is displayed in Figure 9.12.

The last built-in function for this section is DISTINCT, which returns a distinct set of values for
an expression. To demonstrate, if I want to find a unique list of countries for the suppliers in
the Northwind database, I need to sift through every record in the Suppliers table and count
each distinct country name. Or, I could use the DISTINCT function to return a distinct value
for each country in the Country/Region column.

SELECT DISTINCT([Country/Region])

FROM Suppliers;

226 Microsoft Access VBA Programming for the Absolute Beginner

FIGURE 9.12

Displaying the
output of the SUM

function.

Sorting
You may recall from the discussions surrounding the FIRST and LAST functions that data stored
in a database are not stored in any relevant order, including alphanumeric. Most often, data
is stored in the order in which it was entered, but not always. If you need to retrieve data in
a sorted manner, use the ORDER BY clause.

The ORDER BY clause is used at the end of a SQL statement to sort a result set (records returned
by a SQL query) in alphanumeric order. Sort order for the ORDER BY clause can either be
ascending (A to Z, 0 to 9) or descending (Z to A, 9 to 0). Use the keyword ASC for ascending or
DESC for descending. Note that neither the ASC nor DESC keywords are required with the ORDER
BY clause, and that the default sort order is ascending.

To properly use the ORDER BY clause, simply follow the clause with a sort key, which is a fancy
way of saying a column name to sort on. The optional keywords ASC and DESC follow the
sort key.

To exhibit SQL sorting techniques, study the next two SQL statements and their outputs,
shown in Figures 9.13 and 9.14.

SELECT *

FROM Products

ORDER BY [Product Name] ASC;

Chapter 9 • Microsoft Access SQL 227

FIGURE 9.13

Using the ORDER
BY clause and the
ASC keyword to

sort product
records by

product name in
ascending order.

SELECT *

FROM Products

ORDER BY [Product Name] DESC;

FIGURE 9.14

Using the ORDER
BY clause and the
DESC keyword to

sort product
records by

product name in
descending order.

228 Microsoft Access VBA Programming for the Absolute Beginner

Grouping
Grouping in SQL provides developers with an opportunity to group like data together. With-
out the use of grouping, built-in functions such as SUM and AVG calculate every value in a
column. To put like data into logical groups of information, SQL provides the GROUP BY clause.

In the next SQL statement, I use the GROUP BY clause to group a computed field by product ID
in the Products table.

SELECT [Product ID], SUM([Unit Price] * Quantity) AS [Sub Total by Product]

FROM [Order Details]

GROUP BY [Product ID];

Notice the output from the preceding SQL statement in Figure 9.15. Even though I specified
Product ID as the desired column, the output column and the data it contains show as a
product name. This occurs because the Order Details table uses a SQL lookup to retrieve the
Product Name by Product ID.

FIGURE 9.15

Using the GROUP
BY clause to group
like data together.

There are times when you need conditions on your groups. In these events, you cannot use
the WHERE clause. Instead, SQL provides the HAVING clause for condition building when working
with groups. To demonstrate, I modify the previous SQL statement to use a HAVING clause,
which asks the database to retrieve only groups that have a subtotal by product greater than
15,000.00.

SELECT [Product ID], SUM([Unit Price] * Quantity) AS [Sub Total by Product]

FROM [Order Details]

Chapter 9 • Microsoft Access SQL 229

GROUP BY [Product ID]

HAVING SUM ([Unit Price] * Quantity) > 15000.00;

Joins
Joins are used when you need to retrieve data from more than one table. Specifically, a SQL
join uses keys to combine records from two tables where a primary key from one table is
matched up with a foreign key from another table. The result is a combination of result sets
from both tables where a match is found. If a match is not found, information from either
table is discarded in the final result set.

SQL joins are created by selecting columns from more than one table in the SELECT clause,
including both table names in the FROM clause, and matching like columns from both tables
in the WHERE clause. The following example join’s output is shown in Figure 9.16.

SELECT [First Name], [Last Name], [Order Date], [Ship Name]

FROM Employees, Orders

WHERE ID = [Employee ID];

FIGURE 9.16

Joining the
Employees and
Orders tables
with the WHERE

clause.

In Figure 9.16, I’ve retrieved columns from both the Employees and Orders tables where the
Employee ID values from both tables match (ID from Employees table and Employee ID from the
Orders table). If the join keys from both tables are spelled the same, I must explicitly tell SQL
what table name I’m referring to by using dot notation, as seen here.

230 Microsoft Access VBA Programming for the Absolute Beginner

WHERE TableName.Key = TableName.Key;

Even in cases where the dot notation is not required, you can leverage the dot notation in a
SELECT clause to explicitly denote which table a column belongs to, which ultimately provides
readability in your queries. An example of using the dot notation in the SELECT clause for
readability is seen next.

SELECT Employees.[First Name], Employees.[Last Name], Orders.[Order Date],

 Orders.[Ship Name]

FROM Employees, Orders

WHERE ID = [Employee ID];

If the expression in the WHERE clause is incorrect, a Cartesian join results. A
Cartesian result is when the query returns every possible number of combina-
tions from each table involved.

The preceding join is typically called a natural join, where a row from one table matches a row
from another table using a common column and matching column value. There are times,
however, when you want rows from one table that do not match rows in the other table. SQL
solves this dilemma with an outer join.

There are two types of outer joins: left outer joins and right outer joins. A left outer join includes
all records from the left (first) of the two tables even if there are no matching rows from right
(second) table. The right outer join includes all rows from the right (second) table even if there
are no matching rows from the left (first) table. Outer joins are created using the LEFT JOIN
or RIGHT JOIN keywords in the FROM clause and replacing the WHERE clause with an ON clause.

To demonstrate, let’s start off with a natural join query that will show me all orders with
matching invoice data.

SELECT Orders.[Order ID], Orders.[Customer ID], Orders.[Order Date],

 Orders.[Shipped Date], Invoices.[Invoice ID], Invoices.[Invoice Date]

FROM Orders, Invoices

WHERE Orders.[Order ID] = Invoices.[Order ID]

There’s only one problem with this join—it’s possible I have orders that don’t yet have a
matching invoice. The natural join in this case does not show me orders without an invoice.
I can, however, view both orders with invoices and orders without invoices using a left outer
join. You can see this in the following code and in Figure 9.17.

CAUTION

Chapter 9 • Microsoft Access SQL 231

SELECT Orders.[Order ID], Orders.[Customer ID], Orders.[Order Date],

 Orders.[Shipped Date], Invoices.[Invoice ID], Invoices.[Invoice Date]

FROM Orders LEFT JOIN Invoices

ON Orders.[Order ID] = Invoices.[Order ID]

FIGURE 9.17

Using a left outer
join to find orders
with and without a
matching invoice. Orders without matching invoices

Looking at Figure 9.17, you can see there are orders with no matching invoice, which a natural
join would have missed.

To create my outer join, I inserted the LEFT JOIN keywords into my FROM clause and replaced
the WHERE keyword with the ON keyword.

FROM Orders LEFT JOIN Invoices

ON Orders.[Order ID] = Invoices.[Order ID]

INSERT INTO Statement
You can use SQL to insert rows into a table with the INSERT INTO statement. The INSERT INTO
statement inserts new records into a table using the VALUES clause.

INSERT INTO Books

VALUES ('1234abc456edf', 'Beginning SQL', 'Vine',

 'Michael', 'Thomson Course Technology');

Though not required, matching column names can be used in the INSERT INTO statement to
clarify the fields with which you’re working.

232 Microsoft Access VBA Programming for the Absolute Beginner

INSERT INTO Books (ISBN, Title, [Last Name], [First Name], Publisher)

VALUES ('1234abc456edf', 'Beginning SQL', 'Vine',

 'Michael', 'Thomson Course Technology ');

Using matching column names is necessary, not just helpful, when you only need to insert
data for a limited number of columns in a table. A case in point is when working with the
AutoNumber field type, which Access automatically creates for you when inserting a record.

The concept of working with an AutoNumber and an INSERT INTO statement is shown in the
following SQL statement.

INSERT INTO Shippers (Company, [Business Phone])

VALUES ('Slow Boat Express', '123-456-9999');

When inserting (appending) a record into a table with the INSERT INTO statement, Access
prompts you to confirm or undo the command, as seen in Figure 9.18.

FIGURE 9.18

Appending
(inserting) a new

record into a table
with the INSERT
INTO statement.

UPDATE Statement
You can use the UPDATE statement to change field values in one or more tables. The UPDATE
statement works in conjunction with the SET keyword:

UPDATE Products

SET [Reorder Level] = [Reorder Level] + 5;

You supply the table name to the UPDATE statement and use the SET keyword to update any
number of fields that belong to the table in the UPDATE statement. In my example, I’m updating
every record’s Reorder Level field by adding the number 5. Notice that I said every record!
Because I didn’t use a WHERE clause, the UPDATE statement updates every row in the table.

In the next UPDATE statement, I use a WHERE clause to put a condition on the number of rows
that receive updates.

UPDATE Products

SET [Reorder Level] = [Reorder Level] + 5

WHERE ID = 34;

Chapter 9 • Microsoft Access SQL 233

It is possible for SQL programmers to forget to place conditions on their UPDATE statements.
Because there is no undo or rollback feature after an update has successfully occurred, pay
attention to the dialog box, which you see in Figure 9.19, that appears before you commit
(save) changes.

FIGURE 9.19

Updating one
record in the

Products table
with an UPDATE

statement.

DELETE Statement
The DELETE statement removes one or more rows from a table. It’s possible to delete all rows
from a table using the DELETE statement and a wildcard.

DELETE *

FROM Products;

More often than not, conditions are placed on DELETE statements using the WHERE clause.

DELETE *

FROM Products

WHERE ID = 34;

Once again, pay close attention to Access’s informational dialog boxes when performing any
inserts, updates, or deletes on tables.

The DELETE statement can perform cascade deletes on tables with one-to-many relationships
if the Cascade Delete Related Records option is chosen in the Edit Relationships window, as
seen in Figure 9.20.

FIGURE 9.20

Selecting cascade
deletes on one-
to-many table
relationships.

234 Microsoft Access VBA Programming for the Absolute Beginner

With the Cascade Delete Related Records option chosen for the Employees and Orders tables,
any employee records deleted also initiate a corresponding deletion in the Orders table where
a matching Employee ID was found.

DATA DEFINITION LANGUAGE
Data definition language, also known as DDL, contains commands that define a database’s
attributes. Most commonly, DDL creates, alters, and drops tables, indexes, constraints, views,
users, and permissions.

In this section, you investigate a few of the more common uses for DDL in beginning database
programming:

• Creating tables

• Altering tables

• DROP statements

Creating Tables
Creating tables in DDL involves using the CREATE TABLE statement. With the CREATE TABLE
statement, you can define and create a table, its columns, column data types, and any con-
straints that might be needed on one or more columns. In its simplest form, the CREATE
TABLE syntax and format is shown here.

CREATE TABLE TableName

 (FieldName FieldType,

 FieldName FieldType,

 FieldName FieldType);

The TableName attribute defines the table to be created. Each FieldName attribute defines the
column to be created. Each FieldName has a corresponding FieldType attribute, which defines
the column’s data type.

The next CREATE TABLE statement creates a new table called Books that contains seven columns.

CREATE TABLE Books

 (ISBN Text,

 Title Text,

 AuthorLastName Text,

 AuthorFirstName Text,

 Publisher Text,

Chapter 9 • Microsoft Access SQL 235

 Price Currency,

 PublishDate Date);

The CREATE TABLE statement allows you to specify if one or more columns should not allow
NULL values. By default, columns created in the CREATE TABLE statement allow NULL entries. To
specify a not NULL column, use the Not Null keywords.

CREATE TABLE Books

 (ISBN Text Not Null,

 Title Text,

 AuthorLastName Text,

 AuthorFirstName Text,

 Publisher Text,

 Price Currency,

 PublishDate Date);

Using the Not Null keywords sets the column’s Required attribute to Yes.

Altering Tables
You can use the ALTER TABLE statement to alter tables that have already been created. Three
common uses of the ALTER TABLE statement are to add column(s) to an existing table, to change
the field type attributes of one or more columns, or to remove a column from a table.

The next ALTER TABLE statement adds a Salary column to the Employees table with the help of
the ADD COLUMN keywords.

ALTER TABLE Employees

ADD COLUMN Salary Currency;

Adding the Salary column with the ALTER TABLE statement appends the new column to the
end of the Employees table. To change a column’s data type, use the ALTER COLUMN keywords in
conjunction with the ALTER TABLE statement.

ALTER TABLE Books

ALTER COLUMN Title Memo;

In the preceding ALTER TABLE statement, I changed the data type of the Title column from a
Text data type to a Memo data type. To remove a column from a table in Access, use the DROP
COLUMN keywords in conjunction with the ALTER TABLE statement:

ALTER TABLE Employees

DROP COLUMN Salary;

236 Microsoft Access VBA Programming for the Absolute Beginner

Access does not always warn you of your impending database alterations. In the
case of dropping (removing) a column, Access simply performs the operation
without mention.

DROP Statement
The DROP statement can be used to remove many entities from a database such as tables,
indexes, procedures, and views. In this section, you see how the DROP statement is used to
drop a table from a database.

Removing a table from a database with the DROP statement is really quite easy. Simply supply
the entity type to be dropped, along with the entity name.

DROP TABLE Books;

In the preceding example, the dropped entity typed is a TABLE and the entity name is Books.
Once again, beware: Access does not always warn you when it modifies the database. In the
DROP TABLE example, Access simply executes the command without any confirmation.

SUMMARY
• Most relational databases, including Access 2007, contain a version of SQL for retrieving

data and manipulating database entities.

• Data definition language (DDL) is a set of SQL commands used to define attributes, such
as tables and columns, of a relational database.

• Data manipulation language (DML) is a set of commands for querying, computing, sort-
ing, grouping, joining, inserting, updating, and deleting data in a relational database.

• SQL statements are freeform, meaning one SQL statement can be written on one or more
lines. For readability, SQL programmers break SQL statements into one or more logical
groups on multiple lines.

• Information is retrieved from a relational database using SELECT statements.

• Simple and compound conditions can be used in SQL statements using the WHERE clause.

• Computed field values are derived using calculations in SQL statements.

• Computed fields are given display names using the AS clause.

• SQL contains many aggregate, or built-in, functions such as COUNT, DISTINCT, MIN, MAX, and
SUM.

• Database records returned by a SQL statement are not sorted by default. To sort SQL
query results, use the ORDER BY clause.

• SQL query results can be grouped using the GROUP BY clause.

CAUTION

Chapter 9 • Microsoft Access SQL 237

• Natural joins are created by matching key fields in two or more tables in the WHERE clause.

• Incorrect joins can produce an unwanted Cartesian product.

• A left outer join includes all records from the left (first) of the two tables even if there
are no matching rows from the right (second) table.

• A right outer join includes all rows from the right (second) table even if there are no
matching rows from the left (first) table.

• Records can be manually inserted into a table using the INSERT INTO statement.

• The UPDATE statement can be used to update fields in a database table.

• Records in a table can be removed using the DELETE statement.

• Tables can be manually created using the CREATE TABLE statement.

• In its simplest form, the CREATE TABLE statement defines the table’s name, its columns,
and its column types.

• The ALTER TABLE statement can be used to add columns to an existing table, update a
column’s data type, and remove a column from a table.

• The DROP statement is used for removing tables, indexes, views, and procedures from a
database.

238 Microsoft Access VBA Programming for the Absolute Beginner

Programming Challenges

Leverage the Microsoft Access 2007 Northwind database and a SQL View
window for all the following challenges.

1. Write and test a SQL query that retrieves all columns from the
Employee Privileges table.

2. Write and test a SQL query that retrieves only the first and last
names and a business phone number from the Customers table.

3. Write and test a SQL query that uses a computed field to
calculate the total cost of each record in the Order Details
table.

4. Write and test the SQL query that returns the total number of
records in the Employees table.

5. Use the Orders table to write and test the SQL query that
returns the sum of shipping fees grouped by customer.

6. Using the INSERT INTO statement, write a SQL query that inserts
a new record into the Employees table.

7. Update the unit price by $3.25 in the Products table for all
products by Supplier A.

8. Delete all records in the Products table for the soups category
only.

9. Using DDL commands, create a new table called HomesForSale.
The HomesForSale table should contain the following fields:
StreetAddress, City, State, ZipCode, SalePrice, and ListDate.
Ensure that the StreetAddress column does not allow Null
values.

10. Using DDL commands, add three new columns to the
HomesForSale table: AgentLastName, AgentFirstName, and
AgentPhoneNumber.

11. Using DDL commands, remove the HomesForSale table from the
database.

Chapter 9 • Microsoft Access SQL 239

This page intentionally left blank

10C H A P T E R

DATABASE

PROGRAMMING WITH

ADO
ith a basic knowledge of VBA programming, you can leverage the power of
Microsoft’s ActiveX Data Objects (commonly referred to as ADO) to access
and manage data sources such as Oracle, Microsoft SQL Server, Microsoft

Access, and many others. In this chapter, I will show you how to connect to a
remote Microsoft Access database; retrieve, update, add, and delete records using
VBA; and I will explain the ADO application programming interface.

ADO OVERVIEW
For many years, Microsoft has implemented and supported quite a few database
programming models such as RDO (Remote Data Objects), DAO (Data Access Objects), and
ADO (ActiveX Data Objects).

ADO is an object-based programming model that allows programmers in many
Microsoft programming languages, such as Visual C++, Visual Basic, ASP (Active
Server Pages), C#, and of course VBA, to access and manage data sources. ADO has
become Microsoft’s most important and reliable method for data source connec-
tivity, retrieval, and management.

Data sources can be as simple as text files, or they can be more sophisticated
relational data sources such as Microsoft Access, Microsoft SQL Server, or even

W

non-Microsoft databases like Oracle’s RDBMS. Specifically, ADO enables you to connect to data
sources that support open database connectivity (ODBC). ADO also allows you to leverage the
power of structured query language (SQL) for those data sources that support it.

Each ADO programming endeavor involves working with the ADO API, also called the ADO
object model. An API (application programming interface) is a set of interfaces, or classes, that allow
you to access the low-level functionality of programming models such as ADO. The ADO API
consists of many objects, collections, events, methods, and properties.

Although most Microsoft programming languages support the ADO object model, there are
some slight differences in how ADO is implemented and used within each language. In this
chapter, you learn how ADO is implemented and used in Access VBA.

Before getting started, you might want to familiarize yourself with some key ADO terminol-
ogy and objects, as outlined in Table 10.1.

T A B L E 1 0 . 1 K E Y A D O T E R M I N O L O G Y

Item Description
Connection A connection is how you gain access to a data source. In ADO, connections are achieved

through the Connection object.
Command In ADO, commands are defined as a set of instructions, such as SQL statements or a

stored procedure, that typically inserts, deletes, or updates data. ADO commands are
embodied in the Command object.

Field ADO recordsets contain one or more fields. ADO fields are implemented with the
Field object, which contains properties for field names, data types, and values.

Parameter Parameters allow you to use variables to pass information to commands such as SQL
statements. ADO uses the Parameter object to build parameterized queries and stored
procedures.

Recordset Rows returned by a command, such as a SQL statement, are stored in recordsets. ADO’s
Recordset object allows you to iterate through the returned rows and insert, update,
and delete rows in the recordset.

CONNECTING TO A DATABASE
Before you and ADO can work with data in a data source, you must first establish a connection
using the Connection object. To declare variables of ADO object type, use the ADODB library
name followed by a period and a specific ADO object type such as Connection. An example of
declaring an ADO object variable of Connection type is seen here.

Microsoft Access VBA Programming for the Absolute Beginner242

Dim myConnection As ADODB.Connection

If you’re using ADO to connect to your current Microsoft Access application, you can use the
CurrentProject object’s AccessConnection property to set an ADO connection object to your
Connection object variable. An example of connecting to a local database is shown next.

Private Sub cmdConnectToLocalDB_Click()

 On Error GoTo ConnectionError

 'Declare connection object variable

 Dim localConnection As ADODB.Connection

 'Set current Access connection to Connection object variable

 Set localConnection = CurrentProject.AccessConnection

 MsgBox "Local connection successfully established."

 Exit Sub

ConnectionError:

 MsgBox "There was an error connecting to the database. " & Chr(13) _

 & Err.Number & ", " & Err.Description

End Sub

Using the Set statement, I’m able to assign the current Access ADO connection to my
Connection object variable, which is called localConnection. Note that whenever you open a
connection, it’s important to utilize error handling.

Many ADO programming occasions involve connecting to a remote database. Connecting to
a remote database through ADO involves working with one or more Connection object prop-
erties and its Open method, as demonstrated here.

Private Sub cmdConnectToRemoteDB_Click()

 On Error GoTo ConnectionError

 'Declare connection object variable

 Dim remoteConnection As New ADODB.Connection

Chapter 10 • Database Programming with ADO 243

 'Assign OLEDB provider to the Provider property

 'Use the Open method to establish a connection to the database

 With remoteConnection

 .Provider = "Microsoft.ACE.OLEDB.12.0"

 .Open "C:\Home\Northwind 2007.accdb"

 End With

 MsgBox "Remote connection successfully established."

 'Close the current database connection

 remoteConnection.Close

 Exit Sub

ConnectionError:

 MsgBox "There was an error connecting to the database. " & Chr(13) _

 & Err.Number & ", " & Err.Description

End Sub

Remote database access using ADO can be one of two types: connecting to
Access databases on your local machine or connecting to databases across the
network.

Depending on the type of database you’re connecting to, you use either ODBC or OLE DB as
your connection provider. In the case of Microsoft Access databases, you assign an OLE DB
provider name to the Connection object’s Provider property, as seen next.

.Provider = "Microsoft.ACE.OLEDB.12.0"

For Access 2002–2003 databases, leverage the older OLEDB 4.0 Jet provider, as shown here.

.Provider = "Microsoft.Jet.OLEDB.4.0"

Once a provider has been set, use the Open method to establish a connection to your Access
database. In the cmdConnectToRemoteDB_Click() example, I pass a connection string to the
Connection object’s Open method. This connection string tells ADO what my database name is
and where it is located.

T IP

Microsoft Access VBA Programming for the Absolute Beginner244

When working with examples in this book, you need to change the string of the
Connection object’s Open method to reflect your database’s name and location.

After working with the ADO object model for some time, you learn that there are many pro-
gramming methods for accomplishing the same task. Some ADO programmers like to use the
Connection object’s Properties collection to assign name/value pairs of connection attributes.
As an example, the next procedure uses this technique for connecting to a remote Access
database.

Private Sub cmdConnectToRemoteDB_Click()

 On Error GoTo ConnectionError

 'Declare connection object variable

 Dim remoteConnection As New ADODB.Connection

 'Assign OLEDB providers

 'Assign database name / location to Data Source

 'Use the Open method to establish a connection to the database

 With remoteConnection

 .Provider = "Microsoft.Access.OLEDB.10.0"

 .Properties("Data Provider").Value = "Microsoft.ACE.OLEDB.12.0"

 .Properties("Data Source").Value = "C:\Home\Northwind 2007.accdb"

 .Open

 End With

 MsgBox "Connection successfully established."

 remoteConnection.Close

 Exit Sub

ConnectionError:

 MsgBox "There was an error connecting to the database. " & Chr(13) _

 & Err.Number & ", " & Err.Description

End Sub

CAUTION

Chapter 10 • Database Programming with ADO 245

A common problem in beginning ADO programming is troubleshooting connec-
tion errors. One frequent error is to overlook the path and filename passed to
the Data Source property or Open method. Make sure these values match cor-
rectly with the location, name, and version of your database.

Regardless of your connection choice, you should always close your database connections
using the Connection object’s Close method. The ADO Close method frees application
resources, but does not remove the object from memory. To remove objects from memory,
set the object to Nothing.

In general, connections should be opened once when the application is first loaded (Load
event, for example) and closed once when the application is closing (UnLoad event, for
example).

WORKING WITH RECORDSETS
The ADO programming model uses recordsets to work with rows in a database table. Using
ADO recordsets, you can add, delete, and update information in database tables.

The Recordset object represents all rows in a table or all rows returned by a SQL query. The
Recordset object, however, can refer to only a single row of data at time. Once a database
connection has been established, Recordset objects can be opened in one of three ways:

• Using the Open method of the Recordset object.

• Using the Execute method of the Command object.

• Using the Execute method of the Connection object.

The most common way of opening recordsets is through the Open method of a Recordset object.

Recordset object variables are declared like any other variable—using the ADODB library:

Dim rsEmployees As New ADODB.Recordset

Once a Recordset object variable has been declared, you can use its Open method to open a
recordset and navigate through the result set. The Open method takes five arguments:

rsEmployees.Open Source, ActiveConnection, CursorType, LockType, Options

Before moving further into recordsets, let’s investigate the concept of database locks
and cursors and how Microsoft ADO uses them in conjunction with result sets and the
Recordset object.

T IP

Microsoft Access VBA Programming for the Absolute Beginner246

A result set is the set of rows retrieved by a command or SQL query. In Microsoft
ADO, recordsets are embodied in the Recordset object, which is used to manage
result sets. In an abstract sense, however, the notion of a recordset is synony-
mous with a result set.

Introduction to Database Locks
Whether or not your Recordset objects can update, add, or delete rows depends on your
database lock type. Most RDBMSs implement various forms of table and row-level locking.
Database locking prevents multiple users (or processes) from updating the same row at the
same time. For example, suppose both my friend and I attempt to update the same row of
information at the same time. Left to its own devices, this type of simultaneous updating
could cause memory problems or data loss. To solve this, RDBMS developers designed sophis-
ticated software-locking techniques using a variety of algorithms.

Even though the locking dilemma has been solved and implemented for us, an ADO developer,
that’s you, needs to identity a valid locking mechanism such as read-only, batch update, opti-
mistic, or pessimistic. These types of locking mechanisms can be specified in the LockType
property of the Recordset object. Table 10.2 describes available recordset lock types.

T A B L E 1 0 . 2 L O C K T Y P E P R O P E R T Y V A L U E S

Lock Type Description
adLockBatchOptimistic Used for batch updates.
adLockOptimistic Records are locked only when the Recordset object’s Update method is

called. Other users can access and update the same row of data while you
have it open.

adLockPessimistic Records are locked as soon as record editing begins. Other users can’t
access or modify the row of data until you have called the Recordset’s
Update or CancelUpdate methods.

adLockReadOnly Records are read-only (default lock type).

Generally speaking, most VBA programmers need to decide whether their database locks
should be read-only or not. As a rule of thumb, use the read-only lock type (adLockReadOnly)
when you simply need to scroll forward through a result set without modifying its contents.
If you need to perform any updates on the result set, an optimistic locking solution (adLock-
Optimistic) is sufficient. Note that if a data provider cannot support the requested LockType
setting, it will replace it with another type of locking.

T IP

Chapter 10 • Database Programming with ADO 247

Introduction to Cursors
Since Recordset objects represent a single row of data, VBA programmers need a way to iterate
through a list of rows. The ability to maneuver through a result set is implemented through
database cursors.

In database terms, a cursor is a structure that names and manages a storage area in memory.
Programmers use cursors to point to a row of data in a result set one row at a time. The
concepts of a cursor and a result set are depicted in Figure 10.1.

FIGURE 10.1

A cursor points to
one row in a
recordset.

Result Set

837829812

392039493

983892384

Cursor

JavaScript

Visual Basic

C#

Harris Andy

Andy

MichaelVine

Harris

Current Row011928352 Access VBA MichaelVine

Using a combination of other structures, such as loops and objects, programmers navigate
through a recordset with the cursor pointing to the current row. You can think of program-
ming with cursors as similar to file processing (discussed in Chapter 8, “Debugging, Input
Validation, File Processing, and Error Handling”) where you open a data file and read one
record at a time. When programming with cursors, you establish a cursor and move the cur-
sor’s pointer to one row in a recordset at a time.

When working with ADO’s Recordset object, you can specify one of four cursor types in the
CursorType property. Table 10.3 outlines this.

T A B L E 1 0 . 3 C U R S O R T Y P E P R O P E R T Y V A L U E S

Lock Type Description
adOpenForwardOnly Provides optimal performance through limited scrolling (forward only).
adOpenKeyset Provides all types of movement in a Recordset object. Does not contain added

or deleted rows.
adOpenDynamic Provides all types of movement in a Recordset object. Includes added,

deleted, and updated rows.
adOpenStatic Provides all types of movement in a static Recordset object. Changes are not

seen by users until the Recordset object is updated.

Microsoft Access VBA Programming for the Absolute Beginner248

You should use forward-only (adOpenForwardOnly) cursors when updating rows is not required
and reading rows in a result set from start to finish is acceptable. If you require dynamic
updates in your result set, a dynamic cursor type (adOpenDynamic) is recommended.

In addition to cursor types, ADO allows programmers to specify a cursor location for the
Recordset and Connection objects via the CursorLocation property. Depending on the location
of your database and the size of your result set, cursor locations can have a considerable effect
on your application’s performance.

As outlined in Table 10.4, cursor locations can be either server side or client side.

T A B L E 1 0 . 4 C U R S O R L O C A T I O N P R O P E R T Y V A L U E S

Lock Type Description
adUseClient Records in the recordset are stored in local memory.
adUseServer Builds a set of keys locally for Access databases and on the server for Microsoft SQL

Server. The set of keys is used to retrieve and navigate through the result set.

When considering cursor locations, Microsoft recommends server-side cursors when working
with Microsoft Access databases and client-side cursors when working with Microsoft SQL
Server databases.

Retrieving and Browsing Data
After you have successfully established a connection to a database with ADO, retrieving and
browsing data is quite easy. To retrieve data with ADO, you work with the Recordset object.
In addition to cursors and locks, the Recordset object has many features for managing record-
based data.

In this section, I use Microsoft’s sample database Northwind 2007.accdb to demonstrate retriev-
ing and browsing data with ADO. Figure 10.2 depicts a form I built, which remotely connects
to the Access 2007 Northwind database and allows a user to browse through data found in the
Products table.

To build the application seen in Figure 10.2, use the controls and properties in Table 10.5. I
cover the VBA code for the Add, Update, and Delete command buttons later in the chapter.

Chapter 10 • Database Programming with ADO 249

FIGURE 10.2

Using ADO to
connect and

browse record-
based data.

Next, I’ll add the following VBA code to my form class module.

Option Compare Database

Dim remoteConnection As New ADODB.Connection

Dim rsProducts As New ADODB.Recordset

Private Sub Form_Load()

 Connect

 SetRecordset

End Sub

Private Sub Form_Unload(Cancel As Integer)

 Disconnect

End Sub

Public Sub Disconnect()

 On Error GoTo ConnectionError

 rsProducts.Close

 remoteConnection.Close

Microsoft Access VBA Programming for the Absolute Beginner250

 Exit Sub

ConnectionError:

 MsgBox "There was an error closing the database." & _

 Err.Number & ", " & Err.Description

End Sub

T A B L E 1 0 . 5 C O N T R O L S A N D P R O P E R T I E S O F T H E R E M O T E

C O N N E C T I O N P R O G R A M

Control Property Property Value
Form Name Remote Connection

Caption Remote Connection

Record Selectors No

Navigation Buttons No

Dividing Lines No

Text Box Name txtProductId

Label Name lblProductId

Caption Product Id:

Text Box Name txtProductCode

Label Name lblProductCode

Caption Product Code:

Text Box Name txtProductName

Label Name lblProductName

Caption Product Name:

Command Button Name cmdMoveFirst

Caption <<

Command Button Name cmdMovePrevious

Caption <

Command Button Name cmdMoveNext

Caption >

Command Button Name cmdMoveLast

Caption >>

Command Button Name cmdAdd

Caption Add

Command Button Name cmdUpdate

Caption Update

Command Button Name cmdDelete

Caption Delete

Chapter 10 • Database Programming with ADO 251

Private Sub Connect()

 On Error GoTo ConnectionError

 With remoteConnection

 .Provider = "Microsoft.ACE.OLEDB.12.0"

 .Open "C:\Home\Northwind 2007.accdb"

 End With

 Exit Sub

ConnectionError:

 MsgBox "There was an error connecting to the database. " & _

 Chr(13) & Err.Number & ", " & Err.Description

End Sub

Public Sub SetRecordset()

 Dim sql As String

 On Error GoTo DbError

 sql = "select * from Products"

 rsProducts.CursorType = adOpenKeyset

 rsProducts.LockType = adLockReadOnly

 rsProducts.Open sql, remoteConnection, _

 , , adCmdText

 If rsProducts.EOF = False Then

 'Using three different techniques to access items in a recordset

 Me.txtProductId = rsProducts!ID

 Me.txtProductCode = rsProducts.Fields.Item("Product Code")

 Me.txtProductName = rsProducts.Fields.Item(3)

Microsoft Access VBA Programming for the Absolute Beginner252

 End If

 Exit Sub

DbError:

 MsgBox "There was an error retrieving information " & _

 "from the database." _

 & Err.Number & ", " & Err.Description

End Sub

I’ve created two procedures that handle connecting to the Northwind database and dis-
connecting from it. The Connect subprocedure is called during the form Load event, and the
Disconnect subprocedure is called during the form Unload event, which is triggered when the
form is closed or unloaded from memory.

When applying code from this book in your own applications, remember to
change the path of the Northwind 2007.accdb database (or any other database,
for that matter) in the Open method of the Connection object.

Notice in the form’s Load event that I call another subprocedure: SetRecordset. This procedure
sets up my Recordset object by establishing a SQL query, opening the recordset, and applying
the first row of data to the text boxes.

Keep in mind that I declared my Recordset object variable (rsProducts) as a form-level variable.
This allows me to access it throughout my form class module.

Before going any further, consider the following numbered list, which describes a common
process for opening a recordset with ADO:

1. Define a SQL query using a String variable, which tells the Recordset object how it should
be opened.

2. Assign cursor and lock type values to corresponding Recordset object properties. Note
that you can set these properties on separate lines (as I did) or in the Open method of the
Recordset object.

3. Use the Open method and pass in three of five optional parameters. The first parameter
(sql) tells the Recordset object how to open the recordset. In addition to SQL statements,
you can use a table name surrounded by double quotes (“Products”, for example). The
second parameter (remoteConnection) is the name of the active connection variable that

CAUTION

Chapter 10 • Database Programming with ADO 253

points to my copy of the Northwind 2997.accdb database. Note: This connection must have
already been successfully opened. The last parameter is in the fifth parameter position.
This is the options parameter, which tells the Recordset object how to use its first pa-
rameter. If the first parameter is a SQL string, use the constant adCmdText. If the first
parameter is a table name (“Products”, for instance), use the constant adCmdTable.

4. After the Recordset object has been successfully opened, I ensure that rows have been
returned by using the EOF (end of file) property. If the EOF property is true, no records
were returned and no further processing is done.

5. If the Recordset object contains one or more rows (EOF = False), I can access fields in a
couple of ways. In my example, I use the Recordset object name (rsProducts) followed by
an exclamation mark (!) and then the field name found in the database table. This is
probably the most common way for ADO programmers to access recordset fields. Other
ways of accessing fields involve using the Fields collection shown here.

Me.txtProductCode = rsProducts.Fields.Item("Product Code")

Me.txtProductName = rsProducts.Fields.Item(3)

The first example passes a column name to the Item property of the Fields collection. The
second example uses what’s known as the ordinal position of the field returned. Ordinal posi-
tions start with 0.

Once data is successfully retrieved from a field, you can assign its value to variables or
properties.

To browse through rows in a recordset, ADO’s Recordset object provides the following four
methods:

• MoveFirst. Moves the cursor to the first record in the result set.

• MoveLast. Moves the cursor to the last record in the result set.

• MoveNext. Moves the cursor to the next record in the result set.

• MovePrevious. Moves the cursor to the previous record in the result set.

When working with the MoveNext and MovePrevious methods, it’s important to use cursors
that allow forward and backward scrolling. Also, you need to check that the cursor’s position
is not already at the beginning of the recordset before moving to a previous entry or at
the end of the recordset before moving to the next entry. Use the Recordset object’s
AbsolutePosition and RecordCount properties for these conditions.

Microsoft Access VBA Programming for the Absolute Beginner254

What Is Ordinal Position?

In ADO/database terms, the ordinal position refers to the relative position of a field or column
in a collection such as Fields. Believe it or not, using ordinal positions for accessing fields is
not uncommon in ADO. Consider an example of accessing the return value of the SQL function
Count. Since SQL does not return a column name, you must work with ordinal position in the
Fields collection.

Here is an example of using ordinal positions to retrieve the result of a SQL function.

Private Sub cmdCount_Click()

 Dim sql As String

 Dim rsCount As New ADODB.Recordset

 On Error GoTo DbError

 sql = "select count(*) from Products"

 rsCount.Open sql, remoteConnection, adOpenForwardOnly, _

 adLockReadOnly, adCmdText

 If rsProducts.EOF = False Then

 MsgBox "There are " & rsCount.Fields.Item(0) & _

 " rows in the Products table."

 End If

 Exit Sub

DbError:

 MsgBox "There was an error retrieving information from the database." _

 & Err.Number & ", " & Err.Description

End Sub

Chapter 10 • Database Programming with ADO 255

The AbsolutePosition property contains the ordinal position of the current record in the
result set. The AbsolutePosition property contains a whole number beginning at 1. The
RecordCount property contains the total number of rows contained in the recordset.

Using these properties and methods, you can build conditions for browsing through ADO
records. To demonstrate, I continue my Remote Connection program by adding VBA/ADO code
to the following four event procedures.

Private Sub cmdMoveFirst_Click()

 On Error GoTo DbError

 'Move to the first record in the result set.

 rsProducts.MoveFirst

 Me.txtProductId = rsProducts!ID

 Me.txtProductCode = rsProducts.Fields.Item("Product Code")

 Me.txtProductName = rsProducts.Fields.Item("Product Name")

 Exit Sub

DbError:

 MsgBox "There was an error retrieving information " & _

 "from the database." _

 & Err.Number & ", " & Err.Description

End Sub

Private Sub cmdMoveLast_Click()

 On Error GoTo DbError

 'Move to the last record in the result set.

 rsProducts.MoveLast

 Me.txtProductId = rsProducts!ID

 Me.txtProductCode = rsProducts.Fields.Item("Product Code")

 Me.txtProductName = rsProducts.Fields.Item("Product Name")

Microsoft Access VBA Programming for the Absolute Beginner256

 Exit Sub

DbError:

 MsgBox "There was an error retrieving information " & _

 "from the database." _

 & Err.Number & ", " & Err.Description

End Sub

Private Sub cmdMoveNext_Click()

 On Error GoTo DbError

 'Move to the next record in the result set if the cursor is not

 'already at the last record.

 If rsProducts.AbsolutePosition < _

 rsProducts.RecordCount Then

 rsProducts.MoveNext

 Me.txtProductId = rsProducts!ID

 Me.txtProductCode = rsProducts.Fields.Item("Product Code")

 Me.txtProductName = rsProducts.Fields.Item("Product Name")

 End If

 Exit Sub

DbError:

 MsgBox "There was an error retrieving information " & _

 "from the database." _

 & Err.Number & ", " & Err.Description

End Sub

Chapter 10 • Database Programming with ADO 257

Private Sub cmdMovePrevious_Click()

 On Error GoTo DbError

 'Move to the previous record in the result set, if the

 'current record is not the first record.

 If rsProducts.AbsolutePosition > 1 Then

 rsProducts.MovePrevious

 Me.txtProductId = rsProducts!ID

 Me.txtProductCode = rsProducts.Fields.Item("Product Code")

 Me.txtProductName = rsProducts.Fields.Item("Product Name")

 End If

 Exit Sub

DbError:

 MsgBox "There was an error retrieving information " & _

 "from the database." _

 & Err.Number & ", " & Err.Description

End Sub

Updating Records
Updating records using ADO’s Recordset object is relatively easy. Generally speaking, you
perform the following tasks:

1. Declare a new Recordset object variable.
2. Define and create a SQL string that identifies the record you want to update.
3. Assign updatable cursor and lock types for updating a record.
4. Open the recordset, which should contain only one record, the record you wish to

update.
5. Assign new data to the recordset fields.
6. Update the recordset using the Recordset object’s Update method.

Microsoft Access VBA Programming for the Absolute Beginner258

7. Close the recordset using the Recordset object’s Close method.
8. Refresh other recordsets, if applicable, by closing and reopening the recordset or calling

the Recordset object’s Requery method.

The tricky part in updating records is ensuring that your SQL queries are well defined. For
example, to update a record in the Products table of the Northwind database, I want to qualify
my recordset using the table’s primary key. In this case, that’s the ID field of the Products
table.

sql = "select * from Products where ID = " & _

 Val(Me.txtProductId.Value)

In the preceding SQL string, I assign the value of the text box containing the product ID. Since
I’m using a String variable, I can build a dynamic SQL statement using control properties—
input from the user. By using a condition in my SQL string and supplying it with the primary
key of a record, I’m making sure that only the record with the primary key is contained in
the result set.

When concatenating string or text values to a dynamic SQL statement, you must
use single quotes inside of double quotes to surround the expression.

sql = "select [Product Code] from Products where [Product Name] = '" & _

 Me.txtProductName.Value & "'"

You may be asking yourself, “How do I know what record to update?” The answer to this
question is based on the record selected in the graphical interface. As long as your GUI allows
a user to select only one record, you are in good shape. To demonstrate, I now add VBA/ADO
code to the Update command button’s Click event in the Remote Connection program.

Private Sub cmdUpdate_Click()

 Dim sql As String

 Dim rsUpdate As New ADODB.Recordset

 On Error GoTo DbError

 'Build dynamic SQL statement based on record

 'selected by the user.

 sql = "select * from Products where ID = " & _

 Val(Me.txtProductId.Value)

T IP

Chapter 10 • Database Programming with ADO 259

 'Assign updatable cursor and lock type properties.

 rsUpdate.CursorType = adOpenDynamic

 rsUpdate.LockType = adLockOptimistic

 'Open the Recordset object.

 rsUpdate.Open sql, remoteConnection, , , adCmdText

 'Don't try to update the record, if the recordset

 'did not find a row.

 If rsUpdate.EOF = False Then

 'Update the record based on input from the user.

 With rsUpdate

 .Fields.Item("Product Code") = Me.txtProductCode

 .Fields.Item("Product Name") = Me.txtProductName

 .Update

 .Close

 End With

 End If

 MsgBox "Record updated.", vbInformation

 'Close the form-level Recordset object and

 'refresh it to include the newly updated row.

 rsProducts.Close

 SetRecordset

 Exit Sub

DbError:

 MsgBox "There was an error updating the database." _

 & Err.Number & ", " & Err.Description

End Sub

Microsoft Access VBA Programming for the Absolute Beginner260

The Recordset object’s Update method is synonymous with saving.

Adding Records
Adding records with ADO does not necessarily require the use of SQL queries. In most sce-
narios, you simply need a record added to a table based on user input. In the simplest form,
records are added to tables using the following steps:

1. Declare a new Recordset object variable.
2. Assign updatable cursor and lock types for adding a record.
3. Open the Recordset object using its Open method with a table name as the first parameter

and the associated adCmdTable constant name for the options parameter.
4. Call the Recordset object’s AddNew method.
5. Assign new data to the recordset fields.
6. Save the new row of data using the Recordset object’s Update method.
7. Close the recordset using the Recordset object’s Close method.
8. Refresh other recordsets, if applicable, by closing and reopening the recordset or calling

the Recordset object’s Requery method.

Using the preceding steps, the following code implements the Click event procedure of the
Add command button from Figure 10.2.

Private Sub cmdAdd_Click()

 Dim sql As String

 Dim rsAdd As New ADODB.Recordset

 On Error GoTo DbError

 'Assign updatable cursor and lock type properties.

 rsAdd.CursorType = adOpenDynamic

 rsAdd.LockType = adLockOptimistic

 'Open the Recordset object.

 rsAdd.Open "Products", remoteConnection, , , adCmdTable

 'Add the record based on input from the user

 '(except for the AutoNumber primary key field).

 With rsAdd

T IP

Chapter 10 • Database Programming with ADO 261

 .AddNew

 .Fields.Item("Product Code") = Me.txtProductCode

 .Fields.Item("Product Name") = Me.txtProductName

 .Update

 .Close

 End With

 MsgBox "Record Added.", vbInformation

 'Close the form-level Recordset object and refresh

 'it to include the newly updated row.

 rsProducts.Close

 SetRecordset

 Exit Sub

DbError:

 MsgBox "There was an error adding the record." _

 & Err.Number & ", " & Err.Description

End Sub

Deleting Records
Deleting records using ADO is somewhat similar to updating records in that you need to use
SQL queries to identify the record for updating—in this case, deleting. The numbered steps
identify a typical ADO algorithm for deleting a record:

1. Declare a new Recordset object variable.
2. Assign updatable cursor and lock types for deleting a record.
3. Construct a dynamic SQL string that uses a condition to retrieve the record selected by

the user. The condition should use a field, which is a key (unique) value selected by the
user.

4. Open the recordset, which should contain only one record (the record you wish to delete).
5. If the record was found, call the Recordset object’s Delete method.
6. Save the record operation using the Recordset object’s Update method.
7. Close the recordset using the Recordset object’s Close method.
8. Refresh other recordsets, if applicable, by closing and reopening the recordset or calling

the Recordset object’s Requery method.

Microsoft Access VBA Programming for the Absolute Beginner262

Using these steps, I can implement ADO program code in the Click event procedure of the
Delete command button shown in Figure 10.2.

Private Sub cmdDelete_Click()

 Dim sql As String

 Dim rsDelete As New ADODB.Recordset

 On Error GoTo DbError

 'Build dynamic SQL statement based on

 'record selected by the user.

 sql = "select * from Products where ID = " & _

 Val(Me.txtProductId.Value)

 'Assign updatable cursor and lock type properties.

 rsDelete.CursorType = adOpenDynamic

 rsDelete.LockType = adLockOptimistic

 'Open the Recordset object.

 rsDelete.Open sql, remoteConnection, , , adCmdText

 'Don't try to delete the record, if the

 'recordset did not find a row.

 If rsDelete.EOF = False Then

 'Update the record based on input from the user.

 With rsDelete

 .Delete

 .Update

 .Close

 End With

 End If

 MsgBox "Record deleted.", vbInformation

 'Close the form-level Recordset object and refresh

Chapter 10 • Database Programming with ADO 263

 'it to include the newly updated row.

 rsProducts.Close

 SetRecordset

 Exit Sub

DbError:

 MsgBox "There was an error deleting the record." _

 & Err.Number & ", " & Err.Description

End Sub

CHAPTER PROGRAM: CHOOSE MY ADVENTURE
Without a doubt, Choose My Adventure is one of my favorite programs from the For the Absolute
Beginner books. Choose My Adventure uses ADO programming techniques to access tables that
contain a short story. The story presents questions on various pages and allows the reader to
select an outcome. Depending on the selected outcome, the reader gets a different story and
ending.

I used two forms to build Choose My Adventure—one to show About details (see Figure 10.3)
and the other to house the program’s main functionality (see Figure 10.4). Controls and prop-
erties of the Choose My Adventure About form are shown in Table 10.6.

FIGURE 10.3

The About form of
the Choose My
Adventure

program.

Microsoft Access VBA Programming for the Absolute Beginner264

FIGURE 10.4

Using chapter-
based concepts to
build the Choose
My Adventure

program.

T A B L E 1 0 . 6 C O N T R O L S A N D P R O P E R T I E S O F T H E A B O U T F O R M

Control Property Property Value
Form Name About

Caption Chapter 10 - About

Record Selectors No

Navigation Buttons No

Dividing Lines No

Image Name imgBanner

Picture banner.jpg (located on companion website)
Size Mode Stretch

Image Name imgBanner

Picture skeleton.jpg (located on companion website)
Size Mode Stretch

Label Name lblAbout

Caption A Choose My Adventure book

Command Button Name cmdOK

Caption OK

Chapter 10 • Database Programming with ADO 265

There is minimal code required for the About form, which uses the DoCmd object’s Close method
to close the form.

Private Sub cmdOK_Click()

 DoCmd.Close acForm, "About"

End Sub

The core functionality of the Choose My Adventure program is contained in the Main form with
controls and properties described in Table 10.7.

T A B L E 1 0 . 7 C O N T R O L S A N D P R O P E R T I E S O F T H E M A I N F O R M

Control Property Property Value
Form Name Main

Caption Chapter 10 - Main

Record Selectors No

Navigation Buttons No

Dividing Lines No

Image Name imgBanner

Picture banner.jpg (located on companion website)
Size Mode Stretch

Text Box Name txtPage

Enter Key Behavior New Line in Field

Command Button Name cmdRead

Caption Start Over

Command Button Name cmdAbout

Caption About My Adventure

Command Button Name cmdQuit

Caption Quit My Adventure

Command Button Name cmdChoose

Caption Choose Adventure

Frame Name fraQuestionAndOutcomes

Frame Label Name lblQuestion

Option Button Name optOption1

Option Button Label Name lblOption1

Option Button Name optOption2

Option Button Label Name lblOption2

Option Button Name optOption3

Option Button Label Name lblOption3

Microsoft Access VBA Programming for the Absolute Beginner266

All of the code required to implement the Choose My Adventure Main form follows.

Option Compare Database

Option Explicit

'Declare form-level Connection object variable.

Dim localConnection As ADODB.Connection

Private Sub cmdAbout_Click()

 'Show the About form.

 DoCmd.OpenForm "About"

End Sub

Private Sub cmdChoose_Click()

 ' Use the assigned option button value to get

 ' the next page in the book.

 GetPage Me.fraQuestionAndOutcomes.Value

End Sub

Private Sub cmdQuit_Click()

 'Quit the application.

 DoCmd.Quit

End Sub

Private Sub cmdRead_Click()

 MsgBox "Welcome to The Night Before Halloween, " & _

 "a Choose My Adventure book by Michael Vine.", _

 vbOKOnly, "Chapter 10 - Database Programming with ADO"

 Me.cmdRead.Caption = "Start Over"

 ResetForm

 Me.txtPage.Value = ""

 Me.lblQuestion.Caption = ""

 Me.cmdChoose.Visible = False

Chapter 10 • Database Programming with ADO 267

 'Call the GetPage procedure to display the

 'first page in the book.

 GetPage 1

End Sub

Private Sub Form_Load()

 'Perform some initial setup.

 ResetForm

 Me.txtPage.Value = ""

 Me.lblQuestion.Caption = ""

 Me.cmdChoose.Visible = False

 Me.cmdRead.Caption = "Read My Adventure"

 'Assign the current Access connection to my

 'Connection object variable.

 Set localConnection = CurrentProject.AccessConnection

End Sub

Private Sub Form_Unload(Cancel As Integer)

 On Error GoTo ErrorClosing

 'Close the connection.

 localConnection.Close

 Exit Sub

ErrorClosing:

 'Do nothing!

End Sub

Public Sub GetQuestion(pageID As Integer)

Microsoft Access VBA Programming for the Absolute Beginner268

 Dim rsQuestion As New ADODB.Recordset

 Dim sql As String

 On Error GoTo BookError

 'Using the incoming pageID, get and display

 ‘the associated question (if one exists).

 'This procedure calls the GetOutcome procedure.

 sql = "select * from Questions where PageID = " & pageID

 rsQuestion.Open sql, localConnection, adOpenForwardOnly, _

 adLockReadOnly, adCmdText

 If rsQuestion.EOF = False Then

 Me.lblQuestion.Caption = rsQuestion!Question

 GetOutcome rsQuestion!questionID

 Else

 ResetForm

 End If

 rsQuestion.Close

 Exit Sub

BookError:

 ErrorMessage

End Sub

Public Sub GetOutcome(questionID As Integer)

Chapter 10 • Database Programming with ADO 269

 Dim rsOutcomes As New ADODB.Recordset

 Dim x As Integer

 Dim sql As String

 On Error GoTo BookError

 'Using the incoming questionID, get all possible outcomes

 'for the associated question.

 sql = "select * from Outcomes where QuestionID = " & _

 questionID

 rsOutcomes.Open sql, localConnection, adOpenForwardOnly, _

 adLockReadOnly, adCmdText

 ResetForm

 If rsOutcomes.EOF = False Then

 Me.lblOption1.Visible = True

 Me.optOption1.Visible = True

 Me.lblOption1.Caption = rsOutcomes!Outcome

 Me.optOption1.OptionValue = rsOutcomes!GoToPage

 rsOutcomes.MoveNext

 End If

 If rsOutcomes.EOF = False Then

 Me.lblOption2.Visible = True

 Me.optOption2.Visible = True

 Me.lblOption2.Caption = rsOutcomes!Outcome

 Me.optOption2.OptionValue = rsOutcomes!GoToPage

 rsOutcomes.MoveNext

 End If

 If rsOutcomes.EOF = False Then

Microsoft Access VBA Programming for the Absolute Beginner270

 Me.lblOption3.Visible = True

 Me.optOption3.Visible = True

 Me.lblOption3.Caption = rsOutcomes!Outcome

 Me.optOption3.OptionValue = rsOutcomes!GoToPage

 End If

 rsOutcomes.Close

 Exit Sub

BookError:

 ErrorMessage

End Sub

Public Function AnyMoreQuestions(pageID As Integer) As Boolean

 Dim rsAnyMoreQuestions As New ADODB.Recordset

 Dim returnValue As Boolean

 Dim sql As String

 On Error GoTo BookError

 'This procedure is called by the GetPage procedure.

 'It checks to see if there are any more questions

 'for the current page passed in.

 sql = "select * from Questions where PageID = " & pageID

 rsAnyMoreQuestions.Open sql, localConnection, _

 adOpenForwardOnly, adLockReadOnly, adCmdText

 If rsAnyMoreQuestions.EOF = False Then

 returnValue = True 'There are questions

 Else

Chapter 10 • Database Programming with ADO 271

 returnValue = False 'There are no questions

 End If

 rsAnyMoreQuestions.Close

 AnyMoreQuestions = returnValue

 Exit Function

BookError:

 ErrorMessage

End Function

Public Sub GetPage(pageID As Integer)

 Dim rsPage As New ADODB.Recordset

 Dim sql As String

 On Error GoTo BookError

 'Gets and displays the requested page. Calls GetQuestion

 'and AnyMoreQuestions procedures.

 sql = "select * from Pages where PageID = " & pageID

 rsPage.Open sql, localConnection, adOpenForwardOnly, _

 adLockReadOnly, adCmdText

 If rsPage.EOF = False Then

 Me.txtPage.Visible = True

 Me.txtPage.Value = rsPage!Content

 End If

 GetQuestion rsPage!pageID

 Me.txtPage.SetFocus

Microsoft Access VBA Programming for the Absolute Beginner272

 If AnyMoreQuestions(rsPage!pageID) = False Then

 Me.cmdChoose.Visible = False

 Me.lblQuestion.Caption = ""

 Else

 Me.cmdChoose.Visible = True

 End If

 rsPage.Close

 Exit Sub

BookError:

 ErrorMessage

End Sub

Public Sub ErrorMessage()

 'A general error bin called by each error handler

 'in the form class.

 MsgBox "There was an error reading the book. " & Chr(13) _

 & Err.Number & ", " & Err.Description

End Sub

Public Sub ResetForm()

 Me.lblOption1.Visible = False

 Me.lblOption2.Visible = False

 Me.lblOption3.Visible = False

 Me.optOption1.Visible = False

Chapter 10 • Database Programming with ADO 273

 Me.optOption2.Visible = False

 Me.optOption3.Visible = False

End Sub

SUMMARY
• ADO is Microsoft’s popular programming vehicle for managing data in databases, such

as Microsoft Access and SQL Server, and non-Microsoft relational databases such as
Oracle.

• ADO’s application programming interface (API) is made up of many objects, such as
Connection and Recordset, and collections such as the Fields collection.

• It is good programming practice to use error handling whenever accessing a database
through ADO.

• Connections to databases are established through ADO’s Connection object.

• A result set is the set of rows retrieved by a command or SQL query.

• The Recordset object is used to work with rows in a database table.

• Database locking prevents multiple users (or processes) from updating the same row at
the same time.

• A cursor is a structure that names and manages a storage area in memory. Programmers
use cursors to point to one row of data at a time in a result set.

• The Recordset object methods MoveFirst, MoveLast, MoveNext, and MovePrevious are used
to browse through records in a result set.

• Use the Recordset object properties AbsolutePosition and RecordCount to determine
whether the cursor position is at the end or beginning of a recordset.

• The Recordset object method Update is synonymous with saving a record.

• The Recordset object method AddNew is used to add a row to a table.

• The Recordset object method Delete is used to delete a row from a table.

Microsoft Access VBA Programming for the Absolute Beginner274

Programming Challenges
1. Create a new Microsoft Access database application. Use the

ADO Connection object to connect to a remote Northwind
2007.accdb database. Display a successful confirmation in a
message box. Use error handling to catch any connection
errors.

2. Add controls to a form that mimics fields contained in
Microsoft’s Northwind Employees table. Use ADO programming
techniques to retrieve and fully browse the Employees table.

3. Update your application from Challenge 2 to allow a user to
update records in the Employees table.

4. Update your application from Challenge 2 to allow a user to
add records to the Employees table.

5. Update your application from Challenge 2 to allow a user to
delete records from the Employees table.

6. Build your own Choose My Adventure program with a unique
story, questions, and outcomes.

Chapter 10 • Database Programming with ADO 275

This page intentionally left blank

11C H A P T E R

OBJECT-ORIENTED

PROGRAMMING WITH

ACCESS VBA
ave you ever wondered how VBA objects, methods, properties, and collec-
tions are created? Well, this chapter shows you how to leverage the power
of object-oriented programming (also known as OOP) in Access VBA to create

your very own custom objects, methods, properties, and collections!

INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING
Object-oriented programming (OOP) is not a language unto itself, but rather a
programming practice. OOP is seemingly easy at the surface, but it can be quite
challenging to master. In fact, many programmers coming from the procedural
world of languages, such as C or COBOL, find they need to make a paradigm shift
in how they think about programming. Even programmers who work with object-
based languages, such as VBA, find the same paradigm shift inevitable. The
paradigm shift I refer to is that of relating data, structures, and business require-
ments to objects.

OOP contains five core concepts, which are objects, classes, encapsulation, inher-
itance, and polymorphism:

H

• OObjects represent a real-world thing such as person, place, or thing. Objects have be-
haviors and attributes.

• CClasses are the blueprint for objects. They define how objects behave and how they
expose attributes.

• EEncapsulation hides implementation details from a user.

• IInheritance allows one class to inherit the features of another class.

• PPolymorphism allows a class to implement the same operation in a number of
different ways.

Unfortunately, VBA does not support inheritance or polymorphism in OOP’s truest sense.
Nevertheless, object-oriented programming in VBA allows the implementation of one of the
most important benefits of OOP development, known as encapsulation. In OOP terms, encap-
sulation allows programmers to reduce code complexity by hiding data and complex struc-
tures in classes. You and other programmers simply instantiate (create an object from a class)
these classes as objects and access the object’s methods and properties. Encapsulating imple-
mentation details is a wonderful benefit of OOP. Not only are complex details hidden, but
code reuse is promoted. In VBA, OOP development is achieved through custom objects that
are defined in class modules. Once built, custom objects don’t necessarily add new function-
ality to your code. In fact, the same code you write in class modules could be written in event
procedures, subprocedures, and function procedures. The purpose of using class modules is
to provide encapsulation, code-reuse, and self-documenting code. Programmers using your
custom objects work with them just as they would with other built-in VBA objects, such as
the ones found in the ADO library (Connection and Recordset objects).

Development with OOP generally requires more planning up front than in other program-
ming paradigms. This design phase is crucial to OOP and your system’s success.

At the very minimum, OOP design includes the following tasks:

• Identify and map objects to programming and business requirements.

• Identify the actions (methods) and attributes (properties) of each object. This action is
commonly referred to as identifying the responsibilities of each object.

• Identify the relationships between objects.

• Determine the scope of objects and their methods and properties.

CREATING CUSTOM OBJECTS
You begin your investigation into object-oriented programming by creating custom objects
that encapsulate implementation details. To create custom objects, VBA programmers use
OOP techniques and class modules. You specially learn how to build class modules that

Microsoft Access VBA Programming for the Absolute Beginner278

contain member variables and property and method procedures. After learning how to build
custom objects with class modules, you see how to instantiate custom objects and access
custom object methods and properties.

Working with Class Modules
Classes are the blueprints for an object. They contain the implementation details, which are
hidden from users (programmers who use your custom objects). In object-oriented program-
ming with VBA, classes are implemented as class modules.

Class modules do not exist in memory. Rather, the instance of the class known as the object
does. Multiple instances of a single class can be created. Each instance (object) created from a
class shares the same access to the class’s methods and properties. Even though multiple
objects created from one class share the same characteristics, they are different in two ways.
First, objects instantiated from the same class can have different property values. For example,
an object called Bob instantiated from the Person class may have its hairColor property value
set to brown, whereas an object called Sue, also instantiated from the Person class, could have
its hairColor property value set to blonde. Second, objects instantiated from the same class
have unique memory addresses.

In OOP terms, an instance refers to the object that was created from a class. The
term instantiate means to create an object from a class.

To create a class module in Access VBA, simply open a Visual Basic window (VBE) and select
the Class Module menu item from the Insert menu. Microsoft VBA automatically creates the
class module for you, as depicted in Figure 11.1.

FIGURE 11.1

A newly created
class module.

T IP

Chapter 11 • Object-Oriented Programming with Access VBA 279

By default, VBA class modules contain two events called Initialize and Terminate. These
events can be accessed through the Code window shown in Figure 11.2.

FIGURE 11.2

The Initialize
and Terminate

events are
accessed through

the VBE Code
window.

The Initialize event for a class module is triggered each time the class is instantiated (cre-
ated) using the New or Set keywords. The class module’s Initialize event is similar to that of
a constructor in OOP languages such as Java and C++. It is used to execute code when the
object is first created. For example, you might want to initialize certain member variables
each time an instance of your class is created.

The Terminate event is triggered each time the instance is removed from memory. You can
place code in this event procedure to free up other objects from memory or finalize any
necessary transactions.

Another common use of the Initialize and Terminate events is in debugging your applica-
tions. If you’d like to know each time your application creates and destroys one of your custom
objects, simply use the Initialize and Terminate events, like I’ve done here.

Private Sub Class_Initialize()

 Debug.Print "Object created."

End Sub

Private Sub Class_Terminate()

 Debug.Print "Object destroyed."

End Sub

Microsoft Access VBA Programming for the Absolute Beginner280

Microsoft recommends not using message boxes in the Initialize and
Terminate events, which requires Windows messages to be processed.

Property Procedures
VBA provides property procedures for managing the attributes of a class, which are exposed
internally for the class to use or exposed externally as object properties. Simply put, properties
are just variables. You could, of course, declare variables in your class modules for your pro-
cedures to use, but that would defeat the purpose of object-oriented programming.

To work with properties in VBA, you create variables of various scopes and use a combination
of property procedures to manage them. VBA provides three types of property procedures:

• Property Get. Returns the value of a property.

• Property Let. Assigns a value to the property.

• Property Set. Sets the value of an object property.

Property Get procedures are often used in conjunction with both Property Let and Property
Set procedures. When used together, a Property Let procedure with a Property Get procedure,
or a Property Set procedure with a Property Get procedure must share the same name.
Property Let and Property Set procedures, however, cannot be used together. They perform
distinctly different roles in VBA object-oriented programming. Specifically, Property Let pro-
cedures are used for assigning data to scalar variables such as String, Integer, Double, or
Date data types. Property Set procedures are used for assigning a reference to an object.

To add property procedures to your class module, select the Add Procedure dialog box from
the VBE Insert menu to add property procedures, as demonstrated in Figure 11.3.

FIGURE 11.3

Use the Add
Procedure dialog

box to create
property

procedures.

VBA automatically adds a matching set of Property Get and Property Let procedures for you,
as shown next:

CAUTION

Chapter 11 • Object-Oriented Programming with Access VBA 281

Public Property Get Something() As Variant

End Property

Public Property Let Something(ByVal vNewValue As Variant)

End Property

The code required in each property procedure is short. You simply add a line to each respective
procedure to assign a value and return a value.

Before adding code to your property procedures, you must first have a property (sometimes
referred to as member variables) to manage. When working with property procedures, your
properties are generally declared as Private in the general declarations area. By declaring the
variable (property) in the general declarations area, you provide access to the property from
any procedure in the class module. Declaring the variable (property) as Private provides
encapsulation. Specifically, it forces your object’s users to use the property procedures to
access the member variable instead of accessing the member variable directly.

The concept of private properties and procedures is very important in OOP. Any procedure or
property declared as Private is only accessible to the class module (not instances of your class
module). Examine this concept further by studying the next block of VBA code.

Option Compare Database

Private privateSomething As Variant

Public Property Get something() As Variant

 something = privateSomething

End Property

Public Property Let something(ByVal vNewValue As Variant)

 privateSomething = vNewValue

End Property

Microsoft Access VBA Programming for the Absolute Beginner282

Notice that the Property Get procedure behaves much like a Function procedure in that a
value is assigned to the procedure’s name. This type of assignment statement returns the
property’s value to the calling procedure. The Property Let procedure takes a single argument
as a parameter and assigns its value to the Private property. This is how instantiated objects
of this class access the privateSomething property without knowing how it’s declared or what
its name is.

The previous code blocks typify a read/write property. In other words, instantiated objects of
this class can read this property and write data to it. It’s common, however, to require read-
only properties in OOP. To do so, simply use a single Property Get procedure by removing the
corresponding Property Let procedure.

Option Compare Database

Private readOnlySomething As Variant

Public Property Get something() As Variant

 something = readOnlySomething

End Property

Using the Private property and a single Property Get procedure, instantiated objects of this
class can only read the property.

You can also use the Add Procedure dialog box to create matching Property Set and Property
Get procedures. After VBA has created the matching property procedures, simply change the
keyword Let to Set.

Option Compare Database

Private employee As Employee

Public Property Get NewEmployee() As Variant

 NewEmployee = employee

End Property

Chapter 11 • Object-Oriented Programming with Access VBA 283

Public Property Set NewEmployee(ByVal vNewValue As Employee)

 employee = vNewValue

End Property

Instead of a Variant data type (or any other data type, for that matter), the Property Set pro-
cedure called NewEmployee takes in a parameter of Employee type. The Property Set procedure
then assigns the object reference from the argument to the property of the same object type.
A matching Property Get procedure is used to return an object reference of the property.

You’ve probably noticed by now that these procedures are very simple. That’s because they
should be! The primary purpose of property procedures is to manage access to member vari-
ables. It may seem like overkill for what appears to be variable access, but in sections to
come and through practice you see the power of property encapsulation through property
procedures.

Method Procedures
Method procedures expose methods internally to the class module or externally to an instance
of the class. They are the meat and potatoes of object-oriented programming!

Creating methods for custom objects is quite easy. Simply create and place Sub or Function
procedures in your class modules to represent methods.

Remember from earlier in the book that function procedures return a value and subproce-
dures do not.

An example of each type of method is shown next.

Option Compare Database

Private result1 As Integer

Private result2 As Integer

Public Sub AddTwoNumbers(num1 As Integer, num2 As Integer)

 result1 = num1 + num2

End Sub

Microsoft Access VBA Programming for the Absolute Beginner284

Public Function MultiplyTwoNumbers(num1 As Integer, num2 As Integer) As Double

 MultiplyTwoNumbers = num1 * num2

End Function

The first method, AddTwoNumbers, takes two parameters and sets a property. If it’s necessary
for instances of this class to access this result, you should create a Property Get procedure
that returns the value of the result1 member variable.

The second method, MultiplyTwoNumbers, is a function that also takes two arguments and
performs a simple calculation. The big difference is that this method is a function, which
returns a value to the calling procedure by assigning a value to the method’s name.

To get a better understanding of object methods, consider the Connection object from the ADO
library. The Connection object has a method called Open. You and I both know that this method
establishes a connection to a database. But do we know how that method is implemented?
No, we don’t. And believe it or not, that’s a good thing. Think about all the programming that
must be involved to implement the Open method of the Connection object. It’s a sure bet that
it contains complicated data structures and algorithms. This is encapsulation at its finest.
Because the implementation detail is hidden, VBA programmers can simply call the method
and pass it a few parameters to successfully open a database connection.

You can, of course, encapsulate the ADO library even further by writing your own classes to
hide the dirty details of ADO programming. To demonstrate, imagine that a friend familiar
with VBA but not with ADO asks for your expertise in developing database connectivity. You
agree to help by creating a class that performs all details of ADO programming for connecting
to a database. You start your program design by thinking about what would be easiest for
your colleague to use. During design, you decide to create a new class called DbConnection that
takes care of all facets of connecting to a database and providing connection objects. Your
DbConnection class provides methods to connect and close the database connection and pro-
vides properties to access the ADO Connection object. After careful design, your class and its
methods and properties look something like the following code.

Option Compare Database

Private cnn As New ADODB.Connection

Public Sub OpenConnection(dbPath_ As String)

Chapter 11 • Object-Oriented Programming with Access VBA 285

 On Error GoTo ConnectionError

 'Assign OLEDB provider to the Provider property.

 'Use the Open method to establish a connection to the database.

 With cnn

 .Provider = "Microsoft.ACE.OLEDB.12.0"

 .Open dbPath_

 End With

 Exit Sub

ConnectionError:

 MsgBox "There was an error connecting to the database. " & Chr(13) _

 & Err.Number & ", " & Err.Description

End Sub

Public Sub CloseConnection()

 On Error GoTo ConnectionError:

 'Close the database connection.

 cnn.Close

 Exit Sub

ConnectionError:

 MsgBox "There was an error connecting to the database. " & Chr(13) _

 & Err.Number & ", " & Err.Description

End Sub

Public Property Get ConnectionObject () As Variant

 'Return an object reference of the Connection object.

 Set ConnectionObject = cnn

End Property

Microsoft Access VBA Programming for the Absolute Beginner286

This simple class, which contains two methods (CloseConnection and OpenConnection) and one
property (ConnectionObject), encapsulates the ADO programming required to manage a
database connection. In the next section, you see how easy it is for your friend to use your
class for managing a database connection.

Creating and Working with New Instances
After you’ve created a new class module, it becomes an available object type for you to use
when declaring variables. Using the DbConnection class from the preceding section, I can
declare an object variable in a Form Class module of DbConnection type.

Private Sub Form_Load()

 'Declare object variable as DbConnection type.

 Dim db As New DbConnection

 'Open the database connection.

 db.OpenConnection ("C:\temp\myDatabase.accdb")

End Sub

You can easily see how little code it takes to open a connection with the ADO programming
encapsulated in the DbConnection class. Users of the DbConnection class need only know what
methods and properties to utilize rather than concern themselves with the specific ADO
implementation details.

Working with object methods and properties is pretty straightforward. If you’ve been working
with VBA even a little, you’ve already had exposure to objects and their properties and meth-
ods. When object methods or properties return an object reference, you need to decide how
the returned object reference is to be used. For example, the DbConnection class contains a
Property Get procedure called ConnectionObject that returns a reference of the current ADO
Connection object.

Public Property Get ConnectionObject() As Variant

 'Return an object reference of the Connection object.

 Set ConnectionObject= cnn

End Property

Chapter 11 • Object-Oriented Programming with Access VBA 287

This property procedure appears as a property of the object when an instance of the class is
created. Because this property returns an object reference, I use a Set statement to retrieve
and assign the object reference to another object.

Private Sub Form_Load()

 Dim db As New DbConnection

 Dim newConnection As New ADODB.Connection

 db.OpenConnection ("C:\temp\myDatabase.accdb")

 'Returns an object reference.

 Set newConnection = db.ConnectionObject

End Sub

Another example of using the DbConnection class’s ConnectionObject property is to use it as an
argument by passing it into methods for recordset processing. To demonstrate, I added a new
method (function procedure) called ReturnAThing to my DbConnection class, which takes an
ADO Connection object as an argument.

Public Function ReturnAThing(cnn_ As ADODB.Connection) As Variant

 Dim rs As New ADODB.Recordset

 Dim thing As Variant

 Dim sql As String

 On Error GoTo DbError

 'Generate SQL string.

 sql = "select thing from AThing"

 'Open the read only / forward only recordset using SQL and the

 'Connection object passed in.

 rs.Open sql, cnn_, adOpenForwardOnly, adLockReadOnly, _ adCmdText

 If rs.EOF = False Then

 thing = rs!thing

 End If

Microsoft Access VBA Programming for the Absolute Beginner288

 rs.Close

 'Return the thing back to the calling procedure.

 ReturnAThing = thing

 Exit Function

DbError:

 MsgBox "There was an error retrieving a thing from " & _

 " the database. " & Chr(13) _

 & Err.Number & ", " & Err.Description

End Function

I can now use this method and the ConnectionObject property in the form class module to
return a thing.

Private Sub Form_Load()

 Dim db As New DbConnection

 Dim myThing As Variant

 Dim newConnection As New ADODB.connection

 db.OpenConnection ("C:\temp\myDatabase.accdb")

 myThing = db.ReturnAThing(db.ConnectionObject)

End Sub

Passing ADO Connection objects to methods allows me to be flexible in the type of connection
(database) used in recordset processing. If users of my class are fluent in SQL or the database
structure, I might add another parameter to the ReturnAThing method. This new parameter
could be a SQL string or part of a SQL string, which allows users to define what they want
from the database or from where they want it.

An important part of working with object instances is freeing and reclaiming resources when
your objects are no longer required. When objects are instantiated, VBA reserves memory and
resources for processing. To free these resources, simply set the object to Nothing.

Chapter 11 • Object-Oriented Programming with Access VBA 289

Private Sub Form_Load()

 Dim db As New DbConnection

 Dim myThing As Variant

 Dim newConnection As New ADODB.connection

 db.OpenConnection ("C:\temp\myDatabase.mdb")

 myThing = db.ReturnAThing(db.ConnectionObject)

 'Reclaim object resources

 Set db = Nothing

End Sub

It’s good programming practice to reclaim resources not only from custom objects, but also
from built-in objects such as the ones found in the ADO library. If you neglect to free object
resources, VBA does not remove them from memory until the application is terminated. If
your application uses a lot of objects, this can certainly lead to performance problems.

WORKING WITH COLLECTIONS
Collections are a data structure similar to arrays in that they allow you to refer to a grouping
of items as one entity. Collections, however, provide an ordered means for grouping not only
strings and numbers, but objects as well. As demonstrated next, the Collection object is used
to create a collection data structure.

Dim myCollection As New Collection

Collections are popular data structures in object-oriented programming because they allow
the grouping of objects using an ordered name/value pair. In fact, collections are objects
themselves!

Items in a collection are referred to as members. All collection objects have one property and
three methods for managing members, as described in Table 11.1.

Microsoft Access VBA Programming for the Absolute Beginner290

Adding Members to a Collection
Use the Add method of the Collection object to add members to a collection. The Add method
takes four parameters:

object.Add item, key, before, after

• item. A required expression that identifies the member to be added.

• key. An optional expression (string-based) that uniquely identifies the member.

• before. An optional expression that adds the member before the member position
identified.

• after. An optional expression that adds the member after the member position
identified.

When adding a member to a collection, only the before or after parameter can
be used, not both.

The following VBA code creates a new collection and adds three string-based members.

Dim myColors As New Collection

myColors.Add "red"

myColors.Add "white"

myColors.Add "blue"

As mentioned, collections are useful for grouping objects. The next VBA code creates three
ADO Recordset objects and adds them to a Collection object.

Dim books As New ADODB.Recordset

Dim authors As New ADODB.Recordset

Dim publishers As New ADODB.Recordset

T IP

T A B L E 1 1 . 1 C O L L E C T I O N O B J E C T P R O P E R T I E S A N D M E T H O D S

Type Name Description
Property Count Returns the number of members in the collection (beginning with 1).
Method Add Adds a member to the collection.
Method Remove Removes a member from the collection.
Method Item Returns a specific member in the collection.

Chapter 11 • Object-Oriented Programming with Access VBA 291

Dim myRecordsets As New Collection

myRecordsets.Add books

myRecordsets.Add authors

myRecordsets.Add publishers

By grouping objects in a collection, I can simplify code by accessing all objects through one
Collection object.

Removing Members from a Collection
Members are removed from a collection using the Collection object’s Remove method. The
Remove method takes a single parameter that identifies the index or key value of the member.

Removing a collection member using both the index value and key value is demonstrated
here.

Dim myColors As New Collection

myColors.Add "red", "r"

myColors.Add "white", "w"

myColors.Add "blue", "b"

myColors.Remove 1 ‘using an index value

myColors.Remove "w" ‘using a key value

Accessing a Member in a Collection
To access a member in a collection, use the Item method, which takes a single parameter that
matches a member’s index or key value.

Dim myColors As New Collection

myColors.Add "red", "r"

myColors.Add "white", "w"

myColors.Add "blue", "b"

MsgBox myColors.Item(1)

MsgBox myColors.Item("b")

MsgBox myColors.Item(4) 'Generates an error.

Microsoft Access VBA Programming for the Absolute Beginner292

If the index or key value of the member is not found in the collection, an error like that in
Figure 11.4 is generated.

FIGURE 11.4

An error is
generated when
trying to access a

member’s key
value or index that

does not exist.

For Each Loops
VBA provides a looping structure specifically designed for iterating through members in a
collection or an array. The For Each loop executes one or more statements inside the block as
long as there is at least one member in the collection.

Dim myColors As New Collection

Dim vColor As Variant

myColors.Add "red", "r"

myColors.Add "white", "w"

myColors.Add "blue", "b"

For Each vColor In myColors

 MsgBox vColor

Next

Notice the syntax of the For Each statement. The statement basically says, “For every object
in the collection, display the member name in a message box.”

The variable used in the For Each statement (called vColor in the preceding example) is always
of variant type regardless of the collection’s content. This is an important note because For
Each statements cannot be used with an array of user-defined types; variants can’t contain a
user-defined type.

Chapter 11 • Object-Oriented Programming with Access VBA 293

The next program code loops through all control names on a form using the built-in VBA
Controls collection.

Dim myControls As New Collection

Dim vControl As Variant

For Each vControl In Form_Form1.Controls

 MsgBox vControl.Name

Next

If you need to exit the For Each loop early, VBA provides the Exit For

statement.

CHAPTER PROGRAM: MONSTER DATING SERVICE
The Monster Dating Service program in Figure 11.5 uses chapter-based concepts to build a
funny and simple application. Essentially, the program allows a user to find an available
monster for a date by selecting character criteria.

FIGURE 11.5

Using chapter-
based concepts to
build the Monster
Dating Service

program.

Controls and properties of the Monster Dating Service program are shown in Table 11.2.

T IP

Microsoft Access VBA Programming for the Absolute Beginner294

T A B L E 1 1 . 2 C O N T R O L S A N D P R O P E R T I E S O F

T H E M O N S T E R D A T I N G S E R V I C E P R O G R A M

Control Property Property Value
Form Name Monsters

Caption Chapter Program

Record Selectors No

Navigation Buttons No

Dividing Lines No

Label Name lblHeading1

Caption Chapter 11—Object-Oriented Programming

with Access VBA

Label Name lblHeading2

Caption Monster Dating Service

Frame Name fraGender

Frame Label Name lblGender

Caption Gender:

Option Button Name optMale

Option Button Label Name lblMale

Caption Male

Option Button Name optFemale

Option Button Label Name lblFemale

Caption Female

Frame Name fraOutdoors

Frame Label Name lblOutdoors

Caption Outdoors Type?

Option Button Name optYes

Option Button Label Name lblYes

Caption Yes

Option Button Name optNo

Option Button Label Name lblNo

Caption No

Frame Name fraPersonality

Frame Label Name lblPersonality

Caption Personality Type:

Option Button Name optOutgoing

Option Button Label Name lblOutgoing

Caption Outgoing

Option Button Name optShy

Option Button Label Name lblShy

Caption Shy

Chapter 11 • Object-Oriented Programming with Access VBA 295

The Monster Dating Service program uses object-oriented programming techniques split
across two modules. The class module called Monster defines a monster object, which encap-
sulates all the functionality required to connect to the current database and retrieve monster
attributes based on user input.

Option Compare Database

Option Explicit

Private name As String

Private picture As String

Private id As Integer

Public Sub FindMonster(sql_ As String)

 Dim rs As New ADODB.Recordset

 Dim sql As String

 'This method finds and sets all necessary monster details.

 'If does not return a value. Users of this method must use

 'the read-only property procedures to access the monster

 'attributes.

 On Error GoTo MonsterError

 'Open the recordset based on the SQL string passed

 'in as an argument.

 rs.Open sql_, CurrentProject.AccessConnection, _

 adOpenForwardOnly, adLockReadOnly, adCmdText

Control Property Property Value
Command Button Name cmdFindMonster

Caption Find Your Dream Date

Label Name lblMonsterName

Caption Mummy is available for a date.

Image Name imgPicture

Picture mummy.gif

Size Mode Stretch

Microsoft Access VBA Programming for the Absolute Beginner296

 If rs.EOF = False Then

 'Retrieve the monster's id, which will be used later.

 id = rs!monsterId

 Else

 'No monster found with those attributes.

 'Raise a custom error.

 Err.Raise vbObjectError + 512, , "No monster found."

 End If

 rs.Close

 'Generate a new SQL string to retrieve the monster's

 'name and picture.

 sql = "select * from Monsters where MonsterId = " & id

 rs.Open sql, CurrentProject.AccessConnection, _

 adOpenForwardOnly, adLockReadOnly, adCmdText

 If rs.EOF = False Then

 'Assign monster name and picture to properties.

 name = rs!MonsterName

 picture = Application.CurrentProject.Path & "\" & _

 rs!picture

 End If

 rs.Close

 Exit Sub

MonsterError:

 MsgBox "Sorry, there was a problem finding the monster. " & _

Chapter 11 • Object-Oriented Programming with Access VBA 297

 Chr(13) & Err.Number & ", " & Err.Description

End Sub

Public Property Get MonsterName() As Variant

 'This property procedure returns the monster's name.

 MonsterName = name

End Property

Public Property Get MonsterPicture() As String

 'This property procedure returns the path and file

 'name of the monster's picture.

 MonsterPicture = picture

End Property

The form class module instantiates Monster objects to find an available monster for a date:

Option Compare Database

Option Explicit

Private Sub cmdFindMonster_Click()

 Dim aMonster As New Monster

 Dim gender As String

 Dim personality As String

 Dim outdoors As Boolean

 Dim sql As String

 'Generate a SQL string based on user selection criteria.

 If Me.fraGender.Value = 1 Then

 gender = "Male"

 Else

 gender = "Female"

Microsoft Access VBA Programming for the Absolute Beginner298

 End If

 If Me.fraOutdoors.Value = 1 Then

 outdoors = True

 Else

 outdoors = False

 End If

 If Me.fraPersonality = 1 Then

 personality = "Outgoing"

 Else

 personality = "Shy"

 End If

 sql = "select * from MonsterAttributes where Outdoors = " & _

 outdoors & " and Gender = '" & gender & "'" & _

 " and Personality = '" & personality & "'"

 'Try to find a monster based on the search criteria.

 aMonster.FindMonster sql

 'If a monster was found, display their name and picture.

 If aMonster.MonsterName = "" Then

 Me.lblMonsterName.Caption = _

 "Sorry, no one is available with " & _

 "that search criteria."

 Me.imgPicture.picture = _

 Application.CurrentProject.Path & "\" & "logo.gif"

 Else

 Me.lblMonsterName.Caption = aMonster.MonsterName & _

 " is available for a date."

 Me.imgPicture.picture = aMonster.MonsterPicture

 End If

End Sub

Chapter 11 • Object-Oriented Programming with Access VBA 299

SUMMARY
• Object-oriented programming maps data, structures, and business requirements to

objects.

• Encapsulation allows programmers to reduce code complexity by hiding data and com-
plex data structures in classes.

• Class modules contain member variables as well as property and method procedures.

• Class modules do not exist in memory.

• Multiple instances of a single class can be created.

• By default, VBA class modules contain two events called Initialize and Terminate.

• The Initialize event for a class module is triggered each time the class is instantiated
(created) using the New or Set keywords.

• The Terminate event is triggered each time the class’s instance is removed from memory.

• VBA provides property procedures for managing the attributes of a class.

• VBA provides three types of property procedures: Property Get, Property Let, and
Property Set.

• Property Get procedures return the value of a property.

• Property Let procedures assign a value to a property.

• Property Set procedures set the value of an object property.

• Use a single Property Get procedure to create a read-only property.

• Method procedures are created in class modules with Sub and Function procedures.

• Setting objects to Nothing frees system resources.

• Collections are objects that contain an ordered list of items.

• Items in a collection are called members.

• Members in a collection can be referenced with an index or key value.

• VBA provides the For Each loop to iterate through members in a collection or an array.

Microsoft Access VBA Programming for the Absolute Beginner300

Programming Challenges
1. Create a new database called BookStore with one table called

Books. Add the columns ISBN, Title, PublishDate, and Price to
the Books table. Add a few records to the Books table. Create a
new connection class called CustomConnection that connects
to your BookStore database. The new class should have two
methods—one method for opening an ADO Connection object
and a second method for closing the ADO Connection object.
The method that opens a database connection should take a
single string argument, which represents the path and
filename of the database.

2. In the same database application from Challenge 1, create a
new class called Books. This class should have a read-only
property for each column in the Books table. Create a method
in the Books class called FindBook. The FindBook method should
take in an ISBN. Build a SQL string based on the ISBN and use
ADO programming techniques to open a recordset and assign
the recordset field values to the class’s matching properties.
You should use the CustomConnection class to create and
retrieve any Connection objects.

3. Enhance Challenges 1 and 2 by building a form with controls
that allow a user to find a book by entering an ISBN. Use your
Books class from Challenge 2 to find and retrieve book details.

4. Enhance the user interface from Challenge 3 to allow a user to
add and remove books. To accomplish this, you need to modify
theBooks class from Challenge 2 by adding two methods called
AddBook and RemoveBook.

5. In a new Access application, create a Collection object called
Friends. Construct a user interface that allows a user to add
and remove names of friends in the Friends collection.

6. Add a command button to Challenge 5’s user interface that
displays each friend in a message box. Hint: Use the For Each
loop to iterate through members in the Friends collection.

Chapter 11 • Object-Oriented Programming with Access VBA 301

This page intentionally left blank

12C H A P T E R

MACROS AND

PERFORMANCE TUNING

n this chapter, you learn about Macro objects in Access 2007, including
how to create and debug stand-alone Macros and converting Macros to VBA
code. You’ll also learn about Form, VBA code, Query and Index perfor-

mance considerations to build a well-tuned Access database application. I will also
show you how to leverage out-of-the-box database optimization hints through
Access’s Performance Analyzer.

MACROS
Macros are Access objects that you build and assign to Form, Report, or Control
events to automate tasks and processes without VBA programming. Macros hide
the implementation details of the VBA programming language much like a class
definition encapsulates the complexities of an object’s functionality. For example,
you can create a Macro to open a Query when a user clicks a Command Button on
a Form by associating the Macro name to the Command Button’s On Click event
property.

Access 2007 has added and enhanced many Macro features, including:

I

• EEmbedded Macros are neither stored nor accessible in the Access Navigation Pane, but
rather are stored in the event properties of Form, Report, or Controls.

• IIncreased security options can be set in the Macro Builder to prevent non-trusted Macro
options from running.

• EError handling and debugging which include new Macro Actions to handle errors and
the ability to step through Macro Actions one at a time.

• TTemporary variables can now be created and used in a Macro’s conditional expression
and passed among Forms and Reports. A Macro’s temporary variables can also be ac-
cessed in VBA.

Stand-Alone Macros
Stand-alone Macros (a single Macro or a Macro group) can be created using the Macro Builder
by selecting the Macro icon from the Other group of the Create tab. Once created, Access 2007
displays an empty Macro in Design view, as revealed in Figure 12.1.

FIGURE 12.1

A newly created
Macro using the
Macro Builder.

To create your Macro, select one or more Macro Actions, as seen in Figure 12.2, and enter
values for each Action’s Arguments. Referenced in Table 12.1, Macro Actions contain common
Access database processes that build automation.

Microsoft Access VBA Programming for the Absolute Beginner304

T A B L E 1 2 . 1 A C C E S S 2 0 0 7 M A C R O A C T I O N S

Action Short Description
AddMenu Used to create menus
ApplyFilter Apply a filter or query to a table, form, or report
Beep Sounds a beep tone through the computer’s speaker
CancelEvent Cancels the event that caused the Macro to run
ClearMacroError Clears information about an error stored in the MacroError object
Close Closes a document tab
CloseDatabase Closes the current database
FindNext Finds the next record based on the FindRecord action
FindRecord Finds the first record based on specified criteria
GoToControl Moves focus to a specified field or control
GoToPage Moves focus to the first control on a specified page
GoToRecord Moves the specified record to the first record
Hourglass Changes the mouse pointer to a picture of an hourglass
LockNavigationPane Prevents database objects from being deleted in the Navigation Pane
Maximize Enlarges the active window to fill the Access window
Minimize Reduces the active window
MoveSize Moves or resizes the active window
MsgBox Displays a warning or informational message box
NavigateTo Manages the display of database objects in the Navigation Pane
OnError Specifies an action to happen on error occurrence
OpenForm Opens a form in Form, Design, Print, or Datasheet view
OpenQuery Opens a select or crosstab query in Datasheet, Design, or Print view
OpenReport Opens a report in either Design or Print view
OpenTable Opens a table in Design, Datasheet, or Print view
OpenView Opens a view in Design, Datasheet, or Print view
OutputTo Outputs data to several formats
Quit Exits Microsoft Access 2007
RemoveAllTempVars Removes all temporary variables
RemoveTempVar Removes a single temporary variable
Rename Renames a specified database object
RepaintObject Completes pending screen updates for a specified object
Requery Updates data for a specified control
Restore Restores a window to its previous size
RunCode Calls a VBA function procedure
RunCommand Executes a built-in Access 2007 command
RunMacro Runs a Macro
SearchForRecord Searches for a record in a table, form, report, or query
SelectObject Selects a specified database object
SendObject Emails a specified Access 2007 object

Chapter 12 • Macros and Performance Tuning 305

Some Actions have no Arguments, whereas others contain one or more. An Action’s Argu-
ment enables you to customize how the Action will behave. A short description can be seen
for each Argument at the bottom right of the screen by placing your cursor in the Action
Arguments section for each value. Comments for each Action can also be added in the Com-
ment column.

FIGURE 12.2

Selecting a Macro
Action and

defining the
Action’s

Arguments.

Select a Macro
Action

View Argument
values

Enter comments
for Macro Actions

Define values for each Argument

View a description
for each Argument

After your Macro has been created and saved, the Actions can be executed by clicking the Run
icon in the Tools section of the Design tab, as seen in Figure 12.3.

With my Macro created, I can assign the Macro to a Report, Form, or Control event property.
For example, Figure 12.4 demonstrates assigning a Macro name to the On Click event property
of a Command Button.

Action Short Description
SetDisplayedCategories Manages the categories displayed in the Navigation Pane
SetMenuItem Manages menu items on custom or global menus in the Add-Ins tab
SetProperty Sets a control’s property
SetTempVar Creates and sets a temporary variable
ShowAllRecords Removes a filter from a table, query, or form
ShowToolbar Displays or hides a group of commands in the Add-Ins tab
SingleStep Pauses Macro execution
StopAllMacros Stops all running Macros
StopMacro Stops a running Macro

Microsoft Access VBA Programming for the Absolute Beginner306

Click the Run
icon to execute
the active Macro

When executed, the MsgBox Action displays
an informational or warning message box

FIGURE 12.3

Running a Macro in
Design mode.

Assign the name of a saved Macro to a control’s event property

FIGURE 12.4

Assigning a Macro
to a control’s On
Click event

property.

Macros can also be executed from a VBA event procedure via the RunMacro method of the
DoCmd object. For example, the next VBA Form_Load() event procedure runs the Macro called
MessageBoxMacro by passing the Macro name (in double quotes) to the RunMacro method of the
DoCmd object.

Chapter 12 • Macros and Performance Tuning 307

Private Sub Form_Load()

 DoCmd.RunMacro "MessageBoxMacro"

End Sub

Conditions can be added to Macros to ensure a set of criteria is met before the Macro Action
occurs. Macro conditions are much like VBA conditions in that they must evaluate to either
True or False. If the Macro Condition evaluates to False, the Macro Condition will not execute.
If the Macro Condition evaluates to anything other than False, the Macro Action will execute.
To place Conditions in your Macros, simply click the Conditions icon in the Show/Hide area
of the Design tab as shown in Figure 12.5.

FIGURE 12.5

Enabling and
creating Macro

Conditions.

Displays the Condition
column for Macro Actions

Macro Conditions must
evaluate to either True or False

Enter False as a Condition to temporarily have Access ignore a Macro Action.

As seen in Figure 12.5, I created two Actions for my Macro. The first Action uses the IsNull
function to check for text in the txtName Text Box. If the Condition evaluates to True, the Action
will execute, in this case alerting the user to enter his or her name. The second Condition also
uses the IsNull function, but in this case the Action will only execute if the Condition eval-
uates to False.

I’ll try my new Macro with Conditions by creating a simple Form containing one Text Box
with corresponding Label, and one Command Button. Next, I will assign my new Macro called
MessageBoxMacro2 to the Command Button’s On Click event property, as shown in Figure 12.6.

T IP

Microsoft Access VBA Programming for the Absolute Beginner308

Assign Macro name to On Click event

FIGURE 12.6

Assigning the
MessageBoxMacro2

to a Command
Button’s On
Click event.

After entering my name (Michael Vine) into the Text Box control, I click the Command Button
that has the associated Macro name assigned to the On Click event property with output
shown in Figure 12.7.

FIGURE 12.7

Sample output
using a Macro with

Conditions.

Chapter 12 • Macros and Performance Tuning 309

Access objects (for example, Control or Form name) used in a Macro’s Condition should have
an explicit reference to the object’s location. For example, the following Macro Condition will
generate an error, shown in Figure 12.8, if the Macro is run in the Macro Design view.

IsNull([txtName])

FIGURE 12.8

Attempting to
execute a Macro in
Macro Design view

that has an
improperly
referenced
control in a
Condition.

To successfully execute a Macro in Macro Design view that has a reference to a Control name
anywhere in the Macro (for example, Macro Condition or Argument value), you must explic-
itly tell the Access Macro what Report or Form the Control belongs to using the Forms or
Reports Collection, followed by the Form or Report name, then the Control name, with an
exclamation mark (!) in between each object. Each object referenced should also be sur-
rounded by brackets ([]), as demonstrated in the following code.

IsNull([Forms]![Macro Demo Form2]![txtName])

With Forms, Reports, and/or Controls properly referenced, it’s important to know that a
Macro still cannot execute by itself in Macro Design view without the associated Form or
Report also opened in Design, Report, or Layout view. Attempting to execute a stand-alone
Macro in Design view without the associated Form or Report opened will generate an error,
as shown in Figure 12.9.

FIGURE 12.9

Attempting to
execute a Macro in
Macro Design view

without the
associated Form or

Report also
opened.

Microsoft Access VBA Programming for the Absolute Beginner310

Macro Troubleshooting and Error Handling
As you learned in Chapter 8, “Debugging, Input Validation, File Processing, and Error Han-
dling,” Access VBA provides mechanisms for debugging code such as stepping through one
line of code at a time. A similar offering is given to Macro developers to allow them to step
through Macro Actions and isolate any defects or errors encountered. This is accomplished
by clicking the Single Step icon in the Tools area of the Macro Design tab, as shown in
Figure 12.10.

Step through Macro
Actions

FIGURE 12.10

Observe a Macro’s
flow by stepping

through each
Action.

Stand-alone Macro Actions can be executed successfully all at once or one at a time from
within the Macro Design view by clicking the Run icon in the Tools area. If the Single Step
option has been selected, a Macro Single Step window will appear (as shown in Figure 12.11)
that allows you to view each Macro’s Condition, Action name, Arguments, and any associated
errors.

FIGURE 12.11

Stepping through
one Action at a
time using the

Macro Single Step
window.

Once selected, the Single Step functionality can also be invoked outside of the Macro Design
view by assigning the Macro name to a Report, Form, or Control event property.

Chapter 12 • Macros and Performance Tuning 311

Just as with VBA code, it’s always a good idea to implement error-handling routines for those
unexpected results or defects or, as I like to say, “undocumented features.” Macro developers
can implement error handling routines using the OnError Action, which has two Arguments,
which are described next.

• GGo to—Denotes the behavior to occur when an error is generated. Default values include:

• Next—Moves Macro execution to the next Action.

• Macro Name—Stops Macro execution and runs the Macro identified in the Macro Name
Argument.

• Fail—Stops Macro execution and displays an error message.

• MMacro Name—Identifies the Macro to be used in error handling if the Macro Name
Go to value is selected. For example, the error handling Macro could be titled
ErrorHandler, and include a MsgBox Action to customize error communication to the user.

Generally speaking, the OnError Action should be placed at the top of the Macro Actions (before
any other Action) so that error handling is in effect for subsequent Actions.

Access 2007 also includes the MacroError object that incorporates properties for determining
specific information about run-time Macro errors. The next bulleted list describes properties
of the MacroError object.

• ActionName—The Macro Action that was running when the error occurred.

• Arguments—The specified Arguments in the Macro Action that was running when the
error occurred.

• Condition—The Condition the Macro Action was using when the error occurred.

• Description—Represents the error message text.

• MacroName—The name of the Macro executed when the error occurred.

• Number—The current error number.

The MacroError object and its properties can be used in Macro Actions to customize and display
information about Macro errors. Because the MacroError object contains information about
a single error only, the MacroError object will hold information about the last error encoun-
tered in a series of errors. The MacroError object and its properties can be used in Macro Actions
(for example, the Message argument of the MsgBox Action) to customize and display informa-
tion about errors as the next line of code demonstrates.

="Error " & [MacroError].[Number] & " with " & [MacroError].[ActionName] & "."

Although all property information in the MacroError object is reset (cleared) when a Macro
ends, Access 2007 does provide the ClearMacroError Action to clear property information

Microsoft Access VBA Programming for the Absolute Beginner312

for the MacroError object. Figure 12.12 demonstrates error handling using the OnError and
ClearMacroError Actions in conjunction with the MacroError object.

FIGURE 12.12

Incorporating
error handling into
Macros using the
OnError and

ClearMacroError

Actions.

Converting Macros to VBA
Microsoft Access 2007 can convert stand-alone Macros to VBA procedures, which will in turn
perform similar actions as the original Macro. This conversion process is fully automated and
is easily performed by simply opening the Form or Report in Design view and clicking the
Convert Form’s (or Report’s) Macros to Visual Basic icon from the Macro area of the Database
Tools tab, as shown in Figure 12.13.

Converts a Form’s
stand-alone Macros
to VBA code

FIGURE 12.13

Viewing the
Convert Form’s
Macros to Visual

Basic option.

Chapter 12 • Macros and Performance Tuning 313

Once selected, Access prompts you with two conversion options, which are to add VBA error
handling to generated functions and include Macro comments as revealed in Figure 12.14.

FIGURE 12.14

Selecting Macro to
VBA code

conversion
options.

After the Macro conversion has completed, Access creates all necessary VBA procedures and
code to produce similar functionality, and re-assigns values in event properties (for example,
On Click) from a Macro name to the [Event Procedure] value.

Stand-alone Macro objects are not deleted from the Access database after a Macro to VBA
conversion completes.

In the case of my Macro created earlier titled MessageBoxMacro2 (shown in Figure 12.10), the
Macro conversion process creates the following VBA code.

'--

' cmdVerify_Click

'

'--

Private Sub cmdVerify_Click()

On Error GoTo cmdVerify_Click_Err

 If (IsNull(Forms![Macro Demo Form2]!txtName)) Then

 Beep

 MsgBox "Please enter your name.", vbExclamation, "Chapter12"

 End If

 If (IsNull(Forms![Macro Demo Form2]!txtName) = False) Then

 Beep

 MsgBox "Thank you!", vbExclamation, "Chapter12"

 End If

Microsoft Access VBA Programming for the Absolute Beginner314

cmdVerify_Click_Exit:

 Exit Sub

cmdVerify_Click_Err:

 MsgBox Error$

 Resume cmdVerify_Click_Exit

End Sub

Notice the two If conditions in the preceding Command Button Click event procedure, one
checking for a True value and the other for a False value. These VBA code conditions contain
the same conditional logic and subsequent actions as did the converted Macro! In addition
to VBA conditions, the conversion process also created VBA error-handling routines for my
event procedure, as specified in the conversion options window (refer to Figure 12.13).

ACCESS DATABASE PERFORMANCE CONSIDERATIONS
There comes a time in every developer’s life when an application’s performance has become
undesirable. Generally speaking, performance problems are the result of one or more over-
sights that may include an unexpected increase in data volume that slows query and data
operation responses, not having enough time to tune the application properly during or after
application development, or not having the knowledge about what performance optimiza-
tions to consider in the first place. Whether you created the application yourself or inherited
the support of an existing application, performance issues can lead to end-user dissatisfaction
and ultimately a lack of trust and use of the application. By learning and leveraging key
performance considerations and techniques, you’ll be sure to keep your Access database
application humming.

The most common areas one should consider Access performance optimizations are with
Forms, VBA code, Queries, and Indexes. I will show you common optimization techniques in
each of these areas that you should consider during your application design, construction,
and maintenance. Before moving into area-specific performance considerations, consider the
following general recommendations for Access installed on a local computer:

• For non-shared databases, install Access and all databases on a local disk drive rather
than on a network shared drive.

• Open an Access database for “Exclusive Use” if the database has only one user. This is
accomplished one of two ways: First, in the Access Open dialog box, click the arrow next
to the Open button and select Open Exclusive. Or, use the /excl command line switch in

Chapter 12 • Macros and Performance Tuning 315

a program shortcut or via the Windows Start/Run procedure, as shown in the following
line of code.

"c:\Access 2007\msaccess.exe" /excl "c:\database_folder\database_name.accdb"

• Ensure the Access program has enough memory to successfully run and execute pro-
cesses by closing all unnecessary programs and ensuring available memory in your
system meets minimal requirements, as described in the “System Requirements” section
from Chapter 1.

• Keep Access databases on uncompressed disk drives.

• Regularly delete unneeded files from the Windows Recycle Bin and run the Windows
Disk Defragmenter.

• Use blank screen savers, or none at all, and solid color desktop wallpapers.

Forms
Though the performance of Forms may not be an obvious consideration during database
tuning, the following recommendations can shave seconds off of the loading and processing
of graphical controls and improve the overall performance of your Access application.

• Close all non-used Forms to reclaim memory.

• Set a Form’s Data Entry property to Yes for Forms that will be used primarily for entering
new records. Otherwise, Access will read all records before showing the empty record at
the end of the recordset.

• Use graphical objects sparingly, or convert graphics from color to black and white.

• Remove code from Forms that that do not require VBA, and set the Form’s Has Module
property to No. Instead of using VBA code for simple event procedures, consider using
Macros. Forms without code modules can still have controls that call functions and
procedures from a Standard module. Forms without code modules load more quickly.

• Only include fields in Sub Forms that are absolutely necessary. Base a Sub Form’s data
on a saved Query rather than a Table.

• Fields used in a Sub Form that are part of criteria or are linked to the main Form should
be indexed.

• The source of List and Combo Boxes should be based on a saved Query rather than a SQL
statement or Table by changing the List or Combo Box’s Row Source property.

• Fields displayed in a List or Combo Box should be indexed.

Microsoft Access VBA Programming for the Absolute Beginner316

VBA Code
The following VBA code performance considerations should be evaluated during the design
and development of new Access applications and can be applied to existing applications
without changing the application’s external behavior.

• Ensure variables are explicitly declared by checking the Require Variable Declaration
option from the VBA code window’s Tools/Options menu item.

• Remember to remove unused procedures and variables to conserve memory.

• Leverage Constants whenever possible.

• Use the Variant data type sparingly.

• Compile VBA code by either saving an Access databases in the ACCDE file format or by
using the Compile option from the Debug menu in the VBA code window.

• When possible, leverage the Integer or Long data types for mathematical operations.

• Use indexed fields for the FindRecord and FindNext methods.

• Create object variables to store Control or Form property values rather than identifying
and accessing the Control or Form property numerous times.

• Leverage the Me keyword for Form references within event procedures.

• Avoid using the IF function for return expressions that take a long time to process.

• Leverage the Erase or ReDim statements with dynamic arrays to reclaim memory.

• Encourage Access VBA to load modules as needed and conserve memory by putting re-
lated procedures in the same modules.

Queries and Indexes
The most common approach to tuning a database’s performance or solving an existing per-
formance problem is to analyze your queries and indexes because optimizing queries and
indexes often results in the largest gains in database performance. On the other hand, a poorly
written query or the lack of proper index utilization can bring the system the database resides
on to its knees. Consider the following recommendations to prevent a system lockup or a
query that seems to never return any results.

• Before creating a query, know how many rows are in the table or tables being queried
and approximately how many rows you expect back from the query.

• When appropriate, leverage conditions in a SQL WHERE clause to minimize the number
of rows returned by a query.

• When possible, avoid sorting hefty result sets, which can consume large amounts of
memory.

Chapter 12 • Macros and Performance Tuning 317

• Leverage GROUP BY instead of DISTINCT to eliminate duplicate rows. The GROUP BY clause
eliminates duplicate rows sooner in the query process than does the DISTINCT clause.

• Leverage indexes to find and sort data quicker. Indexes store record locations by the field
or fields indexed. When a query finds the location from an index, it is able to move
directly to the record’s location rather than scanning through the entire table.

• As a general rule of thumb, indexes should be used on Primary and Foreign Keys.

• The WHERE clause in large queries should reference indexed fields.

• Create indexes on other columns that are used in table joins.

• Avoid indexing small tables to save the cost of loading and processing indexes.

• Avoid indexing columns that are frequently updated, which increases the amount of
database write time.

• Only use indexes as required. Each index consumes disk space and must be managed by
the database system.

Performance Analyzer
Now that you’ve seen performance considerations and optimization best practices for Access
databases, let me show you how to leverage the built-in Performance Analyzer for receiving
feedback and hints directly from Access itself!

The Performance Analyzer can be accessed via the Analyze Performance icon in the Analyze
area of the Database Tools tab, as shown in Figure 12.15.

FIGURE 12.15

Accessing the
Performance
Analyzer tool

from the Database
Tools tab.

Launches the Performance Analyzer tool

Once launched, the Performance Analyzer window, revealed in Figure 12.16, allows you to
select which Access objects (Tables, Queries, Forms, Reports, Macros, and Modules), you’d like
analyzed. Each tab allows you to select one or more object by category. You can also view all

Microsoft Access VBA Programming for the Absolute Beginner318

objects under the All Object Types tab. For the example, I ran Performance Analyzer against
the Northwind database that comes with Access 2007, as shown in Figure 12.16.

FIGURE 12.16

The Performance
Analyzer tool.

After Access objects have been selected for which you’d like analyzed, click the OK button.
Using pre-determined performance-tuning considerations, the Performance Analyzer scans
the identified objects and returns the results in a new window, as observed in Figure 12.17.

FIGURE 12.17

Viewing
Performance

Analyzer results.

Performance Analyzer considers and lists three types of results as defined next:

• RRecommendation—Advice that will most likely improve the performance of the Access
object analyzed. Performance Analyzer can perform these optimizations for you and
mark the Recommendation as Fixed once complete.

• SSuggestion—Advice that has potential trade-offs (good and bad) that should be consid-
ered before optimizing. Performance Analyzer can perform these optimizations for you
and mark the Recommendation as Fixed once complete.

• IIdea—General advice that may improve the performance of the object analyzed. Idea
optimizations must be performed by you.

Chapter 12 • Macros and Performance Tuning 319

You can view information about each analysis by clicking a result in the list and viewing the
details in the Analysis Notes box at the bottom of the window.

Although the Performance Analyzer tool does not provide suggestions for tuning the system
your database is running on, it should be the first place you start when looking to optimize
the performance of your Access database.

SUMMARY
• Macros allow you to automate tasks and processes without VBA code.

• Stand-alone Macros can be created using the Macro Builder.

• Macro Actions contain common Access database processes that build automation.

• Macro Action Arguments allow you to customize how the Action will behave.

• Stand-alone Macros can be assigned to a Report, Form, or Control event property.

• Macros can also be executed from a VBA event procedure via the RunMacro method of the
DoCmd object.

• Conditions can be added to Macros to ensure a set of criteria is met before the Macro
Action runs.

• Macro Conditions evaluate to either True, causing the Action to execute, or False, pre-
venting the Macro Action from executing.

• The Single Step option allows you view a Macro’s Arguments, Conditions, and any asso-
ciated errors one Action at a time.

• The OnError Action is used to implement error handling in Macros.

• Access 2007 includes the MacroError object that includes properties for determining
specific information about run-time Macro errors.

• The ClearMacroError Action resets property information for the MacroError object.

• Microsoft Access 2007 is capable of converting stand-alone Macros to VBA code.

• The most common Access database areas to consider while performance tuning are with
Forms, Queries, Indexes, and VBA code.

• Indexes store record locations by the field or fields indexed.

• Access 2007 includes the Performance Analyzer tool that can aid in optimizing your
database application by reviewing a database’s design and providing recommendations
for change.

Microsoft Access VBA Programming for the Absolute Beginner320

• Performance Analyzer lists three types of optimization advice, including Recommenda-
tions, Suggestions, and Ideas.

• Optimization Recommendations and Suggestions can be performed by the Performance
Analyzer. Idea optimizations must be performed by you.

Programming Challenges
1. Create a new Form with one Command Button titled

cmdCloseForm. Create a new Macro called Close Form with the
Close Action value. The Arguments for the Close Action should
close the Form. Save both objects and test the Macro by
assigning the Macro name to the Command Button’s On Click
Event property.

2. Create a new Form with one Text Box and one Command
Button. The Form will allow a user to enter their age into the
Text Box and click a Command Button to validate input. Create
a new Macro called Test User Input with one MsgBox Action
that uses the IsNumeric function in the Action’s Condition to
validate numeric (non-text) data was entered into the Text
Box. If the user did not enter numeric data into the Text Box,
use the MsgBox Action to display a Message Box to the user.

3. Create an Access table named Students with three columns,
Student_Id, Last_Name, and First_Name. Insert sample records
into the Students table. Create a new Access Form called Find
Student, similar to the one shown in Figure 12.18, with the
controls and properties shown in Table 12.2.
Create a Macro also called Find Student that uses the
SearchForRecord Macro Action. The SearchForRecord Macro
Action should use input from the txtLastName Text Box to
locate a matching record in the Students table and in turn
display the ID, First_Name, and Last_Name information in the
corresponding Text Boxes. Hint: The Where Condition Argument
of the SearchForRecord Action should resemble the following:

="Last_Name = '" & [Forms]![Manage Students]!

[txtLastName] & "'"

Chapter 12 • Macros and Performance Tuning 321

FIGURE 12.18

The Find
Student Form

from
Programming
Challenge #3.

T A B L E 12.2 C O N T R O L S A N D P R O P E R T I E S O F T H E F I N D S T U D E N T F O R M

Control Property Property Value
Form Name Find Student

Caption Programming Challenge #3

Record Source Students

Text Box Name txtLastName

Label Name lblLastName

Caption Enter Student’s Last Name:

Text Box Name txtID

Control Source Student_Id

Enabled No

Label Name lblID

Caption ID:

Text Box Name txtFirstName

Control Source First_Name

Enabled No

Label Name lblFirstName

Caption First Name:

Text Box Name txtLastName

Control Source Last_Name

Enabled No

Label Name lblLastName

Caption Last Name:

Command Button Name cmdFindStudent

Caption Find Student

On Click Find Student (Macro name)

Microsoft Access VBA Programming for the Absolute Beginner322

AA P P E N D I X

COMMON CHARACTER

CODES

he items in this table represent the most common characters and
associated character codes used in conjunction with the Chr and Asc
functions.

Code Character
8 Backspace
9 Tab
10 Line feed
13 Carriage return
32 Spacebar
33 !
34 “
35 #
36 $
37 %
38 &
39 ‘

T

Code Character
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q

324 Microsoft Access VBA Programming for the Absolute Beginner

Code Character
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ∧

95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {

Appendix A • Common Character Codes 325

Code Character
124 |
125 }
126 ∼
127 Del (Delete key)

326 Microsoft Access VBA Programming for the Absolute Beginner

BA P P E N D I X

KEYBOARD SHORTCUTS

FOR THE CODE WINDOW

he items in the following table represent common keyboard shortcuts that
can be used in the Visual Basic Environment’s (VBE) Code window.

Task Shortcut
Beginning of module Ctrl+Home
Clear all breakpoints Ctrl+Shift+F9
Delete current line Ctrl+Y
Delete to end of word Ctrl+Delete
End of module Ctrl+End
Find Ctrl+F
Find next F3
Find previous Shift+F3
Go to last position Ctrl+Shift+F2
Indent Tab
Move one word to left Ctrl+Left Arrow
Move one word to right Ctrl+Right Arrow

T

Task Shortcut
Move to beginning of line Home
Move to end of line End
Next procedure Ctrl+Down Arrow
Outdent Shift+Tab
Previous procedure Ctrl+Up Arrow
Replace Ctrl+H
Shift one screen down Ctrl+Page Down
Shift one screen up Ctrl+Page Up
Undo Ctrl+Z
View Code window
(control selected in Design view) F7
View definition Shift+F2
View Object Browser F2
View shortcut menu Shift+F10

Microsoft Access VBA Programming for the Absolute Beginner328

CA P P E N D I X

TRAPPABLE ERRORS

icrosoft provides a comprehensive list of trappable errors that you can
catch, display, and troubleshoot during runtime, development, or compile
time.

Error Code Error Description
3 Return without GoSub
5 Invalid procedure call
6 Overflow
7 Out of memory
9 Subscript out of range
10 This array is fixed or temporarily locked
11 Division by 0
13 Type mismatch
14 Out of string space
16 Expression too complex
17 Can’t perform requested operation
18 User interruption (Ctrl + Break) occurred

M

Error Code Error Description
20 Resume without error
28 Out of stack space
35 Sub, Function, or Property not defined
47 Too many code resource or DLL application clients
48 Error in loading code resource or DLL
49 Bad code resource or DLL calling convention
51 Internal error
52 Bad filename or number
53 File not found
54 Bad file mode
55 File already open
57 Device I/O error
58 File already exists
59 Bad record length
61 Disk full
62 Input past end of file
63 Bad record number
67 Too many files
68 Device unavailable
70 Permission denied
71 Disk not ready
74 Can’t rename with different drive
75 Path/file access error
76 Path not found
91 Object variable or With block variable not set
92 For loop not initialized
93 Invalid pattern string
94 Invalid use of Null
97 Can’t call Friend procedure on an object that is not an

instance of the defining class
98 A property or method call cannot include a reference to a

private object, either as an argument or as a return value
298 System resource or DLL could not be loaded
320 Can’t use character device names in specified filenames
321 Invalid file format
322 Can’t create necessary temporary file
325 Invalid format in resource file
327 Data value named not found
328 Illegal parameter; can’t write arrays

Microsoft Access VBA Programming for the Absolute Beginner330

Error Code Error Description
335 Could not access system registry
336 Component not correctly registered
337 Component not found
338 Component did not run correctly
360 Object already loaded
361 Can’t load or unload this object
363 Control specified not found
364 Object was unloaded
365 Unable to unload within this context
368 The specified file is out of date; this program requires a

later version
371 The specified object can’t be used as an owner form

for Show
380 Invalid property value
381 Invalid property-array index
382 Property Set can’t be executed at runtime
383 Property Set can’t be used with a read-only property
385 Need property-array index
387 Property Set not permitted
393 Property Get can’t be executed at runtime
394 Property Get can’t be executed on write-only property
400 Form already displayed; can’t show modally
402 Code must close topmost modal form first
419 Permission to use object denied
422 Property not found
423 Property or method not found
424 Object required
425 Invalid object use
429 Component can’t create object or return reference to this

object
430 Class doesn’t support Automation
432 Filename or class name not found during Automation

operation
438 Object doesn’t support this property or method
440 Automation error
442 Connection to type library or object library for remote

process has been lost
443 Automation object doesn't have a default value
445 Object doesn’t support this action

Appendix C • Trappable Errors 331

Error Code Error Description
446 Object doesn’t support named arguments
447 Object doesn’t support current locale setting
448 Named argument not found
449 Argument not optional or invalid property assignment
450 Wrong number of arguments or invalid property

assignment
451 Object not a collection
452 Invalid ordinal
453 Specified code resource not found
454 Code resource not found
455 Code resource lock error
457 This key is already associated with an element of this

collection
458 Variable uses a type not supported in Visual Basic
459 This component doesn’t support the set of events
460 Invalid Clipboard format
461 Method or data member not found
462 The remote server machine does not exist or is unavailable
463 Class not registered on local machine
480 Can’t create AutoRedraw image
481 Invalid picture
482 Printer error
483 Printer driver does not support specified property
484 Problem getting printer information from the system;

make sure printer is set up correctly
485 Invalid picture type
486 Can’t print form image to this type of printer
520 Can’t empty Clipboard
521 Can’t open Clipboard
735 Can’t save file to TEMP directory
744 Search text not found
746 Replacements too long
31001 Out of memory
31004 No object
31018 Class is not set
31027 Unable to activate object
31032 Unable to create embedded object
31036 Error saving to file
31037 Error loading from file

Microsoft Access VBA Programming for the Absolute Beginner332

DA P P E N D I X

VISUAL BASIC

ENVIRONMENT OPTIONS

icrosoft enables you to customize the look and feel of the VBE (Visual Basic
Environment) development environment by way of the Options dialog box,
which can be accessed via the VBE’s Tools menu.

The Options dialog box contains four tabs, with each tab revealing customizable
settings for the Editor, Editor Format, General, and Docking areas. The customiz-
able options in each tab are described in the following tables.

M

T A B L E D . 1 E D I T O R O P T I O N S

Option Option Description
Auto Syntax Check Verifies correct syntax after a line of code is entered
Require Variable Declaration Requires explicit variable declaration in modules
Auto Indent After the first line of code is tabbed, all subsequent

lines start at that tab location
Tab Width Sets the tab width, ranging from 1 through 32

spaces (4 spaces is default)
Default to Full Module View New module procedures are displayed in the Code

window as a single scrollable list, or one procedure
at a time

Procedure Separator Displays separator bars in the Code window at the
end of each procedure

Auto List Members Displays information that logically completes a
VBA statement

Auto Quick Info Provides information about functions and
arguments as you type

Auto Data Tips In break mode only, displays values of variables
during a mouse over

Drag-Drop in Text Editing Allows code to be dragged from the Code window
to the Immediate or Watch windows

T A B L E D . 2 E D I T O R F O R M A T O P T I O N S

Option Option Description
Foreground, Background, and
Indicator

The color of different categories of text

Font The font for displaying code
Size The font size used for code
Margin Indicator Bar Displays the Margin Indicator Bar

Microsoft Access VBA Programming for the Absolute Beginner334

T A B L E D . 3 G E N E R A L O P T I O N S

Option Option Description
Show Grid Displays the form grid
Grid Units The unit of measurement for the grid
Width The form’s grid cell width
Height The form’s grid cell height
Align Controls to Grid Automatically places the outer edge of controls on

the nearest grid lines
Show ToolTips Displays ToolTips for toolbar buttons
Collapse Proj. Hides Windows Closes the project, form, object, or module

windows when a project is collapsed in the Project
Explorer

Notify Before State Loss Displays message that an action will cause all
module-level variables to be reset

Break on All Errors All errors cause the project to enter break mode
Break in Class Module Unhandled errors from a class module cause the

project to enter break mode
Break on Unhandled Errors Unhandled errors cause the project to enter break

mode
Compile on Demand Code is fully compiled before a project starts or as

needed
Background Compile During runtime, idle time is used to finish compiling

the project in background

T A B L E D . 4 D O C K I N G O P T I O N S

Option Option Description
Dockable Allows a window to be anchored to an adjacent

Dockable window or the VBE window

Appendix D • Visual Basic Environment Options 335

This page intentionally left blank

EA P P E N D I X

RESERVED WORDS AND

SYMBOLS

eserved words and symbols have significance to Access 2007 and the Access
2007 database engine. Errors can be encountered when using reserved
words and symbols during the naming and use of fields, tables, controls,

variables, and other Access objects. These errors can be encountered in either
design time or runtime but may not be informative enough to denote a reserved
word or symbol as the cause of the error. Reserved word and symbol errors can be
avoided by surrounding reserved words and symbols with brackets ([]), but as a best
practice, it’s wise not to use reserved words nor symbols when naming Access
objects.

R

T A B L E E . 1 R E S E R V E D W O R D S A N D S Y M B O L S

Reserved Words and Symbols
'
-
!
"
#
$
%
&
*
.
/
:
;
?
ABSOLUTE
ACTION
ADD
ADMINDB
ALL
ALLOCATE
Alphanumeric
ALPHANUMERIC
ALTER
AND
ANY
Application
ARE
AS
ASC
ASSERTION
Assistant
AT
AUTHORIZATION
AUTOINCREMENT
AVG
Avg
BAND

BEGIN
BETWEEN
BINARY
BIT
BIT_LENGTH
BNOT
BOOLEAN
BOR
BOTH
BXOR
BY
BYTE
CASCADE
CASCADED
CASE
CAST
CATALOG
CHAR
CHAR, CHARACTER
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK
CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMIT
COMP
CompactDatabase
COMPRESSION
CONNECT
CONNECTION
CONSTRAINT
CONSTRAINTS
CONTAINER

Microsoft Access VBA Programming for the Absolute Beginner338

Reserved Words and Symbols
Container
CONTINUE
CONVERT
CORRESPONDING
COUNT
Count
COUNTER
CREATE
CreateDatabase
CREATEDB
CreateField
CreateGroup
CreateIndex
CreateObject
CreateProperty
CreateRelation
CreateTableDef
CreateUser
CreateWorkspace
CROSS
CURRENCY
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER
CurrentUser
CURSOR
DATABASE
DATE
DATETIME
DAY
DEALLOCATE
DEC
DECIMAL
DECLARE
DEFAULT
DEFERRABLE
DEFERRED
DELETE

DESC
DESCRIBE
Description
DESCRIPTOR
DIAGNOSTICS
DISALLOW
DISCONNECT
DISTINCT
DISTINCTROW
Document
DOMAIN
DOUBLE
DROP
Echo
Else
ELSE
End
END
END-EXEC
Eqv
Error
ESCAPE
EXCEPT
EXCEPTION
EXCLUSIVECONNECT
EXEC
EXECUTE
EXISTS
Exit
EXTERNAL
EXTRACT
FALSE
FETCH
Field, Fields
FillCache
FIRST
FLOAT
FLOAT4
FLOAT8
FOR

Appendix E • Reserved Words and Symbols 339

Reserved Words and Symbols
FOREIGN
Form, Forms
FOUND
FROM
Full
FULL
FUNCTION
GENERAL
GET
GetObject
GetOption
GLOBAL
GO
GOTO
GotoPage
GRANT
GROUP
GROUP BY
GUID
HAVING
HOUR
IDENTITY
Idle
IEEEDOUBLE
IEEESINGLE
If
IGNORE
IMAGE
IMMEDIATE
Imp
IN
INDEX
Index
Indexes
INDICATOR
INHERITABLE
ININDEX
INITIALLY
INNER
INPUT

INSENSITIVE
INSERT
InsertText
INT
INTEGER
INTEGER1
INTEGER2
INTEGER4
INTERSECT
INTERVAL
INTO
IS
ISOLATION
JOIN
KEY
LANGUAGE
LAST
LastModified
LEADING
LEFT
LEVEL
Level
Like
LIKE
LOCAL
LOGICAL
LOGICAL1
LONG
LONGBINARY
LONGCHAR
LONGTEXT
LOWER
Macro
MATCH
Match
MAX
MEMO
MIN
MINUTE
Mod

Microsoft Access VBA Programming for the Absolute Beginner340

Reserved Words and Symbols
Module
MODULE
MONEY
MONTH
Move
NAME
NAMES
NATIONAL
NATURAL
NCHAR
NewPassword
NEXT
NO
Not
NOT
NOTE
Note
NULL
NULLIF
NUMBER
NUMERIC
Object
OBJECT
OCTET_LENGTH
OFF
OFOLEOBJECT
OLEOBJECT
ON
ONONLY
OPEN
OpenRecordset
OPTION
OR
ORDER
Orientation
ORORDER
Outer
OUTER
OUTPUT
OVERLAPS

OWNERACCESS
PAD
Parameter
PARAMETERS
Partial
PARTIAL
PASSWORD
PERCENT
PIVOT
POSITION
PRECISION
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVILEGES
PROC
PROCEDURE
Property
PUBLIC
Queries
Query
Quit
READ
REAL
Recalc
Recordset
REFERENCES
Refresh
RefreshLink
RegisterDatabase
Relation
RELATIVE
Repaint
RepairDatabase
Report
Reports
Requery
RESTRICT
REVOKE

Appendix E • Reserved Words and Symbols 341

Reserved Words and Symbols
RIGHT
ROLLBACK
ROWS
SCHEMA
SCREEN
SCROLL
SECOND
SECTION
SELECT
SELECTSCHEMA
SELECTSECURITY
SESSION
SESSION_USER
SET
SetFocus
SetOption
SHORT
SINGLE
SIZE
SMALLINT
SOME
SPACE
SQL
SQLCODE
SQLERROR
SQLSTATE
StDev
StDevP
STRING
SUBSTRING
SUM
Sum
SYSTEM_USER
TABLE
TableDef
TableDefs
TABLEID
TableID
TEMPORARY

TEXT
THEN
TIME
TIMESTAMP
TIMEZONE_HOUR
TIMEZONE_MINUTE
TO
TOP
TRAILING
TRANSACTION
TRANSFORM
TRANSLATE
TRANSLATION
TRIM
TRUE
Type
UNION
UNIQUE
UNIQUEIDENTIFIER
UNKNOWN
UPDATE
UPDATEIDENTITY
UPDATEOWNER
UPDATESECURITY
UPPER
USAGE
USER
USING
VALUE
VALUES
Var
VARBINARY
VARCHAR
VarP
VARYING
VIEW
WHEN
WHENEVER
WHERE

Microsoft Access VBA Programming for the Absolute Beginner342

Reserved Words and Symbols
WITH
WORK
Workspace
WRITE
Xor

YEAR
Year
YES
YESNO
ZONE

Appendix E • Reserved Words and Symbols 343

This page intentionally left blank

INDEX

a
About form, controls and properties of, 265
AbsolutePosition property, 256
ACCDB files, 6, 16
ACCDE files, 16
ACCDR files, 16
ACCDT files, 16
Access 2007 features, 6–16
Access VBA. See also macros

arithmetic of, 73–74
comments, 56
event-driven paradigm, 49–50
introduction to, 55–56
Me keyword, 58–59
object-based programming, 50–51
procedures, 53–55

AccessConnection property, 243
Add method, 291
Add Procedure dialog box, 156, 281
Add Watch dialog box, 191–192
AddItem method, 117–118
addition operator, 74
ADO (ActiveX Data Objects)

adding records, 261–262
browsing data, 249–257
connecting to database, 242–246
connection errors, troubleshooting, 246
cursor types in, 248–249
database locks, 247
deleting records, 262–264
encapsulating library, 285
freeing/reclaiming resources, 289–290
opening recordset with, 243–254

ordinal position of field returned, 254–255
overview of, 241–242
recordsets, working with, 246–264
remote database, connecting to, 243–244
retrieving data, 249–257
terminology, 242
updating records, 258–261

ADO object model, 242
Alt key, 65
altering tables, 236–237
ampersand (&) character, 65
Analyze Performance icon, 318
And operator

for SQL queries, 222
truth table for, 85–86

and/or variables. See expressions
ANSI SQL, 215–216
ANSI values, checking range of, 196
API (application programming interface), 242.

See also ADO (ActiveX Data Objects)
arguments, 158–161

ADO Connection object as, 288–289
arrays as, 169–170
for macros, 306
names, 159
parentheses with, 160

arithmetic of VBA, 73–74
arrays, 163–164

arguments, passing as, 169–170
declaring arrays, 168
dynamic arrays, 167–169
elements, 164
initializing elements, 165

single-dimension arrays, 164–166
two-dimensional arrays, 166–167
of user-defined types, 173–176
zero, use of, 164

Asc function, 144
range of values, checking, 196
sorting in SQL with, 227–228

ASP (Active Server Pages). See ADO (ActiveX
Data Objects)

Assert method with Debug object, 200–201
Assets template, 10
assignment operator, 59
assignment statement, 55–56, 59

If block and, 82
for text box values, 65

Attachment data
fields, 29
type, 15

attributes
defined, 18
field attributes, 30

AutoNumber
data fields, 29
INSERT INTO statement with, 233

AVG function, 223–224

b
BackColor property, 63

values in assigning, 64
BackStyle property, 63
BASIC, GoTo keyword in, 197
benefits of Access 2007, 2–3
binary codes, 70
Blank Database icon, 25
Boolean data, 68

expressions and, 81
variables storing, 67

brackets
for reserved words/symbols, 337–343
for table/column names, 219

break mode, 187
Immediate window, use of, 188
re-executing program in, 188

breakpoints, 187–188
browsing data with ADO, 249–257
buffers, 203
bugs. See also debugging

defined, 186
button controls, 38

adding, 40–41
naming conventions, 42
wizards for, 41

buttons
option buttons, 95–98
toggle buttons, 99–101

Buttons parameter for MsgBox function, 89
ByVal keyword, 158

c
C language, 69. See also ADO (ActiveX Data

Objects)
dynamic arrays in, 168
user-defined types, 170
void functions, 155

calendar, 13
Cartesian joins/results, 231
Case Else statement, 87
case-sensitivity

of constant name, 69
in SQL (Structured Query Language), 217

character codes, 143–144
common character codes, 323–326

character values, checking range of, 195–196
check boxes, 98–99

naming conventions, 42
Choose My Adventure program, 264–274

About form, controls and properties of, 265
Math form, controls and properties of, 266

Chr function, 143–144
class modules, 1671

Microsoft Access VBA Programming for the Absolute Beginner346

method procedures, 284–287
in OOP, 279–281

classes
in OOP, 278
property procedures, 281–284

Click event procedure, 165–166
Close function, 205
closing data files, 205
COBOL, GoTo keyword in, 197
code. See also debugging

duplicate code, removing, 154–156
performance considerations, 317
reuse of, 153–161
stepping through, 186–187

Code window, 53
keyboard shortcuts for, 327–328
procedures in, 54

collections, 290–291
accessing members in, 292–293
adding members, 290–292
looping structures for members, 293–294
removing members from, 292

Colors form, 62–63
ColumnHead property, 124
ColumnHeads property, 122–124
columns and rows. See also ADO (ActiveX Data

Objects); SQL (Structured Query
Language)

brackets for names of columns, 219
with list and combo boxes, 122–124

combo boxes. See list and combo boxes
comma-delimited files, 201–202
command buttons. See button controls
command objects, 60–65
commands. See SQL (Structured Query

Language)
comments for VBA statements, 56
compound If blocks, 84–87
computed fields, 222–223
concatenation, 56

operator, 68

conditional operators. See operators
conditions. See also If blocks; looping

structures
compound conditions, 84–87
expressions and, 81
macros, adding to, 308
nested conditions, 83–84
Select Case structures for, 87–88
for SQL queries, 220–222
on UPDATE statements, 234

connecting to database, 242–246
Connection object, 285–287
ConnectionObject procedure, 287–288
Const statement, 69
constants, 69

use of, 90
Contacts template, 10
Control Wizards icon, 60
controls

bound controls, creating, 37–39
check boxes, 98–99
in Choose My Adventures

program, 265–266
common controls, 37–42
for Dice program, 176–177
for Fruit Stand program, 75–76
for Hangman program, 101–103
Hungarian Notation for, 42
Locals window, use of, 190
for Math Quiz program, 127
for Monster Dating Service

program, 295–296
naming conventions, 42
option buttons, 95–98
option group controls, 93–95
properties of, 36–37
referencing, 57
for Remote Connection program, 251
for Secret Message program, 149
switching between properties, 39
for Trivial Challenge program, 209

Index 347

conversion
functions, 142–144
macros to VBA procedures, 313–315

COUNT function, 224–225
ordinal position with, 255

counters for looping structures, 111
CREATE TABLE statement, 235–236
currency data type, 68
cursors, 248–249

d
DAO (Data Access Objects), 241
Data Access Pages, 7
data assignment, 59
data files. See also file processing

defined, 201
data types, 15

common data types, 68
list of, 29
for variables, 67
working with, 28–29

Database Enhancement dialog box, 6
database locks, 247
database normalization, 17–25

1st normal form, 21–22
2nd normal form, 22–23
3rd normal form, 23–25

databases. See also ADO (ActiveX Data Objects)
connecting to, 242–246
cursors, 248–249
defined, 1–2
Exclusive Use of, 315–316
older formats, working with, 6
ordinal position defined, 255
performance considerations, 315–320
remote database, connecting to, 243–244

Datasheet view, 11–12
split forms option, 14
tables, creating, 27

Date function, 139

date picker, 13
dates and times

data fields, 29
data type, 68
formatting, 146–148
functions, 139–142
variables storing, 67

Day function, 140
DDL (data definition language), 215, 235–237

ALTER TABLE statement, 236–237
DROP statement, 237

Debug object, 200–201
debugging, 185–192

breakpoints, 187–188
error-handling, 196–201
Immediate window, use of, 188–190
Initialize event for, 280
input validation, 192–196
Locals window, use of, 190
macros, 304
stepping through code, 186–187
Terminate event for, 280
Watch window, use of, 190–192

declaration statements, 55–56, 67–68
declaring arrays, 168
Default parameter with input boxes, 91
DELETE statement, 234–235
deleting

ADO records, 262–264
collections, members from, 292
ID fields, 27–28
lines in forms, 62
list and combo boxes, items from, 121–122
scrollbars in forms, 62

DESC keyword, sorting in SQL with, 227–228
design time, 186

Immediate window, use of, 188
Design view

form properties, managing, 36–37
forms, creating, 37
for Fruit Stand program, 74–75

Microsoft Access VBA Programming for the Absolute Beginner348

macros, running, 307
queries, creating, 43–44

development environment, 333–335
dialog boxes, 88–92

input boxes, 91–92
message boxes, 88–91

Dice program, 176–183
dice roll simulation, 124–126
Dim keyword, 67

for arrays, 164
with user-defined types, 171

Disk Not Ready error, 186
DISTINCT function, 226
Division by Zero error, 186
division operator, 74
DML (data manipulation language), 215

computed fields, 222–223
result set, 219

Do Until loop, 112–113
Do While loop, 111–112
docking

Field List window, 37
options, 335
Property Sheet window, 37

dot operator, 58–59
doubles data type, 68
drag-and-drop primary keys, 32
DROP COLUMN keyword, 236–237
DROP statement, 237
dynamic arrays, 167–169

e
Edit List Items icon, 118
Edit Relationships window options, 33
elements

all elements, passing, 169–170
of arrays, 164, 169–170
of user-defined types, 173–176

Else clause, 82
ElseIf clause, 82–83

embedded macros, 304
empty quotes, 66
encapsulation

of ADO library, 285
in OOP, 278

End Functions statement, 158
End Sub statement, 156–157
End Type statement, 170–172
Enforce Referential Integrity check box, 33
entities

defined, 18
identifiers for, 21–22

EOF function, 204
equality testing, 59
equals (=), 59

in expressions, 83
in SQL expressions, 221

Err object, 199–200
error handling, 196–201

for data files, 206–208
Debug object, 200–201
Err object, 199–200
for macros, 304, 311–313

errors. See also debugging; error handling
ADO connection errors, troubleshooting,

246
common numbers/descriptions, 199
file access, error trapping for, 206–208
input validation, 192–196
off-by-one error, 164
reserved words/symbols, 337–343
trappable errors, 329–332
types of, 186

event-driven paradigm, 49–50
event procedures, 53

empty event procedures, 54
events

in class modules, 280
template, 11

exclamation mark operator, 58–59
Exclusive Use of database, 315–316

Index 349

executable statements, 55–56
Exit Function statement, 197
Exit Sub statement, 120

with error-handling routine, 197
exponentiation operator, 74
expressions, 81–83

compound expressions, 84–87
in If blocks, 82
Watch window, use of, 190–192

f
Faculty template, 11
Field List window, moving, 37
fields, 26–31. See also file processing; queries

attributes of, 30
defined, 201
key symbol of, 30–31
multivalued fields, 14–15
ordinal position for, 254–255
primary key for, 30–31

file formats, 16
file I/O routines. See file processing
File Not Found error, 186
file processing, 201–208

access modes, 202–203
closing data files, 205
end of file, testing for, 204
error trapping, 206–208
opening sequential data files, 202–203
reading sequential data from file, 203–204
writing sequential data to file, 204–205

Filename attribute, 202
FIRST function, 225
1st normal form, 21–22
For Each loop, 293–294
For loop, 114–115

ListCount property, use of, 120
ForeColor property, 64
foreign keys

defined, 18

Enforce Referential Integrity check box, 33
form class modules, 161

with ADO, 253
Form object, 50

accessing properties of, 57–58
Form tool, 35–42
Form view split forms option, 14
Format function, 144–148
formatting, 144–148

dates and times, 146–148
numbers, 145–146
strings, 145
VBE format options, 334

forms, 35–42. See also controls
event-driven paradigm and, 49–50
lines, deleting, 62
Me keyword, 58–59
naming conventions, 42
performance considerations, 317
properties of, 36–37
saving, 36
scrollbars, deleting, 62

Forms collection, 57–58
Fruit Stand program, 74–78
function procedures, 155–156, 158
Function statement, 158
functions. See also specific functions

arrays, passing, 169–170
conversion functions, 142–144
date and time functions, 139–142
procedures, 53
SQL, built-in functions in, 223–227
string-based functions, 131–139

g
Getting Started with Microsoft Office Access

page, 25–26
GoTo keyword, 197
greater than (>)

in expressions, 83

Microsoft Access VBA Programming for the Absolute Beginner350

in SQL expressions, 221
greater than or equal to (>=)

in expressions, 83
in SQL expressions, 221

GROUP BY clause, 229–230
grouping. See also collections

in SQL, 229–230
GUI (graphic user interface), 96

h
Hangman program, 101–107
headers for columns, 122–123
Help viewer, 16
Hour function, 141–142
Hungarian Notation, 42
Hyperlink data fields, 29

i
IBM

ANSI SQL, use of, 215
SQL (Structured Query Language),

development of, 217
ID fields, changing/removing, 28
Idea results of Performance Analyzer, 319
If blocks, 81–83

assignment statement and, 82
compound If blocks, 84–87
nested If blocks, 83–84

image controls, 38
adding, 40
naming conventions, 42

Immediate window, use of, 188–190
indexes

form indexes, 58
performance considerations for, 317–318

infinite loops, 110
inheritance in OOP, 278
Initialize event for class module, 280
input boxes, 91–92

input validation, 192–196
IsNumeric function, 192–194
range of values, checking, 194–196

InputBox function, 91–92
INSERT INTO statement, 232–233
instances. See OOP (object-oriented

programming)
InStr function, 138–139
Int function, 124
integers data type, 68
integrated development environment (IDE),

51. See also VBE (Visual Basic Editor)
Is keyword, 88
IsNull function, 193–194
IsNumeric function, 192–194
Issues template, 11
iterations. See looping structures

j
Java void functions, 155
joins in SQL, 230–232

k
key symbol of field, 30–31
keyboard shortcuts

with ampersand (&) character, 65
for Code window, 327–328

l
label controls, 38

binding, 37–38
naming conventions, 42

label objects, 50, 60–65
LAST function, 225
Layout view, 12–13

Form tool in, 35
LBound function, 165–166
LCase function, 133

Index 351

Left function, 137
left outer joins, 231–232
Len function, 133–134
less than (<)

in expressions, 83
in SQL expressions, 221

less than or equal to (<=)
in expressions, 83
in SQL expressions, 221

Light Switch program, 60–62
limitations of Access 2007, 2–3
LimitToList property, 120
linefeed characters in message box, 90–91
list and combo boxes, 116–124

adding items with, 117–120
columns and rows, managing, 122–124
deleting items from, 121–122
duplicate items, checking for, 118–120
Edit List Items icon, 118
LimitToList property, 120
naming conventions, 42
properties of, 116

ListCount property, 120
Load event, 117
Locals window, use of, 190
locking techniques, 247
logic errors, 186
long data type, 68
Loop Until loop, 114
Loop While loop, 113
looping structures, 109–111. See also specific

loops
for collection members, 293–294
counters, 111
introduction to, 109–110
nested looping structures, 167
in two-dimensional arrays, 167

m
Macro Builder, 304
Macro Design view, 310

MacroError object, 312–313
macros, 303–315

conditions, adding, 308
converting to VBA procedures, 313–315
description of actions, 305–306
Design mode, running in, 307
embedded macros, 304
error handling, 304, 311–313
MacroError object, 312–313
OnError Action for, 312
security options, 304
stand-alone macros, 304–310
temporary variables, 304
troubleshooting, 311–313
VBA code, running, 54–55

many-to-many relationship, defined, 18
Marketing projects template, 11
math operations, 73
Math Quiz program, 126–129
mathematical operators, 74
matrices, two-dimensional arrays as, 166–167
MAX function, 226
MDB files, 6, 16
MDE files, 16
Me keyword, 58–59
member variables, 282
members. See collections
memo data fields, 29
memory requirements, 316
menus, 52
message boxes, 88–91. See also MsgBox

function
for errors, 198

method procedures, 284–287
methods

of collection objects, 291
for custom objects, 284
of objects, 50–51

Microsoft Access SQL. See SQL (Structured
Query Language)

Microsoft ANSI SQL, use of, 215

Microsoft Access VBA Programming for the Absolute Beginner352

Microsoft Office
Enterprise 2007 system requirements, 5
Professional 2007 system requirements, 5
Professional Plus 2007 system

requirements, 5
suites, 3–4
Ultimate 2007 system requirements, 6

Mid function, 137
MIN function, 226
Minute function, 141
module-level variables, 71–72
modules, 161–163. See also class modules

Watch expression value, 192
Monster Dating Service program, 294–299
Month function, 140
MoveNext method, 254
MovePrevious method, 254
moving

drag-and-drop primary keys, 32
Field List window, 37
Property Sheet window, 37

MsgBox function, 88–91
linefeed characters in, 90–91
return values, 89

multiplication operator, 74
multivalued fields, 14–15

n
names

arguments, 159
brackets for table/column names, 219
error handling procedure, 196–197
Hungarian Notation for, 42
option controls, 95
queries, 44
tables, 27
variables, 67, 70–71
VBA procedures, 54

natural joins, 231
Navigation pane, 9–10

nested If blocks, 83–84
nested looping structures, 167
new database, creating, 25–26
Next keyword with For loop, 114
nonvolatile memory areas, 70
normalization process, 17–25
Northwind 2007 database, 216

browsing/retrieving data in, 249–257
not equal to <>

in expressions, 83
in SQL expressions, 221

NOT keyword for SQL queries, 222
Not operator, 86
Now function, 142
numbers

binary codes, 70
data fields, 29
formatting, 145–146
IsNumeric function, 192–194
random numbers, 124–126
Val function for converting, 69
variables storing, 67

o
object methods, 284–287
object-oriented programming. See OOP (object-

oriented programming)
objects, 50–51. See also ADO (ActiveX Data

Objects); macros; OOP (object-oriented
programming)

accessing, 56–67
Me keyword, 58–59
variables storing, 67

ODBC (Open Database Connectivity), 242. See
also ADO (ActiveX Data Objects)

providers, 244
off-by-one error, 164
Office button, 9
OLE DB providers, 244
OLE Object data fields, 29

Index 353

On Error GoTo statement, 196–197
file access, error trapping for, 206

one-to-many relationship, defined, 18
one-to-one relationship, defined, 18
OnError Action for macros, 312
OOP (object-oriented programming), 50–51.

See also collections
class modules, working with, 279–281
classes, use of, 278
custom objects, creating, 278–290
encapsulation in, 278
inheritance in, 278
instances, 279

creating and working with, 287–290
introduction to, 277–278
method procedures, 284–287
polymorphism in, 278
property procedures, 281–284

Open function, 202–203
opening

ADO recordset, 243–254
sequential data files, 202–203
VBE (Visual Basic Editor), 51–52

operators
in expressions, 83
in SQL expressions, 221
in truth tables, 85

Option Base statement, 73
option buttons, 95–98

naming conventions, 42
Value property for, 96

Option Compare Database statement, 72
Option Explicit statement, 72–73
option group controls, 93–95

check boxes with, 98
naming, 95
toggle buttons in, 99–101

Option Group Wizard, 93–94
option statements, 72–73
Or operator, 85

for SQL queries, 222

Oracle
ADO (ActiveX Data Objects) with, 242
ANSI SQL, use of, 215

ORDER By clause, 227–228
order of operations, 73–74
ordinal position in ADO, 254–255
outer joins, 231–232

p
parameters, 158–161
parentheses

with arguments, 160
with dynamic arrays, 168

percentage character, 146
Performance Analyzer, 318–320
performance considerations, 315–320

for code, 317
for forms, 317
for indexes, 317–318
for queries, 317–318

polymorphism in OOP, 278
Preserve keyword with dynamic arrays, 169
primary keys

defined, 18
drag-and-drop, 32
Enforce Referential Integrity check

box, 33
for fields, 30–31
for tables, 27

Private keyword
for arrays, 164
with user-defined types, 171–172

procedure-level variables, 71–72
procedures, 53–55

breakpoints in, 187–188
error-handling, 196–201
macros, converting, 313–315
user-defined procedures, 155–156
Watch expression value, 192

Project Explorer window, 52

Microsoft Access VBA Programming for the Absolute Beginner354

projects
template, 11
Watch expression value for, 192

Prompt parameter
with input boxes, 91
for MsgBox function, 88

properties
for Choose My Adventures program,

265–266
of collection objects, 291
for Dice program, 176–177
for Fruit Stand program, 75–76
for Hangman program, 101–103
of list and combo boxes, 116
for Math Quiz program, 127
for Monster Dating Service program,

295–296
of objects, 50–51
for Remote Connection program, 251
for Secret Message program, 149
for Trivial Challenge program, 209

Properties window in VBE (Visual Basic
Editor), 53

Property Get procedure, 281–284
Property Let procedure, 281–284
property procedures, 53, 155, 281–284

private properties/procedures, 282
Property Set procedure, 281–284
Property Sheet window, 36–37

moving, 37
switching between control properties, 39

Public keyword
for arrays, 164
with user-defined types, 171–172

public variables, 71–72

q
queries, 43–46. See also SQL (Structured Query

Language)
limiting results of, 45

naming, 44
performance considerations for, 317–318
running, 44–45
saving, 44

Quick Access toolbar, 9
Save icon, 27–28

quitting Access application, 64
quotes for concatenating string/text values in

SQL, 259

r
radio buttons. See option buttons
raise method error condition, triggering, 200
random numbers, 124–126
Randomize function, 124–126
range of values, checking, 194–196
RDBMS (Relational Database Management

Systems), 49
RDO (Remote Data Objects), 241
read/write property, 283
reading sequential data from file, 203–204
recommendation results of Performance

Analyzer, 319
records, 27. See also file processing

defined, 201
Recordset object, 246
recordsets in ADO, 246–264
ReDim keyword with dynamic arrays, 168–169
reference, arguments passed by, 158, 160
Relationships icon, 31
Remote Connection program, 251
remote database, connecting to, 243–244
Remove method for collections, 292
RemoveItem method, 121–122
reserved words/symbols, 337–343
resizing control property values, 41
result set

in ADO, 247
in SQL, 219

Resume keyword with error-handling
routine, 198

Index 355

retrieving data with ADO, 249–257
reuse, procedures for, 153–161
Ribbon, 8–9
rich text, 13
Right function, 136
right outer joins, 231–232
Rnd function, 124–126
rows. See columns and rows
RunMacro method, 307
runtime environment, 186–187
runtime errors, 186

s
Sales pipeline template, 11
saving

forms, 36
queries, 44
tables, 27–28

scrollbars, deleting, 62
Second function, 141
2nd normal form, 22–23
Secret Message program, 148–151

standard module code for, 161–163
security

macros, options for, 304
VBA code, running, 54–55

Select Case structures, 87–88
SELECT clause for joins, 230–232
Select statements in DML (data manipulation

language), 218–220
SET keyword, UPDATE statement

with, 233–234
shortcuts. See keyboard shortcuts
Show Table window, 31–32
single data type, 68
single-dimension arrays, 164–166
SizeMode property, 124
software-locking techniques, 247
sorting in SQL, 227–228
split forms option, 14

SQL (Structured Query Language), 43. See also
ADO (ActiveX Data Objects); DDL (data
definition language); DML (data
manipulation language)

built-in functions, 223–227
compound conditions for queries, 222
computed fields, 222–223
conditions for queries, 220–222
CREATE TABLE statement, 235–236
DELETE statement, 234–235
grouping in, 229–230
history of, 217
INSERT INTO statement, 232–233
introduction to, 215–218
joins in, 230–232
opening queries, 216
order of columns, changing, 219–220
ordinal position with, 255
outer joins, 231–232
Select statements, 218–220
sorting techniques, 227–228
syntax nomenclature for, 217–218
UPDATE statement, 233–234

stand-alone macros, 304–310
standard modules, 161–163
statements, 55–56. See also assignment

statement; specific statements
subprocedures executing, 157

Static keyword for arrays, 164
Step keyword with For loop, 115
stepping through code, 186–187
Str function, 142–143
StrComp function, 134–136

output values for, 135
stretching with SizeMode property, 124
strings

character sequences, comparing, 134–136
data type, 68
formatting, 145
functions, 131–139
length of, 133–134
string data/string variables, comparing, 69

Microsoft Access VBA Programming for the Absolute Beginner356

Val function for converting, 69
variables storing, 67

structures in C language, 170
Student Form, 321–322
Students template, 11
Sub statement, 156–157
subprocedures, 53, 155–157

arrays, passing, 169–170
subscript of two-dimensional arrays, 167
subtraction operator, 74
Suggestion results of Performance Analyzer,

319
SUM function, 226–227
symbols, reserved, 337–343
syntax errors, 186
system requirements, 4–6

t
Tabbed documents window, 9–10
table relationships, 30–34

editing, 33
TableName attribute, 235–236
tables, 26–31. See also ADO (ActiveX Data

Objects);
fields;
SQL (Structured Query Language)

altering tables, 236–237
brackets for names of, 219
database normalization, 17–25
in DDL (data definition language), 235–236
naming, 27
saving, 27–28
two-dimensional arrays as, 166–167

Tasks template, 11
templates, 9–11

benefits of, 25
Terminate event for class module, 280
text boxes, 38

assigning properties to, 39–40
binding, 37–38

clearing contents of, 66
naming conventions, 42
user input with, 65–67
Val function with, 66

text data fields, 29
Text property for text boxes, 66
Then keyword, 82
3rd normal form, 23–25
Time function, 140–141
times. See dates and times
Title argument for MsgBox function, 88
Title parameter with input boxes, 91
To keyword with Select Case structure, 88
toggle buttons, 99–101
toolbars, 52
Toolbox for list and combo boxes, 116
trappable errors, 329–332
Trivial Challenge program, 208–213
troubleshooting. See error handling
truth tables, 85

for Not operator, 86
for And operator, 85
for Or operator, 85–86

turning on/off control wizards, 60
two-dimensional arrays, 166–167

subscript of, 167
Type statement, 170–172

u
UBound function, 165–166
UCase function, 132–133
Update method or ADO records, 258–261
UPDATE statement, 233–234
updating ADO records, 258–261
user-defined procedures, 155–156
user-defined types, 170–172

arrays of, 173–176
elements, managing, 173–176
variables, declaring, 172

user interface, 6–9
requirements for, 35

Index 357

v
Val function, 66, 142

strings to numbers, converting, 69
Value property

for option buttons, 96
for text boxes, 66

values
arguments passed by, 158–160
subprocedures and, 157

variables, 67–70. See also arrays
explicit declaration of, 72–73
initializing, 67
Locals window, use of, 190
naming conventions, 56, 70–71
scope, 71–72
of user-defined type, 172

variants data type, 68
VBA (Visual Basic for Applications), 49. See

also Access VBA; macros; VBE (Visual Basic
Editor)

statements, 55–56
VBE (Visual Basic Editor), 51–56. See also Code

window; debugging
components of, 52–53
development environment, 333–335
format options, 334
general options, 335
Me keyword, 58–59
opening, 51–52

Project Explorer window, 52
Properties window, 53

viewing forms, 41
Visual Basic. See ADO (ActiveX Data Objects)
Visual C++. See ADO (ActiveX Data Objects)
void functions, 155
volatile memory areas, 70

w
Watch Type, 192
Watch window, use of, 190–192
WeekDay function, 140
WHERE clause, 220–221

for joins, 230–232
wizards for button controls, 41
words, reserved, 337–343
Write function, 204–205
writing sequential data to file, 204–205
WYSIWYG in Layout view, 13

y
Year function, 140
Yes/No data fields, 29

z
zero-based index in arrays, 164

Microsoft Access VBA Programming for the Absolute Beginner358

Let’s face it.
C++, Java, and Perl can be
a little intimidating. But now
they don’t have to be. The
for the absolute beginner
series gives students a fun,
non-intimidating introduction
to the world of program-
ming. Each book in this
series teaches a specific
programming language using
simple game programming

as a teaching aid. All titles are
only $29.99 and include source code

on the companion CD-ROM or Web site.

Call 1.800.648.7450 to order
Order online at www.courseptr.com

Programming for the Absolute Beginner
ISBN: 1-59863-374-0 May 2007

Teaches programming fundamentals using a free
implementation of BASIC called Just BASIC.

ASP Programming for the Absolute Beginner
ISBN: 1-931841-01-2

C++® Programming for the Absolute Beginner
ISBN: 1-931841-43-8

Java™ Programming for the Absolute Beginner,
Second Edition
ISBN: 1-59863-275-2

JavaScript Programming for the Absolute Beginner
ISBN: 0-7615-3410-5

Microsoft® Access VBA Programming
for the Absolute Beginner, Third Edition
ISBN: 1-59863-393-7 May 2007

Microsoft® Excel VBA Programming
for the Absolute Beginner, Third Edition
ISBN: 1-59863-394-5 July 2007

Microsoft® Visual Basic 2005 Express Edition
Programming for the Absolute Beginner
ISBN: 1-59200-814-3

Microsoft® Visual C++ 2005 Express Edition
Programming for the Absolute Beginner
ISBN: 1-59200-816-X

Microsoft® Visual C# 2005 Express Edition
Programming for the Absolute Beginner
ISBN: 1-59200-818-6

Microsoft® Windows Powershell Programming
for the Absolute Beginner
ISBN: 1-59863-354-6

Microsoft® WSH and VBScript Programming
for the Absolute Beginner, Second Edition
ISBN: 1-59200-731-7

PHP 5/MySQL Programming for the Absolute Beginner
ISBN: 1-59200-494-6

Python Programming for the Absolute Beginner,
Second Edition
ISBN: 1-59863-112-8

Perl Programming for the Absolute Beginner
ISBN: 1-59863-222-1

www.courseptr.com

This page intentionally left blank

the ultimate source for all your certification needs.
Course Technology PTR…
With step-by-step instructions and extensive end-of-chapter review questions, projects, and exercises, these learning
solutions map fully to CompTIA certification exams. In-depth and well-organized—there isn’t a better way to prepare!

For more information on our offerings and to order, call 1.800.648.7450,
go to your favorite bookstore, or visit us at www.courseptr.com.

CompTIA A+ 2006 In Depth
ISBN: 1-59863-351-1 $39.99

The Ultimate CompTIA Network+ Resource Kit
ISBN: 1-59863-349-X $59.99

Network+ 2005
In Depth
1-59200-792-9 $39.99

Network+ 2005
Q&A
1-59200-794-5 $19.99

Security+ In Depth
1-59200-064-9 $39.99

CompTIA A+ 2006
Q&A
1-59863-352-X $19.99

HTI+ In Depth
1-59200-157-2 $39.99

Linux+ 2005
In Depth
1-59200-728-7 $39.99

www.courseptr.com

This page intentionally left blank

Check out our complete collection of networking and security titles and order online at

www.courseptr.com

Take your hacking skills to the limit!

The Unofficial Guide to Ethical Hacking
Second Edition

ISBN: 1-59863-062-8 $49.99
Ankit Fadia

Hacking Mobile Phones
ISBN: 1-59863-106-3 $24.99

Ankit Fadia

Network Security
A Hacker’s Perspective

ISBN: 1-59200-045-2 $49.99
Ankit Fadia

www.courseptr.com

This page intentionally left blank

Blackjack? Poker?
Fantasy Baseball?
Wherever your online interests lie, we’ve got you covered…

To view and order even more guides for today’s digital lifestyle,
visit us at www.courseptr.com or call 800.648.7450.

Winning Secrets
of Online Blackjack

Catherine Karayanis
ISBN: 1-59200-914-X

U.S. List: $19.99

Winning Secrets
of Online Poker

Douglas W. Frye and Curtis D. Frye
ISBN:1-59200-711-2

U.S. List: $19.99

Dominate Your Fantasy
Baseball League

David Sabino
ISBN: 1-59200-684-1

U.S. List: $19.99

www.courseptr.com

	CONTENTS
	CHAPTER 1 AN INVITATION TO ACCESS 2007
	What Is Microsoft Access?
	Microsoft Access 2007 Limitations
	Microsoft Office Suites
	System Requirements
	Working with Older Database Formats
	What’s New in Access 2007
	User Interface
	Templates
	Datasheet View
	Layout View
	Calendar
	Rich Text
	Split Forms
	Multivalued Fields
	Data Types
	File Format
	Help

	Summary

	CHAPTER 2 ACCESS ESSENTIALS
	Database Normalization
	1[sup(st)] Normal Form
	2[sup(nd)] Normal Form
	3[sup(rd)] Normal Form

	Creating a New Access 2007 Database
	Tables and Fields
	Table Relationships
	Forms
	Common Controls
	Hungarian Notation

	Queries
	Summary
	Programming Challenges

	CHAPTER 3 INTRODUCTION TO ACCESS VBA
	The Event-Driven Paradigm
	Object-Based Programming
	The VBA IDE
	Introduction to Event Procedures
	Introduction to VBA Statements

	Accessing Objects and Their Properties
	The Forms Collection
	The Me Keyword
	Assignment Statements
	Command and Label Objects
	Getting User Input with Text Boxes

	Variables and Beginning Data Types
	Variable Naming Conventions
	Variable Scope
	Option Statements

	VBA Arithmetic and Order of Operations
	Chapter Program: Fruit Stand
	Summary
	Programming Challenges

	CHAPTER 4 CONDITIONS
	If Blocks
	Nested If Blocks
	Compound If Blocks

	Select Case Structures
	Dialog Boxes
	Message Box
	Input Box

	Common Controls Continued
	Option Group
	Option Buttons
	Check Boxes
	Toggle Buttons

	Chapter Program: Hangman
	Summary
	Programming Challenges

	CHAPTER 5 LOOPING STRUCTURES
	Introduction to Looping Structures
	Do While
	Do Until
	Loop While
	Loop Until
	For

	List and Combo Boxes
	Adding Items
	Removing Items
	Managing Columns

	Random Numbers
	Chapter Program: Math Quiz
	Summary
	Programming Challenges

	CHAPTER 6 COMMON FORMATTING AND CONVERSION FUNCTIONS
	String-Based Functions
	UCase
	LCase
	Len
	StrComp
	Right
	Left
	Mid
	InStr

	Date and Time Functions
	Date
	Day
	WeekDay
	Month
	Year
	Time
	Second
	Minute
	Hour
	Now

	Conversion Functions
	Val
	Str
	Chr
	Asc

	Formatting
	Formatting Strings
	Formatting Numbers
	Formatting Date and Time

	Chapter Program: Secret Message
	Summary
	Programming Challenges

	CHAPTER 7 CODE REUSE AND DATA STRUCTURES
	Code Reuse
	Introduction to User-Defined Procedures
	Subprocedures
	Function Procedures
	Arguments and Parameters

	Standard Modules
	Arrays
	Single-Dimension Arrays
	Two-Dimensional Arrays
	Dynamic Arrays
	Passing Arrays as Arguments

	User-Defined Types
	Type and End Type Statements
	Declaring Variables of User-Defined Type
	Managing Elements

	Chapter Program: Dice
	Summary
	Programming Challenges

	CHAPTER 8 DEBUGGING, INPUT VALIDATION, FILE PROCESSING, AND ERROR HANDLING
	Debugging
	Stepping Through Code
	Breakpoints
	Immediate Window
	Locals Window
	Watch Window

	Input Validation
	IsNumeric
	Checking a Range of Values

	Error Handling
	The Err Object
	The Debug Object

	File Processing
	About Sequential File Access
	Opening a Sequential Data File
	Reading Sequential Data from a File
	Writing Sequential Data to a File
	Closing Data Files
	Error Trapping for File Access

	Chapter Program: Trivial Challenge
	Summary
	Programming Challenges

	CHAPTER 9 MICROSOFT ACCESS SQL
	Introduction to Access SQL
	Data Manipulation Language
	Simple SELECT Statements
	Conditions
	Computed Fields
	Built-In Functions
	Sorting
	Grouping
	Joins
	INSERT INTO Statement
	UPDATE Statement
	DELETE Statement

	Data Definition Language
	Creating Tables
	Altering Tables
	DROP Statement

	Summary
	Programming Challenges

	CHAPTER 10 DATABASE PROGRAMMING WITH ADO
	ADO Overview
	Connecting to a Database
	Working with Recordsets
	Introduction to Database Locks
	Introduction to Cursors
	Retrieving and Browsing Data
	Updating Records
	Adding Records
	Deleting Records

	Chapter Program: Choose My Adventure
	Summary
	Programming Challenges

	CHAPTER 11 OBJECT-ORIENTED PROGRAMMING WITH ACCESS VBA
	Introduction to Object-Oriented Programming
	Creating Custom Objects
	Working with Class Modules
	Property Procedures
	Method Procedures
	Creating and Working with New Instances

	Working with Collections
	Adding Members to a Collection
	Removing Members from a Collection
	Accessing a Member in a Collection
	For Each Loops

	Chapter Program: Monster Dating Service
	Summary
	Programming Challenges

	CHAPTER 12 MACROS AND PERFORMANCE TUNING
	Macros
	Stand-Alone Macros
	Macro Troubleshooting and Error Handling
	Converting Macros to VBA

	Access Database Performance Considerations
	Forms
	VBA Code
	Queries and Indexes
	Performance Analyzer

	Summary
	Programming Challenges

	APPENDIX A: COMMON CHARACTER CODES
	APPENDIX B: KEYBOARD SHORTCUTS FOR THE CODE WINDOW
	APPENDIX C: TRAPPABLE ERRORS
	APPENDIX D: VISUAL BASIC ENVIRONMENT OPTIONS
	APPENDIX E: RESERVED WORDS AND SYMBOLS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

