

Contents

1.	main

2.	Table	of	Contents

3.	Credits

4.	About	the	Author

5.	Contributors

6.	Acknowledgments

7.	Preface

8.	Why	BSD	Hacks?

9.	How	to	Use	this	Book

10.	How	This	Book	Is	Organized

11.	Conventions	Used	in	This	Book

12.	Using	Code	Examples

13.	We’d	Like	to	Hear	from	You

14.	Chapter	1.	Customizing	the	User	Environment

15.	Hack	0	Introduction

16.	Hack	1	Get	the	Most	Out	of	the	Default	Shell

17.	Hack	2	Useful	tcsh	Shell	Configuration	File	Options

18.	Hack	3	Create	Shell	Bindings

19.	Hack	4	Use	Terminal	and	X	Bindings

20.	Hack	5	Use	the	Mouse	at	a	Terminal

21.	Hack	6	Get	Your	Daily	Dose	of	Trivia

22.	Hack	7	Lock	the	Screen

23.	Hack	8	Create	a	Trash	Directory

24.	Hack	9	Customize	User	Configurations

25.	Hack	10	Maintain	Your	Environment	on	Multiple	Systems

26.	Hack	11	Use	an	Interactive	Shell

27.	Hack	12	Use	Multiple	Screens	on	One	Terminal

28.	Chapter	2.	Dealing	with	Files	and	Filesystems

29.	Hack	12	Introduction

30.	Hack	13	Find	Things

31.	Hack	14	Get	the	Most	Out	of	grep

32.	Hack	15	Manipulate	Files	with	sed

33.	Hack	16	Format	Text	at	the	Command	Line

34.	Hack	17	Delimiter	Dilemma

35.	Hack	18	DOS	Floppy	Manipulation

36.	Hack	19	Access	Windows	Shares	Without	a	Server

37.	Hack	20	Deal	with	Disk	Hogs

38.	Hack	21	Manage	Temporary	Files	and	Swap	Space

39.	Hack	22	Recreate	a	Directory	Structure	Using	mtree

40.	Hack	23	Ghosting	Systems

41.	Chapter	3.	The	Boot	and	Login	Environments

42.	Introduction

43.	Hack	24	Customize	the	Default	Boot	Menu

44.	Hack	25	Protect	the	Boot	Process

45.	Hack	26	Run	a	Headless	System

46.	Hack	27	Log	a	Headless	Server	Remotely

47.	Hack	28	Remove	the	Terminal	Login	Banner

48.	Hack	29	Protecting	Passwords	With	Blowfish	Hashes

49.	Hack	30	Monitor	Password	Policy	Compliance

50.	Hack	31	Create	an	Effective,	Reusable	Password	Policy

51.	Hack	32	Automate	Memorable	Password	Generation

52.	Hack	33	Use	One	Time	Passwords

53.	Hack	34	Restrict	Logins

54.	Chapter	4.	Backing	Up

55.	Introduction

56.	Hack	35	Back	Up	FreeBSD	with	SMBFS

57.	Hack	36	Create	Portable	POSIX	Archives

58.	Hack	37	Interactive	Copy

59.	Hack	38	Secure	Backups	Over	a	Network

60.	Hack	39	Automate	Remote	Backups

61.	Hack	40	Automate	Data	Dumps	for	PostgreSQL	Databases

62.	Hack	41	Perform	Client-Server	Cross-Platform	Backups	with	Bacula

63.	Chapter	5.	Networking	Hacks

64.	Introduction

65.	Hack	42	See	Console	Messages	Over	a	Remote	Login

66.	Hack	43	Spoof	a	MAC	Address

67.	Hack	44	Use	Multiple	Wireless	NIC	Configurations

68.	Hack	45	Survive	Catastrophic	Internet	Loss

69.	Hack	46	Humanize	tcpdump	Output

70.	Hack	47	Understand	DNS	Records	and	Tools

71.	Hack	48	Send	and	Receive	Email	Without	a	Mail	Client

72.	Hack	49	Why	Do	I	Need	sendmail?

73.	Hack	50	Hold	Email	for	Later	Delivery

74.	Hack	51	Get	the	Most	Out	of	FTP

75.	Hack	52	Distributed	Command	Execution

76.	Hack	53	Interactive	Remote	Administration

77.	Chapter	6.	Securing	the	System

78.	Introduction

79.	Hack	54	Strip	the	Kernel

80.	Hack	55	FreeBSD	Access	Control	Lists

81.	Hack	56	Protect	Files	with	Flags

82.	Hack	57	Tighten	Security	with	Mandatory	Access	Control

83.	Hack	58	Use	mtree	as	a	Built-in	Tripwire

84.	Hack	59	Intrusion	Detection	with	Snort,	ACID,	MySQL,	and	FreeBSD

85.	Hack	60	Encrypt	Your	Hard	Disk

86.	Hack	61	Sudo	Gotchas

87.	Hack	62	sudoscript

88.	Hack	63	Restrict	an	SSH	server

89.	Hack	64	Script	IP	Filter	Rulesets

90.	Hack	65	Secure	a	Wireless	Network	Using	PF

91.	Hack	66	Automatically	Generate	Firewall	Rules

92.	Hack	67	Automate	Security	Patches

93.	Hack	68	Scan	a	Network	of	Windows	Computers	for	Viruses

94.	Chapter	7.	Going	Beyond	the	Basics

95.	Introduction

96.	Hack	69	Tune	FreeBSD	for	Different	Applications

97.	Hack	70	Traffic	Shaping	on	FreeBSD

98.	Hack	71	Create	an	Emergency	Repair	Kit

99.	Hack	72	Use	the	FreeBSD	Recovery	Process

100.	Hack	73	Use	the	GNU	Debugger	to	Analyze	a	Buffer	Overflow

101.	Hack	74	Consolidate	Web	Server	Logs

102.	Hack	75	Script	User	Interaction

103.	Hack	76	Create	a	Trade	Show	Demo

104.	Chapter	8.	Keeping	Up-to-Date

105.	Introduction

106.	Hack	77	Automated	Install

107.	Hack	78	FreeBSD	from	Scratch

108.	Hack	79	Safely	Merge	Changes	to	/etc

109.	Hack	80	Automate	Updates

110.	Hack	81	Create	a	Package	Repository

111.	Hack	82	Build	a	Port	Without	the	Ports	Tree

112.	Hack	83	Keep	Ports	Up-to-Date	with	CTM

113.	Hack	84	Navigate	the	Ports	System

114.	Hack	85	Downgrade	a	Port

115.	Hack	86	Create	Your	Own	Startup	Scripts

116.	Hack	87	Automate	NetBSD	Package	Builds

117.	Hack	88	Easily	Install	Unix	Applications	on	Mac	OS	X

118.	Chapter	9.	Grokking	BSD

119.	Introduction

120.	Hack	89	How’d	He	Know	That?

121.	Hack	90	Create	Your	Own	Manpages

122.	Hack	91	Get	the	Most	Out	of	Manpages

123.	Hack	92	Apply,	Understand,	and	Create	Patches

124.	Hack	93	Display	Hardware	Information

125.	Hack	94	Determine	Who	Is	on	the	System

126.	Hack	95	Spelling	Bee

127.	Hack	96	Leave	on	Time

128.	Hack	97	Run	Native	Java	Applications

129.	Hack	98	Rotate	Your	Signature

130.	Hack	99	Useful	One-Liners

131.	9.13	Fun	with	X

132.	index

133.	index_SYMBOL

134.	index_A

135.	index_B

136.	index_C

137.	index_D

138.	index_E

139.	index_F

140.	index_G

141.	index_H

142.	index_I

143.	index_J

144.	index_K

145.	index_L

146.	index_M

147.	index_N

148.	index_O

149.	index_P

150.	index_Q

151.	index_R

152.	index_S

153.	index_T

154.	index_U

155.	index_V

156.	index_W

157.	index_X

158.	index_Y

159.	index_Z

<	Day	Day	Up	>

Table	of	Contents

Index

Reviews

Reader	Reviews

Errata

Academic

	

	

BSD	Hacks

By	Ajay	Kumar	Tiwari

Publisher:	KDP

Pub	Date:	March	2015

Pages:	300

Looking	for	a	unique	set	of	practical	tips,	tricks,	and	tools
for

administrators	and	power	users	of	BSD	systems?	From
hacks	to

customize	the	user	environment	to	networking,	securing
the	system,	and

optimization,	BSD	Hacks	takes	a	creative	approach	to
saving	time	and

accomplishing	more	with	fewer	resources.	If	you	want
more	than	the

average	BSD	user—to	explore	and	experiment,	unearth
shortcuts,

create	useful	tools—this	book	is	a	must-have.

	

	
Table	of	Contents

Index

Reviews

Reader	Reviews

Errata

Academic

	

	

BSD	Hacks

By	Ajay	Kumar	Tiwari

Publisher:	KDP

Pub	Date:	March	2015

Pages:	300

Credits

About	the	Author

Acknowledgments

Preface

Why	BSD	Hacks?

How	to	Use	this	Book

How	This	Book	Is	Organized

	

Conventions	Used	in	This
Book

Using	Code	Examples

We’d	Like	to	Hear	from	You

Chapter	1.	Customizing	the	User	Environment

Section	0.	Introduction

Section	1.	Get	the	Most	Out	of	the	Default	Shell

Section	2.	Useful	tcsh	Shell	Configuration	File
Options

Section	3.	Create	Shell	Bindings

Section	4.	Use	Terminal	and	X	Bindings

Section	5.	Use	the	Mouse	at	a	Terminal

Section	6.	Get	Your	Daily	Dose	of	Trivia

Section	7.	Lock	the	Screen

Section	8.	Create	a	Trash	Directory

Section	9.	Customize	User	Configurations

Section	10.	Maintain	Your	Environment	on	Multiple
Systems

Section	11.	Use	an	Interactive	Shell

Section	12.	Use	Multiple	Screens	on	One	Terminal

Chapter	2.	Dealing	with	Files	and	Filesystems

Section	12.	Introduction

Section	13.	Find	Things

Section	14.	Get	the	Most	Out	of	grep

Section	15.	Manipulate	Files	with	sed

Section	16.	Format	Text	at	the	Command	Line

Section	17.	Delimiter	Dilemma

Section	18.	DOS	Floppy	Manipulation

Section	19.	Access	Windows	Shares	Without	a
Server

Section	20.	Deal	with	Disk	Hogs

Section	21.	Manage	Temporary	Files	and	Swap
Space

Section	22.	Recreate	a	Directory	Structure	Using
mtree

Section	23.	Ghosting	Systems

Chapter	3.	The	Boot	and	Login
Environments

Introduction

Section	24.	Customize	the	Default	Boot	Menu

Section	25.	Protect	the	Boot	Process

Section	26.	Run	a	Headless	System

Section	27.	Log	a	Headless	Server	Remotely

Section	28.	Remove	the	Terminal	Login	Banner

Section	29.	Protecting	Passwords	With	Blowfish
Hashes

Section	30.	Monitor	Password	Policy	Compliance

Section	31.	Create	an	Effective,	Reusable
Password	Policy

Section	32.	Automate	Memorable	Password
Generation

Section	33.	Use	One	Time	Passwords

Section	34.	Restrict	Logins

Chapter	4.	Backing	Up

Introduction

Section	35.	Back	Up	FreeBSD	with	SMBFS

Section	36.	Create	Portable	POSIX	Archives

Section	37.	Interactive	Copy

Section	38.	Secure	Backups	Over	a	Network

Section	39.	Automate	Remote	Backups

Section	40.	Automate	Data	Dumps	for	PostgreSQL
Databases

Section	41.	Perform	Client-Server	Cross-Platform
Backups	with

Bacula

Chapter	5.	Networking	Hacks

Introduction

Section	42.	See	Console	Messages	Over	a	Remote
Login

Section	43.	Spoof	a	MAC	Address

Section	44.	Use	Multiple	Wireless	NIC
Configurations

Section	45.	Survive	Catastrophic	Internet	Loss

Section	46.	Humanize	tcpdump	Output

Section	47.	Understand	DNS	Records	and	Tools

Section	48.	Send	and	Receive	Email	Without	a
Mail	Client

Section	49.	Why	Do	I	Need	sendmail?

Section	50.	Hold	Email	for	Later	Delivery

Section	51.	Get	the	Most	Out	of	FTP

Section	52.	Distributed	Command
Execution

Section	53.	Interactive	Remote
Administration

Chapter	6.	Securing	the	System

Introduction

Section	54.	Strip	the	Kernel

Section	55.	FreeBSD	Access	Control	Lists

Section	56.	Protect	Files	with	Flags

Section	57.	Tighten	Security	with	Mandatory	Access
Control

Section	58.	Use	mtree	as	a	Built-in	Tripwire

Section	59.	Intrusion	Detection	with	Snort,	ACID,
MySQL,	and

FreeBSD

Section	60.	Encrypt	Your	Hard	Disk

Section	61.	Sudo	Gotchas

Section	62.	sudoscript

Section	63.	Restrict	an	SSH	server

Section	64.	Script	IP	Filter	Rulesets

Section	65.	Secure	a	Wireless	Network	Using	PF

Section	66.	Automatically	Generate	Firewall	Rules

Section	67.	Automate	Security	Patches

Section	68.	Scan	a	Network	of	Windows	Computers	for
Viruses

Chapter	7.	Going	Beyond	the	Basics

Introduction

Section	69.	Tune	FreeBSD	for	Different	Applications

Section	70.	Traffic	Shaping	on	FreeBSD

Section	71.	Create	an	Emergency	Repair	Kit

Section	72.	Use	the	FreeBSD	Recovery	Process

Section	73.	Use	the	GNU	Debugger	to	Analyze	a	Buffer

Overflow

Section	74.	Consolidate	Web	Server	Logs

Section	75.	Script	User	Interaction

Section	76.	Create	a	Trade	Show	Demo

Chapter	8.	Keeping	Up-to-
Date

Introduction

Section	77.	Automated	Install

Section	78.	FreeBSD	from	Scratch

Section	79.	Safely	Merge	Changes	to	/etc

Section	80.	Automate	Updates

Section	81.	Create	a	Package	Repository

Section	82.	Build	a	Port	Without	the	Ports	Tree

Section	83.	Keep	Ports	Up-to-Date	with	CTM

Section	84.	Navigate	the	Ports	System

Section	85.	Downgrade	a	Port

Section	86.	Create	Your	Own	Startup	Scripts

Section	87.	Automate	NetBSD	Package	Builds

Section	88.	Easily	Install	Unix	Applications	on
Mac	OS	X

Chapter	9.	Grokking	BSD

Introduction

Section	89.	How’d	He	Know	That?

Section	90.	Create	Your	Own	Manpages

Section	91.	Get	the	Most	Out	of	Manpages

Section	92.	Apply,	Understand,	and	Create
Patches

Section	93.	Display	Hardware	Information

Section	94.	Determine	Who	Is	on	the	System

Section	95.	Spelling	Bee

Section	96.	Leave	on	Time

Section	97.	Run	Native	Java	Applications

Section	98.	Rotate	Your	Signature

Section	99.	Useful	One-Liners

Section	9.13.	Fun	with	X

Index

	

	

Credits

About	the	Author

Contributors

Acknowledgments

	

	

About	the	Author
Ajay	Kumar	Tiwari	is	an	engineering	college	dropout	and
has	been	an	avid	BSD	user	since	FreeBSD	2.2.1.	As	an	IT

instructor,	He	specializes	in	networking,	routing,	and
security.	He	specializes	in	many	programming
Languages,and	working	as	freelancer.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Contributors
The	following	people	contributed	their	hacks,	writing,	and
inspiration	to

this	book:

John	Richard,	known	locally	as	JR,	is	a	system
administrator	in

Kingston,	Ontario,	Canada.	His	trademark	in	the
field	is	his

insistence	on	a	FreeBSD	box	as	the	primary	firewall
on	a

network.	He	has	enjoyed	working	with	the	author	in
the	past	at

a	private	college	in	Kingston.	In	his	spare	time,	he
experiments

with	FreeBSD	and	rides	his	Harley-Davidson.

[Hack	#64]

Joe	Warner	is	a	Technical	Analyst	for	Siemens
Medical

Solutions	Health	Services	Corporation	and	has	been
using

FreeBSD	as	a	server	and	desktop	since	October	of
2000.	Joe

has	lived	in	Salt	Lake	City,	Utah	for	most	of	his	life
and	enjoys

*BSD,	computing,	history,	and	The	Matrix.

[Hacks	#35	and	#59]

Dan	Langille	(http://www.langille.org/)	runs	a
consulting	group

in	Ottawa,	Canada.	He	has	fond	memories	of	his
years	in	New

Zealand,	where	the	climate	is	much	more	conducive
to

year-round	mountain	biking.	He	lives	in	a	house
ruled	by	felines.

[Hack	#41]

Robert	Bernier’s	professional	career	has	included
engineering,

accident	investigation,	and	Olympic	trials.	In	the
1980s,	his

interest	returned	to	IT	when	he	realized	he	wouldn’t
have	to	use

a	punch	card	anymore.	Eventually	he	discovered
Linux	and	by

the	mid-1990s	had	developed	a	passion	for	all	things
open

source.	Today,	Robert	teaches	at	the	local
community	college

and	writes	for	a	number	of	IT	publications	based	in
North

America	and	Europe.

[Hack	#12]

Kirk	Russell	(kirk@qnx.com)	is	a	kernel	tester
at	QNX

Software	Systems	(http://www.qnx.com/).

	

	

Acknowledgments
I	would	like	to	thank	the	many	BSD	and	open	source
users	who	so

willingly	shared	their	experiences,	ideas,	and	support.
You	serve	as	a

constant	reminder	that	BSD	is	more	than	an	operating
system—it	is	a

community.

I	would	also	like	to	thank	all	of	my	students	and	the
readers	of	the

FreeBSD	Basics	column.	Your	questions	and	feedback
fuel	my

curiosity;	may	this	book	return	that	favor.

Thanks	to	Ajay	Kumar	Tiwari	and	Vikram	Singh	for
reviews	and	advice.

Special	thanks	to	Jacek	Artymiak	for	his	invaluable
input	from	the

OpenBSD	and	NetBSD	perspectives.	And	finally,
special	thanks	to

chromatic.	A	writer	couldn’t	have	asked	for	a	better
editor.

	

	

Preface
“What	was	it	about	UNIX	that	won	my	heart?	…	UNIX	is

mysterious	when	you	first	approach.	A	little	intimidating,
too.	But

despite	an	unadorned	and	often	plain	presentation,	the
discerning

suitor	can	tell	there’s	lot	going	on	under	the	surface.”

When	the	above-mentioned	article	was	first	published,	I
was	still	very

much	a	BSD	newbie.	My	spare	hours	were	spent
struggling	with	kernel

recompiles,	PPP	connectivity	(or	lack	thereof),	rm	and
chmod

disasters,	and	reading	and	rereading	every	bit	of	the	then
available

documentation.	Yet,	that	article	gave	voice	to	my
experience,	for,	like

the	quoted	author,	I	had	stumbled	upon	operating	system
love.	In	other

words,	I	was	discovering	how	to	hack	on	BSD.

Since	then,	I’ve	learned	that	there	is	an	unspoken
commonality	between

the	novice	Unix	user	and	the	seasoned	guru.	It	doesn’t
matter	whether

you’ve	just	survived	your	first	successful	installation	or
you’ve	just

executed	a	complex	script	that	will	save	your	company
time	and

money,	the	feeling	is	the	same.	It’s	the	excitement	of
venturing	into

unknown	territory	and	discovering	something	new	and
wonderful.	It’s

that	sense	of	accomplishment	that	comes	with	figuring
something	out	for

yourself,	with	finding	your	own	solution	to	the	problem	at

hand.

This	book	contains	100	hacks	written	by	users	who	love
hacking	with

BSD.	You’ll	find	hacks	suited	to	both	the	novice	user	and
the	seasoned

veteran,	as	well	as	everyone	in	between.	Read	them	in	any
order	that

suits	your	purpose,	but	keep	the	“onion	principle”	in	mind.
While	each

hack	does	present	at	least	one	practical	solution	to	a
problem,	that’s

just	the	outer	layer.	Use	your	imagination	to	peel	away
deeper	layers,

exposing	new	solutions	as	you	do	so.

	

	

Why	BSD	Hacks?
The	term	hacking	has	an	unfortunate	reputation	in	the
popular	press,

where	it	often	refers	to	someone	who	breaks	into	systems
or	wreaks

havoc	with	computers.	Among	enthusiasts,	on	the	other
hand,	the	term

hack	refers	to	a	“quick-n-dirty”	solution	to	a	problem	or	a
clever	way

to	do	something.	The	term	hacker	is	very	much	a
compliment,	praising

someone	for	being	creative	and	having	the	technical	chops
to	get	things

done.

.

BSD	Hacks	is	all	about	making	the	most	of	your	BSD
system.	The

BSDs	of	today	have	a	proud	lineage,	tracing	back	to	some
of	the

original	hackers—people	who	built	Unix	and	the	Internet
as	we	know	it

today.	As	you’d	expect,	they	faced	many	problems	and
solved

problems	both	quickly	and	elegantly.	We’ve	collected
some	of	that

wisdom,	both	classic	and	modern,	about	using	the
command	line,

securing	systems,	keeping	track	of	your	files,	making
backups,	and,

most	importantly,	how	to	become	your	own	BSD	guru
along	the	way.

	

How	to	Use	this	Book
One	of	the	beauties	of	Unix	is	that	you	can	be	very
productive	with

surprisingly	little	knowledge.	Even	better,	each	new	trick
you	learn	can

shave	minutes	off	of	your	day.	We’ve	arranged	the
chapters	in	this

book	by	subject	area,	not	by	any	suggested	order	of
learning.	Skip

around	to	what	interests	you	most	or	solves	your	current
problem.	If

the	current	hack	depends	on	information	in	another	hack,
we’ll	include

a	link	for	you	to	follow.

Furthermore,	the	“See	Also”	sections	at	the	end	of
individual	hacks

often	include	references	such	as	man	fortune.	These	refer
to	the	manual

pages	installed	on	your	machine.	If	you’re	not	familiar
with	these

manpages,	start	with	[Hack	#89]	.

How	This	Book	Is	Organized
To	master	BSD,	you’ll	have	to	understand	several
topics.	We’ve

arranged	the	hacks	loosely	into	chapters.	They	are:

Chapter	1Customizing	the	User
Environment

Though	modern	BSDs	have	myriad	graphical	applications
and	utilities,

the	combined	wisdom	of	35	years	of	command-line
programs	is	just	a

shell	away.	This	chapter	demonstrates	how	to	make	the
most	of	the

command	line,	customizing	it	to	your	needs	and
preferences.

Chapter	2Dealing	with	Files	and
Filesystems

What	good	is	knowing	Unix	commands	if	you	have	no
files?	You	have

to	slice,	dice,	and	store	data	somewhere.	This	chapter
explains

techniques	for	finding	and	processing	information,
whether	it’s	on	your

machine	or	on	a	server	elsewhere.

Chapter	3The	Boot	and	Login
Environments

The	best-laid	security	plans	of	administrators	often	go	out
the	window

when	users	enter	the	picture.	Keeping	the	bad	guys	off	of
sensitive

machines	requires	a	two-pronged	approach:	protecting
normal	user

accounts	through	good	password	policies	and	protecting
the	boxes

physically.	This	chapter	explores	several	options	for
customizing	and

securing	the	boot	and	login	processes.

Chapter	4Backing	Up

After	you	start	creating	files,	you’re	bound	to	run	across
data	you	can’t

afford	to	lose.	That’s	where	backups	come	in.	This	chapter
offers

several	ideas	for	various	methods	of	ensuring	that	your
precious	data

will	persist	in	the	face	of	tragedy.

Chapter	5Networking
Hacks

Unless	you’re	a	die-hard	individualist,	you’re	likely
connected	to	a

network.	That	fact	presents	several	new	opportunities	for
clever	hacks

	

Conventions	Used	in	This	Book
This	book	uses	the	following	typographical
conventions:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,
pathnames,

and	directories.

Constant	width

Indicates	commands,	options,	switches,	variables,
attributes,	functions,

user	and	group	names,	the	contents	of	files,	and	the	output
from

commands.
Constant	width	bold

In	code	examples,	shows	commands	or	other	text	that
should	be	typed

literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-
supplied	values.

Color

The	second	color	is	used	to	indicate	a	cross-reference
within	the	text.

This	icon	signifies	a	tip,	suggestion,	or
general

note.

This	icon	indicates	a	warning	or
caution.

	

We’d	Like	to	Hear	from	You
Please	address	comments	and	questions	concerning	this
book	to	the

publisher:

ward	no-15,House	no-110,Bhartpuri,	Karwi	Chitrakoot
(UP)	,India	210205

+917065257219

We	have	a	web	page	for	this	book,	where	we	list	errata,
examples,	and

any	additional	information.	You	can	access	this	page	at:

http://www.ajaykumartiwari.com

To	comment	or	ask	technical	questions	about	this	book,
send	email	to:

support@ajaykumartiwari.com

Chapter	1.	Customizing
the
User	Environment

Section	0.	Introduction

Section	1.	Get	the	Most	Out	of	the	Default
Shell

Section	2.	Useful	tcsh	Shell	Configuration	File
Options

Section	3.	Create	Shell
Bindings

Section	4.	Use	Terminal	and	X
Bindings

Section	5.	Use	the	Mouse	at	a
Terminal

Section	6.	Get	Your	Daily	Dose	of
Trivia

Section	7.	Lock	the	Screen

Section	8.	Create	a	Trash

Directory

Section	9.	Customize	User
Configurations

Section	10.	Maintain	Your	Environment	on
Multiple	Systems

Section	11.	Use	an	Interactive
Shell

Section	12.	Use	Multiple	Screens	on	One
Terminal

	

Hack	0	Introduction
Users	of	open	source	(http://opensource.org)	Unix
operating	systems

are	an	interesting	breed.	They	like	to	poke	under	the
surface	of	things,

to	find	out	how	things	work,	and	to	figure	out	new	and
interesting	ways

of	accomplishing	common	computing	tasks.	In	short,	they
like	to	“hack.”

While	this	book	concentrates	on	the	BSDs,	many	of	the
hacks	apply	to

any	open	source	operating	system.	Each	hack	is	simply	a

demonstration	of	how	to	examine	a	common	problem	from
a	slightly

different	angle.	Feel	free	to	use	any	of	these	hacks	as	a
springboard	to

your	own	customized	solution.	If	your	particular	operating
system

doesn’t	contain	the	tool	used	in	the	solution,	use	a	tool	that
does	exist,

or	invent	your	own!

This	chapter	provides	many	tools	for	getting	the	most	out
of	your

working	environment.	You’ll	learn	how	to	make	friends
with	your	shell

and	how	to	perform	your	most	common	tasks	with	just	a
few

keystrokes	or	mouse	clicks.	You’ll	also	uncover	tricks	that
can	help

prevent	command-line	disasters.	And,	above	all,	you’ll
discover	that

hacking	BSD	is	fun.	So,	pull	your	chair	up	to	your
operating	system	of

choice	and	let’s	start	hacking.

	

Hack	1	Get	the	Most	Out	of	the	Default
Shell
Become	a	speed	daemon	at	the
command	line.

For	better	or	for	worse,	you	spend	a	lot	of	time	at	the
command	line.	If

you’re	used	to	administering	a	Linux	system,	you	may	be
dismayed	to

learn	that	bash	is	not	the	default	shell	on	a	BSD	system,
for	either	the

superuser	or	regular	user	accounts.

Take	heart;	the	FreeBSD	superuser’s	default	tcsh	shell	is
also	brimming

with	shortcuts	and	little	tricks	designed	to	let	you	breeze
through	even

the	most	tedious	of	tasks.	Spend	a	few	moments	learning
these	tricks

and	you’ll	feel	right	at	home.	If	you’re	new	to	the
command	line	or

consider	yourself	a	terrible	typist,	read	on.	Unix	might	be	a
whole	lot

easier	than	you	think.

NetBSD	and	OpenBSD	also	ship	with	the
C	shell

as	their	default	shell.	However,	it	is	not
always	the

same	tcsh,	but	often	its	simpler	variant,
csh,	which

doesn’t	support	all	of	the	tricks	provided	in
this

hack.

However,	both	NetBSD	and	OpenBSD
provide

a	tcsh	package	in	their	respective	package

collections.

1.2.1	History	and	Auto-Completion
I	hate	to	live	without	three	keys:	up	arrow,	down	arrow,
and	Tab.	In

fact,	you	can	recognize	me	in	a	crowd,	as	I’m	the	one
muttering	loudly

to	myself	if	I’m	on	a	system	that	doesn’t	treat	these	keys
the	way	I

expect	to	use	them.

tcsh	uses	the	up	and	down	arrow	keys	to	scroll	through
your	command

history.	If	there	is	a	golden	rule	to	computing,	it	should	be:
“You	should

never	have	to	type	a	command	more	than	once.”	When
you	need	to

	

Hack	2	Useful	tcsh	Shell	Configuration
File	Options
Make	the	shell	a	friendly	place	to
work	in.

Now	that	you’ve	had	a	chance	to	make	friends	with	the
shell,	let’s	use

its	configuration	file	to	create	an	environment	you’ll
enjoy	working	in.

Your	prompt	is	an	excellent	place	to	start.

1.3.1	Making	Your	Prompt	More	Useful
The	default	tcsh	prompt	displays	%	when	you’re	logged
in	as	a	regular

user	and	hostname#	when	you’re	logged	in	as	the
superuser.	That’s	a

fairly	useful	way	to	figure	out	who	you’re	logged	in	as,
but	we	can	do

much	better	than	that.

Each	user	on	the	system,	including	the	superuser,	has
a .cshrc file	in	his

home	directory.	Here	are	my	current	prompt	settings:
dru@~:grep prompt	~/.cshrc

if	($?prompt)	then

set	prompt	=	“%B%n@%~%b:	“

That	isn’t	the	default	tcsh	prompt,	as	I’ve	been	using	my
favorite

customized	prompt	for	the	past	few	years.	The	possible
prompt

formatting	sequences	are	easy	to	understand	if	you	have	a
list	of

possibilities	in	front	of	you.	That	list	is	buried	deeply
within	man	cshrc,

so	here’s	a	quick	way	to	zero	in	on	it:
dru@~:man cshrc

/prompt	may	include

Here	I’ve	used	the	/	to	invoke	the	manpage	search	utility.

The	search

string	prompt	may	include	brings	you	to	the	right	section,
and	is	intuitive

enough	that	even	my	rusty	old	brain	can	remember	it.

If	you	compare	the	formatting	sequences	shown	in	the
manpage	to	my

prompt	string,	it	reads	as	follows:
set	prompt	=	“%B%n@%~%b:	“

That’s	a	little	dense.	Table	1-1	dissects	the
options.

	

Hack	3	Create	Shell	Bindings
Train	your	shell	to	run	a	command	for	you	whenever
you	press	a

mapped	key.

Have	you	ever	listened	to	a	Windows	power	user	expound
on	the	joys

of	hotkeys?	Perhaps	you	yourself	have	been	known	to
gaze	wistfully	at

the	extra	buttons	found	on	a	Microsoft	keyboard.	Did	you
know	that

it’s	easy	to	configure	your	keyboard	to	launch	your	most
commonly

used	applications	with	a	keystroke	or	two?

One	way	to	do	this	is	with	the	bindkey	command,	which	is
built	into	the

tcsh	shell.	As	the	name	suggests,	this	command	binds
certain	actions	to

certain	keys.	To	see	your	current	mappings,	simply	type
bindkey.	The

output	is	several	pages	long,	so	I’ve	included	only	a	short
sample.

However,	you’ll	recognize	some	of	these	shortcuts	from
[Hack	#1].
Standard	key	bindings

“^A”

“^B”

“^E”

“^F”

“^L”

“^N”

“^P”

“^U”

->

->

->

->

->

->

->

->

beginning-of-line

backward-char

end-of-line

forward-char

clear-screen

down-history

up-history

kill-whole-line

Arrow	key	bindings

down

up

left

right

home

end

->	history-search-forward

->	history-search-backward

->	backward-char

->	forward-char

->	beginning-of-line

->	end-of-line

The	^	means	hold	down	your	Ctrl	key.	For	example,
press	Ctrl	and

then	l,	and	you’ll	clear	your	screen	more	quickly	than	by
typing	clear.

	

Hack	4	Use	Terminal	and	X	Bindings
Take	advantage	of	your	terminal’s
capabilities.

It’s	not	just	the	tcsh	shell	that	is	capable	of	understanding
bindings.

Your	FreeBSD	terminal	provides	the	kbdcontrol	command
to	map

commands	to	your	keyboard.	Unfortunately,	neither
NetBSD	nor

OpenBSD	offer	this	feature.	You	can,	however,	remap
your	keyboard

under	X,	as	described	later.

1.5.1	Creating	Temporary	Mappings
Let’s	start	by	experimenting	with	some	temporary
mappings.	The

syntax	for	mapping	a	command	with	kbdcontrol	is	as
follows:
kbdcontrol	-f number ” command ”

Table	1-2	lists	the	possible	numbers,	each	with	its
associated	key

combination.

Table	1-2.	Key	numbers

Number

Key	combination

1,	2,	…	12

F1,	F2,	…	F12

13,	14,	…	24

Shift+F1,	Shift+F2,	…

Shift+F12

25,	26,	…	36

Ctrl+F1,	Ctrl+F2,	…
Ctrl+F12

37,	38,	…	48

Shift+Ctrl+F1,	Shift+Ctrl+F2,

.	.

.	Shift+Ctrl+F12

49

Home

	

Hack	5	Use	the	Mouse	at	a	Terminal
Use	your	mouse	to	copy	and	paste	at	a
terminal.

If	you’re	used	to	a	GUI	environment,	you	might	feel	a	bit
out	of	your

element	while	working	at	the	terminal.	Sure,	you	can	learn
to	map

hotkeys	and	to	use	navigational	tricks,	but	darn	it	all,
sometimes	it’s	just

nice	to	be	able	to	copy	and	paste!

Don’t	fret;	your	mouse	doesn’t	have	to	go	to	waste.	In
fact,	depending

upon	how	you	have	configured	your	system,	the	mouse
daemon

moused	may	already	be	enabled.	The	job	of	this	daemon	is
to	listen	for

mouse	data	in	order	to	pass	it	to	your	console	driver.

Of	course,	if	you’re	using	screen	[Hack
#12],	you

can	also	take	advantage	of	its	copy	and
paste

mechanism.

1.6.1	If	X	Is	Already	Installed
If	you	installed	and	configured	X	when	you	installed
your	system,

moused	is	most	likely	started	for	you	when	you	boot
up.	You	can

check	with	this:
% grep	moused	/etc/rc.conf

moused_port=”/dev/psm0”

moused_type=“auto”

moused_enable=“YES”

Very	good.	moused	needs	to	know	three
things:

The	mouse	port	(in	this	example, /dev/psm0, the
PS/2	port)

The	type	of	protocol	(in	this	example,
auto)

	

Hack	6	Get	Your	Daily	Dose	of	Trivia
Brighten	your	day	with	some	terminal	eye
candy.

As	the	saying	goes,	all	work	and	no	play	makes	Jack	a	dull
boy.	But

what’s	a	poor	Jack	or	Jill	to	do	if	your	days	include
spending	inordinate

amounts	of	time	in	front	of	a	computer	screen?	Well,	you
could	head

over	to	http://www.thinkgeek.net/	to	stock	up	on	cube
goodies	and

caffeine.	Or,	you	could	take	advantage	of	some	of	the
entertainments

built	into	your	operating	system.

1.7.1	A	Fortune	a	Day
Let’s	start	by	configuring	some	terminal	eye	candy.	Does
your	system

quote	you	a	cheery,	witty,	or	downright	strange	bit	of
wisdom	every

time	you	log	into	your	terminal?	If	so,	you’re	receiving	a
fortune:
login: dru

Password:

Last	login:	Thu	Nov	27	10:10:16	on	ttyv7

“You	can’t	have	everything.	Where	would	you	put	it?”

—	Steven	Wright

If	you’re	not	receiving	a	fortune,	as	the	superuser	type
/stand/sysinstall.

Choose	Configure,	then	Distributions,	and	select	games
with	your

spacebar.	Press	Tab	to	select	OK,	then	exit	out	of
sysinstall	when	it	is

finished.

Then,	look	for	the	line	that	runs /usr/games/fortune in
your ~/.cshrc

file:

% grep	fortune	~/.cshrc

/usr/games/fortune

If	for	some	reason	it	isn’t	there,
add	it:
% echo	‘/usr/games/fortune’	>>	~/.cshrc

Don’t	forget	to	use	both	greater-than	signs;	you	don’t	want
to	erase	the

contents	of	your .cshrc file!	To	test	your	change,	use	the
source	shell

command,	which	re-executes	the	contents	of	the	file.	This
can	come	in

handy	if	you’ve	updated	an	alias	and	want	to	take
advantage	of	it

immediately:

	

Hack	7	Lock	the	Screen
Secure	your	unattended	terminal	from
prying	eyes.

If	you	work	in	a	networked	environment,	the	importance	of
locking

your	screen	before	leaving	your	workstation	has	probably
been

stressed	to	you.	After	all,	your	brilliant	password	becomes
moot	if

anyone	can	walk	up	to	your	logged	in	station	and	start
poking	about	the

contents	of	your	home	directory.

If	you	use	a	GUI	on	your	workstation,	your	Window
Manager

probably	includes	a	locking	feature.	However,	if	you
use	a	terminal,

you	may	not	be	aware	of	the	mechanisms	available	for
locking	your

terminal.

As	an	administrator,	you	may	want	to	automate	these
mechanisms	as

part	of	your	security	policy.	Fortunately,	FreeBSD’s
screen	locking

mechanism	is	customizable.

1.8.1	Using	lock
FreeBSD	comes	with	lock	(and	it’s	available	for
NetBSD	and

OpenBSD).	Its	default	invocation	is	simple:
% lock

Key: 1234

Again: 1234

lock	/dev/ttyv6	on	genisis.	timeout	in	15	minutes.

time	now	is	Fri	Jan	2	12:45:02	EST	2004

Key:

Without	any	switches,	lock	will	request	that	the	user	input

a	key	which

will	be	used	to	unlock	the	terminal.	This	is	a	good	thing,
as	it	gives	the

user	an	opportunity	to	use	something	other	than	her	login
password.	If

the	user	tries	to	be	smart	and	presses	Enter	(for	an	empty
password),

the	lock	program	will	abort.

Once	a	key	is	set,	it	is	required	to	unlock	the	screen.	If	a
user	instead

types	Ctrl-c,	she	won’t	terminate	the	program.	Instead,
she’ll	receive

this	message:

	

Hack	8	Create	a	Trash	Directory
Save	“deleted”	files	until	you’re	really	ready	to	send
them	to	the	bit

bucket.

One	of	the	first	things	Unix	users	learn	is	that	deleted	files
are	really,

really	gone.	This	is	especially	true	at	the	command	line
where	there	isn’t

any	Windows-style	recycling	bin	to	rummage	through
should	you	have

a	change	of	heart	regarding	the	fate	of	a	removed	file.	It’s
off	to	the

backups!	(You	do	have	backups,	don’t	you?)

Fortunately,	it	is	very	simple	to	hack	a	small	script	that
will	send

removed	files	to	a	custom	trash	directory.	If	you’ve
never	written	a

script	before,	this	is	an	excellent	exercise	in	how	easy
and	useful

scripting	can	be.

1.9.1	Shell	Scripting	for	the	Impatient
Since	a	script	is	an	executable	file,	you	should	place
your	scripts	in	a

directory	that	is	in	your	path.	Remember,	your	path	is
just	a	list	of

directories	where	the	shell	will	look	for	commands	if
you	don’t	give

them	full	pathnames.	To	see	your	path:
% echo	$PATH

PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/loc

al/sbin:/usr/

local/bin:/usr/X11R6/bin:/home/dru/bin

In	this	output,	the	shell	will	look	for	executables	in
the bin subdirectory

of	dru’s	home	directory.	However,	it	won’t	look	for

executables	placed

directly	in	my	home	directory,
or /home/dru. Since bin isn’t	created	by

default,	I	should	do	that	first:
% cd

% mkdir	bin

As	I	create	scripts,	I’ll	store	them	in /home/dru/bin, since
I	don’t	have

permission	to	store	them	anywhere	else.	Fortunately,	no
one	else	has

permission	to	store	them	in	my bin directory,	so	it’s	a
good	match.

The	scripts	themselves	contain	at	least
three	lines:
#!/bin/sh

#	a	comment	explaining	what	the	script	does

	

Hack	9	Customize	User	Configurations
Now	that	you	know	how	to	set	up	a	useful	environment	for
yourself,	it’s

time	to	share	the	wealth.

It’s	very	easy	for	a	system	administrator	to	ensure	that
each	newly

created	user	starts	out	with	the	same	configuration	files.
For	example,

every	user	can	receive	the	same	customized	prompt,	shell
variables,	or

hotkeys.

Whenever	you	create	a	new	user,	several	default	(and
hidden,	or	dot,

files)	are	copied	into	the	new	user’s	home	directory.	In
FreeBSD,	the

source	of	these	files	is /usr/share/skel/. Any
customizations	you	make

to	these	files	will	be	seen	by	all	subsequently	created
users.	Do	note

that	you’ll	have	to	manually	copy	over	any	modified	files
to	existing

users.

It’s	useful	to	understand	these	files,	as	they	apply	to	every
user	you

create.	Depending	upon	your	needs,	you’ll	probably	end	up
removing

some	of	the	defaults,	customizing	others,	and	even	adding
a	few	of	your

own.

1.10.1	Default	Files
Let’s	take	a	quick	tour	of	the	default
files:
% ls	-l	/usr/share/skel

total	24

drwxr-xr-x

drwxr-xr-x

-rw-r—r—

-rw-r—r—

2	root

27	root

1	root

1	root

wheel

wheel

wheel

wheel

wheel

512	Jul	28	16:09	./

512	Jul	28	16:06	../

921	Jul	28	16:09	dot.cshrc

248	Jul	28	16:09	dot.login

158	Jul	28	16:09

-rw-r—r—1	root

dot.login_conf

-rw––-1	root

dot.mail_aliases

-rw-r—r—

dot.mailrc

-rw-r—r—

1	root

wheel

371	Jul	28	16:09

wheel

331	Jul	28	16:09

1	root

wheel

797	Jul	28	16:09

	

Hack	10	Maintain	Your	Environment	on
Multiple	Systems
The	sign	of	a	true	Unix	guru	is	the	ability	to	perform	a
task	quickly

when	confronted	with	an	unfamiliar	shell,	keyboard,
terminal,	window

manager,	or	operating	system.

A	large	part	of	using	Unix	systems	effectively	involves
configuring	a

comfortable	environment	using	familiar	tools	available
from	the	Unix

shell	prompt.	It’s	much	easier	to	perform	a	task	quickly
when	all	of	the

shortcuts	your	fingers	have	learned	work	on	the	first	try.

Even	something	as	simple	as	setting	up	your	prompt	the
way	you	like	it

can	steal	significant	time	from	your	productivity	if	you
need	to	do	it	on

several	hosts.	If	you’re	going	to	spend	significant	time	in	a
Unix	shell,	it’s

worth	getting	organized.	A	bit	of	onetime	effort	will
reward	you	later,

every	time	you	sit	down	at	the	keyboard.

1.11.1	Enter	unison
unison	is	a	tool	for	maintaining	synchronized	copies	of
directories.	I’ve

used	it	to	maintain	a	central	repository	of	all	of	my	dot
files,	shell

scripts,	signatures	file,	SpamAssassin	configuration—
basically	any	file

I’d	like	to	have	available,	regardless	of	which	host	I
happen	to	be

logged	into.

You	can	install	unison	from	the	NetBSD	pkgsrc
collection:

# cd	/usr/pkgsrc/net/unison

# make	install	clean

FreeBSD	and	OpenBSD	ports	also
include net/unison.

Even	better,	this	utility	is	available	for	most	Unix
and	Windows

platforms.	See	the	main	unison	web	site	for	details.

1.11.2	Using	unison
Whenever	I	configure	a	new	Unix	host	or	get	a	shell	on
another	system,

I	install	unison.	Then,	I	create	a	directory	to	receive	the
files	I’ve	stored

in	the /usr/work/sync directory	at	host.example.com.	I	call
the	local

	

Hack	11	Use	an	Interactive	Shell
Save	and	share	an	entire	login
session.

How	many	times	have	you	either	struggled	with	or	tried	to
troubleshoot

another	user	through	a	thorny	problem?	Didn’t	you	wish
you	had

another	set	of	eyes	behind	you	so	you	could	simply	type
your

command	set,	point	at	the	troublesome	output,	and	say,
“That’s	the

problem.”	Well,	if	you	can’t	bring	another	user	to	your
output,	you	can

still	share	that	real-time	output	using	an	interactive	shell.

1.12.1	Recording	All	Shell	Input	and
Output
There	are	actually	several	ways	to	share	what	is
happening	on	your

screen.	Let’s	start	by	recording	all	of	your	input	and
output	to	a	file.

Then	we’ll	see	how	we	can	also	allow	another	user	to
view	that	output

from	another	terminal.

Your	BSD	system	comes	with	the	script	command
which,	not

surprisingly,	allows	you	to	script	your	session.	This
command	is

extremely	simple	to	use.	Simply	type	script:
% script

Script	started,	output	file	is	typescript

By	default,	script	will	create	an	output	file
named typescript in	your

current	directory.	If	you	prefer,	you	can	specify	a	more
descriptive

name	for	your	script	file:

% script	configure.firewall.nov.11.2003

Script	started,	output	file	is

configure.firewall.nov.11.2003

Regardless	of	how	you	invoke	the	command,	a	new
shell	will	be

created.	This	means	that	you	will	see	the	MOTD	and
possibly	a

fortune,	and	your .cshrc will	be	reread.

You	can	now	carry	on	as	usual	and	all	input	and	output
will	be	written

to	your	script	file.	When	you	are	finished,	simply	press
Ctrl-d.	You	will

see	this	message:
Script	done,	output	file	is

configure.firewall.nov.11.2003

If	you’ve	ended	a	script	and	decide	later	to	append	some
more	work	to

	

Hack	12	Use	Multiple	Screens	on	One
Terminal
Running	a	graphical	environment	is	great.	You	can	have
numerous

applications	and	utilities	running,	and	you	can	interact	with
all	of	them	at

the	same	time.	Many	people	who	have	grown	up	with	a
GUI

environment	look	down	upon	those	poor	souls	who
continue	to	work	in

a	terminal	console	environment.	“After	all,”	they	say,	“you
can	only	do

one	thing	at	a	time	and	don’t	get	the	same	information	and
control	that

you	have	in	a	desktop	environment.”

It’s	true;	they	do	say	those	things.	(I	am	curious	to	know
who	they	are,

however.)

It’s	also	true	that	the	utility	of	a	graphical	environment
diminishes	when

you	need	to	administer	machines	remotely.	Do	you	really
want	to

squander	network	bandwidth	just	to	maintain	a	GUI
session?

Here	are	some	more	questions	to	ask	yourself
regarding	remote

administration:

Do	you	want	to	copy	and	paste	between	the
windows?

Do	you	want	multiple	windows	with	labels	and
of	different

sizes?

Do	you	want	to	be	able	to	password	protect	your
session	to

prevent	unauthorized	access?

Do	you	want	a	secure
connection?

Are	you	worried	about	making	your	services
vulnerable	just	so

you	can	administer	them	across	the	Internet?

Do	you	want	to	run	multiple	terminal	sessions
from	a	single

login?

	

Chapter	2.	Dealing	with
Files
and	Filesystems

Section	12.	Introduction

Section	13.	Find	Things

Section	14.	Get	the	Most	Out	of
grep

Section	15.	Manipulate	Files	with
sed

Section	16.	Format	Text	at	the	Command
Line

Section	17.	Delimiter
Dilemma

Section	18.	DOS	Floppy
Manipulation

Section	19.	Access	Windows	Shares	Without	a
Server

Section	20.	Deal	with	Disk
Hogs

Section	21.	Manage	Temporary	Files	and	Swap
Space

Section	22.	Recreate	a	Directory	Structure
Using	mtree

Section	23.	Ghosting	Systems

	

	

Hack	12	Introduction
Now	that	you’re	a	bit	more	comfortable	with	the	Unix
environment,	it’s

time	to	tackle	some	commands.	It’s	funny	how	some	of
the	most	useful

commands	on	a	Unix	system	have	gained	themselves	a
reputation	for

being	user-unfriendly.	Do	find,	grep,	sed,	tr,	or	mount
make	you

shudder?	If	not,	remember	that	you	still	have	novice	users
who	are

intimidated	by—and	therefore	aren’t	gaining	the	full
potential	of—these

commands.

This	chapter	also	addresses	some	useful	filesystem
manipulations.	Have

you	ever	inadvertently	blown	away	a	portion	of	your
directory

structure?	Would	you	like	to	manipulate /tmp or	your	swap
partition?

Do	your	Unix	systems	need	to	play	nicely	with	Microsoft
systems?

Might	you	consider	ghosting	your	BSD	system?	If	so,	this
chapter	is	for

you.

	

	

Hack	13	Find	Things
Finding	fles	in	Unix	can	be	an	exercise	in	frustration	for
a	novice	user.

Here’s	how	to	soften	the	learning	curve.

Remember	the	first	time	you	installed	a	Unix	system?
Once	you

successfully	booted	to	a	command	prompt,	I	bet	your	first
thought	was,

“Now	what?”	or	possibly,	“Okay,	where	is	everything?”
I’m	also	pretty

sure	your	first	foray	into	man	find	wasn’t	all	that
enlightening.

How	can	you	as	an	administrator	make	it	easier	for	your
users	to	find

things?	First,	introduce	them	to	the	built-in	commands.
Then,	add	a	few

tricks	of	your	own	to	soften	the	learning	curve.

2.2.1	Finding	Program	Paths
Every	user	should	become	aware	of	the	three	w’s:	which,
whereis,	and

whatis.	(Personally,	I’d	like	to	see	some	why	and	when
commands,	but

that’s	another	story.)

Use	which	to	find	the	path	to	a	program.	Suppose	you’ve
just	installed

xmms	and	wonder	where	it	went:
% which	xmms

/usr/X11R6/bin/xmms

Better	yet,	if	you	were	finding	out	the	pathname	because
you	wanted	to

use	it	in	a	file,	save	yourself	a	step:
% echo	`which	xmms`	>>	somefile

Remember	to	use	the	backticks	(`),	often	found	on	the	far
left	of	the

keyboard	on	the	same	key	as	the	tilde	(~).	If	you	instead

use	the	single

quote	(‘)	character,	usually	located	on	the	right	side	of	the
keyboard	on

the	same	key	as	the	double	quote	(“),	your	file	will	contain
the	echoed

string	which	xmms	instead	of	the	desired	path.

The	user’s	current	shell	will	affect	how	which’s	switches
work.	Here	is

an	example	from	the	C	shell:
% which	-a	xmms

-a:	Command	not	found.

/usr/X11R6/bin/xmms

	

Hack	14	Get	the	Most	Out	of	grep
You	may	not	know	where	its	odd	name	originated,	but	you
can’t	argue

the	usefulness	of	grep.

Have	you	ever	needed	to	find	a	particular	file	and
thought,	“I	don’t

recall	the	filename,	but	I	remember	some	of	its
contents”?	The	oddly

named	grep	command	does	just	that,	searching	inside
files	and

reporting	on	those	that	contain	a	given	piece	of	text.

2.3.1	Finding	Text
Suppose	you	wish	to	search	your	shell	scripts	for	the	text
$USER.	Try

this:
% grep	-s	‘$USER’	*

add-user:if	[“$USER”	!=	“root”];	then

bu-user:	echo	“

user	to	backup”

[-u	user]	-	override	$USER	as	the

bu-user:if	[“$user”	=	””];	then	user=”$USER”;	fi

del-user:if	[“$USER”	!=	“root”];	then

mount-host:mounted=$(df	|	grep	“$ALM_AFP_MOUNT/$USER”)

…..

mount-user:	echo	“

the	user	to	backup”

[-u	user]	-	override	$USER	as

mount-user:if	[“$user”	=	””];	then	user=”$USER”;	fi

In	this	example,	grep	has	searched	through	all	files	in	the
current

directory,	displaying	each	line	that	contained	the	text
$USER.	Use

single	quotes	around	the	text	to	prevent	the	shell	from
interpreting

special	characters.	The	-s	option	suppresses	error	messages
when	grep

encounters	a	directory.

Perhaps	you	only	want	to	know	the	name	of	each	file
containing	the

text	$USER.	Use	the	-l	option	to	create	that	list	for	you:
% grep	-ls	‘$USER’	*

add-user

bu-user

del-user

	

	

Hack	15	Manipulate	Files	with	sed
If	you’ve	ever	had	to	change	the	formatting	of	a	file,	you
know	that	it

can	be	a	time-consuming	process.

Why	waste	your	time	making	manual	changes	to	files
when	Unix

systems	come	with	many	tools	that	can	very	quickly	make
the	changes

for	you?

2.4.1	Removing	Blank	Lines
Suppose	you	need	to	remove	the	blank	lines	from	a	file.
This	invocation

of	grep	will	do	the	job:
% grep	-v	‘^$’	letter1.txt	>	tmp	;	mv	tmp	letter1.txt

The	pattern	^$	anchors	to	both	the	start	and	the	end	of	a
line	with	no

intervening	characters—the	regexp	definition	of	a	blank
line.	The	-v

option	reverses	the	search,	printing	all	nonblank	lines,
which	are	then

written	to	a	temporary	file,	and	the	temporary	file	is
moved	back	to	the

original.

grep	must	never	output	to	the	same
file	it	is

reading,	or	the	file	will	end	up	empty.

You	can	rewrite	the	preceding	example	in
sed	as:
% sed	‘/^$/d’	letter1.txt	>	tmp	;	mv	tmp	letter1.txt

‘/^$/d’	is	actually	a	sed	script.	sed’s	normal	mode	of
operation	is	to

read	each	line	of	input,	process	it	according	to	the	script,
and	then	write

the	processed	line	to	standard	output.	In	this	example,	the
expression

‘/^$/	is	a	regular	expression	matching	a	blank	line,	and	the
trailing	d’	is	a

sed	function	that	deletes	the	line.	Blank	lines	are	deleted
and	all	other

lines	are	printed.	Again,	the	results	are	redirected	to	a
temporary	file,

which	is	then	copied	back	to	the	original	file.

2.4.2	Searching	with	sed
sed	can	also	do	the	work	of
grep:
% sed	-n	‘/$USER/p’	*

	

Hack	16	Format	Text	at	the	Command
Line
Combine	basic	Unix	tools	to	become	a
formatting	expert.

Don’t	let	the	syntax	of	the	sed	command	scare	you	off.
sed	is	a

powerful	utility	capable	of	handling	most	of	your
formatting	needs.	For

example,	have	you	ever	needed	to	add	or	remove
comments	from	a

source	file?	Perhaps	you	need	to	shuffle	some	text	from
one	section	to

another.

In	this	hack,	I’ll	demonstrate	how	to	do	that.	I’ll	also	show
some	handy

formatting	tricks	using	two	other	built-in	Unix	commands,
tr	and	col.

2.5.1	Adding	Comments	to	Source
Code
sed	allows	you	to	specify	an	address	range	using	a
pattern,	so	let’s	put

this	to	use.	Suppose	we	want	to	comment	out	a	block	of
text	in	a

source	file	by	adding	//	to	the	start	of	each	line	we	wish	to
comment

out.	We	might	use	a	text	editor	to	mark	the	block	with	bc-
start	and

bc-end:
% cat	source.c

if	(tTd(27,	1))

sm_dprintf(“%s	(%s,	%s)	aliased	to	%s\n”,

a->q_paddr,	a->q_host,	a->q_user,	p);

bc-start

if	(bitset(EF_VRFYONLY,	e->e_flags))

{

a->q_state	=	QS_VERIFIED;

return;

}

bc-end

		message(“aliased	to	%s”,	shortenstring(p,

MAXSHORTSTR));

and	then	apply	a	sed	script	such
as:
% sed	‘/bc-start/,/bc-end/s/^/\/\//’	source.c

	

Hack	17	Delimiter	Dilemma
Deal	with	double	quotation	marks	in
delimited	files.

Importing	data	from	a	delimited	text	file	into	an
application	is	usually

painless.	Even	if	you	need	to	change	the	delimiter	from
one	character	to

another	(from	a	comma	to	a	colon,	for	example),	you	can
choose	from

many	tools	that	perform	simple	character	substitution	with
great	ease.

However,	one	common	situation	is	not	solved	as	easily:
many	business

applications	export	data	into	a	space-	or	comma-delimited
file,

enclosing	individual	fields	in	double	quotation	marks.
These	fields	often

contain	the	delimiter	character.	Importing	such	a	file	into
an	application

that	processes	only	one	delimiter	(PostgreSQL	for
example)	may	result

in	an	incorrect	interpretation	of	the	data.	This	is	one	of
those	situations

where	the	user	should	feel	lucky	if	the	process	fails.

One	solution	is	to	write	a	script	that	tracks	the	use	of
double	quotes	to

determine	whether	it	is	working	within	a	text	field.	This	is
doable	by

creating	a	variable	that	acts	as	a	text/nontext	switch	for	the
character

substitution	process.	The	script	should	change	the	delimiter
to	a	more

appropriate	character,	leave	the	delimiters	that	were
enclosed	in	double

quotes	unchanged,	and	remove	the	double	quotes.	Rather
than	make

the	changes	to	the	original	datafile,	it’s	safer	to	write	the
edited	data	to	a

new	file.

2.6.1	Attacking	the	Problem
The	following	algorithm	meets	our
needs:

1.

1. Create	the	switch	variable	and	assign	it	the	value	of
1,	meaning

“nontext”.	We’ll	declare	the	variable	tswitch	and
define	it	as

tswitch	=	1.

2.

2. Create	a	variable	for	the	delimiter	and	define	it.
We’ll	use	the

variable	delim	with	a	space	as	the	delimiter,	so
delim	=	‘	‘.

3.

3. Decide	on	a	better	delimiter.	We’ll	use	the	tab
character,	so

new_delim	=	‘\t’.

	

	

Hack	18	DOS	Floppy	Manipulation
Bring	simplicity	back	to	using
floppies.

If	you’re	like	many	Unix	users,	you	originally	came	from
a	Windows

background.	Remember	your	initial	shock	the	first	time
you	tried	to	use

a	floppy	on	a	Unix	system?	Didn’t	Windows	seem	so
much	simpler?

Forever	gone	seemed	the	days	when	you	could	simply
insert	a	floppy,

copy	some	files	over,	and	remove	the	disk	from	the	drive.
Instead,	you

were	expected	to	plunge	into	the	intricacies	of	the	mount
command,

only	to	discover	that	you	didn’t	even	have	the	right	to	use
the	floppy

drive	in	the	first	place!

There	are	several	ways	to	make	using	floppies	much,
much	easier	on

your	FreeBSD	system.	Let’s	start	by	taking	stock	of	the
default

mechanisms	for	managing	floppies.

2.7.1	Mounting	a	Floppy
Suppose	I	have	formatted	a	floppy	on	a	Windows	system,
copied

some	files	over,	and	now	want	to	transfer	those	files	to	my
FreeBSD

system.	In	reality,	that	floppy	is	a	storage	media.	Since	it	is
storing	files,

it	needs	a	filesystem	in	order	to	keep	track	of	the	locations
of	those

files.	Because	that	floppy	was	formatted	on	a	Windows
system,	it	uses

a	filesystem	called	FAT12.

In	Unix,	a	filesystem	can’t	be	accessed	until	it	has	been
mounted.	This

means	you	have	to	use	the	mount	command	before	you
can	access	the

contents	of	that	floppy.	While	this	may	seem	strange	at
first,	it	actually

gives	Unix	more	flexibility.	An	administrator	can	mount
and	unmount

filesystems	as	they	are	needed.	Note	that	I	used	the	word

administrator.	Regular	users	don’t	have	this	ability,	by
default.	We’ll

change	that	shortly.

Unix	also	has	the	additional	flexibility	of	being	able	to
mount	different

filesystems.	In	Windows,	a	floppy	will	always	contain	the
FAT12

filesystem.	BSD	understands	floppies	formatted	with
either	FAT12	or

UFS,	the	Unix	File	System.	As	you	might	expect	from
the	name,	the

UFS	filesystem	is	assumed	unless	you	specify	otherwise.

For	now,	become	the	superuser	and	let’s	pick	apart
the	default

	

Hack	19	Access	Windows	Shares
Without
a	Server
Share	files	between	Windows	and	FreeBSD	with	a
minimum	of	fuss.

You’ve	probably	heard	of	some	of	the	Unix	utilities
available	for

accessing	files	residing	on	Microsoft	systems.	For
example,	FreeBSD

provides	the	mount_smbfs	and	smbutil	utilities	to	mount
Windows

shares	and	view	or	access	resources	on	a	Microsoft
network.

However,	both	of	those	utilities	have	a	caveat:	they
require	an	SMB

server.	The	assumption	is	that	somewhere	in	your
network	there	is	at

least	one	NT	or	2000	Server.

Not	all	networks	have	the	budget	or	the	administrative
expertise	to

allow	for	commercial	server	operating	systems.	Sure,
you	can	install

and	configure	Samba,	but	isn’t	that	overkill	for,	say,	a
home	or	very

small	office	network?	Sometimes	you	just	want	to	share
some	files

between	a	Windows	9x	system	and	a	Unix	system.	It’s	a
matter	of

using	the	right-sized	tool	for	the	job.	You	don’t	bring	in	a
backhoe	to

plant	flowers	in	a	window	box.

2.8.1	Installing	and	Configuring	Sharity-
Light
If	your	small	network	contains	a	mix	of	Microsoft	and
Unix	clients,

consider	installing	Sharity-Light	on	the	Unix	systems.
This	application

allows	you	to	mount	a	Windows	share	from	a	Unix
system.	FreeBSD

provides	a	port	for	this	purpose	(see	the	Sharity-Light
web	site	for

other	supported	platforms):
# cd	/usr/ports/net/sharity-light

# make	install	clean

Since	Sharity-Light	is	a	command-line	utility,	you	should
be	familiar

with	UNC	or	the	Universal	Naming	Convention.	UNC	is
how	you	refer

to	Microsoft	shared	resources	from	the	command	line.	A
UNC	looks

like	\NetBIOSname\sharename.	It	starts	with	double
backslashes,

then	contains	the	NetBIOS	name	of	the	computer	to	access
and	the

name	of	the	share	on	that	computer.

Before	using	Sharity-Light,	you	need	to	know	the
NetBIOS	names	of

the	computers	you	wish	to	access.	If	you	have	multiple
machines

running	Microsoft	operating	systems,	the	quickest	way	to
view	each

system’s	name	is	with	nbtstat.	From	one	of	the	Windows
systems,	open

	

Hack	20	Deal	with	Disk	Hogs
Fortunately,	you	no	longer	have	to	be	a	script	guru	or	a
find	wizard	just

to	keep	up	with	what	is	happening	on	your	disks.

Think	for	a	moment.	What	types	of	files	are	you	always
chasing	after	so

they	don’t	waste	resources?	Your	list	probably	includes
temp	files,	core

files,	and	old	logs	that	have	already	been	archived.	Did	you
know	that

your	system	already	contains	scripts	capable	of	cleaning
out	those	files?

Yes,	I’m	talking	about	your	periodic	scripts.

2.9.1	Periodic	Scripts
You’ll	find	these	scripts	in	the	following	directory	on	a
FreeBSD	system:
% ls	/etc/periodic/daily	|	grep	clean

100.clean-disks

110.clean-tmps

120.clean-preserve

130.clean-msgs

140.clean-rwho

150.clean-hoststat

Are	you	using	these	scripts?	To	find	out,	look	at	your

/etc/periodic.conf file.	What,	you	don’t	have	one?	That
means	you’ve

never	tweaked	your	default	configurations.	If	that’s	the
case,	copy	over

the	sample	file	and	take	a	look	at	what’s	available:
# cp	/etc/defaults/periodic.conf	/etc/periodic.conf

# more	/etc/periodic.conf

2.9.1.1	daily_clean_disks

Let’s	start	with	daily_clean_disks.	This	script	is	ideal	for
finding	and

deleting	files	with	certain	file	extensions.	You’ll	find	it

about	two	pages

into periodic.conf, in	the	Daily	options	section,	where	you
may	note

that	it’s	not	enabled	by	default.	Fortunately,	configuring	it
is	a	heck	of	a

lot	easier	than	using	cron	to	schedule	a	complex	find
statement.

Before	you	enable	any	script,	test	it
first,

	

Hack	21	Manage	Temporary	Files	and
Swap	Space
Add	more	temporary	or	swap	space	without
repartitioning.

When	you	install	any	operating	system,	it’s	important	to
allocate

sufficient	disk	space	to	hold	temporary	and	swap	files.
Ideally,	you

already	know	the	optimum	sizes	for	your	system	so	you
can	partition

your	disk	accordingly	during	the	install.	However,	if	your
needs	change

or	you	wish	to	optimize	your	initial	choices,	your	solution
doesn’t	have

to	be	as	drastic	as	a	repartition—and	reinstall—of	the
system.

man	tuning	has	some	practical	advice
for

guesstimating	the	appropriate	size	of
swap	and

your	other	partitions.

2.10.1	Clearing	/tmp
Unless	you	specifically	chose	otherwise	when	you
partitioned	your

disk,	the	installer	created	a /tmp filesystem	for	you:
% grep	tmp	/etc/fstab

/dev/ad0s1e

/tmp

ufs

rw

2

2

% df	-h	/tmp

Filesystem

/dev/ad0s1e

Size

252M

Used

614K

Avail	Capacity

231M

0%

Mounted	on

/tmp

Here	I	searched /etc/fstab for	the /tmp filesystem.	This
particular

filesystem	is	256	MB	in	size.	Only	a	small	portion
contains	temporary

files.

The	df	(disk	free)	command	will	always
show	you

a	number	lower	than	the	actual	partition
size.	This

is	because	eight	percent	of	the	filesystem
is

reserved	to	prevent	users	from
inadvertently

	

Hack	22	Recreate	a	Directory	Structure
Using	mtree
Prevent	or	recover	from	rm
disasters.

Someday	the	unthinkable	may	happen.	You’re	doing	some
routine

maintenance	and	are	distracted	by	a	phone	call	or	perhaps
another

employee’s	question.	A	moment	later,	you’re	faced	with
the	awful

realization	that	your	fingers	typed	either	a	rm	*	or	a	rm	-R
in	the	wrong

place,	and	now	a	portion	of	your	system	has	evaporated
into

nothingness.

Painful	thought,	isn’t	it?	Let’s	pause	for	a	moment	to
catch	our	breath

and	examine	a	few	ways	to	prevent	such	a	scenario	from
happening	in

the	first	place.

Close	your	eyes	and	think	back	to	when	you	were	a	fresh-
faced

newbie	and	were	introduced	to	the	omnipotent	rm
command.	Return	to

the	time	when	you	actually	read	man	rm	and	first
discovered	the	-i

switch.	“What	a	great	idea,”	you	thought,	“to	be	prompted
for

confirmation	before	irretrievably	deleting	a	file	from	disk.”
However,

you	soon	discovered	that	this	switch	can	be	a	royal	PITA.
Face	it,	it’s

irritating	to	deal	with	the	constant	question	of	whether
you’re	sure	you

want	to	remove	a	file	when	you	just	issued	the	command
to	remove

that	file.

2.11.1	Necessary	Interaction
Fortunately,	there	is	a	way	to	request	confirmation	only
when	you’re

about	to	do	something	as	rash	as	rm	*.	Simply	make	a	file
called -i.

Well,	actually,	it’s	not	quite	that	simple.	Your	shell	will
complain	if	you

try	this:
% touch	-i

touch:	illegal	option	—	i

usage:	touch	[-acfhm]	[-r	file]	[-t

[[CC]Y]MMDDhhmm[.SS]]	file	…

You	see,	to	your	shell, -i looks	like	the	-i	switch,	which
touch	doesn’t

have.	That’s	actually	part	of	the	magic.	The	reason	why	we
want	to

make	a	file	called -i in	the	first	place	is	to	fool	your	shell:
when	you	type

rm	*,	the	shell	will	expand	*	into	all	of	the	files	in	the
directory.	One	of

those	files	will	be	named -i, and,	voila,	you’ve	just	given
the	interactive

	

Hack	23	Ghosting	Systems
Do	you	find	yourself	installing	multiple	systems,	all
containing	the	same

operating	system	and	applications?	As	an	IT	instructor,
I’m	constantly

installing	systems	for	my	next	class	or	trying	to	fix	the
ramifications	of	a

misconfiguration	from	a	previous	class.

As	any	system	administrator	can	attest	to, ghosting or
hard

drive-cloning	software	can	be	a	real	godsend.	Backups
are	one	thing;

they	retain	your	data.	However,	an	image	is	a	true
timesaver—it’s	a

copy	of	the	operating	system	itself,	along	with	any
installed	software

and	all	of	your	configurations	and	customizations.

I	haven’t	always	had	the	luxury	of	a	commercial	ghosting
utility	at	hand.

As	you	can	well	imagine,	I’ve	tried	every	homegrown	and
open	source

ghosting	solution	available.	I	started	with	various
invocations	of	dd,

gzip,	ssh,	and	dump,	but	kept	running	across	the	same
fundamental

problem:	it	was	easy	enough	to	create	an	image,	but
inconvenient	to

deploy	that	image	to	a	fresh	hard	drive.	It	was	doable	in
the	labs	that

used	removable	drives,	but,	otherwise,	I	had	to	open	up	a
system,

cable	in	the	drive	to	be	deployed,	copy	the	image,	and
recable	the

drive	into	its	own	system.

Forget	the	wear	and	tear	on	the	equipment;	that	solution
wasn’t

working	out	to	be	much	of	a	timesaver!	What	I	really
needed	was	a

floppy	that	contained	enough	intelligence	to	go	out	on	the
network	and

retrieve	and	restore	an	image.	I	tried	several	open	source
applications

and	found	that	Ghost	For	Unix,	g4u,	best	fit	the	bill.

2.12.1	Creating	the	Ghost	Disk
You’re	about	two	minutes	away	from	creating	a	bootable
g4u	floppy.

Simply	download g4u-1.12fs from
http://theatomicmoose.ca/g4u/	and

copy	it	to	a	floppy:
# cat	g4u-1.12fs	>	/dev/fd0

Your	only	other	requirement	is	a	system	with	a	drive
capable	of	holding

your	images.	It	can	be	any	operating	system,	as	long	as	it
has	an

installed	FTP	server.	If	it’s	a	FreeBSD	system,	you	can
configure	an

FTP	server	through	/stand/sysinstall.	Choose	Configure
from	the	menu,

then	Networking.	Use	your	spacebar	to	choose	Anon	FTP.

<	Day	Day	Up	>

<	Day	Day	Up	>

Chapter	3.	The	Boot
and
Login	Environments

Introduction

Section	24.	Customize	the	Default	Boot
Menu

Section	25.	Protect	the	Boot
Process

Section	26.	Run	a	Headless
System

Section	27.	Log	a	Headless	Server
Remotely

Section	28.	Remove	the	Terminal	Login
Banner

Section	29.	Protecting	Passwords	With	Blowfish
Hashes

Section	30.	Monitor	Password	Policy
Compliance

Section	31.	Create	an	Effective,	Reusable
Password	Policy

Section	32.	Automate	Memorable	Password
Generation

Section	33.	Use	One	Time
Passwords

Section	34.	Restrict	Logins

<	Day	Day	Up	>

<	Day	Day	Up	>

Introduction
When	it	comes	to	configuring	systems,	many	users	are
reluctant	to

change	the	default	boot	process.	Visions	of	unbootable
systems,

inaccessible	data,	and	reinstalls	dance	in	their	heads.	Yes,
it	is	good	to

be	mindful	of	such	things	as	they	instill	the	necessary
attention	to	detail

you’ll	need	to	use	when	making	changes.	However,	once
you’ve	taken

the	necessary	precautions,	do	take	advantage	of	the	hacks
found	in	this

chapter.	Many	of	them	will	increase	the	security	of	your
system.

This	chapter	also	includes	several	password	hacks.	You’ll
learn	how	to

create	an	effective	password	policy	and	monitor
compliance	to	that

policy.	You’ll	find	tools	designed	to	assist	you	and	your
users	in	making

good	password	choices.	You’ll	also	learn	how	to	configure
OTP,	an

excellent	choice	for	when	you’re	on	the	road	and	wish	to
access	your

network’s	resources	securely.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	24	Customize	the	Default	Boot
Menu
Configure	a	splash
screen.

You’re	not	quite	sure	what	you	did	to	give	the	impression
that	you	don’t

already	have	enough	to	do.	Somehow,	though,	you	were
elected	at	the

latest	staff	meeting	to	create	a	jazzy	logo	that	will	appear
on	every

user’s	computer	when	they	boot	up	in	the	morning.

While	you	may	not	be	able	to	tell	from	first	glance,	the
FreeBSD	boot

menu	supports	a	surprising	amount	of	customization.	Let’s
start	by

examining	your	current	menu	to	see	which	tools	you	have
to	work	with.

3.2.1	The	Default	Boot	Menu
Your	default	boot	menu	will	vary	slightly	depending	upon
your	version

of	FreeBSD	and	whether	you	chose	to	install	the	boot
menu	when	you

installed	the	system.	Let’s	start	with	the	most	vanilla	boot
prompt	and

work	our	way	up	from	there.	In	this	scenario,	you’ll	see
this	message	as

your	system	boots:
Hit	[Enter]	to	boot	immediately,	or	any	other	key

for	command	prompt.

Booting	[/boot/kernel/kernel]	in	10	seconds…

FreeBSD	5.1	introduced	a	quasi-graphical	boot	menu
that	includes	a

picture	of	Beastie	and	the	following	options:
Welcome	to	FreeBSD!

1.	Boot	FreeBSD	[default]

2.	Boot	FreeBSD	with	ACPI	disabled

3.	Boot	FreeBSD	in	Safe	Mode

4.	Boot	FreeBSD	in	single	user	mode

5.	Boot	FreeBSD	with	verbose	logging

6.	Escape	to	loader	prompt

7.	Reboot

Select	option,	[Enter]	for	default

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	25	Protect	the	Boot	Process
Thwart	unauthorized	physical	access	to	a
system.

Creating	a	snazzy	boot	environment	for	users	is	one	thing.
However,

when	it	comes	to	booting	up	servers,	your	mind
automatically	shifts

gears	to	security	mode.	Your	goal	is	to	ensure	that	only	a
very	precious

few	on	very	rare	occasions	ever	see	the	boot	process	on	a
server.

After	all,	the	golden	rule	in	security	land	is	“physical
access	equals

complete	access.”

Here’s	a	prime	example—consider	recovering	from	an
unknown	or

forgotten	root	password.	Go	into	the	server	closet,	reboot
that	system,

and	press	a	key	to	interrupt	the	boot	process	to	change	the
password.

A	few	moments	later,	the	system	continues	to	boot	as
normal.	This	can

be	a	real	lifesaver	if	an	admin	leaves	without	divulging	the
root

password.	However,	consider	the	security	implications	of
an

unauthorized	user	gaining	physical	access	to	that	server:
instant	root

access!

3.3.1	Limiting	Unauthorized	Reboots
Let’s	start	by	ensuring	that	regular	users	can’t	reboot	the
system	either

inadvertently	or	maliciously.	By	default,	if	a	user	presses

Ctrl-Alt-Delete,	the	system	will	clean	up	and	reboot.
Typically	this	isn’t

an	issue	for	servers,	as	most	administration	is	done
remotely	and	the

server	is	safely	locked	away	in	a	server	closet.	However,	it
can	wreak

havoc	on	workstations,	especially	if	the	user	is	used	to
working	in	a

Windows	environment	and	has	become	accustomed	to
pressing

Ctrl-Alt-Delete.	It’s	also	worthwhile	disabling	on	a	server,
as	it	ensures

that	a	person	has	to	first	become	the	superuser	in	order	to
issue	the

reboot	command.

If	you’re	logged	into	a	remote	machine
over	SSH

and	try	Ctrl-Alt-Delete,	it	will	affect	your
own

machine,	not	the	remote	machine.	reboot
works

well	over	the	network,	though.

Disabling	this	feature	requires	a	kernel	rebuild.	(See
[Hack	#54]	for

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	26	Run	a	Headless	System
For	those	times	when	you	want	to	run	a	system
“headless.”

Sometimes	it	is	a	simple	matter	of	economy.	Perhaps
you’ve	managed

to	scrounge	up	another	system,	but	you	don’t	have
enough	monitors,

keyboards,	or	mice	to	go	around.	You	also	don’t	have	the
budget	to

purchase	either	those	or	a	KVM	switch.	Sometimes	it	is	a
matter	of

security.	Perhaps	you’re	introducing	a	PC	to	a	server
closet	and	your

physical	security	policy	prevents	server	closet	devices
from	being

attached	to	monitors,	keyboards,	and	mice.

Before	you	can	run	a	system	“headless,”	you	need	to
have	an

alternative	for	accessing	that	system.	Once	you’ve
removed	input	and

output	peripherals,	your	entry	point	into	the	system	is
now	either

through	the	network	card	or	a	serial	port.

Going	in	through	the	network	card	is	the	easiest	and	is
quite	secure	if

you’re	using	SSH.	However,	you	should	also	consider	a
plan	B.	What

if	for	some	reason	the	system	becomes	inaccessible	over
the	network?

How	do	you	get	into	the	system	then?	Do	you	really	want
to	gather	up

a	spare	monitor,	keyboard,	and	mouse	and	carry	them	into
the	server

closet?

A	more	attractive	plan	B	may	be	to	purchase	a null	modem
cable as

insurance.	This	is	a	crossed	serial	cable	that	is	designed	to
go	from	one

computer’s	serial	port	to	another	computer’s	serial	port.
This	type	of

cable	allows	you	to	access	a	system	without	going	through
the	network,

which	is	a	real	lifesaver	when	the	system	isn’t	responding
to	the

network.	You	can	purchase	this	type	of	cable	at	any	store
that	sells

networking	cables.

Your	last	consideration	is	whether	the	system	BIOS	will
cooperate	with

your	plan.	Most	newer	BIOSes	will.	Many	have	a	CMOS
option	that

can	be	configured	to	disable	“halt	on	errors.”	It’s	always	a
good	idea	to

check	out	your	available	CMOS	options	before	you	start
unplugging

your	peripherals.

3.4.1	Preparing	the	System
I’ve	just	installed	a	new	FreeBSD	5.1	system.	Since	I
didn’t	have	a	null

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	27	Log	a	Headless	Server	Remotely
More	on	headless	systems,	but	this	time	from	the	NetBSD
perspective.

We’ve	already	seen	in	[Hack	#26]	that	it’s	important	to
have	an

alternative	method	for	connecting	to	a	headless	server.	It’s
also

important	to	be	able	to	receive	a	headless	system’s
console	messages.

This	hack	will	show	how	to	configure	both	on	a	NetBSD
system.

3.5.1	Enabling	a	Serial	Console
If	you	have	another	machine	close	to	your	headless	server,
it	may	be

convenient	to	enable	the	serial	console	so	that	you	can
connect	to	it

using	a	serial	communication	program.	tip,	included	in	the
base	system,

and	minicom	,	available	through	the	packages	collection,
allow	you	to

handle	the	server	as	if	you	were	working	on	a	real
physical	console.

To	enable	the	serial	console	under	NetBSD,	simply	tell	the
bootblocks

to	use	the	serial	port	as	the	console;	they	will	configure
the	kernel	on

the	fly	to	use	it	instead	of	the	physical	screen.	You	also
need	kernel

support	for	the	serial	port	device,	which	is	included	in	the
default

GENERIC	kernel.

However,	changing	the	bootblocks	configuration	is	a	bit
tricky	because

you	need	write	permissions	to	the	raw	root	device.	As	we
are	talking

about	a	server,	I	assume	the	securelevel	functionality	is

enabled;	you

must	temporarily	disable	it	by	adding	the	options
INSECURE	line	to

your	kernel.	While	in	the	kernel	configuration	file,	double-
check	that	it

includes	serial	port	support.	Then,	recompile	your	kernel.

Once	you	have	access	to	the	raw	partition,	update	the
bootblocks

using	the	installboot	utility.	The	process	depends	on
the	NetBSD

version	you	are	using.

If	you	are	running	2.0	or	higher,	use	the	command	shown
next.	Replace

the bootxx_ffsv1 file	with	the	one	that	matches	your	root
filesystem

type;	failure	to	do	so	will	render	your	system	unbootable.
# /usr/sbin/installboot	-o	console=com0	/dev/rwd0a

/usr/mdec/bootxx_ffsv1

If	you	are	running	1.6,	use	the	following
command	instead:

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	28	Remove	the	Terminal	Login
Banner
Give	users	the	information	you	want	them	to	receive
when	they	log	in.

The	default	login	process	on	a	FreeBSD	system	produces	a
fair	bit	of

information.	The	terminal	message	before	the	login	prompt
clearly

indicates	that	the	machine	is	a	FreeBSD	system.	After
logging	in,	a	user

will	receive	a	copyright	message	and	a	Message	of	the	Day
(or	motd),

both	of	which	contain	many	references	to	FreeBSD.

This	may	or	may	not	be	a	good	thing,	depending	upon	the
security

requirements	of	your	network.	Your	organization	may	also
require	you

to	provide	legal	information	regarding	network	access	or
perhaps	a

banner	touting	the	benefits	of	your	corporation.
Fortunately,	a	few

simple	hacks	are	all	that	stand	between	the	defaults	and
your	network’s

particular	requirements.

3.6.1	Changing	the	Copyright	Display
Let’s	start	with	the	copyright	information.	That’s	this	part
of	the	default

login	process:
Copyright	(c)	1992-2003	The	FreeBSD	Project.

Copyright	(c)	1979,	1980,	1983,	1986,	1988,	1989,

1991,	1992,	1993,	1994

The	Regents	of	the	University	of	California.	All

rights	reserved.

To	prevent	users	from	seeing	this
information,	simply:

# touch	/etc/COPYRIGHT

3.6.2	Changing	the	Message	of	the	Day
Technically,	you	could	add	your	own	information
to /etc/COPYRIGHT

instead	of	leaving	it	as	an	empty	file.	However,	it	is
common	practice	to

put	your	information	in /etc/motd instead.	The
default /etc/motd

contains	very	useful	information	to	the	new	user,	but	it
does	get	rather

old	after	a	few	hundred	logins.

You	can	edit /etc/motd to	say	whatever	suits	your	purposes
—anything

from	your	favorite	sci-fi	excerpt	to	all	the	nasty	things	that
will	happen

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	29	Protecting	Passwords	With
Blowfish	Hashes
Take	these	simple	steps	to	thwart	password
crackers.

All	good	administrators	know	that	passwords	can	be	a
weak	link	in	the

security	chain.	A	malicious	and	determined	user	armed
with	a

password	cracker	could	conceivably	guess	enough	of	your
network’s

passwords	to	access	unauthorized	resources.

3.7.1	Protecting	System	Passwords	in
General
Fortunately,	you	can	make	a	password	cracker’s	life	very
difficult	in

several	ways.	First,	educate	your	users	to	choose	complex,

hard-to-guess	passwords	that	are	meaningful	enough	for
them	to

remember.	This	will	thwart	dictionary	password	crackers
[Hack	#30],

which	use	lists	of	dictionary	and	easy-to-guess	words.

Second,	be	aware	of	who	has	superuser	privileges	and
who	has	the

right	to	backup /etc. This	directory	contains	the	two
password

databases	that	are	required	to	run	a	brute-force	password
cracker.	As

the	name	implies,	this	type	of	cracker	will	eventually
guess	every

password	in	your	password	databases	as	it	systematically
tries	every

possible	keyboard	combination.	Your	best	protection	from
this	type	of

cracker	is	to	prevent	access	to	those	password	databases.
This

includes	locking	up	your	backup	tapes	and	monitoring
their	access.

It	is	also	a	good	idea	to	increase	the	amount	of	time	it
would	take	a

brute-force	cracker	to	crack	a	password	database.
FreeBSD,	like

most	Unix	systems,	adds	a	magic	bit	of	randomness—
known	as	a salt

—to	the	password	when	it	is	stored	in	the	password
database.	The

upshot	is	that	a	password	cracker	may	have	to	try	up	to
4,096	different

combinations	for	each	and	every	password	it	tries	to	guess.

Using	a	strong	algorithm	to	protect	your	passwords	can
also	slow

down	a	brute-force	cracker.	FreeBSD	supports	a	hard-to-
crack

algorithm	known	as	Blowfish.	One	of	the	first	things	I	do
after	a

FreeBSD	install	is	to	configure	the	password	database	to
use	Blowfish.

While	it	is	easier	to	do	this	before	you	create	your	users,	it
is	still	worth

your	while	to	implement	it	after	you’ve	created	your	user
accounts.

3.7.2	Protecting	System	Passwords	with
Blowfish

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	30	Monitor	Password	Policy
Compliance
When	to	use	a	password	cracker
utility.

Now	that	you’ve	tightened	up	your	password	policy	to
thwart

password	crackers,	it’s	time	to	learn	how	to	use	a	password
cracker	to

monitor	the	effectiveness	of	that	password	policy.

You’re	probably	thinking,	“Hey,	wait	a	minute!	Isn’t	that
some	sort	of

oxymoron?	An	administrator	cracking	passwords?”	Well,
it	depends

upon	the	type	of	password	cracker	you	plan	on	using.

A	brute-force	password	cracker	such	as	John	the	ripper	or
slurpie	will

systematically	try	every	possible	keyboard	combination
until	it	has

cracked	every	password	in	the	password	database.	Does
an

administrator	need	to	know	every	password	in	his
network?	Definitely

not.

However,	an	administrator	does	need	to	know	if	her	users
are	choosing

easy-to-guess	passwords,	especially	if	she’s	responsible	for
enforcing

compliance	to	the	network’s	password	policy.	A	properly
tweaked

dictionary	password	cracker	such	as	crack	is	an	effective
way	to

monitor	that	compliance.

It	is	important	that	a	network’s	security	policy	indicates
in	writing	who

runs	the	dictionary	cracker,	when	it	is	run,	and	how	the

results	are

handled.	For	example,	if	the	password	policy	forces	users
to	change

their	passwords	every	30	days,	the	following	day	is	an
excellent	time

for	the	delegated	administrator	to	run	the	cracker.	Ideally,
the	cracker

will	return	no	results.	This	means	all	users	chose	a	strong
password.

Should	the	cracker	find	some	weak	passwords,	the
security	policy

should	clearly	outline	the	procedure	used	to	ensure	that
noncompliant

users	change	their	passwords	to	ones	that	are	harder	to
guess.

3.8.1	Installing	and	Using	crack
Let’s	take	a	look	at	the	most	commonly	used	dictionary
password

cracker	used	on	Unix	systems,	crack.	You’ll	have	to	be
the	superuser

for	this	entire	hack	because,	fortunately,	only	the
superuser	has

permission	to	crack	the	passwd	database.	crack	should
build	on	any

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	31	Create	an	Effective,	Reusable
Password	Policy
Traditionally,	it	has	been	difficult	for	a	Unix	administrator
to	create	and

enforce	a	reusable	password	policy.	Fortunately,	PAM
addresses	this.

If	you’re	using	FreeBSD	5.0	or	higher,	your	system	has	a
PAM

(Pluggable	Authentication	Modules)	module	specifically
designed	to

assist	in	the	creation	and	enforcement	of	a	reusable
password	policy.	If

you’re	running	a	different	version	of	BSD,	see	the	end	of
this	hack	for

other	sources	for	this	module.

3.9.1	Introducing	pam_passwdqc
Before	using	this	module,	spend	some	time	reading	man

pam_passwdqc,	as	it	thoroughly	covers	each	option	and
its	possible

values.	Any	values	contained	within	parentheses	are
defaults.	As	you

read	through	this	manpage,	compare	those	defaults	with
your	own

network’s	security	policy	and	make	note	of	any	values
that	will	require

a	change.

This	PAM	module	is	fairly	comprehensive,	allowing	you	to
enable	many

of	the	features	expected	in	a	password	policy.	Here’s	an
overview	of

the	configurable	features:

Ability	to	search	for	strings	that	are	words	written
backwards,

or	are	words	written	in	a	mix	of	upper-	and
lowercase

Minimum	number	of	words	in	a
passphrase

Minimum	and	maximum	password
lengths

Force	a	mix	of	digits,	lowercase,	uppercase,
symbols,	and

non-ASCII	characters

Minimum	number	of	characters	to	consider	as
a	string

(dictionary	word)

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	32	Automate	Memorable	Password
Generation
Make	it	easier	for	your	users	to	choose	good
passwords.

It	doesn’t	matter	whether	you’re	an	administrator
responsible	for

enforcing	a	password	policy	or	an	end	user	trying	to
comply	with	said

policy.	You’re	struggling	against	human	nature	when	you
ask	users	to

choose—and	remember—hard-to-guess	passwords.
Passwords	that

aren’t	random	are	easy	to	guess,	and	passwords	that	are
too	random

tend	to	manifest	themselves	on	sticky	notes	under	users’
keyboards	or

in	their	top	drawers.

Wouldn’t	it	be	great	if	you	could	somehow	offer	users
random	but

memorable	password	choices?	There’s	a	standard	designed
for	just	this

purpose:	APG,	the	Automated	Password	Generator.

3.10.1	Installing	and	Using	apg
If	you’re	running	FreeBSD,	you	can	install	apg	from	the
ports	collection:
# cd	/usr/ports/security/apg

# make	install	clean

Once	the	port	is	installed,	any	user	can	run	apg	to
generate	a	list	of

random,	but	pronounceable	and	memorable,
passwords:
% apg	-q	-m	10	-x	10	-M	NC	-n	10

plerOcGot5	(pler-Oc-Got-FIVE)

fobEbpigh6	(fob-Eb-pigh-SIX)

Ekjigyerj7	(Ek-jig-yerj-SEVEN)

CaujIvOwk8	(Cauj-Iv-Owk-EIGHT)

yenViapag0	(yen-Viap-ag-ZERO)

Fiwioshev3	(Fi-wi-osh-ev-THREE)

Twomitvac4	(Twom-it-vac-FOUR)

varbidCyd2	(varb-id-Cyd-TWO)

KlepezHap0	(Klep-ez-Hap-ZERO)

Naccudhav8	(Nac-cud-hav-EIGHT)

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	33	Use	One	Time	Passwords
Sometimes	even	a	complex	password	may	not	meet
your	security

needs.

If	you	are	on	the	road	and	need	to	access	the	corporate
network	from

a	non-secure	computer	in	a	public	place,	the	risk	of
password	leakage

increases.	Could	the	person	next	to	you	be	shoulder
surfing,	watching

as	you	log	into	the	network?	Does	the	computer	you’re
using	have

some	sort	of	installed	spyware	or	keystroke	logger?	Is
there	a	packet

sniffer	running	somewhere	on	the	network?	In	such	a
situation,	a	One

Time	Password	can	be	a	real	lifesaver.

3.11.1	Configuring	OPIE
FreeBSD	comes	with	OPIE,	or	One-time	Passwords	In
Everything,	a

type	of	software	OTP	system.	It	is	easy	to	configure	and
doesn’t

require	any	additional	hardware	or	proprietary	software
running	on	a

server.	Ideally,	you	should	configure	OPIE	before	leaving
your	secure

network.	For	example,	if	you	plan	on	traveling	with	your
laptop,

configure	OPIE	while	connected	to	the	office	network.
Make	sure	you

are	logged	in	as	your	regular	user	account	to	the	particular
system	you’ll

need	to	access	while	on	the	road.

Start	by	adding	yourself	to	the	OPIE	database,
or /etc/opiekeys, using

opiepasswd.	If	you	intend	to	access	your	workstation
while	on	the

road,	run	this	command	while	physically	sitting	at	your
workstation.

Include	the	console	switch	(-c)	to	indicate	you	are	at	that
station’s

console,	so	it	is	safe	to	enter	a	passphrase:
% opiepasswd	-c

Adding	dru:

Only	use	this	method	from	the	console;	NEVER	from

remote.	If	you	are	using

telnet,	xterm,	or	a	dial-in,	type	^C	now	or	exit	with

no	password.

Then	run	opiepasswd	without	the	-c	parameter.

Using	MD5	to	compute	responses.

Enter	new	secret	pass	phrase:

Secret	pass	phrases	must	be	between	10	and	127

characters	long.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	34	Restrict	Logins
In	this	chapter,	we’ve	covered	many	methods	of	securing
the	boot	and

login	environments.	It’s	probably	no	surprise	that	you	can
further

control	who	can	log	into	your	system	and	when:	Unix
systems	contain

many	built-in	mechanisms,	allowing	you	to	choose	the
most	appropriate

means	and	policy	for	your	network.

Furthermore,	the	defaults	may	not	always	suit	your
needs.	Do	you

really	want	users	to	be	logged	into	multiple	terminals
when	they	can

effectively	do	their	work	from	one?	For	that	matter,	do
you	want	any

user,	including	nonemployees,	to	try	his	hand	at	logging
into	your

systems	at	any	hour	of	the	night	and	day?	Here’s	how	to
tighten	up

some	defaults.

3.12.1	/etc/ttys
Since	users	log	into	terminals,	a	logical	file	to	secure	is	the
terminal

configuration	file, /etc/ttys. We	briefly	saw	this	file	in
[Hack	#24]	when

we	password	protected	single-user	mode.

This	file	is	divided	into	three	sections,	one	for	each	of	the
three	types	of

terminals.	Let’s	concern	ourselves	with	the	virtual
terminals,	ttyv,	which

are	the	terminals	available	for	users	physically	seated	at
the	system’s

keyboard.
# grep	ttyv	/etc/ttys

ttyv0

on

ttyv1

on

ttyv2

on

ttyv3

on

ttyv4

on

ttyv5

on

ttyv6

on

ttyv7

“/usr/libexec/getty	Pc”

secure

“/usr/libexec/getty	Pc”

secure

“/usr/libexec/getty	Pc”

secure

“/usr/libexec/getty	Pc”

secure

“/usr/libexec/getty	Pc”

secure

“/usr/libexec/getty	Pc”

secure

“/usr/libexec/getty	Pc”

secure

“/usr/libexec/getty	Pc”

cons25

cons25

cons25

cons25

cons25

cons25

cons25

cons25

<	Day	Day	Up	>

<	Day	Day	Up	>

Chapter	4.	Backing
Up

Introduction

Section	35.	Back	Up	FreeBSD	with
SMBFS

Section	36.	Create	Portable	POSIX
Archives

Section	37.	Interactive
Copy

Section	38.	Secure	Backups	Over	a
Network

Section	39.	Automate	Remote
Backups

Section	40.	Automate	Data	Dumps	for	PostgreSQL
Databases

Section	41.	Perform	Client-Server	Cross-Platform
Backups

with	Bacula

<	Day	Day	Up	>

<	Day	Day	Up	>

Introduction
I	began	gathering	contributions	for	this	book,	it	soon
become	obvious

that	there	would	be	an	entire	chapter	on	backups.	Not
only	do	BSD

users	follow	the	mantra	“backup,	backup,	backup,”	but
every	admin

seems	to	have	hacked	his	own	solution	to	take	advantage
of	the	tools

at	hand	and	the	environment	that	needs	to	be	backed	up.

If	you’re	looking	for	tutorials	on	how	to	use	dump	and
tar,	you	won’t

find	them	here.	However,	you	will	find	nonobvious	uses
for	their	less

well-known	counterparts	pax	and	cpio.	I’ve	also
included	a	hack	on

backing	up	over	ssh,	to	introduce	the	novice	user	to	the
art	of

combining	tools	over	a	secure	network	connection.

You’ll	also	find	scripts	that	fellow	users	have	created	to
get	the	most

out	of	their	favorite	backup	utility.	Finally,	there	are
hacks	that

introduce	some	very	useful	open	source	third-party
utilities.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	35	Back	Up	FreeBSD	with
SMBFS
A	good	backup	can	save	the	day	when	things	go	wrong.
A	bad—or

missing—backup	can	ruin	the	whole	week.

Regular	backups	are	vital	to	good	administration.	You	can
perform

backups	with	hardware	as	basic	as	a	SCSI	tape	drive
using	8mm	tape

cartridges	or	as	advanced	as	an	AIT	tape	library	system
using

cartridges	that	can	store	up	to	50	GB	of	compressed	data.
But	what	if

you	don’t	have	the	luxury	of	dedicated	hardware	for	each
server?

Since	most	networks	are	comprised	of	multiple	systems,
you	can

archive	data	from	one	server	across	the	network	to	another.
We’ll	back

up	a	FreeBSD	system	using	the	tar	and	gzip	archiving
utilities	and	the

smbutil	and	mount_smbfs	commands	to	transport	that	data
to	network

shares.	These	procedures	were	tested	on	FreeBSD	4.6-
STABLE	and

5.1-RELEASE.

4.2.1	Adding	NETSMB	Kernel	Support
Since	SMB	is	a	network-aware	filesystem,	we	need	to
build	SMB

support	into	the	kernel.	This	means	adding	the	proper
options	lines	to

the	custom	kernel	configuration	file.	For	information	on
building	a

custom	kernel,	see	[Hack	#54],	the	Building	and
Installing	a	Custom

Kernel	section	(9.3)	of	the	FreeBSD	Handbook,	and
relevant

information	contained	in /usr/src/sys/i386/conf.

Add	the	following	options	under	the
makeoptions	section:
options

NETSMB

#	SMB/CIFS	requester

#	encrypted	password

optionsNETSMBCRYPTO

support	for	SMB

options

options

options

LIBMCHAIN

LIBICONV

SMBFS

#	mbuf	management	library

Once	you’ve	saved	your	changes,	use	the	make
buildkernel	and	make

installkernel	commands	to	build	and	install	the	new
kernel.

4.2.2	Establishing	an	SMB	Connection	with	a
Host

System

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	36	Create	Portable	POSIX	Archives
Create	portable	tar	archives	with
pax.

Some	POSIX	operating	systems	ship	with	GNU	tar	as	the
default	tar

utility	(NetBSD	and	QNX6,	for	example).	This	is
problematic	because

the	GNU	tar	format	is	not	compatible	with	other	vendors’
tar

implementations.	GNU	is	an	acronym	for	“GNU’s	not
UNIX”—in	this

case,	GNU’s	not	POSIX	either.

4.3.1	GNU	Versus	POSIX	tar
For	filenames	or	paths	longer	than	100	characters,	GNU
uses	its	own

@LongName	tar	format	extension.	Some	vendors’	tar
utilities	will

choke	on	the	GNU	extensions.	Here	is	what	Solaris’s
archivers	say

about	such	an	archive:
% pax	-r	<	gnu-archive.tar

pax:	././@LongLink	:	Unknown	filetype

% tar	xf	gnu-archive.tar

tar:	directory	checksum	error

There	definitely	appears	to	be	a	disadvantage	with	the
distribution	of

non-POSIX	archives.	A	solution	is	to	use	pax	to	create
your	tar

archives	in	the	POSIX	format.	I’ll	also	provide	some	tips
about	using

pax’s	features	to	compensate	for	the	loss	of	some	parts	of
GNU	tar’s

extended	feature	set.

4.3.2	Replacing	tar	with	pax
The	NetBSD	and	QNX6	pax	utility	supports	a	tar

interface	and	can

also	read	the	@LongName	GNU	tar	format	extension.
You	can	use

pax	as	your	tar	replacement,	since	it	can	read	your
existing

GNU-format	archives	and	can	create	POSIX	archives
for	future

backups.	Here’s	how	to	make	the	quick	conversion.

First,	replace /usr/bin/tar. That	is,	rename	GNU	tar	and
save	it	in

another	directory,	in	case	you	ever	need	to	restore
GNU	tar	to	its

previous	location:
# mv	/usr/bin/tar	/usr/local/bin/gtar

Next,	create	a	symlink	from	pax	to	tar.	This	will	allow	the
pax	utility	to

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	37	Interactive	Copy
When	cp	alone	doesn’t	quite	meet	your	copy
needs.

The	cp	command	is	easy	to	use,	but	it	does	have	its
limitations.	For

example,	have	you	ever	needed	to	copy	a	batch	of	files
with	the	same

name?	If	you’re	not	careful,	they’ll	happily	overwrite
each	other.

4.4.1	Finding	Your	Source	Files
I	recently	had	the	urge	to	find	all	of	the	scripts	on	my
system	that

created	a	menu.	I	knew	that	several	ports	used	scripts
named	configure

and	that	some	of	those	scripts	used	dialog	to	provide	a
menu	selection.

It	was	easy	enough	to	find	those	scripts
using	find:
% find	/usr/ports	-name	configure	-exec	grep	-l

“dialog”	/dev/null	{	}	\;

/usr/ports/audio/mbrolavox/scripts/configure

/usr/ports/devel/kdesdk3/work/kdesdk-3.2.0/configure

/usr/ports/emulators/vmware2/scripts/configure

(snip)

This	command	asks	find	to	start	in /usr/ports, looking	for
files	-named

configure.	For	each	found	file,	it	should	search	for	the
word	dialog

using	-exec	grep.	The	-l	flag	tells	grep	to	list	only	the
names	of	the

matching	files,	without	including	the	lines	that	match	the
expression.

You	may	recognize	the	/dev/null	{	}	\;	from	[Hack	#13]	.

Normally,	I	could	tell	cp	to	use	those	found	files	as	the
source	and	to

copy	them	to	the	specified	destination.	This	is	done	by

enclosing	the

find	command	within	a	set	of	backticks	(`),	located	at	the
far	top	left	of

your	keyboard.	Note	what	happens,	though:
% mkdir	~/scripts

% cd	~/scripts

% cp	`find	/usr/ports	-name	configure	-exec	grep	-l

“dialog”	\

/dev/null	{

% ls	~/scripts

}	\;`	.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	38	Secure	Backups	Over	a	Network
When	it	comes	to	backups,	Unix	systems	are	extremely
flexible.	For

starters,	they	come	with	built-in	utilities	that	are	just
waiting	for	an

administrator’s	imagination	to	combine	their	talents	into	a
customized

backup	solution.	Add	that	to	one	of	Unix’s	greatest
strengths:	its	ability

to	see	everything	as	a	file.	This	means	you	don’t	even
need	backup

hardware.	You	have	the	ability	to	send	your	backup	to	a
file,	to	a

media,	to	another	server,	or	to	whatever	is	available.

As	with	any	customized	solution,	your	success	depends
upon	a	little

forethought.	In	this	scenario,	I	don’t	have	any	backup
hardware,	but	I

do	have	a	network	with	a	100	Mbps	switch	and	a	system
with	a	large

hard	drive	capable	of	holding	backups.

4.5.1	Initial	Preparation
On	the	system	with	that	large	hard	drive,	I	have	sshd
running.	(An

alternative	to	consider	is	the	scponly	shell;	see	[Hack
#63]).	I’ve	also

created	a	user	and	a	group	called	rembackup:
# pw	groupadd	rembackup

# pw	useradd	rembackup	-g	rembackup	-m	-s	/bin/csh

# passwd	rembackup

Changing	local	password	for	rembackup

New	Password:

Retype	New	Password:

#

If	you’re	new	to	the	pw	command,	the	-g	switch	puts	the
user	in	the

specified	group	(which	must	already	exist),	the	-m	switch
creates	the

user’s	home	directory,	and	the	-s	switch	sets	the	default
shell.	(There’s

really	no	good	mnemonic;	perhaps	no	one	remembers
what,	if	anything,

pw	stands	for.)

Next,	from	the	system	I	plan	on	backing	up,	I’ll	ensure
that	I	can	ssh	in

as	the	user	rembackup.	In	this	scenario,	the	system	with
the	large	hard

drive	has	an	IP	address	of	10.0.0.1:
% sshd	-l	rembackup	10.0.0.1

The	authenticity	of	host	‘10.0.0.1	(10.0.0.1)’	can’t

be	established.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	39	Automate	Remote	Backups
Make	remote	backups	automatic	and
effortless.

One	day,	the	IDE	controller	on	my	web	server	died,
leaving	the	files	on

my	hard	disk	hopelessly	corrupted.	I	faced	what	I	had
known	in	the

back	of	my	mind	all	along:	I	had	not	been	making	regular
remote

backups	of	my	server,	and	the	local	backups	were	of	no
use	to	me

now	that	the	drive	was	corrupted.

The	reason	for	this,	of	course,	is	that	doing	remote
backups	wasn’t

automatic	and	effortless.	Admittedly,	this	was	no	one’s
fault	but	my

own,	but	my	frustration	was	sufficient	enough	that	I
decided	to	write	a

tool	that	would	make	automated	remote	snapshots	so	easy
that	I

wouldn’t	ever	have	to	worry	about	it	again.	Enter
rsnapshot.

4.6.1	Installing	and	Configuring	rsnapshot
Installation	on	FreeBSD	is	a	simple
matter	of:
# cd	/usr/ports/sysutils/rsnapshot

# make	install

I	didn’t	include	the	clean	target	here,	as	I’d	like	to
keep	the	work

subdirectory,	which	includes	some	useful	scripts.

If	you’re	not	using	FreeBSD,	see	the
original

HOWTO	at	the	project	web	site	for
detailed

instructions	on	installing	from	source.

The	install	process	neither	creates	nor	installs	the	config
file.	This	means

that	there	is	absolutely	no	possibility	of	accidentally
overwriting	a

previously	existing	config	file	during	an	upgrade.	Instead,
copy	the

example	configuration	file	and	make	changes	to	the	copy:
# cp	/usr/local/etc/rsnapshot.conf.default

/usr/local/etc/rsnapshot.conf

The rsnapshot.conf config	file	is	well	commented,	and
much	of	it

should	be	fairly	self-explanatory.	For	a	full	reference	of
all	the	various

options,	please	consult	man	rsnapshot.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	40	Automate	Data	Dumps	for
PostgreSQL	Databases
Building	your	own	backup	utility	doesn’t	have	to
be	scary.

PostgreSQL	is	a	robust,	open	source	database	server.	Like
most

database	servers,	it	provides	utilities	for	creating	backups.

PostgreSQL’s	primary	tools	for	creating	backup	files	are
pg_dump	and

pg_dumpall.	However,	if	you	want	to	automate	your
database	backup

processes,	these	tools	have	a	few	limitations:

pg_dump	dumps	only	one	database	at	a
time.

pg_dumpall	dumps	all	of	the	databases	into	a
single	file.

pg_dump	and	pg_dumpall	know	nothing	about
multiple

backups.

These	aren’t	criticisms	of	the	backup	tools—just	an
observation	that

customization	will	require	a	little	scripting.	Our
resulting	script	will

backup	multiple	systems,	each	to	their	own	backup	file.

4.7.1	Creating	the	Script
This	script	uses	Python	and	its	ability	to	execute	other
programs	to

implement	the	following	backup	algorithm:

1.

1. Change	the	working	directory	to	a	specified
database	backup

directory.

2.

2. Rename	all	backup	files	ending	in .gz so	that	they	end
in .gz.old.

		 Existing	files	ending	in .gz.old will	be	overwritten.

3.

3. Clean	up	and	analyze	all	PostgreSQL	databases
using	its

vacuumdb	command.

4.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	41	Perform	Client-Server
Cross-Platform	Backups	with	Bacula
Don’t	let	the	campy	name	fool	you.	Bacula	is	a	powerful,
flexible,	open

source	backup	program.	.

Having	problems	finding	a	backup	solution	that	fits	all
your	needs?	One

that	can	back	up	both	Unix	and	Windows	systems?	That	is
flexible

enough	to	back	up	systems	with	irregular	backup	needs,
such	as

laptops?	That	allows	you	to	run	scripts	before	or	after	the
backup	job?

That	provides	browsing	capabilities	so	you	can	decide
upon	a	restore

point?	Bacula	may	be	what	you’re	looking	for.

4.8.1	Introducing	Bacula
Bacula	is	a	client-server	solution	composed	of	several
distinct	parts:

Director

The	Director	is	the	most	complex	part	of	the	system.	It
keeps	track	of

all	clients	and	files	to	be	backed	up.	This	daemon	talks	to
the	clients

and	to	the	storage	devices.

Client/File	Daemon

The	Client	(or	File)	Daemon	runs	on	each	computer
which	will	be

backed	up	by	the	Director.	Some	other	backup	solutions
refer	to	this

as	the	Agent.

Storage	Daemon

The	Storage	Daemon	communicates	with	the	backup
device,	which

may	be	tape	or	disk.

Console

The	Console	is	the	primary	interface	between	you	and
the	Director.	I

<	Day	Day	Up	>

<	Day	Day	Up	>

Chapter	5.	Networking
Hacks

Introduction

Section	42.	See	Console	Messages	Over	a
Remote	Login

Section	43.	Spoof	a	MAC
Address

Section	44.	Use	Multiple	Wireless	NIC
Configurations

Section	45.	Survive	Catastrophic	Internet
Loss

Section	46.	Humanize	tcpdump
Output

Section	47.	Understand	DNS	Records	and
Tools

Section	48.	Send	and	Receive	Email	Without	a
Mail	Client

Section	49.	Why	Do	I	Need
sendmail?

Section	50.	Hold	Email	for	Later
Delivery

Section	51.	Get	the	Most	Out	of
FTP

Section	52.	Distributed	Command
Execution

Section	53.	Interactive	Remote
Administration

<	Day	Day	Up	>

<	Day	Day	Up	>

Introduction
You	probably	spend	most	of	your	time	accessing	servers
on	the

Internet	or	on	your	own	network.	In	fact,	networking	has
become	so

prevalent,	it’s	becoming	increasingly	difficult	to	tolerate
even	short

periods	of	network	outages.

This	chapter	contains	many	ideas	for	accessing	networking
services

when	the	conventional	avenues	seem	to	be	unavailable.
Have	you	ever

wanted	to	train	your	system	to	notify	you	of	its	new
network

configuration	when	its	primary	link	becomes	unavailable?
Would	you

like	to	check	your	email	from	a	system	that	doesn’t	contain
a

preconfigured	email	client?	How	can	you	maintain	network
connectivity

when	your	ISP’s	DHCP	server	no	longer	recognizes	your
DHCP	client?

You’ll	also	gain	insight	into	how	some	of	the	networking
services	and

tools	we	often	take	for	granted	work.	Become	a	tcpdump
guru—or	at

least	lose	the	intimidation	factor.	Understand	your	DNS
messages	and

how	to	troubleshoot	your	DNS	servers.	Tame	your
sendmail	daemon.

Finally,	meet	two	excellent	open	source	utilities	that
allow	you	to

perform	routine	tasks	simultaneously	on	all	of	your
servers.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	42	See	Console	Messages	Over
a
Remote	Login
View	a	server’s	console	messages
remotely

As	a	Unix	system	administrator,	you	can	do	99%	of	your
work

remotely.	In	fact,	it	is	very	rare	indeed	that	you’ll	need	to
sit	down	in

front	of	a	server	(assuming	the	server	even	has	an
attached	keyboard!

[Hack	#26]).

However,	one	of	the	key	functionalities	you	lose	in	remote

administration	is	the	ability	to	see	the	remote	server’s
console.	All	is	not

lost,	though.	First,	let’s	answer	these	questions:	“What	do
you	mean	by

the	console,	and	why	would	you	want	to	see	it?”

5.2.1	The	Console
If	you’re	physically	sitting	at	a	system,	the	console	is	the
virtual	terminal

you	see	when	you	press	Alt-F1.	If	you’ve	ever	logged	into
this

particular	virtual	terminal,	you’ve	probably	noticed	that
error	messages

appear	here.	These	messages	can	be	rather	disconcerting
when	you’re

working	at	the	console,	especially	if	you’re	fighting	your
way	through	vi

and	bright	white	error	messages	occasionally	overwrite
your	text.

If	you	ever	find	yourself	in	that	situation,	Esc-Ctrl-r	will
refresh	your

screen.	Better	yet,	don’t	log	into	Alt-F1	when	you’re
physically	sitting	at

a	system.	Instead,	log	into	a	different	terminal,	say,	the	one
at	Alt-F2.

However,	when	you	access	a	remote	system,	you	can’t	log
into	a	virtual

terminal,	and	the	console	is	considered	to	be	a	virtual
terminal.	(You

access	it	by	pressing	Alt-F1	at	the	local	keyboard,	after
all).	Instead,

you	log	into	a pseudoterminal (also	known	as	a network
terminal).

Here’s	an	example.	I’m	sitting	at	a	system	and	have
logged	into	the

virtual	terminals	at	Alt-F2	and	Alt-F3.	From	Alt-F3,	I’ve
used	ssh	to

log	into	the	localhost.	If	I	run	the	w	command,	I’ll	see
this:
% w

12:25	up	22	mins,	3	users,	load	averages:	0:00,

0:00,	0:00

USER

TTY

FROM

LOGIN@

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	43	Spoof	a	MAC	Address
Even	good	guys	can	use	secret
identities.

Okay,	I	know	what	you’re	thinking.	There’s	never	a
legitimate	reason	to

spoof	any	type	of	address,	right?	Even	if	there	were,	why
would	you

bother	to	spoof	a	MAC	address,	other	than	to	prove	that	it
can	be

done?

Consider	the	following	scenario.	I	was	administrating	a
small	network

where	the	ISP	restricted	the	number	of	IP	addresses	a
DHCP	client

was	allowed	to	receive.	Their	DHCP	server	kept	track	of
the	leased

addresses	by	using	a	combination	of	the	client’s	MAC
address	and	an

OS	identifier.	One	day	I	needed	to	replace	that	network’s
external

NIC.	It	took	me	a	while	to	figure	out	why	the	new	NIC
refused	to	pick

up	a	DHCP	address	from	the	ISP.	Once	the	restriction	was
explained

to	me,	I	contemplated	my	available	courses	of	action.	One
was	to

spend	the	afternoon	listening	to	Musak	in	the	hopes	that
I’d	eventually

get	to	speak	to	one	of	the	ISP’s	customer	service
representatives.	I

decided	my	time	would	be	better	spent	if	I	instead	took	30
seconds

and	spoofed	the	old	MAC	address.	This	provided	a	quick
solution	that

allowed	the	owner	to	get	back	online	until	he	could	make
arrangements

with	the	ISP	regarding	the	new	MAC	address.

5.3.1	Spoofing	on	FreeBSD
Before	I	could	accomplish	the	spoof,	I	needed	two	pieces
of

information.	The	first	was	the	MAC	address	for	the	old
NIC.

Fortunately,	I	record	such	things	in	a	binder.	However,	I
initially	found

out	that	information	using	ifconfig.	In	this	scenario,	the
interface	in

question	was	called	rl0:
% ifconfig	rl0

rl0:

flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>

mtu	1500

inet	192.168.2.12	netmask	0xffffff00

broadcast	192.168.2.255

ether	00:05:5d:d2:19:b7

media:	Ethernet	autoselect	(10baseT/UTP)

The	MAC	address	is	the	hex	number	immediately
following	ether.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	44	Use	Multiple	Wireless	NIC
Configurations
Take	the	pain	out	of	configuring	your	laptop’s
wireless	interface.

If	you	use	a	laptop	and	have	remote	sites	that	you	visit
regularly,

configuring	your	wireless	interface	can	be	interesting.	For
example,

every	wireless	network	has	a	unique	service	set	identifier
(SSID).	Each

site	that	uses	WEP	will	also	require	a	unique	encryption
key.	Some

networks	may	use	static	IP	addresses,	while	others	may
use	a	DHCP

server.

You	could	keep	a	copy	of	each	network’s	configuration	in
your	wallet

and	reconfigure	your	NIC	manually	at	each	site,	but
wouldn’t	you

rather	automate	the	various	network	configurations	and
choose	the

desired	configuration	after	bootup?

For	the	purpose	of	this	exercise,	we	will	assume	that
the	wireless

access	points	have	been	properly	configured	and
activated.

5.4.1	Initial	Preparation
Before	you	can	script	the	network	configurations,	you’ll
need	to	collect

the	information	listed	next.	I’ve	associated	the	necessary
information

with	ifconfig’s	keywords	where	possible.	You	will	see
these	keywords

in	the	configuration	script.

nwkey,	the	encryption	key,	in
hexadecimal

ssid,	the	name	of	the	wireless
network

authmode,	the	network’s	authorization	mode
(none,	open,	or

shared)

Whether	to	use	a	static	IP	address	or	dhclient
to	obtain

dynamic	IP	address	information

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	45	Survive	Catastrophic	Internet
Loss
Set	up	your	network	to	recover	from	a	full
Internet	loss.

Someday	this	all	too	common	event	may	happen:	while
you’re	away

from	your	network,	your	connection	dies.	Whether	the
ISP	drops	it,

the	cable	gets	unplugged	or	the	server	behind	your	NAT
box	dies,	it	is

gone.	You	are	now	lost	at	sea,	not	knowing	what	is
actually	going	on

back	at	home.	You	ping,	telnet,	and	pray	to	the	network
gods,	but

nothing	seems	to	work.

Wouldn’t	it	be	better	if	your	network	could	recognize	that
it	has	lost

that	connection	and	find	a	way	for	you	to	get	back	in
touch?	The

system	that	I	set	up	did	just	that.	All	it	took	was	a	well-
configured

OpenBSD	firewall	with	NAT	and	a	short	Ruby	program
that	uses	the

Jabber	protocol	to	get	my	attention.

5.5.1	Hardware	Configuration
I	use	OpenBSD	on	a	486	to	make	my	network	resistant	to
total

connectivity	failure.	The	computer	has	two	network
cards,	one	for	the

DSL	bridge	and	the	other	for	the	rest	of	the	network.	In
addition,	I

managed	to	find	a	56k	ISA	modem.

Since	this	computer	provides	little	more	than	firewall	and
NAT

services,	it’s	more	than	capable	of	serving	a	small	home	or

business

network.	The	DSL	bridge	provides	the	primary	Internet
connection

with	a	static	IP.	The	service	through	my	provider	is	usually
quite	good,

but	there	have	been	troubled	times.	The	house	has	only	one
phone	line,

which	is	plugged	into	the	56k	modem	in	the	same
computer	as	the	DSL

line.	You	could	easily	make	the	modem	computer	a
different	machine

entirely,	but	I	found	that	this	486	is	quite	compact	and
sufficient	for	my

purposes.

5.5.2	Connectivity	Software
The	current	OpenBSD	operating	system	(Version	3.4	as	of
this	writing)

comes	with	a	wonderful	firewall	and	NAT	package,	named
Packet

Filter	(PF).	PF	works	well	on	a	day-to-day	basis	moving
my	packets

from	the	network	to	the	Internet.	Unfortunately,	it	does	not
handle	the

loss	of	the	connection	to	the	ISP.	A	full	discussion	for
configuring	PF	is

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	46	Humanize	tcpdump	Output
Make	friends	with
tcpdump.

One	of	the	most	useful	utilities	in	a	network
administrator’s	tool	belt	is

tcpdump.	While	you	probably	agree,	I	bet	the	very
thought	of	wading

through	a	tcpdump	sniff	makes	you	groan.	Take	heart:	I’ll
walk	you

through	some	concrete	examples	that	show	how	to	zero
in	on	the

information	you	need	to	solve	the	particular	network
problem	that

prompted	you	to	consider	doing	a	packet	sniff	in	the	first
place.

You	might	be	thinking,	“Why	bother?	There	are	much
nicer	utilities	out

there.”	That’s	true.	My	personal	favorite	happens	to	be
ethereal.

However,	you	don’t	always	have	the	luxury	of	working	on
a	system	that

allows	you	to	install	third-party	utilities	or,	for	that	matter,
even	has	X

installed.	tcpdump	is	guaranteed	to	be	on	your	BSD
system.	It’s	there,

it’s	quick,	it’s	dirty,	and	it’s	darn	effective	if	you	know	how
to	harness

its	power.

5.6.1	The	Basics
Let’s	start	with	the	basics:	starting	a	capture.	Before	you
can	capture

any	packets,	you	need	to	be	the	superuser.	You	also	need
to	have	the

bpf	device	in	your	kernel.	If	you’re	using	the	GENERIC
kernel,	you’re

set.	If	you’ve	created	your	own	custom	kernel	[Hack

#54],

double-check	you	still	have	that	device.	In	this	example,
my	kernel

configuration	file	is	called CUSTOM:
# grep	bpf	/usr/src/sys/i386/conf/CUSTOM

#	The	‘bpf’	device	enables	the	Berkeley	Packet	Filter.

device

bpf

#Berkeley	packet	filter

You	also	need	to	know	the	names	of	your	interfaces	and
which

interface	is	cabled	to	the	network	you	wish	to	sniff.	You
can	find	this

with	ifconfig:
ifconfig

rl0:

flags=8802<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>

mtu	1500

inet	192.168.3.20	netmask	0xffffff00

broadcast	192.168.3.255

ether	00:05:5d:d2:19:b7

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	47	Understand	DNS	Records	and
Tools
Demystify	DNS
records.

DNS	is	one	of	those	network	services	that	has	to	be
configured

carefully	and	tested	regularly.	A	misconfigured	DNS	server
can	prevent

the	world	from	finding	your	web	and	mail	servers.	Worse,
a

misconfigured	DNS	server	can	allow	the	world	to	find
more	than	just

your	web	and	mail	servers.

Even	if	you’re	not	a	DNS	administrator,	you	should	still
know	some

handy	DNS	commands.	The	simple	truth	is,	if	DNS
isn’t	working,

you’re	not	going	anywhere.	That	means	no	surfing,	no
downloading,

and	no	email	for	you.

5.7.1	Exploring	Your	ISP’s	DNS
On	your	home	system,	you	most	likely	receive	your	DNS
information

from	your	ISP’s	DHCP	server.	Do	you	know	where	to
find	your

primary	and	secondary	DNS	server	addresses?	If	not,	try
this:
% more	/etc/resolv.conf

search	domain.org

nameserver	204.101.251.1

nameserver	204.101.251.2

Another	method	is	to	use	the	dig	(domain	information
groper)	utility.

Here,	I’ll	ask	for	the	nameservers	(ns)	for	the
sympatico.ca	network:

% dig	ns	sympatico.ca

;	<<>>	DiG	8.3	<<>>	ns	sympatico.ca

;;	res	options:	init	recurs	defnam	dnsrch

;;	got	answer:

;;	->>HEADER<<-	opcode:	QUERY,	status:	NOERROR,	id:	2

;;	flags:	qr	rd	ra;	QUERY:	1,	ANSWER:	4,	AUTHORITY:

0,	ADDITIONAL:	4

;;	QUERY	SECTION:

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	48	Send	and	Receive	Email	Without
a	Mail	Client
Learn	to	speak	SMTP	and
POP3.

Contrary	to	popular	belief,	you	don’t	have	to	go	to	the
trouble	of

configuring	an	email	client	just	because	you	want	to	check
your	email	or

send	off	a	quick	email	message.

Normally	when	you	use	the	telnet	application,	you	use	a
Telnet	client	to

attach	to	a	Telnet	server	listening	on	port	23.	Once	you’re
connected,

you	can	log	in	and	do	anything	on	that	device	as	if	you
were	physically

there,	typing	at	its	keyboard.

The	Telnet	client	has	even	more	powerful	capabilities	than
this.	If	you

specify	a	port	number	with	the	telnet	command,	you	will
attach	directly

to	the	TCP	server	listening	on	that	port.	If	you	know
which	commands

that	server	can	respond	to,	and	if	the	service	understands
plain	text

commands,	you	can	talk	directly	to	that	server.	This
essentially	means

that	you	no	longer	require	a	client	application	specific	to
that	server.

5.8.1	Sending	Email	with	telnet
Whenever	you	send	an	email,	you	connect	to	an	SMTP
server	listening

on	port	25.	Let’s	use	telnet	to	see	what	really	happens	in
the

background	and	which	commands	the	client	and	the	SMTP
server

exchange.	Note	that	in	the	following	examples,	the	names
and

addresses	have	been	changed	to	protect	the	innocent.
% telnet	smtp.mycompany.com	25

Trying	1.2.3.4…

Connected	to	smtp.mycompany.com.

Escape	character	is	‘^]’.

220	smtp.mycompany.com	ESMTP	server	(InterMail

version	x)	ready	Sun,	2

Nov	2003	09:54:18	-0500

mail	from:<moi@mycompany.com>

250	Sender	<moi@mycompany.com>	Ok

rcpt	to:<you@mycompany.com>

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	49	Why	Do	I	Need	sendmail?
As	an	end	user,	you’ve	probably	asked	yourself:	“If	all	I’m
doing	is

running	a	FreeBSD	machine	for	personal	use,	why	should
I	need	to	run

a	heavyweight	MTA	daemon	like	sendmail?”

sendmail	is	the	standard	Mail	Transport	Agent	(MTA)	on
FreeBSD,	as

it	is	on	most	Unix	systems.	In	fact,	the	majority	of	email
passing	over

the	Internet	will	probably	travel	through	a	sendmail	server
at	some

point.	However,	sendmail	isn’t	the	easiest	software
package	to	manage,

and	the	configuration	file	syntax	gives	most	people	a
headache.	There

are	several	alternative	MTA	packages	available,	but	these
are	also

industrial-strength	programs	suitable	for	demanding	use.

Many	modern	graphical	email	clients,	such	as	Netscape
Mail	or

Evolution,	can	send	email	directly	to	a	mail	server
machine	across	the

network.	So,	no,	you	won’t	need	an	MTA	on	your	local
machine	to

send	email.	(However,	you	will	need	an	MTA	if	you	use
one	of	the

more	traditional	Unix	mail	clients,	such	as	mail,	mutt,	or
pine.)

Regardless	of	your	email	client,	if	you	want	to	see	any
automatic	emails

the	system	sends—usually	from	the	periodic	scripts—then
you	do

require	an	MTA.	More	precisely,	Unix	programs	expect	to
be	able	to

send	email	by	piping	its	text	into	the	standard	input	of

/usr/sbin/sendmail, and	have	the	system	take	care	of	the
rest	of	the

work	for	them.

The	venerable	sendmail	is	only	one	of
many

MTAs	available.	Choosing	another	MTA
does

not	always	mean	that	you	need	to
change	the

habits	you	picked	up	while	working	with

sendmail.	All	three	major	BSD	systems
have	a

translator	file, /etc/mailer.conf, that
identifies

which	commands	to	execute	when	the
user	or

another	process	executes	sendmail,
mailq,	or

newaliases.

For	example,	if	you	install	postfix,	you
still	use	the

sendmail	command,	even	though	the	real
job	is

done	by	the	commands	from	the	postfix
package.

The	existence	of /etc/mailer.conf makes	it
easy

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	50	Hold	Email	for	Later	Delivery
Control	when	sendmail	uses	an	intermittent	Internet
connection.

The	default	sendmail	configuration	assumes	that	you	have
a	constant

network	connection.	What	if	you’re	on	a	dial-up	system
and	want	to	be

able	to	work	on	emails	without	causing	your	modem	to
dial	up

immediately?	In	this	scenario,	you	want	to	queue	your	sent
messages	to

send	later,	the	next	time	you	go	online.

5.10.1	Configuring	sendmail	Queueing
Fortunately,	sendmail	has	a	“hold	expensive”	function
designed	for	this

purpose.	To	activate	it,	add	the	following	lines	to	the

/etc/mail/<hostname>.mc file:
define(`confCON_EXPENSIVE’,	`True’)dnl

MODIFY_MAILER_FLAGS(`RELAY’,	`+e’)dnl

MODIFY_MAILER_FLAGS(`SMTP’,	`+e’)dnl

MODIFY_MAILER_FLAGS(`ESMTP’,	`+e’)dnl

MODIFY_MAILER_FLAGS(`SMTP8’,	`+e’)dnl

define(`confTO_QUEUEWARN’,	`12h’)dnl

The	first	line	enables	the	feature.	The	next	four	lines	add
the	letter	e	to

the	flags	for	each	named	mailer,	to	indicate	that	it	is
“expensive”	and

that	email	should	first	be	queued	rather	than	immediately
delivered.	The

last	line	just	extends	the	length	of	time	the	system	will
wait	before	it

warns	you	that	your	message	hasn’t	been	delivered	yet	(the
default	is

four	hours).

Now	just	build	the	configuration	file,	install	it,	and

restart	sendmail	as

usual:
# cd	/etc/mail

make

# make	install

# make	restart-mta

The	four	mailers	listed	(RELAY,	SMTP,	ESMTP,	and
SMTP8)	will

handle	the	bulk	of	all	transmissions	over	the	network.	The
configuration

of	both	local	and	remote	mail	systems	will	determine
which	one	to	use.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	51	Get	the	Most	Out	of	FTP
Get	the	most	out	of	stock	ftp	with	macros	and
scripts.

In	this	age	of	GUIs	and	feature-rich	browsers,	it’s	easy	to
forget	how

quick	and	efficient	command-line	ftp	can	be.	That	is,	until
you’re	logged

into	a	system	that	doesn’t	have	X	installed,	nor	a	browser,
nor	any

fancy	FTP	programs.	If	it’s	really	your	lucky	day,	it	won’t
even	have

any	manpages.	And,	of	course,	you’ll	need	to	download
something.

Perhaps	you	find	yourself	using	ftp	all	the	time,	always
going	to	the

same	FTP	servers	and	downloading	from	or	uploading
to	the	same

directories.	Clearly,	it’s	time	for	some	FTP	automation.

5.11.1	Automating	Logins
Have	you	ever	noticed	how	easy	it	is	to	use	FTP	from	a
modern

browser?	Simply	click	on	a	hyperlink	to	start	a	download.
At	the

command	line,	though,	you	can’t	even	browse	the	FTP
directory

structure	until	you	successfully	log	into	the	FTP	server.
Well,	guess

what:	you	always	have	to	log	into	an	FTP	server.	It’s	just
that	your	web

browser	hides	this	little	detail	by	doing	it	for	you	in	the
background.

You	can	achieve	the	same	transparency	for	command-
line	ftp	by

creating	a	file	called .netrc in	your	home	directory	and
placing	the

following	line	in	that	file:

% more	~/.netrc

default	login	anonymous	password	genisis@istar.ca

This	line	will	work	for	any	FTP	server	on	the	Internet
that	accepts

anonymous	logins.	(Most	do,	unless	it’s	a	private	server.)
When

creating	your	own	file,	use	your	own	email	address	as
the	password.

Test	your	change	with	this
command:
% ftp	ftp.freebsd.org

Compare	your	results	to	the	FTP	output	in	[Hack	#71]	.
You	should

receive	the	same	banner	shown	there	without	having	to
first	type	in	a

username	and	password.

If	you’re	a	webmaster	who	uses	FTP	to	upload	your	new
files,	you	do

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	52	Distributed	Command	Execution
Use	tentakel	for	parallel,	distributed	command
execution.

Often	you	want	to	execute	a	command	not	only	on	one
computer,	but

on	several	at	once.	For	example,	you	might	want	to	report
the	current

statistics	on	a	group	of	managed	servers	or	update	all	of
your	web

servers	at	once.

5.12.1	The	Obvious	Approach
You	could	simply	do	this	on	the	command	line	with	a
shell	script	like

the	following:
# for	host	in	hostA	hostB	hostC

> do	ssh	$host	do_something

> done

However,	this	has	several
disadvantages:

The	output	is	provided	by	the	program	that	is	run
remotely.

Managing	many	sets	of	hosts	can	become	a
complicated	task

because	there	is	no	easy	way	to	define	groups	of
hosts	(e.g.,

mailservers	or	workstations).

It	is	slow	because	the	connections	to	the	remote
hosts	do	not

run	in	parallel.	Every	connection	must	wait	for	the
previous	one

to	finish.

The	output	is	hard	to	read	because	there	are	no
marks

indicating	when	the	output	for	a	specific	host
begins	or	ends.

5.12.2	How	tentakel	Can	Help
While	you	could	write	a	shell	script	to	address	some	of
these

disadvantages,	you	might	want	to	consider	tentakel,	which
is	available

in	the	ports	collection.	Its	execution	starts	multiple	threads
that	run

independently	of	each	other.	The	maximum	waiting	time
depends	on	the

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	53	Interactive	Remote
Administration
Managing	a	large	network	can	be	a	daunting	task.	Even
with	the	Unix

utilities	available	for	remote	administration,	making
changes	on	many

systems	can	be	taxing.	Scripting	tools	make	life	easier	to
some	extent,

but	some	tasks	require	hands-	and	eyes-on	interaction.

Several	system	utilities	allow	you	to	execute	the	same
command	on

multiple	hosts.	This	form	of	loosely	coupled	clustering	is
useful	for

information	gathering	and	some	monitoring	purposes.
However,	on

some	occasions,	you	not	only	need	to	run	a	process	on
multiple	hosts,

but	you	must	also	observe	it	and	interact	with	the	process
to	resolve

host-specific	issues.	An	administration	shell	script	will
save	typing	and

minimize	mistakes,	but	it’s	hard	to	write	a	script	that	will
work	correctly

on	every	machine	on	a	diverse	network.

Wouldn’t	it	be	nice	if	there	were	a	program	that	allowed
you	to	interact

with	your	remote	hosts	while	running	parallel	commands?
Enter

ClusterIt.

5.13.1	Why	ClusterIt?
ClusterIt	is	a	set	of	tools	written	by	Tim	Rightnour,
designed	to	place	all

of	your	network	hosts	at	your	fingertips.	ClusterIt	includes
utilities	for

running	a	single	command	on	all	of	the	hosts	in	your

cluster.	It	also

allows	automatic	distribution	of	the	tasks	to	any	available
hosts	in	a

defined	group.	It	uses	a	remote	login	method,	such	as	sshd
on	the

target	hosts,	so	you	only	need	to	install	it	on	the	control
host.

Scripts	can	also	synchronize	between	task	completions	on
different

hosts.	For	example,	you	can	set	two	hosts	to	compile	an
application

and	install	it	on	the	other	machine.	Neither	host	should
begin	the

installation	until	the	other	host	has	finished	compiling,	but
it	is	impossible

to	predict	which	host	will	finish	first.	ClusterIt	defines
barrier	operations

that	can	be	included	in	a	script	to	prevent	passing	a
synchronization

point	until	all	hosts	have	caught	up.

In	most	clustering	systems	for	Unix,	once	you	issue	a
command,	you

cannot	interact	with	the	hosts	in	the	cluster	individually;
you	only	see	the

final	output	of	each	command	run	on	each	of	the	hosts.
ClusterIt	does

not	have	this	limitation,	making	it	ideal	for	dealing	with
processes	that

<	Day	Day	Up	>

<	Day	Day	Up	>

Chapter	6.	Securing	the
System

Introduction

Section	54.	Strip	the
Kernel

Section	55.	FreeBSD	Access	Control
Lists

Section	56.	Protect	Files	with
Flags

Section	57.	Tighten	Security	with	Mandatory
Access	Control

Section	58.	Use	mtree	as	a	Built-in
Tripwire

Section	59.	Intrusion	Detection	with	Snort,	ACID,
MySQL,

and	FreeBSD

Section	60.	Encrypt	Your	Hard
Disk

Section	61.	Sudo	Gotchas

Section	62.	sudoscript

Section	63.	Restrict	an	SSH
server

Section	64.	Script	IP	Filter
Rulesets

Section	65.	Secure	a	Wireless	Network
Using	PF

Section	66.	Automatically	Generate
Firewall	Rules

Section	67.	Automate	Security
Patches

Section	68.	Scan	a	Network	of	Windows
Computers	for

Viruses

<	Day	Day	Up	>

<	Day	Day	Up	>

Introduction
This	chapter	includes	several	hacks	that	demonstrate	some
security

mechanisms	that	aren’t	well-documented	elsewhere.	I’ve
also	provided

some	new	twists	on	old	security	favorites.	Everyone	has
heard	of	sudo,

but	are	you	also	aware	of	the	security	pitfalls	it	can
introduce?	You’re

probably	also	well-versed	in	ssh	and	scp,	but	you	may
have	yet	to

harness	the	usefulness	of	scponly.

You’ll	also	find	several	scripts	to	automate	some	common
security

practices.	Each	provides	an	excellent	view	into	another
administrator’s

thought	processes.	Use	their	examples	to	fuel	your
imagination	and	see

what	security	solutions	you	can	hack	for	your	own
network.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	54	Strip	the	Kernel
Don’t	be	shy.	A	kernel	stripped	down	to	the	bare
essentials	is	a	happy

kernel.

Picture	the	typical	day	in	the	life	of	a	system	administrator.
Your

mission,	if	you	choose	to	accept	it,	is	to	achieve	the
impossible.	Today,

you’re	expected	to:

Increase	the	security	of	a	particular
server

Attain	a	noticeable	improvement	in	speed	and
performance

Although	there	are	many	ways	to	go	about	this,	the	most
efficient	way

is	to	strip	down	the	kernel	to	its	bare-bones	essentials.
Having	this

ability	gives	an	administrator	of	an	open	source	system	a
distinct

advantage	over	his	closed	source	counterparts.

The	first	advantage	to	stripping	the	kernel	is	an	obvious
security	boost.

A	vulnerability	can’t	affect	an	option	the	kernel	doesn’t
support.	The

second	is	a	noticeable	improvement	in	speed	and
performance.	Kernels

are	loaded	into	memory	and	must	stay	in	memory.	You
may	be	wasting

precious	memory	resources	if	you’re	loading	options	you
have	no

intention	of	ever	using.

If	you’ve	never	compiled	a	kernel	or	changed	more	than
one	or	two

kernel	options,	I	can	hear	you	groaning	now.	You’re
probably	thinking,

“Anything	but	that.	Kernels	are	too	complicated	to
understand.”	Well,

there	is	a	lot	of	truth	in	the	idea	that	you	haven’t	really
used	an	operating

system	until	you’ve	gone	through	that	baptism	of	fire
known	as	kernel

compiling.	However,	you	may	not	have	heard	that
compiling	a	kernel

isn’t	all	that	difficult.	So,	grab	a	spare	afternoon	and	a	test
system;	it’s

high	time	to	learn	how	to	hack	a	BSD	kernel.

I’ll	demonstrate	on	a	FreeBSD	system,	but	you’ll	find
resources	for

other	systems	at	the	end	of	this	hack.

Before	you	start,	double-check	that	you	have	the
kernel	source

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	55	FreeBSD	Access	Control	Lists
Unix	permissions	are	flexible	and	can	solve	almost	any
access	control

problem,	but	what	about	the	ones	they	can’t?

Do	you	really	want	to	make	a	group	every	time	you	want
to	share	a	file

with	another	user?	What	if	you	don’t	have	root	access	and
can’t	create

a	group	at	will?	What	if	you	want	to	be	able	to	make	a
directory

available	to	a	web	server	or	other	user	without	making	the
files

world-readable	or	-writable?	Root-owned	configuration
files	often

need	to	be	edited	by	those	without	root	privileges;	instead
of	using	a

program	like	sudo	(see	[Hack	#61]	and	[Hack	#62]),	it
would	be

better	just	to	allow	certain	nonowners	to	edit	these	files.

Access	Control	Lists	(ACLs)	solve	these	problems.	They
allow	more

flexibility	than	the	standard	Unix	user/group/other	set	of
permissions.

ACLs	have	been	available	in	commercial	Unixes	such	as
IRIX	and

Solaris,	as	well	as	Windows	NT,	for	years.	Now,	thanks
to	the

TrustedBSD	project’s	work,	ACLs	are	available	in
FreeBSD

5.0-RELEASE	and	beyond.

ACLs	take	care	of	access	control	problems	that	are
overly

complicated	or	impossible	to	solve	with	the	normal	Unix
permissions

system.	By	avoiding	the	creation	of	groups	and	overuse
of	root

privileges,	ACLs	can	keep	administrators	saner	and
servers	more

secure.

6.3.1	Enabling	ACLs
ACLs	are	enabled	by	an	option	in	the	file	system
superblock,	which

contains	internal	housekeeping	information	for	the	file
system.

Edit	the	superblock	with	the	tunefs	command,	which	can
be	used	only

on	a	read-only	or	unmounted	file	system.	This	means	that
you	must	first

bring	the	system	into	single-user	mode.	Make	sure	there
aren’t	any

active	connections	to	the	system,	then	shut	it	down:
# shutdown	now

***	FINAL	System	shutdown	message	from

root@mycompany.com	***

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	56	Protect	Files	with	Flags
Ever	feel	limited	when	tightening	up	Unix	permissions?
Really,	there’s

only	so	much	you	can	do	with	r,	w,	x,	s,	and	t.

When	you	consider	the	abilities	of	the	superuser	account,
traditional

Unix	permissions	become	moot.	That’s	not	very
comforting	if	you’re	a

regular	user	wishing	to	protect	your	own	files	or	an
administrator	trying

to	protect	the	files	on	a	network	server	from	a	rootkit.

Fortunately,	the	BSDs	support	a	set	of	extended
permissions	known	as

flags.	Depending	upon	your	securelevel,	these	flags	may
prevent	even

the	superuser	from	changing	the	affected	file	and	its	flags.

6.4.1	Preventing	File	Changes
Let’s	start	by	seeing	what	flags	are	available.	Figure	6-1
summarizes	the

flags,	their	meanings,	and	their	usual	usage.

Table	6-1.	Extended	permissions
flags

Flag	name

Meaning

Usage

arch

archive

Forces	or	prevents	a

backup

nodump

nodump

Excludes	files	from	a

dump

sappnd

system	append

Applies	to	logs

schg

system	immutable

Applies	to	binaries

and	/etc

system	undeletable

Applies	to	binaries

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	57	Tighten	Security	with
Mandatory	Access	Control
Increase	the	security	of	your	systems	with	MAC
paranoia.

Ever	feel	like	your	Unix	systems	are	leaking	out	extra
unsolicited

information?	For	example,	even	a	regular	user	can	find
out	who	is

logged	into	a	system	and	what	they’re	currently	doing.	It’s
also	an	easy

matter	to	find	out	what	processes	are	running	on	a	system.

For	the	security-minded,	this	may	be	too	much
information	in	the	hands

of	an	attacker.	Fortunately,	thanks	to	the	TrustedBSD
project,	there

are	more	tools	available	in	the	admin’s	arsenal.	One	of
them	is	the

Mandatory	Access	Control	(MAC)	framework.

As	of	this	writing,	FreeBSD’s	MAC	is
still

considered	experimental	for	production
systems.

Thoroughly	test	your	changes	before

implementing	them	on	production
servers.

6.5.1	Preparing	the	System
Before	you	can	implement	Mandatory	Access	Control,
your	kernel

must	support	it.	Add	the	following	line	to	your	kernel
configuration	file:
options	MAC

You	can	find	full	instructions	for	compiling	a	kernel	in
[Hack	#54]	.

While	your	kernel	is	recompiling,	take	the	time	to	read
man	4	mac,

which	lists	the	available	MAC	modules.	Some	of	the
current	modules

support	simple	policies	that	can	control	an	aspect	of	a
system’s

behavior,	whereas	others	provide	more	complex	policies
that	can	affect

every	aspect	of	system	operation.	This	hack	demonstrates
simple

policies	designed	to	address	a	single	problem.

6.5.2	Seeing	Other	Users

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	58	Use	mtree	as	a	Built-in	Tripwire
Why	configure	a	third-party	file	integrity	checker	when
you	already

have	mtree?

If	you	care	about	the	security	of	your	server,	you	need	file
integrity

checking.	Without	it,	you	may	never	know	if	the	system
has	been

compromised	by	a	rootkit	or	an	active	intruder.	You	may
never	know	if

your	logs	have	been	modified	and	your	ls	and	ps	utilities
replaced	by

Trojaned	equivalents.

Sure,	you	can	download	or	purchase	a	utility	such	as
tripwire,	but	you

already	have	the	mtree	utility	[Hack	#54]	;	why	not	use	it
to	hack	your

own	customized	file	integrity	utility?

mtree	lists	all	of	the	files	and	their	properties	within	a
specified	directory

structure.	That	resulting	list	is	known	as
a specification. Once	you

have	a	specification,	you	can	ask	mtree	to	compare	it	to	an
existing

directory	structure,	and	mtree	will	report	any	differences.
Doesn’t	that

sound	like	a	file	integrity	checking	utility	to	you?

6.6.1	Creating	the	Integrity	Database
Let’s	see	what	happens	if	we	run	mtree
against /usr/bin:
# cd	/usr/bin

# mtree	-c	-K

cksum,md5digest,sha1digest,ripemd160digest	-s

123456789	\

>	/tmp/mtree_bin

mtree:	/usr/bin	checksum:	2126659563

Let’s	pick	apart	that	syntax	in	Figure
6-2.

Table	6-2.	mtree	command
syntax

Command

Explanation

-c

This	creates	a	specification	of
the

current	working	directory.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	59	Intrusion	Detection	with	Snort,
ACID,	MySQL,	and	FreeBSD
How	the	alert	administrator	catches	the
worm.

With	the	current	climate	of	corporate	force	reductions
and	the

onslaught	of	new,	fast-spreading	viruses	and	worms,
today’s

administrators	are	faced	with	a	daunting	challenge.	Not
only	is	the

administrator	required	to	fix	problems	and	keep	things
running

smoothly,	but	in	some	cases	he	is	also	responsible	for
keeping	the

network	from	becoming	worm	food.	This	often	entails
monitoring	the

traffic	going	to	and	from	the	network,	identifying
infected	nodes,	and

loading	numerous	vendor	patches	to	fix	associated
vulnerabilities.

To	get	a	better	handle	on	things,	you	can	deploy	an
Intrusion	Detection

System	(IDS)	on	the	LAN	to	alert	you	to	the	existence	of
all	the

nastiness	associated	with	the	dark	side	of	the	computing
world.

This	hack	will	show	you	how	to	implement	a	very
effective	and	stable

IDS	using	FreeBSD,	MySQL,	Snort,	and	the	Analysis
Console	for

Intrusion	Databases	(ACID).	While	that	means	installing
and

configuring	a	few	applications,	you’ll	end	up	with	a
feature-rich,

searchable	IDS	capable	of	generating	custom	alerts	and
displaying

information	in	many	customizable	formats.

6.7.1	Installing	the	Software
We’ll	assume	that	you	already	have	FreeBSD	4.8-
RELEASE	or	newer

installed	with	plenty	of	disk	space.	The	system	is	also	fully
patched	and

the	ports	collection	is	up-to-date.	It	also	helps	to	be
familiar	with

FreeBSD	and	MySQL	commands.

6.7.1.1	Install	PHP4,	Apache,	and
MySQL

We’ll	start	by	installing	PHP4,	Apache,	and	the	MySQL
client.	As	the

superuser:
# cd	/usr/ports/www/mod_php4

# make	install	clean

When	the	PHP	configuration	options	screen	appears,
choose	the	GD

Library	Support	option.	Leave	the	other	default	selections,
and	choose

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	60	Encrypt	Your	Hard	Disk
Keep	your	secrets	secret	by	keeping
everything	secret.

People	often	store	sensitive	information	on	their	hard
disks	and	have

concerns	about	this	information	falling	into	the	wrong
hands.	This	is

particularly	relevant	to	users	of	laptops	and	other
portable	devices,

which	might	be	stolen	or	accidentally	misplaced.

File-oriented	encryption	tools	like	GnuPG	are	great	for
encrypting

particular	files	that	will	be	sent	across	untrusted	networks
or	stored	on

disk.	But	sometimes	these	tools	are	inconvenient,	because
the	file	must

be	decrypted	each	time	it	is	to	be	used;	this	is	especially
cumbersome

when	you	have	a	large	collection	of	files	to	protect.	Any
time	a	security

tool	is	cumbersome	to	use,	there’s	a	chance	you’ll	forget
to	use	it

properly,	leaving	the	files	unprotected	for	the	sake	of
convenience.

Worse,	readable	copies	of	the	encrypted	contents	might
still	exist	on

the	hard	disk.	Even	if	you	overwrite	these	files	(using	rm	-
P)	before

unlinking	them,	your	application	software	might	make
temporary	copies

that	you	don’t	know	about	or	that	have	been	paged	to
swapspace.

Even	your	hard	disk	might	have	silently	remapped	failing
sectors	with

data	still	in	them.

The	solution	is	simply	never	to	write	the	information

unencrypted	to	the

hard	disk.	Rather	than	taking	a	file-oriented	approach	to
encryption,

consider	a	block-oriented	approach—a	virtual	hard	disk
that	looks	just

like	a	normal	hard	disk	with	normal	filesystems,	but	which
encrypts	and

decrypts	each	block	on	the	way	to	and	from	the	real	disk.

NetBSD	includes	the	encrypting	block	device	driver
cgd(4)	to	help	you

accomplish	this	task;	the	other	BSDs	have	similar	virtual
devices	that,

with	somewhat	different	commands,	can	achieve	the	same
thing.	This

hack	concentrates	on	NetBSD’s	cgd.

6.8.1	The	Cryptographic	Disk	Device
To	the	rest	of	the	operating	system,	the	cgd(4)	device	looks
and

behaves	like	any	other	disk	driver.	Rather	than	driving	real
hardware

directly,	it	provides	a	logical	function	layered	on	top	of
another	block

device.	It	has	a	special	configuration	program,	cgdconfig	,
to	create	and

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	61	Sudo	Gotchas
Be	aware	of	these	limitations	when
configuring	sudo.

sudo	is	a	handy	utility	for	giving	out	some,	but	not	all
root	privileges	to

users	of	Unix	and	Unix-like	systems.	sudo	has	some
limitations	and

gotchas,	however.

On	FreeBSD,	build	sudo	from	the
ports

collection
in /usr/ports/security/sudo.

6.9.1	Limitations	of	sudo
Tools	like	sudo	exist	because	the	standard	Unix	privilege
model	is

monolithic.	That	is,	you	are	either	root,	with	all	the
privileges	and

dangers	attendant,	or	you	aren’t,	in	which	case	you	lack
the	ability	to

affect	the	system	in	significant	ways.	sudo	is	a
workaround	of	this

model.	As	such,	there	are	limits	to	what	it	can	achieve,
and	many	of

these	limitations	show	up	in	interactions	with	the	shell.
For	example:
% sudo	cd	/some/protected/dir

Password:

sudo:	cd:	command	not	found

Because	a	process	cannot	affect	the	environment	of	its
parent,	cd	can’t

be	implemented	as	a	program	external	to	the	shell.	The
command	is

therefore	built	into	the	shell	itself.	sudo	can	confer
privilege	only	on

programs,	not	pieces	of	programs.	So,	the	only	way	to	cd
to	a

protected	directory	using	sudo	is	to	execute	the	shell	itself
with	sudo:
% sudo	bash

# cd	/some/protected/dir

pwd

/some/protected/dir

A	workaround	is	to	write	a	script	like	the
following:
#!/usr/local/bin/bash

cd	/some/protected/dir;/bin/ls

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	62	sudoscript
sudo	can	help	enforce	strict	security	policies,	but	what
about	situations

in	which	you	don’t	want	to	restrict	what	commands	your
users	run?

Maybe	you’re	looking	for	a	way	to	keep	track	of	what
your	sysadmin

team	does	as	root,	so	you	can	quickly	find	out	what
happened	when

something	goes	wrong.	Even	if	you’re	the	only
administrator,	it’s

possible	to	make	a	bad	error	as	root	without	realizing	it.
An	audit	trail

allows	you	to	go	back	and	see	exactly	what	you	did	type
during	that

3:00	AM	hacking	session.

As	mentioned	in	[Hack	#61],	giving	access	to	a	shell	with
sudo	means

that	you	lose	your	audit	trail	the	moment	the	root	shell
executes.	One

answer	to	this	problem	is	sudoscript.

Another	scenario	where	sudoscript	is	useful	is	one	similar
to	the

situation	that	caused	me	to	write	sudoscript	in	the	first
place.	I	was	a

sysadmin	in	a	small	startup	whose	engineers	all	had	the
root	password.

The	IT	crew	all	used	sudo,	but	they	had	tried	without
success	to

convince	the	engineers	to	use	it.	Upon	investigation,	I
discovered	that

the	principal	reason	for	this	was	the	prohibition	on
running	shells	with

sudo.

In	fact,	the	sysadmins	used	the

“everything-but-shells”	method	the

sudoers

manpage	warns	against	[Hack	#61]	.

It	quickly	became	clear	that	I	wasn’t	going	to	be	able	to
argue	that

sudo,	as	implemented,	was	equivalent	to	having	a	root
shell;	positions

had	hardened	long	before	I	showed	up.	So,	I	wrote
sudoscript	to	bring

these	engineers	back	into	the	IT	department’s	supported
circle.	It

worked,	and	having	the	audit	trail	saved	my	bacon	several
times.

6.10.1	sudoscript	Overview
sudoscript	is	a	pair	of	Perl	scripts.	One	is	called	sudoshell
,	or	just	ss.

Contrary	to	its	name,	sudoshell	is	not	a	shell	like	tcsh	or
bash.	Instead,

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	63	Restrict	an	SSH	server
Control	your	ssh	scripts	by	placing	them
in	a	jail.

Using	SSH	increases	the	security	of	file	transfers	and
network	logins.

Many	network	tasks,	however,	don’t	really	need	the	shell
associated

with	a	user	account—remote	backups,	for	example.	After
all,	a	shell

brings	with	it	commands	and	an	entry	point	into	a
system’s	directory

structure.	That’s	somewhat	scary	when	you	consider	that
many	of	your

SSH	tasks	are	scripted.

Configuring	a	restricted	SSH	shell	such	as	scponly	can
mitigate	this

risk.	Not	only	does	it	provide	noninteractive	(read
scripted)	logins	into

the	SSH	server,	it	limits	the	set	of	available	commands.
Additionally,	it

provides	a	chroot	option,	allowing	you	to	restrict	the
scponly	user

account	to	its	own	directory	structure.

6.11.1	Installing	scponly
Before	installing	this	port,	read	through	the	available
options	in	its

Makefile:
# cd	/usr/ports/shells/scponly

# more	Makefile

Depending	on	the	scripts	you	plan	on	using,	consider
disabling	wildcard

processing	(which	can	help	prevent	accidents	like	rm	-R
*).	You	can

also	enable	rsync	support,	which	is	ideal	if	you’re	using
rsnapshot	for

backups	[Hack	#35]	.	If	you	want	to	restrict	the	account	to
its	own

directory,	preventing	your	scripts	from	accessing	anything
else	on	the

SSH	server,	include	the	chroot	option.

Once	you’ve	chosen	your	desired	options,	pass	them
to	the	make

command.	Here	I’ll	enable	chroot	support:
# make	-DWITH_SCPONLY_CHROOT	install

If	you	include	the	chroot	option,	do	not
use	the

clean	target	at	the	end	of	your	make
command.

make	clean	will	remove
the work/ directory,

which	contains	a	script	that	will	set	up	the
chroot

for	you.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	64	Script	IP	Filter	Rulesets
One	firewall	ruleset	isn’t	always
enough.

As	a	firewall	administrator,	you	know	that	it	takes	a	bit
of	creative

genius	to	create	a	ruleset	that	best	reflects	your
network’s	security

needs.	Things	can	get	more	interesting	if	those	needs
vary	by	time	of

day.	For	example,	you	may	need	to	allow	Internet	access
between

business	hours	but	ban	it	during	the	evening	hours.	This
is	easy	to	do

with	two	rulebases,	a	couple	of	scripts,	and	trusty	old
cron.

6.12.1	Limiting	Access	with	IP	Filter
I	have	a	FreeBSD	firewall/router	guarding	my	home
network.	I	also

happen	to	have	a	daughter	who	would	spend	her	life
online	if	she	were

allowed.	There’s	a	simple	solution	to	restricting	her	access
to	the

Internet	to	certain	times	of	the	day	without	having	to	use	a
proxy.

I	use	FreeBSD’s	IP	Filter	as	my	firewall	software.	My
normal	set	of

firewall	rules, /etc/ipf.rules, allows	unrestricted	access	to
the	Internet.

Here’s	the	section	of	that	rulebase	that	controls	my
daughter’s	access:
#	––––––––—comment	area

begin––––––––––

#	Internal	Interface:	ed0

#	Allow	internal	traffic	to	flow	freely.

#	––––––––—	comment	area	end

––––––––––

pass	in

on	ed0	all

pass	out	on	ed0	all

Note	that	this	is	not	my	entire	rulebase,	just	the	section
controlling	the

interface,	ed0,	connected	to	the	portion	of	the	network
containing	my

daughter’s	computer.

Also	note	that	I	did	not	use	the	normal	pass	in	quick	on
ed0	all	or	pass

out	quick	on	ed0	all.	This	is	because	the	use	of	the	word
quick	in	IP

Filter	tells	the	program	not	to	look	any	further	for	rules
applying	to	the

flow	of	traffic	on	an	interface.	If	that	were	the	case,	this
hack	would	not

work.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	65	Secure	a	Wireless	Network
Using	PF
Protect	your	private	wireless	network	from
unauthorized	use.

The	abundance	of	802.11	wireless	networks	has	raised
an	important

question.	How	can	you	secure	a	wireless	network	so	that
only

recognized	systems	can	use	it?

Wireless	Encryption	Protocol	(WEP)	and	MAC	access	lists
offer	some

protection	against	unauthorized	users;	however,	they	can
be	difficult	to

maintain.	With	OpenBSD’s	PF,	we	can	maintain	tables	of
recognized

clients	and	update	those	tables	with	a	single	shell
command.	Known

clients	can	access	the	Internet;	unknown	clients	will	only
ever	see	a

web	page	informing	them	that	this	is	a	private	network.

For	this	hack,	we	will	use	dhcpd,	PF,	and
Apache.

6.13.1	DHCP	Configuration
We’ll	use	a	simple	DHCP	configuration
in /etc/dhcpd.conf like	this:
shared-network	GUEST-NET	{

max-lease-time	300;

default-lease-time	120;

option

option

domain-name-servers	192.168.0.1;

routers	192.168.0.1;

subnet	192.168.0.0	netmask	255.255.255.0	{

range	192.168.0.101	192.168.0.254;

}

}

In	this	case,	we’re	using	the	subnet	192.168.0.0/24.	Our
firewall	and

NAT	gateway	is	192.168.0.1,	and	it’s	also	configured	as
the	DNS

server	for	our	network.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	66	Automatically	Generate
Firewall	Rules
Easily	protect	any	FreeBSD	workstation	with	a	fully
configured	firewall.

You	know	the	importance	of	being	protected	by	a
firewall.	You	know

where	to	look	in	the	manpages	for	details.	Given	enough
time	and

trouble,	you	could	write	a	firewall	configuration	for	any
situation.

They’re	all	reasonably	similar,	though,	so	why	not
generate	the

configuration	by	answering	a	few	questions?

That’s	the	purpose	of	the	IPFilter	setup	script:	to	generate
configuration

rules	for	typical	SOHO	firewalls	using	FreeBSD	and
IPFilter.	Even

novice	users	can	retain	the	full	benefits	of	a	firewall
without	first	having

to	learn	syntax.	In	fact,	with	this	script,	you	should	be	able
to	set	up	a

typical	firewall	with	no	FreeBSD	configuration	knowledge
at	all.

Even	if	you’re	not	a	novice	user,	this	is	a	great	script	to
refer	friends	to

as	they	discover	FreeBSD.	Now	you	can	rest	easy	in	the
thought	that

your	friends	are	protected—and	you	didn’t	even	have	to
find	the	time

to	show	them	how	to	set	up	their	systems.

6.14.1	What	the	Script	Does
The	script	uses	a	simple	question	and	answer	text
interface.	It	has	four

main	parts:

Network	settings	and	IPFilter	firewall	and	IPNAT

configuration

This	configures	internal	and	external	network	card
interface	IP	address

settings	either	manually	or	via	DHCP.	It	creates	stateful
firewall	rules	on

the	external	network	interface	and	configures	NAT	to
provide	Internet

connection	sharing	on	the	internal	network	interface.

ADSL	PPPOE	configuration

This	prompts	for	a	login	name,	password,	and	Ethernet
NIC	to

generate	the /etc/ppp/ppp.conf file.	It	then	inserts	the
required	PPP

variables	in /etc/rc.conf. This	starts	userland	PPP	at
bootup.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	67	Automate	Security	Patches
Keep	up-to-date	with	security
patches.

We	all	know	that	keeping	up-to-date	with	security
patches	is

important.	The	trick	is	coming	up	with	a	workable	plan
that	ensures

you’re	aware	of	new	patches	as	they’re	released,	as	well
as	the	steps

required	to	apply	those	patches	correctly.

Michael	Vince	created	quickpatch	to	assist	in	this
process.	It	allows

you	to	automate	the	portions	of	the	patching	process
you’d	like	to

automate	and	manually	perform	the	steps	you	prefer	to
do	yourself.

6.15.1	Preparing	the	Script
quickpatch	requires	a	few	dependencies:	perl,	cvsup,	and
wget.	Use

which	to	determine	if	you	already	have	these	installed	on
your	system:
% which	perl	cvsup	wget

/usr/bin/perl

/usr/local/bin/cvsup

wget:	Command	not	found.

Install	any	missing	dependencies	via	the	appropriate
port	(

/usr/ports/lang/perl5,	/usr/ports/net/cvsup-without-
gui, and

/usr/ports/ftp/wget, respectively).

Once	you	have	the	dependencies,	download	the
script	from

http://roq.com/projects/quickpatch	and	untar	it:
% tar	xzvf	quickpatch.tar.gz

This	will	produce	an	executable	Perl	script	named
quickpatch.pl.	Open

this	script	in	your	favorite	editor	and	review	the	first	two
screens	of

comments,	up	to	the	#Stuff	you	probably	don’t	want	to
change	line.

Make	sure	that	the	$release	line	matches	the	tag	you’re
using	in	your

cvs-supfile	[Hack	#80]	:
#	The	release	plus	security	patches	branch	for

FreeBSD	that	you	are

#	following	in	cvsup.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	68	Scan	a	Network	of	Windows
Computers	for	Viruses
Regardless	of	the	size	of	your	network,	the	cost	of	annual
subscriptions

for	antivirus	software	can	quickly	become	a	pain	in	the	…
checkbook.

Using	FreeBSD’s	strength	as	a	network	server,	how	hard
could	it	be	to

hack	an	easier	and	cheaper	way	to	administer	the	antivirus
battle?

The	solution	I	found	uses	a	combination	of	FreeBSD	and
ClamAV	and

Sharity-Light,	both	of	which	are	found	in	the	ports
collection.	As	seen

in	[Hack	#19],	Sharity-Light	can	mount	Windows	shares.
Once	the

shares	are	mounted,	ClamAV	will	scan	them	for	viruses.

6.16.1	Preparing	the	Windows	Systems
For	the	systems	you	wish	to	virus	scan,	share	their
drives	as	follows:

1.

1. Open	My	Computer	and	right-click	on	the	drive
you	wish	to

share.

1. Select	Sharing	from	the	list	of	options	that
appear.

If	Sharing	is	not	available,	you	will
need	to

activate	file	sharing	in	the	Network
setting	in

Control	Panel.	Use	Help	if	you’re
unsure	of

where	to	find	this	setting.

2.

2. In	the	Sharing	tab	of	the	Properties	window,	assign
a	name	to

the	new	share.	I’ll	use	cdrive	in	this	example.
Choose	a	name

that	is	both	useful	to	you	and	not	already	in	use.	(If	a
share

already	exists,	click	on	New	Share.)

3.

3. Unless	your	network	is	completely	closed	to	the
outside	world,

click	on	Permissions	and	limit	the	access	to	your	user.
You

should	only	need	read	access	for	scanning	purposes.

4.

<	Day	Day	Up	>

<	Day	Day	Up	>

Chapter	7.	Going	Beyond
the
Basics

Introduction

Section	69.	Tune	FreeBSD	for	Different
Applications

Section	70.	Traffic	Shaping	on
FreeBSD

Section	71.	Create	an	Emergency
Repair	Kit

Section	72.	Use	the	FreeBSD	Recovery
Process

Section	73.	Use	the	GNU	Debugger	to	Analyze
a	Buffer

Overflow

Section	74.	Consolidate	Web	Server
Logs

Section	75.	Script	User
Interaction

Section	76.	Create	a	Trade	Show
Demo

<	Day	Day	Up	>

<	Day	Day	Up	>

Introduction
Have	you	ever	wondered	what	modifications	a	web	or	mail

administrator	makes	to	her	servers?	Maybe	you’re	curious
about	what

policies	other	administrators	use	to	implement	bandwidth
control?	How

do	busy	administrators	manage	the	log	data	from	a	server
farm?

Perhaps	you’ve	contemplated	using	the	Expect	scripting
language.

However,	there’s	a	good	chance	you’ve	never	thought	of
using	eesh,	a

totally	undocumented	but	useful	scripting	utility.

This	chapter	also	includes	two	hacks	on	the	emergency
repair	process,

as	many	users	prefer	to	hope	that	they’ll	never	need	an
emergency

repair	kit.	Instead,	learn	to	overcome	your	fear	of	the
inevitable	and

master	the	art	of	repairing	before	the	emergency.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	69	Tune	FreeBSD	for	Different
Applications
Know	how	to	tune	and	what	to	tune	on	your
FreeBSD	system

As	an	administrator,	you	want	to	tune	your	server	systems
so	they

work	at	peak	efficiency.	How	do	you	know	what	to	tune?
The	answer

depends	heavily	upon	the	system’s	function.	Will	the
system	perform	a

lot	of	small	network	transactions?	Will	it	perform	a	small
number	of

large	transactions?	How	will	disk	operations	factor	in?

How	you	answer	these	and	other	questions	determines
what	you	need

to	do	to	improve	the	performance	of	your	systems.	This
hack	starts

with	general	optimizations	and	then	looks	at	function-
specific	tunables.

7.2.1	Optimizing	Software
Compiling
A	good	place	to	start	is	with	software	compiling,	as	you
want	to

compile	software	and	updates	as	efficiently	as	possible.
Whenever	you

compile,	your	compiler	makes	assumptions	about	your
hardware	in

order	to	create	binaries.	If	you	have	an	x86-compliant
CPU,	for

example,	your	compiler	will	create	binaries	that	can	run	on
any	CPU

from	a	386	onward.	While	this	allows	portability,	it	won’t
take

advantage	of	any	new	abilities	of	your	CPU,	such	as	the
extended

MMX,	SSE,	SSE2,	or	3DNow!	instruction	sets.	This	is
also	why	using

precompiled	binaries	on	your	system	is	a	surefire	way	to
reduce	your

overall	performance.

To	ensure	that	software	will	be	compiled	efficiently,
update	your

compiler	flags	in /etc/make.conf .	This	file	does	not
exist	on	new

systems,	but	you	can	copy	it	from

/usr/share/examples/etc/defaults/make.conf.

Start	by	editing	the	CPUTYPE=	line	to	reflect	your	CPU
type;	you’ll

find	supported	types	listed	as	comments	just	before	this
line.	While	this

will	take	advantage	of	your	CPU’s	features,	the
disadvantage	is	that

your	compiled	binaries	may	not	run	on	different	CPU
types.	However,

if	all	of	your	systems	run	the	same	CPU	platform,	any
optimizations	you

make	to	shared	binaries	will	affect	all	of	your	systems
equally	well.

Next,	change	the	CFLAGS	line	to	CFLAGS=	-
O2	-pipe

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	70	Traffic	Shaping	on	FreeBSD
Allocate	bandwidth	for	crucial
services.

If	you’re	familiar	with	your	network	traffic,	you	know
that	it’s	possible

for	some	systems	or	services	to	use	more	than	their	fair
share	of

bandwidth,	which	can	lead	to	network	congestion.	After
all,	you	have

only	so	much	bandwidth	to	work	with.

FreeBSD’s	dummynet	may	provide	a	viable	method	of
getting	the	most

out	of	your	network,	by	sharing	bandwidth	between
departments	or

users	or	by	preventing	some	services	from	using	up	all
your	bandwidth.

It	does	so	by	limiting	the	speed	of	certain	transfers	on	your

network—also	called traffic	shaping.

7.3.1	Configuring	Your	Kernel	for	Traffic
Shaping
To	take	advantage	of	the	traffic	shaping	functionality	of
your	FreeBSD

system,	you	need	a	kernel	with	the	following	options:
options	IPFIREWALL

options	DUMMYNET

options	HZ=1000

dummynet	does	not	require	the	HZ	option,	but	its
manpage	strongly

recommends	it.	See	[Hack	#69]	for	more	about	HZ	and
[Hack	#54]

for	detailed	instructions	about	compiling	a	custom
kernel.

The	traffic-shaping	mechanism	delays	packets	so	as	not	to
exceed	the

transfer	speed	limit.	The	delayed	packets	are	stored	and

sent	later.	The

kernel	timer	triggers	sending,	so	setting	the	frequency	to	a
higher	value

will	smooth	out	the	traffic	by	providing	smaller	delays.
The	default	value

of	100	Hz	will	trigger	sends	every	10	milliseconds,
producing	bursty

traffic.	Setting	HZ=1000	will	cause	the	trigger	to	happen
every

millisecond,	resulting	in	less	packet	delay.

7.3.2	Creating	Pipes	and	Queues
Traffic	shaping	occurs	in	three
stages:

1.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	71	Create	an	Emergency	Repair	Kit
The	Boy	Scout	and	system	administrator	motto:	“Be
prepared!”

As	a	good	administrator,	you	back	up	on	a	regular	basis
and

periodically	perform	a	test	restore.	You	create	images
[Hack	#23]	of

important	servers	so	you	can	quickly	recreate	a	system	that
is	taken	out

of	commission.

Are	you	prepared	if	a	system	simply	refuses
to	boot?

Some	parts	of	your	drives	are	as	important	as	your	data,
yet	few

backup	programs	back	them	up.	I’m	talking	about	your
partition	table

and	your	boot	blocks.	Pretend	for	a	moment	that	these
somehow

become	corrupted.	The	good	news	is	that	your	operating
system	and

all	of	your	data	still	exist.	The	bad	news	is	that	you	can
no	longer

access	them.

Fortunately,	this	is	recoverable,	but	only	if	you’ve
done	some

preparatory	work	before	the	disaster.	Let’s	see	what’s
required	to

create	an	emergency	repair	kit.

7.4.1	Inventory	of	the	Kit
When	you	install	a	system,	particularly	a	server,	invest
some	time

preparing	for	an	emergency.	On	a	FreeBSD	system,
your	kit	should

include:

A	floppy	containing	additional
drivers, drivers.flp

The	original	install	CD	(or	two	floppies
containing kern.flp and

mfsroot.flp or	one	floppy	containing boot.flp)

A	fixit	floppy, fixit.flp	(or a	CD	containing	the	live
filesystem;

this	will	be	the	second,	third,	or	fourth	CD	in	a	set,
but	not	the

first	CD)

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	72	Use	the	FreeBSD	Recovery
Process
Learn	how	to	use	your	emergency	repair	kit	before	the
emergency.

Now	that	you	have	an	emergency	repair	kit,	it’s	worth
your	while	to	do

a	dry	run	so	you	know	ahead	of	time	what	options	will	be
available	to

you.	You	may	even	decide	to	modify	your	kit	as	a	result	of
this	test.

Let’s	go	back	to	that	sysinstall	Main	Menu	screen	[Hack
#71]	and	see

what	happens	when	you	choose	Fixit.	You’ll	be	presented
with	the

following	options:
Please	choose	a	fixit	option

There	are	three	ways	of	going	into	“fixit”	mode:

		-	you	can	use	the	live	filesystem	CDROM/DVD,	in

which	case	there	will	be

full	access	to	the	complete	set	of	FreeBSD

commands	and	utilities,

		-	you	can	use	the	more	limited	(but	perhaps

customized)	fixit	floppy,

		-	or	you	can	start	an	Emergency	Holographic	Shell

now,	which	is

limited	to	the	subset	of	commands	that	is	already

available	right	now.

X Exit

2 CDROM/DVD

		3 Floppy

image

4 Shell

Exit	this	menu	(returning	to	previous)

Use	the	“live”	filesystem	CDROM/DVD

Use	a	floppy	generated	from	the	fixit

Start	an	Emergency	Holographic	Shell

If	you	choose	the	Shell	option,	you’ll	find	that	they	weren’t
kidding

when	they	warned	you’d	be	limited	to	a	subset	of
commands.	Nearly	all

of	the	commands	you	know	and	love	will	result	in	a not
found error

message.	This	is	why	you	went	to	the	trouble	of	either
creating	that fixit

floppy	or	purchasing/burning	a	CD-ROM/DVD	that
contains	the	live

filesystem.

7.5.1	Using	the	fixit	Floppy

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	73	Use	the	GNU	Debugger	to
Analyze	a	Buffer	Overflow
You	don’t	have	to	be	a	programmer	to	use	a
debugger.

As	an	end	user,	you	may	not	realize	that	you	have	the
ability	to	analyze

security	exploits.	After	all,	the	organization	that
distributes	your

operating	system	of	choice	or	the	provider	of	a	given
application	will

deal	with	security	issues	and	make	updates	available.

However,	keep	in	mind	that	Security	Officers	apply	the
same	tools	and

techniques	that	end	users	use	for	debugging	programs.
Knowing	how

to	analyze	a	problem	will	help	you	to	troubleshoot	any
misbehaving

process	in	a	Unix	environment.

7.6.1	An	Example	Exploit
Analyzing	a	malfunctioning	process	starts	with	basic
information,	such

as	error	messages	and	return	values.	Sometimes	those
aren’t	enough,

though.	Some	error	messages	are	unclear.	In	the	case	of
security

vulnerabilities,	there	may	not	be	an	error	code	or	return
value,	because

the	program	may	crash	or	misbehave	silently.

The	BSDs	provide	several	tools	to	analyze	a	program’s
execution.	You

can	monitor	system	calls	with	ktrace	and	resources	with
fstat.	You	can

run	a	debugger	such	as	GDB,	the	GNU	Debugger,	and
watch	your

operating	system’s	internal	operation.

In	some	cases,	a	program	must	run	in	a	particular
environment,	which

may	make	it	difficult	to	analyze	due	to	the	limitations	of
some	tools.	For

example,	a	telnetd	advisory	from	2001	(

http://www.cert.org/advisories/CA-2001-21.html)	affected
most	Unix

operating	systems.	This	particular	vulnerability	came	to
light	when	a

group	called	TESO	released	an	example	exploit	for	it.

On	Unix	systems,	telnetd	runs	as	root,	so	that	once	the
system

authenticates	the	user,	the	process	has	the	privileges
required	to	set	the

user	ID	of	the	login	shell	to	that	of	the	user	who	logged	in.
This	means

that	a	remote	entity	who	can	cause	telnetd	to	misbehave
by	sending	it

carefully	designed	input	could	execute	processes	as	root
on	your

system.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	74	Consolidate	Web	Server	Logs
Automate	log	processing	on	a	web
farm.

As	the	administrator	of	multiple	web	servers,	I	ran	across	a
few	logging

problems.	The	first	was	the	need	to	collect	logs	from
multiple	web

servers	and	move	them	to	one	place	for	processing.	The
second	was

the	need	to	do	a	real-time	tail	on	multiple	logs	so	I	could
watch	for

specific	patterns,	clients,	and	URLs.

As	a	result,	I	wrote	a	series	of	Perl	scripts	collectively
known	as

logproc.	These	scripts	send	the	log	line	information	to	a
single	log	host

where	some	other	log	analysis	tool	can	work	on	them,
solving	the	first

problem.	They	also	multicast	the	log	data,	letting	you
watch	live	log

information	from	multiple	web	servers	without	having	to
watch

individual	log	files	on	each	host.	A	primary	goal	is	never
to	lose	log

information,	so	these	scripts	are	very	careful	about
checking	exit	codes

and	such.

The	basic	model	is	to	feed	logs	to	a	program	via	a	pipe.
Apache

supports	this	with	its	standard	logging	mechanism,	and	it	is
the	only	web

server	considered	in	this	hack.	It	should	be	possible	to
make	the

system	work	with	other	web	servers—even	servers	that	can
only	write

logs	to	a	file—by	using	a	named	pipe.

I’ve	used	these	scripts	on	production	sites	at	a	few
different	companies,

and	I’ve	found	that	they	handle	high	loads	quite	well.

7.7.1	logproc	Described
Download	logproc	from

http://www.peterson.ath.cx/~jlp/software/logproc.tar.gz.
Then,	extract

it:
% gunzip	logproc.tar.gz

% tar	xvf	logproc.tar

% ls	-F	logproc

./

../

logserver.bin/

webserver.bin/

% ls	-F	logserver.bin

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	75	Script	User	Interaction
Use	an	expect	script	to	help	users	generate
GPG	keys.

There	are	occasions	when	you	can	take	advantage	of
Unix’s	flexibility

to	control	some	other	tool	or	system	that	is	less	flexible.
I’ve	used	Unix

scripts	to	update	databases	on	user-unfriendly	mainframe
systems	when

the	alternative	was	an	expensive	mainframe-programming
service

contract.	You	can	use	the	same	approach	in	reverse	to	let
the	user

interact	with	a	tool,	but	with	a	constrained	set	of	choices.

The	Expect	scripting	language	is	ideal	for	creating	such
interactive

scripts.	It	is	available	from	NetBSD	pkgsrc
as pkgsrc/lang/tcl-expect

or pkgsrc/lang/tk-expect, as	well	as	from	the	FreeBSD
ports	and

OpenBSD	packages	collections.	We’ll	use	the	command-
line	version

for	this	example,	but	keep	in	mind	that	expect-tk	allows
you	to	provide

a	GUI	frontend	to	a	command-line	process	if	you’re
willing	to	write	a

more	complex	script.

In	this	case,	we’ll	script	the	generation	of	a	GPG	key.
Install	GPG	from

either pkgsrc/security/gnupg or	the	appropriate	port	or
package.

7.8.1	The	Key	Generation	Process
During	the	process	of	generating	a	GPG	key,	the	program
asks	the	user

several	questions.	We	may	wish	to	impose	constraints	so
that	a	set	of

users	ends	up	with	keys	with	similar	parameters.	We	could
train	the

users,	but	that	would	not	guarantee	correct	results.
Scripting	the

generation	makes	the	process	easier	and	eliminates	errors.

First,	let’s	look	at	a	typical	key	generation
session:
% gpg	—gen-key

gpg	(GnuPG)	1.2.4;	Copyright	(C)	2003	Free	Software

Foundation,	Inc.

This	program	comes	with	ABSOLUTELY	NO	WARRANTY.

This	is	free	software,	and	you	are	welcome	to

redistribute	it

under	certain	conditions.	See	the	file	COPYING	for

details.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	76	Create	a	Trade	Show	Demo
I	frequently	represent	NetBSD	at	trade	shows.	It’s
challenging	to

attract	attention	because	there	are	many	booths	at	a	show
—people	will

walk	by	quickly	unless	something	catches	their	eye.	You
also	need	to

balance	eye-candy	with	functionality	so	that	you	can
attract	and	keep	a

visitor’s	attention.	I	needed	an	enticing	demo	to	run	on	one
of	the

computers	in	the	booth.

I	wanted	to	show	off	several	applications,	such	as	office
productivity

tools,	video,	and	games,	and	have	music	playing,	but
there’s	only	so

much	screen	real	estate.	Cramming	all	of	those	things	on
the	screen	at

once	would	clutter	the	screen,	and	the	point	would	be
lost.

Most	X	window	managers	have	some	concept	of	virtual
desktops,

separate	work	spaces	that	you	can	flip	between.	For
example,

Enlightenment	(pkgsrc/wm/enlightenment)	not	only	has
the	concept	of

virtual	desktops,	but	as	an	added	bonus	for	the	trade	show

environment	offers	a	nice	sliding	effect	as	you	transition
from	one

desktop	to	the	next.

7.9.1	Introducing	eesh
Normally	in	Enlightenment,	to	switch	from	one	virtual
desktop	to	the

next,	you	move	the	mouse	pointer	to	the	edge	of	the
screen	and	then

push	past	it,	or	you	use	a	key	sequence	to	move	to	an
adjacent

desktop.	For	an	unattended	demo,	we	need	to	automate
this	process.

Enlightenment	provides	an	undocumented	utility	called
eesh	that	can

control	most	aspects	of	the	Enlightenment	window
manager.	You	can

write	scripts	to	move	windows,	resize	them,	or	flip
between	desktops.

Note	that	eesh	isn’t	a	friendly	utility;	it	doesn’t	even
produce	a	prompt

when	you	run	it.	Type	help	for	the	menu	or	exit	to	quit:
% eesh

help

Enlightenment	IPC	Commands	Help

commands	currently	available:

use	“help	all”	for	descriptions	of	each	command

use	“help	<command>”	for	an	individual	description

<	Day	Day	Up	>

<	Day	Day	Up	>

Chapter	8.	Keeping	Up-to-
Date

Introduction

Section	77.	Automated
Install

Section	78.	FreeBSD	from
Scratch

Section	79.	Safely	Merge	Changes	to
/etc

Section	80.	Automate
Updates

Section	81.	Create	a	Package
Repository

Section	82.	Build	a	Port	Without	the	Ports
Tree

Section	83.	Keep	Ports	Up-to-Date	with
CTM

Section	84.	Navigate	the	Ports
System

Section	85.	Downgrade	a
Port

Section	86.	Create	Your	Own	Startup
Scripts

Section	87.	Automate	NetBSD	Package
Builds

Section	88.	Easily	Install	Unix	Applications	on
Mac	OS	X

<	Day	Day	Up	>

<	Day	Day	Up	>

Introduction
One	of	the	distinguishing	characteristics	of	the	BSDs	is
the	ease	with

which	you	can	keep	your	operating	system	source	and
installed

software	up-to-date.	In	fact,	each	of	the	BSDs	provides
multiple

alternatives,	allowing	users	to	choose	the	approaches	that
best	match

their	time	and	bandwidth	requirements.

This	chapter	provides	a	plethora	of	ways	to	maintain	an
updated

system.	While	many	are	written	from	the	FreeBSD
perspective,	don’t

let	that	stop	you	from	hacking	your	own	customized
NetBSD	or

OpenBSD	solutions.	In	fact,	this	chapter	concludes	with
one	user

demonstrating	how	to	enjoy	the	benefits	of	the	BSD	ports
and

packages	collections	on	Mac	OS	X!

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	77	Automated	Install
If	you’re	responsible	for	installing	multiple	systems,
hopefully	you’ve

discovered	the	art	of	automating	installs.

Most	operating	systems	have	some	sort	of	scripting
mechanism	that

allows	you	to	predefine	the	answers	to	the	questions
asked	by	the

install	program.	Once	you’ve	started	the	actual	install,
you	can	leave

and	return	to	a	fully	installed	system.	The	alternative	is
to	sit	there,

answering	every	prompt	when	it	appears.	No,	thank
you!

Even	as	a	home	user,	it’s	well	worth	your	while	to	spend	a
few	minutes

customizing	the	install	script	that	comes	with	FreeBSD.
Try	this	hack

once	and	you’ll	never	want	to	sit	and	watch	an	install
again.

8.2.1	Preparing	the	Install	Script
Before	installing	any	system,	you	need	to	know	the
following:

The	IP	settings	and	hostname	of	the	host	you’re

installing

The	FreeBSD	name	of	that	host’s
NIC

Which	distributions,	or	parts	of	the	OS,	to
install

Your	desired	partitioning
scheme

Which	packages	(applications)	to
install

Of	course,	it’s	always	a	good	idea	to	record	this
information	and

include	it	with	the	documentation	for	the	system.

FreeBSD’s	install	mechanism	lives
in /stand/sysinstall. Not

surprisingly,	man	sysinstall	describes	all	of	the	scriptable
bits	of	this

program.	I’ll	go	over	some	useful	parameters,	but	you’ll
definitely	want

to	skim	through	the	manpage	to	see	if	there	are	additional
parameters

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	78	FreeBSD	from	Scratch
For	those	who	prefer	to	wipe	their	disks	clean	before
they	upgrade

their	systems.

Have	you	ever	upgraded	your	system	with	make	world?
If	you	have

only	one	system	on	your	disks,	you	may	run	into	a
problem:	if	the

installworld	fails	partway	through,	you	may	end	up	with	a
broken

system	that	might	not	even	boot.	It’s	also	possible	that	the
installworld

will	run	smoothly,	but	the	new	kernel	will	not	boot.

What	if	you’re	like	me	and	believe	in	the	“wipe	your
disks	when

upgrading	systems”	paradigm?	Reformatting	ensures
there	is	no	old

cruft	left	lying	around.	It	also	means	you	have	to
recompile	or	reinstall

all	your	ports	and	packages	and	then	redo	all	your
carefully	crafted

configuration	tweaks.

FreeBSD	From	Scratch	solves	all	these	problems.	The
strategy	is

simple:	use	a	running	system	to	install	a	new	system	under
an	empty

directory	tree,	mounting	new	partitions	in	that	tree	as
appropriate.

Many	config	files	can	copy	straight	across,	and
mergemaster	can	take

care	of	those	that	cannot.	You	can	perform	arbitrary	post-
configuration

of	the	new	system	from	within	the	old	system,	up	to	the
point	where

you	can	chroot	to	the	new	system.

This	upgrade	has	three	stages,	where	each	stage	either

runs	a	shell

script	or	invokes	make:

stage_1.sh

Creates	a	new	bootable	system	under	an	empty	directory,
merges	or

copies	as	many	files	as	are	necessary,	and	then	boots	the
new	system

stage_2.sh

Installs	your	desired
ports

stage_3.mk

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	79	Safely	Merge	Changes	to	/etc
Use	a	three-way	merge	to	deal	with	upgraded
configuration	files.

Even	though	you	probably	run	cvsup	on	a	daily	basis,	you
likely	run

make	world	only	a	few	times	a	year,	whenever	a	new
version	of	the

OS	is	released.	The	steps	required	to	upgrade	your	system
are	well

documented	and	fairly	straightforward.	That	is,	it’s	easy
until	it’s	time	to

run	mergemaster.

mergemaster	is	an	important	step,	as	it	integrates	changes
to /etc. For

example,	occasionally	a	core	utility	such	as	Sendmail	will
require	a	new

user	or	group	in /etc/passwd. Problems	can	occur	if	those
changes

aren’t	integrated.

If	you’ve	used	mergemaster	before,	you	know	it’s	not	the
most

user-friendly	utility	out	there.	Misinterpret	a	diff,	and	you
might	lose

your	configuration	file	changes	or,	worse,	miss	a
necessary	change.

You	might	even	end	up	blowing	away	your	own	users
in /etc/passwd

—not	the	most	convenient	way	to	start	off	a	new
upgrade.

8.4.1	Initial	Preparations
An	alternative	is	to	use	etcmerge
(/usr/ports/sysutils/etcmerge).	This

utility	does	most	of	the	work	for	you.	Unlike	the	two-way
diff	used	by

mergemaster,	this	utility	can	compare	the	changes	between
three	sets	of

edits:

The /etc from	your	original	version	of
FreeBSD

Any	changes	you’ve	made
to /etc since	then

The /etc for	your	new	version	of
FreeBSD

Before	any	upgrade,	you	definitely	want
a	fresh,

tested	backup	of	all	of	your	data,
including /etc.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	80	Automate	Updates
FreeBSD	provides	many	tools	to	make	software	upgrades
as	painless

as	possible.	In	fact,	the	entire	process	is	fully	scriptable.
Simply	choose

the	pieces	you	want	and	how	up-to-date	you	want	to	be.

End	users	and	administrators	alike	share	a	desire	to	keep
their

operating	systems	and	applications	as	up-to-date	as
possible.

However,	if	you’re	an	operating	systems	veteran,	you’re
well	aware	that

this	desire	doesn’t	always	translate	into	foolproof,	easy
execution.	For

example,	do	you	have	to	scour	the	far	corners	of	the
Internet	to	find	the

latest	updates?	Once	you	find	them,	is	it	possible	to
upgrade	safely

without	overwriting	the	dependencies	required	by	other
applications?

8.5.1	Assembling	the	Pieces
The	cvsup	process	provides	the	latest	updates	to	the
FreeBSD

operating	system,	ports	collection,	and	documents
collection.	You	no

longer	have	to	scour	the	Internet	looking	for	the	latest
sources.	Simply

run	cvsup!

Since	our	intention	is	to	script	the	whole	process,
install	the

cvsup-without-gui port:
# cd	/usr/ports/net/cvsup-without-gui

# make	install	clean

If	you’ve	never	used	cvsup	before,	take	the	time	to	read
its	section	in

the	FreeBSD	Handbook	so	you	have	an	overview	of	how
the	process

works.

When	the	install	finishes,
copy /usr/share/examples/cvsup/cvs-supfile

to	a	location	that	makes	sense	to	you
(e.g., /root or /usr/local/etc).

Use	the	comments	in	that	file	and	the	instructions	in	the
handbook	to

customize	the	file	so	it	reflects	your	closest	mirror,
operating	system

(tag),	and	what	you	would	like	to	update.

Here’s	my cvs-supfile. It	uses	a	Canadian	mirror	and
updates	all

sources,	ports,	and	documents	on	a	FreeBSD	5.1-
RELEASE	system:
# more	/root/cvs-supfile

#use	the	Canadian	mirror

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	81	Create	a	Package	Repository
Combine	the	advantages	of	compiling	from	source
and	installing

packages.

We	saw	in	[Hack	#69]	that	compiling	applications	from
source,	i.e.,	by

making	their	ports,	has	several	advantages.	You	can	tune

/etc/make.conf to	take	advantage	of	your	architecture.	You
can	also

customize	the	installation	by	passing	various	arguments	to
make.

However,	if	you’re	responsible	for	maintaining	software
on	multiple

machines,	do	you	always	want	to	install	from	source?	If
your	systems

run	similar	hardware,	why	not	create	your	own
customized	packages

on	one	machine	and	make	them	available	to	your	other
systems	via	a

package	repository?

Creating	your	own	custom	packages	allows	you	to	retain
all	the

benefits	of	make.	Even	better,	the	resulting	package
installs	the	desired

software	very	quickly.	This	can	be	a	real	time-saver	when
you	maintain

multiple	systems.

The	experienced	hacker	may	prefer	to	use

/usr/ports/devel/distcc to	provide	multiple
builds.

8.6.1	Creating	Custom	Packages
Pick	a	machine	in	your	network	to	contain	the	package
repository,	and

install	the	ports	collection	on	that	system.	The	rest	of	your
systems

won’t	need	the	ports	collection,	which	saves	their	disk
space	for	other

purposes.

On	the	system	containing	the	ports	collection,	create	a
directory	to

store	the	packages:
# mkdir	/usr/ports/packages

Then,	decide	which	packages	you’d	like	to	create.	I’ll
start	with	Exim.

Before	creating	the	package,	I’ll	search	through	the
port’s Makefile to

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	82	Build	a	Port	Without	the	Ports
Tree
While	the	ports	tree	is	one	of	the	most	useful	FreeBSD
directory

structures,	you	may	have	systems	where	it’s	not
appropriate	to	maintain

the	entire	ports	structure.

On	some	of	your	systems,	disk	space	may	be	an	issue.	The
ports	tree

tarball	itself	is	a	21	MB	download.	Once	untarred,	it	will
occupy

around	500	MB	of	disk	space.	That	space	will	continue	to
grow	as	you

install	ports	since,	by	default,	source	files	download	into

/usr/ports/distfiles.

Does	this	mean	that	installing	packages	is	your	only
alternative?

Packages	are	convenient,	but	since	they	are	precompiled,
you	don’t

have	the	option	of	providing	your	own	make	arguments	to
optimize	the

install	for	your	environment.

One	alternative	is	the	anonymous	CVS	system.	Even	a
minimal	install	of

FreeBSD	includes	the	cvs	command.	This	allows	you	to
check	out	only

the	particular	port	skeleton	you	need.	You’ll	still	have	the
convenience

of	the	ports	collection	without	actually	having	to	install	it.

8.7.1	Connecting	to	Anonymous
CVS
The	first	time	you	use	cvs,	create	an	empty	CVS
password	file,	as

CVS	will	complain	if	this	file	is	missing:
# touch	~root/.cvspass

Then,	ensure	your	present	working	directory
is /usr:
# cd	/usr

When	using	cvs	to	maintain	your	ports,	be
sure

you	are	in /usr. cvs	downloads	the
requested	files

to	your	current	working	directory	and	will

overwrite	any	files	of	the	same	name.

Then,	use	the	cvs	login	command	to	connect	to	a	CVS
server.	There

are	five	FreeBSD	anonymous	CVS	servers;	see	the
Handbook

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	83	Keep	Ports	Up-to-Date	with
CTM
Keep	your	ports	up-to-date	without	using
cvsup.

If	you	have	a	slow	Internet	connection,	it	can	take	a	while
to	download

the	ports	tree;	the	current	tarball	is	over	21	MB	in	size.
Once	you	have

the	ports	collection,	keeping	up-to-date	with	cvsup	might
not	be	such

an	attractive	option	if	it	involves	tying	up	your	phone	line.

Perhaps	bandwidth	isn’t	the	problem.	Perhaps	you’re	just
looking	for	an

alternative	way	to	stay	current,	without	having	to	install
and	configure

cvsup.	After	all,	why	install	additional	software	if	you	can
achieve	the

same	results	using	commands	that	come	with	the	base
system?

Regardless	of	which	category	you	fall	into,	CTM	may	be
what	you’re

looking	for.

CTM	was	originally	CVS	Through	Email,	meaning	you
could	receive

the	changes	you	usually	receive	through	cvsup	via	email.
(In	the	case	of

numerous	changes,	you’d	receive	several,	smaller	mails
instead	of	one

monolithic	message.)	This	can	be	a	cheaper	alternative	to
cvsup	if

you’re	charged	for	the	amount	of	time	you	are	connected	to
the	Internet.

However,	it’s	even	easier	to	retrieve	these	changes	with
ftp.	FreeBSD

maintains	several	CTM	servers	that	contain	the	changes,
or	deltas,	to

the	FreeBSD	source	and	the	ports	collection.	This	hack
will

concentrate	on	keeping	your	ports	up-to-date	using	ftp
and	the	CTM

servers.

8.8.1	Using	ftp	and	ctm	to	Stay	Current
Let’s	start	with	a	system	that	doesn’t	have	the	ports
collection	installed.

First,	I’ll	create	an	empty ports directory	for	ctm	to	work
with:
# mkdir	/usr/ports/

# cd	/usr/ports

Then,	instead	of	downloading	and	untarring	the	ports	tree
tarball,	I’ll	ftp

into	a	CTM	server	and	download	the	latest	ports	tree	delta.
The

Handbook’s	section	on	CTM	includes	the	addresses	of	the
CTM

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	84	Navigate	the	Ports	System
Use	built-in	commands	to	keep	abreast	of	the
FreeBSD	ports

collection.

What	first	attracted	me	to	FreeBSD—and	what	has
definitely	kept	my

attention	since—is	the	ports	collection.	Over	10,000
applications	are	a

mere	make	install	clean	away.	For	a	software	junkie	like
myself,	it	is

indeed	Nerdvana	to	no	longer	scour	the	Internet	for
software	or	fight

my	way	through	dependency	hell	just	to	convince	an
application	to

install.

Admittedly,	it’s	easy	to	get	lost	in	a	sea	of	ports.	How	do
you	choose

which	application	best	suits	your	needs?	How	do	you	keep
track	of

which	ports	have	been	installed	on	your	system?	How	do
you	make

sure	you	don’t	inadvertently	delete	a	dependency?	Read
on	to	see	how

to	get	the	most	out	of	the	built-in	utilities	for	managing
ports.

8.9.1	Finding	the	Right	Port
You	know	you	want	to	install	some	software	to	add
functionality	to

your	system.	Wouldn’t	it	be	great	if	you	could	generate	a
list	of	all	the

ports	that	are	available	for	your	specific	need?	Well,	you
can,	and	it’s

almost	too	easy	with	the	built-in	port	search	facility.	In
this	example,	I’ll

look	for	ports	dealing	with	VPN	software:
% cd	/usr/ports

% make	search	key=vpn	|	more

Port:

Path:

Info:

Maint:

Index:

poptop-1.1.4.b4_2

/usr/ports/net/poptop

Windows	9x	compatible	PPTP	(VPN)	server

ports@FreeBSD.org

net

B-deps:expat-1.95.6_1	gettext-0.12.1

gmake-3.80_1	libiconv-1.9.1_3

R-deps:

<snip>

I	snipped	the	results	for	brevity	as	this	command	gives
the	details	of

each	port	associated	with	VPNs.	The	format	of	the
output	is	quite

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	85	Downgrade	a	Port
It	doesn’t	happen	often,	but	occasionally	portupgrade
will	upgrade	a

port	to	a	newer	version	that	doesn’t	sit	well	with	your
system.

It	can	be	very	frustrating	when	an	application	that	was
working	just	fine

an	hour	ago	suddenly	stops	working	after	an	upgrade.	Now
what?

At	first	glance,	the	solution	isn’t	obvious.	Because	ports
don’t	contain

revision	labels,	you	can’t	just	cvsup	back	to	an	earlier
version.

However,	the	commits	or	changes	to	each	port	are	tracked
in	the	CVS

repository.	You	could	learn	the	syntax	of	the	cvs	command
and	use	it

to	connect	to	the	CVS	repository,	manually	review	the
port’s	commit

history,	find	an	earlier	version	that	worked	on	your	system,
check	out

that	version,	and	rebuild	the	port.	Whew!	There	must	be	an
easier	way.

That’s	what	Heiner	Eichmann	thought	when	he	created
portdowngrade

.	His	script	does	all	of	the	work	for	you;	you	only	need	to
choose

which	version	of	the	port	to	use.

8.10.1	Using	portdowngrade
Installing	portdowngrade	is	easy
enough:
# cd	/usr/ports/sysutils/portdowngrade

# make	install	clean

A	few	moments	later,	you’ll	have	the	script	and	an
informative

manpage.	To	run	the	script,	simply	specify	which	port

you’d	like	to

downgrade.	Here,	I’ll	demonstrate	an	arbitrary	port:
# portdowngrade	apinger

portdowngrade	0.1	by	Heiner	Eichmann

Please	note,	that	nothing	is	changed	in	the	ports	tree

unless	it	is	explicitly	permitted	in	step	6!

Seeking	port	apinger	…	found:	net/apinger

Step	1:	Checking	out	port	from	CVS	repository

CVS	root	directory:

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	86	Create	Your	Own	Startup
Scripts
Ensure	your	favorite	installed	applications	start	at
boot	time.

Some	ports	are	nice	enough	to	create	their	own	startup
scripts	in

/usr/local/etc/rc.d when	you	install	them.	Unfortunately,
not	all	ports

do.	You	may	wonder	why	you’re	not	receiving	any
email,	only	to

discover	a	week	later	that	your	mail	server	didn’t	start	at
your	last

bootup!

In	those	cases,	you’ll	have	to	write	your	own	startup	script.
Fortunately,

that’s	easy.

8.11.1	Was	a	Script	Installed?
Every	port	comes	with	a	packing	list	of	installed
executables,	files,	and

manpages.	To	see	if	a	particular	port	will	install	a	startup
script,	search

its pkg-plist for	the	word	rc.	Here,	I’ll	check	the	packing
lists	for	the

stunnel	and	messagewall	ports:
% grep	-w	rc	/usr/ports/security/stunnel/pkg-plist

etc/rc.d/stunnel.sh.sample

% grep	-w	rc	/usr/ports/mail/messagewall/pkg-plist

%

Use	the	-w	switch	so	grep	searches	for	the	full	word	rc,
not	just	words

containing	those	two	characters.	If	there	isn’t	a	startup
script,	as	is	the

case	for	messagewall,	you’ll	just	get	your	prompt	back.

If	the	startup	script	ends	with .sample, you’ll	need	to	copy
it	to	a	new

file	without	that	extension.	This	is	often	the	case	with
applications	that

expect	you	to	change	the	sample	configuration	file	to	suit
your	system’s

requirements.

Also,	note	the	relative	path.	The	packing	list	knows	that,
by	default,	the

files	installed	by	a	port	will	start	with	the
prefix /usr/local. That	is,	in	the

previous	example,	you’ll	find	stunnel’s	startup	script	in

/usr/local/etc/rc.d, not	in /etc/rc.d.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	87	Automate	NetBSD	Package
Builds
Use	a	sandbox	to	build	applications	that	play	nicely
within	your

network.

Many	NetBSD	users	are	responsible	for	multiple	systems
running	on

different	architectures.	Instead	of	rebuilding	the	same
package	on

machine	after	machine,	it’s	often	desirable	to	build
packages	for	all	of

these	machines	from	the	most	powerful	one,	delivering
the	appropriate

binary	packages	across	the	network.	However,	problems
can	arise

when	not	all	machines	run	the	same	version	of	NetBSD	or
when	you

want	different	optimizations	or	build	settings	on	each	box.

The	solution	to	this	dilemma	is	simple:	create	a	sandbox
with	the

version	of	NetBSD	used	in	the	target	machine	and	build
the	necessary

binary	packages	inside	it.	This	sounds	easy,	but	it	can	be	a
very	tedious

and	error-prone	task.	It	is	even	more	complex	if	you	want
to	automate

periodic	package	rebuilding.	Fortunately,	that’s	our	final
goal	in	this

hack.

To	simplify	things,	I	assume	that	you	have	a	relatively
fast	desktop

machine	running	NetBSD-current,	where	you	will	build
binary

packages,	and	a	server	machine	running	the	stable	version
of	NetBSD

(1.6.2	at	the	time	of	this	writing).

8.12.1	Installing	pkg_comp
pkg_comp	(also	known	as	Package	Compiler)	can	simplify
the	creation

of	these	sandboxes:	it	handles	any	version	of	NetBSD
inside	a	chroot

jail	and	automates	the	build	process	of	binary	packages
inside	it.	Its

only	restriction	is	that	both	the	builder	and	the	destination
machine

share	the	same	architecture.

Let’s	begin	by	installing	pkg_comp	on	the	builder
machine	(make	sure

you	have	Version	1.15	or	greater):
# cd	/usr/pkgsrc/pkgtools/pkg_comp

# make	install	&&	make	clean

After	installation,	spend	some	time	reading	man	8
pkg_comp	and

getting	familiar	with	its	structure	because	you	will	be
using	it	as	a

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	88	Easily	Install	Unix	Applications
on	Mac	OS	X
Many	Mac	users	often	seem	a	little	surprised	when	I	tell
them	I	run

XChat	and	other	Unix	applications	on	Mac	OS	X	alongside
native

Aqua	applications	(such	as	Safari,	Finder,	and	iPhoto).
What	they	don’t

realize	is	that	it’s	simple	to	install	such	applications	thanks
to	the	Fink

and	DarwinPorts	projects.	This	hack	is	dedicated	to
installing	and	using

DarwinPorts.

This	hack	assumes	you	have	a	basic	understanding
of Terminal.app

and	the	underlying	Unix	bits	of	Mac	OS	X.	You	also	need
to	have	the

Developer	Tools	installed.

8.13.1	Installing	DarwinPorts
Before	you	can	use	DarwinPorts,	you	must	install	the
build	system	and

the	actual	ports	tree.	The	easiest	way	to	accomplish	this	is
by	using

CVS.	Before	checking	the	project	out	of	CVS,	you’ll	need
to	decide

where	you’d	like	it	to	exist	on	your	hard	drive.	I	usually
use ~/work.

Open Terminal.app (or	an	xterm	if	you	have	X11
installed),	and

change	to	the	directory	where	you’ll	install	DarwinPorts.
Then	type	the

following	commands	at	the	prompt	(when	the	server	asks
for	a

password,	just	press	Return):
% alias	dcvs	cvs	-d	\

:pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src

/cvs/od

% dcvs	login

% dcvs	co	-P	darwinports

You	should	now	see	a	bunch	of	output	scrolling	past	in	the
terminal

window.	If	you	do,	good;	the	project	is	checking	out	of
CVS	and	onto

your	hard	disk.	If	you	don’t,	double-check	the	three
commands	just

shown	to	make	sure	you	typed	everything	correctly.	Once
you’ve

fetched	the	project,	it’s	time	to	install	it.

Run	ls	in	the	terminal	window;	you	should	see
a darwinports directory.

cd	to	it	and	rerun	ls:
% cd	darwinports

<	Day	Day	Up	>

<	Day	Day	Up	>

Chapter	9.	Grokking
BSD

Introduction

Section	89.	How’d	He	Know
That?

Section	90.	Create	Your	Own
Manpages

Section	91.	Get	the	Most	Out	of
Manpages

Section	92.	Apply,	Understand,	and	Create
Patches

Section	93.	Display	Hardware
Information

Section	94.	Determine	Who	Is	on	the
System

Section	95.	Spelling	Bee

Section	96.	Leave	on
Time

Section	97.	Run	Native	Java

Applications

Section	98.	Rotate	Your
Signature

Section	99.	Useful	One-
Liners

Section	9.13.	Fun	with	X

<	Day	Day	Up	>

<	Day	Day	Up	>

Introduction
Heinlein	fans	will	recognize	the	word	grok	as	the	Martian
word	for	“to

be	one	with”	or	“thorough	understanding.”	Indeed,	you
will	sometimes

feel	like	a	stranger	in	a	strange	land	when	learning	Unix.
As	any	Unix

guru	can	attest,	however,	the	rewards	far	outweigh	the
initial	learning

curve.

This	final	chapter	is	a	hodgepodge	of	useful	and
sometimes	amusing

tidbits.	A	sure	sign	you’re	on	the	right	road	to	grokking
BSD	is	when

you’re	able	to	see	both	the	usefulness	and	the	quirky
humor	that	is

inherent	in	all	Unix	systems.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	89	How’d	He	Know	That?
Make	the	most	of	your	available
resources.

Unless	you’ve	achieved	Unix	guru	status,	you	probably
find	yourself

asking	“how	did	he	know	that?”	whenever	you’re	around
other	Unix

users	or	read	a	really	cool	snippet	in	a	book.	Here’s	a	little
secret:	he

probably	had	to	look	it	up.	As	I	tell	my	students,	“No	one
knows

everything.	Make	sure	the	one	thing	you	do	know	is	where
to	go	to	get

the	information	you	need.”

9.2.1	Online	Resources
If	you’re	using	FreeBSD,	there	is	no	shortage	of
well-written

documentation.	If	you	haven’t	already,	bookmark	the
FreeBSD

Documentation	page	at	http://www.freebsd.org/docs.

There	you’ll	find	hyperlinks	to	the	four	handbooks,	the
FAQ,	how-to

articles,	online	manpages,	as	well	as	other	sources	of
information.

There’s	a	very	good	chance	that	someone	else	has	already
documented

what	you	want	to	do.

9.2.2	Keeping	Offline	Resources	Up-to-
Date
Online	resources	are	great,	but	what	if	you	don’t	always
have	access	to

an	Internet	connection?	If	you	installed	the	doc
distribution,	you	already

have	most	of	those	resources	on	your	hard	drive.	You’ll
find	the

handbooks,	FAQ,	and	articles	in /usr/share/doc. That
directory

contains	symlinks	so	you	can	quickly	navigate	to	the
desired	resource.

If	you	haven’t	installed	the	doc	directory

structure,	you	can	do	so	through
/stand/sysinstall.

Enter	Configuration,	then	Distributions,
and	use

your	spacebar	to	select	doc.

The	online	resources	receive	daily	updates,	so	be	sure	to
update	your

docs	when	you	use	cvsup.	Make	sure	your cvsup file
includes	this	line:
doc-all	tag=.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	90	Create	Your	Own	Manpages
As	a	Unix	administrator,	the	one	word	of	sage	advice	you
can	give	to

any	user	that	is	guaranteed	to	solve	any	problem	is
RTFM.

What’s	an	administrator	to	do	when	informed	by	a	user
that	there	is	no

manpage	to	read?	Perhaps	the	application	in	question	is	a
custom

application	or	script,	or	perhaps	it’s	a	third-party	program
that	didn’t

come	with	a	manpage.	Why	not	create	the	missing	manual
yourself?

9.3.1	Manpage	Basics
Creating	a	manpage	isn’t	all	that	difficult.	After	all,	a
manpage	is	simply

a	text	file—more	specifically,	a	gzipped	text	file	sprinkled
with	groff

macros.	(I’m	quite	sure	groff	gets	its	name	from	the
choking	sound	you

make	as	you	try	to	decipher	its	manpage.)	For	man	to	do
its	magic,

which	starts	with	being	able	to	find	the	page,	the	manpage
must	live	in	a

directory	manpath	can	see.

Not	surprisingly,	manpath’s	configuration
file, /etc/manpath.config,

contains	those	paths:
% grep	MAP	/etc/manpath.config

#	MANPATH_MAP

manpath_element

MANPATH_MAP

/usr/share/man

MANPATH_MAP

/usr/share/man

MANPATH_MAP

/usr/local/man

MANPATH_MAP

/usr/X11R6/man

path_element

/bin

/usr/bin

/usr/local/bin

/usr/X11R6/bin

Basically,	manpages	to	programs	that	come	with	the
system	live	in

/usr/share/man, third-party	applications
use /usr/local/man, and	X

applications	use /usr/X11R6/man. If	you	ls	any	of	these
directories,

you’ll	find	directory	names	that	go	from man1 to man9. If
you’re	rusty

on	the	function	of	each	manpage	section,	run:
% whatis	intro

intro(1)

commands	(tools	and

-	introduction	to	general

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	91	Get	the	Most	Out	of	Manpages
Now	that	you	know	how	to	create	your	own	manpages,
you’ll	want	to

know	how	to	get	the	most	out	of	your	manpage	viewing.

Since	most	documentation	on	Unix	systems	lives	within
manpages,	it

pays	to	know	how	to	get	the	most	out	of	your	manpage-
reading

experience.	How	do	you	make	sure	you’re	aware	of	all	of
the

manpages	installed	on	a	system?	How	do	you	zero	in	on
the

information	you	need,	without	having	to	read	an	entire
manpage?	Yes,

it’s	a	great	experience	to	read	all	of	man	tcsh	at	least	once
in	your	life,

but	you	don’t	want	to	do	that	when	you’re	only	interested
in	a	certain

shell	variable.

9.4.1	Finding	Installed	Manpages
You	may	have	noticed	that,	by	default,	whatis	[Hack	#13]
doesn’t	find

custom	manpages	or	those	installed	by	third-party
applications.	Not

only	is	this	inconvenient,	but	it	can	also	prevent	your
users	from	getting

the	most	out	of	the	applications	installed	on	a	system.

Remember /etc/manpath.config from	[Hack
#90]	?
% grep	MAP	/etc/manpath.config

#	MANPATH_MAP

MANPATH_MAP

MANPATH_MAP

MANPATH_MAP

MANPATH_MAP

path_element

/bin

/usr/bin

/usr/local/bin

/usr/X11R6/bin

manpath_element

/usr/share/man

/usr/share/man

/usr/local/man

/usr/X11R6/man

The	makewhatis	command	actually	creates	the	whatis
database	and,	by

default,	makewhatis	reads	only /usr/share/man. It’ll	skip
any	manpages

in /usr/local/man and /usr/X11R6/man, because	it	doesn’t
know	they

exist!

To	gather	in	those	missing	manpages,	pass	these	extra
directories	to

makewhatis:
# makewhatis	/usr/local/man	/usr/X11R6/man

#

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	92	Apply,	Understand,	and	Create
Patches
Sometimes	only	the	little	differences
matter.

Despite	all	your	best	efforts,	eventually	you’ll	end	up	with
multiple

versions	of	a	file.	Perhaps	you	forgot	to	keep
your .vimrc in	sync

between	two	machines	[Hack	#10]	.	Alternatively,	you
may	want	to

see	the	changes	between	an	old	configuration	file	and	the
new	version.

You	may	even	want	to	distribute	a	bugfix	to	a	manpage	or
program.

Sending	the	entire	changed	file	won’t	always	work:	it	takes
up	too	much

space	and	it’s	hard	to	find	exactly	what	changed.	It’s	often
easier	and

usually	faster	to	see	only	the	changes	(see	[Hack	#80]	for	a
practical

example).	That’s	where	diff	comes	in:	it	shows	the
differences	between

two	files.

As	you’d	expect,	applying	changes	manually	is	tedious.
Enter	patch,

which	applies	the	changes	from	a	diff	file.

9.5.1	Finding	Differences
Suppose	you’ve	shared	a	useful	script	with	a	friend	and
both	of	you

have	added	new	features.	Instead	of	printing	out	both
copies	and

marking	differences	by	hand	or,	worse,	trying	to	reconcile
things	by

copying	and	pasting	from	one	program	to	another,	use
diff	to	see	only

the	differences	between	the	two	programs.

For	example,	I’ve	customized	an	earlier	version	of
the copydotfiles.pl

script	from	[Hack	#9]	to	run	on	Linux	instead	of
FreeBSD.	When	it

came	time	to	unify	the	programs,	I	wanted	to	see	the
changes	as	a

whole.	diff	requires	two	arguments,	the	source	file	and
the	destination.

Here’s	the	cryptic	(at	first)	result:
$ diff	-u	copydotfiles.pl	copydotfiles_linux.pl

–	copydotfiles.pl

16:09:49.000000000	-0800

+++	copydotfiles_linux.pl

16:09:32.000000000	-0800

@@	-5,8	+5,8	@@

#

-	change	ownership	of	those	files

2004-02-23

2004-02-23

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	93	Display	Hardware	Information
If	you’re	new	to	FreeBSD,	you	may	be	wondering
where	to	find

information	about	your	system’s	hardware	and	the
resources	it	uses.

You’ve	probably	noticed	that	your	FreeBSD	system
didn’t	ship	with	a

Microsoft-style	Device	Manager.	However,	it	does	have
plenty	of

useful	utilities	for	gathering	hardware	information.

9.6.1	Viewing	Boot	Messages
When	you	boot	your	system,	the	kernel	probes	your
hardware	devices

and	displays	the	results	to	your	screen.	You	can	view	these
messages,

even	before	you	log	in,	by	pressing	the	scroll	lock	key	and
using	your

up	arrow	to	scroll	back	through	the	message	buffer.	When
you’re

finished,	press	scroll	lock	again	to	return	to	the	login	or
command

prompt.

You	can	type	dmesg	any	time	you	need	to	read	the	system
message

buffer.	However,	if	it’s	been	a	while	since	bootup,	it’s
quite	possible

that	system	messages	have	overwritten	the	boot	messages.
If	so,	look

in	the	file /var/run/dmesg.boot, which	contains	the
messages	from	the

latest	boot.	This	is	an	ASCII	text	file,	so	you	can	send	it
to	a	pager

such	as	more	or	less.

You	may	find	it	more	convenient	to	search	for	something
particular.	For

example,	suppose	you’ve	added	sound	support	to	your
kernel	by

adding	device	pcm	to	your	kernel	configuration	file.	This
command	will

show	if	the	PCM	device	was	successfully	loaded	by	the
new	kernel:
% grep	pcm	/var/run/dmesg.boot

pcm0:	<Creative	CT5880-C>	port	0xa800-0xa83f	irq	10

at	device	7.0	on	pci0

pcm0:	<SigmaTel	STAC9708/11	AC97	Codec>

In	this	example,	the	kernel	did	indeed	probe	my	Creative
sound	card	at

bootup.

9.6.2	Viewing	Resource	Information
Sometimes	you	just	want	to	know	which	devices	are
using	which

system	resources.	This	command	will	display	the	IRQs,
DMAs,	I/O

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	94	Determine	Who	Is	on	the
System
As	a	system	administrator,	it	pays	to	know	what’s
happening	on	your

systems.

Sure,	you	spend	time	reading	your	logs,	but	do	you	take
advantage	of

the	other	information-gathering	utilities	available	to	you?
Silently,	in	the

background,	your	system	tracks	all	kinds	of	neat
information.	If	you

know	enough	to	peek	under	the	system	hood,	you	can	get
a	very	good

view	of	what	is	occurring	on	the	system	at	any	given	point
in	time.

For	the	experienced	hacker,	the	output
from

these	commands	may	suggest	interesting
scripting

possibilities.

9.7.1	Who’s	on	First?
Have	you	ever	needed	to	know	who	logged	into	a	system
and	for	how

long?	Use	the	users	command	to	see	who’s	logged	in	now:
% users

dru	biko

Perhaps	you	prefer	to	know	who	is	on	which	terminal.	Try
who.	Here,

the	H	includes	column	headers	and	the	u	shows	each
user’s	idle	time:
% who	-Hu

NAME

LINE

TIME

IDLE

FROM

dru

biko

dru

(hostname)

ttyv1

ttyv5

ttyp0

Jan	25	08:59	01:00

Jan	25	09:57

.

Jan	25	09:58	00:02

Feel	free	to	experiment	with	who’s	switches	to	find	an
output	that	suits

your	needs.	Here,	dru	and	biko	have	logged	in	physically
at	this

system’s	keyboard	using	virtual	terminals	1	and	5.	dru	has
also	logged

in	over	the	first	psuedoterminal	(over	the	network)	from
the	specified

hostname.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	95	Spelling	Bee
For	those	who	edit	their	text	at	the
command	line.

Like	most	computer	users,	you	probably	find	yourself
spending	a	fair

bit	of	time	typing,	whether	responding	to	email,
navigating	the	web,	or

working	on	that	résumé	or	thesis.	How	often	do	you	find
yourself

looking	at	a	word,	wondering	if	you’ve	spelled	it
correctly?	How	often

do	you	rack	your	brain	trying	to	find	a	more	interesting	or
descriptive

word?

You’ve	probably	discovered	that	Unix	doesn’t	come	with
a	built-in

dictionary	or	thesaurus.	Sure,	you	can	install	a	feature-
rich	GUI	office

suite,	but	what	alternatives	are	there	for	users	who	prefer
less	bloat	on

their	systems	or	are	accessing	systems	from	the	command
line?

9.8.1	Quick	Spellcheck
If	you’re	in	doubt	about	the	spelling	of	a	word,	try	using
look.	Simply

include	as	much	of	the	word	as	you’re	sure	about.	For
example,	if	you

can’t	remember	how	to	spell	“bodacious”	but	you’re	pretty
sure	it	starts

with	“boda”:
% look	boda

bodach

bodacious

bodaciously

If	you	don’t	have	access	to	a	GUI,	see
[Hack

#12]	.

I	find	look	especially	helpful	with	suffixes.	It’s	very
handy	if	you	can’t

remember	when	to	use	“ly”,	“ally”,	or	“ily”.	For
example:
% look	mandator

mandator

mandatorily

mandatory

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	96	Leave	on	Time
Use	your	terminal’s	built-in	timers	and
schedulers.

You	know	how	it	is.	You	sit	down	in	front	of	a	keyboard
and	quickly

become	absorbed	in	your	work.	At	some	point	you
remember	to	look

up,	only	to	notice	that	everyone	else	is	gone	for	the	day.	If
that	doesn’t

describe	you,	I	bet	you	can	think	of	at	least	one	person	it
does	describe.

9.9.1	Don’t	Forget	to	Leave
Fortunately	the	leave	command	can	save	you	from	the
embarrassment

of	forgetting	important	appointments.	Use	it	at	any	time
by	typing:
% leave

When	do	you	have	to	leave?

There	are	three	ways	to	respond	to	that
question:

Type	+number,	where number represents	how	many
hours	or

minutes	from	now	you’d	like	to	leave.

Press	Enter	to	abort.

Type hhmm, where hh represents	the	hour
and mm represents

the	minute.

For	example,	to	leave	at	5

PM:
% leave	500

Alarm	set	for	Tue	Dec	30	17:00:00	EST	2003.	(pid

50097)

leave	1700	will	achieve	the	same
results.

Or,	to	leave	in	45
minutes:
% leave	+45

Alarm	set	for	Tue	Dec	30	9:52:00	EST	2003.	(pid	50108)

Be	sure	to	include	the	+	if	you’re	not	specifying	an
actual	time.

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	97	Run	Native	Java	Applications
Until	recently,	running	Java	applications	on	FreeBSD
meant	using	the

Linux	compatibility	mode.

Linux	programs	can	sometimes	be	problematic	on
FreeBSD.	Java

uses	threading	very	heavily,	and	that’s	probably	the
poorest-emulated

part	of	Linux	binary	compatibility.	Some	Java	applications
or	class

libraries	just	don’t	work	correctly	under	Linux	emulation.
Native

versions	of	the	Java	distribution	had	restrictive	licenses,
and	it	required

a	great	deal	of	work	to	download	and	compile	them.
Fortunately,	the

FreeBSD	Foundation	has	negotiated	a	FreeBSD	Java
license	with	Sun

Microsystems.	This	hack	demonstrates	how	to	configure
the	FreeBSD

version	of	Java.

What	about	native	Java	on	NetBSD	or

OpenBSD?	At	the	time	of	writing,	neither
system

had	a	native	Java	port.	You	can	run	Java
on	a

Linux	emulator	or	via	Tomcat.

9.10.1	Choosing	Which	Java	Port	to	Install
The	first	requirement	for	running	Java	applications	is	a
Java	Virtual

Machine	(JVM)	and	the	associated	runtime	support
libraries.	There	are

several	Java	Runtime	Environments	(JREs)	or	Java
Development	Kits

(JDKs)	available	in	ports.

A	JRE	contains	everything	necessary	for
an	end

user	to	run	Java	applications.	A	JDK
contains	all

that,	plus	various	extra	bits	required	for

developing,	compiling,	and	debugging
Java	code.

The	main	criteria	for	choosing	a
port	are:

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	98	Rotate	Your	Signature
End	your	email	communications	with	a	short
witticism.

We	all	seem	to	know	at	least	one	geek	friend	or	mailing-
list	poster

whose	emails	always	end	with	a	different	and	humourous
bit	of	random

nonsense.	You	may	be	aware	that	this	is	the	work	of
her ~/.signature

file,	but	have	you	ever	wondered	how	she	manages	to
rotate	those

signatures?

While	there	are	several	utilities	in	the	ports	collection
that	will

randomize	your	signature,	it	is	easy	enough	to	roll	your
own	signature

rotator	using	the	fortune	program	and	a	few	lines	of	shell
scripting.

9.11.1	If	Your	Mail	Program	Supports	a	Pipe
Your	approach	will	vary	slightly,	depending	on	whether
your	particular

mail	user	agent	(MUA)	supports	pipes.	If	it	does,	it’s
capable	of

interpreting	the	contents	of	a	file	as	command	output,	just
like	when	you

use	a	pipe	(|)	on	the	command	line.

I	use	pine,	which	supports	both	static	signature	files	and
signatures	that

come	from	the	piped	output	of	a	signature	rotation
program.

When	configuring	pine,	choose	Setup	from	the	main
menu,	then	C	for

the	configuration	editor.	Find	the	signature-file	option
and	give	it	this

value:
.signature	|

The	pipe	character	tells	pine	to	process	that	filename	as
a	program

instead	of	inserting	its	contents	literally.

Also	enable	the	signature-at-bottom	option	found	in	the
Reply

Preferences	to	ensure	your	signature	is	placed	at	the
bottom	of	your

emails,	even	when	replying	to	an	email.

Next,	create	a	file	called ~/.signature containing
these	lines:
echo	“Your	random	fortune:”

/usr/games/fortune	-s

<	Day	Day	Up	>

<	Day	Day	Up	>

Hack	99	Useful	One-Liners
Unix	is	amazing.	Only	your	imagination	limits	the
usefulness	of	the

built-in	commands.	You	can	create	your	own	commands
and	then	pipe

them	together,	allowing	one	utility	to	work	on	the	results
of	another.

If	you’re	like	me,	you’ve	run	across	dozens	of	useful
combinations	over

the	years.	Here	are	some	of	my	favorite	one-liners,
intended	to

demonstrate	useful	ideas	as	well	as	to	prime	your	pump	for
writing	your

own	one-liner	hacks.

9.12.1	Simultaneously	Download	and
Untar
Have	you	ever	downloaded	an	extremely	large	archive
over	a	slow

connection?	It	seems	to	take	forever	to	receive	the	archive
and	forever

to	untar	it.	Being	impatient,	I	hate	not	knowing	how	many
of	the

archived	files	are	already	here.	I	miss	the	ability	to	work
on	those	files

while	the	rest	of	the	archive	finishes	its	slow	migration
onto	my	system.

This	one-liner	will	decompress	and	untar	the	files	as	the
archive

downloads,	without	interfering	with	the	download.
Here’s	an	example

of	downloading	and	untarring	the	ports	collection:
# tail	-f	-b=1m	ports.tar.gz	|	tar	-zxvf	ports.tar.gz

ports/

ports/Mk/

<snip>

Here	I’ve	asked	tail	to	stream	up	to	one	megabyte	of	the

specified	file

as	it	is	received.	It	will	pipe	those	bytes	to	the	tar	utility,
which	I’ve

directed	to	decompress	(-z)	and	to	extract	(x)	the	specified
file	(f)	while

displaying	the	results	verbosely	(v).

To	use	this	command,	download	the	archive	to	where
you’d	like	to

untar	it—in	this	example, /usr. Simply	replace	the
filename ports.tar.gz

with	the	name	of	your	archive.

9.12.2	When	Did	I	Change	That	File?
Do	you	ever	need	to	know	the	last	modification	date	of	a
file?	Consider

a	long	listing:

<	Day	Day	Up	>

<	Day	Day	Up	>

9.13	Fun	with	X
Use	the	utilities	that	come	with	the	core	X
distribution.

There	are	so	many	GUI	utilities,	available	either	as	part	of
your	favorite

Window	Manager	or	as	a	separate	installation,	that	you
can	forget	that

the	core	X	distribution	also	provides	several	useful	and
lightweight

programs.	Do	you	need	to	monitor	console	messages,
manage	your

clipboard,	send	pop-up	messages,	or	create	and	view
screenshots?

Before	you	hit	the	ports	collection,	give	the	built-in
utilities	a	try.

9.13.1	Seeing	Console	Messages
In	[Hack	#42],	we	saw	how	to	redirect	console	messages.
If	you’re

using	an	X	session,	the	xconsole	utility	fulfills	this
purpose.	To	start	this

utility,	simply	type	its	name	into	an	xterm	or	use	the	Run
command

provided	by	your	window	manager.

By	default,	only	the	superuser	can	start	xconsole.	A	regular
user	will

instead	receive	a	Couldn’t	open	console	message.	This	is	a
safety

precaution	on	multiuser	systems,	preventing	regular	users
from	viewing

system	messages.	If	you’re	the	only	user	who	uses	your
system,	remove

the	comment	(#)	from	this	line	in /etc/fbtab:
#/dev/ttyv0

0600

/dev/console

If	you	spend	a	lot	of	your	time	at	an	X	session,	consider

adding

xconsole	to	your ~/.xinitrc file	so	it	will	start
automatically	(see	[Hack

#9]).

9.13.2	Managing	Your	Clipboard
If	you	do	a	lot	of	copying	and	pasting,	xclipboard	is
another	excellent

candidate	for	automatic	startup.	This	utility	stores	each	of
your

clipboard	selections	as	a	separate	entity,	allowing	you	to
scroll	through

them	one	at	a	time	in	a	simple	GUI	window.	In	addition	to
the	Next

and	Prev	buttons,	a	Delete	button	lets	you	remove
unwanted	items	and

a	Save	button	allows	you	to	save	all	of	your	items	as	a	file.

9.13.3	Sending	Pop-up	Messages
Do	you	find	yourself	starting	a	command	that	takes	a
while	to	execute,

continuing	your	work	in	an	X	session,	then	returning
periodically	to	the

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

!	(bang)	character,	retrieving	previously	issued
commands

#	(hash	mark)	for	comments	in	code

(‘)	(single	quote)	vs.	backticks	(`)

(`)	(backticks)	vs.	single	quote	(‘)

.\”	(comment)	groff	command

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

Access	Control	Lists	(ACLs)

adding/subtracting

enabling

setting	default	ACLs

viewing

access,	limiting	with	IP	Filter

accounting	(system),	enabling

accton	command

ACID	(Analysis	Console	for	Intrusion
Databases)

adding	more	security	to

alerts

configuring

installing

running

ack	numbers	in	packets

addresses,	MAC,	spoofing

adduser	command

Blowfish	and

adodb	(database	library	for	PHP),
installing

ADSL	PPPoE	configuration

alerts,	ACID

anonymous	CVS

antivirus	software

Apache	servers

configuring

consolidating	logs

installing

starting

tuning

APG	(Automated	Password	Generator)

improving

installing

appending	changes	to	files

applets,	Java

arch	flag	2nd

archives

compressed

without	intermediate	files

creating	portable	POSIX	archives

downloading	and	untarring

multivolume,	resources	for

rooted

ARP	packets

attaching/detaching	screen	sessions

attributes	of	files,	preserving	when
copying

authorized/unauthorized	hosts

auto	completion

working	around

autologout	after	inactivity

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

backticks	(`)	vs.	single	quote	(‘)

backups

automating

Bacula	program

controlling	with	arch/nodump	flags

creating	schedules

data	dumps	for	PostgreSQL	databases,
automating

remote,	automating

secure	backups	over	networks

Bacula	program

client-only	version,	installing

configuration	files,	modifying

using	consoles	2nd

database	tables,	creating

installing

starting	daemons

testing	tape	drives

bandwidth

allocating	with	traffic	shaping

		limiting

complex	configurations

simple	configuration

batcher	process

Beastie	boot	menu

BEEP_ONHALT	option

bell	command

Berlin,	Marlon

Bernier,	Robert

Big	Brother	System	and	Network	Monitor

binaries

finding

protecting,	using	flags

bitmap	images,	loading

blank	lines,	removing	using	grep/sed

Blowfish	hashes

forcing	new	passwords	to	use	Blowfish

protecting	system	passwords	with

/boot	directory

boot	menu	(default),	customizing

boot	messages,	viewing

boot	process

interrupting

protecting

bootblocks	configuration,	changing

browsers,	command-line

brute-force	password	crackers,	preventing	with
Blowfish

bsdlabel	command

btape	utility

buffer	overflows,	analyzing	with	GNU	debugger

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

calendar	command

cap_mkdb	command

capturing	packets

Carosone,	Daniel

case	of	characters,	translating

cd	command

CD-ROMs,	mounting

Cerias	FTP	site	(cracker
dictionaries)

cgd(4)	devices

cgdconfig	program

chflags	command

chmod	command

chromatic

chroot	support	for	scponly

testing

ClamAV	utility

clamav.conf	file

clamd	command

clamdscan	command

clamscan	command

CLASSPATH	environment	variable

Client	Daemon	(Bacula)

installing	client-only	version	of
Bacula

clipboard,	managing

ClusterIt	tool

installing/configuring

noninteractive	commands,	testing

code	examples,	permission	for	using

col	command	2nd

colors,	adding	to	terminals

command	history

retrieving	previously	issued
commands

command	line

editing

navigating

w3m	browser	for

command-line	Console	(Bacula)
2nd

commands

distributed

finding

comments

adding	to	code	using	#	(hash	mark)

adding	to	source	code

in	manpages

removing	from	source	code

in	source	code,	reading

compiling	software,	optimizing

compressed	archives

creating

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

daemons,	running	without	root	permissions

daily_clean_disks	script

daily_clean_preserve	script

daily_clean_tmps	script

DarwinPorts	project,	installing	Unix	applications	on
Mac	OS	X

debugger,	GNU,	analyzing	buffer	overflows

debugging	regular	expressions

decompressing	files

default	ACLs,	setting

default	configuration	files

default	shell	for	FreeBSD

deleted	files,	sending	to	trash	directory

delimited	files	and	double	quotation	marks

demos	for	trade	shows,	creating

dependencies

checking	before	uninstalling	applications

of	ports,	checking	for

deploying	images

DESTDIR	variable	(pkg_comp)

/dev/console	file

DEVICE_POLLING	option

devices	in	kernel	configuration	files

devinfo	command

/dev/null,	using	with	find	command

df	command	2nd

dhclient	command	2nd

dhclient.conf	file

DHCP	clients/servers

configuring	multiple	wireless	networks

spoofing	MAC	addresses

DHCP	server	configuration	2nd

Diablo	Java	packages

dial	filter	rules

dictionaries

creating

improving	your

password,	customizing

dictionary	password	cracker

diff	command

dig	(domain	information	groper)	utility,	locating	DNS
information

Director	Daemon	(Bacula)

directories

maintaining	synchronized	copies	of

protecting	files	with	flags

recreating	structures	with	mtree

disk	hogs,	dealing	with

disk	space	used	by	ports,	checking

disklabel	command

display	filters	and	tcpdump

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

e16keyedit	utility

echoing	responses	to	OTP	challenge

editing	the	command	line

eesh	utility	(Enlightenment)

egrep	command

Eichmann,	Heiner

email	[See	also	sendmail]

holding	for	later	delivery

reading	with	telnet

relaying	considered	harmful

security	considerations

sending

to	external	recipients

with	telnet

emergency	repair	kit

creating

customizing	boot	process	and

testing

encrypted	disk	devices,	creating

encrypting	hard	disks

Enlightenment	window	manager

error	messages	for	mount	command

errors

analyzing	buffer	overflows	with	GNU
debugger

reading	comments	in	source	code	for	help

/etc	files,	safely	merging	changes	to

/etc/dhclient.conf	file

/etc/fstab	file	2nd

/etc/ipf.rules	file

/etc/login.access	file

/etc/login.conf	file

/etc/make.conf	file

/etc/netstart	command

/etc/periodic.conf	file

/etc/pf.conf	file

/etc/profile	file

/etc/ssh/sshd_config	file

/etc/ttys	file,	securing

etcmerge	utility

Expect	scripts,	generating	GPG	keys	with

<Emphasis>Exploring	Expect<Default
Para	Font>

extattrctl	command

extended	attributes,	enabling	for	ACLs

extended	regular	expressions

extracting	text	from	documents	using	grep

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

fastest-cvsup	command

FAT12	filesystem

fdformat	command

fdisk	command

fetch	utility	2nd

File	Daemon	(Bacula)

file	integrity	checking	using	mtree

file	servers,	optimizing

file	utility

files

appending	changes	to

attributes	of,	preserving	when	copying

decompressing

deleted,	sending	to	trash	directory

delimited

hierarchies,	copying

last	modification	dates	of

limiting

portable,	creating

protecting	with	flags

renaming	interactively

with	specific	extensions,	deleting

filesystems

disk	hogs,	dealing	with

DOS	floppies	[See	floppies]

ghosting	systems

recreating	directory	structures	with
mtree

sharing	files	between	Windows	and

FreeBSD

swap	files	and

temporary	files,	adding

using	live	filesystems

filters,	display	and	tcpdump

find	command	2nd

finding

commands

program	paths

words

Fink	project	2nd

firewalls

automatically	generating	rules

IP	Filter,	limiting	access	with

ipfw	command	2nd

securing	wireless	networks	with	PF

zone	transfers,	controlling

Firewire	support	in	kernel	configuration
files

fixit	floppies

repairing	with

flags	field	of	TCP	headers

flags,	protecting	files	with

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

g4u	(Ghost	For	Unix)	utility

gdb	command

getfacl	command	2nd

ghost	disks,	creating

Ghost	For	Unix	(g4u)	utility

ghosting	systems

images,	creating/deploying

GNOME	GUI	Console	(Bacula)	2nd

GNU	debugger,	analyzing	buffer	overflows

GNU	tar	utility,	incompatibility	issues	with

Gould,	Andrew

GPG	keys,	generating	with	Expect	scripts

grdc	command

grep	command

case-insensitive	search,	performing

combining	with	other	commands

extracting	text	from	documents

finding	words

using	regular	expressions

relevance	searches

removing	blank	lines

text,	finding

groff	commands	for	creating	manpages

grokking	BSD

groups	of	hosts,	executing	commands	on,	using
tentakel

gzip	utility	2nd	3rd

<	Day	Day	Up	>

<	Day	Day	Up	>

	

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

hacking	BSD

Haitzler,	Carsten

halt	command	and	BEEP_ONHALT	option

hard	disks

encrypted	disk	device,	creating

encrypting

ghosting	systems	and

preparing	for	encryption

restoring	data

scrubbing

hardware	information,	displaying

Harris,	Daniel

Harrison,	Geoff

head	command

headers,	packet

headless	systems

becoming	inaccessible

logging	servers	remotely

preparing	for

setting	up

shutting	down	servers	using	wsmoused

Hess,	Joey

hierarchies	of	files,	copying

history,	command

retrieving	previously	issued	commands

host	controller	information	in	kernel
configuration	files

host	systems,	establishing	SMB	connections
with

host	utility

hosts,	authorized	and	unauthorized

html2txt	converter

HZ	option	2nd

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

ICMP	type	field/ICMP	code	field

IDE	devices	in	kernel	configuration	files

idled	utility

IDSs	(Intrusion	Detection	Systems)

ifconfig	command

enabling/disabling	interfaces

optimizing	network	performance

running	headless	systems

scripting	wireless	network	configurations

spoofing	MAC	addresses

tcpdump	output,	humanizing

images,	creating/deploying,	using	ghosting
utility

inaccessibility	of	headless	systems

incorrect	user	input,	handling

installboot	utility

installing	systems	automatically

integrity	checking	for	files	using	mtree

integrity	databases

creating

deciding	which	files	to	include

preparing	for	storage

working	with

interact	command

interactive

copying

file	renaming

remote	administration

scripts,	creating	with	Expect

shells

interface	statistics,	gathering

interface	support	in	kernel	configuration
files

interfaces,	enabling/disabling

intermittent	Internet	connection	and
sendmail

Internet	loss,	catastrophic,	surviving

intervals	of	backups,	specifying

Intrusion	Detection	Systems	(IDSs)

IP	Filter

automatically	generating	firewall	rules

limiting	access	with

switching	rules	on	schedule

IP	NAT	configuration

IPFIREWALL_DEFAULT_TO_ACCEPT
option

ipfw	command	2nd

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

Jabber4r	Ruby	module

Java	applets

Java	applications,	running	on
FreeBSD

Java	Development	Kits	(JDKs)

Java	Runtime	Environments
(JREs)

Java	Virtual	Machines	(JVMs)

JAVA_HOME	environment
variable

javavmwrapper	port

javaws	application

JDKs	(Java	Development	Kits)

Jetty	(Java	servlet)

JPGraph,	installing

JREs	(Java	Runtime
Environments)

JVMs	(Java	Virtual	Machines)

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

kenv	command

kernel	environment,	viewing

kernels

adding	SMB	support	to

building	new

configuring	for	traffic	shaping

customizing

installing

optimizing

stripping

supporting	MAC	(Mandatory	Access
Control)

keys,	GPG,	generating

kldload	command

kldunload	command

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

Langille,	Dan

laptops

backing	up

configuring	wireless	interfaces
for

encrypting	hard	disks

power	management	support	for

last	command

last	modification	dates	of	files,
finding

lastcomm	command

lastlogin	command

leave	command

Lents,	David	2nd

less	pager

customizing

vs.	more	pager

Libes,	Don

limiting	files

line	feeds	(duplicate),	removing

live	filesystems,	using

live	log	data,	viewing

livelock	and	kernel	optimizations

loader.conf	file	2nd

password	protection

loader.rc	file

locate	command

lock	command

log	files	for	sudoscript

log	hosts

configuring	scripts	on

consolidating	web	server	logs

logproc	and

preparing

variables/values	for

log	host	scripts

web	server	scripts

logging	out	of	login	shell

logging	servers,	setting	up

login	banner,	removing

.login	file

login	prompt,	changing

.login.conf	file

logins

automating,	using	ftp

lastlogin	command

remote

connecting	to	headless	servers

restricting

logout	policy,	enforcing

logproc	scripts

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

MAC	(Mandatory	Access	Control)	framework

Mac	OS	X

		installing	Unix	applications	using	DarwinPorts

MAC_IFOFF	module

MAC_SEEOTHERUIDS	module

macdef	command

macros,	FTP

magic	cookies	and	X	authorization

mail	[See	email]

mail	exchange	(MX)	records	2nd

mail	servers

		checking	connectivity	of

		optimizing

Mail	Submission	Process	(MSP)

Mail	Transport	Agents	(MTAs)

mail	user	agents	(MUAs)	and	pipes

mailing	lists	for	receiving	CTM	updates

make.conf	file

Makefile,	editing

makewhatis	command

Mandatory	Access	Control	(MAC)	framework

manpages

		adding	fancy	formatting	to

		creating	your	own

		finding

		finding	all

		navigational	tricks	for	reading

		printing

		searching	for	text	in	2nd

manpath.config	file

masks	and	pipes/queues

Maxwell,	David

Mayo,	Adrian

mdconfig	command

Media	Access	Control	(MAC)	layer,	spoofing
addresses

media	devices	in	kernel	configuration	files

mergemaster	utility	2nd

merging	changes	to	configuration	files

Merino	Vidal,	Julio

message	of	the	day	(motd),	changing

messages,	console	[See	console	messages]

MIBs,	changing	from	the	command	line

miibus	entry	in	kernel	configuration	files

minicom	utility

MIT	magic	cookie

mktemp	command

Mock,	Jim

modification	dates	of	files,	finding

modules,	Mandatory	Access	Control	(MAC)

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

nameservers

finding	DNS	server	addresses

locating	primary	nameservers

securing

NAT

automatically	generated	firewall	rules

reconfiguring	dynamically

wireless	networks	and

native	Java	applications,	running	on
FreeBSD

navigating

command	line

manpages

nbtstat	command

ncftp	tool

NetBIOS	names	of	computers	2nd

NetBSD

automating	package	builds

cgd(4)	devices

dealing	with	disk	hogs

default	shell	for

logging	headless	servers	remotely

skeleton	home	directory	location

spoofing	with

NETBSD_RELEASE	variable
(pkg_comp)

netstart	command

netstat	command	2nd

network	interface	information,

gathering

network	terminals,	logging	into

networking

allocating	bandwidth

catastrophic	Internet	loss,	surviving

holding	email	for	later	delivery

interacting	with	remote	administration
tasks

optimizing	performance

secure	backups	over	networks

securing	wireless	networks	with	PF

tcpdump	utility

traffic	shaping

newfs	command

newfs_msdos	command

newsyslog,	disabling

NFS	share,	creating

NFS_NOSERVER	option

NIC	configurations,	wireless

NoCatAuth	authentication	software

nodump	flag	2nd

nonlogin	shells

nouchg	flag

NSWAPDEV	option

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

od	command

one-liner	commands,	Unix

one-time	passwords

OpenBSD

dealing	with	disk	hogs

default	shell	for

skeleton	home	directory	location

spoofing	with

swap	files,	adding

openssl	command

OPIE	(One-time	Passwords	In
Everything)

opieinfo	command

opiekey	command

opiepasswd	command	2nd

optimizing

file	servers

kernels

mail	servers

network	performance

software	compiling

web	servers

OTP	(One	Time	Password)	system

choosing	when	to	use

generating	responses

Owen,	Howard

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

Package	Compiler	(pkg_comp)	command

package	repositories,	creating

packageAdd	command

packages

automating	NetBSD	builds

checking	dependencies

Packet	Filter	(PF)

configuring

securing	wireless	networks	with

packet	sniffers,	protecting	from

packets

capturing

deciphering	tcpdump	output

PAM	(Pluggable	Authentication	Modules)

pam_passwdqc	module

changing	default	settings

enabling

overview	of

parallel	command	execution	using	tentakel

partition	full	detection	script

partitioning	scheme	for	automated	installs

passphrases

for	cgd	devices

changing	periodically

one-time	passwords	and

passwd	command	2nd

changing	default	options	using	pam_passwdqc
module

password	protecting

loaders

single-user	mode

passwords

converting	existing	passwords	to	Blowfish

crack	(dictionary	password	cracker)

customizing	dictionaries

forcing	new	passwords	to	use	Blowfish

helping	users	choose	memorable	passwords

one-time	passwords

protecting	email

protecting	system	passwords	with	Blowfish

reusable,	creating	policy	for

setting	expiration	dates	for

patches

applying	to	files

creating

diff	command	and

revision	control	and

security,	automating

pathnames,	finding

pattern	space	vs.	holding	space	(sed	utility)

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

queue	runners,	MSP

queueing	sent	messages	for	later
delivery

queues,	creating

quickpatch	utility

quotation	marks	(double)	and
delimited	files

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

RAID	controller	information	in	kernel
configuration	files

RAM,	showing	amount	of

randomizing	signatures

randomly	generated	passwords

re_format	command

read/write	access	for	mounting	floppies

REAL_DISTFILES	variable	(pkg_comp)

REAL_PACKAGES	variable	(pkg_comp)

REAL_PKGSRC	variable	(pkg_comp)

REAL_PKGVULNDIR	variable	(pkg_comp)

REAL_SRC	variable	(pkg_comp)

reboot	command

reboots

limiting	unauthorized

viewing	records	of

recording

interactive	shell	sessions

shell	input/output

recovery	media,	testing

recovery	process	and	emergency	repair	kit

Reddy,	Dheeraj

reformatting	disks	before	upgrading

regular	expressions

debugging

using	grep	with

rehash	command

relaying	mail	considered	harmful

relevance	searches	using	grep

remote	administration	tasks,	interacting	with

remote	backups,	automating

remote	logins

headless	servers,	connecting	to

preventing

seeing	console	messages	over

remote	shares,	mounting

renaming

files	interactively

source	files

repair	kit,	emergency

creating

customizing	boot	process	and

testing

Reporter	script	and	crack	utility

resources,	FreeBSD

comments	in	source	code

manpages

creating	your	own

getting	the	most	out	of

offline	resources,	keeping	up-to-date

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

Samba

using	Access	Control	Lists	with

sandboxes,	automating	NetBSD	package
builds	with

sappnd	flag	2nd

scanning	Windows	computers	for	viruses

Schaefer,	Marc

sched	command

schedules

creating	for	backups

rsnapshot	utility

switching	access	rules	on

schg	flag	2nd	3rd

Schneier,	Bruce

Schweikhardt,	Jens

scponly	(SSH	shell)

installing

testing	the	chroot

scponlyc	shell

screen	window	manager

multitasking	with

.screenrc	resource	file

screens

attaching/detaching	sessions

locking/unlocking

screensavers	for	terminals

screenshots,	taking

script	command

script	files,	cleaning	up

scripts,	interactive,	creating	with	Expect

scrubbing	hard	disks

SCSI	devices	in	kernel	configuration	files
2nd

Seaman,	Matthew

search	and	replace	using	sed

searching

manpage	text	2nd

by	relevance	using	grep

with	sed	utility

securelevels,	settings	of

security

analyzing	buffer	overflows	with	GNU
debugger

for	DNS	servers

wireless	network	issues

security	patches,	automating

sed	utility

adding	comments	to	source	code

using	holding	space	to	mark	text

removing	blank	lines

removing	comments	from	source	code

scripts	with	multiple	commands

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

tabs,	translating	to	spaces

tail	command

tape	drives,	testing	with	Bacula

tar	utility	2nd

GNU	tar	vs.	POSIX	tar

replacing,	with	pax	utility

secure	backups	over	networks

TCP	flags	field

tcpdump	utility

capturing	packets

deciphering	output

display	filters

specific	filters,	creating

tcsh	shell

auto	completion

working	around

autologout

command	history

.cshrc	file	vs.	.login	file

limiting	files

making	prompt	more	useful

rmstar	shell	variable

setting	shell	variables

telnet

checking	connectivity	of	mail
servers

reading	email

sending	email

telnetd	daemon

temporary	directories,	cleaning	out
quickly

temporary	files,	managing

tentakel	utility

configuring

installing

interactive	mode

terminals

adding	color	to	video

configuration	file,	securing

locking/unlocking

login	banner,	removing

screensavers	for

using	multiple	screens

virtual

dvt	command	(ClusterIt	tool)

logging	into

testing

automated	software	installations

DNS	servers

recovery	media

text

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

uappnd	flag	2nd

uchg	flag

UFS	(Unix	File	System)

UFS1	filesystem	and	ACLs

umount	command	2nd

unauthorized	reboots,	limiting

unauthorized/authorized	hosts

UNC	(Universal	Naming	Convention)

uncompress	command

uninstalling	applications,	checking
dependencies	first

unison	utility

Unix	File	System	(UFS)

Unix	one-liner	commands

<Emphasis>Unix	Power	Tools<Default	Para
Font>

unlimit	command

unlocking	and	locking	screens

unmounting

floppies

remote	shares

/tmp	filesystem

untarring	archives

updating	systems

automatically

uploaddisk	command

uppercasing	characters

USB	support	in	kernel	configuration	files

user	interaction

adding	to	scripts

handling	incorrect	input

users

choosing	memorable	passwords

expiration	dates	for	passwords

users	command

/usr/local/etc/sudoers	file

/usr/src/share/skel/Makefile	file,	editing

uunlnk	flag	2nd

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

/var/log	file

/var/log/console.log	file

variables

for	login	prompt

shell

vidcontrol	command	2nd

Vig,	Avleen

Vince,	Michael	2nd

virtual	terminals

dvt	command	(ClusterIt	tool)

logging	into

viruses

Intrusion	Detection	Systems
and

scanning	Windows	computers
for

Vogel,	Karl

vol	utility	(Minix/QNX4)

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

w	command	2nd

w3m	command-line	browser

Warden,	Brett

Warner,	Joe

web	browsers	and	Java	applets

web	information,	fetching

web	servers

		allowing	unauthorized	hosts	to	access

		consolidating	logs	for

		optimizing

WebStart	mechanism

WEP	(Wireless	Encryption	Protocol)

		multiple	NIC	configurations	2nd

whatis	command	2nd

whatis	database,	creating

whereis	command

which	command

who	command

window	managers

		screen

multitasking	with

		showcasing,	using	eesh	utility

Windows

		using	Access	Control	Lists	with

		scanning	computers	for	viruses

wiping	disks	clean	before	upgrading

Wireless	Encryption	Protocol	(WEP)

		multiple	NIC	configurations	2nd

wireless	networks

		securing	with	PF

		using	multiple	NIC	configurations

words,	finding

worms,	fighting	with	Intrusion	Detection
Systems

wsmoused,	shutting	down	servers	using

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

X	authorization

X	server	utilities

xauth	command

xclipboard	utility

xconsole	utility

.xinitrc	file

xwd	command

xwud	command

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

Yost,	Brian

<	Day	Day	Up	>

<	Day	Day	Up	>

[SYMBOL]	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]
[M]	[N]	[O

]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]

zone	transfers	in	DNS,	controlling
tightly

<	Day	Day	Up	>

	

