
Covers

SQL Server 2016

Securing
SQL Server

DBAs Defending the Database
—
Peter A. Carter

T H E E X P E R T ’S V O I C E ® I N S Q L

 Securing SQL Server

 DBAs Defending the Database

Peter A. Carter

Securing SQL Server: DBAs Defending the Database

Peter A. Carter
Botley, United Kingdom

ISBN-13 (pbk): 978-1-4842-2264-5 ISBN-13 (electronic): 978-1-4842-2265-2
DOI 10.1007/978-1-4842-2265-2

Library of Congress Control Number: 2016956880

Copyright © 2016 by Peter A. Carter

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Bradley Beard
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com . For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

 Th is book is dedicated to my loving wife, Danielle.

v

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgements ... xvii

Introduction .. xix

 ■Chapter 1: Threat Analysis ... 1

 ■Chapter 2: SQL Server Security Model ... 15

 ■Chapter 3: SQL Server Audit ... 35

 ■Chapter 4: Data-Level Security ... 55

 ■Chapter 5: Encryption in SQL Server .. 69

 ■Chapter 6: Security Metadata ... 97

 ■Chapter 7: Implementing Service Accounts for Security 117

 ■Chapter 8: Protecting Credentials .. 129

 ■Chapter 9: Reducing the Attack Surface 143

Index .. 161

vii

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgements ... xvii

Introduction .. xix

 ■Chapter 1: Threat Analysis ... 1

Understanding Threat Modelling ... 1

Identifying Assets .. 2

Creating an Architecture Overview .. 2

Creating the Infrastructure Components .. 3

Identifying the Technology Stack .. 4

Creating a Security Profi le... 4

Identifying Threats ... 6

Understanding STRIDE .. 6

Using STRIDE .. 7

Rating Threats ... 8

Understanding Threat Rating Methodologies ... 8

Understanding DREAD Methodology ... 9

Using DREAD Methodology ... 10

Creating Countermeasures .. 11

Summary ... 12

■ CONTENTS

viii

 ■Chapter 2: SQL Server Security Model ... 15

Security Principal Hierarchy .. 15

Instance Level Security ... 17

Logins ... 17

Server Roles ... 23

Credentials.. 25

Database-Level Security ... 26

Users... 26

Database Roles ... 31

Summary ... 33

 ■Chapter 3: SQL Server Audit ... 35

Understanding SQL Server Audit ... 35

SQL Server Audit Actions and Action Groups .. 36

Implementing SQL Server Audit .. 46

Creating a Server Audit ... 46

Create a Server Audit Specifi cation .. 49

Create a Database Audit Specifi cation ... 49

Creating Custom Audit Events ... 50

Creating the Server Audit and Database Audit Specifi cation 51

Raising the Event .. 52

Summary ... 53

 ■Chapter 4: Data-Level Security ... 55

Schemas.. 55

Ownership Chaining .. 57

Impersonation ... 59

■ CONTENTS

ix

Row-Level Security ... 61

Security Predicates ... 62

Security Policies ... 62

Implementing RLS .. 63

Dynamic Data Masking ... 65

Summary ... 67

 ■Chapter 5: Encryption in SQL Server .. 69

Generic Encryption Concepts .. 69

Defense-in-Depth ... 69

Symmetric Keys .. 69

Asymmetric Keys .. 70

Certifi cates ... 70

Self-Signed Certifi cates .. 70

Windows Data Protection API ... 70

SQL Server Encryption Concepts ... 70

Master Keys .. 70

EKM and Key Stores ... 73

SQL Server Encryption Hierarchy ... 73

Encrypting Data ... 74

Encrypting Data with a Password or a Passphrase .. 74

Encrypting Data with Keys and Certifi cates ... 79

Transparent Data Encryption ... 83

Considerations for TDE with Other Technologies .. 84

Implementing TDE .. 85

Administering TDE .. 87

Always Encrypted .. 88

Implementing Always Encrypted .. 89

Summary ... 95

■ CONTENTS

x

 ■Chapter 6: Security Metadata ... 97

Security Principal Metadata .. 97

Finding a User’s Effective Permissions .. 98

Securable Metadata .. 101

Code Signing .. 101

Permissions Against a Specifi c Table ... 104

Audit Metadata .. 105

Encryption Metadata ... 107

Always Encrypted Metadata ... 108

TDE Metadata ... 109

Securing Metadata .. 112

Risks of Metadata Visibility ... 113

Summary ... 115

 ■Chapter 7: Implementing Service Accounts for Security 117

Service Account Types... 117

Virtual Accounts .. 117

Managed Service Accounts .. 118

SQL Server Services .. 119

How Service Accounts Can Become Compromised 126

Designing a Pragmatic Service Account Strategy 126

Summary ... 128

 ■Chapter 8: Protecting Credentials .. 129

Protecting the sa Account ... 129

DBA Steps to Mitigate the Risks ... 130

Protecting User Accounts .. 140

Auditing Passwords Susceptible to Word List Attacks .. 140

Summary ... 142

■ CONTENTS

xi

 ■Chapter 9: Reducing the Attack Surface 143

Network Confi guration .. 143

Understanding Ports and Protocols .. 143

Firewall Requirements for SQL Server ... 148

Ensuring that Unsafe Features Remain Disabled 152

Manually Confi guring the Surface Area .. 152

Managing Features with Policy-Based Management ... 153

Summary ... 160

Index .. 161

xiii

 About the Author

 Peter Carter is a SQL Server expert with over a
decade of experience in developing, administering,
and architecting SQL Server platforms, data-tier
applications, and ETL solutions. Peter has a passion
for SQL Server and hopes that his enthusiasm for this
technology helps or inspires others.

xv

 About the Technical
Reviewer

 Bradley Beard is a software engineer with more than 15
years’ experience writing dynamic, interactive websites
using ColdFusion and SQL Server. He graduated
from Florida Institute of Technology in 2007 with a
Master of Science in Computer Information Systems,
and studied for his undergraduate degrees in CIS
and Technology Management at Herzing University.
In 2013, he earned the MCSA: SQL Server 2012
certification from Microsoft, and in 2016, he earned the
MCSE: Business Intelligence certification. His continual
quest for learning has earned him shelves full of books
at home and at work, most of which are about SQL
Server, ColdFusion, or general web architectures or
frameworks.

 He lives in Palm Bay, Florida, with his wife, Jessica,
and children, Josh, Kaylee, Matthew, and Emma. He
also apparently runs an animal shelter made up of
his dogs—Lady and Bella, and his cats—Spice, Simba,

Mercury, and Dobby. In his free time, he enjoys fishing and spending time with his wife
and kids.

 Bradley is available for consultation and third-shift remote employment on
ColdFusion and SQL Server by contacting bradley.beard@gmail.com .

xvii

 Acknowledgments

 I would like to thank SplashData (www.splashdata.com) for kindly allowing me to use
their “Worst password list of 2015” within this book.

http://www.splashdata.com/

xix

 Introduction

 With repeated, high-profile, data security breaches hitting the headlines, security is
moving increasingly to the forefront of the minds of data professionals.

 SQL Server provides a broad and deep set of security features that allow you to
reduce the attack surface of your SQL Server instance with defense-in-depth and
principle of least privilege strategies.

 The attack surface of SQL Server refers to the set of features and windows services
that attackers can (and will) attempt to exploit to either steal data or reduce the
availability of the data.

 Defense-in-depth is a strategy used across the IT industry in which multiple layers of
security are put in place. The idea is that if one layer of security is breached, then another
layer will stop the attacker in their tracks.

 In order to fully protect data against attack, SQL Server DBAs, developers, and
architects alike must all understand how and when to implement each of the security
features that SQL Server offers. This book attempts to address these topics.

 Some of the examples in this book use the AdventureWorks2016 database. This
database can be downloaded from www.microsoft.com/en-us/download/details.
aspx?id=49502 .

 Some chapters also refer to CarterSecureSafe. This is a fictional company and
product, which are purely designed to illustrate points made within this book.

http://www.microsoft.com/en-us/download/details.aspx?id=49502
http://www.microsoft.com/en-us/download/details.aspx?id=49502

1© Peter A. Carter 2016
P. A. Carter, Securing SQL Server, DOI 10.1007/978-1-4842-2265-2_1

 CHAPTER 1

 Threat Analysis

 We live in an age where high-profile attacks on data are almost commonplace. Attacks
can come from a variety of sources, ranging from cyberterrorism and modern warfare to
industrial espionage, the “geek” factor, organized crime, and even disgruntled employees or
former employees. Because of this, security is at the forefront of every good DBA’s minds.

 All RDBMS have the potential to be exploited with SQL injection attacks, as well as
vulnerabilities that are unique to each product. For example, attackers often attempt to
gain elevated access to Oracle by attempting to use default user passwords. While this risk
can be mitigated with due diligence, with around 600 default user/passwords, it can be
hard for Oracle DBAs to ensure that no stone is left unturned.

 In SQL Server, a common attack is to attempt to brute-force attack the sa account, on
port 1433. While the sa account can be disabled or have its name changed, the majority
of SQL Server DBAs do not do this, and in many cases, there are poorly written client
applications that require an sa account to be present.

 Understanding Threat Modelling
 Because every database management platform is vulnerable to many potential threats,
it is important to undergo a process of threat modelling in order to mitigate the risks.
Threat modelling is the process of identifying threats to a data-tier application (or in some
instances, the entire enterprise) and then classify and rate the threats that have been
discovered in order to determine the most critical to address. You are then in a position to
determine the correct countermeasures in order to mitigate the risks.

 In an ideal world, threat modelling should be carried out during the design phase of
a project, and at the very least, at the testing stage. There will already be standards and
policies in place for the enterprise as a whole, and you can ensure that the platform you
are constructing meets these standards.

 In the real world, however, this often does not happen due to time or budgetary
constraints. Often, there are also no enterprise standards, specifically for database
platforms, against which you can baseline your data tier. Unfortunately, just like
comprehensive backup strategies, many companies and individuals do not put an
emphasis on security until it is too late.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-
2265-2_1) contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2265-2_1
http://dx.doi.org/10.1007/978-1-4842-2265-2_1

CHAPTER 1 ■ THREAT ANALYSIS

2

 Even in companies that have rigorous security management policies, the focus tends
to be avoiding external attacks (attacks from sources external to the company); whereas
it is estimated that 70 percent of security breaches are internal (attacks originating from
sources within the company network). This is due to employees with malicious intent,
employees who unintentionally misuse systems, and also from the theft of employees’
laptops or other devices. Therefore, it is important that companies focus on identifying
the risks of attacks from inside their network, as well as outside.

 Threat modelling consists of six sequential steps: identifying assets, creating an
architecture overview, building a security profile, identifying the threats, documenting
the threats, and finally, rating and prioritizing the threats.

 ■ Tip Threat modelling allows you to design and build countermeasures. Building
the countermeasures is not part of the threat modelling process, however. Instead, the
countermeasures are implemented as a separate process.

 The following sections discuss how to perform threat analysis by using a fictional
application called CarterSecureSafe , which belongs to the fictional company,
CarterSecurityTools.com. The simple web application allows customers to shop for
security software. The back end of the web application is a database hosted in a SQL
Server instance.

 Identifying Assets
 The first step in the threat modelling process is to identify valuable assets. From the
perspective of the DBA, identifying the valuable assets that must be protected consists
of identifying the company’s confidential information, which would have a commercial
impact if it were lost (unavailable) or stolen. For example, a high-profile attack against
an entertainment company reportedly saw the theft of roughly 76 million user accounts,
leading to a cost of around $176 million.

 DBAs should look to ensure that customer data, financial data, and sales data are
especially secure. Remember that financial repercussions could occur, not just in tangible
ways, such as through fines from regulators or in compensation to customers, but also
in intangible ways, such as the loss of business reputation, reduced staff morale, or
customers moving their business to a rival.

 Creating an Architecture Overview
 Creating an architecture overview consists of defining the logical architecture of the
application and expressing it in diagrammatic form, along with the technology stack that
will be (or has already been) used, to implement the application. This helps you identify
areas of the end-to-end application that are potentially vulnerable, as well as identify any
technology-specific vulnerabilities.

CHAPTER 1 ■ THREAT ANALYSIS

3

 Creating the Infrastructure Components
 In the case of CarterSecureSafe, the application consists of a web server, an application
server, and a database server. You should also note how this architecture interacts with
the underlying infrastructure. The diagram in Figure 1-1 shows how an architecture
diagram for the CarterSecureSafe application might look.

 Figure 1-1. Architecture diagram

 ■ Tip In a real architecture diagram, you label servers with their name and IP address,
rather than with a description of their usage.

 The diagram shows that the application is accessed by both internal and external
users. Internal users authenticate to the application server through Active Directory,
while external users authenticate through a web server located in the company’s DMZ
(demilitarized zone).

 ■ Note As well as indicating the servers that are directly used by the application
(web server, application server, and database server), infrastructure touch points are
also included; namely, the corporate firewalls that traffic passes through, the DC (domain
controller) used to authenticate internal users, and the isolated DMZ within the domain.

CHAPTER 1 ■ THREAT ANALYSIS

4

 Identifying the Technology Stack
 Let’s now list out the technology used for each area of the topology. Table 1-1
demonstrates how this should look for the CarterSecureSafe application.

 Table 1-1. Technology Implementations

 Technology Topology Component Details

 Active Directory Authentication Authenticates internal users and
administrative teams.

 IIS Web Server Authenticates external users and pass
traffic to the application server.

 .NET Core Application &
Authentication

 The core web application built using the
.NET framework.
 It also provides Forms authentication for
internal users.

 SQL Server 2016 Database Tier The databases that drive the application
are stored and managed on a SQL Server
2016 instance.

 IPsec Cryptography Data is encrypted in transit, between the
application and database server, using
IPsec.

 HTTPS Protocol External users access the web application
via HTTPS.

 For a DBA, it is very easy and natural to focus entirely on the SQL Server instance
and its direct connections; but it is also important to understand the holistic application
and platform in order to secure and test the data-tier application appropriately .

 Creating a Security Profile
 When creating a security profile, you begin to identify data flows, which, in turn, allow
you to define trust boundaries and entry points. The CarterSecureSafe application is a
simple solution that has two distinct flows of data.

 The first of these flows happens when an Internet user orders an item from the store.
The second flow of data comes from internal users, who need to update the status of
customer’s orders and perform other administrative sales and management tasks, such as
reporting on sales trends.

 Therefore, there are two clear data paths. The first is from the Internet via the web
server and then through the application server to the SQL Server instance. The second is
via the application server into the SQL Server instance, but originating from within the
internal network.

CHAPTER 1 ■ THREAT ANALYSIS

5

 ■ Tip The CarterSecureSafe application is very simple, but for more complex data paths,
you probably want to create data path diagrams to simplify the process and ensure that
there are no gaps. The data path diagram also serves as documentation that is useful on
an ongoing basis, such as when new team members are getting up to speed, or when the
application is due to be upgraded or migrated.

 The entry points that align to data paths can be identified as the web server (for
Internet users) and the application server (for internal users). It is important to remember
that there is a third entry point that is easy to overlook: internal users authenticating
directly to the SQL Server instance.

 Of course, this final entry point is intended for the use of DBAs to manage the
instance and its databases, but it is important to remember that around 70 percent of
security breaches are from internal sources.

 The trust boundaries for the CarterSecureSafe application map to the firewalls. The
data path from Internet users crosses both the perimeter and internal firewalls; whereas
the internal data path remains within the internal trust boundary.

 Now that the application has been decomposed, you can begin to build a security
profile. From the DBA perspective, this will involve focusing on the elements that directly
interface with the database. This profile can then be fed into the overall security profile of
the application. Table 1-2 provides an example of how a security profile may look for the
CarterSecureSafe application .

 Table 1-2. Security Profile

 Profile Element Considerations

 Input Validation The application runs ad hoc T-SQL, as opposed to calling
stored procedures. Therefore, the input cannot easily be
validated at the SQL Server level. *

 As the main entry point is the web server, trust boundaries are
crossed and the input cannot be trusted.

 Authentication Users authenticate to the database engine via second tier
authentication. No domain authentication is required to access
the databases.

 Penetration testing to ensure that the sa account has been
either disabled or renamed, has not been carried out on the
instance.

 The application server resolves user credentials. The
application server uses a single user to authenticate to the
database engine.

(continued)

CHAPTER 1 ■ THREAT ANALYSIS

6

 Identifying Threats
 Now that a security profile is in place, you can work to identify potential threats in the
application. This usually involves performing a penetration test .

 ■ Tip A penetration test, also known as a pen test , involves scanning a solution (or in
some cases, an enterprise) in an attempt to find vulnerabilities that could be exploited by
attackers.

 Understanding STRIDE
 There are many penetration testing tools available, including Qualys, which can
be obtained from www.qualys.com and Metasploit, which can be obtained from
 www.metasploit.com . This book uses Kali Linux, which can be downloaded from
 https://www.kali.org/downloads/ .

 The threats that are revealed by the penetration test can then be categorized using
 STRIDE methodology . STRIDE stands for

• S poofing identity

• T ampering with data

• R epudiation

• I nformation disclosure

• D enial of service (DoS)

• E levation of privileges

 Profile Element Considerations

 Cryptography Data is encrypted in transit using IPsec.

 Databases are not encrypted using TDE (Transparent Data
Encryption)

 No column level encryption is used.

 Auditing SQL Audit has not been configured, however, the default trace
is running, which will capture a limited subset of activity, such
as creating new objects.

 *There may be (and should be) input validation on the application side, but the DBA is
unlikely to have visibility of this

Table 1-2. (continued)

http://www.qualys.com/
http://www.metasploit.com/
https://www.kali.org/downloads/

CHAPTER 1 ■ THREAT ANALYSIS

7

 Spoofing identity refers to stealing another user’s identity and using this identity
to authenticate rather than using your own identity. The CarterSecureSafe application
is particularly susceptible to this because the application server uses a single user to
authenticate to the instance and because inputs cannot feasibly be validated at the
database tier.

 Tampering with data refers to the practice of maliciously modifying data. In the
context of the overall application, this could refer to attacks such as cross-site scripting
and manipulating HTTP headers. From the DBA perspective, however, it refers to
maliciously modifying data stored within the database. For example, in the case of the
CarterSecureSafe application, a malicious user may attempt to amend their account
balance to zero.

 Repudiation describes a malicious user’s ability to hide or deny their activity. This is
critical, because if repudiation is possible, you may not be aware that an attack has even
taken place. If you are aware that security has been breached, it may be impossible to
prove. Repudiation is an issue for the CarterSecureSafe application, because SQL Audit
has not been implemented. This means that the only actions that are captured are those
by the default trace, such as new object creation.

 Information disclosure is the classification of threat that springs to most people’s
minds when they think of hacking. It refers to data being “stolen.” Data theft occurs when
an attacker forces a system to reveal more data than they have the permissions to see.
As with spoofing identities and tampering with data, the CarterSecureSafe application is
susceptible to this form of attack because the database layer does not validate inputs.

 Denial-of-service (DoS) attacks occur when an attacker attempts to flood a system
with so many requests that they either take down the system or make the system appear
to be down due to its inability to deal with the volume of requests being received. DoS
are among the most common forms of attacks and they are becoming increasingly
sophisticated. This means that you should always take them into account during every
threat modelling exercise.

 Elevation of privileges refers to the act of exploiting a system to gain more
permissions than you were intended to have. The fact that the security profile has
revealed that penetration testing has not taken place around the sa account means that
the CarterSecureSafe application is susceptible to this kind of attack.

 As with all relational database management systems, SQL Server has known
vulnerabilities, which can be exploited. These should be addressed wherever possible,
usually through patching the system. If no patching is currently available, then at a
minimum, you should consider implementing auditing and alerting, specifically tailored
to the vulnerability.

 Using STRIDE
 You should document the potential threats against the application. I recommend using
a table similar to Table 1-3 .

CHAPTER 1 ■ THREAT ANALYSIS

8

 ■ Note While this type of attack sounds a little farfetched, it is more common than you
may think. I am aware of two separate companies that have fallen foul of this in recent
times. In one instance, on a DBA’s last day, he dropped a key database. In the other instance,
a SQL Server DBA obfuscated all stored procedures before leaving the company.

 Rating Threats
 Once threats have been identified and classified, you should begin the process of rating
these threats based upon the probability of the attack occurring and compared to the
damage that could be inflicted if the threat was realized. There are various methodologies
used for rating threats.

 Understanding Threat Rating Methodolog ies
 The simplest method for rating threats is a straight High/Medium/Low system. With this
system, each threat is given a rating based on your opinion. There are two issues with this
approach, however. First, it makes the rating system subjective, as opinions are opinions
only and are not necessarily correct. Second, opinions often differ, therefore it can be
hard to gain a consensus on the priority in which the threats should be addressed.

 Table 1-3. STRIDE Classification

 Risk Category Example

 SQL injection S, T, I Attacker types ' OR 1=1-- in password field of the
web site to spoof the first user identity stored in the
users table.

 DoS D Attacker uses robots to simultaneously flood the
database with resource intensive requests.

 Stealing sa account
credentials

 E An attacker suspects that the sa account has not
been disabled or renamed. Therefore, an attack is
launched against the password of the sa account.

 DBA performs
malicious action

 R A privileged user performs a malicious action and
the attack cannot be proven due to lack of auditing.

 SQL Server Remote
Code Execution
Vulnerability*

 S, T An attacker runs a malicious query to exploit
a vulnerability in SQL Server, where the use of
uninitialized memory in some virtual functions is
permitted.

 *At the time of writing, Microsoft has not released any security bulletins relating to
SQL Server 2016. The vulnerability used as an example applies to SQL Server versions
2008–2014.

CHAPTER 1 ■ THREAT ANALYSIS

9

 A slightly more scientific approach is to use a Critical/Important/Moderate/Low
system. This system offers more categories, which can aid prioritization where there are
a large number of threats. A critical threat is usually defined as a threat that allows an
attacker to penetrate a system without any alerts or warnings being fired and where there
is precedence of this attack being performed.

 An important threat is usually regarded as a threat where data could be
compromised by an attacker and it would be easy for an attacker to exploit the
vulnerability if it was discovered. With threats in this category, there is often precedence
for similar vulnerabilities being exploited.

 A moderate threat is categorized as a threat where it is possible for an attacker to
exploit the vulnerability; however, the risk is mitigated by factors such as integrated
authentication, which would be difficult for an attacker to exploit the weakness .

 A low threat is normally regarded as one where the likelihood of the vulnerability
being exploited is very low due to existing infrastructure or countermeasures that are
in place. Often, threats that are categorized as low are not addressed, as it has been
decided that the cost of addressing them outweighs the potential costs of the attack being
exploited.

 ■ Caution While pragmatically ignoring a threat with a low rating is sensible, because we
all understand that budgets and timescales are always important factors, I do like to remind
management and budget holders of the analogy involving the Fukushima nuclear disaster
in 2011. The risk analysis when building this plant reportedly factored in protection against
an earthquake and protection against a tsunami. The risk of two earthquakes and a tsunami
occurring at the same time, however, was regarded unlikely to require consideration. The
first earthquake was within the designed tolerance of the reactors, but following the second
earthquake and tsunami, the Fukushima plant largely melted within three days.

 A damage potential × probability formula is another common system for
determining threat ratings. Using this technique, you rate the damage potential of each
threat using a scale of 1 to 10, where 1 means that an attack exploiting this particular
vulnerability would cause only minimal damage and 10 indicates that an attack exploiting
the particular vulnerability would be a catastrophe.

 You then rate the likelihood of the threat being realized on a scale of 1 to 10. Here, 1
indicates that there is very little chance of the threat being realized and 10 means that it is
almost certain. Once the two ratings for each threat have been established, you multiply
the damage potential rating by the probability rating for each threat. This gives your
threats a priority score on a scale of 1 to 100 .

 Understanding DREAD Methodology
 My preference for rating threats is to use a methodology known as DREAD. Although it is
not often used in recent times, with many favoring the simpler methodologies, I find it the
best and most comprehensive fit for data-tier applications.

CHAPTER 1 ■ THREAT ANALYSIS

10

 DREAD stands for

• D amage potential

• R eproducibility

• E xploitability

• A ffected users

• D iscoverability

 Damage potential rates the damage potential of each threat using a scale of 1 to 10,
where 1 means that an attack exploiting this particular vulnerability would cause only
minimal damage and 10 indicates that an attack exploiting the particular vulnerability
would be a catastrophe.

 Reproducibility rates how easy it would be for an attacker to repeatedly reproduce
the attack on a scale of 1 to 10. 1 indicates that is would be almost impossible to
reproduce and 10 means that it would be very easy to reproduce the attack. The easier it
is to reproduce an attack, the greater the likelihood there is for automated attacks (using
bots) that systematically exploit the vulnerability.

 Exploitability rates the ease in which an attack could exploit the vulnerability, using
a scale of 1 to 10. 1 indicates that the vulnerability would be extremely difficult to exploit
due to factors such as domain authentication being required. A rating of 10 indicates that
an attacker could exploit the vulnerability with ease .

 Affected users rates the number of users that would be affected by the threat on a
scale of 1 to 10. To calculate the rating, you should take the percentage of users that would
be affected, divide this number by 10, and then round to the nearest whole number. For
example, if 80 percent of users would be affected, then the rating would be 8. If only 25
percent of users would be affected, then the rating would be 3.

 Discoverability rates how easily an attacker to discover the vulnerability on a scale
of 1 to 10. A rating of 1 means that the vulnerability is obscure and an attacker would be
unlikely to stumble across it or realize its potential. A rating of 10 would indicate that the
vulnerability can easily be discovered. For example, it may be a well-known, documented
attack strategy, such as SQL Injection.

 Using DREAD Methodology
 Once each threat has been given a rating in each of the DREAD categories, the ratings
should be summed and then divided by the number of threats before being rounded to
the nearest whole number. This gives you the overall DREAD rating for each threat. Let’s
use the threats identified earlier and rate them using DREAD. The risks in Table 1-4 have
been ordered by their DREAD rating.

CHAPTER 1 ■ THREAT ANALYSIS

11

 You can see that the risk of SQL injection attacks, stealing the sa account password,
and denial-of-service attacks should be addressed immediately. The risk of DBAs
performing malicious actions and the SQL Server Remote Code Execution Vulnerability
being exploited should still be address, but with a lower priority.

 Creating Countermeasures
 The security modelling is now complete and you should start to consider what
countermeasures you can put in place for each of the risks that you have identified,
starting with the threats that have the highest DREAD rating.

 Mitigating the risk of SQL injection involves validating the inputs received. This
should be performed at the application, but it is important to remember that the DBA is
the last line of defense against attacks. Therefore, you should review how the application
is interacting with the database. You identified that the application is running ad hoc
queries and you could reduce the risk of SQL injection attacks by introducing a hosting
standard that requires applications to access data within the database using stored
procedures, as opposed to ad hoc SQL. You can then ensure that the stored procedure is
validating the values passed to its parameters.

 Although this causes rework, both on the application tier and the database tier, the code
that is currently being executed by the application can be reused inside stored procedures.
This approach may also give other advantages, such as increased reuse of execution plans.

 The risk of an attacker gaining elevated privileges by attacking the password of the
 sa account can be mitigated by disabling or renaming the sa account. If the application is
legacy or third-party, however, then it may have a hard requirement to use the sa account.
If this is the case, then you should, at a minimum, introduce SQL Server Audit to increase
reputability, and preferably, a combination of triggers and policy-based management to
protect against some common malicious actions.

 ■ Tip SQL Server Audit is discussed in Chapter 3 . A full discussion around policy-based
management is beyond the scope of this book. Full details of implementing the technology
can be found in my book Pro SQL Server Administration (Apress, 2015).

 Table 1-4. DREAD Ratings

 Risk
 Category
 (STRIDE) D R E A D

 Threat
 Rating

 SQL injection S, T, I 10 10 9 10 10 10

 DoS D 10 10 10 10 10 10

 Stealing sa account credentials E 6 10 8 10 10 9

 DBA performs malicious action R 10 1 1 10 10 6

 SQL Server Remote Code
Execution Vulnerability

 S, T 8 5 5 6 1 5

http://dx.doi.org/10.1007/978-1-4842-2265-2_3

CHAPTER 1 ■ THREAT ANALYSIS

12

 Denial-of- service attacks are one of the most difficult to protect against. This goes
part way in explaining why they are one of the most common forms of attack. One way
to reduce the risk is to ensure that the database server is not placed in the DMZ and is
therefore not directly exposed to the Internet. This security best practice is already in
place for the CarterSecureSafe application.

 You could further reduce the impact of a DoS attack by implementing Resource
Governor. This allows you to limit the resources that were consumed by attacker’s
requests. If the application tier were written using Java EE, then you could also use
WebLogic server to reduce network traffic. As the application layer is .NET, however, this
approach is not feasible in this case.

 ■ Tip A full discussion of Resource Governor is beyond the scope of this book. A full
discussion of the technology and how to implement it can be found in my book Pro SQL
Server Administration (Apress, 2015).

 If a rouge DBA decided to attack the database, then there is very little that you can
do to stop it. What you must do, however, is ensure that you have a reputability strategy
in place. This involves using SQL Server Audit (discussed in Chapter 3) to ensure that
malicious actions are traceable. This serves two purposes. The obvious reason is that
you can prove what happened and take appropriate action. Less obvious is the fact that
you can prove and take action against a malicious DBA will potentially act as a deterrent.
This is known as a soft security measure . Processes should also be reviewed to ensure that
sensible best practices are being followed, such as disabling user accounts when a staff
member leaves. Currently, the CarterSecureSafe application does not have SQL Server
Audit implemented. You should consider implementing fine-grain auditing to ensure
reputability.

 Because the DREAD rating for the SQL Server Remote Code Execution Vulnerability
is low, and specifically due to the obscurity of the vulnerability, you (or management)
will likely decide that you should not take immediate action to mitigate the risk, as
appropriate countermeasures will likely prove to be cost prohibitive compared to the
likelihood of the vulnerability being exploited. You should keep the risk logged in your
project’s risk register and patch the instance as soon as a patch becomes available.

 Summary
 Threat modelling is not a terribly glamourous task, but it is absolutely essential to creating
and maintaining a secure environment. It provides a mechanism for identifying threats
and prioritizing the efforts to create countermeasures.

 Idealistically, you want to tackle all threats as quickly as possible; however, a
pragmatic approach is required. Due to time and/or budgetary constraints, you may need
to record some threats in the project’s risk register, instead of implementing rigorous
countermeasures. In some instances, there may also be other reasons for exceptions,
such as the requirements or a legacy application.

http://dx.doi.org/10.1007/978-1-4842-2265-2_3

CHAPTER 1 ■ THREAT ANALYSIS

13

 STRIDE methodology is an approach for categorizing threats. STRIDE is the
acronym for

• Spoofing identity

• Tampering with data

• Repudiation

• Information disclosure

• Denial of service (DoS)

• Elevation of privileges

 There are many methodologies that can be used to rating threats. I recommend the
use of DREAD methodology. DREAD is an acronym for

• Damage potential

• Reproducibility

• Exploitability

• Affected users

• Discoverability

15© Peter A. Carter 2016
P. A. Carter, Securing SQL Server, DOI 10.1007/978-1-4842-2265-2_2

 CHAPTER 2

 SQL Server Security Model

 An early step in implementing countermeasures to potential threats in SQL Server is
to ensure that you have a full understanding of the security model. SQL Server 2016
provides a rich security framework with overlapping layers of security that help database
administrators (DBAs) counter risks and threats in a manageable way.

 It is important for DBAs to understand the SQL Server security model so that they
can implement the technologies in the way that best fits the needs of their organization
and applications, while minimizing the amount of security administration that is
required. This chapter discusses the implementation of the security hierarchy in SQL
Server 2016.

 Active security refers to the practice of limiting users’ access to data and structures
through the use of permissions. When working with the SQL Server security model, the
three entities to ensure that you understand are principals, securable, and permissions.
The definition of each of these entities is found in Table 2-1 .

 Table 2-1. Security Model Definitions

 Entity Definition

 Principal A security principal is an entity, such as a user.

 Securable A securable is data, an artifact, or metadata.

 Permission Permissions are rights that are granted or denied to a security principal
to define the principal’s permitted access to a securable.

 ■ Tip Passive security refers to auditing activity. SQL Server Audit is discussed in Chapter 3 .

 Security Principal Hierarchy
 Security principals are organized into a hierarchy, which allows administrators to assign
permissions to a group of users. This has obvious benefits, allowing you to implement a
security based on a user’s role within an organization. For example, all salespersons can
easily be assigned the same permissions if a preconfigured sales role that already has
all required permissions assigned to it exists. Figure 2-1 defines the complete hierarchy

http://dx.doi.org/10.1007/978-1-4842-2265-2_3

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

16

of security principals that can access data or data structures within SQL Server. The
hierarchy begins at the domain level and passes through to the local server layer, the SQL
Server instance layer, and finally, the database layer.

 Figure 2-1. Security hierarchy

 The diagram in Figure 2-1 shows that a login, created within the SQL Server instance,
can be mapped to a local Windows user or group or to a domain user or group. Usually,
in an enterprise environment, this is a domain user or group. (A group is a collection of
users that are granted permissions as a unit.) This eases the administration of security.
Imagine (as described earlier), that a new starter joins the sales team. When he is added

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

17

to the domain group called SalesTeam — which already has all of the required permissions
to file system locations, SQL Server databases, and so on—he immediately inherits all
required permissions to perform his role.

 The diagram also illustrates how local server accounts or domain accounts and
groups can be mapped to a user at the database level (a database user without login). This
is part of the functionality of contained databases. This technology was introduced in SQL
Server 2012 to support high availability with AlwaysOn Availability Groups. Contained
database authentication is discussed later in this chapter.

 SQL Server logins, which are mapped to local server or domain-level users or groups,
are created at the SQL Server instance level. At the instance level, it is also possible to
create SQL Server logins, which use second-tier authentication (if you are using mixed-
mode authentication).

 Both of these login types can be added to fixed server roles and user-defined server roles
at the instance level. Doing this allows you to grant the principal a common set of permissions
to instance-level objects, such as linked servers and endpoints. You can also map logins to
database users, which in turn can be granted permissions to database level objects.

 Database users reside at the database level of the hierarchy. You can grant them
permissions directly to schemas and objects within the database, or you can add them to
database roles. Database roles are similar to server roles, except they are used to grant a
common set of permissions at the database layer instead of the instance layer. Database
layer securables include schemas, tables, views, and stored procedures, and so forth.

 Instance Level Security
 Implementing instance level security involves creating and managing logins, credentials,
and server roles. Securables at the instance level include databases, endpoints, and
AlwaysOn Availability Groups. The following sections discuss logins, server roles, and
credentials.

 ■ Tip Cryptographic Providers and SQL Server Audits are also administered at the
instance level. SQL Server Audit is discussed in Chapter 3 and Cryptographic Providers are
discussed in Chapter 5 .

 Logins
 Since SQL Server 2012, it has been possible for users to authenticate directly to a database
as part of contained database functionality. Generally, however, database engine users
need to authenticate at the instance level. SQL Server supports two authentication modes
at the instance level: Windows authentication and mixed mode authentication.

 When an instance is in Windows authentication mode, users must authenticate to
either the local server or to the domain before they can access the SQL Server instance. A
login is created within the SQL Server instance, which maps to either their Windows user
or a Windows group that contains their Windows user. The SID (security identifier) of the
Windows principal is stored in the Master database of the instance.

http://dx.doi.org/10.1007/978-1-4842-2265-2_3
http://dx.doi.org/10.1007/978-1-4842-2265-2_5

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

18

 ■ Tip In addition to creating a login mapped to a Windows user or group, you can
also map a login to a certificate or an asymmetric key. Doing so does not allow a user to
authenticate to the instance by using a certificate, but it does allow code signing so that
permissions to procedures can be abstracted, rather than granted directly to a login. This
helps when you are using dynamic SQL, which breaks the ownership chain. In this scenario,
when you run the procedure, SQL Server combines the permissions from the user who
called the procedure and the user who maps to the certificate.

 When an instance is configured to use mixed mode authentication , it is still possible
to create a login that maps to a Windows user or Windows group, but it is also possible to
create second-tier logins, known as SQL logins . These logins have their name, password,
and SID stored in the Master database of the instance. These details are verified when
a user connects to the instance. A user can then authenticate to the instance using this
username and password, without the need for prior authentication to the server or
domain.

 Mixed mode authentication is less secure than authentication, because it is
possible to attack the instance without first authenticating to the domain. Therefore, it
is best practice us use Windows authentication. It is often necessary to use mixed mode
authentication, however, for the following reasons:

• Legacy applications that require a second-tier login

• Access from outside of the domain (such as a Linux server)

• Environments where security is implemented in the application
tier and a single SQL login connects to the database engine

 Creating a Login
 A login can be created via T-SQL by using the CREATE LOGIN statement. When creating a
login from a Windows user or group, the syntax is very straightforward, because there is
no password management involved. Table 2-2 describes the WITH options that are valid
when creating a login from a Windows security principal.

 Table 2-2. CREATE LOGIN Options for Windows Security Principal

 Option Description

 DEFAULT_DATABASE Specifies a “landing” database for the login. This is the database to
which their context is scoped when they initially authenticate to the
instance. This scope can be overwritten in the connection string.

 DEFAULT_LANGUAGE Specifies the default language that is assigned to the login. If
omitted, then this is configured to be the default language of the
instance.

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

19

 Listing 2-1 demonstrates how to create a login for the Windows user Pete in the
 CarterSecureSafe.com domain.

 Listing 2-1. Create a Login from a Windows Security Principal

 USE master
 GO

 CREATE LOGIN [cartersecuresafe\Pete]
 FROM WINDOWS
 WITH DEFAULT_DATABASE=master, DEFAULT_LANGUAGE=British ;
 GO

 When creating a second tier, SQL login, however, there are many more WITH options
that can be used. These options are described in Table 2-3 .

 Table 2-3. CREATE LOGIN Options for SQL Login

 Option Description

 PASSWORD Specifies the initial password used by the login; in clear text.

 PASSWORD HASHED Specifies a hashed representation of the initial password used by
the login.*

 SID Specifies the SID of the login.*

 DEFAULT_DATABASE Specifies a “landing” database for the login. This is the database to
which their context id scoped when they initially authenticate to the
instance. This scope can be overwritten in the connection string.

 DEFAULT_LANGUAGE Specifies the default language assigned to the login. If omitted,
then this is configured to be the default language of the instance.

 CHECK_POLICY Specifies that the login’s password must meet the same
requirements, such as length and complexity, as Windows users,
as enforced by Group Policy or Local Security Policy.

 CHECK_EXPIRATION Specifies that the login’s password will expire, in line with
password expiration policy configured for Windows users, as
enforced by Group Policy or Local Security Policy. This option is
only valid if CHECK_POLICY is also specified.

 MUST_ CHANGE Specifies that the user must change their password the first time
that they login to the instance. This option can only be used if
 CHECK_EXPIRATION is also specified.

 *Discussed in the “Migrating Logins Between Instances” section

 Listing 2-2 demonstrates how to create a SQL login called Danni. The password
for the login must meet the complexity requirements specified by Group Policy, but the
password will not expire. This means that it is not possible to force the password to be
changed the first time that the user logs in.

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

20

 Listing 2-2. Create a SQL Login

 USE master
 GO

 CREATE LOGIN Danni
 WITH PASSWORD='C0mplexPa$$w0rd',
 DEFAULT_DATABASE=master, CHECK_EXPIRATION=OFF, CHECK_POLICY=ON ;
 GO

 Migrating Logins Between Instances
 There will be occasions when you need the same login to exist on multiple servers. This
may be because of a server migration, or it may be because you are implementing DR and
you need users to be able to reconnect to the DR instance transparently.

 For logins that are created from Windows security principals, this poses no problem
what so ever. As discussed earlier in this chapter, the SID of the Windows security
principal is stored in the Master database, but the principal itself, is managed by
Windows. Therefore, you can simply create a login on the second instance and map it to
the same Windows user or group.

 If you are working with SQL logins, however, this scenario is more challenging to
deal with, because the SQL Server instance hosts and manages the SID and the password
of the login. This means that if you create a login with the same name and password on
a different instance, then they will still be completely different, isolated principals. Once
you move or failover your databases to the second instance, the database users become
orphaned. This means that they no longer map to a login. This is because the login on the
second instance has a different SID, despite having the same name and password.

 You can manage this issue at point of failover by using an ALTER USER statement WITH
LOGIN option.

 ■ Tip The ALTER USER WITH LOGIN syntax replaces the functionality of the deprecated
 sp_change_users_logins system stored procedure.

 Listing 2-3 demonstrates how to remap a database user called Danni in the
AdventureWork2016 database to a login called Danni on a new instance.

 Listing 2-3. Remap a Database User to a Login

 USE AdventureWorks2016
 GO

 ALTER USER Danni WITH LOGIN = Danni ;

 ■ Tip Database users are discussed in the “Database-Level Security” section of this chapter.

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

21

 Naturally, it is more efficient if users are already mapped to their correct login at the
point that the databases are moved or failed over. This can be achieved by creating the
login and manually assigning it the correct SID.

 This is where the WITH SID option mentioned in Table 2-1 comes into play. If you
script out the SQL login on an instance and include the SID, then you can use the script to
pre-create the login on the DR instance with the correct SID, meaning that the database
users automatically map to the correct login without the need to alter them. Listing 2-4
demonstrates how this can be achieved using a SQLCMD script, which replicates a login
called Danni from ProdInstance1 to DRInstance1 .

 ■ Tip The script must be running in SQLCMD mode ; otherwise, it will not execute.

 Listing 2-4. Migrate a Login to a New Instance

 :CONNECT CARTERSECURESAFE\ProdInstance1

 DECLARE @SQL NVARCHAR(MAX) ;

 SET @SQL = (SELECT 'CREATE LOGIN '
 + name
 + ' WITH PASSWORD = ''C0mplexPassw0rd'', SID = 0x'
 + CONVERT(NVARCHAR(64), SID, 2)
 FROM sys.sql_logins
 WHERE Name = 'Danni') ;

 :CONNECT CARTERSECURESAFE\DRInstance1

 EXEC(@SQL) ;

 ■ Caution The preceding method works perfectly well in a SQLCMD script. Although it
is worthy to note that depending on your server and network configuration, you may be
sending the password across the wire in plain text. If this is the case, then you should follow
the approach discussed next to hash the password.

 An issue arises with the approach that we have discussed; it’s a common scenario, in
which you want to script out the logins for an environment and keep them under source
control so that you can apply them to other environments, as required. In this scenario,
you store passwords in plain text. This poses an obvious security risk and it should be
avoided. Instead, you should script out the SQL logins, so that the passwords are stored in
the same encrypted format that SQL Server stores them in.

 This approach can be achieved by scripting the logins with passwords based on the
 password_hash column of the sys.sql_logins view. Instead of this, however, we script
the logins using the HASHBYTES()() function to generate the password hash for the login.
This technique is demonstrated in Listing 2-5 and gives you an insight into how SQL

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

22

Server hashes the passwords. The script generates the DDL (Data Definition Language)
statements required to script out all enabled SQL logins from an instance with hashed
passwords. The script can subsequently be placed in source control and run on other
environments as required.

 ■ Tip In normal operations, you should take the approach of taking the password hash
from the sys.sql_logins view. This is preferable because it does not require knowledge of
the login’s plain text password.

 The HASHBYTES() function returns a hash of its input. It accepts the parameters
detailed in Table 2-4 .

 Table 2-4. HASHBYTES() Parameters

 Parameter Description

 Algorithm The algorithm that the function uses to hash the data.
The following are acceptable values:

 • MD2
 • MD4
 • MD5
 • SHA
 • SHA1
 • SHA2_256
 • SHA2_512

 Input The value hashed by the function.

 Table 2-5. CRYP_GEN_RANDOM Parameters

 Parameter Description

 Length The length of the number to be generated.

 Seed An optional randomization seed.

 Notice that the script uses a function called CRYPT_GEN_RANDOM() . This function uses
the Windows CAPI (Crypto API) to generate a cryptographic random number, which
it returns as a hexadecimal number. The function accepts the parameters detailed in
Table 2-5 .

 Listing 2-5. Script out Logins with Hashed Passwords

 DECLARE @password NVARCHAR(MAX) = 'C0mplexPa$$w0rd' ;
 DECLARE @salt VARBINARY(4) = CRYPT_GEN_RANDOM(4) ;
 DECLARE @hash VARBINARY(1000) ;
 DECLARE @SQL NVARCHAR(MAX) ;

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

23

 SET @hash = (SELECT 0x0200 + @salt + HASHBYTES('SHA2_512', CAST(@password
AS VARBINARY(MAX)) + @salt)) ;

 SET @SQL = (SELECT 'CREATE LOGIN '
 + Name
 + ' WITH PASSWORD = '
 + CONVERT(NVARCHAR(1000), @hash, 1)
 + ' HASHED, SID = 0x'
 + CONVERT(NVARCHAR(64), SID, 2)
 FROM sys.sql_logins
 WHERE is_disabled = 0
 FOR XML PATH('')) ;

 SELECT @SQL ;

 Server Roles
 SQL Server provides a set of built-in server roles. These roles allow you to assign instance-
level permissions to logins that have common requirements. They are called fixed server
roles . It is not possible to change the permissions that are granted to them; you can only
add and remove logins. Table 2-6 describes each fixed server role .

 Table 2-6. Fixed Server Roles

 Role Description

 sysadmin The sysadmin role gives administrative permissions to the
entire instance. A member of the sysadmin role can perform
any action within the instance of the SQL Server relational
engine.

 bulkadmin In conjunction with the INSERT permission on the target table
within a database, the bulkadmin role allows a user to import
data from a file using the BULK INSERT statement. This role is
normally given to service accounts that run ETL processes.

 dbcreator The dbcreator role allows its members to create new databases
within the instance. Once a login creates a database, that login is
automatically the owner of that database and is able to perform
any action inside it.

 diskadmin The diskadmin role gives its members the permissions to manage
backup devices within SQL Server.

 processadmin Members of the processadmin role are able to stop the instance
from T-SQL or SSMS (SQL Server Management Studio). They are
also able to kill running processes.

(continued)

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

24

 You can also create custom server roles , which allow you to grant a custom set of
permissions to a group of logins. For example, if you implemented AlwaysOn Availability
Groups, then you may wish to create a server role called AvailabilityRole and grant this
group the following permissions:

• Alter any availability group

• Alter any endpoint

• Create an availability group

• Create endpoint

 You can then add to this role the junior DBA s who are not authorized to be made
members of the sysadmin fixed server role, but who need to manage the high availability
and disaster recovery of the instance. The script in Listing 2-6 demonstrates how to create
the server role and grant it the relevant permissions.

 Notice that the script uses the GRANT statement to assign permissions to the role.
When assigning permissions to a server role or login, the three following assignments can
be made:

• GRANT

• DENY

• REVOKE

Table 2-6. (continued)

 Role Description

 public All logins are added to the public role. Although you can assign
permissions to the public role, this does not fit with the principle
of least privilege. This role is normally only used for internal SQL
Server operations, such as authentication to TempDB .

 securityadmin Members of the securityadmin role are able to manage logins
at the instance level. For example, members may add a login
to a server role (except sysadmin) or assign permissions to an
instance-level resource, such as an endpoint. However, they
cannot assign permissions within a database to database users.

 serveradmin serveradmin combines the diskadmin and processadmin roles. In
addition to starting or stopping the instance, however, members
of this role can also shut down the instance using the SHUTDOWN
T-SQL statement. The subtle difference here is that the SHUTDOWN
command gives you the option of not running a CHECKPOINT in
each database if you use it with the NOWAIT option. Additionally,
members of this role can alter endpoints and view all instance
metadata.

 setupadmin Members of the setupadmin role are able to create and manage
linked servers.

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

25

 GRANT provides a principal with the permissions to access a securable. You can use
the WITH option in a GRANT statement to additionally provide a principal with the ability to
 GRANT the same permission to other principals.

 DENY specifically denies a principal’s permissions to access a securable; DENY always
overrules GRANT . Therefore, if a login is a member of a server role (or roles) that gives the
login permissions to alter an endpoint, but the principal itself, has explicitly been denied
permissions to alter the same endpoint, then the principal is not able to manage the
endpoint.

 REVOKE removes a permission assignment to a securable. This includes DENY
associations as well as GRANT associations. If a login has been assigned permissions
through a server role, however, then revoking the permissions to that securable, directly
against the login itself, has no effect. In order to have an effect, you need to either use the
 DENY permission assignment against the login or server role, or you need to REVOKE the
permissions from the server role.

 Listing 2-6. Create Server Role and Grant Permissions

 CREATE SERVER ROLE AVAILABILITYROLE AUTHORIZATION [CarterSecureSafe\
SQLAdmin] ;
 GO

 GRANT ALTER ANY AVAILABILITYROLE GROUP TO AVAILABILITYROLE ;
 GRANT ALTER ANY ENDPOINT TO AVAILABILITYROLE ;
 GRANT CREATE AVAILABILITYROLE GROUP TO AVAILABILITYROLE ;
 GRANT CREATE ENDPOINT TO AVAILABILITYROLE ;
 GO

 You could add the Danni login to this server role by using the code shown in
Listing 2-7 .

 Listing 2-7. Add Login to Server Role

 ALTER SERVER ROLE AvailabilityRole ADD MEMBER Danni ;
 GO

 Credentials
 Credentials are used to provide the ability to access resources that are external to the
SQL Server instance. SQL logins can use credentials to access operating system–level
resources. SQL Server Agent Proxy Accounts use credentials to access SQL Server Agent
Subsystems, such as PowerShell or CmdExec. Credentials are also used when taking
backups to Azure.

 When used to access operating system–level resources, a credential usually records
the identity and password of a Windows security principal. If used for backups to Azure,
however, then the credential records the name and private key of the Azure storage
account. Listing 2-8 demonstrates how to create a credential to use for backups to Azure;
the storage account is called CarterSecureSafeStorageAcc.

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

26

 Listing 2-8. Create a Credential for Backups to Azure

 CREATE CREDENTIAL URLBackupCredential
 WITH IDENTITY = 'CarterSecureSafeStorageAcc'
 ,SECRET ='\Ydfg\
SGdTgJNpVFl992sBv7Bp1gyL61I33wNrTMHGBDdtVcx97F5f6SC5uDi59FeY2/
IjxyqsuLU2xrkrNAGT==' ;

 Database-Level Security
 At the database level, security is implemented by assigning permissions to security
principals; namely users and database roles. The following sections discuss both of these
principal types.

 Users
 A database user is typically created from a login at the instance level. This means that
the same instance level security principal can be granted permissions on resources in
multiple databases. Since SQL Server 2012, however, it has also been possible to create a
user without a login. The following sections discuss each of these database user types.

 Users with a Login
 Users can be created by using the CREATE USER T-SQL statement. Users that are created
with an association to a login have a limited set of options that can be configured. These
options are described in Table 2-7 .

 Table 2-7. Options When Creating a User from a Login

 Option Description

 DEFAULT_SCHEMA Specifies the default schema for a user. Schemas are
discussed in Chapter 4

 ALLOW_ENCRYPTED_VALUE_
MODIFICATIONS

 Specifies that users are allowed to bulk copy encrypted
data, without first decrypting it. Encryption is discussed in
Chapter 5 .

 You can create a user in the AdventureWorks2016 database, which is associated with
the login called Danni, by using the script in Listing 2-9 .

 Listing 2-9. Create a User from a Login

 USE AdventureWorks2016
 GO

 CREATE USER Danni FOR LOGIN Danni
 WITH DEFAULT_SCHEMA = Sales ;

http://dx.doi.org/10.1007/978-1-4842-2265-2_4
http://dx.doi.org/10.1007/978-1-4842-2265-2_5

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

27

 The script creates a user that has the same name as the login. Whilst this is not
mandatory, it is sensible, because it aids the administration of the security principals
and makes the hierarchy of principals transparent to new DBA s joining your team. The
script sets the user’s default schema to Sales . This means that the Danni user is able
to reference objects in the Sales schema using one-part names. If no default schema is
specified for a user, then their default schema is dbo .

 ■ Note Schemas are discussed in further detail in Chapter 4 .

 Users Without a Login
 When creating a user that is not associated with a login, the user can either be mapped to
a Windows security principal or it can be created using SQL Server authentication.

 ■ Note Users can only be created by using SQL Server authentication if the database is
configured with a partial containment level. Contained databases are beyond the scope of
this book, but you can learn more about them at https://msdn.microsoft.com/en-us/
library/ff929071.aspx .

 Table 2-8 details the properties that can be configured when creating a user without
a login.

 Table 2-8. Options When Creating a User Without a Login

 Option Description

 DEFAULT_SCHEMA Specifies the default schema for a user. Schemas are
discussed in Chapter 4

 ALLOW_ENCRYPTED_VALUE_
MODIFICATIONS

 Specifies that users are allowed to bulk copy encrypted
data, without first decrypting it. Encryption is discussed in
Chapter 5 .

 DEFAULT_LANGUAGE Specify the default language for the user. This options can
be expressed as an lcid , a language name, or a language
alias.

 SID Specify the SID associated with the user (SQL Server
authentication only). This creates users in multiple
databases that share the same SID. It helps with high
availability and disaster recovery techniques by using
AlwaysOn Availability Groups.

http://dx.doi.org/10.1007/978-1-4842-2265-2_4
https://msdn.microsoft.com/en-us/library/ff929071.aspx
https://msdn.microsoft.com/en-us/library/ff929071.aspx
http://dx.doi.org/10.1007/978-1-4842-2265-2_4
http://dx.doi.org/10.1007/978-1-4842-2265-2_5

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

28

 Listing 2-10 demonstrates how to create a user called Phil from a Windows security
principal called Phil, which exists in the cartersecuresafe domain.

 Listing 2-10. Create a User from a Windows Security Principal

 USE AdventureWorks2016
 GO

 CREATE USER [cartersecuresafe\phil]
 WITH DEFAULT_SCHEMA=dbo ;

 As previously mentioned, creating users with SQL authentication—also known as
users with a password—is only possible in contained databases. If you attempt to create
a user with SQL authentication in a database that is not contained, you receive the error
shown in Figure 2-2 .

 Figure 2-2. Error when attempting to create a user with password in a non-contained
database

 The script in Listing 2-11 configures the instance to allow contained database
authentication before configuring the AdventureWorks2016 database to support partial
containment. Finally, the script creates a user, named Pete, with a password.

 Listing 2-11. Create a User with Password in a Contained Database

 USE master
 GO

 EXEC sp_configure 'show advanced options', 1 ;
 GO

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

29

 RECONFIGURE ;
 GO

 EXEC sp_configure 'contained database authentication', '1' ;
 GO

 RECONFIGURE WITH OVERRIDE ;

 ALTER DATABASE AdventureWorks2016
 SET CONTAINMENT = PARTIAL
 WITH NO_WAIT ;
 GO

 USE AdventureWorks2016
 GO

 CREATE USER Pete
 WITH PASSWORD = 'Pa$$w0rd123' ;
 GO

 When you use contained database users, you need to take a number of additional
security considerations into account. First, some applications may require a user have
permissions to multiple databases. If the user is mapped to a Windows user or group,
then this is straightforward because the SID that is being authenticated is that of the
Windows object. If the database user is using second-tier authentication, however, then
you need to duplicate the user’s SID from the first database. To do this, you need to
adhere to the following steps:

 1. Create a user with password in the first database .

 2. Retrieve the user’s SID from sys.database_principals .

 3. Create the user in additional databases, specifically supplying
the SID that you have recovered from the metadata.

 The sys.database_principals catalog view exposes the columns detailed in
Table 2-9 .

 Table 2-9. sys.database_principals Columns

 Column Description

 name The name of the security principal.

 principal_id The id of the security principal. This id is only unique
within the database.

 type A single-character abbreviation of the type description.

(continued)

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

30

Table 2-9. (continued)

 Column Description

 type_desc A description of the type of security principal. The
following are possible values:

 • APPLICATION_ROLE
 • CERTIFICATE_MAPPED_USER
 • EXTERNAL_USER
 • WINDOWS_GROUP
 • ASYMMETRIC_KEY_MAPPED_USER
 • DATABASE_ROLE
 • SQL_USER
 • WINDOWS_USER
 • EXTERNAL_GROUPS

 default_schema_name The name of the principals default schema.

 create_date The date and time that the principal was created.

 modify_ date The date and time that the principal was last modified.

 owning_principal_id The id of the security principal that is marked as the
owner of the principal. This is 1, which is the dbo id for all
principals except database roles.

 sid The SID of the security principal.

 is_fixed_role Indicates if the principal is a fixed database role.

 • 1 indicates that the principal is a fixed database role
 • 0 indicates that the principal is not a fixed database role

 authentication_type Indicates how the principal authenticates to the database.
The following are the possible values:

 • 0 indicates No authentication
 • 1 indicates Instance authentication
 • 2 indicates Database authentication
 • 3 indicates Windows authentication

 authentication_
type_ desc

 A textual description of the authentication type. The
following are the possible values:

 • NONE
 • INSTANCE
 • DATABASE
 • WINDOWS

 default_language_name The name of the default language assigned to the principal

 default_language_lcid The lcid of the default language assigned to the principal

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

31

 Listing 2-12 demonstrates how to generate a list of usernames and SID for users with
a password in the AdventureWorks2016 database.

 Listing 2-12. Retrieve SIDs for Users with a Password

 USE AdventureWorks2016
 GO

 SELECT
 name
 ,sid
 FROM sys.database_principals
 WHERE authentication_type = 2 ;

 Database Roles
 SQL Server provides a set of built-in database roles. These roles allow you to assign
database-level permissions to users that have common requirements. They are called
 fixed database roles . It is not possible to change the permissions that are granted to them;
you can only add and remove users to and from the roles. Table 2-10 describes each of
these roles.

 Table 2-10. Fixed Database Roles

 Role Description

 db_accessadmin Members of this role can add and remove database users from
the database.

 db_backupoperator The db_backupoperator role gives users the permissions they
need to back up the database, natively. It may not work for
third-party backup tools, such as CommVault or Backup Exec,
since these tools often demand sysadmin rights.

 db_datareader Members of the db_datareader role can run SELECT statements
against any table in the database. It is possible to override this
for specific tables by explicitly denying a user, the permissions
to read those tables. DENY always overrides GRANT .

 db_datawriter Members of the db_datawriter role can perform DML (data
manipulation language) statements against any table in the
database. It is possible to override this for specific tables by
specifically denying a user the permissions to write to a table.
 DENY always overrides GRANT .

 db_denydatareader The db_denydatareader role denies the SELECT permission
against every table in the database.

(continued)

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

32

 In addition to the fixed roles, it is also possible to create your own user-defined
database roles. This simplifies administration by allowing DBA s to create roles that
map to requirements of business teams that use a specific database. For example, an
administrator of the AdventureWorks2016 database may create a role for salespeople, a
role for the procurement department, and a role for the manufacturing department.

 The script in Listing 2-13 demonstrates how to create the role for the sales team.
The role is granted SELECT , INSERT , and UPDATE permissions on the Sales schema of the
AdventureWorks2016 database. The Danni user is a member of the role. The role is called
 SalesRole and owned by dbo .

 Listing 2-13. Create SalesRole

 USE AdventureWorks2016
 GO

 --Create the role

 CREATE ROLE SalesRole AUTHORIZATION dbo ;
 GO

 --Grant permissions to the role

 GRANT DELETE ON SCHEMA::Sales TO SalesRole ;

 GRANT INSERT ON SCHEMA::Sales TO SalesRole ;

 GRANT SELECT ON SCHEMA::Sales TO SalesRole ;

Table 2-10. (continued)

 Role Description

 db_ denydatawriter The db_denydatawriter role denies its members the
permissions to perform DLM statements against every table in
the database.

 db_ ddladmin Members of this role are given the ability to run CREATE , ALTER ,
and DROP statements against any object in the database. This
role is rarely used, but I have seen a couple of examples or
poorly written applications that create database objects on the
fly. If you are responsible for administering an application such
as this, then the ddl_admin role may be useful.

 db_ owner Members of the db_owner role can perform any action within
the database that has not been specifically denied.

 db_securityadmin Members of this role can GRANT , DENY , and REVOKE a user’s
permissions to securables. They can also modify role
memberships, with the exception of the db_owner role.

CHAPTER 2 ■ SQL SERVER SECURITY MODEL

33

 GRANT UPDATE ON SCHEMA::Sales TO SalesRole ;

 --Add user to the role

 ALTER ROLE SalesRole ADD MEMBER Danni ;

 Summary
 SQL Server provides a flexible hierarchy to implement security. Role-based security is
available out of the box. Database administrators should embrace this ability to simplify
the administration of security.

 The database engine supports two methods of authentication: Windows
authentication and SQL Server authentication. The latter is SQL Server’s implementation
of second-tier authentication. Windows authentication should be used—unless there is a
good reason not to—because it is more secure.

 Database engine users typically authenticate to the instance via a login. This login
then maps to users within the databases that they require access to. It is also possible for
users to authenticate directly to a database. This is known as a user without a login . When
a user without a login is implemented, they can authenticate via Windows authentication,
or if the database is contained, then SQL Server authentication can alternatively be used.

35© Peter A. Carter 2016
P. A. Carter, Securing SQL Server, DOI 10.1007/978-1-4842-2265-2_3

 CHAPTER 3

 SQL Server Audit

 Passive security refers to the practice of logging user activity to avoid the threat of
non-repudiation. This is important because if an attack is launched by a privileged user,
it allows appropriate disciplinary or even legal action to be taken. SQL Server provides
SQL Server Audit to assist with implementing passive security.

 Understanding SQL Server Audit
 SQL Server Audit offers DBAs the ability to capture granular information about activity
at both the instance level and the database level. Audit logs can be saved to a file, the
Windows Security log, or the Windows Application log. The location that the audit logs
are saved to is known as the target . There is exactly one target associated with each audit.

 The SQL Server Audit resides at the instance level and defines the properties of
the audit and the target. It is possible to create multiple server audits in each instance.
This is useful if you have to audit many events in a busy environment, as it allows you to
distribute the IO by using file targets and placing each target file on a separate volume.

 Choosing the correct target is an important security consideration. If you choose the
Windows Application log as a target, then any Windows user who is authenticated to the
server is able to access it. The Security log is a lot more secure than the Application log
but also more complex to configure as a target for SQL Server Audit logs.

 When using the Security log as a target, the service account that is running the
SQL Server service requires the Generate Security Audits user rights assignment. This
can be assigned from the server’s local security policy, but ideally, it is configured at a
group policy level to avoid the risk of a GPO change overriding the setting. Application-
generated auditing also needs to be enabled.

 Size is another consideration for the target. If you decide to use the Application log
or Security log, then it is important that you consider and potentially increase the size
of these logs before you begin using them for your audit. Also, work with your Windows
administration team to decide on how the log is cycled when full and if you are archiving
the log by backing it up to tape.

CHAPTER 3 ■ SQL SERVER AUDIT

36

 The SQL Server Audit can be associated with one or more server audit specifications
and database audit specifications. Specifications define the activity that is captured by
the audit at the instance level and the database level, respectively. It is helpful to have
multiple server and/or database audit specifications if you are planning to log many
actions, because you can categorize them to make administration easier, while still
associating them with the same server audit. Each database within the instance must
have its own database audit specification if you plan to audit activity across multiple
databases.

 SQL Server Audit Actions and Action Groups
 SQL Server Audit events are based on the SQL Server event classes. Related actions
are grouped into audit action groups. These audit action groups map to SQL Server
event class categories. When creating a server audit specification or database audit
specification, you configure the audit specification to capture audit action groups, which
contain the events that you wish to capture.

 Audit groups are available at three distinct layers: server (meaning instance),
database, and audit. Providing the ability to audit the changes to audits avoids the threat
of non-repudiation caused by a privileged user launching an attack and attempting to
cover his tracks by changing the audit information that is logged.

 Table 3-1 describes the action groups that are available at the server level. Notice that
some groups are nested.

CHAPTER 3 ■ SQL SERVER AUDIT

37

 Table 3-1. Server-Level Action Groups

 Action Group Description Actions Contained

 APPLICATION_ROLE_
CHANGE_PASSWORD_
GROUP

 The event is raised when an
application role’s password is
changed.

 APPLICATION_ROLE_
CHANGE_PASSWORD_
GROUP

 AUDIT_CHANGE_GROUP The event is raised when
Audit is created, dropped, or
altered.

 CREATE
 ALTER
 DROP
 AUDIT SHUTDOWN ON
FAILURE
 CREATE
 ALTER
 DROP
 AUDIT_CHANGE_GROUP

 BACKUP_RESTORE_
GROUP

 The event is raised when a
 BACKUP command or RESTORE
command is issued.

 RESTORE
 BACKUP_RESTORE_
GROUP
 BACKUP
 BACKUP LOG

 BROKER_LOGIN_GROUP The event is raised when
Service Broker security
events occur.

 BROKER LOGIN
 BROKER_LOGIN_GROUP

 DATABASE_CHANGE_
GROUP

 The event is raised when a
database is created, dropped,
or altered.

 DATABASE_CHANGE_
GROUP
 CREATE
 ALTER
 DROP

 DATABASE_LOGOUT_
GROUP

 The event is raised when a
user without a login logs out
of a database

 DATABASE LOGOUT
 DATABASE_LOGOUT_
GROUP

 DATABASE_MIRRORING_
LOGIN_GROUP

 The event is raised when
Database Mirroring related
security events occur

 DATABASE MIRRORING
LOGIN
 DATABASE_MIRRORING_
LOGIN_GROUP

 DATABASE_OBJECT_
ACCESS_ GROUP

 The event is raised when
non-schema bound database
objects are accessed.

 DATABASE_OBJECT_
ACCESS_GROUP

 DATABASE_OBJECT_
CHANGE_GROUP

 The event is raised when
non-schema bound database
objects are created, dropped,
or altered.

 DATABASE_OBJECT_
CHANGE_GROUP

(continued)

CHAPTER 3 ■ SQL SERVER AUDIT

38

Table 3-1. (continued)

 Action Group Description Actions Contained

 DATABASE_OBJECT_
OWNERSHIP_CHANGE_
GROUP

 The event is raised when the
owner of a database object is
changed.

 DATABASE_OBJECT_
OWNERSHIP_CHANGE_
GROUP

 DATABASE_OBJECT_
PERMISSION_CHANGE_
GROUP

 The event is raised when
permissions are assigned
or revoked from a database
object.

 DATABASE_OBJECT_
PERMISSION_CHANGE_
GROUP

 DATABASE_OPERATION_
GROUP

 The event is raised when
SQL Server background
operational tasks, such as a
 CHECKPOINT , occurs.

 VIEW DATABASE STATE
 CONNECT
 DATABASE_OPERATION_
GROUP
 CHECKPOINT
 SUBSCRIBE QUERY
NOTIFICATION
 AUTHENTICATE
 SHOW PLAN

 DATABASE_OWNERSHIP_
CHANGE_GROUP

 The event is raised when
the owner of a database is
changed.

 TAKE OWNERSHIP
 DATABASE_OWNERSHIP_
CHANGE_GROUP

 DATABASE_PERMISSION_
CHANGE_GROUP

 The event is raised when
permissions are assigned or
revoked to a principal within
a database.

 DATABASE_PERMISSION_
CHANGE_GROUP
 REVOKE
 DENY
 GRANT
 GRANT WITH GRANT
 REVOKE WITH GRANT
 REVOKE WITH CASCADE
 DENY WITH CASCADE

 DATABASE_PRINCIPAL_
CHANGE_ GROUP

 The event is fired when a
principal is created, dropped,
or altered, within a database.

 DATABASE_PRINCIPAL_
CHANGE_GROUP

 DATABASE_PRINCIPAL_
IMPERSONATION_
GROUP

 The event is fired when the
impersonation of a database-
level principal occurs.

 DATABASE_PRINCIPAL_
IMPERSONATION_GROUP

 DATABASE_ROLE_
MEMBER_CHANGE_
GROUP

 The event is raised when the
membership of a database
role is changed.

 DATABASE_ROLE_
MEMBER_CHANGE_
GROUP

 DBCC_GROUP The event is raised when a
 DBCC statement is run.

 DBCC
 DBCC_GROUP

(continued)

CHAPTER 3 ■ SQL SERVER AUDIT

39

Table 3-1. (continued)

 Action Group Description Actions Contained

 FAILED_DATABASE_
AUTHENTICATION_
GROUP

 The event is raised when a
user attempts to authenticate
to a contained database, but
the authentication fails.

 FAILED_DATABASE_
AUTHENTICATION_
GROUP
 DATABASE
AUTHENTICATION
FAILED

 FAILED_LOGIN_GROUP The event is raised when an
attempt to authenticate to
the instance fails.

 LOGIN FAILED

 FULLTEXT_GROUP The event is raised when full-
text events occur.

 FULLTEXT
 FULLTEXT_GROUP

 LOGIN_CHANGE_
PASSWORD_ GROUP

 The event is raised when a
login’s password is changed

 RESET PASSWORD
 RESET OWN PASSWORD
 CHANGE OWN PASSWORD
 CHANGE PASSWORD
 UNLOCK ACCOUNT
 MUST CHANGE
PASSWORD

 LOGOUT_GROUP The event is raised when
a principal logs out of the
instance.

 LOGOUT

 SCHEMA_OBJECT_
ACCESS_GROUP

 The event is raised when an
object permission is used for
a schema.

 SELECT
 INSERT
 UPDATE
 DELETE
 REFERENCES
 EXECUTE
 RECEIVE
 VIEW CHANGETRACKING
 SCHEMA_OBJECT_
ACCESS_GROUP

 SCHEMA_OBJECT_
CHANGE_GROUP

 The event is raised when a
schema is created, dropped,
or altered.

 SCHEMA_OBJECT_
CHANGE_GROUP

 SCHEMA_OBJECT_
OWNERSHIP_CHANGE_
GROUP

 The event is raised when the
owner of a schema-bound
object is changed.

 SCHEMA_OBJECT_
OWNERSHIP_CHANGE_
GROUP

(continued)

CHAPTER 3 ■ SQL SERVER AUDIT

40

 Action Group Description Actions Contained

 SCHEMA_OBJECT_
PERMISSION_
CHANGE_ GROUP

 The event is raised when
permissions are assigned or
revoked to a schema-bound
object.

 SCHEMA_OBJECT_
PERMISSION_CHANGE_
GROUP

 SERVER_OBJECT_
CHANGE_GROUP

 The event is raised when
an instance-level object is
created, dropped, or altered.

 ALTER
 BACKUP
 CREATE
 CREDENTIAL MAP TO
LOGIN
 DROP
 NO CREDENTIAL MAP TO
LOGIN
 RESTORE

 SERVER_OBJECT_
OWNERSHIP_CHANGE_
GROUP

 The event is raised when the
owner of an instance-level
object is changed.

 TAKE OWNERSHIP

 SERVER_OBJECT_
PERMISSION_CHANGE_
GROUP

 The event is raised when
permissions are assigned or
revoked to an instance-level
object.

 DENY
 DENY WITH CASCADE
 GRANT
 GRANT WITH GRANT
 REVOKE
 REVOKE WITH CASCADE
 REVOKE WITH GRANT

 SERVER_OPERATION_
GROUP

 The event is raised when
instance configuration
changes are made.

 ALTER
 ALTER RESOURCES
 CREATE
 DROP

 SERVER_PERMISSION_
CHANGE_GROUP

 The event is raised when
permissions are assigned
or revoked to instance-level
permissions.

 DENY
 DENY WITH CASCADE
 GRANT
 GRANT WITH GRANT
 REVOKE
 REVOKE WITH CASCADE
 REVOKE WITH GRANT
 SERVER_PERMISSION_
CHANGE_GROUP

(continued)

Table 3-1. (continued)

CHAPTER 3 ■ SQL SERVER AUDIT

41

 Action Group Description Actions Contained

 SERVER_PRINCIPAL_
CHANGE_ GROUP

 The event is fired when
instance-level principals are
created, dropped, or altered.

 ALTER
 CHANGE DEFAULT
DATABASE
 CHANGE DEFAULT
LANGUAGE
 CHANGE LOGIN
CREDENTIAL
 CREATE
 DISABLE
 DROP
 ENABLE
 NAME CHANGE
 PASSWORD EXPIRATION
 PASSWORD POLICY

 SERVER_PRINCIPAL_
IMPERSONATION_
GROUP

 The event is raised when
impersonation of an
instance-level principal
occurs.

 IMPERSONATE

 SERVER_ROLE_MEMBER_
CHANGE_GROUP

 The event is raised when the
membership of a server role
is changed.

 ADD MEMBER
 DROP MEMBER

 SERVER_STATE_
CHANGE_GROUP

 The event is raised when
the state of the instance is
modified.

 SERVER CONTINUE
 SERVER PAUSED
 SERVER SHUTDOWN
 SERVER STARTED
 SERVER_STATE_CHANGE_
GROUP

 SUCCESSFUL_
DATABASE_
AUTHENTICATION_
GROUP

 The event is raised when
a principal successfully
authenticates to a contained
database.

 DATABASE
AUTHENTICATION
SUCCEEDED
 SUCCESSFUL_DATABASE_
AUTHENTICATION_
GROUP

 SUCCESSFUL_LOGIN_
GROUP

 The event is raised when
a principal successfully
authenticates to the instance.

 LOGIN SUCCEEDED

Table 3-1. (continued)

(continued)

CHAPTER 3 ■ SQL SERVER AUDIT

42

 Action Group Description Actions Contained

 TRACE_CHANGE_ GROUP The event is raised if a trace
is modified.

 ALTER TRACE
 TRACE AUDIT C2OFF
 TRACE AUDIT C2ON
 TRACE AUDIT START
 TRACE AUDIT STOP
 TRACE_CHANGE_GROUP

 TRANSACTION_GROUP The event is raised when a
transaction begins, commits,
or rolls back.

 STATEMENT_ROLLBACK_
GROUP
 TRANSACTION_BEGIN_
GROUP
 TRANSACTION_COMMIT_
GROUP
 TRANSACTION_GROUP
 TRANSACTION_
ROLLBACK_GROUP

 USER_CHANGE_
PASSWORD_GROUP

 The event is raised when
a user with password’s
password is changed.

 USER_CHANGE_
PASSWORD_GROUP

 USER_DEFINED_AUDIT_
GROUP

 The event is triggered
when the sp_audit_write
procedure if executed.

 USER DEFINED AUDIT
 USER_DEFINED_AUDIT_
GROUP

Table 3-1. (continued)

 Table 3-2 describes the action groups that are available at the database level. Notice
that many of the groups are the same as the server-level groups. The difference is that
groups at the database-level apply only to the database with which they are associated.
The server-level groups apply to all databases on the instance.

CHAPTER 3 ■ SQL SERVER AUDIT

43

 Table 3-2. Database-Level Audit Action Groups

 Action Group Description Actions Contained

 APPLICATION_ROLE_
CHANGE_PASSWORD_
GROUP

 The event is triggered
when an application role’s
password is changed.

 APPLICATION_ROLE_
CHANGE_PASSWORD_
GROUP

 AUDIT_CHANGE_GROUP The event is raised when an
audit is created, dropped, or
altered.

 CREATE
 ALTER
 DROP
 AUDIT SHUTDOWN ON
FAILURE
 CREATE
 ALTER
 DROP
 AUDIT_CHANGE_GROUP

 BACKUP_RESTORE_
GROUP

 The event is triggered when
a database is backed up or
restored.

 RESTORE
 BACKUP_RESTORE_
GROUP
 BACKUP
 BACKUP LOG

 DATABASE_CHANGE_
GROUP

 The event is raised when
a database is created,
dropped, or altered.

 DATABASE_CHANGE_
GROUP
 CREATE
 ALTER
 DROP

 DATABASE_LOGOUT_
GROUP

 The event is raised when a
user without a login logs out
of a database.

 DATABASE LOGOUT
 DATABASE_LOGOUT_
GROUP

 DATABASE_OBJECT_
ACCESS_GROUP

 The event is raised when
non-schema bound
database objects are
accessed.

 DATABASE_OBJECT_
ACCESS_GROUP

 DATABASE_OBJECT_
CHANGE_GROUP

 The event is raised when
non-schema bound
database objects are
created, dropped, or
altered.

 DATABASE_OBJECT_
CHANGE_GROUP

 DATABASE_OBJECT_
OWNERSHIP_CHANGE_
GROUP

 The event is raised when
the owner of a database is
changed.

 DATABASE_OBJECT_
OWNERSHIP_CHANGE_
GROUP

(continued)

CHAPTER 3 ■ SQL SERVER AUDIT

44

Table 3-2. (continued)

 Action Group Description Actions Contained

 DATABASE_OBJECT_
PERMISSION_
CHANGE_ GROUP

 The event is raised when
permissions are assigned
or revoked to a principal
within a database.

 DATABASE_OBJECT_
PERMISSION_CHANGE_
GROUP

 DATABASE_OPERATION_
GROUP

 The event is raised when
SQL Server background
operational tasks, such as a
 CHECKPOINT , occurs.

 VIEW DATABASE STATE
 CONNECT
 DATABASE_OPERATION_
GROUP
 CHECKPOINT
 SUBSCRIBE QUERY
NOTIFICATION
 AUTHENTICATE
 SHOW PLAN

 DATABASE_OWNERSHIP_
CHANGE_GROUP

 The event is raised when
the owner of a database is
changed.

 TAKE OWNERSHIP
 DATABASE_OWNERSHIP_
CHANGE_GROUP

 DATABASE_PERMISSION_
CHANGE_GROUP

 The event is raised when
permissions are assigned
or revoked to a principal
within a database.

 DATABASE_PERMISSION_
CHANGE_GROUP
 REVOKE
 DENY
 GRANT
 GRANT WITH GRANT
 REVOKE WITH GRANT
 REVOKE WITH CASCADE
 DENY WITH CASCADE

 DATABASE_PRINCIPAL_
CHANGE_GROUP

 The event is fired when
a principal is created,
dropped, or altered within a
database

 DATABASE_PRINCIPAL_
CHANGE_GROUP

 DATABASE_PRINCIPAL_
IMPERSONATION_ GROUP

 The event is fired when
the impersonation of a
database-level principal
occurs.

 DATABASE_PRINCIPAL_
IMPERSONATION_GROUP

 DATABASE_ROLE_
MEMBER_CHANGE_
GROUP

 The event is raised when
the membership of a
database role is changed.

 DATABASE_ROLE_
MEMBER_CHANGE_
GROUP

 DBCC_GROUP The event is raised when a
 DBCC statement is run.

 DBCC
 DBCC_GROUP

(continued)

CHAPTER 3 ■ SQL SERVER AUDIT

45

Table 3-2. (continued)

 Action Group Description Actions Contained

 FAILED_DATABASE_
AUTHENTICATION_
GROUP

 The event is raised
when a user attempts to
authenticate to a contained
database, but the attempt
fails.

 FAILED_DATABASE_
AUTHENTICATION_
GROUP
 DATABASE
AUTHENTICATION
FAILED

 SCHEMA_OBJECT_
ACCESS_GROUP

 The event is raised when an
object permission is used
for a schema.

 SELECT
 INSERT
 UPDATE
 DELETE
 REFERENCES
 EXECUTE
 RECEIVE
 VIEW CHANGETRACKING
 SCHEMA_OBJECT_
ACCESS_GROUP

 SCHEMA_OBJECT_
CHANGE_GROUP

 The event is raised when a
schema is created, dropped,
or altered.

 SCHEMA_OBJECT_
CHANGE_GROUP

 SCHEMA_OBJECT_
OWNERSHIP_CHANGE_
GROUP

 The event is raised when
the owner of a schema-
bound object is changed.

 SCHEMA_OBJECT_
OWNERSHIP_CHANGE_
GROUP

 SCHEMA_OBJECT_
PERMISSION_
CHANGE_ GROUP

 The event is raised when
permissions are assigned or
revoked to a schema-bound
object.

 SCHEMA_OBJECT_
PERMISSION_CHANGE_
GROUP

 SUCCESSFUL_DATABASE_
AUTHENTICATION_
GROUP

 The event is raised when
a principal successfully
authenticates to a
contained database.

 DATABASE
AUTHENTICATION
SUCCEEDED
 SUCCESSFUL_DATABASE_
AUTHENTICATION_
GROUP

 USER_CHANGE_
PASSWORD_GROUP

 The event is raised when
a user with password’s
password is changed.

 USER_CHANGE_
PASSWORD_GROUP

 USER_DEFINED_AUDIT_
GROUP

 The event is triggered
when the sp_audit_write
procedure if executed.

 USER DEFINED AUDIT
 USER_DEFINED_AUDIT_
GROUP

CHAPTER 3 ■ SQL SERVER AUDIT

46

 Implementing SQL Server Audit
 The following sections discuss how to create a server audit, a server audit specification,
and a database audit specification.

 Creating a Server Audit
 A server audit can be created using the CREATE SERVER AUDIT DDL (Data Definition
Language) statement. Table 3-4 describes the options that are available when creating a
server audit.

 Table 3-3. Audit-Level Audit Action Groups

 Action Group Description Actions Contained

 AUDIT_ CHANGE_
GROUP

 The event is fired when a SQL
Server Audit artifact is created,
dropped, or altered.

 CREATE SERVER AUDIT
 ALTER SERVER AUDIT
 DROP SERVER AUDIT
 CREATE SERVER AUDIT
SPECIFICATION
 ALTER SERVER AUDIT
SPECIFICATION
 DROP SERVER AUDIT
SPECIFICATION
 CREATE DATABASE AUDIT
 SPECIFICATION
 ALTER DATABASE AUDIT
SPECIFICATION
 DROP DATABASE AUDIT
SPECIFICATION

 Table 3-3 describes the audit action group available at the audit level.

CHAPTER 3 ■ SQL SERVER AUDIT

47

 Table 3-4. Server Audit Options

 Option Description

 FILEPATH Specifies the filepath where the audit logs is generated. Only applies if
you choose a file target.

 MAXSIZE Specifies the largest size that the audit file can grow to. The minimum
size you can specify for this is 2MB. Only applies if you choose a file
target.

 MAX_ROLLOVER_
FILES

 When the audit file becomes full, you can either cycle that file or
generate a new file. The MAX_ROLLOVER_FILES setting controls how
many new files can be generated before they begin to cycle. The
default value is UNLIMITED , but specifying a number caps the number
of files to this limit. If you set it to 0, then there will only ever be one
file, which will cycle every time it becomes full. Any value above
 0 indicates the number of rollover files that is permitted. So for
example, if you specify 5 , then there is a maximum of six files in total.
Only applies if you choose a file target.

 MAX_FILES As an alternative to MAX_ROLLOVER_FILES , the MAX_FILES setting
specifies a limit for the number of audit files that can be generated,
but when this number is reached, the logs will not cycle. Instead, the
audit fails and events that cause an audit action to occur are handled
based on the setting for ON_FAILURE . Only applies if you choose a file
target.

 RESERVE_
DISK_ SPACE

 Pre-allocate space on the volume equal to the value set in MAXSIZE , as
opposed to allowing the audit log to grow as required. Only applies if
you choose a file target.

 QUEUE_DELAY Specifies if audit events are written synchronously or asynchronously.
If set to 0 , events are written to the log synchronously. Otherwise,
specify the duration in milliseconds that can elapse before events are
forced to write. The default value is 1000 (1 second), which is also the
minimum value.

 ON_FAILURE Specifies what should happen if events that cause an audit action fail
to be audited to the log. Acceptable values are CONTINUE , SHUTDOWN ,
or FAIL_OPERATION . When CONTINUE is specified, the operation is
allowed to continue. This can lead to unaudited activity occurring.
 FAIL_OPERATION causes auditable events to fail, but allows other
actions to continue. SHUTDOWN forces the instance to stop if auditable
events cannot be written to the log.

 AUDIT_ GUID Because server and database audit specifications link to the server
audit through a GUID, there are occasions when an audit specification
can become orphaned. These include when you attach a database to
an instance, or when you implement technologies such as AlwaysOn
Availability Groups. This option allows you to specify a specific GUID
for the server audit, as opposed to having SQL Server generate a new one.

CHAPTER 3 ■ SQL SERVER AUDIT

48

 It is also possible to create a filter on the server audit. This is useful when your
Audit Specification captures activity against an entire class of object, but you are only
interested in a subset of this information. For example, you may configure a server audit
specification to log members added to or removed from server roles; but really, you are
only interested in members being added to or removed from the sysadmin server role.
In this scenario, you can filter on the sysadmin role and reduce the amount of “noise”
recorded in the audit log.

 ■ Note Please refer to Chapter 2 for further information on server roles.

 The script in Listing 3-1 demonstrates how to create a server audit. The audit uses
a file target and the target may consist of an unlimited number of files, although each
file is limited in size to 256MB. The audit is configured so that if the audit fails to log an
operation, that operation will fail. There is also a filter placed on the audit so that only
activity, where the object_name property is equal to sysadmin , is logged. This allows
you to create a server audit specification, which checks for members being added to or
removed from a server role, as discussed earlier.

 ■ Tip If you are following along with the demonstrations, then you should change the
filepath to match your own configuration.

 Listing 3-1. Create a Server Audit

 USE Master
 GO

 CREATE SERVER AUDIT [Audit-CarterSecureSafe]
 TO FILE
 (
 FILEPATH = 'c:\audit_files\audit'
 ,MAXSIZE = 256 MB
 ,MAX_ROLLOVER_FILES = 2147483647
 ,RESERVE_DISK_SPACE = OFF
)
 WITH
 (
 QUEUE_DELAY = 1000
 ,ON_FAILURE = CONTINUE
)
 WHERE object_name = 'sysadmin' ;

http://dx.doi.org/10.1007/978-1-4842-2265-2_2

CHAPTER 3 ■ SQL SERVER AUDIT

49

 An audit can be enabled by altering the audit. This is demonstrated in Listing 3-2 .

 Listing 3-2. Enabling an Audit

 ALTER SERVER AUDIT [Audit-CarterSecureSafe]
 WITH (STATE = ON) ;

 Create a Server Audit Specification
 A server audit specification can be created using the CREATE SERVER AUDIT
SPECIFICATION DDL statement. Table 3-5 describes the options that can be set when
creating a server audit specification.

 Table 3-5. Server Audit Specification Options

 Argument Description

 audit_specification_name The name to be assigned to the server audit
specification.

 audit_name The name of the server audit to which the
specification is associated.

 audit_action_group_name The name of a group of related auditable actions at
the instance level.

 STATE Specifies if the server audit specification should be
started on creation.

 Listing 3-3 demonstrates how to create a server audit specification, which captures
changes to the membership of server roles.

 Listing 3-3. Create a Server Audit Specification

 CREATE SERVER AUDIT SPECIFICATION [ServerAuditSpecification-
CarterSecureSafe]
 FOR SERVER AUDIT [Audit-CarterSecureSafe]
 ADD (SERVER_ROLE_MEMBER_CHANGE_GROUP) ;

 Create a Database Audit Specification
 Creating a database audit specification is similar to creating a server audit specification
but provides more flexibility because you can specify filters, such as the securable or
principal to be audited.

 You can create a database audit specification by using the CREATE DATABASE AUDIT
SPECIFICATION DDL statement. Table 3-6 describes the options that are available when
creating a database audit specification .

CHAPTER 3 ■ SQL SERVER AUDIT

50

 Listing 3-4 demonstrates how to create a database audit specification that is
associated with the Audit-CarterSecureSafe audit, and captures DELETE statements
made against the Person.Person table in the AdventureWorks2016 database by any user.

 Listing 3-4. Create a Database Audit Specification

 CREATE DATABASE AUDIT SPECIFICATION [DatabaseAuditSpecification-
AdventureWorks2016]
 FOR SERVER AUDIT [Audit-CarterSecureSafe]
 ADD (DELETE ON OBJECT::Person.Person BY public) ;

 Server audit specifications and database audit specifications can be enabled on
creation or by altering the specification. This is demonstrated in Listing 3-5 .

 Listing 3-5. Enabling an Audit Specification

 ALTER SERVER AUDIT SPECIFICATION [DatabaseAuditSpecification-
AdventureWorks2016]
 WITH (STATE = ON) ;

 Creating Custom Audit Events
 There may be times when you want to use SQL Server Audit to capture very specific
events that are not possible to do with the out-of-the-box functionality of SQL Server
Audit. If this is the case, then you can create a server audit specification or a database
audit specification that is configured to capture the USER_DEFINED_AUDIT_GROUP audit
action group, and then manually fire the event in your application code. The following
sections demonstrate how to create the server audit and database audit specification
required to log sales orders in which more than five different items are ordered.

 Table 3-6. Database Audit Specification Options

 Argument Description

 audit_specification_name The name to be assigned to the database audit
specification.

 audit_name The name of the server audit to which the specification
is associated.

 action The granular action to be audited.

 audit_action_group_name The name of a group of related auditable actions at the
database level.

 class The class name of the securable.

 securable The name of the securable to be audited.

 principal The name of the principal to be audited.

 STATE Specifies if the server audit specification should be
started on creation.

CHAPTER 3 ■ SQL SERVER AUDIT

51

 Creating the Server Audit and Database Audit
Specification
 The script in Listing 3-6 uses the techniques that you learned in this chapter to create a
server audit and a database audit specification linked to the server audit and captures
 USER_DEFINED_AUDIT_GROUP . The database audit specification is created in the
AdventureWorks2016 database in which the Person.Person table is hosted.

 Listing 3-6. Create the Server Audit and Database Audit Specification

 USE Master
 GO

 CREATE SERVER AUDIT [Audit-CarterSecureSafeCustom]
 TO FILE
 (
 FILEPATH = 'c:\audit_files\audit-custom'
 ,MAXSIZE = 256 MB
 ,MAX_ROLLOVER_FILES = 2147483647
 ,RESERVE_DISK_SPACE = OFF
)
 WITH
 (
 QUEUE_DELAY = 1000
 ,ON_FAILURE = CONTINUE
) ;
 GO

 CREATE SERVER AUDIT SPECIFICATION [ServerAuditSpecification-
CarterSecureSafeCustom]
 FOR SERVER AUDIT [Audit-CarterSecureSafeCustom]
 ADD (USER_DEFINED_AUDIT_GROUP) ;
 GO

 ALTER SERVER AUDIT [Audit-CarterSecureSafeCustom]
 WITH (STATE = ON) ;

 ALTER DATABASE AUDIT SPECIFICATION [ServerAuditSpecification-
CarterSecureSafeCustom]
 WITH (STATE = ON) ;

CHAPTER 3 ■ SQL SERVER AUDIT

52

 Raising the Event
 A custom event can be raised by using the sp_audit_write system stored procedures.
Table 3-7 describes the parameters accepted by the sp_audit_write procedure. The
values for all parameters are user-defined and are recorded in the audit log when the
event is fired.

 Table 3-7. sp_audit_write Parameters

 Parameter Description

 @user_defined_event_id Specifies the id of the user-defined event.

 @succeeded Specifies if the event was successful.

 • 0 indicates that the event failed
 • 1 indicates that the event succeeded

 @user_defined_ information Specifies the description of the event.

 The sp_audit_write procedure can be called from a code module, such as a stored
procedure or trigger. In our scenario, the table is updated from ad hoc SQL within the
Sales application, so you call the sp_audit_write procedure from inside a DML (data
manipulation language) trigger. Listing 3-7 demonstrates how to create the trigger.

 ■ Caution DML triggers can cause a negative performance impact if they are created
against a table that has many writes. They should be used with caution and performance
characteristics should be assessed before being implemented in a production environment.

 Listing 3-7. Create a Trigger to Fire the Event

 CREATE TRIGGER FireCustomEvent
 ON Person.Person
 AFTER INSERT
 AS
 BEGIN
 IF (SELECT COUNT(*) FROM Inserted) > 5
 BEGIN
 EXEC sys.sp_audit_write 1, 1, 'More than 5 items order' ;
 END
 END ;

CHAPTER 3 ■ SQL SERVER AUDIT

53

 Summary
 SQL Server Audit provides DBAs with a flexible and lightweight auditing mechanism.
This is important for avoiding issues of non-repudiation when privileged users perform
unauthorized actions.

 An audit object is used to configure the target. It is also used to specify the behaviors
of the audit, such as what should happen if SQL Server Audit fails to write an event to the
audit log. Multiple audits can exist on an instance.

 Server audit specifications and database audit specification are used to define
which events should be audited. Multiple server audit specifications and database audit
specifications can be associated with a single audit.

 SQL Server Audit is made extensible by the USER_DEFINED_AUDIT_GROUP audit action
group. This action group enables custom events to be fired. Custom events are triggered
by calling the sp_audit_write system stored procedure. This procedure can be called
from a code module, such as a stored procedure or trigger; it also allows DBAs to capture
events that are specific to their environments. They cannot capture through out-of-the-box
functionality.

55© Peter A. Carter 2016
P. A. Carter, Securing SQL Server, DOI 10.1007/978-1-4842-2265-2_4

 CHAPTER 4

 Data-Level Security

 Below the principal hierarchy, SQL Server provides a rich set of functionality for securing
data. This chapter discusses the appropriate use of schemas, ownership chaining,
impersonation, row-level security, and dynamic data masking.

 ■ Note Row-Level Security and dynamic data masking are new features of SQL
Server 2016.

 Schemas
 Schemas provide a logical namespace for database objects. They also provide a layer of
abstraction between objects and their owners. Every object within a database must be
owned by a database user. In much older versions of SQL Server, this ownership was
direct. In other words, a user named Luan could have owned ten individual tables. From
SQL Server 2005 onward, however, this model has changed so that Luan now owns a
schema, and the ten tables reside within the schema—meaning that Luan implicitly owns
the ten tables.

 This abstraction simplifies changing the ownership of database objects; in this
example, to change the owner of the ten tables from Luan to Paul, you need to change the
ownership of a single artifact (the schema) as opposed to changing the ownership of all
ten tables.

 Well-defined schemas can also help simplify the management of permissions,
because you can grant a principal the permissions on a schema, as opposed to the
individual objects within that schema. For example, assume that you have five sales-
related tables: SalesOrdersHeader , SalesOrderDetails , SalesPerson , Stores , and
 Customers . If you put all five tables within a single schema named Sales , you would then
be able to assign the SELECT , UPDATE , and INSERT permissions on the Sales schema to a
database role, which contains the sales team’s database users. Assigning permissions to
an entire schema does not just affect tables, however. For example, granting SELECT on
a schema also gives a user the permissions to run SELECT statements against all views
within the schema. Granting the EXECUTE permission on a schema grants EXECUTE on all
procedures and functions within the schema. For this reason, well-designed schemas
group tables by business rules, as opposed to technical joins.

CHAPTER 4 ■ DATA-LEVEL SECURITY

56

 Consider the AdventureWorks2016 database, specifically the SalesOrderHeader ,
 SalesOrderDetail , SalesPerson , Employee , and Person tables. Figure 4-1 is a partial
database diagram of the AdventureWorks2016 database, which shows that these tables
are physically joined with primary key and foreign key constraints. Even though the
tables are physically joined, it would not be sensible to place the SalesOrderHeader or
 SalesOrderDetails tables in the same schema as the Employee or Person tables, because
salespeople are unlikely to be authorized to see employee information. Instead, the only
tables in the Sales schema should be the SalesOrderHeader , SalesOrderDetail , and
 SalesPerson tables. Indeed, this aligns with the actual design of the AdventureWorks2016
database.

 Figure 4-1. Partial database diagram

 Listing 4-1 demonstrates how to create a schema called Chapter4 in the
AdventureWorks2016 database. It then assigns the user Danni, SELECT permission to the
schema.

CHAPTER 4 ■ DATA-LEVEL SECURITY

57

 Listing 4-1. Create a New Schema

 USE AdventureWorks2016
 GO

 CREATE SCHEMA Chapter4 ;
 GO

 GRANT SELECT ON SCHEMA::Chapter4 TO Danni ;
 GO

 To change a table’s schema post creation, use the ALTER SCHEMA TRANSFER
statement, as demonstrated in Listing 4-2 . This script creates a table without specifying a
schema, which means that it is automatically placed in the dbo schema. It is then moved
to the Chapter4 schema.

 Listing 4-2. Transfer an Object to a Different Schema

 USE AdventureWorks2016
 GO

 CREATE TABLE ChangeSchema
 (
 ID int
) ;
 GO

 ALTER SCHEMA Chapter4 TRANSFER dbo.ChangeSchema ;
 GO

 Ownership Chaining
 SQL Server 2016 offers an implementation of row-level security, which is discussed in the
“Row-Level Security” section of this chapter. In previous versions of SQL Server, however,
row-level security could be rather tricky to implement. The standard way to implement
row-level security was to use views or procedures, which limited the amount of data that
was returned. Users can be granted permissions to the procedures and views, which form
an abstraction layer, without granting the user permissions to the underlying tables .

 This method works because of a concept called ownership chaining . When multiple
objects are called sequentially by a query, SQL Server regards them as a chain. When you
are chaining objects together, the permissions are evaluated differently, depending on the
principal that owns the schema(s) in which the objects reside.

 For example, imagine that you have a view named View1 , which is based on two
tables: Table1 and Table2 . If all three of these objects share the same owner, then when
a SELECT statement is run against the view, the caller’s permissions on the view are
evaluated, but their permissions on the underlying tables are not.

CHAPTER 4 ■ DATA-LEVEL SECURITY

58

 This means that if you want to grant UserB the SELECT permissions on specific rows
within Table1 , then you can create a view that stores a query that returns the rows that
this user is permitted to see. At this point, the user can run a SELECT statement from the
view, as opposed to the base table. As long as he has SELECT permission on the view and
the view shares an owner with the base table(s), then his permissions on the underlying
table are not evaluated and the query succeeds. This is represented in Figure 4-2 .

 Figure 4-2. Successful ownership chain

 The ownership chain is broken in the event that one of the objects that the view
is based on does not have the same owner as the view. In this scenario, permissions
on the underlying table are checked by SQL Server, and an error is returned if the user
does not have appropriate permissions to the underlying table. This is illustrated in
Figure 4-3 .

CHAPTER 4 ■ DATA-LEVEL SECURITY

59

 ■ Caution It is important to note that ownership chains lead to DENY assignments being
bypassed. This is because neither the GRANT or DENY assignments of the user are evaluated.

 Impersonation
 Impersonation refers to the practice of executing T-SQL statements or code modules
under the context of a different security principal. This helps you to enforce the principal
of least privilege by assigning fewer permissions to users, but elevating those permissions
at the point when a section of code is executed.

 In SQL Server, impersonation can be implemented through the EXECUTE AS clause.
The EXECUTE AS clause can be placed in the header of a stored procedure, function,
or DML trigger. EXECUTE AS can also be used during a session to change the security
context. Table 4-1 describes the context specifications that can be specified when using
 EXECUTE AS .

 Figure 4-3. Broken ownership chain

CHAPTER 4 ■ DATA-LEVEL SECURITY

60

 Table 4-2 explains the usage of each of the context specifications.

 Table 4-1. EXECUTE AS Context Specifications

 Usage Context Specification

 Session • LOGIN
 • USER

 Procedures, functions and DML triggers • CALLER
 • SELF
 • OWNER
 • USER

 Database-level DDL triggers • CALLER
 • SELF
 • USER

 Server-level DDL triggers • CALLER
 • SELF
 • LOGIN

 Queues • CALLER
 • SELF
 • USER

 Table 4-2. Context Specification Usage

 Context Specification Description

 CALLER The code executes under the original context. This is the
default behavior for all modules, except queues.

 SELF The code executes under the context of the principal that
created or last altered the module.

 OWNER The code executes under the context of the principal that
owns the module or the schema in which the module resides.

 USER The code executes under the context of a specific database
user.

 LOGIN The code runs under the context of a specific login.

 The script in Listing 4-3 demonstrates the EXECUTE AS functionality by using a
system function named SUSER_SNAME() . This function returns the name of a login from a
SID that is passed a parameter. If no parameter is passed, then it returns the name of the
login of the current security context.

CHAPTER 4 ■ DATA-LEVEL SECURITY

61

 Listing 4-3. Change Security Context

 --Execute under current security context
 SELECT SUSER_SNAME() ;

 --Switch to the context of Danni
 EXECUTE AS USER = 'Danni' ;

 --Execute under Danni's security context
 SELECT SUSER_NAME() ;

 The results of this query are shown in Figure 4-4 . As you can see, the first query
ran under the context of my login. After using the EXECUTE AS statement, however, the
security context changed to Danni.

 Figure 4-4. Results of change security context query

 To revert back to the original security context, the code must use the REVERT
statement. If no REVERT statement is supplied in the code, then the code continues to run
under the modified context until the end of the session or code module.

 ■ Caution The user that creates the code module that contains the EXECUTE AS clause,
or the user executing the ad hoc SQL within a session using the EXECUTE AS clause, must
have the IMPERSONATE permission on the security context that the code runs under.

 Row-Level Security
 Implemented in SQL Server 2016, Row-Level Security (RLS) allows DBAs to simplify the
management of fine-grain security by providing an out-of-the-box technology. In many
cases, security is implemented in the middle tier and the application connects to SQL
Server using a single login. RLS can also assist with improving architectural principals by
pushing logic and security to the back end.

CHAPTER 4 ■ DATA-LEVEL SECURITY

62

 RLS is implemented through a security policy and security predicates. The following
sections introduce each of these concepts before demonstrating how the technology
could be implemented in the AdventureWorks2016 database.

 Security Predicates
 A security predicate is a function that is applied to a result set to determine which rows
can be returned or modified by the user accessing the data. The functions are inline
table-valued functions that must be created by the DBA. There are two types of security
predicates that can be implemented: filter predicates and block predicates .

 Filter predicates filter the rows that are returned to a user when they query a table
or view. This type of predicate is silent, meaning that the user or application is given no
indication that rows have been filtered from the result set. Filter predicates affect SELECT ,
 UPDATE , and DELETE statements.

 Unlike filter predicates, block predicates return an error if they are violated. This
type of predicate explicitly blocks INSERT , UPDATE , and DELETE statements, which violate
the predicate. For UPDATE statements, block predicates can be defined as BEFORE or
 AFTER . When defined as BEFORE , the predicate is applied based on the original value.
When defined as AFTER , the predicate is applied based on the value of a tuple after the
 UPDATE statement has been applied. As you would expect, if the predicate is for an INSERT
statement, then AFTER is the only option, and if the predicate is for a DELETE statement,
 BEFORE is the only option.

 It is a good idea to create a new schema in which to place your security predicates.
This is because any user should be able to access the functions, and placing the RLS
objects in a separate schema makes it easy to manage these permissions.

 When creating the function, it is also a good idea to use SCHEMABINDING . This is
because any function calls or joins to other tables can be made without additional
permission configuration. If you do not use SCHEMABINDING , then SELECT or EXECUTE
permissions are required on the referenced objects by users calling the security predicate.

 ■ Note If you use SCHEMABINDING , then it is not possible to alter the columns in the table
or view that are referenced by the security predicate.

 Security Policies
 A security policy binds the security predicate(s) to tables and views. It is the security
policy that invokes the security predicate and specifies how the predicate should be used
(filter, block before, block after).

 A security policy can be created using the CREATE SECURITY POLICY statement.
Table 4-3 describes the arguments that can be specified when creating a security policy .

CHAPTER 4 ■ DATA-LEVEL SECURITY

63

 Implementing RLS
 This section discusses how RLS can be implemented. Imagine that you are required
to allow managers to view information in the HumanResources.Employee table of the
AdventureWorks2016 database. The challenge using traditional permission assignments,
however, is that they should only be able to view the information on employees who
report to them (either directly or indirectly) .

 You can achieve this using RLS, first by creating a security predicate and a security
policy. The security predicate defines which rows are accessible by a user based on the
 OrganizationNode column of the table.

 ■ Tip The OrganizationNode column of the HumanResources.Employee table uses
the HierarchyID data type. HierarchyID is a complex data type implemented through CLR;
it was first implemented in SQL Server 2008. It exposes a variety of methods to assess a
row’s level of the hierarchy. A full method reference for the HierarchyID data type can be
found at https://msdn.microsoft.com/en-us/library/bb677193.aspx .

 Table 4-3. CREATE SECURITY POLICY Arguments

 Argument Description

 schema_name.security_policy_
name

 The name assigned to the security policy and the
schema in which it should be created.

 ADD Specifies if the predicate should be FILTER or
 BLOCK .

 PREDICATE The two-part name of the security predicate.

 column_name | expression The column name or expression used as the input
parameter for the security predicate.

 table_schema.table_name The two-part name of the target table to which the
security policy is applied.

 block_DML_operations If the ADD argument set to BLOCK , then the DML
operations to block is defined.

 STATE Specifies whether the security policy is enabled on
creation.

 SCHEMABINDING Specifies whether security predicates that are
bound to the security policy must be created with
 SCHEMABINDING .

 NOT FOR REPLICATE Specifies that the security policy should not be
executed when a replication agent modifies the
target object.

https://msdn.microsoft.com/en-us/library/bb677193.aspx

CHAPTER 4 ■ DATA-LEVEL SECURITY

64

 The first step is to create the security predicate. Listing 4-4 is code used to write such
a predicate function. Notice that before creating the predicate function, the script creates
a new schema, called Security , in which the function resides. This is in line with the best
practices described in the “Security Predicates” section.

 Listing 4-4. Create a Security Predicate

 USE AdventureWork2016
 GO

 CREATE SCHEMA Security ;
 GO

 ALTER FUNCTION Security.fn_securitypredicate(@OrganizationNode HIERARCHYID)
 RETURNS TABLE
 WITH SCHEMABINDING
 AS
 RETURN SELECT 1 AS fn_securitypredicate_result
 FROM HumanResources.Employee e1
 WHERE @OrganizationNode.IsDescendantOf(OrganizationNode) = 1
 AND LoginID = 'adventure-works\' + SUSER_SNAME() ;
 GO

 You now need to create the security policy. This is demonstrated in Listing 4-5 .

 Listing 4-5. Create a Security Policy

 CREATE SECURITY POLICY Security.EmployeeSecurityPolicy
 ADD FILTER PREDICATE Security.fn_securitypredicate(OrganizationNode) ON
HumanResources.Employee
 WITH (STATE=ON, SCHEMABINDING=ON) ;

 If you were now to run the script in Listing 4-6 , only employees who report to
Roberto are returned.

 Listing 4-6. Test the RLS

 EXECUTE AS USER = 'Roberto0'
 SELECT * FROM HumanResources.Employee ;
 REVERT

 The results of this query are illustrated in Figure 4-5 .

CHAPTER 4 ■ DATA-LEVEL SECURITY

65

 Dynamic Data Masking
 Dynamic data masking is a technology that was introduced in SQL Server 2016 that
allows non-privileged users to see only a subset of an atomic value stored within a tuple.
For example, imagine a call center for a credit card company. For data protection, the call
center operatives are not authorized to see an entire credit card number. They need to
identify the customer, however, and one of the questions used for the security checks is
the last four numbers of the credit card number.

 In this scenario, dynamic data masking could be used on the credit card number
column so that all but the last four digits are obfuscated. This can help improve
application architecture by pushing code from the middle tier to the back end, which
improves reusability and reduces resource consumption in the middle tier.

 Table 4-4 describes the dynamic masking functions that are available in SQL Server
2016.

 Figure 4-5. RLS rest results

 Table 4-4. Dynamic Data Masking Functions

 Function Supported Data Types Description

 default char, nchar, varchar, nvarchar,
text, ntext, bigint, bit, decimal,
int, money, numeric, smallint,
smallmoney, tinyint, float,
real, date, datetime2, datetime,
datetimeoffset, smalldatetime,
time, binary, varbinary, image

 Fully masks a value. The type
of masking depends on the
data type of the value.

 partial char, nchar, varchar, nvarchar Accepts a prefix, a masking
value, and a suffix.

 email char, nchar, varchar, nvarchar Reveals only the first letter
of the e-mail address, the
 @ symbol, and the domain
suffix.

 random bigint, decimal, int, numeric,
smallint, smallmoney, tinyint,
float, real

 Replaces a value with a
random value from within a
specified range.

CHAPTER 4 ■ DATA-LEVEL SECURITY

66

 Dynamic data masking can be implemented by using the MASKED WITH syntax in
either a CREATE TABLE or an ALTER COLUMN statement. For example, the statement in
Listing 4-7 adds a mask to the Sales.CreditCard table in the AdventureWorks2016
database so that users only see the last four digits of credit card numbers when the
 CardNumber column is queried.

 Listing 4-7. Add a Data Mask

 USE AdventureWorks2016
 GO

 ALTER TABLE Sales.CreditCard
 ALTER COLUMN CardNumber ADD MASKED WITH (FUNCTION = 'partial(0,"XXXX-XXXX-
XXXX-",4)');

 Let’s take a look at dynamic data masking in action. Let’s assume that the user brian3
has SELECT privileges to the Sales.CreditCard and runs the query shown in Listing 4-8 .

 Listing 4-8. Query the Sales.CreditCard Table

 EXECUTE AS USER = 'brian3' ;
 SELECT TOP 10
 CreditCardID
 ,CardType
 ,CardNumber
 ,ExpMonth
 ,ExpYear
 ,ModifiedDate
 FROM Sales.CreditCard ;
 REVERT

 The results of this query are shown in Figure 4-6 .

 Figure 4-6. Results of masked query

CHAPTER 4 ■ DATA-LEVEL SECURITY

67

 To reveal the full value, users must be granted the UNMASK permission. For example,
imagine that user brian3 was granted the UNMASK permission, as demonstrated in Listing 4-9 .
The user is now able to see the whole value of the credit card number.

 Listing 4-9. Grant the UNMASK Permission

 GRANT UNMASK TO brian3 ;

 Summary
 SQL Server provides a rich suite of functionality for assisting in the management of data
level security. Schemas provide a namespace for objects. When organized by business
area (as opposed to technical relationship), they can simplify the administration of
security, because it allows you to assign permissions based on business role.

 Each new version of SQL Server introduces new security features—and SQL Server
2016 is no exception. Row-Level Security (RLS) introduces the ability to restrict the rows
within a table based on a user’s security attributes, such as username or session context.

 Dynamic data masking allows non-privileged users to see a partially obfuscated
value rather than the full value within a column. For example, a call center operative can
see only the last four digits of a customer’s credit card number, as opposed to the full
number.

69© Peter A. Carter 2016
P. A. Carter, Securing SQL Server, DOI 10.1007/978-1-4842-2265-2_5

 CHAPTER 5

 Encryption in SQL Server

 Encryption is a process of obfuscating data with the use of an algorithm that uses keys
and certificates. This means that if security is bypassed and data is accessed or stolen by
attackers, then it is useless, unless the keys that were used to encrypt it are also acquired.
This adds an additional layer of security over and above access control, but it does not
replace the requirement for an access control strategy. Encrypting data also has the
potential to degrade performance and increase the size of data, so you should use it on
the basis of need, as opposed to implementing it on all data as a matter of routine.

 This chapter begins with an overview of encryption concepts. You then review
the SQL Server encryption hierarchy before a demonstration on how to implement
Transparent Data Encryption. The chapter also covers cell-level encryption and Always
Encrypted, a technology introduced in SQL Server 2016 that helps isolate encryption keys
from the data that they secure.

 Generic Encryption Concepts
 The following sections introduce the generic encryption concepts of symmetric keys,
asymmetric key, certificates, and the Windows Data Protection API.

 Defense-in-Depth
 Defense-in-depth is a technique used across the IT landscape. It refers to implementing
multiple layers of security. For example, a company likely has a perimeter firewall on the
outskirts of the network. There may then be further firewalls inside the network, between
data centers or network blocks. From the SQL Server perspective, defense-in-depth is
achieved by using an encryption strategy to supplement the access control strategy. It does
not replace the need for access control, but it does provide an additional layer of defense.

 Symmetric Keys
 A symmetric key is an algorithm to encrypt data. It is the weakest form of encryption
because it uses the same algorithm for both encrypting and decrypting the data. Although
it is the weakest form of encryption, it is also the method that has the least performance
overhead. You can encrypt a symmetric key with a password, with another key or with a
certificate.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

70

 Asymmetric Keys
 Unlike a symmetric key, which uses the same algorithm to decrypt or encrypt data, an
 asymmetric key uses a pair of keys (algorithms). One of the keys is used only for encryption
and the other is used only for decryption. The key that is used to encrypt the data is called
the private key and the key that is used to decrypt the data is known as the public key .

 Certificates
 A certificate is issued by a trusted source, known as a certificate authority (CA) . It uses an
asymmetric key, but also provides a digitally signed statement that binds the public key to
a principal or device, which holds the corresponding private key.

 Self-Signed Certificates
 A self-signed certificate is a certificate that has been signed by the same entity that its
identity certifies. Self-signed certificates can be created by SQL Server.

 Windows Data Protection API
 The Windows Data Protection API (DPAPI) is a cryptographic application programming
interface (API) that ships with the Windows operating system. It allows keys to be
encrypted by using user secret information or domain secret information. DPAPI is used
to encrypt the service master key, which is the top level of the SQL Server encryption
hierarchy. The service master key is discussed in the “SQL Server Encryption Concepts”
section of this chapter.

 SQL Server Encryption Concepts
 SQL Server’s cryptography functionality relies on a hierarchy of keys and certificates.
The root level of the hierarchy is the service master key. The following sections describe
the use of master keys and EKM (Extensible Key Management), as well as SQL Server’s
encryption hierarchy.

 Master Keys
 The root level of the SQL Server encryption hierarchy is the service master key. The
service master key is created automatically when the instance is built. It is used to encrypt
database master keys, credentials, and the passwords for linked servers by using the
DPAPI. The service master key is stored in the master database. There is always one
service master key per instance. Since SQL Server 2012, the service master key has been a
symmetric key generated using the AES 256 algorithm. Older versions of SQL Server used
the Triple DES algorithm.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

71

 ■ Tip When you upgrade an instance from SQL Server 2008 R2 or lower, it is good practice
to regenerate the key due to the encryption algorithm used in SQL Server 2012 and higher.

 If you need to regenerate the service master key, then all keys within the instance’s
encryption hierarchy must be decrypted and then re-encrypted. This means that every
key and certificate that is encrypted directly or indirectly from the master key must be
regenerated. This is a very resource-intensive process and should only be attempted
during a maintenance window .

 You can regenerate the service master key using the command in Listing 5-1 . You
should be aware that if the process fails to decrypt and re-encrypt any key that is below it
in the hierarchy, then by default, the whole regeneration process fails. You can change this
behavior by using the FORCE keyword, which forces the process to continue after errors.

 ■ Caution Be warned that using the FORCE keyword leaves any data that cannot be
decrypted and re-encrypted unusable. There is no way to regain access to this data.

 Listing 5-1. Regenerate the Service Master Key

 ALTER SERVICE MASTER KEY REGENERATE ;

 Because the service master key is crucial, it is very important to back it up after
building a new instance and after the key is regenerated. You should then store the backup
in a secure offsite location, so that it is available in disaster recovery scenarios. You can also
restore the backup of this key when you migrate an instance to a different server to avoid
issues with the encryption hierarchy. The script in Listing 5-2 demonstrates how to back
up and restore the service master key. If the master key you restore is identical, then SQL
Server lets you know and data does not need to be decrypted and re-encrypted.

 ■ Tip If your instance does not use any encryption features, then a backup of the service
master key is not required.

 Listing 5-2. Back up and Restore the Service Master Key

 --Backup Service Master Key

 BACKUP SERVICE MASTER KEY
 TO FILE = 'c:\keys\service_master_key'
 ENCRYPTION BY PASSWORD = 'Pa$$w0rd' ;

 --Restore Service Master Key

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

72

 RESTORE SERVICE MASTER KEY
 FROM FILE = 'c:\keys\service_master_key'
 DECRYPTION BY PASSWORD = 'Pa$$ w0rd ' ;

 ■ Tip service_master_key is the name of the key file, not a folder. By convention,
it does not have an extension. If you are following along with the demonstrations, then
remember to change the filepath to match your own configuration.

 A database master key is a symmetric key, encrypted using the AES 256 algorithm.
The service master key is used to encrypt private keys and certificates that are stored
within a database. It is encrypted using a password as the secret; but a copy is created,
which is encrypted using the service master key. This allows the service master key to be
opened automatically when required. If this copy does not exist, then you need to open it
manually.

 If the copy does not exist or is corrupt, the key needs to be explicitly opened in order
for you to use a key that is below it in the hierarchy (a key that has been encrypted, using
the service master key). Copies of the service master key are stored within the database
and the master database.

 It is as important to back up a service master key as it is to back up a service
master key, because losing the key results in data loss for any data that is below it in
the encryption hierarchy. In some cases, this could be an entire database. The script in
Listing 5-3 demonstrates how to create a service master key for the AdventureWorks2016
database. It then backs up the key and attempts to restore it. The FORCE keyword can
be used for service master keys in the same way it can be used for a service master key.
This keyword forces the decrypt and re-encrypt process to continue on error. There is a
possibility of data loss, however.

 ■ Tip If you are following along with the examples, remember to change the filepath to
match your own configuration.

 Listing 5-3. Administering a Database Master Key

 USE AdventureWorks2016
 GO

 CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd' ;

 BACKUP MASTER KEY TO FILE = 'c:\keys\Chapter5_master_key'
 ENCRYPTION BY PASSWORD = 'Pa$$w0rd';

 RESTORE MASTER KEY
 FROM FILE = 'c:\keys\Chapter5_master_key'

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

73

 DECRYPTION BY PASSWORD = 'Pa$$w0rd' --The password in the backup file
 ENCRYPTION BY PASSWORD = 'Pa$$w0rd' ; --The password it will be encrypted
within the
 database

 EKM and Key Stores
 An Extensible Key Management (EKM) module allows you to generate and manage keys
and certificates used to secure SQL Server data within a third-party hardware security
module (HSM) . The EKM module provides the interface with SQL Server by using the
 Microsoft Cryptographic API (MS-CAPI) . This is more secure because the key is not being
stored with the data. It also means that you can benefit from advanced features that may
be offered by a third-party vendor, such as key rotation and secure key disposal. When
using an HSM, you may also witness improved performance because the encryption and
decryption of keys are hardware-based.

 Key stores provide secure storage and a trusted source for keys and certificates.
Windows Certificate Store provides the functionality within your own Windows Server
enterprise. Azure Key Vault offers key storage within Windows Azure. There are also
third-party and open source key store providers, such as Amazon Key Management
Services (which is a service within the Amazon Web Services ecosystem), KeyWhiz,
and Vault, to name but a few.

 SQL Server Encryption Hierarchy
 Figure 5-1 illustrates the encryption hierarchy in SQL Server.

 Figure 5-1. SQL Server encryption hierarchy

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

74

 Encrypting Data
 Data can be encrypted in SQL Server by using either a password or the encryption
hierarchy. The following sections discuss each of these approaches.

 Encrypting Data with a Password or a Passphrase
 The most basic level of encrypting data in SQL Server is the ENCRYPTBYPASSPHRASE()
function, which allows you to encrypt data by directly using a password or a passphrase,
rather the SQL Server encryption hierarchy.

 To illustrate this, let’s look at the Sales.CreditCard table in the AdventureWorks2016
database. This table stores information on customers’ credit card information in plain
text, which is not a great idea from a security perspective and it may also be against
regulatory requirements on data protection.

 Imagine that the company’s compliance department has noticed this issue during an
audit and has tasked you with encrypting the credit card number column. To encrypt this
column, you need to perform the following tasks:

• Create a new column of type VARBINARY

• Encrypt the values in the CardNumber column and insert them
into the new column

• Drop the original column

• Update queries and ETL processes to use the new column

 ■ Tip If you have been following the examples in previous chapters, then you should
remove dynamic data masking from the CardNumber column before continuing. This can be
achieved with the script in Listing 5-4 .

 Listing 5-4. Drop Dynamic Data Mask

 USE AdventureWorks2016
 GO

 ALTER TABLE Sales.CreditCard
 ALTER COLUMN CardNumber DROP MASKED ;

 The first task is to add a new column to the table. This can be achieved using the
script in Listing 5-5 . Because the column initially has no values and there is no DEFAULT
constraint, you should allow NULL values. This can be changed once the column is
populated.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

75

 Listing 5-5. Add a New Column to Hold the Encrypted Credit Card Numbers

 USE AdventureWorks2016
 GO

 ALTER TABLE Sales.CreditCard ADD
 CardNumberEncrypted varbinary(8000) NULL ;

 The next task is to populate the new column. To achieve this, encrypt the values
of the CardNumber column, using the ENCRYPTBYPASSPHRASE() function. This function
accepts the parameters described in Table 5-1 .

 Table 5-1. ENCRYPTBYPASSPHRASE() Parameters

 Parameter Description

 passphrase The password or phrase to generate a symmetric key.

 cleartext The value to be encrypted.

 add_authenticator Specifies if an authenticator should be used.

 authenticator The value to be used to derive an authenticator.

 The script in Listing 5-6 demonstrates how the CardNumberEncrypted column can
be populated.

 Listing 5-6. Populate the Encrypted Column

 UPDATE Sales.CreditCard
 SET CardNumberEncrypted = ENCRYPTBYPASSPHRASE('Pa$$w0rd', CardNumber, 0) ;

 You can now set the CardNumberEncrypted column to not allow NULL values and to
drop the original column. This is demonstrated in Listing 5-7 .

 ■ Tip Do not run the script in Listing 5-7 if you plan to follow further examples in this
chapter, because you are reusing the CardNumber column.

 Listing 5-7. Set Encrypted Column NOT NULL and Drop Original Column

 --Set CardNumberEncrypted column to be NOT NULL
 ALTER TABLE Sales.CreditCard
 ALTER COLUMN CardNumberEncrypted VARBINARY(256) NOT NULL ;

 --Do not run following section, if you plan to follow later examples

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

76

 DROP INDEX AK_CreditCard_CardNumber ON Sales.CreditCard ;
 GO

 ALTER TABLE Sales.CreditCard
 DROP COLUMN CardNumber ;

 Changing ETL processes and queries depends on how your database is being used,
of course. The AdventureWorks2016 database is an OLTP database, so it is likely that
credit card numbers are updated either by salespeople, or by customers directly, as
opposed to via ETL process. There may be downstream ETL processes, however, which
move the data into a data warehouse or archived database.

 Let’s assume that there is a stored procedure that was previously used to return
customers’ credit card information from a web portal. This fictional stored procedure is
shown in Listing 5-8 . Assume that the user’s BusinessEntityID has been determined
elsewhere in the front-end app based upon login information.

 Listing 5-8. Return Credit Card Information

 CREATE PROCEDURE ReturnCredCardInfo @BusinessEntityID INT
 AS
 BEGIN
 SELECT p.BusinessEntityID, p.firstName, p.LastName, cc.CardNumber,
cc.CardType, cc.ExpMonth, cc.ExpYear
 FROM Person.Person p
 INNER JOIN Sales.PersonCreditCard pcc
 ON p.BusinessEntityID = pcc.BusinessEntityID
 INNER JOIN Sales.CreditCard cc
 ON pcc.CreditCardID = cc.CreditCardID
 WHERE p.BusinessEntityID = @BusinessEntityID ;
 END

 To work with the new, encrypted column, you need to modify the stored procedure
to use the DECRYPTBYPASSPHRASE() function. This function accepts the parameters
described in Table 5-2 .

 Table 5-2. DECRYPTBYPASSPHRASE() Parameters

 Parameter Description

 passphrase The password or phrase to decrypt the data.

 ciphertext The value to be decrypted.

 add_authenticator Specifies whether an authenticator is required to decrypt the
data.

 authenticator The authenticator data.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

77

 The script in Listing 5-9 demonstrates how to rewrite the procedure. Note that in
addition to decrypting the column, you must also convert the result back to an NVARCHAR
value for meaningful results to be returned. You know that 25 characters is sufficient for
the NVARCHAR value, because it is the length of the original CardNumber column.

 Listing 5-9. Modify the Procedure to Work with the Encrypted Column

 ALTER PROCEDURE ReturnCredCardInfo @BusinessEntityID INT
 AS
 BEGIN
 SELECT p.BusinessEntityID
 , p.firstName
 , p.LastName
 , CONVERT(NVARCHAR(25),
 DECRYPTBYPASSPHRASE('Pa$$w0rd',cc.
CardNumberEncrypted, 0)
)
 , cc.CardType
 , cc.ExpMonth
 , cc.ExpYear
 FROM Person.Person p
 INNER JOIN Sales.PersonCreditCard pcc
 ON p.BusinessEntityID = pcc.BusinessEntityID
 INNER JOIN Sales.CreditCard cc
 ON pcc.CreditCardID = cc.CreditCardID
 WHERE p.BusinessEntityID = @BusinessEntityID ;
 END

 This approach still leaves a security hole, however. The data is decrypted by the
application, so although the user may not have the permissions to see some data, all
of the data is decrypted. This is appropriate in some scenarios, such as when a sales
team manages credit card information and customers do not have direct access to the
 application .

 Imagine a scenario, however, where you want users to be able to manage their own
credit card information. In this instance, you might want to ensure that all data remains
encrypted, except for a user’s own credit card number.

 To implement this strategy, when a user inputs his credit card information, it is
encrypted using the password that the customer uses to log in to the application. The
front-end application can simply pass the credit card number and the user’s password
to a stored procedure, via parameters. Listing 5-10 describes two stored procedures.
The first can be used by the front-end application to add a new credit card. The
second returns the credit card number. Notice that the ENCRYPTBYPASSPHRASE() and
 DECRYPTBYPASSPHRASE() functions accept variables as parameters, as well as hard-coded
strings.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

78

 Listing 5-10. Encrypt and Decrypt Data Based Upon a User’s Password

 USE AdventureWorks2016
 GO
 CREATE PROCEDURE dbo.AddCreditCard
 @BusinessEntityID INT
 ,@
CreditCardNumber NVARCHAR(25)
 ,@
CardType NVARCHAR(50)
 ,@ExpMonth TINYINT
 ,@ExpYear SMALLINT
 ,@
Password NVARCHAR(128)
 AS
 BEGIN
 DECLARE @CreditCardID INT ;
 BEGIN TRANSACTION
 INSERT INTO Sales.CreditCard
 (CardType ,
 ExpMonth ,
 ExpYear ,
 ModifiedDate,
 CardNumberEncrypted
)
 VALUES (@CardType,
 @ExpMonth,
 @ExpYear,
 SYSDATETIME(),
 ENCRYPTBYPASSPHRASE(@Password, @
CreditCardNumber, 0)
) ;
 SET @CreditCardID = @@IDENTITY ;

 INSERT INTO Sales.PersonCreditCard
 (BusinessEntityID ,
 CreditCardID ,
 ModifiedDate
)
 VALUES (@BusinessEntityID,
 @CreditCardID,
 SYSDATETIME()
) ;
 COMMIT
 END
 GO

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

79

 CREATE PROCEDURE ReturnCredCardInfo
 @BusinessEntityID INT
 ,@
Password NVARCHAR(128)
 AS
 BEGIN
 SELECT
 CONVERT(NVARCHAR(25), DECRYPTBYPASSPHRASE(@Password,cc.
CardNumberEncrypted, 0)) AS CreditCardNumber
 FROM Person.Person p
 INNER JOIN Sales.PersonCreditCard pcc
 ON p.BusinessEntityID = pcc.BusinessEntityID
 INNER JOIN Sales.CreditCard cc
 ON pcc.CreditCardID = cc.CreditCardID
 WHERE p.BusinessEntityID = @BusinessEntityID ;
 END
 GO

 Encrypting Data with Keys and Certificates
 When encrypting data using the SQL Server encryption hierarchy, data can be encrypted
using a symmetric key, an asymmetric key, or a certificate. Table 5-3 describes the
functions that are exposed by SQL Server for encrypting and decrypting data using keys
and certificates.

 ■ Tip Keys and certificates within the hierarchy can be encrypted using further keys and
certificates.

 Table 5-3. Cryptographic Functions

 Encryption Type Encryption Function Decryption Function

 Symmetric ENCRYPTBYKEY() DECRYPTBYKEY()

 Asymmetric ENCRYPTBYASYKEY() DECRYPTBYASYKEY()

 Certificate ENCRYPTBYCERT() DECRYPTBYCERT()

 ■ Tip For performance reasons, you should always use a symmetric key, unless there is
a very good reason (usually a regulatory requirement) not to.

 To demonstrate how to encrypt data using a symmetric key, you first create a
certificate. You then create a symmetric key, which is encrypted using this new certificate,
in the AdventureWork2016 database. Next, you update the CreditCardNumberEncrypted
column so that the credit card numbers are encrypted using this symmetric key, as
opposed to a passphrase.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

80

 The CREATE CERTIFICATE T-SQL statement accepts the arguments described in
Table 5-4 when being used to generate a new key .

 Table 5-4. CREATE CERTIFICATE Arguments

 Argument Description

 AUTHORIZATION Specifies the owner of the certificate.

 ACTIVE FOR BEGIN_DIALOG Specifies if the certificate can be used to initiate a
Service Broker conversation.

 ENCRYPTION BY PASSWORD Specifies the password that is used to encrypt the
certificate’s private key.

 WITH SUBJECT Specifies a subject for the certificate.

 START_DATE Specifies a date on which the certificate becomes
valid.

 EXPIRY_DATE Specifies a date on which the certificate expires, after
which it is no longer valid.

 Table 5-5. CREATE SYMMETRIC KEY Arguments

 Argument Description

 AUTHORIZATION Specifies the owner of the key.

 FROM PROVIDER If the key is managed by an EKM provider, specifies the
EKM provider to use.

 KEY_ SOURCE Specifies a passphrase from which to generate the key.

 IDENTITY_VALUE Specifies a value from which to generate a GUID that can
be used for temporary tagging data that is encrypted with
a temporary key.

 PROVIDER_KEY_ NAME Specifies the name by which the key is known to the EKM
provider (if one is used).

(continued)

 ■ Tip The CREATE CERTIFICATE statement can also be used to import a certificate that
is stored within an assembly or to create a certificate that uses existing keys stored within
a file. For information on the available arguments when using these options, please refer to
 https://msdn.microsoft.com/en-us/library/ms187798.aspx .

 The CREATE SYMMETRIC KEY T-SQL statement accepts the arguments described in
Table 5-5 .

https://msdn.microsoft.com/en-us/library/ms187798.aspx

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

81

Table 5-5. (continued)

 Argument Description

 CREATION_DISPOSITION If an EKM provider is used, specifies if a new key should
be created in the EKM or if an existing key should be used.
The following are acceptable values:

 • CREATE_NEW: Specifies that a new key is created
in the EKM provider.

 • OPEN_EXISTING: Specifies that an existing key is
opened in the EKM provider.

 ENCRYPTION BY Specifies how the key is encrypted. The following are
acceptable values:

 • CERTIFICATE (followed by the name of the
certificate)

 • PASSWORD (followed by the password to use)
 • SYMMETRIC KEY (followed by the name of the

key to use)
 • ASYMMETRIC KEY (followed by the name of the

key to use)

 ALGORITHM Specifies the algorithm to encrypt the key. The following
are acceptable values:

 • DES
 • TRIPLE_DES
 • TRIPLE_DES_3KEY
 • RC2
 • RC4
 • RC4_128
 • DESX
 • AES_128
 • AES_192
 • AES_256

 The ENCRYPTBYKEY() function accepts the parameters described in Table 5-6 .

 Table 5-6. ENCRYPTBYKEY() Parameters

 Parameter Description

 key_GUID The GUID of the key that is used to encrypt the data.

 cleartext The value to be encrypted.

 add_authenticator Specifies if an authenticator should be used.

 authenticator The value to be used to derive an authenticator.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

82

 Listing 5-11 demonstrates how to create the symmetric key and use it to encrypt the
 CardNumberEncrypted column. Notice that you need to open the key before you use it.
You then close the key after you have completed the activity .

 Listing 5-11. Encrypt Data with a Symmetric Key

 USE AdventureWorks2016
 GO

 --Create the certificate
 CREATE CERTIFICATE CreditCardCert
 WITH SUBJECT = 'Credit Card Numbers';
 GO

 --Create the symmetric key
 CREATE SYMMETRIC KEY CreditCardKey
 WITH ALGORITHM = AES_128
 ENCRYPTION BY CERTIFICATE CreditCardCert;

 --Open the key
 OPEN SYMMETRIC KEY CreditCardKey
 DECRYPTION BY CERTIFICATE CreditCardCert;

 --Encrypt the data, using the symmetric key
 UPDATE Sales.CreditCard
 SET CardNumberEncrypted = ENCRYPTBYKEY(Key_GUID('CreditCardKey'),

CardNumber);

 --Close the key
 CLOSE SYMMETRIC KEY CreditCardKey ;

 Data encrypted with a symmetric key can be decrypted using the DECRYPTBYKEY()
function. This function accepts the parameters described in Table 5-7 .

 Table 5-7. DECRYPTBYKEY() Parameters

 Parameter Description

 ciphertext The value to be decrypted.

 add_authenticator Specifies if an authenticator is required to decrypt the data.

 authenticator The authenticator data.

 The script in Listing 5-12 demonstrates how to use the DECRYPTBYKEY() function to
read the CardNumberEncrypted column. Notice that you once again need to open and
close the key .

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

83

 Listing 5-12. Decrypt Data With DECRYPTBYKEY()

 USE AdventureWorks2016
 GO

 --Open the key
 OPEN SYMMETRIC KEY CreditCardKey
 DECRYPTION BY CERTIFICATE CreditCardCert;

 --Decrypt the data, using the symmetric key
 SELECT CONVERT(NVARCHAR(30), DECRYPTBYKEY(CardNumberEncrypted)) AS
CreditCardNumber
 FROM Sales.CreditCard ;

 --Close the key
 CLOSE SYMMETRIC KEY CreditCardKey ;

 Transparent Data Encryption
 When implementing a security strategy for your sensitive data, one important aspect to
consider is the risk of data being stolen. Imagine a situation in which a privileged user
with malicious intent uses detach/attach to move a database to a different instance,
which they have created and therefore have sysadmin access to. The result is the user
having permissions to data that they are not authorized to view.

 Another potential scenario to consider is a malicious user gaining access to a backup
of a database that contains data that he is not authorized to view. The user restores the
backup file to an instance that he has created and has sysadmin access, and suddenly, he
has the permissions to access the confidential data.

 Transparent Data Encryption (TDE) protects against both of these scenarios
by encrypting all data pages and the log file of a database. Data is encrypted using a
symmetric key called the database encryption key . This key is stored in the boot record of
the database and encrypted using a server certificate stored within the master database.
This means that if the database is stolen, it cannot be decrypted, because the key used to
decrypt it is stored in a different database.

 ■ Caution Obviously, if the master database or a backup of the server certificate is also
stolen, then the data could be decrypted.

 After you have enabled TDE on a database, the data and log pages are encrypted
before they are written to disk. They are decrypted when they are read into memory. This
means that the encryption is transparent to users, and applications do not need to be
modified in order to access the data.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

84

 TDE also provides several other advantages over the encryption of data within
columns. First, it does not cause bloat. A database encrypted with TDE is the same size
that it was before it was encrypted. Also, although there is performance overhead, this is
significantly less than the performance overhead that is caused cell-level encryption. The
fact that developers do not need to modify their code to use TDE is another significant
advantage in itself because it improves time-to-market (both for implementing TDE and
for future application enhancements).

 Considerations for TDE with Other Technologies
 When planning the implementation of TDE, be mindful of how it interacts with other
technologies. For example, you are able to encrypt a database that uses In-Memory
OLTP , but the data within the In-Memory filegroup is not encrypted—even when data is
persisted alongside the schema.

 ■ Tip Even though the memory optimized data is not encrypted, log records associated
with in-memory transactions are encrypted.

 It is also possible to encrypt databases that use FILESTREAM, but again, data
within a FILESTREAM filegroup is not encrypted. If you use full-text indexes, new
full-text indexes are encrypted. Existing full-text indexes are only encrypted after they
are imported during an upgrade.

 ■ Caution Using full-text indexing with TDE, is not a good practice because data is
written to disk in plain text during the full-text indexing scan operation. This leaves a
window of opportunity for attackers to access sensitive data.

 If your database is replicated, then it is important to manually enable TDE on the
subscribers. This is because replication does not automatically send the data from a TDE-
encrypted database to the subscribers in an encrypted form.

 Due to the nature of TempDB , this system database is always encrypted using TDE, if
any user database on the instance has TDE enabled. This stops potential attackers from
stealing data at rest while it is spooled to TempDB or stored in a temporary table, and so
forth. It does mean, however, that databases on the instance that are not enabled for TDE
may still notice a performance penalty, which is caused by TDE.

 TDE is incompatible with instant file initialization. Instant file initialization speeds
up operations that create or expand files, because the files do not need to be zeroed out.
If your instance is configured to use instant file initialization, then it no longer works
for any files that are associated with any databases that you encrypt with TDE. This is
because of a hard technical requirement for files to be zeroed out when TDE is enabled
on a database.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

85

 Files used by buffer cache extensions are not encrypted by TDE. If you wish to
encrypt the files associated with buffer cache extensions, then you must use system-level
encryption tooling.

 Implementing TDE
 Implementing Transparent Data Encryption involves the following steps:

 1. Create a service master key for the master database (If one
does not already exist).

 2. Create a certificate or asymmetric key in the master database .

 3. Create a database encryption key in the database that you
wish to encrypt.

 4. Alter the database to enable Transparent Database
Encryption.

 ■ Note The certificate or asymmetric key must be encrypted using the service master
key in the master database. If you encrypt the certificate by password only, then SQL Server
will not allow you to use it to encrypt the database encryption key.

 ■ Tip An asymmetric key can only be used if it is managed by an EKM.

 When you enable TDE for a database, a background process moves through each
page in every data file and encrypts it. This does not make the database inaccessible, but
it does take out locks, which stop maintenance operations from taking place. While the
encryption scan is in progress, the following operations cannot be performed:

• Dropping a file

• Dropping the database

• Taking the database offline

• Detaching a database

• Setting a database or filegroup as READ_ONLY

 The operation to enable TDE will fail if any of the filegroups within a database are
marked as READ_ONLY . This is because all pages within all files need to be encrypted when
TDE is enabled, and this process involves changing the data within the pages to obfuscate
them.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

86

 The script in Listing 5-13 follows the steps required to encrypt the
AdventureWorks2016 database. The arguments accepted by the CREATE DATABASE
ENCRYPTION KEY statement are described in Table 5-8 .

 Table 5-8. CREATE DATABASE ENCRYPTION KEY Arguments

 Argument Description

 WITH ALGORITHM Specifies the algorithm that should be used by the database
encryption key. Acceptable values are as follows:

 • AES_128
 • AES_192
 • AES_256
 • TRIPLE_DES_3KEY

 ENCRYPTION BY SERVER Specifies the certificate or asymmetric key that is used to
encrypt the database encryption key. Acceptable values are
as follows:

 • CERTIFICATE (followed by the name of the
certificate to use)

 • ASYMMETRIC KEY (followed by the name of the
asymmetric key to use)

 Listing 5-13. Encrypt the AdventureWorks2016 Database

 USE Master
 GO

 Create the Database Master Key (if it does not already exist)

 CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd';
 GO

 --Create the Server Certificate

 CREATE CERTIFICATE TDECert WITH SUBJECT = 'Certificate For TDE';
 GO

 USE AdventureWorks2016
 GO

 --Create the Database Encryption Key

 CREATE DATABASE ENCRYPTION KEY
 WITH ALGORITHM = AES_128
 ENCRYPTION BY SERVER CERTIFICATE TDECert ;
 GO

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

87

 --Enable TDE on the database

 ALTER DATABASE AdventureWorks2016
 SET ENCRYPTION ON ;
 GO

 Administering TDE
 When working with TDE-encrypted databases, there are administrative scenarios that
you should be aware of. These are discussed in the following sections.

 Backing up the Certificate
 When configuring TDE, you are given a warning that the certificate used to encrypt the
database encryption key has not been backed up. Backing up this certificate is critical and
you should do so before you configure TDE or immediately afterward. If the certificate
becomes unavailable, you have no way to recover the data within your database. You can
back up the certificate by using the script in Listing 5-14 .

 Listing 5-14. Backing up the Certificate

 BACKUP CERTIFICATE TDECert
 TO FILE = 'C:\certificates\TDECert'
 WITH PRIVATE KEY (file='C:\certificates\TDECertKey',
 ENCRYPTION BY PASSWORD='Pa$$w0rd') ;

 Migrating an Encrypted Database
 Once TDE is enabled on a database, an attempt to attach or restore the database to a new
instance will fail. Therefore, if you need to migrate a TDE-encrypted database to a new
instance, you need to take the cryptographic artifacts into account.

 Before migrating a database to a new instance, you must first create a service master
key with the same password, and then restore the server certificate and private key to the
new instance. You can restore the server certificate that you created earlier by using the
script in Listing 5-15 .

 Listing 5-15. Preparing for a Database Migration

 CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd' ;
 GO
 CREATE CERTIFICATE TDECert
 FROM FILE = 'C:\Certificates\TDECert'
 WITH PRIVATE KEY
 (
 FILE = 'C:\Certificates\TDECertKey',
 DECRYPTION BY PASSWORD = 'Pa$$w0rd'
) ;

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

88

 ■ Tip Make sure that the SQL Server service account has permissions to the certificate
and key files in the operating system; otherwise, you will receive an error stating that the
certificate is not valid, does not exist, or that you do not have permissions to it. This means
that you should check the restore immediately and periodically repeat the test.

 Always Encrypted
 Always Encrypted is a new technology introduced in SQL Server 2016. It is the first
SQL Server encryption technology that protects data against privileged users, such as
members of the sysadmin role. Because DBAs cannot view the encrypted data, Always
Encrypted provides true segregation of duties. This can help with compliance issues for
sensitive data when your platform support is outsourced to a third-party vendor. This
is especially true if you have a regulatory requirement not to make your data available
outside of your country’s jurisdiction and the third-party vendor is using offshore teams.

 Always Encrypted uses two separate types of keys: a column encryption key and
a column master key . The column encryption key is used to encrypt the data within a
column and the column master key is used to encrypt the column encryption keys.

 ■ Tip The column master key is a key or a certificate located within an external store.

 Having the second layer of key means that SQL Server needs only to store an
encrypted value of the column encryption key ; it does not need to store it in plain text.
The column master key is not stored in the database engine at all. Instead, it is stored in
an external key store. The key store used could be an HSM (hardware security module),
Windows Certificate Store, or an EKM provider, such as Azure Key Vault or Thales. SQL
Server then stores the location of the column master key within the database metadata.

 Instead of SQL Server being responsible for the encryption and decryption of
data, this responsibility is handled by the client driver. Of course, this means that the
application must be using a supported driver. See https://msdn.microsoft.com/en-gb/
library/mt147923.aspx for information on working with supported drivers.

 When an application issues a request that requires data to either be encrypted or
decrypted, the client driver liaises with the database engine to determine the location
of the column master key. The database engine also provides the encrypted column
encryption key and the algorithm used to encrypt it.

 The client driver can now contact the external key store and retrieve the column
master key, which it uses to decrypt the column encryption key. The plain text version of
the column encryption key can then be used to encrypt or decrypt the data, as required.

 The entire process is transparent to the application, meaning that changes are not
required to the application’s code in order to use Always Encrypted. The only change that
may be required is to use a later supported driver.

https://msdn.microsoft.com/en-gb/library/mt147923.aspx
https://msdn.microsoft.com/en-gb/library/mt147923.aspx

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

89

 ■ Note The client driver caches the plain text version of column encryption keys as an
optimization, which attempts to avoid repeated round trips to the external key store.

 The diagram in Figure 5-2 depicts the high-level architecture of Always Encrypted.

 Figure 5-2. Always Encrypted architecture

 Implementing Always Encrypted
 When implementing Always Encrypted, the creation of tables with encrypted columns
and the creation of key metadata are supported in T-SQL, PowerShell, or via the SSMS
GUI. Other activities, however, such as provisioning keys and the actual encryption of
data are only supported in PowerShell or via the SSMS GUI. They cannot currently be
achieved with T-SQL. Therefore, this section demonstrates how to configure Always
Encrypted via SSMS.

 You will use Always Encrypted to secure the CreditCardNumber , ExpMonth , and
 ExpYear columns of the Sales.CreditCard table of the AdventureWorks2016 database.
To achieve this, the first step is to create a column master key . You will use the Windows
Certificate Store to store this key.

 ■ Tip If you are following along with the demonstrations in this chapter, you should
delete the Sales.usp_InsertSalesOrder_inmem stored procedure before continuing. This
is a natively compiled stored procedure, which is not supported by Always Encrypted.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

90

 In Object Explorer, drill though Databases ➤ AdventureWorks2016 ➤ Security ➤
Always Encrypted Keys and select New Column Master Key from the context menu of
the Column Master Keys node. This causes the New Column Master Key dialog box to be
invoked, as illustrated in Figure 5-3 .

 Figure 5-3. New Column Master Key dialog box

 In this dialog box, you enter a name for the column master key and then selected
the type of store that the key is stored in from the Key Store drop-down list. Table 5-9
describes all possible values for Key Store. You can choose an existing key or certificate,
or alternatively use the Generate Certificate button to create a self-signed certificate in
the appropriate store to use as the column master key . In this example, a self-signed
certificate was generated.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

91

 If you generate the certificate, as opposed to selecting an existing certificate, it
immediately appears within the chosen key store. For example, Figure 5-4 shows the
certificate within the Current User area of the Windows Certificate Store.

 Table 5-9. Key Store Values

 Key Store Type Description

 Windows Certificate
Store - Current User

 The key or certificate is stored in the area of the Windows
Certificate Store that is reserved for the profile of the user
that created the certificate. This option may be appropriate if
you use the database engine’s service account interactively to
create the certificate.

 Windows Certificate
Store - Local Machine

 The key or certificate is stored in the area of the Windows
Certificate Store that is reserved for the local machine.

 Azure Key Vault The key or certificate is stored in the Azure Key Vault EKM
service.

 Key Storage Provider
(CNG)

 The key or certificate is stored in an EKM store that supports
Cryptography API: Next Generation.

 Figure 5-4. Windows Certificate Store

 Now that the column master key has been created, you can generate a column
encryption key . To do this, you select New Column Encryption Key from the context
menu of the Databases ➤ AdventureWorks2016 ➤ Security ➤ Always Encrypted Keys
➤ Column Encryption Keys node in Object Explorer. This causes the New Column
Encryption Key dialog box to be invoked, as illustrated in Figure 5-5 .

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

92

 In this dialog box, you have entered a name for the column encryption key and
selected the appropriate column master key from the drop-down list.

 The final step is to encrypt the CreditCardNumber , ExpMonth , and ExpYear
columns. When encrypting the data, you have a choice of two methods: deterministic or
randomized. This is an important decision to understand, as it may have an impact of
performance as well as security.

 Deterministic encryption always produces the same encrypted value for the same
plain text value. This means that if deterministic encryption is used, operations—
including equality joins, grouping and indexing—are possible on an encrypted column.
This leaves the possibility of attacks against the encryption, however.

 If you use randomized encryption , then different encrypted values can be generated
for the same plain text values. This means that while encryption loopholes are plugged,
equality joins, grouping, and indexing are not supported against the encrypted data.

 You will use deterministic encryption because you expect the columns to have a
high cardinality. You will again use SSMS for this action because T-SQL only has support
for encrypting data in new columns, not existing columns. The process of encrypting the
data includes changing the column collation to BIN2, because this is the only collation
currently supported by Always Encrypted.

 Figure 5-5. New Column Encryption Key dialog box

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

93

 ■ Caution Data should be encrypted during a maintenance window. DML statements
against the table while encryption is in progress could potentially result in data loss.

 To invoke the Always Encrypted wizard for the CardNumber column, drill though
Databases ➤ AdventureWorks2016 ➤ Tables in Object Explorer. Select Encrypt Columns from
the context menu of the Sales.CreditCard table. After passing through the welcome page of
the wizard, the Column Selection page is displayed, as illustrated in Figure 5-6 .

 Figure 5-6. Column selection page

 On this page, you first use the check boxes on the left-hand side to select the
columns that you want to encrypt. You then have a choice of selecting an encryption key
for each column individually, or using the check box and drop-down list at the top of the
page to choose a single key that is used to encrypt all selected columns. You have used
the latter option. Finally, you need to specify if each column should be encrypted using
deterministic or randomized encryption.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

94

 The warning next to the CardNumber column is informing you that the column’s
collation is changed to the supported BIN2 collation. It is not possible to select the
 DateModified column because there is a default constraint on the column. This is not
supported by Always Encrypted.

 The Master Key Configuration page simply informs you that no further configuration
is required. If you had chosen to create new column encryption key s on the Column
Selection page, then you could use this page to associate the new keys with a column
master key .

 The Run Settings page provides an option for performing the encryption
immediately or scripting the action out to PowerShell. The Summary page provides an
overview of the actions to be performed. After clicking the Finish button on the Summary
page, the encryption is performed. The Results page should be reviewed for success
status.

 Always Encrypted Limitations
 Not all features are supported by Always Encrypted. You should check the columns for
compatibility before planning your encryption strategy. The following data types are not
supported:

• XML

• TIMESTAMP

• ROWVERSION

• IMAGE

• NTEXT

• TEXT

• SQL_VARIANT

• HIERARCHYID

• GEOGRAPHY

• GEOMETRY

 The following features are also not fully supported:

• User defined-types are not supported

• FILESTREAM columns are not supported

• Columns with the ROWGUIDCOL property specified are not
supported

• String columns are only supported when they use a BIN2 collation

• Clustered and non-clustered and full-text index key columns are
only supported for deterministic encryption

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

95

• Columns referenced by computed columns are only supported
when the expression does not perform unsupported operations

• Sparse column sets are not supported

• Columns that are referenced by statistics are not supported

• Columns using alias data types are not supported

• Partitioning key columns are not supported

• Columns with default constraints are not supported

• Columns referenced by unique constraints are only supported for
deterministic encryption

• Primary key columns are only supported when both of the
following are true:

• Deterministic encryption is used

• Change tracking is not implemented on the column

• Referencing columns in foreign keys are only supported when
both of the following are true:

• Deterministic encryption is used

• The referenced and referencing columns are encrypted using
the same key

• Columns referenced by check constraints are not supported

• Columns in tables that use change data capture are not supported

• Columns that are masked using Dynamic Data Masking are not
supported

• Columns in existing Stretch Database tables cannot be encrypted.
However, tables can be enabled for stretch, after their columns
are encrypted with Always Encrypted.

• Columns in external PolyBase tables are not supported

• Columns in table variables

 Summary
 SQL Server 2016 provides an array of encryption options that DBAs can use to provide
defense-in-depth. The encryption technologies make use of the encryption hierarchy.
This starts with the service master key , which is encrypted by the Windows DPAPI and
then used to encrypt service master keys. The service master keys are then used to
encrypt keys and certificates.

CHAPTER 5 ■ ENCRYPTION IN SQL SERVER

96

 Data can be encrypted at rest by using a passphrase, a combination of keys, and
certificates within the encryption hierarchy. Keys and certificates stored in external key
vaults are also supported through EKM integration. This method of encryption allows
specific columns to be encrypted, but can cause significant bloat as well as performance
implications. Applications and ETL processes need to be modified to access the
encrypted data.

 Transparent Data Encryption provides a low overhead method of encrypting data at
rest. As the name suggests, TDE is transparent to applications, so no changes are required
to applications or ETL processes in order to access the encrypted data. TDE protects
your organization against the theft of a database or a backup file; however, any user with
privileges to access data is able to decrypt the data.

 Always Encrypted is a new technology introduced in SQL Server 2016. It allows the
separation of roles and responsibilities. It is the first SQL Server encryption technology
that prevents data from being accessed by highly privileged users, such as DBAs.
Always Encrypted provides encryption for data, both at rest and in transit, as the data is
decrypted by the client driver. Because SQL Server does not store the plain-text version
of the encryption keys, even privileged users cannot decrypt the data. This is especially
useful when outsourcing platform support to third parties.

97© Peter A. Carter 2016
P. A. Carter, Securing SQL Server, DOI 10.1007/978-1-4842-2265-2_6

 CHAPTER 6

 Security Metadata

 Although a large amount of security metadata can be viewed from SQL Server
Management Studio, there is some metadata that can only be viewed using T-SQL. Even
for metadata that can be viewed through the GUI, such as the roles that a database user
belongs to, there are times that it is best to use T-SQL; for example, if you need to script
an action that you perform on a regular basis, or if you need to review metadata for many
principals.

 A complete guide to security metadata within SQL Server is worthy of a book in
its own right. Therefore, this chapter explains some of the most useful and interesting
metadata objects and provides insights into how you may use them.

 Security Principal Metadata
 When you are implementing, reviewing, or auditing a security policy on an instance,
it is likely that you need to retrieve information about many security principals or
securable objects. As an example of this, part of your security policy might state that
all databases must be owned by the sa account, and you need to verify that this is the
case. You could, of course, enter the context menu of each database, select Properties,
and then review the Owner field on the General page of the Database Properties dialog
box. If the instance hosts 200 databases, however, then this may be a rather tedious and
time-consuming task.

 Instead of using the GUI, it makes sense to use SQL Server metadata. The database
owner of each database can be returned by using the sp_MShasdbaccess stored procedure
or by querying the sys.databases catalog view.

 The sp_MShasdbaccess stored procedure does not accept parameters; it returns the
name and owner of each database, as well as the status of each database.

 ■ Tip The sp_MShasdbaccess procedure only returns rows for databases that the caller
has access to. Providing that the procedure is run by a database administrator, this should
not be an issue.

CHAPTER 6 ■ SECURITY METADATA

98

 To retrieve the data from sys.databases , you need to return the SID (security
identifier) of each database by retrieving the owner_sid column and passing this column
to the SUSER_SNAME() system function. This is demonstrated in Listing 6-1 .

 Listing 6-1. Retrieve Database Owners from sys.databases

 SELECT name
 ,SUSER_SNAME(owner_sid)
 FROM sys.databases ;

 The SUSER_SNAME() function accepts a SID as a parameter and returns the login
name associated with the SID. If no parameter is passed to the function, then it returns
the login name of the caller.

 ■ Tip Many people get confused about the difference between the SUSER_SNAME()
function and a very similar function called SUSER_NAME() . They both return a login name.
The difference is that SUSER_SNAME() accepts a SID as a parameter. SUSER_NAME() accepts
a login id (principal id) as a parameter.

 Finding a User’s Effective Permissions
 When you have a complex hierarchy of server roles and database roles, as well as
permissions granted directly to users, it can sometimes be challenging to work out exactly
which permissions a user has. A system function that can help with this issue is sys.
fn_my_permissions() . This function accepts the parameters described in Table 6-1 .

 Table 6-1. sys.fn_my_permissions Parameters

 Parameter Description

 securable The name of the securable that you wish to determine a user’s
permissions against.

 securable_class The type of securable that is interrogated; for example, SERVER ,
 DATABASE , or OBJECT .

CHAPTER 6 ■ SECURITY METADATA

99

 The function is designed to return information about the caller of the function,
but you can change this behavior by using the EXECUTE AS statement. The EXECUTE AS
statement is used to specify the name of a login or user whose identity should be used as
the execution context of the session.

 As an example of how the EXECUTE AS statement works, please review Listing 6-2 .

 Listing 6-2. EXECUTE AS Example

 USE master
 GO

 CREATE LOGIN DemoLogin WITH PASSWORD=N'Pa$$w0rd', CHECK_EXPIRATION=OFF,
CHECK_POLICY=OFF

 ALTER SERVER ROLE sysadmin ADD MEMBER DemoLogin

 USE AdventureWorks2016CTP3
 GO

 SELECT SUSER_SNAME() ;

 EXECUTE AS LOGIN = 'DemoLogin' ;

 SELECT SUSER_SNAME() ;

 REVERT ;

 SELECT SUSER_SNAME() ;

 The script returns three results. The first result is your own login name. The second is
 DemoLogin ’s login name. And the third result is your own login again. This is because the
 REVERT keyword is used to change the session context back to your own security context.

 The script in Listing 6-3 demonstrates how the sys.fn_my_permissions function can
be used in conjunction with the EXECUTE AS clause to find a user’s effective permissions
at the instance, the database, and the object (within the current database) levels in a

 Table 6-2. sys.fn_my_ permissions

 Column Description

 entity_name The name of the securable.

 subentity_name If the securable has columns, then subentity_name contains the
name of the column; otherwise, it is NULL.

 permission_name The name of the permission assigned to the security principal.

 The function returns the columns described in Table 6-2 .

CHAPTER 6 ■ SECURITY METADATA

100

single query. I first wrote about this technique back in 2011 on the “SQL Server: Down &
Dirty” blog (www.sqlserverdownanddirty.blogspot.com); since then, the method has
been used and replicated by many others.

 ■ Caution If a database uses a different collation to the server, then you may need to use
the COLLATE statement within the query to avoid issues with running the script.

 Listing 6-3. Find a User’s Effective Permissions

 EXECUTE AS LOGIN = 'DemoLogin'
 SELECT o.name
 , a.entity_name
 , a.subentity_name
 , a.permission_name
 FROM sys.objects o
 CROSS APPLY sys.fn_my_permissions(CONCAT(
 QUOTENAME(
 SCHEMA_NAME(schema_id))
 , '.'
 , QUOTENAME(o.name))
 , 'OBJECT') a
 UNION ALL
 SELECT d.name
 , a.entity_name
 , a.subentity_name
 , a.permission_name
 FROM sys.databases d
 CROSS APPLY fn_my_permissions(QUOTENAME(d.name), 'DATABASE') a
 UNION ALL
 SELECT @@SERVERNAME COLLATE Latin1_General_CI_AS
 , a.entity_name
 , a.subentity_name
 , a.permission_name
 FROM fn_my_permissions(NULL, 'SERVER') a
 ORDER BY 1
 REVERT

 The script works by running three separate queries and creating a union of the
results. The first query returns each object name from sys.objects and passes this
name, along with the schema name, into the sys.fn_my_permissions() function . The
second query does the same thing, but instead of interrogating sys.objects , the script
interrogates sys.databases to retrieve permissions at the database level. The final query
resolves the user’s effective permissions against the instance itself.

http://www.sqlserverdownanddirty.blogspot.com/

CHAPTER 6 ■ SECURITY METADATA

101

 Securable Metadata
 There are ways in which your security profile may determine that your objects need to
be secured. The following sections explore some of these potential requirements and
demonstrate how metadata can help you verify or enforce your policy.

 Code Signing
 Code injection attacks can cause security breaches. You can protect against them by using
code signing. For now, however, let’s simply assume that your security policy states that
all assemblies and stored procedures must be code signed to help minimize the security
footprint.

 The script in Listing 6-4 reports which stored procedures in the database have been
code signed and if the signature is valid. The script uses two security metadata objects.
The first is sys.Certificates . The columns returned by this catalog view are described
in Table 6-3 .

 Table 6-3. sys.Certificates Columns

 Column Description

 name The name of the certificate.

 certificate_id The id of the certificate.

 principal_id The id of the database user that owns the certificate.

 pvt_key_encryption_type The encryption method of the private key. Possible values
are as follows:

 • NA: Indicates that there is no private key associ-
ated with the certificate.

 • MK: Indicates that encryption is by the database
master key.

 • PW: Indicates that encryption is by password.
 • SK: Indicates that encryption is by the service

master key.

 pvt_key_encryption_type_
desc

 The textual description of the private key encryption type.
Possible values are as follows:

 • NO_PRIVATE_KEY
 • ENCRYPTED_BY_MASTER_KEY
 • ENCRYPTED_BY_PASSWORD
 • ENCRYPTED_BY_SERVICE_MASTER_KEY

(continued)

CHAPTER 6 ■ SECURITY METADATA

102

 The second metadata object used by the script is sys.fn_check_object_
signatures() . This system function is used to return information regarding object
signatures and their validity, based on the thumbprint of a certificate or asymmetric key.
The function accepts the parameters described in Table 6-4 .

Table 6-3. (continued)

 Column Description

 is_active_for_
begin_ dialog

 Specifies if the certificate is allowed to be used to begin
an encrypted Service Broker conversation.

 • 0: Indicates that it is not allowed to start an
encrypted Service Broker conversation.

 • 1: Indicates that it is allowed to start an encrypted
Service Broker conversation.

 issuer_name The name of the authority that issued the certificate.

 cert_serial_number The serial number of the certificate.

 sid The login SID of the certificate.

 string_sid The name of the login SID.

 subject The subject associated with the certificate.

 expiry_date The certificate’s expiry date.

 start_ date The certificate’s start date.

 thumbprint The SHA-1 hash of the certificate.

 attested_by Internal use.

 pvt_key_last_backup_date The date and time that the certificate was last backed up.

 Table 6-4. sys.fn_check_object_signatures Parameters

 Parameter Description

 @Class The type of thumbprint that the function checks. The acceptable
values are

 • Certificate
 • Asymmetric key

 @Thumbprint The thumbprint to be checked.

 The sys.fn_check_object_signatures function returns the columns described in
Table 6-5 .

CHAPTER 6 ■ SECURITY METADATA

103

 Listing 6-4. Check Objects’ Signatures

 DECLARE @thumbprint VARBINARY(20) ;

 SET @thumbprint =
 (
 SELECT thumbprint
 FROM sys.certificates
 WHERE name LIKE '%SchemaSigningCertificate%'
) ;

 SELECT entity_id
 , SCHEMA_NAME(o.schema_id) + '.' + OBJECT_NAME(entity_id) AS

ProcedureName
 , is_signed
 , is_signature_valid
 FROM sys.fn_check_object_signatures ('certificate', @thumbprint) cos
 INNER JOIN sys.objects o
 ON cos.entity_id = o.object_id
 WHERE cos.type = 'SQL_STORED_ PROCEDURE ' ;
 GO

 The first part of the script retrieves the thumbprint of the database’s code signing
certificate from the sys.Certificates catalog view. The second part of the script passes
this thumbprint into the sys.fn_check_object_signatures and joins the results to the
 sys.objects catalog view to retrieve the schema name of the procedure.

 Table 6-5. sys.fn_check_object_signatures Columns

 Column Description

 type The type description of the entity.

 entity_id The object id of the evaluated entity.

 is_ signed Denotes if the object is signed or not.

 • 0: Indicates that the object is not signed.
 • 1: Indicates that the object is signed.

 is_signature_valid Denotes if the object’s signature is valid. If the object is not
signed, it returns 0.

 • 0: Indicates that either the object is not signed or that
the signature is not valid.

 • 1: Indicates that the object’s signature is valid.

CHAPTER 6 ■ SECURITY METADATA

104

 Permissions Against a Specific Table
 You may have a specific table or set of tables that contains sensitive information, and
your security policy may state that you need to regularly audit who has permissions to
that table and who assigned those permissions. Using SQL Server metadata, this is a
straightforward task.

 The sp_table_privileges system stored procedure identifies all permissions that
principals have against a specific table, along with who granted those permissions. The
procedure accepts the parameters described in Table 6-6 .

 Table 6-6. sp_table_privileges Parameters

 Parameter Description

 @table_name The name of the table to report on.

 @table_owner The name of the schema to which the table belongs.

 @table_qualifier The name of the database that hosts the table.

 @fUsePattern Specifies if _ , % , [, and] should be treated as wildcard characters.

 • 0 indicates that they should be treated as literals.
 • 1 indicates that they should be treated as wildcard

characters.

 Table 6-7. sp_table_privileges Columns

 Column Description

 TABLE_QUALIFIER The database in which the table resides.

 TABLE_OWNER The schema in which the table resides.

 TABLE_NAME The name of the table.

 GRANTOR The security principal that granted the permission.

 GRANTEE The security principal assigned the permission.

 PRIVILEGE The permission that has been assigned.

 IS_GRANTABLE Specifies if the grantee has the WITH GRANT * assignment.

 *Please see Chapter 2 for further details

 The columns returned by the sp_table_privileges procedure are described in
Table 6-7 .

 The statement in Listing 6-5 returns results for all tables in the current database.

 Listing 6-5. sp_table_privileges

 EXEC sp_table_privileges @Table_name = '%' ;

http://dx.doi.org/10.1007/978-1-4842-2265-2_2

CHAPTER 6 ■ SECURITY METADATA

105

 Audit Metadata
 As discussed in Chapter 3 , SQL Server Audit provides a granular and lightweight method
of auditing users’ actions within SQL Server. One of the advantages of SQL Server Audit is
that you are able to “audit the audit” in an attempt to avoid non-reputability. For example,
if an ill-intending DBA turned off the auditing, while they performed a malicious act, the
action itself would not be audited, but the fact that the DBA had turned the audit off and
then turned it back on again would be audited.

 SQL Server exposes many metadata objects that assist a DBA in his work. One of the
objects that I find most useful is the sys.fn_get_audit_file() function. The function
returns the contents of a SQL Server Audit file. This can be inserted into a table for further
analysis. The function accepts three parameters, which are described in Table 6-8 .

 Table 6-8. sys.fn_get_audit_file() Parameters

 Parameter Description

 file_pattern The name of the audit file that you wish to read. This path
can contain the * wildcard to read multiple files. This is
useful when you have rollover files.

 initial_file_name Specifies the path and the name of a specific file in the audit
file set where the file read should begin. If not required, pass
 NULL .

 audit_record_offset Specifies a known location with the file specified for the
 initial_file_name parameter and begins the file read at
this record. If not required, pass NULL .

 The sys.fn_get_audit_file() function returns the columns described in Table 6-9 .

 Table 6-9. sys.fn_get_audit_file() Columns

 Column Description

 event_time The date and time at which the audited event
occurred.

 sequence_number A sequence number of records within a single audit
entry where the entry was too large to fit inside a
buffer and was broken down.

 action_ id The id of the action.

 succeeded Specifies if the action that caused the audit event to
fire was successful.

 • 0: Indicates that the action failed.
 • 1: Indicates that the action succeeded.

(continued)

http://dx.doi.org/10.1007/978-1-4842-2265-2_3

CHAPTER 6 ■ SECURITY METADATA

106

Table 6-9. (continued)

 Column Description

 permission_bitmask Where appropriate, specifies the permissions that
were assigned or revoked.

 is_column_permission Specifies if the permission (in the permission_
bitmask column) was a column-level permission.

 • 0: Indicates that it was not a column-level
permission.

 • 1: Indicates that it was a column-level
permission.

 session_id The id of the session in which the event occurred.

 server_principal_id The principal id of the login that performed the
action, which caused the audit event to fire.

 database_principal_ id The principal id of the database user that
performed the action, which caused the audit event
to fire.

 target_server_principal_id Where applicable, returns the principal id of the
login that was subject to a permission assignment
or revocation.

 target_database_principal_id Where applicable, returns the principal id of the
database user that was subject to a permission
assignment or revocation.

 object_id Where applicable, returns the object id of the target
object that caused the audit event to fire.

 class_type The type of auditable entity on which the auditable
event occurred.

 session_server_principal_name The name of the login that the session was executing
in. This is blank if no session was established. For
example, where a failed login has been audited

 server_principal_name The name of the login that performed the action,
which caused the audit event to fire.

 server_principal_sid The SID of the login that performed the action,
which caused the audit event to fire.

 database_principal_name The name of the database user that performed the
action, which caused the audit event to fire.

 target_server_principal_name Where applicable, returns the name of the login
that was subject to a permission assignment or
revocation.

 target_server_principal_ sid Where applicable, returns the SID of the login
that was subject to a permission assignment or
revocation.

(continued)

CHAPTER 6 ■ SECURITY METADATA

107

 The query in Listing 6-6 returns all records from all audit files stored within the
 c:\audit folder.

 Listing 6-6. Read an Audit File

 SELECT * FROM sys.fn_get_audit_file('c:\audit*',NULL,NULL) ;

 Encryption Metadata
 Chapter 5 discusses encryption in SQL Server, and as you can imagine, there are a raft
of metadata objects that expose information regarding your encryption configuration.
The following sections discuss useful metadata that is exposed around Always
Encrypted and TDE.

Table 6-9. (continued)

 Column Description

 target_database_principal_name Where applicable, returns the name of the database
user that was subject to a permission assignment or
revocation.

 server_instance_name The server\instance name of the instance where
the audit event occurred

 database_name The name of the database in which the audit event
occurred.

 schema_name The schema context in which the audit event
occurred.

 object_name The name of the object, which was the subject of
the auditable event.

 statement The T-SQL statement that caused the audit event
to fire.

 additional_information For some events, an XML document is returned,
containing additional information. For example, if
a failed login is audited, the additional information
includes the IP address that the login attempt
originated from.

 file_name The fully qualified name of the audit file.

 audit_file_offset The buffer offset of the audit record, within the file.

 user_defined_event_ id When an audit event has been written using sp_
audit_write , returns the user defined event id.

 user_defined_information When an audit event has been written using
 sp_audit_write , returns user defined additional
information.

http://dx.doi.org/10.1007/978-1-4842-2265-2_5

CHAPTER 6 ■ SECURITY METADATA

108

 Always Encrypted Metadata
 Because there can be a one-to-many relationship between column master keys and
column encryption keys, followed by a one-to-many relationship between column
encryption keys and encrypted columns, metadata can be invaluable in keeping track of
how your data is encrypted. The query in Listing 6-7 joins sys.tables and sys.columns
to the new sys.column_encryption_keys , sys.column_encryption_key_values , and
 sys.column_master_keys catalog views to provide a complete path through the hierarchy
from the column to key store location of the column master key.

 The sys.column_encryption_keys view returns the columns described in
Table 6-10 .

 Table 6-10. sys.column_encryption_keys Columns

 Column Description

 name The name of the column encryption key.

 column_encryption_key_id The id of the column encryption key.

 create_date The date and time that the key was created.

 modify_ date The date and time that the key was last modified.

 Table 6-11. sys.column_encryption_key_values Columns

 Column Description

 column_encryption_key_id The id of the column encryption key.

 column_master_key_id The id of the column master key that has been used to
encrypt the column encryption key.

 encrypted_value The value of the column encryption key, encrypted
using the column master key.

 encryption_algorithm_name The algorithm used to encrypt the column encryption
key.

 * Use this view as an intermediate join between sys.column_encryption_keys and sys.
column_master_keys

 The sys.column_encryption_key_values view returns the columns described in
Table 6-11 .

 The sys.column_master_keys view returns the columns described in Table 6-12 .

CHAPTER 6 ■ SECURITY METADATA

109

 Listing 6-7 demonstrates how these metadata objects can be drawn together.

 Listing 6-7. Interrogate Always Encrypted Metadata

 SELECT
 t.name AS TableName
 , c.name AS ColumnName
 , c.encryption_type_desc
 , c.encryption_algorithm_name
 , cek.name AS ColumnEncryptionKeyName
 , cev.encrypted_value
 , cev.encryption_algorithm_name
 , cmk.name as ColumnMasterKeyName
 , cmk.key_store_provider_name AS column_master_key_store_provider_

name
 , cmk.key_path
 FROM sys.columns c
 INNER JOIN sys.column_encryption_keys cek
 ON c.column_encryption_key_id = cek.column_encryption_key_id
 INNER JOIN sys.tables t
 ON c.object_id = t.object_id
 JOIN sys.column_encryption_key_values cev
 ON cek.column_encryption_key_id = cev.column_encryption_key_id
 JOIN sys.column_master_keys cmk
 ON cev.column_master_key_id = cmk.column_master_key_id ;

 TDE Metadata

 ■ Note For described information regarding TDE, please refer to Chapter 5 .

 Table 6-12. sys.column_master_keys

 Column Description

 name The name of the column master key.

 column_master_key_id The id of the column master key.

 create_ date The date and time that the key was created.

 modify_date The date and time that the key was last modified.

 key_store_provider_name The type of key store that the column master key is
stored in.

 key_path The path to the key within the key store.

http://dx.doi.org/10.1007/978-1-4842-2265-2_5

CHAPTER 6 ■ SECURITY METADATA

110

 TDE metadata is exposed through the sys.databases , sys.certificates , and sys.
database_encryption_keys catalog views. The sys.databases catalog view contains
a column called is_encrypted . This column has the data type of BIT and returns 0 if a
database is not encrypted with TDE and 1 if it is encrypted. Information on the certificate
used to encrypt the database encryption key is exposed through sys.certificates .

 The sys.database_encryption_keys catalog view exposes details of the keys used to
encrypt the databases. It returns one row for each database that has a database encryption
key associated with it. Table 6-13 details the columns returned by this catalog view.

 Table 6-13. sys.database_encryption_keys Columns

 Column Description

 database_id The id of the database that is encrypted using the key.

 encryption_state Specifies the current state of encryption for the database
indicated by the database_id column. The following are
possible values:

 • 0: Indicates that no encryption key is present. You will
not see this status under normal operations, because
if no key exists, the catalog view does not return a row.

 • 1: Indicates that the database is not encrypted. You
see this status when TDE has been encrypted, but the
database encryption key has not been dropped.

 • 2: Indicates that the database is currently being
encrypted. You see this status immediately after
enabling TDE on a database while the background
encryption thread is still running.

 • 3: Indicates that the database is encrypted.
 • 4: Indicates that a change to the database encryption

key is currently in progress.
 • 5: Indicates that the database is currently being

decrypted. You see this status immediately after
turning off TDE for a database, before the background
thread completes.

 • 6- Indicates that a change to the database encryption
key or the server certificate used to encrypt the
database encryption key is currently in progress.

 create_ date The date and time that the database encryption key was
created.

 regenerate_date The date and time that the database encryption key was
regenerated.

 modify_date The date and time that the database encryption key was last
modified.

 set_date The date and time that the database encryption key was
associated with the database.

(continued)

CHAPTER 6 ■ SECURITY METADATA

111

Table 6-13. (continued)

 Column Description

 opened_date The date and time that the database encryption key was last
opened.

 key_algorithm The algorithm used to encrypt the database encryption key.

 key_length The length of the key.

 encryptor_thumbprint The encrypted value of the certificate used to encrypt the
database encryption key.

 encryptor_type Indicates the type of encryptor that was used to encrypt the
database encryption key. Possible values are

 • ASYMMETRIC KEY
 • CERTIFICATE

 percent_complete If the encryption_state column indicates a status of 2 or
5, this column indicates how far through the encryption
or decryption process the background thread is. If the
 encryption_state column indicates a different status, then
this column returns 0.

 The metadata exposed for TDE can be useful at various times; for example, to return
a list of encrypted database on the instance, use the script in Listing 6-8 .

 Listing 6-8. Return a List of Encrypted Databases

 SELECT name
 FROM sys.databases
 WHERE is_encrypted = 1 ;

 If you need to ensure that all of the server certificates that are used to encrypt
database encryption keys have been backed up, you can use the query in Listing 6-9 . This
query returns a list of certificates used in TDE that have not been backed up.

 Listing 6-9. Ensure that Certificates Have Been Backed Up

 SELECT
 DB_NAME(dek.database_id) AS DatabaseName
 ,c.name AS CertificateName
 FROM AdventureWorks2014.sys.dm_database_encryption_keys dek
 INNER JOIN master.sys.certificates c
 ON c.thumbprint = dek.encryptor_thumbprint
 WHERE c.pvt_key_last_backup_date IS NULL ;

 If you had a task of encrypting many databases on an instance, you could even use
metadata to create a metadata-driven script that would do the hard work for you. I used
this script recently—when a friend of mine mentioned that he had been quoted three
months by his DBA team—to encrypt 400+ databases on an instance.

CHAPTER 6 ■ SECURITY METADATA

112

 The script in Listing 6-10 firsts creates a server certificate that is used to encrypt the
database encryption key for each database. The script then uses the sp_msforeachdb
system stored procedure to loop around each database.

 Inside the loop, the script first checks to ensure that it is not in the context of a system
database, and then checks to ensure that the database has not already been encrypted.
This makes the script re-runnable, should you have an issue part way through. After the
checks are complete, it creates a database encryption key before enabling TDE.

 Listing 6-10. Metadata Driven Encryption Script

 USE master
 GO

 CREATE CERTIFICATE TDECert WITH SUBJECT = 'My DEK Certificate';
 GO

 EXEC sys.sp_MSforeachdb @command1 = 'USE ?
 IF (SELECT DB_ID()) > 4
 BEGIN
 IF (SELECT is_encrypted FROM sys.databases WHERE database_id = DB_ID())
= 0
 BEGIN
 CREATE DATABASE ENCRYPTION KEY
 WITH ALGORITHM = AES_128
 ENCRYPTION BY SERVER CERTIFICATE TDECert

 ALTER DATABASE ?
 SET ENCRYPTION ON
 END
 END' ;

 Securing Metadata
 While metadata can prove incredibly useful—not just from the security perspective, but
also in every other area of SQL Server administration, it can also prove to be a security
hole in its own right. If metadata were accessible to everybody, then an attacker could use
it to gain information, regarding the configuration of your instance.

 Therefore, most metadata only becomes visible to a user after they have been
granted permissions to use the object in some way. For example, if you grant the user
Phil the SELECT permission on dbo.MyTable , Phil automatically sees the row within sys.
tables and sys.objects that relates to the dbo.MyTable object.

 If a user needs to see metadata about an object that they should not have
permissions to use in any other way, then the VIEW DEFINITION permission can be
granted upon that object. The VIEW DEFINITION permission can also be granted at the
scope of a database or an entire instance. At the instance level, the permission VIEW ANY
DEFIITION gives complete access to metadata instance-wide. This can be useful when
you are creating metadata-driven automated scripts and you wish to apply the principal
of least privilege.

CHAPTER 6 ■ SECURITY METADATA

113

 There are some metadata objects in which users cannot be automatically granted
 VIEW DEFINITION permission when other permissions are assigned to the object. This is
because the objects sit outside of the permissions structure. Take partitions, for example.
Each table can be split across three partitions: one for in-row data, another for LOB (large
object) data, and the third for overflow data. There is no way to assign permissions on
partitions, because they are not directly accessible.

 In these circumstances, the public role has the ability to view the associated
metadata, and the VIEW DEFINITION permission does not apply. The metadata objects
that are visible to the public role are as follows:

 sys.partition_functions

 sys.partition_range_values

 sys.partition_schemes

 sys.data_spaces

 sys.filegroups

 sys.destination_data_spaces

 sys.database_files

 sys.allocation_units

 sys.partitions

 sys.messages

 sys.schemas

 sys.configurations

 sys.sql_dependencies

 sys.type_assembly_usages

 sys.parameter_type_usages

 sys.column_type_usages

 Risks of Metadata Visibility
 Even with the security measures that are in place to protect SQL Server, an attacker may
still be able to expose some metadata if the overall security design of your application
is weak. For example, imagine that you have a web application that handles security in
the application tier and then connects to a SQL Server instance by using a single, highly
privileged account.

 If the web application is vulnerable to SQL injection, then an attacker could force the
execution of the query in Listing 6-11 .

 Listing 6-11. Forced Information Disclosure

 SELECT 1 + name FROM sys.tables

CHAPTER 6 ■ SECURITY METADATA

114

 When run against the AdventureWorks2016 database, the query in Listing 6-11
returns the error message shown in Figure 6-1 .

 Figure 6-1. Forced error message

 This error message has provided the attacker with the following information:

• There is a table in the database s ScrapReason .

• The application is leaking metadata.

• The application is (probably) running through a highly privileged
account.

 This information gives an attacker plenty of insight into where to start an attack. For
example, if the attacker is correct and the application does run through a single account,
then it is likely that there is a user’s table specifying permissions. The attacker could
amend his query to filter by tables that contain the wildcard strings %user% or %login% .
Once the attacker has this information, he can attack the table specifically and start
spoofing user identities!

 ■ Tip The moral of the story is that you should always evaluate the security profile of
an application holistically to minimize the risk of attack. Even if your instance is secure, a
poorly designed application tier could leave you vulnerable.

CHAPTER 6 ■ SECURITY METADATA

115

 Summary
 SQL Server exposes a vast amount of metadata. This includes metadata that relates to
the security implementation within your instance. This security-related metadata assists
a DBA in ensuring that the security policy is met. For example, metadata checks a user’s
effective permissions at every level of the hierarchy, checks for modules that have not
been code signed, and checks which principals have what permissions to a specific
securable.

 Useful metadata is also exposed about encryption artifacts. This metadata can
be used for a variety of purposes, from auditing the column master key locations of an
Always Encrypted implementation to automating a TDE implementation.

 Although metadata brings many advantages, it also brings risks. If metadata is
exposed, then it launches an attack against SQL Server. This is an even higher risk when
an application uses a single, highly privileged user to connect to the database engine.

117© Peter A. Carter 2016
P. A. Carter, Securing SQL Server, DOI 10.1007/978-1-4842-2265-2_7

 CHAPTER 7

 Implementing Service
Accounts for Security

 A service account is simply an account that is used as the security context that Windows
uses to run a service. Each SQL Server service needs to be configured with a service
account, which is granted the appropriate permissions to run the service. This chapter
discusses the general considerations for service accounts. You then examine how service
accounts can be exploited. Finally, I discuss the appropriate service account strategy.

 Service Account Types
 SQL Server 2016 supports the following types of account as service accounts:

• Local user

• Domain user

• Built-in accounts

• Managed service accounts (MSAs)

• Virtual accounts

 The local user account type refers to a Windows user that has been created on the
local server. The domain user account type refers to an AD (Active Directory) user that has
been created at the domain level. Built-in accounts refer to the NETWORK SERVICE , LOCAL
SERVICE , and LOCAL SYSTEM accounts that are always available in Windows environments.
The concepts of MSAs and virtual accounts are relatively new, however, so let’s spend
some time looking at these in more detail.

 Virtual Accounts
 Virtual accounts were introduced in Windows Server 2008R2 and Windows 7. They
are created locally on the server, but are able to access domain resources by using the
computer account’s credentials.

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

118

 Virtual accounts were introduced to improve isolation between services in
environments where administrators would typically run services such as SQL Server,
Exchange, or IIS under the context of the LOCAL SERVICE account. In addition to isolation,
virtual accounts also offer the benefit of being “managed.” This means that administrators
do not need to register an SPN (service principal name) and do not need to manage
the password for the account. This is taken care of automatically by the Windows
environment.

 By the nature of virtual accounts being local, they cannot be used on multiple
servers. This means that they are inappropriate for implementations such as AlwaysOn
failover clusters. If you are performing a stand-alone installation of a SQL Server instance
on Windows Server 2008R2 or higher, or on Windows 7 or higher, then the accounts for
the following services defaults to a virtual account:

• Database Engine

• SQL Server Agent

• SQL Server Analysis Services (SSAS)

• SQL Server Integration Services (SSIS)

• SQL Server Reporting Services (SSRS)

• SQL Server Distributed Relay Controller

• SQL Server Distributed Relay Client

• FD Launcher (Full-Text Daemon Launcher service)

 Even if you are installing a clustered instance of SQL Server, the following services
default to a virtual account. This is because the services are not cluster-aware and are
typically installed as stand-alone on each cluster node.

• SSIS

• SSRS

• FD Launcher

 Managed Service Accounts
 MSAs are similar to virtual accounts in the respect that they are automatically managed
and there is no need for administrators to manually configure an SPN or manage
passwords. The difference between a virtual account and an MSA is that MSAs are
domain-level accounts, rather than local.

 Because MSAs are domain-level accounts, they should be used in preference over
virtual accounts when there is a need for the service to interact with network level
resources, such as file shares and so forth. Despite being created at the domain level,
an MSA is still only assigned to a single machine on the network. This means that MSAs
cannot be used for implementations such as failover cluster instances, because they can
only run a service on a single machine.

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

119

 To overcome this limitation, gMSAs (group managed service accounts) were
introduced in Windows Server 2012 R2. gMSAs are the same as MSAs, except that they
have the ability to run services on multiple servers. This means that they can be used for
cluster implementations.

 Naturally, as gMSAs were only introduced in Windows Server 2012 R2, your server
must have this version of Windows Server or higher and your domain controller must
be running at the Windows Server 2012 R2 functional level. At the time of writing, most
organizations are not at a place where they are ready to move to a Windows 2012 R2
functional level, but if you do have this luxury, then g MSAs are a great feature.

 ■ Tip If you plan to use an MSA or a gMSA, then the account must be created on the
domain controller prior to the installation of SQL Server.

 SQL Server Services
 When planning an installation of SQL Server, you should consider the service account
requirements for each SQL Server service, and as with all other security configuration,
you should always attempt to apply the principal of least privilege.

 ■ Tip The principal of least privilege states that each security principal (in this case, the
service account) should only be given the minimum set of permissions required to carry
out its day-to-day activities. If higher permissions are required for a one-off task, then
permissions should be elevated when required and reduced after the activity has completed.

 Table 7-1 describes the minimum set of permissions and assignments that are
required for each service account to perform its basic functions. Of course, if the service
needs to interact with other resources, such as file shares, then these permissions
should be appended to the list to meet your specific requirements. The permissions and
assignments described here are granted to the appropriate service accounts during the
instance installation process.

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

120

 Table 7-1. Service Account Permission and Assignment Requirements

 Service User Rights Assignments Permissions

 SQL Server
Database Engine

 • Log on as a service

 • Replace a process-level
token

 • Bypass traverse
checking

 • Adjust memory quotas
for a process

 • Start SQL Writer

 • Read the Event Log service

 • Read the Remote Procedure Call service

 • Instid\MSSQL\backup

 • Full control

 • Instid\MSSQL\binn

 • Read

 • Execute

 • Instid\MSSQL\data

 • Full Control

 • Instid\MSSQL\FTData

 • Full Control

 • Instid\MSSQL\Install

 • Read

 • Execute

 • Instid\MSSQL\ Log

 • Full Control

 • Instid\MSSQL\Repldata

 • Full Control

 • 130\shared

 • Read

 • Execute

 SQL Server
Agent

 • Log on as a service

 • Replace a process-level
token

 • Bypass traverse
checking

 • Adjust memory quotas
for a process

 • Instid\MSSQL\binn

 • Full Control

 • Instid\MSSQL\binn

 • Full Control

 • Instid\MSSQL\Log

 • Read

 • Write

 • Delete

 • Execute
 • 130\com

 • Read

(continued)

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

121

Table 7-1. (continued)

 Service User Rights Assignments Permissions

 • Execute

 • 130\shared

 • Read

 • Execute

 • 130\shared\Errordumps

 • Read

 • Write

 • ServerName\EventLog

 • Full Control

 SQL Server
Analysis
Services

 • Increase a process
working set

 • Adjust memory quotas
for a process

 • Lock pages in memory
(If paging is disabled)

 • Increase scheduling
priority (when installed
as a failover clustered
instance)

 • Log on as a service
(When installed in
Tabular mode)

 • 130\shared\ASConfig

 • Full Control

 • Instid\OLAP

 • Read

 • Execute

 • Instid\Olap\Data

 • Full Control

 • Instid\Olap\Log

 • Read

 • Write

 • Instid\OLAP\Backup

 • Read

 • Write

 • Instid\OLAP\Temp

 • Read

 • Write

 • 130\shared\Errordumps

 • Read

 • Write

 SQL Server
Reporting
Services

 • Log on as a service • Instid\Reporting Services\Log Files

 • Read

 • Write

 • Delete

 • Instid\Reporting Services\ReportServer

 • Read

(continued)

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

122

Table 7-1. (continued)

 Service User Rights Assignments Permissions

 • Execute

 • Instid\Reportingservices\Reportserver\
global.asax

 • Full Control

 • Instid\Reportingservices\Reportserver\
Reportserver.config

 • Read

 • Instid\Reporting Services\ reportManager

 • Read

 • Execute

 • Instid\Reporting Services\RSTempfiles

 • Read

 • Write

 • Execute

 • Delete

 • 130\ Shared

 • Read

 • Execute

 • 130\shared\Errordumps

 • Read

 • Write

 SQL Server
Integration
Services

 • Log on as a service

 • Bypass traverse
checking

 • Impersonate a client
after authentication

 • Write to application event log

 • 130\dts\binn\MsDtsSrvr.ini.xml

 • Read

 • 130\dts\binn

 • Read

 • Execute

 • 130\shared

 • Read

 • Execute

 • 130\shared\Errordumps

 • Read

 • Write

(continued)

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

123

Table 7-1. (continued)

 Service User Rights Assignments Permissions

 Full-text Search • Log on as a service

 • Adjust memory quotas
for a process

 • Bypass traverse
 checking

 • Instid\MSSQL\FTData

 • Full Control

 • Instid\MSSQL\FTRef

 • Read

 • Execute

 • 130\shared

 • Read

 • Execute

 • 130\shared\Errordumps

 • Read

 • Write

 • Instid\MSSQL\Install

 • Read

 • Execute

 • Instid\MSSQL\jobs

 • Read

 • Write

 SQL Server
Browser

 • Log on as a service • 130\shared\ASConfig

 • Read

 • 130\shared

 • Read

 • Execute

 • 130\shared\Errordumps

 • Read

 • Write

 SQL Server VSS
Writer

 No permissions are granted for this
service, because it runs under the context
of LOCAL SYSTEM , which already has all
required permissions

 SQL Server
Distributed
Replay
Controller

 • Log on as a service • <ToolsDir>\DReplayController\Log\

 • Read

 • Execute

 • List

(continued)

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

124

Table 7-1. (continued)

 Service User Rights Assignments Permissions

 • <ToolsDir>\DReplayController\
DReplayController.exe

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayController\
resources\

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayController\

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayController\
DReplayController.config

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayController\
IRTemplate. tdf

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayController\
IRDefinition.xml

 • Read

 • Execute

 • List

 SQL Server
Distributed
Replay Client

 • Log on as a service • <ToolsDir>\DReplayClient\Log\

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayClient\
DReplayClient.exe

(continued)

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

125

Table 7-1. (continued)

 Service User Rights Assignments Permissions

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayClient\resources\

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayClient\

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayClient\
DReplayClient. config

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayClient\IRTemplate.tdf

 • Read

 • Execute

 • List

 • <ToolsDir>\DReplayClient\IRDefinition.
xml

 • Read

 • Execute

 • List

 Launchpad • Log on as a service

 • Replace a process-level
token

 • Bypass traverse
checking

 • Adjust memory quotas
for a process

 • %binn

 • Read

 • Execute

 • ExtensiblilityData

 • Full Control

 • Log\ExtensibiltityLog

 • Full Control

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

126

 As you can see, even if only the minimum set of required permissions are granted to
service accounts, they are still highly privileged and are a prime target for attackers.

 How Service Accounts Can Become
Compromised
 There are many methods that an attacker could use to attempt to compromise your
service accounts. For example, if an attacker already has access to an instance—either
because the attack is internal or because the attacker has already compromised the
instance by using SQL injection and so forth, then an SMB (Server Message Block) attack
could be used to compromise the service account credentials.

 Extended stored procedures, such as the undocumented xp_dirtree system stored
procedure, can be executed with no permissions above the public role. This means that
if you can access the instance, you can run it. This particular procedure is used to list
the contents of a folder or a file share that you pass into it as a parameter. In order to
gain access to the folder, it must first authenticate using the SQL Server Database Engine
service account.

 While the procedure is authenticating to the folder, the attacker can use an SMB
capture from a tool such as Metasploit to capture the authentication request. This
contains the hashed password, but also the nonce (pseudo-random cryptographic
number), meaning that the attacker has enough information to reveal the clear text
password by using specialized tools.

 Designing a Pragmatic Service Account Strategy
 The service account model that you choose is key to both the security and manageability
of your environment. Different organizations have different requirements for service
account models. You may be constrained by compliance requirements, overarching IT
policies, and other factors. Essentially, the choice that you make is a trade-off between the
security and operational supportability of your environment.

 For example, the Microsoft best practice is to isolate services by using a separate
service account for every service and to ensure that every server in your environment
uses a discrete set of service accounts, since this fully enforces the principle of least
privilege, as described in the “SQL Server Services” section of this chapter.

 In reality, however, you find that this approach introduces significant complexity
into your SQL Server estate. And it can increase the cost of operational support, while
also risking longer outages in disaster scenarios. On the flip side, I have worked in
organizations where the service account model is very coarse, to the point where there
is only a single set of SQL Server service accounts for each region. This approach can
also cause significant operational issues. Imagine, for example, that you have a large
estate and the whole estate uses the same service account. Now imagine that you have
a compliance requirement to change service account passwords on a 90-day basis. This
means that you would cause an outage to your entire SQL Server estate at the same time.
This simply is not practical.

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

127

 There is no right or wrong answer to this problem. The solution depends on the
requirements and constraints of individual organizations. For organizations that have the
correct domain functional level, MSAs and gMSAs, along with the use of virtual accounts ,
often provide a workable solution.

 However, even if the operating system and domain level prerequisites are
met, database administration teams that rely heavily on automation to manage the
maintenance routines within their enterprise may argue that virtual accounts do not meet
their requirements because their automation is configured to use the service account of
the local instance to authenticate and run maintenance routines.

 For organizations that use domain accounts as service accounts, I tend to
recommend a distinct set of service accounts for each data-tier application. So if you
imagine an environment as shown in Figure 7-1 , where your data-tier application consists
of a two-node cluster and an ETL server in a primary site, and two DR servers in a
secondary site, this design would involve a common set of service accounts used by all of
these instances, but not shared with other data-tier applications. In the example shown in
Figure 7-1 , Data-Tier Application2 requires its own set of service accounts.

 Figure 7-1. Service account model example

CHAPTER 7 ■ IMPLEMENTING SERVICE ACCOUNTS FOR SECURITY

128

 ■ Caution In the preceding example, each data-tier application also requires a discrete
set of service accounts for lower environments. Production service accounts should never
be used in lower environments, such as UAT or development, due to the reduced security
measures and the higher chance of compromise in these environments.

 Summary
 Depending on the components of SQL Server 2016 that are installed, there may be a
single instance and up to 11 service accounts in use across shared features. Each of
these service accounts has its own set of minimum permissions requirements, but even
when the principal of least privilege is followed, the range of user rights assignments and
permissions assigned to each account make them highly desirable accounts to attackers
who wish to compromise your system. Attackers can use many methods to attempt to
compromise your service account credentials, including SMB capture attacks, which
force the database engine to disclose the credentials of its service account.

 To mitigate the risks of service account exploits, it is important to follow the principal
of least privilege. Complete isolation of services can lead to an environment that is very
difficult to manage. This means that any service account strategy should be pragmatic
and feed into the overall security strategy.

 Services can run under the security context of the LOCAL SYSTEM account, the
 LOCAL SERVICE account, the NETWORK SERVICE account, a local user account, a domain
user account, a virtual account, a managed service account, or a group managed
service accounts. While each of these account types have their own advantages and
disadvantages, virtual accounts, MSAs, and gMSAs are generally considered the best
solution, provided that you have the correct domain functional level, operating system,
and the ability to support within your DBA tooling.

129© Peter A. Carter 2016
P. A. Carter, Securing SQL Server, DOI 10.1007/978-1-4842-2265-2_8

 CHAPTER 8

 Protecting Credentials

 Stealing the credentials of a security principal with the intent of elevating your allowed
permissions is known as identity spoofing . There are various ways that an attacker may
attempt to steal credentials. This chapter discusses some of those methods, as well as
countermeasures that you can put in place to mitigate the risk.

 Protecting the sa Account
 Although it has long been best practice to use Windows authentication rather than mixed
mode authentication, which allows authentication using both Windows authentication
and SQL authentication, the majority of corporate instances (in my experience) are still
configured to use mixed mode authentication.

 While there seems to be many cultural reasons for DBAs using mixed mode
authentication as standard, as opposed to by exception, there are also often technical
reasons, despite these reasons often being a little tenuous.

 For example, many applications provide security at the application tier, and
then use a single login to connect to the database engine. The most cost effective way
to implement this (with the shortest time to market) is to use a login that uses SQL
authentication. It is possible for the application to use Windows authentication, but this
would require a Windows service to be written, which would authenticate to the instance.

 Also, the tooling that many DBAs have built and grown internally relies on the use
of the sa account to run maintenance routines on local servers. The arguments against
changing the approach include cost and operational risk . In this particular scenario,
however, you usually find that the risk is bigger than it seems on the surface. Often,
these scripts work because the sa account has the same password on every instance.
This means that if the sa account is compromised on one server, the attacker has
administrator-level permissions on every instance within the environment.

 Within instances that use mixed mode authentication, the sa account is particularly
susceptible. This is for two reasons: first, it is a highly privileged account and therefore
very desirable to attackers, and second, because the sa account is very well known.
Anybody with the skills and ambition to launch an attack against a SQL Server instance
will of course know of the sa account. For these reasons, it is very important to mitigate
the risk of attacks against spoofing of the sa account.

CHAPTER 8 ■ PROTECTING CREDENTIALS

130

 DBA Steps to Mitigate the Risks
 When running in mixed mode, there are various steps that a DBA can take to protect the
 sa account, depending on the requirements of the application and the environment. The
following sections discuss each of these steps.

 Disabling the sa Account
 If the sa account is not specifically required, then it should be disabled and administrator
access granted to accounts that use Windows authentication. The sa account is disabled
with the command in Listing 8-1 .

 Listing 8-1. Disable the sa Account

 ALTER LOGIN sa DISABLE ;
 GO

 Renaming the sa Account
 If there are applications or processes that specifically require an administrative account
with SQL authentication, then you should consider renaming the sa account. The
command in Listing 8-2 renames the sa account.

 Listing 8-2. Rename the sa Account

 ALTER LOGIN sa WITH NAME = AdminAccount ;
 GO

 Ensuring Reputability
 In the worst-case scenario, you have third-party or legacy applications that have the sa
account name hard-coded, and which simply cannot be modified to follow the principal
of least privilege. This scenario is a lot more common than you may think.

 If this is the case, then you should at least ensure that the sa account is configured to
inherit the domain’s password complexity and password expiration settings. This avoids
the sa account’s password being set to a simple password or never being changed. The
command to achieve this is shown in Listing 8-3 .

 Listing 8-3. Force Password Polices for sa Account

 ALTER LOGIN sa
 WITH CHECK_EXPIRATION=ON
 , CHECK_POLICY=ON ;

CHAPTER 8 ■ PROTECTING CREDENTIALS

131

 It is important to remember that anybody with administrative control over an instance
can change any of these settings for the sa account. Therefore, if you are concerned with a
large enterprise, as opposed to a single instance, then you should configure auditing, so that
you can trace any alterations to administrative accounts. Let’s now create a server audit and
an associated server audit specification that captures any changes made to the sa account.

 ■ Tip This SQL Server Audit specification is used in conjunction with the one discussed
in Chapter 2 ; it captures any additions to the sysadmin fixed server role.

 To create a server audit via SQL Server Management Studio, drill through the
Security node in Object Explorer and select New Audit from the Audits context menu.
This causes the General page of the Create Audit dialog box to display, as shown in
Figure 8-1 .

 Figure 8-1. Create Audit dialog box: General page

http://dx.doi.org/10.1007/978-1-4842-2265-2_2

CHAPTER 8 ■ PROTECTING CREDENTIALS

132

 This page shows that you gave the audit object a name and specified Security Log as
the audit destination. This means that ill-intentioned DBAs are unable to tamper with the
results.

 ■ Note Using the Windows Security log as a destination means that additional
configuration is required at the operating system level; this is discussed shortly.

 On the Filter page of the dialog box, illustrated in Figure 8-2 , you add a filter so that
only changes made to the sa account are audited, as opposed to auditing changes for all
logins.

 Figure 8-2. Create Audit dialog box: Filter page

CHAPTER 8 ■ PROTECTING CREDENTIALS

133

 The sa account always has a server_principal_id of 1, but this can be confirmed by
using the query in Listing 8-4 .

 Listing 8-4. Check server_principal_id of the sa Account

 SELECT
 name
 ,server_principal_id
 FROM sys.server_principals
 WHERE name = 'sa' ;

 You will now create a server audit specification, which defines the audit action
groups that you wish to log. To create a new server audit specification, drill through
the Security node in Object Explorer and select New Server Audit Specification from
the Server Audit Specifications context menu. This causes the Create Server Audit
Specification dialog box to be displayed, as illustrated in Figure 8-3 .

 Figure 8-3. Create New Server Audit Specification dialog box

 This dialog box shows that you have given the server audit specification a name and
used the Audit drop-down box to link it to the Chapter8Audit server audit object.

 In the Actions pane, you use the drop-down boxes in the Audit Action Type column
to add the SERVER_PRINCIPAL_CHANGE_GROUP and LOGIN_CHANGE_PASSWORD_GROUP audit
action groups. The query in Listing 8-5 returns a list of actions that is audited by these two
groups.

CHAPTER 8 ■ PROTECTING CREDENTIALS

134

 Listing 8-5. List Audit Actions

 SELECT
 name
 ,covering_parent_action_name
 FROM sys.dm_audit_actions
 WHERE covering_parent_action_name IN ('LOGIN_CHANGE_PASSWORD_GROUP','SERVER_
PRINCIPAL_CHANGE_GROUP') ;

 If you were to attempt to enable the audit at this point, then the action would
fail because you have not configured the operating system to allow the SQL Server
database engine service account the appropriate permissions to the Windows
Security log.

 The first action that you need to take to configure the operating system is to alter the
audit policy to allow application-generated audit events to occur. This can be performed
using the auditpol.exe utility. Open the command prompt as an administrator and run
the command in Listing 8-6 .

 Listing 8-6. Enable Application-Generated Audit Events

 auditpol /set /subcategory:"application generated" /success:enable /
failure:enable

 The second task is to grant the SQL Server database engine service account the
Generate Security Audits user rights assignment. This is performed by using the Local
Security Policy Windows snap-in. Run the secpol.exe utility and drill through Security
Options and User Rights Assignment in the Local Security Policy console. This is
illustrated in Figure 8-4 .

CHAPTER 8 ■ PROTECTING CREDENTIALS

135

 Now double-click the Generate Security Audits User Rights Assignment to display
the Generate Security Audits Properties dialog box, which is shown in Figure 8-5 .

 Figure 8-4. Local Security Policy console

CHAPTER 8 ■ PROTECTING CREDENTIALS

136

 In this dialog box , you use the Add Users or Group button to add the database engine
service account, thus granting it the user rights assignment.

 The server audit specification and server audit objects can now be enabled by
selecting Enable from the context menus in Object Explorer.

 Enforcing Constant Password Changes
 If you are in a situation where you have instances that use mixed mode authentication,
but you want to avoid the sa account from being used, another method (that I have seen
implemented at some FTSE 100 companies) is to change the password of the sa account
every hour. This is a deterrent against software development teams promoting code
that relies on the use of the sa account. They know in advance that if they do this, their
release almost instantly starts failing. It also avoids the possibility of DBAs re-enabling the
account “for convenience.”

 Figure 8-5. Generate Security Audits Properties dialog box

CHAPTER 8 ■ PROTECTING CREDENTIALS

137

 If your organization runs enterprise-level security software such as CyberArk, then
this tooling configures rapid cycling of the sa account password; otherwise, you can
create a simple routine using SQL Server.

 To create a routine in SQL Server, simply create a SQL Server Agent job . To do
this, drill through SQL Server Agent in Object Explorer and select New Job from
the Jobs context menu. This causes the General page of the New Job dialog box to
be displayed. On this page, you specify a name for the job and a job owner. In this
instance, you have used the database engine service account as the owner, as shown
in Figure 8-6 .

 Figure 8-6. New Job dialog box : General page

 On the Steps page, you use the New button to invoke the New Job Step dialog box,
which is illustrated in Figure 8-7 . In this dialog box, you specify a name for the job step,
ensure that the Type drop-down is configured as Transact-SQL Script(T-SQL) , and
enter the script that you want to run.

CHAPTER 8 ■ PROTECTING CREDENTIALS

138

 The script itself uses the CHECKSUM() function to return a hashed representation of
the current timestamp, which is retrieved using the GETDATE() function . This value is then
converted to a NVARCHAR(16) and used as the new password for the sa account.

 ■ Tip The command to actually change the sa account password is executed as dynamic
SQL because a variable cannot be passed to the ALTER LOGIN statement.

 Listing 8-7 provides the script that is used in the SQL Server Agent job step.

 Listing 8-7. Change sa Account Password to a Dynamic Value

 DECLARE @Password NVARCHAR(16) ;
 DECLARE @SQL NVARCHAR(MAX) ;

 SELECT @Password = CAST(CHECKSUM(GETDATE()) AS NVARCHAR(16)) ;

 SET @SQL = 'ALTER LOGIN sa WITH PASSWORD = ''' + @password + '''' ;

 EXEC(@SQL) ;

 Figure 8-7. New Job Step dialog box: General page

CHAPTER 8 ■ PROTECTING CREDENTIALS

139

 After exiting the New Job Step dialog box, you return to the New Job dialog box,
where you should navigate to the Schedule page and use the New button to invoke the
New Schedule dialog box, which is shown in Figure 8-8 . In this dialog box, you specify a
name for the schedule and use the Occurs drop-down list to indicate that you want the
schedule to run daily. Finally, you use the Occurs Every radio button to specify that the
schedule should run every hour. After exiting the New Schedule dialog box, you can also
exit the New Job dialog box, and the job is created.

 Figure 8-8. New Schedule dialog box

 ■ Tip The New Schedule dialog box is dynamic. Making changes to the Schedule Type or
Occurs drop-down lists causes the dialog box to be refreshed with different options.

 A full discussion of SQL Server Agent is beyond the scope of this book. For further
information, or to discover how to use Server Agent to schedule this (and other) jobs across
the enterprise, I recommend my book Expert Scripting and Automation for SQL Server DBAs
(Apress, 2016).

CHAPTER 8 ■ PROTECTING CREDENTIALS

140

 Protecting User Accounts
 Logins (other than the sa account) can also come under attack; therefore, it is important
to ensure that passwords are complex and changed frequently to avoid brute-force
attacks and word list attacks. A brute-force attack occurs when an attacker attempts to log
in by using every possible combination of letters and numbers as the password. During
a word list attack, a hacker uses a password dictionary to try to crack a password; this
attempt to authenticate uses a single login and a vast array of passwords.

 The best way of ensuring that passwords are complex and are frequently changed is
to enforce the domain-level password policy . If you are in a situation, where you have not
implemented this policy enforcement, however, it may be a good idea to perform spot-
checks to ensure that logins are not using very common passwords.

 ■ Tip Even if your environment does enforce password policies, it is still a good idea
to perform an occasional spot-check, because it is fairly simple for privileged users to
circumvent the functionality.

 Auditing Passwords Susceptible to Word List Attacks
 Common passwords are the first passwords that are attempted during a word list attack.
The following is a list of the 25 most common passwords (as collated by SplashData at
 https://www.teamsid.com/worst-passwords-2015/), ranked by the most common.

 1. 123456

 2. password

 3. 12345678

 4. qwerty

 5. 12345

 6. 123456789

 7. football

 8. 1234

 9. 1234567

 10. baseball

 11. welcome

 12. 1234567890

 13. abc123

 14. 111111

https://www.teamsid.com/worst-passwords-2015/

CHAPTER 8 ■ PROTECTING CREDENTIALS

141

 15. 1qaz2wsx

 16. dragon

 17. master

 18. monkey

 19. letmein

 20. login

 21. princess

 22. qwertyuiop

 23. solo

 24. passw0rd

 25. starwars

 To audit the logins within an instance to ensure that none of these words are used as
passwords, you can use the PWDCOMPARE() function. The PWDCOMPARE() function accepts
three parameters, which are described in Table 8-1 . The PWDCOMPARE() function returns 1
if the clear text password matches the password hash, and 0 if it does not match.

 Table 8-1. PWDCOMPARE Parameters

 Parameter Description

 clear_text_password Specifies the clear-text version of a password that you wish
to compare.

 password_hash The hashed password value that you wish to audit.

 version This parameter is obsolete and should not be used.

 The script in Listing 8-8 demonstrates how the PWDCOMPARE() function checks to
ensure that no logins within the instance use any of the 50 most common passwords. The
script first creates a temporary table, which holds the list of 25 most common passwords. It
then uses a CROSS JOIN to create a combination of every possible password in the list and
the password of every login in the instance. It then filters the results on where the password
in the list matches the hashed version of the password from the sys.logins catalog view.

 Listing 8-8. Audit Common Passwords

 CREATE TABLE ##Passwords
 (
 [Password] NVARCHAR(128)
) ;

 INSERT INTO ##Passwords
 VALUES ('123456'),

CHAPTER 8 ■ PROTECTING CREDENTIALS

142

 ('password'),
 ('12345678'),
 ('qwerty'),
 ('12345'),
 ('123456789'),
 ('football'),
 ('1234'),
 ('1234567'),
 ('baseball'),
 ('welcome'),
 ('1234567890'),
 ('abc123'),
 ('111111'),
 ('1qaz2wsx'),
 ('dragon'),
 ('master'),
 ('monkey'),
 ('letmein'),
 ('login'),
 ('princess'),
 ('qwertyuiop'),
 ('solo'),
 ('passw0rd'),
 ('starwars') ;

 SELECT l.name,
 p.[password]
 FROM sys.sql_logins l
 CROSS JOIN ##Passwords p
 WHERE PWDCOMPARE(p.Password,l.password_hash) = 1 ;

 DROP TABLE ##Passwords ;

 Summary
 It is important that DBA professionals reduce the likelihood of a successful attack
by enforcing password policies and ensuring that those policies are being adhered
to. The sa account is a particular target for attackers, so it is best practice to use
Windows authentication wherever possible. When this is not possible and mixed mode
authentication must be used, DBAs should disable or rename the sa account. If this is not
possible, then at a minimum, auditing should be configured to avoid non-reputability for
internal attacks.

 Other logins may also be targeted by attackers with either brute-force or word list
attacks. To mitigate the risks of this, you should enforce domain-level password policies
wherever possible. If you inherit an enterprise where this has not been enforced, then you
can check for logins that have common passwords configured by using the PWDCOMPARE()
function.

143© Peter A. Carter 2016
P. A. Carter, Securing SQL Server, DOI 10.1007/978-1-4842-2265-2_9

 CHAPTER 9

 Reducing the Attack Surface

 The surface area of SQL Server comprises all aspects of the suite that can potentially be
attacked. This includes features, services, and endpoints. The attackable surface area
can also be increased or reduced by operating system, or network components, such
as firewall design. The larger the attack surface, the greater the chance of a determined
attacker successfully exploiting a vulnerability. The following sections discuss network
configuration and ensuring that unsafe features are not turned on.

 Network Configuration
 The following sections provide an overview of ports and protocols, before diving into
considerations for firewall configuration.

 Understanding Ports and Protocols
 The following sections discuss protocols, static vs. dynamic ports, and policy-based
management.

 When computers communicate with each other across a network, they both need
to understand exactly how information is exchanged and what format it is in. This
information is laid out using protocols. SQL Server is able to listen on three different
protocols:

• Shared memory

• Named pipes

• TCP/IP

 Shared memory can only be used when the connecting client is on the same server
as the database engine instance. Because it is not good practice for applications to be
installed on the same server as SQL Server, then it is rare that shared memory can be
used. Its principal usage is in troubleshooting scenarios when you suspect that there may
be an issue with other protocols.

 Named pipes is a protocol that was designed to be used with a LAN. When used
across a WAN, named pipes can still be used, but performance can become an issue due
to a series of named pipe messages needing to be sent from the client before the network
read begins.

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

144

 ■ Tip From SQL Server 2008 onward, Kerberos is supported for named pipes, as well as
TCP/IP. This is due to the format of SPNs (service principal names) changing.

 TCP/IP is generally the protocol of choice in corporate environments. It has many
security features built-in and also includes standards for network routing. Unless there
is a specific reason for enabling named pipes, most SQL Server instances should be
configured to use TCP/IP only.

 Static vs. Dynamic Ports
 A port is a communication endpoint within an operating system, which are used by
transport layer protocols. SQL Server uses TCP (Transmission Control Protocol) ports
and UDP (User Datagram Protocol) ports, for clients to establish communication to an
instance.

 A static port always remains constant, even if the server (or service using the port)
is restarted. Some static ports are predefined (such as TCP 1433 for a default instance of
SQL Server) and others are configured by an administrator.

 Dynamic ports, on the other hand, change each time the service starts. This is
because they simply request a port number from the operating system, which assign
the service a port number that is not in use by another service within the high port
range. In Windows Server 2008 and above, and Windows Vista and above, this range is
49152–65535. Prior to these operating system levels, the dynamic port range was from
1024–5000.

 IANA, the Internet Assigned Numbers Authority , is responsible for coordinating the
allocation of Internet protocol resources, such as IP addresses, domain names, protocol
parameters, and the port numbers of network services. The IANA website is at www.
internetassignednumbersauthority.org . SQL Server has the following ports registered
in the IANA database:

• TCP 1433

• UDP 1433

• TCP 1434

• UDP 1433

 ■ Note The ports used by SQL Server is discussed in the “Ports Required by SQL Server”
section of this chapter.

http://www.internetassignednumbersauthority.org/
http://www.internetassignednumbersauthority.org/

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

145

 Entering the context menu of any of these protocols presents you with options to
enable or disable (as appropriate) the protocol for the instance. The database engine
service needs to be restarted for the change to take effect.

 The shared memory protocol has no configurable options, but entering the
properties of the named pipes protocol allows you to specify the name of the pipe to use,
as illustrated in Figure 9-2 .

 Figure 9-1. SQL Server protocols

 Configuring Protocols
 Allowed protocols can be configured in SQL Server Configuration Manager. Drilling
through SQL Server Network Configuration | Protocols for [Instance Name] causes a list of
protocols to be displayed in the right-hand pane of the Window, as shown in Figure 9-1 .

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

146

 Entering the properties of the TCP/IP protocol presents you with a dialog box
consisting of two tabs. The first tab, illustrated in Figure 9-3 , allows you to configure
protocol-related options. The Keep Alive setting specifies how long the interval should
be between checking that an idle connection is still intact. The Listen All settings specify
whether the instance should listen on all available IP addresses, or if a specific subset of
IP addresses is configured.

 Figure 9-2. Configuring named pipes

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

147

 The IP Addresses tab in the TCP/IP Properties dialog box allows you to configure the
port that the instance listens on. If the instance uses static ports (which are best practice
to assist firewall configuration), then TCP Dynamic Ports should be left blank.

 If Listen All in the Protocol tab is set as False, then you should configure the port for
each IP address available. You should also mark which IP address(es) should be used by
the instance. If Listen All is configured as True, then you should only configure the IPAll
section at the bottom of the tab, as all other configurations are ignored. The IP Addresses
tab is seen in Figure 9-4 .

 Figure 9-3. TCP/IP Properties : Protocol tab

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

148

 Firewall Requirements for SQL Server
 A firewall blocks network traffic to specific ports. Firewall rules open specific ports
to allow either open access for communication on specific ports or access to specific
IP addresses to communicate on the ports. Ports can be opened for inbound traffic,
outbound traffic, or bidirectional traffic.

 In a corporate environment, network traffic to and from SQL Server almost
certainly travels through at least one firewall, but is more likely to have to travel through
several firewalls. Figure 9-5 illustrates a simple firewall topology. When thinking about
the attack surface of SQL Server, firewalls are one of the first considerations that you
should take into account. Although you are unlikely to be directly responsible for
firewall configuration, you need to ensure that the requests you make to the firewall
administrators open enough ports for your data-tier application to function correctly,
while keeping the attack surface as small as possible.

 Figure 9-4. IP Addresses tab

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

149

 ■ Tip More complex firewall technologies may have different subnets for application,
database, and user tiers—with firewalls between each of these subnets.

 In addition to corporate hardware-based firewalls, some companies also have
Windows Firewall (also known as a local firewall) in use on their servers. This, of course,
adds an additional layer of complexity. And requests to have ports opened need to be
directed to the Windows administration team and the firewall administration team.

 Figure 9-5. Typical firewall topology

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

150

 How Clients Communicate with SQL Server
 When using the TCP/IP protocol, clients can either communicate directly with a named
instance of SQL Server by specifying the port number that the instance listens on in the
connection string, or by passing the instance name and letting the SQL Server Browser
service resolve the name. If a client communicates with a default instance of SQL Server,
then it can connect directly—without the need for the SQL Server Browser service. The
diagram in Figure 9-6 illustrates the decision tree process that occurs when a client
communicates with an instance.

 Figure 9-6. Communication process

 When a client communicates on named pipes, as opposed to TCP/IP, then traffic is
always sent on port 445. This is the port normally used for file and printer sharing.

 ■ Tip If you do not plan to use named pipes, then disabling file and printer sharing and
blocking port 445 is a good way to reduce the attack surface.

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

151

 Ports Required by SQL Server
 Depending on the SQL Server features that you plan to use, there are many different ports
that may be required by SQL Server. These ports are described in Table 9-1 .

 Table 9-1. Ports Required by SQL Server

 Feature/Component Port Requirements

 Default instance TCP 1433 (can be changed by a DBA)

 Named instance Dynamic port (can be changed by a DBA)

 DAC (dedicated administrator
connection) on default instance

 TCP 1434

 DAC on named instance Dynamic port

 SQL Server Browser service UDP 1434

 Instance running over HTTP
endpoint

 TCP 80 (can be changed by an IIS administrator)

 Instance running over HTTPS
endpoint

 TCP 443 (can be changed by an IIS administrator)

 Service Broker No default port, but 4022 is used as standard

 Database mirroring No default port, but 7022 is used as standard. If
there are multiple instances with database mirroring
endpoints on the same server, then the port number
is often incremented with + 1

 AlwaysOn Availability Groups No default port, but 7022 is used as standard. If
there are multiple instances with database mirroring
endpoints on the same server, then the port number
is often incremented with + 1 (Availability Groups use
the database mirroring endpoint)

 Replication - Instance
connections

 Connections to the instance use the port configured
for the instance

 Replication - Web sync TCP 80 (can be changed by an IIS administrator and
a DBA)

 Replication FTP TCP 21 (can be changed by a DBA)

 Replication - File sharing UDP 137, UDP 138, TCP 139 (TCP 445 is also required
if NetBIOS is used)

 T-SQL debugger TCP 135

 Analysis Services TCP 2382 (can be changed by a DBA)

 SQL Server Browser service
(when used with Analysis
Services named instances)

 TCP 2382

(continued)

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

152

 Ensuring that Unsafe Features Remain Disabled
 SQL Server disables unsafe features (features that increase the attack surface) by default.
If you need to turn on any of these features (or off again), you can do so via SQL Server
Management Studio (SSMS). The following sections discuss how to manually configure
the surface area and how to manage the surface area with Policy-Based Management.

 Manually Configuring the Surface Area
 To enable or disable features through SSMS, enter the instance context menu in Object
Explorer and select Facets. In the View Facets dialog box, you can now select Surface
Area Configuration from the drop-down list of available facets. Upon selecting the facet,
the lower pane of the screen automatically updates to reveal the current status of each
feature, as illustrated in Figure 9-7 .

Table 9-1. (continued)

 Feature/Component Port Requirements

 Analysis Services over HTTP TCP 80 (can be changed by an IIS administrator)

 Analysis Services PivotTable
service over HTTP

 TCP 80 (can be changed by and IIS administrator)

 Analysis Services over HTTPS TCP 443 (can be changed by an IIS administrator)

 Analysis Services PivotTable
service over HTTPS

 TCP 443 (can be changed by an IIS administrator)

 Reporting Services Web Service
through HTTP

 TCP 80 (can be changed by an IIS administrator)

 Reporting Services Web Service
through HTTPS

 TCP 443 (can be changed by an IIS administrator)

 Integration Services Runtime TCP 135

 WMI (Windows Management
Instrumentation)

 TCP 135

 MSDTC (Microsoft Distributed
Transaction Coordinator)

 TCP 135

 IPSec (encrypts server-to-server
 communications

 UDP 500 and UDP 5000

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

153

 In this particular case, you can see that CLR Integration is enabled, as is xp_cmdshell .
You can use the drop-down box next to each feature to change the status.

 Managing Features with Policy-Based Management
 While managing which features are enabled manually may be OK for a few instances,
if you have a large enterprise to manage, then it quickly becomes impossible. In this
scenario, you can use Policy-Based Management (PBM) to help you.

 Figure 9-7. Surface Area Configuration facet

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

154

 Policy-Based Management Concepts
 Policy-Based Management comprises of targets, facets, conditions, and policies. Targets
are entities that PBM manages, such as databases or tables—or for this purpose, the
surface area. Facets are collections of properties that relate to a target. For example,
the surface area configuration facet includes the same properties as the surface area
configuration instance level facet that was described earlier.

 ■ Tip The properties within this facet control the surface area of the database engine
only. Additional facets are supplied for Analysis Services and Reporting Services. These
additional facets are exposed through Policy-Based Management only; they are not available
as configurable instance-level facets.

 Conditions are Boolean expressions that can be evaluated against a property. A policy
binds conditions to targets. The following sections discuss each of these concepts.

 Facets

 A facet is a collection of properties that relate to a type of target, such as View, that has
properties, including IsSchemaBound , HasIndex , and HasAfterTrigger . SQL Server 2016
provides 96 facets in all; for reducing the surface area, the following are three facets of interest:

• ISurfaceAreaConfigurationForAnalysisServer

• ISurfaceAreaConfigurationForReportingServices

• ISurfaceAreaFacet

 Conditions

 A condition is a Boolean expression that is evaluated against an object property to determine
whether or not it matches a specified value. Each facet contains multiple properties that you
can create conditions against, but each condition can only access properties from within a
single facet. Conditions can be evaluated using the following operators:

• =

• !=

• LIKE

• NOT LIKE

• IN

• NOT IN

 Targets

 A target is an entity to which a policy can be applied. This can be almost any object within
SQL Server, such as a table, a database, or an instance. When adding targets to a policy,
you can use conditions to limit the number of targets. This means, for example, if you

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

155

create a policy to enforce database naming conventions on an instance, you can use a
condition to avoid checking the policy against database names that contain the words
“SharePoint,” “bdc,” or “wss,” since these are your SharePoint databases and they may
contain GUIDs that would be disallowed under your usual naming conventions.

 Policies

 A policy contains one condition and binds this condition to one or more targets (targets
may also be filtered, using separate conditions). The policy also specifies an evaluation
mode. Depending on the evaluation mode that you select, the policy may also contain
a schedule on which you would like the policy to be evaluated. Policies support the
following four evaluation modes:

• On Demand

• On Schedule

• On Change: Log Only

• On Change: Prevent

 If the evaluation mode is configured as On Demand, then the policy is only
evaluated when a DBA manually evaluates them. If the evaluation mode is configured
as On Schedule, then you create a schedule at the point when you create the policy. The
policy is then evaluated periodically in line with the schedule specification.

 If the evaluation mode is configured as On Change: Log Only, then whenever the
relevant property of a target changes, the policy is evaluated. If the change has caused the
policy to fail validation, a message is generated in the log, therefore logging any violation of
your policies. If the policy is violated, then Error 34053 is logged with a severity level of 16.

 If the evaluation mode is configured as On Change: Prevent, then when a property is
changed, SQL Server evaluates the property, and if there is a violation, an error message
is thrown and the statement that caused the policy violation is rolled back.

 Because policies work based on DDL events being fired, depending on the
properties within the facet, not all evaluation modes can be implemented for all facets.
Table 9-2 specifies the evaluation modes that can be configured for each of the surface
area configuration facets.

 Table 9-2. Evaluation Modes Supported by Surface Area Configuration Facets

 Facet
 On
 Demand

 On
 Schedule

 On Change:
 Log Only

 On Change:
 Prevent

 ISurfaceAreaFacet YES YES YES NO

 ISurfaceArea
Configuration
ForAnalysis Server

 YES NO NO NO

 ISurfaceArea
ConfigurationFor
ReportingServices

 YES NO NO NO

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

156

 ■ Tip In addition to evaluating surface area, Policy-Based Management can help with
implementing security in other ways. For example, imagine that you wanted to ensure that
developers did not elevate their own permissions by unauthorized use of EXECUTE AS in
their code. In this scenario, you could create a policy that prevented any stored procedures
from being created or modified if they contained the string EXECUTE AS .

 Creating a Policy for Surface Area Configuration
 To create a policy to manage the surface area of the database engine, you need to create
two objects: a condition and a policy.

 To create the condition, drill through the Management ➤ Policy-Based Management
in Object Explorer and select New Condition from the context menu of the Conditions node.
This causes the Create New Condition dialog box to be invoked, as illustrated in Figure 9-8 .

 Figure 9-8. Create New Condition dialog box

 In this dialog box, you specify a name for the condition and then select the Surface
Area Configuration facet from the Facet drop-down box.

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

157

 ■ Note Notice that when viewed through SSMS, the friendly name of the facet is
returned, as opposed to the system name. For example, the facet that you are using is
displayed as Surface Area Configuration, as opposed to ISurfaceAreaFacet.

 In the Expression area of the screen, you select the properties that you want to
include in the condition by using the drop-down boxes in the Field column. You specify
whether they should be enabled or disabled in the Value column.

 You can now create the policy by drilling through Management ➤ Policy-Based
Management in Object Explorer, and then selecting New Policy from the Policies context
menu. This causes the Create New Policy dialog box to be invoked, as illustrated in
Figure 9-9 .

 Figure 9-9. Create New Policy dialog box

 In this dialog box, you specify a name for the policy, and then select the condition
that you want to evaluate from the Check condition drop-down list. You select On
Demand as the evaluation mode, meaning that the policy is only evaluated when a DBA
manually evaluates it.

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

158

 ■ Tip Because you have chosen the On Demand evaluation mode, the Enable check box
is not selectable. This does not affect the ability to evaluate the policy. Policies can also be
evaluated manually, regardless of the evaluation mode or enabled status.

 Evaluating the Policy Against a Single Instance
 To evaluate the policy against the instance where it was created, drill through
Management ➤ Policy-Based Management ➤ Policies. And then select Evaluate from
your policy’s context menu. This causes the Evaluate Policies dialog box to be invoked, as
illustrated in Figure 9-10 .

 Figure 9-10. Evaluated Policies dialog box

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

159

 The Evaluate Policies dialog box shows each policy that has been evaluated; its
evaluation status is in the top pane of the window. The lower pane of the window
describes the status of policy against each target. Clicking the View link in the Details
column displays the Results Detailed View dialog box, as shown in Figure 9-11 . As you
can see, this dialog box provides the status of each property that has been evaluated.

 Figure 9-11. Results Detailed View dialog box

 Evaluating Policies Against Multiple Instances
 While evaluating policies against a single instance certainly has merit in some scenarios,
when evaluating the surface area of the database engine, there is no value added—over
what can be viewed within the instance level Surface Area Configuration facet.

 The real benefit of Policy-Based Management comes from the ability to evaluate a
policy against a large number of instances at the same time. To achieve this, you need to
use ac management server.

CHAPTER 9 ■ REDUCING THE ATTACK SURFACE

160

 Central management servers are provided by SSMS, which allows you to register an
instance as a central management server and then register other instances as registered
servers of this central management server. Once you have registered servers under a
central management server, you can run queries or evaluate policies against all servers
managed by the CMS (central management server). Alternatively, you can create server
groups underneath the CMS, which gives you the flexibility to run queries or evaluate
policies against servers within a specific group.

 ■ Note A full discussion of central management servers is beyond the scope of this book.
For a detailed discussion on the subject, however, I recommend my book Pro SQL Server
Administration (Apress, 2015).

 Policies can also be evaluated against multiple instances using PowerShell. With
this approach, the Invoke-PolicyEvaluation cmdlet evaluates a policy against a target
server, which can be placed in a ForEach loop to run the cmdlet against multiple servers.

 ■ Tip A full discussion on using PowerShell to manage SQL Server can be found in my
book Expert Scripting and Automation for SQL Server DBAs (Apress, 2016).

 Summary
 The SQL Server surface area comprises all aspects of the suite that can potentially be
attacked. Reducing the attack surface makes it harder to launch a successful threat
against your SQL Server instance(s).

 Understanding the port requirements of SQL Server is key to implementing a secure
firewall policy. Most firewall engineers are aware that port 1433 is used as a standard
by the default instance of SQL Server; but they may not be aware of the other port
requirements. This can lead to confusion and ultimately too many ports being opened
just to get an application working. As a SQL Server professional, being able to advise and
guide the firewall team leads to a more secure environment.

 It is important to ensure that unsecure features remain disabled, unless they are
specifically required and there is no workaround. Unsecure features can be configured
manually for an instance by using the Surface Area Configuration facet.

 Policy-Based Management provides a Surface Area Configuration facet and also
provides additional facets for evaluating the surface area of SQL Server Analysis Services
and SQL Server Reporting Services. Once you have created policies, they can either be
evaluated locally against an instance or they can be evaluated across many instances
using either central management servers or PowerShell.

161

 A, B
 Always Encrypted

 architecture , 89
 column encryption key , 88, 93–94
 column master key , 88, 90–92
 limitations , 94–96

 API . See Application programming
interface (API)

 Application programming
interface (API) , 70

 Asymmetric keys , 70
 Audit metadata

 sys.fn_get_audit_fi le() , 105–107
 AvailabilityRole , 24

 C
 CarterSecureSafe , 2
 Certifi cate authority (CA)

 DPAPI , 70
 self-signed certifi cate , 70

 CHECKSUM() function , 138
 Clients communication , 150
 Column encryption key , 88, 92, 94
 Column master key , 88, 90–94
 Constant password changes

 dynamic value , 138–139
 job creation, general page , 137–138

 CREATE CERTIFICATE , 80
 CREATE SYMMETRIC KEY , 80–81
 Cryptographic functions , 79

 D
 Database administrators

(DBAs) , 15, 24, 27, 32
 Database encryption key , 83
 Database-level security

 Create SalesRole , 32–33
 fi xed database roles , 31–32
 user with a Login , 26
 without a Login

 contained database , 28–29
 SID , 31
 sys.database_principals , 29–30
 Windows Security

Principal , 28
 Data-level security

 dynamic data masking , 65–66
 impersonation , 59–61
 ownership chain , 57–59
 partial database , 56
 RLS , 61–65

 Data protection API (DPAPI) , 70
 DBAs . See Database

administrators (DBAs)
 DECRYPTBYKEY() , 82–83
 DECRYPTBYPASSPHRASE() , 76–78
 Defense-in-depth , 69
 Denial-of-service (DoS) , 7
 DPAPI . See Data protection

API (DPAPI)
 DREAD methodology , 9–11
 Dynamic data masking , 65–66

 Index

© Peter A. Carter 2016
P. A. Carter, Securing SQL Server, DOI 10.1007/978-1-4842-2265-2

■ INDEX

162

 E
 EKM . See Extensible key management

(EKM)
 ENCRYPTBYKEY() , 81–82
 ENCRYPTBYPASSPHRASE() , 74–76,

78–79
 Encryption

 asymmetric key , 70
 certifi cates (see Certifi cate

authority (CA))
 CREATE CERTIFICATE , 80
 CREATE SYMMETRIC KEY , 80–81
 cryptographic functions , 79–80
 DECRYPTBYKEY() , 82–83
 DECRYPTBYPASSPHRASE() , 76–78
 defense-in-depth , 69
 EKM , 73
 ENCRYPTBYKEY() , 81–82
 ENCRYPTBYPASSPHRASE() , 74–76, 78
 key stores , 73
 master keys , 70–72
 metadata

 sys.column_encryption_keys , 108
 sys.column_master_keys , 109
 TDE , 109–112

 symmetric keys , 69
 TDE (see Transparent data

encryption (TDE))
 Evaluating policies

 multiple instances , 159–160
 single instances , 158–159

 Extensible key management (EKM) , 73

 F
 Firewall requirements , 148–149
 Fixed database roles , 31–32
 Fixed server roles , 23–24

 G
 GETDATE() function , 138

 H
 Hardware security module (HSM) , 73
 HSM . See Hardware security

module (HSM)

 I, J, K, L
 Identity spoofi ng , 129
 In-Memory OLTP , 84
 Instance level security

 ALTER USER statement
WITH LOGIN , 20

 CREATE LOGIN , 18–19
 credentials , 25
 CRYP_GEN_RANDOM , 22
 custom server roles , 24
 DENY , 25
 fi xed server role , 23–24
 GRANT , 25
 HASHBYTES() , 21–22
 mixed mode authentication , 18
 REVOKE , 25
 SQLCMD mode , 21

 M
 Managed service accounts (MSA) , 118
 Microsoft Cryptographic

API (MS-CAPI) , 73
 Mixed mode authentication , 129
 MSAs . See Managed service accounts

(MSA)
 MS-CAPI . See Microsoft Cryptographic

API (MS-CAPI)

 N, O
 Network confi guration

 fi rewall , 148–149
 ports and protocols , 143–144
 protocols confi gure

 IP addresses , 148
 named pipes , 146
 shared memory protocol , 145
 SQL Server protocols , 145
 TCP/IP properties , 147

 static vs . dynamic ports , 144

 P, Q
 Policy-based management (PBM) , 153
 Port requirements , 151–152
 Ports and protocols , 143–144
 Protecting credentials

■ INDEX

163

 sa account
 cost and operational risk , 129
 disabling , 130
 force password polices , 130
 mixed mode authentication , 129
 rename , 130
 server audit , 131

 server audit
 application-generated audit

events , 134
 fi lter page , 132
 general page , 132
 list audit actions , 134
 local security policy , 135
 properties , 136
 specifi cation , 133

 Protecting user accounts
 audit common passwords , 141–142
 auditing , 140–141
 domain-level password policy , 140
 logins , 140
 PWDCOMPARE parameters , 141

 PWDCOMPARE() function , 141

 R
 RLS . See Row-level security (RLS)
 Row-level security (RLS)

 implementation , 63–65
 security policy , 62–63
 security predicate , 62

 S
 Security metadata

 code signing
 sys.certifi cates columns , 101–102
 sys.fn_check_object_signatures ,

102–103
 forced information disclosure ,

113–114
 sp_MShasdbaccess stored

procedure , 97
 sp_table_privileges , 104
 sys.fn_my_permissions , 98–100
 VIEW DEFINITION permission , 112–113

 Security model
 defi nition , 15
 instance level security,

implementation (see Instance
level security)

 Security principal hierarchy , 15–17
 Server audit

 action groups
 audit-level , 46
 database-level , 43–45
 server-level , 37–42

 creation , 46–48
 sp_audit_write parameters , 52
 specifi cation , 49–50
 USER_DEFINED_AUDIT_GROUP ,

50, 53
 Service accounts

 data-tier application , 127
 MSAs , 118–119
 permission and assignment

requirements , 124
 Launchpad , 125
 SQL Server Analysis Services , 121
 SQL Server Browser , 123
 SQL Server Database , 120
 SQL Server Distributed Replay

Client , 124–125
 SQL Server Distributed Replay

Controller , 123–124
 SQL Server Integration

Services , 122–123
 SQL Server Reporting

Services , 121–122
 SQL Server VSS Writer , 123

 SMB attacks , 126
 virtual , 117–118, 127

 sp_MShasdbaccess stored procedure , 97
 Static vs . dynamic ports , 144
 STRIDE methodology , 6–8
 Surface area confi guration , 156–157
 Symmetric keys , 69
 sys.fn_my_permissions function , 99–100

 T
 TCP/IP properties , 147
 Th reat modelling process

 architecture , 3
 CarterSecureSafe , 2
 data-tier application , 1
 DOS , 12
 DREAD (see DREAD methodology)
 identifying assets , 2
 security profi le , 4–6
 SQL Server Audit , 12
 STRIDE (see STRIDE methodology)

■ INDEX

164

 technology stack , 4
 threat rating methodology , 8–9

 Th reat rating methodology , 8–9
 Transact-SQL Script (T-SQL) , 137
 Transparent data encryption (TDE)

 administration , 87
 certifi cate, backup , 87
 database encryption key , 83
 database migration , 87
 FILESTREAM fi legroup , 84
 implementation , 85–87
 In-Memory OLTP , 84

 U
 Unsafe features disabling

 policy-based management , 153
 condition , 154
 facet , 154
 policies, evaluation mode , 155
 target , 154

 surface area confi gure , 152–153

 V, W, X, Y, Z
 Virtual accounts , 117–118

Th reat modelling process (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Threat Analysis
	Understanding Threat Modelling
	Identifying Assets
	Creating an Architecture Overview
	Creating the Infrastructure Components
	Identifying the Technology Stack

	Creating a Security Profile
	Identifying Threats
	Understanding STRIDE
	Using STRIDE

	Rating Threats
	Understanding Threat Rating Methodologies
	Understanding DREAD Methodology
	Using DREAD Methodology

	Creating Countermeasures
	Summary

	Chapter 2: SQL Server Security Model
	Security Principal Hierarchy
	Instance Level Security
	Logins
	Creating a Login
	Migrating Logins Between Instances

	Server Roles
	Credentials

	Database-Level Security
	Users
	Users with a Login
	Users Without a Login

	Database Roles

	Summary

	Chapter 3: SQL Server Audit
	Understanding SQL Server Audit
	SQL Server Audit Actions and Action Groups

	Implementing SQL Server Audit
	Creating a Server Audit
	Create a Server Audit Specification
	Create a Database Audit Specification

	Creating Custom Audit Events
	Creating the Server Audit and Database Audit Specification
	Raising the Event

	Summary

	Chapter 4: Data-Level Security
	Schemas
	Ownership Chaining
	Impersonation
	Row-Level Security
	Security Predicates
	Security Policies
	Implementing RLS

	Dynamic Data Masking
	Summary

	Chapter 5: Encryption in SQL Server
	Generic Encryption Concepts
	Defense-in-Depth
	Symmetric Keys
	Asymmetric Keys
	Certificates
	Self-Signed Certificates
	Windows Data Protection API

	SQL Server Encryption Concepts
	Master Keys
	EKM and Key Stores
	SQL Server Encryption Hierarchy

	Encrypting Data
	Encrypting Data with a Password or a Passphrase
	Encrypting Data with Keys and Certificates

	Transparent Data Encryption
	Considerations for TDE with Other Technologies
	Implementing TDE
	Administering TDE
	Backing up the Certificate
	Migrating an Encrypted Database

	Always Encrypted
	Implementing Always Encrypted
	Always Encrypted Limitations

	Summary

	Chapter 6: Security Metadata
	Security Principal Metadata
	Finding a User’s Effective Permissions

	Securable Metadata
	Code Signing
	Permissions Against a Specific Table

	Audit Metadata
	Encryption Metadata
	Always Encrypted Metadata
	TDE Metadata

	Securing Metadata
	Risks of Metadata Visibility

	Summary

	Chapter 7: Implementing Service Accounts for Security
	Service Account Types
	Virtual Accounts
	Managed Service Accounts

	SQL Server Services
	How Service Accounts Can Become Compromised
	Designing a Pragmatic Service Account Strategy
	Summary

	Chapter 8: Protecting Credentials
	Protecting the sa Account
	DBA Steps to Mitigate the Risks
	Disabling the sa Account
	Renaming the sa Account
	Ensuring Reputability
	Enforcing Constant Password Changes

	Protecting User Accounts
	Auditing Passwords Susceptible to Word List Attacks

	Summary

	Chapter 9: Reducing the Attack Surface
	Network Configuration
	Understanding Ports and Protocols
	Static vs. Dynamic Ports
	Configuring Protocols

	Firewall Requirements for SQL Server
	How Clients Communicate with SQL Server
	Ports Required by SQL Server

	Ensuring that Unsafe Features Remain Disabled
	Manually Configuring the Surface Area
	Managing Features with Policy-Based Management
	Policy-Based Management Concepts
	Facets
	Conditions
	Targets
	Policies

	Creating a Policy for Surface Area Configuration
	Evaluating the Policy Against a Single Instance
	Evaluating Policies Against Multiple Instances

	Summary

	Index

