
SQL Server
AlwaysOn
Revealed

—
Supporting 24 x 7 applications
with continuous uptime
—
Second Edition
—
Peter A. Carter

T H E E X P E R T ’S V O I C E ® I N S Q L

 SQL Server
AlwaysOn Revealed

 Second Edition

 Peter A. Carter

SQL Server AlwaysOn Revealed, 2nd Edition

Peter A. Carter
Botley, United Kingdom

ISBN-13 (pbk): 978-1-4842-2396-3 ISBN-13 (electronic): 978-1-4842-2397-0
DOI 10.1007/978-1-4842-2397-0

Library of Congress Control Number: 2016960322

Copyright © 2016 by Peter A. Carter

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Bradley Beard
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Brendan Frost
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com . For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/ . Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

 Th is book is dedicated to the beloved memory of
Margaret Carter (1938–2015).

v

Contents at a Glance

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

 ■Chapter 1: High Availability and Disaster Recovery Concepts 1

 ■ Chapter 2: Understanding High Availability and
Disaster Recovery Technologies ... 9

 ■Chapter 3: Implementing a Cluster ... 29

 ■ Chapter 4: Implementing an AlwaysOn Failover
Clustered Instance .. 59

 ■ Chapter 5: Implementing HA with AlwaysOn
Availability Groups ...83

 ■ Chapter 6: Implementing DR with AlwaysOn
Availability Groups ...121

 ■Chapter 7: Administering AlwaysOn ... 149

 ■Chapter 8: Monitoring AlwaysOn Availability Groups 167

 ■Chapter 9: Troubleshooting AlwaysOn .. 191

Index .. 207

vii

Contents

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

 ■Chapter 1: High Availability and Disaster Recovery Concepts 1

Level of Availability .. 1

Service-Level Agreements and Service-Level Objectives .. 3

Proactive Maintenance ... 4

Recovery Point Objective and Recovery Time Objective 4

Cost of Downtime .. 5

Classifi cation of Standby Servers.. 6

Summary ... 7

 ■ Chapter 2: Understanding High Availability and
Disaster Recovery Technologies ... 9

AlwaysOn Failover Clustering .. 9

Active/Active Confi guration .. 11

Three-Plus Node Confi gurations ... 12

Quorum ... 13

Database Mirroring.. 15

AlwaysOn Availability Groups .. 18

Automatic Page Repair ... 22

■ CONTENTS

viii

Log Shipping ... 23

Recovery Modes ... 24

Remote Monitor Server... 25

Failover ... 25

Combining Technologies .. 25

Summary ... 27

 ■Chapter 3: Implementing a Cluster ... 29

Building the Cluster ... 30

Installing the Failover Cluster Feature .. 31

Creating the Cluster .. 37

Confi guring the Cluster ... 48

Changing the Quorum ... 48

Confi guring MSDTC... 52

Confi guring a Role .. 55

Summary ... 58

 ■ Chapter 4: Implementing an AlwaysOn Failover
Clustered Instance .. 59

Building the Instance ... 59

Installing the Instance with PowerShell .. 76

Adding a Node ... 77

Adding a Node Using PowerShell .. 80

Summary ... 82

 ■ Chapter 5: Implementing HA with AlwaysOn
Availability Groups ...83

Preparing for Availability Groups ... 84

Confi guring SQL Server ... 89

Creating the Availability Group .. 90

■ CONTENTS

ix

Using the New Availability Group Wizard .. 90

Scripting the Availability Group... 100

Using the New Availability Group Dialog Box .. 109

Performance Considerations for Synchronous Commit Mode 112

Summary ... 119

 ■ Chapter 6: Implementing DR with AlwaysOn
Availability Groups ...121

Confi guring the Cluster ... 121
Adding a Node .. 122

Modifying the Quorum .. 124

Adding an IP Address .. 128

Confi guring the Availability Group ... 130
Adding and Confi guring a Replica .. 131

Add an IP Address ... 139

Improving Connection Times .. 141

Distributed Availability Groups .. 142

Confi guring Readable Secondary Replicas ... 144

Summary ... 147

 ■Chapter 7: Administering AlwaysOn ... 149

Managing a Cluster ... 149
Moving the Instance Between Nodes ... 149

Rolling Patch Upgrade .. 151

Removing a Node from the Cluster ... 153

Managing AlwaysOn Availability Groups .. 154
Failover ... 154

Synchronizing Uncontained Objects ... 161

Adding Multiple Listeners ... 161

Other Administrative Considerations .. 163

Summary ... 164

■ CONTENTS

x

 ■Chapter 8: Monitoring AlwaysOn Availability Groups 167

AlwaysOn Dashboard .. 167

AlwaysOn Health Trace .. 170

Monitoring AlwaysOn with Extended Events 171

Extended Events Concepts ... 171

Creating an Event Session to Monitor Availability Group 183

Summary ... 189

 ■Chapter 9: Troubleshooting AlwaysOn .. 191

AlwaysOn Failover Clustered Instance Metadata 191

Discovering the Node That Hosts an Instance .. 191

Viewing Health Check Confi guration .. 192

AlwaysOn Availability Group Metadata .. 196

Determining the Last Failover Reason .. 196

Assessing the State of Availability Databases .. 199

Summary ... 205

Index .. 207

xi

 About the Author

 Peter A. Carter is a SQL Server expert with over a
decade of experience in developing, administering,
and architecting SQL Server platforms, data-tier
applications, and ETL solutions. Peter has a passion for
SQL Server and hopes that his enthusiasm for this
technology helps or inspires others.

xiii

 About the Technical
Reviewer

 Bradley Beard is a software engineer with more than 15
years experience writing dynamic, interactive websites
using ColdFusion and SQL Server. He graduated from
Florida Institute of Technology in 2007 with a Master of
Science in Computer Information Systems, and studied
for his undergraduate degrees in CIS and Technology
Management at Herzing University. In 2013, he earned
the MCSA: SQL Server 2012 certification from
Microsoft, and in 2016, he earned the MCSE: Business
Intelligence certification as well. His continual quest for
learning has earned him shelves full of books at home
and at work, most of which are about SQL Server,
ColdFusion, or general web architectures or
frameworks.

 He lives in Palm Bay, Florida with his wife, Jessica,
and children, Josh, Kaylee, Matthew, and Emma. He
also apparently runs an animal shelter made up of his
dogs, Lady and Bella, and cats, Spice, Simba, Mercury,
and Dobby. In his free time, he enjoys fishing and
spending time with his wife and kids.

 Bradley is available for consultation and third-shift remote employment on
ColdFusion and SQL Server by contacting bradley.beard@gmail.com .

http://bradley.beard@gmail.com

xv

 Acknowledgments

 I would like to thank Ian Stirk and Paul Grubb, both of whom provided helpful and
constructive feedback on the first edition of this book. I have attempted to incorporate
their suggestions into this edition.

 I would also like to offer special thanks to Lawrence You, who helped me resolve
routing issues between the subnets, within the lab environment that I used in this book.

1© Peter A. Carter 2016
P. A. Carter, SQL Server AlwaysOn Revealed, DOI 10.1007/978-1-4842-2397-0_1

CHAPTER 1

High Availability and
Disaster Recovery Concepts

In today’s 24×7 environments that are running mission-critical applications, businesses
rely heavily on the availability of their data. Although servers and their software are
generally reliable, there is always the risk of a hardware failure or a software bug, each of
which could bring a server down. To mitigate these risks, business-critical applications
often rely on redundant hardware to provide fault tolerance. If the primary system fails,
then the application can automatically fail over to the redundant system. This is the
underlying principle of high availability (HA).

Even with the implementation of HA technologies, there is always a small risk of an
event that causes the application to become unavailable. This could be due to a major
incident, such as the loss of a data center, due to a natural disaster, or due to an act of
terrorism. It could also be caused by data corruption or human error, resulting in the
application’s data becoming lost or damaged beyond repair.

In these situations, some applications may rely on restoring the latest backup to
recover as much data as possible. However, more critical applications may require a
redundant server to hold a synchronized copy of the data in a secondary location. This is
the underpinning concept of disaster recovery (DR). This chapter discusses the concepts
behind HA and DR.

Level of Availability
The amount of time that a solution is available to end users is known as the level of
availability, or uptime. To provide a true picture of uptime, a company should measure
the availability of a solution from a user’s desktop. In other words, even if your SQL Server
has been running uninterrupted for over a month, users may still experience outages to
their solution caused by other factors. These factors can include network outages or an
application server failure.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2397-0_1) contains supplementary material,
which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2397-0_1

Chapter 1 ■ high availability and disaster reCovery ConCepts

2

In some instances, however, you have no choice but to measure the level of
availability at the SQL Server level. This may be because you lack holistic monitoring
tools within the Enterprise. Most often, however, the requirement to measure the level
of availability at the instance level is political, as opposed to technical. In the IT industry,
it has become a trend to outsource the management of data centers to third-party
providers. In such cases, the provider responsible for managing the SQL servers may not
necessarily be the provider responsible for the network or application servers. In this
scenario, you need to monitor uptime at the SQL Server level to accurately judge the
performance of the service provider.

The level of availability is measured as a percentage of the time that the application
or server is available. Companies often strive to achieve 99%, 99.9%, 99.99%, or 99.999%
availability. As a result, the level of availability is often referred to in 9s. For example, five
9s of availability means 99.999% uptime and three 9s means 99.9% uptime.

Table 1-1 details the amount of acceptable downtime per week, per month, and per
year for each level of availability.

Table 1-1. Levels of Availability

Level of Availability Downtime per Week Downtime per Month Downtime per Year

99% 1 hour, 40 minutes,
48 seconds

7 hours, 18 minutes,
17 seconds

3 days, 15 hours, 39
minutes, 28 seconds

99.9% 10 minutes, 4 seconds 43 minutes, 49 seconds 8 hours, 45 minutes,
56 seconds

99.99% 1 minute 4 minutes, 23 seconds 52 minutes,
35 seconds

99.999% 6 seconds 26 seconds 5 minutes,
15 seconds

All values are rounded down to the nearest second.

To calculate other levels of availability, you can use the script in Listing 1-1. Before
running this script, replace the value of @Uptime to represent the level of uptime that you
wish to calculate. You should also replace the value of @UptimeInterval to reflect uptime
per week, month, or year.

Listing 1-1. Calculating the Level of Availability

DECLARE @Uptime DECIMAL(5,3) ;

--Specify the uptime level to calculate

SET @Uptime = 99.9 ;

DECLARE @UptimeInterval VARCHAR(5) ;

Chapter 1 ■ high availability and disaster reCovery ConCepts

3

--Specify WEEK, MONTH, or YEAR

SET @UptimeInterval = 'YEAR' ;

DECLARE @SecondsPerInterval FLOAT ;

--Calculate seconds per interval

SET @SecondsPerInterval =
(
SELECT CASE
 WHEN @UptimeInterval = 'YEAR'
 THEN 60*60*24*365.243
 WHEN @UptimeInterval = 'MONTH'
 THEN 60*60*24*30.437
 WHEN @UptimeInterval = 'WEEK'
 THEN 60*60*24*7
 END
) ;

DECLARE @UptimeSeconds DECIMAL(12,4) ;

--Calculate uptime

SET @UptimeSeconds = @SecondsPerInterval * (100-@Uptime) / 100 ;

--Format results
SELECT
 CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds /60/60/24)) + ' Day(s), '
 + CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds /60/60 % 24)) + ' Hour(s), '
 + CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds /60 % 60)) + ' Minute(s), '
 + CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds % 60)) + ' Second(s).' ;

Service-Level Agreements and Service-Level Objectives
When a third-party provider is responsible for managing servers, the contract usually
includes service-level agreements (SLAs). These SLAs define many parameters, including
how much downtime is acceptable, the maximum length of time a server can be down
in the event of failure, and how much data loss is acceptable if failure occurs. Normally,
there are financial penalties for the provider if these SLAs are not met.

In the event that servers are managed in-house, DBAs still have the concept of
customers. These are usually the end users of the application, with the primary contact
being the business owner. An application’s business owner is the stakeholder within the
business who commissioned the application and who is responsible for signing off on
funding enhancements, among other things.

Chapter 1 ■ high availability and disaster reCovery ConCepts

4

In an in-house scenario, it is still possible to define SLAs, and in such a case, the IT
Infrastructure or Platform departments may be liable for charge-back to the business
teams if these SLAs are not being met. However, in internal scenarios, it is much more
common for IT departments to negotiate service-level objectives (SLOs) with the
business teams, as opposed to SLAs. SLOs are very similar in nature to SLAs, but their use
implies that the business does not impose financial penalties on the IT department in the
event that they are not met.

Proactive Maintenance
It is important to remember that downtime is caused not only by failure, but also by
proactive maintenance. For example, if you need to patch the operating system, or SQL
Server itself, with the latest service pack, then you must have some downtime during
installation.

Depending on the upgrade you are applying, the downtime in such a scenario could
be substantial—several hours for a stand-alone server. In this situation, high availability
is essential for many business-critical applications—not to protect against unplanned
downtime, but to avoid prolonged outages during planned maintenance.

Recovery Point Objective and Recovery Time
Objective
The recovery point objective (RPO) of an application indicates how much data loss
is acceptable in the event of a failure. For a data warehouse that supports a reporting
application, for example, this may be an extended period, such as 24 hours, given that it
may only be updated once per day by an ETL (Extract Transform and Load) process and
all other activity is read-only reporting. For highly transactional systems, however, such as
an OLTP (Online Transaction Processing) database supporting trading platforms or web
applications, the RPO will be zero. An RPO of zero means that no data loss is acceptable.

Applications may have different RPOs for high availability and for disaster recovery.
For example, for reasons of cost or application performance, an RPO of zero may be
required for a failover within the site. If the same application fails over to a DR data
center, however, five or ten minutes of data loss may be acceptable. This is because of
technology differences used to implement intrasite availability and intersite recovery.

The recovery time objective (RTO) for an application specifies the maximum amount
of time an application can be down before recovery is complete and users can reconnect.
When calculating the achievable RTO for an application, you need to consider many
aspects. For example, it may take less than a minute for a cluster to fail over from one
node to another and for the SQL Server service to come back up; however, it may take far
longer for the databases to recover. The time it takes for databases to recover depends
on many factors, including the size of the databases, the quantity of databases within an
instance, and how many transactions were in-flight when the failover occurred. This is
because all noncommitted transactions need to be rolled back.

Chapter 1 ■ high availability and disaster reCovery ConCepts

5

Just like RPO, it is common for there to be different RTOs depending on whether
you have an intrasite or intersite failover. Again, this is primarily due to differences in
technologies, but it also factors in the amount of time you need to bring up the entire
estate in the DR data center if the primary data center is lost.

The RPO and RTO of an application may also vary in the event of data corruption.
Depending on the nature of the corruption and the HA/DR technologies that have been
implemented, data corruption may result in you needing to restore a database from a
backup.

If you must restore a database, the worst-case scenario is that the achievable
point of recovery may be the time of the last backup. This means that you must factor
a hard business requirement for a specific RPO into your backup strategy. If only part
of the database is corrupt, however, you may be able to salvage some data from the live
database and restore only the corrupt data from the restored database.

Data corruption is also likely to have an impact on the RTO. One of the biggest
influencing factors is if backups are stored locally on the server, or if you need to retrieve
them from tape. Retrieving backup files from tape, or even from off-site locations, is likely
to add significant time to the recovery process.

Another influencing factor is what caused the corruption. If it is caused by a faulty
IO subsystem, then you may need to factor in time for the Windows administrators to
run the check disk command (CHKDSK) against the volume and potentially more time for
disks to be replaced. If the corruption is caused by a user accidently truncating a table or
deleting a data file, however, then this is not of concern.

Cost of Downtime
If you ask any business owners how much downtime is acceptable for their applications
and how much data loss is acceptable, the answers invariably come back as zero and
zero, respectively. Of course, it is never possible to guarantee zero downtime, and once
you begin to explain the costs associated with the different levels of availability, it starts to
get easier to negotiate a mutually acceptable level of service.

The key factor in deciding how many 9s you should try to achieve is the cost of
downtime. Two categories of cost are associated with downtime: tangible costs and
intangible costs. Tangible costs are usually fairly straightforward to calculate. Let’s use
a sales application as an example. In this case, the most obvious tangible cost is lost
revenue because the sales staff cannot take orders. Intangible costs are more difficult to
quantify but can be far more expensive. For example, if a customer is unable to place an
order with your company, they may place their order with a rival company and never
return. Other intangible costs can include loss of staff morale, which leads to higher staff
turnover, or even loss of company reputation. Because intangible costs, by their very
nature, can only be estimated, the industry rule of thumb is to multiply the tangible costs
by three and use this figure to represent your intangible costs.

Once you have an hourly figure for the total cost of downtime for your application,
you can scale this figure out, across the predicted lifecycle of your application, and
compare the costs of implementing different availability levels. For example, imagine that
you calculate that your total cost of downtime is $2,000/hour and the predicted lifecycle

Chapter 1 ■ high availability and disaster reCovery ConCepts

6

of your application is three years. Table 1-2 illustrates the cost of downtime for your
application, comparing the costs that you have calculated for implementing each level
of availability, after you have factored in hardware, licenses, power, cabling, additional
storage, and additional supporting equipment, such as new racks, administrative costs,
and so on. This is known as the total cost of ownership (TCO) of a solution.

Table 1-3. Standby Classifications

Class Description Example Technologies

Hot A synchronized solution where failover can occur
automatically or manually. Often used for high
availability.

Clustering, AlwaysOn
Availability Groups
(Synchronous)

Warm A synchronized solution where failover can only
occur manually. Often used for disaster recovery.

Log Shipping, AlwaysOn
Availability Groups
(Asynchronous)

Cold An unsynchronized solution where failover can
only occur manually. This is only suitable for
read-only data, which is never modified.

-

Table 1-2. Cost of Downtime

Level of Availability Cost of Downtime (Three Years) Cost of Availability Solution

99% $525,600 $108,000

99.9% $52,560 $224,000

99.99% $5,256 $462,000

99.999% $526 $910,000

In this table, you can see that implementing five 9s of availability saves $525,074 over
a two-9s solution, but the cost of implementing the solution is an additional $802,000,
meaning that it is not economical to implement. Four 9s of availability saves $520,344
over a two-9s solution and only costs an additional $354,000 to implement. Therefore, for
this particular application, a four-9s solution is the most appropriate level of service to
design for.

Classification of Standby Servers
There are three classes of standby solution. You can implement each using different
technologies, although you can use some technologies to implement multiple classes
of standby server. Table 1-3 outlines the different classes of standby that you can
implement.

Chapter 1 ■ high availability and disaster reCovery ConCepts

7

 ■ Note Cold standby does not show an example technology because no synchronization
is required and, thus, no technology implementation is required.

Summary
Your application’s level of availability is measured as a percentage of time that the
application is available to users. The level of availability is often referred to in 9s. For
example 99.9% uptime requirement is known as three 9s of availability. The higher
the uptime requirement, the higher the cost of implementing the solution. Therefore,
the level of uptime that you strive to achieve should be driven by SLAs and the cost of
downtime.

Recovery point objective is a measure of how much data it is acceptable to lose in
the event of a disaster. For example, if your only DR solution is backups and backups are
scheduled to be taken every hour, you can achieve a recovery point objective of one hour.
Recovery time objective is a measure of how long it will take to recover a solution after a
failure. For example if you have a recovery time objective of 30 minutes, then you must be
able to restore service with half an hour.

It is important to determine the cost of downtime for your application, as this is one
of the main drivers to determine your level of availability. The cost of downtime consists
of both tangible and intangible costs. Tangible costs can be calculated, whereas intangible
costs need to be estimated.

Redundant infrastructure helps you to maintain availability of your applications and
services. A redundant server will be classified as hot, warm, or cold. A hot standby server
is one which is kept synchronized with the live server and configured to allow automatic
failover. This is suitable for HA scenarios. A warn standby server is one which is kept
synchronized with the live server, but is not configured to fail over automatically. Instead,
an engineer must perform the failover manually. This is suitable for DR scenarios. A cold
standby server is not kept synchronized with the live server and therefore cannot be failed
over automatically. A cold standby server is suitable for DR scenarios where all data is
read-only and never modified.

9© Peter A. Carter 2016
P. A. Carter, SQL Server AlwaysOn Revealed, DOI 10.1007/978-1-4842-2397-0_2

 CHAPTER 2

 Understanding High
Availability and Disaster
Recovery Technologies

 SQL Server provides a full suite of technologies for implementing high availability and
disaster recovery. This chapter provides an overview of these technologies and discusses
their most appropriate uses.

 AlwaysOn Failover Clustering
 A Windows cluster is a technology for providing high availability in which a group of up
to 64 servers works together to provide redundancy. An AlwaysOn Failover Clustered
Instance (FCI) is an instance of SQL Server that spans the servers within this group. If one
of the servers within this group fails, another server takes ownership of the instance. Its
most appropriate usage is for high availability scenarios where the databases are large or
have high write profiles. This is because clustering relies on shared storage, meaning the
data is only written to disk once. With SQL Server–level HA technologies, write operations
occur on the primary database, and then again on all secondary databases, before the
commit on the primary completes. This can cause performance issues.

 Even though it is possible to stretch a cluster across multiple sites, in Windows
Server 2012 R2 and prior, this involves SAN replication , which means that a cluster is
normally configured within a single site. When configured with SAN replication, failover
to a secondary site is not automatic (unless you create custom scripts to automate the
process). This is because SAN replication must be stopped, and the LUNs in the SAN at
the DR site need to be manually made writable. They will be presented to the DR server
as read-only, while SAN replication is active.

 Windows Server 2016 addresses this issue, by introducing Storage Replica (SR) . SR
technology aims to provide a geo-cluster solution that does not rely on SAN replication,
by performing storage-agnostic, block level data synchronization. SR works in either
synchronous or asynchronous modes, with a performance overhead when used in
synchronous mode being traded off against a potential for data loss in asynchronous mode.

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

10

 Windows Server 2016 also introduces site-aware cluster functionality , which
improves the manageability of multisite clusters by enhancing operations such as
heartbeat between nodes and failover behavior. The reliance on all cluster nodes being
within the same domain is also removed in this version of Windows, meaning that a
cluster can span multiple domains, or even exist within a workgroup.

 Each server within a cluster is called a node . Therefore, if a cluster consists of three
servers, it is known as a three-node cluster . Each node within a cluster has the SQL Server
binaries installed, but the SQL Server service is only started on one of the nodes, which is
known as the active node . Each node within the cluster also shares the same storage for the
SQL Server data and log files. The storage, however, is only attached to the active node.

 If the active node fails, then the SQL Server service is stopped and the storage is
detached. The storage is then reattached to one of the other nodes in the cluster, and the
SQL Server service is started on this node, which is now the active node. The instance is
also assigned its own network name and IP Address, which are also bound to the active
node . This means that applications can connect seamlessly to the instance, regardless of
which node has ownership.

 The diagram in Figure 2-1 illustrates a two-node cluster . It shows that although
the databases are stored on a shared storage array, each node still has a dedicated
system volume. This volume contains the SQL Server binaries. It also illustrates how
the shared storage, IP Address, and network name are rebound to the passive node in
the event of failover.

 Figure 2-1. Two-node cluster

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

11

 Active/Active Configuration
 Although the diagram in Figure 2-1 illustrates an active/passive configuration, it is also
possible to have an active/active configuration. Although it is not possible for more than
one node at a time to own a single instance, and therefore it is not possible to implement
load-balancing, it is possible to install multiple instances on a cluster, and a different
node may own each instance. In this scenario, each node has its own unique network
name and IP Address. Each instance’s shared storage also consists of a unique set of
volumes.

 Therefore, in an active/active configuration , during normal operations, Node1 may
host Instance1 and Node2 may host Instance2. If Node1 fails, both instances are then
hosted by Node2, and vice versa. The diagram in Figure 2-2 illustrates a two-node active/
active cluster.

 Figure 2-2. Active/active cluster

 ■ Caution In an active/active cluster, it is important to consider resources in the event
of failover. For example, if each node has 128GB of RAM and the instance hosted on each
node is using 96GB of RAM and locking pages in memory, then when one node fails over to
the other node, this node fails as well, because it does not have enough memory to allocate
to both instances. Make sure you plan both memory and processor requirements as if
the two nodes are a single server. For this reason, active/active clusters are not generally
recommended for SQL Server.

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

12

 Three-Plus Node Configurations
 As previously mentioned, it is possible to have up to 64 nodes in a cluster. When you have
three or more nodes, it is unlikely that you will want to have a single active node and two
redundant nodes, due to the associated costs. Instead, you can choose to implement an
N+1 or N+M configuration.

 In an N+1 configuration, you have multiple active nodes and a single passive node. If
a failure occurs on any of the active nodes, they fail over to the passive node. The diagram
in Figure 2-3 depicts a three-node N+1 cluster.

 Figure 2-3. Three-node N+1 configuration

 In an N+1 configuration, in a multifailure scenario, multiple nodes may fail over
to the passive node. For this reason, you must be very careful when you plan resources
to ensure that the passive node is able to support multiple instances. However, you can
mitigate this issue by using an N+M configuration.

 Whereas an N+1 configuration has multiple active nodes and a single passive node,
an N+M cluster has multiple active nodes and multiple passive nodes, although there are
usually fewer passive nodes than there are active nodes. The diagram in Figure 2-4 shows
a five-node N+M configuration . The diagram shows that Instance3 is configured to always
fail over to one of the passive nodes, whereas Instance1 and Instance2 are configured
to always fail over to the other passive node . This gives you the flexibility to control
resources on the passive nodes, but you can also configure the cluster to allow any of the
active nodes to fail over to either of the passive nodes, if this is a more appropriate design
for your environment.

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

13

 Quorum
 So that automatic failover can occur, the cluster service needs to know if a node goes
down. In order to achieve this, you must form a quorum. The definition of a quorum is
“ The minimum number of members required in order for business to be carried out.” In
terms of high availability , this means that each node within a cluster, and optionally a
witness device (which may be a cluster disk or a file share that is external to the cluster),
receives a vote. If more than half of the voting members are unable to communicate
with a node, then the cluster service knows that it has gone down and any cluster-aware
applications on the server fail over to another node. The reason that more than half of the
voting members need to be unable to communicate with the node is to avoid a situation
known as a split brain .

 To explain a split-brain scenario, imagine that you have three nodes in Data Center 1
and three nodes in Data Center 2. Now imagine that you lose network connectivity between
the two data centers , yet all six nodes remain online. The three nodes in Data Center 1
believe that all of the nodes in Data Center 2 are unavailable. Conversely, the nodes in Data
Center 2 believe that the nodes in Data Center 1 are unavailable. This leaves both sides
(known as partitions) of the cluster thinking that they should take control. This can have
unpredictable and undesirable consequences for any application that successfully connects
to one or the other partition. The Quorum = (Voting Members / 2) + 1 formula protects
against this scenario.

 ■ Tip If your cluster loses quorum, then you can force one partition online, by starting the
cluster service using the /fq switch. If you are using Windows Server 2012 R2 or higher, then
the partition that you force online is considered the authoritative partition . This means that
other partitions can automatically rejoin the cluster when connectivity is re-established.

 Figure 2-4. Five-node N+M configuration

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

14

 Various quorum models are available and the most appropriate model depends on
your environment. Table 2-1 lists the models that you can utilize and details the most
appropriate way to use them.

 Table 2-1. Quorum Models

 Quorum Model Appropriate Usage

 Node Majority When you have an odd number of nodes in the
cluster

 Node + Disk Witness Majority When you have an even number of nodes in the
cluster

 Node + File Share Witness Majority When you have nodes split across multiple sites
or when you have an even number of nodes and
are required to avoid shared disks*

 Node + Cloud Witness Majority When you have nodes split across multiple sites,
but there is not a third data center available to
host a file share quorum . This quorum model is
new in Windows Server 2016

 *Reasons for needing to avoid shared disks due to virtualization are discussed later in this
chapter.

 Although the default option is one node, one vote, it is possibly to manually remove
a node’s vote by changing the NodeWeight property to zero. This is useful if you have a
 multi-subnet cluster (a cluster in which the nodes are split across multiple sites). In this
scenario, it is recommended that you use a file-share witness in a third site. This helps
you avoid a cluster outage as a result of network failure between data centers. If you have
an odd number of nodes in the quorum, however, then adding a file-share witness leaves
you with an even number of votes, which is dangerous. Removing the vote from one of
the nodes in the secondary data center eliminates this issue.

 ■ Caution A file-share witness and quorum witness do not store a full copy of the quorum
database. This means that a two-node cluster with a file-share witness is vulnerable to a
scenario known as partition in time . In this scenario, if one node fails while you are in the
process of patching or altering the cluster service on the second node, then there is no
up-to-date copy of the quorum database. This leaves you in a position in which you need to
destroy and rebuild the cluster.

 Windows Server 2012 R2 introduced the concepts of Dynamic Quorum and Tie
Breaker for 50% Node Split. When Dynamic Quorum is enabled, the cluster service
automatically decides whether or not to give the quorum witness a vote, depending
on the number of nodes in the cluster. If you have an even number of nodes, then it is

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

15

assigned a vote. If you have an odd number of nodes, it is not assigned a vote. Tie Breaker
for 50% Node Split expands on this concept. If you have an even number of nodes and
a witness and the witness fails, then the cluster service automatically removes a vote
from one random node within the cluster. This maintains an odd number of votes in the
quorum and reduces the risk of a cluster going offline, due to a witness failure.

 ■ Note Clustering is discussed in more depth in Chapter 3 and Chapter 4 .

 Database Mirroring
 Database mirroring is a technology that can provide configurations for both high
availability and disaster recovery. As opposed to relying on the Windows cluster service ,
Database mirroring is implemented entirely within SQL Server and provides availability
at the database level, as opposed to the instance level. It works by compressing
transaction log records and sending them to the secondary server via a TCP endpoint .
A database mirroring topology consists of precisely one primary server, precisely one
secondary server, and an optional witness server.

 Database mirroring is a deprecated technology , which means that it will be removed
in a future version of SQL Server. In SQL Server 2014, however, it can still prove useful.
For instance, if you are upgrading a data-tier application from SQL Server 2008, where
AlwaysOn Availability Groups were not supported and database mirroring had been
implemented, and also assuming your expectation is that the lifecycle of the application
will end before the next major release of SQL Server, then you can continue to use
database mirroring. Some organizations, especially where there is disconnect between
the Windows administration team and the SQL Server DBA team, are also choosing not to
implement AlwaysOn Availability Groups , especially for DR, until database mirroring has
been removed; this is because of the relative complexity and multiteam effort involved
in managing an AlwaysOn environment. Database mirroring can also be useful when
you upgrade data-tier applications from older versions of SQL Server in a side-by-side
migration. This is because you can synchronize the databases and fail them over with
minimal downtime. If the upgrade is unsuccessful, then you can move them back to the
original servers with minimal effort and downtime.

 Database mirroring can be configured to run in three different modes : High
Performance, High Safety, and High Safety with Automatic Failover. When running in
High Performance mode, database mirroring works in an asynchronous manor. Data is
committed on the primary database and is then sent to the secondary database, where
it is subsequently committed. This means that it is possible to lose data in the event of a
failure. If data is lost, the recovery point is the beginning of the oldest open transaction.
This means that you cannot guarantee an RPO that relies on asynchronous mirroring
for availability, since it will be nondeterministic. There is also no support for automatic
failover in this configuration. Therefore, asynchronous mirroring offers a DR solution , as
opposed to a high availability solution. The diagram in Figure 2-5 illustrates a mirroring
topology, configured in High Performance mode.

http://dx.doi.org/10.1007/978-1-4842-2397-0_3
http://dx.doi.org/10.1007/978-1-4842-2397-0_4

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

16

 When running in High Safety with Automatic Failover mode, data is committed
at the secondary server using a synchronous method, as opposed to an asynchronous
 method . This means that the data is committed on the secondary server before it is
committed on the primary server. This can cause performance degradation and requires
a fast network link between the two servers. The network latency should be less than 3
milliseconds.

 In order to support automatic failover, the database mirroring topology needs
to form a quorum. In order to achieve quorum, it needs a third server. This server is
known as the witness server and it is used to arbitrate in the event that the primary
and secondary servers lose network connectivity. For this reason, if the primary and
secondary servers are in separate sites, it is good practice to place the witness server in
the same data center as the primary server, as opposed to with the secondary server.
This can reduce the likelihood of a failover caused by a network outage between the
data centers, which makes them become isolated. The diagram in Figure 2-6 illustrates
a database mirroring topology configured in High Protection with Automatic Failover
mode.

 Figure 2-5. Database mirroring in High Performance mode

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

17

 High Safety mode combines the negative aspects of the other two modes. You have
the same performance degradation that you expect with High Safety with Automatic
Failover, but you also have the manual server failover associated with High Performance
mode. The benefit that High Safety mode offers is resilience in the event that the witness
goes offline. If database mirroring loses the witness server, instead of suspending the
mirroring session to avoid a split-brain scenario, it switches to High Safety mode. This
means that database mirroring continues to function, but without automatic failover.
High Safety mode is also useful in planned failover scenarios. If your primary server is
online, but you need to fail over for maintenance, then you can change to High Safety
mode . This essentially puts the database in a safe state, where there is no possibility of

 Figure 2-6. Database mirroring in High Safety with Automatic Failover mode

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

18

data loss, without you needing to configure a witness server. You can then fail over the
database. After the maintenance work is complete and you have failed the database back,
then you can revert to High Performance mode.

 ■ Tip Database mirroring is not supported on databases that use In-Memory OLTP.
You will be unable to configure database mirroring, if your database contains a memory-
optimized filegroup.

 AlwaysOn Availability Groups
 AlwaysOn Availability Groups (AOAG) replaces database mirroring and is essentially a
merger of database mirroring and clustering technologies . SQL Server is installed as a
stand-alone instance (as opposed to an AlwaysOn Failover Clustered Instance) on each
node of a cluster. A cluster-aware application, called an Availability Group Listener , is
then installed on the cluster; it is used to direct traffic to the correct node. Instead of
relying on shared disks, however, AOAG compresses the log stream and sends it to the
other nodes, in a similar fashion to database mirroring.

 Until SQL Server 2016, AlwaysOn Availability Groups were only supported in
Enterprise Edition of SQL Server. In SQL Server 2016, however, Standard Edition supports
AlwaysOn Availability Groups, with basic functionality only. The basic functionality
in Standard Edition supports two replicas only. This is intended as a replacement for
Standard Edition support for Database mirroring, in High Safety mode only.

 AOAG is the most appropriate technology for high availability in scenarios where you
have small databases with low write profiles. This is because, when used synchronously, it
requires that the data is committed on all synchronous replicas before it is committed on
the primary database. Unlike with database mirroring, however, you can have up to eight
replicas, including two synchronous replicas . AOAG may also be the most appropriate
technology for implementing high availability in a virtualized environment. This is
because the shared disk required by clustering may not be compatible with some features
of the virtual estate. As an example, VMware does not support the use of vMotion,
which is used to manually move virtual machines (VMs) between physical servers, and
the Distributed Resource Scheduler (DRS) , which is used to automatically move VMs
between physical servers, based on resource utilization, when the VMs use shared disks,
presented over Fiber Channel.

 ■ Tip The limitations surrounding shared disks with VMware features can be worked
around by presenting the storage directly to the guest OS over an iSCSI connection. This is
at the expense of performance degradation, however.

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

19

 AOAG is the most appropriate technology for DR when you have a proactive failover
requirement but when you do not need to implement a load delay. AOAG may also be
suitable for disaster recovery in scenarios where you wish to utilize your DR server for
offloading reporting. When used for disaster recovery, AOAG works in an asynchronous
mode. This means that it is possible to lose data in the event of a failover. The RPO is
nondeterministic and is based on the time of the last uncommitted transaction.

 When you use database mirroring, the secondary database is always offline. This
means that you cannot use the secondary database to offload any reporting or other read-
only activity. It is possible to work around this by creating a database snapshot against
the secondary database and pointing read-only activity to the snapshot. This can still be
complicated, however, because you must configure your application to issue read-only
statements against a different network name and IP Address. Availability Groups, on the
other hand, allow you to configure one or more replicas as readable. The only limitation
is that readable replicas and automatic failover cannot be configured on the same
secondaries. The norm, however, would be to configure readable secondary replicas in
Asynchronous Commit mode so that they do not impair performance.

 To further simplify this, the Availability Group Replica checks for the read-only or
read-intent properties in an application’s connection string and points the application
to the appropriate node. This means that you can easily scale reporting and database
maintenance routines horizontally with very little development effort and with the
applications being able to use a single connection string .

 In SQL Server 2016, load balancing for readable secondary replicas has been
introduced. This functionality allows you to specify groups of readable secondaries that
the read-only workload will be balanced across. This is in contrast to previous versions,
where traffic was routed to the first available replica.

 Because AOAG allows you to combine synchronous replicas (with or without
automatic failover), asynchronous replicas, and replicas for read-only access, it allows
you to satisfy high availability, disaster recovery, and reporting scale-out requirements
using a single technology.

 When you are using AOAG, failover does not occur at the database level, or at the
instance level. Instead, failover occurs at the level of the Availability Group. The Availability
Group is a concept that allows you to group similar databases together so that they can fail
over as an atomic unit. This is particularly useful in consolidated environments, because
it allows you to group together the databases that map to a single application. You can
then fail over this application to another replica for the purposes of DR testing, among
other reasons, without having an impact on the other data-tier applications that are hosted
on the instance. SQL Server 2016 extends the Availability Group concept, to allow you to
group databases from separate clusters into a single Availability Group. This is especially
useful if you are implementing DR for a data-tier application that is dispersed across
separate clusters, but where all databases need to fail over atomically, to the DR site. This
functionality is known as a Distributed Availability Group .

 No hard limits are imposed for the number of Availability Groups you can configure
on an instance, nor are there any hard limits for the number of databases on an
instance that can take part in AOAG. Microsoft, however, has tested up to, and officially
recommends, a maximum of 100 databases and 10 Availability Groups per instance. The
main limiting factor in scaling the number of databases is that AOAG uses a database
mirroring endpoint and there can only be one per instance. This means that the log
stream for all data modifications is sent over the same endpoint.

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

20

 Figure 2-7 depicts how you can map data-tier applications to Availability Groups for
independent failover. In this example, a single instance hosts two data-tier applications.
Each application has been added to a separate Availability Group. The first Availability
 Group has failed over to Node2. Therefore, the Availability Group Listeners point traffic
for Application1 to Node2 and traffic for Application2 to Node1. Because each Availability
Group has its own network name and IP Address, and because these resources fail over
with the AOAG, the application is able to seamlessly reconnect to the databases after
failover.

 Figure 2-7. Availability groups failover

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

21

 The diagram in Figure 2-8 depicts an AlwaysOn Availability Group topology. In this
example, there are four nodes in the cluster and a disk witness. Node1 is hosting the
primary replicas of the databases, Node2 is being used for automatic failover, Node3 is
being used to offload reporting, and Node4 is being used for DR. Because the cluster is
stretched across two data centers, multi-subnet clustering has been implemented. Because
there is no shared storage, however, there is no need for SAN replication between the sites.

 Figure 2-8. AlwaysOn Availability Group topology

 ■ Note AlwaysOn Availability Groups are discussed in more detail in Chapter 5 and
Chapter 6 .

http://dx.doi.org/10.1007/978-1-4842-2397-0_5
http://dx.doi.org/10.1007/978-1-4842-2397-0_6

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

22

 Automatic Page Repair
 If a page becomes corrupt in a database configured as a replica in an AlwaysOn
Availability Group topology, then SQL Server attempts to fix the corruption by obtaining a
copy of the pages from one of the secondary replicas. This means that a logical corruption
can be resolved without you needing to perform a restore or for you to run DBCC
CHECKDB with a repair option. However, automatic page repair does not work for the
following page types:

• File Header page

• Database Boot page

• Allocation pages

• GAM (Global Allocation Map)

• SGAM (Shared Global Allocation Map)

• PFS (Page Free Space)

 If the primary replica fails to read a page because it is corrupt, it first logs the page
in the MSDB.dbo.suspect_pages table. It then checks that at least one replica is in the
SYNCHRONIZED state and that transactions are still being sent to the replica. If these
conditions are met, then the primary sends a broadcast to all replicas, specifying the PageID
and LSN (log sequence number) at the end of the flushed log. The page is then marked as
restore pending, meaning that any attempts to access it will fail, with error code 829.

 After receiving the broadcast, the secondary replicas wait, until they have redone
transactions up to the LSN specified in the broadcast message. At this point, they try to
access the page. If they cannot access it, they return an error. If they can access the page,
they send the page back to the primary replica. The primary replica accepts the page from
the first secondary to respond.

 The primary replica will then replace the corrupt copy of the page with the version
that it received from the secondary replica. When this process completes, it updates the
page in the MSDB.dbo.suspect_pages table to reflect that it has been repaired by setting
the event_type column to a value of 5 (Repaired).

 If the secondary replica fails to read a page while redoing the log because it is
corrupt, it places the secondary into the SUSPENDED state. It then logs the page in the
MSDB.dbo.suspect_pages table and requests a copy of the page from the primary replica .
The primary replica attempts to access the page. If it is inaccessible, then it returns an
error and the secondary replica remains in the SUSPENDED state.

 If it can access the page, then it sends it to the secondary replica that requested it.
The secondary replica replaces the corrupt page with the version that it obtained from the
primary replica. It then updates the MSDB.dbo.suspect_pages table with an event_id of 5.
Finally, it attempts to resume the AOAG session.

 ■ Note It is possible to manually resume the session, but if you do, the corrupt page is hit
again during the synchronization. Make sure you repair or restore the page on the primary
replica first.

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

23

 Log Shipping
 Log shipping is a technology that you can use to implement disaster recovery . It works
by backing up the transaction log on the principal server, copying it to the secondary
server, and then restoring it. It is most appropriate to use log shipping in DR scenarios in
which you require a load delay, because this is not possible with AOAG. As an example of
where a load delay may be useful, consider a scenario in which a user accidentally deletes
all of the data from a table. If there is a delay before the database on the DR server is
updated, then it is possible to recover the data for this table, from the DR server , and then
repopulate the production server. This means that you do not need to restore a backup
to recover the data. Log shipping is not appropriate for high availability, since there is
no automatic failover functionality. The diagram in Figure 2-9 illustrates a log shipping
 topology .

 Figure 2-9. Log shipping topology

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

24

 Recovery Modes
 In a log shipping topology, there is always exactly one principal server, which is the
production server. It is possible to have multiple secondary servers, however, and these
servers can be a mix of DR servers and servers used to offload reporting.

 When you restore a transaction log, you can specify three recovery modes : Recovery,
NoRecovery, and Standby. The Recovery mode brings the database online, which is not
supported with Log Shipping. The NoRecovery mode keeps the database offline so that
more backups can be restored. This is the normal configuration for log shipping and is
the appropriate choice for DR scenarios.

 The Standby option brings the database online, but in a read-only state so that you
can restore further backups. This functionality works by maintaining a TUF (Transaction
Undo File) . The TUF file records any uncommitted transactions in the transaction log.
This means that you can roll back these uncommitted transactions in the transaction log,
which allows the database to be more accessible (although it is read-only). The next time
a restore needs to be applied, you can reapply the uncommitted transaction in the TUF
 file to the log before the redo phase of the next log restore begins.

 Figure 2-10 illustrates a log shipping topology that uses both a DR server and a
reporting server.

 Figure 2-10. Log shipping with DR and reporting servers

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

25

 Remote Monitor Server
 Optionally, you can configure a monitor server in your log shipping topology. This helps
you centralize monitoring and alerting. When you implement a monitor server, the
history and status of all backup, copy, and restore operations are stored on the monitor
server. A monitor server also allows you to have a single alert job, which is configured to
monitor the backup, copy, and restore operations on all servers, as opposed to it needing
separate alerts on each server in the topology.

 ■ Caution If you wish to use a monitor server, it is important to configure it when you
set up log shipping. After log shipping has been configured, the only way to add a monitor
server is to tear down and reconfigure log shipping.

 Failover
 Unlike other high availability and disaster recovery technologies, an amount of
administrative effort is associated with failing over log shipping. To fail over log shipping,
you must back up the tail end of the transaction log and copy it, along with any other
uncopied backup files, to the secondary server.

 You now need to apply the remaining transaction log backups to the secondary
server in sequence, finishing with the tail-log backup. You apply the final restore using the
WITH RECOVERY option to bring the database back online in a consistent state. If you
are not planning to fail back, you can reconfigure log shipping with the secondary server
as the new primary server.

 Combining Technologies
 To meet your business objectives and nonfunctional requirements (NFRs) , you need to
combine multiple high availability and disaster recovery technologies together to create
a reliable, scalable platform. A classic example of this is the requirement to combine an
AlwaysOn Failover Cluster with AlwaysOn Availability Groups.

 The reason you may need to combine these technologies is that when you use
AlwaysOn Availability Groups in synchronous mode, which you must do for automatic
failover, it can cause a performance impediment. As discussed earlier in this chapter, the
performance issue is caused by the transaction being committed on the secondary server
before being committed on the primary server. Clustering does not suffer from this issue,
however, because it relies on a shared disk resource , and therefore the transaction is only
committed once.

 Therefore, it is common practice to first use a cluster to achieve high availability
and then use AlwaysOn Availability Groups to perform DR and/or offload reporting. The
diagram in Figure 2-11 illustrates a HA/DR topology that combines clustering and AOAG
to achieve high availability and disaster recovery, respectively.

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

26

 The diagram in Figure 2-11 shows that the primary replica of the database is hosted
on a two-node active/passive cluster . If the active node fails, the rules of clustering apply,
and the shared storage, network name, and IP Address are reattached to the passive
node, which then becomes the active node. If both nodes are inaccessible, however, the
Availability Group Listener points the traffic to the third node of the cluster, which is
situated in the DR site and is synchronized using log stream replication . Of course, when
asynchronous mode is used, the database must be failed over manually by a DBA.

 Another common scenario is the combination of a cluster and log shipping to
achieve high availability and disaster recovery, respectively. This combination works in
much the same way as clustering combined with AlwaysOn Availability Groups and is
illustrated in Figure 2-12 .

 Figure 2-11. Clustering and AlwaysOn Availability Groups combined

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

27

 The diagram shows that a two-node active/passive cluster has been configured in
the primary data center. The transaction log(s) of the database(s) hosted on this instance
are then shipped to a stand-alone server in the DR data center. Because the cluster
uses shared storage, you should also use shared storage for the backup volume and add
the backup volume as a resource in the role. This means that when the instance fails
over to the other node, the backup share also fails over, and log shipping continues to
synchronize, uninterrupted.

 ■ Caution If failover occurs while the log shipping backup or copy jobs are in progress,
then log shipping may become unsynchronized and require manual intervention. This means
that after a failover, you should check the health of your log shipping jobs.

 Summary
 SQL Server provides a full suite of high availability and disaster recovery technologies,
giving you the flexibility to implement a solution that best fits the needs of your data-
tier applications. For high availability, you can implement either an AlwaysOn cluster
or AlwaysOn Availability Groups (AOAG). Clustering uses a shared disk resource and
failover occurs at the instance level. AOAG, on the other hand, synchronizes data at the

 Figure 2-12. Clustering combined with log shipping

CHAPTER 2 ■ UNDERSTANDING HIGH AVAILABILITY AND DISASTER RECOVERY TECHNOLOGIES

28

database level by maintaining a redundant copy of the database with a synchronous log
stream. Database mirroring is also available in SQL Server 2014, but it is a deprecated
feature and will be removed in a future version of SQL Server.

 To implement disaster recovery, you can choose to implement AOAG or log
shipping. Log shipping works by backing up, copying, and restoring the transaction
logs of the databases, whereas AOAG synchronizes the data using an asynchronous log
stream.

 It is also possible to combine multiple HA and DR technologies together in order
to implement the most appropriate availability strategy. Common examples of this are
combining clustering for high availability with AOAG or log shipping to provide DR.

29© Peter A. Carter 2016
P. A. Carter, SQL Server AlwaysOn Revealed, DOI 10.1007/978-1-4842-2397-0_3

 CHAPTER 3

 Implementing a Cluster

 Engineers may find the process of building and configuring a cluster to be complex and
that they can implement many variations of the pattern. Although DBAs may not always
need to build a cluster themselves, they do need to be comfortable with the technology
and often need to provide their input into the process. They may also take part in
 troubleshooting issues discovered with the cluster.

 For these reasons, this chapter discusses how to build a cluster at the Windows level
and discusses some of the possible configurations. The demonstrations in this chapter
use a prebuilt environment, consisting of two servers: ClustNode1 and ClustNode2 . Both
servers reside in a domain named AlwaysOnRevealed.com . Four volumes have been
presented to the nodes from a SAN, and have been brought online and formatted on
ClusterNode1, with the configuration detailed in Table 3-1 .

 Table 3-1. Disk Configuration

 Drive Letter Volume Label Size Comments

 F Data 4.88GB Host data and log files

 G MSDTC 972MB Host files associated with the MSDTC Role

 H Quorum 461MB Host a disk-based quorum witness

 I TempDB 1.96GB Host the TempDB data and log files

 ■ Tip You may be surprised that there is a single volume allocated for data and log files,
as a DBA’s natural instinct is to separate these files onto separate drives. The important
thing to remember here is that we are working with a SAN, and there is a very strong
chance that even if we used separate volumes, those volumes would reside on the same
physical spindles, meaning that separation is logical only. Also, if SAN snapshots are to be
used, some SANs may require the data and log files to be stored on the same volume, to
ensure data consistency.

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

30

 The scenario in this chapter requires us to build a two-node failover cluster, with
a disk witness. Before we can do this, we will need to configure the Windows Cluster
Service (WCS) . We also need to configure an MSDTC (Microsoft Distributed Transaction
Coordinator) Cluster Role, which will provide distributed transaction coordination for
SSIS (SQL Server Integration Services) . Additionally, we need to configure the cluster
to MSDTC role, so that failovers occur with High priority (compared to other roles on
the same cluster), that three failovers are allowed within any 24-hour period, and that
immediate failback is permitted.

 Therefore, the complete list of tasks that we will perform is as follows:

• Install the Failover Cluster feature

• Build a Windows Cluster, called ALWAYSON-C

• Correctly configure the Quorum

• Create a Cluster role for MSDTC, called ALWAYSON-MSDTC-C

• Configure the properties of the MSDTC role

• Configure the Failover properties of the MSDTC role

 ■ Tip If you wish to build a cluster for learning purposes, but you do not have access to a
domain, or a SAN, then the newer features of clustering allow you to simulate a very similar
topology. Two virtual machines can be used as the cluster nodes. A third virtual machine,
running the iSCSI Target feature of Windows can be used to present shared storage to
each of these nodes. Even better, Windows Server 2016 allows a cluster to be created on
a workgroup, meaning that there is no need to create an additional VM to use as a domain
controller. Be warned, however, that creating a cluster within a workgroup is only supported
in PowerShell, and not through Failover Cluster Manager (Correct in Windows Server 2016
CTP5). It is also important to be aware that from a SQL Server perspective, Availability
Groups are supported on a workgroup cluster, but failover clustered instances are not.

 Building the Cluster
 Before you install a SQL Server AlwaysOn failover cluster instance, you must prepare the
servers that form the cluster (known as nodes) and build a Windows cluster across them.
The following sections demonstrate how to perform these activities.

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

31

 Installing the Failover Cluster Feature
 In order to build the cluster, the first thing we need to do is install the Failover Cluster
feature on each of the nodes. To do this, we need to select the Add Roles and Features
option in Server Manager. This causes the Add Roles and Features Wizard to display. The
first page of this wizard offers guidance on prerequisites, as shown in Figure 3-1 .

 Figure 3-1. The Before You Begin page

 On the Installation Type page , ensure that Role-Based or Feature-Based Installation
is selected, as illustrated in Figure 3-2 .

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

32

 On the Server Selection page , ensure that the cluster node that you are currently
configuring is selected. This is illustrated in Figure 3-3 .

 Figure 3-2. The Installation Type page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

33

 The Server Roles page of the wizard allows you to select any server roles that you
wish to configure. As shown in Figure 3-4 , this can include roles such as Application
Server or DNS Server, but in our case, this is not appropriate, so we simply move to the
next screen.

 Figure 3-3. The Server Selection page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

34

 On the Features page of the wizard, we need to select Failover Clustering, as shown
in Figure 3-5 . This satisfies the prerequisites for building the Windows cluster.

 Figure 3-4. The Server Roles page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

35

 When you select Failover Clustering, the wizard presents you with a screen (Figure 3-6)
that asks if you want to install the management tools in the form of a checkbox. If you are
planning to manage the cluster directly from the nodes, check this option.

 Figure 3-5. The Features page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

36

 On the final page of the wizard, you see a summary of the features that are to be
installed, as shown in Figure 3-7 . Here, you can specify the location of the Windows
media if you need to. You can also choose whether the server should automatically
restart, if required. If you are building out a new server, it makes sense to check this box.
However, if the server is already in production when you add the feature, make sure
you consider what is currently running on the box, and whether you should wait for a
maintenance window to perform a restart if one is needed.

 Figure 3-6. Selecting management tools

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

37

 As well as installation through Server Manager, cluster services can also be installed
from PowerShell. The PowerShell command in Listing 3-1 achieves the same result as the
preceding steps.

 Listing 3-1. Installing Cluster Services

 Install-WindowsFeature -Name Failover-Clustering –IncludeManagementTools

 Creating the Cluster
 Once clustering has been installed on both nodes, you can begin building the cluster. To
do this, connect to the server that you intended to be the active node, and run Failover
Cluster Manager from Administrative Tools.

 The Before You Begin page of the Create Cluster Wizard warns that Microsoft only
supports clusters that pass all verification tests, as shown in Figure 3-8 . The message also
warns that you must be a local administrator on each node of the cluster. In previous
versions of Windows Server, this meant that you must use a domain account that has local
administrator rights on each server that will participate in the cluster. In Windows Server
2016, however, the reliance on domain authentication has been removed, and the only
requirement is that an account with local administrator rights exists on each node, that
has a consistent name and password. This allows the creation of a cluster on a workgroup,
or across multiple domains. Neither of these options were available in previous versions
of Windows Server.

 Figure 3-7. The Confirmation page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

38

 On the Select Servers screen of the wizard, you need to enter the names of the
cluster nodes. This is illustrated in Figure 3-9 . In our case, our cluster nodes are named
 ClusterNode1 and ClusterNode2, respectively. If they were part of a domain, however,
then the domain name and suffix would be appended to the server name.

 Figure 3-8. The Before You Begin page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

39

 Figure 3-9. The Select Servers page

 On the Validation Warnings page , you are asked if you wish to run the validation
tests against the cluster. You should always choose to run this validation for production
servers, because Microsoft will not offer support for the cluster unless it has been
validated. Choosing to run the validation tests invokes the Validate a Configuration
Wizard. You can also run this wizard independently from the Management pane of
Failover Cluster Manager. The Validation Warnings page is shown in Figure 3-10 .

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

40

 ■ Tip There are some situations in which validation is not possible, and in these
instances, you need to select the No, I Do Not Require Support… option. For example, some
DBAs choose to install one-node clusters instead of stand-alone instances so that they can
be scaled up to full clusters in the future, if need be. This approach can cause operational
challenges for Windows administrators, however, so use it with extreme caution.

 After you pass through the Before You Begin page of the Validate a Configuration
Wizard, you see the Testing Options page. Here, you are given the option of either running
all validation tests or selecting a subset of tests to run, as illustrated in Figure 3-11 .
Normally when you are installing a new cluster, you want to run all validation tests, but
it is useful to be able to select a subset of tests if you invoke the Validate a Configuration
Wizard independently after you make a configuration change to the cluster.

 Figure 3-10. The Validation Warning page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

41

 On the Confirmation page of the wizard, illustrated in Figure 3-12 , you are presented
with a summary of tests that will run and the cluster nodes that they will run against. The
list of tests is comprehensive and includes the following categories:

• Inventory (such as identifying any unsigned drivers)

• Network (such as checking for a valid IP configuration)

• Storage (such as validating the ability to fail disks over,
between nodes)

• System Configuration (such as validating the configuration
of Active Directory)

 Figure 3-11. The Testing Options page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

42

 The Summary page , shown in Figure 3-13 , provides the results of the tests and also
a link to an HTML version of the report. Make sure to examine the results for any errors
or warnings. You should always resolve errors before continuing, but some warnings may
be acceptable. For example, if you are building your cluster to host AlwaysOn Availability
Groups, you may not have any shared storage. This will generate a warning but is not an
issue in this scenario. Configuring AlwaysOn Availability Groups are discussed in further
detail in Chapters 5 and 6 .

 Figure 3-12. The Confirmation page

http://dx.doi.org/10.1007/978-1-4842-2397-0_5
http://dx.doi.org/10.1007/978-1-4842-2397-0_6

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

43

 The View Report button displays the full version of the validation report , as shown
in Figure 3-14 . The hyperlinks take you to a specific category within the report, where
further hyperlinks are available for each test. These allow you to drill down to messages
generated for the specific test, making it easy to identify errors.

 Figure 3-13. The Summary page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

44

 Clicking Finish on the Summary page returns you to the Create Cluster Wizard,
where you are greeted with the Access Point for Administering the Cluster page ,
illustrated in Figure 3-15 . On this page, you need to enter the virtual name of your cluster.
We will name our cluster ALWAYSON-C . If the network card is configured to acquire an IP
Address automatically, then an IP Address will be assigned using DHCP . Otherwise, you
will be required to enter an IP Address manually. This is known as a static IP, as it will
remain constant, whereas an IP Address assigned through DHCP may change. I strongly
recommend using a static IP for cluster access points, to avoid dynamic routing issues,
but this can be changed after the cluster has been created.

 Figure 3-14. The Failover Cluster Validation Report

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

45

 Figure 3-15. The Access Point for Administering the Cluster page

 ■ Note The virtual name and IP Address are bound to whichever node is active, meaning
that the cluster is always accessible in the event of failover.

 In our case, the cluster resides within a simple domain, a single site and single
subnet. If you are configuring a multi-subnet cluster, however, then the wizard detects
this, and IP Addresses will be required for each subnet. In this scenario, you need to enter
an IP Address for each subnet.

 ■ Note Each of the two NICs within a node is configured on a separate subnet so that
the heartbeat between the nodes is segregated from the public network. However, a cluster
is only regarded as multi-subnet if the data NICs of the cluster nodes reside in different
subnets.

 ■ Tip If your cluster will reside within a domain, and if you do not have permissions to
create AD (Active Directory) objects in the OU (organizational unit) that contains your cluster,
then the VCO (virtual computer object) for the cluster must already exist and you must have
the Full Control permission assigned.

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

46

 Figure 3-16. The Confirmation page

 The Confirmation page displays a summary of the cluster that is created. You can
also use this screen to specify whether or not all eligible storage should be added to the
cluster, which is generally a useful feature. This screen is displayed in Figure 3-16 .

 After the cluster has been built, the Summary page shown in Figure 3-17 displays.
This screen summarizes the cluster name, IP Address, nodes, the quorum model that has
been configured, and details of any warnings regarding the cluster. It also provides a link
to an HTML (Hypertext Markup Language) version of the report.

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

47

 The Create Cluster report displays a complete list of tasks that have been completed
during the cluster build, as shown in Figure 3-18 .

 Figure 3-17. The Summary page

 Figure 3-18. The Create Cluster report

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

48

 We could also have used PowerShell to create the cluster. The script in Listing 3-2
runs the cluster validation tests using the Test-Cluster cmdlet, before using the
 New-Cluster cmdlet to configure the cluster.

 Listing 3-2. Validating and Creating the Cluster

 #Run the validation tests

 Test-Cluster -Node Clusternode1,Clusternode2

 #Create the cluster

 New-Cluster -Node ClusterNode1,ClusterNode2 -Name ALWAYSON-C

 Configuring the Cluster
 Many cluster configurations can be altered, depending on the needs of your environment.
This section demonstrates how to change some of the more common configurations.

 Changing the Quorum
 If we examine our cluster storage in the Failover Cluster Manager , by drilling through
ALWAYSON-C | Storage | Disks and highlighting the disk assigned to quorum, we can
see that the witness has been incorrectly configured as the drive for MSDTC. This is
illustrated in Figure 3-19 .

 Figure 3-19. Cluster summary

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

49

 We can modify this by entering the context menu of the cluster and by selecting
More Actions | Configure Cluster Quorum Settings, which causes the Configure Cluster
Quorum Wizard to be invoked. On the Select Quorum Configuration Option page, shown
in Figure 3-20 , we choose the Select the Quorum Witness option.

 Figure 3-20. The Select Quorum Configuration Option page

 On the Select Quorum Witness page , we select the type of quorum that we want to
configure. A disk witness is most appropriate when there is an even number of nodes in
the cluster and all nodes reside in the same data center, or when there is an even number
of nodes in the primary data center and another node in a secondary data center.

 A fileshare witness is most appropriate when there are nodes split across two data
centers, and you have access to a third data center, where a fileshare is available to act as
a quorum.

 A cloud witness is a new feature of Windows 2016 and is most appropriate when
there are nodes spread across two data centers and there is not a third data center
available to set up a fileshare witness. To use a cloud witness, you must have an Azure
storage account, as the witness will be created in Azure BLOB storage.

 It is most appropriate to not configure a witness where there is an odd number of
nodes in a single data center.

 For our scenario, we will select the option to configure a disk witness. This is
illustrated in Figure 3-21 .

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

50

 Figure 3-22. The Configure Storage Witness page

 Figure 3-21. The Select Quorum Witness page

 On the Configure Storage Witness page of the wizard, we can select the correct disk
to use as a quorum. In our case, this is Disk 2, as illustrated in Figure 3-22 .

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

51

 The Summary page of the wizard, shown in Figure 3-23 , details the configuration
changes that will be made to the cluster. It also highlights that dynamic quorum
management is enabled and that all nodes, plus the quorum disk, have a vote in the
quorum. Advanced quorum configurations are discussed further in Chapter 4 .

 Figure 3-23. The Summary page

 We can also perform this configuration from the command line by using the
 PowerShell command in Listing 3-3 . Here, we use the Set-ClusterQuorum cmdlet and
pass in the name of the cluster, followed by the quorum type that we wish to configure.
Because disk is included in this quorum type, we can also pass in the name of the cluster
disk that we plan to use, and it is this aspect that allows us to change the quorum disk.

 ■ Tip If following the demos using PowerShell, remember to change the disk number to
match your own configuration.

 Listing 3-3. Configuring the Quorum Disk

 Set-ClusterQuorum -Cluster ALWAYSON-C -NodeAndDiskMajority "Cluster Disk 2"

http://dx.doi.org/10.1007/978-1-4842-2397-0_4

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

52

 Configuring MSDTC
 If your instance of SQL Server uses distributed transactions, or if you are installing SQL Server
Integration Services (SSIS) , then it relies on MSDTC (Microsoft Distributed Transaction
Coordinator) . If your instance will use MSDTC, then you need to ensure that it is properly
configured. If it is not, then setup will succeed, but transactions that rely on it may fail.

 When installed on a cluster, SQL Server automatically uses the instance of MSDTC
that is installed in the same role, if one exists. If it does not, then it uses the instance of
MSDTC to which it has been mapped (if this mapping has been performed). If there is no
mapping, it uses the cluster’s default instance of MSDTC, and if there is not one, it uses
the local machine’s instance of MSDTC.

 Many DBAs choose to install MSDTC within the same role as SQL Server; however,
this introduces a problem. If MSDTC fails, it can also bring down the instance of SQL
Server. Of course, the cluster attempts to bring both of the applications up on a different
node, but this still involves downtime , including the time it takes to recover the databases
on the new node, which takes a nondeterministic duration. For this reason, I recommend
installing MSDTC in a separate role. If you do, the SQL Server instance still utilizes
MSDTC, since it is the cluster’s default instance, and it removes the possibility of MSDTC
causing an outage to SQL Server. This is also preferable to using a mapped instance or
the local machine instance since it avoids unnecessary configuration, and the MSDTC
instance should be clustered when a clustered instance of SQL Server is using it.

 To create an MSDTC role, start by selecting the Configure Role option from the Roles
context menu in Failover Cluster Manager. This invokes the High Availability Wizard .
On the Select a Role page of the wizard, select the Distributed Transaction Coordinator
(DTC) role type , as shown in Figure 3-24 .

 Figure 3-24. The Select Role page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

53

 Figure 3-25. The Client Access Point page

 On the Client Access Point page , illustrated in Figure 3-25 , you need to enter a virtual
name and IP Address for MSDTC. In our case, we name it ALWAYSON-MSDTC-C and assign
 192.168.0.50 as the IP Address. On a multi-subnet cluster, you need to provide an IP
Address for each network.

 On the Select Storage page of the wizard, select the cluster disk on which you plan to
store the MSDTC files, as shown in Figure 3-26 . In our case, this is Disk 4.

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

54

 The Confirmation page displays an overview of the role that is about to be created, as
shown in Figure 3-27 .

 Figure 3-26. The Select Storage page

 Figure 3-27. The Confirmation page

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

55

 Alternatively, we could create this role in PowerShell. The script in Listing 3-4 first
uses the Add-ClusterServerRole cmdlet to create the role. We pass the virtual name
to use for the role into the Name parameter, the name of the cluster disk to use into the
 Storage parameter, and the IP Address for the role into the StaticAddress parameter.

 We then use the Add-ClusterResource cmdlet to add the DTC resource. The Name
parameter names the resource and the ResourceType parameter specifies that it is a DTC
resource. We then need to create the dependencies between the resources within the
role. We did not need to do this when using the GUI, as the dependencies were created
for us automatically. Resource dependencies specify the resource or resources on which
other resources depend. A resource failing propagates through the chain and could take
a role offline. For example, in the case of our ALWAYSON-MSDTC-C role, if either the disk or
the virtual name becomes unavailable, the DTC resource goes offline. Windows Server
supports multiple dependencies with both AND and OR constraints. It is the OR constraints
that make multi-subnet clustering possible, because a resource can be dependent on IP
Address A OR IP Address B. Finally, we need to bring the role online by using the Start-
ClusterGroup cmdlet.

 Listing 3-4. Creating an MSDTC Role

 #Create the Role

 Add-ClusterServerRole -Name ALWAYSON-MSDTC-C -Storage "Cluster Disk 3"
-StaticAddress 192.168.0.50

 #Create the DTC Resource

 Add-ClusterResource -Name MSDTC-ALWAYSON-MSDTC-C -ResourceType "Distributed
Transaction Coordinator" -Group ALWAYSON-MSDTC-C

 #Create the dependencies

 Add-ClusterResourceDependency MSDTC-ALWAYSON-MSDTC-C ALWAYSON-MSDTC-C

 Add-ClusterResourceDependency MSDTC-ALWAYSON-MSDTC-C "Cluster Disk 3"

 #Bring the Role online

 Start-ClusterGroup ALWAYSON-MSDTC-C

 Configuring a Role
 After creating a role, you may wish to configure it to alter the failover policy or configure
nodes as preferred owners. To configure a role, select Properties from the role’s context
menu. On the General tab of the Properties dialog box, which is shown in Figure 3-28 , you
can configure a node as the preferred owner of the role. You can also change the order of
precedence of node preference by moving nodes above or below others in the Preferred
Owners window.

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

56

 You can also select the priority for the role in the event that multiple roles fail over to
another node at the same time. The options for this setting are as follows:

• High

• Medium

• Low

• No Auto Start

 We will configure the ALWAYSON-MSDTC-C role to failover with High priority.

 Figure 3-28. The General tab

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

57

 On the Failover tab of the Properties dialog box, you can configure the number of
times that the role can fail over within a given period before the role is left offline. The
default value for this is one failure within 6 hours. The issue with this is that if a role
fails over, and after you fix the issue on the original node, you fail the role back, no more
failovers are allowed within the 6-hour window. This is obviously a risk, and I generally
advise that you change this setting. In our case, we have configured the role to allow a
maximum of three failovers within a 24-hour time window, as illustrated in Figure 3-29 .
We have also configured the role to fail back to the most preferred owner if it becomes
available again. Remember, when setting automatic failback, that failback also causes
downtime in the same way that a failover does. If you aspire to a very high level of
availability, such as five 9s, then this option may not be appropriate. We will configure
the ALWAYSON-MSDTC-C Role to allow three failovers within a 24-hour period. We will also
configure the role to allow immediate failback.

 Figure 3-29. The Failover tab

CHAPTER 3 ■ IMPLEMENTING A CLUSTER

58

 Summary
 Before creating the cluster, the Microsoft Cluster Service (MCS) must be installed on all
nodes. This can be achieved by installing the Cluster feature, using the Add Roles and
Features wizard.

 Once the Cluster feature has been installed, clustering can be configured on each
node by using the Create Cluster Wizard. Before building the cluster, this wizard will
prompt you to run the Cluster Validation Wizard. The Cluster Validation Wizard will
validate that environment meets the requirements for a cluster. If you find that your
environment does not meet the requirements, you can continue to building the cluster,
but the installation will not be supported by Microsoft.

 Once the cluster has been built, it will also need to be configured. This will include
configuring the quorum mode and may also include configuring MSDTC. After creating
a role on the cluster, you may also wish to configure the role with failover policies or
preferred owners.

59© Peter A. Carter 2016
P. A. Carter, SQL Server AlwaysOn Revealed, DOI 10.1007/978-1-4842-2397-0_4

 CHAPTER 4

 Implementing an AlwaysOn
Failover Clustered Instance

 Once the cluster has been built and configured, it is time to install the SQL Server
AlwaysOn failover cluster instance. In our scenario, we want to build a clustered instance,
which spans both nodes of the Windows cluster that we built in Chapter 3 . We will also
discuss how to build the failover clustered instance using PowerShell . To do this, we
will need to use the Install a SQL Server Failover Cluster wizard on the primary node of
the cluster. We will then need to run the Add Node wizard, to allow the passive node to
host the instance in the event of a failover. Therefore, in this chapter, we will perform the
following tasks :

• Install a SQL Server failover clustered instance on the active
cluster node

• Configure the passive node of the wizard to support the failover
clustered instance

 Building the Instance
 An AlwaysOn Failover Clustered Instance can be built using the Install a SQL Server
Failover Cluster wizard, which can be invoked by opening the SQL Server Installation
Center, on the node hosting the cluster core resources, and selecting the New SQL Server
Failover Cluster Installation option from the Installation. The installation tab of the SQL
Server Installation Center is illustrated in Figure 4-1 .

http://dx.doi.org/10.1007/978-1-4842-2397-0_3

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

60

 The Product Key page of the wizard is the first to be displayed, and is illustrated in
Figure 4-2 . On this page of the wizard, you will either select one of the free versions of SQL
Server to install, or enter a product key, or volume licensing key, which will automatically
determine the correct version of SQL Server to install.

 Figure 4-1. SQL Server Installation Center—Installation tab

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

61

 ■ Tip In SQL Server 2016, Developer Edition, which is functionally equivalent to Enterprise
Edition, is free. In previous SQL Server versions, there was a nominal charge associated with
this noncommercial license.

 On the License Terms page of the wizard (Figure 4-3), you will be invited to accept
Microsoft’s license terms, via a check box. The installation cannot proceed without
agreement.

 Figure 4-2. Install a SQL Server Failover Cluster Wizard— Product Key page

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

62

 Global Rules will now be checked, to ensure that the setup support files can be
successfully installed. When all checks are passed, the Microsoft Update page of the
wizard, illustrated in Figure 4-4 , will prompt you to choose if you want Windows Update
to check for SQL Server patches and hotfixes. The choice here will depend on your
organization’s patching policy. Some organizations implement a ridged patching regime
for the testing and acceptance of patches, followed by a patching cycle, which is often
supported with software such as WSUS (Windows Server Update Services) . If such a
regime exists in your o rganization, then you should not select this option.

 Figure 4-3. Install a SQL Server Failover Cluster Wizard— License Terms page

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

63

 If you have chosen to check for updates, and if any available updates are discovered,
then the Product Updates page of the wizard, which is illustrated in Figure 4-5 , will
list any available updates that have been found. You should confirm if they should be
installed or not, using the check box.

 Figure 4-4. Install a SQL Server Failover Cluster Wizard— Microsoft Update page

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

64

 Figure 4-5. Install a SQL Server Failover Cluster Wizard— Product Updates page

 After the setup support files and any product updates have been downloaded (if
applicable), extracted, and installed, installation rules for the installation of a failover
clustered instance will be checked, and the results displayed on the Install Failover
Cluster Rules page of the wizard, which is shown in Figure 4-6 .

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

65

 You will notice that there is a warning regarding the Windows Firewall . This is
displayed, simply because the Firewall is turned on. It does not indicate that the required
ports are not open. For further information on configuring firewalls for SQL Server, I
recommend the Apress book Securing SQL Server: DBAs Defending the Database , which
is available from www.apress.com/9781484222645 .

 On the Feature Selection page of the wizard, which is shown in Figure 4-7 , you
will select the features of the SQL Server 2016 product suite that you wish to install. For
the purpose of this book, we will choose to install the Database Engine and SQL Server
Integration Services (SSIS) .

 Figure 4-6. Install a SQL Server Failover Cluster Wizard— Install Failover Cluster Rules

http://www.apress.com/9781484222645

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

66

 It is worthy of note that SSIS is not cluster-aware, and is not designed to be clustered.
There are some circumstances where you may decide to cluster the Integration Services
service , and if this is the case, then you can work around the limitation by creating a
Cluster Role, with the Generic type, and adding the Integration Services service as a
dependency. In most scenarios, however, the most appropriate way to manage SSIS on
a clustered instance is simply to install the Integration Services service, as a stand-alone
service, on each node of the cluster.

 Additionally, the Feature Selection page of the wizard requires you to specify folder
locations for the instance root folder and the shared features folder. You may want to
move these to a different drive in order to leave the C:\ drive for the operating system.
This may be a consideration for space reasons, or just to isolate the SQL Server binaries
from other applications.

 The instance root directory will typically contain a folder for each instance that you
create on the server, and there will be separate folders for the Database Engine, SSAS,
and SSRS installations. A folder associated with the Database Engine will be called
 MSSQL13.[InstanceName] , where instance name is either the name of your instance, or
MSSQLSERVER for a default instance. The number 13 in the folder name relates to the
version of SQL Server, which is 13 for SQL Server 2016.

 This folder will contain a subfolder called MSSQL , which in turn will contain
folders that will store files associated with your instance, including a folder called Binn,
which will contain the application files, application extensions, and XML configurations
associated with your instance; a folder called Backup, which will be the default location
for backups of databases; and a folder called Data, which will be the default location of
the system databases .

 The default folders for TempDB, user databases, and backups can be modified later
in the installation process, and splitting these databases onto separate volumes often a
good practice, but may not be necessary (or even possible) if your data will be located
on a SAN, as discussed earlier in this chapter. Other folders will also be created here,
including a folder called LOGS, which will be the default location for the files for both the
Error Logs and the default Extended Event health trace .

 Figure 4-7. Install a SQL Server Failover Cluster Wizard— Feature Selection page

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

67

 Figure 4-8. Install a SQL Server Failover Cluster Wizard— Instance Configuration page

 If you are installing SQL Server in a 64-bit environment, you will be asked to enter
folders for both 32-bit and 64-bit versions of the shared features directory. This is because
some SQL Server components are always installed as 32-bit processes. The 32-bit and 64-
bit components cannot share a directory, so for installation to continue, you must specify
different folders for each of these options. The Shared Features directory becomes a root
level directory for features that are shared by all instances of SQL Server, such as SDKs
and management tools .

 The rules for installing the features that you have selected, and if all rules pass, then
the Instance Configuration page will be displayed, as illustrated in Figure 4-8 . On this
page of the wizard, you will specify a name for the instance. Because the instance will be
clustered, this page will also ask you to specify the network name for the instance. In this
scenario, we will install a default instance of SQL Server, meaning that we do not need to
specify an instance name. We will assign ALWAYSON-SQL-C as the network name.

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

68

 ■ Tip SQL Server uses the term cluster resource group to describe a cluster role. A
cluster role is Microsoft’s newer term and within this chapter, the terms should be treated
synonymously.

 On the Cluster Resource Group page of the wizard, we have the option of either
selecting an existing cluster resource group (which gives the option of a Windows
administrator precreating the resource group), or entering the name of a new resource
group, which will then be created by setup. In our case, we will specify ALWAYSON-SQL-C as
a name for a new resource group. This is illustrated in Figure 4-9 .

 Figure 4-9. Install a SQL Server Failover Cluster Wizard— Cluster Resource Group page

 ■ Tip Existing resource groups will be marked with a red or green indicator in the
Qualified column. If the marker is red, it means that it is not possible to use that resource
group for the SQL Server instance. In this case, the Message column will indicate the
reason.

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

69

 Figure 4-10. Install a SQL Server Failover Cluster Wizard— Cluster Disk Selection page

 On the Cluster Disk Selection page , illustrated in Figure 4-10 , you can select the disk
resources that should be associated with the resource group. The page will list all disks
that are associated with the cluster and indicate which disks can be selected, with red
or green indicators in the Qualified column. Disks that are already associated with other
resource groups cannot be selected, because a disk can only be associated with a single
resource group. We will specify that both available disks (Data and TempDB) should be
associated with the ALWAYSON-SQL-C resource group.

 On the Cluster Network Configuration page (Figure 4-11) we can configure the IP
Address of the cluster role. We can either choose DHCP, which means that the IP Address
will be attained automatically, or we can specify a static IP Address. In our case, we
will specify a static IP Address. If our cluster were to be a stretch cluster (spread across
multiple subnets), we would need to specify an IP Address for each subnet.

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

70

 The Server Configuration page has two tabs. The first tab is Service Accounts. On
this tab, which is illustrated in Figure 4-12 , we will specify the service account that will
be used as the security context for each SQL Server service , and also specify the startup
mode for each of the services. This is worthy of note, because when installing a stand-
alone instance, you will usually set each service to start automatically. When installing a
cluster, however, then cluster-aware services should be configured to start manually. This
is because they will be managed by the cluster service.

 Figure 4-11. Install a SQL Server Failover Cluster— Cluster Disk Selection page

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

71

 Figure 4-12. Install a SQL Server Failover Cluster— Service Accounts tab

 A new feature of SQL Server 2016 is to enable Perform Volume Maintenance Tasks
during setup, and this is implemented as a simple check box of the Service Account
tab. The consideration here is security versus performance. If you choose to perform
volume maintenance tasks, then data files will not be zeroed out when they are created
or expanded; however, an attacker with specialist software could potentially retrieve data
that was previously stored on the allocated disk blocks. Perform Volume Maintenance
Tasks does not apply to transaction log files.

 ■ Tip For a full discussion on SQL Server security considerations, I recommend the
Apress title Securing SQL Server: DBAs Defending the Database , which can be purchased
from www.apress.com/9781484222645 .

 On the Collation tab , shown in Figure 4-13 , you can specify the collation that will
be configured for the instance. Wherever possible, it is a good idea to use a consistent
collation throughout the enterprise, or at a minimum, throughout the instances that
make up a data-tier application.

http://www.apress.com/9781484222645

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

72

 The Database Engine Configuration page consists of four tabs. The first of these
is the Server Configuration tab, which is illustrated in Figure 4-14 . Here, we specify the
authentication mode that the instance will use.

 Figure 4-13. Install a SQL Server Failover Cluster— Collation tab

 Figure 4-14. Install a SQL Server Failover Cluster— Server Configuration tab

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

73

 Windows Authentication Mode means that the credentials that a user supplies
when logging into Windows will be passed to SQL Server, and the user does not require
any additional credentials to gain access to the instance. With Mixed Mode, although
Windows credentials can still be used to access the instance, users can also be given
second-tier credentials. If this option is selected, then SQL Server will hold its own Login
names and passwords for Login created inside the instance, and users can supply these in
order to gain access, even if their Windows identity does not have permissions.

 For security best practice, it is a good idea to only allow Windows authentication
to your instance. This is for two reasons. First, with Windows authentication only, if
an attacker were to gain access to your network, then they would still not be able to
access SQL Server, since they would not have a valid Windows account with the correct
permissions. With mixed-mode authentication, however, once inside the network,
attackers could use brute force attacks or other hacking methodologies to attempt to
gain access via a second-tier SQL Server Login. Secondly, if you specify mixed-mode
authentication, then you are required to create an SA account. The SA account is a SQL
Server user account that has administrative privileges over the instance. If the password
for this account became compromised, then an attacker could gain administrative control
over SQL Server. If mixed-mode authentication must be used, it is a good idea to disable
the SA account.

 Mixed-mode authentication is a necessity in some cases, however. For example, you
may have a legacy application that does not support Windows authentication, or a third-
party application that has a hardcoded connection that uses second-tier authentication.
These would be two valid reasons why mixed mode authentication may be required.
Another valid reason would be if you have users that need to access the instance from a
nontrusted domain.

 Additionally, on the Server Configuration tab , you can specify Windows users that
will be added to the sysadmin fixed server role, giving them unrestricted access to the
instance. In our scenario, we will add the AlwaysOnRevealed\SQLAdmin user as an
instance administrator and use Windows Authentication only.

 On the Data Directories tab , illustrated in Figure 4-15 , you can alter the default
location of the data root directory. On this screen, you can also change the default
location for user databases and their log files. Finally, this tab allows you to specify a
default location for backups of databases that will be taken. In our scenario, we must
ensure that the data root is pointing at the Data volume.

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

74

 The TempDB tab is shown in Figure 4-16 . This is a new tab, in the SQL Server
2016 installation wizard, and allows you to configure the properties of the TempDB
database . This is important as TempDB requires the correct size and processor settings
to avoid becoming a bottleneck for the instance. The settings will default to the
recommended configuration, which is one file per processor core, to a maximum of
eight. This is considered to be the best number of files to avoid contention on system
pages, such as GAM, SGAM, and PFS pages. The correct size of TempDB should be
estimated through a capacity planning exercise. We will configure TempDB to have
an initial size of 60MB per file (240MB in total). We have also configured TempDB to
reside on the TempDB volume.

 Figure 4-15. Install a SQL Server Failover Cluster— Data Directories tab

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

75

 Figure 4-16. Install a SQL Server Failover Cluster— TempDB tab

 The FILESTREAM tab of the Database Engine Configuration page allows you to
enable and configure the level of access for SQL Server FILESTREAM functionality,
as illustrated in Figure 4-17 . FILESTREAM must also be enabled if you wish to use the
FileTable feature of SQL Server. FILESTREAM and FileTable provide the ability to store
data in an unstructured manner within the Windows folder structure, while retaining the
ability to manage and interrogate this data from SQL Server.

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

76

 Figure 4-17. Install a SQL Server Failover Clustered Instance— FILESTREAM tab

 After the Feature Configuration Rules have been checked, the Ready to Install page
of the wizard will be displayed. This page of the wizard provides a summary of actions
that will be performed by the setup utility. Selecting Install on this page will cause the
instance installation to begin. After installation is complete, the Complete page should be
reviewed.

 Installing the Instance with PowerShell
 Of course, we can use PowerShell to install the AlwaysOn failover cluster instance instead
of using the GUI. To install an AlwaysOn failover cluster instance from PowerShell, we
can use SQL Server’s setup.exe application with the InstallFailoverCluster action
specified.

 When you perform a command-line installation of a clustered instance, you need
the parameters in Table 4-1 , in addition to the parameters that are mandatory when you
install a stand-alone instance of SQL Server.

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

77

 The script in Listing 4-1 performs the same installation that has just been
demonstrated when you run it from the root directory of the installation media.

 Listing 4-1. Installing an AlwaysOn Failover Cluster Instance with PowerShell

 .\SETUP.EXE /IACCEPTSQLSERVERLICENSETERMS /ACTION="InstallFailoverCluster"
/FEATURES=SQL,IS /INSTANCENAME="MSSQLSERVER"
/SQLSVCACCOUNT="ALWAYSONREVEALED\SQLAdmin" /SQLSVCPASSWORD="Pa$$w0rd"
/AGTSVCACCOUNT="ALWAYSONREVEALED\SQLAdmin" /AGTSVCPASSWORD="Pa$$w0rd"
/SQLSYSADMINACCOUNTS="ALWAYSONREVEALED\SQLAdmin"
/FAILOVERCLUSTERIPADDRESSES="IPv4;192.168.0.51;Cluster Network 2;255.255.255.0"
/FAILOVERCLUSTERNETWORKNAME="ALWAYSON-SQL-C" /INSTALLSQLDATADIR="F:\" /qs

 Adding a Node
 The next step you should take when installing the cluster is to add the second node.
Failure to add the second node results in the instance staying online, but with no high
availability, since the second node is unable to take ownership of the role. To configure
the second node, you need to log in to the passive cluster node and select the Add Node
to SQL Server Failover Cluster option from the Installation tab of SQL Server Installation
Center. This invokes the Add a Failover Cluster Node Wizard. The first page of this wizard
is the Product Key page . Just like when you install an instance, you need to use this screen
to provide the product key for SQL Server. Not specifying a product key only leaves you
the option of installing the Evaluation edition, and since this expires after 180 days, it’s
probably not the wisest choice for high availability.

 The following License Terms page of the wizard asks you to read and accept the
license terms of SQL Server. Additionally, you need to specify if you wish to participate in
 Microsoft’s Customer Experience Improvement Program . If you select this option, then
error reporting is captured and sent to Microsoft.

 After you accept the license terms, a rules check runs to ensure that all of the
conditions are met so you can continue with the installation. After the wizard checks for
Microsoft updates and installing the setup files required for installation, another rules
check is carried out to ensure that the rules for adding the node to the cluster are met.

 Table 4-1. Required Parameters for the Installation of a Clustered Instance

 Parameter Usage

 /FAILOVERCLUSTERIPADDRESSES Specifies the IP Address(s) to use for the instance
in the format <IP Type>;<address>;<network
name>;<subnet mask>. For multi-subnet clusters,
the IP Addresses are space delimited.

 /FAILOVERCLUSTERNETWORKNAME The virtual name of the clustered instance.

 /INSTALLSQLDATADIR The folder in which to place SQL Server data files.
This must be a cluster disk.

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

78

 On the Cluster Node Configuration page , illustrated in Figure 4-18 , you are asked
to confirm the instance name to which you are adding a node. If you have multiple
instances on the cluster, then you can use the drop-down box to select the appropriate
instance.

 Figure 4-18. Add a Failover Cluster Node Wizard— Cluster Node Configuration page

 On the Cluster Network Configuration page , shown in Figure 4-19 , you confirm the
network details. These should be identical to the first node in the cluster, including the
same IP Address, since this is, of course, shared between the two nodes.

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

79

 On the Service Accounts page of the wizard, most of the information is in read-only
mode and you are not able to modify it. This is because the service accounts you use
must be the same for each node of the cluster. You need to re-enter the service account
passwords, however. This page is shown in Figure 4-20 .

 Figure 4-19. The Cluster Network Configuration page

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

80

 Now that the wizard has all of the required information, an additional rules check is
carried out before the summary page displays. The summary page is known as the Ready
to Add Node page , which provides a summary of the activities that take place during the
installation.

 Adding a Node Using PowerShell
 To add a node using PowerShell instead of the GUI, you can run SQL Server’s setup.exe
application with an AddNode action. When you add a node from the command line, the
parameters detailed in Table 4-2 are mandatory.

 Figure 4-20. The Service Accounts page

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

81

 Table 4-2. Mandatory Parameters for the AddNode Action

 Parameter Usage

 /ACTION Must be configured as AddNode .

 /IACCEPTSQLSERVERLICENSETERMS Mandatory when installing on Windows Server
Core, since the /qs switch must be specified on
Windows Server Core.

 /INSTANCENAME The instance that you are adding the extra node to
support.

 /CONFIRMIPDEPENDENCYCHANGE Allows multiple IP Addresses to be specified for
multi-subnet clusters. Pass in a value of 1 for True
or 0 for False.

 /FAILOVERCLUSTERIPADDRESSES Specifies the IP Address(es) to use for the instance
in the format <IP Type>;<address>;<network
name>;<subnet mask> . For multi-subnet clusters,
the IP Addresses are space delimited.

 /FAILOVERCLUSTERNETWORKNAME The virtual name of the clustered instance.

 /INSTALLSQLDATADIR The folder in which to place SQL Server data files.
This must be a cluster disk.

 /SQLSVCACCOUNT The service account that is used to run the
Database Engine.

 /SQLSVCPASSWORD The password of the service account that is used
to run the Database Engine.

 /AGTSVCACCOUNT The service account that issued to run SQL Server
Agent.

 /AGTSVCPASSWORD The password of the service account that is used
to run SQL Server Agent.

 The script in Listing 4-2 adds ClusterNode2 to the role when you run it from the root
folder of the install media .

 Listing 4-2. Adding a Node Using PowerShell

 .\setup.exe /IACCEPTSQLSERVERLICENSETERMS /ACTION="AddNode"
/INSTANCENAME="MSSQLSERVER" /SQLSVCACCOUNT="ALWAYSONREVEALED\SQLAdmin"
/SQLSVCPASSWORD="Pa$$w0rd" /AGTSVCACCOUNT="ALWAYSONREVEALED\SQLAdmin"
/AGTSVCPASSWORD="Pa$$w0rd" /FAILOVERCLUSTERIPADDRESSES="IPv4;192.168.0.51;
Cluster Network 2;255.255.255.0" /CONFIRMIPDEPENDENCYCHANGE=0 /qs

CHAPTER 4 ■ IMPLEMENTING AN ALWAYSON FAILOVER CLUSTERED INSTANCE

82

 Summary
 An AlwaysOn Failover Clustered Instance can be installed using SQL Server Installation
Center or via PowerShell. When using the SQL Server Installation Center, the process
is very similar to the installation of a stand-alone instance; however, you will need to
specify additional details, such as the network name, IP Address, and resource group
configuration.

 When using PowerShell to install the Instance, you will InstallFailoverCluster
action, specifying the /FAILOVERCLUSTERIPADDRESSES , /FAILOVERCLUSTERNETWORKNAME ,
and /INSTALLSQLDATADIR parameters, in addition the parameters required for a stand-
alone instance build.

83© Peter A. Carter 2016
P. A. Carter, SQL Server AlwaysOn Revealed, DOI 10.1007/978-1-4842-2397-0_5

 CHAPTER 5

 Implementing HA with
AlwaysOn Availability Groups

 AlwaysOn Availability Groups provide a flexible option for achieving high availability,
recovering from disasters, and scaling out read-only workloads. The technology
synchronizes data at the database level, but health monitoring and quorum are provided
by a Windows cluster.

 This chapter demonstrates how to build and configure Availability Groups for
both high availability (HA) and disaster recovery (DR) . We also discuss aspects such as
performance considerations and maintenance, along with using Availability Groups to
scale out read-only workloads.

 Demonstrations in this chapter make use of the cluster that was built in Chapter 3 .
Each node has been preconfigured with a stand-alone instance. CLUSTERNODE1 hosts an
instance called PRIMARYREPLICA and CLUSTERNODE2 hosts an instance called SYNCHA .

 In this chapter, we will create two Availability Groups. The first will be called App1
and contain the App1Customers and App2Sales databases. The second will be called
 App2 and contain the App2Customers database. Therefore, the tasks that we will perform
in this chapter are as follows:

• Create the App1Customers, App1Sales, and App2Customers
databases

• Configure the stand-alone instances to support Availability
Groups

• Use the New Availability Groups wizard to create the App1
Availability Group and Listener

• Use the New Availability Group dialog box to create the App2
Availability Group

• Use the New Listener dialog box to create the App2 Listener

http://dx.doi.org/10.1007/978-1-4842-2397-0_3

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

84

 Preparing for Availability Groups
 Before implementing AlwaysOn Availability Groups , we first create three databases,
which we will use during the demonstrations in this chapter. Two of the databases relate
to the fictional application App1 , and the third database relates to the fictional application
 App2 . Each contains a single table, which we populate with data. Each database is
configured with Recovery mode set to FULL . This is a hard requirement for a database
to use AlwaysOn Availability Groups because data is synchronized via a log stream. The
script in Listing 5-1 creates these databases.

 Listing 5-1. Creating Databases

 CREATE DATABASE App1Customers ;
 GO

 ALTER DATABASE App1Customers SET RECOVERY FULL ;
 GO

 USE App1Customers
 GO

 CREATE TABLE App1Customers
 (
 ID INT PRIMARY KEY IDENTITY,
 FirstName NVARCHAR(30),
 LastName NVARCHAR(30),
 CreditCardNumber VARBINARY(8000)
) ;
 GO

 --Populate the table

 DECLARE @Numbers TABLE
 (
 Number INT
)

 ;WITH CTE(Number)
 AS
 (
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 100
)
 INSERT INTO @Numbers
 SELECT Number FROM CTE

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

85

 DECLARE @Names TABLE
 (
 FirstName VARCHAR(30),
 LastName VARCHAR(30)
) ;

 INSERT INTO @Names
 VALUES('Peter', 'Carter'),
 ('Michael', 'Smith'),
 ('Danielle', 'Mead'),
 ('Reuben', 'Roberts'),
 ('Iris', 'Jones'),
 ('Sylvia', 'Davies'),
 ('Finola', 'Wright'),
 ('Edward', 'James'),
 ('Marie', 'Andrews'),
 ('Jennifer', 'Abraham'),
 ('Margaret', 'Jones')

 INSERT INTO App1Customers(Firstname, LastName, CreditCardNumber)
 SELECT FirstName, LastName, CreditCardNumber FROM
 (SELECT
 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID()) FirstName
 ,(SELECT TOP 1 LastName FROM @Names ORDER BY NEWID()) LastName
 ,(SELECT CONVERT(VARBINARY(8000)
 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())))

CreditCardNumber
 FROM @Numbers a
 CROSS JOIN @Numbers b
 CROSS JOIN @Numbers c
) d ;

 CREATE DATABASE App1Sales ;
 GO

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

86

 ALTER DATABASE App1Sales SET RECOVERY FULL ;
 GO

 USE App1Sales
 GO

 CREATE TABLE dbo.Orders(
 OrderNumber int NOT NULL IDENTITY(1,1) PRIMARY KEY

CLUSTERED,
 OrderDate date NOT NULL,
 CustomerID int NOT NULL,
 ProductID int NOT NULL,
 Quantity int NOT NULL,
 NetAmount money NOT NULL,
 TaxAmount money NOT NULL,
 InvoiceAddressID int NOT NULL,
 DeliveryAddressID int NOT NULL,
 DeliveryDate date NULL,
) ;

 DECLARE @Numbers TABLE
 (
 Number INT
)

 ;WITH CTE(Number)
 AS
 (
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 100
)
 INSERT INTO @Numbers
 SELECT Number FROM CTE

 --Populate ExistingOrders with data

 INSERT INTO Orders
 SELECT
 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number
 FROM @Numbers
 ORDER BY NEWID()),getdate())as DATE)),
 (SELECT TOP 1 Number -10 FROM @Numbers ORDER BY NEWID()),
 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),
 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

87

 500,
 100,
 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),
 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),
 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number - 10
 FROM @Numbers
 ORDER BY NEWID()),getdate()) as DATE))
 FROM @Numbers a
 CROSS JOIN @Numbers b
 CROSS JOIN @Numbers c ;

 CREATE DATABASE App2Customers ;
 GO

 ALTER DATABASE App2Customers SET RECOVERY FULL ;
 GO

 USE App2Customers
 GO

 CREATE TABLE App2Customers
 (
 ID INT PRIMARY KEY IDENTITY,
 FirstName NVARCHAR(30),
 LastName NVARCHAR(30),
 CreditCardNumber VARBINARY(8000)
) ;
 GO

 --Populate the table

 DECLARE @Numbers TABLE
 (
 Number INT
) ;

 ;WITH CTE(Number)
 AS
 (
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 100
)
 INSERT INTO @Numbers
 SELECT Number FROM CTE ;

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

88

 DECLARE @Names TABLE
 (
 FirstName VARCHAR(30),
 LastName VARCHAR(30)
) ;

 INSERT INTO @Names
 VALUES('Peter', 'Carter'),
 ('Michael', 'Smith'),
 ('Danielle', 'Mead'),
 ('Reuben', 'Roberts'),
 ('Iris', 'Jones'),
 ('Sylvia', 'Davies'),
 ('Finola', 'Wright'),
 ('Edward', 'James'),
 ('Marie', 'Andrews'),
 ('Jennifer', 'Abraham'),
 ('Margaret', 'Jones')

 INSERT INTO App2Customers(Firstname, LastName, CreditCardNumber)
 SELECT FirstName, LastName, CreditCardNumber FROM
 (SELECT
 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID()) FirstName
 ,(SELECT TOP 1 LastName FROM @Names ORDER BY NEWID()) LastName
 ,(SELECT CONVERT(VARBINARY(8000)
 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())))
CreditCardNumber
 FROM @Numbers a
 CROSS JOIN @Numbers b
 CROSS JOIN @Numbers c
) d ;

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

89

 Configuring SQL Server
 The first step in configuring AlwaysOn Availability Groups is enabling this feature
on the SQL Server service. To enable the feature from the GUI, we open SQL Server
Configuration Manager, drill through SQL Server Services, and select Properties from the
context menu of the SQL Server service. When we do this, the service properties display
and we navigate to the AlwaysOn High Availability tab, shown in Figure 5-1 .

 Figure 5-1. The AlwaysOn High Availability tab

 On this tab, we check the Enable AlwaysOn Availability Groups box and ensure that
the cluster name displayed in the Windows Failover Cluster Name box is correct. We then
need to restart the SQL Server service. Because AlwaysOn Availability Groups uses stand-
alone instances , which are installed locally on each cluster node, as opposed to a failover
clustered instance, which spans multiple nodes, we need to repeat these steps for each
stand-alone instance hosted on the cluster.

 We can also use PowerShell to enable AlwaysOn Availability Groups. To do this, we
use the PowerShell command in Listing 5-2 . The script assumes that CLUSTERNODE1 is the
name of the server and that PRIMARYREPLICA is the name of the SQL Server instance.

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

90

 Listing 5-2. Enabling AlwaysOn Availability Groups

 Enable-SqlAlwaysOn -Path SQLSERVER:\SQL\CLUSTERNODE1\PRIMARYREPLICA

 The next step is to take a full backup of all databases that will be part of the
Availability Group. We create separate Availability Groups for App1 and App2 , respectively,
so to create an Availability Group for App1 , we need to back up the App1Customers and
 App1Sales databases. We do this by running the script in Listing 5-3 .

 Listing 5-3. Backing Up the Databases

 BACKUP DATABASE App1Customers
 TO DISK = N'C:\Backups\App1Customers.bak'
 WITH NAME = N'App1Customers-Full Database Backup' ;
 GO

 BACKUP DATABASE App1Sales
 TO DISK = N'C:\Backups\App1Sales.bak'
 WITH NAME = N'App1Sales-Full Database Backup' ;
 GO

 Creating the Availability Group
 You can create an Availability Group topology in SQL Server in several ways. It can be
created manually, predominantly through dialog boxes, via T-SQL, or through a wizard.
The following sections explore each of these options.

 Using the New Availability Group Wizard
 When the backups complete successfully, we invoke the New Availability Group wizard
by drilling through AlwaysOn High Availability in Object Explorer and selecting the
New Availability Group wizard from the context menu of the Availability Groups folder.
The Introduction page of the wizard, displayed in Figure 5-2 , now displays, giving us an
overview of the steps that we need to undertake.

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

91

 On the Specify Name page (see Figure 5-3), we are prompted to enter a name for
our Availability Group. We also need to specify if Database Level Health Detection will
be used for the Availability Group. This is a new feature of SQL Server 2016, and if used,
the Availability Group will fail over, if any of the availability databases within the group
transition out of the ONLINE state.

 Figure 5-2. The Introduction page

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

92

 On the Select Databases page , we are prompted to select the database(s) that we
wish to participate in the Availability Group, as illustrated in Figure 5-4 . On this screen,
notice that we cannot select the App2Customers database, because we have not yet taken
a full backup of the database.

 Figure 5-3. The Specify Name page

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

93

 The Specify Replicas page consists of four tabs. We use the first tab, Replicas, to add
the secondary replicas to the topology. Checking the Synchronous Commit option causes
data to be committed on the secondary replica before it is committed on the primary
replica. (This is also referred to as hardening the log on the secondary before the primary.)
This means that, in the event of a failover, data loss is not possible, meaning that we can
meet an SLA (service level agreement) with an RPO (recovery point objective) of 0 (zero).
It also means that there is a performance impediment, however. If we choose not to check
the option for Synchronous Commit, then the replica operates in Asynchronous Commit
mode. This means that data is committed on the primary replica before being committed
on the secondary replica. This stops us from suffering a performance impediment, but
it also means that, in the event of failover, the RPO is nondeterministic. Performance
considerations for synchronous replicas are discussed later in this chapter.

 Figure 5-4. The Select Database page

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

94

 ■ Tip SQL Server 2016 Enterprise Edition allows three replicas to be configured for
automatic failover. Previous versions of SQL Server only allowed two synchronous replicas.

 When we check the Automatic Failover option, the Synchronous Commit option is
also selected automatically if we have not already selected it. This is because automatic
failover is only possible in Synchronous Commit mode. We can set the Readable
Secondary drop-down to No, Yes, or Read-intent. When we set it to No, the database
is not accessible on replicas that are in a secondary role. When we set it to read-intent,
the Availability Group Listener is able to redirect read-only workloads to this secondary
replica, but only if the application has specified Application Intent=Read-only in
the connection string. Setting it to Yes enables the listener to redirect read-only traffic,
regardless of whether the Application Intent parameter is present in the application’s
connection string. Although we can change the value of Readable Secondary through
the GUI while at the same time configuring a replica for automatic failover without error,
this is simply a quirk of the wizard. In fact, the replica is not accessible, since active
secondaries are not supported when configured for automatic failover. The Replicas tab is
illustrated in Figure 5-5 .

 Figure 5-5. The Replicas tab

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

95

 ■ Note Using secondary replicas for read-only workloads is discussed in more depth in
chapter 6 .

 On the Endpoints tab of the Specify Replicas page, illustrated in Figure 5-6 , we
specify the port number for each endpoint. The default port is 5022, but we can specify a
different port if we need to. On this tab, we also specify if data should be encrypted when
it is sent between the endpoints. It is usually a good idea to check this option, and if we
do, then AES (Advanced Encryption Standard) is used as the encryption algorithm.

 Figure 5-6. The Endpoints tab

 Optionally, you can also change the name of the endpoint that is created. Because
only one database mirroring endpoint is allowed per instance, however, and because
the default name is fairly descriptive, there is not always a reason to change it. Some
DBAs choose to rename it to include the name of the instance, since this can simplify
the management of multiple servers. This is a good idea if your enterprise has many
Availability Group clusters.

 The service account each instance uses is displayed for informational purposes. It
simplifies security administration if you ensure that the same service account is used by
both instances. If you fail to do this, you will need to grant each instance permissions to
each service account. This means that instead of reducing the security footprint of each
service account by using it for one instance only, you simply push the footprint up to the
SQL Server level instead of the Operating System level.

http://dx.doi.org/10.1007/978-1-4842-2397-0_6

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

96

 The endpoint URL specifies the URL of the endpoint that Availability Groups will use
to communicate. The format of the URL is [Transport Protocol]://[Path]:[Port] .
The transport protocol for a database mirroring endpoint is always TCP (Transmission
Control Protocol) . The path can either be the fully qualified domain name (FQDN) of the
server, the server name on its own, or an IP Address, which is unique across the network.
I recommend using the FQDN of the server, because this is always guaranteed to work.
It is also the default value populated. The port should match the port number that you
specify for the endpoint.

 ■ Note Availability groups communicate with a database mirroring endpoint. Although
database mirroring is deprecated, the endpoints are not.

 On the Backup Preferences tab (see Figure 5-7), we can specify the replica on which
automated backups will be taken. One of the big advantages of AlwaysOn Availability
Groups is that when you use them, you can scale out maintenance tasks, such as backups,
to secondary servers. Therefore, automated backups can seamlessly be directed to active
secondaries. The possible options are Prefer Secondary, Secondary Only, Primary, or
Any Replica. It is also possible to set priorities for each replica. When determining which
replica to run the backup job against, SQL Server evaluates the backup priorities of each
node and is more likely to choose the replica with the highest priority.

 Figure 5-7. The Backup Preferences tab

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

97

 Although the advantages of reducing IO on the primary replica are obvious, I,
somewhat controversially, recommend against scaling automated backups to secondary
replicas in many cases. This is especially the case when RTO (recovery time objective)
is a priority for the application because of operational supportability issues. Imagine a
scenario in which backups are being taken against a secondary replica and a user calls
to say that they have accidently deleted all data from a critical table. You now need to
restore a copy of the database and repopulate the table. The backup files, however, sit on
the secondary replica. As a result, you need to copy the backup files over to the primary
replica before you can begin to restore the database (or perform the restore over the
network). This instantly increases your RTO.

 Also, when configured to allow backups against multiple servers, SQL Server still
only maintains the backup history on the instance where the backup was taken. This
means that you may be scrambling between servers, trying to retrieve all of your backup
files, not knowing where each one resides. This becomes even worse if one of the servers
has a complete system outage. You can find yourself in a scenario in which you have a
broken log chain.

 The workaround for most of the issues that I just mentioned is to use a share on a
file server and configure each instance to back up to the same share. The problem with
this, however, is that by setting things up in this manner, you are now sending all of your
backups across the network rather than backing them up locally. This can increase the
duration of your backups as well as increase network traffic .

 On the Listener tab , shown in Figure 5-8 , we choose if we want to create an
Availability Group Listener or if we want to defer this task until later. If we choose to
create the listener, then we need to specify the listener’s name, the port that it should
listen on, and the IP Address(es) that it should use. We specify one address for each
subnet, in multi-subnet clusters . The details provided here are used to create the client
access point resource in the Availability Group’s cluster role. You may notice that we
have specified port 1433 for the listener, although our instance is also running on port
1433. This is a valid configuration, because the listener is configured on a different
IP Address than the SQL Server instance. It is also not mandatory to use the same
port number, but it can be beneficial, if you are implementing AlwaysOn Availability
Groups on an existing instance, because applications that specify the port number to
connect may need fewer application changes. Remember that the server name will still
be different, however, because applications will be connecting to the virtual name of
the listener, as opposed to the name of the physical server\instance. In our example,
applications connect to APP1LISTEN\PRIMARYREPLICA instead of CLUSTERNODE1\
PRIMARYREPLICA . Although connections via CLUSTERNODE1 are still permitted, they do
not benefit from high availability or scale our reporting.

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

98

 ■ Tip If you do not have Create Computer Objects permission within the OU, then the
listener’s VCO (virtual computer object) must be prestaged in AD and you must be assigned
Full Control permissions on the object.

 On the Select Initial Data Synchronization screen , shown in Figure 5-9 , we choose
how the initial data synchronization of the replicas is performed. If you choose Full,
then each database that participates in the Availability Group is subject to a full backup,
followed by a log backup. The backup files are backed up to a share, which you specify,
before they are restored to the secondary servers. After the restore is complete, data
synchronization, via log stream, commences.

 Figure 5-8. The Listener tab

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

99

 If you have already backed up your databases and restored them onto
the secondaries, then you can select the Join Only option. This starts the data
synchronization, via log stream, on the databases within the Availability Group. Selecting
Skip Initial Data Synchronization allows you to back up and restore the databases yourself
after you complete the setup.

 ■ Tip If your Availability Group will contain many databases, then it may be best to
perform the backup/restore yourself. This is because the inbuilt utility will perform the
actions sequentially, and therefore it may take a long time to complete.

 On the Validation page, rules that may cause the setup to fail are checked, as
illustrated in Figure 5-10 . If any of the results come back as Failed, then you need to
resolve them before you attempt to continue.

 Figure 5-9. The Select Data Synchronization page

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

100

 Once validation tests are complete and we move to the Summary page , we are
presented with a list of the tasks that are to be carried out during the setup. As setup
progresses, the results of each configuration task display on the Results page. If any errors
occur on this page, be sure to investigate them, but this does not necessarily mean that
the entire Availability Group needs to be reconfigured. For example, if the creation of the
Availability Group listener fails because the VCO had not been prestaged in AD, then you
can re-create the listener without needing to re-create the entire Availability Group.

 As an alternative to using the New Availability Group wizard, you can perform the
configuration of the Availability Group using the New Availability Group dialog box,
followed by the Add Listener dialog box . This method of creating an Availability Group is
examined later in this chapter.

 Scripting the Availability Group
 We can also script the activity by using the script in Listing 5-4 . This script connects to
both instances within the cluster, meaning that it can only be run in SQLCMD mode .
First, the script creates a login for the service account on each instance. It then creates

 Figure 5-10. The Validation page

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

101

the TCP endpoint, assigns the connect permission to the service account, and starts the
health trace for AlwaysOn Availability Groups (which we discuss later in this chapter).
The script then creates the Availability Group on the primary and joins the secondary to
the group. Next, we perform a full and log backup and a restore of each database that will
participate in the Availability Group before we add the databases to the group. Note that
the databases are backed up, restored, and added to the group in a serial manner. If you
have many databases, then you may want to parallelize this process.

 Listing 5-4. Creating Availability Group

 --Create Logins for the Service Account,
 --create Endpoints and assign Service Account permissions
 --to the Endpoint on Primary Replica

 :Connect CLUSTERNODE1\PRIMARYREPLICA

 USE master
 GO

 CREATE LOGIN [prosqladmin\clusteradmin] FROM WINDOWS ;
 GO

 CREATE ENDPOINT [Hadr_endpoint]
 AS TCP (LISTENER_PORT = 5022)
 FOR DATA_MIRRORING (ROLE = ALL, ENCRYPTION = REQUIRED ALGORITHM AES) ;
 GO

 ALTER ENDPOINT [Hadr_endpoint] STATE = STARTED ;
 GO

 GRANT CONNECT ON ENDPOINT::[Hadr_endpoint] TO [prosqladmin\clusteradmin] ;
 GO

 IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name='AlwaysOn_
health')
 BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER WITH (STARTUP_STATE=ON);
 END
 IF NOT EXISTS(SELECT * FROM sys.dm_xe_sessions WHERE name='AlwaysOn_health')
 BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER STATE=START;
 END
 GO

 --Create Logins for the Service Account,
 --create Endpoints and assign Service Account permissions
 --to the Endpoint on Secondary Replica

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

102

 :Connect CLUSTERNODE2\SYNCHA

 USE master
 GO

 CREATE LOGIN [prosqladmin\ClusterAdmin] FROM WINDOWS ;
 GO

 CREATE ENDPOINT [Hadr_endpoint]
 AS TCP (LISTENER_PORT = 5022)
 FOR DATA_MIRRORING (ROLE = ALL, ENCRYPTION = REQUIRED ALGORITHM AES) ;
 GO

 ALTER ENDPOINT [Hadr_endpoint] STATE = STARTED ;
 GO

 GRANT CONNECT ON ENDPOINT::[Hadr_endpoint] TO [prosqladmin\ClusterAdmin] ;
 GO

 IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name='AlwaysOn_health')
 BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER WITH (STARTUP_STATE=ON);
 END
 IF NOT EXISTS(SELECT * FROM sys.dm_xe_sessions WHERE name='AlwaysOn_health')
 BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER STATE=START;
 END
 GO

 --Create Avaiability Group

 :Connect CLUSTERNODE1\PRIMARYREPLICA

 USE master
 GO

 CREATE AVAILABILITY GROUP App1
 WITH (AUTOMATED_BACKUP_PREFERENCE = PRIMARY)
 FOR DATABASE App1Customers, App1Sales
 REPLICA ON N'CLUSTERNODE1\PRIMARYREPLICA'
 WITH (ENDPOINT_URL = N'TCP://ClusterNode1.PROSQLADMIN.COM:5022',
 FAILOVER_MODE = AUTOMATIC, AVAILABILITY_MODE = SYNCHRONOUS_COMMIT, BACKUP_
PRIORITY = 50,
 SECONDARY_ROLE(ALLOW_CONNECTIONS = NO)),
 N'CLUSTERNODE2\SYNCHA'
 WITH (ENDPOINT_URL = N'TCP://ClusterNode2.PROSQLADMIN.COM:5022',
 FAILOVER_MODE = AUTOMATIC, AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,
 BACKUP_PRIORITY = 50, SECONDARY_ROLE(ALLOW_CONNECTIONS = NO));
 GO

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

103

 --Create the Listener (Use an IP Address applicable to your environment)

 ALTER AVAILABILITY GROUP App1
 ADD LISTENER N'App1Listen' (
 WITH IP
 ((N'192.168.0.4', N'255.255.255.0')
)
 , PORT=1433);
 GO

 --Join the Secondary Replica

 :Connect CLUSTERNODE2\SYNCHA

 ALTER AVAILABILITY GROUP App1 JOIN;
 GO

 --Back Up Database and Log (First database)

 :Connect CLUSTERNODE1\PRIMARYREPLICA

 BACKUP DATABASE App1Customers
 TO DISK = N'\\CLUSTERNODE1\Backups\App1Customers.bak'
 WITH COPY_ONLY, FORMAT, INIT, REWIND, COMPRESSION, STATS = 5 ;
 GO

 BACKUP LOG App1Customers
 TO DISK = N'\\CLUSTERNODE1\Backups\App1Customers.trn'
 WITH NOSKIP, REWIND, COMPRESSION, STATS = 5 ;
 GO

 --Restore Database and Log (First database)

 :Connect CLUSTERNODE2\SYNCHA

 RESTORE DATABASE App1Customers
 FROM DISK = N'\\CLUSTERNODE1\Backups\App1Customers.bak'
 WITH NORECOVERY, STATS = 5 ;
 GO

 RESTORE LOG App1Customers
 FROM DISK = N'\\CLUSTERNODE1\Backups\App1Customers.trn'
 WITH NORECOVERY, STATS = 5 ;
 GO

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

104

 --Wait for replica to start communicating

 DECLARE @connection BIT

 DECLARE @replica_id UNIQUEIDENTIFIER
 DECLARE @group_id UNIQUEIDENTIFIER

 SET @connection = 0

 WHILE @Connection = 0
 BEGIN
 SET @group_id = (SELECT group_id
 FROM Master.sys.availability_groups
 WHERE name = N'App1')
 SET @replica_id = (SELECT replica_id
 FROM Master.sys.availability_replicas
 WHERE UPPER(replica_server_name COLLATE Latin1_

General_CI_AS) =
 UPPER(@@SERVERNAME COLLATE Latin1_

General_CI_AS)
 AND group_id = @group_id)

 SET @connection = ISNULL((SELECT connected_state
 FROM Master.sys.dm_hadr_availability_

replica_states
 WHERE replica_id = @replica_id), 1)

 WAITFOR DELAY '00:00:10'
 END

 --Add first Database to the Availability Group

 ALTER DATABASE App1Customers SET HADR AVAILABILITY GROUP = App1;

 GO

 --Back Up Database and Log (Second database)

 :Connect CLUSTERNODE1\PRIMARYREPLICA

 BACKUP DATABASE App1Sales
 TO DISK = N'\\CLUSTERNODE1\Backups\App1Sales.bak'
 WITH COPY_ONLY, FORMAT, INIT, REWIND, COMPRESSION, STATS = 5 ;
 GO

 BACKUP LOG App1Sales
 TO DISK = N'\\CLUSTERNODE1\Backups\App1Sales.trn'
 WITH NOSKIP, REWIND, COMPRESSION, STATS = 5 ;
 GO

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

105

 --Restore Database and Log (Second database)

 :Connect CLUSTERNODE2\SYNCHA

 RESTORE DATABASE App1Sales
 FROM DISK = N'\\CLUSTERNODE1\Backups\App1Sales.bak'
 WITH NORECOVERY, STATS = 5 ;
 GO

 RESTORE LOG App1Sales
 FROM DISK = N'\\CLUSTERNODE1\Backups\App1Sales.trn'
 WITH NORECOVERY, STATS = 5 ;
 GO

 --Wait for replica to start communicating
 DECLARE @connection BIT

 DECLARE @replica_id UNIQUEIDENTIFIER
 DECLARE @group_id UNIQUEIDENTIFIER

 SET @connection = 0

 WHILE @Connection = 0
 BEGIN
 SET @group_id = (SELECT group_id
 FROM Master.sys.availability_groups
 WHERE name = N'App1')
 SET @replica_id = (SELECT replica_id
 FROM Master.sys.availability_replicas
 WHERE UPPER(replica_server_name COLLATE Latin1_

General_CI_AS) =
 UPPER(@@SERVERNAME COLLATE Latin1_

General_CI_AS)
 AND group_id = @group_id)

 SET @connection = ISNULL((SELECT connected_state
 FROM Master.sys.dm_hadr_availability_

replica_states
 WHERE replica_id = @replica_id), 1)

 WAITFOR DELAY '00:00:10'
 END

 --Add Second database to the Availaility Group

 ALTER DATABASE App1Sales SET HADR AVAILABILITY GROUP = App1;
 GO

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

106

 Creating the Availability Group via T-SQL gives you the most flexibility in terms
of configuration. Table 5-1 contains a complete list of arguments, along with their
explanation.

 Table 5-1. The CREATE AVAIABILITY GROUP Arguments

 Argument Description Acceptable Values

 AUTOMATED_BACKUP_PREFERENCE Defines where backups run
from automated jobs should be
taken.

 PRIMARY
 SECONDARY_ONLY
 SECONDARY
 NONE

 FAILURE_CONDITION_LEVEL Specifies how sensitive the
failover will be. Further details
in Table 5-2 .

 1 through 5

 HEALTH_CHECK_TIMEOUT Configures the amount of
time, in milliseconds, that SQL
Server has to return health
check information to the cluster
before the cluster assumes that
the instance is not responding,
which triggers a failover
when FAILOVER_MODE is set to
 AUTOMATIC .

 15000ms through
 4294967295ms

 DB_FAILOVER Specifies if an Availability
Group should fail over when a
database within the Availability
Group on the primary replica
transitions out of the ONLINE
state. Acceptable values are ON
and OFF.

 DTC_SUPPORT Specifies if cross-database
transactions are supported.
Acceptable values are PER_DB
and NONE . This setting can only
be configured when creating a
new Availability Group. It cannot
be set on existing Availability
Groups.

 BASIC Specifies that a basic Availability
Group should be supported.
This is the only option available
for SQL Server Standard Edition
and limits the Availability
Group to one database and two
replicas.

(continued)

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

107

(continued)

Table 5-1. (continued)

 Argument Description Acceptable Values

 DISTRIBUTED Specifies that the Availability
Group will contain databases
which are stretched across
multiple Windows Failover
Clusters.

 DATABASE A comma-separated list of
databases that will join the
Availability Group.

 –

 REPLICA ON A comma-separated list of
server\instance names that will
be replicas within the group.
The following arguments in this
table form the WITH clause of the
 REPLICA ON argument.

 –

 ENDPOINT_URL The URL of the TCP endpoint
that the replica will use to
communicate.

 –

 AVAILABILITY_MODE Determines if the replica
operates in synchronous or
asynchronous mode .

 SYNCHRONOUS_COMMIT
 ASYNCHRONOUS_COMMIT

 FAILOVER_MODE When the AVAILABILITY_MODE is
set to synchronous, determines
if automatic failover should be
allowed.

 AUTOMATIC
 MANUAL

 BACKUP_PRIORITY Gives the replica a weight when
SQL Server is deciding where
an automated backup job
should run.

 0 through 100

 SECONDARY_ROLE Specifies properties that only
apply to the replica when it is
in a secondary role. ALLOW_
CONNECTIONS specifies if the
replica is readable, and if so,
by all read_only connections
or only those that specify
read-intent in the connection
string. READ_ONLY_ROUTING_URL
specifies the URL for applications
to connect to it, for read-only
operations, in the following
format: TCP://ServerName:Port .

 -

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

108

 Argument Description Acceptable Values

 PRIMARY_ROLE Specifies properties that only
apply to the replica when
it is in the primary role.
 ALLOW_CONNECTIONS can be
configured as All to allow any
 connection , or Read_Write , to
disallow read-only connections.
 READ_ONLY_ROUTING_LIST is a
comma-separated list of server\
instance names that have
been configured as read-only
replicas.

 -

 AVAILABILITY GROOUP ON If the Availability Group
is DISTRIBUTED , use the
 AVAILABILITY GROUP ON
argument to specify the two
Availability Groups (on different
clusters). that will be used

 SESSION_TIMEOUT Specifies how long replicas
can survive without receiving
a ping before they enter the
 DISCONNECTED state.

 5 to 2147483647
seconds

 The FAILOVER_CONDITION_LEVEL argument determines the group’s sensitivity to
failover. Table 5-2 provides a description of each of the five levels.

 Table 5-2. The FAILOVER_CONDITION_LEVEL Argument

 Level Failover Triggered By

 1 Instance down.
 AOAG lease expires.

 2 Conditions of level 1 plus:
 HEALTH_CHECK_TIMEOUT is exceeded.
 The replica has a state of FAILED .

 3 (Default) Conditions of level 2 plus:
 SQL Server experiences critical internal errors.

 4 Conditions of level 3 plus:
 SQL Server experiences moderate internal errors.

 5 Failover initialed on any qualifying condition.

Table 5-1. (continued)

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

109

 Using the New Availability Group Dialog Box
 Now that we have successfully created our first Availability Group, let’s create a second
Availability Group for App2 . This time, we use the New Availability Group and Add
Listener Dialog boxes. We begin this process by backing up the App2Customers database .
Just like when we created the App1 Availability Group, the databases are not selectable
until we perform the backup. Unlike when we used the wizard, however, we have no way
to make SQL Server perform the initial database synchronization for us. Therefore, we
back up the database to the share that we created during the previous demonstration and
then restore the backup, along with a transaction log backup , to the secondary instance.
We do this by using the script in Listing 5-5 , which must be run in SQLCMD mode for it to
work. This is because it connects to both instances.

 Listing 5-5. Backing Up and Restoring the Database

 --Back Up Database and Log

 :Connect CLUSTERNODE1\PRIMARYREPLICA

 BACKUP DATABASE App2Customers TO DISK = N'\\CLUSTERNODE1\
Backups\App2Customers.bak' WITH COPY_ONLY, FORMAT, INIT, REWIND,
COMPRESSION, STATS = 5 ;
 GO

 BACKUP LOG App2Customers TO DISK = N'\\CLUSTERNODE1\Backups\App2Customers.
trn' WITH NOSKIP, REWIND, COMPRESSION, STATS = 5 ;
 GO

 --Restore Database and Log

 :Connect CLUSTERNODE2\SYNCHA

 RESTORE DATABASE App2Customers FROM DISK = N'\\CLUSTERNODE1\Backups\
App2Customers.bak' WITH NORECOVERY, STATS = 5 ;
 GO

 RESTORE LOG App2Customers FROM DISK = N'\\CLUSTERNODE1\Backups\
App2Customers.trn' WITH NORECOVERY, STATS = 5 ;
 GO

 If we had not already created an Availability Group, then our next job would be to
create a TCP endpoint so the instances could communicate. We would then need to create
a login for the service account on each instance and grant it the connect permissions on the
endpoints. Because we can only ever have one database mirroring endpoint per instance,
however, we are not required to create a new one, and obviously we have no reason to grant
the service account additional privileges. Therefore, we continue by creating the Availability
Group. To do this, we drill through AlwaysOn High Availability in Object Explorer and select
New Availability Group from the context menu of Availability Groups.

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

110

 This causes the General tab of the New Availability Group dialog box to display, as
illustrated in Figure 5-11 . On this screen, we type the name of the Availability Group in
the first field. Then we click the Add button under the Availability Databases window
before we type the name of the database that we wish to add to the group. We then need
to click the Add button under the Availability Replicas window before we type the server\
instance name of the secondary replica in the new row.

 Figure 5-11. The New Availability Group dialog box

 Now we can begin to set the replica properties. We discussed the Role, Availability
Mode, Failover Mode, Readable Secondary, and Endpoint URL properties when we
created the App1 Availability Group. The Connection in Primary Role property defines
what connections can be made to the replica if the replica is in the primary role. You
can configure this as either Allow All Connections, or Allow Read/Write Connections.
When Read/Write is specified, applications using the Application Intent = Read-only
parameter in their connection string will not be able to connect to the replica.

 The Session Timeout property sets how long the replicas can go without receiving
a ping from one another before they enter the DISCONNECTED state and the session
ends. Although it is possible to set this value to as low as 5 seconds, it is usually a good
idea to keep the setting at or above 10 seconds, otherwise you run the risk of a false
positive response, resulting in unnecessary failover. If a replica times out, it needs to be
resynchronized, since transactions on the primary will no longer wait for the secondary,
even if the secondary is running in Synchronous Commit mode.

 ■ Note You may have noticed that we have configured the replica in Asynchronous
Commit mode. This is for the benefit of a later demonstration. For HA, we would always
configure Synchronous Commit mode, since otherwise, automatic failover is not possible.

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

111

 On the Backup Preferences tab of the dialog box, we define the preferred replica
to use for automated backup jobs, as shown in Figure 5-12 . Just like when using the
wizard, we can specify Primary, or we can choose between enforcing and preferring
backups to occur on a secondary replica. We can also configure a weight, between 0
and 100 for each replica, and use the Exclude Replica check box to avoid backups being
taken on a specific node.

 Figure 5-12. The Backup Preferences tab

 Once we have created the Availability Group, we need to create the Availability
Group Listener. To do this, we select New Listener from the context menu of the App2
Availability Group, which should now be visible in Object Explorer. This invokes the New
Availability Group Listener dialog box, which can be seen in Figure 5-13 .

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

112

 In this dialog box, we start by entering the virtual name for the listener. We then
define the port that it will listen on and the IP Address that will be assigned to it. We are
able to use the same port for both of the listeners, as well as the SQL Server instance,
because all three use different IP Addresses .

 Performance Considerations for Synchronous
Commit Mode
 Unlike traditional clustering, Availability Group topology does not have any shared disk
resources. Therefore, data must be replicated on two devices, which of course, has an
overhead. This overhead varies depending on various aspects of your environment, such
as network latency and disk performance , as well as the application profile. However, the
 script in Listing 5-6 runs some write-intensive tests against the App2Customers database
(which is in Asynchronous Commit mode) and then against the App1Customers database
(which is Synchronous Commit mode). This indicates the overhead that you can expect
to witness.

 Figure 5-13. The New Availability Group Listener dialog box

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

113

 ■ Tip It is important to remember that there is no overhead on read performance. Also,
despite the overhead associated with writes, some of this is offset by distributing read-only
workloads if you implement readable secondary replicas.

 Listing 5-6. Performance Benchmark with Availability Groups

 DBCC FREEPROCCACHE
 DBCC DROPCLEANBUFFERS

 SET STATISTICS TIME ON

 PRINT 'Begin asynchronous commit benchmark'

 USE App2Customers
 GO

 PRINT 'Build a nonclustered index'

 CREATE NONCLUSTERED INDEX NIX_FirstName_LastName ON App2Customers(FirstName,
LastName) ;

 PRINT 'Delete from table'

 DELETE FROM [dbo].[App2Customers] ;

 PRINT 'Insert into table'

 DECLARE @Numbers TABLE
 (
 Number INT
)

 ;WITH CTE(Number)
 AS
 (
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 100
)
 INSERT INTO @Numbers
 SELECT Number FROM CTE ;

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

114

 DECLARE @Names TABLE
 (
 FirstName VARCHAR(30),
 LastName VARCHAR(30)
) ;

 INSERT INTO @Names
 VALUES('Peter', 'Carter'),
 ('Michael', 'Smith'),
 ('Danielle', 'Mead'),
 ('Reuben', 'Roberts'),
 ('Iris', 'Jones'),
 ('Sylvia', 'Davies'),
 ('Finola', 'Wright'),
 ('Edward', 'James'),
 ('Marie', 'Andrews'),
 ('Jennifer', 'Abraham'),
 ('Margaret', 'Jones')

 INSERT INTO App2Customers(Firstname, LastName, CreditCardNumber)
 SELECT FirstName, LastName, CreditCardNumber FROM
 (SELECT
 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID()) FirstName
 ,(SELECT TOP 1 LastName FROM @Names ORDER BY NEWID()) LastName
 ,(SELECT CONVERT(VARBINARY(8000)
 , (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())))
CreditCardNumber
 FROM @Numbers a
 CROSS JOIN @Numbers b
 CROSS JOIN @Numbers c
) d ;
 GO

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

115

 PRINT 'Begin synchronous commit benchmark'

 USE App1Customers
 GO

 PRINT 'Build a nonclustered index'

 CREATE NONCLUSTERED INDEX NIX_FirstName_LastName ON App1Customers(FirstName,
LastName) ;

 PRINT 'Delete from table'

 DELETE FROM dbo.App1Customers ;

 PRINT 'Insert into table'

 DECLARE @Numbers TABLE
 (
 Number INT
)

 ;WITH CTE(Number)
 AS
 (
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 100
)
 INSERT INTO @Numbers
 SELECT Number FROM CTE ;

 DECLARE @Names TABLE
 (
 FirstName VARCHAR(30),
 LastName VARCHAR(30)
) ;

 INSERT INTO @Names
 VALUES('Peter', 'Carter'),
 ('Michael', 'Smith'),
 ('Danielle', 'Mead'),
 ('Reuben', 'Roberts'),
 ('Iris', 'Jones'),
 ('Sylvia', 'Davies'),

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

116

 ('Finola', 'Wright'),
 ('Edward', 'James'),
 ('Marie', 'Andrews'),
 ('Jennifer', 'Abraham'),
 ('Margaret', 'Jones') ;

 INSERT INTO App1Customers(Firstname, LastName, CreditCardNumber)
 SELECT FirstName, LastName, CreditCardNumber FROM
 (SELECT
 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID()) FirstName
 ,(SELECT TOP 1 LastName FROM @Names ORDER BY NEWID()) LastName
 ,(SELECT CONVERT(VARBINARY(8000)
 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())))
CreditCardNumber
 FROM @Numbers a
 CROSS JOIN @Numbers b
 CROSS JOIN @Numbers c
) d ;

 GO

 SET STATISTICS TIME OFF

 GO

 The relevant parts of the results of this query are displayed in Listing 5-7 . You can see
that the index rebuild was three times slower when the Availability Group was operating
in Synchronous Commit mode, the insert was nearly twice as slow, and the delete was
also marginally slower.

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

117

 Listing 5-7. SQL Server 2016 Results of Performance Test

 Begin asynchronous commit benchmark

 Build a nonclustered index

 SQL Server Execution Times:
 CPU time = 4157 ms, elapsed time = 4948 ms.

 Delete from table

 SQL Server Execution Times:
 CPU time = 12500 ms, elapsed time = 21671 ms.

 Insert into table

 SQL Server Execution Times:
 CPU time = 6454 ms, elapsed time = 8771 ms.

 Begin synchronous commit benchmark

 Build a nonclustered index

 SQL Server Execution Times:
 CPU time = 4610 ms, elapsed time = 15709 ms.

 Delete from table

 SQL Server Execution Times:
 CPU time = 11468 ms, elapsed time = 27389 ms.

 Insert into table

 SQL Server Execution Times:
 CPU time = 7562 ms, elapsed time = 14364 ms.

 Let’s compare this to the same results witnessed using SQL Server 2014, which are
shown in Listing 5-8 . Here, you can see that the insert was six times slower when using
Synchronous Commit mode. This is testament to the performance improvements that
Microsoft has made in the newer version.

 Listing 5-8. SQL Server 2014 Results of Performance Test

 Begin asynchronous commit benchmark

 Build a nonclustered index
 SQL Server Execution Times:
 CPU time = 1109 ms, elapsed time = 4316 ms.

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

118

 Delete from table
 SQL Server Execution Times:
 CPU time = 6938 ms, elapsed time = 69652 ms.
 (1000000 row(s) affected)

 Insert into table
 SQL Server Execution Times:
 CPU time = 13656 ms, elapsed time = 61372 ms.
 (1000000 row(s) affected)

 Begin synchronous commit benchmark

 Build a nonclustered index
 SQL Server Execution Times:
 CPU time = 1516 ms, elapsed time = 12437 ms.

 Delete from table
 SQL Server Execution Times:
 CPU time = 8563 ms, elapsed time = 77273 ms.
 (1000000 row(s) affected)

 Insert into table
 SQL Server Execution Times:
 CPU time = 23141 ms, elapsed time = 372161 ms.
 (1000000 row(s) affected)

 ■ Caution The performance tests in this section are based on VMs running on a
laptop. The tests are intended to illustrate the performance impediment caused by
Synchronous Commit mode, and the performance improvements within SQL Server
2016. It is not intended as an accurate benchmark. The actual performance difference in
your environment will depend on various factors, including infrastructure and database
workload profile

 Because of the performance challenges associated with Synchronous Commit
mode, many DBAs decide to implement high availability and disaster recovery by using
a three-node cluster , with two nodes in the primary data center and one node in the
DR data center. Instead of having two synchronous replicas within the primary data
center, however, they stretch the primary replica across a failover clustered instance
and configure the cluster to be able to host the instance only on these two nodes, and
not on the third node in the DR data center. This is important, because it means that
we don’t need to implement SAN replication between the data centers. The DR node
is synchronized using Availability Groups in Asynchronous Commit mode. If you
combine an AlwaysOn failover clustered instance with AlwaysOn Availability Groups
in this way, then automatic failover is not supported between the clustered instance

CHAPTER 5 ■ IMPLEMENTING HA WITH ALWAYSON AVAILABILITY GROUPS

119

and the replica. It can only be configured for manual failover. There is also no need for
Availability Groups to fail over between the two nodes hosting the clustered instance,
because this failover is managed by the cluster service. This configuration can prove to
be a highly powerful and flexible way to achieve your continuity requirements.

 Summary
 AlwaysOn Availability Groups can be implemented with up to eight secondary replicas,
combining both Synchronous and Asynchronous Commit modes. When implementing
high availability with Availability Groups, you always use Synchronous Commit mode,
because Asynchronous Commit mode does not support automatic failover. When
implementing Synchronous Commit mode, however, you must be aware of the associated
performance penalty caused by committing the transaction on the secondary replica
before it is committed on the primary replica. For disaster recovery, you will normally
choose to implement Asynchronous Commit mode.

 The Availability Group can be created via the New Availability Group Wizard, though
dialog boxes, through T-SQL, or even through PowerShell. If you create an Availability
Group using dialog boxes, then some aspects, such as the endpoint and associated
permissions, must be scripted using T-SQL or PowerShell.

121© Peter A. Carter 2016
P. A. Carter, SQL Server AlwaysOn Revealed, DOI 10.1007/978-1-4842-2397-0_6

 CHAPTER 6

 Implementing DR with
AlwaysOn Availability Groups

 In Chapter 5 , we successfully implemented high availability for the App1Customers and
 App1Sales databases through the App1 Availability Group. In this chapter, we will discuss
how we can also implement disaster recovery for these databases. To do this, we first
need to build out a new server in our second site and install a stand-alone instance of
SQL Server. Because the cluster now spans two sites, we need to reconfigure it as a
 multi-subnet cluster . We also need to reconfigure the quorum model to remove its
dependency on the shared storage, which we currently have for the quorum. Once this
is complete, we are able to add the instance on the new node to our Availability Group.
The following sections assume that you have already built out a third server with a SQL
Server instance called CLUSTERNODE3\ASYNCDR , and they demonstrate how to reconfigure
the cluster as well as the Availability Group. The chapter will also discuss Distributed
Availability Groups and readable secondary replicas. Therefore, the tasks that we will
perform in this chapter are as follows:

• Use the Add Node Wizard, to add a third node to the cluster

• Modify the quorum, to use a file share, and exclude the DR node
from voting

• Add an IP Address to the quorum

• Configure an OR constraint on the IP Address dependencies

• Configure the cluster’s RegisterAllProvidersIP and
 HostRecordTTL settings

 Configuring the Cluster
 We need to perform several cluster configuration steps before we begin to alter our
Availability Group. These include adding the new node, reconfiguring the quorum, and
adding a new IP to the cluster’s client access point.

http://dx.doi.org/10.1007/978-1-4842-2397-0_5

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

122

 Adding a Node
 The first task in adding DR capability to our Availability Group is to add the third node
to the cluster. To do this, we select Add Node from the context menu of nodes in Failover
Cluster Manager . This causes the Add Node Wizard to be invoked. After passing through
the Before You Begin page of this wizard, you are presented with the Select Servers page ,
which is illustrated in Figure 6-1 . On this page, you need to enter the server name of the
node that you plan to add to the cluster.

 Figure 6-1. The Select Servers page

 On the Validation Warning page , you are invited to run the Cluster Validation Wizard.
You should always run this wizard in a production environment when making changes
of this nature; otherwise, you will not be able to receive support from Microsoft for the
cluster. Details of running the Cluster Validation wizard can be found in Chapter 3 .
Running the Cluster Validation wizard in our scenario is likely to throw up some warnings,
which are detailed in Table 6-1 .

http://dx.doi.org/10.1007/978-1-4842-2397-0_3

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

123

 On the Confirmation page , we are given a summary of the tasks that will be
performed. On this page, we deselect the option to add eligible storage, since one of our
aims is to remove the dependency on shared storage. The Confirmation page is displayed
in Figure 6-2 .

 Table 6-1. Cluster Validation Warnings

 Warning Reason Resolution

 This resource does not have
all the nodes of the cluster
listed as Possible Owners.
The clustered role that this
resource is a member of will
not be able to start on any
node that is not listed as a
Possible Owner.

 This warning has been
displayed because we have
not yet configured our
Availability Group to use
the new node.

 Configuring the Availability
Group to use the new node
is discussed later in this
chapter.

 The
 RegisterAllProvidersIP
property for network name
 'Name: App1Listen' is set
to 1. For the current cluster
configuration this value
should be set to 0.

 Setting the
 RegisterAllProvidersIP
to 1 will cause all IP
Addresses to be registered,
regardless of whether they
are online or not. When
we created the Availability
Group Listener through
SSMS, this setting was
automatically configured
to allow clients to fail over
faster, and this warning
should always be ignored. If
we had created the Listener
through Failover Cluster
Manager, the property
would have been set to 0 by
default.

 No resolution
is required, but
 RegisterAllProvidersIP
is discussed in more detail
later in this chapter.

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

124

 On the Configure the Cluster page, the progress on the tasks displays until it is complete.
The Summary page then displays, giving an overview of the actions and their success.

 Modifying the Quorum
 Our next step in configuring the cluster will be to modify the quorum. As mentioned
earlier, we would like to remove our current dependency on shared storage. Therefore, we
need to make a choice. Since we now have three nodes in the cluster, one possibility is to
remove the disk witness and form a node majority quorum. The issue with this is that one
of our nodes is in a different location. Therefore, if we lose network connectivity between
the two sites for an extended period, then we have no fault tolerance in our primary
site. If one of the nodes goes down, we lose quorum and the cluster goes offline. On the
other hand, if we have an additional witness in the primary location, then we are not
maintaining best practice, since there is an even number of votes. Again, if we lose one
voting member, we lose resilience.

 Therefore, the approach that we take is to replace the disk witness with a file share
witness, thus removing the shared disk dependency. We then remove the vote from the
node in the DR site. This means that we have three voting members of the quorum, and
all of them are within the same site. This mitigates the risk of an intersite network issue
causing loss of redundancy in our HA solution.

 In order to invoke the Configure Cluster Quorum Wizard , we select Configure Cluster
Quorum from the More Actions submenu within the context menu of our cluster in
Failover Cluster Manager. After moving through the Before You Begin page of this wizard,
you are asked to select the configuration that you wish to make on the Select Quorum
Configuration Option page , which is shown in Figure 6-3 . We select the Advanced
Quorum Configuration option.

 Figure 6-2. Confirmation page

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

125

 On the Select Voting Configuration page , we choose to select nodes and remove the
vote from CLUSTERNODE3 . This is demonstrated in Figure 6-4 .

 Figure 6-3. The Select Quorum Configuration Option page

 Figure 6-4. The Select Voting Configuration page

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

126

 Figure 6-5. The Select Quorum Witness page

 On the Select Quorum Witness page , we choose the Configure a File Share Witness
option, as shown in Figure 6-5 .

 On the Configure File Share Witness page, which is illustrated in Figure 6-6 , we enter
the UNC of the share that we will use for the quorum. This file share must reside outside
of the cluster and must be an SMB file share on a machine running Windows Server.

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

127

 ■ Tip Although many non-Windows-based NAS (network-attached storage) devices have
support for SMB 3, I have experienced real-world implementations of a file share quorum on
a NAS device work only intermittently, without resolution by either vendor.

 ■ Caution Remember that using a file share witness, with only two other voting nodes,
can lead to a partition-in-time scenario. For more information, please refer to Chapter 3 .

 On the Confirmation page of the wizard, you are given a summary of the
configuration changes that will be made, as shown in Figure 6-7 .

 Figure 6-6. The Configure File Share Witness page

http://dx.doi.org/10.1007/978-1-4842-2397-0_3

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

128

 On the Configure Cluster Quorum Settings page, a progress bar displays. Once the
 configuration is complete, the Summary page appears. This page provides a summary of
the configuration changes and a link to the report.

 Adding an IP Address
 Our next task is to add a second IP Address to the cluster’s client access point. We do not
add an extra IP Address for the Availability Group Listener yet. We perform this task in the
“ Configuring the Availability Group ” section later in this chapter.

 In order to add the second IP Address, we select Properties from the context menu of
Server Name in the Core Cluster Resources window of Failover Cluster Manager. On the
General tab of the Cluster Properties dialog box, we add the IP Address for administrative
clients, following failover to DR, as illustrated in Figure 6-8 .

 Figure 6-7. The Confirmation page

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

129

 When we apply the change, we receive a warning saying that administrative clients
will temporarily be disconnected from the cluster. This does not include any clients
connected to our Availability Group. If we choose to proceed, we then navigate to the
 Dependencies tab of the dialog box and ensure that an OR dependency has been created
between our two IP Addresses, as shown in Figure 6-9 .

 Figure 6-8. The General tab

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

130

 After this process is complete, the second IP Address resource in the Cluster Core
Resources group shows up as offline. This is normal. In the event of failover to the server
in the second subnet, this IP Address comes online, and the IP Address of the subnet
in the primary site goes offline. This is why the OR dependency (as opposed to an AND
dependency) is critical. Without it, the Server Name resource could never be online.

 Configuring the Availability Group
 To configure the Availability Group, we first have to add the new node as a replica and
configure its properties. We then add a new IP Address to our listener for the second
subnet. Finally, we look at improving the connection times for clients.

 Figure 6-9. The Dependencies tab

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

131

 Adding and Configuring a Replica
 In SQL Server Management Studio (SSMS) , on the primary replica, we drill through
Availability Groups | App1 and select Add Replica from the context menu of the
Availability Replicas node. This causes the Add Replica to Availability Group wizard to be
displayed. After passing through the Introduction page of the wizard, you see the Connect
to Replicas page, as displayed in Figure 6-10 . On this page, you are invited to connect to
the other replicas in the Availability Group.

 Figure 6-10. The Connect to Replicas page

 On the Replicas tab of the Specify Replicas page , shown in Figure 6-11 , we first use
the Add Replica button to connect to the DR instance. After we have connected to the
new replica, we specify the properties for that replica. In this case, we leave them as-is
because it will be a DR replica. Therefore, we want it to be asynchronous and we do not
want it to be readable.

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

132

 On the Endpoints tab, shown in Figure 6-12 , we ensure that the default settings are
correct and acceptable.

 Figure 6-11. The Replicas tab

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

133

 Figure 6-12. The Endpoints tab

 On the Backup Preferences tab, the option for specifying the preferred backup
replica is read-only. We are, however, able to specifically exclude our new replica as a
candidate for backups or change its backup priority. This page is displayed in Figure 6-13 .

 Figure 6-13. The Backup Preferences tab

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

134

 On the Listener tab, illustrated in Figure 6-14 , we can decide if we will create a new
listener. This is a strange option, since SQL Server only allows us to create a single listener
for an Availability Group, and we already have one. Therefore, we leave the default choice
of Do Not Create an Availability Group Listener selected. It is possible to create a second
listener, directly from Failover Cluster Manager, but you would only want a second
listener for the same Availability Group in very rare, special cases, which we discuss later
in this chapter.

 Figure 6-14. The Listener tab

 On the Select Data Synchronization page, we choose how we want to perform the
initial synchronization of the replica. The options are the same as they were when we
created the Availability Group, except that the file share will be prepopulated, assuming
that we choose the Full synchronization when creating the Availability Group. This screen
is shown in Figure 6-15 .

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

135

 On the Validation page, we should review any warnings or errors and resolve them
before continuing. Finally, on the Summary page, we are presented with a summary of
the configurations that will be carried out.

 After the reconfiguration completes, our new replica is added to the cluster. We
should then review the results and respond to any warnings or errors. We could also have
used T-SQL to add the replica to the Availability Group. The script in Listing 6-1 performs
the same actions just demonstrated. You must run this script in SQLCMD Mode since it
connects to multiple instances.

 ■ Tip You will notice that the following script (and other scripts throughout the book)
drops the final character from the domain name. This is because alwaysonrevealed
exceeds the 15 characters allowed as a NETBIOS name. Therefore, SQL Server does not
recognize the domain name. The work-around for this in SQL Server is to only specify
the first 15 characters. While this seems a little strange, as SQL Server actually stores
the data as the sysname data type, which is a synonym for NVARCHAR(128) , it is a better
situation than we are faced with when dealing login names. Here, the maximum length is
16 characters, and while longer names are fine if the login maps to a Windows group, if the
login maps to a Windows user, then the login can be created, but cannot log in.

 Figure 6-15. The Select Data Synchronization page

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

136

 Listing 6-1. Adding a Replica

 :Connect CLUSTERNODE3\ASYNCDR

 --Create Login for Service Account

 USE master
 GO

 CREATE LOGIN [alwaysonreveale\SQLAdmin] FROM WINDOWS ;
 GO

 --Create the Endpoint

 CREATE ENDPOINT Hadr_endpoint
 AS TCP (LISTENER_PORT = 5022)
 FOR DATA_MIRRORING (ROLE = ALL, ENCRYPTION = REQUIRED ALGORITHM AES) ;
 GO

 ALTER ENDPOINT Hadr_endpoint STATE = STARTED ;
 GO

 --Grant the Service Account permissions to the Endpoint

 GRANT CONNECT ON ENDPOINT::[Hadr_endpoint] TO [alwaysonreveale\SQLAdmin] ;
 GO

 --Start the AOAG Health Trace

 IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name='AlwaysOn_health')
 BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER WITH (STARTUP_STATE=ON);
 END
 IF NOT EXISTS(SELECT * FROM sys.dm_xe_sessions WHERE name='AlwaysOn_health')
 BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER STATE=START;
 END
 GO

 :Connect CLUSTERNODE1\PRIMARYREPLICA

 USE master
 GO

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

137

 --Add the replica to the Avaialability Group

 ALTER AVAILABILITY GROUP App1
 ADD REPLICA ON N'CLUSTERNODE3\ASYNCDR'
 WITH (ENDPOINT_URL = N'TCP://CLUSTERNODE3.ALWAYSONREVEALE.COM:5022',
 FAILOVER_MODE = MANUAL, AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,

BACKUP_PRIORITY = 50,
 SECONDARY_ROLE(ALLOW_CONNECTIONS = NO));
 GO

 --Back up and restore the first database and log

 BACKUP DATABASE App1Customers TO DISK = N'\\CLUSTERNODE1\Backups\
App1Customers.bak'
 WITH COPY_ONLY, FORMAT, INIT, REWIND, COMPRESSION, STATS = 5 ;
 GO

 BACKUP LOG App1Customers
 TO DISK = N'\\CLUSTERNODE1\Backups\App1Customers.trn'
 WITH NOSKIP, REWIND, COMPRESSION, STATS = 5 ;
 GO

 :Connect CLUSTERNODE3\ASYNCDR

 ALTER AVAILABILITY GROUP App1 JOIN;
 GO

 RESTORE DATABASE App1Customers
 FROM DISK = N'\\CLUSTERNODE1\Backups\App1Customers.bak'
 WITH NORECOVERY, STATS = 5 ;
 GO

 RESTORE LOG App1Customers
 FROM DISK = N'\\CLUSTERNODE1\Backups\App1Customers.trn'
 WITH NORECOVERY, STATS = 5 ;
 GO

 -- Wait for the replica to start communicating
 DECLARE @connection BIT

 DECLARE @replica_id UNIQUEIDENTIFIER
 DECLARE @group_id UNIQUEIDENTIFIER

 SET @connection = 0

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

138

 WHILE @Connection = 0
 BEGIN
 SET @group_id = (SELECT group_id
 FROM Master.sys.availability_groups
 WHERE name = N'App1')
 SET @replica_id = (SELECT replica_id
 FROM Master.sys.availability_replicas
 WHERE UPPER(replica_server_name COLLATE Latin1_

General_CI_AS) =
 UPPER(@@SERVERNAME COLLATE Latin1_General_CI_AS)
 AND group_id = @group_id)

 SET @connection = ISNULL((SELECT connected_state
 FROM Master.sys.dm_hadr_availability_

replica_states
 WHERE replica_id = @replica_id), 1)

 WAITFOR DELAY '00:00:10'
 END

 --Add the first Database to the Availability Group on the new replica

 ALTER DATABASE App1Customers SET HADR AVAILABILITY GROUP = [App1];
 GO

 --Back up and restore the second database and log

 :Connect CLUSTERNODE1\PRIMARYREPLICA

 BACKUP DATABASE App1Sales
 TO DISK = N'\\CLUSTERNODE1\Backups\App1Sales.bak'
 WITH COPY_ONLY, FORMAT, INIT, REWIND, COMPRESSION, STATS = 5 ;
 GO

 BACKUP LOG App1Sales
 TO DISK = N'\\CLUSTERNODE1\Backups\App1Sales.trn'
 WITH NOSKIP, REWIND, COMPRESSION, STATS = 5 ;
 GO

 :Connect CLUSTERNODE3\ ASYNCDR

 ALTER AVAILABILITY GROUP [App1] JOIN;
 GO

 RESTORE DATABASE App1Sales
 FROM DISK = N'\\CLUSTERNODE1\Backups\App1Sales.bak'
 WITH NORECOVERY, STATS = 5 ;
 GO

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

139

 RESTORE LOG App1Sales
 FROM DISK = N'\\CLUSTERNODE1\Backups\App1Sales.trn'
 WITH NORECOVERY, STATS = 5 ;
 GO

 -- Wait for the replica to start communicating
 DECLARE @connection BIT

 DECLARE @replica_id UNIQUEIDENTIFIER
 DECLARE @group_id UNIQUEIDENTIFIER

 SET @connection = 0

 WHILE @Connection = 0
 BEGIN
 SET @group_id = (SELECT group_id
 FROM Master.sys.availability_groups
 WHERE name = N'App1')
 SET @replica_id = (SELECT replica_id
 FROM Master.sys.availability_replicas
 WHERE UPPER(replica_server_name COLLATE Latin1_

General_CI_AS) =
 UPPER(@@SERVERNAME COLLATE Latin1_

General_CI_AS)
 AND group_id = @group_id)

 SET @connection = ISNULL((SELECT connected_state
 FROM Master.sys.dm_hadr_availability_

replica_states
 WHERE replica_id = @replica_id), 1)

 WAITFOR DELAY '00:00:10'
 END

 --Add the second database to the Avaiability Group on the new replica

 ALTER DATABASE App1Sales SET HADR AVAILABILITY GROUP = App1;
 GO

 Add an IP Address
 Even though the replica has been added to the Availability Group and we are able to
fail over to this replica, our clients are still not able to connect to it in the DR site using
the Availability Group Listener . This is because we need to add an IP Address resource,
which resides in the second subnet. To do this, we can select Properties from the
context menu of App1Listen in Object Explorer, which causes the Availability Group
Listener Properties dialog box to be displayed, as in Figure 6-16 . Here, we add the
listener’s second IP Address.

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

140

 We can also achieve this through T-SQL by running the script in Listing 6-2 .

 Listing 6-2. Adding an IP Address to the Listener

 ALTER AVAILABILITY GROUP App1
 MODIFY LISTENER 'App1Listen'
 (ADD IP (N'192.168.1.52', N'255.255.255.0')) ;

 SQL Server now adds the IP Address as a resource in the App1 role, and also
configures the OR dependency on the Name resource. You can view this by running the
dependency report against the Name resource in Failover Cluster Manager , as illustrated
in Figure 6-17 .

 Figure 6-16. The Availability Group Listener Properties

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

141

 Figure 6-17. The dependency report

 Improving Connection Times
 Clients using .NET 4 or higher are able to specify the new MultiSubnetFailover=True
property in their connecting strings when connecting to an AlwaysOn Availability Group.
This improves connection times by retrying TCP connections more aggressively. If clients
are using older versions of .NET, however, then there is a high risk of their connections
timing out.

 There are two workarounds for this issue. The first is to set the
 RegisterAllProvidersIP property to 0 . This is the recommended approach, but the
problem with it is that failover to the DR site can take up to 15 minutes. This is because
the IP Address resource for the second subnet is offline until failover occurs. It can then
take up to 15 minutes for the PTR record to be published. In order to reduce this risk, it is
recommended that you also lower the HostRecordTTL . This property defines how often
the resource records for the cluster name are published.

 The script in Listing 6-3 demonstrates how to disable RegisterAllProvidersIP and
then reduce the HostRecordTTL to 300 seconds.

 Listing 6-3. Configuring Connection Properties

 Get-ClusterResource "App1_App1Listen" | Set-ClusterParameter
RegisterAllProvidersIP 0

 Get-ClusterResource "App1_App1Listen" | Set-ClusterParameter HostRecordTTL 300

 The alternative workaround is to simply increase the timeout value for connections
to 30 seconds. However, this solution accepts that a large volume of connections will take
up to 30 seconds. This may not be acceptable to the business.

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

142

 Distributed Availability Groups
 Distributed Availability Groups are a new feature of SQL Server 2016, which offer an
alternative DR configuration, which can reduce network traffic and mitigate the risk of
cluster health at the DR site causing issues in the primary site, while still being able to
fully monitor quorum in the DR site.

 Instead of a single cluster being stretched across two sites, distributed Availability
Group allow you to join together Availability Groups which reside on multiple clusters.
Each cluster maintains its own quorum, so the DR site becoming unavailable will have
no impact on the primary site. Additionally, network traffic is reduced between the sites,
if there are multiple replicas in the secondary site, because the data from the primary site
is only replicated once, as opposed to being replicated to each individual replica, as it
would be with a traditional stretch cluster configuration. Other clustering rules are also
relaxed. For example, the cluster nodes in the DR site cluster can optimally run a different
version of the operating system, to the cluster nodes in the primary site cluster.

 ■ Tip While many rules are relaxed, the configuration and folder locations of the
databases within the primary and secondary Availability Groups must be the same, just as if
you used a single stretch cluster. The same port number must also be used for the database
mirroring endpoint.

 A typical Distributed Availability Group topology is illustrated in Figure 6-18 .

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

143

 Figure 6-18. Distributed Availability Group topology

 Distributed Availability Groups can also be configured with a SQL Server AlwaysOn
Failover Clustered Instance. In this scenario, a cluster in the primary site would host
a failover clustered instance, with an Availability Group in the DR site providing DR,
without the need for a stretch cluster.

 The script in Listing 6-4 demonstrates how to create a distributed Availability Group,
for our App2 Availability Group. The script assumes that you have already created an
Availability Group on a second cluster, which matches the configuration of the App2
Availability Group , which resides on the ALWAYSON-C cluster. It assumes that you have
named the Availability Group listener on the DR cluster App2DR. The script then joins
the Availability Group on the second server, to the distributed Availability Group.

 ■ Tip Once you have joined the secondary Availability Group to the Distributed Availability
Group, it will automatically become read only, and updates will only be allowed, via the
synchronization from the primary Availability Group.

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

144

 Listing 6-4. Creating a Distributed Availability Group

 CREATE AVAILABILITY GROUP App2Distributed
 WITH (DISTRIBUTED)
 AVAILABILITY GROUP ON
 'App2' WITH
 (
 LISTENER_URL = 'tcp://App2_App2Listen:5022',
 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
 FAILOVER_MODE = MANUAL,
 SEEDING_MODE = AUTOMATIC
),
 'App2DR' WITH
 (
 LISTENER_URL = 'tcp://App2_App2Listen:5022',
 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
 FAILOVER_MODE = MANUAL,
 SEEDING_MODE = AUTOMATIC
);
 GO

 ■ Note Do not follow the demonstrations in this section, if you wish to follow the
demonstrations in later chapters.

 Configuring Readable Secondary Replicas
 It can be very useful to add readable secondary replicas to an AlwaysOn Availability
Group topology in order to implement vertically scaled reporting . When you use this
strategy, the databases are kept synchronized, with variable, but typically low latency,
using log streaming . The additional advantage of readable secondary replicas from
SQL Server 2014 onward is that they stay online, even if the primary replica is offline.
The limitation when using this availability feature, however, is that users must connect
directly to the instance, as opposed to the Availability Group Listener.

 You can further improve read performance in readable secondary replicas by using
 temporary statistics , which you can also use to optimize read-only workloads. Also,
 snapshot isolation is also used exclusively on readable secondary replicas, even if other
isolation levels or locking hints are explicitly requested. This helps avoid contention, but
it also means that TempDB should be suitably scaled and on a fast disk array.

 The main risk of using readable secondary replicas is that implementing snapshot
isolation on the secondary replica can actually cause deleted records not to be cleaned
up on the primary replica. This is because the ghost record clean-up task only removes
rows from the primary once they are no longer required at the secondary. In this scenario,
 log truncation is also delayed on the primary replica. This means that you potentially
risk having to kill long-running queries that are being satisfied against the readable

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

145

secondary. This issue can also occur if the secondary replica becomes disconnected from
the primary. Therefore, there is a risk that you may need to remove the secondary replica
from the Availability Group and subsequently read it.

 To make a secondary replica readable, you need to perform three tasks. First
configure the secondary replica to allow read-only connections. Second, specify a read-
only URL for reporting. The Availability Group Listener then directs appropriate traffic
to this URL. The final task is to update the read-only routing list on the primary replica.
These tasks are performed by the script in Listing 6-5 .

 Listing 6-5. Configuring Read-Only Routing

 --Configure the ASYNCDR Replica to allow read-only connections

 ALTER AVAILABILITY GROUP App1
 MODIFY REPLICA ON N'CLUSTERNODE3\ASYNCDR' WITH
 (SECONDARY_ROLE (ALLOW_CONNECTIONS = READ_ONLY)) ;

 --Configure the read-only URL for the ASYNCDR Replica

 ALTER AVAILABILITY GROUP App1
 MODIFY REPLICA ON N'CLUSTERNODE3\ASYNCDR' WITH
 (SECONDARY_ROLE (READ_ONLY_ROUTING_URL = N'TCP://CLUSTERNODE3.
ALWAYSONREVEALE.com:1433')) ;

 --Configure the read-only routing list on the Primary Replica

 ALTER AVAILABILITY GROUP App1
 MODIFY REPLICA ON N'CLUSTERNODE1\PRIMARYREPLICA' WITH
 (PRIMARY_ROLE (READ_ONLY_ROUTING_LIST=('CLUSTERNODE3\ASYNCDR'))) ;

 Prior to SQL Server 2016, if you specified multiple readable secondary replicas in the
routing list, then the listener would attempt to direct read-intent traffic to the first replica
in the routing list. If this replica was not available, it would attempt to write to the second
replica in the routing list, and so on. The result of this, was that while you could scale
reporting to a secondary server, you could not load balance those reports across multiple
secondary servers.

 SQL Server 2016 introduces load balancing for active secondary replicas, however.
When using load balancing for active secondaries, the listener will balance the read-
intent workload, by distributing it across the specified replicas with a round-robin
algorithm .

 Additionally, you can specify groups of balanced replicas. For example, imagine
that we added four additional replicas to the App1 Availability Group, all of which were
intended for the offloading of reporting. Figure 6-19 shows several different topologies
that could be used, depending on your requirements for consistancy of performance.

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

146

 Figure 6-19. Possible load balancing topologies

 ■ Tip Often, business users will value consistancy of performance over the performance
itself.

CHAPTER 6 ■ IMPLEMENTING DR WITH ALWAYSON AVAILABILITY GROUPS

147

 In the first example, traffic will be balanced across all four active secondaries. The
second example illustrates that the replicas have been split into two separate groups.
The listener will first try to route read-intent request to the first group of servers and will
balance the load between the two. If the first group of servers is unavailable, then the
listener will route the read-intent traffic to the second group of servers, and balance the
load between the servers within this group. In the final example, the listener will attempt
to route traffic to the two server group. If this group of servers is unavailable, then it will
route all read-intent traffic to the third server, with no load balancing. If the third server
also goes offline, then all read-intent traffic will be routed to the fourth server, again with
no load balancing.

 The script in Listing 6-6 demonstrates how to modify the read-only routing list on
the primary replica, to configure load balancing as illustrated in the second example.
The script assumes that the read-only routing URLs have already been configured on
the active secondaries. Notice that each server group has been enclosed in nested
parenthesis.

 Listing 6-6. Configure the Read-Only Routing List for Load Balancing

 ALTER AVAILABILITY GROUP App1
 MODIFY REPLICA ON N'CLUSTERNODE1\PRIMARYREPLICA' WITH
 (PRIMARY_ROLE (READ_ONLY_ROUTING_LIST=(('CLUSTERNODE4\READ01',’CLUSTERNODE5\
READ02’),(‘CLUSTERNODE6\READ03’,’CLUSTERNODE7\READ04’)))) ;

 Summary
 If you implement disaster recovery with Availability Groups, then you need to configure a
multi-subnet cluster. This does not mean that you must have SAN replication between the
sites, however, since Availability Groups do not rely on shared storage. What you do need
to do is add additional IP Addresses for the administrative cluster access point and also
for the Availability Group Listener. You also need to pay attention to the properties of the
cluster that support client reconnection to ensure that clients do not experience a high
number of timeouts.

149© Peter A. Carter 2016
P. A. Carter, SQL Server AlwaysOn Revealed, DOI 10.1007/978-1-4842-2397-0_7

 CHAPTER 7

 Administering AlwaysOn

 This chapter will discuss how to administer AlwaysOn features. We will first look at cluster
maintenance , including rolling patch upgrades and removing an instance. We will then
discuss managing Availability Groups, including how to fail over synchronously and
asynchronously. We will also examine how to fail over a Distributed Availability Group .

 Additional maintenance tasks, such as synchronizing instance-level objects, safe-
stating an application, and adding multiple Listeners to an Availability Group, will also be
discussed. The chapter will end by discussing how to suspend data movement and how to
remove a database from an Availability Group.

 Managing a Cluster
 Installing the cluster is not the end of the road from an administrative perspective. You
still need to periodically perform maintenance tasks. The following sections describe
some of the most common maintenance tasks.

 Moving the Instance Between Nodes
 Other than protecting against unplanned outages, one of the benefits of implementing
high availability technologies is that doing so significantly reduces downtime for
maintenance tasks, such as patching. This can be at the operating system level or the SQL
Server level.

 If you have a two-node cluster, apply the patch to the passive node first. Once you
are happy that the update was successful, fail over the instance and then apply the patch
to the other node. At this point, you may or may not wish to fail back to the original node,
depending on the needs of your environment. For example, if the overriding priority
is the level of availability of the instance, then you will probably not wish to fail back,
because this will incur another short outage.

 On the other hand, if your instance is less critical and you have licensed SQL Server
with Software Assurance , then you may not be paying for the SQL Server license on the
passive node. In this scenario, you only have a limited time period in which to fail the
instance back to avoid needing to purchase an additional license for the passive node.

CHAPTER 7 ■ ADMINISTERING ALWAYSON

150

 ■ Note For versions of SQL Server prior to SQL Server 2014, Software Assurance is not
required in order to have a passive node without a license.

 To move an instance to a different node using Failover Cluster Manager , select Move
| Select Node from the context menu of the role that contains the instance. This causes
the Move Clustered Role dialog box to display. Here, you can select the node to which you
wish to move the role, as illustrated in Figure 7-1 .

 Figure 7-1. The Move Clustered Role dialog box

CHAPTER 7 ■ ADMINISTERING ALWAYSON

151

 The role is then moved to the new node. If you watch the role’s resources window in
Failover Cluster Manager, then you see each resource move through the states of Online
➤ Offline Pending ➤ Offline. The new node is now displayed as the owner before the
resources move in turn through the states of Offline ➤ Online Pending ➤ Online. The
resources are taken offline and placed back online in order of their dependencies.

 We can also fail over a role using PowerShell . To do this, we need to use the
 Move-ClusterGroup cmdlet. Listing 7-1 demonstrates this by using the cmdlet to fail back
the instance to ClusterNode1 . We use the -Name parameter to specify the role that we
wish to move and the -Node parameter to specify the node to which we wish to move it.

 Listing 7-1. Moving the Role Between Nodes

 Move-ClusterGroup -Name "SQL Server (ALWAYSON-C)" -Node ClusterNode1

 Rolling Patch Upgrade
 If you have a cluster with more than two nodes, then consider performing a rolling patch
upgrade when you are applying updates for SQL Server. In this scenario, you mitigate the
risk of having different nodes, which are possible owners of the role, running different
versions or patch levels of SQL Server, which could lead to data corruption.

 The first thing that you should do is make a list of all nodes that are possible owners
of the role. Then select 50% of these nodes and remove them from the Possible Owners
list. You can do this by selecting Properties from the context menu of the Name resource,
and then, in the Advanced Policies tab, unchecking the nodes in the possible owners list ,
as illustrated in Figure 7-2 .

CHAPTER 7 ■ ADMINISTERING ALWAYSON

152

 To achieve the same result using PowerShell , we can use the Get-Resource cmdlet to
navigate to the name resource and then pipe in the Set-ClusterOwnerNode to configure
the possible owners list. This is demonstrated in Listing 7-2 . The possible owners list is
comma separated in the event that you are configuring multiple possible owners.

 Listing 7-2. Configuring Possible Owners

 Get-ClusterResource "SQL Network Name (ALWAYSON-SQL-C)" | Set-
ClusterOwnerNode -Owners clusternode1

 Once 50% of the nodes have been removed as possible owners, you should apply the
update to these nodes. After the update has been verified on this half of the nodes, you
should reconfigure them to allow them to be possible owners once more.

 The next step is to move the role to one of the nodes that you have upgraded. After
failover has successfully completed, remove the other half of the nodes from the preferred
owners list before applying the update to these nodes. Once the update has been verified
on this half of the nodes, you can return them to the possible owners list.

 Figure 7-2. Remove possible owners .

CHAPTER 7 ■ ADMINISTERING ALWAYSON

153

 ■ Tip The possible owners can only be set on a resource. If you run Set-ClusterOwnerNode
against a role using the -Group parameter, then you are configuring preferred owners rather
than possible owners.

 ■ Note Please do not follow the demonstration which removes a node from the cluster, if
you wish to follow later demonstrations within this book.

 Removing a Node from the Cluster
 If you wish to uninstall an AlwaysOn failover cluster instance, then you cannot perform
this action from Control Panel as you would a stand-alone instance. Instead, you must
run the Remove Node Wizard on each of the nodes of the cluster. You can invoke this
wizard by selecting Remove Node from a SQL Server Failover Cluster option from the
Maintenance tab in SQL Server Installation Center.

 The wizard starts by running a global rules check, followed by a rules check for
removing a node. Then, on the Cluster Node Configuration page shown in Figure 7-3 , you
are asked to confirm the instance for which you wish to remove a node. If the cluster hosts
multiple instances, you can select the appropriate instance from the drop-down box.

 Figure 7-3. The Cluster Node Configuration page

CHAPTER 7 ■ ADMINISTERING ALWAYSON

154

 On the Ready to Remove Node page , you are given a summary of the tasks that will
be performed. After confirming the details, the instance is removed. This process should
be repeated on all passive nodes, and then finally on the active node. When the instance
is removed from the final node, the cluster role is also removed.

 To remove a node using PowerShell , we need to run SQL Server’s setup.exe
application, with the action parameter configured as RemoveNode . When you use
PowerShell to remove a node, the parameters in Table 7-1 are mandatory.

 Table 7-1. Mandatory Parameters When Removing a Node from a Cluster

 Parameter Usage

 /ACTION Must be configured as AddNode .

 /INSTANCENAME The instance that you are adding the extra node to
support.

 /CONFIRMIPDEPENDENCYCHANGE Allows multiple IP Addresses to be specified for
multi-subnet clusters. Pass in a value of 1 for True
or 0 for False .

 The script in Listing 7-3 removes a node from our cluster when we run it from the
root directory of the SQL Server installation media.

 Listing 7-3. Removing a Node

 .\setup.exe /ACTION="RemoveNode" /INSTANCENAME="ALWAYSON-SQL-C"
/CONFIRMIPDEPENDENCYCHANGE=0 /qs

 Managing AlwaysOn Availability Groups
 Once the initial setup of your Availability Group is complete, you still need to perform
administrative tasks. These include failing over the Availability Group, monitoring,
and on rare occasions, adding additional listeners. These topics are discussed in the
following sections.

 Failover
 If a replica is in Synchronous Commit mode and is configured for automatic failover,
then the Availability Group automatically moves to a redundant replica in the event of an
error condition being met on the primary replica. There are occasions, however, when
you will want to manually fail over an Availability Group. This could be because of DR
testing, proactive maintenance, or because you need to bring up an asynchronous replica
following a failure of the primary replica or the primary data center.

CHAPTER 7 ■ ADMINISTERING ALWAYSON

155

 Synchronous Failover
 If you wish to fail over a replica that is in Synchronous Commit mode, launch the Failover
Availability Group wizard by selecting Failover from the context menu of your Availability
Group in Object Explorer. After moving past the Introduction page , you find the Select
New Primary Replica page (see Figure 7-4). On this page, check the box of the replica
to which you want to fail over. Before doing so, however, review the Failover Readiness
column to ensure that the replicas are synchronized and that no data loss will occur.

 Figure 7-4. The Select New Primary Replica page

 On the Connect to Replica page, illustrated in Figure 7-5 , use the Connect button to
establish a connection to the new primary replica.

CHAPTER 7 ■ ADMINISTERING ALWAYSON

156

 On the Summary page, you are given details of the task to be performed, followed by
a progress indicator on the Results page. Once the failover completes, check that all tasks
were successful, and investigate any errors or warnings that you receive.

 We can also use T-SQL to fail over the Availability Group. The command in Listing
 7-4 achieves the same results. Make sure to run this script from the replica that will be the
new primary replica. If you run it from the current primary replica, use SQLCMD mode
and connect to the new primary within the script.

 Listing 7-4. Failing Over an Availability Group

 ALTER AVAILABILITY GROUP App1 FAILOVER ;
 GO

 Figure 7-5. The Connect to Replica page

CHAPTER 7 ■ ADMINISTERING ALWAYSON

157

 Asynchronous Failover
 If your Availability Group is in Asynchronous Commit mode, then from a technical
standpoint, you can fail over in a similar way to the way you can for a replica running in
Synchronous Commit mode, except for the fact that you need to force the failover, thereby
accepting the risk of data loss. You can force failover by using the command in Listing 7-5 .
You should run this script on the instance that will be the new primary. For it to work, the
cluster must have quorum. If it doesn’t, then you need to force the cluster online before
you force the Availability Group online.

 Listing 7-5. Forcing Failover

 ALTER AVAILABILITY GROUP App1 FORCE_FAILOVER_ALLOW_DATA_LOSS ;

 From a process perspective, you should only ever do this if your primary site
is completely unavailable. If this is not the case, first put the application into a safe
state. This avoids any possibility of data loss. The way that I normally achieve this in a
production environment is by performing the following steps:

 1. Disable logins.

 2. Change the mode of the replica to Synchronous Commit mode.

 3. Fail over.

 4. Change the replica back to Asynchronous Commit mode.

 5. Enable the logins.

 You can perform these steps with the script in Listing 7-6 . When run from the DR
instance, this script places the databases in App1 into a safe state before failing over, and
then it reconfigures the application to work under normal operations.

 Listing 7-6. Safe-Stating an Application and Failing Over

 --DISABLE LOGINS

 DECLARE @AOAGDBs TABLE
 (
 DBName NVARCHAR(128)
) ;

 INSERT INTO @AOAGDBs
 SELECT database_name
 FROM sys.availability_groups AG
 INNER JOIN sys.availability_databases_cluster ADC
 ON AG.group_id = ADC.group_id
 WHERE AG.name = 'App1' ;

CHAPTER 7 ■ ADMINISTERING ALWAYSON

158

 DECLARE @Mappings TABLE
 (
 LoginName NVARCHAR(128),
 DBname NVARCHAR(128),
 UserName NVARCHAR(128),
 AliasName NVARCHAR(128)
) ;

 INSERT INTO @Mappings
 EXEC sp_msloginmappings ;

 DECLARE @SQL NVARCHAR(MAX)

 SELECT DISTINCT @SQL =
 (
 SELECT 'ALTER LOGIN [' + LoginName + '] DISABLE; ' AS [data()]
 FROM @Mappings M
 INNER JOIN @AOAGDBs A
 ON M.DBname = A.DBName
 WHERE LoginName <> SUSER_NAME()
 FOR XML PATH ('')
)

 EXEC(@SQL)
 GO

 --SWITCH TO SYNCHRONOUS COMMIT MODE

 ALTER AVAILABILITY GROUP App1
 MODIFY REPLICA ON N'CLUSTERNODE3\ASYNCDR' WITH (AVAILABILITY_MODE =
SYNCHRONOUS_COMMIT) ;
 GO

 --FAIL OVER

 ALTER AVAILABILITY GROUP App1 FAILOVER
 GO

 --SWITCH BACK TO ASYNCHRONOUS COMMIT MODE

 ALTER AVAILABILITY GROUP App1
 MODIFY REPLICA ON N'CLUSTERNODE3\ASYNCDR' WITH (AVAILABILITY_MODE =
ASYNCHRONOUS_COMMIT) ;
 GO

CHAPTER 7 ■ ADMINISTERING ALWAYSON

159

 --ENABLE LOGINS

 DECLARE @AOAGDBs TABLE
 (
 DBName NVARCHAR(128)
) ;

 INSERT INTO @AOAGDBs
 SELECT database_name
 FROM sys.availability_groups AG
 INNER JOIN sys.availability_databases_cluster ADC
 ON AG.group_id = ADC.group_id
 WHERE AG.name = 'App1' ;

 DECLARE @Mappings TABLE
 (
 LoginName NVARCHAR(128),
 DBname NVARCHAR(128),
 Username NVARCHAR(128),
 AliasName NVARCHAR(128)
) ;

 INSERT INTO @Mappings
 EXEC sp_msloginmappings

 DECLARE @SQL NVARCHAR(MAX)

 SELECT DISTINCT @SQL =
 (
 SELECT 'ALTER LOGIN [' + LoginName + '] ENABLE; ' AS [data()]
 FROM @Mappings M
 INNER JOIN @AOAGDBs A
 ON M.DBname = A.DBName
 WHERE LoginName <> SUSER_NAME()
 FOR XML PATH ('')
) ;

 EXEC(@SQL)

 Failing Over a Distributed Availability Group
 Distributed Availability Groups do not support automatic failover; only manual failover
is supported. When you need to fail over to a secondary Availability Group, within a
Distributed Availability Group, you should perform the following steps :

• Set the synchronization mode to Synchronous Commit

• Wait for the secondary Availability Group to become synchronized

CHAPTER 7 ■ ADMINISTERING ALWAYSON

160

• Set the primary Availability Group to take the role of the secondary

• Force failover

 The script in Listing 7-7 will force failover for the Distributed Availability Group
discussed in Chapter 6 .

 Listing 7-7. Failover for a Distributed Availability Group

 --Set the secondary Availability Group to synchronous commit mode

 ALTER AVAILABILITY GROUP App2Distributed
 MODIFY
 AVAILABILITY GROUP ON
 'ag1' WITH
 (
 LISTENER_URL = 'tcp://App2_App2Listen:5022',
 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
 FAILOVER_MODE = MANUAL,
 SEEDING_MODE = MANUAL
),
 'ag2' WITH
 (
 LISTENER_URL = 'tcp://App2_App2Listen:5022',
 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,
 FAILOVER_MODE = MANUAL,
 SEEDING_MODE = MANUAL
);

 --Wait until the Availability Groups are synchronized

 WHILE (SELECT COUNT(DISTINCT synchronization_state_desc)
 FROM (
 SELECT
 ag.name
 , drs.database_id
 , drs.group_id
 , drs.replica_id
 , drs.synchronization_state_ desc
 , drs.end_of_log_lsn
 FROM sys.dm_hadr_database_replica_states drs
 INNER JOIN sys.availability_groups ag
 ON drs.group_id = ag.group_id
 WHERE ag.name = 'App2'
 AND synchronization_state_desc = 'synchronized'
) a
) > 1
 BEGIN
 WAITFOR DELAY'00:00:05' ;
 END

http://dx.doi.org/10.1007/978-1-4842-2397-0_6

CHAPTER 7 ■ ADMINISTERING ALWAYSON

161

 --Assign the primary Availability Group, the secondary role

 ALTER AVAILABILITY GROUP App2Distributed SET (ROLE = SECONDARY) ;

 --Force the failover

 ALTER AVAILABILITY GROUP App2Distributed FORCE_FAILOVER_ALLOW_DATA_LOSS ;

 Synchronizing Uncontained Objects
 Regardless of the method you use to fail over, assuming that all of the databases within the
Availability Group are not contained, then you need to ensure that instance-level objects are
synchronized. The most straightforward way to keep your instance-level objects synchronized
is by implementing an SSIS package which is scheduled to run on a periodic basis.

 Whether you choose to schedule a SSIS package to execute, or you choose a different
approach, such as a SQL Server Agent job that scripts and re-creates the objects on the
secondary servers, these are the objects that you should consider synchronizing :

• Logins

• Credentials

• SQL Server Agent jobs

• Custom error messages

• Linked servers

• Server-level event notifications

• Stored procedures in Master

• Server-level triggers

• Encryption keys and certificates

 Adding Multiple Listeners
 Usually, each Availability Group has a single Availability Group Listener, but there are
some rare instances in which you may need to create multiple listeners for the same
Availability Group. One scenario in which this may be required is if you have legacy
applications with hard-coded connection strings . Here, you can create an extra listener
with a client access point that matches the name of the hard-coded connection string.

 As mentioned earlier in this chapter, it is not possible to create a second Availability
Group Listener through SQL Server Management Studio, T-SQL, or even PowerShell.
Instead, we must use Failover Cluster Manager. Here, we create a new Client Access Point
resource within our App1 role. To do this, we select Add Resource from the context menu
of the App1 role, and then select Client Access Point. This causes the New Resource Wizard
to be invoked. The Client Access Point page of the wizard is illustrated in Figure 7-6 . You
can see that we have entered the DNS name for the client access point and specified an IP
Address from each subnet.

CHAPTER 7 ■ ADMINISTERING ALWAYSON

162

 Figure 7-6. The Client Access Point page

 On the Confirmation page, we are shown a summary of the configuration that will be
performed. On the Configure Client Access Point page, we see a progress indicator, before we are
finally shown a completion summary on the Summary page, which is illustrated in Figure 7-7 .

 Figure 7-7. The Confirmation page

CHAPTER 7 ■ ADMINISTERING ALWAYSON

163

 Now we need to configure the Availability Group resource to be dependent upon
the new client access point. To do this, we select Properties from the context menu of the
 App1 resource and then navigate to the Dependencies tab. Here, we add the new client
access point as a dependency and configure an OR constraint between the two listeners,
as illustrated in Figure 7-8 . Once we apply this change, clients are able to connect using
either of the two listener names.

 Figure 7-8. The Dependencies tab

 Other Administrative Considerations
 When databases are made highly available with AlwaysOn Availability Groups, several
limitations are imposed. One of the most restrictive of these is that databases cannot be
placed in single-user mode or be made read only . This can have an impact when you
need to safe-state your application for maintenance. This is why, in the “Failover” section
of this chapter, we disabled the logins that have users mapped to the databases. If you
must place your database in single-user mode , then you must first remove it from the
Availability Group.

 A database can be removed from an Availability Group by running the command in
Listing 7-8 . This command removes the App1Customers database from the Availability
Group.

CHAPTER 7 ■ ADMINISTERING ALWAYSON

164

 Listing 7-8. Removing a Database from an Availability Group

 ALTER DATABASE App1Customers SET HADR OFF ;

 There may also be occasions in which you want a database to remain in an
Availability Group, but you wish to suspend data movement to other replicas. This is
usually because the Availability Group is in Synchronous Commit mode and you have a
period of high utilization, where you need a performance improvement. You can suspend
the data movement to a database by using the command in Listing 7-9 , which suspends
data movement for the App1Sales database and then resumes it.

 ■ Caution If you suspend data movement, the transaction log on the primary replica
continues to grow, and you are not able to truncate it until data movement resumes and the
databases are synchronized.

 Listing 7-9. Suspending Data Movement

 ALTER DATABASE App1Customers SET HADR SUSPEND ;
 GO

 ALTER DATABASE App1Customers SET HADR RESUME ;
 GO

 Another important consideration is the placement of database and log files . These
files must be in the same location on each replica. This means that if you use named
instances, it is a hard technical requirement that you change the default file locations
for data and logs, because the default location includes the name of the instance. This is
assuming, of course, that you do not use the same instance name on each node, which
would defy many of the benefits of having a named instance.

 Summary
 Failover to a synchronous replica in the event of a failure of the primary replica is
automatic. There are instances, however, in which you will also need to fail over
manually. This could be because of a disaster that requires failover to the DR site,
or it could be for proactive maintenance. Although it is possible to fail over to an
asynchronous replica with the possibility of data loss, it is good practice to place the
databases in a safe-state first. Because you cannot place a database in read-only or
 single-user mode, if it is participating in an Availability Group, safe-stating usually
consists of disabling the logins and then switching to Synchronous Commit mode
before failover.

CHAPTER 7 ■ ADMINISTERING ALWAYSON

165

 To monitor Availability Groups throughout the enterprise, you need to use a
monitoring tool, such as Systems Operation Center. If you need to monitor a small
number of Availability Groups or troubleshoot a specific issue, however, use one of the
tools included with SQL Server, such as a dashboard for monitoring the health of the
topology, and an extended events session, called the AlwaysOn Health Trace .

 One benefit of achieving high availability for SQL Server is that doing so allows you
to minimize downtime during planned maintenance. On a two-node cluster, you can
upgrade the passive node, fail over, and then upgrade the active node. For larger clusters,
you can perform a rolling patch upgrade, which involves removing half of the nodes from
the possible owners list and upgrading them. You then fail over the instance to one of the
upgraded nodes and repeat the process for the remaining nodes. This mitigates the risk of
mixed versions, across the possible owners.

167© Peter A. Carter 2016
P. A. Carter, SQL Server AlwaysOn Revealed, DOI 10.1007/978-1-4842-2397-0_8

 CHAPTER 8

 Monitoring AlwaysOn
Availability Groups

 Once you have implemented Availability Groups, you need to monitor them and respond
to any errors or warnings that could affect the availability of your data. If you have many
Availability Groups implemented throughout the enterprise, then the only way to monitor
them effectively and holistically is by using an enterprise monitoring tool, such as SOC
(Systems Operations Center) . If you only have a small number of Availability Groups,
however, or if you are troubleshooting a specific issue, then SQL Server provides the
AlwaysOn Dashboard and the AlwaysOn Health Trace. You can also create your own
Extended Events sessions to monitor Availability Groups. This chapter will discuss each of
these monitoring possibilities.

 AlwaysOn Dashboard
 The AlwaysOn Dashboard is an interactive report that allows you to view the health of
your AlwaysOn environment and drill through, or roll up elements within the topology.
You can invoke the report from the context menu of the Availability Groups folder in
Object Explorer, or from the context menu of the Availability Group itself. Figure 8-1
shows the report that is generated from the context menu of the App1 Availability Group .
You can see that currently, synchronization of both replicas is in a healthy state.

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

168

 The three possible synchronization states that a database can be in are
 SYNCHRONIZED , SYNCHRONIZING , and NOT SYNCHRONIZING . A synchronous replica should
be in the SYNCHRONIZED state, and any other state is unhealthy. An asynchronous
replica, however, will never be in the SYNCHRONIZED state, and a state of SYNCHRONIZING
is considered healthy. Regardless of the mode, NOT SYNCHRONIZING indicates that the
replica is not connected.

 ■ Note In addition to the synchronization states, a replica also has one of the following
operational states: PENDING_FAILOVER , PENDING , ONLINE , OFFLINE , FAILED , FAILED_NO_
QUORUM , and NULL (when the replica is disconnected). The operational state of a replica can
be viewed using the sys.dm_hadr_availability_replica_states DMV.

 At the top right of the report, there are links to the failover wizard, which we
discussed earlier in this chapter; the AlwaysOn Health events, which we discussed in the
next section; and also a link to view cluster quorum information. The Cluster Quorum
Information screen , which is invoked by this link, is displayed in Figure 8-2 .

 Figure 8-1. The Availability Group Dashboard

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

169

 Figure 8-2. The Cluster Quorum Information screen

 The Add/Remove Columns link will display a context menu, where you can
dynamically add or remove columns from the display. Figure 8-3 shows that Availability
Mode and Member State have been added.

 Figure 8-3. Add/Remove Columns

 You can also drill through each replica in the Availability Replicas window to
see replica-specific details. The Group By button will allow you to group Availability
Databases by Replica, Database, Synchronization state, Failover Readiness, or Issue.

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

170

 AlwaysOn Health Trace
 The AlwaysOn Health Trace is an Extended Events session , which is created when you
create your first Availability Group. It can be located in SQL Server Management Studio,
under Extended Events | Sessions, and via its context menu, you can view live data that is
being captured, or you can enter the session’s properties to change the configuration of
the events that are captured. It can also be accessed by using the View AlwaysOn Health
Events link in the AlwaysOn Dashboard.

 Drilling through the session exposes the session’s package, and from the context
menu of the package, you can view previously captured events. Figure 8-4 shows that the
latest event captured, was Database 5 (in our case, App1Customers), was waiting for the
log to be hardened on the synchronous replica.

 Figure 8-4. The target data

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

171

 Right-clicking a column header in the top pane of the window will expose a context
menu, which allows you to search for text or a value in a specific column, group by the
values within a column, or sort the results sets by a specific column. You can also use the
context menu to add or remove columns from the result set.

 Monitoring AlwaysOn with Extended Events
 Extended Events are a lightweight monitoring system in SQL Server, which captures
events using WMI . Because the architecture uses so few system resources, they scale very
well and allow you to monitor instances, with minimal impact on user activity. They are
also highly configurable, giving you a wide range of options for capturing details from a
very fine grain, such as page splits, to coarser-grain information, such as CPU utilization .
You can also correlate Extended Events with operating system data to provide a holistic
picture when troubleshooting issues. The predecessor to Extended Events was a T-SQL
based tool called SQL Trace, and its GUI, which was called Profiler .

 Extended Events Concepts
 Extended Events have a rich architecture, which consists of Events, Targets, Actions,
Predicates, Types, Maps, and Sessions. These artifacts are stored within a package, which
is, in turn, stored within a module, which can be either a .dll or an executable. We discuss
these concepts in the following sections.

 Packages
 A package is a container for the objects used within Extended Events. Here are the four
types of SQL Server package:

• Package0: The default package, used for Extended Events system
objects.

• Sqlserver: Used for SQL Server–related objects.

• Sqlos: Used for SQLOS-related objects.

• SecAudit: Used by SQL Audit; however, its objects are not
exposed.

 Events
 An event is an occurrence of interest that you can trace. It may be a SQL batch
completing, a cache miss, or a page split, or virtually anything else that can happen within
the Database Engine, depending on the nature of the trace that you are configuring. Each
event is categorized by channel and keyword (also known as category). A channel is a
high-level categorization, and all events in SQL Server 2016 fall into one of the channels
described in Table 8-1 .

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

172

 Keywords (or categories) are much more fine-grain. All events relating to AlwaysOn
fall into the AlwaysOn and HARD categories. SQL Server exposes 122 events relating to
AlwaysOn. These events are listed in Table 8-2 .

 Table 8-1. Channels

 Channel Description

 Admin Well-known events with well-known resolutions. For example,
deadlocks, server starts, CPU thresholds being exceeded, and the use
of deprecated features.

 Operational Used for troubleshooting issues. For example, bad memory being
detected, an AlwaysOn Availability Group replica changing its
state, and a long IO being detected are all events that fall within the
Operational channel.

 Analytic High-volume events that you can use for troubleshooting issues such
as performance. For example, a transaction beginning, a lock being
acquired, and a file read completing are all events that fall within the
Analytic channel.

 Debug Used by developers to diagnose issues by returning internal data. The
events in the Debug channel are subject to change in future versions
of SQL Server, so you should avoid them when possible.

 Table 8-2. AlwaysOn Events

 Event Description

 hadr_ddl_failover_execution_state Raised when a DDL command alters the
Availability Group failover state

 hadr_transport_dump_message Traces HADR transport messages
throughout the system

 hadr_transport_dump_config_message Traces HADR configuration messages

 hadr_transport_dump_failure_message Traces HADR failure messages

 hadr_transport_dump_preconfig_message Traces HADR preconfig messages

 hadr_transport_dump_dropped_message Traces trace dropped HADR transport
messages throughout the system

 hadr_transport_session_state Raised when a HADR transport session
changes states

 hadr_transport_configuration_state Raised when session state changes

 hadr_transport_ucs_registration Raised when UCS registration state
 changes

(continued)

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

173

Table 8-2. (continued)

 Event Description

 hadr_transport_ucs_connection_info Raised when the USC connection ID
associated with the AlwaysOn transport
replica is registered or changes

 hadr_transport_flow_control_action Raised when a flow control action has
occurred for a particular replica

 hadr_database_flow_control_action Raised when a flow control action has
occurred for a particular replica

 hadr_db_manager_state Raised when the state of db_manager state

 hadr_db_manager_lsn_sync_msg Traces Log Sequence Number
synchronization messages

 hadr_db_manager_establish_db_msg Raised when a DB message is established

 hadr_db_manager_status_change Traces DBReplicaStatusChange messages

 hadr_db_manager_redo Traces redo processing on secondary

 hadr_db_manager_undo Traces undo processing on secondary

 hadr_db_manager_db_queue_restart Fires in response to the queue restart
hadron database

 hadr_db_manager_db_startdb Fires in response to start hadron database

 hadr_db_manager_db_shutdown Fires in response to shutdown hadron
 database

 hadr_db_manager_user_control Fires in response to a change in user
status for an AlwaysOn controlled
database

 hadr_db_manager_redo_control Traces change log scan status for an
AlwaysOn controlled database

 hadr_db_manager_scan_control Traces change log scan status for an
AlwaysOn controlled database

 hadr_db_manager_suspend_resume Fires in response to a change in suspend/
resume status for an AlwaysOn controlled
database

 hadr_db_manager_db_restart Fires in response to a restart of an
AlwaysOn controlled database

 hadr_worker_pool_thread Traces AlwaysOn worker pool thread
actions

 hadr_worker_pool_task Traces AlwaysOn worker pool task actions

 hadr_thread_pool_worker_start Traces AlwaysOn thread pool worker
thread, start actions

(continued)

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

174

Table 8-2. (continued)

 Event Description

 hadr_db_manager_page_request Traces page Request/Response between
servers

 hadr_db_commit_mgr_update_harden Fires in response to the update of the
hardened Log Sequence Number for an
AlwaysOn controlled database

 hadr_db_commit_mgr_harden_still_waiting Traces transaction Commit harden,
still waiting for AlwaysOn Commit
management

 hadr_db_commit_mgr_harden Traces transaction Commit harden result
from AlwaysOn Commit management

 hadr_db_commit_mgr_set_policy Fires in response to a transaction Commit
manager policy update

 hadr_db_partner_set_policy Fires in response to an AlwaysOn partner
commit policy update

 hadr_db_partner_set_sync_state Fires in response to a synchronization
state change of an AlwaysOn partner

 hadr_apr_added_corrupted_page Fires when auto page repair added a
corrupted page

 hadr_apr_repaired_page Fires when auto page repair repaired a
corrupted page

 hadr_apr_skipped_page_repair Fires when auto page repair skipped a
page repair

 hadr_apr_failed_page_repair Fires when auto page repair added a
corrupted page

 hadr_apr_sent_repair_request_for_page Fires when auto page repair sent a page
repair request

 hadr_apr_received_page_repair_request Fires when auto page repair received a
page repair request

 hadr_apr_deffering_page_repair_request Fires when auto page repair is deferring
the page repair request

 hadr_apr_page_repair_failed Fires when auto page repair failed to
repair page

 hadr_undo_of_redo_log_scan Traces the amount of log scanned in Undo
of Redo, and the total log needing to be
scanned

 hadr_db_manager_filemetadata_request Fires in response to a File Metadata
Request/Response between servers

(continued)

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

175

Table 8-2. (continued)

 Event Description

 hadr_capture_compressed_log_cache Traces the hit/miss ratio for the
compressed log block cache

 hadr_db_manager_backup_sync_msg Fires in response to a backup
synchronization message

 hadr_db_manager_backup_info_msg Fires in response to a backup
informational message

 hadr_db_manager_primary_replica_file_
list_msg

 Fires in response to a Primary replica file
list message

 hadr_db_manager_seeding_request_msg Fires in response to a seeding request
message

 hadr_physical_seeding_backup_state_
change

 Fires in response to a change in the state
of a physical seeding, on the backup side

 hadr_physical_seeding_restore_state_
change

 Fires in response to a change in the state
of a physical seeding, on the restore side

 hadr_physical_seeding_forwarder_state_
change

 Fires in response to a change in the state of
a physical seeding, on the forwarder side

 hadr_physical_seeding_forwarder_
target_state_change

 Fires in response to a change in the state
of a physical seeding, on the forwarder
target side

 hadr_physical_seeding_submit_callback Fires in response to a physical seeding
submit callback

 hadr_physical_seeding_failure Fires in response to a physical Seeding
Failure

 hadr_physical_seeding_progress Fires in response to a physical Seeding
 Progress

 hadr_physical_seeding_schedule_long_
task_failure

 Fires in response to a physical Seeding
Schedule Long Task Failure

 hadr_automatic_seeding_start Fires when an automatic seeding
operation is submitted

 hadr_automatic_seeding_state_
transition

 Fires when an automatic seeding
operation changes state

 hadr_automatic_seeding_success Fires when an automatic seeding
operation succeeds

 hadr_automatic_seeding_failure Fires when an automatic seeding
operation fails

 hadr_automatic_seeding_timeout Fires when an automatic seeding
operation times out

(continued)

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

176

Table 8-2. (continued)

 Event Description

 hadr_filestream_file_open Fires when AlwaysOn FileStream
transport opens a file

 hadr_filestream_file_close Fires when AlwaysOn FileStream
transport closes a file

 hadr_filestream_log_interpreter Fires when AlwaysOn FileStream
transport finds relevant log records when
interpreting log

 hadr_filestream_processed_block Fires when AlwaysOn FileStream transport
has completed processing a log block

 hadr_filestream_directory_create Fires when AlwaysOn FileStream
transport creates a directory

 hadr_filestream_corrupt_message Fires when AlwaysOn FileStream
transport detects message corruption

 hadr_filestream_message_block_end Fires when AlwaysOn FileStream
transport traces a block end message

 hadr_filestream_message_dir_create Fires when AlwaysOn FileStream
transport traces a directory create
message

 hadr_filestream_message_file_write Fires when AlwaysOn FileStream
transport traces a file write message

 hadr_filestream_file_flush Fires when AlwaysOn FileStream
transport flushes a file

 hadr_filestream_file_set_eof Fires when AlwaysOn FileStream
transport sets end of a file

 hadr_filestream_undo_inplace_update Fires when AlwaysOn FileStream
transport detects in-place update to undo

 hadr_filestream_message_file_request Fires when HADR FileStream transport
traces a file write message

 hadr_wsfc_change_notifier_status Fires when Windows Server Failover
Clustering change notifier status changes

 hadr_wsfc_change_notifier_start_ag_
specific_notifications

 Fires when Windows Server Failover
Clustering change notifier starts receiving
Availability Group–specific notifications

 hadr_wsfc_change_notifier_severe_error Fires when Windows Server Failover
Clustering change notifier encountered a
severe error and will terminate

(continued)

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

177

Table 8-2. (continued)

 Event Description

 hadr_tds_synchronizer_payload_skip Fires when an AlwaysOn TDS Listener
Synchronizer skipped a listener payload
because there were no changes since the
previous payload

 hadr_sql_instance_to_node_map_entry_
deleted

 Fires at the end of an API call that deletes
a SQL Server instance to cluster node map
entry

 hadr_wsfc_change_notifier_node_not_
online

 Fires when Windows Server Failover
Clustering change notifier detected that
the local cluster node is not online

 hadr_online_availability_group_first_
attempt_failure

 Fires if the first attempt to bring an
AlwaysOn Availability Group resource
online failed

 hadr_online_availability_group_retry_end Fires when SQL Server has either
exhausted all retry attempts, or Windows
Server Failover Cluster has accepted
the command to bring an AlwaysOn
Availability Group resource online

 hadr_ar_api_call Fires when an API call is made to an
Availability replica

 hadr_ar_manager_starting Fires when the Availability Group replica
manager is starting

 hadr_ag_wsfc_resource_state Fires in response to a state change of an
Availability Group in the Windows Server
Failover Cluster

 hadr_ag_database_api_call Fires in response to an API call to an
Availability Group database replica

 hadr_ag_lease_renewal Fires in response to an Availability Group
Lease Renewal

 hadr_ar_manager_mutex_acquisition_state Fires in response to an Availability
Replica mutex acquisition state for
synchronization of Availability Group
manager startup and shutdown
operations

 hadr_ar_critical_section_entry_state Fires in response to an Availability Replica
critical section entry state

 hadr_ag_config_data_mutex_acquisition_
state

 Fires in response to an Availability Group
mutex acquisition state

(continued)

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

178

Table 8-2. (continued)

 Event Description

 hadr_database_replica_disjoin_
completion

 Fires when a Database Replica has been
fully unjoined from the Availability Group

 hadr_ar_controller_debug Fires when a replica controller outputs a
debug message

 hadr_apply_log_block Fires when a secondary is going to append
a log block to the log manager

 hadr_capture_log_block Fires when the primary has captured a log
block

 hadr_capture_vlfheader Fires when the primary has captured a log
block which starts new virtual file

 hadr_apply_vlfheader Fires when a secondary is going to apply a
Virtual Log File header

 hadr_scan_state Fires when primary or secondary
Database Replica is changing state

 hadr_dump_log_block Fires when a primary sends or secondary
receives a logblock message

 hadr_log_block_send_complete Fires after a log block message has been
sent

 hadr_dump_vlf_header Fires when a primary sends or secondary
receives a vlfheader message

 hadr_dump_log_progress Fires when a secondary sends a progress
message

 hadr_dump_primary_progress Fires when a primary sends progress
message

 hadr_dump_sync_primary_progress Fires when a synchronous secondary
sends a progress message

 hadr_send_harden_lsn_message This event should not be used; it is for
Microsoft internal testing

 hadr_evaluate_readonly_routing_info Fires when evaluating read-only routing
information on a local primary database
replica

 hadr_db_log_throttle Fires when a database log generation
throttle changes

 hadr_db_log_throttle_input Fires when the Fabric log management
component updates the log throttle

(continued)

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

179

Table 8-2. (continued)

 Event Description

 hadr_db_marked_for_reseed Fires when a secondary database falls too
far behind the primary and is marked for
reseed

 hadr_db_log_management_configuration_
parameters

 Occurs when automatic log management
configurations are read.

 hadr_db_long_running_xact_aborted Fires when a long-running transaction is
forced to terminate by the system to avoid
log becoming full

 hadr_db_remote_harden_failure Fires when a harden request, which was
part of a commit or prepare, failed due to
a remote failure

 hadr_partner_log_send_transition Fires in response to a log send transition
between the log writer and the log capture

 hadr_partner_restart_scan Fires when a replica scans for its partner,
on restart

 hadr_transport_sync_send_failure Fires when a synchronous send fails in
transport

 hadr_xrf_deleteAllXrf_beforeEntry Fires immediately before all extended
recovery forks are deleted

 hadr_xrf_deleteRecLsn_beforeEntry Fires immediately before the recovery Log
Sequence Number is deleted from the
metadata

 hadr_xrf_updateXrf_partialUpdate Fires during an updating secondary’s
recovery forks stack; specifically, it
fires after deleting extra entries in the
secondary stack, but before copying new
entries from primary

 hadr_xrf_updateXrf_before_recoveryLsn_
update

 Fires during an updating secondary’s
recovery forks stack; specifically, it fires
after updating the stack but before saving
the recovery Log Sequence Number in the
 metadata

 hadr_xrf_copyXrf_partialCopy Fires after deleting a secondary’s stack
entries, but before copying primary’s
entries

 alwayson_ddl_executed Fires when AlwaysOn DDL statement is
executed

(continued)

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

180

 Event Description

 availability_replica_state Fires when an Availability Replica is
starting or shutting down

 availability_replica_state_change Fires when the state of the Availability
Replica has changed

 availability_replica_manager_state_
change

 Fires when the state of the Availability
Replica Manager has changed

 availability_group_lease_expired Fires when there is a connectivity issue
between the cluster and the Availability
Group, which has caused a failure to
renew the lease

 availability_replica_automatic_
failover_validation

 Fires when the failover validates the
readiness of replica as a primary

 availability_replica_database_fault_
reporting

 Fires when a database reports a fault to
the availability replica manager

 before_redo_lsn_update Fires immediately before the update of the
EOL Log Sequence Number

 read_only_route_complete Fires when a read-only routing operation
successfully completed

 read_only_route_fail Fires when a read-only routing operation
 failed

Table 8-2. (continued)

 Targets
 A target is the consumer of the events; essentially, it is the device to which the trace data
will be written. The targets available within SQL Server 2016 are detailed in Table 8-3 .

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

181

 Table 8-3. Targets

 Target Synchronous/Asynchronous Description

 Event counter Synchronous Counts the number of
events that occur during a
session

 Event file Asynchronous Writes the event output to
memory buffers and then
flushes them to disk

 Event pairing Asynchronous Determines if a paired event
occurs without its matching
event, for example, if a
statement started but never
completed

 ETW (Event Tracking
for Windows)

 Synchronous Used to correlate Extended
Events with operating
system data

 Histogram Asynchronous Counts the number of
events that occur during a
session, based on an action
or event column

 Ring buffer Asynchronous Stores data in a memory
buffer, using First-In First-
Out (FIFO) methodology

 Actions
 Also known as Global Fields , Actions are commands that allow additional information to
be captured when an event fires. An action is fired synchronously when an event occurs
and the event is unaware of the action. There are 50 actions available that allow you to
capture a rich array of information, including the statement that caused the event to fire,
the security context under which the statement ran, the transaction ID, the CPU ID, and
the call stack.

 Predicates
 Predicates are filter conditions that you can apply before the system sends events to the
target. It is possible to create simple predicates, such as filtering statements completing
based on a database ID, but you can also create more complex predicates, such as only
capturing the role change of an AlwaysOn Availability Group replica if it happens more
than twice.

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

182

 Predicates also fully support short-circuiting. This means that if you use multiple
conditions within a predicate, then the order of predicates is important, because if the
evaluation of the first predicate fails, the second predicate will not be evaluated. Because
predicates are evaluated synchronously, this can have an impact on performance.
Therefore, it is sensible to design your predicates so that predicates which are least likely
to evaluate to true are placed before predicates that are very likely to evaluate to true.

 For example, imagine that you are planning to filter on a specific database (with a
database ID of 6), but this database accounts for a high percentage of the activity on the
instance. You also plan to filter on a specific user ID (UserA), which is responsible for a
low percentage of the activity. In this scenario, you would use the WHERE (([sqlserver].
[username]='UserA') AND ([sqlserver].[database_id]=(6))) predicate to first filter
out activity that does not relate to UserA , before then filtering out activity that does not
relate to database ID 6 .

 Types
 All objects within a package are assigned a type. This type is used to interpret the data stored
within the byte collection of an object. Objects are assigned one of the following types:

• Action

• Event

• Pred_compare (retrieve data from events)

• Pred_source (compare data types)

• Target

• Type

 Maps
 A map is a dictionary that maps internal ID vales to strings that DBAs can understand.
Map keys are only unique within their context and are repeated between contexts. For
example, within the statement_recompile_cause context, a map_key of 1 relates to a
map_value of Schema Changed. Within the context of a database_sql_statement type,
however, a map_key of 1 relates to a map_value of CREATE DATABASE . You can find a
complete list of mappings by using the sys.dm_xe_map_values DMV.

 Sessions
 A session is essentially a trace. It can contain events from multiple packages, actions,
targets, and predicates. When you start or stop a session, you are turning the trace on
or off. When a session starts, events are written to memory buffers and have predicates
applied before they are sent to the target. Therefore, when creating a session, you need to
configure properties, such as how much memory the session can use for buffering, what
events can be dropped if the session experiences memory pressure, and the maximum
latency before the events are sent to the target.

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

183

 Creating an Event Session to Monitor Availability Group
 You can create an event session using either the New Session Wizard, the New Session
Dialog Box, or via TSQL. To create a session using the New Session wizard, drill through
Management | Extended Events in Object Explorer, and select New Session Wizard, from
the context menu of Sessions. This will cause the Introduction page of the New Session
Wizard to be displayed.

 After passing through the Introduction page, you will find the Set Session Properties
page , as displayed in Figure 8-5 . Here, you can configure a name for the Session, and also
specify if the Session should automatically be started on creation.

 Figure 8-5. Set Properties page

 On the Choose Template page of the wizard, which is illustrated in Figure 8-6 , you
can either select a predefined template, which will give you a starting point for commonly
required sessions, or start with a blank canvas and define the entire session manually. We
will choose the latter option.

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

184

 Figure 8-6. Choose Template page

 Figure 8-7 shows the Select Events to Capture page . Here, we can choose what events
we want to include in our session. For the purposes of this demonstration, imagine that
we are frequently seeing the secondary fall behind the primary, and we are trying to
determine the cause. Specifically, do we have an IO bottleneck? Because we are trying
to answer a very narrow question, the choice of events to select is clear. We will need the
 hadr_db_marked_for_reseed event, to determine when the secondary falls behind, and
we will need the long_io_detected event, so that we can correlate the times, and see if
there is a pattern.

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

185

 Figure 8-7. Select Events To Capture page

 Figure 8-8. Capture Global Fields page

 The Capture Global Fields page will allow us to specify any Actions that we wish to
capture. In our scenario, we will capture the NT Username and SQLText actions. This
will allow us to trace any long IOs back through, to see if they are cause by an inefficient
query. The Capture Global Fields page is illustrated in Figure 8-8 .

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

186

 Figure 8-9. Set Session Event Filters page

 The Set Session Event Filters page , shown in Figure 8-9 , allows you to configure
Predicates on the Session. We will configure a Predicate which filters operations on
system databases.

 The Specify Session Data Storage page of the wizard is where we can configure
the Target. The wizard provides the choice of a file or ring buffer target, along with the
option to specify size and rollover options. We will configure a file target, as illustrated in
Figure 8-10 .

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

187

 Figure 8-10. Specify Session Data Storage

 The Summary page of the wizard will confirm the actions that the wizard will
perform. After the Session has been created, the Completion page will provide the option
of watching live data upon exit. To create the same Session using T-SQL, you could use
the script in Listing 8-1 .

 Listing 8-1. Create an Event Session

 CREATE EVENT SESSION AlwaysOnTrace ON SERVER
 ADD EVENT sqlserver.hadr_db_marked_for_reseed(
 ACTION(sqlserver.nt_username,sqlserver.sql_text)
 WHERE (sqlserver.database_id>(4))),
 ADD EVENT sqlserver.long_io_detected(
 ACTION(sqlserver.nt_username,sqlserver.sql_text)
 WHERE (sqlserver.database_id>(4)))
 ADD TARGET package0.event_file(SET filename='C:\MSSQL\ASlwaysOnTrace.xel')
 WITH (MAX_MEMORY=4096 KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,MAX_
DISPATCH_LATENCY=30 SECONDS,MAX_EVENT_SIZE=0 KB,MEMORY_PARTITION_
MODE=NONE,TRACK_CAUSALITY=OFF,STARTUP_STATE=ON) ;

 The CREATE EVENT SESSION DDL statement accepts the arguments detailed in
Table 8-4 .

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

188

 Table 8-4. CREATE EVENT SESSION Arguments

 Argument Description

 event_session_name Specifies the name of the event session that you are
creating

 ADD EVENT | SET Repeating for every event that is added to the session,
followed by the name of the event, in the format package.
event; you can use the SET statement to set event-specific
customizations, such as including nonmandatory
event fields

 ACTION Specified after each ADD EVENT argument if there are
global fields which should be captured for that event

 WHERE Specified after each ADD EVENT argument if the event
should have a predicate associated with it

 ADD TARGET | SET Specified for each target that will be added to the session;
you can use the SET statement to populate target-specific
parameters, such as the filename parameter for the
event_file target

 The CREATE EVENT SESSION statement also accepts a number of WITH options,
which are detailed in Table 8-5 .

 Table 8-5. CREATE EVENT SESSION WITH Options

 WITH Option Description

 MAX_MEMORY Specifies the maximum amount of memory that the event
session can use for buffering events before dispatching
them to the target(s)

 EVENT_RETENTION_MODE Specifies the behavior if the buffers become full:
acceptable values are ALLOW_SINGLE_EVENT_LOSS , which
indicates that a single event can be can be dropped if
all buffers are full; ALLOW_MULTIPLE_EVENT_LOSS , which
indicates that an entire buffer can be dropped if all
buffers are full; and NO_EVENT_LOSS , which indicates that
tasks that cause events to fire are to wait until there is
space in the buffer

 MAX_DISPATCH_LATENCY Specifies the maximum amount of time that events can
reside in the sessions buffers before being flushed to the
target(s), specified in seconds

 MAX_EVENT_SIZE Specifies the maximum possible size for event data
from any single event; it can be specified in kilobytes or
megabytes and should only be configured to allow events
that are larger than the MAX_MEMORY setting

(continued)

CHAPTER 8 ■ MONITORING ALWAYSON AVAILABILITY GROUPS

189

 ■ Tip For a deeper discussion around Extended Events, I highly recommend the
Apress book Pro SQL Server Administration , which can be purchased from www.apress.
com/9781484207116 .

 Summary
 SQL Server provides rich tools for monitoring the health of AlwaysOn Availability Groups.
The AlwaysOn Dashboard is an interactive report, within SQL Server Management
Studio, which will allow you to assess the health of your Availability Groups and Replicas.
It also provides links to view quorum configuration information and live health data.

 Live Health Data is captured by an extended events session, which is created when
you create the first Availability Group on an instance, and runs in the background,
capturing preconfigured events. It is possible to customize this trace; I would recommend
leaving it with default configurations and creating a new Event Session, if you require a
custom capture.

 Creating an Event Session allows you to capture either very fine-grain points of
interest, or just coarser-grain information, depending on your requirements. Extended
Events are implemented using WMI, and are a very lightweight framework, meaning you
can identify issues and trend, without compromising the performance of your instance.

 WITH Option Description

 MEMORY_PARTITION_MODE Specifies where event buffers are created; acceptable
values are as follows:

 • NONE - which indicates that the buffers will be created
within the instance

 • PER_NODE - which indicates that the buffers will be
created for each NUMA node

 • PER_CPU - which means that buffers will be created for
each CPU

 TRACK_CAUSALITY Specifies that an additional GUID and sequence number
will be stored with each event so that events can be
correlated

 STARTUP_ STATE • Specifies if the session automatically starts when the
instance starts; ON indicates it does

 • OFF indicates it does not

Table 8-5. (continued)

http://www.apress.com/9781484207116
http://www.apress.com/9781484207116

191© Peter A. Carter 2016
P. A. Carter, SQL Server AlwaysOn Revealed, DOI 10.1007/978-1-4842-2397-0_9

 CHAPTER 9

 Troubleshooting AlwaysOn

 SQL Server exposes a wealth of metadata, pertaining to high availability and disaster
recovery objects, especially around the AlwaysOn feature set. This metadata can be used
to quickly identify a configuration, find the root cause of an issue, or script automated
responses to events that may occur. The following sections will discuss the metadata that
is available, and provide examples of how it can be used.

 AlwaysOn Failover Clustered Instance Metadata
 From inside the database engine, it is possible to view a large amount of metadata
regarding a clustered instance, and the Windows Cluster that hosts it. This information
can prove invaluable to a DBA. The following section will introduce some of the most
useful and interesting metadata objects.

 Discovering the Node That Hosts an Instance
 Naturally, a DBA will need to know which node within a cluster is hosting a failover
clustered instance, especially when attempting to diagnose connectivity or performance
issues. If your organization has a policy that DBAs are not allowed operating system
access, however, then Failover Manager can’t be used. Luckily, there is a DMV (Dynamic
Management View) within SQL Server that will expose this information. The sys.dm_os_
cluster_nodes DMV will return the columns detailed in Table 9-1 .

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

192

 The query in Listing 9-1 will return the name of the cluster node that currently hosts
the instance.

 Listing 9-1. Discover the Node That Hosts the Instance

 SELECT NodeName
 FROM sys.dm_os_cluster_nodes
 WHERE is_current_owner = 1 ;

 Viewing Health Check Configuration
 If assisting the Windows administration team with the repeated failover of a clustered
instance, a DBA may wish to expose details of what conditions can cause a failover, to
ensure that an appropriate level is configured. This can be achieved by using the sys.
dm_os_cluster_properties DMV, which returns the columns detailed in Table 9-2 .

 Table 9-1. sys.dm_os_cluster_nodes Columns

 Column Description

 NodeName The name of the cluster node

 Status The current status of the node. Possible values are

 • 0 - Indicates the node is up

 • 1 - Indicates the node is down

 • 2 - Indicates the node is paused

 • 3 - Indicates the node is currently joining the cluster

 • 4 - Indicates that the status is unknown

 status_description A textual description of the status. Possible values are

 • Up

 • Down

 • Paused

 • Joining

 • Unknown

 is_current_owner Indicates if the instance is currently hosted by the node.
Possible values are

 • 0 - Indicates the node does not own the instance

 • 1 - Indicates that the node does own the instance

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

193

 The possible failure condition levels, returned by the FailureConditionLevel
column are detailed in Table 9-3 .

 Table 9-2. sys.dm_os_cluster_properties Columns

 Column Description

 VerboseLogging Indicates the logging level used by the cluster. Possible
values are

 • 0 - Indicates that logging is turned off

 • 1 - Indicates that only errors are logged

 • 2 - Indicates that errors and warning are logged

 SQLDumperDumpFlags Specifies the type of dump file that SQLDumper will
generate. Possible values are

 • 0x0120 - Indicates a Minidump

 • 0x0110 - Indicates a Full Dump

 • 0x8100 - Indicates a Filtered Dump

 SQLDumperDumpPath Specifies the file path where SQLDumper will output
the dump files

 SQLDumperDumpTimeOut The timeout value for SQLDumper, when creating a
dump file. Specified in milliseconds

 FailureConditionLevel The level of failure that will cause a failover to occur.
A full description of failure condition levels can be
found in Table 9-3 .

 HealthCheckTimeout The duration that the database engine will wait for
health information to be returned, before it will decide
that the instance is unresponsive

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

194

 The query in Listing 9-2 will return the current failover condition level and the
current health check timeout value.

 Listing 9-2. Return Health Check Configuration

 SELECT
 FailureConditionLevel
 , HealthCheckTimeout
 FROM sys.dm_os_cluster_properties ;

 The current health of the instance can be determined manually by using the sp_
server_diagnostics system stored procedure. The procedure accepts a single parameter,
 @repeat_interval , which specifies how often the procedure should return results,
specified in seconds. If the parameter is omitted, then results will only be returned once.
If a value is passed for the parameter, then it must be greater than 5. The procedure
returns the result set detailed in Table 9-4 .

 Table 9-3. Failure Condition Levels

 Condition Level Description

 0 Automatic failover does not occur

 1 Automatic failover occurs when the SQL Server service is down

 2 Automatic failover will occur when

 • Level 1 conditions are met

 • The HealthCheckTimeout value is exceeded

 3 Automatic failover will occur when

 • Level 2 conditions are met

 • The health check returns System Error

 4 Automatic failover will occur when

 • Level 3 conditions are met

 • The health check returns Resource Error

 5 Automatic failover will occur when

 • Level 4 conditions are met

 • The health check returns Query_Processing_Error

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

195

 The script in Listing 9-3 will return the complete result set of the sp_server_diagnostics
system stored procedure, alongside values which have been shredded from the XML
column, to provide a quick view of the overall server CPU utilization, the CPU utilization
of the instance, and a count of any out-of-memory exceptions that may have occurred.

 Table 9-4. Columns Returned by sp_server_diagnostics

 Column Description

 creation_time Indicates the time that the row was created

 component_type Indicates the type of component. Possible values are

 • Instance

 • AlwaysOn: Availability Group

 component_name Indicates the name of the component. Possible values are

 • system

 • resource

 • query_processing

 • io_subsystem

 • events

 • [Availability Group name]

 State The health status of the component. Possible values are

 • 0 - Indicates that the state is unknown

 • 1 - Indicates that the state is clean (meaning healthy)

 • 2 - Indicates that there are warnings

 • 3 - Indicates that there are errors

 state_desc A textual description of the component’s state. Possible
values are

 • Unknown

 • Clean

 • Warnings

 • Errors

 Data An XML representation of component specific data. For
example, the resource component includes element
specifying the available physical and available virtual
memory. It also includes attributes including a count of out-
of-memory exceptions .

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

196

 ■ Tip A discussion around shredding XML is beyond the scope of this book. However, I
recommend the Apress title Expert Scripting and Automation for SQL Server DBAs , where
a discussion around working with XML for administrative purposes can be found. The book
can be purchased at www.apress.com/9781484219423 .

 Listing 9-3. Retrieving Diagnostic Information

 CREATE TABLE ##Server_Diagnostics
 (
 creation_time DATETIME,
 component_type NVARCHAR(8),
 component_name NVARCHAR(128),
 [state] TINYINT,
 state_desc NVARCHAR(8),
 [data] XML
) ;

 INSERT INTO ##Server_Diagnostics
 EXEC sp_server_diagnostics ;

 SELECT *,
 data.value('(/system/@systemCpuUtilization)[1]','int') AS
SystemCPUUtilization
 ,data.value('(/system/@sqlCpuUtilization)[1]','int') AS SQLServerCPU
 ,data.value('(/resource/@outOfMemoryExceptions)[1]','int') AS
OutOfMemoryExceptions
 FROM ##Server_Diagnostics ;

 DROP TABLE ##Server_Diagnostics ;

 AlwaysOn Availability Group Metadata
 Metadata can also be used to troubleshoot issues with Availability Groups. The following
sections will discuss some of the most useful and interesting metadata objects, relating
the Availability Groups.

 Determining the Last Failover Reason
 If an Availability Group has failed over, the first questions you are likely to want to
answer are “when?” and “why?” These questions can be answered using the sys.dm_
hadr_availability_replica_states DMV. This object returns the columns detailed in
Table 9-5 .

http://www.apress.com/9781484219423

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

197

 Table 9-5. sys.dm_hadr_availability_replica_states

 Column Description

 replica_id The GUID of the Replica

 group_id The GUID of the Availability Group

 is_local Indicates if the Replica is local or remote. Possible values
are

 • 0 - Indicates a remote secondary

 • 1 - Indicates a local Replica

 role Indicates the role that is currently assigned to the Replica.
Possible values are

 • 0 - Indicates that the role is currently being resolved

 • 1 - Indicates that the Replica has the Primary role

 • 2 - Indicates that the Replica currently has the
Secondary role

 role_desc A textual description of the Replica’s current role. Possible
values are

 • RESOLVING

 • PRIMARY

 • SECONDARY

 operational_state Indicates the current operational state of the replica.
Possible values are

 • 0 - Indicates a failover is pending

 • 1 - Indicates the state is pending

 • 2 - Indicates online

 • 3 - Indicates offline

 • 4 - Indicates failed

 • 5 - Indicates failed, with no quorum

 • NULL - Indicates the Replica is not local

 operational_state_desc A textual description of the operational state. Possible
values are

 • PENDING_FAILOVER

 • PENDING

 • ONLINE

 • OFFLINE

 • FAILED

 • FAILED_NO_QUORUM

 • NULL

(continued)

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

198

Table 9-5. (continued)

 Column Description

 connected_state Indicates if a Secondary Replica is currently connected to
the Primary Replica. Possible values are

 • 0 - Indicates the Replica is disconnected from the
Primary

 • 1 - Indicates that the Replica is connected to the
Primary

 connected_state_desc A textual description of the connected state. Possible
values are

 • DISCONNECTED

 • CONNECTED

 recovery_health Indicates if databases within the Availability Group are
online. Possible values are

 • 0 - Indicating at least one of the databases is not online

 • 1 - Indicates that all of the databases are online

 • NULL - Indicates the Availability Group is not local

 recovery_health_desc A textual description of the recovery_health. Possible
values are

 • ONLINE_IN_PROGRESS

 • ONLINE

 • NULL

 synchronization_health Indicates the synchronization state of the Availability
Group’s databases. Possible values are

 • 0 - Indicates that at least one database is in the NOT
SYNCHRONIZING state. This is known as Not Healthy

 • 1 - Indicates that at least one database is not in the
ideal synchronization state. This is known as Partially
Healthy. The ideal state will be

 • SYNCHRONIZED - For Synchronous Commit Replicas

 • SYNCHRONIZING - For Asynchronous Commit Replicas

 • 2 - Indicates that all databases are in the ideal state.
This is known as Healthy

 synchronization_health_desc A textual description of the synchronization health state.
Possible values are

 • NOT_HEALTHY

 • PARTIALLY_HEALTHY

 • HEALTHY

(continued)

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

199

Table 9-5. (continued)

 Column Description

 last_connect_error_
number

 The error number of the last connection error

 last_connect_error_
description

 The description of the last connection error

 last_connect_error_
timestamp

 The date and time of the last connection error

 The query in Listing 9-4 demonstrates how to return the time and reason of the last
connection error . This will indicate when and why failover occurred. One row will be
returned for each combination of Replica and Availability Group. You will notice that we
join the sys.dm_hadr_availability_replica_states DMV to the sys.availability_
replicas and sys.availability_groups DMVs, to retrieve the names of the nodes that
host the Replicas, and the names of the Availability Groups.

 Listing 9-4. Determine Last Failover Time and Reason

 SELECT
 ar.replica_server_name
 ,ag.name
 ,ars.last_connect_error_description
 ,ars.last_connect_error_timestamp
 FROM sys.dm_hadr_availability_replica_states ars
 INNER JOIN sys.availability_replicas ar
 ON ar.group_id = ars.group_id
 AND ars.replica_id = ar.replica_id
 INNER JOIN sys.availability_groups ag
 ON ag.group_id = ar.group_id ;

 Assessing the State of Availability Databases
 You may have noticed that the sys.dm_hard_availability_replica_states DMV will
provide details of Availability Groups that contain databases that are not in a healthy
state. The results are not granular enough, however, for you to discover which databases
are not healthy. This information can be retrieved from the sys.dm_hadr_database_
replica_states DMV, which returns the columns detailed in Table 9-6 .

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

200

 Table 9-6. sys.dm_hadr_database_replica_states Columns

 Column Description

 database_id The ID of the database

 group_id The Availability Group GUID

 replica_id The Availability Replica GUID

 group_database_id The ID of the database, within the Availability Group

 is_local Indicates if the database is local of remote. Possible
values are

 • 0 - Indicates that the database is not local to the instance

 • 1 - Indicates that the database is local to the instance

 is_primary_replica Indicates if the database replica currently has the role of
primary or secondary. Possible values are

 • 0 - Indicates a Secondary Database Replica

 • 1 - Indicates a Primary Database Replica

 synchronization_state Indicates the state of the database synchronization.
Possible values are

 • 0 - Indicates Not Synchronizing

 • 1 - Indicates Synchronizing

 • 2 - Indicates Synchronized

 • 3 - Indicates that the state is Reverting. This means
that the secondary is at the part of the undo stage,
where is retrieving pages from the primary

 • 4 - Indicates that the state is Initializing. This means
that the secondary is at the part of the undo phase,
where required log records are currently being
shipped and hardened

 synchronization_state_desc A textual description of the synchronization state.
Possible values are

 • NOT SYNCHRONIZING

 • SYNCHRONIZING

 • SYNCHRONIZED

 • REVERTING

 • INITIALIZING

(continued)

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

201

Table 9-6. (continued)

 Column Description

 is_commit_participant Indicates if transaction commits are synchronized.
Databases on asynchronous replicas will always
report 0 and the value is only accurate for databases
on synchronous replicas, for the primary database.
Possible values are

 • 0 - Indicates that transaction commit is not
synchronized

 • 1 - Indicates that transaction commit is synchronized

 synchronization_health Indicates the synchronization state of the database.
Possible values are

 • 0 - Indicates Not Healthy. This means that the
database is not synchronizing

 • 1 - Indicates Partially Healthy. This means that the
database is synchronizing

 • 2 - Indicates Healthy. This means that the database is
synchronized

 synchronization_health_desc A textual description of the synchronization health.
Possible values are

 • NOT_HEALTHY

 • PARTIALLY_HEALTHY

 • HEALTHY

 database_state Indicates that current state of the database. The value
reflects the value in the sys. databases catalog view.
Possible values are

 • 0 - Indicates that the database is Online

 • 1 - Indicates that the database is Restoring

 • 2 - Indicates that the database is Recovering

 • 3 - Indicates that the database has a state of
Recovery pending

 • 4 - Indicates that the database is Suspect

 • 5 - Indicates that the database is in Emergency mode

 • 6 - Indicates that the database is Offline

(continued)

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

202

Table 9-6. (continued)

 Column Description

 database_state_desc A textual description of the database state. Possible
values are

 • ONLINE

 • RESTORING

 • RECOVERING

 • RECOVERY_PENDING

 • SUSPECT

 • EMERGENCY

 • OFFLINE

 is_suspended Indicates if the database is suspended.
Possible values are

 • 0 - Indicates resumed

 • 1 - Indicates suspended

 suspend_reason If the database is suspended, the suspend_reason
column indicates the reason. Possible values are

 • 0 - Indicates a user manually suspended the data
movement

 • 1 - Indicates a suspension following a forced failover

 • 2 - Indicates that an error occurred during the redo
phase

 • 3 - Indicates that there was an error during the log
capture

 • 4 - Indicates that there was an error when writing the log

 • 5 - Indicates the database was suspended prior to a
restart

 • 6 - Indicates that there was an error during the undo
phase

 • 7 - Indicates a log chain mismatch error

 • 8 - Indicates that there was an error in the calculation
of the secondary replica’s synchronization point

(continued)

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

203

Table 9-6. (continued)

 Column Description

 suspend_reason_desc A textual description of the suspend_reason column .
Possible values are

 • SUSPEND_FROM_USER

 • SUSPEND_FROM_PARTNER

 • SUSPEND_FROM_REDO

 • SUSPEND_FROM_CAPTURE

 • SUSPEND_FROM_APPLY

 • SUSPEND_FROM_RESTART

 • SUSPEND_FROM_UNDO

 • SUSPEND_FROM_REVALIDATION

 • SUSPEND_FROM_XRF_UPDATE

 recovery_lsn On the primary replica, recovery_lsn indicates the end
of the transaction log (the final point in the transaction
log for point-in-time recovery). On a secondary
replica, the column indicates the point to which the
resynchronization would be required. If the value is
equal or greater than last_hardened_lsn , however,
then it indicates that resynchronization would not be
required

 truncation_lsn For a primary replica, the column indicates the
minimum log truncation LSN across all secondaries.
For a secondary replica, the column indicates the log
truncation point for that specific database replica

 last_sent_lsn Indicates the end of the last log block that has been sent

 last_sent_time The date and time that the last log block was sent

 last_recieved_lsn Indicates the end of the last log block to be received

 last_hardened_lsn Indicates the start of the last log block to be hardened.
The value will be NULL for Asynchronous Commit
replicas

 last_hardened_time The date and time of the hardened LSN

 last_redone_lsn The LSN of the last log record to be redone on the
 secondary

 last_redone_time The timestamp of the last LSN to be redone on the
secondary

 log_send_queue_size The size of the log records that have not yet been sent to
the secondary, specified in kilobytes

(continued)

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

204

 Column Description

 log_send_rate The speed at which log records are being sent to the
secondary, specified in kilobytes/sec

 filestream_send_rate The speed at which FILESTREAM files are being sent to
the secondary, specified in kilobytes/sec

 end_of_log_lsn The LSN of the final log record within the log cache

 last_commit_lsn The LSN of the last committed transaction in the
transaction log

 last_commit_time The timestamp of the last committed LSN in the
transaction log

 low_water_mark_for_ghosts The ghost cleanup task (which physically deletes rows
that have already been logically deleted), uses the
minimum value of this column, across all replicas of
the database, to determine where to start cleaning up
records

 secondary_log_seconds The number of seconds that the secondary replica is
behind the primary replica

 The script in Listing 9-5 demonstrates how to assess the health availability database,
within the App1 Availability Group. You will notice that we use the DB_NAME() function to
return the name of the database, and join the sys.dm_hadr_database_replica_states
DMV to the sys.availability_groups and sys.availability_replicas catalog views,
to return the names of the Availability Groups, and Replicas.

 Listing 9-5. Assessing the State of an Availability Database

 SELECT
 DB_NAME(database_id)
 ,ag.name
 ,ar.replica_server_name
 ,is_primary_replica
 ,synchronization_state_desc
 ,synchronization_health_desc
 ,database_state_desc
 FROM sys.dm_hadr_database_replica_states drs
 INNER JOIN sys.availability_groups ag
 ON drs.group_id = ag.group_id
 INNER JOIN sys.availability_replicas ar
 ON drs.replica_id = ar.replica_id
 WHERE ag.name = 'App1';

CHAPTER 9 ■ TROUBLESHOOTING ALWAYSON

205

 Summary
 SQL Server exposes a large amount of metadata that can help you troubleshoot issues and
audit your configuration. While this chapter discusses some of the most helpful metadata,
I strongly encourage you to explore the hadr DMVs further.

 For failover clustered instances, the sys.dm_os_cluster_nodes DMV exposes the
health status of nodes within a cluster. Further troubleshooting detail can be found by
calling the sp_server_diagnostics system stored procedure.

 ■ Tip The sp_server_diagnostics system stored procedure can also be used for
troubleshooting AlwaysOn Availability Groups, and returns a row for each Availability Group
hosted on the instance.

 The sys.dm_hadr_availability_replica_states DMV exposes details of the health
status of Replicas, which host AlwaysOn Availability Groups. To drill down to view the
health status of databases that participate within an Availability Group, the sys.dm_hadr_
database_replica_states DMV can be queried.

 Both of the DMVs mentioned in the preceding can be joined to the sys.
availability_groups and sys.availability_replicas DMVs, to obtain the textual
information regarding the configuration, as opposed to GUIDs. The sys.dm_hadr_
database_replica_states DMV can also be joined to sys.databases, to obtain further
information, regarding database configuration.

207© Peter A. Carter 2016
P.A. Carter, SQL Server AlwaysOn Revealed, DOI 10.1007/978-1-4842-2397-0

��������� A
Active node, 10
Advanced Encryption Standard (AES), 95
AlwaysOn administration

Availability Group (see AlwaysOn
Availability Groups)

cluster maintenance, 149
Cluster Node Configuration

page, 153
configuring possible owners, 152
Failover Cluster Manager, 150
move clustered role

dialog box, 150
move instance between

nodes, 149, 151
overriding priority, 149
PowerShell, 151, 154
Remove Node wizard, 153–154
remove possible owners, 151–152
rolling patch upgrade, 151–152
Software Assurance, 149

AlwaysOn Availability Groups (AOAG)
active/passive cluster, 26–27
App1 and App2, 83
App1Customers and App1Sales

databases, 121
asynchronous failover, 157
automatic page repair, 22
backing up database, 90, 27
CLUSTERNODE3\

ASYNCDR, 26–27, 121
creation

Application Intent parameter, 94
arguments, 106–108
Backup Preferences tab, 96
database mirroring endpoint, 95

database page, 92–93
data synchorization page, 98–99
Endpoints tab, 95
FAILOVER_CONDITION_LEVEL

argument, 108
introduction page, 90–91
Listener dialog box, 100
Listener tab, 97–98
multi-subnet clusters, 97
network traffic, 97
replicas page, 93–94
RTO, 97
script, 101
service account, 95
summary page, 100
Synchronous Commit

option, 93–94
validation page, 99–100

database and log files, 164
database creation, 84

clustering technologies, 18
specify name page, 91–92

data-tier applications, 19–20
disaster recovery (see Disaster

recovery)
HA/DR topology, 25, 83
High Availability tab, 89
Last Failover Reason

return the time and reason, 199
sys.dm_hadr_availability_replica_

states, 197–199
listener dialog box

App2Customers database, 109
backing up and restoring

database, 109
Backup Preferences tab, 111
general tab, 110

Index

■ INDEX

208

IP Addresses, 112
Primary Role property, 110
replica properties, 110
Session Timeout property, 110
TCP endpoint, 109
transaction log backup, 109

load balancing, 19
log stream replication, 26
monitoring tool

AlwaysOn Dashboard, 167
AlwaysOn Health Trace, 170

multiple listeners
client access page point, 161–162
confirmation page, 162
dependencies tab, 163
hard-coded connection

strings, 161
multi-subnet cluster, 21, 121
performance Benchmark, 117
PRIMARYREPLICA, 83
production environment steps, 157
quorum model, 121
readable secondary replicas, 144
remove database, 163–164
safe-stating application and

failing over, 157, 159
scale-out requirements, 19
shared disk resource, 25
single connection string, 19
single-user mode, 163
SQL Server configuration, 89
stand-alone instances, 89
State of Availability Databases

assessing health availability
database, 204

DB_NAME() function, 204
sys.dm_hadr_database_

replica_states Columns, 200–203
suspend data movement, 164
SYNCHA, 83
Synchronous Commit mode, 112
synchronous failover

introduction page, 155
Primary Replica page, 155
Replica page, 155–156
summary page, 156

synchronous replicas, 18
tasks, 83, 121
uncontained objects,

synchronizing, 161

AlwaysOn Dashboard
add/remove columns, 169
App1 Availability Group, 167–168
Cluster Quorum Information

screen, 168–169
Group By button, 169
synchronization states, 168

AlwaysOn Failover Clustered Instance (FCI)
active/active configuration, 11
active node, 10
Cluster Disk Selection page, 69–70
Cluster Network Configuration page, 69
Cluster Resource Group page, 68
Collation tab, 71–72
Database Engine Configuration page, 72
Data Directories tab, 73–74
Error Logs and default Extended Event

health trace, 66
Feature Selection page, 65–66
FILESTREAM tab, 75–76
five-node N+M configuration, 12–13
high availability, 9
hacking methodologies, 73
Install Failover Cluster Rules, 64–65
Instance Configuration page, 67
Integration Services service, 66
License Terms page, 61–62
Metadata

DBA, 191
DMV, 191
failure condition levels, 194
hosts the instance, 192
retrieving diagnostic information,

196
return, 194
sp_server_diagnostics, 194–195
sys.dm_os_cluster_nodes

Columns, 192
sys.dm_os_cluster_properties

Columns, 193
viewing health check

configuration
Windows administration team, 192

Microsoft Update page, 62–63
mixed-mode authentication, 73
MSSQL13.[InstanceName], 66
nodes

Cluster Network Configuration
page, 78–79

Cluster Node Configuration
page, 78

AlwaysOn Availability Groups (cont.)

■ INDEX

209

License Terms page, 77
parameters, 81
PowerShell, 80–81
Product Key page, 77
Ready to Add Node page, 80
Service Accounts page, 79–80

parameters installation, 77
perform volume maintenance tasks, 71
PowerShell installation, 59, 76–77
Product Key page, 60–61
Product Updates page, 63–64
quorum

data centers, 13
definition, 13
high availability, 13
models, 14
multi-subnet cluster, 14
partitions, 13
split brain, 13

SAN replication, 9
SDKs and management tools, 67
Server Configuration page, 70, 72–73
Service Accounts tab, 70–71
site-aware cluster functionality, 10
SQL Server Installation

Center—Installation, 59–60
SR technology, 9
system databases, 66
tasks, 59
TempDB tab, 74–75
three-node cluster, 10
three-plus node configurations, 12
two-node cluster, 10
Windows Authentication Mode, 73
Windows Firewall, 65

AlwaysOn Health Trace, 165
Extended Events session, 170
target data, 170

Asynchronous mirroring, 15
Availability Group Listener, 18
Availability Groups failover, 20

��������� B
Business-critical applications, 1

��������� C
Check disk command (CHKDSK), 5
Cluster

ClustNode1 and ClustNode2, 29

creation
admin access point, 44–45
begin page, 37–38
confirmation page, 41–42, 46
DHCP, 44
PowerShell, 48
report, 47
server page, 38–39
summary page, 42–43, 46–47
testing options page, 40–41
validation report, 43–44, 48
validation warning page, 39–40

Disk Configuration, 29
installation, failover features

begin page, 31
confirmation page, 36–37
features page, 34–35
Installation type page, 31–32
management tools, 35–36
server roles page, 33–34
server selection page, 32–33
services, PowerShell

command, 37
MSDTC configuration

client access point page, 53
confirmation page, 54
creation, 55
downtime, 52
DTC resource, 55
High Availability Wizard, 52
role page, 52
SQL Server, 52
storage page, 53–54
Windows Server, 55

quorum configuration
cloud witness, 49
disks, 48, 51
Failover Cluster Manager, 48
fileshare witness, 49
option page, 49
PowerShell command, 51
storage witness page, 50
summary page, 51
witness page, 49, 50

role configuration
Failover tab, 57
general tab, 55–56
options, 56

tasks, 30
troubleshooting issues, 29

Cluster Validation wizard, 58, 122

■ INDEX

210

Configure Cluster Quorum Wizard, 124
Cost of downtime

intangible costs, 5
levels of availability, 5–6
predicted lifecycle, 5
tangible costs, 5

��������� D
Database mirroring

AlwaysOn Availability Groups, 15
data-tier application, 15
deprecated technology, 15
DR solution, 15
high performance mode, 15–16
high safety, automatic

failover mode, 16–17
modes, 15
network latency, 16
primary and secondary servers, 16
synchronous and asynchronous

method, 16
TCP endpoint, 15
Windows cluster service, 15
witness server, 16

Data corruption, 5
Disaster recovery (DR), 1

cluster configuration
confirmation page, 123–124
Failover Cluster Manager, 122
IP Address, 128–130
quorom, 124, 126–128
servers page, 122
validation warning page, 122–123

replica configuration
Backup Preferenes tab, 133
code implementation, 135–139
connection times, 141
data synchronization

page, 134–135
Endpoints tab, 132–133
IP Address, 139–140
listener tab, 134
Replicas page, 131
SQLCMD Mode, 135
SSMS, 131
summary page, 135
validation page, 135

Distributed Availability Groups, 19, 149
App2 Availability Group, 143
cluster, 142
coding, 144
DR site, 142
network traffic, 142
script, failover, 160
steps, 159
topology, 142–143

Distributed Resource Scheduler (DRS), 18
Distributed Transaction

Coordinator (DTC), 52
Dynamic Management View (DMV), 191
Dynamic Quorum, 14

��������� E
Extended events

actions, 181
AlwaysOn Events, 172–180
channels, 172
CPU utilization, 171
keywords/category, 171–172
maps, 182
monitor Availability Group sessions

Capture Global Fields page, 185
Capture page, 184–185
CREATE EVENT SESSION

WITH options, 188–189
creation, 187
data storage, 186–187
Filters page, 186
Properties page, 183
Summary page, 187
Template page, 183–184

packages, 171
predecessor, 171
predicates, 181–182
profiler, 171
sessions, 182
targets, 180–181
types, 182
WMI, 171

��������� F
Fully qualified domain

name (FQDN), 96

■ INDEX

211

��������� G
Global Fields, 181

��������� H
High availability (HA)

data corruption/human error, 1
implementation, 1

Hypertext Markup Language (HTML), 46

��������� I, J, K
IP Address

Availability Group Listener
Properties, 139–140

Configuring the Availability
Group, 128

Core Cluster Resources
window, 128

dependencies tab, 129–130
dependency report, 140–141
general tab, 129
OR dependency, 130
script, 140

��������� L
Level of availability

calculation, 2–3
downtime, 2
holistic monitoring tools, 2
network/application servers, 1–2
proactive maintenance, 4
SLAs and SLOs, 3–4
uptime, 1

Log sequence number (LSN), 22
Log shipping

disaster recovery, 23
DR and reporting servers, 23–24
failover, 25
recovery modes, 24
remote monitor server, 25
topology, 23

��������� M
Microsoft Cluster Service (MCS), 58
Microsoft Distributed Transaction

Coordinator (MSDTC), 30, 52

Microsoft’s Customer Experience
Improvement Program, 77

Mixed-mode authentication, 73

��������� N, O, P
Node, 10
Nonfunctional requirements (NFRs), 25

��������� Q
Quorum

Configuration Option
page, 124–125

Configure File Share Witness page,
126–127

Confirmation page, 127–128
Voting Configuration

page, 125
Witness page, 126

��������� R
Readable secondary replicas

Availability Group Listener, 145
load balancing topologies, 145–146
log streaming, 144
log truncation, 144
read-intent traffic, 147
read-only routing

configuration, 145, 147
round-robin algorithm, 145
snapshot isolation, 144
temporary statistics, 144
vertically scaled

reporting, 144
Recovery point objective (RPO), 93

applications, 4
data corruption, 5
data warehouse, 4
intrasite availability and intersite

recovery, 4
OLTP (Online Transaction Processing)

database, 4
Recovery time objective (RTO), 97

data corruption, 5
intrasite/intersite failover, 5
noncommitted

transactions, 4
Redundant infrastructure, 7

■ INDEX

212

��������� S
Service-level agreements(SLAs), 3–4, 93
Service-level objectives (SLOs), 3–4
SQLCMD mode, 100
SQL Server Integration Services

(SSIS), 30, 52, 65
SQL Server Management Studio (SSMS), 131
Standby server classifications, 6
Storage Replica (SR), 9
Synchronous Commit mode

Availability Group topology, 112
network latency and disk

performance, 112
performance test results

SQL Server 2014, 117
SQL Server 2016, 117

SAN replication, 118
script, 112–116
three-node cluster, 118

Systems Operations Center (SOC), 167

��������� T, U
TempDB database, 74
Tie Breaker, 15
Total cost of

ownership (TCO), 6
Transaction Undo

File (TUF), 24
Transmission Control

Protocol (TCP), 96

��������� V
Virtual computer object (VCO), 98
Virtual machines (VMs), 18

��������� W, X, Y, Z
Windows Cluster Service (WCS), 9, 30
Windows Server Update

Services (WSUS), 62

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Acknowledgments
	Chapter 1: High Availability and Disaster Recovery Concepts
	Level of Availability
	Service-Level Agreements and Service-Level Objectives
	Proactive Maintenance

	Recovery Point Objective and Recovery Time Objective
	Cost of Downtime
	Classification of Standby Servers
	Summary

	Chapter 2: Understanding High Availability and Disaster Recovery Technologies
	AlwaysOn Failover Clustering
	Active/Active Configuration
	Three-Plus Node Configurations
	Quorum

	Database Mirroring
	AlwaysOn Availability Groups
	Automatic Page Repair

	Log Shipping
	Recovery Modes
	Remote Monitor Server
	Failover

	Combining Technologies
	Summary

	Chapter 3: Implementing a Cluster
	Building the Cluster
	Installing the Failover Cluster Feature
	Creating the Cluster

	Configuring the Cluster
	Changing the Quorum
	Configuring MSDTC
	Configuring a Role

	Summary

	Chapter 4: Implementing an AlwaysOn Failover Clustered Instance
	Building the Instance
	Installing the Instance with PowerShell
	Adding a Node
	Adding a Node Using PowerShell
	Summary

	Chapter 5: Implementing HA with AlwaysOn Availability Groups
	Preparing for Availability Groups
	Configuring SQL Server
	Creating the Availability Group
	Using the New Availability Group Wizard
	Scripting the Availability Group
	Using the New Availability Group Dialog Box

	Performance Considerations for Synchronous Commit Mode
	Summary

	Chapter 6: Implementing DR with AlwaysOn Availability Groups
	Configuring the Cluster
	Adding a Node
	Modifying the Quorum
	Adding an IP Address

	Configuring the Availability Group
	Adding and Configuring a Replica
	Add an IP Address
	Improving Connection Times

	Distributed Availability Groups
	Configuring Readable Secondary Replicas
	Summary

	Chapter 7: Administering AlwaysOn
	Managing a Cluster
	Moving the Instance Between Nodes
	Rolling Patch Upgrade
	Removing a Node from the Cluster

	Managing AlwaysOn Availability Groups
	Failover
	Synchronous Failover
	Asynchronous Failover
	Failing Over a Distributed Availability Group

	Synchronizing Uncontained Objects
	Adding Multiple Listeners
	Other Administrative Considerations

	Summary

	Chapter 8: Monitoring AlwaysOn Availability Groups
	AlwaysOn Dashboard
	AlwaysOn Health Trace
	Monitoring AlwaysOn with Extended Events
	Extended Events Concepts
	Packages
	Events
	Targets
	Actions
	Predicates
	Types
	Maps
	Sessions

	Creating an Event Session to Monitor Availability Group

	Summary

	Chapter 9: Troubleshooting AlwaysOn
	AlwaysOn Failover Clustered Instance Metadata
	Discovering the Node That Hosts an Instance
	Viewing Health Check Configuration

	AlwaysOn Availability Group Metadata
	Determining the Last Failover Reason
	Assessing the State of Availability Databases

	Summary

	Index

