
THE E XPER T ’S VOICE® IN OR ACLE

Pro Oracle
Database 18c
Administration

Manage and Safeguard Your
Organization’s Data
—
Third Edition
—
Michelle Malcher
Darl Kuhn

www.allitebooks.com

http://www.allitebooks.org

Pro Oracle Database
18c Administration
Manage and Safeguard Your

Organization’s Data

Third Edition

Michelle Malcher
Darl Kuhn

www.allitebooks.com

http://www.allitebooks.org

Pro Oracle Database 18c Administration: Manage and Safeguard Your
Organization’s Data

ISBN-13 (pbk): 978-1-4842-4423-4			 ISBN-13 (electronic): 978-1-4842-4424-1
https://doi.org/10.1007/978-1-4842-4424-1

Copyright © 2019 by Michelle Malcher and Darl Kuhn

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484244234. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Michelle Malcher					
Huntley, IL, USA

Darl Kuhn
Morrison, CO, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4424-1
http://www.allitebooks.org

Dedicated to my daughters.
They believe in me just like I believe in them.

www.allitebooks.com

http://www.allitebooks.org

v

About the Authors��xxix

About the Technical Reviewer���xxxi

Acknowledgments���xxxiii

Introduction��xxxv

Table of Contents

Chapter 1: Installing the Oracle Binaries��� 1

Understanding the OFA�� 2

Oracle Inventory Directory�� 4

Oracle Base Directory��� 4

Oracle Home Directory��� 5

Oracle Network Files Directory��� 6

Automatic Diagnostic Repository��� 6

Installing Oracle��� 7

Step 1. Create the OS Groups and User�� 8

Step 2. Ensure That the OS Is Adequately Configured�� 11

Step 3. Obtain the Oracle Installation Software�� 12

Step 4. Unzip the Files�� 13

Step 5. Creating oraInst.loc File��� 14

Step 6. Configure the Response File, and Run the Installer�� 15

Step 7. Troubleshoot Any Issues��� 20

Step 8. Apply Any Additional Patches��� 21

Installing with a Copy of an Existing Installation��� 22

Step 1. Copy the Binaries, Using an OS Utility�� 22

Step 2. Attach the Oracle Home��� 24

Installing Read-Only Oracle Home��� 25

Upgrading Oracle Software�� 26

www.allitebooks.com

http://www.allitebooks.org

vi

Reinstalling After Failed Installation�� 27

Applying Interim Patches��� 28

Installing Remotely with the Graphical Installer�� 30

Step 1. Install X Software and Networking Utilities on the Local PC�������������������������������������� 31

Step 2. Start an X Session on the Local Computer��� 31

Step 3. Copy the Oracle Installation Media to the Remote Server�� 32

Step 4. Run the xhost Command�� 33

Step 5. Log In to the Remote Computer from X�� 33

Step 6. Ensure that the DISPLAY Variable Is Set Correctly on the Remote Computer������������� 33

Step 7. Execute the runInstaller Utility��� 34

Step 8. Troubleshoot��� 35

Installation in the Cloud��� 35

Summary��� 36

Chapter 2: Creating a Database��� 39

Setting OS Variables��� 40

A Manually Intensive Approach�� 41

Oracle’s Approach to Setting OS Variables��� 41

My Approach to Setting OS Variables��� 43

Creating a Database��� 46

Step 1. Set the OS Variables��� 46

Step 2. Configure the Initialization File��� 47

Step 3. Create the Required Directories��� 50

Step 4. Create the Database��� 50

Step 5. Create a Data Dictionary�� 56

Configuring and Implementing the Listener��� 57

Implementing a Listener with the Net Configuration Assistant�� 58

Manually Configuring a Listener��� 59

Connecting to a Database through the Network�� 61

Creating a Password File��� 62

Table of Contents

vii

Starting and Stopping the Database�� 64

Understanding OS Authentication��� 64

Starting the Database��� 65

Stopping the Database��� 68

Using the dbca to Create a Database��� 70

Dropping a Database�� 73

How Many Databases on One Server?��� 74

Understanding Oracle Architecture�� 77

Summary��� 80

Chapter 3: Configuring an Efficient Environment�� 83

Customizing Your OS Command Prompt�� 84

Customizing Your SQL Prompt��� 87

Creating Shortcuts for Frequently Used Commands�� 89

Using Aliases�� 89

Using a Function��� 91

Rerunning Commands Quickly��� 93

Scrolling with the Up and Down Arrow Keys�� 94

Using Ctrl+P and Ctrl+N��� 94

Listing the Command History��� 94

Searching in Reverse�� 95

Setting the Command Editor�� 95

Developing Standard Scripts��� 96

dba_setup��� 97

dba_fcns��� 98

tbsp_chk.bsh�� 99

conn.bsh��� 102

filesp.bsh�� 103

login.sql�� 106

top.sql��� 107

lock.sql��� 108

users.sql��� 110

Table of Contents

viii

Organizing Scripts�� 111

Step 1. Create Directories�� 112

Step 2. Copy Files to Directories�� 112

Step 3. Configure the Startup File�� 113

Automating Scripts�� 114

Summary��� 114

Chapter 4: Tablespaces and Data Files�� 117

Understanding the First Five�� 119

Understanding the Need for More�� 120

Creating Tablespaces��� 122

Renaming a Tablespace��� 127

Changing a Tablespace’s Write Mode�� 128

Dropping a Tablespace��� 129

Using Oracle Managed Files�� 132

Creating a Bigfile Tablespace��� 133

Enabling Default Table Compression Within a Tablespace Tablespace�������������������������������������� 134

Displaying Tablespace Size�� 135

Altering Tablespace Size�� 137

Toggling Data Files Offline and Online��� 138

Renaming or Relocating a Data File��� 141

Performing Online Data File Operations��� 142

Performing Offline Data File Operations��� 142

Using ASM for Tablespaces�� 148

Summary��� 149

Chapter 5: Managing Control Files, Online Redo Logs, and Archivelogs��������������� 151

Managing Control Files�� 151

Viewing Control File Names and Locations�� 155

Adding a Control File�� 155

Moving a Control File�� 159

Removing a Control File��� 160

Table of Contents

ix

Online Redo Logs��� 162

Displaying Online Redo Log Information�� 166

Determining the Optimal Size of Online Redo Log Groups��� 168

Determining the Optimal Number of Redo Log Groups�� 169

Adding Online Redo Log Groups��� 172

Resizing and Dropping Online Redo Log Groups�� 172

Adding Online Redo Log Files to a Group��� 175

Removing Online Redo Log Files from a Group�� 175

Moving or Renaming Redo Log Files�� 176

Controlling the Generation of Redo��� 177

Implementing Archivelog Mode��� 179

Making Architectural Decisions�� 179

Setting the Archive Redo File Location��� 181

Enabling Archivelog Mode�� 186

Disabling Archivelog Mode��� 187

Reacting to a Lack of Disk Space in Your Archive Log Destination��������������������������������������� 188

Backing Up Archive Redo Log Files�� 190

Summary��� 190

Chapter 6: Users and Basic Security��� 193

Managing Default Users��� 193

Locking Accounts and Expiring Passwords�� 196

Identifying DBA-Created Accounts��� 198

Checking Default Passwords�� 199

Creating Users��� 200

Choosing a Username and Authentication Method��� 201

Assigning Default Permanent and Temporary Tablespaces�� 206

Modifying Passwords��� 209

Schema Only Account�� 210

Modifying Users��� 212

Dropping Users�� 213

Enforcing Password Security and Resource Limits��� 214

Table of Contents

x

Basic Password Security�� 215

Password Strength��� 219

Limiting Database Resource Usage�� 221

Managing Privileges��� 223

Assigning Database System Privileges�� 224

Assigning Database Object Privileges�� 225

Grouping and Assigning Privileges��� 226

Summary��� 229

Chapter 7: Tables and Constraints��� 231

Understanding Table Types�� 232

Understanding Data Types��� 233

Character�� 234

Numeric�� 236

Date/Time��� 237

RAW�� 238

ROWID��� 239

LOB��� 240

JSON��� 241

Creating a Table��� 241

Creating a Heap-Organized Table��� 242

Implementing Virtual Columns��� 246

Implementing Invisible Columns�� 250

Making Read-Only Tables��� 251

Understanding Deferred-Segment Creation��� 252

Creating a Table with an Autoincrementing (Identity) Column�� 253

Allowing for Default Parallel SQL Execution��� 256

Compressing Table Data��� 257

Avoiding Redo Creation�� 260

Creating a Table from a Query�� 263

Table of Contents

xi

Modifying a Table��� 266

Obtaining the Needed Lock�� 266

Renaming a Table��� 267

Adding a Column�� 267

Altering a Column��� 268

Renaming a Column��� 270

Dropping a Column��� 270

Displaying Table DDL�� 271

Dropping a Table�� 273

Undropping a Table�� 274

Removing Data from a Table�� 275

Using DELETE��� 276

Using TRUNCATE��� 276

Viewing and Adjusting the High-Water Mark��� 278

Tracing to Detect Space Below the High-Water Mark�� 279

Using DBMS_SPACE to Detect Space Below the High-Water Mark������������������������������������� 280

Selecting from Data Dictionary Extents View��� 282

Lowering the High-Water Mark�� 282

Creating a Temporary Table�� 286

Creating an Index-Organized Table�� 288

Managing Constraints�� 289

Creating Primary Key Constraints��� 289

Enforcing Unique Key Values�� 291

Creating Foreign Key Constraints��� 293

Checking for Specific Data Conditions��� 295

Enforcing Not Null Conditions��� 296

Disabling Constraints��� 297

EnablingConstraints��� 299

Summary��� 302

Table of Contents

xii

Chapter 8: Indexes��� 303

Deciding When to Create an Index��� 304

Proactively Creating Indexes�� 305

Reactively Creating Indexes��� 306

Planning for Robustness�� 308

Determining Which Type of Index to Use�� 308

Estimating the Size of an Index Before Creation�� 311

Creating Separate Tablespaces for Indexes��� 313

Creating Portable Scripts�� 316

Establishing Naming Standards��� 317

Creating Indexes�� 318

Creating B-tree Indexes�� 318

Creating Concatenated Indexes�� 322

Implementing Function-Based Indexes�� 324

Creating Unique Indexes��� 325

Implementing Bitmap Indexes�� 327

Creating Bitmap Join Indexes��� 328

Implementing Reverse-Key Indexes��� 329

Creating Key-Compressed Indexes�� 330

Parallelizing Index Creation�� 331

Avoiding Redo Generation When Creating an Index�� 331

Implementing Invisible Indexes�� 332

Maintaining Indexes��� 335

Renaming an Index��� 336

Displaying Code to Re-create an Index�� 336

Rebuilding an Index�� 337

Making Indexes Unusable�� 338

Monitoring Index Usage�� 339

Dropping an Index�� 341

Indexing Foreign Key Columns��� 341

Table of Contents

xiii

Implementing an Index on a Foreign Key Column�� 342

Determining if Foreign Key Columns Are Indexed�� 344

Summary��� 347

Chapter 9: Views, Synonyms, and Sequences��� 351

Implementing Views��� 351

Creating a View��� 352

Checking Updates��� 354

Creating Read-Only Views�� 355

Updatable Join Views��� 356

Creating an INSTEAD OF Trigger��� 358

Implementing an Invisible Column��� 360

Modifying a View Definition�� 362

Displaying the SQL Used to Create a View��� 363

Renaming a View�� 364

Dropping a View��� 365

Managing Synonyms�� 365

Creating a Synonym��� 366

Creating Public Synonyms�� 367

Dynamically Generating Synonyms�� 368

Displaying Synonym Metadata��� 369

Renaming a Synonym��� 370

Dropping a Synonym�� 370

Managing Sequences��� 371

Creating a Sequence�� 371

Using Sequence Pseudocolumns��� 373

Autoincrementing Columns�� 374

Scalable Sequences��� 375

Implementing Multiple Sequences That Generate Unique Values�� 376

Creating One Sequence or Many�� 377

Viewing Sequence Metadata�� 378

Renaming a Sequence�� 379

Table of Contents

xiv

Dropping a Sequence��� 379

Resetting a Sequence��� 379

Summary��� 381

Chapter 10: Data Dictionary Fundamentals��� 383

Data Dictionary Architecture�� 384

Static Views�� 384

Dynamic Performance Views�� 387

A Different View of Metadata��� 389

A Few Creative Uses of the Data Dictionary�� 392

Derivable Documentation��� 392

Displaying User Information��� 394

Displaying Table Row Counts�� 398

Showing Primary Key and Foreign Key Relationships�� 401

Displaying Object Dependencies�� 402

Summary��� 406

Chapter 11: Large Objects��� 407

Describing LOB Types��� 408

Illustrating LOB Locators, Indexes, and Chunks��� 409

Distinguishing Between BasicFiles and SecureFiles��� 411

BasicFiles��� 412

SecureFiles��� 412

Creating a Table with a LOB Column�� 413

Creating a BasicFiles LOB Column��� 413

Implementing a LOB in a Specific Tablespace�� 415

Creating a SecureFiles LOB Column��� 416

Implementing a Partitioned LOB��� 417

Maintaining LOB Columns�� 419

Moving a LOB Column�� 420

Adding a LOB Column��� 420

Removing a LOB Column�� 421

Table of Contents

xv

Caching LOBs��� 421

Storing LOBs In- and Out of Line�� 422

Implementing SecureFiles Advanced Features�� 424

Compressing LOBs��� 424

Deduplicating LOBs�� 425

Encrypting LOBs��� 426

Migrating BasicFiles to SecureFiles��� 428

Loading LOBs��� 432

Loading a CLOB�� 432

Loading a BLOB�� 434

Measuring LOB Space Consumed�� 435

BasicFiles Space Used��� 436

SecureFiles Space Used��� 437

Reading BFILEs�� 439

Summary��� 440

Chapter 12: Partitioning: Divide and Conquer��� 441

What Tables Should Be Partitioned?�� 443

Creating Partitioned Tables�� 445

Partitioning by Range��� 445

Placing Partitions in Tablespaces��� 450

Partitioning by List�� 453

Partitioning by Hash��� 454

Blending Different Partitioning Methods�� 455

Creating Partitions on Demand��� 457

Partitioning to Match a Parent Table�� 462

Partitioning on a Virtual Column��� 466

Giving an Application Control Over Partitioning�� 467

Maintaining Partitions�� 467

Viewing Partition Metadata�� 468

Moving a Partition�� 469

Automatically Moving Updated Rows��� 471

Table of Contents

xvi

Partitioning an Existing Table��� 472

Adding a Partition��� 474

Exchanging a Partition with an Existing Table�� 476

Renaming a Partition�� 479

Splitting a Partition��� 479

Merging Partitions�� 480

Dropping a Partition�� 482

Generating Statistics for a Partition��� 483

Removing Rows from a Partition�� 484

Manipulating Data Within a Partition�� 485

Partitioning Indexes��� 486

Partitioning an Index to Follow Its Table��� 486

Partitioning an Index Differently from Its Table�� 490

Partial Indexes�� 492

Partition Pruning�� 494

Modifying the Partition Strategy�� 496

Summary��� 496

Chapter 13: Data Pump�� 499

Data Pump Architecture��� 500

Getting Started��� 505

Taking an Export��� 505

Importing a Table�� 509

Using a Parameter File��� 509

Exporting and Importing with Granularity�� 511

Exporting and Importing an Entire Database�� 511

Schema Level��� 513

Table Level�� 514

Tablespace Level�� 515

Transferring Data��� 516

Exporting and Importing Directly Across the Network�� 516

Copying Data Files�� 519

Table of Contents

xvii

Features for Manipulating Storage�� 521

Exporting Tablespace Metadata�� 522

Specifying Different Data File Paths and Names�� 522

Importing into a Tablespace Different from the Original��� 523

Changing the Size of Data Files�� 524

Changing Segment and Storage Attributes�� 525

Filtering Data and Objects�� 526

Specifying a Query��� 526

Exporting a Percentage of the Data�� 528

Excluding Objects from the Export File�� 528

Excluding Statistics�� 530

Including Only Specific Objects in an Export File��� 531

Exporting Table, Index, Constraint, and Trigger DDL��� 531

Excluding Objects from Import��� 532

Including Objects in Import�� 532

Common Data Pump Tasks�� 533

Estimating the Size of Export Jobs��� 533

Listing the Contents of Dump Files��� 534

Cloning a User�� 535

Creating a Consistent Export�� 535

Importing When Objects Already Exist�� 537

Renaming a Table��� 539

Remapping Data��� 539

Suppressing a Log File��� 541

Using Parallelism�� 541

Specifying Additional Dump Files��� 543

Reusing Output File Names�� 543

Creating a Daily DDL File�� 544

Compressing Output��� 545

Changing Table Compression Characteristics on Import�� 546

Encrypting Data�� 546

Exporting Views as Tables�� 548

Table of Contents

xviii

Disabling Logging of Redo on Import��� 548

Attaching to a Running Job�� 549

Stopping and Restarting a Job��� 550

Terminating a Data Pump Job�� 550

Monitoring Data Pump Jobs��� 551

Data Pump Log File�� 551

Data Dictionary Views��� 552

Database Alert Log��� 553

Status Table�� 553

Interactive Command Mode Status�� 554

OS Utilities�� 554

Summary��� 555

Chapter 14: External Tables��� 557

SQL*Loader vs. External Tables��� 558

Loading CSV Files into the Database��� 560

Creating a Directory Object and Granting Access��� 561

Creating an External Table�� 561

Generating SQL to Create an External Table��� 563

Viewing External Table Metadata��� 565

Loading a Regular Table from the External Table��� 566

Performing Advanced Transformations�� 568

Viewing Text Files from SQL��� 570

Unloading and Loading Data Using an External Table�� 572

Enabling Parallelism to Reduce Elapsed Time�� 575

Compressing a Dump File�� 576

Encrypting a Dump File�� 577

Summary��� 580

Chapter 15: Materialized Views��� 581

Understanding MVs�� 581

MV Terminology�� 584

Referencing Useful Views��� 585

Table of Contents

xix

Creating Basic Materialized Views��� 586

Creating a Complete Refreshable MV��� 587

Creating a Fast Refreshable MV��� 591

Going Beyond the Basics��� 598

Creating MVs and Specifying Tablespace for MVs and Indexes��� 598

Creating Indexes on MVs�� 598

Partitioning MVs��� 599

Compressing an MV�� 600

Encrypting MV Columns��� 600

Building an MV on a Prebuilt Table��� 602

Creating an Unpopulated MV�� 603

Creating an MV Refreshed on Commit�� 604

Creating a Never Refreshable MV��� 605

Creating MVs for Query Rewrite��� 606

Creating a Fast Refreshable MV Based on a Complex Query��� 607

Viewing MV DDL��� 611

Dropping an MV�� 611

Modifying MVs��� 612

Modifying Base Table DDL and Propagating to MVs��� 612

Toggling Redo Logging on an MV��� 617

Altering Parallelism�� 618

Moving an MV��� 619

Managing MV Logs��� 619

Creating an MV Log�� 620

Indexing MV Log Columns�� 622

Viewing Space Used by an MV Log�� 622

Shrinking the Space in an MV Log�� 623

Checking the Row Count of an MV Log�� 624

Moving an MV Log�� 625

Dropping an MV Log��� 626

Refreshing MVs�� 627

Table of Contents

xx

Manually Refreshing MVs from SQL*Plus��� 627

Creating an MV with a Refresh Interval�� 629

Efficiently Performing a Complete Refresh�� 630

Handling the ORA-12034 Error��� 631

Monitoring MV Refreshes��� 632

Viewing MVs’ Last Refresh Times���   632

Determining Whether a Refresh Is in Progress��� 632

Monitoring Real-Time Refresh Progress�� 633

Checking Whether MVs Are Refreshing Within a Time Period�� 634

Creating Remote MV Refreshes��� 635

Understanding Remote-Refresh Architectures��� 636

Viewing MV Base Table Information��� 638

Determining How Many MVs Reference a Central MV Log��� 639

Managing MVs in Groups��� 641

Creating an MV Group��� 642

Altering an MV Refresh Group�� 642

Refreshing an MV Group��� 643

DBMS_MVIEW vs. DBMS_REFRESH��� 643

Determining MVs in a Group��� 644

Adding an MV to a Refresh Group��� 645

Removing MVs from a Refresh Group��� 645

Dropping an MV Refresh Group�� 645

Summary���   646

Chapter 16: User-Managed Backup and Recovery�� 647

Implementing a Cold-Backup Strategy�� 649

Making a Cold Backup of a Database��� 649

Restoring a Cold Backup in Noarchivelog Mode with Online Redo Logs������������������������������ 652

Restoring a Cold Backup in Noarchivelog Mode Without Online Redo Logs������������������������� 653

Scripting a Cold Backup and Restore��� 655

Implementing a Hot Backup Strategy�� 660

Making a Hot Backup��� 660

Table of Contents

xxi

Scripting Hot Backups�� 665

Understanding the Split-Block Issue�� 668

Understanding the Need for Redo Generated During Backup�� 672

Understanding That Data Files Are Updated��� 673

Performing a Complete Recovery of an Archivelog Mode Database�� 675

Restoring and Recovering with the Database Offline��� 676

Restoring and Recovering with a Database Online�� 681

Restoring Control Files��� 682

Performing an Incomplete Recovery of an Archivelog Mode Database������������������������������������� 687

Summary��� 691

Chapter 17: Configuring RMAN�� 693

Understanding RMAN��� 694

Starting RMAN��� 699

RMAN Architectural Decisions��� 700

1. �Running the RMAN Client Remotely or Locally��� 704

2. �Specifying the Backup User��� 704

3. �Using Online or Offline Backups��� 705

4. �Setting the Archivelog Destination and File Format��� 705

5. �Configuring the RMAN Backup Location and File Format��� 706

6. �Setting the Autobackup of the Control File��� 709

7. �Specifying the Location of the Autobackup of the Control File��� 710

8. �Backing Up Archivelogs�� 711

9. �Determining the Location for the Snapshot Control File��� 711

10. �Using a Recovery Catalog��� 712

11. �Using a Media Manager�� 713

12. �Setting the CONTROL_FILE_RECORD_KEEP_TIME Initialization Parameter������������������� 714

13. �Configuring RMAN’s Backup Retention Policy�� 715

14. �Configuring the Archivelogs’ Deletion Policy�� 717

15. �Setting the Degree of Parallelism��� 718

16. �Using Backup Sets or Image Copies��� 719

17. �Using Incremental Backups�� 720

Table of Contents

xxii

18. �Using Incrementally Updated Backups��� 721

19. �Using Block Change Tracking��� 721

20. � Configuring Binary Compression��� 722

21. �Configuring Encryption��� 723

22. �Configuring Miscellaneous Settings��� 724

23. �Configuring Informational Output��� 725

Segueing from Decision to Action�� 727

Summary��� 732

Chapter 18: RMAN Backups and Reporting��� 733

Preparing to Run RMAN Backup Commands��� 734

Setting NLS_DATE_FORMAT��� 734

Setting ECHO�� 735

Showing Variables�� 736

Running Backups��� 736

Backing Up the Entire Database��� 736

Backing Up Tablespaces��� 738

Backing Up Data Files�� 739

Backing Up the Control File�� 739

Backing Up the spfile�� 740

Backing Up Archivelogs�� 740

Backing Up FRA�� 741

Excluding Tablespaces from Backups�� 742

Backing Up Data Files Not Backed Up�� 743

Skipping Read-Only Tablespaces��� 743

Skipping Offline or Inaccessible Files�� 744

Backing Up Large Files in Parallel�� 745

Adding RMAN Backup Information to the Repository��� 745

Taking Backups of Pluggable Databases��� 747

While Connected to the Root Container�� 747

While Connected to a Pluggable Database��� 748

Table of Contents

xxiii

Creating Incremental Backups��� 749

Taking Incremental-Level Backups�� 750

Making Incrementally Updating Backups��� 751

Using Block Change Tracking��� 753

Checking for Corruption in Data Files and Backups��� 754

Using VALIDATE��� 754

Using BACKUP...VALIDATE��� 756

Using RESTORE...VALIDATE��� 756

Using a Recovery Catalog�� 757

Creating a Recovery Catalog�� 757

Registering a Target Database�� 759

Backing Up the Recovery Catalog�� 760

Synchronizing the Recovery Catalog�� 760

Recovery Catalog Versions��� 761

Dropping a Recovery Catalog��� 761

Logging RMAN Output�� 762

Redirecting Output to a File�� 762

Capturing Output with Linux/Unix Logging Commands�� 763

Logging Output to a File��� 764

Querying for Output in the Data Dictionary�� 764

RMAN Reporting��� 765

Using LIST��� 765

Using REPORT��� 766

Using SQL��� 767

Summary��� 772

Chapter 19: RMAN Restore and Recovery��� 773

Determining if Media Recovery Is Required��� 775

Determining What to Restore��� 777

How the Process Works�� 777

Using Data Recovery Advisor�� 779

Table of Contents

xxiv

Using RMAN to Stop/Start Oracle��� 783

Shutting Down�� 783

Starting Up�� 783

Complete Recovery�� 784

Testing Restore and Recovery�� 785

Restoring and Recovering the Entire Database�� 787

Restoring and Recovering Tablespaces�� 789

Restoring Read-Only Tablespaces�� 790

Restoring Temporary Tablespaces�� 791

Restoring and Recovering Data Files�� 791

Restoring Data Files to Nondefault Locations�� 793

Performing Block-Level Recovery�� 794

Restoring a Container Database and Its Associated Pluggable Databases�������������������������� 796

Restoring Archivelog Files�� 799

Restoring to the Default Location��� 800

Restoring to a Nondefault Location�� 800

Restoring a Control File�� 801

Using a Recovery Catalog��� 801

Using an Autobackup�� 802

Specifying a Backup File Name�� 803

Restoring the spfile�� 803

Incomplete Recovery��� 805

Determining the Type of Incomplete Recovery��� 808

Performing Time-Based Recovery�� 808

Performing Log Sequence-Based Recovery��� 809

Performing SCN-Based Recovery��� 810

Restoring to a Restore Point��� 811

Restoring Tables to a Previous Point�� 811

Flashing Back a Table�� 813

FLASHBACK TABLE TO BEFORE DROP��� 813

Flashing Back a Table to a Previous Point in Time��� 815

Table of Contents

xxv

FLASHING BACK A DATABASE��� 816

Restoring and Recovering to a Different Server�� 819

Step 1. Create an RMAN Backup on the Originating Database�� 821

Step 2. Copy the RMAN Backup to the Destination Server��� 821

Step 3. Ensure That Oracle Is Installed��� 822

Step 4. Source the Required OS Variables�� 822

Step 5. Create an init.ora File for the Database to Be Restored��� 822

Step 6. Create Any Required Directories for Data Files, Control Files,
and Dump/Trace Files��� 823

Step 7. Start Up the Database in Nomount Mode��� 824

Step 8. Restore the Control File from the RMAN Backup��� 824

Step 9. Start Up the Database in Mount Mode��� 824

Step 10. Make the Control File Aware of the Location of the RMAN Backups���������������������� 824

Step 11. Rename and Restore the Data Files to Reflect New Directory Locations��������������� 825

Step 12. Recover the Database�� 828

Step 13. Set the New Location for the Online Redo Logs��� 829

Step 14. Open the Database��� 830

Step 15. Add the Temp File��� 831

Step 16. Rename the Database�� 831

Summary��� 834

Chapter 20: Automating Jobs�� 837

Automating Jobs with Oracle Scheduler�� 839

Creating and Scheduling a Job��� 839

Viewing Job Details�� 841

Modifying Job Logging History��� 842

Modifying a Job�� 842

Stopping a Job�� 843

Disabling a Job��� 843

Enabling a Job�� 843

Copying a Job��� 844

Running a Job Manually��� 844

Deleting a Job��� 845

Table of Contents

xxvi

Oracle Scheduler vs. cron�� 845

Automating Jobs via cron�� 846

How cron Works��� 847

Enabling Access to cron��� 849

Understanding cron Table Entries��� 850

Scheduling a Job to Run Automatically�� 851

Redirecting cron Output��� 855

Troubleshooting cron�� 856

Examples of Automated DBA Jobs��� 857

Starting and Stopping the Database and Listener�� 858

Checking for Archivelog Destination Fullness�� 859

Truncating Large Log Files��� 862

Checking for Locked Production Accounts��� 864

Checking for Too Many Processes�� 865

Verifying the Integrity of RMAN Backups�� 866

Autonomous Database��� 868

Summary��� 869

Chapter 21: Database Troubleshooting�� 871

Quickly Triaging�� 871

Checking Database Availability��� 872

Investigating Disk Fullness��� 875

Inspecting the Alert Log�� 878

Identifying Bottlenecks via OS Utilities�� 882

Identifying System Bottlenecks�� 883

Mapping an Operating System Process to an SQL Statement�� 888

Finding Resource-Intensive SQL Statements��� 891

Monitoring Real-Time SQL Execution Statistics��� 891

Running Oracle Diagnostic Utilities�� 894

Detecting and Resolving Locking Issues�� 899

Resolving Open-Cursor Issues��� 902

Troubleshooting Undo Tablespace Issues�� 904

Table of Contents

xxvii

Determining if Undo Is Correctly Sized��� 904

Viewing SQL That Is Consuming Undo Space��� 907

Handling Temporary Tablespace Issues��� 908

Determining if Temporary Tablespace Is Sized Correctly��� 909

Viewing SQL That Is Consuming Temporary Space�� 910

Summary��� 911

Chapter 22: Pluggable Databases�� 915

Understanding Pluggable Architecture�� 919

Paradigm Shift�� 922

Backup and Recovery Implications�� 924

Tuning Nuances�� 925

Creating a CDB��� 926

Using the Database Configuration Assistant (DBCA)�� 927

Generating CDB Create Scripts via DBCA��� 928

Creating Manually with SQL��� 929

Verifying That a CDB Was Created�� 932

Administrating the Root Container��� 934

Connecting to the Root Container��� 934

Displaying Currently Connected Container Information�� 935

Starting/Stopping the Root Container��� 936

Creating Common Users��� 936

Creating Common Roles��� 937

Creating Local Users and Roles�� 938

Reporting on Container Space�� 938

Switching Containers��� 940

Creating a Pluggable Database Within a CDB�� 941

Cloning the Seed Database�� 942

Cloning an Existing PDB��� 943

Cloning from a Non-CDB Database��� 945

Unplugging a PDB from a CDB�� 947

Plugging an Unplugged PDB into a CDB��� 948

Table of Contents

xxviii

Using the DBCA to Create a PDB from the Seed Database��� 949

Checking the Status of Pluggable Databases��� 950

Administrating Pluggable Databases��� 951

Connecting to a PDB��� 951

Managing a Listener in PDB Environment�� 952

Showing the Currently Connected PDB�� 954

Starting/Stopping a PDB��� 955

Modifying Initialization Parameters Specific to a PDB��� 956

Renaming a PDB��� 957

Limiting the Amount of Space Consumed by PDB�� 957

Restricting Changes to SYSTEM at PDB��� 958

Viewing PDB History��� 958

Dropping a PDB�� 959

Refreshable Clone PDB�� 960

Databases in the Cloud�� 961

Summary��� 961

Index�� 963

Table of Contents

xxix

About the Authors

Michelle Malcher is a security architect for databases at Extreme-Scale Solutions.

Her deep technical expertise from database to security, as well as her senior-level

contributions as a speaker, author, Oracle ACE director, and customer advisory

board participant have aided many corporations in the areas of architecture and risk

assessment, purchasing and installation, and ongoing systems oversight. She is on

the board of directors for FUEL, the Palo Alto Networks User community, as well as

volunteering for the Independent Oracle User Group (IOUG). She has built out teams

for database security and data services and enjoys sharing knowledge about data

intelligence and providing secure and standardized database environments.

Darl Kuhn is a senior database administrator working for Oracle. He handles all facets of

database administration from design and development to production support. He also

teaches advanced database courses at Regis University in Colorado. Darl does volunteer

DBA work for the Rocky Mountain Oracle Users Group. He has a graduate degree from

Colorado State University and lives near Spanish Peaks, Colorado, with his wife, Heidi;

and daughters, Brandi and Lisa.

xxxi

About the Technical Reviewer

Arup Nanda has been working in database management

for 25 years and counting. With 6 books, more than

700 published articles and 500 presentations in 22 countries,

he is very well known in the database area in general and

Oracle technologies in particular. Today he is the Chief

Data Officer of Priceline.com in New York area. He blogs

at arup.blogspot.com.  

https://arup.blogspot.com

xxxiii

Acknowledgments

Every time I sit down to write or prepare a presentation, I spend a few minutes reflecting

on how I got to this place in my career. There are many people that I am thankful for: to

have their influence, guidance, and encouragement in my life. A few of these people I

might have told I was done writing books, four books ago. I enjoy seeing their smiles and

getting teased when they hear that another one is done.

The friendships that I have made in the database community have encouraged

me to learn more and share. I appreciate each of these fun database people who are

passionate about what they do and enjoy bringing along others by teaching, mentoring,

and supporting others. What an opportunity to be in this career and working with others

passionate about databases and being the best guardians of the data! Thank you!

xxxv

Introduction

Cloud, automation, artificial intelligence, and machine learning are all keywords for the

direction of technology. The interesting thing about these areas is that data is still plays

a very important role. Obviously, it is something good for the database administrator or

the guardian of the data.

With these new environments and Oracle’s Autonomous Database in the cloud,

the question is being asked if DBAs are needed. Self-driving, tuning, and provisioning

of databases are the future of the environment. However, there are definitely different

tasks that the DBAs are going to be performing along with being the people to go to for

migrations to the cloud and automating processes.

So, why write a book about Oracle 18c database administration? This is an easy

question to answer. Even though the tasks are changing, understanding the database

is critical. Even with processes being automated, there are issues that might need

troubleshooting and automations put into place. Applications need database objects

designed, created and maintained, and tuned for performance. Is the job now just

troubleshooting issues and automating the rest? No, there are design and strategy for

data, application, and security. But this book is not just about the transitioning role

of the DBA, but to provide administration skills that are still relevant in the database

environment. It is also important to know that the internal understanding of the

database helps with all of these areas including previous versions.

Data are being integrated, migrated, and maintained in several databases. The

structures of these environments are what is needed and what it takes to create

consistent, reliable, and always-accessible data. Administration is needed for these

systems and support applications with database design and development.

This book provides details about the tasks that are needed to create Oracle 18c

databases and provide administration for the environments because it is more than just

building a database but managing it with the data and active applications. It provides

an inside look of the Oracle database, hardware, storage, and servers that are required

to run Oracle. Some of the tasks that are presented are now and should be done through

automated processes but stated in ways to being able to work through issues and

troubleshoot any problems.

xxxvi

There was careful consideration for including chapters and sections in this book

to make sure it was providing the right topics to understand the database along with

previous versions, support the design and performance tuning of database objects, and

give DBAs the tools they need to be successful.

Backups and recovery are discussed heavily because scenarios of recovery are

difficult to automate. There are consistent themes throughout the book to look to

create repeatable tasks for automation, securing the environments, and utilizing the

new features and tools that come with the new releases of the database. DBAs play an

important role in creating backup and security strategies as there are several discussions

that support this.

Many of these topics are the same if the database is on-premise or in the cloud.

Understanding the difference and how the DBAs can support the migrations to the

cloud are included in the notes and sections of the chapters. Databases in the cloud

serve many purposes in the enterprise, and DBAs are the perfect resource to assist

in migrations and make sure the data are secure and integrated from the cloud

environment.

There are many examples, tips, and notes to provide any DBA with Oracle database

the tools they need to design, implement, and administer Oracle 18c database

environments.

Introduction

1
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_1

CHAPTER 1

Installing the Oracle
Binaries
Oracle installations of the past can be large, complex, and cumbersome. The Oracle

database administrator (DBA) plans and performs the installation because he or she

knows how to troubleshoot and address problems as they arise through the steps. There

are several configuration and installation options that need to be reviewed, so installing

the Oracle software (binaries) is a task that requires proficiency by every DBA. Now

with Oracle 18c and even with 12c, Oracle software installations have become more

automated, but understanding the steps and configurations of installing is going to be

important for the DBA. The installation of the Oracle binaries should be repeatable for

large environments, and the DBA needs to set up the installs to be able to provision

databases on-demand and consistently.

Tip  DBA tasks are changing and in cloud environments, the DBA tasks might be
preparing self-service databases or not even needing to install Oracle binaries.
Also, if you’re fairly new to Oracle, some of the overwhelming parts of Oracle
installation have been simplified. Chances are that another DBA has probably
already installed the Oracle binaries, and databases will just need to be created as
needed. However, it is valuable to understand the component of the installation and
the next section, “Understanding the Optimal Flexible Architecture.”

Many DBAs don’t use techniques for automating installations. Some are unaware

of these methods; others perceive them as unreliable. Therefore, most DBAs typically

use the graphical mode of the Oracle Universal Installer (OUI). Although the graphical

installer is a good tool, it doesn’t lend itself to repeatability and automation. Running the

graphical installer is a manual process during which you’re presented with options to

2

choose from on multiple screens. Even if you know which options to select, you may still

inadvertently click an undesired choice.

The graphical installer can also be problematic when you’re performing remote

installations, and the network bandwidth is insufficient. In these situations, you can find

yourself waiting for dozens of minutes for a screen to repaint itself on your local screen.

You need a different technique for efficient installation on remote servers.

This chapter focuses on techniques for installing Oracle in an efficient and

repeatable manner. This includes silent installations, which rely on a response file.

A response file is a text file in which you assign values to variables that govern the

installation. DBAs often don’t realize the powerful repeatability and efficiency that can

be achieved by using response files.

Note  This chapter only covers installing the Oracle software. The task of
creating a database is covered in Chapter 2. The cloud also changes the tasks and
viewpoints of software and database creation, which will be discussed later in this
chapter under the section, “Installing in the Cloud and Responsibilities of the DBA.”

�Understanding the OFA
Before you install Oracle and start creating databases, you must understand Oracle’s

Optimal Flexible Architecture (OFA) standard. This standard is widely employed for

specifying consistent directory structures and also the file-naming conventions used

when installing and creating Oracle databases.

Note  One irony of this ubiquitous OFA “standard” is that almost every DBA,
in some manner, customizes it to fit the unique requirements of his or her
environment.

The OFA standard provides ways to understand where log files are available on a

consistent basis. If standards are followed, security, migrations, and automations are

going to be easier to implement because of consistency across the environments. The

consistent locations of the log files allow for the files to be used by other tools as well

as being secured. The ORACLE_BASE directory in 18c provides a way to separate the

Chapter 1 Installing the Oracle Binaries

3

ORACLE_HOME directories for read-only directories and have the writable files in

the ORACLE_BASE. Read-only ORACLE_HOME directories allow for implementing

separation of installation and configuration, which is important for the cloud and

securing the environment. This simplifies patching as one image can be used for a mass

rollout and distribute a patch to many servers and reduces downtime for patching and

updating of the Oracle software.

Because most shops implement a form of the OFA standard, understanding this

structure is critical. Figure 1-1 shows the directory structure and file names used with the

OFA standard. Not all the directories and files found in an Oracle environment appear

in this figure (there isn’t enough room). However, the critical and most frequently used

directories and files are displayed.

The OFA standard includes several directories that you should be familiar with:

•	 Oracle inventory directory

•	 Oracle base directory (ORACLE_BASE)

•	 Oracle home directory (ORACLE_HOME)

Figure 1-1.  Oracle’s OFA standard

Chapter 1 Installing the Oracle Binaries

4

•	 Oracle network files directory (TNS_ADMIN)

•	 Automatic Diagnostic Repository (ADR_HOME)

These directories are discussed in the following sections.

�Oracle Inventory Directory
The Oracle inventory directory stores the inventory of Oracle software installed on the

server. This directory is required and is shared among all installations of Oracle software

on a server. When you first install Oracle, the installer checks to see whether there is

an existing OFA-compliant directory structure in the format /u[01–09]/app. If such a

directory exists, then the installer creates an Oracle inventory directory, such as

/u01/app/oraInventory

If the ORACLE_BASE variable is defined for the oracle operating system (OS) user,

then the installer creates a directory for the location of Oracle inventory, as follows:

ORACLE_BASE/../oraInventory

For example, if ORACLE_BASE is defined as /ora01/app/oracle, then the installer

defines the location of Oracle inventory as

/ora01/app/oraInventory

If the installer doesn’t find a recognizable OFA-compliant directory structure or an

ORACLE_BASE variable, then the location for Oracle inventory is created under the HOME

directory of the oracle user. For instance, if the HOME directory is /home/oracle, then the

location of Oracle inventory is

/home/oracle/oraInventory

�Oracle Base Directory
The Oracle base directory is the topmost directory for Oracle software installation. You

can install one or more versions of the Oracle software beneath this directory. The OFA

standard for the Oracle base directory is as follows:

/<mount_point>/app/<software_owner>

Chapter 1 Installing the Oracle Binaries

5

Typical names for the mount point include /u01, /ora01, /oracle, and /oracle01.

You can name the mount point according to whatever your standard is for your

environment. I prefer to use a mount-point name such as /ora01. It is short, and

when I look at the mount points on a database server, I can immediately tell which are

used for the Oracle database. Also, a short mount-point name is easier to use when

you’re querying the data dictionary to report on the physical aspects of your database.

Additionally, a shorter mount-point name makes for less typing when you’re navigating

through directories via OS commands.

The software owner is typically named oracle. This is the OS user you use to install

the Oracle software (binaries). Listed next is an example of a fully formed Oracle base

directory path:

/u01/app/oracle

�Oracle Home Directory
The Oracle home directory defines the installation location of software for a particular

product, such as Oracle Database 18c or Oracle Database 12c. You must install different

products or different releases of a product in separate Oracle homes. The recommended

OFA-compliant Oracle home directory is as follows:

ORACLE_BASE/product/<version>/<install_name>

In the previous line of code, possible versions include 18.1.0.1 and 12.2.0.1. Possible

install_name values include db_1, devdb1, test2, and prod1. Here is an example of an

Oracle home name for a 18c database:

/u01/app/oracle/product/18.1.0.1/dbhome_1/db1

Note S ome DBAs dislike the db1 string on the end of the ORACLE_HOME
directory and see no need for it. The reason for the db1 is that you may have two
separate installations of binaries: a development installation and a test installation.
If you don’t require that configuration in your environment, feel free to drop the
extra string (db1).

Chapter 1 Installing the Oracle Binaries

6

�Oracle Network Files Directory
Some Oracle utilities use the value TNS_ADMIN to locate network configuration files.

This directory is defined as ORACLE_HOME/network/admin. It typically contains the

tnsnames.ora and listener.ora Oracle Net files. The listener.ora files are now typically

with the Oracle Grid installation and not in the database home. The listeners are

normally maintained by the system that manages the grid, cluster, and ASM software.

The tnsnames provide ways to connect to other databases so these files are part of the

centralized directory or part of the database network files.

Tip S ometimes DBAs will set TNS_ADMIN to point at one central directory
location (such as /etc or /var/opt/oracle). This allows them to maintain one
set of Oracle network files (instead of one for each ORACLE_HOME). This approach
also has the advantage of not requiring the copying or moving of files when a
database upgrade occurs, potentially changing the location of ORACLE_HOME.

�Automatic Diagnostic Repository
Starting with Oracle Database 11g, the ADR_HOME directory specifies the location of the

diagnostic files related to Oracle. These files are crucial for troubleshooting problems

with the Oracle database. This directory is defined as ORACLE_BASE/diag/rdbms/

lower(db_unique_name)/instance_name. You can query the V$PARAMETER view to get the

values of db_unique_name and instance_name.

For example, in the next line, the lowercase database unique name is db18c, and the

instance name is DB18C:

/u01/app/oracle/diag/rdbms/db18c/DB18C

Or with a clustered environment, the lowercase database unique name is db18c, and

the instance name is DB18C01:

/u01/app/oracle/diag/rdbms/db18c/DB18C01

You can verify the location of the ADR_HOME directory via this query:

SQL> select value from v$diag_info where name='ADR Home';

Chapter 1 Installing the Oracle Binaries

7

Here is some sample output:

VALUE

--

/u01/app/oracle/diag/rdbms/db18c/DB18C

Now that you understand the OFA standard, you’ll next see how it’s used when

installing the Oracle binaries. For instance, you’ll need to specify directory values for the

ORACLE_BASE and ORACLE_HOME directories when running the Oracle installer.

Tip S ee the Oracle Database Installation Guide for full details on OFA. This
document can be freely downloaded from the Technology Network area of the
Oracle web site (http://otn.oracle.com).

�Installing Oracle
Suppose you’re new on the job, and your manager asks you how long it will take to install

a new set of Oracle Database 18c software on a server. You reply that it will take less than

an hour. Your boss is incredulous and states that previous DBAs always estimated at

least a day to install the Oracle binaries on a new server. You reply, “Actually, it’s not that

complicated, but DBAs do tend to overestimate installations, because it’s hard to predict

everything that could go wrong.”

When you’re handed a new server and are given the task of installing the Oracle

binaries, this usually refers to the process of downloading and installing the software

required before you can create an Oracle database. This process involves several steps:

	 1.	 Create the appropriate OS groups. In Oracle Database 18c, there

are several OS groups that you can form and use to manage the

level of granularity of SYSDBA permissions. Minimally, you’ll need

to create an OS dba group and the OS oracle user.

	 2.	 Ensure that the OS is configured adequately for an Oracle

database.

	 3.	 Obtain the database installation software from Oracle.

	 4.	 Unzip the database installation software.

Chapter 1 Installing the Oracle Binaries

http://otn.oracle.com

8

	 5.	 If using the silent installer when first installing Oracle software

on the box, create an oraInst.loc file. This step only needs to be

done once per server. Subsequent installations do not require this

step to be performed.

	 6.	 Configure the response file and run the Oracle silent installer.

	 7.	 Troubleshoot any issues.

	 8.	 Apply any additional patches.

These steps are detailed in the following sections.

Note  Any version of the database that Oracle designates as a base release
(10.1.0.2, 10.2.0.1, 11.1.0.6, 11.2.0.1, 12.1.0.1, 18.1.0.1, and so on) can be freely
downloaded from the Technology Network area of the Oracle web site (http://
otn.oracle.com). However, be aware that any subsequent patch downloads
require a purchased license. In other words, downloading base software requires
an Oracle Technology Network (OTN) login (free), whereas downloading a patch set
requires a My Oracle Support account (for fee).

�Step 1. Create the OS Groups and User
If you work in a shop with a system administrator (SA), then steps 1 and 2 usually are

performed by the SA. If you don’t have a SA, then you have to perform these steps

yourself (this is often the case in small shops, where you may be required to perform

many different job functions). You need root access to accomplish these steps.

In the old days, a typical Oracle installation would contain one OS group (dba) and

one OS user (oracle). You can still install the Oracle software, using this minimalistic,

one-group, one-user approach; it works fine. If there is just one DBA in your shop, and

you don’t need a more granular division of privileges among team members, then go

ahead, and create only the dba group and the oracle OS user. There is nothing wrong

with this method.

Nowadays, there are multiple OS groups that Oracle recommends you create—the

idea being that you can add different OS users and assign them to groups on an as-

needed basis, depending on the job function. When an OS user is assigned to a group,

Chapter 1 Installing the Oracle Binaries

http://otn.oracle.com
http://otn.oracle.com

9

that assignment provides the user with specific database privileges. Table 1-1 documents

the OS groups and how each group maps to corresponding database privileges. For

example, if you have a user that is only responsible for monitoring a database and that

only needs privileges to start up and shut down the database, then that user would be

assigned the oper group (which ensures that subsequent connections to the database

can be done with sysoper privileges).

Table 1-1.  Mapping of OS Groups to Privileges Related to Backup and Recovery

OS Group Database
System Privilege

Authorized Operations Where Referenced

oinstall none OS privileges to install and

upgrade Oracle binaries

inst_group variable in

oraInst.loc file; also defined

by UNIX_GROUP_NAME variable

in response file

dba sysdba All database privileges: start

up, shut down, alter database,

create and drop database, toggle

archivelog mode, back up, and

recover database

DBA_GROUP variable in

response file or when prompted

by OUI graphical installer

oper sysoper Start up, shut down, alter

database, toggle archivelog

mode, back up, and recover

database

OPER_GROUP variable in

response file or when prompted

by OUI graphical installer

asmdba sysdba for

asm

Administrative privileges to

Oracle automatic storage

management (ASM) instances

n/a

asmoper sysoper for

asm

Starting up and stopping the

Oracle ASM instance

n/a

asmadmin sysasm Mounting and dismounting of

disk groups and other storage

administration

n/a

(continued)

Chapter 1 Installing the Oracle Binaries

10

Table 1-1 contains recommended group names. You don’t have to use the group

names listed; you can adjust per your requirements. For example, if you have two

separate groups using the same server, you may want to create two separate Oracle

installations, each managed by different DBAs; the development DBA group might

create and install the Oracle binaries with a group named dbadev, whereas a test group

using the same box might install a separate set of Oracle binaries managed with a

group named dbatest. Each group would have permissions to manipulate only its set

of binaries. Or, as mentioned earlier, you may decide to use just one group (dba) for

everything. It all depends on your environment.

Once you decide which groups you need, then you need access to the root user to

run the groupadd command. As root, add the OS groups that you need. Here, I add the

three groups that I foresee will be needed:

groupadd oinstall

groupadd dba

groupadd oper

If you don’t have access to the root account, then you need to get your SA to run

the previous commands. You can verify that each group was added successfully by

Table 1-1.  (continued)

OS Group Database
System Privilege

Authorized Operations Where Referenced

backupdba sysbackup New in 12c; privilege allowing

user to start up, shut down, and

perform all backup and recovery

operations

BACKUPDBA_GROUP in

response file or when prompted

by OUI graphical installer

dgdba sysdg New in 12c; associated with

privileges related to managing

Data Guard environments

DGDBA_GROUP variable in

response file or when prompted

by OUI graphical installer

kmdba syskm New in 12c; associated with

privileges related to encryption

management

KMDBA_GROUP variable in

response file or when prompted

by OUI graphical installer

Chapter 1 Installing the Oracle Binaries

11

inspecting the contents of the /etc/group file. Here are typical entries created in the

/etc/group file:

oinstall:x:500:

dba:x:501:

oper:x:502:

Now, create the oracle OS user. The following example explicitly sets the group

ID to 500 (your company may require use of the same group ID for all installations),

establishes the primary group as oinstall, and assigns the dba and oper groups to the

newly created oracle user:

useradd -u 500 -g oinstall -G dba,oper oracle

You can verify user account information by viewing the /etc/passwd file. Here is

what you can expect to see for the oracle user:

oracle:x:500:500::/home/oracle:/bin/bash

If you need to modify a group, as root, use the groupmod command. If, for any

reason, you need to remove a group (as root) use the groupdel command.

If you need to modify a user, as root, use the usermod command. If you need to

remove an OS user, use the userdel command. You need root privileges to run the

userdel command. This example removes the oracle user from the server:

userdel oracle

�Step 2. Ensure That the OS Is Adequately Configured
The tasks associated with this step vary somewhat for each database release and OS. You

must refer to the Oracle installation manual for the database release and OS vendor to

get the exact requirements. To perform this step, you’re required to verify and configure

OS components such as these:

•	 Memory and swap space

•	 System architecture (processor)

•	 Free disk space (Oracle now takes almost 5GB of space to install)

•	 Operating system version and kernel

•	 Operating system software (required packages and patches)

Chapter 1 Installing the Oracle Binaries

12

Run the following command to confirm the memory size on a Linux server:

$ grep MemTotal /proc/meminfo

To verify the amount of memory and swap space, run the following command:

$ free -t

To verify the amount of space in the /tmp directory, enter this command:

$ df -h /tmp

To display the amount of free disk space, execute this command:

$ df -h

To verify the OS version, enter this command:

$ cat /proc/version

To verify kernel information, run the following command:

$ uname -r

To determine whether the required packages are installed, execute this query, and

provide the required package name:

$ rpm -q <package_name>

Again, database server requirements vary quite a bit by OS and database version.

You can download the specific installation manual from the Documentation page of the

Oracle web site (www.oracle.com/documentation).

Note  The OUI displays any deficiencies in OS software and hardware. Running
the installer is covered in step 6.

�Step 3. Obtain the Oracle Installation Software
Usually, the easiest way to obtain the Oracle software is to download it from the Oracle

web site. Navigate to the software download page (www.oracle.com/technology/

software), and download the Oracle database version that is appropriate for the type of

OS and hardware on which you want to install it (Linux, Solaris, Windows, and so on).

Chapter 1 Installing the Oracle Binaries

http://www.oracle.com/documentation
http://www.oracle.com/technology/software
http://www.oracle.com/technology/software

13

�Step 4. Unzip the Files
For previous versions, it was recommended to unzip the files in a standard directory

where you can place the Oracle installation media. Now with Oracle 18c, there are

different ways that the media is presented, imaged based or by RPM. The image software

must now be extracted in the directory of the ORACLE_HOME. The zipped file can be

placed in a temporary directory but extracted to the ORACLE_HOME. The runInstaller

will run from the ORACLE_HOME directory for installation.

Create the directories for the ORACLE_HOME:

$ mkdir -p /u01/app/oracle/product/18.1.0/dbhome_1

$ chown oracle:oinstall /u01/app/oracle/product/18.1.0/dbhome_1

The zip files can be downloaded or copied over to a temporary directory such as

/tmp or /home/oracle.

Use the unzip command to the newly created ORACLE_HOME directory to the

newly created ORACLE_HOME directory:

$ cd /u01/app/oracle/product/18.1.0/dbhome_1

$ unzip -q /tmp/db_home.zip

RPM can now be used with Oracle 18c to perform the installation for a single

database instance. The RPM was used before as a preinstallation check and is now

available for installations, even of the Oracle client. This will need to be performed as

root.

$ yum -y install oracle-database-server-18c-preinstall

$ ls -lt /opt

$ chown -R oracle:oinstall /opt

Now go to the directory for the rpm and run the command to perform the

RPM-based install. The ORACLE_HOME directory will be created in /opt/oracle/

product/18.1.0.0.0-1/dbhome_1.

$ cd /tmp/rpm

$ rpm -ivh oracle-ee-db-18.1.0.0.0-1.x86_64.rpm -- rpm name may vary based

on version

Chapter 1 Installing the Oracle Binaries

14

Tip  On some installations of previous versions of Oracle, you may find that the
distribution file is provided as a compressed cpio file. You can uncompress and
unbundle the file with one command, as follows: $ cat 10gr2_db_sol.cpio.
gz | gunzip | cpio -idvm

�Step 5. Creating oraInst.loc File
If an oraInst.loc file already exists on your server, then you can skip this step. Creating

the oraInst.loc file only needs to be performed the first time you install binaries on a

server, using the silent install method. If you’re using the OUI graphical installer, then

the oraInst.loc file is created automatically for you.

On Linux servers the oraInst.loc file is usually located in the /etc directory.

On other Unix systems (such as Solaris), this file is located in the /var/opt/oracle

directory. The oraInst.loc file contains the following information:

•	 Oracle inventory directory path

•	 Name of OS group that has permissions for installing and upgrading

Oracle software

The Oracle inventory directory path is the location of files associated with managing

Oracle installations and upgrades. Typically, there is one Oracle inventory per host.

Within this directory structure is the inventory.xml file, which contains a record of

where various versions of Oracle have been installed on the server.

The Oracle inventory OS group has the OS permissions required for installing and

upgrading Oracle software. Oracle recommends that you name this group oinstall.

You’ll find that sometimes DBAs assign the inventory group to the dba group. If your

environment doesn’t require a separate group (such as oinstall), then using the dba

group is fine.

You can create the oraInst.loc file with a utility such as vi. Here are some sample

entries in the file:

inventory_loc=/u01/app/oraInventory

inst_group=oinstall

Chapter 1 Installing the Oracle Binaries

15

As root, ensure that the response file is owned by the oracle OS user and that it has

the proper file access privileges:

chown oracle:oinstall oraInst.loc

chmod 664 oraInst.loc

�Step 6. Configure the Response File, and Run the Installer
You can run the OUI in one of two modes: graphical or silent. Typically, DBAs use the

graphical installer. However, I strongly prefer using the silent install option for the

following reasons:

•	 Silent installs don’t require the availability of X Window System

software.

•	 You avoid performance issues with remote graphical installs, which

can be extremely slow when trying to paint screens locally.

•	 Silent installs can be scripted and automated. This means that

every install can be performed with the same, consistent standards,

regardless of which team member is performing the install (I even

have the SA install the Oracle binaries this way).

The key to performing a silent install is to use a response file.

After unzipping the Oracle software, navigate to the ORACLE_HOME directory; for

example,

$ cd /u01/app/oracle/product/18.1.0/dbhome_1

Next, find the sample response files that Oracle provides:

$ find . -name "*.rsp"

Depending on the version of Oracle and the OS platform, the names and number

of response files that you find may be quite different. The next two sections show two

scenarios: an Oracle Database 12c Release 1 silent install and an Oracle Database 18c

Release 1 silent install.

Keep in mind that the format of response files can differ quite a bit, depending on

the Oracle database version. For example, there are major differences between Oracle

Database 11g and 12c even between release 2 of these versions. When you install a new

release, you must inspect the response file and determine which parameters must be

Chapter 1 Installing the Oracle Binaries

16

set. Be sure to modify the appropriate parameters for your environment. If you’re unsure

what to set the ORACLE_HOME and ORACLE_BASE values to, see the section “Understanding

the Optimal Flexible Architecture,” earlier in this chapter, for a description of the OFA

standard directories.

There are sometimes idiosyncrasies to these parameters that are specific to a

release. For instance, if you don’t want to specify your My Oracle Support (MOS) login

information, then you need to set the following parameter as follows:

DECLINE_SECURITY_UPDATES=true

If you don’t set DECLINE_SECURITY_UPDATES to TRUE, then you will be expected to

provide your MOS login information. Failure to do so will cause the installation to fail.

After you’ve configured your response file, you can run the Oracle installer in silent mode.

Note that you have to enter the entire directory path for the location of your response file.

Note  On Windows the setup.exe command is equivalent to the Linux/Unix
runInstaller command.

If you encounter errors with the installation process, you can view the associated log

file. Each time you attempt to run the installer, it creates a log file with a unique name

that includes a timestamp. The log file is located in the oraInventory/logs directory.

You can stream the output to your screen as the OUI writes to it:

$ tail -f <logfile name>

Here is an example of a log file name:

installActions2012-04-33 11-42-52AM.log

�Oracle Database 12c Release 1 Scenario

Navigate to the database directory and issue the find command to locate sample

response files. Here are the response files provided with an Oracle Database 12c Release

1 on a Linux server:

$ find . -name "*.rsp"

./response/db_install.rsp

./response/netca.rsp

./response/dbca.rsp

Chapter 1 Installing the Oracle Binaries

17

Copy one of the response files so that you can modify it. This example copies the

db_install.rsp file to the current working directory and names the file inst.rsp:

$ cp response/db_install.rsp inst.rsp

Modify the inst.rsp file. Here is a partial listing of an Oracle Database 12c Release

1 response file (the first two lines are actually a single line of code but have been placed

on two lines in order to fit on the page). The lines of code are the only variables that I

modified. I removed the comments so that you could more clearly see which variables

were modified:

oracle.install.responseFileVersion=/oracle/install/rspfmt_dbinstall_

response_schema_v12.1.0

oracle.install.option=INSTALL_DB_SWONLY

ORACLE_HOSTNAME=oraserv1

UNIX_GROUP_NAME=oinstall

INVENTORY_LOCATION=/home/oracle/orainst/12.1.0.1/database/stage/products.xml

SELECTED_LANGUAGES=en

ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1

ORACLE_BASE=/u01/app/oracle

oracle.install.db.InstallEdition=EE

oracle.install.db.DBA_GROUP=dba

oracle.install.db.OPER_GROUP=oper

oracle.install.db.BACKUPDBA_GROUP=dba

oracle.install.db.DGDBA_GROUP=dba

oracle.install.db.KMDBA_GROUP=dba

DECLINE_SECURITY_UPDATES=true

Be sure to modify the appropriate parameters for your environment. If you’re unsure

what to set the ORACLE_HOME and ORACLE_BASE values to, see the section “Understanding

the Optimal Flexible Architecture,” earlier in this chapter, for a description of the OFA

standard directories.

After you’ve configured your response file, you can run the Oracle installer in silent

mode. Note that you have to enter the entire directory path for the location of your

response file:

$./runInstaller -ignoreSysPrereqs -force -silent -responseFile \

 /home/oracle/orainst/12.1.0.1/database/inst.rsp

Chapter 1 Installing the Oracle Binaries

18

The previous command is entered on two lines. The first line is continued to the

second line via the backward slash (\).

If you encounter errors with the installation process, you can view the associated log

file. Each time you attempt to run the installer, it creates a log file with a unique name

that includes a timestamp. The log file is created in the oraInventory/logs directory.

You can stream the output to your screen as the OUI writes to it:

$ tail -f <logfile name>

Here is an example of a log file name:

installActions2012-11-04_02-57-29PM.log

If everything runs successfully, in the output you’re notified that you need to run the

root.sh script as the root user:

/u01/app/oracle/product/12.1.0.1/db_1/root.sh

Run the root.sh script as the root OS user. Then, you should be able to create an

Oracle database (database creation is covered in Chapter 2).

�Oracle Database 18c Release 1 Scenario

Navigate to the database directory and issue the find command to locate sample

response files. Here are the response files provided with an Oracle Database 18c Release

1 on a Linux server:

$ find . -name "*.rsp"

./response/db_install.rsp

./response/netca.rsp

./response/dbca.rsp

Copy one of the response files so that you can modify it. This example copies the

db_install.rsp file to the current working directory and names the file inst.rsp:

$ cp response/db_install.rsp inst.rsp

Modify the inst.rsp file. Here is a partial listing of an Oracle Database 18c Release

1 response file (the first two lines are actually a single line of code but have been placed

on two lines in order to fit on the page). The lines of code are the only variables that I

modified. I removed the comments so that you could more clearly see which variables

were modified:

Chapter 1 Installing the Oracle Binaries

19

oracle.install.responseFileVersion=/oracle/install/rspfmt_dbinstall_

response_schema_v18.0.0

oracle.install.option=INSTALL_DB_SWONLY

ORACLE_HOSTNAME=oraserv1

UNIX_GROUP_NAME=oinstall

INVENTORY_LOCATION=/home/oracle/orainst/18.1.0.1/database/stage/products.xml

SELECTED_LANGUAGES=en

ORACLE_HOME=/u01/app/oracle/product/18.1.0.1/db_1

ORACLE_BASE=/u01/app/oracle

oracle.install.db.InstallEdition=EE

oracle.install.db.DBA_GROUP=dba

oracle.install.db.OPER_GROUP=oper

oracle.install.db.BACKUPDBA_GROUP=dba

oracle.install.db.DGDBA_GROUP=dba

oracle.install.db.KMDBA_GROUP=dba

DECLINE_SECURITY_UPDATES=true

Be sure to modify the appropriate parameters for your environment. If you’re unsure

what to set the ORACLE_HOME and ORACLE_BASE values to, see the section “Understanding

the Optimal Flexible Architecture,” earlier in this chapter, for a description of the OFA

standard directories.

After you’ve configured your response file, you can run the Oracle installer in silent

mode. Note that you have to enter the entire directory path for the location of your

response file:

$./runInstaller -ignoreSysPrereqs -force -silent -responseFile \

 /home/oracle/orainst/18.1.0.1/database/inst.rsp

The previous command is entered on two lines. The first line is continued to the

second line via the backward slash (\).

If you encounter errors with the installation process, you can view the associated log

file. Each time you attempt to run the installer, it creates a log file with a unique name

that includes a timestamp. The log file is created in the oraInventory/logs directory.

You can stream the output to your screen as the OUI writes to it:

$ tail -f <logfile name>

Chapter 1 Installing the Oracle Binaries

20

Here is an example of a log file name:

installActions2017-11-04_02-57-29PM.log

If everything runs successfully, in the output you’re notified that you need to run the

root.sh script as the root user:

/u01/app/oracle/product/18.1.0.1/db_1/root.sh

Run the root.sh script as the root OS user. Then, you should be able to create an

Oracle database (database creation is covered in Chapter 2). The configuration assistants

can run in the response file or silent mode to run the Net Configuration and Database

Configuration Assistant.

�Step 7. Troubleshoot Any Issues
If you encounter an error, using a response file, 90 percent of the time it’s due to an issue

with how you set the variables in the file. Inspect those variables carefully and ensure

that they’re set correctly. Also, if you don’t fully specify the command-line path to the

response file, you receive errors such as this:

OUI-10203: The specified response file ... is not found.

Here is another common error when the path or name of the response file is

incorrectly specified:

OUI-10202: No response file is specified for this session.

Listed next is the error message you receive if you enter a wrong path to your

products.xml file within the response file’s FROM_LOCATION variable:

OUI-10133: Invalid staging area

Also, be sure to provide the correct command-line syntax when running a response

file. If you incorrectly specify or misspell an option, you may receive a misleading error

message, such as DISPLAY not set. When using a response file, you don’t need to have

your DISPLAY variable set. This message is confusing because, in this scenario, the error

is caused by an incorrectly specified command-line option and has nothing to do with

the DISPLAY variable. Check all options entered from the command line and ensure that

you haven’t misspelled an option.

Chapter 1 Installing the Oracle Binaries

21

Problems can also occur when you specify an ORACLE_HOME, and the silent

installation “thinks” the given home already exists:

Check complete: Failed <<<<

Recommendation: Choose a new Oracle Home for installing this product.

Check your inventory.xml file (in the oraInventory/ContentsXML directory), and

make sure there isn’t a conflict with an already existing Oracle home name.

There are log files that are generated with the installation, along with the files

that are part of the inventory. The /tmp directory is going to have log files based on

the timestamp of when the installation was performed. Make sure that all log files

are examined when trying to troubleshoot; even system logs are useful if there were

processes or memory issues hit during the process. When you’re troubleshooting issues

with Oracle installations, remember that the installer uses two key files to keep track of

what software has been installed, and where: oraInst.loc and inventory.xml. Table 1-2

describes the files used by the Oracle installer.

�Step 8. Apply Any Additional Patches
As already stated before the first step, the Oracle software is available in the base

releases. However, if there are additional releases, patch sets, and security patches

available, these should all be applied before rolling out a new set of Oracle binaries. The

installation is going to be for a different reason on the server or in the environment, and

Table 1-2.  Useful Files for Troubleshooting Oracle Installation Issues

File name Directory Location Contents

oraInst.loc The location of this file varies by OS. On

Linux the file is in /etc; on Solaris, it’s in

/var/opt/oracle.

oraInventory directory location

and installation OS group

inst.loc \\HKEY_LOCAL_MACHINE\\Software\

Oracle (Windows registry)

Inventory information

inventory.xml oraInventory/ContentsXML/

inventory.xml

Oracle home names and

corresponding directory location

.log files oraInventory/logs Installation log files, which are

extremely useful for troubleshooting

Chapter 1 Installing the Oracle Binaries

22

the installation should be the same as the other environments with a possible exception

of security patching.

Sections later in this chapter, “Upgrading Oracle Software” and “Applying Interim

Patches,” have the details to apply the patches, but it is important to have this step here

to get to the latest version of the software before releasing it for use. Right after the install

of the binaries is a good time to make sure everything has been updated and ready for

the database to be created.

�Installing with a Copy of an Existing Installation
DBAs sometimes install Oracle software by using a utility such as tar to copy an existing

installation of the Oracle binaries to a different server (or a different location on the same

server). This approach is fast and simple (especially compared with downloading and

running the Oracle installer). This technique allows DBAs to easily install the Oracle

software on multiple servers, while ensuring that each installation is identical.

The new ways of delivering the media files provide ways to unzip in the ORACLE_

HOME directory, or just run the rpm package that will run the installation. The

advantage of using this method is be able to copy over a patched set of the binaries.

There cannot be any databases running during this time or Oracle processes during this

time of copying the files to provide a static copy of the files.

Installing Oracle with an existing copy of the binaries is a two-part process:

	 1.	 Copy the binaries, using an OS utility.

	 2.	 Attach the Oracle home.

These steps are detailed in the next two sections.

Tip S ee MOS note 300062.1 for instructions on how to clone an existing Oracle
installation.

�Step 1. Copy the Binaries, Using an OS Utility
You can use any OS copy utility to perform this step. The Linux/Unix tar, scp, and rsync

utilities are commonly used by DBAs to copy files. This example shows how to use the

Chapter 1 Installing the Oracle Binaries

23

Linux/Unix tar utility to replicate an existing set of Oracle binaries to a different server.

First, locate the target Oracle home binaries that you want to copy:

$ echo $ORACLE_HOME

/ora01/app/oracle/product/18.1.0.1/db_1

In this example the tar utility copies every file and subdirectory in or below the db_1

directory:

$ cd $ORACLE_HOME

$ cd ..

$ tar -cvf orahome.tar db_1

Now, copy the orahome.tar file to the server on which you want to install the

Oracle software. In this example, the tar file is copied to the /u01/app/oracle/

product/18.1.0.1 directory on a different server. The tar file is extracted there and

creates a db_1 directory as part of the extract:

$ cd /u01/app/oracle/product/18.1.0.1

Make sure you have plenty of disk space available to extract the files. A typical Oracle

installation can consume at least 3–4GB of space. Use the Linux/Unix df command to

verify that you have enough space:

$ df -h | sort

Next, extract the files:

$ tar -xvf orahome.tar

When the tar commanddb_1 directory beneath the /u01/app/oracle/

product/18.1.0.1 directory. directory.

Tip  Use the tar -tvf <tarfile_name> command to preview which
directories and files are restored without restoring them.

Listed next is a powerful one-line combination of commands that allows you to

bundle the Oracle files, copy them to a remote server, and have them extracted remotely:

$ tar -cvf - <locDir> | ssh <remoteNode> "cd <remoteDir>; tar -xvf -"

Chapter 1 Installing the Oracle Binaries

24

For instance, the following command copies everything in the dev_1 directory to the

remote ora03 server /home/oracle directory:

$ tar -cvf - dev_1 | ssh ora03 "cd /home/oracle; tar -xvf -"

ABSOLUTE PATHS VS. RELATIVE PATHS

Some older, non-GNU versions of tar use absolute paths when extracting files. The next line

of code shows an example of specifying the absolute path when creating an archive file:

$ tar -cvf orahome.tar /home/oracle

Specifying an absolute path with non-GNU versions of tar can be dangerous. These older

versions of tar restore the contents with the same directories and file names from which they

were copied. This means that any directories and file names that previously existed on disk

are overwritten.

When using older versions of tar, it’s much safer to use a relative pathname. This example

first changes to the /home directory and then creates an archive of the oracle directory

(relative to the current working directory):

$ cd /home

$ tar -cvf orahome.tar oracle

The previous example uses the relative pathname.

You don’t have to worry about absolute vs. relative paths on most Linux systems. This is

because these systems use the GNU version of tar. This version strips off the forward slash (/)

and restores files relative to where your current working directory is located.

Use the man tar command if you’re not sure whether you have a GNU version of the tar

utility. You can also use the tar -tvf <tarfile name> command to preview which

directories and files are restored to what locations.

�Step 2. Attach the Oracle Home
One issue with using a copy of an existing installation to install the Oracle software is

that if you later attempt to upgrade the software, the upgrade process will throw an error

and abort. This is because a copied installation isn’t registered in oraInventory. Before

Chapter 1 Installing the Oracle Binaries

25

you upgrade a set of binaries installed via a copy, you must first register the Oracle home

so that it appears in the inventory.xml file. This is called attaching an Oracle home.

To attach an Oracle home, you need to know the location of your oraInst.loc file on

your server. On Linux servers this file is usually located in the /etc directory. On Solaris

this file can generally be found in the /var/opt/oracle directory.

After you’ve located your oraInst.loc file, navigate to the ORACLE_HOME/oui/bin

directory (on the server on which you installed the Oracle binaries from a copy):

$ cd $ORACLE_HOME/oui/bin

Now, attach the Oracle home by running the runInstaller utility, as shown:

$./runInstaller -silent -attachHome -invPtrLoc /etc/oraInst.loc \

ORACLE_HOME="/u01/app/oracle/product/18.1.0.1/db_1" ORACLE_HOME_NAME="ONEW"

You should see this as the last message in the output, if successful:

'AttachHome' was successful.

You can also examine the contents of your oraInventory/ContentsXML/inventory.

xml file. Here is a snippet of the line inserted into the inventory.xml file as a result of

running the runInstaller utility with the attachHome option:

<HOME NAME="ONEW" LOC="/u01/app/oracle/product/18.1.0.1/db_1" TYPE="O"

IDX="2"/>

�Installing Read-Only Oracle Home
A new feature of Oracle 18c is to have a read-only Oracle Home for the binaries. The

database tools and processes will be under the ORACLE_BASE path instead of ORACLE_

HOME path. The ORACLE_HOME directory will have the database configurations and

logs for the databases created.

A read-only Oracle binary home will separate the software from the database

information and allows for sharing the software across different deployments. This

enables seamless patching and updating of the binaries to minimize database downtime

and allows for applying patches to one image in order to distribute to several servers.

This separation also simplifies the provisioning because the focus can be on the

database configuration.

Chapter 1 Installing the Oracle Binaries

26

There are now additional environment variables that will contain the directory path

for the Oracle Home, ORACLE_BASE_HOME, ORACLE_BASE_CONFIG.

To enable a read-only Oracle home, the software needs to be install as described

with the binaries only and not the configuration assistants. Then run the following:

$ cd /u01/app/oracle/product/18.1.0.1/dbhome18c/bin

$ roohctl -enable

After enabling the read-only home, the DBCA can be run to create databases. There

is a check to know if the database is in a read-only home:

$ cd $ORACLE_HOME/bin

$./orabasehome

If a directory is returned, the Oracle home is in read-only.

�Upgrading Oracle Software
You can also upgrade a version of the Oracle software, using the silent installation

method. Begin by downloading the upgrade version from the MOS web site (http://

support.oracle.com) (you need a valid support contract to do this). Read the upgrade

documentation that comes with the new software. The upgrade procedure can vary quite

a bit, depending on what version of Oracle you’re using.

For the most recent upgrades that I’ve performed, the procedure was much like

installing a new set of Oracle binaries. You can use the OUI in either graphical or silent

mode to install the software. See the section “Installing Oracle,” earlier in this chapter, for

information on using the silent mode installation method.

Database migrations to new version are successful using the Database Upgrade

Assistant (DBUA). This will perform a migration to the latest version of the database and

upgrade the services. New with 18c the services must be upgraded with this method,

install the latest version of the software and then to complete the migration run the DBUA.

Note  Upgrading the Oracle software isn’t the same as upgrading an Oracle
database. This section only deals with using the silent install method for upgrading
the Oracle software. Additional steps are involved for upgrading a database. See
MOS note 730365.1 for instructions on how to upgrade a database.

Chapter 1 Installing the Oracle Binaries

http://support.oracle.com
http://support.oracle.com

27

Depending on the version being upgraded, you may be presented with two different

scenarios. Here is scenario A:

	 1.	 Shut down any databases using the Oracle home to be upgraded.

	 2.	 Upgrade the Oracle home binaries.

	 3.	 Start up the database and run any required upgrade scripts.

Here are the steps for the scenario B approach to an upgrade:

	 1.	 Leave the existing Oracle home as it is—don’t upgrade it.

	 2.	 Install a new Oracle home that is the same version as the old

Oracle home.

	 3.	 Upgrade the new Oracle home to the desired version.

	 4.	 When you’re ready, shut down the database using the old Oracle

home; set the OS variables to point to the new, upgraded Oracle

home; start up the database; and run any required upgrade scripts.

Which of the two previous scenarios is better? Scenario B has the advantage of

leaving the old Oracle home as it is; therefore, if, for any reason, you need to switch

back to the old Oracle home, you have those binaries available. Scenario B has the

disadvantage of requiring extra disk space to contain two installations of Oracle home.

This usually isn’t an issue, because after the upgrade is complete, you can delete the old

Oracle home when it’s convenient.

Databases can also be upgraded to a new container database in a multitenant

environment. This will be discussed more in Chapter 22, but the pluggable databases

can be moved to a container database that has already been upgraded.

Tip  Consider using the Database Upgrade Assistant (DBUA) to upgrade an Oracle
database.

�Reinstalling After Failed Installation
You may run into a situation in which you’re attempting to install Oracle, and for some

reason the installation fails. You correct the issue and attempt to rerun the Oracle

installer. However, you receive this message:

Chapter 1 Installing the Oracle Binaries

28

 CAUSE: The chosen installation conflicted with software already

 installed in the given Oracle home.

 ACTION: Install into a different Oracle home.

In this situation, Oracle thinks that the software has already been installed, for a

couple of reasons:

•	 Files in the ORACLE_HOME directory are specified in the response file.

•	 An existing Oracle home and location in your oraInventory/

ContentsXML/inventory.xml file match what you have specified in

the response file.

Oracle doesn’t allow you to install a new set of binaries over an existing Oracle

home. If you’re sure you don’t need any of the files in the ORACLE_HOME directory, you can

remove them (be very careful—ensure that you absolutely want to do this). This example

navigates to ORACLE_HOME and then removes the db_1 directory and its contents:

$ cd $ORACLE_HOME

$ cd ..

$ rm -rf db_1

Also, even if there are no files in the ORACLE_HOME directory, the installer inspects the

inventory.xml file for previous Oracle home names and locations. In the inventory.xml

file, you must remove the entry corresponding to the Oracle home location that matches the

Oracle home you’re trying to install to. To remove the entry, first, locate your oraInst.loc

file, which contains the directory of your oraInventory. Next, navigate to the oraInventory/

ContentsXML directory. Make a copy of inventory.xml before you modify it:

$ cp inventory.xml inventory.xml.old

Then, edit the inventory.xml file with an OS utility (such as vi), and remove the line

that contains the Oracle home information of your previously failed installation. You can

now attempt to execute the runInstaller utility again.

�Applying Interim Patches
Sometimes, you’re required to apply a patch to resolve a database issue or eradicate a

bug. You can usually obtain patches from the MOS web site and install them with the

opatch utility. Here are the basic steps for applying a patch:

Chapter 1 Installing the Oracle Binaries

29

	 1.	 Obtain the patch from MOS (requires a valid support contract).

	 2.	 Unzip the patch file.

	 3.	 Carefully read the README.txt file for special instructions.

	 4.	 Shut down any databases and processes using the Oracle home to

which the patch is being applied.

	 5.	 Apply the patch.

	 6.	 Verify that the patch was installed successfully.

A brief example will help illustrate the process of applying a patch. Here, the patch

number 14390252 is applied to an 11.2.0.3 database on a Solaris box. First, download

the p14390252_112030_SOLARIS64.zip file from MOS (https://support.oracle.com).

Next, unzip the file on the server to which the patch is being applied:

$ unzip p14390252_112030_SOLARIS64.zip

The README.txt instructs you to change the directory, as follows:

$ cd 14390252

Make sure you follow the instructions included in the README.txt, such as shutting

down any databases that use the Oracle home to which the patch is being applied:

$ sqlplus / as sysdba

SQL> shutdown immediate;

Next, apply the patch. Ensure that you perform this step as the owner of the Oracle

software (usually the oracle OS account). Also make sure your ORACLE_HOME variable

is set to point to the Oracle home to which you’re applying the patch. In this example,

because the opatch utility isn’t in a path included in the PATH directory, you specify the

entire path:

$ $ORACLE_HOME/OPatch/opatch napply -skip_subset -skip_duplicate

Finally, verify that the patch was applied by listing the inventory of patches:

$ $ORACLE_HOME/OPatch/opatch lsinventory

Chapter 1 Installing the Oracle Binaries

https://support.oracle.com

30

Here is some sample output for this example:

Patch 13742433 : applied on Sun Nov 04 13:49:07 MST 2012

Unique Patch ID: 15427576

Tip S ee MOS note 242993.1 for more information regarding the opatch utility.

�Installing Remotely with the Graphical Installer
The installation can be performed once using the GUI for a Read-Only Oracle Home.

In today’s global environment, DBAs often find themselves tasked with installing Oracle

software on remote Linux/Unix servers. In these situations, I strongly suggest that you

use the silent installation mode with a response file (as mentioned earlier). However, if

you want to install Oracle on a remote server via the graphical installer, this section of

the chapter describes the required steps.

Note  If you’re in a Windows-based environment, use the Remote Desktop
Connection or Virtual Network Computing (VNC) to install software remotely.

One issue that frequently arises is how to run the Oracle installer on a remote server

and have the graphical output displayed to your local computer. Figure 1-2 shows the

basic components and utilities required to run the Oracle graphical installer remotely.

Figure 1-2.  Components needed for a remote Oracle graphical installation

Chapter 1 Installing the Oracle Binaries

31

Listed next are the steps for setting up your environment to display the graphical

screens on your local computer while remotely running the Oracle installer:

	 1.	 Install software on the local computer that allows for X Window

System emulation and secure networking.

	 2.	 Start an X session on the local computer and issue the startx

command.

	 3.	 Copy the Oracle installation files to the remote server.

	 4.	 Run the xhost command.

	 5.	 Log in to the remote computer from an X terminal.

	 6.	 Ensure that the DISPLAY variable is set correctly on the remote

computer.

	 7.	 Execute the runInstaller utility on the remote server.

	 8.	 Troubleshoot.

These steps are explained in the following sections.

�Step 1. Install X Software and Networking Utilities
on the Local PC
If you’re installing Oracle on a remote server, and you’re using your home personal

computer (PC), then you first need to install software on your PC that allows you to run

X Window System software and to run commands such as ssh (secure shell) and scp

(secure copy). Several free tools are available that provide this functionality. One such

tool is Cygwin, which you can download from the Cygwin web site (http://x.cygwin.

com). Be sure to install the packages that provide the X emulation and secure networking

utilities, such as ssh and scp.

�Step 2. Start an X Session on the Local Computer
After you install on your local computer the software that allows you to run X Window

System software, you can open an X terminal window and start the X server via the

startx command:

$ startx

Chapter 1 Installing the Oracle Binaries

http://x.cygwin.com
http://x.cygwin.com

32

Here is a snippet of the output:

xauth: creating new authority file /home/test/.serverauth.3012

waiting for X server to begin accepting connections.

When the X software has started, run a utility such as xeyes to determine whether X

is working properly:

$ xeyes

Figure 1-3 shows what a local terminal session looks like, using the Cygwin X

terminal session tool.

If you can’t get a utility such as xeyes to execute, stop at this step until you get it

working. You must have correctly functioning X software before you can remotely install

Oracle, using the graphical installer.

�Step 3. Copy the Oracle Installation Media to the Remote
Server
From the X terminal, run the scp command to copy the Oracle installation media to the

remote server. Here is the basic syntax for using scp:

$ scp <localfile> <username>@<remote_server>:<remote_directory>

Figure 1-3.  Running xeyes utility on a local computer

Chapter 1 Installing the Oracle Binaries

33

The next line of code copies the Oracle installation media to a remote Oracle OS user

on a remote server in the home directory oracle:

$ scp linux_18cR1_database_1of2.zip oracle@shrek2:.

�Step 4. Run the xhost Command
From the X screen, enable access to the remote host via the xhost command. This

command must be run from your local computer:

$ xhost +

access control disabled, clients can connect from any host.

The prior command allows any client to connect to the local X server. If you want to

enable remote access specifically for the remote computer on which you’re installing the

software, provide an Internet protocol (IP) address or hostname (of the remote server).

In this example, the remote hostname is tst-z1.central.sun.com:

$ xhost +tst-z1.central.sun.com

tst-z1.central.sun.com being added to access control list

�Step 5. Log In to the Remote Computer from X
From your local X terminal, use the ssh utility to log in to the remote server on which you

want to install the Oracle software:

$ ssh -Y -l oracle <hostname>

�Step 6. Ensure that the DISPLAY Variable Is Set Correctly
on the Remote Computer
When you’ve logged in to the remote box, verify that your DISPLAY variable has been set:

$ echo $DISPLAY

You should see something similar to this:

localhost:10.0

Chapter 1 Installing the Oracle Binaries

34

If your DISPLAY variable is set to localhost:10.0, then proceed to the next step.

Otherwise, follow the next set of recommendations.

If your DISPLAY variable isn’t set, you must ensure that it’s set to a value that reflects

your local home computer location. From your local home computer, you can use the

ping or arp utility to determine the IP address that identifies your local computer. Run

the following command on your home computer:

C:\> ping <local_computer>

Tip  If you don’t know your local home computer name, on Windows you can look
in the Control Panel, then System, then reference the Computer name.

Now, from the remote server, execute this command to set the DISPLAY variable to

contain the IP address of the local computer:

$ export DISPLAY=129.151.31.147:0.0

Note that you must append the :0.0 to the end of the IP address. If you’re using the

C shell, use the setenv command to set the DISPLAY variable:

$ setenv DISPLAY 129.151.31.147:0.0

If you’re unsure which shell you’re using, use the echo command to display the

SHELL variable:

$ echo $SHELL

�Step 7. Execute the runInstaller Utility
Navigate to the directory where you copied and unzipped the Oracle software on the

remote server. Locate the runInstaller utility, and run it, as shown:

$./runInstaller

If everything goes well, you should see a screen appear in order to walk through the

steps of the installation.

From here, you can point and click your way through an Oracle installation of

the software. Many DBAs are more comfortable installing the software through a

Chapter 1 Installing the Oracle Binaries

35

graphical screen. This is a particularly good method if you aren’t familiar with Oracle’s

installation process and want to be prompted for input and presented with reasonable

default values.

�Step 8. Troubleshoot
Most issues with remote installations occur in steps 4, 5, and 6. Make sure you’ve

properly enabled remote-client access to your local X server (running on your home

computer) via the xhost command. The xhost command must be run on the local

computer on which you want the graphical display presented. Using the + (plus sign)

with the remote hostname adds a host to the local access list. This enables the remote

server to display an X window on the local host. If you type the xhost command by itself

(with no parameters), it displays all remote hosts that can display X sessions on the local

computer:

$ xhost

access control disabled, clients can connect from any host

Setting the DISPLAY OS variable on the remote server is also crucial. This allows

you to log in to another host remotely and display an X application back to your local

computer. The DISPLAY variable must be set on the remote database server to contain

information that points it to the local computer on which you want the graphical screen

displayed.

�Installation in the Cloud
Oracle 18c is a database released for the cloud first. Oracle 18c for server installation

became available several months after the use in the cloud and being able to perform

installs in the cloud. Oracle provides a couple of different options for databases in

the cloud, and a common one is Infrastructure as a Service (IaaS). IaaS provides the

infrastructure, server, OS, and users that are needed to be able to install your own

software and then create databases. Database provisioning is another option, Platform

as a Service (PaaS) can provide the Oracle binaries, and just the databases will need to

be created on that cloud service.

Since we have been discussing the software installation on a server and existing OS,

this will be an install on IaaS in the cloud. The database binaries would walk through

Chapter 1 Installing the Oracle Binaries

36

the same steps as described throughout this chapter. Configuration of the cloud service

provided would be based on the amount of storage, CPU, and memory requested. There

is flexibility of numbers of CPUs and memory that can be requested and then expanded

for future needs quickly and efficiently in the cloud.

Oracle is also available in AWS where it can be selected as an AMI from the store

and installed. Along with this option in other platforms, Oracle can be installed as part

of an IaaS. IaaS is available in the different cloud offerings, AWS, and others, but some

of the server configurations are going to be optimized on the Oracle Cloud and different

options of the licensing might be available. These are discussions with the Oracle sales

team to get licenses and requirements planned, but a decision to go to the cloud needs

to be discussed with the business and decide if the flexible resources and the time to

deployment are going to be of value.

In the Oracle Cloud, the database deployment is chosen, with an available Domain

and shape of the bare-metal machines based on the CPU and other resources for the

IaaS server. The software edition is the next choice, which is also the same with non-

cloud installations of the binary. Using IaaS in the cloud, their ssh keys, root access, and

other access such as SYS that is just for the customer and not accessible by the Oracle

cloud provider. This is just for the server that has been requested. The configuration

assistants can be run later after the binary install or select to run immediately after the

binaries are installed.

After these basic choices, the installation happens in the cloud. The server is then

ready for use to create databases and set up for management and monitoring. These

steps will be discussed later in the following chapters to include how to also manage the

databases in the cloud.

�Summary
This chapter detailed techniques for efficiently installing the Oracle binaries. Oracle

18c provides new ways to deploy the Oracle binaries including a Read-Only Oracle

Home. These methods are especially useful if you work in environments in which you

are geographically separated from the database servers. The Oracle silent installation

method is efficient because it doesn’t require graphical software and uses a response

file that helps enforce consistency from one installation to the next. When working in

chaotic and constantly changing environments, you should benefit from the installation

tips and procedures described here.

Chapter 1 Installing the Oracle Binaries

37

The Oracle binaries are installed in cloud environments when using Infrastructure

as a Service (IaaS), and this makes provisioning of servers and databases very efficient.

IaaS allow for the DBAs to have full access of the provisioned server to perform database

creation, but the installation of the database binaries is simplified and similar to a

response file install. Many DBAs feel more comfortable using Oracle’s graphical installer

for installing the database software. However, the graphical installer can be troublesome

when the server is in a remote location or embedded deeply within a secure network.

A slow network or a security feature can greatly impede the graphical installation process.

In these situations, make sure you correctly configure the required X software and OS

variables (such as DISPLAY).

It’s critical as a DBA to be an expert in Oracle installation procedures. If the Oracle

installation software isn’t correctly installed, you won’t be able to successfully create

a database. Once you have properly installed Oracle, you can go on to the next step of

starting the background processes and creating a database. The topics of starting Oracle

and issuing and creating a database are discussed next, in Chapter 2.

Chapter 1 Installing the Oracle Binaries

39
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_2

CHAPTER 2

Creating a Database
Chapter 1 detailed how to efficiently install the Oracle binaries. After you’ve installed

the Oracle software, the next logical task is creating a database. There are a few standard

ways for creating Oracle databases:

•	 Use the Database Configuration Assistant (dbca) utility.

•	 Run a CREATE DATABASE statement from SQL*Plus.

•	 Clone a database from an existing database.

Oracle’s dbca utility has a graphical interface from which you can configure and

create databases. This visual tool is easy to use and has a very intuitive interface. If you

need to create a development database and get going quickly, then this tool is more than

adequate. Having said that, I normally don’t use the dbca utility to create databases.

In Linux/Unix environments, the dbca tool depends on X software and an appropriate

setting for the OS DISPLAY variable. The dbca utility therefore requires some setup and

can perform poorly if you’re installing on remote servers when the network throughput

is slow.

The dbca utility also allows you to create a database in silent mode, without the

graphical component. Using dbca in silent mode with a response file is an efficient way

to create databases in a consistent and repeatable manner. The dbca tool can run in

silent mode after the binary installation or launched separately. This approach also

works well when you’re installing on remote servers, which could have a slow network

connection or not have the appropriate X software installed.

When you’re creating databases on remote servers, it’s usually easier and more

efficient to use SQL*Plus. The SQL*Plus approach is simple and inherently scriptable.

In addition, SQL*Plus works no matter how slow the network connection is, and it isn’t

dependent on a graphical component. However, the dbca utility allows for new features

to be adopted quickly in the databases being created. This chapter starts by showing you

how to quickly create a database using SQL*Plus, and also how to make your database

40

remotely available by enabling a listener process. Later, the chapter demonstrates how to

use the dbca utility in silent mode with a response file to create a database.

�Setting OS Variables
Before creating a database, you need to know a bit about OS variables, often called

environment variables. Before you run SQL*Plus (or any other Oracle utility), you must

set several OS variables:

•	 ORACLE_HOME

•	 ORACLE_SID

•	 LD_LIBRARY_PATH

•	 PATH

The ORACLE_HOME variable defines the starting point directory for the default location

for the initialization file, which is ORACLE_HOME/dbs on Linux/Unix. On Windows this

directory is usually ORACLE_HOME\database. The ORACLE_HOME variable is also important

because it defines the starting point directory for locating the Oracle binary files (such as

sqlplus, dbca, netca, rman, and so on) that are in ORACLE_HOME/bin.

The ORACLE_SID variable defines the default name of the database you’re attempting

to create. ORACLE_SID is also used as the default name for the parameter file, which is

init<ORACLE_SID>.ora or spfile<ORACLE_SID>.ora.

The LD_LIBRARY_PATH variable is important because it specifies where to search

for libraries on Linux/Unix boxes. The value of this variable is typically set to include

ORACLE_HOME/lib.

The PATH variable specifies which directories are looked in by default when you type

a command from the OS prompt. In almost all situations, ORACLE_HOME/bin (the

location of the Oracle binaries) must be included in your PATH variable.

You can take several different approaches to setting the prior variables. This chapter

discusses three, beginning with a hard-coded manual approach and ending with the

approach that I personally prefer: leveraging the oratab file. Why discuss different

approaches? Because it is important to understand that environments are configured

differently. Understanding that these steps are needed to connect to the database will

help with troubleshooting and verify that the binaries are installed and available. There

are also different tools that are available because of policies and server configurations,

such as doing silent installs compared to using the UI.

Chapter 2 Creating a Database

41

�A Manually Intensive Approach
In Linux/Unix, when you’re using the Bourne, Bash, or Korn shell, you can set OS

variables manually from the OS command line with the export command:

$ export ORACLE_HOME=/u01/app/oracle/product/18.0.0.0/db_1

$ export ORACLE_SID=o12c

$ export LD_LIBRARY_PATH=/usr/lib:$ORACLE_HOME/lib

$ export PATH=$ORACLE_HOME/bin:$PATH

For the C or tcsh shell, use the setenv command to set variables:

$ setenv ORACLE_HOME <path>

$ setenv ORACLE_SID <sid>

$ setenv LD_LIBRARY_PATH <path>

$ setenv PATH <path>

Another way that DBAs set these variables is by placing the previous export or

setenv commands into a Linux/Unix startup file, such as . bash_profile, . bashrc,

or . profile. That way, the variables are automatically set upon login. This is

accomplished by just editing the startup file or profile files to inserting the variables.

Even with the other options, it is still good to have a default ORACLE_HOME set in the

startup files.

However, manually setting OS variables (either from the command line or by

hard-coding values into a startup file) isn’t the optimal way to instantiate these variables.

For example, if you have multiple databases with multiple Oracle homes on a box,

manually setting these variables quickly becomes unwieldy and not very maintainable.

�Oracle’s Approach to Setting OS Variables
A much better method for setting OS variables is use of a script that uses a file that

contains the names of all Oracle databases on a server and their associated Oracle

homes. This approach is flexible and maintainable. For instance, if a database’s

ORACLE_HOME changes (e.g., after an upgrade), you only have to modify one file on the

server and not hunt down where the ORACLE_HOME variables may be hard-coded into

scripts.

Oracle provides a mechanism for automatically setting the required OS variables.

Oracle’s approach relies on two files: oratab and oraenv.

Chapter 2 Creating a Database

42

�Understanding oratab

You can think of the entries in the oratab file as a registry of what databases are

installed on a box and their corresponding Oracle home directories. The oratab file

is automatically created for you when you install the Oracle software. On Linux boxes,

oratab is usually placed in the /etc directory. On Solaris servers, the oratab file is

placed in the /var/opt/oracle directory. If, for some reason, the oratab file isn’t

automatically created, you can manually create the directory and file.

The oratab file is used in Linux/Unix environments for the following purposes:

•	 Automating the sourcing of required OS variables

•	 Automating the start and stop of Oracle databases on the server

The oratab file has three columns with this format:

<database_sid>:<oracle_home_dir>:Y|N

The Y or N indicates whether you want Oracle to restart automatically on reboot of

the box; Y indicates yes, and N indicates no. Automating the startup and shutdown of

your database is covered in detail in Chapter 20. Oracle srvctl also has management

policies that are set for automatic restart of the databases that don’t use the oratab.

Comments in the oratab file start with a pound sign (#). Here is a typical oratab file

entry:

o12c:/u01/app/oracle/product/18.0.0.0/db_1:N

rcat:/u01/app/oracle/product/18.0.0.0/db_1:N

The names of the databases on the previous lines are o12c and rcat. The path

of each database’s ORACLE_HOME directory is next on the line (separated from the

database name by a colon [:]).

Several Oracle-supplied utilities use the oratab file:

•	 oraenv uses oratab to set the OS variables.

•	 dbstart uses it to start the database automatically on server reboots

(if the third field in oratab is Y).

•	 dbshut uses it to stop the database automatically on server reboots (if

the third field in oratab is Y).

The oraenv tool is discussed in the following section.

Chapter 2 Creating a Database

43

�Using oraenv

If you don’t properly set the required OS variables for an Oracle environment, then

utilities such as SQL*Plus, Oracle Recovery Manager (RMAN), Data Pump, and so on

won’t work correctly. The oraenv utility automates the setting of required OS variables

(such as ORACLE_HOME, ORACLE_SID, and PATH) on an Oracle database server. This utility

is used in Bash, Korn, and Bourne shell environments (if you’re in a C shell environment,

there is a corresponding coraenv utility).

The oraenv utility is located in the O RACLE_HOME/bin directory. You can run it

manually, like this:

$. oraenv

Note that the syntax to run this from the command line requires a space between the

dot (.) and the oraenv tool. You’re prompted for ORACLE_SID and if the ORACLE_SID is

not in the oratab file, it will prompt for the ORACLE_HOME values:

ORACLE_SID = [oracle] ?

ORACLE_HOME = [/home/oracle] ?

You can also run the oraenv utility in a noninteractive way by setting OS variables

before you run it. This is useful for scripting when you don’t want to be prompted for

input:

$ export ORACLE_SID=o18c

$ export ORAENV_ASK=NO

$. oraenv

Keep in mind that if you set your ORACLE_SID to a value that isn’t found with the

oratab file, then you may be prompted for values such as ORACLE_HOME.

�My Approach to Setting OS Variables
I don’t use Oracle’s oraenv file to set the OS variables (see the previous section, “Using

oraenv,” for details of Oracle’s approach). Instead, I use a script named oraset. The

oraset script depends on the oratab file’s being in the correct directory and expected

format:

<database_sid>:<oracle_home_dir>:Y|N

Chapter 2 Creating a Database

44

As mentioned in the previous section, the Oracle installer should create an oratab

file for you in the correct directory. If it doesn’t, then you can manually create and

populate the file. In Linux, the oratab file is usually created in the /etc directory. On

Solaris servers, the oratab file is located in the /var/opt/oracle directory.

Next, use a script that reads the oratab file and sets the OS variables. Here is an

example of an oraset script that reads the oratab file and presents a menu of choices

(based on the database names in the oratab file):

#!/bin/bash

Sets Oracle environment variables.

Setup: 1. Put oraset file in /etc (Linux), in /var/opt/oracle (Solaris)

2. Ensure /etc or /var/opt/oracle is in $PATH

Usage: batch mode: . oraset <SID>

menu mode: . oraset

#==

if [-f /etc/oratab]; then

 OTAB=/etc/oratab

elif [-f /var/opt/oracle/oratab]; then

 OTAB=/var/opt/oracle/oratab

else

 echo 'oratab file not found.'

 exit

fi

#

if [-z $1]; then

 SIDLIST=$(egrep -v '#|*' ${OTAB} | cut -f1 -d:)

 # PS3 indicates the prompt to be used for the Bash select command.

 PS3='SID? '

 select sid in ${SIDLIST}; do

 if [-n $sid]; then

 HOLD_SID=$sid

 break

 fi

 done

else

 if egrep -v '#|*' ${OTAB} | grep -w "${1}:">/dev/null; then

Chapter 2 Creating a Database

45

 HOLD_SID=$1

 else

 echo "SID: $1 not found in $OTAB"

 fi

 shift

fi

#

export ORACLE_SID=$HOLD_SID

export ORACLE_HOME=$(egrep -v '#|*' $OTAB|grep -w $ORACLE_SID:|cut -f2 -d:)

export ORACLE_BASE=${ORACLE_HOME%%/product*}

export TNS_ADMIN=$ORACLE_HOME/network/admin

export ADR_BASE=$ORACLE_BASE/diag

export PATH=$ORACLE_HOME/bin:/usr/ccs/bin:/opt/SENSsshc/bin/\

:/bin:/usr/bin:.:/var/opt/oracle:/usr/sbin

export LD_LIBRARY_PATH=/usr/lib:$ORACLE_HOME/lib

You can run the oraset script either from the command line or from a startup file

(such as .profile, .bash_profile, or .bashrc). To run oraset from the command line,

place the oraset file in a standard location, such as /var/opt/oracle (Solaris) or /etc

(Linux), and run, as follows:

$. /etc/oraset

Note that the syntax to run this from the command line requires a space between the

dot (.) and the rest of the command. When you run oraset from the command line, you

should be presented with a menu such as this:

1) o18c

2) rcat

SID?

In this example you can now enter 1 or 2 to set the OS variables required for

whichever database you want to use. This allows you to set up OS variables interactively,

regardless of the number of database installations on the server.

You can also call the oraset file from an OS startup file. Here is a sample entry in the

. bashrc file:

. /etc/oraset

Chapter 2 Creating a Database

46

Now, every time you log in to the server, you’re presented with a menu of choices

that you can use to indicate the database for which you want the OS variables set. If you

want the OS variables automatically set to a particular database, then put an entry such

as this in the .bashrc file:

. /etc/oraset o18c

The prior line will run the oraset file for the o18c database and set the OS variables

appropriately.

�Creating a Database
This section explains how to create an Oracle database manually with the SQL*Plus

CREATE DATABASE statement. These are the steps required to create a database:

	 1.	 Set the OS variables.

	 2.	 Configure the initialization file.

	 3.	 Create the required directories.

	 4.	 Create the database.

	 5.	 Create a data dictionary.

Each of these steps is covered in the following sections.

�Step 1. Set the OS Variables
As mentioned previously, before you run SQL*Plus (or any other Oracle utility), you

must set several OS variables. You can either manually set these variables or use a

combination of files and scripts to set the variables. Here’s an example of setting these

variables manually:

$ export ORACLE_HOME=/u01/app/oracle/product/18.0.0.0/db_1

$ export ORACLE_SID=o18c

$ export LD_LIBRARY_PATH=/usr/lib:$ORACLE_HOME/lib

$ export PATH=$ORACLE_HOME/bin:$PATH

Chapter 2 Creating a Database

47

See the section “Setting OS Variables,” earlier in this chapter, for a complete

description of these variables and techniques for setting them.

�Step 2. Configure the Initialization File
Oracle requires that you have an initialization file in place before you attempt to start

the instance. The initialization file is used to configure features such as memory and to

control file locations. You can use two types of initialization files:

•	 Server parameter binary file (spfile)

•	 init.ora text file

Oracle recommends that you use a spfile for reasons such as these:

•	 You can modify the contents of the spfile with the SQL ALTER

SYSTEM statement.

•	 You can use remote-client SQL sessions to start the database without

requiring a local (client) initialization file.

•	 There are more dynamic parameters that can be set using the spfile

without any downtown.

These are good reasons to use an spfile. However, some shops still use the

traditional init.ora file. The init.ora file also has advantages:

•	 You can directly edit it with an OS text editor.

•	 You can place comments in it that detail a history of modifications.

When I first create a database, I find it easier to use an init.ora file. This file can

be easily converted later to a spfile if required (via the CREATE SPFILE FROM PFILE

statement). In this example, my database name is o18c, so I place the following contents

in a file named inito18c.ora and put the file in the ORACLE_HOME/dbs directory:

db_name=o18c

db_block_size=8192

memory_target=300M

memory_max_target=300M

processes=200

control_files=(/u01/dbfile/o18c/control01.ctl,/u02/dbfile/o18c/control02.ctl)

job_queue_processes=10

Chapter 2 Creating a Database

48

open_cursors=500

fast_start_mttr_target=500

undo_management=AUTO

undo_tablespace=UNDOTBS1

remote_login_passwordfile=EXCLUSIVE

Ensure that the initialization file is named correctly and located in the appropriate

directory. This is critical because when starting your instance, Oracle first looks in the

ORACLE_HOME/dbs directory for parameter files with specific formats, in this order:

•	 spfile<SID>.ora

•	 spfile.ora

•	 init<SID>.ora

In other words, Oracle first looks for a file named spfile<SID>.ora. If found, the

instance is started; if not, Oracle looks for spfile.ora and then init<SID>.ora. If one of

these files is not found, Oracle throws an error.

This may cause some confusion if you’re not aware of the files that Oracle looks for,

and in what order. For example, you may make a change to an init<SID>.ora file and

expect the parameter to be instantiated after stopping and starting your instance. If there

is a spfile<SID>.ora in place, the init<SID>.ora is completely ignored.

Note  You can manually instruct Oracle to look for a text parameter file in a
directory, using the pfile=<directory/filename> clause with the startup
command; under normal circumstances, you shouldn’t need to do this. You want
the default behavior, which is for Oracle to find a parameter file in the ORACLE_
HOME/dbs directory (for Linux/Unix). The default directory on Windows is ORACLE_
HOME/database.

Table 2-1 lists best practices to consider when configuring an Oracle initialization file.

Chapter 2 Creating a Database

49

Table 2-1.  Initialization File Best Practices

Best Practice Reasoning

Oracle recommends that you use a binary server

parameter file (spfile).

Spfile allows for dynamic changes to parameters.

If there is an acceptable maintenance window,

then using the init.ora file would be fine to use.

In general, don’t set initialization parameters if

you’re not sure of their intended purpose. When

in doubt, use the default.

Setting initialization parameters can have far-

reaching consequences in terms of database

performance. Only modify parameters if you

know what the resulting behavior will be.

For 11g and higher, set the memory_target and

memory_max_target initialization parameters.

Doing this allows Oracle to manage all memory

components for you.

For 10g, set the sga_target and sga_

target_max initialization parameters.

Doing this lets Oracle manage most memory

components for you.

For 10g, set pga_aggregate_target and

workarea_size_policy.

Doing this allows Oracle to manage the memory

used for the sort space.

Starting with 10g, use the automatic UNDO

feature. This is set using the undo_management

and undo_tablespace parameters.

Doing this allows Oracle to manage most

features of the UNDO tablespace.

Set open_cursors to a higher value than the

default. I typically set it to 500. Active online

transaction processing (OLTP) databases may

need a much higher value.

The default value of 50 is almost never enough.

Even a small, one-user application can exceed

the default value of 50 open cursors.

Name the control files with the pattern

/<mount_point>/dbfile/<database_

name>/control0N.ctl.

This deviates slightly from the OFA standard.

I find this location easier to navigate to, as

opposed to being located under ORACLE_BASE.

Use at least two control files, preferably in

different locations, using different disks.

If one control file becomes corrupt, it’s always a

good idea to have at least one other control file

available.

Chapter 2 Creating a Database

50

�Step 3. Create the Required Directories
Any OS directories referenced in the parameter file or CREATE DATABASE statement must

be created on the server before you attempt to create a database. For instance, in the

previous section’s initialization file, the control files are defined as

control_files=(/u01/dbfile/o18c/control01.ctl,/u02/dbfile/o18c/control02.ctl)

From the previous line, ensure that you’ve created the directories / u01/dbfile/

o18c and / u02/dbfile/o18c (modify this according to your environment). In Linux/

Unix you can create directories, including any parent directories required, by using the m

kdir command with the p switch:

$ mkdir -p /u01/dbfile/o18c

$ mkdir -p /u02/dbfile/o18c

Also make sure you create any directories required for data files and online redo logs

referenced in the CREATE DATABASE statement (see step 4). For this example, here are the

additional directories required:

$ mkdir -p /u01/oraredo/o18c

$ mkdir -p /u02/oraredo/o18c

If you create the previous directories as the root user, ensure that the oracle user

and dba groups are properly set to own the directories, subdirectories, and files. This

example recursively changes the owner and group of the following directories:

chown -R oracle:dba /u01

chown -R oracle:dba /u02

�Step 4. Create the Database
After you’ve established OS variables, configured an initialization file, and created any

required directories, you can now create a database. This step explains how to use the

CREATE DATABASE statement to create a database.

Before you can run the CREATE DATABASE statement, you must start the background

processes and allocate memory via the STARTUP NOMOUNT statement:

$ sqlplus / as sysdba

SQL> startup nomount;

Chapter 2 Creating a Database

51

When you issue a STARTUP NOMOUNT statement, SQL*Plus attempts to read the

initialization file in the ORACLE_HOME/dbs directory (see step 2). The STARTUP NOMOUNT

statement instantiates the background processes and memory areas used by Oracle. At

this point, you have an Oracle instance, but you have no database.

Note A n Oracle instance is defined as the background processes and memory
areas. The Oracle database is defined as the physical files (data files, control files,
online redo logs) on disk.

Listed next is a typical Oracle CREATE DATABASE statement:

CREATE DATABASE o18c

 MAXLOGFILES 16

 MAXLOGMEMBERS 4

 MAXDATAFILES 1024

 MAXINSTANCES 1

 MAXLOGHISTORY 680

 CHARACTER SET AL32UTF8

DATAFILE

'/u01/dbfile/o18c/system01.dbf'

 SIZE 500M REUSE

 EXTENT MANAGEMENT LOCAL

UNDO TABLESPACE undotbs1 DATAFILE

'/u01/dbfile/o18c/undotbs01.dbf'

 SIZE 800M

SYSAUX DATAFILE

'/u01/dbfile/o18c/sysaux01.dbf'

 SIZE 500M

DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE

'/u01/dbfile/o18c/temp01.dbf'

 SIZE 500M

DEFAULT TABLESPACE USERS DATAFILE

'/u01/dbfile/o18c/users01.dbf'

 SIZE 20M

LOGFILE GROUP 1

Chapter 2 Creating a Database

52

 ('/u01/oraredo/o18c/redo01a.rdo',

 '/u02/oraredo/o18c/redo01b.rdo') SIZE 50M,

 GROUP 2

 ('/u01/oraredo/o18c/redo02a.rdo',

 '/u02/oraredo/o18c/redo02b.rdo') SIZE 50M,

 GROUP 3

 ('/u01/oraredo/o18c/redo03a.rdo',

 '/u02/oraredo/o18c/redo03b.rdo') SIZE 50M

USER sys IDENTIFIED BY foo

USER system IDENTIFIED BY foo;

In this example the script is placed in a file named credb.sql and is run from the

SQL*Plus prompt as the SYS user:

SQL> @credb.sql

If it’s successful, you should see the following message:

Database created.

Note S ee Chapter 22 for details on creating a pluggable database.

If any errors are thrown while the CREATE DATABASE statement is running, check the

alert log file. Typically, errors occur when required directories don’t exist, the memory

allocation isn’t sufficient, or an OS limit has been exceeded. If you’re unsure of the

location of your alert log, issue the following query:

SQL> select value from v$diag_info where name = 'Diag Trace';

The prior query should work even when your database is in the nomount state.

Another way to quickly find the alert log file is from the OS:

$ cd $ORACLE_BASE

$ find . -name "alert*.log"

Tip T he default format for the name of the alert log file is alert_<SID>.log.

Chapter 2 Creating a Database

53

There are few key things to point out about the prior CREATE DATABASE statement

example. Note that the SYSTEM data file is defined as locally managed. This means

that any tablespace created in this database must be locally managed (as opposed

to dictionary managed). Oracle throws an error if you attempt to create a dictionary-

managed tablespace in this database. This is the desired behavior.

A dictionary-managed tablespace uses the Oracle data dictionary to manage extents

and free space, whereas a locally managed tablespace uses a bitmap in each data file to

manage its extents and free space. Locally managed tablespaces have these advantages:

•	 Performance is increased.

•	 No coalescing is required.

•	 Contention for resources in the data dictionary is reduced.

•	 Recursive space management is reduced.

Also note that the TEMP tablespace is defined as the default temporary tablespace.

This means that any user created in the database automatically has the TEMP tablespace

assigned to him or her as the default temporary tablespace. After you create the data

dictionary (see step 5), you can verify the default temporary tablespace with this query:

select *

from database_properties

where property_name = 'DEFAULT_TEMP_TABLESPACE';

Finally, note that the USERS tablespace is defined as the default permanent

tablespace for any users created that don’t have a default tablespace defined in a CREATE

USER statement. After you create the data dictionary (see step 5), you can run this query

to determine the default tablespace:

select *

from database_properties

where property_name = 'DEFAULT_PERMANENT_TABLESPACE';

Table 2-2 lists best practices to consider when you are creating an Oracle database.

Chapter 2 Creating a Database

54

Table 2-2.  Best Practices for Creating an Oracle Database

Best Practice Reasoning

Use the REUSE clause

with caution. Normally,

you should use it only

when you’re re-creating a

database.

The REUSE clause instructs Oracle to overwrite existing files,

regardless of whether they are in use or not. This is dangerous.

Create a default temporary

tablespace with TEMP

somewhere in the name.

Every user should be assigned a temporary tablespace of the type

TEMP, including the SYS user. If you don’t specify a default temporary

tablespace, then the SYSTEM tablespace is used. You never want

a user to be assigned a temporary tablespace of SYSTEM. If your

database doesn’t have a default temporary tablespace, use the ALTER

DATABASE DEFAULT TEMPORARY TABLESPACE statement to assign

one.

Create a default permanent

tablespace named USERS.

This ensures that users are assigned a default permanent tablespace

other than SYSTEM. If your database doesn’t have a default permanent

tablespace, use the ALTER DATABASE DEFAULT TABLESPACE

statement to assign one.

Use the USER SYS and

USER SYSTEM clauses

to specify nondefault

passwords.

Doing this creates the database with nondefault passwords for

database accounts that are usually the first targets for hackers.

Create at least three

redo log groups, with two

members each.

At least three redo log groups provide time for the archive process to

write out archive redo logs between switches. Two members mirror the

online redo log members, providing some fault tolerance.

Give the redo logs a name

such as redoNA.rdo.

This deviates slightly from the OFA standard, but I’ve had files with the

extension.log accidentally deleted more than once (it shouldn’t ever

happen, but it has).

(continued)

Chapter 2 Creating a Database

55

Tip  Many of these settings in the CREATE DATABASE are done for you using the
dbca. The tablespaces can be set up or defaults can be used along with making
sure the users are not going to be creating objects in the SYSTEM tablespaces and
no default passwords are used. Using dbca will take new features and security
options as part of the database creation.

Note that the CREATE DATABASE statement used in this step deviates slightly from

the OFA standard in terms of the directory structure. I prefer not to place the Oracle

data files, online redo logs, and control files under ORACLE_BASE (as specified by the OFA

standard). I instead directly place files under directories named /<mount_point>/<file_

type>/<database_name>, because the path names are much shorter. The shorter path

names make command-line navigation to directories easier, and the names fit more

cleanly in the output of SQL SELECT statements. Figure 2-1 displays this deviation from

the OFA standard.

Table 2-2.  (continued)

Best Practice Reasoning

Make the database name

somewhat intelligent, such

as PAPRD, PADEV1, or

PATST1.

This helps you determine what database you’re operating in and

whether it’s a production, development, or test environment.

Use the ? variable when

you’re creating the data

dictionary (see step 5).

Don’t hard-code the

directory path.

SQL*Plus interprets the ? as the directory contained in the OS

ORACLE_HOME variable. This prevents you from accidentally running

scripts from the wrong version of ORACLE_HOME.

Chapter 2 Creating a Database

56

It’s not my intention to have you use nonstandard OFA structures. Rather, do what

makes sense for your environment and requirements. Apply reasonable standards that

foster manageability, maintainability, and scalability.

�Step 5. Create a Data Dictionary
After your database is successfully created, you can instantiate the data dictionary by

running two scripts. These scripts are created when you install the Oracle binaries. You

must run these scripts as the SYS schema:

SQL> show user

USER is "SYS"

Figure 2-1.  A slight deviation from the OFA standard for laying out database files

Chapter 2 Creating a Database

57

Before I create the data dictionary, I like to spool an output file that I can inspect in

the event of unexpected errors:

SQL> spool create_dd.lis

Now, create the data dictionary:

SQL> @?/rdbms/admin/catalog.sql

SQL> @?/rdbms/admin/catproc.sql

After you successfully create the data dictionary, as the SYSTEM schema, create the

product user profile tables:

SQL> connect system/<password>

SQL> @?/sqlplus/admin/pupbld

These tables allow SQL*Plus to disable commands on a user-by-user basis. If the

pupbld.sql script isn’t run, then all non-sys users see the following warning when

logging in to SQL*Plus:

Error accessing PRODUCT_USER_PROFILE

Warning: Product user profile information not loaded!

You may need to run PUPBLD.SQL as SYSTEM

These errors can be ignored. If you don’t want to see them when logging in to

SQL*Plus, make sure you run the pupbld.sql script.

At this point, you should have a fully functional database. You next need to configure

and implement your listener to enable remote connectivity and, optionally, set up a

password file. These tasks are described in the next two sections.

�Configuring and Implementing the Listener
After you’ve installed binaries and created a database, you need to make the database

accessible to remote-client connections. You do this by configuring and starting the

Oracle listener. Appropriately named, the listener is the process on the database server

that “listens” for connection requests from remote clients. If you don’t have a listener

started on the database server, then you can’t connect from a remote client.

The listener can be included as part of the database home or part of the grid home.

The listener only needs to be there once as there only can be one active grid home and

Chapter 2 Creating a Database

58

the possibility of multiple database homes. This is one place to manage and maintain the

listener. Having the listener as part of the grid environment allows for patching separate

from the databases and with the grid as part of an infrastructure patching process. Also

keep in mind when maintaining the listener to have the proper ORACLE_HOME set to

keep the listener running in the desired home. The next two methods show the listener

being configured in the database, but it can be easily followed for the grid home.

There are two methods for setting up a listener: the Oracle Net Configuration

Assistant (netca) or manually configuring the listener.ora file.

�Implementing a Listener with the Net Configuration
Assistant
The netca utility assists you with all aspects of implementing a listener. You can run

the netca tool in either graphical or silent mode. Using the netca in graphical mode is

easy and intuitive. To use the netca in graphical mode, ensure that you have the proper

X software installed, then issue the xhost + command, and check that your DISPLAY

variable is set; for example,

$ xhost +

$ echo $DISPLAY

:0.0

You can now run the netca utility:

$ netca

Next, you will be guided through several screens from which you can choose options

such as name of the listener, desired port, and so on.

You can also run the netca utility in silent mode with a response file. This

mode allows you to script the process and ensure repeatability when creating and

implementing listeners. First, find the default listener response file within the directory

structure that contains the Oracle install media:

$ find . -name "netca.rsp"

./18.0.0.0/database/response/netca.rsp

Now, make a copy of the file so that you can modify it:

$ cp 18.0.0.0/database/response/netca.rsp mynet.rsp

Chapter 2 Creating a Database

59

If you want to change the default name or other attributes, then edit the mynet.rsp

file with an OS utility such as vi:

$ vi mynet.rsp

For this example, I haven’t modified any values within the mynet.rsp file. In other

words, I’m using all the default values already contained within the response file. Next,

the netca utility is run in silent mode:

$ netca -silent -responsefile /home/oracle/orainst/mynet.rsp

The utility creates a listener.ora and sqlnet.ora file in the ORACLE_HOME/network/

admin directory and starts a default listener.

�Manually Configuring a Listener
When you’re setting up a new environment, manually configuring the listener is a two-

step process:

	 1.	 Configure the listener.ora file.

	 2.	 Start the listener.

The listener.ora file is located by default in the ORACLE_HOME/network/admin

directory. This is the same directory that the TNS_ADMIN OS variable should be set to.

When manually configuring the listener and updating the listener.ora file, be aware of

parentheses and any special characters, and a misconfigured listener.ora will result in

not being able to start, and along with another listener on the same port is the first place

to look.

Here is a sample listener.ora file that contains network configuration information

for one database:

LISTENER =

 (DESCRIPTION_LIST =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = TCP)(HOST = oracle18c)(PORT = 1521))

)

)

)

Chapter 2 Creating a Database

60

SID_LIST_LISTENER =

 (SID_LIST =

 (SID_DESC =

 (GLOBAL_DBNAME = o18c)

 (ORACLE_HOME = /u01/app/oracle/product/18.0.0.0/db_1)

 (SID_NAME = o18c)

)

)

This code listing has two sections. The first defines the listener name and service; in

this example the listener name is LISTENER. The second defines the list of SIDs for which

the listener is listening for incoming connections (to the database). The format of the

SID list name is SID_LIST_<name of listener>. The name of the listener must appear

in the SID list name. The SID list name in this example is SID_LIST_LISTENER.

Also, you don’t have to explicitly specify the SID_LIST_LISTENER section (the second

section) in the prior code listing. This is because the process monitor (PMON) background

process will automatically register any running databases as a service with the listener;

this is known as dynamic registration. However, some DBAs prefer to explicitly list

which databases should be registered with the listener and therefore include the second

section; this is known as static registration.

After you have a listener.ora file in place, you can start the listener background

process with the lsnrctl utility:

$ lsnrctl start

You should see informational messages, such as the following:

Listening Endpoints Summary...

 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oracle18c)(PORT=1521)))

Services Summary...

Service "o18c" has 1 instance(s).

You can verify the services for which a listener is listening via

$ lsnrctl services

You can check the status of the listener with the following query:

$ lsnrctl status

Chapter 2 Creating a Database

61

For a complete listing of listener commands, issue this command:

$ lsnrctl help

Tip  Use the Linux/Unix ps -ef | grep tns command to view any listener
processes running on a server.

�Connecting to a Database through the Network
Once the listener has been configured and started, you can test remote connectivity from

a SQL*Plus client, as follows:

$ sqlplus user/pass@'server:port/service_name'

In the next line of code, the user and password are system/foo, connecting the

oracle18c server, port 1521, to a database named o18c:

$ sqlplus system/foo@'oracle18c:1521/o18c'

This example demonstrates what is known as the easy connect naming method of

connecting to a database. It’s easy because it doesn’t rely on any setup files or utilities.

The only information you need to know is username, password, server, port, and service

name (SID).

Another common connection method is local naming. This method relies on

connection information in the ORACLE_HOME/network/admin /tnsnames.ora file. In

this example the tnsnames.ora file is edited, and the following Transparent Network

Substrate (TNS) (Oracle’s network architecture) entry is added:

o18c =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = oracle18c)(PORT = 1521))

 (CONNECT_DATA = (SERVICE_NAME = o18c)))

Now, from the OS command line, you establish a connection by referencing the o18c

TNS information that was placed in the tnsnames.ora file:

$ sqlplus system/foo@o18c

Chapter 2 Creating a Database

62

This connection method is local because it relies on a local client copy of the

tnsnames.ora file to determine the Oracle Net connection details. By default, SQL*Plus

inspects the directory defined by the TNS_ADMIN variable for a file named tnsnames.ora.

If not found, then the directory defined by ORACLE_HOME/network/admin is searched.

If the tnsnames.ora file is found, and if it contains the alias specified in the SQL*Plus

connection string (in this example, o18c), then the connection details are derived from

the entry in the tnsnames.ora file.

The other connection-naming methods that Oracle uses are external naming and

directory naming. See the Oracle Net Services Administrator’s Guide, which can be freely

downloaded from the Technology Network area of the Oracle web site (http://otn.

oracle.com), for further details.

Tip  You can use the netca utility to create a tnsnames.ora file. Start the utility
and choose the Local Net Service Name Configuration option. You will be prompted
for input, such as the SID, hostname, and port.

�Creating a Password File
Creating a password file is optional. There are some good reasons for requiring a

password file:

•	 You want to assign non-sys users sys* privileges (sysdba, sysoper,

sysbackup, and so on).

•	 You want to connect remotely to your database via Oracle Net with

sys* privileges.

Oracle Data Guard setup and needing password files on the standby servers.

•	 An Oracle feature or utility requires the use of a password file.

Perform the following steps to implement a password file:

	 1.	 Create the password file with the orapwd utility.

	 2.	 Set the initialization parameter REMOTE_LOGIN_PASSWORDFILE to

EXCLUSIVE.

Chapter 2 Creating a Database

http://otn.oracle.com
http://otn.oracle.com

63

In a Linux/Unix environment, use the orapwd utility to create a password file, as follows:

$ cd $ORACLE_HOME/dbs

$ orapwd file=orapw<ORACLE_SID> password=<sys password>

In a Linux/Unix environment, the password file is usually stored in ORACLE_HOME/

dbs; in Windows it’s typically placed in the ORACLE_HOME\database directory.

The format of the filename that you specify in the previous command may vary

by OS. For instance, in Windows the format is PWD<ORACLE_SID>.ora. The following

example shows the syntax in a Windows environment:

c:\> cd %ORACLE_HOME%\database

c:\> orapwd file=PWD<ORACLE_SID>.ora password=<sys password>

To enable the use of the password file, set the initialization parameter REMOTE_

LOGIN_PASSWORDFILE to EXCLUSIVE (this is the default value). If the parameter is not set

to EXCLUSIVE, then you’ll have to modify your parameter file:

SQL> alter system set remote_login_passwordfile='EXCLUSIVE' scope=spfile;

You need to stop and start the instance to instantiate the prior setting.

You can add users to the password file via the GRANT <any SYS privilege>

statement. You want to be careful with these privileges and use of the password file for

secure configurations. Only the accounts that need these privileges should be granted

along with access to the password file. The following example grants SYSDBA privileges to

the heera user (and thus adds heera to the password file):

 VSQL> grant sysdba to heera;

Grant succeeded.

Enabling a password file also allows you to connect to your database remotely with

SYS*-level privileges via an Oracle Net connection. This example shows the syntax for a

remote connection with SYSDBA-level privileges:

$ sqlplus <username>/<password>@<database connection string> as sysdba

This allows you to do remote maintenance with sys* privileges (sysdba, sysoper,

sysbackup, and so on) that would otherwise require your logging in to the database

server physically. You can verify which users have sys* privileges by querying the

V$PWFILE_USERS view:

SQL> select * from v$pwfile_users;

Chapter 2 Creating a Database

64

Here is some sample output:

USERNAME SYSDB SYSOP SYSAS SYSBA SYSDG SYSKM CON_ID

-------------------------- ----- ----- ----- ----- ----- ----- ----------

SYS TRUE TRUE FALSE FALSE FALSE FALSE 0

The concept of a privileged user is also important to RMAN backup and recovery.

Like SQL*Plus, RMAN uses OS authentication and password files to allow privileged

users to connect to the database. Only a privileged account is allowed to back up, restore,

and recover a database.

�Starting and Stopping the Database
Before you can start and stop an Oracle instance, you must set the proper OS variables

(previously covered in this chapter). You also need access to either a privileged OS

account or a privileged database user account. Connecting as a privileged user allows

you to perform administrative tasks, such as starting, stopping, and creating databases.

You can use either OS authentication or a password file to connect to your database as a

privileged user.

�Understanding OS Authentication
OS authentication means that if you can log in to a database server via an authorized

OS account, you’re allowed to connect to your database without the requirement of

an additional password. A simple example demonstrates this concept. First, the id

command is used to display the OS groups to which the oracle user belongs:

$ id

uid=500(oracle) gid=506(oinstall) groups=506(oinstall),507(dba),508(oper)

Next, a connection to the database is made with SYSDBA privileges, purposely using a

bad (invalid) username and password:

$ sqlplus bad/notgood as sysdba

I can now verify that the connection as SYS was established:

SYS@o18c> show user

USER is "SYS"

Chapter 2 Creating a Database

65

How is it possible to connect to the database with an incorrect username and

password? Actually, it is not a bad thing (as you might initially think). The prior

connection works because Oracle ignores the username/password provided, as the user

was first verified via OS authentication. In that example the oracle OS user belongs to

the dba OS group and is therefore allowed to make a local connection to the database

with SYSDBA privileges without having to provide a correct username and password.

See Table 1-1, in Chapter 1, for a complete description of OS groups and the mapping

to corresponding database privileges. Typical groups include dba and oper; these

groups correspond to sysdba and sysoper database privileges, respectively. The sysdba

and sysoper privileges allow you to perform administrative tasks, such as starting and

stopping your database.

In a Windows environment, an OS group is automatically created (typically named

ora_dba) and assigned to the OS user that installs the Oracle software. You can verify

which OS users belong to the ora_dba group as follows: select Start ➤ Control Panel ➤

Administrative Tools ➤ Computer Management ➤ Local Users and Groups ➤ Groups.

You should see a group with a name such as ora_dba. You can click that group and view

which OS users are assigned to it. In addition, for OS authentication to work in Windows

environments, you must have the following entry in your sqlnet.ora file:

SQLNET.AUTHENTICATION_SERVICES=(NTS)

The sqlnet.ora file is usually located in the ORACLE_HOME/network/admin directory.

�Starting the Database
Starting and stopping your database is a task that you perform frequently. To start/stop

your database, connect with a sysdba- or sysoper-privileged user account, and issue

the startup and shutdown statements. The following example uses OS authentication to

connect to the database:

$ sqlplus / as sysdba

After you’re connected as a privileged account, you can start your database, as

follows:

SQL> startup;

Chapter 2 Creating a Database

https://doi.org/10.1007/978-1-4842-4424-1_1#Tab1

66

For the prior command to work, you need either a spfile or init.ora file in the

ORACLE_HOME/dbs directory. See the section “Step 2: Configure the Initialization File,”

earlier in this chapter, for details.

Note S topping and restarting your database in quick succession is known
colloquially in the DBA world as bouncing your database.

When your instance starts successfully, you should see messages from Oracle

indicating that the system global area (SGA) has been allocated. The database is

mounted and then opened:

ORACLE instance started.

Total System Global Area 313159680 bytes

Fixed Size 2259912 bytes

Variable Size 230687800 bytes

Database Buffers 75497472 bytes

Redo Buffers 4714496 bytes

Database mounted.

Database opened.

From the prior output, the database startup operation goes through three distinct

phases in opening an Oracle database:

	 1.	 Starting the instance

	 2.	 Mounting the database

	 3.	 Opening the database

You can step through these one at a time when you start your database. First, start

the Oracle instance (background processes and memory structures):

SQL> startup nomount;

Next, mount the database. At this point, Oracle reads the control files:

SQL> alter database mount;

Finally, open the data files and online redo log files:

SQL> alter database open;

Chapter 2 Creating a Database

67

This startup process is depicted graphically in Figure 2-2.

Figure 2-2.  Phases of Oracle startup

Table 2-3.  Parameters Available with the startup Command

Parameter Meaning

FORCE Shuts down the instance with ABORT before restarting it; useful for

troubleshooting startup issues; not normally used

RESTRICT Only allows users with the RESTRICTED SESSION privilege to connect to the

database

PFILE Specifies the client parameter file to be used when starting the instance

QUIET Suppresses the display of SGA information when starting the instance

NOMOUNT Starts background processes and allocates memory; doesn’t read control files

MOUNT Starts background processes, allocates memory, and reads control files

OPEN Starts background processes, allocates memory, reads control files, and opens

online redo logs and data files

(continued)

When you issue a STARTUP statement without any parameters, Oracle automatically

steps through the three startup phases (nomount, mount, open). In most cases, you will

issue a STARTUP statement with no parameters to start your database. Table 2-3 describes

the meanings of parameters that you can use with the database STARTUP statement.

Chapter 2 Creating a Database

68

�Stopping the Database
Normally, you use the SHUTDOWN IMMEDIATE statement to stop a database. The IMMEDIATE

parameter instructs Oracle to halt database activity and roll back any open transactions:

SQL> shutdown immediate;

Database closed.

Database dismounted.

ORACLE instance shut down.

Table 2-4 provides a detailed definition of the parameters available with the

SHUTDOWN statement. In most cases, SHUTDOWN IMMEDIATE is an acceptable method of

shutting down your database. If you issue the SHUTDOWN command with no parameters,

it’s equivalent to issuing SHUTDOWN NORMAL.

Table 2-4.  Parameters Available with the SHUTDOWN Command

Parameter Meaning

NORMAL Wait for users to log out of active sessions before shutting down.

TRANSACTIONAL Wait for transactions to finish, and then terminate the session.

TRANSACTIONAL

LOCAL

Perform a transactional shutdown for local instance only.

IMMEDIATE Terminate active sessions immediately. Open transactions are rolled back.

ABORT Terminate the instance immediately. Transactions are terminated and aren’t

rolled back.

Parameter Meaning

OPEN RECOVER Attempts media recovery before opening the database

OPEN READ ONLY Opens the database in read-only mode

UPGRADE Used when upgrading a database

DOWNGRADE Used when downgrading a database

Table 2-3.  (continued)

Chapter 2 Creating a Database

69

Starting and stopping your database is a fairly simple process. If the environment

is set up correctly, you should be able to connect to your database and issue the

appropriate STARTUP and SHUTDOWN statements.

Tip I f you experience any issues with starting or stopping your database, look
in the alert log for details. The alert log usually has a pertinent message regarding
any problems.

You should rarely need to use the SHUTDOWN ABORT statement. Usually, SHUTDOWN

IMMEDIATE is sufficient. Having said that, there is nothing wrong with using SHUTDOWN

ABORT. If SHUTDOWN IMMEDIATE isn’t working for any reason, then use SHUTDOWN ABORT. Also

remember on startup after a SHUTDOWN ABORT command, the database is going to need

to recover media files and might take a significant amount of time to run through the files.

On a few, rare occasions the SHUTDOWN ABORT will fail to work. In those situations,

you can use ps -ef | grep smon to locate the Oracle system-monitor process and then

use the Linux/Unix k ill command to terminate the instance. When you kill a required

Oracle background process, this causes the instance to abort. Obviously, you should use

an OS kill command only as a last resort.

DATABASE VS. INSTANCE

Although DBAs often use the terms database and instance synonymously, these two terms

refer to very different architectural components. In Oracle the term database denotes the

physical files that make up a database: the data files, online redo log files, and control files.

The term instance denotes the background processes and memory structures.

For example, you can create an instance without having a database present. Before a

database is physically created, you must start the instance with the STARTUP NOMOUNT

statement. In this state you have background processes and memory structures without any

associated data files, online redo logs, or control files. The database files aren’t created until

you issue the CREATE DATABASE statement.

Another important point to remember is that an instance can only be associated with one

database, whereas a database can be associated with many different instances (as with

Oracle Real Application Clusters [RAC]). An instance can mount and open a database one time

Chapter 2 Creating a Database

70

only. Each time you stop and start a database, a new instance is associated with it. Previously

created background processes and memory structures are never associated with a database.

To demonstrate this concept, close a database with the ALTER DATABASE CLOSE statement:

SQL> alter database close;

If you attempt to restart the database, you receive an error:

SQL> alter database open;

ERROR at line 1:

ORA-16196: database has been previously opened and closed

This is because an instance can only ever mount and open one database. You must stop and

start a new instance before you can mount and open the database.

�Using the dbca to Create a Database
You can also use the dbca utility to create a database. This utility works in two modes:

graphical and silent. To use the dbca in graphical mode, ensure you have the proper X

software installed, then issue the xhost + command, and make certain your DISPLAY

variable is set; for example,

$ xhost +

$ echo $DISPLAY

:0.0

To run the dbca in graphical mode, type in dbca from the OS command line:

$ dbca

The graphical mode is very intuitive and will walk you through all aspects of creating

a database. You may prefer to use this mode if you are new to Oracle and want to be

explicitly prompted with choices.

You can also run the dbca in silent mode with a response file. In some situations,

using dbca in graphical mode isn’t feasible. This may be due to slow networks or the

unavailability of X software. To create a database, using dbca in silent mode, perform the

following steps:

	 1.	 Locate the d bca.rsp file.

	 2.	 Make a copy of the d bca.rsp file.

Chapter 2 Creating a Database

71

	 3.	 Modify the copy of the d bca.rsp file for your environment.

	 4.	 Run the dbca utility in silent mode.

First, navigate to the location in which you copied the Oracle database installation

software, and use the find command to locate dbca.rsp:

$ find . -name dbca.rsp

./18.0.0.0/database/response/dbca.rsp

Copy the file so that you’re not modifying the original (in this way, you’ll always have

a good, original file):

$ cp dbca.rsp mydb.rsp

Now, edit the mydb.rsp file. Minimally, you need to modify the following parameters:

GDBNAME, SID, SYSPASSWORD, SYSTEMPASSWORD, SYSMANPASSWORD, DBSNMPPASSWORD,

DATAFILEDESTINATION, STORAGETYPE, CHARACTERSET, and NATIONALCHARACTERSET.

Following is an example of modified values in the mydb.rsp file:

[CREATEDATABASE]

GDBNAME = "O18DEV"

SID = "O18DEV"

TEMPLATENAME = "General_Purpose.dbc"

SYSPASSWORD = "foo"

SYSTEMPASSWORD = "foo"

SYSMANPASSWORD = "foo"

DBSNMPPASSWORD = "foo"

DATAFILEDESTINATION ="/u01/dbfile"

STORAGETYPE="FS"

CHARACTERSET = "AL32UTF8"

NATIONALCHARACTERSET= "UTF8"

Next, run the dbca utility in silent mode, using a response file:

$ dbca -silent -responseFile /home/oracle/orainst/mydb.rsp

You should see output such as

Copying database files

1% complete

...

Chapter 2 Creating a Database

72

Creating and starting Oracle instance

...

62% complete

Completing Database Creation

...

100% complete

Look at the log file ... for further details.

If you look in the log files, note that the dbca utility uses the rman utility to restore

the data files used for the database. Then, it creates the instance and performs

postinstallation steps. On a Linux server you should also have an entry in the /etc/

oratab file for your new database.

Many DBAs launch dbca and configure databases in the graphical mode, but a few

exploit the options available to them using the response file. With effective utilization

of the response file, you can consistently automate the database creation process. You

can modify the response file to build databases on ASM and even create RAC databases.

In addition, you can control just about every aspect of the response file, similar to

launching the dbca in graphical mode.

Tip  You can view all options of the dbca via the help parameter: dbca -help

USING DBCA TO GENERATE A CREATE DATABASE STATEMENT

You can use the dbca utility to generate a CREATE DATABASE statement. You can perform

this either interactively with the graphical interface or via silent mode. The key is to choose

the “custom database template” and also specify the option to “generate database creation

scripts.” This example uses the silent mode to generate a script that contains a CREATE

DATABASE statement:

$ dbca -silent -generateScripts -customCreate -templateName New_Database.dbt \

 -gdbName DKDEV

The prior line of code instructs the dbca to create a script named CreateDB.sql and place it

in the ORACLE_BASE/admin/DKDEV/scripts directory. The CreateDB.sql file contains a

CREATE DATABASE statement within it. Also created is an init.ora file for initializing your

instance.

Chapter 2 Creating a Database

73

In this example, the scripts required to create a database are generated for you. No database

is created until you manually run the scripts.

This technique gives you an automated method for generating a CREATE DATABASE

statement. This is especially useful if you are new to Oracle and are unsure of how to

construct a CREATE DATABASE statement or if you are using a new version of the database

and want a valid CREATE DATABASE statement generated by an Oracle utility.

�Dropping a Database
If you have an unused database that you need to drop, you can use the DROP DATABASE

statement to accomplish this. Doing so removes all data files, control files, and online

redo logs associated with the database.

Needless to say, use extreme caution when dropping a database. Before you drop

a database, ensure that you’re on the correct server and are connected to the correct

database. On a Linux/Unix system, issue the following OS command from the OS prompt:

$ uname -a

Next, connect to SQL*Plus, and be sure you’re connected to the database you want

to drop:

SQL> select name from v$database;

After you’ve verified that you’re in the correct database environment, issue the

following SQL commands from a SYSDBA-privileged account:

SQ> shutdown immediate;

SQL> startup mount exclusive restrict;

SQL> drop database;

Caution  Obviously, you should be careful when dropping a database. You aren’t
prompted when dropping the database and, as of this writing, there is no UNDROP
ACCIDENTALLY DROPPED DATABASE command. Use extreme caution when
dropping a database, because this operation removes data files, control files, and
online redo log files.

Chapter 2 Creating a Database

74

The DROP DATABASE command is useful when you have a database that needs

to be removed. It may be a test database or an old database that is no longer used.

The DROP DATABASE command doesn’t remove old archive redo log files. You must

manually remove those files with an OS command (such as rm, in Linux/Unix, or del,

at the Windows command prompt). You can also instruct RMAN to remove archive

redo log files.

�How Many Databases on One Server?
Sometimes, when you’re creating new databases, this question arises: How many

databases should you put on one server? One extreme is to have only one database

running on each database server. This architecture is illustrated in Figure 2-3,

which shows two different database servers, each with its own installation of the

Oracle binaries. This type of setup is profitable for the hardware vendor but in many

environments isn’t an economical use of resources.

If you have enough memory, central processing unit (CPU), and disk resources,

then you should consider creating multiple databases on one server. You can create a

new installation of the Oracle binaries for each database or have multiple databases

share one set of Oracle binaries. Figure 2-4 shows a configuration using one set of

Oracle binaries that’s shared by multiple databases on one server. Of course, if you have

requirements for different versions of the Oracle binaries, you must have multiple Oracle

homes to house those installations.

Figure 2-3.  Architecture with one server per database

Chapter 2 Creating a Database

75

If you don’t have the CPU, memory, or disk resources to create multiple databases

on one server, consider using one database to host multiple applications and users,

as shown in Figure 2-5. In environments such as this, be careful not to use public

synonyms, because there may be collisions between applications. It’s typical to

create different schemas and tablespaces to be used by different applications in such

environments.

With Oracle Database 18c you have the option of using the pluggable database

feature. This technology allows you to house several pluggable databases within

one container database. The pluggable databases share the instance, background

processes, undo, and Oracle binaries but function as completely separate databases.

Each pluggable database has its own set of tablespaces (including SYSTEM) that are not

visible to any other pluggable databases within the container database. This allows you

to securely implement an isolated database that shares resources with other databases.

Figure 2-6 depicts this architecture (see Chapter 23 for details on how to implement a

pluggable database).

Figure 2-4.  Multiple databases sharing one set of Oracle binaries on a server

Figure 2-5.  One database used by multiple applications and users

Chapter 2 Creating a Database

https://doi.org/10.1007/978-1-4842-4424-1_23

76

You must consider several architectural aspects when determining whether to use

one database to host multiple applications and users:

•	 Do the applications generate vastly different amounts of redo, which

may necessitate differently sized online redo logs?

•	 Are the queries used by applications dissimilar enough to require

different amounts of undo, sorting space, and memory?

•	 Does the type of application require a different database block size,

such as 8KB, for an OLTP database; or 32KB, for a data warehouse?

•	 Are there any security, availability, replication, or performance

requirements that require an application to be isolated?

•	 Does an application require any features available only in the

Enterprise Edition of Oracle?

•	 Does an application require the use of any special Oracle features,

such as Data Guard, partitioning, Streams, or RAC?

•	 What are the backup and recovery requirements for each application?

Does one application require online backups and the other

application doesn’t? Does one application require tape backups?

•	 Is any application dependent on an Oracle database version? Will

there be different database upgrade schedules and requirements?

Table 2-5 describes the advantages and disadvantages of these architectural

considerations regarding how to use Oracle databases and applications. This is just

looking at the database instances without using multitenancy with container and

pluggable databases. We will revisit these disadvantages when leveraging containers as

this allows you to consolidate on fewer servers. This will be discussed in Chapter 22.

Figure 2-6.  One container database with multiple pluggable databases

Chapter 2 Creating a Database

77

�Understanding Oracle Architecture
This chapter introduced concepts such as database (data files, online redo log files,

control files), instance (background processes and memory structures), parameter

file, password file, and listener. Now is a good time to present an Oracle architecture

diagram that shows the various files and processes that constitute a database and

instance. Some of the concepts depicted in Figure 2-7 have already been covered in

detail: for example, database vs. instance. Other aspects of Figure 2-7 will be covered in

future chapters. However, it’s appropriate to include a high-level diagram such as this in

order to represent visually the concepts already discussed and to lay the foundation for

understanding upcoming topics in this book.

Table 2-5.  Oracle Database Configuration Advantages and Disadvantages

Configuration Advantages Disadvantages

One database per server Dedicated resources for the

application using the database;

completely isolates applications

from each other;

Most expensive; requires more

hardware

Multiple databases and

Oracle homes per server

requires fewer servers Multiple databases competing for disk,

memory, and CPU resources

Multiple databases and

one installation of Oracle

binaries on the server

Requires fewer servers; doesn’t

require multiple installations of

the Oracle binaries

Multiple databases competing for disk,

memory, and CPU resources

One database and one

Oracle home serving

multiple applications

Only requires one server and one

database; inexpensive

Multiple databases competing for

disk, memory, and CPU resources;

multiple applications dependent on one

database; one single point of failure

Container database

containing multiple

pluggable databases

Least expensive; allows multiple

pluggable databases to use

the infrastructure of one parent

container database securely

Multiple databases competing for

disk, memory, and CPU resources;

multiple applications dependent on one

database; one single point of failure

Chapter 2 Creating a Database

78

There are several aspects to note about Figure 2-7. Communication with the

database is initiated through a sqlplus user process. Typically, the user process

connects to the database over the network. This requires that you configure and start

a listener process. The listener process hands off incoming connection requests to an

Oracle server process, which handles all subsequent communication with the client

process. If a remote connection is initiated as a sys*-level user, then a password file is

required. A password file is also required for local sys* connections that don’t use OS

authentication.

The instance consists of memory structures and background processes. When the

instance starts, it reads the parameter file, which helps establish the size of the memory

processes and other characteristics of the instance. When starting a database, the

instance goes through three phases: nomount (instance started), mount (control files

opened), and open (data files and online redo logs opened).

The number of background processes varies by database version (more than 30 in

the latest version of Oracle). You can view the names and descriptions of the processes

via this query:

SQL> select name, description from v$bgprocess;

Figure 2-7.  Oracle database architecture

Chapter 2 Creating a Database

79

The major background processes include

DBWn: The database writer writes blocks from the database buffer

cache to the data files.

CKPT: The checkpoint process writes checkpoint information to

the control files and data file headers.

LGWR: The log writer writes redo information from the log buffer

to the online redo logs.

ARCn: The archiver copies the content of online redo logs to

archive redo log files.

RVWR: The recovery writer maintains before images of blocks in

the fast recovery area.

MMON: The manageability monitor process gathers automatic

workload repository statistics.

MMNL: The manageability monitor lite process writes statistics

from the active session history buffer to disk.

SMON: The system monitor performs system level clean-up

operations, including instance recovery in the event of a failed

instance, coalescing free space, and cleaning up temporary space.

PMON: The process monitor cleans up abnormally terminated

database connections and also automatically registers a database

instance with the listener process.

RECO: The recoverer process automatically resolves failed

distributed transactions.

The structure of the SGA varies by Oracle release. You can view details for each

component via this query:

SQL> select pool, name from v$sgastat;

Chapter 2 Creating a Database

80

The major SGA memory structures include

SGA: The SGA is the main read/write memory area and is

composed of several buffers, such as the database buffer

cache, redo log buffer, shared pool, large pool, java pool, and

streams pool.

Database buffer cache: The buffer cache stores copies of blocks

read from data files.

Log buffer: The log buffer stores changes to modified data blocks.

Shared pool: The shared pool contains library cache information

regarding recently executed SQL and PL/SQL code. The shared

pool also houses the data dictionary cache, which contains

structural information about the database, objects, and users.

Finally, the program global area (PGA) is a memory area separate from the SGA.

The PGA is a process-specific memory area that contains session-variable information.

�Summary
After you’ve installed the Oracle binaries, you can create a database. Before creating a

database, make sure you’ve correctly set the required OS variables. You also need an

initialization file and to pre-create any necessary directories. You should carefully think

about which initialization parameters should be set to a nondefault value. In general, I try

to use as many default values as possible and only change an initialization parameter

when there is a good reason. If performing too many manual processes and steps, the

process needs to be reexamined. With the latest version of the database, many of the

environment variables are set; directories will be created when using the configuration

assists, dbca, and netca. Using response files is another way to automate the processes

for creation.

This chapter focused on using SQL*Plus to create databases. This is an efficient and

repeatable method for creating a database. When you’re crafting a CREATE DATABASE

statement, consider the size of the data files and online redo logs for placement and

storage needs of the database. The internal parameters and sizing should be understood

as part of the internal knowledge of the databases for later troubleshooting and other

Chapter 2 Creating a Database

81

configurations. Using the new features of the latest release is going to increase the

efficiencies of the databases. Some environments might be using previous versions,

which makes it even more important to understand the internals of what is needed to

create the database.

I’ve worked in some environments in which management dictated the requirement

of one database per server; unless this is a container database with multiple pluggable

databases, there are unutilized resources on the server. A fast server with large memory

areas and many CPUs should be capable of hosting several different databases. You must

determine what architecture meets your business requirements when deciding how

many databases to place on one box.

After you’ve created a database, the next step is to configure the environment so

that you can efficiently navigate, operate, and monitor the database. These tasks are

described in the next chapter.

Chapter 2 Creating a Database

83
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_3

CHAPTER 3

Configuring an Efficient
Environment
After you install the Oracle binaries and create a database, you should configure your

environment to enable you to operate efficiently. Regardless of the functionality of

graphical database administration tools, DBAs still need to perform many tasks from the

OS command line and manually execute SQL statements. A DBA who takes advantage of

the OS and SQL has a clear advantage over a DBA who doesn’t.

In any database environment (Oracle, MySQL, and so on), an effective DBA uses

advanced OS features to allow you to quickly navigate the directory, locate files, repeat

commands, display system bottlenecks, and so forth. To achieve this efficiency, you must

be knowledgeable about the OS that houses the database.

In addition to being proficient with the OS, you must also be skillful with the SQL

interface into the database. Although you can glean much diagnostic information from

graphical interfaces, SQL enables you to take a deeper dive into the internals to do

advanced troubleshooting and derive database intelligence.

This chapter lays the foundation for efficient use of the OS and SQL to manage

your databases. You can use the following OS and database features to configure your

environment for effectiveness:

•	 OS variables

•	 Shell aliases

•	 Shell functions

•	 Shell scripts

•	 SQL scripts

84

When you’re in a stressful situation, it’s paramount to have an environment in which

you can quickly discern where you are and what accounts you’re using and to have tools

that help you quickly identify problems. The techniques described in this chapter are

like levers: they provide leverage for doing large amounts of work fast. These tools let

you focus on the issues you may be facing instead of verifying your location or worrying

about command syntax.

This chapter begins by detailing OS techniques for enabling maximum efficiency.

Later sections show how you can use these tools to display environment details

automatically, navigate the file system, monitor the database proactively, and triage.

Tip  Consistently use one OS shell when working on your database servers.
I recommend that you use the Bash shell; it contains all the most useful features
from the other shells (Korn and C), plus it has additional features that add to its
ease of use.

�Customizing Your OS Command Prompt
Typically, DBAs work with multiple servers and multiple databases. In these situations,

you may have numerous terminals’ sessions open on your screen. You can run the

following types of commands to identify your current working environment:

$ hostname -a

$ id

$ who am i

$ echo $ORACLE_SID

$ pwd

To avoid confusion about which server you’re working on, it’s often desirable to

configure your command prompt to display information regarding its environment, such

as the machine name and database SID. In this example, the command prompt name is

customized to include the hostname, user, and Oracle SID:

$ PS1='[\h:\u:${ORACLE_SID}]$ '

Chapter 3 Configuring an Efficient Environment

85

The \h specifies the hostname. The \u specifies the current OS user. $ORACLE_SID

contains the current setting for your Oracle instance identifier. Here is the command

prompt for this example:

[oracle18c:oracle:o18c]$

The command prompt contains three pieces of important information about the

environment: server name, OS username, and database name. When you’re navigating

among multiple environments, setting the command prompt can be an invaluable tool

for keeping track of where you are and what environment you’re in.

If you want the OS prompt automatically configured when you log in, then you need

to set it in a startup file. In a Bash shell environment, you typically use the . bashrc file.

This file is normally located in your HOME directory. Place the following line of code in .

bashrc:

PS1='[\h:\u:${ORACLE_SID}]$ '

When you place this line of code in the startup file, then any time you log in to the

server, your OS prompt is set automatically for you. In other shells, such as the Korn

shell, the . profile file is the startup file.

Depending on your personal preference, you may want to modify the command

prompt for your particular needs. For example, many DBAs like the current working

directory displayed in the command prompt. To display the current working directory

information, add the \ w variable:

$ PS1='[\h:\u:\w:${ORACLE_SID}]$ '

As you can imagine, a wide variety of options are available for the information shown

in the command prompt. Here is another popular format:

$ PS1='[\u@${ORACLE_SID}@\h:\W]$ '

Table 3-1 lists many of the Bash shell variables you can use to customize the OS

command prompt.

Chapter 3 Configuring an Efficient Environment

86

The variables available for use with your command prompt vary somewhat by OS

and shell. For example, in a Korn shell environment, the hostname variable displays the

server name in the OS prompt:

$ export PS1="[`hostname`]$ "

Table 3-1.  Bash Shell Backslash-Escaped Variables Used for Customizing the

Command Prompt

Variable Description

\ a ASCII bell character

\ d Date in “weekday month day-of-month” format

\ h Hostname

\ e ASCII escape character

\ j Number of jobs managed by the shell

\ l Base name of the shell’s terminal device

\ n Newline

\ r Carriage return

\ s Name of the shell

\ t Time in 24-hour HH:MM:SS format

\ T Time in 12-hour HH:MM:SS format

\ @ Time in 12-hour am/pm format

\ A Time in 24-hour HH:MM format

\ u Current shell

\ v Version of the Bash shell

\ V Release of the Bash shell

\ w Current working directory

\ W Base name of the current working directory (not the full path)

\ ! History number of command

\ $ If the effective user identifier (UID) is 0, then displays #; otherwise, displays $

Chapter 3 Configuring an Efficient Environment

87

If you want to include the ORACLE_SID variable within that string, then set it as

follows:

$ export PS1=[`hostname`':"${ORACLE_SID}"]$ '

Try not to go overboard in terms of how much information you display in the OS

prompt. Too much information limits your ability to type in and view commands on one

line. As a rule of thumb, minimally you should include the server name and database

name displayed in the OS prompt. Having that information readily available will save

you from making the mistake of thinking that you’re in one environment when you’re

really in another.

�Customizing Your SQL Prompt
DBAs frequently use SQL*Plus to perform daily administrative tasks. Often, you’ll work

on servers that contain multiple databases. Obviously, each database contains multiple

user accounts. When connected to a database, you can run the following commands to

verify information such as your username, database connection, and hostname:

SQL> show user;

SQL> select name from v$database;

This is very useful to verify development versus production accounts, in order to keep

them separate. Using a SQLPROMPT for a quick visual besides querying the database will

make sure the right environment is being used for any queries, changes, etc.

A more efficient way to determine your username and SID is to set your SQL prompt

to display that information; for example,

SQL> SET SQLPROMPT '&_USER.@&_CONNECT_IDENTIFIER.> '

An even more efficient way to configure your SQL prompt is to have it automatically

run the SET SQLPROMPT command when you log in to SQL*Plus. Follow these steps to

fully automate this:

	 1.	 Create a file named login.sql, and place in it the SET SQLPROMPT

command.

Chapter 3 Configuring an Efficient Environment

88

	 2.	 Set your SQLPATH OS variable to include the directory location of

login.sql. In this example, the SQLPATH OS variable is set in the

.bashrc OS file, which is executed each time a new shell is logged

in to or started. Here is the entry:

export SQLPATH=$HOME/scripts

	 3.	 Create a file named l ogin.sql in the H OME/scripts directory.

Place the following line in the file:

SET SQLPROMPT '&_USER.@&_CONNECT_IDENTIFIER.> '

	 4.	 To see the result, you can either log out and log back in to your

server or source the . bashrc file directly:

$. ./.bashrc

Now, log in to SQL. Here is an example of the SQL*Plus prompt:

SYS@devdb1>

If you connect to a different user, this should be reflected in the prompt:

SQL> conn system/foo

The SQL*Plus prompt now displays

SYSTEM@devdb1

Setting your SQL prompt is an easy way to remind yourself which environment and

user you’re currently connected as. This will help prevent you from accidentally running

an SQL statement in the wrong environment. The last thing you want is to think you’re in

a development environment and then discover that you’ve run a script to delete objects

while connected in a production environment.

Table 3-2 contains a complete list of SQL*Plus variables that you can use to

customize your prompt.

Chapter 3 Configuring an Efficient Environment

89

�Creating Shortcuts for Frequently Used Commands
In Linux/Unix environments, you can use two common methods to create shortcuts to

other commands: create aliases for often repeated commands and use functions to form

shortcuts for groups of commands. The following sections describe ways in which you

can deploy these two techniques.

�Using Aliases
An alias is a simple mechanism for creating a short piece of text that will execute other

shell commands. Here is the general syntax:

$ alias <alias_name>='<shell command>'

For instance, when faced with database problems, it’s often useful to create an alias

that runs a cd command that places you in the directory containing the database alert

log. This example creates an alias (named bdump) that changes the current working

directory to where the alert log is located:

$ alias bdump='cd /u01/app/oracle/diag/rdbms/o18c/o18c/trace'

Table 3-2.  Predefined SQL*Plus Variables

Variable Description

_ CONNECT_IDENTIFIER Connection identifier, such as the Oracle SID

_ DATE Current date

_ EDITOR Editor used by the SQL EDIT command

_ O_VERSION Oracle version

_ O_RELEASE Oracle release

_ PRIVILEGE Privilege level of the current connected session

_ SQLPLUS_RELEASE SQL*Plus release number

_ USER Current connected user

Chapter 3 Configuring an Efficient Environment

90

Now, instead of having to type the cd command, along with a lengthy (and easily

forgettable) directory path, you can simply type in bdump, and they are placed in the

specified directory:

$ bdump

$ pwd

/u01/app/oracle/diag/rdbms/o18c/o18c/trace

The prior technique allows you to navigate to the directory of interest efficiently

and accurately. This is especially handy when you manage many different databases

on different servers. You simply have to set up a standard set of aliases that allow you to

navigate and work more efficiently.

To show all aliases that have been defined, use the alias command, with no arguments:

$ alias

Listed next are some common examples of alias definitions you can use:

alias l.='ls -d .*'

alias ll='ls -l'

alias lsd='ls -altr | grep ^d'

alias sqlp='sqlplus "/ as sysdba"'

alias shutdb='echo "shutdown immediate;" | sqlp'

alias startdb='echo "startup;" | sqlp'

If you want to remove an alias definition from your current environment, use the

unalias command. The following example removes the alias for lsd:

$ unalias lsd

LOCATING THE ALERT LOG

In Oracle Database 11g and higher, the alert log directory path has this structure:

ORACLE_BASE/diag/rdbms/LOWER(<db_unique_name>)/<instance_name>/trace

Usually (but not always) the db_unique_name is the same as the instance_name. In Data

Guard environments the db_unique_name will often not be the same as the instance_name.

You can verify the directory path with this query:

SQL> select value from v$diag_info where name = 'Diag Trace';

Chapter 3 Configuring an Efficient Environment

91

The name of the alert log follows this format:

alert_<ORACLE_SID>.log

You can also locate the alert log from the OS (whether the database is started or not) via these

OS commands:

$ cd $ORACLE_BASE

$ find . -name alert_<ORACLE_SID>.log

In the prior find command, you’ll need to replace the <ORACLE_SID> value with the name of

your database.

�Using a Function
Much like an alias, you can also use a function to form command shortcuts. A function is

defined with this general syntax:

$ function <function_name> {

 shell commands

}

For example, the following line of code creates a simple function (named bdump)

that allows you to change the current working directory, dependent on the name of the

database passed in:

function bdump {

if ["$1" = "engdev"]; then

 cd /orahome/app/oracle/diag/rdbms/engdev/ENGDEV/trace

elif ["$1" = "stage"]; then

 cd /orahome/app/oracle/diag/rdbms/stage/STAGE/trace

fi

echo "Changing directories to $1 Diag Trace directory"

pwd

}

Chapter 3 Configuring an Efficient Environment

92

You can now type bdump, followed by a database name at the command line, to

change your working directory to the Oracle background dump directory:

$ bdump stage

Changing directories to stage Diag Trace directory

/orahome/app/oracle/diag/rdbms/stage/STAGE/trace

Using functions is usually preferable to using aliases. Functions are more powerful

than aliases because of features such as the ability to operate on parameters passed in on

the command line and allowing for multiple lines of code and therefore more complex

coding.

DBAs commonly establish functions by setting them in the H OME/.bashrc file. A

better way to manage functions is to create a file that stores only function code and call

that file from the . bashrc file. It’s also better to store special purpose files in directories

that you’ve created for these files. For instance, create a directory named bin under HOME.

Then, in the bin directory, create a file named dba_fcns, and place in it your function

code. Now, call the dba_fcns file from the . bashrc file. Here is an example of an entry

in a .bashrc file:

. $HOME/bin/dba_fcns

Listed next is a small sample of some of the types of functions you can use:

show environment variables in sorted list

 function envs {

 if test -z "$1"

 then /bin/env | /bin/sort

 else /bin/env | /bin/sort | /bin/grep -i $1

 fi

 } # envs

#---#

find largest files below this point

function flf {

 find . -ls | sort -nrk7 | head -10

}

#---#

Chapter 3 Configuring an Efficient Environment

93

find largest directories consuming space below this point

function fld {

 du -S . | sort -nr | head -10

}

#---#

function bdump {

 if [$ORACLE_SID = "o18c"]; then

 cd /u01/app/oracle/diag/rdbms/o18c/o18c/trace

 elif [$ORACLE_SID = "CDB1"]; then

 cd /u01/app/oracle/diag/rdbms/cdb1/CDB1/trace

 elif [$ORACLE_SID = "rcat"]; then

 cd /u01/app/oracle/diag/rdbms/rcat/rcat/trace

 fi

 pwd

} # bdump

If you ever wonder whether a shortcut is an alias or a function, use the type

command to verify a command’s origin. This example verifies that bdump is a function:

$ type bdump

�Rerunning Commands Quickly
When there are problems with a database server, you need to be able to quickly run

commands from the OS prompt. You may be having some sort of performance issue and

want to run commands that navigate you to directories that contain log files, or you may

want to display the top-consuming processes from time to time. In these situations, you

don’t want to waste time having to retype command sequences.

One time-saving feature of the Bash shell is that it has several methods for editing

and rerunning previously executed commands. The following list highlights several

options available for manipulating previously typed commands:

•	 Scrolling with the up (↑) and down (↓) arrow keys

•	 Using Ctrl+P and Ctrl+N

•	 Listing the command history

Chapter 3 Configuring an Efficient Environment

94

•	 Searching in reverse

•	 Setting the command editor

Each of these techniques is described briefly in the following sections.

�Scrolling with the Up and Down Arrow Keys
You can use the up arrow to scroll up through your recent command history. As you

scroll through previously run commands, you can rerun a desired command by pressing

the Enter or Return key.

If you want to edit a command, use the Backspace key to erase characters, or use the

left arrow to navigate to the desired location in the command text. After you’ve scrolled

up through the command stack, use the down arrow to scroll back down through

previously viewed commands.

Note  If you’re familiar with Windows, scrolling through the command stack is
similar to using the DOSKEY utility.

�Using Ctrl+P and Ctrl+N
The Ctrl+P keystroke (pressing the Ctrl and P keys at the same time) displays your

previously entered command. If you’ve pressed Ctrl+P several times, you can scroll

back down the command stack by pressing Ctrl+N (pressing the Ctrl and N keys at the

same time).

�Listing the Command History
You can use the history command to display commands that the user previously entered:

$ history

Depending on how many commands have previously been executed, you may see a

lengthy stack. You can limit the output to the last n number of commands by providing

a number with the command. For example, the following query lists the last five

commands that were run:

$ history 5

Chapter 3 Configuring an Efficient Environment

95

Here is some sample output:

273 cd -

274 grep -i ora alert.log

275 ssh -Y -l oracle 65.217.177.98

276 pwd

277 history 5

To run a previously listed command in the output, use an exclamation point (!)

(sometimes called the bang) followed by the history number. In this example, to run the

p wd command on line 276, use !, as follows:

$!276

To run the last command you ran, use !!, as shown here:

$!!

�Searching in Reverse
Press Ctrl+R, and you’re presented with the Bash shell reverse-search utility:

$ (reverse-i-search)`':

From the reverse-i-search prompt, as you type each letter, the tool automatically

searches through previously run commands that have text similar to the string you

entered. As soon as you’re presented with the desired command match, you can rerun

the command by pressing the Enter or Return key. To view all commands that match a

string, press Ctrl+R repeatedly. To exit the reverse search, press Ctrl+C.

�Setting the Command Editor
You can use the set - o command to make your command-line editor be either vi or

emacs. This example sets the command-line editor to be vi:

$ set -o vi

Now, when you press Esc+K, you’re placed in a mode in which you can use vi

commands to search through the stack of previously entered commands.

Chapter 3 Configuring an Efficient Environment

96

For example, if you want to scroll up the command stack, you can use the K key;

similarly, you can scroll down using the J key. When in this mode you can use the slash

(/) key and then type a string to be searched for in the entire command stack.

Tip  Before you attempt to use the command editor feature, be sure you’re
thoroughly familiar with either the vi or emacs editor.

A short example will illustrate the power of this feature. Say you know that you ran

the ls - altr command about an hour ago. You want to run it again, but this time

without the r (reverse-sort) option. To enter the command stack, press Esc+K:

$ Esc+K

You should now see the last command you executed. To search the command stack

for the ls command, type /ls, and then press Enter or Return:

$ /ls

The most recently executed ls command appears at the prompt:

$ ls -altr

To remove the r option, use the right arrow key to place the prompt over the r on the

screen, and press X to remove the r from the end of the command. After you’ve edited

the command, press the Enter or Return key to execute it.

�Developing Standard Scripts
I’ve worked in shops where the database administration team developed hundreds of

scripts and utilities to help manage an environment. One company had a small squad

of DBAs whose job function was to maintain the environmental scripts. I think that’s

overkill. I tend to use a small set of focused scripts, with each script usually less than 50

lines long. If you develop a script that another DBA can’t understand or maintain, then

it loses its effectiveness. Also, if you have to execute a command more than a couple of

times, a script should be created to execute it. If it is something that is now a standard,

regular check, or job, the script can be used to automate the process.

Chapter 3 Configuring an Efficient Environment

97

These scripts are handy to put into jobs that will be automatically run or during a

time of troubleshooting since it needs to be completed quickly. There are other tools

that also maintain database and provide proactive alerts and monitoring of multiple

databases instead of a script being run against one database at a time.

Note A ll the scripts in this chapter are available for download from the Source
Code/Download area of the Apress web site (www.apress.com).

This section contains several short shell functions, shell scripts, and SQL scripts that

can help you manage a database environment. This is by no means a complete list of

scripts—rather, it provides a starting point from which you can build. Each subsection

heading is the name of a script.

Note  Before you attempt to run a shell script, ensure that it’s executable. Use the
chmod command to achieve this: chmod 750 <script>

�dba_setup
Usually, you’ll establish a common set of OS variables and aliases in the same manner

for every database server. When navigating among servers, you should set these

variables and aliases in a consistent and repeatable manner. Doing so helps you (or your

team) operate efficiently in every environment. For example, it’s extremely useful to have

the OS prompt set in a consistent way when you work with dozens of different servers.

This helps you quickly identify what box you’re on, which OS user you’re logged in as,

and so on.

One technique is to store these standard settings in a script and then have that script

executed automatically when you log in to a server. I usually create a script named dba_

setup to set these OS variables and aliases. You can place this script in a directory such

as HOME/bin and automatically execute the script via a startup script (see the section

“Organizing Scripts” later in this chapter). Here are the contents of a typical dba_setup

script:

set prompt

PS1='[\h:\u:${ORACLE_SID}]$ '

Chapter 3 Configuring an Efficient Environment

http://www.apress.com

98

#

export EDITOR=vi

export VISUAL=$EDITOR

export SQLPATH=$HOME/scripts

set -o vi

#

list directories only

alias lsd="ls -p | grep /"

show top cpu consuming processes

alias topc="ps -e -o pcpu,pid,user,tty,args | sort -n -k 1 -r | head"

show top memory consuming processes

alias topm="ps -e -o pmem,pid,user,tty,args | sort -n -k 1 -r | head"

#

alias sqlp='sqlplus "/ as sysdba"'

alias shutdb='echo "shutdown immediate;" | sqlp'

alias startdb='echo "startup;" | sqlp'

�dba_fcns
Use this script to store OS functions that help you navigate and operate in your database

environment. Functions tend to have more functionality than do aliases. You can be

quite creative with the number and complexity of functions you use. The idea is that

you want a consistent and standard set of functions that you can call, no matter which

database server you’re logged in to.

Place this script in a directory such as HOME/bin. Usually, you’ll have this script

automatically called when you log in to a server via a startup script (see the section

“Organizing Scripts” later in this chapter). Here are some typical functions you can use:

#---#

show environment variables in sorted list

 function envs {

 if test -z "$1"

 then /bin/env | /bin/sort

 else /bin/env | /bin/sort | /bin/grep -i $1

 fi

 } # envs

Chapter 3 Configuring an Efficient Environment

99

#---#

login to sqlplus

 function sp {

 time sqlplus "/ as sysdba"

 } # sp

#---#

find largest files below this point

function flf {

 find . -ls | sort -nrk7 | head -10

}

#---#

find largest directories consuming space below this point

function fld {

 du -S . | sort -nr | head -10

}

#---#

change directories to directory containing alert log file

function bdump {

 cd /u01/app/oracle/diag/rdbms/o18c/o18c/trace

 } # bdump

#---#

�tbsp_chk.bsh
This script checks to see if any tablespaces are surpassing a certain fullness threshold.

Store this script in a directory such as HOME/bin. Make sure you modify the script to

contain the correct username, password, and e-mail address for your environment.

You also need to establish the required OS variables, such as ORACLE_SID and

ORACLE_HOME. You can either hard-code those variables into the script or call a script

that sources the variables for you. The next script calls a script (named oraset) that sets

the OS variables (see Chapter 2 for the details of this script). You don’t have to use this

script—the idea is to have a consistent and repeatable way of establishing OS variables

for your environment.

Chapter 3 Configuring an Efficient Environment

100

You can run this script from the command line. In this example I passed it the

database name (o18c) and wanted to see what tablespaces had less than 20 percent

space left:

$ tbsp_chk.bsh o18c 20

The output indicates that two tablespaces for this database have less than 20 percent

space left:

space not okay

0 % free UNDOTBS1, 17 % free SYSAUX,

Here are the contents of the tbsp_chk.bsh script:

#!/bin/bash

#

if [$# -ne 2]; then

 echo "Usage: $0 SID threshold"

 exit 1

fi

either hard code OS variables or source them from a script.

see Chapter 2 for details on using oraset to source oracle OS variables

. /var/opt/oracle/oraset $1

#

crit_var=$(

sqlplus -s <<EOF

system/foo

SET HEAD OFF TERM OFF FEED OFF VERIFY OFF

COL pct_free FORMAT 999

SELECT (f.bytes/a.bytes)*100 pct_free,'% free',a.tablespace_name||','

FROM

(SELECT NVL(SUM(bytes),0) bytes, x.tablespace_name

FROM dba_free_space y, dba_tablespaces x

WHERE x.tablespace_name = y.tablespace_name(+)

AND x.contents != 'TEMPORARY' AND x.status != 'READ ONLY'

AND x.tablespace_name NOT LIKE 'UNDO%'

GROUP BY x.tablespace_name) f,

(SELECT SUM(bytes) bytes, tablespace_name

Chapter 3 Configuring an Efficient Environment

101

FROM dba_data_files

GROUP BY tablespace_name) a

WHERE a.tablespace_name = f.tablespace_name

AND (f.bytes/a.bytes)*100 <= $2

ORDER BY 1;

EXIT;

EOF)

if ["$crit_var" = ""]; then

 echo "space okay"

else

 echo "space not okay"

 echo $crit_var

 echo $crit_var | mailx -s "tbsp getting full on $1" dkuhn@gmail.com

fi

exit 0

Usually, you run a script such as this automatically, on a periodic basis, from a

scheduling utility, such as cron. Here is a typical cron entry that runs the script once an

hour:

Tablespace check

2 * * * * /orahome/bin/tbsp_chk.bsh INVPRD 10 1>/orahome/bin/log/tbsp_chk.

log 2>&1

This cron entry runs the job and stores any informational output in the tbsp_chk.

log file.

When running tbsp_chk.bsh in an Oracle Database 12c pluggable database

environment from the root container, you’ll need to reference the CDB_* views rather

than the DBA_* views for the script to properly report on space regarding all pluggable

databases (within the container database). You should also consider adding the NAME

and CON_ID to the query so that you can view which pluggable database is potentially

having space issues; for example,

SELECT a.name, (f.bytes/a.bytes)*100 pct_free,'% free',a.tablespace_name||','

FROM

(SELECT c.name, NVL(SUM(bytes),0) bytes, x.tablespace_name

FROM cdb_free_space y, cdb_tablespaces x, v$containers c

Chapter 3 Configuring an Efficient Environment

102

WHERE x.tablespace_name = y.tablespace_name(+)

AND x.contents != 'TEMPORARY' AND x.status != 'READ ONLY'

AND x.tablespace_name NOT LIKE 'UNDO%'

AND x.con_id = y.con_id

AND x.con_id = c.con_id

GROUP BY c.name, x.tablespace_name) f,

(SELECT c.name, SUM(d.bytes) bytes, d.tablespace_name

FROM cdb_data_files d, v$containers c

WHERE d.con_id = c.con_id

GROUP BY c.name, tablespace_name) a

WHERE a.tablespace_name = f.tablespace_name

AND (f.bytes/a.bytes)*100 <= 50

AND a.name NOT IN ('PDB$SEED')

AND a.name = f.name

ORDER BY 1;

�conn.bsh
You need to be alerted if there are issues with connecting to databases. This script

checks to see if a connection can be established to the database. If a connection can’t be

established, an e-mail is sent. Place this script in a directory such as HOME/bin. Make sure

you modify the script to contain the correct username, password, and e-mail address for

your environment.

You also need to establish the required OS variables, such as ORACLE_SID and

ORACLE_HOME. You can either hard-code those variables into the script or call a script that

sources the variables for you. Like the previous script, this script calls a script (named

oraset) that sets the OS variables (see Chapter 2).

The script requires that the ORACLE_SID be passed to it; for example,

$ conn.bsh INVPRD

If the script can establish a connection to the database, the following message is

displayed:

success

db ok

Chapter 3 Configuring an Efficient Environment

103

Here are the contents of the conn.bsh script:

#!/bin/bash

if [$# -ne 1]; then

 echo "Usage: $0 SID"

 exit 1

fi

either hard code OS variables or source them from a script.

see Chapter 2 for details on oraset script to source OS variables

. /etc/oraset $1

#

echo "select 'success' from dual;" | sqlplus -s system/foo@o18c | grep success

if [[$? -ne 0]]; then

 echo "problem with $1" | mailx -s "db problem" dkuhn@gmail.com

else

 echo "db ok"

fi

#

exit 0

This script is usually automated via a utility such as cron. Here is a typical cron entry:

Check to connect to db.

18 * * * * /home/oracle/bin/conn.bsh o18c 1>/home/oracle/bin/log/conn.log 2>&1

This cron entry runs the script once per hour. Depending on your availability

requirements, you may want to run a script such as this on a more frequent basis.

�filesp.bsh
Use the following script to check for an operating mount point that is filling up. Place the

script in a directory such as HOME/bin. You need to modify the script so that the mntlist

variable contains a list of mount points that exist on your database server. Because this

script isn’t running any Oracle utilities, there is no reason to set the Oracle-related OS

variables (as with the previous shell scripts):

#!/bin/bash

mntlist="/orahome /ora01 /ora02 /ora03"

Chapter 3 Configuring an Efficient Environment

104

for ml in $mntlist

do

echo $ml

usedSpc=$(df -h $ml | awk '{print $5}' | grep -v capacity | cut -d "%" -f1 -)

BOX=$(uname -a | awk '{print $2}')

#

case $usedSpc in

[0-9])

arcStat="relax, lots of disk space: $usedSpc"

;;

[1-7][0-9])

arcStat="disk space okay: $usedSpc"

;;

[8][0-9])

arcStat="space getting low: $usedSpc"

echo $arcStat | mailx -s "space on: $BOX" dkuhn@gmail.com

;;

[9][0-9])

arcStat="warning, running out of space: $usedSpc"

echo $arcStat | mailx -s "space on: $BOX" dkuhn@gmail.com

;;

[1][0][0])

arcStat="update resume, no space left: $usedSpc"

echo $arcStat | mailx -s "space on: $BOX" dkuhn@gmail.com

;;

*)

arcStat="huh?: $usedSpc"

esac

#

BOX=$(uname -a | awk '{print $2}')

echo $arcStat

#

done

#

exit 0

Chapter 3 Configuring an Efficient Environment

105

You can run this script manually from the command line, like this:

$ filesp.bsh

Here is the output for this database server:

/orahome

disk space okay: 79

/ora01

space getting low: 84

/ora02

disk space okay: 41

/ora03

relax, lots of disk space: 9

This is the type of script you should run on an automated basis from a scheduling

utility such as cron. Here is a typical cron entry:

Filesystem check

7 * * * * /orahome/bin/filesp.bsh 1>/orahome/bin/log/filesp.log 2>&1

Keep in mind that the shell script used in this section (filesp.bsh) may require

modification for your environment. The shell script is dependent on the output of the

df -h command, which does vary by OS and version. For instance, on a Solaris box the

output of df -h appears as follows:

$ df -h

Filesystem size used avail capacity Mounted on

/ora01 50G 42G 8.2G 84% /ora01

/ora02 50G 20G 30G 41% /ora02

/ora03 50G 4.5G 46G 9% /ora03

/orahome 30G 24G 6.5G 79% /orahome

This line in the shell script selectively reports on the “capacity” in the output of the

df -h command:

usedSpc=$(df -h $ml | awk '{print $5}' | grep -v capacity | cut -d "%" -f1 -)

Chapter 3 Configuring an Efficient Environment

106

For your environment, you’ll have to modify the prior line to correctly extract the

information related to disk space remaining per mount point. For example, say you’re on

a Linux box and issue a df -h command, and you observe the following output:

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/VolGroup00-LogVol00

 222G 162G 49G 77% /

There’s only one mount point, and the disk space percentage is associated with the

“Use%” column. Therefore, to extract the pertinent information, you’ll need to modify

the code associated with usedSpc within the shell script; for example,

df -h / | grep % | grep -v Use | awk '{print $4}' | cut -d "%" -f1 -

The shell script will thus need to have the following lines modified, as shown:

mntlist="/"

for ml in $mntlist

do

echo $ml

usedSpc=$(df -h / | grep % | grep -v Use | awk '{print $4}' | cut -d "%" -f1 -)

�login.sql
Use this script to customize aspects of your SQL*Plus environment. When logging in

to SQL*Plus in Linux/Unix, the login.sql script is automatically executed if it exists in

a directory contained within the SQLPATH variable. If the SQLPATH variable hasn’t been

defined, then SQL*Plus looks for login.sql in the current working directory from which

SQL*Plus was invoked. For instance, here is how the SQLPATH variable is defined in my

environment:

$ echo $SQLPATH

/home/oracle/scripts

I created the login.sql script in the / home/oracle/scripts directory. It contains

the following lines:

-- set SQL prompt

SET SQLPROMPT '&_USER.@&_CONNECT_IDENTIFIER.> '

Chapter 3 Configuring an Efficient Environment

107

Now, when I log in to SQL*Plus, my prompt is automatically set:

$ sqlplus / as sysdba

SYS@o12c>

�top.sql
The following script lists the top CPU-consuming SQL processes. It’s useful for

identifying problem SQL statements. Place this script in a directory such as HOME/

scripts:

select * from(

select

 sql_text

,buffer_gets

,disk_reads

,sorts

,cpu_time/1000000 cpu_sec

,executions

,rows_processed

from v$sqlstats

order by cpu_time DESC)

where rownum < 11;

This is how you execute this script:

SQL> @top

Here is a snippet of the output, showing an SQL statement that is consuming a large

amount of database resources:

INSERT INTO "REP_MV"."GEM_COMPANY_MV"

SELECT CASE GROUPING_ID(trim(upper(nvl(ad.organization_name,u.company))))

WHEN 0 THEN

trim(upper(nvl(ad.organization_name,u.company)))

11004839 20937562 136 21823.59 17 12926019

Chapter 3 Configuring an Efficient Environment

108

�lock.sql
This script displays sessions that have locks on tables that are preventing other sessions

from completing work. The script shows details about the blocking and waiting sessions.

You should place this script in a directory such as HOME/scripts. Here are the contents

of lock.sql:

SET LINES 83 PAGES 30

COL blkg_user FORM a10

COL blkg_machine FORM a10

COL blkg_sid FORM 99999999

COL wait_user FORM a10

COL wait_machine FORM a10

COL wait_sid FORM 9999999

COL obj_own FORM a10

COL obj_name FORM a10

--

SELECT

 s1.username blkg_user

,s1.machine blkg_machine

,s1.sid blkg_sid

,s1.serial# blkg_serialnum

,s1.sid || ',' || s1.serial# kill_string

,s2.username wait_user

,s2.machine wait_machine

,s2.sid wait_sid

,s2.serial# wait_serialnum

,lo.object_id blkd_obj_id

,do.owner obj_own

,do.object_name obj_name

FROM v$lock l1

 ,v$session s1

 ,v$lock l2

 ,v$session s2

 ,v$locked_object lo

 ,dba_objects do

Chapter 3 Configuring an Efficient Environment

109

WHERE s1.sid = l1.sid

AND s2.sid = l2.sid

AND l1.id1 = l2.id1

AND s1.sid = lo.session_id

AND lo.object_id = do.object_id

AND l1.block = 1

AND l2.request > 0;

The lock.sql script is useful for determining what session has a lock on an object

and also for showing the blocked session. You can run this script from SQL*Plus, as

follows:

SQL> @lock.sql

Here is a partial listing of the output (truncated so that it fits on one page):

BLKG_USER BLKG_MACHI BLKG_SID BLKG_SERIALNUM

---------- ---------- --------- --------------

KILL_STRING

--

WAIT_USER WAIT_MACHI WAIT_SID WAIT_SERIALNUM BLKD_OBJ_ID OBJ_OWN OBJ_NAME

---------- ---------- -------- -------------- ----------- ---------- ----------

MV_MAINT speed 24 11

24,11

MV_MAINT speed 87 7 19095 MV_MAINT INV

When running lock.sql in an Oracle Database 18c pluggable database environment

from the root container, you’ll need to change DBA_OBJECTS to CDB_OBJECTS for the script

to properly report locks throughout the entire database. You should also consider adding

the NAME and CON_ID to the query so that you can view the container in which the lock

is occurring. Here’s a snippet of the modified query (you’ll need to replace the “...” with

columns you want to report on):

SELECT

 u.name

,s1.username blkg_user

...

,do.object_name obj_name

Chapter 3 Configuring an Efficient Environment

110

FROM v$lock l1

 ,v$session s1

 ,v$lock l2

 ,v$session s2

 ,v$locked_object lo

 ,cdb_objects do

 ,v$containers u

WHERE s1.sid = l1.sid

AND s2.sid = l2.sid

AND l1.id1 = l2.id1

AND s1.sid = lo.session_id

AND lo.object_id = do.object_id

AND l1.block = 1

AND l2.request > 0

AND do.con_id = u.con_id;

�users.sql
This script displays information about when users were created and whether their

account is locked. The script is useful when you’re troubleshooting connectivity issues.

Place the script in a directory such as HOME/scripts. Here is a typical users.sql script

for displaying user account information:

SELECT

 username

 ,account_status

 ,lock_date

 ,created

FROM dba_users

ORDER BY username;

You can execute this script from SQL*Plus, as follows:

SQL> @users.sql

Chapter 3 Configuring an Efficient Environment

111

Here is some sample output:

USERNAME ACCOUNT_ST LOCK_DATE CREATED

--------------- ---------- ------------ ------------

SYS OPEN 09-NOV-12

SYSBACKUP OPEN 09-NOV-12

SYSDG OPEN 09-NOV-12

When running users.sql in an Oracle Database 18c pluggable database environment

from the root container, you’ll need to change DBA_USERS to CDB_USERS and add the NAME

and CON_ID columns to report on all users in all pluggable databases; for example,

SELECT

 c.name

 ,u.username

 ,u.account_status

 ,u.lock_date

 ,u.created

FROM cdb_users u

 ,v$containers c

WHERE u.con_id = c.con_id

ORDER BY c.name, u.username;

�Organizing Scripts
When you have a set of scripts and utilities, you should organize them such that they’re

consistently implemented for each database server. They should become part of your

steps for post installation of the Oracle binaries. These scripts will not only be able to be

consistently deployed as part of this process but can also be used to test the installation

and setup of databases. Follow these steps to implement the preceding DBA utilities for

each database server in your environment:

	 1.	 Create OS directories in which to store the scripts.

	 2.	 Copy your scripts and utilities to the directories created in step 1.

	 3.	 Configure your startup file to initialize the environment.

These steps are detailed in the following sections.

Chapter 3 Configuring an Efficient Environment

112

�Step 1. Create Directories
Create a standard set of directories on each database server to store your custom scripts.

A directory beneath the HOME directory of the oracle user is usually a good location. I

generally create the following three directories:

•	 HOME/bin. Standard location for shell scripts that are run in an

automated fashion (such as from cron).

•	 HOME/bin/log. Standard location for log files generated from the

scheduled shell scripts.

•	 HOME/scripts. Standard location for storing SQL scripts.

You can use the mkdir command to create the previous directories, as follows:

$ mkdir -p $HOME/bin/log

$ mkdir $HOME/scripts

It doesn’t matter where you place the scripts or what you name the directories, as

long as you have a standard location so that when you navigate from server to server, you

always find the same files in the same locations. In other words, it doesn’t matter what

the standard is, only that you have a standard.

�Step 2. Copy Files to Directories
Place your utilities and scripts in the appropriate directories. Copy the following files to

the HOME/bin directory:

dba_setup

dba_fcns

tbsp_chk.bsh

conn.bsh

filesp.bsh

Place the following SQL scripts in the HOME/scripts directory:

login.sql

top.sql

lock.sql

users.sql

Chapter 3 Configuring an Efficient Environment

113

�Step 3. Configure the Startup File
Place the following code in the .bashrc file or the equivalent startup file for the shell you

use (.profile for the Korn shell). Here is an example of how to configure the . bashrc file:

Source global definitions

if [-f /etc/bashrc]; then

 . /etc/bashrc

fi

#

source oracle OS variables

. /etc/oraset <default_database>

#

User specific aliases and functions

. $HOME/bin/dba_setup

. $HOME/bin/dba_fcns

Now, each time you log in to an environment, you have full access to all the OS

variables, aliases, and functions established in the dba_setup and dba_fcns files. If you

don’t want to log off and back in, then run the file manually, using the dot (.) command.

This command executes the lines contained within a file. The following example runs

the . bashrc file:

$. $HOME/.bashrc

The dot instructs the shell to source the script. Sourcing tells the shell process

you’re currently logged in to, to inherit any variables set with an export command in an

executed script. If you don’t use the dot notation, then the variables set within the script

are visible only in the context of the subshell that is spawned when the script is executed.

Note  In the Bash shell, the source command is equivalent to the dot (.)
command.

Chapter 3 Configuring an Efficient Environment

114

�Automating Scripts
Having these scripts in your arsenal allows for quick resolution of issues or perform

tasks. It also provides a standard process for running these things against the database

instead of having different SQL or tasks running. It is a first step to automating the work

against the database.

The object is to have a database that can provide information and perform the

needed tasks to address these issues. It might seem that talking about these scripts in

this chapter does not make any sense now; however, having these scripts can provide the

basis for the automation or tools can. Understanding what needs to be monitored and

alerted assist in setting up the environment that is proactive and does not require a DBA

running scripts manually at all hours of the day and night.

Most of these scripts fit nicely with an Oracle Enterprise Management tool as they

can be inserted into scheduled jobs and run at different level of permissions. The scripts

are also good to deploy for the initial testing of the database environments when they are

provisioned by a more automated response file or cloud control. These tests can validate

that the creation steps are still properly set up and working with each version.

�Summary
This chapter described how to configure an efficient environment. This is especially

important for DBAs who manage multiple databases on multiple servers. Regular

maintenance and troubleshooting activities require you to log in directly to the database

server. To promote efficiency and sanity, you should develop a standard set of OS tools

and SQL scripts that help you maintain multiple environments. You can use standard

features of the OS to assist with navigating, repeating commands, showing system

bottlenecks, quickly finding critical files, and so on.

The techniques for configuring a standard OS are especially useful when you’re

working on multiple servers with multiple databases. When you have multiple terminal

sessions running simultaneously, it’s easy to lose your bearings and forget which session

is associated with a particular server and database. With just a small amount of setup,

you can make certain that your OS prompt always shows information such as the host

and database. Likewise, you can always set your SQL prompt to show the username and

database connection. These techniques help ensure that you don’t accidentally run a

command or script in the wrong environment.

Chapter 3 Configuring an Efficient Environment

115

Anything that needs to be run against the database a few times is a perfect candidate

for automation. These scripts can be used to start to configure scheduled jobs and be

leveraged to develop proactive monitoring around the multiple databases.

After you have installed the Oracle binaries, created a database, and configured

your environment, you are ready to perform additional database administration tasks,

such as creating tablespaces for the applications. The topic of tablespace creation and

maintenance is discussed in the next chapter.

Chapter 3 Configuring an Efficient Environment

117
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_4

CHAPTER 4

Tablespaces and Data
Files
The term tablespace is something of a misnomer, in that it’s not just a space for tables.

Rather, a tablespace is a logical container that allows you to manage groups of data files,

the physical files on disk that consume space. Once a tablespace is created, you can then

create database objects (tables and indexes) within tablespaces, which results in space

allocated on disk in the associated data files.

A tablespace is logical in the sense that it is only visible through data dictionary views

(such as DBA_TABLESPACES); you manage tablespaces through SQL*Plus or graphical

tools (such as Enterprise Manager), or both. Tablespaces only exist while the database is

up and running.

Data files can also be viewed through data dictionary views DBA_DATA_FILES) but

additionally have a physical presence, as they can be viewed outside the database

through OS utilities (such as the command ls to list the files). Data files persist whether

the database is open, or closed.files persist whether the database is open or closed.

Oracle databases typically contain several tablespaces. A tablespace can have

one or more data files associated with it, but a data file can be associated with only

one tablespace. In other words, a data file can’t be shared between two (or more)

tablespaces.

Objects (such as tables and indexes) are owned by users and created within

tablespaces. An object is logically instantiated as a segment. A segment consists of

extents of space within the tablespace. An extent consists of a set of database blocks.

Figure 4-1 shows the relationships between these logical and physical constructs used to

manage space within an Oracle database.

118

As you saw in Chapter 2, when you create a database, typically five tablespaces are

created when you execute the CREATE DATABASE statement:

•	 SYSTEM

•	 SYSAUX

•	 UNDO

•	 TEMP

•	 USERS

These five tablespaces are the minimal set of storage containers you need to operate

a database (one could argue, however, that you don’t need the USERS tablespace;

more on that in the next section). SYSTEM and SYSAUX are actually the only required

tablespaces, since UNDO and TEMP can be named differently. In a container database,

PDBs have the user tablespaces associated with it. In PDB creation, the tablespace is

part of the configuration. As you open a database for use, you should quickly create

additional tablespaces for storing application data. This chapter discusses the purpose of

the standard set of tablespaces, the need for additional tablespaces, and how to manage

these critical database storage containers. The chapter focuses on the most common

and critical tasks associated with creating and maintaining tablespaces and data files,

progressing to more advanced topics, such as moving and renaming data files.

Figure 4-1.  Relationships of logical storage objects and physical storage

Chapter 4 Tablespaces and Data Files

119

�Understanding the First Five
The SYSTEM tablespace provides storage for the Oracle data dictionary objects. This

tablespace is where all objects owned by the SYS user are stored. The SYS user should be

the only user that owns objects created in the SYSTEM tablespace.

The SYSAUX (system auxiliary) tablespace is created when you create the database.

This is an auxiliary tablespace used as a data repository for Oracle database tools, such

as Enterprise Manager, Statspack, LogMiner, Logical Standby, and so on. Audit logs are

collected in the SYSAUX tablespace by default but should be configured to use another

tablespace created for audit records. Even some of these other tools can be configured

to use additional tablespaces depending on retention and separation rules and keep the

data outside of the default system tablespaces.

The UNDO tablespace stores the information required to undo the effects of a

transaction (insert, update, delete, or merge). This information is required in the event

a transaction is purposely rolled back (via a ROLLBACK statement). The undo information

is also used by Oracle to recover from unexpected instance crashes and to provide read

consistency for SQL statements. Additionally, some database features, such as Flashback

Query, use the undo information.

Some Oracle SQL statements require a sort area, either in memory or on disk. For

example, the results of a query may need to be sorted before being returned to the user.

Oracle first uses memory to sort the query results, and when there is no longer sufficient

memory, the TEMP tablespaceextra temporary storage may also be required when

creating or rebuilding indexes. The space is only used for transient data for the session,

and no permanent objects can be stored in a TEMP tablespace. If temporary objects are

needed for a process outside of one session, the object should be stored in a permanent

user tablespace. When you create a database, typically you create the TEMP tablespace

and specify it to be the default temporary tablespace for any users you create. There

can be multiple temporary tablespaces, with different names, that can be assigned to

different groups of users or applications to avoid conflicts between temp space usage.

The USERS tablespace is not absolutely required but is often used as a default

permanent tablespace for table and index data for users. As shown in Chapter 2, you

can create a default permanent tablespace for users when you create your database.

This means that when a user attempts to create a table or index, if no tablespace is

specified during object creation, by default the object is created in the default permanent

tablespace.

Chapter 4 Tablespaces and Data Files

120

�Understanding the Need for More
Although you could put every database user’s data in the USERS tablespace, this usually

isn’t scalable or maintainable for any type of serious database application. Instead, it’s

more efficient to create additional tablespaces for application users. You typically create

at least two tablespaces specific to each application using the database: one for the

application table data and one for the application index data. For example, for the APP

user APP_DATA and APP_INDEX for table and index data, respectively.

DBAs used to separate table and index data for performance reasons. The thinking

was that separating table data from index data would reduce input/ouput (I/O)

contention. This is because the data files (for each tablespace) could be placed on

different disks, with separate controllers.

With modern storage configurations, which have multiple layers of abstraction

between the application and the underlying physical storage devices, it’s debatable

whether you can realize any performance gains by creating multiple separate tablespaces.

But, there still are valid reasons for creating multiple tablespaces for table and index data:

•	 Backup and recovery requirements may be different for the tables

and indexes.

•	 The indexes may have storage requirements different from those of

the table data.

•	 Simplify management of objects by logically grouping tables and

indexes separately.

In addition to separate tablespaces for data and indexes, you sometimes create

separate tablespaces for objects of different sizes. For instance, if an application has very

large tables, you can create an APP_DATA_LARGE tablespace that has a large extent size

and a separate APP_DATA_SMALL tablespace that has a smaller extent size. This concept

also extends to binary large object (LOB) data types. You may want to separate a LOB

column in its own tablespace because you want to manage the LOB tablespace storage

characteristics differently from those of the regular table data. Automatic Segment

Space Management (ASSM) will be allocated extent size and based on information of

the objects stored. Even if not setting the large and smaller extents manually and using

ASSM, the grouping of the objects in this way will assist in the management of the

objects as well as the automated space management.

Chapter 4 Tablespaces and Data Files

121

Note T he separation of objects by type and extent size is becoming less
important because of the physical storage devices and memory. The advances
in the storage technology will help databases perform better even without the
object configuration. Depending on your requirements, you should consider
creating separate tablespaces for each application using the database. There are
now application containers and PDBs for this separation of tablespaces. Even
though this will be discussed more in Chapter 22, Figure 4-2 shows the different
tablespaces in CDBs and PDBs.

However, to look at a separate tablespace example, for an inventory application INV_

DATA and INV_INDEX; for a human resources application create HR_DATA and HR_INDEX.

Here are some reasons to consider creating separate tablespaces for each application

using the database:

System Tablespaces:
SYSTEM, SYSAUX,

UNDO, TEMP
Online Redo Logs

System Tablespaces:
SYSTEM, SYSAUX,

UNDO, TEMP

User/Applica�on
Tablespaces:

HRData

System Tablespaces:
SYSTEM, SYSAUX,

UNDO, TEMP

User/Applica�on
Tablespaces:

INVData

CDB – ROOT Container

PDB – HR PDB – Inventory

Figure 4-2.  Tablespaces in CDBs and PDBs

Chapter 4 Tablespaces and Data Files

122

•	 Applications may have different availability requirements. Separate

tablespaces let you take tablespaces offline for one application

without affecting another application.

•	 Applications may have different backup and recovery requirements.

Separate tablespaces let tablespaces be backed up and recovered

independently.

•	 Applications may have different storage requirements. Separate

tablespaces allow for different settings for space quotas, extent sizes,

and segment management.

•	 You may have some data that is purely read-only. Separate

tablespaces let you put a tablespace that contains only read-only data

into read-only mode.

•	 You may have security settings such as encryption of the tablespace

and other tablespaces without encryption.

The next section discusses creating tablespaces.

�Creating Tablespaces
You use the CREATE TABLESPACE statement to create tablespaces. The Oracle SQL

Reference Manual contains more than a dozen pages of syntax and examples for creating

tablespaces. In most scenarios, you need to use only a few of the features available,

namely, locally managed extent allocation and automatic segment space management.

The following code snippet demonstrates how to create a tablespace that employs the

most common features:

create tablespace tools

 datafile '/u01/dbfile/o18c/tools01.dbf'

 size 100m

 extent management local

 uniform size 128k

 segment space management auto;

You need to modify this script for your environment. For example, the directory path,

data file size, and uniform extent size should be changed per environment requirements.

Chapter 4 Tablespaces and Data Files

123

You create tablespaces as locally managed by using the EXTENT MANAGEMENT LOCAL

clause. A locally managed tablespace uses a bitmap in the data file to efficiently

determine whether an extent is in use. The storage parameters NEXT, PCTINCREASE,

MINEXTENTS, MAXEXTENTS, and DEFAULT are not valid for extent options in locally managed

tablespaces.

Note A locally managed tablespace with uniform extents must be minimally
sized for at least five database blocks per extent.

As you add data to objects in tablespaces, Oracle automatically allocates more

extents to an associated tablespace data file as needed to accommodate the growth.

You can instruct Oracle to allocate a uniform size for each extent via the UNIFORM SIZE

[size] clause. If you don’t specify a size, then the default uniform extent size is 1MB.

The uniform extent size that you use varies, depending on the storage requirements

of your tables and indexes. In some scenarios, I create several tablespaces for a given

application. For instance, you can create a tablespace for small objects that has a

uniform extent size of 512KB, a tablespace for medium-sized objects that has a uniform

extent size of 4MB, a tablespace for large objects with a uniform extent size of 16MB, and

so on.

Alternatively, you can specify that Oracle determine the extent size via the

AUTOALLOCATE clause. Oracle allocates extent sizes of 64KB, 1MB, 8MB, or 64MB. Using

AUTOALLOCATE is appropriate when you think objects in one tablespace will be of

varying sizes.

The SEGMENT SPACE MANAGEMENT AUTO clause instructs Oracle to manage the space

within the block. When you use this clause, there is no need to specify parameters,

such as PCTUSED, FREELISTS, and FREELIST GROUPS. The alternative to AUTO space

management is MANUAL. When you use MANUAL, you can adjust the parameters to the

requirements of your application. I recommend that you use AUTO and not MANUAL. Using

AUTO vastly reduces the number of parameters you need to configure and manage.

When a data file fills up, you can instruct Oracle to increase the size of the data file

automatically, with the AUTOEXTEND feature. Using AUTOEXTEND allows for processes

to run without needing DBA intervention when getting close to running out of space.

However, you must monitor tablespace growth and plan for additional space. This

includes watching for processes that might load a large amount of data. Manually adding

space might limit having a runaway SQL process that accidentally grows a tablespace

Chapter 4 Tablespaces and Data Files

124

until it has consumed all the space on a mount point, but a load process that is larger one

month over another might be rolled back if it fails on additional space requirements. Using

the parameter RESUMABLE in the database, you will be allowed to set a time to be able

to respond to tablespace issues. If you inadvertently fill up a mount point that contains

a control file or the Oracle binaries, you can hang your database. The use of Automatic

Storage Management (ASM) will also help here to be able to add another disk to the

diskgroup to avoid filling up a mount point and, used with RESUMABLE, provides the time

to manage. Monitoring and planning for storage and growth are still the best methods for

managing the tablespaces sizing to be able to proactively add the needed space.

If you do use the AUTOEXTEND feature, I suggest that you always specify a

corresponding MAXSIZE so that a runaway SQL process doesn’t accidentally fill up

a tablespace that in turn fills up a mount point. Here is an example of creating an

autoextending tablespace with a cap on its maximum size:

create tablespace tools

 datafile '/u01/dbfile/o18c/tools01.dbf'

 size 100m

 autoextend on maxsize 1000m

 extent management local

 uniform size 128k

 segment space management auto;

For security, tablepaces can be transparently encrypted. Transparent means that

the application does not need to change to use the encrypted tablespaces. This will

allow for data at rest in the data files to be encrypted, and when the database is open,

the tablespace is decrypted using the encryption key in the database wallet to be able to

see the data through queries. Using encryption makes it so that the data files cannot be

viewed in plain text, which is the same for backups of the data files. As already stated,

there are many options for creating tablespaces, and this security option does require

management of the encryption key, which can be centrally located or locally with the

database. The create tablespace command is simple enough:

create tablespace HRDATA encryption using 'AES256' default

storage(encrypt);

When you are using CREATE TABLESPACE scripts in different environments, it’s useful

to be able to parameterize portions of the script. For instance, in development you may

size the data files at 100MB, whereas in production the data files may be 100GB. Use

Chapter 4 Tablespaces and Data Files

125

ampersand (&) variables to make CREATE TABLESPACE scripts more portable among

environments.

The next listing defines ampersand variables at the top of the script, and those

variables determine the sizes of data files created for the tablespaces:

define tbsp_large=5G

define tbsp_med=500M

--

create tablespace reg_data

 datafile '/u01/dbfile/o18c/reg_data01.dbf'

 size &&tbsp_large

 extent management local

 uniform size 128k

 segment space management auto;

--

create tablespace reg_index

 datafile '/u01/dbfile/o18c/reg_index01.dbf'

 size &&tbsp_med

 extent management local

 uniform size 128k

 segment space management auto;

Using ampersand variables allows you to modify the script once and have the

variables reused throughout the script. You can parameterize all aspects of the script,

including data file mount points and extent sizes.

You can also pass the values of the ampersand variables in to the CREATE TABLESPACE

script from the SQL*Plus command line. This lets you avoid hard-coding a specific size

in the script and instead provide the sizes at runtime. To accomplish this, first define at

the top of the script the ampersand variables to accept the values being passed in:

define tbsp_large=&1

define tbsp_med=&2

--

create tablespace reg_data

 datafile '/u01/dbfile/o12c/reg_data01.dbf'

 size &&tbsp_large

 extent management local

Chapter 4 Tablespaces and Data Files

126

 uniform size 128k

 segment space management auto;

--

create tablespace reg_index

 datafile '/u01/dbfile/o12c/reg_index01.dbf'

 size &&tbsp_med

 extent management local

 uniform size 128k

 segment space management auto;

Now, you can pass variables in to the script from the SQL*Plus command line. The

following example executes a script named cretbsp.sql and passes in two values that

set the ampersand variables to 5G and 500M, respectively:

SQL> @cretbsp 5G 500M

Automatic Storage Management (ASM) also simplifies the creation of the tablespace

because it will take the defaults of the DiskGroup and parameters that are set to use

ASM. This will be discussed later in this chapter, but here is a quick example:

SQL> create tablespace HRDATA;

Table 4-1 summarizes the best practices for creating and managing tablespaces.

Table 4-1.  Best Practices for Creating and Managing Tablespaces

Best Practice Reasoning

Create separate tablespaces for different applications using

the same database.

If a tablespace needs to be taken

offline, it affects only one application.

For an application, separate table data from index data in

different tablespaces.

Table and index data may have

different storage requirements and

simplify object management.

With AUTOEXTEND, specify a maximum size. Specifying a maximum size prevents

a runaway SQL statement from filling

up a storage device.

(continued)

Chapter 4 Tablespaces and Data Files

127

If you ever need to verify the SQL required to re-create an existing tablespace, you

can do so with the DBMS_METADATA package. First, set the LONG variable to a large value:

SQL> set long 1000000

Next, use the DBMS_METADATA package to display the CREATE TABLESPACE data

definition language (DDL) for all tablespaces within the database:

select dbms_metadata.get_ddl('TABLESPACE',tablespace_name)

from dba_tablespaces;

Tip  You can also use Data Pump to extract the DDL of database objects. See
Chapter 13 for details.

�Renaming a Tablespace
Sometimes you need to rename a tablespace. You may want to do this because a

tablespace was initially erroneously named, or you may want the tablespace name to

better conform to your database naming standards. Use the ALTER TABLESPACE statement

to rename a tablespace. This example renames a tablespace from TOOLS to TOOLS_DEV:

SQL> alter tablespace tools rename to tools_dev;

Best Practice Reasoning

Create tablespaces as locally managed. You shouldn’t create

a tablespace as dictionary managed.

This provides better performance and

manageability.

For a tablespace’s data file naming convention, use a name

that contains the tablespace name followed by a two-digit

number that’s unique within data files for that tablespace.

Doing this makes it easy to identify

which data files are associated with

which tablespaces.

Try to minimize the number of data files associated with a

tablespace.

You have fewer data files to manage.

In tablespace CREATE scripts, use ampersand variables to

define aspects such as storage characteristics.

This makes scripts more reusable

among various environments.

Table 4-1.  (continued)

Chapter 4 Tablespaces and Data Files

128

When you rename a tablespace, Oracle updates the name of the tablespace in

the data dictionary, control files, and data file headers. Keep in mind that renaming

a tablespace doesn’t rename any associated data files. See the section “Renaming or

Relocating a Data File,” later in this chapter, for information on renaming data files.

Note  You can’t rename the S YSTEM tablespace or the S YSAUX tablespace.

�Changing a Tablespace’s Write Mode
In environments such as data warehouses, you may need to load data into tables

and then never modify the data again. To enforce that no objects in a tablespace can

be modified, you can alter the tablespace to be read-only. To do this, use the ALTER

TABLESPACE statement:

SQL> alter tablespace inv_mgmt_rep read only;

One advantage of a read-only tablespace is that you only have to back it up once. You

should be able to restore the data files from a read-only tablespace no matter how long

ago the backup was made.

If you need to modify the tablespace out of read-only mode, you do so as follows:

SQL> alter tablespace inv_mgmt_rep read write;

Make sure you re-enable backups of a tablespace after you place it in read/write mode.

Note  You can’t make a tablespace that contains active rollback segments read-
only. For this reason, the SYSTEM tablespace can’t be made read-only because it
contains the SYSTEM rollback segment.

Be aware that individual tables can be modified to be read-only. This allows you to

control the read-only at a much more granular level (than at the tablespace level); for

example,

SQL> alter table my_tab read only;

Chapter 4 Tablespaces and Data Files

129

While in read-only mode, you can’t issue any insert, update, or delete statements

against the table. Making individual tables read/write can be advantageous when you’re

doing maintenance (such as a data migration) and you want to ensure that users don’t

update the data.

This example modifies a table back to read/write mode:

SQL> alter table my_tab read write;

�Dropping a Tablespace
If you have a tablespace that is unused, it is best to drop it so it does not clutter your

database, consume unnecessary resources, and potentially confuse DBAs who are not

familiar with the database. Before dropping a tablespace, it is a good practice to first take

it offline:

SQL> alter tablespace inv_data offline;

You may want to wait to see if anybody screams that an application is broken

because it can no longer write to a table or index in the tablespace to be dropped.

Depending on the reason for dropping a tablespace, objects can be moved to another

tablespace first before dropping. When you are sure the tablespace is not required, drop

it, and delete its data files:

SQL> drop tablespace inv_data including contents and datafiles;

Tip  You can drop a tablespace whether it is online or offline. The exception to
this is the SYSTEM and SYSAUX tablespaces, which cannot be dropped. It’s always
a good idea to take a tablespace offline before you drop it. By doing so, you can
better determine if an application is using any objects in the tablespace. If you
attempt to query a table in an offline tablespace, you receive this error: ORA-
00376: file can't be read at this time.

Dropping a tablespace using INCLUDING CONTENTS AND DATAFILES permanently

removes the tablespace and any of its data files. Make certain the tablespace does not

contain any data you want to keep before you drop it.

Chapter 4 Tablespaces and Data Files

130

If you attempt to drop a tablespace that contains a primary key that is referenced by a

foreign key associated with a table in a tablespace different from the one you are trying to

drop, you receive this error:

ORA-02449: unique/primary keys in table referenced by foreign keys

Run this query first to determine whether any foreign key constraints will be affected:

select p.owner,

 p.table_name,

 p.constraint_name,

 f.table_name referencing_table,

 f.constraint_name foreign_key_name,

 f.status fk_status

from dba_constraints p,

 dba_constraints f,

 dba_tables t

where p.constraint_name = f.r_constraint_name

and f.constraint_type = 'R'

and p.table_name = t.table_name

and t.tablespace_name = UPPER('&tablespace_name')

order by 1,2,3,4,5;

If there are referenced constraints, you need to first drop the constraints or use the

CASCADE CONSTRAINTS clause of the DROP TABLESPACE statement. This statement uses

CASCADE CONSTRAINTS to drop any affected constraints automatically:

SQL> drop tablespace inv_data including contents and data files cascade

constraints;

This statement drops any referential integrity constraints from tables outside the

tablespace being dropped that reference tables within the dropped tablespace.

If you drop a tablespace that has required objects in a production system, the results

can be catastrophic. You must perform some sort of recovery to get the tablespace and

its objects back. Needless to say, be very careful when dropping a tablespace. Table 4-2

lists recommendations to consider when you do this.

Chapter 4 Tablespaces and Data Files

131

Table 4-2.  Best Practices for Dropping Tablespaces

Best Practice Reasoning

Before dropping a tablespace, run a script such

as this to determine if any objects exist in the

tablespace:

select owner, segment_name,

segment_type

from dba_segments

where

tablespace_name=upper('&&tbsp_name');

Doing this ensures that no tables or indexes

exist in the tablespace before you drop it.

Consider renaming tables in a tablespace before

you drop it.

If any applications are using tables within

the tablespace to be dropped, the application

throws an error when a required table is

renamed.

If there are no objects in the tablespace, resize the

associated data files to a very small number, such

as 10MB.

Reducing the size of the data files to a miniscule

amount of space quickly shows whether any

applications are trying to access objects that

require space in a tablespace.

Make a backup of your database before dropping

a tablespace.

This ensures that you have a way to recover

objects that are discovered to be in use after

you drop the tablespace.

Take the tablespace and data files offline

before you drop the tablespace. Use the ALTER

TABLESPACE statement to take the tablespace

offline.

This helps determine if any applications or

users are using objects in the tablespace. They

can’t access the objects if the tablespace and

data files are offline.

When you are sure a tablespace is not in use,

use the DROP TABLESPACE ... INCLUDING

CONTENTS AND DATAFILES statement.

This removes the tablespace and physically

removes any data files associated with it. Some

DBAs don’t like this approach, but you should be

fine if you’ve taken the necessary precautions.

Chapter 4 Tablespaces and Data Files

132

�Using Oracle Managed Files
The Oracle Managed File (OMF) feature automates many aspects of tablespace

management, such as file placement, naming, and sizing. You control OMF by setting the

following initialization parameters:

•	 DB_CREATE_FILE_DEST

•	 DB_CREATE_ONLINE_LOG_DEST_N

•	 DB_RECOVERY_FILE_DEST

If you set these parameters before you create the database, Oracle uses them for

the placement of the data files, control files, and online redo logs. You can also enable

OMF after your database has been created. Oracle uses the values of the initialization

parameters for the locations of any newly added files. Oracle also determines the name

of the newly added file. These parameters are set as part input in dbca for the creation of

a database.

The advantage of using OMF is that creating tablespaces is simplified. For example, the

CREATE TABLESPACE statement does not need to specify anything other than the tablespace

name. First, enable the OMF feature by setting the DB_CREATE_FILE_DEST parameter:

SQL> alter system set db_create_file_dest='/u01';

Now, issue the CREATE TABLESPACE statement:

SQL> create tablespace inv1;

This statement creates a tablespace named INV1, with a default data file size of

100MB. Keep in mind that you can override the default size of 100MB by specifying a size:

SQL> create tablespace inv2 datafile size 20m;

To view the details of the associated data files, query the V$DATAFILE view, and note

that Oracle has created subdirectories beneath the /u01 directory and named the file

with the OMF format:

SQL> select name from v$datafile where name like '%inv%';

NAME

--

/u01/O18C/datafile/o1_mf_inv1_8b5l63q6_.dbf

/u01/O18C/datafile/o1_mf_inv2_8b5lflfc_.dbf

Chapter 4 Tablespaces and Data Files

133

One limitation of OMF is that you’re limited to one directory for the placement of

data files. If you want to add data files to a different directory, you can alter the location

dynamically:

SQL> alter system set db_create_file_dest='/u02';

�Creating a Bigfile Tablespace
The bigfile feature allows you to create a tablespace with a very large data file assigned

to it. The advantage of using the bigfile feature is this potential to create very large files.

With an 8KB block size, you can create a data file as large as 32TB. With a 32KB block

size, you can create a data file up to 128TB.

Use the BIGFILE clause to create a bigfile tablespace:

create bigfile tablespace inv_big_data

 datafile '/u01/dbfile/o18c/inv_big_data01.dbf'

 size 10g

 extent management local

 uniform size 128k

 segment space management auto;

As long as you have plenty of space associated with the filesystem supporting the

bigfile tablespace data file, you can store massive amounts of data in a tablespace.

One potential disadvantage of using a bigfile tablespace is that if, for any reason, you

run out of space on a filesystem that supports the data file associated with the bigfile,

you can’t expand the size of the tablespace (unless you can add space to the filesystem).

You can’t add more data files to a bigfile tablespace if they’re placed on separate mount

points. A bigfile tablespace allows only one data file to be associated with it.

You can make the bigfile tablespace the default type of tablespace for a database,

using the ALTER DATABASE SET DEFAULT BIGFILE TABLESPACE statement. However, it is

not recommend to be doing that. You could potentially create a tablespace, not knowing

it was a bigfile tablespace, and when you discovered that you needed more space, you

would not know that you could not add another data file on a different mount point for

this tablespace. Using ASM is less of an issue because a new disk can be dynamically

added to a DISKGROUP for this tablespace.

Chapter 4 Tablespaces and Data Files

134

�Enabling Default Table Compression Within
a Tablespace Tablespace
When working with large databases, you may want to consider compressing the data.

Compressed data results in less disk space, less memory, and fewer I/O operations.

Queries reading compressed data potentially execute faster because fewer blocks are

required to satisfy the result of the query. But compression does have a cost; it requires

more CPU resources, as the data are compressed and uncompressed while reading and

writing.

When creating a tablespace, you can enable data compression features. Doing so

does not compress the tablespace. Rather, any tables you create within the tablespace

inherit the compression characteristics of the tablespace. This example creates a

tablespace with ROW STORE COMPRESS ADVANCED:

CREATE TABLESPACE tools_comp

 DATAFILE '/u01/dbfile/o18c/tools_comp01.dbf'

 SIZE 100m

 EXTENT MANAGEMENT LOCAL

 UNIFORM SIZE 512k

 SEGMENT SPACE MANAGEMENT AUTO

 DEFAULT ROW STORE COMPRESS ADVANCED;

Note I f you’re using Oracle Database 11g, then use the COMPRESS FOR OLTP
clause instead of ROW STORE COMPRESS ADVANCED.

Now when a table is created within this tablespace, it will automatically be created

with the ROW STORE COMPRESS ADVANCED feature. You can verify the compression

characteristics of a tablespace via this query:

select tablespace_name, def_tab_compression, compress_for

from dba_tablespaces;

Tip S ee Chapter 7 for full details on table compression.

Chapter 4 Tablespaces and Data Files

135

If a tablespace is already created, you can alter its compression characters, as

follows:

SQL> alter tablespace tools_comp default row store compress advanced;

Here’s an example that alters a tablespace’s default compress to BASIC:

SQL> alter tablespace tools_comp default compress basic;

You can disable tablespace compression via the NOCOMPRESS clause:

SQL> alter tablespace tools_comp default nocompress;

Note  Most compression features require the Enterprise Edition of Oracle and the
Advanced Compression option (for a fee). Using compression ratios and amount of
data existing, growth and retention can show the value of this option.

�Displaying Tablespace Size
DBAs often use monitoring scripts to alert them when they need to increase the space

allocated to a tablespace. Depending on whether or not you are in a multitenant,

container database environment, your SQL for determining space usage will vary. For a

regular database (non-container), you can use the DBA-level views to determine space

usage. The following script displays the percentage of free space left in a tablespace and

data file:

SET PAGESIZE 100 LINES 132 ECHO OFF VERIFY OFF FEEDB OFF SPACE 1 TRIMSP ON

COMPUTE SUM OF a_byt t_byt f_byt ON REPORT

BREAK ON REPORT ON tablespace_name ON pf

COL tablespace_name FOR A17 TRU HEAD 'Tablespace|Name'

COL file_name FOR A40 TRU HEAD 'Filename'

COL a_byt FOR 9,990.999 HEAD 'Allocated|GB'

COL t_byt FOR 9,990.999 HEAD 'Current|Used GB'

COL f_byt FOR 9,990.999 HEAD 'Current|Free GB'

COL pct_free FOR 990.0 HEAD 'File %|Free'

COL pf FOR 990.0 HEAD 'Tbsp %|Free'

Chapter 4 Tablespaces and Data Files

136

COL seq NOPRINT

DEFINE b_div=1073741824

--

SELECT 1 seq, b.tablespace_name, nvl(x.fs,0)/y.ap*100 pf, b.file_name

file_name,

 b.bytes/&&b_div a_byt, NVL((b.bytes-SUM(f.bytes))/&&b_div,b.bytes/&&b_div)

t_byt,

 NVL(SUM(f.bytes)/&&b_div,0) f_byt, NVL(SUM(f.bytes)/b.bytes*100,0) pct_free

FROM dba_free_space f, dba_data_files b

 ,(SELECT y.tablespace_name, SUM(y.bytes) fs

 FROM dba_free_space y GROUP BY y.tablespace_name) x

 ,(SELECT x.tablespace_name, SUM(x.bytes) ap

 FROM dba_data_files x GROUP BY x.tablespace_name) y

WHERE f.file_id(+) = b.file_id

AND x.tablespace_name(+) = y.tablespace_name

and y.tablespace_name = b.tablespace_name

AND f.tablespace_name(+) = b.tablespace_name

GROUP BY b.tablespace_name, nvl(x.fs,0)/y.ap*100, b.file_name, b.bytes

UNION

SELECT 2 seq, tablespace_name,

 j.bf/k.bb*100 pf, b.name file_name, b.bytes/&&b_div a_byt,

 a.bytes_used/&&b_div t_byt, a.bytes_free/&&b_div f_byt,

 a.bytes_free/b.bytes*100 pct_free

FROM v$temp_space_header a, v$tempfile b

 ,(SELECT SUM(bytes_free) bf FROM v$temp_space_header) j

 ,(SELECT SUM(bytes) bb FROM v$tempfile) k

WHERE a.file_id = b.file#

ORDER BY 1,2,4,3;

If you don’t have any monitoring in place, you are alerted via the SQL statement

that is attempting to perform an insert or update operation that the tablespace requires

more space but isn’t able to allocate more. At that point, an ORA-01653 error is thrown,

indicating the object can’t extend.

After you determine that a tablespace needs more space, you need to either increase

the size of a data file or add a data file to the tablespace. See the section “Altering

Tablespace Size,” later in this chapter, for a discussion of these topics.

Chapter 4 Tablespaces and Data Files

137

Tip S ee Chapter 22 for full details on reporting on space within a pluggable
database environment using the container database (CDB)-level views.

DISPLAYING ORACLE ERROR MESSAGES AND ACTIONS

You can use the oerr utility to quickly display the cause of an error and simple instructions on

what actions to take; for example,

$ oerr ora 01653

Here is the output for this example:

01653, 00000, "unable to extend table %s.%s by %s in tablespace %s"

// *Cause: Failed to allocate an extent of the required number of blocks for

// a table segment in the tablespace indicated.

// *Action: Use ALTER TABLESPACE ADD DATAFILE statement to add one or more

// files to the tablespace indicated.

The oerr utility’s output gives you a fast and easy way to triage problems. If the information

provided isn’t enough, then Google is a good second option.

�Altering Tablespace Size
When you’ve determined which data file you want to resize, first make sure you have

enough disk space to increase the size of the data file on the mount point on which the

data file exists:

$ df -h | sort

Use the ALTER DATABASE DATAFILE ... RESIZE command to increase the data file’s

size. This example resizes the data file to 1GB:

SQL> alter database datafile '/u01/dbfile/o18c/users01.dbf' resize 1g;

If you don’t have space on an existing mount point to increase the size of a data file,

then you must add a data file. To add a data file to an existing tablespace, use the ALTER

TABLESPACE ... ADD DATAFILE statement:

Chapter 4 Tablespaces and Data Files

138

SQL> alter tablespace users

 add datafile '/u02/dbfile/o18c/users02.dbf' size 100m;

With bigfile tablespaces, you have the option of using the ALTER TABLESPACE

statement to resize the data file. This works because only one data file can be associated

with a bigfile tablespace:

SQL> alter tablespace inv_big_data resize 1P;

Resizing data files can be a daily task when you’re managing databases with heavy

transaction loads. Increasing the size of an existing data file allows you to add space to

a tablespace without adding more data files. If there isn’t enough disk space left on the

storage device that contains an existing data file, you can add a data file in a different

location to an existing tablespace.

To add space to a temporary tablespace, first query the V $TEMPFILE view to verify

the current size and location of temporary data files:

SQL> select name, bytes from v$tempfile;

Then, use the TEMPFILE option of the ALTER DATABASE statement:

SQL> alter database tempfile '/u01/dbfile/o18c/temp01.dbf' resize 500m;

You can also add a file to a temporary tablespace via the ALTER TABLESPACE statement:

 SQL> alter tablespace temp add tempfile '/u01/dbfile/o18c/temp02.dbf'

size 5000m;

�Toggling Data Files Offline and Online
Sometimes when you are performing maintenance operations (such as renaming

data files), you may need to first take a data file offline. You can use either the ALTER

TABLESPACE or the ALTER DATABASE DATAFILE statement to toggle data files offline and

online.

Tip A s of Oracle Database 12c, you can move and rename data files while they
are online and open for use. See “Renaming or Relocating a Data File,” later in this
chapter, for a discussion of this.

Chapter 4 Tablespaces and Data Files

139

Use the ALTER TABLESPACE ... OFFLINE NORMAL statement files offline. You do not

need to specify NORMAL, because it’s the default:

SQL> alter tablespace users offline;

When you place a tablespace offline in normal mode, Oracle performs a checkpoint

on the data files associated with the tablespace. This ensures that all modified blocks

in memory that are associated with the tablespace are flushed and written to the data

files. You will not need to perform media recovery when you bring the tablespace and its

associated data files back online.

You cannot use the ALTER TABLESPACE statement to place tablespaces offline when

the database is in mount mode. If you attempt to take a tablespace offline while the

database is mounted (but not open), you receive the following error:

ORA-01109: database not open

Note  When in mount mode, you must use the ALTER DATABASE DATAFILE
statement to take a data file offline It might not be necessary, but there might be
more than one data file for the tablespace, and each file will need to be taken offline.

When taking a tablespace offline, you can also specify ALTER TABLESPACE ...

OFFLINE TEMPORARY. In this scenario, Oracle initiates a checkpoint on all data files

associated with the tablespace that are online. Oracle does not initiate a checkpoint on

offline data files associated with the tablespace.

You can specify ALTER TABLESPACE ... OFFLINE IMMEDIATE when taking a

tablespace offline. Your database must be in archivelog mode in this situation, or the

following error is thrown:

ORA-01145: offline immediate disallowed unless media recovery enabled

When using OFFLINE IMMEDIATE, Oracle does not issue a checkpoint on the data

files. You must perform media recovery on the tablespace before bringing it back online.

Note  You cannot take the SYSTEM or UNDO tablespace offline while the database
is open. SYSAUX can be taken offline, however; some functions might not be
available, or errors might appear.

Chapter 4 Tablespaces and Data Files

140

You can also use the ALTER DATABASE DATAFILE statement to take a data file offline.

If your database is open for use, then it must be in archivelog mode in order for you to

take a data file offline with the ALTER DATABASE DATAFILE statement. If you attempt to

take a data file offline using the ALTER DATABASE DATAFILE statement, and your database

is not in archivelog mode, the ORA-01145 error is thrown.

If your database is not in archivelog mode, you must specify ALTER DATABASE

DATAFILE ... OFFLINE FOR DROP when taking a data file offline. You can specify the

entire file name or provide the file number. In this example, data file 6 is taken offline:

SQL> alter database datafile 4 offline for drop;

Now, if you attempt to bring online the offline data file, you receive the following error:

SQL> alter database datafile 4 online;

ORA-01113: file 4 needs media recovery

When you use the OFFLINE FOR DROP clause, no checkpoint is taken on the data

file. This means you need to perform media recovery on the data file before bringing it

online. Performing media recovery applies any changes to the data file that are recorded

in the online redo logs that aren’t in the data files themselves. Before you can bring

online a data file that was taken offline with the OFFLINE FOR DROP clause, you must

perform media recovery on it. You can specify either the entire file name or the file

number:

SQL> recover datafile 4;

If the redo information that Oracle needs is contained in the online redo logs, you

should see this message:

Media recovery complete.

If your database is not in archivelog mode, and if Oracle needs redo information not

contained in the online redo logs to recover the data file, then you cannot recover the

data file and place it back online.

If your database is in archivelog mode, you can take it offline without the FOR DROP

clause. In this scenario, Oracle overlooks the FOR DROP clause. Even when your database

is in archivelog mode, you need to perform media recovery on a data file that has been

taken offline with the ALTER DATABASE DATAFILE statement. Table 4-3 summarizes the

options you must consider when taking a tablespace/data files offline.

Chapter 4 Tablespaces and Data Files

141

Note  While the database is in mount mode (and not open), you can use the
ALTER DATABASE DATAFILE command to take any data file offline, including
SYSTEM and UNDO.

These steps to offline data files and tablespaces provide opportunities to practice

media recovery and walk through these scenarios with new databases or test databases.

This practice is useful for taking notes, documenting the error messages, and gathering

notes on what happened and results for availability in a pressure situation when these

errors appear.

�Renaming or Relocating a Data File
You may occasionally need to move or rename a data file. For example, you may need

to move data files because of changes in the storage devices or because the files were

created in the wrong location or with a nonstandard name. As of Oracle Database 12c,

you have the option of renaming or moving data files, or both, while they are online.

Otherwise, you will have to take data files offline for maintenance operations.

Table 4-3.  Options for Taking Tablespaces/Data Files Offline

Statement Archivelog Mode
Required?

Media Recovery Required
When Toggling Online?

Works in
Mount Mode?

ALTER TABLESPACE ...

OFFLINE NORMAL

No No No

ALTER TABLESPACE ...

OFFLINE TEMPORARY

No Maybe: Depends on

whether any data files

already have offline status

No

ALTER TABLESPACE ...

OFFLINE IMMEDIATE

No Yes No

ALTER DATABASE DATAFILE

... OFFLINE

Yes Yes Yes

ALTER DATABASE DATAFILE

... OFFLINE FOR DROP

No Yes Yes

Chapter 4 Tablespaces and Data Files

142

�Performing Online Data File Operations
New in Oracle Database 12c is the ALTER DATABASE MOVE DATAFILE command. This

command allows you to rename or move data files without any downtime. This vastly

simplifies the task of moving or renaming a data file, as there is no need to manually

place data files offline/online and use OS commands to physically move the files. This

once manually intensive (and error-prone) operation has now been simplified to a single

SQL command.

A data file must be online for the online move or rename to work. Here is an example

of renaming an online data file:

SQL> alter database move datafile '/u01/dbfile/o18c/users01.dbf' to

 '/u01/dbfile/o18c/users_dev01.dbf';

Here is an example of moving a data file to a new mount point:

SQL> alter database move datafile '/u01/dbfile/o18c/hrdata01.dbf' to

 '/u02/dbfile/o18c/hrdata01.dbf';

You can also specify the data file number when renaming or moving a data file; for

example,

SQL> alter database move datafile 2 to '/u02/dbfile/o18c/sysuax01.dbf';

In the previous example, you are specifying that data file 2 be moved.

If you’re moving a data file and, for any reason, want to keep a copy of the original

file, you can use the KEEP option:

SQL> alter database move datafile 4 to '/u02/dbfile/o18c/users01.dbf' keep;

You can specify the REUSE clause to overwrite an existing file:

SQL> alter database move datafile 4 to '/u01/dbfile/o18c/users01.dbf' reuse;

Oracle will not allow you to overwrite (reuse) a data file that is currently being used

by the database. That is a good thing.

�Performing Offline Data File Operations
Previous to 12c to rename or move a data file, you must take the data file offline. There

are two somewhat different approaches to moving and renaming offline data files:

Chapter 4 Tablespaces and Data Files

143

•	 Use a combination of SQL commands and OS commands.

•	 Use a combination of re-creating the control file and OS commands.

Because these are offline functions, I have normally planned these steps to happen

before or after a patch or upgrade maintenance activity that requires some downtime as

well. Unless it is an emergency step to move off of a disk or mount point, this normally can

happen during that time. If these types of activities become a regular occurrence, it will be

worth the time and effort to looking into using ASM since that provides other options for

moving files around. These two techniques are discussed in the next two sections.

�Using SQL and OS Commands

Here are the steps for renaming a data file using SQL commands and OS commands:

	 1.	 Use the following query to determine the names of existing data files:

SQL> select name from v$datafile;

	 2.	 Take the data file offline, using either the ALTER TABLESPACE or

ALTER DATABASE DATAFILE statement (see the previous section,

“Performing Offline Data File Operations,” for details on how to

do this). You can also shut down your database and then start it

in mount mode; the data files can be moved while in this mode

because they aren’t open for use.

	 3.	 Physically move the data file to the new location, using either an

OS command (like mv or cp) or the COPY_FILE procedure of the

DBMS_FILE_TRANSFER built-in PL/SQL package.

	 4.	 Use either the A LTER TABLESPACE ... RENAME DATAFILE ...

TO statement or the A LTER DATABASE RENAME FILE ... TO

statement to update the control file with the new data file name.

	 5.	 Alter the data file online.

Note I f you need to rename data files associated with the SYSTEM or UNDO
tablespace, you must shut down your database and start it in mount mode. When
your database is in mount mode, you can rename these data files via the ALTER
DATABASE RENAME FILE statement.

Chapter 4 Tablespaces and Data Files

144

The following example demonstrates how to move the data files associated with a

single tablespace. First, take the data files offline with the ALTER TABLESPACE statement:

SQL> alter tablespace users offline;

Now, from the OS prompt, move the data files to a new location, using the Linux/

Unix m v command:

$ mv /u01/dbfile/o18c/users01.dbf /u02/dbfile/o18c/users01.dbf

Update the control file with the ALTER TABLESPACE statement:

alter tablespace users

rename datafile

'/u01/dbfile/o18c/users01.dbf'

to

'/u02/dbfile/o18c/users01.dbf';

Finally, bring the data files within the tablespace back online:

SQL> alter tablespace users online;

If you want to rename data files from multiple tablespaces in one operation, you can

use the ALTER DATABASE RENAME FILE statement (instead of the ALTER TABLESPACE...

RENAME DATAFILE statement). The following example renames several data files in the

database. Because the SYSTEM and UNDO tablespaces’ data files are being moved, you

must shut down the database first and then place it in mount mode:

SQL> conn / as sysdba

SQL> shutdown immediate;

SQL> startup mount;

Because the database is in mount mode, the data files are not open for use, and thus

there is no need to take the data files offline. Next, physically move the files via the Linux

mv command:

$ mv /u01/dbfile/o18c/system01.dbf /u02/dbfile/o18c/system01.dbf

$ mv /u01/dbfile/o18c/sysaux01.dbf /u02/dbfile/o18c/sysaux01.dbf

$ mv /u01/dbfile/o18c/undotbs01.dbf /u02/dbfile/o18c/undotbs01.dbf

Chapter 4 Tablespaces and Data Files

145

Note  You must move the files before you update the control file. The ALTER
DATABASE RENAME FILE command expects the file to be in the renamed
location. If the file is not there, an error is thrown: ORA-27037: unable to
obtain file status.

Now, you can update the control file to be aware of the new file name:

alter database rename file

'/u01/dbfile/o18c/system01.dbf',

'/u01/dbfile/o18c/sysaux01.dbf',

'/u01/dbfile/o18c/undotbs01.dbf'

to

'/u02/dbfile/o18c/system01.dbf',

'/u02/dbfile/o18c/sysaux01.dbf',

'/u02/dbfile/o18c/undotbs01.dbf';

You should be able to open your database:

SQL> alter database open;

�Re-creating the Control File and OS Commands

Another way you can relocate all data files in a database is to use a combination of a

re-created control file and OS commands. The steps for this operation are as follows:

	 1.	 Create a trace file that contains a CREATE CONTROLFILE statement.

	 2.	 Modify the trace file to display the new location of the data files.

	 3.	 Shut down the database.

	 4.	 Physically move the data files, using an OS command.

	 5.	 Start the database in nomount mode.

	 6.	 Run the CREATE CONTROLFILE command.

Chapter 4 Tablespaces and Data Files

146

Note  When you re-create a control file, be aware that any RMAN information
that was contained in the file will be lost. If you are not using a recovery catalog,
you can repopulate the control file with RMAN backup information, using the RMAN
CATALOG command.

The following example walks through the previous steps. First, you write a CREATE

CONTROLFILE statement to a trace file via an ALTER DATABASE BACKUP CONTROLFILE TO

TRACE statement:

SQL> alter database backup controlfile to trace as '/tmp/mvctrlfile.sql'

noresetlogs;

There are a couple of items to note about the prior statement. First, a file

named mvctrlfile.sql is created in the /tmp directory; this file contains a CREATE

CONTROLFILE statement. Second, the prior statement uses the NORESETLOGS clause; this

instructs Oracle to write only one SQL statement to the trace file. If you do not specify

NORESETLOGS, Oracle writes two SQL statements to the trace file: one to re-create the

control file with the NORESETLOGS option and one to re-create the control file with

RESETLOGS. Normally, you know whether you want to reset the online redo logs as part of

re-creating the control file. In this case, you know that you do not need to reset the online

redo logs when you re-create the control file (because the online redo logs have not been

damaged and are still in the normal location for the database).

Next, edit the /tmp/mvctrlfile.sql file, and change the names of the directory

paths to the new locations. Here is a CREATE CONTROLFILE statement for this example:

CREATE CONTROLFILE REUSE DATABASE "O18C" NORESETLOGS NOARCHIVELOG

 MAXLOGFILES 16

 MAXLOGMEMBERS 4

 MAXDATAFILES 1024

 MAXINSTANCES 1

 MAXLOGHISTORY 876

LOGFILE

 GROUP 1 (

 '/u01/oraredo/o18c/redo01a.rdo',

 '/u02/oraredo/o18c/redo01b.rdo'

) SIZE 50M BLOCKSIZE 512,

Chapter 4 Tablespaces and Data Files

147

 GROUP 2 (

 '/u01/oraredo/o18c/redo02a.rdo',

 '/u02/oraredo/o18c/redo02b.rdo'

) SIZE 50M BLOCKSIZE 512,

 GROUP 3 (

 '/u01/oraredo/o18c/redo03a.rdo',

 '/u02/oraredo/o18c/redo03b.rdo'

) SIZE 50M BLOCKSIZE 512

DATAFILE

 '/u01/dbfile/o18c/system01.dbf',

 '/u01/dbfile/o18c/sysaux01.dbf',

 '/u01/dbfile/o18c/undotbs01.dbf',

 '/u01/dbfile/o18c/users01.dbf'

CHARACTER SET AL32UTF8;

Now, shut down the database:

SQL> shutdown immediate;

Physically move the files from the OS prompt. This example uses the Linux mv

command to move the files:

$ mv /u02/dbfile/o18c/system01.dbf /u01/dbfile/o18c/system01.dbf

$ mv /u02/dbfile/o18c/sysaux01.dbf /u01/dbfile/o18c/sysaux01.dbf

$ mv /u02/dbfile/o18c/undotbs01.dbf /u01/dbfile/o18c/undotbs01.dbf

$ mv /u02/dbfile/o18c/users01.dbf /u01/dbfile/o18c/users01.dbf

Start up the database in nomount mode:

SQL> startup nomount;

Then, execute the file that contains the CREATE CONTROLFILE statement (in this

example, mvctrlfile.sql):

SQL> @/tmp/mvctrlfile.sql

If the statement is successful, you see the following message:

Control file created.

Chapter 4 Tablespaces and Data Files

148

Finally, alter your database open:

SQL> alter database open;

�Using ASM for Tablespaces
ASM is a way to manage the physical disk and storage allocation to the Oracle database

and files system. Adding storage becomes adding disks to a disk group and allows for

additional space to be dynamically available to the tablespaces. With storage hardware

advances, there are also ways to add disks to mount points as well. It just depends how

the databases and environments are being managed and configured if ASM is part of the

environment.

There are plenty of advantages for using ASM from shared storage, ease of disk

management to data file repairs, and verification specific for the database. ASM,

normally named +ASM, is another instance that needs to be available for the database

to be able to use the disk groups. This is a way to share storage for several databases,

rebalance workloads, and provide higher availability for the database storage.

The parameters for using a default storage space have already been discussed

and instead of naming mount points that can change as databases grow or move, the

database using +ASM can use a disk group without having to worry about names for

mount points. A disk group oradata is created to be used for the database storage. The

parameters for file destinations are set using the following command:

SQL> alter system set DB_CREATE_FILE_DEST = '+oradata';

To create the tablespace:

SQL> create tablespace hrdata;

This will create a tablespace hrdata on the oradata diskgroup. The file names are

generated by +ASM and, to create aliases by default, a template for file names in +ASM. If

a template is used, the DB_CREATE_FILE_DEST parameter will point to that template

along with the disk group.

SQL> alter system set DB_CREATE_FILE_DEST = '+oradata(datatemplate)';

The data files and tablespace views are still available to see what tablespaces

are created and the data files that are part of the database. The view v$datafile

and dba_data_files will show the files starting with the diskgroup +oradata.

Chapter 4 Tablespaces and Data Files

149

The dba_tablespaces view will still show the hrdata tablespace as with non-ASM

databases. There are also additional views that will show the files in the disk groups.

To see the ASM disks in a disk group view, v$asm_disk should be queried. The files in the

disk group are seen in the v$asm_file and v$asm_alias views.

From v$asm_file the file number, type, and space information are available and

v$asm_alias brings in the data file name:

SQL> select file.file_number, alias.name, file.type

From v$asm_file file, v$asm_alias alias

Where file.group_number=alias.group_number and file.file_number=alias.

file_number;

The Oracle cloud uses the ASM and ASM Cluster File System (ACFS) to present

the storage. It does simplify and automate storage management. There is not a need

for another volume or file manager tool. Again, there are advantages to use the storage

management tools that come with the Oracle database. There are plenty of reference

materials to show how to create disk groups, add or drop disks, perform maintenance,

and manage the ASM storage and file systems.

�Summary
This chapter discussed managing tablespace and data files. Tablespaces are logical

containers for a group of data files. Data files are the physical files on disk that contain

data. You should plan carefully when creating tablespaces and the corresponding

data files.

Tablespaces allow you to separate the data of different applications. You can also

separate tables from indexes. These allow you to customize storage characteristics

of the tablespace for each application. Furthermore, tablespaces provide a way to

better manage applications that have different availability and backup and recovery

requirements. Even though there are many options that are possible to configure with

tablespaces, the storage technology advances to handle many of the needs to separate

data files, extents, and autoextend. Using the storage features and tools such as ASM

will help manage the disk and performance of the storage needed for the database.

The tablespace options are simplified by these steps. Planning for storage is then in the

area of growth of the data and monitoring for space usage to proactively increase the

allocation of space for the tablespace.

Chapter 4 Tablespaces and Data Files

150

Security options allow for transparent encryption for the data at rest in the

tablespace. The tablespace is created with the encryption option, and the wallet and

keys are open with the database to allow for viewing of the data in the database but not

through the files on the server.

As a DBA you must be proficient in managing tablespaces and data files. In any type

of environment, you have to add, rename, relocate, and drop these storage containers.

These are ideal tests that can be done when first creating a database or in a test

environment to practice the commands and restoring data files. The commands, errors,

and issues can be logged for future reference to use in a pressure situation for data file

corruption and recovery.

Oracle requires three types of files for a database to operate: data files, control files,

and online redo log files. The next chapter focuses on control file and online redo log file

management.

Chapter 4 Tablespaces and Data Files

151
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_5

CHAPTER 5

Managing Control Files,
Online Redo Logs, and
Archivelogs
An Oracle database consists of three types of mandatory files: data files, control files, and

online redo logs. Chapter 4 focused on tablespaces and data files. This chapter looks at

managing control files and online redo logs and implementing archivelogs. The first part

of the chapter discusses typical control file maintenance tasks, such as adding, moving,

and removing control files. The middle part of the chapter examines DBA activities

related to online redo log files, such as renaming, adding, dropping, and relocating these

critical files. Finally, the architectural aspects of enabling and implementing archiving

are covered.

�Managing Control Files
A control file is a small binary file that stores the following types of information:

•	 Database name

•	 Names and locations of data files

•	 Names and locations of online redo log files

•	 Current online redo log sequence number

•	 Checkpoint information

•	 Names and locations of RMAN backup files

152

You can query much of the information stored in the control file from data dictionary

views. This example displays the types of information stored in the control file by

querying v$controlfile_record_section:

SQL> select distinct type from v$controlfile_record_section;

Here is a partial listing of the output:

TYPE

FILENAME

TABLESPACE

RMAN CONFIGURATION

BACKUP CORRUPTION

PROXY COPY

FLASHBACK LOG

REMOVABLE RECOVERY FILES

AUXILIARY DATAFILE COPY

DATAFILE

You can view database-related information stored in the control file via the

v$database view. The v$ views are based on x$ tables or views, and the v$database is

based on an x$database, which is just a read of the control file:

SQL> select name, open_mode, created, current_scn from v$database;

Here is the output for this example:

NAME OPEN_MODE CREATED CURRENT_SCN

--------- -------------------- --------- -----------

O18C READ WRITE 28-SEP-12 2573820

Every Oracle database must have at least one control file. When you start your

database in nomount mode, the instance is aware of the location of the control files

from the CONTROL_FILES initialization parameter in the spfile or init.ora file. When

you issue a STARTUP NOMOUNT command, Oracle reads the parameter file and starts the

background processes and allocates memory structures:

-- locations of control files are known to the instance

SQL> startup nomount;

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

153

At this point, the control files have not been touched by any processes. When you

alter your database into mount mode, the control files are read and opened for use:

-- control files opened

SQL> alter database mount;

If any of the control files listed in the CONTROL_FILES initialization parameter are not

available, then you cannot mount your database.

When you successfully mount your database, the instance is aware of the locations

of the data files and online redo logs but has not yet opened them. After you alter your

database into open mode, the data files and online redo logs are opened:

-- datafiles and online redo logs opened

SQL> alter database open;

Note  Keep in mind that when you issue the STARTUP command (with no
options), the previously described three phases are automatically performed in this
order: nomount, mount, open. When you issue a SHUTDOWN command, the phases
are reversed: close the database, unmount the control file, stop the instance.

The control file is created when the database is created. As you saw in Chapter 2, you

should create at least two control files when you create your database (to avoid a single

point of failure). Previously, you should have multiple control files stored on separate

storage devices controlled by separate controllers, but because of storage devices it

might be difficult to know if it is a separate device, so it is important to have fault-tolerant

devices with mirroring. The control file is a very important part of the database and

needs to be available or very quickly restored if needed.

Control files can also be on ASM disk groups. This allows for one control file in the

+ORADATA disk group and another file in +FRA disk group. Managing the control files

and details inside remain the same as on the file system except that the control files are

just using ASM disk groups.

After the database has been opened, Oracle will frequently write information to

the control files, such as when you make any physical modifications (e.g., creating

a tablespace, adding/removing/resizing a data file). Oracle writes to all control files

specified by the CONTROL_FILES initialization parameter. If Oracle cannot write to one of

the control files, an error is thrown:

ORA-00210: cannot open the specified control file

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

154

If one of your control files becomes unavailable, shut down your database, and

resolve the issue before restarting (see Chapter 19 for using RMAN to restore a control

file). Fixing the problem may mean resolving a storage-device failure or modifying the

CONTROL_FILES initialization parameter to remove the control file entry for the control

file that is not available.

DISPLAYING THE CONTENTS OF A CONTROL FILE

You can use the ALTER SESSION statement to display the physical contents of the control

file; for example,

SQL> oradebug setmypid

SQL> oradebug unlimit

SQL> alter session set events 'immediate trace name controlf level 9';

SQL> oradebug tracefile_name

The prior line of code displays the following name of the trace file:

/ora01/app/oracle/diag/rdbms/o18c/o18c/trace/o18c_ora_4153.trc

The trace file is written to the $ ADR_HOME/trace directory. You can also view the trace

directory name via this query:

SQL> select value from v$diag_info where name='Diag Trace';

Here is a partial listing of the contents of the trace file:

DATABASE ENTRY

 (size = 316, compat size = 316, section max = 1, section in-use = 1,

 last-recid= 0, old-recno = 0, last-recno = 0)

 (extent = 1, blkno = 1, numrecs = 1)

 09/28/2012 16:04:54

 DB Name "O18C"

 Database flags = 0x00404001 0x00001200

 Controlfile Creation Timestamp 09/28/2012 16:04:57

 Incmplt recovery scn: 0x0000.00000000

You can inspect the contents of the control file when troubleshooting or when trying to gain a

better understanding of Oracle internals.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

155

�Viewing Control File Names and Locations
If your database is in a nomount state, a mounted state, or an open state, you can view the

names and locations of the control files, as follows:

SQL> show parameter control_files

You can also view control file location and name information by querying the

V$CONTROLFILE view. This query works while your database is mounted or open:

SQL> select name from v$controlfile;

If, for some reason, you cannot start your database at all, and you need to know the

names and locations of the control files, you can inspect the contents of the initialization

(parameter) file to see where they are located. If you are using a spfile, even though it is

a binary file, you can still open it with a text editor. The safest approach is to make a copy

of the spfile and then inspect its contents with an OS editor:

$ cp $ORACLE_HOME/dbs/spfileo18c.ora $ORACLE_HOME/dbs/spfileo18c.copy

$ vi $ORACLE_HOME/dbs/spfileo18c.copy

You can also use the strings command to search for values in a binary file:

$ strings spfileo18c.ora | grep -i control_files

If you are using a text-based initialization file, you can view the file directly, with an

OS editor, or use the g rep command:

$ grep -i control_files $ORACLE_HOME/dbs/inito18c.ora

�Adding a Control File
Adding a control file means copying an existing control file and making your database

aware of the copy by modifying your CONTROL_FILES parameter. This task must be done

while your database is shut down. This procedure only works when you have a good

existing control file that can be copied. Adding a control file isn’t the same thing as

creating or restoring a control file.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

156

Tip S ee Chapter 4 for an example of re-creating a control file for the purpose of
renaming and moving data files. See Chapter 19 for an example of re-creating a
control file for the purpose of renaming a database.

If your database uses only one control file, and that control file becomes damaged,

you need to either restore a control file from a backup (if available) and perform a

recovery or re-create the control file. If you are using two or more control files, and one

becomes damaged, you can use the remaining good control file(s) to quickly get your

database into an operating state.

If a database is using only one control file, the basic procedure for adding a control

file is as follows:

	 1.	 Alter the initialization file CONTROL_FILES parameter to include

the new location and name of the control file.

	 2.	 Shut down your database.

	 3.	 Use an OS command to copy an existing control file to the new

location and name.

	 4.	 Restart your database.

Depending on whether you use a spfile or an init.ora file, the previous steps vary

slightly. The next two sections detail these different scenarios.

�Spfile Scenario

If your database is open, you can quickly determine whether you are using a spfile with

the following SQL statement:

SQL> show parameter spfile

Here is some sample output:

NAME TYPE VALUE

------------------------------- ----------- ------------------------------

spfile string /ora01/app/oracle/product/18.1

 .0.1/db_1/dbs/spfileo18c.ora

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

157

When you have determined that you are using a spfile, use the following steps to

add a control file:

	 1.	 Determine the CONTROL_FILES parameter’s current value:

SQL> show parameter control_files

The output shows that this database is using only one control file:

NAME TYPE VALUE

------------------------------- ----------- ------------------------------

control_files string /u01/dbfile/o18c/control01.ctl

	 2.	 Alter your CONTROL_FILES parameter to include the new control

file that you want to add, but limit the scope of the operation to

the spfile (you cannot modify this parameter in memory). Make

sure you also include any control files listed in step 1:

SQL> alter system set control_files='/u01/dbfile/o18c/control01.ctl',

'/u01/dbfile/o18c/control02.ctl' scope=spfile;

	 3.	 Shut down your database:

SQL> shutdown immediate;

	 4.	 Copy an existing control file to the new location and name. In this

example, a new control file named control02.ctl is created via

the OS cp command:

$ cp /u01/dbfile/o18c/control01.ctl /u01/dbfile/o18c/control02.ctl

	 5.	 Start up your database:

SQL> startup;

You can verify that the new control file is being used by displaying the

CONTROL_FILES parameter:

SQL> show parameter control_files

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

158

Here is the output for this example:

NAME TYPE VALUE

--------------------- ----------- ------------------------------

control_files string /u01/dbfile/o18c/control01.ctl

 ,/u01/dbfile/o18c/control02.ctl

�Init.ora Scenario

Run the following statement to verify that you are using an init.ora file. If you are not

using a spfile, the VALUE column is blank:

SQL> show parameter spfile

NAME TYPE VALUE

------------------------------- ----------- ------------------------------

spfile string

To add a control file when using a text init.ora file, perform the following steps:

	 1.	 Shut down your database:

SQL> shutdown immediate;

	 2.	 Edit your init.ora file with an OS utility (such as vi), and add

the new control file location and name to the CONTROL_FILES

parameter. This example opens the init.ora file, using vi, and

adds control02.ctl to the CONTROL_FILES parameter:

$ vi $ORACLE_HOME/dbs/inito18c.ora

Listed next is the CONTROL_FILES parameter after control02.ctl

is added:

control_files='/u01/dbfile/o18c/control01.ctl',

 '/u01/dbfile/o18c/control02.ctl'

	 3.	 From the OS, copy the existing control file to the location and

name of the control file being added:

$ cp /u01/dbfile/o18c/control01.ctl /u01/dbfile/o18c/control02.ctl

	 4.	 Start up your database:

SQL> startup;

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

159

You can view the control files in use by displaying the CONTROL_FILES parameter:

SQL> show parameter control_files

For this example, here is the output:

NAME TYPE VALUE

-------------------------- ----------- ------------------------------

control_files string /u01/dbfile/o18c/control01.ctl

 ,/u01/dbfile/o18c/control02.ctl

�Moving a Control File
You may occasionally need to move a control file from one location to another. For

example, if new storage is added to the database server, you may want to move an

existing control file to the newly available location.

The procedure for moving a control file is very similar to adding a control file. The

only difference is that you rename the control file instead of copying it. This example

shows how to move a control file when you are using a spfile:

	 1.	 Determine the CONTROL_FILES parameter’s current value:

SQL> show parameter control_files

The output shows that this database is using only one control file:

NAME TYPE VALUE

------------------------------- ----------- ------------------------------

control_files string /u01/dbfile/o18c/control01.ctl

	 2.	 Alter your CONTROL_FILES parameter to reflect that you are moving

a control file. In this example, the control file is currently in this

location:

/u01/dbfile/o18c/control01.ctl

You are moving the control file to this location:

/u02/dbfile/o18c/control01.ctl

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

160

Alter the spfile to reflect the new location for the control file.

You have to specify SCOPE=SPFILE because the CONTROL_FILES

parameter cannot be modified in memory:

SQL> alter system set

 control_files='/u02/dbfile/o18c/control01.ctl' scope=spfile;

	 3.	 Shut down your database:

SQL> shutdown immediate;

	 4.	 At the OS prompt, move the control file to the new location. This

example uses the OS mv command:

$ mv /u01/dbfile/o18c/control01.ctl /u02/dbfile/o18c/control01.ctl

	 5.	 Start up your database:

SQL> startup;

You can verify that the new control file is being used by displaying the CONTROL_

FILES parameter:

SQL> show parameter control_files

Here is the output for this example:

NAME TYPE VALUE

------------------------------- ----------- ------------------------------

control_files string /u02/dbfile/o18c/control01.ctl

�Removing a Control File
You may run into a situation in which you experience a media failure with a storage

device that contains one of your multiplexed control files:

ORA-00205: error in identifying control file, check alert log for more info

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

161

In this scenario, you still have at least one good control file. To remove a control file,

follow these steps:

	 1.	 Identify which control file has experienced media failure by

inspecting the alert.log for information:

ORA-00210: cannot open the specified control file

ORA-00202: control file: '/u01/dbfile/o18c/control02.ctl'

	 2.	 Remove the unavailable control file name from the CONTROL_

FILES parameter. If you are using an init.ora file, modify the file

directly with an OS editor (such as vi). If you are using a spfile,

modify the CONTROL_FILES parameter with the ALTER SYSTEM

statement. In this spfile example the control02.ctl control file is

removed from the CONTROL_FILES parameter:

SQL> alter system set control_files='/u01/dbfile/o18c/control01.ctl'

 scope=spfile;

This database now has only one control file associated with it. You should never run

a production database with just one control file. See the section “Adding a Control File,”

earlier in this chapter, for details on how to add more control files to your database.

	 3.	 Stop and start your database:

SQL> shutdown immediate;

SQL> startup;

Note I f SHUTDOWN IMMEDIATE does not work, use SHUTDOWN ABORT to
shut down your database. There is nothing wrong with using SHUTDOWN ABORT
to quickly close a database when SHUTDOWN IMMEDIATE hangs; however,
remember that the database is rolling back changes and might not be hanging.
Depending on the transactions that are in a rollback state, the startup might take
some time or hinder performance.

Control files can be in an ASM diskgroup. This will allow for you to move the back-

end disk and storage around without having to move datafiles or control files. If the ASM

layer is used, the storage devices and disks become transparent to the database files. This

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

162

does not protect from a possible recovery from corruption of a file or if a file is removed,

but it does prevent having to move files because of location and disk being used. The

files will be of type CONTROLFILE in the ASM views to know the location of the files.

�Online Redo Logs
Online redo logs store a record of transactions that have occurred in your database.

These logs serve the following purposes:

•	 Provide a mechanism for recording changes to the database so that

in the event of a media failure, you have a method of recovering

transactions.

•	 Ensure that in the event of total instance failure, committed

transactions can be recovered (crash recovery) even if committed

data changes have not yet been written to the data files.

•	 Allow administrators to inspect historical database transactions

through the Oracle LogMiner utility.

•	 They are read by Oracle tools such as GoldenGate or Streams to

replicate data.

You are required to have at least two online redo log groups in your database. Each

online redo log group must contain at least one online redo log member. The member is

the physical file that exists on disk. You can create multiple members in each redo log

group, which is known as multiplexing your online redo log group.

Tip I highly recommend that you multiplex your online redo log groups and, if
possible, have each member on a separate physical device governed by a separate
controller.

The log-writer log buffer (in the SGA) to the online redo log files (on disk). The

redo record has a system change number (SCN) assigned to it in order to identify the

transaction redo information. There are committed and uncommitted records written to

the redo logs. The log writer flushes the contents of the redo log buffer when any of the

following are true:

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

163

•	 A COMMIT is issued.

•	 A log switch occurs.

•	 Three seconds go by.

•	 The redo log buffer is one-third full.

Since this is a database process, the container database (CDB) will manage the redo

logs. PDBs do not have their own redo logs, which also means that planning for space

and sizing of the redo logs is at the CDB level and includes all of the PDB transactions.

This architecture will be discussed more in Chapter 22, but the transaction sizing is

based on all of the PDBs for a CDB.

The online redo log group that the log writer is actively writing to is the current

online redo log group. The log writer writes simultaneously to all members of a redo log

group. The log writer needs to successfully write to only one member in order for the

database to continue operating. The database ceases operating if the log writer cannot

write successfully to at least one member of the current group.

When the current online redo log group fills up, a log switch occurs, and the log

writer starts writing to the next online redo log group. A log sequence number is assigned

to each redo log when a switch occurs to be used for archiving. The log writer writes to

the online redo log groups in a round-robin fashion. Because you have a finite number

of online redo log groups, eventually the contents of each online redo log group are

overwritten. If you want to save a history of the transaction information, you must place

your database in archivelog mode (see the section “Implementing Archivelog Mode”

later in this chapter).

When your database is in archivelog mode, after every log switch the archiver

background process copies the contents of the online redo log file to an archived redo

log file. In the event of a failure, the archived redo log files allow you to restore the

complete history of transactions that have occurred since your last database backup.

Figure 5-1 displays a typical setup for the online redo log files. This figure shows

three online redo log groups, each containing two members. The database is in

archivelog mode. In the figure, group 2 has recently been filled with transactions, a log

switch has occurred, and the log writer is now writing to group 3. The archiver process

is copying the contents of group 2 to an archived redo log file. When group 3 fills up,

another log switch will occur, and the log writer will begin writing to group 1. At the same

time, the archiver process will copy the contents of group 3 to archive log sequence 3

(and so forth).

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

164

The online redo log files are not intended to be backed up. These files contain only

the most recent redo transaction information generated by the database. When you

enable archiving, the archived redo log files are the mechanism for protecting your

database transaction history.

The contents of the current online redo log files are not archived until a log switch

occurs. This means that if you lose all members of the current online redo log file, you

lose transactions. Listed next are several mechanisms log files:log files:

Figure 5-1.  Online redo log configuration

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

165

•	 Multiplex the groups.

•	 Consider setting the ARCHIVE_LAG_TARGET initialization parameter to

ensure that the online redo logs are switched at regular intervals.

•	 If possible, never allow two members of the same group to share the

same physical disk.

•	 Ensure that OS file permissions are set appropriately (restrictive,

that only the owner of the Oracle binaries has permissions to write

and read).

•	 Use physical storage devices that are redundant (i.e., RAID

[redundant array of inexpensive disks]).

•	 Appropriately size the log files, so that they switch and are archived at

regular intervals.

Note T he only tool provided by Oracle that can protect you and preserve all
committed transactions in the event that you lose all members of the current online
redo log group is Oracle Data Guard, implemented in maximum protection mode.
See MOS note 239100.1 for more details regarding Oracle Data Guard protection
modes.

Flash is another option for redo logs. Since the logs are written out to archivelogs and

require fast writes, flash drives are a way to improve performance of redo logs. If flash

is not available, the options are to place redo logs on physical disks and based on the

previous list to minimize failures. Solid state disks might not provide faster writes, which

does not make them the ideal choice for redo logs.

The online redo log files are never backed up by an RMAN backup or by a

user-managed hot backup. If you did back up the online redo log files, it would be

meaningless to restore them. The online redo log files contain the latest redo generated

by the database. You would not want to overwrite them from a backup with old redo

information. For a database in archivelog mode, the online redo log files contain the

most recently generated transactions that are required to perform a complete recovery.

The redo log files should also be excluded from other system backup (non-database)

along with other data files.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

166

�Displaying Online Redo Log Information
Use the V$LOG and V$LOGFILE views to display information about online redo log groups

and corresponding members:

COL group# FORM 99999

COL thread# FORM 99999

COL grp_status FORM a10

COL member FORM a30

COL mem_status FORM a10

COL mbytes FORM 999999

--

SELECT

 a.group#

,a.thread#

,a.status grp_status

,b.member member

,b.status mem_status

,a.bytes/1024/1024 mbytes

FROM v$log a,

 v$logfile b

WHERE a.group# = b.group#

ORDER BY a.group#, b.member;

Here is some sample output:

GROUP# THREAD# GRP_STATUS MEMBER MEM_STATUS MBYTES

------ ------- ---------- ------------------------------ ---------- -------

 1 1 INACTIVE /u01/oraredo/o18c/redo01a.rdo 50

 1 1 INACTIVE /u02/oraredo/o18c/redo01b.rdo 50

 2 1 CURRENT /u01/oraredo/o18c/redo02a.rdo 50

 2 1 CURRENT /u02/oraredo/o18c/redo02b.rdo 50

When you are diagnosing online redo log issues, the V$LOG and V$LOGFILE views are

particularly helpful. You can query these views while the database is mounted or open.

Table 5-1 briefly describes each view.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

167

The STATUS column of the V$LOG view is especially useful when you are working with

online redo log groups. Table 5-2 describes each status and its meaning for the V$LOG view.

The STATUS column of the V$LOGFILE view also contains useful information. This

view offers information about each physical online redo log file member of a log group.

Table 5-3 provides descriptions of each status and its meaning for each log file member.

Table 5-2.  Status for Online Redo Log Groups in the V$LOG View

Status Meaning

CURRENT The log group is currently being written to by the log writer.

ACTIVE The log group is required for crash recovery and may or may not have been

archived.

CLEARING The log group is being cleared out by an ALTER DATABASE CLEAR

LOGFILE command.

CLEARING_CURRENT The current log group is being cleared of a closed thread.

INACTIVE The log group is not required for crash recovery and may or may not have

been archived.

UNUSED The log group has never been written to; it was recently created.

Table 5-3.  Status for Online Redo Log File Members in the V$LOGFILE View

Status Meaning

INVALID The log file member is inaccessible or has been recently created.

DELETED The log file member is no longer in use.

STALE The log file member’s contents are not complete.

NULL The log file member is being used by the database.

Table 5-1.  Useful Views Related to Online Redo Logs

View Description

V$LOG Displays the online redo log group information stored in the control file

V$LOGFILE Displays online redo log file member information

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

168

It is important to differentiate between the STATUS column in V$LOG and the STATUS

column in V$LOGFILE. The STATUS column in V$LOG reflects the status of the log group.

The STATUS column in V$LOGFILE reports the status of the physical online redo log file

member. Refer to these tables when diagnosing issues with your online redo logs.

�Determining the Optimal Size of Online Redo Log Groups
Try to size the online redo logs so that they switch anywhere from two to six times per

hour. The V$LOG_HISTORY contains a history of how frequently the online redo logs have

switched. Execute this query to view the number of log switches per hour:

select count(*)

,to_char(first_time,'YYYY:MM:DD:HH24')

from v$log_history

group by to_char(first_time,'YYYY:MM:DD:HH24')

order by 2;

Here is a snippet of the output:

 COUNT(*) TO_CHAR(FIRST

---------- -------------

 1 2012:10:23:23

 3 2012:10:24:03

 28 2012:10:24:04

 23 2012:10:24:05

 68 2012:10:24:06

 84 2012:10:24:07

 15 2012:10:24:08

From the previous output, you can see that a great deal of log switch activity occurred

from approximately 4:00 am to 7:00 am This could be due to a nightly batch job or users

in different time zones updating data. For this database the size of the online redo logs

should be increased. You should try to size the online redo logs to accommodate peak

transaction loads on the database.

The V$LOG_HISTORYsystem change number (SCN). As stated, a general rule of thumb

is that you should size your online redo log files so that they switch approximately two to

six times per hour. You do not want them switching too often because there is overhead

with the log switch; however, leaving transaction information in the redo log without

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

169

archiving will create issues with recovery. If a disaster causes a media failure in your

current online redo log, you can lose those transactions that haven’t been archived.

If a disaster causes a media failure in your current online redo log, you can lose those

transactions that haven’t been archived.

Oracle initiates a checkpoint as part of a log switch. During a checkpoint, the

database-writer background process writes modified (also called dirty) blocks to disk,

which is resource intensive. Checkpoint messages in the alert log will also be a way of

looking at how fast logs are switching or if there are waits associated with archiving.

Tip  Use the ARCHIVE_LAG_TARGET initialization parameter to set a maximum
amount of time (in seconds) between log switches. A typical setting for this
parameter is 1,800 seconds (30 minutes). A value of 0 (default) disables this
feature. This parameter is commonly used in Oracle Data Guard environments to
force log switches after the specified amount of time elapses.

You can also query the OPTIMAL_LOGFILE_SIZE column from the V$INSTANCE_

RECOVERY view to determine if your online redo log files have been sized correctly:

SQL> select optimal_logfile_size from v$instance_recovery;

Here is some sample output:

OPTIMAL_LOGFILE_SIZE

349

This column reports the redo log file size (in megabytes) that is considered optimal,

based on the initialization parameter setting of FAST_START_MTTR_TARGET. Oracle

recommends that you configure all online redo logs to be at least the value of OPTIMAL_

LOGFILE_SIZE. However, when sizing your online redo logs, you must take into consideration

information about your environment (such as the frequency of the switches).

�Determining the Optimal Number of Redo Log Groups
Oracle requires at least two redo log groups in order to function. But, having just two

groups sometimes isn’t enough. To understand why this is so, remember that every time

a log switch occurs, it initiates a checkpoint. As part of a checkpoint the database writer

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

170

writes all modified (dirty) blocks from the SGA to the data files on disk. Also recall that

the online redo logs are written to in a round-robin fashion, and that eventually the

information in a given log is overwritten. Before the log writer can begin to overwrite

information in an online redo log, all modified blocks in the SGA associated with the

redo log must first be written to a data file. If not, all modified blocks have been written

to the data files, you see this message in the alert.log file:

Thread 1 cannot allocate new log, sequence <sequence number>

Checkpoint not complete

Another way to explain this issue is that Oracle needs to store in the online redo

logs any information that would be required to perform a crash recovery. To help you

visualize this, see Figure 5-2.

At time 1, Block A is read from Data File AA into the buffer cache and modified. At

time 2 the redo-change vector information (how the block changed) is written to the

log buffer. At time 3 the log-writer process writes the Block A change-vector information

Figure 5-2.  Redo protected until the modified (dirty) buffer is written to disk

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

171

to online redo log 1. At time 4 a log switch occurs, and online redo log 2 becomes the

current online redo log.

Now, suppose that online redo log 2 fills up quickly and another log switch occurs,

at which point the log-writer attempts to write to online redo log 1. The log writer

isn’t allowed to overwrite information in online redo log 1 until the database writer

writes Block A to Data File AA. Until Block A is written to Data File AA, Oracle needs

information in the online redo logs to recover this block in the event of a power failure or

shutdown abort. Before Oracle overwrites information in the online redo logs, it ensures

that blocks protected by redo have been written to disk. If these modified blocks haven’t

been written to disk, Oracle temporarily suspends processing until this occurs. There are

a few ways to resolve this issue:

•	 Add more redo log groups.

•	 Lower the value of FAST_START_MTTR_TARGET. Doing so causes the

database-writer process to write older modified blocks to disk in a

shorter time frame.

•	 Tune the database-writer process (modify DB_WRITER_PROCESSES).

If you notice that the Checkpoint not complete message is occurring often (say,

several times a day), I recommend that you add one or more log groups to resolve the

issue. Adding an extra redo log gives the database writer more time to write modified

blocks in the database buffer cache to the data files before the associated redo with a

block is overwritten. There is little downside to adding more redo log groups. The main

concern is that you could bump up against the MAXLOGFILES value that was used when

you created the database. If you need to add more groups and have exceeded the value

of MAXLOGFILES, then you must re-create your control file and specify a high value for this

parameter.

If adding more redo log groups doesn’t resolve the issue, you should carefully

consider lowering the value of FAST_START_MTTR_TARGET. When you lower this value,

you can potentially see more I/O because the database-writer process is more actively

writing modified blocks to data files. Ideally, it would be nice to verify the impact of

modifying FAST_START_MTTR_TARGET in a test environment before making the change in

production. You can modify this parameter while your instance is up; this means you can

quickly modify it back to its original setting if there are unforeseen side effects.

Finally, consider increasing the value of the DB_WRITER_PROCESSES parameter.

Carefully analyze the impact of modifying this parameter in a test environment before

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

172

you apply it to production. This value requires that you stop and start your database;

therefore, if there are adverse effects, downtime is required to change this value back to

the original setting.

�Adding Online Redo Log Groups
If you determine that you need to add an online redo log group, use the ADD LOGFILE

GROUP statement. In this example, the database already contains two online redo

log groups that are sized at 50M each. An additional log group is added that has two

members and is sized at 50MB:

alter database add logfile group 3

('/u01/oraredo/o18c/redo03a.rdo',

 '/u02/oraredo/o18c/redo03b.rdo') SIZE 50M;

In this scenario I highly recommend that the log group you add be the same size and

have the same number of members as the existing online redo logs. If the newly added

group doesn’t have the same physical characteristics as the existing groups, it’s harder to

accurately determine performance issues. If a larger size is preferred, the new group can

be added at the larger size, then the other groups can be dropped and re-created with

the larger size value in order to keep the size of the redo logs the same (an example of

this is in the next section).

For example, if you have two log groups sized at 50MB, and you add a new log

group sized at 500MB, this is very likely to produce the Checkpoint not complete issue

described in the previous section. This is because flushing all modified blocks from the

SGA that are protected by the redo in a 500MB log file can potentially take much longer

than flushing modified blocks from the SGA that are protected by a 50MB log file.

�Resizing and Dropping Online Redo Log Groups
You may need to change the size of your online redo logs (see the section “Determining

the Optimal Size of Online Redo Log Groups” earlier in this chapter). You cannot directly

modify the size of an existing online redo log (as you can a data file). To resize an online

redo log, you have to first add online redo log groups that are the size you want, and then

drop the online redo logs that are the old size.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

173

Say you want to resize the online redo logs to be 200MB each. First, you add new

groups that are 200MB, using the A DD LOGFILE GROUP statement. The following

example adds log group 4, with two members sized at 200MB:

alter database add logfile group 4

('/u01/oraredo/o18c/redo04a.rdo',

 '/u02/oraredo/o18c/redo04b.rdo') SIZE 200M;

Note  You can specify the size of the log file in bytes, kilobytes, megabytes, or
gigabytes.

After you’ve added the log files with the new size, you can drop the old online redo

logs. A log group must have an INACTIVE status before you can drop it. You can check the

status of the log group, as shown here:

SQL> select group#, status, archived, thread#, sequence# from v$log;

You can drop an inactive log group with the ALTER DATABASE DROP LOGFILE GROUP

statement:

SQL> alter database drop logfile group <group #>;

If you attempt to drop the current online log group, Oracle returns an ORA-01623

error, stating that you cannot drop the current group. Use the ALTER SYSTEM SWITCH

LOGFILE statement to switch the logs and make the next group the current group:

SQL> alter system switch logfile;

After a log switch the log group that was previously the current group retains an

active status as long as it contains redo that Oracle requires to perform crash recovery.

If you attempt to drop a log group with an active status, Oracle throws an ORA-01624

error, indicating that the log group is required for crash recovery. Issue an ALTER SYSTEM

CHECKPOINT command to make the log group inactive:

SQL> alter system checkpoint;

Additionally, you cannot drop an online redo log group if doing so leaves your

database with only one log group. If you attempt to do this, Oracle throws an ORA-01567

error and informs you that dropping the log group is not permitted because it would

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

174

leave you with fewer than two log groups for your database (as mentioned earlier, Oracle

requires at least two redo log groups in order to function).

Dropping an online redo log group does not remove the log files from the OS. You

have to use an OS command to do this (such as the rm Linux/Unix command). Before

you remove a file from the OS, ensure that it is not in use and that you do not remove a

live online redo log file. For every database on the server, issue this query to view which

online redo log files are in use:

SQL> select member from v$logfile;

Before you physically remove a log file, first switch the online redo logs enough times

that all online redo log groups have recently been switched; doing so causes the OS to

write to the file and thus give it a new timestamp. For example, if you have three groups,

make sure you perform at least three log switches:

SQL> alter system switch logfile;

SQL> /

SQL> /

Tip T hese steps of adding and removing redo logs is another exercise to perform
before turning over a new database or a regularly scheduled testing period for
practice and testing scripts to perform in production databases.

Now, verify at the OS prompt that the log file you intend to remove does not have a

new timestamp. First, go to the directory containing the online redo log files:

$ cd /u01/oraredo/o18c

Then, list the files to view the latest modification date:

$ ls -altr

When you are absolutely sure the file is not in use, you can remove it. The danger in

removing a file is that if it happens to be an in-use online redo log, and the only member

of a group, you can cause serious damage to your database. Ensure that you have a good

backup of your database and that the file you are removing is not used by any databases

on the server.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

175

�Adding Online Redo Log Files to a Group
You may occasionally need to add a log file to an existing group. For example, if you have

an online redo log group that contains only one member, you should consider adding a

log file (to provide a higher level of protection against a single–log file member failure).

Use the ALTER DATABASE ADD LOGFILE MEMBER statement to add a member file to an

existing online redo log group. You need to specify the new member file location, name,

and group to which you want to add the file:

SQL> alter database add logfile member '/u02/oraredo/o18c/redo01b.rdo'

 to group 1;

Make certain you follow standards with regard to the location and names of any

newly added redo log files.

�Removing Online Redo Log Files from a Group
Occasionally, you may need to remove a log file from a group. For example, your

database may have experienced a failure with one member of a multiplexed group, and

you want to remove the apostate member. First, make sure the log file you want to drop is

not in the current group:

SELECT a.group#, a.member, b.status, b.archived, SUM(b.bytes)/1024/1024

mbytes

FROM v$logfile a, v$log b

WHERE a.group# = b.group#

GROUP BY a.group#, a.member, b.status, b.archived

ORDER BY 1, 2;

If you attempt to drop a log file that is in the group with the CURRENT status, you

receive the following error:

ORA-01623: log 2 is current log for instance o18c (thread 1) - cannot drop

If you are attempting to drop a member from the current online redo log group, then

force a switch, as follows:

SQL> alter system switch logfile;

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

176

Use the ALTER DATABASE DROP LOGFILE MEMBER statement log group. You do not

need to specify the group number because you are removing a specific file:

SQL> alter database drop logfile member '/u01/oraredo/o18c/redo04a.rdo';

You also cannot drop the last remaining log file of a group. A group must contain at

least one log file. If you attempt to drop the last remaining log file of a group, you receive

the following error:

ORA-00361: cannot remove last log member ...

�Moving or Renaming Redo Log Files
Sometimes you need to move or rename online redo log files. For example, you may have

added some new mount points to the system, and you want to move the online redo logs

to the new storage. You can use two methods to accomplish this task:

•	 Add the new log files in the new location and drop the old log files.

•	 Physically rename the files from the OS.

If you cannot afford any downtime, consider adding new log files in the new

location and then dropping the old log files. See the section “Adding Online Redo Log

Groups,” earlier in this chapter, for details on how to add a log group. See also the section

“Resizing and Dropping Online Redo Log Groups,” earlier in this chapter, for details on

how to drop a log group.

Alternatively, you can physically move the files from the OS. You can do this with the

database open or closed. If your database is open, ensure that the files you move are not

part of the current online redo log group (because those are actively written to by the

log-writer background process). It is dangerous to try to do this task while your database

is open because on an active system, the online redo logs may be switching at a rapid

rate, which creates the possibility of attempting to move a file while it is being switched

to be the current online redo log. Therefore, I recommend that you only try to do this

while your database is closed.

The next example shows how to move the online redo log files with the database shut

down. Here are the steps:

	 1.	 Shut down your database:

SQL> shutdown immediate;

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

177

	 2.	 From the OS prompt, move the files. This example uses the mv

command to accomplish this task:

$ mv /u02/oraredo/o18c/redo02b.rdo /u01/oraredo/o18c/redo02b.rdo

	 3.	 Start up your database in mount mode:

SQL> startup mount;

	 4.	 Update the control file with the new file locations and names:

SQL> alter database rename file '/u02/oraredo/o18c/redo02b.rdo'

 to '/u01/oraredo/o18c/redo02b.rdo';

	 5.	 Open your database:

SQL> alter database open;

You can verify that your online redo logs are in the new locations by querying the

V$LOGFILE view. I recommend as well that you switch your online redo logs several

times and then verify from the OS that the files have recent timestamps. Also check the

alert.log file for any pertinent errors.

�Controlling the Generation of Redo
For some types of applications, you may know beforehand that you can easily re-create

the data. An example might be a data warehouse environment in which you perform

direct path inserts or use SQL*Loader to load data. In these scenarios you can turn off

the generation of redo for direct path loading. You use the N OLOGGING clause to do this:

create tablespace inv_mgmt_data

 datafile '/u01/dbfile/o12c/inv_mgmt_data01.dbf' size 100m

 extent management local

 uniform size 128k

 segment space management auto

 nologging;

If you have an existing tablespace and want to alter its logging mode, use the ALTER

TABLESPACE statement:

SQL> alter tablespace inv_mgmt_data nologging;

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

178

You can confirm the tablespace logging mode by querying the DBA_TABLESPACES

view:

SQL> select tablespace_name, logging from dba_tablespaces;

The generation of redo logging cannot be suppressed for regular INSERT, UPDATE,

and DELETE statements. For regular data manipulation language (DML) statements, the

NOLOGGING clause is ignored. The NOLOGGING clause does apply, however, to the following

types of DML:

•	 Direct path INSERT statements

•	 Direct path SQL*Loader

The NOLOGGING clause also applies to the following types of DDL statements:

•	 CREATE TABLE ... AS SELECT (NOLOGGING only affects the initial

create, not subsequent regular DML, statements against the table)

•	 ALTER TABLE ... MOVE

•	 ALTER TABLE ... ADD/MERGE/SPLIT/MOVE/MODIFY PARTITION

•	 CREATE INDEX

•	 ALTER INDEX ... REBUILD

•	 CREATE MATERIALIZED VIEW

•	 ALTER MATERIALIZED VIEW ... MOVE

•	 CREATE MATERIALIZED VIEW LOG

•	 ALTER MATERIALIZED VIEW LOG ... MOVE

Be aware that if redo isn’t logged for a table or index, and you have a media failure

before the object is backed up, then you cannot recover the data; you receive an ORA-

01578 error, indicating that there is logical corruption of the data.

Note  You can also override the tablespace level of logging at the object level. For
example, even if a tablespace is specified as NOLOGGING, you can create a table
with the LOGGING clause.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

179

�Implementing Archivelog Mode
Recall from the discussion earlier in this chapter that archive redo logs are created

only if your database is in archivelog mode. If you want to preserve your database

transaction history to facilitate point-in-time and other types of recovery, you need to

enable that mode.

In normal operation, changes to your data generate entries in the database redo log

files. As each online redo log group fills up, a log switch is initiated. When a log switch

occurs, the log-writer process stops writing to the most recently filled online redo log

group and starts writing to a new online redo log group. The online redo log groups are

written to in a round-robin fashion—meaning the contents of any given online redo

log group will eventually be overwritten. Archivelog mode preserves redo data for the

long term by employing an archiver background process to copy the contents of a filled

online redo log to what is termed an archive redo log file. The trail of archive redo log files

is crucial to your ability to recover the database with all changes intact, right up to the

precise point of failure.

�Making Architectural Decisions
When you implement archivelog mode, you also need a strategy for managing the

archived log files. The archive redo logs consume disk space. If left unattended, these

files will eventually use up all the space allocated for them. If this happens, the archiver

cannot write a new archive redo log file to disk, and your database will stop processing

transactions. At that point, you have a hung database. You then need to intervene

manually by creating space for the archiver to resume work. For these reasons, there are

several architectural decisions you must carefully consider before you enable archiving:

•	 Where to place the archive redo logs and whether to use the fast

recovery area to store them

•	 How to name the archive redo logs

•	 How much space to allocate to the archive redo log location

•	 How often to back up the archive redo logs

•	 When it’s okay to permanently remove archive redo logs from disk

•	 How to remove archive redo logs (e.g., have RMAN remove the logs,

based on a retention policy)

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

180

•	 Whether multiple archive redo log locations should be enabled

•	 When to schedule the small amount of downtime that is required (if a

production database)

As a general rule of thumb, you should have enough space in your primary archive

redo location to hold at least a day’s worth of archive redo logs. This lets you back them

up on a daily basis and then remove them from disk after they have been backed up.

If you decide to use a fast recovery area (FRA) for your archive redo log location, you

must ensure that it contains sufficient space to hold the number of archive redo logs

generated between backups. Keep in mind that the FRA typically contains other types of

files, such as RMAN backup files, flashback logs, and so on. If you use an FRA, be aware

that the generation of other types of files can potentially impact the space required by

the archive redo log files. There are parameters that can be set to manage the FRA and

provide a way to resize the space for recovery in order for the database to continue

instead of having to increase space on the file system.

The parameters DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE

set the file location for the FRA and the size of the space to be used by the database.

These can also prevent one database filling up the space for other databases that

might be on the same server. The ASM diskgroup FRA can be created to manage the

space using ASM. DB_RECOVERY_FILE_DEST = +FRA, will allow the area to use the FRA

diskgroup. Again, there are advantages of managing space behind the scene in a scenario

that fills up space. Using these parameters along with ASM removes specific file systems

and allows for more options to quickly address issues with archive logs and using the

recovery areas. FRA is recommended for this since the parameters are dynamic and can

will allow for changes to occur to prevent the database hanging. This should be included

in the planning and architecting of the archive mode of the database.

You need a strategy for automating the backup and removal of archive redo log files.

For user-managed backups, this can be implemented with a shell script that periodically

copies the archive redo logs to a backup location and then removes them from the

primary location. As you will see in later chapters, RMAN automates the backup and

removal of archive redo log files.

If your business requirements are such that you must have a certain degree of

high availability and redundancy, then you should consider writing your archive redo

logs to more than one location. Some shops set up jobs to copy the archive redo logs

periodically to a different location on disk or even to a different server.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

181

�Setting the Archive Redo File Location
Before you set your database mode to archiving, you should specifically instruct Oracle

where you want the archive redo logs to be placed. You can set the archive redo log file

destination with the following techniques:

•	 Set the LOG_ARCHIVE_DEST_N database initialization parameter.

•	 Implement FRA.

These two approaches are discussed in detail in the following sections.

Tip I f you do not specifically set the archive redo log location via an initialization
parameter or by enabling the FRA, then the archive redo logs are written to a
default location. For Linux/Unix, the default location is ORACLE_HOME/dbs. For
Windows, the default location is ORACLE_HOME\database. For active production
database systems, the default archive redo log location is rarely appropriate.

�Setting the Archive Location to a User-Defined Disk Location
(non-FRA)

If you are using an i nit<SID>.ora file, modify the file with an OS utility (such as vi). In

this example the archive redo log location is set to / u01/oraarch/o18c:

log_archive_dest_1='location=/u01/oraarch/o18c'

log_archive_format='o12c_%t_%s_%r.arc'

In the prior line of code, my standard for naming archive redo log files includes the

ORACLE_SID (in this example, o18c to start the string); the mandatory parameters %t, %s,

and %r; and the string .arc, to end. I like to embed the name of the ORACLE_SID in the

string to avoid confusion when multiple databases are housed on one server. I like to use

the extension .arc to differentiate the files from other types of database files.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

182

Tip I f you do not specify a value for LOG_ARCHIVE_FORMAT, Oracle uses a
default, such as %t_%s_%r.dbf. One aspect of the default format that I do not like
is that it ends with the extension .dbf, which is widely used for data files. This can
cause confusion about whether a particular file can be safely removed because
it is an old archive redo log file or should not be touched because it is a live data
file. Most DBAs are reluctant to issue commands such as rm *.dbf for fear of
accidentally removing live data files.

If you are using a spfile, use ALTER SYSTEM to modify the appropriate initialization

variables:

SQL> alter system set log_archive_dest_1='location=/u01/oraarch/o18c'

scope=both;

SQL> alter system set log_archive_format='o12c_%t_%s_%r.arc' scope=spfile;

You can dynamically change the LOG_ARCHIVE_DEST_n parameters while your

database is open. However, you have to stop and start your database for the LOG_

ARCHIVE_FORMAT parameter to take effect.

RECOVERING FROM SETTING A BAD SPFILE PARAMETER

Take care not to set the LOG_ARCHIVE_FORMAT to an invalid value; for example,

SQL> alter system set log_archive_format='%r_%y_%dk.arc' scope=spfile;

If you do so, when you attempt to stop and start your database, you won’t even get to the

nomount phase (because the spfile contains an invalid parameter):

SQL> startup nomount;

ORA-19905: log_archive_format must contain %s, %t and %r

In this situation, if you are using a spfile, you cannot start your instance. You have a couple

of options here. If you are using RMAN and are backing up the spfile, then restore the

spfile from a backup.

If you are not using RMAN, you can also try to edit the spfile directly with an OS editor (such

as vi), but Oracle doesn’t recommend or support this.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

183

The alternative is to create an init.ora file manually from the contents of the spfile. First,

rename the spfile that contains a bad value:

$ cd $ORACLE_HOME/dbs

$ mv spfile<SID>.ora spfile<SID>.old

In SQLPlus create the init.ora file from the spfile.

SQL> create pfile=inito18c.ora from spfile;

Then, open the pfile with a text editor, such as vi:

$ vi inito18c.ora

Modify the bad parameter to contain a valid value. Exit out of the pfile. You should now be able

to start up your database using the pfile. Then you can copy the pfile into a new spf

SQL> create spfile from pfile;

Then you can start up the database using the fixed spfile.

When you specify LOG_ARCHIVE_FORMAT, you must include %t (or %T), %s (or %S),

and d% in the format string. Table 5-4 lists the valid variables you can use with the

LOG_ARCHIVE_FORMAT initialization parameter.

Table 5-4.  Valid Variables for the Log Archive Format String

Format String Meaning

%s Log sequence number

%S Log sequence number padded to the left with zeros

%t Thread number

%T Thread number padded to the left with zeros

%a Activation ID

%d Database ID

%r Resetlogs ID required to ensure uniqueness across multiple incarnations of

the database

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

184

You can view the value of the LOG_ARCHIVE_DEST_N parameter by running the

following:

SQL> show parameter log_archive_dest

Here is a partial listing of the output:

NAME TYPE VALUE

-------------------------------- ----------- --------------------------

log_archive_dest string

log_archive_dest_1 string location=/u01/oraarch/o18c

log_archive_dest_10 string

You can enable up to 31 different locations for the archive redo log file destination.

For most production systems, one archive redo log destination location is usually

sufficient. If you need a higher degree of protection, you can enable multiple

destinations. Keep in mind that when you use multiple destinations, the archiver must

be able to write to at least one location successfully. If you enable multiple mandatory

locations and set LOG_ARCHIVE_MIN_SUCCEED_DEST to be higher than 1, then your

database may hang if the archiver cannot write to all mandatory locations.

You can check the details regarding the status of archive redo log locations via this

query:

select

 dest_name

,destination

,status

,binding

from v$archive_dest;

Here is a small sample of the output:

DEST_NAME DESTINATION STATUS BINDING

-------------------- ------------------------------ --------- ---------

LOG_ARCHIVE_DEST_1 /u01/oraarch/o18c VALID OPTIONAL

LOG_ARCHIVE_DEST_2 INACTIVE OPTIONAL

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

185

�Using the FRA for Archive Log Files

The FRA is an area on disk—specified via database initialization parameters—that can

be used to store files, such as archive redo logs, RMAN backup files, flashback logs, and

multiplexed control files and online redo logs. To enable the use of FRA, you must set

two initialization parameters (in this order):

•	 DB_RECOVERY_FILE_DEST_SIZE specifies the maximum space to be

used for all files that are stored in the FRA for a database.

•	 DB_RECOVERY_FILE_DEST specifies the base directory for the FRA.

When you create an FRA, you are not really creating anything—you are telling Oracle

which directory to use when storing files that go in the FRA. For example, say 200GB of

space are reserved on a mount point, and you want the base directory for the FRA to be

/u01/fra. To enable the FRA, first set DB_RECOVERY_FILE_DEST_SIZE:

SQL> alter system set db_recovery_file_dest_size=200g scope=both;

Next, set the DB_RECOVERY_FILE_DEST parameter:

SQL> alter system set db_recovery_file_dest='/u01/fra' scope=both;

If you are using an init.ora file, modify it with an OS utility (such as vi) with the

appropriate entries.

After you enable FRA, by default, Oracle writes archive redo logs to subdirectories in

the FRA.

Note I f you’ve set the LOG_ARCHIVE_DEST_N parameter to be a location on
disk, archive redo logs are not written to the FRA.

You can verify that the archive location is using FRA:

SQL> archive log list;

If archive files are being written to the FRA, you should see output like this:

Database log mode Archive Mode

Automatic archival Enabled

Archive destination USE_DB_RECOVERY_FILE_DEST

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

186

You can display the directory associated with the FRA like this:

SQL> show parameter db_recovery_file_dest

When you first implement FRA, there are no subdirectories beneath the base FRA

directory (specified with DB_RECOVERY_FILE_DEST). The first time Oracle needs to write

a file to the FRA, it creates any required directories beneath the base directory. For

example, after you implement FRA, if archiving for your database is enabled, then the

first time a log switch occurs, Oracle creates the following directories beneath the base

FRA directory:

<SID>/archivelog/<YYYY_MM_DD>

Each day that archive redo logs are generated results in a new directory’s being

created in the FRA, using the directory name format YYYY_MM_DD. Archive redo logs

written to the FRA use the OMF format naming convention (regardless of whether you’ve

set the LOG_ARCHIVE_FORMAT parameter).

If you want archive redo logs written to both FRA and a non-FRA location, you can

enable that, as follows:

SQL> alter system set log_archive_dest_1='location=/u01/oraarch/o18c';

SQL> alter system set log_archive_dest_2='location=USE_DB_RECOVERY_FILE_DEST';

�Enabling Archivelog Mode
After you have set the location for your archive redo log files, you can enableSYS (or a

user with the SYSDBA privilege) and do the following:

$ sqlplus / as sysdba

SQL> shutdown immediate;

SQL> startup mount;

SQL> alter database archivelog;

SQL> alter database open;

You can confirm archivelog mode with this query:

SQL> archive log list;

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

187

You can also confirm it as follows:

SQL> select log_mode from v$database;

LOG_MODE

ARCHIVELOG

�Disabling Archivelog Mode
Usually, you don’t disable archivelog mode for a production database. However, you may

be doing a big data load and want to reduce any overhead associated with the archiving

process, and so you want to turn off archivelog mode before the load begins and then

re-enable it after the load. If you do this, be sure you make a backup as soon as possible

after re-enabling archiving.

To disable archiving, do the following as SYS (or a user with the SYSDBA privilege):

$ sqlplus / as sysdba

SQL> shutdown immediate;

SQL> startup mount;

SQL> alter database noarchivelog;

SQL> alter database open;

You can confirm archivelog mode with this query:

SQL> archive log list;

You can also confirm the log mode, as follows:

SQL> select log_mode from v$database;

LOG_MODE

NOARCHIVELOG

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

188

�Reacting to a Lack of Disk Space in Your Archive Log
Destination
The archiver background process writes archive redo logs to a location that you specify.

If, for any reason, the archiver process cannot write to the archive location, your

database hangs. Any users attempting to connect receive this error:

ORA-00257: archiver error. Connect internal only, until freed.

As a production-support DBA, you never want to let your database get into that state.

Sometimes, unpredictable events happen, and you have to deal with unforeseen issues.

Note D BAs who support production databases have a mindset completely
different from that of architect DBAs. Getting new ideas or learning about new
technologies is a perfect time to work together and communicate what might
work or not work in your environment. Set up time outside of troubleshooting with
production DBAs and architects to plan and set strategies for the environment.

In this situation your database is as good as down and completely unavailable. To fix

the issue, you have to act quickly:

•	 Move files to a different location.

•	 Compress old files in the archive redo log location.

•	 Permanently remove old files.

•	 Switch the archive redo log destination to a different location (this

can be changed dynamically, while the database is up and running).

•	 If using FRA, increase the space allocation for DB_RECOVERY_FILE_

DEST_SIZE.

•	 If using FRA, change the destination to different location in the

parameter DB_RECOVERY_FILE_DEST.

•	 RMAN backup and delete the archive log files.

•	 Remove expired files from the directory using RMAN.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

189

Moving files is usually the quickest and safest way to resolve the archiver error

along with increasing the allocation or directory with the DB_RECOVERY_FILE_DEST

parameters. You can use an OS utility such as mv to move old archive redo logs to

a different location. If they are needed for a subsequent restore and recovery, you

can let the recovery process know about the new location. Be careful not to move an

archive redo log that is currently being written to. If an archived redo log file appears in

V$ARCHIVED_LOG, that means it has been completely archived.

You can use an OS utility such as gzip to compress archive redo log files in the

current archive destination. If you do this, you have to remember to uncompress any

files that may be later needed for a restore and recovery. Be careful not to compress an

archive redo log that is currently being written to.

Another option is to use an OS utility such as rm to remove archive redo logs from

the disk permanently. This approach is dangerous because you may need those archive

redo logs for a subsequent recovery. If you do remove archive redo log files, and you

don’t have a backup of them, you should make a full backup of your database as soon

as possible. Using RMAN to back up and delete the files is a much safer approach and

assures that recovery is possible until another backup is performed. Again, this approach

is risky and should only be done as a last resort; if you delete archive redo logs that

haven’t been backed up, then you chance not being able to perform a complete recovery.

If another location on your server has plenty of space, you can consider changing the

location to which the archive redo logs are being written. You can perform this operation

while the database is up and running; for example,

SQL> alter system set log_archive_dest_1='location=/u02/oraarch/o18c';

After you’ve resolved the issue with the primary location, you can switch back the

original location.

Note  When a log switch occurs, the archiver determines where to write the
archive redo logs, based on the current FRA setting or a LOG_ARCHIVE_DEST_N
parameter. It doesn’t matter to the archiver if the destination has recently changed.

When the archive redo log file destination is full, you have to scramble to resolve

it. This is why a good deal of thought should precede enabling archiving for 24-7

production databases.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

190

For most databases, writing the archive redo logs to one location is sufficient.

However, if you have any type of disaster recovery or high-availability requirement,

then you should write to multiple locations. Sometimes, DBAs set up a job to back up

the archive redo logs every hour and copy them to an alternate location or even to an

alternate server.

�Backing Up Archive Redo Log Files
Depending on your business requirements, you may need a strategy for backing up

archive redo log files. Minimally, you should back up any archive redo logs generated

during a backup of a database in archivelog mode. Additional strategies may include the

following:

•	 Periodically copying archive redo logs to an alternate location and

then removing them from the primary destination

•	 Copying the archive redo logs to tape and then deleting them

from disk

•	 Using two archive redo log locations

•	 Using Data Guard for a robust disaster recovery solution

Keep in mind that you need all archive redo logs generated since the begin time of

the last good backup to ensure that you can completely recover your database. Only after

you are sure you have a good backup of your database should you consider removing

archive redo logs that were generated prior to the backup.

If you are using RMAN as a backup and recovery strategy, then you should use

RMAN to back up the archive redo logs. Additionally, you should specify an RMAN

retention policy for these files and have RMAN remove the archive redo logs only

after the retention policy requirements are met (e.g., back up files at least once before

removing from disk) (see Chapter 18 for details on using RMAN) .

�Summary
This chapter described how to configure and manage control files and online redo log

files and enable archiving. Control files and online redo logs are critical database files; a

normally operating database cannot function without them.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

191

Control files are small binary files that contain information about the structure of

the database. Any control files specified in the parameter file must be available in order

for you to mount the database. If a control file becomes unavailable, then your database

will cease operating with the next log switch or needed write to the control file until you

resolve the issue. I highly recommend that you configure your database with at least

three control files. If one control file becomes unavailable, you can replace it with a copy

of a good existing control file. It is critical that you know how to configure, add, and

remove these files.

Online redo logs are crucial files that record the database’s transaction history. If

you have multiple instances connected to one database, then each instance generates

its own redo thread. Each database must be created with two or more online redo log

groups. You can operate a database with each group’s having just one online redo log

member. However, I highly recommend that you create your online redo log groups with

two members in each group. If an online redo log has at least one member that can be

written to, your database will continue to function. If all members of an online redo log

group are unavailable, then your database will cease to operate. As a DBA you must be

extremely proficient in creating, adding, moving, and dropping these critical database

files. Using storage options such as flash will allow for faster writes to the redo logs. Solid

state disks might not provide faster writes, which does not make them the ideal choice

for redo logs.

Archiving is the mechanism for ensuring you have all the transactions required to

recover the database. Once enabled, the archiver needs to successfully copy the online

redo log after a log switch occurs. If the archiver cannot write to the primary archive

destination, then your database will hang. Therefore, you need to map out carefully the

amount of disk space required and how often to back up and subsequently remove

these files.

Using Fast Recovery Area (FRA) provides additional ways to manage the archive logs

and allows for some flexibility in planning for growth and sizing of the disk needed for

the archive logs.

The chapters up to this point in the book have covered tasks such as installing the

Oracle software; creating databases; and managing tablespaces, data files, control files,

online redo log files, and archiving. The next several chapters concentrate on how to

configure a database for application use and include topics such as creating users and

database objects.

Chapter 5 Managing Control Files, Online Redo Logs, and Archivelogs

193
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_6

CHAPTER 6

Users and Basic Security
After you have installed the binaries, implemented a database, and created tablespaces,

the next logical task is to secure your database and begin creating new users. When you

create a database, several default user accounts are created by default. As a DBA, you

must be aware of these accounts and how to manage them. The default accounts are

frequently the first place a hacker will look to gain access to a database; therefore, you

must take precautions to secure these users. Depending on what options you install

and which version of the database you implement, there could be 20 or more default

accounts.

As applications and users need access to the database, you’ll need to create and

manage new accounts. This includes choosing an appropriate authentication method,

implementing password security, and allocating privileges to users. These topics are

discussed in detail in this chapter.

�Managing Default Users
As stated, when you create a database, Oracle creates several default database users.

In earlier releases, these default users would either set a default password or take

input from database creation. With Oracle 18c, all of the default accounts are locked

on installation except for SYS and SYSTEM. Passwords can be set for each one or

unlocked on a custom basis; however, it would be recommended only to unlock the

accounts that are absolutely needed. As one of the steps of the dbca, all of the accounts

are listed and available to be changed instead of just the SYS and SYSTEM accounts,

seen in Figure 6-1.

194

The specific users that are created vary by database version. If you have just created

your database, you can view the default user accounts, as follows:

SQL> select username from dba_users order by 1;

Figure 6-1.  Default accounts and password management

Chapter 6 Users and Basic Security

195

Here is a partial listing of some default database user accounts:

USERNAME

ANONYMOUS

APPQOSSYS

AUDSYS

DBSNMP

DIP

GSMADMIN_INTERNAL

GSMCATUSER

GSMUSER

ORACLE_OCM

OUTLN

SYS

SYSTEM

...

What DBAs find frustrating about the prior list is that it is hard to keep track of what

the default accounts are and if they’re really required. Some DBAs may be tempted to

drop default accounts so as not to clutter up the database. I would not advise that. It is

safer to change passwords and lock these accounts (as shown in the next section). If you

drop an account, it can be difficult to figure out exactly how it was originally created,

whereas if you lock an account, you can simply unlock it to reactivate it.

Note I f you are working in a pluggable database environment, you can view all
users while connected as a privileged account to the root container by querying
CDB_USERS. Unless otherwise noted in this chapter, the queries assume that you
are not working in a pluggable environment (and that you are therefore using the
DBA-level views). If you are in a pluggable environment, to view information across
all pluggable databases, you’ll need to use the CDB level views while connected to
the root container.

Chapter 6 Users and Basic Security

196

SYS VS. SYSTEM

Oracle novices sometimes ask, “What’s the difference between the SYS and SYSTEM schemas?”

The SYS schema is the superuser of the database; owns all internal data dictionary objects; and

is used for tasks such as creating a database, starting or stopping the instance, backup and

recovery, and adding or moving data files. These types of tasks typically require the SYSDBA or

SYSOPER role. Security for these roles is often controlled through access to the OS account

owner of the Oracle software. Additionally, security for these roles can be administered via a

password file, which allows remote client/server access. Starting with 12c the SYS account could

also be locked in some databases. Locking the account prevented unauthorized access from the

server and another OS account but SYSDBA will need to be granted to an authorized user first.

Even though locking the SYS account will prevent a shared default account from being used,

there are some options or systems that might require SYS to remained unlocked. The password

should be managed appropriately and locked down, as with other highly privileged accounts.

In contrast, the SYSTEMaccount is not very special. It is just an account that has been granted

the DBA role. Many shops lock the SYSTEM schema after database creation and never use it

because it is often the first schema a hacker will try to access when attempting to break

into a database.

Rather than risking an easily guessable entry point to the database, privileged users should

be granted the role directly or as part of their security group. Another account might be used

for automated jobs and granted the DBA role for administrative tasks. Tasks such as creating

users, changing passwords, and granting database privileges are available through other APIs

to manage privileges instead of having these highly privileged accounts in the database. It

is normally a requirement that auditing shows which DBA logged on and when, then create

a separate privileged account for each DBA on the team (and, in turn, on database auditing).

I have normally had one account for regular use and a separate privileged account that was

granted the privileges needed to perform tasks as the DBA.

�Locking Accounts and Expiring Passwords
To begin securing your database, you should minimally change the password for every

default account and then lock any accounts that you are not using. As already discussed,

this happens now by default in the database, but when performing upgrades there

might be other default accounts that come with older versions and should be locked

after changing passwords. Locking an account means that a user won’t be able to access

Chapter 6 Users and Basic Security

197

it unless a DBA explicitly unlocks it. Also consider having policies that change the

password for each account. Expiring the password means that when a user first attempts

to access an account, that user will be forced to change the password, but it does not

require the current password, so it is better to change passwords and lock the accounts.

After creating a database, I usually lock every default account and change their

passwords; I unlock default users only as they are needed. The following script generates

the SQL statements:

SQL> alter user <username> identified by <new password>;

SQL> select

 'alter user ' || username || ' account lock;'

from dba_users;

A locked user can only be accessed by altering the user to an unlocked state; for

example,

SQL> alter user outln account unlock;

A user with an expired password is prompted for a new password when first

connecting to the database as that user. When connecting to a user, Oracle checks to see

if the current password is expired and, if so, prompts the user, as follows:

ORA-28001: the password has expired

Changing password for ...

New password:

After entering the new password, the user is prompted to enter it again:

Retype new password:

Password changed

Connected.

Using a password vault would allow you to change the passwords first and then

lock the accounts. If you need to use one of the default accounts, the account can be

unlocked and the password pulled from the password vault or changed again by the

security administrator.

Note Y ou can lock the SYS account, but this has no influence on your ability to
connect as the SYS user through OS authentication or when using a password file.

Chapter 6 Users and Basic Security

198

There is no alter user <user_name> password unexpire command. To unexpire

a password, you simply need to change it. The user can change the password (as

demonstrated in the prior bits of code), or, as a DBA, you can change the password for

a user:

SQL> alter user <username> identified by <new password>;

�Identifying DBA-Created Accounts
If you have inherited a database from another DBA, then sometimes it is useful to

determine whether the DBA created a user or if a user is a default account created by

Oracle. As mentioned earlier, usually several user accounts are created for you when you

create a database. The number of accounts varies somewhat by database version and

options installed. Run this query to display users that have been created by another DBA

versus those created by Oracle (such as those created by default when the database is

created):

select distinct u.username

,case when d.user_name is null then 'DBA created account'

 else 'Oracle created account'

 end

from dba_users u

 ,default_pwd$ d

where u.username=d.user_name(+);

For default users, there should be a record in the DEFAULT_PWD$ view. So, if a user

doesn’t exist in DEFAULT_PWD$, then you can assume it is not a default account. Given

that logic, another way to identify just the default users would be this:

select distinct(user_name)

from default_pwd$

where user_name in (select username from dba_users);

The prior queries are not 100 percent accurate, as there are users that exist in

DEFAULT_PWD$ that can be created manually by a DBA (e.g., FOO). For example, in Oracle

18c, AUDSYS is a default account and does not have a row in DEFAULT_PWD$. Having

said that, the prior queries do provide a starting point for separating the default accounts

from ones created by you (or another DBA).

Chapter 6 Users and Basic Security

199

Note T he DEFAULT_PWD$ view is available starting with Oracle Database 11g.
See MOS note 227010.1 for more details about guidelines on checking for default
passwords. The current versions of Oracle require a different password to be used
and no longer uses the default ones. New installations are not a problem, but
upgrades might still have users with default passwords, and the upgrade is an
optimal time to change the passwords and lock the accounts.

�Checking Default Passwords
You should also check your database to determine whether any accounts are using

default passwords. If you are using an Oracle Database 11g or higher, you can check the

DBA_USERS_WITH_DEFPWD view whether any Oracle-created user accounts are still set to

the default password:

SQL> select * from dba_users_with_defpwd;

If you are not using Oracle Database 11g or higher, then you have to check the

passwords manually or use a script. Listed next is a simple shell script that attempts to

connect to the database, using default passwords:

#!/bin/bash

if [$# -ne 1]; then

 echo "Usage: $0 SID"

 exit 1

fi

Source oracle OS variables via oraset script.

See chapter 2 for more details on setting OS variables.

. /etc/oraset $1

#

userlist="system sys dbsnmp dip oracle_ocm outln"

for u1 in $userlist

do

#

case $u1 in

system)

pwd=manager

Chapter 6 Users and Basic Security

200

cdb=$1

;;

sys)

pwd="change_on_install"

cdb="$1 as sysdba"

;;

*)

pwd=$u1

cdb=$1

esac

#

echo "select 'default' from dual;" | \

 sqlplus -s $u1/$pwd@$cdb | grep default >/dev/null

if [[$? -eq 0]]; then

 echo "ALERT: $u1/$pwd@$cdb default password"

 echo "def pwd $u1 on $cdb" | mailx -s "$u1 pwd default" dkuhn@gmail.com

else

 echo "cannot connect to $u1 with default password."

fi

done

exit 0

If the script detects a default password, an e-mail is sent to the appropriate

DBA. This script is just a simple example, the point being that you need some sort of

mechanism for detecting default passwords. You can create your own script or modify

the previous script to suit your requirements.

�Creating Users
When you are creating a user, you need to consider the following factors:

•	 Username and authentication method

•	 Basic privileges

•	 Default permanent tablespace and space quotas

•	 Default temporary tablespace

Chapter 6 Users and Basic Security

201

These aspects of creating a user are discussed in the following sections.

Note N ew in Oracle Database 12c, pluggable database environments have
common users and local users. Common users span all pluggable databases
within a container database. Local users exist within one pluggable database. See
Chapter 22 for details on managing common users and local users.

�Choosing a Username and Authentication Method
Pick a username that gives you an idea as to what application the user will be using.

For example, if you have an inventory management application, a good choice for a

username is INV_MGMT. Choosing a meaningful username helps identify the purpose of a

user. This can be especially useful if a system is not documented properly.

Authentication is the method used to confirm that the user is authorized to use the

account. Oracle supports a robust set of authentication methods:

•	 Database authentication (username and password stored in database)

•	 OS authentication

•	 Network authentication

•	 Global user authentication and authorization

•	 External service authentication

A simple, easy, and reliable form of authentication is through the database. In this

form of authentication, the username and password are stored within the database.

The password is not stored in plain text; it is stored in a secure, encrypted format. When

connecting to the database, the user provides a username and password. The database

checks the entered username and password against information stored in the database,

and if there’s a match, the user is allowed to connect to the database with the privileges

associated with the account.

Another commonly implemented authentication method is through the OS. OS

authentication means that if you can successfully log in to a server, then it is possible to

establish a connection to a local database without providing username and password

details. In other words, you can associate database privileges with an OS account or and

associated OS group, or both. With 18c you can centrally manage your users in the Active

Directory and integrate as user or global users in the database.

Chapter 6 Users and Basic Security

202

Examples of database and OS authentication and global users are discussed in the

next two sections. If you have more sophisticated authentication requirements, then you

should investigate network, global, or external service authentication. See the Oracle

Database Security Guide and the Oracle Database Advanced Security Administrator’s

Guide, which can be freely downloaded from the Technology Network area of the Oracle

web site (http://otn.oracle.com), for more details regarding these methods.

�Creating a User with Database Authentication

Database authentication is established with the CREATE USER SQL statement. Creating

users as a DBA, your account must have the CREATE USER system privilege. This example

creates a user named HEERA with the password CHAYA and assigns the default permanent

tablespace USERS, default temporary tablespace TEMP, and unlimited space quota on the

USERS tablespace: USERS tablespace:

create user heera identified by chaya

default tablespace users

temporary tablespace temp

quota unlimited on users;

This creates a bare-bones schema that has no privileges to do anything in the

database. To make the user useful, you must minimally grant it the CREATE SESSION

system privilege:

SQL> grant create session to heera;

If the new schema needs to be able to create tables, you need to grant it additional

privileges, such as CREATE TABLE:

SQL> grant create table to heera;

You can also use the GRANT...IDENTIFIED BY statement to create a user; for

example,

grant create table, create session

to heera identified by chaya;

If the user doesn’t exist, the account is created by the prior statement. If the user

does exist, the password is changed to the one specified by the IDENTIFIED BY clause

(and any specified grants are also applied).

Chapter 6 Users and Basic Security

http://otn.oracle.com

203

Note S ometimes, when DBAs create a user, they’ll assign default roles to a
schema, such as CONNECT and RESOURCE. These roles contain system privileges,
such as CREATE SESSION and CREATE TABLE (and several other privileges,
which vary by database release). I recommend against doing this, because Oracle
has stated that those roles may not be available in future releases. There are
security and audit reasons to create specific roles that are needed and only grant
those roles to users in the database.

�Creating a User with OS Authentication

OS authentication assumes that if the user can log in to the database server, then

database privileges can be associated with and derived from the OS user account. There

are two types of OS authentication:

•	 Authentication through assigning specific OS roles to users (allows

database privileges to be mapped to users)

•	 Authentication for regular database users via the IDENTIFIED

EXTERNALLY clause

Authentication through OS roles is detailed in Chapter 2. This type of authentication

is used by DBAs and allows them to connect to an OS account, such as oracle, and then

connect to the database with SYSDBA privileges without having to specify a username and

password.

After logging in to the database server, users created with the IDENTIFIED

EXTERNALLY clause can connect to the database without having to specify a username or

password. This type of authentication has some interesting advantages:

•	 Users with access to the server don’t have to maintain a database

username and password.

•	 Scripts that log in to the database don’t have to use hard-coded

passwords if executed by OS-authenticated users.

•	 Another database user can’t hack into a user by trying to guess the

username and password connection string. The only way to log in to

an OS-authenticated user is from the OS.

Chapter 6 Users and Basic Security

204

When using OS authentication, Oracle prefixes the value contained in OS_AUTHENT_

PREFIX database initialization parameter to the OS user connecting to the database. The

default value for this parameter is OPS$. Oracle strongly recommends that you set the

OS_AUTHENT_PREFIX parameter to a null string; for example,

SQL> alter system set os_authent_prefix=" scope=spfile;

You have to stop and start your database for this modification to take effect. After you

have set the OS_AUTHENT_PREFIX parameter, you can create an externally authenticated

user. For instance, say you have an OS user named jsmith, and you want anybody with

access to this OS user to be able to log in to the database without supplying a password.

Use the CREATE EXTERNALLY statement to do this:

SQL> create user jsmith identified externally;

SQL> grant create session to jsmith;

Now, when jsmith logs in to the database server, this user can connect to SQL*Plus,

as follows:

$ sqlplus /

No username or password is required, because the user has already been

authenticated by the OS.

�Configuring a Centrally Managed User

A centrally managed user is considered to be a user in one place, such as Active

Directory or another LDAP service. The user can be managed for authentication and

authorizations centrally, such that a user in Active Directory will have authentication

managed via password or another type of key, and with the use of security groups, has

the authorizations managed. If a user changes security groups, the authorization will

change, and if the user is inactive in Active Directory, the user cannot authenticate to

other applications or databases.

A user can be created in the database as a global user, which means that the database

will reach out to Active Directory to get details about the user, first just to authenticate

the password and then to verify the groups for authorization. The database is configured

with a user to Active Directory and the ldap.ora file is updated with the information to

use to authenticate against the Active Directory. Once this is configured, a user can be

created with the following syntax:

Chapter 6 Users and Basic Security

205

SQL> create user jsmithdba identified globally as

'cn=jsmithdba group,ou=dbateam,dc=example,dc=com';

This allows Oracle database to recognize the user jsmithdba, which is in Active

Directory, as a user that is allowed to access this database. The password is the same

as the one in Active Directory, and the group can be used to map to a database role for

permissions.

Identity management is important for an enterprise, and this allows a person to have

roles and tasks based on their functions in the enterprise, and as those functions may

change or no longer with the company, the account is then centrally managed instead

of in each database. The Oracle cloud has an Identity Management that will configure

roles and allow for users to be added, and they are managed as part of the Identity

Management service and not in each database.

Note  Users can be imported into the Oracle Cloud so that each individual
account does not have to be entered. Even if not importing all of the enterprise
users, working in this way will allow for some consideration of which users should
be migrated over and then verify the roles.

�Understanding Schemas vs. Users

A schema is a collection of database objects (such as tables and indexes). A is not usually

important, but there are some subtle differences.

When you log in to an Oracle database, you connect using a username and

password. In this example, the user is INV_MGMT, and the password is f00bar:

SQL> connect inv_mgmt/f00bar

When you connect as a user, by default you can manipulate objects in the schema

owned by the user with which you connected to the database. For example, when

you attempt to describe a table, Oracle by default accesses the current user’s schema.

Therefore, there is no reason to preface the table name with the currently connected

user (owner). Suppose the currently connected user is INV_MGMT. Consider the following

DESCRIBE command:

SQL> describe inventory;

Chapter 6 Users and Basic Security

206

The prior statement is identical in function to the following statement:

SQL> desc inv_mgmt.inventory;

You can alter your current user’s session to point at a different schema via the ALTER

SESSION statement:

SQL> alter session set current_schema = hr;

This statement does not grant the current user (in this example, INV_MGMT) any extra

privileges. The statement does instruct Oracle to use the schema qualifier HR for any

subsequent SQL statements that reference database objects. If the appropriate privileges

have been granted, the INV_MGMT user can access the HR user’s objects without having to

prefix the schema name to the object name.

Just as describe and desc are identical functions, describing the table EMPLOYEES is

the same as using HR.EMPLOYEES.

SQL> desc HR.EMPLOYEES

If alter session is set to HR, the results are the same:

SQL> desc EMPLOYEES

Note  Oracle does have a CREATE SCHEMA statement. Ironically, CREATE
SCHEMA does not create a schema or a user. Rather, this statement provides a
method for creating several objects (tables, views, grants) in a schema as one
transaction. I have rarely seen the CREATE SCHEMA statement used, but it is
something to be aware of in case you are in a shop that does use it.

�Assigning Default Permanent and Temporary Tablespaces
Ensuring that users have a correct default permanent tablespace and temporary

tablespace helps prevent issues of inadvertently filling up the SYSTEM or SYSAUX

tablespaces, which could cause the database to become unavailable as well as

engendering performance problems. The concern is that when you don’t define a default

permanent and temporary tablespace for your database, when you create a user, by

default the SYSTEM tablespace is used. This is never a good thing.

Chapter 6 Users and Basic Security

207

As outlined in Chapter 2, you should establish a default permanent tablespace

and temporary tablespace when creating the database. Also shown in Chapter 2 were

the SQL statements for identifying and altering the default permanent tablespace and

temporary tablespace. This ensures that when you create a user and don’t specify default

permanent and temporary tablespaces, the database defaults will be applied. The

SYSTEM tablespace will therefore never be used for the default permanent and temporary

tablespaces.

Having said that, the reality is that you’ll most likely encounter databases that

were not set up this way. When maintaining a database, you should verify the default

permanent and temporary tablespace settings to make certain they meet your database

standards. You can look at user information by selecting from the DBA_USERS view:

select

 username

,password

,default_tablespace

,temporary_tablespace

from dba_users;

Here is a small sample of the output:

USERNAME PASSWORD DEFAULT_TABLESPACE TEMPORARY_TABLESPACE

---------------- ---------- ------------------------- --------------------

JSMITH EXTERNAL USERS TEMP

MV_MAINT USERS TEMP

AUDSYS USERS TEMP

GSMUSER USERS TEMP

XS$NULL USERS TEMP

None of your users, other than the SYS user, should have a default permanent

tablespace of SYSTEM. You don’t want any users other than SYS creating objects in the

SYSTEM tablespace. The SYSTEM tablespace should be reserved for the SYS user’s objects.

If other users’ objects existed in the SYSTEM tablespace, you would run the risk of filling

up that tablespace and compromising the availability of your database. This also means

if you are logging in with the SYS account, caution should be used to specific tablespaces

when creating tables and other objects.

All your users should be assigned a temporary tablespace that has been created as

type temporary. Usually, this tablespace is named TEMP (see Chapter 4 for more details).

Chapter 6 Users and Basic Security

208

If you find any users with inappropriate default tablespace settings, you can modify

them with the ALTER USER statement:

SQL> alter user inv_mgmt default tablespace users temporary tablespace temp;

You never want any users with a temporary tablespace of SYSTEM. If a user has

a temporary tablespace of SYSTEM, then any sort area for which the user requires

temporary disk storage acquires extents in the SYSTEM tablespace. This can lead to the

SYSTEM tablespace’s filling up. You don’t want this ever to occur, because a SYS schema’s

inability to acquire more space as its objects grow can lead to a nonfunctioning database.

To check for users that have a temporary tablespace of SYSTEM, run this script:

SQL> select username from dba_users where temporary_tablespace='SYSTEM';

Typically, I use the script name creuser.sql when creating a user. This script uses

variables that define the usernames, passwords, default tablespace name, and so on. For

each environment in which the script is executed (development, test, quality assurance

(QA), beta, production), you can change the ampersand variables, as required. For

instance, you can use a different password and different tablespaces for each separate

environment.

Here’s an example creuser.sql script:

DEFINE cre_user=inv_mgmt

DEFINE cre_user_pwd=inv_mgmt_pwd

DEFINE def_tbsp=inv_data

DEFINE idx_tbsp=inv_index

DEFINE def_temp_tbsp=temp

DEFINE smk_ttbl=zzzzzzz

--

CREATE USER &&cre_user IDENTIFIED BY &&cre_user_pwd

DEFAULT TABLESPACE &&def_tbsp

TEMPORARY TABLESPACE &&def_temp_tbsp;

--

GRANT CREATE SESSION TO &&cre_user;

GRANT CREATE TABLE TO &&cre_user;

--

ALTER USER &&cre_user QUOTA UNLIMITED ON &&def_tbsp;

ALTER USER &&cre_user QUOTA UNLIMITED ON &&idx_tbsp;

Chapter 6 Users and Basic Security

209

--

-- Smoke test

CONN &&cre_user/&&cre_user_pwd

CREATE TABLE &&smk_ttbl(test_id NUMBER) TABLESPACE &&def_tbsp;

CREATE INDEX &&smk_ttbl._idx1 ON &&smk_ttbl(test_id) TABLESPACE &&idx_tbsp;

INSERT INTO &&smk_ttbl VALUES(1);

DROP TABLE &&smk_ttbl;

SMOKE TEST

Smoke test is a term used in occupations such as plumbing, electronics, and software

development. The term refers to the first check done after initial assembly or repairs in order

to provide some level of assurance that the system works properly.

In plumbing, a smoke test forces smoke through the drainage pipes. The forced smoke helps

quickly identify cracks or leaks in the system. In electronics, a smoke test occurs when power

is first connected to a circuit. This sometimes produces smoke if the wiring is faulty.

In software development, a smoke test is a simple test of the system to ensure that it has

some level of workability. Many managers have reportedly been seen to have smoke coming

out their ears when the smoke test fails.

�Modifying Passwords
Use the ALTER USER command to modify an existing user’s password. This example

changes the HEERA user’s password to FOOBAR:

SQL> alter user HEERA identified by FOOBAR;

You can change the password of another account only if you have the ALTER USER

privilege granted to your user. This privilege is granted to the DBA role. After you change a

password for a user, any subsequent connection to the database by that user requires the

password indicated by the ALTER USER statement.

In Oracle Database 11g or higher, when you modify a password, it is case sensitive.

If you are using Oracle Database 10g or lower, the password is not case sensitive. The

behavior with the case is set with a parameter SEC_CASE_SENSITIVE_LOGON and by

default is TRUE. This is a parameter that should be checked that it was not changed to

Chapter 6 Users and Basic Security

210

make sure that case-sensitive passwords are used unless needed for legacy applications

that would be allowed until the password could be adjusted.

SQL*PLUS PASSWORD COMMAND

You can change the password for a user with the SQL*Plus PASSWORD command. After issuing

the command, you are prompted for a new password: prompted for a new password:

SQL> passw heera

Changing password for heera

New password:

Retype new password:

Password changed

This method has the advantage of changing a password for a user without displaying the new

password on the screen.

�Schema Only Account
Previously without a schema only account, a DBA would have to log in as a different user

to perform some create table scripts and issue grants. With 18c there are new Schema

Only Accounts that can be created without passwords. This is for application schemas

and holds all of the objects, so changes to these objects can be done if granted the

privilege to access these accounts. These accounts have no privilege to log in directly to

the database. So even without a password, there is no possibility to log in, and an error

will occur.

SQL> create user app1 NO AUTHENTICATION;

In the dba_users table, this user will have an AUTHENTICATION_TYPE=NONE,

and the password column will also be NULL. Schema only accounts can have

privileges granted to create table and other objects; however, it cannot have any of

the administrative privileges assigned to it. Even granting CONNECT SESSION to the

schema only account will not allow you to log in to this schema account directly.

SQL> grant create session to app1;

Grant succeeded.

Chapter 6 Users and Basic Security

211

SQL> connect app1

Enter password:

ERROR:

ORA-01005: null password given; logon denied

Warning: You are no longer connected to ORACLE.

SQL> connect app1

Enter password:

ERROR:

ORA-01017: invalid username/password; logon denied

In order to perform the DDL statements in other accounts including the schema only

accounts, a proxy connection can be made. Even before 18c, using a proxy connection

was possible, and with the schema only account, it continues to be possible in order to

perform any necessary code as the schema. Here is an example using jsmithdba as our

account as we log in to the database, and the schema only account is app1.

SQL> alter user app1 grant connect through jsmithdba;

SQL> connect jsmithdba/password1

SQL> select sys_context('USERENV','SESSION_USER') as session_user,

 sys_context('USERENV','SESSION_SCHEMA') as session_schema,

 sys_context('USERENV','PROXY_USER') as proxy_id,

 user

 from dual;

SESSION_USER SESSION_SCHEMA PROXY_ID USER

----------------------- ------------------------------------ -------------

APP1 APP1 JSMITHDBA APP1

This schema without a password can simply be used to application schemas and

allow privileges to be granted to the objects or become this schema to run code. This

is something to consider for application schemas; and, as we will see in the upcoming

section on “Managing Privileges,” grants and permissions can still be handled by roles

for these objects.

Chapter 6 Users and Basic Security

212

�Modifying Users
Sometimes you need to modify existing users for the following types of reasons:

•	 Change a user’s password

•	 Lock or unlock a user

•	 Change the default permanent or temporary tablespace, or both

•	 Change a profile or role

•	 Change system or object privileges

•	 Modify quotas on tablespaces

Use the ALTER USER statement to modify users. Listed next are several SQL

statements that modify a user. This example changes a user’s password, using the

IDENTIFIED BY clause:

SQL> alter user inv_mgmt identified by i2jy22a;

If you don’t set a default permanent tablespace and temporary tablespace when you

initially create the user, you can modify them after creation, as shown here:

SQL> alter user inv_mgmt default tablespace users temporary tablespace

temp;

This example locks a user account:

SQL> alter user inv_mgmt account lock;

And, this example alters the user’s quota on the USERS tablespace:

SQL> alter user inv_mgmt quota 500m on users;

Note S ince ALTER USER is a highly privileged command and there are many
reasons for using it, it might now fall in the hands of a security team to execute.
There are other commands and procedures that can be written around this, and
then the permissions are given to those to execute. Also, a database vault limits
the ability to alter users and allows for the security teams to perform these actions.

Chapter 6 Users and Basic Security

213

�Dropping Users
Before you drop a user, I recommend that you first lock the user. Locking the user

prevents others from connecting to a locked database account. This allows you to

better determine whether someone is using the account before it is dropped. Here is an

example of locking a user:

SQL> alter user heera account lock;

Any user or application attempting to connect to this user now receives the following

error:

ORA-28000: the account is locked

To view the users and lock dates in your database, issue this query:

SQL> select username, lock_date from dba_users;

To unlock an account, issue this command:

SQL> alter user heera account unlock;

Locking users is a very handy technique for securing your database and discovering

which users are active.

Be aware that by locking a user, you are not locking access to a user’s objects. For

instance, if a USER_A has select, insert, update, and delete privileges on tables owned by

USER_B, if you lock the USER_B account, USER_A can still issue DML statements against

the objects owned by USER_B. To determine whether the objects are being used, see the

auditing section of Chapter 20.

Tip I f a user’s objects don’t consume inordinate amounts of disk space, then
before you drop the user, it is prudent to make a quick backup. See Chapter 13 for
details on using Data Pump to back up a single user.

After you are sure that a user and its objects are not needed, use the DROP USER

statement to remove a database account. This example drops the user HEERA:

SQL> drop user heera;

Chapter 6 Users and Basic Security

214

The prior command won’t work if the user owns any database objects. Use the

CASCADE clause to remove a user and have its objects dropped:

SQL> drop user heera cascade;

Note T he DROP USER statement may take a great deal of time to execute if the
user being dropped owns a vast number of database objects. In these situations,
you may want to consider dropping the user’s objects before dropping the user.

schemas are also dropped. Oracle invalidates but doesn’t drop any views, synonyms,

procedures, functions, or packages that are dependent on the dropped user’s objects.

This is why it is important that application objects are put in a different schema instead

of creating all of the objects under an individual account. If an application is being

decommissioned, then backups and retention policies should also be considered. This

is why it is important that application objects are put in a different schema instead

of creating all of the objects under an individual account. If an application is being

decommissioned, then backups and retention policies should also be considered.

�Enforcing Password Security and Resource Limits
When you are creating users, sometimes requirements call for passwords to adhere to a

set of security rules: for example, necessitating that the password be of a certain length

and contain numeric characters. Also, when you set up database users, you may want

to ensure that a certain user is not capable of consuming inordinate amounts of CPU

resources.

You can use a database profile to meet these types of requirements. An Oracle profile

is a database object that serves two purposes:

•	 Enforces password security settings

•	 Limits system resources that a user consumes

These topics are discussed in the next several sections.

Chapter 6 Users and Basic Security

215

Tip D on’t confuse a database profile with a SQL profile. A database profile is an
object assigned to a user that enforces password security and constrains database
resource usage, whereas a SQL profile is associated with a SQL statement and
contains corrections to statistics that help the optimizer generate a more efficient
execution plan.

�Basic Password Security
When you create a user, if no profile is specified, the DEFAULT profile is assigned to the

newly created user. To view the current settings for a profile, issue the following SQL:

select profile, resource_name, resource_type, limit

from dba_profiles

order by profile, resource_type;

Here is a partial listing of the output:

PROFILE RESOURCE_NAME RESOURCE_TYPE LIMIT

------------ --------------------------- -------- -------------------------

DEFAULT CONNECT_TIME KERNEL UNLIMITED

DEFAULT PRIVATE_SGA KERNEL UNLIMITED

DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED

DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED

DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED

DEFAULT CPU_PER_CALL KERNEL UNLIMITED

DEFAULT IDLE_TIME KERNEL UNLIMITED

DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED

DEFAULT CPU_PER_SESSION KERNEL UNLIMITED

DEFAULT PASSWORD_LIFE_TIME PASSWORD 180

DEFAULT PASSWORD_GRACE_TIME PASSWORD 7

DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED

DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED

DEFAULT PASSWORD_LOCK_TIME PASSWORD 1

DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD 10

DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD NULL

DEFAULT INACTIVE_ACCOUNT_TIME PASSWORD UNLIMITED

Chapter 6 Users and Basic Security

216

ORA_STIG_PROFILE CONNECT_TIME KERNEL DEFAULT

ORA_STIG_PROFILE IDLE_TIME KERNEL 15

ORA_STIG_PROFILE LOGICAL_READS_PER_CALL KERNEL DEFAULT

ORA_STIG_PROFILE CPU_PER_CALL KERNEL DEFAULT

ORA_STIG_PROFILE PASSWORD_GRACE_TIME PASSWORD 5

ORA_STIG_PROFILE PASSWORD_LOCK_TIME PASSWORD UNLIMITED

ORA_STIG_PROFILE PASSWORD_VERIFY_FUNCTION PASSWORD �ORA12C_

STIG_VERIFY_

FUNCTION

ORA_STIG_PROFILE PASSWORD_REUSE_MAX PASSWORD 10

ORA_STIG_PROFILE PASSWORD_REUSE_TIME PASSWORD 365

ORA_STIG_PROFILE PASSWORD_LIFE_TIME PASSWORD 60

ORA_STIG_PROFILE FAILED_LOGIN_ATTEMPTS PASSWORD 3

ORA_STIG_PROFILE INACTIVE_ACCOUNT_TIME PASSWORD 35

A profile’s password restrictions are in effect as soon as the profile is assigned to a

user. For example, from the previous output, if you have assigned the DEFAULT profile

to a user, that user is allowed only ten consecutive failed login attempts before the

user account is automatically locked by Oracle. See Table 6-1 for a description of the

password profile security settings.

Tip S ee MOS note 454635.1 for details on Oracle Database DEFAULT profile
changes.

You can alter the DEFAULT profile to customize it for your environment. For instance,

say you want to enforce a cap on the maximum number of days a password can be used.

The next line of code sets the PASSWORD_LIFE_TIME of the DEFAULT profile to 300 days:

SQL> alter profile default limit password_life_time 300;

Chapter 6 Users and Basic Security

217

The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX settings must be used in

conjunction. If you specify an integer for one parameter (it doesn’t matter which one)

and UNLIMITED for the other parameter, the then current password can never be reused.

If you want to specify that the DEFAULT profile password must be changed 10 times

within 100 days before it can be reused, use a line of code similar to this:

SQL> alter profile default limit password_reuse_time 100 password_reuse_max 10;

Although using the DEFAULT profile is sufficient for many environments, you may

need tighter security management. I recommend that you create custom security

profiles and assign them to users, as required. For example, create a profile specifically

for application users:

CREATE PROFILE SECURE_APP LIMIT

PASSWORD_LIFE_TIME 200

PASSWORD_GRACE_TIME 10

PASSWORD_REUSE_TIME 1

PASSWORD_REUSE_MAX 1

Table 6-1.  Password Security Settings

Password Setting Description Default

FAILED_LOGIN_ATTEMPTS Number of failed login attempts before the schema

is locked

10 attempts

PASSWORD_GRACE_TIME Number of days after a password expires that the

owner can log in with an old password

7 days

PASSWORD_LIFE_TIME Number of days a password is valid 180 days

PASSWORD_LOCK_TIME Number of days an account is locked after

FAILED_LOGIN_ATTEMPTS has been reached

1 day

PASSWORD_REUSE_MAX Number of days before a password can be reused Unlimited

PASSWORD_REUSE_TIME Number of times a password must change before a

password can be reused

Unlimited

PASSWORD_VERIFY_FUNCTION Database function used to verify the password Null

INACTIVE_ACCOUNT_TIME Number of days a user who has not logged in to the

account, and then will lock the account

Unlimited

Chapter 6 Users and Basic Security

218

FAILED_LOGIN_ATTEMPTS 3

PASSWORD_LOCK_TIME 1

INACTIVE_ACCOUNT_TIME 60;

After you create the profile, you can assign it to users, as appropriate. The following

SQL generates a SQL script, named alt_prof_dyn.sql, that you can use to assign the

newly created profile to users:

set head off;

spo alt_prof_dyn.sql

select 'alter user ' || username || ' profile secure_app;'

from dba_users where username like '%APP%';

spo off;

Be careful when assigning profiles to application accounts that use the database.

If you want to enforce that a password changes at a regular frequency, be sure you

understand the impact on production systems. Passwords tend to get hard-coded into

response files and code. Enforcing password changes in these environments can wreak

havoc, as you try to chase down all the places where the password is referenced. If you

don’t want to enforce the periodic changing of the password, you can set PASSWORD_

LIFE_TIME to a high value such as 10,000 or unlimited.

HAS THE PASSWORD EVER CHANGED?

When you are determining if a password is secure, it is useful to check to see whether the

password for a user has ever been changed. If the password for a user has never been

changed, this may be viewed as a security risk. This example performs such a check:

select

 name

,to_char(ctime,'dd-mon-yy hh24:mi:ss')

,to_char(ptime,'dd-mon-yy hh24:mi:ss')

,length(password)

from user$

where password is not null

and password not in ('GLOBAL','EXTERNAL')

and ctime=ptime;

Chapter 6 Users and Basic Security

219

In this script the CTIME column contains the timestamp of when the user was created. The

PTIME column contains the timestamp of when the password was changed. If the CTIME and

PTIME are identical, then the password has never changed.

�Password Strength
A password that cannot be easily guessed is considered a strong password. The

strength of a password can be quantified in terms of length, use of upper/lowercase,

nondictionary-based words, numeric characters, and so on. For example, a password

of L5K0ta890g would be considered strong, whereas a password of pass would be

considered weak. There are a couple schools of thought on enforcing password strength:

•	 Use easily remembered passwords so that you don’t have them

written down or recorded in a file somewhere. Because the

passwords are not sophisticated, they are not very secure.

•	 Enforce a level of sophistication (strength) for passwords. Such

passwords are not easily remembered and thus must be recorded

somewhere, which is not secure.

You may choose to enforce a degree of password strength because you think it is the

most secure option. Or you may be required to enforce password security sophistication

by your corporate security team (and thus have no choice in the matter). This section is

not about debating which of the prior methods is preferable. Should you choose to impose

a degree of strength for a password, this section describes how to enforce the rules.

You can enforce a minimum standard of password complexity by assigning a

password verification function to a user’s profile. Oracle supplies a default password

verification function that you create by running the following script as the SYS schema:

SQL> @?/rdbms/admin/utlpwdmg

The prior script creates the following password verification functions:

•	 ora12c_verify_function (Oracle Database 12c and 18c)

•	 ora12c_strong_verify_function (very secure Oracle Database 12c

and 18c)

•	 verify_function_11G (Oracle Database 11g)

•	 verify_function (Oracle Database 10g)

Chapter 6 Users and Basic Security

220

Once the password verify function has been created, you can use the ALTER

PROFILE command to associate the password verify function with all users to which a

given profile is assigned. There is no new password function for 18c, so the password

complexity function is the same one that is used for 12c. For instance, in Oracle Database

18c, to set the password verify function of the DEFAULT profile, issue this command:

SQL> alter profile default limit PASSWORD_VERIFY_FUNCTION

ora12c_verify_function;

If, for any reason, you need to back out of the new security modifications, run this

statement to disable the password function:

SQL> alter profile default limit PASSWORD_VERIFY_FUNCTION null;

When enabled, the password verification function ensures that users are correctly

creating or modifying their passwords. The utlpwdmgsql script creates a function that

checks a password to make certain it meets basic security standards, such as minimum

password length and password not the same as username. You can verify that the new

security function is in effect by attempting to change the password of a user to which the

DEFAULT profile has been assigned. This example tries to change the password to less

than the minimum length:

SQL> password

Changing password for HEERA

Old password:

New password:

Retype new password:

ERROR:

ORA-28003: password verification for the specified password failed

ORA-20001: Password length less than 8

Note  For Oracle Database 18c, 12c, and 11g, when using the standard password
verify function, the minimum password length is eight characters. For Oracle
Database 10g, the minimum length is four characters.

Chapter 6 Users and Basic Security

221

Keep in mind that it is possible to modify the code used to create the password

verification function. For example, you can open and modify the script used to create

this function:

$ vi $ORACLE_HOME/rdbms/admin/utlpwdmg.sql

If you feel that the Oracle-supplied verification function is too strong or overly

restrictive, you can create your own function and assign the appropriate database

profiles to it.

Note A s of Oracle Database 12g, the SEC_CASE_SENSITIVE_LOGON parameter
has been deprecated. Setting this initialization parameter to FALSE allows you to
make passwords case insensitive.

�Limiting Database Resource Usage
As mentioned earlier, the password profile settings take effect as soon as you assign

the profile to a user. Unlike password settings, kernel resource profile restrictions don’t

take effect until you set the RESOURCE_LIMIT initialization parameter to TRUE for your

database; for example,

SQL> alter system set resource_limit=true scope=both;

To view the current setting of the RESOURCE_LIMIT parameter, issue this query:

SQL> select name, value from v$parameter where name='resource_limit';

When you create a user, if you don’t specify a profile, then the DEFAULT profile

is assigned to the user. You can modify the DEFAULT profile with the ALTER PROFILE

statement. The next example modifies the DEFAULT profile to limit CPU_PER_SESSION to

240,000 (in hundredths of seconds):

SQL> alter profile default limit cpu_per_session 240000;

This limits any user with the DEFAULT profile to 2,400 seconds of CPU use. You can

set various limits in a profile. Table 6-2 describes the database resource settings you can

limit via a profile.

Chapter 6 Users and Basic Security

222

You can also create a custom profile and assign it to users via the CREATE PROFILE

statement. You can then assign that profile to any existing database users. The following

SQL statement creates a profile that limits resources, such as the amount of CPU an

individual session can consume:

create profile user_profile_limit

limit

sessions_per_user 20

cpu_per_session 240000

logical_reads_per_session 1000000

connect_time 480

idle_time 120;

After you create a profile, you can assign it to a user. In the next example, the user

HEERA is assigned USER_PROFILE_LIMIT:

SQL> alter user heera profile user_profile_limit;

Table 6–2.  Database Resource Profile Settings

Profile Resource Meaning

COMPOSITE_LIMIT Limit, based on a weighted-sum algorithm for these resources:

CPU_PER_SESSION, CONNECT_TIME, LOGICAL_READS_PER_

SESSION, and PRIVATE_SGA

CONNECT_TIME Connect time, in minutes

CPU_PER_CALL CPU time limit per call, in hundredths of seconds

CPU_PER_SESSION CPU time limit per session, in hundredths of seconds

IDLE_TIME Idle time, in minutes

LOGICAL_READS_PER_CALL Blocks read per call

LOGICAL_READS_PER_SESSION Blocks read per session

PRIVATE_SGA Amount of space consumed in the shared pool

SESSIONS_PER_USER Number of concurrent sessions

Chapter 6 Users and Basic Security

223

Note  Oracle recommends that you use Database Resource Manager to
manage database resource limits. However, for basic resource management
needs, I find database profiles (implemented via SQL) to be an effective and easy
mechanism for managing resource usage. If you have more sophisticated resource
management requirements, investigate the Database Resource Manager feature.

As part of the CREATE USER statement, you can specify a profile other than DEFAULT:

SQL> create user heera identified by foo profile user_profile_limit;

When should you use database profiles? You should always take advantage of the

password security settings of the DEFAULT profile. You can easily modify the default

settings of this profile, as required by your business rules.

A profile’s kernel resource limits are useful when you have power users who need to

connect directly to the database and run queries. For example, you can use the kernel

resource settings to limit the amount of CPU time a user consumes, which is handy when

a user writes a bad query that inadvertently consumes excessive database resources.

Note Y ou can only assign one database profile to a user, so if you need to
manage both password security and resource limits, make certain you set both
within the same profile.

�Managing Privileges
A database user must be granted privileges before the user can perform any tasks in the

database. In Oracle, you assign privileges either by granting a specific privilege to a user

or by granting the privilege to a role and then granting the role that contains the privilege

to a user. There are two types of privileges: system privileges and object privileges. The

following sections discuss these privileges in detail.

Chapter 6 Users and Basic Security

224

�Assigning Database System Privileges
Database system privileges allow you to do tasks such as connecting to the database and

creating and modifying objects. There are hundreds of different system privileges. You

can view system privileges by querying the DBA_SYS_PRIVS view:

SQL> select distinct privilege from dba_sys_privs;

You can grant privileges to other users or roles. To be able to grant privileges, a user

needs the GRANT ANY PRIVILEGE privilege or must have been granted a system privilege

with ADMIN OPTION.

Use the GRANT statement to assign a system privilege to a user. For instance,

minimally a user needs CREATE SESSION to be able to connect to the database. You grant

this system privilege as shown:

SQL> grant create session to inv_mgmt;

Usually, a user needs to do more than just connect to the database. For instance, a

user may need to create tables and other types of database objects. This example grants a

user the CREATE TABLE and CREATE DATABASE LINK system privileges:

SQL> grant create table, create database link to inv_mgmt;

Same for the schema only account:

SQL> grant create table, create database link to app1;

If you need to take away privileges, use the REVOKE statement:

SQL> revoke create table from inv_mgmt;

Oracle has a feature that allows you to grant a system privilege to a user and also give

that user the ability to administer a privilege. You do this with the WITH ADMIN OPTION

clause:

SQL> grant create table to inv_mgmt with admin option;

I rarely use WITH ADMIN OPTION when granting privileges. Usually, a user with

the DBA role is used to grant privileges, and that privilege is not generally meted out

to non-DBA users in the database. This is because it would be hard to keep track of

who assigned what system privileges, for what reason, and when. In a production

environment, this would be untenable.

Chapter 6 Users and Basic Security

225

You can also grant system privileges to the PUBLIC user group (I don’t recommend

doing this). For example, you could grant CREATE SESSION to all users that ever need to

connect to the database, as follows:

SQL> grant create session to public;

Now, every user that is created can automatically connect to the database. Granting

system privileges to the PUBLIC user group is almost always a bad idea. As a DBA, one

of your main priorities is to ensure that the data in the database are safe and secure.

Granting privileges to the PUBLIC role is a sure way of not being able to manage who is

authorized to perform specific actions within the database. In other words, do not grant

system privileges to public.

�Assigning Database Object Privileges
Database object privileges allow you to access and manipulate other users’ objects.

The types of database objects to which you can grant privileges include tables, views,

materialized views, sequences, packages, functions, procedures, user-defined types, and

directories. To be able to grant object privileges, one of the following must be true:

•	 You own the object.

•	 You have been granted the object privilege with GRANT OPTION.

•	 You have the GRANT ANY OBJECT PRIVILEGE system privilege.

This example grants object privileges (as the object owner) to the INV_MGMT_APP user:

SQL> grant insert, update, delete, select on registrations to inv_mgmt_app;

The GRANT ALL statement is equivalent to granting INSERT, UPDATE, DELETE, and

SELECT to an object. The next statement is equivalent to the prior statement:

SQL> grant all on registrations to inv_mgmt_app;

You can also grant INSERT and UPDATE privileges to tables, at the column level. The

next example grants INSERT privileges to specific columns in the INVENTORY table:

SQL> grant insert (inv_id, inv_name, inv_desc) on inventory to inv_mgmt_app;

Chapter 6 Users and Basic Security

226

If you want a user that is being granted object privileges to be able to subsequently

grant those same object privileges to other users, then use the WITH GRANT OPTION

clause:

SQL> grant insert on registrations to inv_mgmt_app with grant option;

Now, the INV_MGMT_APP user can grant insert privileges on the REGISTRATIONS table

to other users.

I rarely use the WITH GRANT OPTION when granting object privileges. Allowing other

users to propagate object privileges to users makes it hard to keep track of who assigned

what object privileges, for what reason, when, and so on. In a production environment,

this would be untenable. When you are managing a production environment, when

problems arise, you need to know what changed, when, and for what reason.

You can also grant object privileges to the PUBLIC user group (I don’t recommend

doing this). For example, you could grant select privileges on a table to PUBLIC:

SQL> grant select on registrations to public;

Now, every user can select from the REGISTRATIONS table. Granting object privileges

to the PUBLIC role is almost always a bad idea. As a DBA, one of your main priorities is to

ensure that the data in the database are safe and secure. Granting object privileges to the

PUBLIC role is a sure way of not being able to manage who can access what data in the

database. Again, DO NOT grant object privileges to PUBLIC.

If you need to take away object privileges, use the REVOKE statement. This example

revokes DML privileges from the INV_MGMT_APP user:

SQL> revoke insert, update, delete, select on registrations from inv_mgmt_app;

�Grouping and Assigning Privileges
A role is a database object that allows you to group together system or object privileges,

or both, in a logical manner so that you can assign those privileges in one operation to a

user. Roles help you manage aspects of database security in that they provide a central

object that has privileges assigned to it. You can subsequently assign the role to multiple

users or other roles.

To create a role, connect to the database as a user that has the CREATE ROLE system

privilege. Next, create a role and assign to it the system or object privileges that you

Chapter 6 Users and Basic Security

227

want to group together. This example uses the CREATE ROLE statement to create the

JR_DBA role:

SQL> create role jr_dba;

The next several lines of SQL grant system privileges to the newly created role:

SQL> grant select any table to jr_dba;

SQL> grant create any table to jr_dba;

SQL> grant create any view to jr_dba;

SQL> grant create synonym to jr_dba;

SQL> grant create database link to jr_dba;

Next, grant the role to any schema you want to possess those privileges:

SQL> grant jr_dba to lellison;

SQL> grant jr_dba to mhurd;

The users LELLISON and MHURD can now perform tasks such as creating synonyms

and views. To see the users to which a role is assigned, query the DBA_ROLE_PRIVS view:

SQL> select grantee, granted_role from dba_role_privs order by 1;

To see roles granted to your currently connected user, query from the USER_ROLE_

PRIVS view:

SQL> select * from user_role_privs;

To revoke a privilege from a role, use the REVOKE command:

SQL> revoke create database link from jr_dba;

Similarly, use the REVOKE command to remove a role from a user:

SQL> revoke jr_dba from lellison;

Note  Unlike other database objects, roles don’t have owners. A role is defined by
the privileges assigned to it.

Chapter 6 Users and Basic Security

228

PL/SQL AND ROLES

If you work with PL/SQL, sometimes you get this error when attempting to compile a

procedure or a function:

PL/SQL: ORA-00942: table or view does not exist

What’s confusing is that you can describe the table:

SQL> desc app_table;

Why doesn’t PL/SQL seem to be able to recognize the table? It is because PL/SQL requires

that the owner of the package, procedure, or function be explicitly granted privileges to any

objects referenced in the code. The owner of the PL/SQL code can’t have obtained the grants

through a role.

When confronted with this issue, try this as the owner of the PL/SQL code:

SQL> set role none;

Now, try to run a SQL statement that accesses the table in question:

SQL> select count(*) from app_table;

If you can no longer access the table, then you have been granted access through a role. To

resolve the issue, explicitly grant access to any tables to the owner of the PL/SQL code (as the

owner of the table):

SQL> connect owner/pass

SQL> grant select on app_table to proc_owner;

You should be able to connect as the owner of the PL/SQL code and successfully compile your

code.

Roles are going to provide a way to grant the needed privileges for a function or tasks

for the user to perform. As the user maps to security groups, the roles are the best way to

manage the privileges. Role-based access to the different objects and system privileges

are going to allow simple auditing to know who has a role and verify that there are not

individual privileges being granted.

Chapter 6 Users and Basic Security

229

�Summary
After you create a database, one of your first tasks is to secure any default user accounts.

Default accounts are locked after database creation, and a valid approach is to open

them only as they are required. Other approaches include changing or expiring

the password, or both. After the default users’ accounts have been secured, you are

responsible for creating users that need access to the database. This often includes

application users, DBAs, and developers.

You should consider using a secure profile for any users you create. Additionally,

think about password security when creating users. Oracle provides a password

function that enforces a certain level of password strength. I recommend that you use

a combination of profiles and a password function as a first step in creating a secure

database.

Schema only accounts and managing privileges in roles will tighten up the user

security in the database and provide efficient ways to audit and verify that users are

receiving the appropriate privileges.

As the databases ages, you need to maintain the user accounts. Usually, the

requirements for database accounts change over time. You are responsible for ensuring

that the correct system and object privileges are maintained for each account. With any

legacy system, you’ll eventually need to lock and drop users. Dropping unused accounts

helps ensure that your environment is more secure and maintainable. Using centrally

managed users simplifies these steps as the accounts have passwords changed and set to

inactive in one directory instead of in every database. Also, the security groups serve as

mappings to the database roles for privileges that match their job functions.

The next logical step after creating users is to create database objects. Chapter 7

deals with concepts related to table creation.

Chapter 6 Users and Basic Security

231
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_7

CHAPTER 7

Tables and Constraints
The previous chapters in this book covered topics that prepare you for the next logical

step in creating database objects. For example, you need to install the Oracle binaries

and create a database, tablespaces, and users before you start creating tables. Usually,

the first objects created for an application are the tables, constraints, and indexes. This

chapter focuses on the management of tables and constraints. The administration of

indexes is covered in Chapter 8.

A table is the basic storage container for data in a database. You create and modify

the table structure via DDL statements, such as CREATE TABLE and ALTER TABLE.

You access and manipulate table data via DML statements (INSERT, UPDATE, DELETE,

MERGE, SELECT).

Tip  One important difference between DDL and DML statements is that with
DML statements, you must explicitly issue a COMMIT or ROLLBACK to end the
transaction.

A constraint is a mechanism for enforcing that data adhere to business rules.

For example, you may have a business requirement that all customer IDs be unique

within a table. In this scenario, you can use a primary key constraint to guarantee that

all customer IDs inserted or updated in a CUSTOMER table are unique. Constraints inspect

data as they’re inserted, updated, and deleted to ensure that no business rules are

violated.

This chapter deals with common techniques for creating and maintaining tables

and constraints. Almost always, when you create a table, the table needs one or

more constraints defined; therefore, it makes sense to cover constraint management

along with tables. The first part of the chapter focuses on common table creation and

maintenance tasks. The latter part of the chapter details constraint management.

232

�Understanding Table Types
The Oracle database supports a vast and robust variety of table types. These various

types are described in Table 7-1.

This chapter focuses on the table types that are most often used: in particular,

heap organized, index organized, and temporary tables. Partitioned tables are used

extensively in data warehouse environments and are covered separately, in Chapter 12.

Table 7-1.  Oracle Table Type Descriptions

Table Type Description Typical Use

Heap

organized

The default table type and the most

commonly used

Table type to use unless you have a specific

reason to use a different type

Temporary Session private data, stored for the

duration of a session or transaction;

space allocated in temporary segments

Program needs a temporary table structure

to store and sort data; table is not required

after program ends

Index

organized

Data stored in a B-tree (balanced tree)

index structure sorted by primary key

Table is queried mainly on primary key

columns; provides fast random access

Partitioned A logical table that consists of separate

physical segments

Type used with large tables with millions of

rows

External Tables that use data stored in OS files

outside the database

Type lets you efficiently access data in a file

outside the database (such as a CSV file)

In-Memory

External

Data that is not needed to load into

Oracle storage and used for scanning

as part of big data sets

Data that can be scanned for both RDBMS

and Hadoop in-memory

Clustered A group of tables that share the same

data blocks

Type used to reduce I/O for tables that are

often joined on the same columns

Hash

clustered

A table with data that is stored and

retrieved using a hash function

Reduces the I/O for tables that are mostly

static (not growing after initially loaded)

Nested A table with a column with a data type

that is another table

Rarely used

Object A table with a column with a data type

that is an object type

Rarely used

Chapter 7 Tables and Constraints

233

External tables are covered in Chapter 14. For details on table types not covered in this

book, see the SQL Language Reference Guide, which is available for download from the

Oracle Technology Network web site (http://otn.oracle.com).

�Understanding Data Types
When creating a table, you must specify the columns names and corresponding data

types. As a DBA you should understand the appropriate use of each data type. I’ve seen

many application issues (performance and accuracy of data) caused by the wrong choice

of data type. For instance, if a character string is used when a date data type should

have been used, this causes needless conversions and headaches when attempting to

do date math and reporting. Compounding the problem, after an incorrect data type is

implemented in a production environment, it can be very difficult to modify data types,

as this introduces a change that might possibly break existing code. Once you go wrong,

it is extremely tough to recant and backtrack and choose the right course. It is more likely

you will end up with hack upon hack as you attempt to find ways to force the ill-chosen

data type to do the job that it was never intended to do.

Having said that, Oracle supports the following groups of data types:

•	 Character

•	 Numeric

•	 Date/Time

•	 RAW

•	 ROWID

•	 LOB

•	 JSON

A brief description and usage recommendation are provided in the following sections.

Note  Specialized data types, any types, spatial types, media types, and user-
defined types, are not covered in this book. For more details regarding these
data types, see the SQL Language Reference Guide available from the Oracle
Technology Network web site (http://otn.oracle.com). JSON will be briefly
covered as new features and enhancements as part of Oracle 18c.

Chapter 7 Tables and Constraints

http://otn.oracle.com
http://otn.oracle.com

234

�Character
Use a character data type to store characters and string data. The following character

data types are available in Oracle:

•	 VARCHAR2

•	 CHAR

•	 NVARCHAR2 and NCHAR

�VARCHAR2

The VARCHAR2 data type is what you should use in most scenarios to hold character/

string data. A VARCHAR2 only allocates space based on the number of characters in the

string. If you insert a one-character string into a column defined to be VARCHAR2(30),

Oracle will only consume space for the one character. The following example verifies this

behavior:

SQL> create table d(d varchar2(30));

insert into d values ('a');

select dump(d) from d;

Here is a snippet of the output, verifying that only 1B has been allocated:

DUMP(D)

Typ=1 Len=1

Note  Oracle does have another data type, the VARCHAR (without the “2”). I only
mention this because you are bound to encounter this data type at some point
in your Oracle DBA career. Oracle currently defines VARCHAR as synonymous
with VARCHAR2. Oracle strongly recommends that you use VARCHAR2 (and not
VARCHAR), as Oracle’s documentation states that VARCHAR might serve a different
purpose in the future.

When you define a VARCHAR2 column, you must specify a length. There are two ways

to do this: BYTE and CHAR. BYTE specifies the maximum length of the string in bytes,

Chapter 7 Tables and Constraints

235

whereas CHAR specifies the maximum number of characters. For example, to specify a

string that contains at the most 30B, you define it as follows:

varchar2(30 byte)

To specify a character string that can contain at most 30 characters, you define it as

follows:

varchar2(30 char)

Many DBAs do not realize that if you do not specify either BYTE or CHAR, then the

default length is calculated in bytes. In other words, VARCHAR2(30) is the same as

VARCHAR2(30 byte).

In almost all situations, you are safer specifying the length using CHAR. When working

with multibyte character sets, if you specified the length to be VARCHAR2(30 byte),

you may not get predictable results, because some characters require more than 1

byte of storage. In contrast, if you specify VARCHAR2(30 char), you can always store 30

characters in the string, regardless of whether some characters require more than 1 byte.

�CHAR

In almost every scenario, a VARCHAR2 is preferable to a CHAR. The VARCHAR2 data type

is more flexible and space efficient than CHAR. This is because a CHAR is a fixed-length

character field. If you define a CHAR(30) and insert a string that consists of only one

character, Oracle will allocate 30B of space. This can be an inefficient use of space.

If using CHAR, it does make sense to only use it if the size of the value will not change

and is absolutely static. I have normally only used CHAR if the length was under 8, and

the size was absolutely fixed. The following example verifies this behavior:

SQL> create table d(d char(30));

insert into d values ('a');

select dump(d) from d;

Here is a snippet of the output, verifying that 30B have been consumed:

DUMP(D)

Typ=96 Len=30

Chapter 7 Tables and Constraints

236

�NVARCHAR2 and NCHAR

The NVARCHAR2 and NCHAR data types are useful if you have a database that was originally

created with a single-byte, fixed-width character set, but sometime later you need to

store multibyte character set data in the same database. You can use the NVARCHAR2 and

NCHAR data types to support this requirement.

It is simpler to standardize with use of VARCHAR2 and provide enough length

to handle the multibyte characters or use the length in character instead of using

NVARCHAR2 and NCHAR.

Note  For Oracle Database 11g and lower, 4,000 was the largest size allowed for
a VARCHAR2 or NVARCHAR2 data type. In Oracle Database 12c and higher, you can
specify up to 32,767 characters in a VARCHAR2 or NVARCHAR2 data type. Prior to
12c, if you wanted to store character data larger greater than 4,000 characters, the
logical choice was a CLOB (see the section “LOB,” later in this chapter, for more
details).

�Numeric
Use a numeric data type to store data that you will potentially need to use with

mathematic functions, such as SUM, AVG, MAX, and MIN. Never store numeric information

in a character data type. When you use a VARCHAR2 to store data that are inherently

numeric, you are introducing future failures into your system. Eventually, you will want

to report or run calculations on numeric data, and if they’re not a numeric data type, you

will get unpredictable and oftentimes wrong results.

Oracle supports three numeric data types:

•	 NUMBER

•	 BINARY_DOUBLE

•	 BINARY_FLOAT

For most situations, you will use the NUMBER data type for any type of number data.

Its syntax is NUMBER(scale, precision) where scale is the total number of digits, and

precision is the number of digits to the right of the decimal point. So, with a number

Chapter 7 Tables and Constraints

237

defined as NUMBER(5, 2) you can store values +/–999.99. That is a total of five digits, with

two used for precision to the right of the decimal point. If defined as NUMBER(5) the

values can be to the right or left of the decimal with a total of five digits, this value will fit,

2.4563 as would 55,555.

Tip  Oracle allows a maximum of 38 digits for a NUMBER data type. This is almost
always sufficient for any type of numeric application.

What sometimes confuses DBAs is that you can create a table with columns defined

as INT, INTEGER, REAL, DECIMAL, and so on. These data types are all implemented

by Oracle with a NUMBER data type. For example, a column specified as INTEGER is

implemented as a NUMBER(38).

The BINARY_DOUBLE and BINARY_FLOAT data types are used for scientific calculations.

These map to the DOUBLE and FLOAT Java data types. Unless your application is

performing rocket science calculations, then use the NUMBER data type for all your

numeric requirements.

�Date/Time
When capturing and reporting on date-related information, you should always use a

DATE or TIMESTAMP data type (and not VARCHAR2). Using the correct date-related data

type allows you to perform accurate Oracle date calculations and aggregations and

dependable sorting for reporting. If you use a VARCHAR2 for a field that contains date

information, you are guaranteeing future reporting inconsistencies and needless

conversion functions (such as TO_DATE and TO_CHAR).

Oracle supports three date-related data types:

•	 DATE

•	 TIMESTAMP

•	 INTERVAL

The DATE data type contains a date component as well as a time component that

is granular to the second. By default, if you do not specify a time component when

inserting data, then the time value defaults to midnight (0 hour at the 0 second). If

you need to track time at a more granular level than the second, then use TIMESTAMP;

otherwise, feel free to use DATE.

Chapter 7 Tables and Constraints

238

The TIMESTAMP data type contains a date component and a time component that

is granular to fractions of a second. When you define a TIMESTAMP, you can specify

the fractional second precision component. For instance, if you wanted five digits of

fractional precision to the right of the decimal point, you would specify that as

TIMESTAMP(5)

The maximum fractional precision is 9; the default is 6. If you specify 0 fractional

precision, then you have the equivalent of the DATE data type.

The TIMESTAMP data type comes in two additional variations: TIMESTAMP WITH TIME

ZONE and TIMESTAMP WITH LOCAL TIME ZONE. These are time zone–aware data types,

meaning that when the user selects the data, the time value is adjusted to the time zone

of the user’s session.

Oracle also provides an INTERVAL data type. This is meant to store a duration, or

interval, of time. There are two types: INTERVAL YEAR TO MONTH and INTERVAL DAY TO

SECOND. Use the former when precision to the year and month is required. Use the latter

when you need to store interval data granular to the day and second.

CHOOSING YOUR INTERVAL TYPE

When choosing an interval type, let your choice be driven by the level of granularity you desire

in your results. For example, you can use INTERVAL DAY TO SECOND to store intervals

several years in length—it is just that you will express such intervals in terms of days, perhaps

of several hundreds of days. If you record only a number of years and months, then you can

never actually get to the correct number of days, because the number of days represented by

a year or a month depends on which specific year and month are under discussion.

Similarly, if you need granularity in terms of months, you can’t back into the correct number of

months based on the number of days. So, choose the type to match the granularity needed in

your application.

�RAW
The RAW data type allows you to store binary data in a column. This type of data is

sometimes used for storing globally unique identifiers or small amounts of encrypted

data.

Chapter 7 Tables and Constraints

239

Note  Prior to Oracle Database 12c, the maximum size for a RAW column
was 2,000 bytes. As of Oracle Database 12c, you can declare a RAW to have a
maximum size of 32,767 bytes. If you have large amounts of binary data to store,
then use a BLOB.

If you select data from a RAW column, SQL*Plus implicitly applies the built-in

RAWTOHEX function to the data retrieved. The data are displayed in hexadecimal format,

using characters 0–9 and A–F. When inserting data into a RAW column, the built-in

HEXTORAW is implicitly applied.

This is important because if you create an index on a RAW column, the optimizer may

ignore the index, as SQL*Plus is implicitly applying functions where the RAW column is

referenced in the SQL. A normal index may be of no use, whereas a function-based index

using RAWTOHEX may result in a substantial performance improvement.

�ROWID
When DBAs hear the word ROWID (row identifier), they often think of a pseudocolumn

provided with every table row that contains the physical location of the row on disk; that

is correct. However, many DBAs do not realize that Oracle supports an actual ROWID data

type, meaning that you can create a table with a column defined as the type ROWID.

There are a few practical uses for the ROWID data type. One valid application would

be if you are having problems when trying to enable a referential integrity constraint and

want to capture the ROWID of rows that violate a constraint. In this scenario, you could

create a table with a column of the type ROWID and store in it the ROWIDs of offending

records within the table. This affords you an efficient way to capture and resolve issues

with the offending data (see the section “Enabling Constraints,” later in this chapter, for

more details).

Tip  Never be tempted to use a ROWID data type and the associated ROWID of
a row within the table for the primary key value. This is because the ROWID of a
row in a table can change. For example, an ALTER TABLE...MOVE command will
potentially change every ROWID within a table. Normally, the primary key values of
rows within a table should never change. For this reason, instead of using ROWID

Chapter 7 Tables and Constraints

240

for a primary key value, use a sequence-generated nonmeaningful number (see
the section “Creating a Table with an Autoincrementing (Identity) Column,” later in
this chapter, for further discussion).

�LOB
Oracle supports storing large amounts of data in a column via a LOB data type. Oracle

supports the following types of LOBs:

•	 CLOB

•	 NCLOB

•	 BLOB

•	 BFILE

Tip  The LONG and LONG RAW data types are deprecated and should not be used.

If you have textual data that do not fit within the confines of a VARCHAR2, then you

should use a CLOB to store these data. A CLOB is useful for storing large amounts of

character data, such as log files. An NCLOB is similar to a CLOB but allows for information

encoded in the nation character set of the database.

BLOBs are large amounts of binary data that usually are not meant to be human

readable. Typical BLOB data include images, audio, and video files.

CLOBs, NCLOBs, and BLOBs are known as internal LOBs. This is because they are stored

inside the Oracle database. These data types reside within data files associated with the

database.

BFILEs are known as external LOBs. BFILE columns store a pointer to a file on the OS

that is outside the database. When it is not feasible to store a large binary file within the

database, then use a BFILE. BFILEs do not participate in database transactions and are

not covered by Oracle security or backup and recovery. If you need those features, then

use a BLOB and not a BFILE.

Tip  See Chapter 11 for a full discussion of LOBs.

Chapter 7 Tables and Constraints

241

�JSON
Previous versions of Oracle had procedures to be able to convert table data into JSON or

read JSON into the database. The JSON can be put into the database tables with JSON

columns. The schema or any other details about the JSON data does not need to be

known, and it can be stored in the table with other data and queried using SQL.

Here is an example to create a table with a JSON column:

SQL> CREATE TABLE dept

(deptno NUMBER(10)

,dname VARCHAR2(14 CHAR)

,dprojects VARCHAR2(32767)

CONSTRAINT ensure_json CHECK (dprojects is JSON));

JSON can be inserted into the column with the other columns using an SQL INSERT

statement, and the JSON data can be queried also using SQL.

SELECT dept.deptno, dept.dprojects.projectID, dept.dprojects.projectName

from dept;

This will pull out of the JSON data the projectID and projectName for each of the

projects contained in the data. There is definitely more to working with JSON, and there

are packages to make handling the data in the database simplified. It allows for data APIs

in JSON to be pulled and put into the database. Storing the JSON data in a column will

allow for simple queries to be run against the database to work with other data columns.

�Creating a Table
The number of table features expands with each new version of Oracle. Consider this:

the 12c version of the Oracle SQL Language Reference Guide presents more than 80

pages of syntax associated with the CREATE TABLE statement. Moreover, the ALTER TABLE

statement takes up another 90-plus pages of details related to table maintenance. For

most situations, you typically need to use only a fraction of the table options available.

Listed next are the general factors that you should consider when creating a table:

•	 Type of table (heap organized, temporary, index organized,

partitioned, and so on)

•	 Naming conventions

Chapter 7 Tables and Constraints

242

•	 Column data types and sizes

•	 Constraints (primary key, foreign keys, and so on)

•	 Index requirements (see Chapter 8 for details)

•	 Initial storage requirements

•	 Special features (virtual columns, read-only, parallel, compression,

no logging, invisible columns, and so on)

•	 Growth requirements

•	 Tablespace(s) for the table and its indexes

Before you run a CREATE TABLE statement, you need to give some thought to each

item in the previous list. To that end, DBAs often use data modeling tools to help manage

the creation of DDL scripts that are used to make database objects. Data modeling tools

allow you to define visually tables and relationships and the underlying database features.

�Creating a Heap-Organized Table
You use the CREATE TABLE statement(s), and data types and lengths associated with the

columns. The Oracle default table type is heap organized. The term heap means that the

data are not stored in a specific order in the table (instead, they’re a heap of data). Here

is a simple example of creating a heap-organized table:

SQL> CREATE TABLE dept

(deptno NUMBER(10)

,dname VARCHAR2(14 CHAR)

,loc VARCHAR2(14 CHAR));

If you do not specify a tablespace, then the table is created in the default permanent

tablespace of the user that creates the table. Allowing the table to be created in the

default permanent tablespace is fine for a few small test tables. For anything more

sophisticated, you should explicitly specify the tablespace in which you want tables

created. For reference (in future examples), here are the creation scripts for two sample

tablespaces: HR_DATA and HR_INDEX:

SQL> CREATE TABLESPACE hr_data

 DATAFILE '/u01/dbfile/O18C/hr_data01.dbf' SIZE 1000m

 EXTENT MANAGEMENT LOCAL

Chapter 7 Tables and Constraints

243

 UNIFORM SIZE 512k SEGMENT SPACE MANAGEMENT AUTO;

--

SQL> CREATE TABLESPACE hr_index

 DATAFILE '/u01/dbfile/O18C/hr_index01.dbf' SIZE 100m

 EXTENT MANAGEMENT LOCAL

 UNIFORM SIZE 512k SEGMENT SPACE MANAGEMENT AUTO;

Usually, when you create a table, you should also specify constraints, such as the

primary key. The following code shows the most common features you use when

creating a table. This DDL defines primary keys, foreign keys, tablespace information,

and comments:

SQL> CREATE TABLE dept

(deptno NUMBER(10)

,dname VARCHAR2(14 CHAR)

,loc VARCHAR2(14 CHAR)

,CONSTRAINT dept_pk PRIMARY KEY (deptno)

 USING INDEX TABLESPACE hr_index

) TABLESPACE hr_data;

--

SQL> COMMENT ON TABLE dept IS 'Department table';

--

SQL> CREATE UNIQUE INDEX dept_uk1 ON dept(dname)

TABLESPACE hr_index;

--

SQL> CREATE TABLE emp

(empno NUMBER(10)

,ename VARCHAR2(10 CHAR)

,job VARCHAR2(9 CHAR)

,mgr NUMBER(4)

,hiredate DATE

,sal NUMBER(7,2)

,comm NUMBER(7,2)

,deptno NUMBER(10)

,CONSTRAINT emp_pk PRIMARY KEY (empno)

 USING INDEX TABLESPACE hr_index

) TABLESPACE hr_data;

Chapter 7 Tables and Constraints

244

--

SQL> COMMENT ON TABLE emp IS 'Employee table';

--

SQL> ALTER TABLE emp ADD CONSTRAINT emp_fk1

FOREIGN KEY (deptno)

REFERENCES dept(deptno);

--

SQL> CREATE INDEX emp_fk1 ON emp(deptno)

TABLESPACE hr_index;

When creating a table, I usually do not specify table-level physical space properties.

The table inherits its space properties from the tablespace in which it is created. This

simplifies administration and maintenance. If you have tables that require different

physical space properties, then you can create separate tablespaces to hold tables with

differing needs. For instance, you might create a HR_DATA_LARGE tablespace with extent

sizes of 16MB and a HR_DATA_SMALL tablespace with extent sizes of 128KB and choose

where a table is created based on its storage requirements. See Chapter 4 for details

regarding the creation of tablespaces.

Table 7-2 lists some guidelines that are not hard-and-fast rules; adapt them

as needed for your environment. Some of these guidelines may seem like obvious

suggestions. However, after inheriting many databases over the years, I have seen each of

these recommendations violated in some way that makes database maintenance difficult

and unwieldy.

Table 7-2.  Guidelines to Consider When Creating Tables

Recommendation Reasoning

Use standards when naming tables, columns,

constraints, triggers, indexes, and so on.

Helps document the application and simplifies

maintenance.

If a column always contains numeric data,

make it a number data type.

Enforces a business rule and allows for

the greatest flexibility, performance, and

consistency when using Oracle SQL math

functions (which may behave differently for a

“01” character versus a “1” number).

(continued)

Chapter 7 Tables and Constraints

245

Table 7-2.  (continued)

Recommendation Reasoning

If you have a business rule that defines the length

and precision of a number field, then enforce it;

for example, NUMBER(7,2). If you do not have a

business rule, make it NUMBER(38).

Enforces a business rule and keeps the data

cleaner.

For character data that are of variable length, use

VARCHAR2 (and not VARCHAR).

Follows Oracle’s recommendation of using

VARCHAR2 for character data (instead of

VARCHAR). The Oracle documentation states

that in the future, VARCHAR will be redefined as

a separate data type.

For character data, specify the size in CHAR; for

example, VARCHAR2(30 CHAR).

When working with multibyte data, you will

get more predictable results, as multibyte

characters are usually stored in more than1B.

If you have a business rule that specifies the

maximum length of a column, then use that

length, as opposed to making all columns

VARCHAR2(4000).

Enforces a business rule and keeps the data

cleaner.

Use DATE and TIMESTAMP data types

appropriately.

Enforces a business rule, ensures that the data

are of the appropriate format, and allows for

the greatest flexibility when using SQL date

functions.

Specify a separate tablespace for the table and

indexes. Let the table and indexes inherit storage

attributes from the tablespaces.

Simplifies administration and maintenance.

Most tables should be created with a primary key. Enforces a business rule and allows you to

uniquely identify each row.

Create a numeric surrogate key to be the primary

key for each table. Use the identity column for the

surrogate key or a sequence to populate.

Makes joins easier and more efficient.

(continued)

Chapter 7 Tables and Constraints

246

�Implementing Virtual Columns
With Oracle Database 11g and higher, you can create a virtual column as part of your

table definition. A virtual column is based on one or more existing columns from the

same table or a combination of constants, SQL functions, and user-defined PL/SQL

functions, or both. Virtual columns are not stored on disk; they are evaluated at runtime,

when the SQL query executes. Virtual columns can be indexed and have stored statistics.

Recommendation Reasoning

Create primary key constraints out of line. Allows you more flexibility when creating the

primary key, especially if you have a situation

in which the primary key consists of multiple

columns.

Create a unique key for the logical user—a

recognizable combination of columns that makes

a row one of a kind.

Enforces a business rule and keeps the data

cleaner.

Create comments for the tables and columns. Helps document the application and eases

maintenance.

Avoid LOB data types if possible. Prevents maintenance issues associated with

LOB columns, such as unexpected growth and

performance issues when copying.

If a column should always have a value, then

enforce it with a NOT NULL constraint.

Enforces a business rule and keeps the data

cleaner.

Create audit-type columns, such as CREATE_DTT

and UPDATE_DTT, which are automatically

populated with default values or triggers, or both.

Helps with maintenance and determining when

data were inserted or updated, or both. Other

types of audit columns to consider include the

users that inserted and updated the row.

Use check constraints where appropriate. Enforces a business rule and keeps the data

cleaner.

Define foreign keys where appropriate. Enforces a business rule and keeps the data

cleaner.

Table 7-2.  (continued)

Chapter 7 Tables and Constraints

247

Prior to Oracle Database 11g, you could simulate a virtual column via a SELECT

statement or in a view definition. For example, this next SQL SELECT statement generates

a virtual value when the query is executed:

SQL> select inv_id, inv_count,

 case when inv_count <= 100 then 'GETTING LOW'

 when inv_count > 100 then 'OKAY'

 end

from inv;

Why use a virtual column? The advantages of doing so are as follows:

•	 You can create an index on a virtual column; internally, Oracle

creates a function-based index.

•	 You can store statistics in a virtual column that can be used by the

cost-based optimizer (CBO).

•	 Virtual columns can be referenced in WHERE clauses.

•	 Virtual columns are permanently defined in the database; there is

one central definition of such a column.

Here is an example of creating a table with a virtual column:

SQL> create table inv(

 inv_id number

,inv_count number

,inv_status generated always as (

 case when inv_count <= 100 then 'GETTING LOW'

 when inv_count > 100 then 'OKAY'

 end)

);

In the prior code listing, specifying GENERATED ALWAYS is optional. For example, this

listing is equivalent to the previous one:

SQL> create table inv(

 inv_id number

,inv_count number

,inv_status as (

Chapter 7 Tables and Constraints

248

 case when inv_count <= 100 then 'GETTING LOW'

 when inv_count > 100 then 'OKAY'

 end)

);

I prefer to add GENERATED ALWAYS because it reinforces in my mind that the column

is always virtual. The GENERATED ALWAYS helps document inline what you’ve done. This

aids in maintenance for other DBAs who come along long after you.

To view values generated by virtual columns, first insert some data into the table:

SQL> insert into inv (inv_id, inv_count) values (1,100);

Next, select from the table to view the generated value:

SQL> select * from inv;

Here is some sample output:

 INV_ID INV_COUNT INV_STATUS

---------- ---------- -----------

 1 100 GETTING LOW

Note  If you insert data into the table, nothing is stored in a column set to
GENERATED ALWAYS AS. The virtual value is generated when you select from the
table.

You can also alter a table to contain a virtual column:

SQL> alter table inv add(

inv_comm generated always as(inv_count * 0.1) virtual

);

And, you can change the definition of an existing virtual column:

SQL> alter table inv modify inv_status generated always as(

case when inv_count <= 50 then 'NEED MORE'

 when inv_count >50 and inv_count <=200 then 'GETTING LOW'

 when inv_count > 200 then 'OKAY'

end);

Chapter 7 Tables and Constraints

249

You can access virtual columns in SQL queries (DML or DDL). For instance, suppose

you want to update a permanent column based on the value in a virtual column:

SQL> update inv set inv_count=100 where inv_status='OKAY';

A virtual column itself can’t be updated via the SET clause of an UPDATE statement.

However, you can reference a virtual column in the WHERE clause of an UPDATE or DELETE

statement.

Optionally, you can specify the data type of a virtual column. If you omit the data

type, Oracle derives it from the expression you use to define the virtual column.

Several caveats are associated with virtual columns:

•	 You can only define a virtual column on a regular, heap-organized

table. You cannot define a virtual column on an index-organized table,

an external table, a temporary table, object tables, or cluster tables.

•	 Virtual columns cannot reference other virtual columns.

•	 Virtual columns can only reference columns from the table in which

the virtual column is defined.

•	 The output of a virtual column must be a scalar value (i.e., a single

value, not a set of values).

To view the definition of a virtual column, use the DBMS_METADATA package to see the

DDL associated with the table. If you are selecting from SQL*Plus, you need to set the

LONG variable to a value large enough to show all data returned:

SQL> set long 10000;

SQL> select dbms_metadata.get_ddl('TABLE','INV') from dual;

Here is a snippet of the output:

 SQL> CREATE TABLE "INV_MGMT"."INV"

 ("INV_ID" NUMBER,

 "INV_COUNT" NUMBER,

 "INV_STATUS" VARCHAR2(11) GENERATED ALWAYS AS (CASE WHEN "INV_COUNT"<=50

THEN

'NEED MORE' WHEN ("INV_COUNT">50 AND "INV_COUNT"<=200) THEN 'GETTING LOW'

WHEN "

INV_COUNT">200 THEN 'OKAY' END) VIRTUAL ...

Chapter 7 Tables and Constraints

250

�Implementing Invisible Columns
Starting with Oracle Database 12c, you can create invisible columns. When a column is

invisible, it cannot be viewed via

•	 DESCRIBE command

•	 SELECT * (to access all of a table’s columns)

•	 %ROWTYPE (in PL/SQL)

•	 Describes within an Oracle Call Interface (OCI)

However, the column can be accessed if explicitly specified in a SELECT clause or

referenced directly in a DML statement (INSERT, UPDATE, DELETE, or MERGE). Invisible

columns can also be indexed (just like visible columns).

The main use for an invisible column is to ensure that adding a column to a table

will not disrupt any of the existing application code. If the application code does not

explicitly access the invisible column, then it appears to the application as if the column

does not exist.

A table can be created with invisible columns, or a column can be added or altered

so as to be invisible. A column that is defined as invisible can also be altered so as to be

visible. Here is an example of creating a table with an invisible column:

SQL> create table inv

(inv_id number

,inv_desc varchar2(30 char)

,inv_profit number invisible);

Now, when the table is described, note that the invisible column is not displayed:

SQL> desc inv

 Name Null? Type

 ---------------------------------- -------- ----------------------------

 INV_ID NUMBER

 INV_DESC VARCHAR2(30 CHAR)

A column that has been defined as invisible is still accessible if you specify it directly

in a SELECT statement or any DML operations. For example, when selecting from a table,

you can view the invisible column by specifying it in the SELECT clause:

SQL> select inv_id, inv_desc, inv_profit from inv;

Chapter 7 Tables and Constraints

251

Note  When you create a table that has invisible columns, at least one column
must be visible.

�Making Read-Only Tables
You can place individual tables in read-only mode. Doing so prevents any INSERT,

UPDATE, or DELETE statements from running against a table. An alternate way to do

this is to make the tablespace read-only and use this table for the tables that are static

for read-only.

There are several reasons why you may require the read-only feature at the table

level:

•	 The data in the table are historical and should never be updated in

normal circumstances.

•	 You are performing some maintenance on the table and want to

ensure that it does not change while it is being updated.

•	 You want to drop the table, but before you do, you want to better

determine if any users are attempting to update the table.

Use the ALTER TABLE statement to place a table in read-only mode:

SQL> alter table inv read only;

You can verify the status of a read-only table by issuing the following query:

SQL> select table_name, read_only from user_tables where read_only='YES';

To modify a read-only table to read/write, issue the following SQL:

SQL> alter table inv read write;

Note  The read-only table feature requires that the database initialization
COMPATIBLE parameter be set to 11.1.0 or higher.

Chapter 7 Tables and Constraints

252

�Understanding Deferred-Segment Creation
Starting with Oracle Database 11g Release 2, when you create a table, the creation of the

associated segment is deferred until the first row is inserted into the table. This feature

has some interesting implications. For instance, if you have thousands of objects that

you are initially creating for an application (such as when you first install it), no space

is consumed by any of the tables (or associated indexes) until data are inserted into the

application tables. This means that the initial DDL runs more quickly when you create a

table, but the first INSERT statement runs slightly slower.

To illustrate the concept of deferred segments, first create a table:

SQL> create table inv(inv_id number, inv_desc varchar2(30 CHAR));

You can verify that the table has been created by inspecting USER_TABLES:

SQL> select

 table_name

,segment_created

from user_tables

where table_name='INV';

Here is some sample output:

TABLE_NAME SEG

------------------------------ ---

INV NO

Next, query USER_SEGMENTS to verify that a segment has not yet been allocated for the

table:

SQL> select

 segment_name

,segment_type

,bytes

from user_segments

where segment_name='INV'

and segment_type='TABLE';

Here is the corresponding output for this example:

no rows selected

Chapter 7 Tables and Constraints

253

Now, insert a row into a table:

SQL> insert into inv values(1,'BOOK');

Rerun the query, selecting from USER_SEGMENTS, and note that a segment has been

created:

SEGMENT_NAME SEGMENT_TYPE BYTES

--------------- ------------------ ----------

INV TABLE 65536

If you are used to working with older versions of Oracle, the deferred–segment

creation feature can cause confusion. For example, if you have space-related monitoring

reports that query DBA_SEGMENTS or DBA_EXTENTS, be aware that these views are not

populated for a table or any indexes associated with a table until the first row is inserted

into the table.

Note  You can disable the deferred-segment creation feature by setting the
database initialization parameter DEFERRED_SEGMENT_CREATION to FALSE.
The default for this parameter is TRUE.

�Creating a Table with an Autoincrementing (Identity)
Column
Starting with Oracle Database 12c, you can define a column that is automatically

populated and incremented when inserting data. This feature is ideal for automatically

populating primary key columns.

Tip  Prior to Oracle Database 12c, you would have to create a sequence manually
and then access the sequence when inserting into the table. Sometimes, DBAs
would create triggers on tables to simulate an autoincrementing column based on
a sequence (see Chapter 9 for details).

You define an autoincrementing (identity) column with the GENERATED AS IDENTITY

clause. This example creates a table with primary key column that will be automatically

populated and incremented:

Chapter 7 Tables and Constraints

254

SQL> create table inv(

 inv_id number generated as identity

,inv_desc varchar2(30 char));

--

SQL> alter table inv add constraint inv_pk primary key (inv_id);

Now, you can populate the table without having to specify the primary key value:

SQL> insert into inv (inv_desc) values ('Book');

SQL> insert into inv (inv_desc) values ('Table');

Selecting from the table shows that the INV_ID column has been automatically

populated:

SQL> select * from inv;

Here is some sample output:

 INV_ID INV_DESC

---------- ------------------------------

 1 Book

 2 Table

When you create an identity column, Oracle automatically creates a sequence and

associates the sequence with the column. You can view the sequence information in

USER_SEQUENCES:

SQL> select sequence_name, min_value, increment_by from user_sequences;

Here is some sample output for this example:

SEQUENCE_NAME MIN_VALUE INCREMENT_BY

-------------------- ---------- ------------

ISEQ$$_43216 1 1

You can identify identity columns via this query:

SQL> select table_name, identity_column

from user_tab_columns

where identity_column='YES';

Chapter 7 Tables and Constraints

255

When creating a table with an identity column (such as in the prior example), you

can’t directly specify a value for the identity column; for example, if you try this:

SQL> insert into inv values(3,'Chair');

you will receive an error:

ORA-32795: cannot insert into a generated always identity column

If, for some reason, you need to occasionally insert values into an identity column,

then use the following syntax when creating:

SQL> create table inv(

 inv_id number generated by default on null as identity

,inv_desc varchar2(30 char));

Because the underlying mechanism for populating an identity column is a sequence,

you have some control over how the sequence is created (just like you would if you

manually created a sequence). For instance, you can specify at what number to start the

sequence and by how much the sequence increments each time. This example specifies

that the underlying sequence starts at the number 50 and increments by two each time:

SQL> create table inv(

 inv_id number generated as identity (start with 50 increment by 2)

,inv_desc varchar2(30 char));

There are some caveats to be aware of when using autoincrementing (identity)

columns:

•	 Only one per table is allowed.

•	 They must be numeric.

•	 They cannot have default values.

•	 NOT NULL and NOT DEFERRABLE constraints are implicitly applied.

•	 CREATE TABLE ... AS SELECT will not inherit identity column

properties.

Also keep in mind that after inserting into a column that is autoincremented, if you

issue a rollback, the transaction is rolled back, but not the autoincremented values from

the sequence. This is the expected behavior of a sequence. You can roll back such an

insert, but the sequence values are used and gone.

Chapter 7 Tables and Constraints

256

Tip  See Chapter 9 for details on how to manage a sequence.

�Allowing for Default Parallel SQL Execution
If you work with large tables, you may want to consider creating your tables as PARALLEL.

This instructs Oracle to set the degree of parallelism for queries and any subsequent

INSERT, UPDATE, DELETE, MERGE, and query statements. This example creates a table with

a PARALLEL clause of 2:

SQL> create table inv

(inv_id number,

 inv_desc varchar2(30 char),

 create_dtt date default sysdate)

parallel 2;

You can specify PARALLEL, NOPARALLEL, or PARALLEL N. If you do not specify N, Oracle

sets the degree of parallelism based on the PARALLEL_THREADS_PER_CPU initialization

parameter. You can verify the degree of parallelism with this query:

SQL> select table_name, degree from user_tables;

The main issue to be aware of here is that if a table has been created with a default

degree of parallelism, any subsequent queries will execute with parallel threads. You

may wonder why a query or a DML statement is executing in parallel (without explicitly

invoking a parallel operation).

WHERE ARE ALL THE P_0 PROCESSES COMING FROM?

I once got a call from a production support person who reported that nobody could connect to

the database because of an ORA-00020 maximum number of processes error. I logged

into the box and noted that there were hundreds of ora_p parallel query processes running.

I had to kill some of the processes manually so that I could connect to the database. Upon

further inspection, I traced the parallel query sessions to an SQL statement and table. The

table, in this case, had been created with a default parallel degree of 64 (do not ask me why),

which in turn spawned hundreds of processes and sessions when the table was queried.

Chapter 7 Tables and Constraints

257

This maxed out the number of allowed connections to the database and caused the issue. This

can be resolved with setting the parallel to NOPARALLEL or to 1. Also, the resource manager

will limit the number of connections allowed.

You can also alter a table to modify its default degree of parallelism:

SQL> alter table inv parallel 1;

With Oracle 18c, the resource parameter PQ_TIMEOUT_ACTION is available to

timeout parallel queries that are inactive. This will allow parallel queries with high

priority to have the needed resources to execute. There is also a simpler way to cancel

the runaway SQL without having to manually kill the processes using ALTER SYSTEM

CANCEL SQL statement.

Tip  Keep in mind that PARALLEL_THREADS_PER_CPU is platform dependent
and can vary from a development environment to a production environment.
Therefore, if you do not specify the degree of parallelism, the behavior of parallel
operations can vary, depending on the environment.

�Compressing Table Data
As your database grows, you may want to consider table level compression. Compressed

data have the benefit of using less disk space and less memory and reduced I/O. Queries

that read compressed data potentially run faster because there are fewer blocks to

process. However, CPU usage increases as the data are compressed and uncompressed

as writes and reads occur, so there is a tradeoff.

Starting with Oracle Database 12c, there are four types of compression available:

•	 Basic compression

•	 Advanced row compression (previously referred to as OLTP

compression)

•	 Warehouse compression (hybrid columnar compression)

•	 Archive compression (hybrid columnar compression)

Chapter 7 Tables and Constraints

258

Basic compression is enabled with the COMPRESS or COMPRESS BASIC clause (they are

synonymous). This example creates a table with basic compression:

SQL> create table inv

(inv_id number,

 inv_desc varchar2(300 char),

 create_dtt timestamp)

compress basic;

Basic compression provides compression as data are direct-path inserted into the

table. By default, tables created with COMPRESS BASIC have a PCTFREE setting of 0. You

can override this by specifying PCTFREE when creating the table.

Note  Basic compression requires the Oracle Enterprise Edition, but it does not
require an extra license. Other types of compression are additional license options
for the database. As with options of the database, evaluation needs to be done for
storage cost and compression ratio to provide the right cost analysis of this option.

Advanced row compression is enabled with the ROW STORE COMPRESS ADVANCED

clause:

SQL> create table inv

(inv_id number,

 inv_desc varchar2(300 char),

 create_dtt timestamp)

row store compress advanced;

Advanced row compression provides compression when initially inserting data into

the table as well as in any subsequent DML operations. You can verify the compression

for a table via the following SELECT statement:

SQL> select table_name, compression, compress_for

from user_tables

where table_name='INV';

Chapter 7 Tables and Constraints

259

Here is some sample output:

TABLE_NAME COMPRESS COMPRESS_FOR

-------------------- -------- ------------------------------

INV ENABLED ADVANCED

Note  OLTP table compression is a feature of the Oracle Advanced Compression
option. This option requires an additional license from Oracle and is only available
with the Oracle Enterprise Edition.

You can also create a tablespace with the compression clause. Any table created in

that tablespace will inherit the tablespace compression settings. For example, here is

how to set the default level of compression for a tablespace:

SQL> CREATE TABLESPACE hr_data

 DEFAULT ROW STORE COMPRESS ADVANCED

 DATAFILE '/u01/dbfile/O12C/hr_data01.dbf' SIZE 100m

 EXTENT MANAGEMENT LOCAL

 UNIFORM SIZE 512k SEGMENT SPACE MANAGEMENT AUTO;

If you have a table that already exists, you can alter it to allow compression (either

basic or advanced):

SQL> alter table inv row store compress advanced;

Note  Oracle does not support compression for tables with more than 255
columns.

Altering to allow compression does not compress the existing data in the table. You

will need to rebuild the table with Data Pump or move the table to compress the data

that were in it prior to enabling compression:

SQL> alter table inv move;

Chapter 7 Tables and Constraints

260

Note  If you move the table, then you will also need to rebuild any associated
indexes.

You can disable compression via the NOCOMPRESS clause. This does not affect

existing data within the table. Rather, it affects future inserts (basic and advanced row

compression) and future DML (advanced row compression); for example,

SQL> alter table inv nocompress;

Oracle also has a warehouse and archive hybrid columnar compression feature that is

available when using certain types of storage (such as Exadata). This type of compression

is enabled with the COLUMN STORE COMPRESS FOR QUERY LOW|HIGH or COLUMN STORE

COMPRESS FOR ARCHIVE LOW|HIGH clause. For more details regarding this type of

compression, see the Oracle Technology Network web site (http://otn.oracle.com).

�Avoiding Redo Creation
When you are creating a table, you have the option of specifying the NOLOGGING clause.

The NOLOGGING feature can greatly reduce the amount of redo generation for certain

types of operations. Sometimes, when you are working with large amounts of data, it

is desirable, for performance reasons, to reduce the redo generation when you initially

create and insert data into a table.

The downside to eliminating redo generation is that you cannot recover the data

created via NOLOGGING in the event a failure occurs after the data are loaded (and

before you can back up the table). If you can tolerate some risk of data loss, then use

NOLOGGING, but back up the table soon after the data are loaded. If your data are critical,

then do not use NOLOGGING. If your data can be easily re-created, then NOLOGGING is

desirable when you are trying to improve performance of large data loads.

One perception is that NOLOGGING eliminates redo generation for the table for all

DML operations. That is not correct. The NOLOGGING feature never affects redo generation

for normal DML statements (regular INSERT, UPDATE, and DELETE).

The NOLOGGING feature can significantly reduce redo generation for the following

types of operations:

•	 SQL*Loader direct-path load

•	 Direct-path INSERT /*+ append */

Chapter 7 Tables and Constraints

http://otn.oracle.com

261

•	 CREATE TABLE AS SELECT

•	 ALTER TABLE MOVE

•	 Creating or rebuilding an index

You need to be aware of some quirks (features) when using NOLOGGING. If your

database is in FORCE LOGGING mode, then redo is generated for all operations, regardless

of whether you specify NOLOGGING. Likewise, when you are loading a table, if the table has

a referential foreign key constraint defined, then redo is generated regardless of whether

you specify NOLOGGING.

You can specify NOLOGGING at one of the following levels:

•	 Statement

•	 CREATE TABLE or ALTER TABLE

•	 CREATE TABLESPACE or ALTER TABLESPACE

I prefer to specify the NOLOGGING clause at the statement or table level. In these

scenarios, it is obvious to the DBA executing the statement or DDL that NOLOGGING

is used. If you specify NOLOGGING at the tablespace level, then each DBA who creates

objects within that tablespace must be aware of this tablespace-level setting. In teams

with multiple DBAs, it is easy for one DBA to be unaware that another DBA has created a

tablespace with NOLOGGING.

This example first creates a table with the NOLOGGING option:

SQL> create table inv(inv_id number)

tablespace users

nologging;

Next, do a direct-path insert with some test data, and commit the data:

SQL> insert /*+ append */ into inv select level from dual

connect by level <= 10000;

--

SQL> commit;

What happens if you have a media failure after you have populated a table in

NOLOGGING mode (and before you have made a backup of the table)? After a restore and

recovery operation, it will appear that the table has been restored:

Chapter 7 Tables and Constraints

262

SQL> desc inv

Name Null? Type

---------------------------------- -------- ----------------------------

INV_ID NUMBER

However, try to execute a query that scans every block in the table:

SQL> select * from inv;

Here, an error is thrown, indicating that there is logical corruption in the data file:

ORA-01578: ORACLE data block corrupted (file # 5, block # 203)

ORA-01110: data file 5: '/u01/dbfile/O18C/users01.dbf'

ORA-26040: Data block was loaded using the NOLOGGING option

In other words, the data are unrecoverable because the redo does not exist to restore

them. Again, the NOLOGGING option is suitable for large batch loading of data that can

easily be reproduced in the event a failure occurs before a backup of the database can be

taken after a NOLOGGING operation.

If you specify a logging clause at the statement level, it overrides any table or

tablespace setting. If you specify a logging clause at the table level, it sets the default

mode for any statements that do not specify a logging clause and overrides the logging

setting at the tablespace. If you specify a logging clause at the tablespace level, it sets the

default logging for any CREATE TABLE statements that do not specify a logging clause.

You verify the logging mode of the database as follows:

SQL> select name, log_mode, force_logging from v$database;

The next statement verifies the logging mode of a tablespace:

SQL> select tablespace_name, logging from dba_tablespaces;

And, this example verifies the logging mode of a table:

SQL> select owner, table_name, logging from dba_tables where logging = 'NO';

You can view the effects of NOLOGGING in a few different ways. One way is to enable

autotracing with statistics and view the redo size:

SQL> set autotrace trace statistics;

Chapter 7 Tables and Constraints

263

Then, run a direct-path INSERT statement, and view the redo size statistic:

insert /*+ append */ into inv select level from dual

connect by level <= 10000;

Here is a snippet of the output:

Statistics

--

 13772 redo size

With logging disabled, for direct-path operations, you should see a much smaller

redo size number than with a regular INSERT statement, such as,

SQL> insert into inv select level from dual

connect by level <= 10000;

Here is the partial output, indicating that the redo size is much greater:

Statistics

--

 159152 redo size

Another method for determining the effects of NOLOGGING is to measure the amount

of redo generated for an operation with logging enabled versus operating in NOLOGGING

mode. If you have a development environment that you can test in, you can monitor how

often the redo logs switch while the operation is taking place. Another simple test is to

time how long the operation takes with and without logging. The operation performed

in NOLOGGING mode should be faster (because a minimal amount of redo is being

generated).

�Creating a Table from a Query
Sometimes. it is convenient to create a table based on the definition of an existing table.

For instance, say you want to create a quick backup of a table before you modify the

table’s structure or data. Use the CREATE TABLE AS SELECT statement (CTAS) this; for

example,

create table inv_backup

as select * from inv;

Chapter 7 Tables and Constraints

264

The previous statement creates an identical table, complete with data. If you do not

want the data included—you just want the structure of the table replicated—then provide

a WHERE clause that always evaluates to false (in this example, 1 will never equal 2):

SQL> create table inv_empty

as select * from inv

where 1=2;

You can also specify that no redo be logged when a CTAS table is created. For large

data sets, this can reduce the amount of time required to create the table:

SQL> create table inv_backup

nologging

as select * from inv;

Be aware that using the CTAS technique with the NOLOGGING clause creates the table

as NOLOGGING and does not generate the redo required to recover the data that populate

the table as the result of the SELECT statement. Also, if the tablespace (in which the

CTAS table is being created) is defined as NOLOGGING, then no redo is generated. In these

scenarios, you can’t restore and recover your table in the event a failure occurs before

you are able to back up the table. If your data are critical, then do not use the NOLOGGING

clause.

You can also specify parallelism and storage parameters. Depending on the number

of CPUs, you may see some performance gains:

SQL> create table inv_backup

nologging

tablespace hr_data

parallel 2

as select * from inv;

Note  The CTAS technique does not create any indexes, constraints, or triggers.
You have to create indexes and triggers separately if you need those objects from
the original table.

Chapter 7 Tables and Constraints

265

ENABLING DDL LOGGING

Oracle allows you to enable the logging of DDL statements to a log file. This type of logging

is switched on with the ENABLE_DDL_LOGGING parameter (the default is FALSE). You can

set this at the session or system level. This feature provides you with an audit trail regarding

which DDL statements have been issued and when they were run. Here is an example of

setting this parameter at the system level:

SQL> alter system set enable_ddl_logging=true scope=both;

After this parameter is set to TRUE, DDL statements will be logged to a log file. Oracle does not

log every type of DDL statement, only the most common ones to a log file. The exact location

of the DDL logging file and number of files vary by database version. The location (directory

path) of this file can be determined via this query:

SQL> select value from v$diag_info where name='Diag Alert';

VALUE

--

/ora01/app/oracle/diag/rdbms/o18c/O18C/alert

Depending on the type of auditing, there are multiple files that capture DDL logging. To find

these files, first determine the location of your diagnostic home directory:

SQL> select value from v$diag_info where name='ADR Home';

VALUE

/ora01/app/oracle/diag/rdbms/o18c/O18C

Now, change your current working directory to the prior directory and the subdirectory of log;

for example,

$ cd /ora01/app/oracle/diag/rdbms/o18c/O18C/log

Within this directory, there will be a file with the format ddl_<SID>.log. This contains a log

of DDL statements that have been issued after DDL logging has been enabled. You can also

view DDL logging in the log.xml file. This file is located in the ddl subdirectory beneath the

previously mentioned log directory; for example,

$ cd /ora01/app/oracle/diag/rdbms/o18c/O18C/log/ddl

Once you navigate to the prior directory, you can view the log.xml file with an OS utility such as vi.

Chapter 7 Tables and Constraints

266

�Modifying a Table
Altering a table is a common task. New requirements frequently mean that you need

to rename, add, drop, or change column data types. In development environments,

changing a table can be a trivial task: you do not often have large quantities of data or

hundreds of users simultaneously accessing a table. However, for active production

systems, you need to understand the ramifications of trying to change tables that are

currently being accessed or that are already populated with data, or both.

�Obtaining the Needed Lock
When you modify a table, you must have an exclusive lock on the table. One issue is that

if a DML transaction has a lock on the table, you cannot alter it. In this situation, you

receive this error:

ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

The prior error message is somewhat confusing in that it leads you to believe that

you can resolve the problem by acquiring a lock with NOWAIT. However, this is a generic

message that is generated when the DDL you are issuing cannot obtain an exclusive lock

on the table. In this situation, you have a few options:

•	 After issuing the DDL command and receiving the ORA-00054

error, rapidly press the forward slash (/) key repeatedly in hopes of

modifying the table between transactions.

•	 Wait for a maintenance window to schedule the change the table to

not lock user out of the table. Shut down the database and start it in

restricted mode, modify the table, and then open the database for

normal use.

•	 Set the DDL_LOCK_TIMEOUT parameter.

The last item in the previous list instructs Oracle to repeatedly attempt to run a

DDL statement until it obtains the required lock on the table. You can set the DDL_LOCK_

TIMEOUT parameter at the system or session level. This next example instructs Oracle to

repeatedly try to obtain a lock for 100 seconds:

SQL> alter session set ddl_lock_timeout=100;

Chapter 7 Tables and Constraints

267

The default value for the system-level DDL_LOCK_TIMEOUT initialization parameter is 0.

If you want to modify the default behavior for every session in the system, issue an ALTER

SYSTEM SET statement. The following command sets the default time-out value to 10

seconds for the system:

SQL> alter system set ddl_lock_timeout=10 scope=both;

Note  There are online table operations with the DBMS_REDEFINITION package
that will allow for table changes from column types, name, size, etc., to renaming
tables. Using this package will also allow for online operations without disruption
of the database users for implementing other options. This is also a good way to
validate new procedures and table changes before making the switch.

�Renaming a Table
There are a couple of reasons for renaming a table:

•	 Make the table conform to standards

•	 Better determine whether the table is being used before you drop it

This example renames a table, from INV to INV_OLD:

SQL> rename inv to inv_old;

If successful, you should see this message:

Table renamed.

�Adding a Column
Use the ALTER TABLE ... ADD statement to add a column to a table. This example adds a

column to the INV table:

SQL> alter table inv add(inv_count number);

If successful, you should see this message:

Table altered.

Chapter 7 Tables and Constraints

268

�Altering a Column
Occasionally, you need to alter a column to adjust its size or change its data type. Use

the ALTER TABLE ... MODIFY statement to adjust the size of a column. This example

changes the size of a column to 256 characters:

SQL> alter table inv modify inv_desc varchar2(256 char);

If you decrease the size of a column, first ensure that no values exist that are greater

than the decreased size value:

SQL> select max(length(<column_name>)) from <table_name>;

When you change a column to NOT NULL, there must be a valid value for each

column. First, verify that there are no NULL values:

SQL> select <column_name> from <table_name> where <column_name> is null;

If any rows have a NULL value for the column you are modifying to NOT NULL, then

you must first update the column to contain a value. Here is an example of modifying a

column to NOT NULL:

SQL> alter table inv modify(inv_desc not null);

You can also alter the column to have a default value. The default value is used any

time a record is inserted into the table, but no value is provided for a column:

SQL> alter table inv modify(inv_desc default 'No Desc');

If you want to remove the default value of a column, then set it to NULL:

SQL> alter table inv modify(inv_desc default NULL);

Sometimes, you need to change a table’s data type; for example, a column that was

originally incorrectly defined as a VARCHAR2 needs to be changed to a NUMBER. Before you

change a column’s data type, first verify that all values for an existing column are valid

numeric values. Here is a simple PL/SQL script to do this:

SQL> create or replace function isnum(v_in varchar2)

 return varchar is

 val_err exception;

 pragma exception_init(val_err, -6502); -- char to num conv. error

Chapter 7 Tables and Constraints

269

 scrub_num number;

begin

 scrub_num := to_number(v_in);

 return 'Y';

 exception when val_err then

 return 'N';

end;

/

You can use the ISNUM function to detect whether data in a column are numeric.

The function defines a PL/SQL pragma exception for the ORA-06502 character-to-number

conversion error. When this error is encountered, the exception handler captures it

and returns an N. If the value passed in to the ISNUM function is a number, then a Y is

returned. If the value can’t be converted to a number, then an N is returned. Here is a

simple example illustrating the prior concepts:

SQL> create table stage(hold_col varchar2(30));

SQL> insert into stage values(1);

SQL> insert into stage values('x');

SQL> select hold_col from stage where isnum(hold_col)='N';

HOLD_COL

x

Similarly, when you modify a character column to a DATE or TIMESTAMP data type, it

is prudent to check first to see whether the data can be successfully converted. Here is a

function that does that:

SQL> create or replace function isdate(p_in varchar2, f_in varchar2)

return varchar is

scrub_dt date;

begin

scrub_dt := to_date(p_in, f_in);

return 'Y';

exception when others then

return 'N';

end;

/

Chapter 7 Tables and Constraints

270

When you call the ISDATE function, you need to pass it a valid date-format mask,

such as YYYYMMDD. Here is a simple example to demonstrate the prior concept:

SQL> create table stage2 (hold_col varchar2(30));

SQL> insert into stage2 values('20130103');

SQL> insert into stage2 values('03-JAN-13');

SQL> select hold_col from stage2 where isdate(hold_col,'YYYYMMDD')='N';

HOLD_COL

03-JAN-13

�Renaming a Column
There are a couple of reasons to rename a column:

•	 Sometimes, requirements change, and you may want to modify the

column name to better reflect what the column is used for.

•	 If you are planning to drop a column, it does not hurt to rename the

column first to better determine whether any users or applications

are accessing it.

Use the ALTER TABLE ... RENAME statement to rename a column:

SQL> alter table inv rename column inv_count to inv_amt;

�Dropping a Column
Tables sometimes end up having columns that are never used. This may be because the

initial requirements changed or were inaccurate. If you have a table that contains an

unused column, you should consider dropping it. If you leave an unused column in a

table, you may run into issues with future DBAs not knowing what the column is used

for, and the column can potentially consume space unnecessarily.

Before you drop a column, I recommend that you first rename it. Doing so gives you

an opportunity to determine whether any users or applications are using the column.

After you are confident the column is not being used, first make a backup of the table,

using Data Pump export, and then drop the column. These strategies provide you with

options if you drop a column and then subsequently realize that it is needed.

Chapter 7 Tables and Constraints

271

To drop a column, use the ALTER TABLE ... DROP statement:

SQL> alter table inv drop (inv_name);

Be aware that the DROP operation may take some time if the table from which you

are removing the column contains a large amount of data. This time lag may result in

the delay of transactions while the table is being modified (because the ALTER TABLE

statement locks the table). In scenarios such as this, you may want to first mark the

column unused and then later drop it, when you have a maintenance window:

SQL> alter table inv set unused (inv_name);

When you mark a column unused, it no longer shows up in the table description.

The SET UNUSED clause does not incur the overhead associated with dropping the

column. This technique allows you to quickly stop the column from being seen or used

by SQL queries or applications. Any query that attempts to access an unused column

receives the following error:

ORA-00904: ... invalid identifier

You can later drop any unused columns when you’ve scheduled some downtime for

the application. Use the DROP UNUSED clause to remove any columns marked UNUSED.

SQL> alter table inv drop unused columns;

�Displaying Table DDL
Sometimes, DBAs do a poor job of documenting what DDL is used when creating or

modifying a table. Normally, you should maintain the database DDL code in a source

control repository or in some sort of modeling tool. If your shop does not have the DDL

source code, there are a few ways that you can manually reproduce DDL:

•	 Query the data dictionary.

•	 Use Data Pump.

•	 Use the DBMS_METADATA package.

Chapter 7 Tables and Constraints

272

Back in the olden days, say, version 7 and earlier, DBAs often wrote SQL that queried

the data dictionary in an attempt to extract the DDL required to re-create objects.

Although this method was better than nothing, it was often prone to errors because the

SQL didn’t account for every object creation feature.

The Data Pump utility is an excellent method for generating the DDL used to create

database objects. Using Data Pump to generate DDL is covered in detail in Chapter 13.

The GET_DDL function of the DBMS_METADATA package is usually the quickest way to

display the DDL required to create an object. This example shows how to generate the

DDL for a table named INV:

SQL> set long 10000

SQL> select dbms_metadata.get_ddl('TABLE','INV') from dual;

Here is some sample output:

DBMS_METADATA.GET_DDL('TABLE','INV')

 SQL> CREATE TABLE "MV_MAINT"."INV"

 ("INV_ID" NUMBER,

 "INV_DESC" VARCHAR2(30 CHAR),

 "INV_COUNT" NUMBER

) SEGMENT CREATION DEFERRED

 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255

 NOCOMPRESS LOGGING

 TABLESPACE "USERS";

The following SQL statement displays all the DDL for the tables in a schema:

SQL> select

dbms_metadata.get_ddl('TABLE',table_name)

from user_tables;

If you want to display the DDL for a table owned by another user, add the SCHEMA

parameter to the GET_DDL procedure:

SQL> select

dbms_metadata.get_ddl(object_type=>'TABLE', name=>'INV', schema=>'INV_APP')

from dual;

Chapter 7 Tables and Constraints

273

Note  You can display the DDL for almost any database object type, such
as INDEX, FUNCTION, ROLE, PACKAGE, MATERIALIZED VIEW, PROFILE,
CONSTRAINT, SEQUENCE, and SYNONYM.

�Dropping a Table
If you want to remove an object, such as a table, from a user, use the DROP TABLE

statement. This example drops a table named INV:

SQL> drop table inv;

You should see the following confirmation:

Table dropped.

If you attempt to drop a parent table that has either a primary key or unique key

referenced as a foreign key in a child table, you see an error such as

ORA-02449: unique/primary keys in table referenced by foreign keys

You need to either drop the referenced foreign key constraint(s) or use the CASCADE

CONSTRAINTS option when dropping the parent table:

SQL> drop table inv cascade constraints;

You must be the owner of the table or have the DROP ANY TABLE system privilege to

drop a table. If you have the DROP ANY TABLE privilege, you can drop a table in a different

schema by prepending the schema name to the table name:

SQL> drop table inv_mgmt.inv;

If you do not prepend the table name to a user name, Oracle assumes you are

dropping a table in your current schema.

Tip  If flashback query or flashback database is enabled, keep in mind that you
can flash back a table to before drop for an accidentally dropped table.

Chapter 7 Tables and Constraints

274

�Undropping a Table
Suppose you accidentally drop a table, and you want to restore it. First, verify that the

table you want to restore is in the recycle bin:

SQL> show recyclebin;

Here is some sample output:

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME

------------- --------------- ----------- ----------------

INV BIN$0F27WtJGbXngQ4TQTwq5Hw==$0 TABLE 2012-12-08:12:56:45

Next, use the FLASHBACK TABLE...TO BEFORE DROP statement to recover the

dropped table:

SQL> flashback table inv to before drop;

Note  You cannot use the FLASHBACK TABLE...TO BEFORE DROP statement
for a table created in the SYSTEM tablespace.

When you issue a DROP TABLE statement (without PURGE), the table is actually

renamed (to a name that starts with BIN$) and placed in the recycle bin. The recycle bin

is a mechanism that allows you to view some of the metadata associated with a dropped

object. You can view complete metadata regarding renamed objects by querying

DBA_SEGMENTS:

SQL> select

 owner

,segment_name

,segment_type

,tablespace_name

from dba_segments

where segment_name like 'BIN$%';

Chapter 7 Tables and Constraints

275

The FLASHBACK TABLE statement simply renames the table its original name.

By default, the RECYCLEBIN feature is enabled. You can change the default by setting

the RECYCLEBIN initialization parameter to OFF.

I recommend that you not disable the RECYCLEBIN feature. It is safer to leave this

feature enabled and purge the RECYCLEBIN to remove objects that you want permanently

deleted. This means that the space associated with a dropped table is not released until

you purge your RECYCLEBIN. If you want to purge the entire contents of the currently

connected user’s recycle bin, use the PURGE RECYCLEBIN statement:

SQL> purge recyclebin;

If you want to purge the recycle bin for all users in the database, then do the

following, as a DBA-privileged user:

SQL> purge dba_recyclebin;

If you want to bypass the RECYCLEBIN feature and permanently drop a table, use the

PURGE option of the DROP TABLE statement:

SQL> drop table inv purge;

You cannot use the FLASHBACK TABLE statement to retrieve a table dropped with the

PURGE option. All space used by the table is released, and any associated indexes and

triggers are also dropped.

�Removing Data from a Table
You can use either the DELETE statement or the TRUNCATE statement to remove

records from a table. You need to be aware of some important differences between

these two approaches. Table 7-3 summarizes the attributes of the DELETE and

TRUNCATE statements.

Chapter 7 Tables and Constraints

276

�Using DELETE
One big difference is that the DELETE statement can be either committed or rolled back.

Committing a DELETE statement makes the changes permanent:

SQL> delete from inv;

SQL> commit;

If you issue a ROLLBACK statement instead of COMMIT, the table contains data as they

were before the DELETE was issued.

�Using TRUNCATE
TRUNCATE is a DDL statement. This means that Oracle automatically commits the

statement (and the current transaction) after it runs, so there is no way to roll back

a TRUNCATE statement. If you need the option of choosing to roll back (instead of

committing) when removing data, then you should use the DELETE statement. However,

the DELETE statement has the disadvantage of generating a great deal of undo and redo

information. Thus, for large tables, a TRUNCATE statement is usually the most efficient way

to remove data.

Note  It might be possible to run flashback query with a CTAS statement to query
the table before the truncate and restore that data into another table. You would
CREATE TABLE tableflashback as SELECT * from table as of TIMESTAMP…. This
depends on UNDO size and retention, but is something to look into before pulling
from a backup.

Table 7-3.  Features of DELETE and TRUNCATE

DELETE TRUNCATE

Choice of COMMIT or ROLLBACK YES NO

Generates undo YES NO

Resets the high-water mark to 0 NO YES

Affected by foreign key constraints NO YES

Performs well with large amounts of data NO YES

Chapter 7 Tables and Constraints

277

This example uses a TRUNCATE statement to remove all data from the COMPUTER_

SYSTEMS table:

SQL> truncate table computer_systems;

By default, Oracle deallocates all space used for the table, except the space defined

by the MINEXTENTS table-storage parameter. If you do not want the TRUNCATE statement to

deallocate the extents, use the REUSE STORAGE parameter:

SQL> truncate table computer_systems reuse storage;

The TRUNCATE statement sets the high-water mark of a table back to 0. When you use

a DELETE statement to remove data from a table, the high-water mark does not change.

One advantage of using a TRUNCATE statement and resetting the high-water mark is that

full-table scans only search for rows in blocks below the high-water mark. This can have

significant performance implications.

You can’t truncate a table that has a primary key defined that is referenced by an

enabled foreign key constraint in a child table—even if the child table contains zero

rows. Oracle prevents you from doing this because in a multiuser system, there is the

possibility that another session can populate the child table with rows in between

the time you truncate the child table and the time you subsequently truncate the

parent table. In this scenario, you must temporarily disable the referenced foreign key

constraints, issue the TRUNCATE statement, and then re-enable the constraints.

Because a TRUNCATE statement is DDL, you can’t truncate two separate tables as one

transaction. Compare this behavior with that of DELETE. Oracle does allow you to use the

DELETE statement to remove rows from a parent table while the constraints are enabled

that reference a child table. This is because DELETE generates undo, is read consistent,

and can be rolled back.

Note  Another way to remove data from a table is to drop and re-create the table.
However, this means that you also have to re-create any indexes, constraints,
grants, and triggers that belong to the table. Additionally, when you drop a table,
it is unavailable until you re-create it and reissue any required grants. Usually,
dropping and re-creating a table are acceptable only in a development or test
environment.

Chapter 7 Tables and Constraints

278

�Viewing and Adjusting the High-Water Mark
Oracle defines the high-water mark of a table as the boundary between used and unused

space in a segment. When you create a table, Oracle allocates a number of extents to

the table, defined by the MINEXTENTS table-storage parameter. Each extent contains a

number of blocks. Before data are inserted into the table, none of the blocks have been

used, and the high-water mark is 0.

As data are inserted into a table, and extents are allocated, the high-water mark

boundary is raised. A DELETE statement does not reset the high-water mark.

You need to be aware of a couple of performance-related issues regarding the

high-water mark:

•	 SQL query full-table scans

•	 Direct-path load-space usage

Oracle sometimes needs to scan every block of a table (under the high-water mark)

when performing a query. This is known as a full-table scan. If a significant amount of

data have been deleted from a table, a full-table scan can take a long time to complete,

even for a table with zero rows.

Also, when doing direct-path loads, Oracle inserts data above the high-water mark

line. Potentially, you can end up with a large amount of unused space in a table that is

regularly deleted from and that is also loaded via a direct-path mechanism.

There are several methods for detecting space below the high-water mark:

•	 Autotrace tool

•	 DBMS_SPACE package

•	 Selecting from the data dictionary extents view

The autotrace tool offers a simple method for detecting high-water mark issues.

Autotrace is advantageous because it is easy to use, and the output is simple to

interpret.

Chapter 7 Tables and Constraints

279

You can use the DBMS_SPACE package to determine the high-water mark of objects

created in tablespaces that use autospace segment management. The DBMS_SPACE

package allows you to check for high-water mark problems programmatically. The

downside to this approach is that the output is somewhat cryptic and difficult to derive

concrete answers from.

Selecting from DBA/ALL/USER_EXTENTS provides you with information such as the

number of extents and bytes consumed. This is a quick and easy way to detect high-

water mark issues.

�Tracing to Detect Space Below the High-Water Mark
You can run this simple test to detect whether you have an issue with unused space

below the high-water mark:

	 1.	 SQL> set autotrace trace statistics.

	 2.	 Run the query that performs the full-table scan.

	 3.	 Compare the number of rows processed with the number of

logical I/Os (memory and disk accesses).

If the number of rows processed is low, but the number of logical I/Os is high, you

may have an issue with the number of free blocks below the high-water mark. Here is a

simple example to illustrate this technique:

SQL> set autotrace trace statistics

The next query generates a full-table scan on the INV table:

SQL> select * from inv;

Here is a snippet of the output from AUTOTRACE:

no rows selected

Statistics

--

 4 recursive calls

 0 db block gets

 7371 consistent gets

 2311 physical reads

Chapter 7 Tables and Constraints

280

The number of rows returned is zero, yet there are 7,371 consistent gets

(memory accesses) and 2,311 physical reads from disk, indicating free space beneath

the high-water mark.

Next, truncate the table, and run the query again:

SQL> truncate table inv;

SQL> select * from inv;

Here is a partial listing from the output of AUTOTRACE:

no rows selected

Statistics

--

 6 recursive calls

 0 db block gets

 12 consistent gets

 0 physical reads

Note that the number of memory accesses and physical reads are now quite small.

�Using DBMS_SPACE to Detect Space Below the
High-Water Mark
You can use the DBMS_SPACE package to detect free blocks beneath the high-water mark.

Here is an anonymous block of PL/SQL that you can call from SQL*Plus:

SQL> set serverout on size 1000000

SQL> declare

 p_fs1_bytes number;

 p_fs2_bytes number;

 p_fs3_bytes number;

 p_fs4_bytes number;

 p_fs1_blocks number;

 p_fs2_blocks number;

 p_fs3_blocks number;

 p_fs4_blocks number;

 p_full_bytes number;

Chapter 7 Tables and Constraints

281

 p_full_blocks number;

 p_unformatted_bytes number;

 p_unformatted_blocks number;

begin

 dbms_space.space_usage(

 segment_owner => user,

 segment_name => 'INV',

 segment_type => 'TABLE',

 fs1_bytes => p_fs1_bytes,

 fs1_blocks => p_fs1_blocks,

 fs2_bytes => p_fs2_bytes,

 fs2_blocks => p_fs2_blocks,

 fs3_bytes => p_fs3_bytes,

 fs3_blocks => p_fs3_blocks,

 fs4_bytes => p_fs4_bytes,

 fs4_blocks => p_fs4_blocks,

 full_bytes => p_full_bytes,

 full_blocks => p_full_blocks,

 unformatted_blocks => p_unformatted_blocks,

 unformatted_bytes => p_unformatted_bytes

);

 dbms_output.put_line('FS1: blocks = '||p_fs1_blocks);

 dbms_output.put_line('FS2: blocks = '||p_fs2_blocks);

 dbms_output.put_line('FS3: blocks = '||p_fs3_blocks);

 dbms_output.put_line('FS4: blocks = '||p_fs4_blocks);

 dbms_output.put_line('Full blocks = '||p_full_blocks);

end;

/

In this scenario, you want to check the INV table for free space below the high-water

mark. Here is the output of the previous PL/SQL:

FS1: blocks = 0

FS2: blocks = 0

FS3: blocks = 0

FS4: blocks = 3646

Full blocks = 0

Chapter 7 Tables and Constraints

282

In the prior output the FS1 parameter shows that 0 blocks have 0 to 25 percent free

space. The FS2 parameter shows that 0 blocks have 25 to 50 percent free space. The

FS3 parameter shows that 0 blocks have 50 to 75 percent free space. The FS4 parameter

shows there are 3,646 blocks with 75 to 100 percent free space. Finally, there are 0 full

blocks. Because there are no full blocks, and a large number of blocks are mostly empty,

you can see that free space exists below the high-water mark.

�Selecting from Data Dictionary Extents View
You can also detect tables with high-water mark issues by selecting from DBA/ALL/USER_

EXTENTS views. If a table has a large number of extents allocated to it but has zero rows,

that is an indication that an extensive amount of data has been deleted from the table;

for example,

SQL> select count(*) from user_extents where segment_name='INV';

 COUNT(*)

 44

Now, inspect the number of rows in the table:

SQL> select count(*) from inv;

 COUNT(*)

 0

The prior table most likely has had data inserted into it, which resulted in extents

being allocated. And, subsequently, data were deleted, and the extents remained.

�Lowering the High-Water Mark
How can you reduce a table’s high-water mark? You can use several techniques to set the

high-water mark back to 0:

•	 A TRUNCATE statement

•	 ALTER TABLE ... SHRINK SPACE

•	 ALTER TABLE ... MOVE

Chapter 7 Tables and Constraints

283

Using the TRUNCATE statement was discussed earlier in this chapter (see the section

“Using TRUNCATE”). Shrinking a table and moving a table are discussed in the following

sections.

�Shrinking a Table

To readjust the high-water mark, you must enable row movement for the table and then

use the ALTER TABLE...SHRINK SPACE statement. The tablespace in which the table is

created must have been built with automatic segment space management enabled. You

can determine the tablespace segment space management type via this query:

SQL> select tablespace_name, segment_space_management from dba_tablespaces;

The SEGMENT_SPACE_MANAGEMENT value must be AUTO for the tablespace in which the

table is created. Next, you need to enable row movement for the table to be shrunk. This

example enables row movement for the INV table:

SQL> alter table inv enable row movement;

Now, you can shrink the space used by the table:

SQL> alter table inv shrink space;

You can also shrink the space associated with any index segments via the CASCADE

clause:

SQL> alter table inv shrink space cascade;

�Moving a Table

Moving a table means either rebuilding the table in its current tablespace or building it

in a different tablespace. You may want to move a table because its current tablespace

has disk space storage issues or because you want to lower the table’s high-water mark.

Use the ALTER TABLE ... MOVE statement to move a table from one tablespace to

another. This example moves the INV table to the USERS tablespace:

SQL> alter table inv move tablespace users;

Chapter 7 Tables and Constraints

284

You can verify that the table has been moved by querying USER_TABLES:

SQL> select table_name, tablespace_name from user_tables where table_

name='INV';

TABLE_NAME TABLESPACE_NAME

-------------------- ------------------------------

INV USERS

Note  The ALTER TABLE ... MOVE statement does not allow DML to
execute while it is running. There are some restrictions, but there is an ALTER
TABLE ... ONLINE MOVE that will not restrict access to the table or using
DBMS_REDEFINITION package.

You can also specify NOLOGGING when you move a table:

SQL> alter table inv move tablespace users nologging;

Moving a table with NOLOGGING eliminates most of the redo that would normally

be generated when the table is relocated. The downside to using NOLOGGING is that if

a failure occurs immediately after the table is moved (and hence, you do not have a

backup of the table after it is moved), then you can’t restore the contents of the table. If

the data in the table are critical, then do not use NOLOGGING when moving them.

When you move a table, all its indexes are rendered unusable. This is because

a table’s index includes the ROWID as part of the structure. The table ROWID contains

information about the physical location. Given that the ROWID of a table changes when

the table moves from one tablespace to another (because the table rows are now

physically located in different data files), any indexes on the table contain incorrect

information. To rebuild the index, use the ALTER INDEX ... REBUILD command.

Chapter 7 Tables and Constraints

285

ORACLE ROWID

Every row in every table has an address. The address of a row is determined from a

combination of the following:

Datafile number

Block number

Location of the row within the block

Object number

You can display the address of a row in a table by querying the ROWID pseudocolumn;

for example,

SQL> select rowid, emp_id from emp;

Here is some sample output:

ROWID EMP_ID

------------------ ----------

AAAFJAAAFAAAAJfAAA 1

The ROWID pseudocolumn value is not physically stored in the database. Oracle calculates its

value when you query it. The ROWID contents are displayed as base 64 values that can contain

the characters A–Z, a–z, 0–9, +, and /. You can translate the ROWID value into meaningful

information via the DMBS_ROWID package. For instance, to display the relative file number in

which a row is stored, issue this statement:

SQL> select dbms_rowid.rowid_relative_fno(rowid), emp_id from emp;

Here is some sample output:

DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) EMP_ID

------------------------------------ ----------

 5 1

You can use the ROWID value in the SELECT and WHERE clauses of an SQL statement.

In most cases, the ROWID uniquely identifies a row. However, it is possible to have rows in

different tables that are stored in the same cluster and that therefore contain rows with the

same ROWID.

Chapter 7 Tables and Constraints

286

�Creating a Temporary Table
Use the CREATE GLOBAL TEMPORARY TABLE statement to create a table that stores data

only provisionally. You can specify that the temporary table retain the data for a session

or until a transaction commits. Use ON COMMIT PRESERVE ROWS to specify that the data

be deleted at the end of the user’s session. In this example, the rows will be retained until

the user either explicitly deletes the data or terminates the session:

SQL> create global temporary table today_regs

on commit preserve rows

as select * from f_registrations

where create_dtt > sysdate - 1;

Specify ON COMMIT DELETE ROWS to indicate that the data should be deleted at

the end of the transaction. The following example creates a temporary table named

TEMP_OUTPUT and specifies that records should be deleted at the end of each committed

transaction:

create global temporary table temp_output(

 temp_row varchar2(30))

on commit delete rows;

Note  If you do not specify a commit method for a global temporary table, then
the default is ON COMMIT DELETE ROWS.

You can create a temporary table and grant other users access to it. However, a

session can only view the data that it inserts into a table. In other words, if two sessions

are using the same temporary table, a session cannot select any data inserted into the

temporary table by a different session.

A global temporary table is useful for applications that need to briefly store data in

a table structure. After you create a temporary table, it exists until you drop it. In other

words, the definition of the temporary table is “permanent”—it is the data that are

short-lived (in this sense, the term temporary table can be misleading).

You can view whether a table is temporary by querying the TEMPORARY column of

DBA/ALL/USER_TABLES:

SQL> select table_name, temporary from user_tables;

Chapter 7 Tables and Constraints

287

Temporary tables are designated with a Y in the TEMPORARY column. Regular tables

contain an N in the TEMPORARY column.

When you create records in a temporary table, space is allocated in your default

temporary tablespace. You can verify this by running the following SQL:

SQL> select username, contents, segtype from v$sort_usage;

If you are working with a large number of rows and need better performance

for selectively retrieving rows, you may want to consider creating an index on the

appropriate columns in your temporary table:

SQL> create index temp_index on temp_output(temp_row);

Use the DROP TABLE command to drop a temporary table:

SQL> drop table temp_output;

TEMPORARY TABLE REDO

No redo data are generated for changes to blocks of a global temporary table. However,

rollback (undo) data are generated for a transaction against a temporary table. Because the

rollback data generate redo, some redo data are associated with a transaction for a temporary

table. You can verify this by turning on statistics tracing and viewing the redo size as you insert

records into a temporary table:

SQL> set autotrace on

Next, insert a few records into the temporary table:

SQL> insert into temp_output values(1);

Here is a snippet of the output (only showing the redo size):

140 redo size

The redo load is less for temporary tables than normal tables because the redo generated is

only associated with the rollback (undo) data for a temporary table transaction.

Additionally, starting with Oracle Database 12c, the undo for temporary objects is stored in the

temporary tablespace, not the undo tablespace.

Chapter 7 Tables and Constraints

288

�Creating an Index-Organized Table
Index-organized tables (IOTs) are efficient objects when the table data are typically

accessed through querying on the primary key. Use the ORGANIZATION INDEX clause to

create an IOT:

SQL> create table prod_sku

(prod_sku_id number,

sku varchar2(256),

create_dtt timestamp(5),

constraint prod_sku_pk primary key(prod_sku_id)

)

organization index

including sku

pctthreshold 30

tablespace inv_data

overflow

tablespace inv_data;

An IOT stores the entire contents of the table’s row in a B-tree index structure. IOTs

provide fast access for queries that have exact matches or range searches, or both, on the

primary key.

All columns specified, up to and including the column specified in the INCLUDING

clause, are stored in the same block as the PROD_SKU_ID primary key column. In other

words, the INCLUDING clause specifies the last column to keep in the table segment.

Columns listed after the column specified in the INCLUDING clause are stored in the

overflow data segment. In the previous example, the CREATE_DTT column is stored in the

overflow segment.

PCTTHRESHOLD specifies the percentage of space reserved in the index block for the

IOT row. This value can be from 1 to 50 and defaults to 50 if no value is specified. There

must be enough space in the index block to store the primary key.

The OVERFLOW clause details which tablespace should be used to store overflow data

segments. Note that DBA/ALL/USER_TABLES includes an entry for the table name used

when creating an IOT. Additionally, DBA/ALL/USER_INDEXES contains a record with the

name of the primary key constraint specified. The INDEX_TYPE column contains a value

of IOT - TOP for IOTs:

SQL> select index_name,table_name,index_type from user_indexes;

Chapter 7 Tables and Constraints

289

�Managing Constraints
The next several sections in this chapter deal with constraints. Constraints provide a

mechanism for ensuring that data conform to certain business rules. You must be aware

of what types of constraints are available and when it is appropriate to use them. Oracle

offers several types of constraints:

•	 Primary key

•	 Unique key

•	 Foreign key

•	 Check

•	 NOT NULL

Implementing and managing these constraints are discussed in the following sections.

�Creating Primary Key Constraints
When you implement a database, most tables you create require a primary key

constraint to guarantee that every record in the table can be uniquely identified. There

are multiple techniques for adding a primary key constraint to a table. The first example

creates the primary key inline with the column definition:

SQL> create table dept(

 dept_id number primary key

,dept_desc varchar2(30));

If you select the CONSTRAINT_NAME from USER_CONSTRAINTS, note that Oracle

generates a cryptic name for the constraint (such as SYS_C003682). Use the following

syntax to explicitly give a name to a primary key constraint:

SQL> create table dept(

dept_id number constraint dept_pk primary key using index tablespace users,

dept_desc varchar2(30));

Note  When you create a primary key constraint, Oracle also creates a unique
index with the same name as the constraint. You can control which tablespace the
unique index is placed in via the USING INDEX TABLESPACE clause.

Chapter 7 Tables and Constraints

290

You can also specify the primary key constraint definition after the columns have

been defined. The advantage of doing this is that you can define the constraint on

multiple columns. The next example creates the primary key when the table is created,

but not inline with the column definition:

SQL> create table dept(

dept_id number,

dept_desc varchar2(30),

constraint dept_pk primary key (dept_id)

using index tablespace users);

If the table has already been created, and you want to add a primary key constraint,

use the ALTER TABLE statement. This example places a primary key constraint on the

DEPT_ID column of the DEPT table:

SQL> alter table dept

add constraint dept_pk primary key (dept_id)

using index tablespace users;

When a primary key constraint is enabled, Oracle automatically creates a unique

index associated with the primary key constraint. Some DBAs prefer to first create a non-

unique index on the primary key column and then define the primary key constraint:

SQL> create index dept_pk on dept(dept_id) tablespace users;

SQL> alter table dept add constraint dept_pk primary key (dept_id);

The advantage of this approach is that you can drop or disable the primary key

constraint independently of the index. When you are working with large data sets, you

may want that sort of flexibility. If you do not create the index before creating the primary

key constraint, then whenever you drop or disable the primary key constraint, the index

is automatically dropped.

Confused about which method to use to create a primary key? All the methods

are valid and have their merits. Table 7-4 summarizes the primary key and unique

key constraint creation methods. I’ve used all these methods to create primary key

constraints. Usually, I use the ALTER TABLE statement, which adds the constraint after

the table has been created.

Chapter 7 Tables and Constraints

291

�Enforcing Unique Key Values
In addition to creating a primary key constraint, you should create unique constraints on any

combinations of columns that should always be unique within a table. For example, for the

primary key for a table, it is common to use a numeric key (sometimes called a surrogate key)

that is populated via a sequence. Besides the surrogate primary key, sometimes users have

a column (or columns) that the business uses to uniquely identify a record (also called a

logical key). Using both a surrogate key and a logical key does the following:

•	 Lets you efficiently join parent and child tables on a single numeric column

•	 Allows updates to logical key columns without changing the surrogate key

Table 7-4.  Primary Key and Unique Key Constraint Creation Methods

Constraint Creation Method Advantages Disadvantages

Inline, no name Very simple Oracle-generated name

makes troubleshooting

harder; less control over

storage attributes; only

applied to a single column

Inline, with name Simple; user-defined name makes

troubleshooting easier

Requires more thought

than inline without name

Inline, with name and

tablespace definition

User-defined name and tablespace;

makes troubleshooting easier

Less simple

After column definition

(out of line)

User-defined name and tablespace;

can operate on multiple columns

Less simple

ALTER TABLE add just

constraint

Lets you manage constraints in

statements (and files) separate from

table creation scripts; can operate on

multiple columns

More complicated

CREATE INDEX, ALTER

TABLE add constraint

Separates the index and constraint,

so you can drop/disable constraints

without affecting the index; can

operate on multiple columns

Most complicated: more

to maintain, more moving

parts

Chapter 7 Tables and Constraints

292

A unique key guarantees uniqueness on the defined column(s) within a table.

There are some subtle differences between primary key and unique key constraints.

For example, you can define only one primary key per table, but there can be several

unique keys. Also, a primary key does not allow a NULL value in any of its columns,

whereas a unique key allows NULL values.

As with the primary key constraint, you can use several methods to create a unique

column constraint. This method uses the UNIQUE keyword inline with the column:

SQL> create table dept(

 dept_id number

,dept_desc varchar2(30) unique);

If you want to explicitly name the constraint, use the CONSTRAINT keyword:

SQL> create table dept(

 dept_id number

,dept_desc varchar2(30) constraint dept_desc_uk1 unique);

As with primary keys, Oracle automatically creates an index associated with the

unique key constraint. You can specify inline the tablespace information to be used for

the associated unique index:

SQL> create table dept(

 dept_id number

,dept_desc varchar2(30) constraint dept_desc_uk1

 unique using index tablespace users);

You can also alter a table to include a unique constraint:

SQL> alter table dept

add constraint dept_desc_uk1 unique (dept_desc)

using index tablespace users;

And you can create an index on the columns of interest before you define a unique

key constraint:

SQL> create index dept_desc_uk1 on dept(dept_desc) tablespace users;

SQL> alter table dept add constraint dept_desc_uk1 unique(dept_desc);

Chapter 7 Tables and Constraints

293

This can be helpful when you are working with large data sets, and you want to be

able to disable or drop the unique constraint without dropping the associated index.

Tip  You can also enforce a unique key constraint with a unique index.
See Chapter 8 for details on using unique indexes to enforce unique constraints.

�Creating Foreign Key Constraints
Foreign key constraints are used to ensure that a column value is contained within a

defined list of values. Using a foreign key constraint is an efficient way of enforcing that

data be a predefined value before an insert or update is allowed. This technique works

well for the following scenarios:

•	 The list of values contains many entries.

•	 Other information about the lookup value needs to be stored.

•	 It is easy to select, insert, update, or delete values via SQL.

For example, suppose the EMP table is created with a DEPT_ID column. To ensure that

each employee is assigned a valid department, you can create a foreign key constraint

that enforces the rule that each DEPT_ID in the EMP table must exist in the DEPT table.

Tip  If the condition you want to check for consists of a small list that does not
change very often, consider using a check constraint instead of a foreign key
constraint. For instance, if you have a column that will always be defined as
containing either a 0 or a 1, a check constraint is an efficient solution.

For reference, here’s how the parent table DEPT table was created for these examples:

SQL> create table dept(

dept_id number primary key,

dept_desc varchar2(30));

A foreign key must reference a column in the parent table that has a primary key or

a unique key defined on it. DEPT is the parent table and has a primary key defined on

DEPT_ID.

Chapter 7 Tables and Constraints

294

You can use several methods to create a foreign key constraint. The following

example creates a foreign key constraint on the DEPT_ID column in the EMP table:

SQL> create table emp(

emp_id number,

name varchar2(30),

dept_id constraint emp_dept_fk references dept(dept_id));

Note that the DEPT_ID data type is not explicitly defined. The foreign key constraint

derives the data type from the referenced DEPT_ID column of the DEPT table. You can also

explicitly specify the data type when you define a column (regardless of the foreign key

definition):

SQL> create table emp(

emp_id number,

name varchar2(30),

dept_id number constraint emp_dept_fk references dept(dept_id));

You can also specify the foreign key definition out of line from the column definition

in the CREATE TABLE statement:

SQL> create table emp(

emp_id number,

name varchar2(30),

dept_id number,

constraint emp_dept_fk foreign key (dept_id) references dept(dept_id)

);

And, you can alter an existing table to add a foreign key constraint:

SQL> alter table emp

add constraint emp_dept_fk foreign key (dept_id)

references dept(dept_id);

Note  Unlike with primary key and unique key constraints, Oracle does not
automatically add an index to foreign key columns; you must explicitly create
indexes on them. See Chapter 8 for a discussion on why it is important to create
indexes on foreign key columns and how to detect foreign key columns that do not
have associated indexes.

Chapter 7 Tables and Constraints

295

�Checking for Specific Data Conditions
A check constraint works well for lookups when you have a short list of fairly static

values, such as a column that can be either Y or N. In this situation the list of values most

likely won’t change, and no information needs to be stored other than Y or N, so a check

constraint is the appropriate solution. If you have a long list of values that needs to be

periodically updated, then a table and a foreign key constraint are a better solution.

Also, a check constraint works well for a business rule that must always be enforced

and that can be written with a simple SQL expression. If you have sophisticated business

logic that must be validated, then the application code is more appropriate.

You can define a check constraint when you create a table. The following enforces

the ST_FLG column to contain either a 0 or 1:

SQL> create table emp(

emp_id number,

emp_name varchar2(30),

st_flg number(1) CHECK (st_flg in (0,1))

);

A slightly better method is to give the check constraint a name:

SQL> create table emp(

emp_id number,

emp_name varchar2(30),

st_flg number(1) constraint st_flg_chk CHECK (st_flg in (0,1))

);

A more descriptive way to name the constraint is to embed information in the

constraint name that describes the condition that was violated; for example,

SQL> create table emp(

emp_id number,

emp_name varchar2(30),

st_flg number(1) constraint "st_flg must be 0 or 1" check (st_flg in (0,1))

);

Chapter 7 Tables and Constraints

296

You can also alter an existing column to include a constraint. The column must not

contain any values that violate the constraint being enabled:

SQL> alter table emp add constraint

 "st_flg must be 0 or 1" check (st_flg in (0,1));

Note  The check constraint must evaluate to a true or unknown (NULL) value in
the row being inserted or updated. You cannot use subqueries or sequences in a
check constraint. Also, you can’t reference the SQL functions UID, USER, SYSDATE,
or USERENV or the pseudocolumns LEVEL or ROWNUM.

�Enforcing Not Null Conditions
Another common condition to check for is whether a column is null; you use the

NOT NULL constraint to do this. The NOT NULL constraint can be defined in several ways.

The simplest technique is shown here:

SQL> create table emp(

emp_id number,

emp_name varchar2(30) not null);

A slightly better approach is to give the NOT NULL constraint a name that makes sense to

you. Naming the constraint will allow you to see what the constraint is for instead of a system-

generated constraint, which might be confused with a primary or foreign key constraint:

SQL> create table emp(

emp_id number,

emp_name varchar2(30) constraint emp_name_nn not null);

Use the ALTER TABLE command if you need to modify a column for an existing table.

For the following command to work, there must not be any NULL values in the column

being defined as NOT NULL:

SQL> alter table emp modify(emp_name not null);

Note  If there are currently NULL values in a column that is being defined as NOT
NULL, you must first update the table so that the column has a value in every row.

Chapter 7 Tables and Constraints

297

�Disabling Constraints
One nice feature of Oracle is that you can disable and enable constraints without

dropping and re-creating them. This means that you avoid having to know the DDL

statements that would be required to re-create the dropped constraints.

Occasionally, you need to disable constraints. For example, you may be trying to

truncate a table but receive the following error message:

ORA-02266: unique/primary keys in table referenced by enabled foreign keys

Oracle does not allow a truncate operation on a parent table with a primary key that

is referenced by an enabled foreign key in a child table. If you need to truncate a parent

table, you first have to disable all the enabled foreign key constraints that reference the

parent table’s primary key. Run this query to determine the names of the constraints that

need to be disabled:

SQL> col primary_key_table form a18

SQL> col primary_key_constraint form a18

SQL> col fk_child_table form a18

SQL> col fk_child_table_constraint form a18

--

SQL> select

 b.table_name primary_key_table

,b.constraint_name primary_key_constraint

,a.table_name fk_child_table

,a.constraint_name fk_child_table_constraint

from dba_constraints a

,dba_constraints b

where a.r_constraint_name = b.constraint_name

and a.r_owner = b.owner

and a.constraint_type = 'R'

and b.owner = upper('&table_owner')

and b.table_name = upper('&pk_table_name');

Chapter 7 Tables and Constraints

298

For this example, there is only one foreign key dependency:

PRIMARY_KEY_TAB PRIMARY_KEY_CON FK_CHILD_TABLE FK_CHILD_TABLE_

--------------- --------------- --------------- ---------------

DEPT DEPT_PK EMP EMP_DEPT_FK

Use the ALTER TABLE statement to disable constraints on a table. In this case, there is

only one foreign key to disable:

SQL> alter table emp disable constraint emp_dept_fk;

You can now truncate the parent table:

SQL> truncate table dept;

Do not forget to reenable the foreign key constraints after the truncate operation has

completed, like this:

SQL> alter table emp enable constraint emp_dept_fk;

You can disable a primary key and all dependent foreign key constraints with the

CASCADE option of the DISABLE clause. For example, the next line of code disables all

foreign key constraints related to the primary key constraint:

SQL> alter table dept disable constraint dept_pk cascade;

This statement does not cascade through all levels of dependencies; it only disables

the foreign key constraints directly dependent on DEPT_PK. Also keep in mind that there

is no ENABLE...CASCADE statement. To re-enable the constraints, you have to query the

data dictionary to determine which constraints have been disabled and then re-enable

them individually.

Sometimes, you run into situations, when loading data, in which it is convenient to

disable all the foreign keys before loading the data. In these situations, the imp utility

imports the tables in alphabetical order and does not ensure that child tables are

imported before parent tables. You may also want to run several import jobs in parallel

to take advantage of parallel hardware. In such scenarios, you can disable the foreign

keys, perform the import, and then re-enable the foreign keys.

Chapter 7 Tables and Constraints

299

Here is a script that uses SQL to generate SQL to disable all foreign key constraints

for a user:

SQL> set lines 132 trimsp on head off feed off verify off echo off pagesize 0

SQL> spo dis_dyn.sql

SQL> select 'alter table ' || a.table_name

|| ' disable constraint ' || a.constraint_name || ';'

from dba_constraints a

,dba_constraints b

where a.r_constraint_name = b.constraint_name

and a.r_owner = b.owner

and a.constraint_type = 'R'

and b.owner = upper('&table_owner');

SQL> spo off;

This script generates a file, named dis_dyn.sql, which contains the SQL statements

to disable all the foreign key constraints for a user.

�EnablingConstraints
This section contains a few scripts to help you enable constraints that you’ve disabled.

Listed next is a script that creates a file with the SQL statements required to re-enable

any foreign key constraints for tables owned by a specified user:

SQL> set lines 132 trimsp on head off feed off verify off echo off pagesize 0

SQL> spo enable_dyn.sql

SQL> select 'alter table ' || a.table_name

|| ' enable constraint ' || a.constraint_name || ';'

from dba_constraints a

,dba_constraints b

where a.r_constraint_name = b.constraint_name

and a.r_owner = b.owner

and a.constraint_type = 'R'

and b.owner = upper('&table_owner');

SQL> spo off;

Chapter 7 Tables and Constraints

300

When enabling constraints, by default, Oracle checks to ensure that the data do not

violate the constraint definition. If you are fairly certain that the data integrity is fine and

that you do not need to incur the performance hit by revalidating the constraint, you can

use the NOVALIDATE clause when re-enabling the constraints. Here is an example:

SQL> select 'alter table ' || a.table_name

|| ' modify constraint ' || a.constraint_name || ' enable novalidate;'

from dba_constraints a

,dba_constraints b

where a.r_constraint_name = b.constraint_name

and a.r_owner = b.owner

and a.constraint_type = 'R'

and b.owner = upper('&table_owner');

The NOVALIDATE clause instructs Oracle not to validate the constraints being enabled,

but it does enforce that any new DML activities adhere to the constraint definition.

In multiuser systems the possibility exists that another session has inserted data into

the child table while the foreign key constraint was disabled. If that happens, you see the

following error when you attempt to re-enable the foreign key:

ORA-02298: cannot validate (<owner>.<constraint>) - parent keys not found

In this scenario, you can use the ENABLE NOVALIDATE clause:

SQL> alter table emp enable novalidate constraint emp_dept_fk;

To clean up the rows that violate the constraint, first ensure that you have an

EXCEPTIONS table created in your currently connected schema. If you do not have an

EXCEPTIONS table, use this script to create one:

SQL> @?/rdbms/admin/utlexcpt.sql

Next, populate the EXCEPTIONS table with the rows that violate the constraint, using

the EXCEPTIONS INTO clause:

SQL> alter table emp modify constraint emp_dept_fk validate

exceptions into exceptions;

This statement still throws the ORA-02298 error as long as there are rows that violate

the constraint. The statement also inserts records into the EXCEPTIONS table for any bad

rows. You can now use the ROW_ID column of the EXCEPTIONS table to remove any records

that violate the constraint.

Chapter 7 Tables and Constraints

301

Here, you see that one row needs to be removed from the EMP table:

SQL> select * from exceptions;

Here is some sample output:

ROW_ID OWNER TABLE_NAME CONSTRAINT

------------------ -------- ---------- --------------------

AAAFKQAABAAAK8JAAB MV_MAINT EMP EMP_DEPT_FK

To remove the offending record, issue a DELETE statement:

SQL> delete from emp where rowid = 'AAAFKQAABAAAK8JAAB';

If the EXCEPTIONS table contains many records, you can run a query such as the

following to delete by OWNER and TABLE_NAME:

SQL> delete from emp where rowid in

(select row_id

from exceptions

where owner=upper('&owner') and table_name = upper('&table_name'));

You may also run into situations in which you need to disable primary key or unique

key constraints, or both. For instance, you may want to perform a large data load and for

performance reasons want to disable the primary key and unique key constraints. You

do not want to incur the overhead of having every row checked as it is inserted.

The same general techniques used for disabling foreign keys are applicable for

disabling primary and unique keys. Run this query to display the primary key and

unique key constraints for a user:

SQL> select

a.table_name

,a.constraint_name

,a.constraint_type

from dba_constraints a

where a.owner = upper('&table_owner')

and a.constraint_type in ('P','U')

order by a.table_name;

Chapter 7 Tables and Constraints

302

When the table name and constraint name are identified, use the ALTER TABLE

statement to disable the constraint:

SQL> alter table dept disable constraint dept_pk;

Note  Oracle does not let you disable a primary key or unique key constraint that
is referenced in an enabled foreign key constraint. You first have to disable the
foreign key constraint.

�Summary
This chapter focused on basic activities related to creating and maintaining tables.

Tables are the containers that store the data within the database. Key table management

tasks include modifying, moving, deleting from, shrinking, and dropping. You must also

be familiar with how to implement and use special table types, such as temporary, IOT,

and read-only.

Oracle also provides various constraints to help you manage the data within tables.

Constraints form the bedrock of data integrity. In most cases, each table should include a

primary key constraint that ensures that every row is uniquely identifiable. Additionally,

any parent–child relationships should be enforced with foreign key constraints. You

can use unique constraints to implement business rules that require a column or

combination of columns to be unique. Check and NOT NULL constraints ensure that

columns contain business-specified data requirements.

Modifying tables can be done online with DBMS_REDEFINITION packages and

scripts can be generated to prepare for table changes. It is something to test through

the development environments in order to have all of the pieces such as indexes and

enabling constraints as a script to run together so not to forget to enable or create keys

and indexes.

After you create tables, the next logical activity is to create indexes where

appropriate. Indexes are optional database objects that help improve performance.

Index creation and maintenance tasks are covered in the next chapter.

Chapter 7 Tables and Constraints

303
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_8

CHAPTER 8

Indexes
An index is an optionally created database object used primarily to increase query

performance. Indexes can also limit the amount of data that is returned in the results

without having to retrieve all of data columns of a table. This can help keep results in

memory and bring back results faster. The purpose of a database index is similar to that

of an index in the back of a book. A book index associates a topic with a page number.

When you are locating information in a book, it is usually much faster to examine the

index first, find the topic of interest, and identify associated page numbers. With this

information, you can navigate directly to specific page numbers in the book.

If a topic only appears on a few pages within the book, then the number of pages to

read is minimal. In this manner, the usefulness of the index decreases with an increase in

the number of times a topic appears in a book. In other words, if a subject entry appears

on every page of the book, there would be no benefit to creating an index on it. In this

scenario, regardless of the presence of an index, it would be more efficient for the reader

to scan every page of the book.

Note  In database parlance, searching all blocks of a table is known as a
full-table scan. Full-table scans occur when there is no available index or when the
query optimizer determines a full-table scan is a more efficient access path than
using an existing index.

Similar to a book index (topic and page number), a database index stores the column

value of interest, along with its row identifier (ROWID). The ROWID contains the physical

location of the table row on disk that stores the column value. With the ROWID in hand,

Oracle can efficiently retrieve table data with a minimum of disk reads. In this way,

indexes function as a shortcut to the table data. If there is no available index, then Oracle

reads each row in the table to determine if the row contains the desired information.

304

Note  In addition to improving performance, Oracle uses indexes to help enforce
enabled primary key and unique key constraints. Additionally, Oracle can better
manage certain table-locking scenarios when indexes are placed on foreign key
columns.

Whereas it is possible to build a database application devoid of indexes, without

them or too many of them, you are almost guaranteeing poor performance. Indexes

allow for excellent scalability, even with very large data sets. If indexes are so important

to database performance, why not place them on all tables and column combinations?

The answer is short: indexes are not free. They consume disk space and system

resources. As column values are modified, any corresponding indexes must also be

updated. In this way, indexes use storage, I/O, CPU, and memory resources. A poor

choice of indexes leads to wasted disk usage and excessive consumption of system

resources. This results in a decrease in database performance and greater cost for DML

statements.

Automation and proactively tuning database applications are ever-growing areas

of the database. Indexes, statistics, and overall database configuration play into

developing the strategies to tune. Oracle 18c provides enhanced statistics and collection

of information about indexes being used. These tools can be utilized as part of the index

planning and design for the database tables and indexes.

For these reasons, when you design and build an Oracle database application,

consideration must be given to your indexing strategy. As an application architect, you

must understand the physical properties of an index, what types of indexes are available,

and strategies for choosing which table and column combinations to index. A correct

indexing methodology is central to achieving maximum performance for your database.

�Deciding When to Create an Index
There are usually two different situations in which DBAs and developers decide to create

indexes:

•	 Proactively, when first deploying an application; the DBAs/

developers make an educated guess as to which tables and columns

to index.

Chapter 8 Indexes

305

•	 Reactively, when application performance bogs down, and users

complain of poor performance; then, the DBAs/developers attempt to

identify slow-executing SQL queries and how indexes might be a solution.

The prior two topics are discussed in the next two sections.

�Proactively Creating Indexes
When creating a new database application, part of the process involves identifying

primary keys, unique keys, and foreign keys. The columns associated with those keys are

usually candidates for indexes. Here are some guidelines:

•	 Define a primary key constraint for each table. This results in an

index automatically being created on the columns specified in the

primary key.

•	 Create unique key constraints on columns that are required to be

unique and that are different from the primary key columns. Each

unique key constraint results in an index automatically being created

on the columns specified in the constraint.

•	 Manually create indexes on foreign key columns. This is done for

better performance, to avoid certain locking issues.

In other words, some of the decision process on what tables and columns to index

is automatically done for you when determining the table constraints. When creating

primary and unique key constraints, Oracle automatically creates indexes for you. There

is some debate about whether or not to create indexes on foreign key columns. See the

section “Indexing Foreign Key Columns,” later in this chapter, for further discussion.

These indexes can be automated to run with table creation or as part of the object

builds in the database. Also, if foreign keys are newly created, an index can be generated

as part of the code to make sure that the indexes are be created as changes are made

and instead of manually checking all of the constraints, indexes, and keys, DDL can be

generated based on new objects and added as part of proactively creating indexes.

In addition to creating indexes related to constraints, if you have enough knowledge

of the SQL contained within the application, you can create indexes related to tables and

columns referenced in SELECT, FROM, and WHERE clauses. In my experience, DBAs and

developers are not adept at proactively identifying such indexes. Rather, these indexing

requirements are usually identified reactively.

Chapter 8 Indexes

306

�Reactively Creating Indexes
Rarely do DBAs and developers accurately create the right mix of indexes when first

deploying an application. And, that is not a bad thing or unexpected; it is hard to predict

everything that occurs in a large database system. Furthermore, as the application

matures, changes are introduced to the database (new tables, new columns, new

constraints, database upgrades that add new features/behaviors, and so on). The reality

is that you will have to react to unforeseen situations in your database that warrant

adding indexes to improve performance.

Index strategies also have to be revisited for major database releases or system

resource changes. For example, more memory on the server will allow for a table scan

to perform better and maybe eliminate a need for an index. Or for an index that was

beneficial because of how the optimizer was calculating cost, upgrades might validate a

different query plan for better performance.

Note  Index strategies are not just about creating indexes but also about cleaning
up indexes that are no longer in use because of better statistics and optimizer
query plans without the index.

Here is a typical process for reactively identifying poorly performing SQL statements

and improving performance with indexes:

	 1.	 A poorly performing SQL statement is identified (a user complains

about a specific statement, the DBA runs automatic database

diagnostic monitor (ADDM), or automatic workload repository

(AWR) reports to identify resource-consuming SQL, and so on).

	 2.	 DBA checks the table and index statistics to ensure that out-of-

date statistics are not causing the optimizer to make bad choices.

	 3.	 DBA/developer determines that the query cannot be rewritten in

a way that alleviates performance issues.

	 4.	 DBA/developer examines the SQL statement and determines

which tables and columns are being accessed, by inspecting the

SELECT, FROM, and WHERE clauses.

	 5.	 DBA/developer performs testing and recommends that an index

be created, based on a table and one or more columns.

Chapter 8 Indexes

307

Once you have identified a poorly performing SQL query, consider creating indexes

for the following situations:

•	 Create indexes on columns used often as predicates in the WHERE

clause; when multiple columns from a table are used in the WHERE

clause, consider using a concatenated (multicolumn) index.

•	 Create a covering index (i.e., an index on all columns) in the

SELECT clause.

•	 Create indexes on columns used in the ORDER BY, GROUP BY, UNION,

and DISTINCT clauses.

Oracle allows you to create an index that contains more than one column.

Multicolumn indexes are known as concatenated indexes (also called composite

indexes). These indexes are especially effective when you often use multiple columns in

the WHERE clause when accessing a table. Concatenated indexes are, in many instances,

more efficient in this situation than creating separate, single-column indexes (See the

section “Creating Concatenated Indexes,” later in this chapter, for more details).

Columns included in the SELECT and WHERE clauses are also potential candidates for

indexes. Sometimes, a covering index in a SELECT clause results in Oracle using the index

structure itself (and not the table) to satisfy the results of the query. Also, if the column

values are selective enough, Oracle can use an index on columns referenced in the WHERE

clause to improve query performance.

Also consider creating indexes on columns used in the ORDER BY, GROUP BY, UNION,

and DISTINCT clauses. This may result in greater efficiency for queries that frequently use

these SQL constructs.

It is okay to have multiple indexes per table. However, the more indexes you

place on a table, the slower the DML statements. Do not fall into the trap of randomly

adding indexes to a table until you stumble upon the right combination of indexed

columns. Rather, verify the performance of an index before you create it in a production

environment. Oracle 18c has improved how it reviews index usage, and these statistics

can be taken into consideration when deciding to keep indexes or if a different index is

needed.

Also keep in mind that it is possible to add an index that increases the performance

of one statement, while hurting the performance of others. You must be sure that the

statements that are improved warrant the penalty being applied to other statements.

You should only add an index when you are certain it will improve performance.

Chapter 8 Indexes

308

�Planning for Robustness
After you have decided that you need to create an index, it is prudent to make a few

foundational decisions that will affect maintainability and availability. Oracle provides

a wide assortment of indexing features and options. As a DBA or a developer, you need

to be aware of the various features and how to use them. If you choose the wrong type

of index or use a feature incorrectly, there may be serious, detrimental performance

implications. Listed next are manageability features to consider before you create an index:

•	 Type of index

•	 Initial space required and growth

•	 Temporary tablespace usage while the index is being created (for

large indexes)

•	 Tablespace placement

•	 Naming conventions

•	 Which column(s) to include

•	 Whether to use a single column or a combination of columns

•	 Special features, such as the PARALLEL clause, NOLOGGING,

compression, and invisible indexes

•	 Uniqueness

•	 Impact on performance of SELECT statements (improvement)

•	 Impact on performance of INSERT, UPDATE, and DELETE statements

These topics are discussed in subsequent sections in this chapter.

�Determining Which Type of Index to Use
Oracle provides a wide range of index types and features. The correct use of indexes

results in a well-performing and scalable database application. Conversely, if you

incorrectly or unwisely implement a feature, there may be detrimental performance

implications. Table 8-1 summarizes the various Oracle index types available. At first

glance, this is a long list and may be somewhat overwhelming to somebody new to

Oracle. However, deciding which index type to use is not as daunting as it might initially

seem. For most applications, you should simply use the default B-tree index type.

Chapter 8 Indexes

309

Note S everal of the index types listed in Table 8-1 are actually just variations
on the B-tree index. A reverse-key index, for example, is merely a B-tree index
optimized for evenly spreading I/O when the index value is sequentially generated
and inserted with similar values.

Table 8-1.  Oracle Index Type and Usage Descriptions

Index Type Usage

B-tree Default index; good for columns with high cardinality (i.e., high degree of

distinct values). Use a normal B-tree index unless you have a concrete reason

to use a different index type or feature.

IOT This index is efficient when most of the column values are included in the

primary key. You access the index as if it were a table. The data are stored in

a B-tree-like structure. See Chapter 7 for details on this type of index.

Unique A form of B-tree index; used to enforce uniqueness in column values; often

used with primary key and unique key constraints but can be created

independently of constraints.

Reverse key A form of B-tree index; useful for balancing I/O in an index that has many

sequential inserts.

Key compressed Good for concatenated indexes in which the leading column is often repeated;

compresses leaf block entries; applies to B-tree and IOT indexes.

Descending A form of B-tree index; used with indexes in which corresponding column

values are sorted in a descending order (the default order is ascending).

You cannot specify descending for a reverse-key index, and Oracle ignores

descending if the index type is bitmap.

Bitmap Excellent in data warehouse environments with low cardinality (i.e., low

degree of distinct values) columns and SQL statements using many AND or OR

operators in the WHERE clause. Bitmap indexes are not appropriate for OLTP

databases in which rows are frequently updated. You cannot create a unique

bitmap index.

(continued)

Chapter 8 Indexes

310

This chapter focuses on the most commonly used indexes and features—B-tree,

function based, unique, bitmap, reverse key, and key compressed—and the most used

options. IOTs are covered in Chapter 7, and partitioned indexes are covered in Chapter 12.

If you need more information about index types or features, see the Oracle SQL

Reference Guide, which is available for download from the Technology Network area of

the Oracle web site (http://otn.oracle.com).

Table 8-1.  (continued)

Index Type Usage

Bitmap join Useful in data warehouse environments for queries that use star schema

structures that join fact and dimension tables.

Function based Good for columns that have SQL functions applied to them; can be used with

either a B-tree or bitmap index.

Indexed virtual

column

An index defined on a virtual column (of a table); useful for columns that have

SQL functions applied to them; a viable alternative to a function-based index.

Virtual Allows you to create an index with no physical segment or extents via

the NOSEGMENT clause of CREATE INDEX; useful in tuning SQL without

consuming resources required to build the physical index. Any index type can

be created as virtual.

Invisible The index is not visible to the query optimizer. However, the structure of the

index is maintained as table data are modified. Useful for testing an index

before making it visible to the application. Any index type can be created as

invisible.

Global partitioned Global index across all partitions in a partitioned or regular table; can be a

B-tree index type and cannot be a bitmap index type.

Local partitioned Local index based on individual partitions in a partitioned table; can be either

a B-tree or bitmap index type.

Domain Specific for an application or cartridge.

B-tree cluster Used with clustered tables.

Hash cluster Used with hash clusters.

Chapter 8 Indexes

http://otn.oracle.com

311

�Estimating the Size of an Index Before Creation
If you do not work with large databases, then you do not need to worry about estimating

the amount of space an index will initially consume. However, for large databases, you

absolutely need an estimate on how much space it will take to create an index. If you

have a large table in a data warehouse environment, a corresponding index could easily

be hundreds of gigabytes in size. In this situation, you need to ensure that the database

has adequate disk space available.

The best way to predict the size of an index is to create it in a test environment that

has a representative set of production data. If you cannot build a complete replica of

production data, a subset of data can often be used to extrapolate the size required in

production. If you do not have the luxury of using a cut of production data, you can also

estimate the size of an index using the DBMS_SPACE.CREATE_INDEX_COST procedure.

Note  I have seen tables that are several hundred gigabytes in size, but the
index space is twice the amount of the tablespace. It is not because the index has
more columns but because it has so many different indexes. Having three or more
indexes for each very large table starts to add up quickly.

For reference, here is the table creation script that the index used in the subsequent

examples is based on:

SQL> CREATE TABLE cust

(cust_id NUMBER

,last_name VARCHAR2(30)

,first_name VARCHAR2(30)

) TABLESPACE users;

Next, several thousand records are inserted into the prior table. Here is a snippet of

the insert statements:

SQL> insert into cust values(7,'ACER','SCOTT');

SQL> insert into cust values(5,'STARK','JIM');

SQL> insert into cust values(3,'GREY','BOB');

SQL> insert into cust values(11,'KAHN','BRAD');

SQL> insert into cust values(21,'DEAN','ANN');

...

Chapter 8 Indexes

312

Now, suppose you want to create an index on the CUST table like this:

SQL> create index cust_idx1 on cust(last_name);

Here is the procedure for estimating the amount of space the index will initially

consume:

SQL> set serverout on

SQL> exec dbms_stats.gather_table_stats(user,'CUST');

SQL> variable used_bytes number

SQL> variable alloc_bytes number

SQL> exec dbms_space.create_index_cost('create index cust_idx1 on

cust(last_name)', -

 :used_bytes, :alloc_bytes);

SQL> print :used_bytes

Here is some sample output for this example:

USED_BYTES

 19800000

SQL> print :alloc_bytes

ALLOC_BYTES

 33554432

The used_bytes variable gives you an estimate of how much room is required for the

index data. The alloc_bytes variable provides an estimate of how much space will be

allocated within the tablespace.

Next, go ahead and create the index.

SQL> create index cust_idx1 on cust(last_name);

The actual amount of space consumed is shown by this query:

SQL> select bytes from user_segments where segment_name='CUST_IDX1';

Chapter 8 Indexes

313

The output indicates that the estimated number of allocated bytes is in the ballpark

of the amount of space actually consumed:

 BYTES

 34603008

Your results may vary, depending on the number of records, the number of columns,

the data types, and the accuracy of statistics.

In addition to the initial sizing, keep in mind that the index will grow as records are

inserted into the table. You will have to monitor the space consumed by the index and

ensure that there is enough disk space to accommodate future growth requirements.

CREATING INDEXES AND TEMPORARY TABLESPACE SPACE

Related to space usage, sometimes DBAs forget that Oracle often requires space in either

memory or disk to sort an index as it is created. If the available memory area is consumed,

then Oracle allocates disk space as required within the default temporary tablespace. If you

are creating a large index, you may need to increase the size of your temporary tablespace.

Another approach is to create an additional temporary tablespace and then assign it to be the

default temporary tablespace of the user creating the index. After the index is created, you

can drop the temporary tablespace (that was created just for the new index) and reassign the

user’s default temporary tablespace back to the original temporary tablespace.

�Creating Separate Tablespaces for Indexes
For critical applications, you must give some thought to how much space tables and

indexes will consume and how fast they grow. Space consumption and object growth have

a direct impact on database availability. If you run out of space, your database will become

unavailable. The best way to manage space in the database is by creating tablespaces

tailored to space requirements and then creating objects in specified tablespaces that you

have designed for those objects. With that in mind, I recommend that you separate tables

and indexes into different tablespaces. Consider the following reasons:

•	 Doing so allows for differing backup and recovery requirements.

You may want the flexibility of backing up the indexes at a different

frequency than the tables. Or, you may choose not to back up indexes

because you know that you can re-create them.

Chapter 8 Indexes

314

•	 If you let the table or index inherit its storage characteristics from the

tablespace, when using separate tablespaces, you can tailor storage

attributes for objects created within the tablespace. Tables and

indexes often have different storage requirements (such as extent size

and logging).

•	 When running maintenance reports, it is sometimes easier to

manage tables and indexes when the reports have sections separated

by tablespace.

If these reasons are valid for your environment, it is probably worth the extra effort

to employ different tablespaces for tables and indexes. If you do not have any of the prior

needs, then it is fine to put tables and indexes together in the same tablespace.

I should point out that DBAs often consider placing indexes in separate tablespaces

for performance reasons. If you have the luxury of creating a storage system from scratch

and can set up mount points that have their own sets of disks and controllers, you may

see some I/O benefits from separating tables and indexes into different tablespaces.

Nowadays, storage administrators often give you a large slice of storage in a storage area

network (SAN), and there is no way to guarantee that data and indexes will be stored

physically, on separate disks (and controllers). Thus, you typically do not gain any

performance benefits by separating tables and indexes into different tablespaces.

The following code shows an example of building separate tablespaces for tables and

indexes. It creates locally managed tablespaces, using a fixed extent size and automatic

segment space management:

SQL> CREATE TABLESPACE reporting_data

 DATAFILE '/u01/dbfile/O18C/reporting_data01.dbf' SIZE 1G

 EXTENT MANAGEMENT LOCAL

 UNIFORM SIZE 1M

 SEGMENT SPACE MANAGEMENT AUTO;

--

SQL> CREATE TABLESPACE reporting_index

 DATAFILE '/u01/dbfile/O18C/reporting_index01.dbf' SIZE 500M

 EXTENT MANAGEMENT LOCAL

 UNIFORM SIZE 128K

 SEGMENT SPACE MANAGEMENT AUTO;

Chapter 8 Indexes

315

I prefer to use uniform extent sizes because that ensures that all extents within the

tablespace will be of the same size, which reduces fragmentation as objects are created

and dropped. The automatic segment space management feature allows Oracle to

manage automatically many storage attributes that previously had to be monitored and

maintained by the DBA manually.

�Inheriting Storage Parameters from the Tablespace

When creating a table or an index, there are a few tablespace-related technical details to

be aware of. For instance, if you do not specify storage parameters when creating tables

and indexes, then they inherit storage parameters from the tablespace. This is the desired

behavior in most circumstances; it saves you from having to specify these parameters

manually. If you need to create an object with storage parameters different from those of its

tablespace, then you can do so within the CREATE TABLE/INDEX statement.

Also keep in mind that if you do not explicitly specify a tablespace, by default,

indexes are created in the default permanent tablespace for the user. This is acceptable

for development and test environments. For production environments, you should

consider explicitly naming tablespaces in the CREATE TABLE/INDEX statement.

�Placing Indexes in Tablespaces, Based on Extent Size

If you know how large an index may initially be or what its growth requirements are,

consider placing the index in a tablespace that is appropriate in terms of the size of

the tablespace and the size of the extents. I’ll sometimes create two or more index

tablespaces per application. Here is an example:

SQL> create tablespace inv_idx_small

 datafile '/u01/dbfile/O18C/inv_idx_small01.dbf' size 100m

 extent management local

 uniform size 128k

 segment space management auto;

--

SQL> create tablespace inv_idx_med

 datafile '/u01/dbfile/O18C/inv_idx_med01.dbf' size 1000m

 extent management local

 uniform size 4m

 segment space management auto;

Chapter 8 Indexes

316

Indexes that have small space and growth requirements are placed in the INV_IDX_

SMALL tablespace, and indexes that have medium storage requirements would be created

in INV_IDX_MED. If you discover that an index is growing at an unpredicted rate, consider

dropping the index and re-creating it in a different tablespace or rebuilding the index in

a more appropriate tablespace.

�Creating Portable Scripts
I oftentimes find myself working in multiple database environments, such as

development, testing, and production. Typically, I will create a tablespace first in

development, then later in testing, and finally in production. Frequently, there are

aspects of the script that need to change as it is promoted through the environments. For

instance, development may need only 100MB of space, but production may need 10GB.

In these situations, it is handy to use ampersand variables to make the scripts

somewhat portable among environments. For example, this next script uses an

ampersand variable at the top of the script to define the tablespace size. The ampersand

variable is then referenced within the CREATE TABLESPACE statement:

SQL> define reporting_index_size=100m

--

SQL> create tablespace reporting_index

 datafile '/u01/dbfile/O18C/reporting_index01.dbf' size &&reporting_index_

size

 extent management local

 uniform size 128k

 segment space management auto;

If you are only working with one tablespace, then there is not much to gain

from using the prior technique. But, if you are creating dozens of tablespaces within

numerous environments, then it pays to build in the reusability. Keep in mind that you

can use ampersand variables anywhere within the script for any values you think may

differ from one environment to the next.

Chapter 8 Indexes

317

�Establishing Naming Standards
When you are creating and managing indexes, it is highly desirable to develop some

standards regarding naming. Consider the following motives:

•	 Diagnosing issues is simplified when error messages contain

information that indicates the table, index type, and so on.

•	 Reports that display index information are more easily grouped and

therefore are more readable, making it easier to spot patterns and

issues.

Given those needs, here are some sample index-naming guidelines:

•	 Primary key index names should contain the table name and a suffix

such as _PK.

•	 Unique key index names should contain the table name and a suffix

such as _UKN, where N is a number.

•	 Indexes on foreign key columns should contain the foreign key table

and a suffix such as _FKN, where N is a number.

•	 Indexes that are not used for constraints should contain the table

name and a suffix such as _IDXN, where N is a number.

•	 Function-based index names should contain the table name and a

suffix such as _FNXN, where N is a number.

•	 Bitmap index names should contain the table name and a suffix such

as _BMXN, where N is a number.

Some shops use prefixes when naming indexes. For example, a primary key index

would be named PK_CUST (instead of CUST_PK). All these various naming standards

are valid.

Tip  It does not matter what the standard is, as long as everybody on the team
follows the same standard.

Chapter 8 Indexes

318

�Creating Indexes
As described previously, when you think about creating tables, you must think about

the corresponding index architecture. Creating the appropriate indexes and using

the correct index features will usually result in dramatic performance improvements.

Conversely, creating indexes on the wrong columns or using features in the wrong

situations can cause dramatic performance degradation.

Having said that, after giving some thought to what kind of index you need, the next

logical step is to create the index. Creating indexes and implementing specific features

are discussed in the next several sections.

�Creating B-tree Indexes
The default index type in Oracle is a B-tree index. To create a B-tree index on an existing

table, use the CREATE INDEX statement. This example creates an index on the CUST table,

specifying LAST_NAME as the column:

SQL> CREATE INDEX cust_idx1 ON cust(last_name);

By default, Oracle will create an index in your default permanent tablespace.

Sometimes, that may be the desired behavior. But often, for manageability reasons, you

want to create the index in a specific tablespace. Use the following syntax to instruct

Oracle to build an index in a specific tablespace:

SQL> CREATE INDEX cust_idx1 ON cust(last_name) TABLESPACE reporting_index;

Tip  If you do not specify any physical storage properties for an index, the index
inherits its properties from the tablespace in which it is created. This is usually an
acceptable method for managing index storage.

Because B-tree indexes are the default type and are used extensively with Oracle

applications, it is worth taking some time to explain how this particular type of index

works. A good way to understand the workings of an index is to show its conceptual

structure, along with its relationship with a table (an index cannot exist without a table).

Chapter 8 Indexes

319

Take a look at Figure 8-1; the top section illustrates the CUST table, with some data. The

table data are stored in two separate data files, and each data file contains two blocks.

The bottom part of the diagram shows a balanced, treelike structure of a B-tree index

named CUST_IDX1, created on a LAST_NAME of the CUST table. The index is stored in one

data file and consists of four blocks.

Figure 8-1.  Oracle B-tree hierarchical index structure and associated table

The index definition is associated with a table and column(s). The index structure

stores a mapping of the table’s ROWID and the column data on which the index is built.

A ROWID usually uniquely identifies a row within a database and contains information to

physically locate a row (data file, block, and row position within block). The two dotted

lines in Figure 8-1 depict how the ROWID (in the index structure) points to the physical

row in the table for the column values of ACER.

The B-tree index has a hierarchical tree structure. When Oracle accesses the index,

it starts with the top node, called the root (or header) block. Oracle uses this block

to determine which second-level block (also called a branch block) to read next.

Chapter 8 Indexes

320

The second-level block points to several third-level blocks (leaf nodes), which contain

a ROWID and the name value. In this structure, it will take three I/O operations to find

the ROWID. Once the ROWID is determined, Oracle will use it to read the table block that

contains the ROWID.

A couple of examples will help illustrate how an index works. Consider this query:

SQL> select last_name from cust where last_name = 'ACER';

Oracle accesses the index, first reading the root, block 20; then, determines that the

branch block 30 needs to be read; and, finally, reads the index values from the lead node

block 39. Conceptually, that would be three I/O operations. In this case, Oracle does

not need to read the table because the index contains sufficient information to satisfy

the result of the query. You can verify the access path of a query by using the autotrace

utility; for example,

SQL> set autotrace trace explain;

SQL> select last_name from cust where last_name = 'ACER';

Note that only the index was accessed (and not the table) to return the data:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 6 | 1 (0)| 00:00:01 |

|* 1 | INDEX RANGE SCAN| CUST_IDX1| 1 | 6 | 1 (0)| 00:00:01 |

Also consider this query:

SQL> select first_name, last_name from cust where last_name = 'ACER';

Here, Oracle would follow the same index access path by reading blocks 20, 30, and 39.

However, because the index structure does not contain the FIRST_NAME value, Oracle

must also use the ROWID to read the appropriate rows in the CUST table (blocks 11 and

2500). Here is a snippet of the output from autotrace, indicating that the table has also

been accessed:

Chapter 8 Indexes

321

| Id | Operation | Name | Rows | Bytes |Cost

| 0 | SELECT STATEMENT | | 1| 44 | 2

| 1 | TABLE ACCESS BY INDEX ROWID BATCHED| CUST | 1| 44 | 2

|* 2 | INDEX RANGE SCAN | CUST_IDX1| 1| | 1

Also note at the bottom of Figure 8-1 the bidirectional arrows between the leaf nodes.

This illustrates that the leaf nodes are connected via a doubly linked list, thus making

index range scans possible. For instance, suppose you have this query:

SQL> select last_name from cust where last_name >= 'A' and last_name <= 'J';

To determine where to start the range scan, Oracle would read the root, block 20;

then, the branch block 30; and, finally, the leaf node block 39. Because the leaf node

blocks are linked, Oracle can navigate forward as needed to find all required blocks (and

does not have to navigate up and down through branch blocks). This is a very efficient

traversal mechanism for range scans.

ARBORISTIC VIEWS

Oracle provides two types of views containing details about the structure of B-tree indexes:

•	 INDEX_STATS

•	 DBA/ALL/USER_INDEXES

The INDEX_STATS view contains information regarding the HEIGHT (number of blocks from

root to leaf blocks), LF_ROWS (number of index entries), and so on. The INDEX_STATS view is

only populated after you analyze the structure of the index; for example,

 SQL> analyze index cust_idx1 validate structure;

The DBA/ALL/USER_INDEXES views contain statistics, such as BLEVEL (number of blocks

from root to branch blocks; this equals HEIGHT – 1); LEAF_BLOCKS (number of leaf blocks);

and so on. The DBA/ALL/USER_INDEXES views are populated automatically when the index

is created and refreshed via the DBMS_STATS package.

Chapter 8 Indexes

322

�Creating Concatenated Indexes
Oracle allows you to create an index that contains more than one column. Multicolumn

indexes are known as concatenated indexes. These indexes are especially effective when

you often use multiple columns in the WHERE clause when accessing a table.

Suppose you have this scenario, in which two columns from the same table are used

in the WHERE clause:

SQL> select first_name, last_name

from cust

where first_name = 'JIM'

and last_name = 'STARK';

Because both FIRST_NAME and LAST_NAME are often used in WHERE clauses for

retrieving data, it may be efficient to create a concatenated index on the two columns:

SQL> create index cust_idx2 on cust(first_name, last_name);

Often, it is not clear whether a concatenated index is more efficient than a single-

column index. For the previous SQL statement, you may wonder whether it is more

efficient to create two single-column indexes on FIRST_NAME and LAST_NAME, such as

SQL> create index cust_idx3 on cust(first_name);

SQL> create index cust_idx4 on cust(last_name);

In this scenario, if you are consistently using the combination of columns that appear

in the WHERE clause, then the optimizer will most likely use the concatenated index and

not the single-column indexes. Using a concatenated index, in these situations, is usually

much more efficient. You can verify that the optimizer chooses the concatenated index

by generating an explain plan; for example:

SQL> set autotrace trace explain;

Then, run this query:

SQL> select first_name, last_name

from cust

where first_name = 'JIM'

and last_name = 'STARK';

Chapter 8 Indexes

323

Here is some sample output, indicating that the optimizer uses the concatenated

index on CUST_IDX2 to retrieve data:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 44 | 1 (0)| 00:00:01 |

|* 1 | INDEX RANGE SCAN| CUST_IDX2 | 1 | 44 | 1 (0)| 00:00:01 |

In older versions of Oracle (circa version 8)if the leading-edge column (or columns)

appeared in the WHERE clause. In modern versions the optimizer can use a concatenated

index even if the leading-edge column (or columns) is not present in the WHERE clause.

This ability to use an index without reference to leading-edge columns is known as the

skip-scan feature.

A concatenated index that is used for skip scanning can, in certain situations, be

more efficient than a full-table scan. However, you should try to create concatenated

indexes that use the leading column. If you are consistently using only a lagging-edge

column of a concatenated index, then consider creating a single-column index on the

lagging column.

CREATING MULTIPLE INDEXES ON THE SAME SET OF COLUMNS

Prior to Oracle Database 12c, you could not have multiple indexes defined on the exact same

combination of columns in one table. This has changed in 12c. You can now have multiple

indexes on the same set of columns. However, you can only do this if there is something

physically different about the indexes, for example, one index is created as a B-tree index, and

the second, as a bitmap index.

Also, there can be only one visible index for the same combination of columns. Any other

indexes created on that same set of columns must be declared invisible; for example,

SQL> create index cust_idx2 on cust(first_name, last_name);

SQL> create bitmap index cust_bmx1 on cust(first_name, last_name) invisible;

Prior to Oracle Database 12c, if you attempted the previous operation, the second creation

statement would throw an error such as ORA-01408: such column list already

indexed.

Chapter 8 Indexes

324

Why would you want two indexes defined on the same set of columns? You might want to do

this if you originally implemented B-tree indexes and now wanted to change them to bitmap—

the idea being, you create the new indexes as invisible, then drop the original indexes and

make the new indexes visible. In a large database environment, this would enable you to make

the change quickly. See the section on “Implementing Invisible Indexes” for more information.

�Implementing Function-Based Indexes
Function-based indexes are created with SQL functions or expressions in their

definitions. Sometimes, function-based indexes are required when queries use SQL

functions. For example, consider the following query, which uses an SQL UPPER function:

SQL> select first_name from cust where UPPER(first_name) = 'JIM';

In this scenario there may be a normal B-tree index on the FIRST_NAME column, but

Oracle will not use a regular index that exists on a column when a function is applied to it.

In this situation, you can create a function-based index to improve performance of

queries that use an SQL function in the WHERE clause. This example creates a function-

based index:

SQL> create index cust_fnx1 on cust(upper(first_name));

Function-based indexes allow index lookups on columns referenced by functions in

the WHERE clause of an SQL query. The index can be as simple as the preceding example,

or it can be based on complex logic stored in a PL/SQL function.

Note  Any user-created SQL functions must be declared deterministic before they
can be used in a function-based index. Deterministic means that for a given set
of inputs, the function always returns the same results. You must use the keyword
DETERMINISTIC when creating a user-defined function that you want to use in a
function-based index.

If you want to see the definition of a function-based index, select from the DBA/ALL/

USER_IND_EXPRESSIONS view to display the SQL associated with the index. If you are

using SQL*Plus, be sure to issue a SET LONG command first; for example,

Chapter 8 Indexes

325

SQL> SET LONG 500

SQL> select index_name, column_expression from user_ind_expressions;

The SET LONG command in this example tells SQL*Plus to display up to 500

characters from the COLUMN_EXPRESSION column, which is of type LONG.

�Creating Unique Indexes
When you create a B-tree index, you can also specify that the index be unique. Doing so

ensures that non-NULL values are unique when you insert or update columns in a table.

Suppose you have identified a column (or combination of columns) in the table

(outside the primary key) that is used heavily in the WHERE clause. In addition, this

column (or combination of columns) has the requirement that it be unique within a

table. This is a good scenario in which to use a unique index. Use the UNIQUE clause to

create a unique index:

SQL> create unique index cust_uk1 on cust(first_name, last_name);

Note T he unique index does not enforce uniqueness for NULL values inserted
into the table. In other words, you can insert the value NULL into the indexed
column for multiple rows.

You must be aware of some interesting nuances regarding unique indexes, primary

key constraints, and unique key constraints (see Chapter 7 for a detailed discussion of

primary key constraints and unique key constraints). When you create a primary key

constraint or a unique key constraint, Oracle automatically creates a unique index and a

corresponding constraint that is visible in DBA/ALL/USER_CONSTRAINTS.

When you only create a unique index explicitly (as in the example in this section),

Oracle creates a unique index but does not add an entry for a constraint in DBA/ALL/

USER_CONSTRAINTS. Why does this matter? Consider this scenario:

SQL> create unique index cust_uk1 on cust(first_name, last_name);

SQL> insert into cust values(500,'JOHN','DEERE');

SQL> insert into cust values(501,'JOHN','DEERE');

Chapter 8 Indexes

326

Here is the corresponding error message that is thrown:

ERROR at line 1:

ORA-00001: unique constraint (MV_MAINT.CUST_UK1) violated

If you are asked to troubleshoot this issue, the first place you look is in DBA_

CONSTRAINTS for a constraint named CUST_IDX1. However, there is no information:

SQL> select constraint_name

from dba_constraints

where constraint_name='CUST_UK1';

Here is the output:

no rows selected

The no rows selected message can be confusing: the error message thrown when

you insert into the table indicates that a unique constraint has been violated, yet there is

no information in the constraint-related data dictionary views. In this situation, you have

to look at DBA_INDEXES and DBA_IND_COLUMNS to view the details of the unique index that

has been created:

SQL> select a.owner, a.index_name, a.uniqueness, b.column_name

from dba_indexes a, dba_ind_columns b

where a.index_name='CUST_UK1'

and a.table_owner = b.table_owner

and a.index_name = b.index_name;

If you want to have information related to the constraint in the DBA/ALL/USER_CONSTRAINTS

views, you can explicitly associate a constraint after the index has been created:

SQL> alter table cust add constraint cust_idx1 unique(first_name, last_name);

In this situation, you can enable and disable the constraint independent of the index.

However, because the index was created as unique, the index still enforces uniqueness

regardless of whether the constraint has been disabled.

When should you explicitly create a unique index versus creating a constraint and

having Oracle automatically create the index? There are no hard-and-fast rules. I prefer

creating a unique key constraint and letting Oracle automatically create the unique

index, because then I get information in both the DBA/ALL/USER_CONSTRAINTS and DBA/

ALL/USER_INDEXES views.

Chapter 8 Indexes

327

But, Oracle’s documentation recommends that if you have a scenario in which you

are strictly using a unique constraint to improve query performance, it is preferable to

create only the unique index. This is appropriate. If you take this approach, just be aware

that you may not find any information in the constraint-related data dictionary views.

�Implementing Bitmap Indexes
Bitmap indexes are recommended for columns with a relatively low degree of distinct

values (low cardinality). You should not use bitmap indexes in OLTP databases with high

INSERT/UPDATE/DELETE activities, owing to locking issues; the structure of the bitmap

index results in many rows potentially being locked during DML operations, which

causes locking problems for high-transaction OLTP systems.

Bitmap indexes are commonly used in data warehouse environments. A typical

star schema structure consists of a large fact table and many small dimension (lookup)

tables. In these scenarios, it is common to create bitmap indexes on fact table foreign key

columns. The fact tables are typically inserted into on a daily basis and usually are not

updated or deleted from.

Listed next is a simple example that demonstrates the creation and structure of a

bitmap index. First, create a LOCATIONS table:

SQL> create table locations(

 location_id number

,region varchar2(10));

Now, insert the following rows into the table:

SQL> insert into locations values(1,'NORTH');

SQL> insert into locations values(2,'EAST');

SQL> insert into locations values(3,'NORTH');

SQL> insert into locations values(4,'WEST');

SQL> insert into locations values(5,'EAST');

SQL> insert into locations values(6,'NORTH');

SQL> insert into locations values(7,'NORTH');

You use the BITMAP keyword to create a bitmap index. The next line of code creates a

bitmap index on the REGION column of the LOCATIONS table:

SQL> create bitmap index locations_bmx1 on locations(region);

Chapter 8 Indexes

328

Bitmap indexes are effective at retrieving rows when multiple AND and OR conditions

appear in the WHERE clause. For example, to perform the task find all rows with a

region of EAST or WEST, a Boolean algebra OR operation is performed on the EAST and

WEST bitmaps to quickly return rows 2, 4, and 5. The last row of Table 8-2 shows the OR

operation on the EAST and WEST bitmap.

Table 8-2.  Results of an OR Operation

Value/Row Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7

EAST 0 1 0 0 1 0 0

WEST 0 0 0 1 0 0 0

Boolean OR on EAST and WEST 0 1 0 1 1 0 0

Note  Bitmap indexes and bitmap join indexes are available only with the Oracle
Enterprise Edition of the database. Also, you cannot create a unique bitmap index.

�Creating Bitmap Join Indexes
Bitmap join indexes store the results of a join between two tables in an index. Bitmap

join indexes are beneficial because they avoid joining tables to retrieve results. The

syntax for a bitmap join index differs from that of a regular bitmap index in that it

contains FROM and WHERE clauses. Here is the basic syntax for creating a bitmap join

index:

SQL> create bitmap index <index_name>

on <fact_table> (<dimension_table.dimension_column>)

from <fact_table>, <dimension_table>

where <fact_table>.<foreign_key_column> = <dimension_table>.<primary_key_column>;

Bitmap join indexes are appropriate in situations in which you are joining two

tables, using the foreign key column (or columns) in one table relating to the primary

key column (or columns) in the other table. For example, suppose you typically retrieve

the FIRST_NAME and LAST_NAME from the CUST dimension table while joining to a large

Chapter 8 Indexes

329

F_SHIPMENTS fact table. This next example creates a bitmap join index between the

F_SHIPMENTS and CUST tables:

SQL> create bitmap index f_shipments_bmx1

on f_shipments(cust.first_name, cust.last_name)

from f_shipments, cust

where f_shipments.cust_id = cust.cust_id;

Now, consider a query such as this:

SQL> select c.first_name, c.last_name

from f_shipments s, cust c

where s.cust_id = c.cust_id

and c.first_name = 'JIM'

and c.last_name = 'STARK';

The optimizer can choose to use the bitmap join index, thus avoiding the expense of

having to join the tables. For small amounts of data, the optimizer will most likely choose

not to use the bitmap join index, but as the data in the table grow, using the bitmap join

index becomes more cost-effective than full-table scans or using other indexes.

�Implementing Reverse-Key Indexes
Reverse-key indexes are similar to B-tree indexes, except that the bytes of the index key

are reversed when an index entry is created. For example, if the index values are 201, 202,

and 203, the reverse-key index values are 102, 202, and 302:

Index value Reverse key value

------------- --------------------

201 102

202 202

203 302

Reverse-key indexes can perform better in scenarios in which you need a way to

evenly distribute index data that would otherwise have similar values clustered together.

Thus, when using a reverse-key index, you avoid having I/O concentrated in one

physical disk location within the index during large inserts of sequential values.

Chapter 8 Indexes

330

Use the REVERSE clause to create a reverse-key index:

SQL> create index cust_idx1 on cust(cust_id) reverse;

You can verify that an index is reverse key by running the following query:

SQL> select index_name, index_type from user_indexes;

Here is some sample output, showing that the CUST_IDX1 index is reverse key:

INDEX_NAME INDEX_TYPE

-------------------- ---------------------------

CUST_IDX1 NORMAL/REV

Note  You cannot specify REVERSE for a bitmap index or an IOT.

�Creating Key-Compressed Indexes
Index compression is useful for indexes that contain multiple columns in which the

leading index column value is often repeated. Compressed indexes, in these situations,

have the following advantages:

•	 Reduced storage

•	 More rows stored in leaf blocks, which can result in less I/O when

accessing a compressed index

Suppose you have a table defined as follows:

SQL> create table users(

 last_name varchar2(30)

,first_name varchar2(30)

,address_id number);

You want to create a concatenated index on the LAST_NAME and FIRST_NAME columns.

You know from examining the data that there is duplication in the LAST_NAME column.

Use the COMPRESS N clause to create a compressed index:

SQL> create index users_idx1 on users(last_name, first_name) compress 2;

Chapter 8 Indexes

331

The prior line of code instructs Oracle to create a compressed index on two columns.

You can verify that an index is compressed as follows: select index_name, compression

from user_indexes

where index_name like 'USERS%';

Here is some sample output, indicating that compression is enabled for the index:

INDEX_NAME COMPRESS

------------------------------ --------

USERS_IDX1 ENABLED

Note  You cannot create a key-compressed index on a bitmap index.

�Parallelizing Index Creation
In large database environments in which you are attempting to create an index on a table

that is populated with many rows, you may be able to greatly increase the index creation

speed by using the PARALLEL clause:

SQL> create index cust_idx1 on cust(cust_id)

parallel 2

tablespace reporting_index;

If you do not specify a degree of parallelism, Oracle selects a degree, based on the

number of CPUs on the box times the value of PARALLEL_THREADS_PER_CPU.

You can run this query to verify the degree of parallelism associated with an index:

SQL> select index_name, degree from user_indexes;

�Avoiding Redo Generation When Creating an Index
You can optionally create an index with the NOLOGGING clause. Doing so has these

implications:

•	 The redo is not generated that would be required to recover the index

in the event of a media failure.

Chapter 8 Indexes

332

•	 Subsequent direct-path operations also will not generate the redo

required to recover the index information in the event of a media failure.

Here is an example of creating an index with the NOLOGGING clause:

SQL> create index cust_idx1 on cust(cust_id)

nologging

tablespace users;

The main advantage of NOLOGGING is that when you create the index, a minimal

amount of redo information is generated, which can have significant performance

implications for a large index. The disadvantage is that if you experience a media failure

soon after the index is created (or have records inserted via a direct-path operation), and

you restore and recover the database from a backup that was taken prior to the index

creation, you will see this error when the index is accessed:

ORA-01578: ORACLE data block corrupted (file # 4, block # 1044)

ORA-01110: data file 4: '/u01/dbfile/O18C/users01.dbf'

ORA-26040: Data block was loaded using the NOLOGGING option

This error indicates that the index is logically corrupt. In this scenario, you must

re-create the index before it is usable. In most scenarios it is acceptable to use the

NOLOGGING clause when creating an index, because the index can be recreated without

affecting the table on which the index is based.

You can run this query to view whether an index has been created with NOLOGGING:

SQL> select index_name, logging from user_indexes;

�Implementing Invisible Indexes
As discussed in creating an index on the same columns with only one visible, you

have the option of making an index invisible to the optimizer. Oracle still maintains an

invisible index (as DML occurs on the table) but does not make it available for use by the

optimizer. You can use the OPTIMIZER_USE_INVISIBLE_INDEXES database parameter to

make an invisible index visible to the optimizer.

Chapter 8 Indexes

333

Invisible indexes have a couple of interesting uses:

•	 Altering an index to be invisible before dropping it allows you to

quickly recover if you later determine that the index is required.

•	 You may be able to add an invisible index to a third-party application

without affecting existing code or support agreements.

These two scenarios are discussed in the following sections.

�Making an Existing Index Invisible

Suppose you have identified an index that is not being used and are considering

dropping it. In earlier releases of Oracle, you could mark the index UNUSABLE and then

later drop indexes that you were certain weren’t being used. If you later determined that

you needed an unusable index, the only way to re-enable the index was to rebuild it. For

large indexes this could take a great amount of time and database resources.

Making an index invisible has the advantage of telling only the optimizer not to use

the index. The invisible index is still maintained as the underlying table has records

inserted, updated, and deleted. If you decide that you later need the index, there is no

need to rebuild it; you simply make it visible again.

You can create an index as invisible or alter an existing index to be invisible; for example,

SQL> create index cust_idx2 on cust(first_name) invisible;

SQL> alter index cust_idx1 invisible;

You can verify the visibility of an index via this query:

SQL> select index_name, status, visibility from user_indexes;

Here is some sample output:

INDEX_NAME STATUS VISIBILITY

-------------------- -------- ----------

CUST_IDX1 VALID INVISIBLE

CUST_IDX2 VALID INVISIBLE

USERS_IDX1 VALID VISIBLE

Use the VISIBLE clause to make an invisible index visible to the optimizer again:

SQL> alter index cust_idx1 visible;

Chapter 8 Indexes

334

Caution  If you have a B-tree index on a foreign key column, and you decide to
make it invisible, Oracle can still use the index to prevent certain locking issues.
Before you drop an index on a column associated with a foreign key constraint,
ensure that it is not used by Oracle to prevent locking issues. See the section
“Indexing Foreign Key Columns,” later in this chapter, for details.

�Guaranteeing Application Behavior Is Unchanged
When You Add an Index

You can also use an invisible index when you are working with third-party applications.

Often, third-party vendors do not support customers adding their own indexes to an

application. However, there may be a scenario in which you are certain you can increase

a query’s performance without affecting other queries in the application.

You can create the index as invisible and then use the OPTIMIZER_USE_INVISIBLE_

INDEXES parameter to instruct the optimizer to consider invisible indexes. This

parameter can be set at the system or session level. Here is an example:

SQL> create index cust_idx1 on cust(cust_id) invisible;

Now, set the OPTIMIZER_USE_INVISIBLE_INDEXES database parameter to TRUE. This

instructs the optimizer to consider invisible indexes for the currently connected session:

SQL> alter session set optimizer_use_invisible_indexes=true;

You can verify that the index is being used by setting AUTOTRACE to on and running

the SELECT statement:

SQL> set autotrace trace explain;

SQL> select cust_id from cust where cust_id = 3;

Chapter 8 Indexes

335

Here is some sample output, indicating that the optimizer chose to use the invisible

index:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 5 | 1 (0)| 00:00:01 |

|* 1 | INDEX RANGE SCAN| CUST_IDX1 | 1 | 5 | 1 (0)| 00:00:01 |

Keep in mind that invisible index simply means an index the optimizer cannot see.

Just like any other index, an invisible index consumes space and resources during DML

statements.

�Maintaining Indexes
As applications age, you invariably have to perform some maintenance activities on

existing indexes. You may need to rename an index to conform to newly implemented

standards, or you may need to rebuild a large index to move it to a different tablespace

that better suits the index’s storage requirements. The following list shows common

tasks associated with index maintenance:

•	 Renaming an index

•	 Displaying the DDL for an index

•	 Rebuilding an index

•	 Setting indexes to unusable

•	 Monitoring an index

•	 Dropping an index

Each of these items is discussed in the following sections.

Chapter 8 Indexes

336

�Renaming an Index
Sometimes you need to rename an index. The index may have been erroneously named

when it was created, or perhaps you want a name that better conforms to naming

standards. Use the ALTER INDEX ... RENAME TO statement to rename an index:

SQL> alter index cust_idx1 rename to cust_index1;

You can verify that the index was renamed by querying the data dictionary:

SQL> select

 table_name

 ,index_name

 ,index_type

 ,tablespace_name

 ,status

from user_indexes

order by table_name, index_name;

�Displaying Code to Re-create an Index
You may be performing routine maintenance activities, such as moving an index to a

different tablespace, and before you do so, you want to verify the current storage settings.

You can use the DBMS_METADATA package to display the DDL required to re-create an

index. If you are using SQL*PlusLONG variable to a value large enough to display all the

output. Here is an example:

SQL> set long 10000

SQL> select dbms_metadata.get_ddl('INDEX','CUST_IDX1') from dual;

Here is a partial listing of the output:

SQL> CREATE INDEX "MV_MAINT"."CUST_IDX1" ON "MV_MAINT"."CUST" ("CUST_ID")

 PCTFREE 10 INITRANS 2 MAXTRANS 255 INVISIBLE COMPUTE STATISTICS

To show all index DDL for a user, run this query:

SQL> select dbms_metadata.get_ddl('INDEX',index_name) from user_indexes;

Chapter 8 Indexes

337

You can also display the DDL for a particular user. You must provide as input to the

GET_DDL function the object type, object name, and schema; example,

SQL> select

dbms_metadata.get_ddl(object_type=>'INDEX', name=>'CUST_IDX1',

schema=>'INV')

from dual;

�Rebuilding an Index
There are a couple of good reasons to rebuild an index:

•	 Modifying storage characteristics, such as changing the tablespace

•	 Rebuilding an index that was previously marked unusable to make it

usable again

Use the REBUILD clause to rebuild an index. This example rebuilds an index named

CUST_IDX1:

SQL> alter index cust_idx1 rebuild;

Oracle attempts to acquire a lock on the table and rebuild the index online. If there

are any active transactions that haven’t committed, Oracle will not be able to obtain a

lock, and the following error will be thrown:

ORA-00054: resource busy and acquire with NOWAIT specified or timeout

expired

In this scenario, you can either wait until there is little activity in the database or try

setting the DDL_LOCK_TIMEOUT parameter:

SQL> alter session set ddl_lock_timeout=15;

The DDL_LOCK_TIMEOUT initialization parameter instructs Oracle to repeatedly

attempt to obtain a lock (for 15 seconds, in this case).

If no tablespace is specified, Oracle rebuilds the index in the tablespace in which

the index currently exists. Specify a tablespace if you want the index rebuilt in a different

tablespace:

SQL> alter index cust_idx1 rebuild tablespace reporting_index;

Chapter 8 Indexes

338

If you are working with a large index, you may want to consider using features such

as NOLOGGING or PARALLEL, or both. This next example rebuilds an index in parallel, while

generating a minimal amount of redo:

SQL> alter index cust_idx1 rebuild parallel nologging;

Note S ee the sections “Avoiding Redo Generation When Creating an Index” and
“Parallelizing Index Creation,” earlier in this chapter, for details on using these
features with indexes.

REBUILDING FOR PERFORMANCE REASONS

In the olden days (version 7 or so), in the name of performance, DBAs religiously rebuilt

indexes on a regular basis. Every DBA and his (or her) dog had a script similar to the one listed

next, which uses SQL to generate the SQL required to rebuild indexes for a schema:

SPO ind_build_dyn.sql

SET HEAD OFF PAGESIZE 0 FEEDBACK OFF;

SELECT 'ALTER INDEX ' || index_name || ' REBUILD;'

FROM user_indexes;

SPO OFF;

SET FEEDBACK ON;

However, it is debatable whether rebuilding an index with the newer versions of Oracle

achieves any performance gain. Usually, the only valid reason for rebuilding an index is that

the index has become corrupt or unusable or that you want to modify storage characteristics

(such as the tablespace).

�Making Indexes Unusable
If you have identified an index that is no longer being used, you can mark it UNUSABLE.

From that point forward, Oracle will not maintain the index, nor will the optimizer

consider the index for use in SELECT statements. The advantage of marking the index

UNUSABLE (rather than dropping it) is that if you later determine that the index is being

used, you can alter it to a USABLE state and rebuild it without needing the DDL on hand

to re-create it.

Chapter 8 Indexes

339

Here is an example of marking an index UNUSABLE:

SQL> alter index cust_idx1 unusable;

You can verify that it is unusable via this query:

SQL> select index_name, status from user_indexes;

The index has an UNUSABLE status:

INDEX_NAME STATUS

-------------------- --------

CUST_IDX1 UNUSABLE

If you determine that the index is needed (before you drop it), then it must be rebuilt

to become usable again:

SQL> alter index cust_idx1 rebuild;

Another common scenario for marking indexes UNUSABLE is that you are performing

a large data load. When you want to maximize table-loading performance, you can mark

the indexes UNUSABLE before performing the load. After you have loaded the table, you

must rebuild the indexes to make them usable again.

Note T he alternative to setting an index to UNUSABLE is to drop and re-create it.
This approach requires the CREATE INDEX DDL.

�Monitoring Index Usage
You may have inherited a database, and as part of getting to know the database and

application, you want to determine which indexes are being used (or not). The idea is

that you can identify indexes that are not being used and drop them, thus eliminating the

extra overhead and storage required.

Use the ALTER INDEX...MONITORING USAGE statement to enable basic index

monitoring. The following example enables monitoring an index:

SQL> alter index cust_idx1 monitoring usage;

Chapter 8 Indexes

340

The first time the index is accessed, Oracle records this; you can view whether an

index has been accessed via the v$index_usage_info or DBA_INDEX_USAGE view. To report

which indexes are being monitored and have been used, run this query:

SQL> select * from dba_index_usage;

Most likely, you will not monitor only one index. Rather, you will want to monitor all

indexes for a user. In this situation, use SQL to generate SQL to create a script you that

can run to turn on monitoring for all indexes. Here is such a script:

SQL> select

 'alter index ' || index_name || ' monitoring usage;'

from user_indexes;

The DBA_OBJECT_USAGE view only shows information for the currently connected

user. If you inspect the TEXT column of DBA_VIEWS, note the following line:

where io.owner# = userenv('SCHEMAID')

If you are logged in as a DBA-privileged user and want to view the status of all

indexes that have monitoring enabled (regardless of the user), execute this query:

SQL> select io.name, t.name,

 decode(bitand(i.flags, 65536), 0, 'NO', 'YES'),

 decode(bitand(ou.flags, 1), 0, 'NO', 'YES'),

 ou.start_monitoring,

 ou.end_monitoring

from sys.obj$ io, sys.obj$ t, sys.ind$ i, sys.object_usage ou

 where i.obj# = ou.obj#

 and io.obj# = ou.obj#

 and t.obj# = i.bo#;

The prior query removes the line from the query that restricts the currently logged-in

user. This provides you with a convenient way to view all monitored indexes.

Chapter 8 Indexes

341

Caution  Keep in mind that Oracle can use an index defined on a foreign key
column to prevent certain locking issues (see the sections “Determining if Foreign
Key Columns Are Indexed” and “Implementing an Index on a Foreign Key Column,”
later in this chapter, for further discussion). Oracle’s internal use of the index is not
recorded in DBA_INDEX_USAGE or V$INDEX_USAGE_INFO. Be very careful before
dropping an index defined on a foreign key column.

�Dropping an Index
If you have determined that an index is not being used, then it is a good idea to drop it.

Unused indexes take up space and can potentially slow down DML statements (because

the index must be maintained as part of those DML operations). Use the DROP INDEX

statement to drop an index:

SQL> drop index cust_idx1;

Dropping an index is a permanent DDL operation; there is no way to undo an index

drop other than to rebuild the index. Before you drop an index, it does not hurt to quickly

capture the DDL required to rebuild the index. Doing so will allow you to re-create the

index in the event you subsequently discover that you did need it after all.

�Indexing Foreign Key Columns
Foreign key constraints ensure that when inserting into a child table, a corresponding

parent table record exists. This is the mechanism for guaranteeing that data conform

to parent–child business relationship rules. Foreign keys are also known as referential

integrity constraints.

Unlike primary key and unique key constraints, Oracle does not automatically create

indexes on foreign key columns. Therefore, you must create a foreign key index manually,

based on the columns defined as the foreign key constraint. In most scenarios, you should

create indexes on columns associated with a foreign key. Here are two good reasons:

•	 Oracle can often make use of an index on foreign key columns to

improve the performance of queries that join a parent table and child

table (using the foreign key columns).

Chapter 8 Indexes

342

•	 If no B-tree index exists on the foreign key columns, when you insert

or delete a record from a child table, all rows in the parent table are

locked. For applications that actively modify both the parent and

child tables, this will cause locking and deadlock issues (see the

section “Determining if Foreign Key Columns Are Indexed,” later in

this chapter, for an example of this locking issue).

One could argue that if you know your application well enough and can predict

that queries will not be issued that join tables on foreign key columns and that certain

update/delete scenarios will never be encountered (that result in entire tables being

locked), then, by all means, do not place an index on foreign key columns. In my

experience, however, this is seldom the case: developers rarely think about how the

“black box database” might lock tables; some DBAs are equally unaware of common

causes of locking; teams experience high turnover rates, and the DBA de jour is left

holding the bag for issues of poor database performance and hung sessions. Considering

the time and resources spent chasing down locking and performance issues, it does not

cost that much to put an index on each foreign key column in your application. I know

some purists will argue against this, but I tend to avoid pain, and an unindexed foreign

key column is a ticking bomb.

Having made my recommendation, I’ll first cover creating a B-tree index on a foreign

key column. Then, I’ll show you some techniques for detecting unindexed foreign key

columns.

�Implementing an Index on a Foreign Key Column
Say you have a requirement that every record in the ADDRESS table be assigned a

corresponding CUST_ID column from the CUST table. To enforce this relationship, you

create the ADDRESS table and a foreign key constraint, as follows:

SQL> create table address(address_id number

,cust_address varchar2(2000)

,cust_id number);

--

SQL> alter table address add constraint addr_fk1

foreign key (cust_id) references cust(cust_id);

Chapter 8 Indexes

343

Note  A foreign key column must reference a column in the parent table that has
a primary key or unique key constraint defined on it. Otherwise, you will receive
the error ORA-02270: no matching unique or primary key for this
column-list.

You realize that the foreign key column is used extensively when joining the CUST and

ADDRESS tables and that an index on the foreign key column will increase performance.

In this situation, you have to create an index manually. For instance, a regular B-tree

index is created on the foreign key column of CUST_ID in the ADDRESS table.

SQL> create index addr_fk1

on address(cust_id);

You do not have to name the index the same name as the foreign key (as I did in these

lines of code). It is a personal preference as to whether you do that. I feel it is easier to

maintain environments when the constraint and corresponding index have the same

name.

When creating an index, if you do not specify the tablespace name, Oracle places the

index in the user’s default tablespace. It is usually a good idea to explicitly specify which

tablespace the index should be placed in; for example,

SQL> create index addr_fk1

on address(cust_id)

tablespace reporting_index;

Note  An index on foreign key columns does not have to be of the type B-tree.
In data warehouse environments, it is common to use bitmap indexes on foreign
key columns in star schema fact tables. Unlike B-tree indexes, bitmap indexes on
foreign key columns do not resolve parent–child table-locking issues. Applications
that use star schemas typically are not deleting or modifying the child record from
fact tables; therefore, locking is less of an issue, in this situation, regardless of the
use bitmap indexes on foreign key columns.

Chapter 8 Indexes

344

�Determining if Foreign Key Columns Are Indexed
If you are creating an application from scratch, it is fairly easy to create the code and

ensure that each foreign key constraint has a corresponding index. However, if you have

inherited a database, it is prudent to check if the foreign key columns are indexed.

You can use data dictionary views to verify if all columns of a foreign key constraint

have a corresponding index. The task is not as simple as it might first seem. For example,

here is a query that gets you started in the right direction:

SQL> SELECT DISTINCT

 a.owner owner

 ,a.constraint_name cons_name

 ,a.table_name tab_name

 ,b.column_name cons_column

 ,NVL(c.column_name,'***Check index****') ind_column

FROM dba_constraints a

 ,dba_cons_columns b

 ,dba_ind_columns c

WHERE constraint_type = 'R'

AND a.owner = UPPER('&&user_name')

AND a.owner = b.owner

AND a.constraint_name = b.constraint_name

AND b.column_name = c.column_name(+)

AND b.table_name = c.table_name(+)

AND b.position = c.column_position(+)

ORDER BY tab_name, ind_column;

This query, while simple and easy to understand, does not correctly report on

unindexed foreign keys for all situations. For example, in the case of multicolumn foreign

keys, it does not matter if the constraint is defined in an order different from that of the

index columns, as long as the columns defined in the constraint are in the leading edge

of the index. In other words, if the constraint is defined as COL1 and then COL2, then it is

okay to have a B-tree index defined on leading-edge COL2 and then COL1.

Another issue is that a B-tree index protects you from locking issues, but a bitmap

index does not. In this situation, the query should also check the index type.

Chapter 8 Indexes

345

In these scenarios, you will need a more sophisticated query to detect indexing

issues related to foreign key columns. The following example is a more complex query

that uses the LISTAGG analytical function to compare columns (returned as a string in

one row) in a foreign key constraint with corresponding indexed columns:

SQL> SELECT

 CASE WHEN ind.index_name IS NOT NULL THEN

 CASE WHEN ind.index_type IN ('BITMAP') THEN

 '** Bitmp idx **'

 ELSE

 'indexed'

 END

 ELSE

 '** Check idx **'

 END checker

,ind.index_type

,cons.owner, cons.table_name, ind.index_name, cons.constraint_name, cons.cols

FROM (SELECT

 c.owner, c.table_name, c.constraint_name

 ,�LISTAGG(cc.column_name, ',') WITHIN GROUP (ORDER BY cc.column_

name) cols

 FROM dba_constraints c

 ,dba_cons_columns cc

 WHERE c.owner = cc.owner

 AND c.owner = UPPER('&&schema')

 AND c.constraint_name = cc.constraint_name

 AND c.constraint_type = 'R'

 GROUP BY c.owner, c.table_name, c.constraint_name) cons

LEFT OUTER JOIN

(SELECT

 table_owner, table_name, index_name, index_type, cbr

 ,LISTAGG(column_name, ',') WITHIN GROUP (ORDER BY column_name) cols

 FROM (SELECT

 ic.table_owner, ic.table_name, ic.index_name

 ,ic.column_name, ic.column_position, i.index_type

 ,CONNECT_BY_ROOT(ic.column_name) cbr

Chapter 8 Indexes

346

 FROM dba_ind_columns ic

 ,dba_indexes i

 WHERE ic.table_owner = UPPER('&&schema')

 AND ic.table_owner = i.table_owner

 AND ic.table_name = i.table_name

 AND ic.index_name = i.index_name

 CONNECT BY PRIOR ic.column_position-1 = ic.column_position

 AND PRIOR ic.index_name = ic.index_name)

 GROUP BY table_owner, table_name, index_name, index_type, cbr) ind

ON cons.cols = ind.cols

AND cons.table_name = ind.table_name

AND cons.owner = ind.table_owner

ORDER BY checker, cons.owner, cons.table_name;

This query will prompt you for a schema name and then will display foreign key

constraints that do not have corresponding indexes. This query also checks for the index

type; as previously stated, bitmap indexes may exist on foreign key columns but do not

prevent locking issues.

TABLE LOCKS AND FOREIGN KEYS

Here is a simple example that demonstrates the locking issue when foreign key columns are

not indexed. First, create two tables (DEPT and EMP), and associate them with a foreign key

constraint:

SQL> create table emp(emp_id number primary key, dept_id number);

SQL> create table dept(dept_id number primary key);

SQL> alter table emp add constraint emp_fk1 foreign key (dept_id) references

dept(dept_id);

Next, insert some data:

SQL> insert into dept values(10);

SQL> insert into dept values(20);

SQL> insert into dept values(30);

SQL> insert into emp values(1,10);

SQL> insert into emp values(2,20);

Chapter 8 Indexes

347

SQL> insert into emp values(3,10);

SQL> commit;

Open two terminal sessions. From one, delete one record from the child table (do not commit):

SQL> delete from emp where dept_id = 10;

Then, attempt to delete from the parent table some data not affected by the child table delete:

SQL> delete from dept where dept_id = 30;

The delete from the parent table hangs until the child table transaction is committed. Without

a regular B-tree index on the foreign key column in the child table, any time you attempt to

insert or delete in the child table, a table-wide lock is placed on the parent table; this prevents

deletes or updates in the parent table until the child table transaction completes.

Now, run the prior experiment, except this time, additionally create an index on the foreign key

column of the child table:

SQL> create index emp_fk1 on emp(dept_id);

You should be able to run the prior two delete statements independently. When you have

a B-tree index on the foreign key columns, if deleting from the child table, Oracle will not

excessively lock all rows in the parent table.

�Summary
Indexes are critical objects separate from tables; they vastly increase the performance of

a database application. Your index architecture should be well planned, implemented,

and maintained. Carefully choose which tables and columns are indexed. Although they

dramatically increase the speed of queries, indexes can slow down DML statements,

because the index has to be maintained as the table data changes. Indexes also consume

disk space. Thus, indexes should be created only when required.

New versions of Oracle and more resources bring improvements to how index or

table scans perform. With upgrades and changes to the database system, old indexes

should be reviewed if they are still needed. SQL Tuning steps to verify the indexes are

very important, and using tools such as making an index invisible will help to validate if

an index is needed before being dropped.

Chapter 8 Indexes

348

Oracle’s B-tree index is the default index type and is sufficient for most applications.

However, you should be aware of other index types and their uses. Specific features,

such as bitmap and function-based indexes, should be implemented where applicable.

This chapter has discussed various aspects of implementing and maintaining indexes.

Table 8-3 summarizes the guidelines and techniques covered in this chapter.

Table 8-3.  Summary of Guidelines for Creating Indexes

Guideline Reasoning

Create as many indexes as you need, but

try to keep the number to a minimum. Add

indexes judiciously. Test first to determine

quantifiable performance gains.

Indexes increase performance, but also consume disk

space and processing resources and time for DML

statements. Do not add indexes unnecessarily.

The required performance of queries you

execute against a table should form the

basis of your indexing strategy.

Indexing columns used in SQL queries will help

performance the most.

Consider using the SQL Tuning Advisor

or the SQL Access Advisor for indexing

recommendations.

These tools provide recommendations and a second

set of “eyes” on your indexing decisions.

Create primary key constraints for all tables. This will automatically create a B-tree index (if the

columns in the primary key are not already indexed).

Create unique key constraints where

appropriate.

This will automatically create a B-tree index (if the

columns in the unique key are not already indexed).

Create indexes on foreign key columns. Foreign key columns are usually included in the

WHERE clause when joining tables and thus improve

performance of SQL SELECT statements. Creating

a B-tree index on foreign key columns also reduces

locking issues when updating and inserting into child

tables.

Carefully select and test indexes on small

tables (small being fewer than a few

thousand rows).

Even on small tables, indexes can sometimes perform

better than full-table scans.

(continued)

Chapter 8 Indexes

349

Table 8-3  (continued)

Guideline Reasoning

Use the correct type of index. Correct index usage maximizes performance. See

Table 8-1 for more details.

Use the basic B-tree index type if you do

not have a verifiable performance gain from

using a different index type.

B-tree indexes are suitable for most applications in

which you have high-cardinality column values.

Consider using bitmap indexes in data

warehouse environments.

These indexes are ideal for low-cardinality columns

in which the values are not updated often. Bitmap

indexes work well on foreign key columns on star

schema fact tables in which you often run queries

that use AND and OR join conditions.

Consider using a separate tablespace for

indexes (i.e., separate from tables).

Table and index data may have different storage or

backup and recovery requirements, or both. Using

separate tablespaces lets you manage indexes

separately from tables.

Let the index inherit its storage properties

from the tablespace.

This makes it easier to manage and maintain index

storage.

Use consistent naming standards. This makes maintenance and troubleshooting easier.

Do not rebuild indexes unless you have a

solid reason to do so.

Rebuilding indexes is generally unnecessary unless

an index is corrupt or unusable, or you want to move

an index to different tablespace.

Monitor your indexes, and drop those that

are not used.

Doing this frees up physical space and improves the

performance of DML statements.

Before dropping an index, consider marking

it invisible.

This allows you to better determine if there are any

performance issues before you drop the index. These

options let you rebuild or re-enable the index without

requiring the DDL creation statement.

Chapter 8 Indexes

350

Refer to these guidelines as you create and manage indexes in your databases. These

recommendations are intended to help you correctly use index technology.

Using automated tuning procedures and statistics from the Oracle database will

provide information about the need and use of indexes. Along with understanding the

strategies for using indexes, these tools will be helpful in managing the objects and using

indexes to help with query performance.

After you build a database and users and configure the database with tables and

indexes, the next step is to create additional objects needed by the application and users.

Besides tables and indexes, typical objects include views, synonyms, and sequences.

Building these database objects is detailed in the next chapter.

Chapter 8 Indexes

351
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_9

CHAPTER 9

Views, Synonyms,
and Sequences
This chapter focuses on views, synonyms, and sequences. Views are used extensively in

reporting applications and also to present subsets of data to users. Synonyms provide

a method of transparently allowing users to display and use other users’ objects.

Sequences are often utilized to generate unique integers that are used to populate

primary key and foreign key values.

Note  Although views, synonyms, and sequences may not seem as important as
tables and indexes, the truth of the matter is that they are almost equally important
to understand. An application with any level of sophistication will encompass
what’s discussed in this chapter.

�Implementing Views
In one sense, you can think of a view as an SQL statement stored in the database.

Conceptually, when you select from a view, Oracle looks up the view definition in the

data dictionary, executes the query the view is based on, and returns the results.

In addition to selecting from a view, in some scenarios it is possible to execute

INSERT, UPDATE, and DELETE statements against the view, which results in modifications

to the underlying table data. So, in this sense, instead of simply describing a view as a

stored SQL statement, it is more accurate to conceptualize a view as a logical table built

on other tables or views, or both.

352

Having said that, listed next are the common uses for views:

•	 Create an efficient method of storing an SQL query for reuse.

•	 Provide an interface layer between an application and physical

tables.

•	 Hide the complexity of an SQL query from an application.

•	 Report to a user only a subset of columns or rows, or both.

With all this in mind, the next step is to create a view and observe some of its

characteristics.

�Creating a View
You can create views on tables, materialized views, or other views. To create a view, your

user account must have the CREATE VIEW system privilege. If you want to create a view in

another user’s schema, then you must have the CREATE ANY VIEW privilege.

For reference, the view creation example in this section depends on the following

base table:

SQL> create table sales(

 sales_id number primary key

,amnt number

,state varchar2(2)

,sales_person_id number);

Also assume that the table has the following data initially inserted into it:

SQL> insert into sales values(1, 222, 'CO', 8773);

SQL> insert into sales values(20, 827, 'FL', 9222);

Then, the CREATE VIEW statement is used to create a view. The following code creates

a view (or replaces it if the view already exists) that selects a subset of columns and rows

from the SALES table:

SQL> create or replace view sales_rockies as

select sales_id, amnt, state

from sales

where state in ('CO','UT','WY','ID','AZ');

Chapter 9 Views, Synonyms, and Sequences

353

Note I f you do not want to accidentally replace an existing view definition, then
use CREATE VIEW view, and not CREATE OR REPLACE VIEW view. The
CREATE VIEW <view> statement will throw an ORA-00955 error if the view
already exists, whereas the CREATE OR REPLACE VIEW view overwrites the
existing definition.

Now, when you select from SALES_ROCKIES, it executes the view query and returns

data from the SALES table as appropriate:

SQL> select * from sales_rockies;

Given the view query, it is intuitive that the output shows only the following columns

and one row:

 SALES_ID AMNT ST

---------- ---------- --

 1 222 CO

What is not as apparent is that you can also issue UPDATE, INSERT, and DELETE

statements against a view, which results in modification of the underlying table data.

For example, the following insert statement against the view results in the insertion of a

record in the SALES table:

SQL> insert into sales_rockies(

 sales_id, amnt, state)

values

(2,100,'CO');

Additionally, as the owner of the table and view (or as a DBA), you can grant DML

privileges to other users on the view. For instance, you can grant SELECT, INSERT, UPDATE,

and DELETE privileges on the view to another user, which will allow the user to select and

modify data referencing the view. However, having privileges on the view does not give

the user direct SQL access to the underlying table(s).

Thus, any users granted privileges on the view will be able to manipulate data

through the view but not issue SQL against the objects the view is based on.

Note that you can insert a value into the view that results in a row in the underlying

table that is not selectable by the view:

Chapter 9 Views, Synonyms, and Sequences

354

SQL> insert into sales_rockies(

 sales_id, amnt, state)

values (3,123,'CA');

SQL> select * from sales_rockies;

 SALES_ID AMNT ST

---------- ---------- --

 1 222 CO

 2 100 CO

In contrast, the query on the underlying table shows that rows exist that are not

returned by the view:

SQL> select * from sales;

 SALES_ID AMNT ST SALES_PERSON_ID

---------- ---------- -- ---------------

 1 222 CO 8773

 20 827 FL 9222

 2 100 CO

 3 123 CA

If you want the view to only allow insert and update statements that result in data

modifications that are selectable by the view statement, then use the WITH CHECK OPTION

(see the next section, “Checking Updates”).

�Checking Updates
You can specify that a view should allow modifications to the underlying table

data only if those data are selectable by the view. This behavior is enabled with the

WITH CHECK OPTION:

SQL> create or replace view sales_rockies as

select sales_id, amnt, state

from sales

where state in ('CO','UT','WY','ID','AZ')

with check option;

Chapter 9 Views, Synonyms, and Sequences

355

Using the WITH CHECK OPTION means that you can only insert or update rows that

would be returned by the view query. For example, this UPDATE statement works because

the statement is not changing the underlying data in a way would result in the row’s not

being returned by the view query:

SQL> update sales_rockies set state='ID' where sales_id=1;

However, this next update statement fails because it attempts to update the STATE

column to a value that is not selectable by the query on which the view is based:

SQL> update sales_rockies set state='CA' where sales_id=1;

In this example, the following error is thrown:

ORA-01402: view WITH CHECK OPTION where-clause violation

I have rarely seen the WITH CHECK OPTION used. Having said that, if your business

requirements mandate that updatable views only have the ability to update data

selectable by the view query, then, by all means, use this feature.

�Creating Read-Only Views
If you do not want a user to be able to perform INSERT, UPDATE, or DELETE operations on a

view, then do not grant those object privileges on the view to that user. Furthermore, you

should also create a view with the WITH READ ONLY clause for any views for which you

do not want the underlying tables to be modified. The default behavior is that a view is

updatable (assuming the object privileges exist).

This example creates a view with the WITH READ ONLY clause:

SQL> create or replace view sales_rockies as

select sales_id, amnt, state

from sales

where state in ('CO','UT','WY','ID','AZ')

with read only;

Even if a user (including the owner) has privileges to delete, insert, or update the

view, if such an operation is attempted, the following error is thrown:

ORA-42399: cannot perform a DML operation on a read-only view

Chapter 9 Views, Synonyms, and Sequences

356

If you use views for reporting and never intend for the views to be used as a

mechanism for modifying the underlying table’s data, then you should always create the

views with the WITH READ ONLY clause. Doing so prevents accidental modifications to the

underlying tables through a view that was never intended to be used to modify data.

�Updatable Join Views
If you have multiple tables defined in the FROM clause of the SQL query on which the view

is based, it is still possible to update the underlying tables. This is known as an updatable

join view.

For reference purposes, here are the CREATE TABLE statements for the two tables

used in the examples in this section:

SQL> create table emp(

 emp_id number primary key

,emp_name varchar2(15)

,dept_id number);

--

SQL> create table dept(

 dept_id number primary key

,dept_name varchar2(15),

 constraint emp_dept_fk

 foreign key(dept_id) references dept(dept_id));

And, here are some seed data for the two tables:

SQL> insert into dept values(1,'HR');

SQL> insert into dept values(2,'IT');

SQL> insert into dept values(3,'SALES');

SQL> insert into emp values(10,'John',2);

SQL> insert into emp values(20,'Bob',1);

SQL> insert into emp values(30,'Craig',2);

SQL> insert into emp values(40,'Joe',3);

SQL> insert into emp values(50,'Jane',1);

SQL> insert into emp values(60,'Mark',2);

Chapter 9 Views, Synonyms, and Sequences

357

Here is an example of an updatable join view, based on the two prior base tables:

SQL> create or replace view emp_dept_v

as

select a.emp_id, a.emp_name, b.dept_name, b.dept_id

from emp a, dept b

where a.dept_id = b.dept_id;

There are some restrictions regarding the columns on which DML operations are

permitted. For instance, columns in the underlying tables can be updated only if the

following conditions are true:

•	 The DML statement must modify only one underlying table.

•	 The view must be created without the READ ONLY clause.

•	 The column being updated belongs to the key-preserved table in the

join view (there is only one key-preserved table in a join view).

An underlying table in a view is key preserved if the table’s primary key can also be

used to uniquely identify rows returned by the view. An example with data will help

illustrate whether an underlying table is key preserved. In this scenario, the primary key

of the EMP table is the EMP_ID column; the primary key of the DEPT table is the DEPT_ID

column. Here are some sample data returned by querying the view listed previously in

this section:

 EMP_ID EMP_NAME DEPT_NAME DEPT_ID

---------- --------------- --------------- ----------

 10 John IT 2

 20 Bob HR 1

 30 Craig IT 2

 40 Joe SALES 3

 50 Jane HR 1

 60 Mark IT 2

As you can see from the output of the view, the EMP_ID column is always unique.

Therefore, the EMP table is key preserved (and its columns can be updated). In contrast,

the view’s output shows that it is possible for the DEPT_ID column to be not unique.

Therefore, the DEPT table is not key preserved (and its columns can’t be updated).

Chapter 9 Views, Synonyms, and Sequences

358

When you update the view, any modifications that result in columns that map to the

underlying EMP table should be allowed because the EMP table is key preserved in this

view. For example, this UPDATE statement is successful:

SQL> update emp_dept_v set emp_name = 'Jon' where emp_name = 'John';

However, statements that result in updating the DEPT table’s columns are not

allowed. The next statement attempts to update a column in the view that maps to the

DEPT table:

SQL> update emp_dept_v set dept_name = 'HR West' where dept_name = 'HR';

Here is the resulting error message that’s thrown:

ORA-01779: cannot modify a column which maps to a non key-preserved table

To summarize, an updatable join view can select from many tables, but only

one of the tables in the join view is key preserved. The primary key and foreign key

relationships of the tables in the query determine which table is key preserved.

�Creating an INSTEAD OF Trigger
For views that are not read-only, when you issue a DML statement against a view, Oracle

attempts to modify the data in the table that the view is based on. It is also possible to

instruct Oracle to ignore the DML statement and instead execute a block of PL/SQL. This

feature is known as an INSTEAD OF trigger. It allows you to modify the underlying base

tables in ways that you can’t with regular join views.

I am not a huge fan of INSTEAD OF triggers. In my opinion, if you are considering

using them, you should rethink how you are issuing DML statements to modify base

tables. Maybe you should allow the application to issue INSERT, UPDATE, and DELETE

statements directly against the base tables instead of trying to build PL/SQL INSTEAD OF

triggers on a view.

Think about how you will maintain and troubleshoot issues with INSTEAD OF

triggers. Will it be difficult for the next DBA to figure out how the base tables are being

modified? Will it be easy for the next DBA or developer to make modifications to the

INSTEAD OF triggers? When an INSTEAD OF trigger throws an error, will it be obvious what

code is throwing the error and how to resolve the problem?

Chapter 9 Views, Synonyms, and Sequences

359

Having said that, if you determine that you require an INSTEAD OF trigger on a view,

use the INSTEAD OF clause to create it, and embed within it the required PL/SQL. This

example creates an INSTEAD OF trigger on the EMP_DEPT_V view:

SQL> create or replace trigger emp_dept_v_updt

instead of update on emp_dept_v

for each row

begin

 update emp set emp_name=UPPER(:new.emp_name)

 where emp_id=:old.emp_id;

end;

/

Now, when an update is issued against EMP_DEPT_V, instead of the DML being

executed, Oracle intercepts the statement and runs the INSTEAD OF PL/SQL code;

for example,

SQL> update emp_dept_v set emp_name='Jonathan' where emp_id = 10;

1 row updated.

Then, you can verify that the trigger correctly updated the table by selecting the data:

SQL> select * from emp_dept_v;

 EMP_ID EMP_NAME DEPT_NAME DEPT_ID

---------- --------------- --------------- ----------

 10 JONATHAN IT 2

 20 Bob HR 1

 30 Craig IT 2

 40 Joe SALES 3

 50 Jane HR 1

 60 Mark IT 2

This code is a simple example, but it illustrates that you can have PL/SQL execute

instead of the DML that was run on the view. Again, be careful when using INSTEAD OF

triggers; be sure you are confident that you can efficiently diagnose and resolve any

related issues that may arise.

Chapter 9 Views, Synonyms, and Sequences

360

�Implementing an Invisible Column
Starting with Oracle Database 12c, you can create or modify a column in a table or view

to be invisible (see Chapter 7 for details on adding an invisible column to a table). One

good use for an invisible column is to ensure that adding a column to a table or view

will not disrupt any of the existing application code. If the application code does not

explicitly access the invisible column, then it appears to the application as if the column

does not exist.

A small example will demonstrate the usefulness of an invisible column. Suppose

you have a table created and populated with some data as follows:

SQL> create table sales(

 sales_id number primary key

,amnt number

,state varchar2(2)

,sales_person_id number);

--

SQL> insert into sales values(1, 222, 'CO', 8773);

SQL> insert into sales values(20, 827, 'FL', 9222);

And, furthermore, you have a view based on the prior table, created as shown:

SQL> create or replace view sales_co as

select sales_id, amnt, state

from sales where state = 'CO';

For the purpose of this example, suppose you also have a reporting table such as this:

SQL> create table rep_co(

 sales_id number

,amnt number

,state varchar2(2));

And, it is populated with this insert statement, which uses SELECT *:

SQL> insert into rep_co select * from sales_co;

Sometime later, a new column is added to the view:

SQL> create or replace view sales_co as

select sales_id, amnt, state, sales_person_id

from sales where state = 'CO';

Chapter 9 Views, Synonyms, and Sequences

361

Now, consider what happens to the statement that is inserted into REP_CO. Because

it uses a SELECT *, it breaks because there hasn’t been a corresponding column added to

the REP_CO table:

SQL> insert into rep_co select * from sales_co;

ORA-00913: too many values

The prior insert statement no longer is able to populate the REP_CO table because the

statement does not account for the additional column that has been added to the view.

Now, consider the same scenario, but with the column added to the SALES_CO view

with an invisible column:

SQL> create or replace view sales_co

(sales_id, amnt, state, sales_person_id invisible)

as

select

 sales_id, amnt, state, sales_person_id

from sales

where state = 'CO';

When a view column is defined as invisible, this means that the column will not

show up when describing the view or in the output of SELECT *. This ensures that the

insert statement based on a SELECT * will continue to work.

One could successfully argue that you should never create an insert statement based

on a SELECT * and that you therefore would never encounter this issue. Or, one could

argue that the REP_CO table in this example should also have a column added to it to

avoid the problem. However, when working with third-party applications, you oftentimes

have no control over poorly written code. In this scenario, you can add an invisible

column to a view without fear of breaking any existing code.

Having said that, the invisible column is not entirely invisible. If you know the name

of an invisible column, you can select from it directly; for example,

SQL> select sales_id, amnt, state, sales_person_id from sales_co;

In this sense, the invisible column is only unseen to poorly written application code

or to users that do not know the column exists.

Chapter 9 Views, Synonyms, and Sequences

362

�Modifying a View Definition
If you need to modify the SQL query on which a view is based, then either drop and

re-create the view, or use the CREATE OR REPLACE syntax, as in the previous examples.

For instance, say you add a REGION column to the SALES table:

SQL> alter table sales add (region varchar2(30));

Now, to add the REGION column to the SALES_ROCKIES view, run the following

command to replace the existing view definition:

SQL> create or replace view sales_rockies as

select sales_id, amnt, state, region

from sales

where state in ('CO','UT','WY','ID','AZ')

with read only;

The advantage of using the CREATE OR REPLACE method is that you do not have

to reestablish access to the view for users with previously granted permissions. The

alternative to CREATE OR REPLACE is to drop and re-create the view with the new

definition. If you drop and re-create the view, you must regrant privileges to any users or

roles that were previously granted access to the dropped and re-created object. For this

reason, I almost never use the drop-and-re-create method when altering the structure of

a view.

What happens if you remove a column from a table, and there is a corresponding

view that references the removed column? For example,

SQL> alter table sales drop (region);

If you attempt to select from the view, you will receive an ORA-04063 error. When

modifying underlying tables, you can check to see if a view is affected by the table

change by compiling the view; for example,

SQL> alter view sales_rockies compile;

Warning: View altered with compilation errors.

In this way, you can proactively determine whether or not a table change affects

dependent views. In this situation, you should re-create the view sans the dropped table

column:

Chapter 9 Views, Synonyms, and Sequences

363

SQL> create or replace view sales_rockies as

select sales_id, amnt, state

from sales

where state in ('CO','UT','WY','ID','AZ')

with read only;

�Displaying the SQL Used to Create a View
Sometimes, when you are troubleshooting issues with the information a view returns,

you need to see the SQL query on which the view is based. The view definition is stored

in the TEXT column of the DBA/USER/ALL_VIEWS views. Note that the TEXT column of the

DBA/USER/ALL_VIEWS views is a LONG data type and that, by default, SQL*Plus only shows

80 characters of this type. You can set it longer, as follows:

SQL> set long 5000

Now, use the following script to display the text associated with a particular view for

a user:

SQL> select view_name, text

from dba_views

where owner = upper('&owner')

and view_name like upper('&view_name');

You can also query ALL_VIEWS for the text of any view you have access to:

SQL> select text

from all_views

where owner='MV_MAINT'

and view_name='SALES_ROCKIES';

If you want to display the view text that exists within your schema, use USER_VIEWS:

SQL> select text

from user_views

where view_name=upper('&view_name');

Chapter 9 Views, Synonyms, and Sequences

364

Note T he TEXT column of DBA/ALL/USER_VIEWS does not hide information
regarding columns that were defined as invisible.

You can also use the DBMS_METADATA package’s GET_DDL function to display a view’s

code. The data type returned from GET_DDL is a CLOB; therefore, if you run it from

SQL*Plus, make sure you first set your LONG variable to a sufficient size to display all the

text. For example, here is how to set LONG to 5,000 characters:

SQL> set long 5000

Now, you can display the view definition by invoking DBMS_METADATA.GET_DDL with a

SELECT statement, as follows:

SQL> select dbms_metadata.get_ddl('VIEW','SALES_ROCKIES') from dual;

If you want to display the DDL for all views for the currently connected user, run this SQL:

SQL> select dbms_metadata.get_ddl('VIEW', view_name) from user_views;

�Renaming a View
There are a couple of good reasons to rename a view. You may want to change the

name so that it better conforms to a standard one, or you may want to rename a view

before dropping it so that you can better determine whether it is in use. Use the RENAME

statement to change the name of a view. This example renames a view:

SQL> rename sales_rockies to sales_rockies_old;

You should see this message:

Table renamed.

The prior message would make more sense if it said, “View renamed”; just be aware

that the message, in this case, does not exactly match the operation.

Chapter 9 Views, Synonyms, and Sequences

365

�Dropping a View
Before you drop a view, consider renaming it. If you are certain that a view is not being

used anymore, then it makes sense to keep your schema as clean as possible and drop

any unused objects. Use the DROP VIEW statement to drop a view:

SQL> drop view sales_rockies_old;

Keep in mind that when you drop a view, any dependent views, materialized views,

and synonyms become invalid. Additionally, any grants associated with the dropped

view are also removed.

�Managing Synonyms
Synonyms provide a mechanism for creating an alternate name or alias for an object.

For example, say USER1 is the currently connected user, and USER1 has select access to

USER2’s EMP table. Without a synonym, USER1 must select from USER2’s EMP table, as follows:

SQL> select * from user2.emp;

Assuming it has the CREATE SYNONYM system privilege, USER1 can do the following:

SQL> create synonym emp for user2.emp;

Now, USER1 can transparently select from USER2’s EMP table:

SQL> select * from emp;

You can create synonyms for the following types of database objects:

•	 Tables

•	 Views, object views

•	 Other synonyms

•	 Remote objects via a database link

•	 PL/SQL packages, procedures, and functions

•	 Materialized views

•	 Sequences

•	 Java class schema object

•	 User-defined object types

Chapter 9 Views, Synonyms, and Sequences

366

Creating a synonym that points to another object eliminates the need to specify

the schema owner and also allows you to specify a name for the synonym that does not

match the object name. This lets you create a layer of abstraction between an object

and the user, often referred to as object transparency. Synonyms allow you to manage

objects transparently and separately from the users that access the objects. You can

also seamlessly relocate objects to different schemas or even different databases. The

application code that references the sequences does not need to change—only the

definition of the synonym. Now with schema only accounts, the synonyms are going

to allow for referencing the objects since there is not an account logging into these

schemas.

Tip Y ou can use synonyms to set up multiple application environments within one
database. Each environment has its own synonyms that point to a different user’s
objects, allowing you to run the same code against several different schemas within
one database. You may do this because you can’t afford to build a separate box or
database for development, testing, quality assurance, production, and so on.

�Creating a Synonym
A user must be granted the CREATE SYNONYM system privilege before creating a synonym.

Once that privilege is granted, use the CREATE SYNONYM command to create an alias for

another database object. You can specify CREATE OR REPLACE SYNONYM if you want the

statement to create the synonym, if it does not exist, or replace the synonym definition, if

it does. This is usually acceptable behavior.

In this example, a synonym will be created that provides access to a view. First, the

owner of the view must grant select access to the view. Here, the owner of the view is

MV_MAINT:

SQL> show user;

USER is "MV_MAINT"

SQL> grant select on sales_rockies to app_user;

Next, connect to the database as the user that will create the synonym.

SQL> conn app_user/foo

Chapter 9 Views, Synonyms, and Sequences

367

While connected as APP_USER, a synonym is created that points to a view named

SALES_ROCKIES, owned by MV_MAINT:

SQL> create or replace synonym sales_rockies for mv_maint.sales_rockies;

Now, the APP_USER can directly reference the SALES_ROCKIES view:

SQL> select * from sales_rockies;

With the CREATE SYNONYM command, if you do not specify OR REPLACE (as shown in

the example), and the synonym already exists, then an ORA-00955 error is thrown. If it is

okay to overwrite any prior existing synonym definitions, then specify the OR REPLACE

clause.

The creation of the synonym does not also create the privilege to access an object.

Such privileges must be granted separately, usually before you create the synonym (as

shown in the example).

By default, when you create a synonym, it is a private synonym. This means that it is

owned by the user that created the synonym and that other users can’t access it unless

they are granted the appropriate object privileges.

�Creating Public Synonyms
You can also define a synonym as public (see the previous section, “Creating a Synonym,”

for a discussion of private synonyms), which means that any user in the database has

access to the synonym. Sometimes, an inexperienced DBA does the following:

SQL> grant all on sales to public;

SQL> create public synonym sales for mv_maint.sales;

Now, any user that can connect to the database can perform any INSERT, UPDATE,

DELETE, or SELECT operation on the SALES table that exists in the MV_MAINT schema. You

may be tempted to do this so that you do not have to bother setting up individual grants

and synonyms for each schema that needs access. This is almost always a bad idea.

There are a few issues with using public synonyms:

•	 Troubleshooting can be problematic if you are not aware of globally

defined (public) synonyms; DBAs tend to forget or are unaware that

public synonyms were created.

Chapter 9 Views, Synonyms, and Sequences

368

•	 Applications that share one database can have collisions on object

names if multiple applications use public synonyms that are not

unique within the database.

•	 Security should be administered as needed, not on a wholesale basis.

I usually try to avoid using public synonyms. However, there may be scenarios

that warrant their use. For example, when Oracle creates the data dictionary, public

synonyms are used to simplify the administration of access to internal database objects.

To display any public synonyms in your database, run this query:

SQL> select owner, synonym_name

from dba_synonyms

where owner='PUBLIC';

�Dynamically Generating Synonyms
Sometimes, it is useful to dynamically generate synonyms for all tables or views for a

schema that needs private synonyms. The following script uses SQL*Plus commands to

format and capture the output of an SQL script that generates synonyms for all tables

within a schema:

SQL> CONNECT &&master_user/&&master_pwd

--

SQL> SET LINESIZE 132 PAGESIZE 0 ECHO OFF FEEDBACK OFF

SQL> SET VERIFY OFF HEAD OFF TERM OFF TRIMSPOOL ON

--

SQL> SPO gen_syns_dyn.sql

--

SQL> select 'create or replace synonym ' || table_name ||

 ' for ' || '&&master_user..' ||

 table_name || ';'

from user_tables;

--

SQL> SPO OFF;

--

SQL> SET ECHO ON FEEDBACK ON VERIFY ON HEAD ON TERM ON;

Chapter 9 Views, Synonyms, and Sequences

369

Look at the &master_user variable with the two dots appended to it in the SELECT

statement: What is the purpose of double-dot syntax? A single dot at the end of an

ampersand variable instructs SQL*Plus to concatenate anything after the single dot

to the ampersand variable. When you place two dots together, that tells SQL*Plus to

concatenate a single dot to the string contained in the ampersand variable.

�Displaying Synonym Metadata
The DBA/ALL/USER_SYNONYMS views contain information about synonyms in the database.

Use the following SQL to view synonym metadata for the currently connected user:

SQL> select synonym_name, table_owner, table_name, db_link

from user_synonyms

order by 1;

The ALL_SYNONYMS view displays all private synonyms, all public synonyms, and any

private synonyms owned by different users for which your currently connected user has

select access to the underlying base table. You can display information for all private and

public synonyms in your database by querying the DBA_SYNONYMS view.

The TABLE_NAME column in the DBA/ALL/USER_SYNONYMS views is a bit of a misnomer

because TABLE_NAME can reference many types of database objects, such as another

synonym, view, package, function, procedure, or materialized view. Similarly, TABLE_

OWNER refers to the owner of the object (and that object may not necessarily be a table).

When you are diagnosing data integrity issues, sometimes you first want to identify

what table or object is being accessed. You can select from what appears to be a table,

but in reality, it may be a synonym that points to a view that selects from a synonym,

which in turn points to a table in a different database.

The following query is often a starting point for figuring out whether an object is a

synonym, a view, or a table:

SQL> select owner, object_name, object_type, status

from dba_objects

where object_name like upper('&object_name%');

Note that using the wildcard character the percentage sign (%) in this query allows

you to enter the object’s partial name. Therefore, the query has the potential to return

information regarding any object that partially matches the text string you enter.

Chapter 9 Views, Synonyms, and Sequences

370

You can also use the GET_DDL function of the DBMS_METADATA package to display

synonym metadata. If you want to display the DDL for all synonyms for the currently

connected user, run this SQL:

SQL> set long 5000

SQL> select dbms_metadata.get_ddl('SYNONYM', synonym_name) from

user_synonyms;

You can also display the DDL for a particular user. You must provide as input to the

GET_DDL function the object type, object name, and schema:

SQL> select dbms_metadata.get_ddl(object_type=>'SYNONYM',

 name=>'SALES_ROCKIES', schema=>'APP_USER') from dual;

�Renaming a Synonym
You may want to rename a synonym so that it conforms to naming standards or in order

to determine whether it is being used. Use the RENAME statement to change the name of a

synonym:

SQL> rename inv_s to inv_st;

Note that the output displays this message:

Table renamed.

The prior message is somewhat misleading. It indicates that a table has been

renamed when, in this scenario, it was a synonym.

�Dropping a Synonym
If you are certain that you no longer need a synonym, then you can drop it. Unused

synonyms can be confusing to others called on to enhance or debug existing

applications. Use the DROP SYNONYM statement to drop a private synonym:

SQL> drop synonym inv;

If it is a public synonym, then you need to specify PUBLIC when you drop it:

SQL> drop public synonym inv_pub;

Chapter 9 Views, Synonyms, and Sequences

371

If successful, you should see this message:

Synonym dropped.

�Managing Sequences
A sequence is a database object that users can access to select unique integers.

Sequences are typically used to generate integers for populating primary key and foreign

key columns. You increment a sequence by accessing it via a SELECT, INSERT, or UPDATE

statement. Oracle guarantees that a sequence number is unique when selected; no two

user sessions can choose the same sequence number.

There is no way to guarantee that occasional gaps will not occur in the numbers

generated by a sequence. Usually, some number of sequence values are cached in

memory, and in the event of an instance failure (power failure, shutdown abort), any

unused values still in memory are lost. Even if you do not cache the sequence, nothing

stops a user from acquiring a sequence as part of a transaction and then rolling back that

transaction (the transaction is rolled back, but not the sequence). For most applications,

it is acceptable to have a mostly gap-free, unique integer generator. Just be aware that

gaps can exist.

�Creating a Sequence
For many applications, creating a sequence can be as simple as this:

SQL> create sequence inv_seq;

By default, the starting number is 1, the increment is 1, the default number of

sequences cached in memory is 20, and the maximum value is 10^27. You can verify the

default values via this query:

SQL> select sequence_name, min_value, increment_by, cache_size, max_value

from user_sequences;

You have a great deal of latitude in changing aspects of a sequence when creating

it. For example, this command creates a sequence with a starting value of 1,000 and a

maximum value of 1,000,000:

SQL> create sequence inv_seq2 start with 10000 maxvalue 1000000;

Chapter 9 Views, Synonyms, and Sequences

372

Table 9-1 lists the various options available when you are creating a sequence.

Table 9-1.  Sequence Creation Options

Option Description

INCREMENT BY Specifies the interval between sequence numbers

START WITH Specifies the first sequence number generated

MAXVALUE Specifies the maximum value of the sequence

NOMAXVALUE Sets the maximum value of a sequence to a really big number (10^28 -1)

MINVALUE Specifies the minimum value of sequence

NOMINVALUE Sets the minimum value to 1 for an ascending sequence; sets the value

to –(10^28–1) for a descending sequence

CYCLE Specifies that when the sequence hits a maximum or minimum value,

it should start generating numbers from the minimum value for an ascending

sequence and from the maximum value for a descending sequence

NOCYCLE Tells the sequence to stop generating numbers after a maximum or minimum

value is reached

CACHE Specifies how many sequence numbers to preallocate and keep in memory.

If CACHE and NOCACHE are not specified, the default is CACHE 20.

NOCACHE Specifies that sequence numbers are not to be cached

ORDER Guarantees that the numbers are generated in the order of request

NOORDER Used if it is not necessary to guarantee that sequence numbers are generated

in the order of request. This is usually acceptable and is the default.

SCALE Enable sequence scalability by using a numeric offset that removes all

duplicates. It is recommended not to use ORDER when using SCALE.

EXTEND Default value is 6 and is the value of the scalable offset

NOEXTEND Default setting for the SCALE clause. Sequences can then only be as wide as

the maximum number of digits in the sequence.

NOSCALE Disables sequence scalability

Chapter 9 Views, Synonyms, and Sequences

373

�Using Sequence Pseudocolumns
After a sequence is created, you can use two pseudocolumns to access the sequence’s

value:

•	 NEXTVAL

•	 CURRVAL

You can reference these pseudocolumns in any SELECT, INSERT, or UPDATE

statements. To retrieve a value from the INV_SEQ sequence, access the NEXTVAL value, as

shown:

SQL> select inv_seq.nextval from dual;

Now that a sequence number has been retrieved for this session, you can use it

multiple times by accessing the CURRVAL value:

SQL> select inv_seq.currval from dual;

The following example uses a sequence to populate the primary key value of a parent

table and then uses the same sequence to populate the corresponding foreign key values

in a child table. The sequence can be accessed directly in the INSERT statement. The first

time you access the sequence, use the NEXTVAL pseudocolumn.

SQL> insert into inv(inv_id, inv_desc) values (inv_seq.nextval, 'Book');

If you want to reuse the same sequence value, you can reference it via the CURRVAL

pseudocolumn. Next, a record is inserted into a child table that uses the same value for

the foreign key column as its parent primary key value:

SQL> insert into inv_lines

 (inv_line_id,inv_id,inv_item_desc)

 values

 (1, inv_seq.currval, 'Tome1');

--

SQL> insert into inv_lines

 (inv_line_id,inv_id,inv_item_desc)

 values

 (2, inv_seq.currval, 'Tome2');

Chapter 9 Views, Synonyms, and Sequences

374

�Autoincrementing Columns

Tip S tarting with Oracle Database 12c, you can create a table with identity
columns that are automatically populated with sequence values. See Chapter 7
for details.

If you are not able to use the identity column, then you can simulate this automatic

incrementing functionality by using triggers. For instance, say you create a table and

sequence, as follows:

SQL> create table inv(inv_id number, inv_desc varchar2(30));

SQL> create sequence inv_seq;

Next, create a trigger on the INV table that automatically populates the INV_ID

column from the sequence:

SQL> create or replace trigger inv_bu_tr

before insert on inv

for each row

begin

 select inv_seq.nextval into :new.inv_id from dual;

end;

/

Now, insert a couple of records into the INV table:

SQL> insert into inv (inv_desc) values('Book');

SQL> insert into inv (inv_desc) values('Pen');

Select from the table to verify that the INV_ID column is indeed populated

automatically by the sequence:

SQL> select * from inv;

 INV_ID INV_DESC

---------- ------------------------------

 1 Book

 2 Pen

Chapter 9 Views, Synonyms, and Sequences

375

I generally do not like using this technique. Yes, it makes it easier for the developers,

in that they do not have to worry about populating the key columns. However, it is

more work for the DBA to generate the code required to maintain the columns to be

automatically populated. Because I’m the DBA, and I like to keep the database code that

I maintain as simple as possible, I usually tell the developers that we are not using this

autoincrementing column approach and that we’ll instead use the technique of directly

calling the sequence in the DML statements (as shown in the previous section, “Using

Sequence Pseudocolumns”).

�Scalable Sequences
A new feature is the scalable sequence that allows for prefixing a sequence with a

unique numeric offset. Like the reverse key index discussed in Chapter 8, this helps

with hotspots and having every server using the same offset and having numbers

together. The scalable sequence uses the options of SCALE, EXTEND, NOEXTEND, and

NOSCALE.

SQL> create sequence inv_seq scale;

Information about options used for scale are in the sequence dictionary columns,

SCALE_FLAG and EXTEND_FLAG.

SQL> select sequence_name, scale_flag, extend_flag from dba_sequences

where sequence_name='INV_SEQ';

SEQUENCE_NAME SCALE_FLAG EXTEND_FLAG

INV_SEQ Y N

SQL> select inv_seq.nextval from dual;

NEXTVAL

1014010000000000000000000001

The first three numeric values are based on an instance, the next three are based on

a session, and then the last number is the next value of the sequence.

Chapter 9 Views, Synonyms, and Sequences

376

GAP-FREE SEQUENCES

People sometimes worry unduly about ensuring that not a single sequence value is lost as

rows are inserted into a table. In a few cases, I have seen applications fail because of gaps in

sequence values. I have two thoughts on these issues:

•	 If you are worried about gaps, you are not thinking correctly about the

problem you are solving.

•	 If your application fails because of gaps, you are doing it wrong.

My words are strong, I know, but few, if any, applications need gap-free sequences. If you

really and truly need gap-free sequences, then using Oracle sequence objects is the wrong

approach. You must instead implement your own sequence generator. You will need to go

through agonizing contortions to make sure no gaps exist. Those contortions will impair your

code’s performance. And, in the end, you will probably fail.

�Implementing Multiple Sequences That Generate Unique
Values
I once had a developer ask if it was possible to create multiple sequences for an application

and to guarantee that each sequence would generate numbers unique across all

sequences. If you have this type of requirement, you can handle it a few different ways:

•	 If you are feeling grumpy, tell the developer that it is not possible

and that the standard is to use one sequence per application (this is

usually the approach I take).

•	 Set sequences to start and increment at different points.

•	 Use ranges of sequence numbers.

If you are not feeling grumpy, you can set up a small, finite number of sequences that

always generate unique values by specifying an odd or even starting number and then

incrementing the sequence by two. For example, you can set up two odd and two even

sequence generators; for example,

SQL> create sequence inv_seq_odd start with 1 increment by 2;

SQL> create sequence inv_seq_even start with 2 increment by 2;

Chapter 9 Views, Synonyms, and Sequences

377

SQL> create sequence inv_seq_odd_dwn start with -1 increment by -2;

SQL> create sequence inv_seq_even_dwn start with -2 increment by -2;

The numbers generated by these four sequences should never intersect. However,

this approach is limited by its ability to use only four sequences.

If you need more than four unique sequences, you can use ranges of numbers;

for example,

SQL> create sequence inv_seq_low start with 1 increment by 1 maxvalue

10000000;

SQL> create sequence inv_seq_ml start with 10000001 increment by 1 maxvalue

20000000;

SQL> create sequence inv_seq_mh start with 20000001 increment by 1 maxvalue

30000000;

SQL> create sequence inv_seq_high start with 30000001 increment by 1 maxvalue

40000000;

With this technique, you can set up numerous different ranges of numbers to be used

by each sequence. The downside is that you are limited by the number of unique values

that can be generated by each sequence.

�Creating One Sequence or Many
Say you have an application with 20 tables. One question that comes up is whether you

should use 20 different sequences to populate the primary key and foreign key columns

for each table or just 1 sequence.

I recommend using just 1 sequence; 1 sequence is easier to manage than multiple

sequences, and it means less DDL code to manage and fewer places to investigate when

there are issues.

Sometimes, developers raise issues such as

•	 Performance problems with only 1 sequence

•	 Sequence numbers that become too high

If you cache the sequence values, usually there are no performance issues with

accessing sequences. The maximum number for a sequence is 10^28–1, so if the

sequence is incrementing by one, you will never reach the maximum value (at least, not

in this lifetime).

Chapter 9 Views, Synonyms, and Sequences

378

However, in scenarios in which you are generating surrogate keys for the primary

and child tables, it is sometimes convenient to use more than 1 sequence. In these

situations, multiple sequences per application may be warranted. When you use this

approach, you must remember to add a sequence when tables are added and potentially

drop sequences as tables are removed. This is not a big deal, but it means a little more

maintenance for the DBA, and the developers must ensure that they use the correct

sequence for each table.

�Viewing Sequence Metadata
If you have DBA privileges, you can query the DBA_SEQUENCES view to display

information about all sequences in the database. To view sequences that your schema

owns, query the USER_SEQUENCES view:

SQL> select sequence_name, min_value, max_value, increment_by

from user_sequences;

To view the DDL code required to re-create a sequence, access the DBMS_METADATA

view. If you are using SQL*Plus to execute DBMS_METADATA, first ensure that you set the

LONG variable:

SQL> set long 5000

This example extracts the DDL for INV_SEQ:

SQL> select dbms_metadata.get_ddl('SEQUENCE','INV_SEQ') from dual;

If you want to display the DDL for all sequences for the currently connected user, run

this SQL:

SQL> select dbms_metadata.get_ddl('SEQUENCE',sequence_name) from user_sequences;

You can also generate the DDL for a sequence owned by a particular user by

providing the SCHEMA parameter:

SQL> select

dbms_metadata.get_ddl(object_type=>'SEQUENCE', name=>'INV_SEQ',

schema=>'INV_APP')

from dual;

Chapter 9 Views, Synonyms, and Sequences

379

�Renaming a Sequence
Occasionally, you may need to rename a sequence. For instance, a sequence may

have been created with an erroneous name, or you may want to rename the sequence

before dropping it from the database. Use the RENAME statement to do this. This example

renames INV_SEQ to INV_SEQ_OLD:

SQL> rename inv_seq to inv_seq_old;

You should see the following message:

Table renamed.

In this case, even though the message says, “Table renamed,” it was the sequence

that was renamed.

�Dropping a Sequence
Usually, you want a drop a sequence either because it is not used or you want to re-create

it with a new starting number. To drop a sequence, use the DROP SEQUENCE statement:

SQL> drop sequence inv_seq;

When an object is dropped, all the associated grants on the object are dropped as

well. So, if you need to re-create the sequence, then remember to reissue select grants to

other users that may need to use the sequence.

Tip S ee the next section, “Resetting a Sequence,” for an alternative approach to
dropping and re-creating a sequence.

�Resetting a Sequence
You may occasionally be required to change the current value of a sequence number. For

example, you may work in a test environment in which the developers periodically want

the database reset to a previous state. A typical scenario is one in which the developers

have scripts that truncate the tables and reseed them with test data and, as part of that

exercise, want a sequence set back to a value such as 1.

Chapter 9 Views, Synonyms, and Sequences

380

Oracle’s documentation states, “to restart a sequence at a different number, you

must drop and re-create it.” That’s not entirely accurate. In most cases, you should avoid

dropping a sequence because you must regrant permissions on the object to users

that currently have select permissions on the sequence. This can lead to temporary

downtime for your application while you track down those users.

The following technique demonstrates how to set the current value to a higher or

lower value, using the ALTER SEQUENCE statement. The basic procedure is as follows:

	 1.	 Alter INCREMENT BY to a large number.

	 2.	 Select from the sequence to increment it by the large positive or

negative value.

	 3.	 Set INCREMENT BY back to its original value (usually 1).

This example sets the next value of a sequence number to 1,000 integers higher than

the current value:

SQL> alter sequence myseq increment by 1000;

SQL> select myseq.nextval from dual;

SQL> alter sequence myseq increment by 1;

Verify that the sequence is set to the value you desire:

SQL> select myseq.nextval from dual;

You can also use this technique to set the sequence number to a much lower number

than the current value. The difference is that the INCREMENT BY setting is a large negative

number. For example, this example sets the sequence back 1,000 integers:

SQL> alter sequence myseq increment by -1000;

SQL> select myseq.nextval from dual;

SQL> alter sequence myseq increment by 1;

Verify that the sequence is set to the value you desire:

SQL> select myseq.nextval from dual;

Additionally, you can automate the task of resetting a sequence number back to a

value via an SQL script. This technique is shown in the next several lines of SQL code.

The code will prompt you for the sequence name and the value you want the sequence

set back to:

Chapter 9 Views, Synonyms, and Sequences

381

SQL> UNDEFINE seq_name

SQL> UNDEFINE reset_to

SQL> PROMPT "sequence name" ACCEPT '&&seq_name'

SQL> PROMPT "reset to value" ACCEPT &&reset_to

SQL> COL seq_id NEW_VALUE hold_seq_id

SQL> COL min_id NEW_VALUE hold_min_id

--

SQL> SELECT &&reset_to - &&seq_name..nextval - 1 seq_id

FROM dual;

--

SQL> SELECT &&hold_seq_id - 1 min_id FROM dual;

--

SQL> ALTER SEQUENCE &&seq_name INCREMENT BY &hold_seq_id MINVALUE &hold_min_id;

--

SQL> SELECT &&seq_name..nextval FROM dual;

--

SQL> ALTER SEQUENCE &&seq_name INCREMENT BY 1;

To ensure that the sequence has been set to the value you want, select the NEXTVAL

from it:

SQL> select &&seq_name..nextval from dual;

This approach can be quite useful when you are moving applications through

various development, test, and production environments. It allows you to reset the

sequence without having to reissue object grants.

�Summary
Views, synonyms, and sequences are used extensively in Oracle database applications.

These objects (along with tables and indexes) afford the technology for creating

sophisticated applications.

Views offer a way to create and store complex multitable join queries that can then

be used by database users and applications. Views can be used to update the underlying

base tables or can be created read-only for reporting requirements.

Chapter 9 Views, Synonyms, and Sequences

382

Synonyms (along with appropriate privileges) provide a mechanism for

transparently allowing a user to access objects that are owned by a separate schema.

The user accessing a synonym needs to know only the synonym name, regardless of the

underlying object type and owner. This lets the application designer seamlessly separate

the owner of the objects from the users that access the objects.

Sequences generate unique integers that are often used by applications to populate

primary key and foreign key columns. Oracle guarantees that when a sequence is

accessed, it will always return a unique value to the selecting user.

After installing the Oracle binaries and creating a database and tablespaces, usually

you create an application that consists of the owning user and corresponding tables,

constraints, indexes, views, synonyms, and sequences. Metadata regarding these objects

are stored internally in the data dictionary. The data dictionary is used extensively for

monitoring, troubleshooting, and diagnosing issues. You must be thoroughly fluent with

retrieving information from the data dictionary. Retrieving and analyzing data dictionary

information is the topic of the next chapter.

Chapter 9 Views, Synonyms, and Sequences

383
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_10

CHAPTER 10

Data Dictionary
Fundamentals
The previous chapters in this book focused on topics such as creating a database,

strategically implementing tablespaces, managing users, basic security, tables, indexes,

and constraints. In those chapters, you were presented with several SQL queries, which

accessed the data dictionary views in order to

•	 Show what users are in the database and if any of their passwords expired

•	 Display the owners of each table and associated privileges

•	 Show the settings of various database parameters

•	 Determine which columns have foreign key constraints defined on them

•	 Display tablespaces and associated data files and space usage

In this regard, Oracle’s data dictionary is vast and robust. Almost every conceivable

piece of information about your database is available for retrieval. The data dictionary

stores critical information about the physical characteristics of the database, users,

objects, and dynamic performance metrics. A senior-level DBA must possess an expert

knowledge of the data dictionary.

This chapter is a turning point in the book, dividing it between basic DBA tasks

and more advanced topics. It is appropriate at this time to dive into the details of the

inner workings of the data dictionary. Knowledge of these workings will provide a

foundation for understanding your environment, extracting pertinent information,

and doing your job.

The first few sections of this chapter detail the architecture of the data dictionary and

how it is created. Also shown are the relationships between logical objects and physical

structures and how they relate to specific data dictionary views. These understandings

384

will serve as a basis for writing SQL queries to extract the information that you will

need to be a more efficient and effective DBA. Finally, several examples are presented,

illustrating how DBAs use the data dictionary.

�Data Dictionary Architecture
If you inherit a database and are asked to maintain and manage it, typically you will

inspect the contents of the data dictionary to determine the physical structure of the

database and see what events are currently transacting. Toward this end, Oracle provides

two general categories of read-only data dictionary views:

•	 The contents of your database, such as users, tables, indexes,

constraints, and privileges. These are sometimes referred to as the

static CDB/DBA/ALL/USER data dictionary views, and they are based on

internal tables stored in the SYSTEM tablespace. The term static, in this

sense, means that the information within these views only changes as

you make changes to your database, such as adding a user, creating a

table, or modifying a column.

•	 A real-time view of activity in the database, such as users connected

to the database, SQL currently executing, memory usage, locks, and

I/O statistics. These views are based on virtual memory tables and

are referred to as the dynamic performance views. The information

in these views is continuously updated by Oracle as events take place

within the database. The views are also sometimes called the V$ or

GV$ views.

These types of data dictionary views are described in further detail in the next two

sections.

�Static Views
Oracle refers to a subset of the data dictionary views as static. These views are based on

physical tables maintained internally by Oracle. Oracle’s documentation states that these

views are static in the sense that the data they contain do not change at a rapid rate (at

least, not compared with the dynamic V$ and GV$ views).

Chapter 10 Data Dictionary Fundamentals

385

The term static can sometimes be a misnomer. For example, the DBA_SEGMENTS and

DBA_EXTENTS views change dynamically as the amount of data in your database grows

and shrinks. Regardless, Oracle has made the distinction between static and dynamic,

and it is important to understand this architectural nuance when querying the data

dictionary. Prior to Oracle Database 12c, there were only three levels of static views:

•	 USER

•	 ALL

•	 DBA

Starting with Oracle Database 12c, there is a fourth level that is applicable when

using the container/pluggable database feature:

•	 CDB

The USER views contain information available to the current user. For example, the

USER_TABLES view contains information about tables owned by the current user. No

special privileges are required to select from the USER-level views.

At the next level are the ALL static views. The ALL views show you all object

information the current user has access to. For example, the ALL_TABLES view displays all

database tables on which the current user can perform any type of DML operation. No

special privileges are required to query from the ALL-level views.

Next are the DBA static views. The DBA views contain metadata describing all objects

in the database (regardless of ownership or access privilege). To access the DBA views, a

DBA role or SELECT_CATALOG_ROLE must be granted to the current user.

The CDB-level views are only applicable if you are using the pluggable database

feature. This level provides information about all pluggable databases within a container

database (hence the acronym CDB). You will notice that many of the static data dictionary

and dynamic performance views have a new column, CON_ID. This column uniquely

identifies each pluggable database within a container database.

Tip S ee Chapter 22 for a full discussion of pluggable databases. Unless
otherwise noted, this chapter focuses on the DBA/ALL/USER-level views. Just
keep in mind that if you are working pluggable databases, you may need to access
the CDB-level views when reporting on all pluggable databases within a container
database.

Chapter 10 Data Dictionary Fundamentals

386

The static views are based on internal Oracle tables, such as USER$, TAB$, and IND$.

If you have access to the SYS schema, you can view underlying tables directly via SQL.

For most situations, you only need to access the static views that are based on the

underlying internal tables.

The data dictionary tables (such as USER$, TAB$, IND$) are created during the

execution of the CREATE DATABASE command. As part of creating a database, the sql.bsq

file is executed, which builds these internal data dictionary tables. The sql.bsq file is

generally located in the ORACLE_HOME/rdbms/admin directory; you can view it via an OS

editing utility (such as vi, in Linux/Unix, or Notepad, in Windows).

The static views are created when you run the catalog.sql script (usually, you run

this script once the CREATE DATABASE operation succeeds). The catalog.sql script is

located in the ORACLE_HOME/rdbms/admin directory. Figure 10-1 shows the process of

creating the static data dictionary views.

Figure 10-1.  Creating the static data dictionary views

You can view the creation scripts of the static views by querying the TEXT column of

DBA_VIEWS; for example,

SQL> set long 5000

SQL> select text from dba_views where view_name='DBA_VIEWS';

Here is the output:

SQL> select u.name, o.name, v.textlength, v.text, t.typetextlength, t.typetext,

 t.oidtextlength, t.oidtext, t.typeowner, t.typename,

Chapter 10 Data Dictionary Fundamentals

387

 decode(bitand(v.property, 134217728), 134217728,

 (select sv.name from superobj$ h, "_CURRENT_EDITION_OBJ" sv

 where h.subobj# = o.obj# and h.superobj# = sv.obj#), null),

 decode(bitand(v.property, 32), 32, 'Y', 'N'),

 decode(bitand(v.property, 16384), 16384, 'Y', 'N'),

 decode(bitand(v.property/4294967296, 134217728), 134217728, 'Y', 'N'),

 decode(bitand(o.flags,8),8,'CURRENT_USER','DEFINER')

from sys."_CURRENT_EDITION_OBJ" o, sys.view$ v, sys.user$ u, sys.typed_view$ t

where o.obj# = v.obj#

 and o.obj# = t.obj#(+)

 and o.owner# = u.user#

Note I f you manually create a database (not using the dbca utility), you must be
connected as the SYS schema when you run the catalog.sql and catproc.
sql scripts. The SYS schema is the owner of all objects in the data dictionary.

�Dynamic Performance Views
The dynamic performance data dictionary views are colloquially referred to as the V$

and GV$ views. These views are constantly updated by Oracle and reflect the current

condition of the instance and database. Dynamic views are critical for diagnosing real-

time performance issues.

The V$ and GV$ views are indirectly based on underlying X$ tables, which are internal

memory structures that are instantiated when you start your Oracle instance. Some

of the V$ views are available the moment the Oracle instance is started. For example,

V$PARAMETER contains meaningful data after the STARTUP NOMOUNT command has been

issued, and does not require the database to be mounted or open. Other dynamic views

(such as V$CONTROLFILE) depend on information in the control file and therefore contain

significant information only after the database has been mounted. Some V$ views (such

as V$BH) provide kernel-processing information and thus have useful results only after

the database has been opened.

Chapter 10 Data Dictionary Fundamentals

388

At the top layer, the V$ views are actually synonyms that point to underlying SYS.V_$

views. At the next layer down, the SYS.V_$ objects are views created on top of another

layer of SYS.V$ views. The SYS.V$ views in turn are based on the SYS.GV$ views. At the

bottom layer, the SYS.GV$ views are based on the X$ memory structures.

The top-level V$ synonyms and SYS.V_$ views are created when you run the

catalog.sql script, which you usually do after the database is initially created.

Figure 10-2 shows the process for creating the V$ dynamic performance views.

Figure 10-2.  Creating the V$ dynamic performance data dictionary views

Accessing the V$ views through the topmost synonyms is usually adequate for

dynamic performance information needs. On rare occasions, you will want to query

internal information that may not be available through the V$ views. In these situations,

it is critical to understand the X$ underpinnings.

If you work with Oracle RAC, you should be familiar with the GV$ global views. These

views provide global dynamic performance information regarding all instances in a

cluster (whereas the V$ views are instance specific). The GV$ views contain an INST_ID

column for identifying specific instances in a clustered environment.

You can display the V$ and GV$ view definitions by querying the VIEW_DEFINITION

column of the V$FIXED_VIEW_DEFINITION view. For instance, this query displays the

definition of the V$CONTROLFILE:

SQL> select view_definition

from v$fixed_view_definition

where view_name='V$CONTROLFILE';

Chapter 10 Data Dictionary Fundamentals

389

Here is the output:

select STATUS, NAME, IS_RECOVERY_DEST_FILE, BLOCK_SIZE, FILE_SIZE_BLKS,

CON_ID from GV$CONTROLFILE where inst_id = USERENV('Instance')

�A Different View of Metadata
DBAs commonly face the following types of database issues:

•	 An insert into a table fails because a tablespace cannot extend.

•	 The database is refusing connections because the maximum number

of sessions is exceeded.

•	 An application is hung, apparently because of some sort of locking issue.

•	 A PL/SQL statement is failing, with a memory error.

•	 RMAN backups have not succeeded for two days.

•	 A user is trying to update a record, but a unique key constraint

violation is thrown.

•	 An SQL statement has been running for hours longer than normal.

•	 Application users have reported that performance seems sluggish

and that something must be wrong with the database.

The prior list is a small sample of the typical issues a DBA encounters on a daily

basis. A certain amount of knowledge is required to be able to efficiently diagnose

and handle these types of problems. A fundamental piece of that knowledge is an

understanding of Oracle’s physical structures and corresponding logical components.

For example, if a table cannot extend because a tablespace is full, what knowledge

do you rely on to solve this problem? You need to understand that when a database is

created, it contains multiple logical space containers called tablespaces. Each tablespace

consists of one or more physical data files. Each data file consists of many OS blocks.

Each table consists of a segment, and every segment contains one or more extents. As a

segment needs space, it allocates additional extents within a physical data file.

Once you understand the logical and physical concepts involved, you intuitively

look in data dictionary views such as DBA_TABLES, DBA_SEGMENTS, DBA_TABLESPACES, and

DBA_DATA_FILES to pinpoint the issue and add space as required. In a wide variety of

troubleshooting scenarios, your understanding of the relationships of various logical and

Chapter 10 Data Dictionary Fundamentals

390

physical constructs will allow you to focus on querying views that will help you quickly

resolve the problem at hand. To that end, inspect Figure 10-3. This diagram describes

the relationships between logical and physical structures in an Oracle database.

The rounded rectangle shapes represent logical constructs, and the sharp-cornered

rectangles are physical files.

Tip L ogical objects are only viewable from SQL after the database has been
started. In contrast, physical objects can be viewed via OS utilities even if the
instance is not started.

Figure 10-3.  Oracle database logical and physical structure relationships

Figure 10-3 does not show all the relationships of all logical and physical aspects

of an Oracle database. Rather, it focuses on components that you are most likely

to encounter on a daily basis. This base relational diagram forms a foundation for

leveraging of Oracle’s data dictionary infrastructure.

Chapter 10 Data Dictionary Fundamentals

391

Keep an image of Figure 10-3 open in your mind; now, juxtapose it with Figure 10-4.

Figure 10-4.  Relationships of commonly used data dictionary views

Voilà, these data dictionary views map very closely to almost all the logical and

physical elements of an Oracle database. Figure 10-4 does not show every data

dictionary view. Indeed, the figure barely scratches the surface. However, this diagram

does provide you with a secure foundation on which to build your understanding of how

to leverage the data dictionary views to get the data you need to do your job.

The diagram does show relationships between views, but it does not specify which

columns to use when joining views together. You will have to describe the tables and

make an educated guess as to how the views should be joined. For example, suppose you

want to display the data files associated with tablespaces that are not locally managed.

That requires joining DBA_TABLESPACES to DBA_DATA_FILES. If you inspect those two

Chapter 10 Data Dictionary Fundamentals

392

views, you will notice that each contains a TABLESPACE_NAME column, which allows you

to write a query as follows:

SQL> select a.tablespace_name, a.extent_management, b.file_name

from dba_tablespaces a,

 dba_data_files b

where a.tablespace_name = b.tablespace_name

and a.extent_management != 'LOCAL';

It is generally somewhat obvious how to join the views. Use the diagram as a guide

for where to start looking for information and how to write SQL queries that will provide

answers to problems and expand your knowledge of Oracle’s internal architecture and

inner workings. This anchors your problem-solving skills on a solid foundation. Once you

firmly understand the relationships of Oracle’s logical and physical components and how

this relates to the data dictionary, you can confidently address any type of database issue.

Note T here are several thousand CDB/DBA/ALL/USER static views and more
than 700 V$ dynamic performance views.

�A Few Creative Uses of the Data Dictionary
In nearly every chapter of this book, you will find several SQL examples of how to

leverage the data dictionary to better understand concepts and resolve problems. Having

said that, it is worth showing a few offbeat examples of how DBAs leverage the data

dictionary. The next few sections do just that. Keep in mind that this is just the tip of the

iceberg: there are an endless number of queries and techniques that DBAs employ to

extract and use data dictionary information.

�Derivable Documentation
Sometimes, if you are troubleshooting an issue and are under pressure, you need to quickly

extract information from the data dictionary to help resolve the problem. However, you may

not know the exact name of a data dictionary view or its associated columns. If you are like me,

it is impossible to keep all the data dictionary view names and column names in your head.

Additionally, I work with databases from versions 8 through 12c, and it is difficult to keep track

of which particular view may be available with a given release of Oracle.

Chapter 10 Data Dictionary Fundamentals

393

Books and posters can provide this information, but if you cannot find exactly what

you are looking for, you can use the documentation contained in the data dictionary

itself. You can query from three views, in particular:

•	 DBA_OBJECTS

•	 DICTIONARY

•	 DICT_COLUMNS

If you know roughly the name of the view from which you want to select information,

you can first query from DBA_OBJECTS. For instance, if you are troubleshooting an issue

regarding materialized views, and you cannot remember the exact names of the data

dictionary views associated with materialized views, you can do this:

SQL> select object_name

from dba_objects

where object_name like '%MV%'

and owner='SYS';

That may be enough to get you in the ballpark. But often you need more information

about each view. This is when the DICTIONARY and DICT_COLUMNS views can be

invaluable. The DICTIONARY view stores the names of the data dictionary views. It has

two columns:

SQL> desc dictionary

Name Null? Type

--- -------- ------------------------

TABLE_NAME VARCHAR2(30)

COMMENTS VARCHAR2(4000)

For example, say you are troubleshooting an issue with materialized views, and you

want to determine the names of data dictionary views related to the materialized view

feature. You can run a query such as this:

SQL> select table_name, comments

from dictionary

where table_name like '%MV%';

Chapter 10 Data Dictionary Fundamentals

394

Here is a snippet of the output:

TABLE_NAME COMMENTS

DBA_MVIEW_LOGS All materialized view logs in the database

DBA_MVIEWS All materialized views in the database

DBA_MVIEW_ANALYSIS �Description of the materialized views accessible to dba

DBA_MVIEW_COMMENTS Comments on all materialized views in the database

In this manner, you can quickly determine which view you need to access. If you

want further information about the view, you can describe it; for example,

SQL> desc dba_mviews

If that does not give you enough information regarding the column names, you can

query the DICT_COLUMNS view. This view provides comments about the columns of a data

dictionary view; for example,

SQL> select column_name, comments

from dict_columns

where table_name='DBA_MVIEWS';

Here is a fraction of the output:

COLUMN_NAME COMMENTS

---------------------- ---

OWNER Owner of the materialized view

MVIEW_NAME Name of the materialized view

CONTAINER_NAME Name of the materialized view container table

QUERY �The defining query that the materialized view

instantiates

In this way, you can generate and view documentation regarding most data

dictionary objects. The technique allows you to quickly identify appropriate views and

the columns that may help you in a troubleshooting situation.

�Displaying User Information
You may find yourself in an environment that contains hundreds of databases located

on dozens of different servers. In such a scenario, you want to ensure that you do not

Chapter 10 Data Dictionary Fundamentals

395

run the wrong commands or connect to the wrong database, or both. When performing

DBA tasks, it is prudent to verify that you are connected as the appropriate account and

to the correct database. You can run the following types of SQL commands to verify the

currently connected user and database information:

SQL> show user;

SQL> select * from user_users;

SQL> select name from v$database;

SQL> select instance_name, host_name from v$instance;

As shown in Chapter 3, an efficient way of staying aware of your environment is to

set your SQL*Plus prompt automatically, via the login.sql script, to display user and

instance information. This example manually sets the SQL prompt:

SQL> set sqlprompt '&_USER.@&_CONNECT_IDENTIFIER.> '

Here is what the SQL prompt now looks like:

SYS@O18C>

You can also use the SYS_CONTEXT built-in SQL function to extract information

from the data dictionary regarding details about your currently connected session. The

general syntax for this function is as follows:

SYS_CONTEXT('<namespace>','<parameter>',[length])

This example displays the user, authentication method, host, and instance:

SYS@O18C> select

 sys_context('USERENV','CURRENT_USER') usr

,sys_context('USERENV','AUTHENTICATION_METHOD') auth_mth

,sys_context('USERENV','HOST') host

,sys_context('USERENV','INSTANCE_NAME') inst

from dual;

USERENV is a built-in Oracle namespace. More than 50 parameters are available when

you use the USERENV namespace with the SYS_CONTEXT function. Table 10-1 describes

some of the more useful parameters. See the Oracle SQL Language Reference Guide,

which can be freely downloaded from the Technology Network area of the Oracle web

site (http://otn.oracle.com), for a complete list of parameters.

Chapter 10 Data Dictionary Fundamentals

http://otn.oracle.com

396

Table 10-1.  Useful USERENV Parameters Available with SYS_CONTEXT

Parameter Name Description

AUTHENTICATED_IDENTITY Identity used in authentication

AUTHENTICATION_METHOD Method of authentication

CDB_NAME Returns the name of the CDB; otherwise returns null

CLIENT_IDENTIFIER Returns an identifier that is set by the application

CLIENT_INFO User session information

CON_ID Container identifier

CON_NAME Container name

CURRENT_USER Username for the currently active session

DB_NAME Name specified by the DB_NAME initialization parameter

DB_UNIQUE_NAME Name specified by the DB_UNIQUE_NAME initialization parameter

HOST Hostname for the machine on which the client initiated the

database connection

INSTANCE_NAME Instance name

IP_ADDRESS IP address of the machine on which the client initiated the

database connection

ISDBA TRUE if the user authenticated with DBA privileges through the

OS or password file

NLS_DATE_FORMAT Date format for the session

OS_USER OS user from the machine on which the client initiated the

database connection

SERVER_HOST Hostname of the machine on which the database instance is

running

SERVICE_NAME Service name for the connection

SID Session identifier

TERMINAL OS identifier for the client terminal

Chapter 10 Data Dictionary Fundamentals

397

DETERMINING YOUR ENVIRONMENT’S DETAILS

Sometimes, when deploying code through various development, test, beta, and production

environments, it is handy to be prompted as to whether you are in the correct environment.

The technique for accomplishing this requires two files: answer_yes.sql and answer_

no.sql. Here are the contents of answer_yes.sql:

-- answer_yes.sql

PROMPT

PROMPT Continuing...

And here is answer_no.sql:

-- answer_no.sql

PROMPT

PROMPT Quitting and discarding changes...

ROLLBACK;

EXIT;

Now, you can insert the following code into the first part of your deployment script; the code

will prompt you as to whether you are in the right environment and if you want to continue:

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;

WHENEVER OSERROR EXIT FAILURE ROLLBACK;

select host_name from v$instance;

select name as db_name from v$database;

SHOW user;

SET ECHO OFF;

PROMPT

ACCEPT answer PROMPT 'Correct environment? Enter yes to continue: '

@@answer_&answer..sql

If you type in yes, then the answer_yes.sql script will execute, and you will continue to run

any other scripts you call. If you type in no, then the answer_no.sql script will run, and you

will exit from SQL*Plus and end up at the OS prompt. If you press the Enter key without typing

either, you will also exit and return to the OS prompt.

Chapter 10 Data Dictionary Fundamentals

398

�Displaying Table Row Counts
When you are investigating performance or space issues, it is useful to display each

table’s row count. To calculate row counts manually, you would write a query such as

this for each table that you own:

SQL> select count(*) from <table_name>;

Manually crafting the SQL is time consuming and error prone. In this situation, it

is more efficient to use SQL to generate the SQL required to solve the problem. To that

end, this next example dynamically selects the required text, based on information in

the DBA_TABLES view. An output file is spooled that contains the dynamically generated

SQL. Run the following SQL code as a DBA-privileged schema. Note that this script

contains SQL*Plus-specific commands, such as UNDEFINE and SPOOL. The script prompts

you each time for a username:

UNDEFINE user

SPOOL tabcount_&&user..sql

SET LINESIZE 132 PAGESIZE 0 TRIMSPO OFF VERIFY OFF FEED OFF TERM OFF

SELECT

 'SELECT RPAD(' || "" || table_name || "" ||',30)'

 || ',' || ' COUNT(*) FROM &&user..' || table_name || ';'

FROM dba_tables

WHERE owner = UPPER('&&user')

ORDER BY 1;

SPO OFF;

SET TERM ON

@@tabcount_&&user..sql

SET VERIFY ON FEED ON

This code generates a file, named tabcount_<user>.sql, which contains the

SQL statements that select row counts from all tables in the specified schema. If the

username you provide to the script is INVUSER, then you can manually run the generated

script as follows:

SQL> @tabcount_invuser.sql

Keep in mind that if the table row counts are high, this script can take a long time to

run (several minutes).

Chapter 10 Data Dictionary Fundamentals

399

Developers and DBAs often use SQL to generate SQL statements. This is a useful

technique when you need to apply the same SQL process (repetitively) to many different

objects, such as all tables in a schema. If you do not have access to DBA-level views, you

can query the USER_TABLES view; for example,

SPO tabcount.sql

SET LINESIZE 132 PAGESIZE 0 TRIMSPO OFF VERIFY OFF FEED OFF TERM OFF

SELECT

 'SELECT RPAD(' || "" || table_name || "" ||',30)'

 || ',' || ' COUNT(*) FROM ' || table_name || ';'

FROM user_tables

ORDER BY 1;

SPO OFF;

SET TERM ON

@@tabcount.sql

SET VERIFY ON FEED ON

If you have accurate statistics, you can query the NUM_ROWS column of the

CDB/DBA/ALL/USER_TABLES views. This column normally has a close row count if

statistics are generated on a regular basis. The following query selects NUM_ROWS from

the USER_TABLES view:

SQL> select table_name, num_rows from user_tables;

One final note: if you have partitioned tables and want to show row counts by

partition, use the next few lines of SQL and PL/SQL code to generate the SQL required:

SQL> UNDEFINE user

SQL> SET SERVEROUT ON SIZE 1000000 VERIFY OFF

SQL> SPO part_count_&&user..txt

SQL> DECLARE

 counter NUMBER;

 sql_stmt VARCHAR2(1000);

 CURSOR c1 IS

 SELECT table_name, partition_name

 FROM dba_tab_partitions

 WHERE table_owner = UPPER('&&user');

Chapter 10 Data Dictionary Fundamentals

400

BEGIN

 FOR r1 IN c1 LOOP

 sql_stmt := 'SELECT COUNT(*) FROM &&user..' || r1.table_name

 ||' PARTITION ('||r1.partition_name ||')';

 EXECUTE IMMEDIATE sql_stmt INTO counter;

 DBMS_OUTPUT.PUT_LINE(RPAD(r1.table_name

 ||'('||r1.partition_name||')',30) ||' '||TO_CHAR(counter));

 END LOOP;

END;

/

SPO OFF

MANUALLY GENERATING STATISTICS

If you want to generate statistics for a table, use the DBMS_STATS package. This example

generates statistics for a user and a table:

SQL> exec dbms_stats.gather_table_stats(ownname=>'MV_MAINT',-

 tabname=>'F_SALES',-

 cascade=>true,estimate_percent=>20,degree=>4);

You can generate statistics for all objects for a user with the following code:

SQL> exec dbms_stats.gather_schema_stats(ownname => 'MV_MAINT',-

 estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,-

 degree => DBMS_STATS.AUTO_DEGREE,-

 cascade => true);

The prior code instructs Oracle to estimate the percentage of the table to be sampled with

the ESTIMATE_PERCENT parameter, using DBMS_STATS.AUTO_SAMPLE_SIZE. Oracle also

chooses the appropriate degree of parallelism with the DEGREE parameter setting of DBMS_

STATS.AUTO_DEGREE. The CASCADE parameter instructs Oracle to generate statistics for

indexes.

Keep in mind that it is possible that Oracle would not choose the optimal auto sample size.

Oracle may choose 10 percent, but you may have experience with setting a low percentage,

such as 5 percent, and know that is an acceptable number. In these situations, do not use the

AUTO_SAMPLE_SIZE; explicitly provide a number instead.

Chapter 10 Data Dictionary Fundamentals

401

�Showing Primary Key and Foreign Key Relationships
Sometimes when you are diagnosing constraint issues, it is useful to display data

dictionary information regarding what primary key constraint is associated with a

foreign key constraint. For example, perhaps you are attempting to insert into a child

table, and an error is thrown indicating that the parent key does not exist, and you want

to display more information about the parent key constraint.

The following script queries the DBA_CONSTRAINTS data dictionary view to determine

the parent primary key constraints that are related to child foreign key constraints. You

need to provide as input to the script the owner of the table and the child table for which

you wish to display primary key constraints:

SQL> select

 a.constraint_type cons_type

,a.table_name child_table

,a.constraint_name child_cons

,b.table_name parent_table

,b.constraint_name parent_cons

,b.constraint_type cons_type

from dba_constraints a

 ,dba_constraints b

where a.owner = upper('&owner')

and a.table_name = upper('&table_name')

and a.constraint_type = 'R'

and a.r_owner = b.owner

and a.r_constraint_name = b.constraint_name;

The preceding script prompts you for two SQL*Plus ampersand variables (OWNER,

TABLE_NAME); if you are not using SQL*Plus, then you may need to modify the script with

the appropriate values before you run it.

The following output shows that there are two foreign key constraints. It also shows

the parent table primary key constraints:

C CHILD_TABLE CHILD_CONS PARENT_TABLE PARENT_CONS C

- --------------- ------------------- --------------- ------------------- -

R REG_COMPANIES REG_COMPANIES_FK2 D_COMPANIES D_COMPANIES_PK P

R REG_COMPANIES REG_COMPANIES_FK1 CLUSTER_BUCKETS CLUSTER_BUCKETS_PK P

Chapter 10 Data Dictionary Fundamentals

402

When the CONSTRAINT_TYPE column (of DBA/ALL/USER_CONSTRAINTS) contains an R

value, this indicates that the row describes a referential integrity constraint, which means

that the child table constraint references a primary key constraint. You use the technique

of joining to the same table twice to retrieve the primary key constraint information. The

child constraint columns (R_OWNER, R_CONSTRAINT_NAME) match with another row in the

DBA_CONSTRAINTS view that contains the primary key information.

You can also do the reverse of the prior query in this section; for a primary key

constraint, you want to find the foreign key columns (if any) that correlate to it. The

next script takes the primary key record and looks to see if it has any child records with

a constraint type of R. When you run this script, you are prompted for the primary key

table owner and name:

SQL> select

 b.table_name primary_key_table

 ,a.table_name fk_child_table

 ,a.constraint_name fk_child_table_constraint

from dba_constraints a

 ,dba_constraints b

where a.r_constraint_name = b.constraint_name

and a.r_owner = b.owner

and a.constraint_type = 'R'

and b.owner = upper('&table_owner')

and b.table_name = upper('&table_name');

Here is some sample output:

PRIMARY_KEY_TABLE FK_CHILD_TABLE FK_CHILD_TABLE_CONSTRAINT

-------------------- -------------------- ------------------------------

CLUSTER_BUCKETS CB_AD_ASSOC CB_AD_ASSOC_FK1

CLUSTER_BUCKETS CLUSTER_CONTACTS CLUSTER_CONTACTS_FK1

CLUSTER_BUCKETS CLUSTER_NOTES CLUSTER_NOTES_FK1

�Displaying Object Dependencies
Say you need to drop a table, but before you drop it, you want to display any objects

that are dependent on it. For example, you may have a table that has synonyms, views,

materialized views, functions, procedures, and triggers that rely on it. Before making

Chapter 10 Data Dictionary Fundamentals

403

the change, you want to review what other objects are dependent on the table. You can

use the DBA_DEPENDENCIES data dictionary view to display object dependencies.

The following query prompts you for a username and an object name:

SQL> select '+' || lpad(' ',level+2) || type || ' ' || owner || '.' || name dep_tree

from dba_dependencies

connect by prior owner = referenced_owner and prior name = referenced_name

and prior type = referenced_type

start with referenced_owner = upper('&object_owner')

and referenced_name = upper('&object_name')

and owner is not null;

In the output each object listed has a dependency on the object you entered. Lines

are indented to show the dependency of an object on the object in the preceding line:

DEP_TREE

--

+ TRIGGER STAR2.D_COMPANIES_BU_TR1

+ MATERIALIZED VIEW CIA.CB_RAD_COUNTS

+ SYNONYM STAR1.D_COMPANIES

+ SYNONYM CIA.D_COMPANIES

+ MATERIALIZED VIEW CIA.CB_RAD_COUNTS

In this example, the object being analyzed is a table named D_COMPANIES. Several

synonyms, materialized views, and one trigger are dependent on this table. For instance,

the materialized view CB_RAD_COUNTS, owned by CIA, is dependent on the synonym

D_COMPANIES, owned by CIA, which in turn is dependent on the D_COMPANIES synonym,

owned by STAR1.

The DBA_DEPENDENCIES view contains a hierarchical relationship between the OWNER,

NAME, and TYPE columns and their referenced column names of REFERENCED_OWNER,

REFERENCED_NAME, and REFERENCED_TYPE. Oracle provides a number of constructs

to perform hierarchical queries. For instance, START WITH and CONNECT BY allow

you to identify a starting point in a tree and walk either up or down the hierarchical

relationship.

Chapter 10 Data Dictionary Fundamentals

404

The previous SQL query in this section operates on only one object. If you want

to inspect every object in a schema, you can use SQL to generate SQL to create scripts

that display all dependencies for a schema’s objects. The piece of code in the next

example does that. For formatting and output, the code uses some constructs specific to

SQL*Plus, such as setting the page sizes and line size and spooling the output:

SQL> UNDEFINE owner

SQL> SET LINESIZE 132 PAGESIZE 0 VERIFY OFF FEEDBACK OFF TIMING OFF

SQL> SPO dep_dyn_&&owner..sql

SQL> SELECT 'SPO dep_dyn_&&owner..txt' FROM DUAL;

--

SELECT

'PROMPT ' || '_____________________________'|| CHR(10) ||

'PROMPT ' || object_type || ': ' || object_name || CHR(10) ||

'SELECT ' || "" || '+' || "" || ' ' || '|| LPAD(' || "" || ' '

|| "" || ',level+3)' || CHR(10) || ' || type || ' || "" || ' ' || "" ||

' || owner || ' || "" || '.' || "" || ' || name' || CHR(10) ||

' FROM dba_dependencies ' || CHR(10) ||

' CONNECT BY PRIOR owner = referenced_owner AND prior name = referenced_name '

|| CHR(10) ||

' AND prior type = referenced_type ' || CHR(10) ||

' START WITH referenced_owner = ' || "" || UPPER('&&owner') || "" || CHR(10) ||

' AND referenced_name = ' || "" || object_name || "" || CHR(10) ||

' AND owner IS NOT NULL;'

FROM dba_objects

WHERE owner = UPPER('&&owner')

AND object_type NOT IN ('INDEX','INDEX PARTITION','TABLE PARTITION');

--

SELECT 'SPO OFF' FROM dual;

SPO OFF

SET VERIFY ON LINESIZE 80 FEEDBACK ON

Chapter 10 Data Dictionary Fundamentals

405

You should now have a script named dep_dyn_<owner>.sql, created in the same

directory from which you ran the script. This script contains all the SQL required to

display dependencies on objects in the owner you entered. Run the script to display

object dependencies. In this example, the owner is CIA:

SQL> @dep_dyn_cia.sql

When the script runs, it spools a file with the format dep_dyn_<owner>.txt. You can

open that text file with an OS editor to view its contents. Here is a sample of the output

from this example:

TABLE: DOMAIN_NAMES

+ FUNCTION STAR2.GET_DERIVED_COMPANY

+ TRIGGER STAR2.DOMAIN_NAMES_BU_TR1

+ SYNONYM CIA_APP.DOMAIN_NAMES

This output shows that the table DOMAIN_NAMES has three objects that are dependent

on it: a function, a trigger, and a synonym.

THE DUAL TABLE

The DUAL table is part of the data dictionary. This table contains one row and one column and

is useful when you want to return exactly one row, and you do not have to retrieve data from a

particular table. In other words, you just want to return a value. For example, you can perform

arithmetic operations, as follows:

SQL> select 34*.15 from dual;

 34*.15

 5.1

Other common uses are selecting from DUAL to show the current date or to display some text

within an SQL script.

Chapter 10 Data Dictionary Fundamentals

406

�Summary
Sometimes, you are handed an old database that has been running for years, and

it is up to you to manage and maintain it. In some scenarios, you are not given any

documentation regarding the users and objects in the database. Even if you have

documentation, it may not be accurate or up-to-date. In these situations, the data

dictionary quickly becomes your source of documentation. You can use it to extract user

information, the physical structure of the database, security information, objects and

owners, currently connected users, and so on.

Oracle provides static and dynamic views in the data dictionary. The static views

contain information about the objects in the database. You can use these views to

determine which tables are consuming the most space, contain the most rows, have

the most extents allocated, and so on. The dynamic performance views offer a real-

time window into events currently transacting in the database. These views provide

information about currently connected users, SQL executing, where resources are being

consumed, and so on. DBAs use these views extensively to monitor and troubleshoot

performance issues.

The book now turns its attention toward specialized Oracle features, such as large

objects, partitioning, Data Pump, and external tables. These topics are covered in the

next several chapters.

Chapter 10 Data Dictionary Fundamentals

407
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_11

CHAPTER 11

Large Objects
Organizations often deal with substantial files that need to be stored and viewed by

business users. Generally, LOBs are a data type that is suited to storing large and

unstructured data, such as text, log, image, video, sound, and spatial data. Oracle

supports the following types of LOBs:

•	 Character large object (CLOB)

•	 National character large object (NCLOB)

•	 Binary large object (BLOB)

•	 Binary file (BFILE)

Prior to Oracle 8, the LONG and LONG RAW data types were your only options for

storing large amounts of data in a column. You should no longer use these data types.

The only reason I mention LONG and LONG RAW is because many legacy applications

(e.g., Oracle’s data dictionary) still use them. You should otherwise use a CLOB instead of

LONG and a BLOB instead of LONG RAW.

Also, do not confuse a RAW data type with a LONG RAW. The RAW data type stores small

amounts of binary data. The LONG RAW data type has been deprecated for more than a

decade.

Another caveat: do not unnecessarily use a LOB data type. For example, for character

data, if your application requires fewer than 32,000 single byte characters, use a

VARCHAR2 data type CLOB). For binary data, if you are dealing with fewer than 32,000 bytes

of binary data, use a RAW data type (and not a BLOB). If you are still not sure which data

type your application needs, see Chapter 7 for a description of appropriate uses of Oracle

data types.

Before lobbing you into the details of implementing LOBs, it is prudent to review

each LOB data type and its appropriate use. After that, examples are provided of creating

and working with LOBs and relevant features that you should understand.

408

�Describing LOB Types
Since the earlier versions of Oracle, the ability to store large files in the database vastly

improved with the CLOB, NCLOB, BLOB, and BFILE data types. These additional LOB data

types let you store much more data, with greater functionality. Table 11-1 summarizes

the types of Oracle LOBs available and their descriptions.

A CLOB such as json, XML, text, and log files. An NCLOB is treated the same as a CLOB

but can contain characters in the multibyte national character set for a database.

BLOBsare not human readable. Typical uses for a BLOB are spreadsheets, word-

processing documents, images, and audio and video data.

CLOBs, NCLOBs, and BLOBs are known as internal LOBs. This is because these data

types are stored inside the Oracle database in data files. Internal LOBs participate in

transactions and are covered by Oracle’s database security as well as its backup and

recovery features.

BFILEs are known as external LOBs. BFILE columns store a pointer to a file on the OS

that is outside the database. You can think of a BFILE as a mechanism for providing read-

only access to large binary files outside the database on the OS filesystem.

Sometimes, the question arises as to whether you should use a BLOB or a BFILE.

BLOBs participate in database transactions and can be backed up, restored, and

recovered by Oracle. BFILEs do not participate in database transactions, are read-only,

and are not covered by any Oracle security, backup and recovery, replication, or disaster

recovery mechanisms. BFILEs are more appropriate for large binary files that are read-

only and that do not change while an application is running. For instance, you may have

large binary video files that are referenced by a database application. In this scenario,

the business determines that you do not need to create and maintain a 500TB database

when all the application really needs is a pointer (stored in the database) to the locations

of the large files on disk.

Chapter 11 Large Objects

409

�Illustrating LOB Locators, Indexes, and Chunks
Internal LOBs (CLOB, NCLOB, BLOB) store data in pieces called chunks. A chunk is the

smallest unit of allocation for a LOB and is made up of one or more database blocks. LOB

locators are stored in rows containing a LOB column. The LOB locator points to a LOB

index. The LOB index stores information regarding the location of LOB chunks. When a

table is queried, the database uses the LOB locator and associated LOB index to locate

the appropriate LOB chunks. Figure 11-1 shows the relationship between a table, a row,

a LOB locator, and a LOB locator’s associated index and chunks.

Table 11-1.  Oracle Large Object Data Types

Data Type Description Maximum Size

CLOB Character large object for storing character

documents, such as big text files, log files, XML

files, and so on

(4GB–1)* block size

NCLOB National character large object; stores data in

national character set format; supports

characters with varying widths

(4GB–1) * block size

BLOB Binary large object for storing unstructured

bitstream data (images, video, and so on)

(4GB–1) * block size

BFILE Binary file large object stored on the filesystem

outside of database; read-only

2^64–1 bytes (OS may impose a

size limit that is less than this)

Chapter 11 Large Objects

410

The LOB locator for a BFILE stores the directory path and file name on the

OS. Figure 11-2 shows a BFILE LOB locator that references a file on the OS.

Figure 11-1.  Relationship of table, row, LOB locator, LOB index, and LOB segment

Chapter 11 Large Objects

411

Note T he DBMS_LOB package performs operations on LOBs through the
LOB locator.

�Distinguishing Between BasicFiles and SecureFiles
Several significant improvements were made to LOBs. Oracle now distinguishes between

two different types of underlying LOB architecture:

•	 BasicFiles

•	 SecureFiles

These two LOB architectures are discussed in the following sections.

Figure 11-2.  The BFILE LOB locator contains information for locating a file on the OS

Chapter 11 Large Objects

412

�BasicFiles
BasicFiles is the name Oracle gives to the LOB architecture available prior to Oracle

Database 11g. It is still important to understand the BasicFiles LOBs because many

shops use Oracle versions that do not support SecureFiles. Be aware that in Oracle

Database 11g, the default type of LOB is still BasicFiles. However, now, the default type of

LOB is now SecureFiles and should be used as the way to store LOBs.

�SecureFiles
SecureFiles is the recommended option to use with the LOB architecture. It includes the

following enhancements (over BasicFiles LOBs):

•	 Encryption (requires Oracle Advanced Security option)

•	 Compression (requires Oracle Advanced Compression option)

•	 Deduplication (requires Oracle Advanced Compression option)

SecureFiles encryption lets you transparently encrypt LOB data (just like other data

types). The compression feature allows for significant space savings. The deduplication

feature eliminates duplicate LOBs that otherwise would be stored multiple times.

You need to do a small amount of planning before using SecureFiles. Specifically, use

of SecureFiles requires the following:

•	 A SecureFiles LOB must be stored in a tablespace, using ASSM.

•	 The DB_SECUREFILE initialization parameter controls whether

a SecureFiles file can be used and also defines the default LOB

architecture for your database.

A SecureFiles LOB must be created within a tablespace using ASSM. To create an

ASSM-enabled tablespace, specify the SEGMENT SPACE MANAGEMENT AUTO clause;

for example,

SQL> create tablespace lob_data

 datafile '/u01/dbfile/o18c/lob_data01.dbf'

 size 1000m

 extent management local

 uniform size 1m

 segment space management auto;

Chapter 11 Large Objects

413

If you have existing tablespaces, you can verify the use of ASSM by querying the DBA_

TABLESPACES view. The SEGMENT_SPACE_MANAGEMENT column should have a value of AUTO

for any tablespaces that you want to use with SecureFiles:

select tablespace_name, segment_space_management

from dba_tablespaces;

Also, SecureFiles usage is governed by the DB_SECUREFILE database parameter. You

can use either ALTER SYSTEM or ALTER SESSION to modify the value of DB_SECUREFILE.

Table 11-2 describes the valid values for DB_SECUREFILE.

Table 11-2.  Description of DB_SECUREFILE Settings

DB_SECUREFILE Setting Description

NEVER Creates the LOB as a BasicFiles type, regardless of whether the

SECUREFILE option is specified

PERMITTED Allows creation of SecureFiles LOBs

PREFERRED Default value; specifies that all LOBs are created as a SecureFiles

type, unless otherwise stated

ALWAYS Creates the LOB as a SecureFiles type, unless the underlying

tablespace is not using ASSM

IGNORE Ignores the SecureFiles option, along with any SecureFiles settings

�Creating a Table with a LOB Column
The default underlying LOB architecture is SecureFiles. It is recommened to create a

LOB as a SecureFiles. As discussed previously, SecureFiles allows you to use features

such as compression and encryption.

�Creating a BasicFiles LOB Column
To create a LOB column, you have to specify a LOB data type. It is best to explicitly

specify the STORE AS BASICFILE clause in order to avoid confusion as to which LOB

architecture is implemented. Listed next is such an example:

Chapter 11 Large Objects

414

SQL> create table patchmain(

 patch_id number

,patch_desc clob)

tablespace users

lob(patch_desc) store as basicfile;

When you create a table with a LOB column, you must be aware of some technical

underpinnings. Review the following list, and be sure you understand each point:

•	 Prior to Oracle Database 12c, LOBs, by default, are created as the

BasicFiles type.

•	 Oracle creates a LOB segment and a LOB index for each LOB column.

•	 The LOB segment has a name of this format: SYS_LOB<string>.

•	 The LOB index has a name of this format: SYS_IL<string>.

•	 The <string> is the same for each LOB segment and its associated index.

•	 The LOB segment and index are created in the same tablespace as the

table, unless you specify a different tablespace.

•	 A LOB segment and a LOB index are not created until a record is

inserted into the table (the so-called deferred segment creation

feature). This means that DBA/ALL/USER_SEGMENTS and DBA/ALL/

USER_EXTENTS have no information in them until a row is inserted

into the table.

Oracle creates a LOB segment and a LOB index for each LOB column. The LOB

segment stores the data. The LOB index keeps track of where the chunks of LOB data are

physically stored and in what order they should be accessed.

You can query the DBA/ALL/USER_LOBS view to display the LOB segment and LOB

index names:

SQL> select table_name, segment_name, index_name, securefile, in_row

from user_lobs;

Here is the output for this example:

TABLE_NAME SEGMENT_NAME INDEX_NAME SEC IN_

------------ ------------------------- ------------------------- --- ---

PATCHMAIN SYS_LOB0000022332C00002$$ SYS_IL0000022332C00002$$ NO YES

Chapter 11 Large Objects

415

You can also query DBA/USER/ALL_SEGMENTS to view information regarding LOB

segments. As mentioned earlier, an initial segment is not created until you insert a row

into the table (deferred segment creation). This can be confusing because you may expect

a row to be present in DBA/ALL/USER_SEGMENTS immediately after you create the table:

SQL> select segment_name, segment_type, segment_subtype, bytes/1024/1024

meg_bytes

from user_segments

where segment_name IN ('&&table_just_created',

 '&&lob_segment_just_created',

 '&&lob_index_just_created');

The prior query prompts for the segment names. The output shows no rows:

no rows selected

Next, insert a record into the table that contains the LOB column:

SQL> insert into patchmain values(1,'clob text');

Rerunning the query against USER_SEGMENTS shows that three segments have been

created—one for the table, one for the LOB segment, and one for the LOB index:

SEGMENT_NAME SEGMENT_TYPE SEGMENT_SU MEG_BYTES

------------------------- ------------------ ---------- ----------

PATCHMAIN TABLE ASSM .0625

SYS_IL0000022332C00002$$ LOBINDEX ASSM .0625

SYS_LOB0000022332C00002$$ LOBSEGMENT ASSM .0625

�Implementing a LOB in a Specific Tablespace
By default, the LOB segment is stored in the same tablespace as its table. You can specify

a separate tablespace for a LOB segment by using the LOB...STORE AS clause of the

CREATE TABLE statement. The next table creation script creates the table in a tablespace

and creates separate tablespaces for the CLOB and BLOB columns:

SQL> create table patchmain

(patch_id number

,patch_desc clob

Chapter 11 Large Objects

416

,patch blob

) tablespace users

 lob (patch_desc) store as (tablespace lob_data)

,lob (patch) store as (tablespace lob_data);

The following query verifies the associated tablespaces for this table:

SQL> select table_name, tablespace_name, 'N/A' column_name

from user_tables

where table_name='PATCHMAIN'

union

select table_name, tablespace_name, column_name

from user_lobs

where table_name='PATCHMAIN';

Here is the output:

TABLE_NAME TABLESPACE_NAME COLUMN_NAME

-------------------- -------------------- --------------------

PATCHMAIN LOB_DATA PATCH

PATCHMAIN LOB_DATA PATCH_DESC

PATCHMAIN USERS N/A

If you think the LOB segment will require different storage characteristics (such as

size and growth patterns), then I recommend that you create the LOB in a tablespace

separate from that of the table data. This allows you to manage the LOB column storage

separately from the regular table data storage.

�Creating a SecureFiles LOB Column
As discussed previously, the default LOB architecture is SecureFiles. Having said that, I

recommend that you explicitly state which LOB architecture to implement in order to

avoid any confusion. As mentioned earlier, the tablespace that contains the SecureFile

LOB must be ASSM managed. Here is an example that creates a SecureFiles LOB:

SQL> create table patchmain(

 patch_id number

,patch_desc clob)

lob(patch_desc) store as securefile (tablespace lob_data);

Chapter 11 Large Objects

417

Before viewing the data dictionary details regarding the LOB column, insert a record

into the table to ensure that segment information is available (owing to the deferred

segment allocation feature in Oracle Database 11g Release 2 and higher); for example,

SQL> insert into patchmain values(1,'clob text');

You can now verify a LOB’s architecture by querying the USER_SEGMENTS view:

SQL> select segment_name, segment_type, segment_subtype

from user_segments;

Here is some sample output, indicating that a LOB segment is a SecureFiles type:

SEGMENT_NAME SEGMENT_TYPE SEGMENT_SU

------------------------- ------------------ ----------

PATCHMAIN TABLE ASSM

SYS_IL0000022340C00002$$ LOBINDEX ASSM

SYS_LOB0000022340C00002$$ LOBSEGMENT SECUREFILE

You can also query the USER_LOBS view to verify the SecureFiles LOB architecture:

SQL> select table_name, segment_name, index_name, securefile, in_row

from user_lobs;

Here is the output:

TABLE_NAME SEGMENT_NAME INDEX_NAME SEC IN_

------------ ------------------------- ------------------------- --- ---

PATCHMAIN SYS_LOB0000022340C00002$$ SYS_IL0000022340C00002$$ YES YES

Note  With the SecureFiles architecture, you no longer need to specify the following
options: CHUNK, PCTVERSION, FREEPOOLS, FREELIST, and FREELIST GROUPS.

�Implementing a Partitioned LOB
You can create a partitioned table that has a LOB column. Doing so lets you spread

a LOB across multiple tablespaces. Such partitioning helps with balancing I/O,

maintenance, and backup and recovery operations.

Chapter 11 Large Objects

418

You can partition LOBs by RANGE, LIST, or HASH. The next example creates a LIST-

partitioned table in which LOB column data are stored in tablespaces separate from

those of the table data:

SQL> CREATE TABLE patchmain(

 patch_id NUMBER

,region VARCHAR2(16)

,patch_desc CLOB)

LOB(patch_desc) STORE AS (TABLESPACE patch1)

PARTITION BY LIST (REGION) (

PARTITION p1 VALUES ('EAST')

LOB(patch_desc) STORE AS SECUREFILE

(TABLESPACE patch1 COMPRESS HIGH)

TABLESPACE inv_data1

,

PARTITION p2 VALUES ('WEST')

LOB(patch_desc) STORE AS SECUREFILE

(TABLESPACE patch2 DEDUPLICATE NOCOMPRESS)

TABLESPACE inv_data2

,

PARTITION p3 VALUES (DEFAULT)

LOB(patch_desc) STORE AS SECUREFILE

(TABLESPACE patch3 COMPRESS LOW)

TABLESPACE inv_data3

);

Note that each LOB partition is created with its own storage options (see the section

“Implementing SecureFiles Advanced Features,” later in this chapter, for details on

SecureFiles features). You can view the details about the LOB partitions as shown:

SQL> select table_name, column_name, partition_name, tablespace_name

,compression, deduplication

from user_lob_partitions;

Chapter 11 Large Objects

419

Here is some sample output:

TABLE_NAME COLUMN_NAME PARTITION_ TABLESPACE_NAME COMPRE DEDUPLICATION

------------ --------------- ---------- --------------- ------ ------------

PATCHMAIN PATCH_DESC P1 PATCH1 HIGH NO

PATCHMAIN PATCH_DESC P2 PATCH2 NO LOB

PATCHMAIN PATCH_DESC P3 PATCH3 LOW NO

Tip  You can also view DBA/ALL_USER_PART_LOBS for information about
partitioned LOBs.

You can change the storage characteristics of a partitioned LOB column after it is

created. To do so, use the ALTER TABLE ... MODIFY PARTITION statement. This example

alters a LOB partition to have a high degree of compression:

SQL> alter table patchmain modify partition p2

lob (patch_desc) (compress high);

The next example modifies a partitioned LOB not to keep duplicate values (via the

DEDUPLICATE clause):

SQL> alter table patchmain modify partition p3

lob (patch_desc) (deduplicate lob);

Note P artitioning and Advanced Compression, which have been discussed
in this chapter, are extra cost options that are available only with the Oracle
Enterprise Edition.

�Maintaining LOB Columns
The following sections describe some common maintenance tasks that are performed

on LOB columns or that otherwise involve LOB columns, including moving columns

between tablespaces and adding new LOB columns to a table.

Chapter 11 Large Objects

420

�Moving a LOB Column
As mentioned previously, if you create a table with a LOB column and do not specify a

tablespace, then, by default, the LOB is created in the same tablespace as its table. This

happens sometimes in environments in which the DBAs do not plan ahead very well;

only after the LOB column has consumed large amounts of disk space does the DBA

wonder why the table has grown so big.

You can use the ALTER TABLE...MOVE...STORE AS statement to move a LOB column

to a tablespace separate from that of the table. Here is the basic syntax:

SQL> alter table <table_name> move lob(<lob_name>) store as (tablespace

<new_tablespace);

The next example moves the LOB column to the LOB_DATA tablespace:

SQL> alter table patchmain

move lob(patch_desc)

store as securefile (tablespace lob_data);

You can verify that the LOB was moved by querying USER_LOBS:

SQL> select table_name, column_name, tablespace_name from user_lobs;

To summarize, if the LOB column is populated with large amounts of data, you

almost always want to store the LOB in a tablespace separate from that of the rest of

the table data. In these scenarios, the LOB data have different growth and storage

requirements and are best maintained in their own tablespace.

�Adding a LOB Column
If you have an existing table to which you want to add a LOB column, use the ALTER

TABLE...ADD statement. The next statement adds the INV_IMAGE column to a table:

SQL> alter table patchmain add(inv_image blob);

This statement is fine for quickly adding a LOB column to a development environment.

For anything else, you should specify the storage characteristics. For instance, this

command specifies that a SecureFiles LOB be created in the LOB_DATA tablespace:

SQL> alter table patchmain add(inv_image blob)

lob(inv_image) store as securefile(tablespace lob_data);

Chapter 11 Large Objects

421

�Removing a LOB Column
You may have a scenario in which your business requirements change, and you no

longer need a column. Before you remove a column, consider renaming it so that you

can better identify whether any applications or users are still accessing it:

SQL> alter table patchmain rename column patch_desc to patch_desc_old;

After you determine that nobody is using the column, use the ALTER TABLE...DROP

statement to drop it:

SQL> alter table patchmain drop(patch_desc_old);

You can also remove a LOB column by dropping and re-creating a table (without the

LOB column). This, of course, permanently removes any data as well.

Also keep in mind that if your recycle bin is enabled, then when you do not drop a

table with the PURGE clause, space is still consumed by the dropped table. If you want to

remove the space associated with the table, use the PURGE clause, or purge the recycle

bin after dropping the table.

�Caching LOBs
By default, when reading and writing LOB columns, Oracle does not cache LOBs in

memory. You can change the default behavior by setting the cache-related storage

options. This example specifies that Oracle should cache a LOB column in memory:

SQL> create table patchmain(

 patch_id number

,patch_desc clob)

lob(patch_desc) store as (tablespace lob_data cache);

You can verify the LOB caching with this query:

SQL> select table_name, column_name, cache from user_lobs;

Here is some sample output:

TABLE_NAME COLUMN_NAME CACHE

-------------------- -------------------- ----------

PATCHMAIN PATCH_DESC YES

Chapter 11 Large Objects

422

Table 11-3 describes the memory cache settings related to LOBs. If you have LOBs

that are frequently read and written to, consider using the CACHE option. If your LOB

column is read frequently but rarely written to, then the CACHE READS setting is more

appropriate. If the LOB column is infrequently read or written to, then the NOCACHE

setting is suitable.

Table 11–3.  Cache Descriptions Regarding LOB Columns

Cache Setting Meaning

CACHE Oracle should place LOB data in the buffer cache for faster access.

CACHE READS Oracle should place LOB data in the buffer cache for reads but not writes.

NOCACHE LOB data shouldn’t be placed in the buffer cache. This is the default for both

SecureFiles and BasicFiles LOBs.

�Storing LOBs In- and Out of Line
By default, up to approximately 4,000 characters of a LOB column are stored inline with

the table row. If the LOB is more than 4,000 characters, then Oracle automatically stores

it outside the row data. The main advantage of storing a LOB in row is that small LOBs

(fewer than 4,000 characters) require less I/O, because Oracle does not have to search

out of row for the LOB data.

However, storing LOB data in row is not always desirable. The disadvantage of storing

LOBs in row is that the table row sizes are potentially longer. This can affect the performance

of full-table scans, range scans, and updates to columns other than the LOB column.

In these situations, you may want to disable storage in the row. For example, you explicitly

instruct Oracle to store the LOB outside the row with the DISABLE STORAGE IN ROW clause:

SQL> create table patchmain(

 patch_id number

,patch_desc clob

,log_file blob)

lob(patch_desc, log_file)

store as (

tablespace lob_data

disable storage in row);

Chapter 11 Large Objects

423

If you want to store up to 4,000 characters of a LOB in the table row, use the ENABLE

STORAGE IN ROW clause when creating the table:

SQL> create table patchmain(

 patch_id number

,patch_desc clob

,log_file blob)

lob(patch_desc, log_file)

store as (

tablespace lob_data

enable storage in row);

Note T he LOB locator is always stored inline with the row.

You cannot modify the LOB storage in a row after the table has been created. The

only ways to alter storage in row are to move the LOB column or drop and re-create the

table. This example alters the storage in row by moving the LOB column:

SQL> alter table patchmain

move lob(patch_desc)

store as (enable storage in row);

You can verify the in-row storage via the IN_ROW column of USER_LOBS:

SQL> select table_name, column_name, tablespace_name, in_row

from user_lobs;

A value of YES indicates that the LOB is stored in row:

TABLE_NAME COLUMN_NAME TABLESPACE_NAME IN_ROW

--------------- --------------- --------------- ------

PATCHMAIN LOG_FILE LOB_DATA YES

PATCHMAIN PATCH_DESC LOB_DATA YES

Chapter 11 Large Objects

424

�Implementing SecureFiles Advanced Features
As mentioned earlier, the SecureFiles LOB architecture allows you to compress LOB

columns, eliminate duplicates, and transparently encrypt LOB data. These features

provide high performance and manageability of LOB. The next few sections cover

features specific to SecureFiles.

�Compressing LOBs
If you are using SecureFiles LOBs, then you can specify a degree of compression.

The benefit is that the LOBs consume much less space in the database. The downside is

that reading and writing the LOBs may take longer. See Table 11-4 for a description of

the compression values.

This example creates a CLOB column with a low degree of compression:

SQL> CREATE TABLE patchmain(

 patch_id NUMBER

,patch_desc CLOB)

LOB(patch_desc) STORE AS SECUREFILE

(COMPRESS LOW)

TABLESPACE lob_data;

Table 11-4.  Degrees of Compression Available with SecureFiles LOBs

Compression Type Description

HIGH Highest degree of compression; incurs higher latency when reading and

writing the LOB

MEDIUM Medium level of compression; default value if compression is specified,

but with no degree

LOW Lowest level of compression; provides the lowest latency when reading

and writing the LOB

If a LOB has been created as a SecureFiles type, you can alter its compression level.

For instance, this command changes the compression to HIGH:

SQL> alter table patchmain modify lob(patch_desc) (compress high);

Chapter 11 Large Objects

425

If you create a LOB with compression but decide that you do not want to use the

feature, you can alter the LOB to have no compression via the NOCOMPRESS clause:

SQL> alter table patchmain modify lob(patch_desc) (nocompress);

Tip T ry to enable compression, deduplication, and encryption through a CREATE
TABLE statement. If you use an ALTER TABLE statement, the table is locked while
the LOB is modified.

�Deduplicating LOBs
If you have an application in which identical LOBs are associated with two or more rows,

you should consider using the SecureFiles deduplication feature. When enabled, this

instructs Oracle to check when a new LOB is inserted into a table to see whether that

LOB is already stored in another row (for the same LOB column). If the LOB is already

stored, then Oracle stores a pointer to the existing identical LOB. This can potentially

mean huge space savings for your application.

Note  Deduplication requires the Oracle Advanced Compression option with
Enterprise Edition of the Database.

This example creates a LOB column, using the deduplication feature:

SQL> CREATE TABLE patchmain(

 patch_id NUMBER

,patch_desc CLOB)

LOB(patch_desc) STORE AS SECUREFILE

(DEDUPLICATE)

 TABLESPACE lob_data;

To verify that the deduplication feature is in effect, run this query:

SQL> select table_name, column_name, deduplication

from user_lobs;

Chapter 11 Large Objects

426

Here is some sample output:

TABLE_NAME COLUMN_NAME DEDUPLICATION

--------------- --------------- ---------------

PATCHMAIN PATCH_DESC LOB

If an existing table has a SecureFiles LOB, then you can alter the column to enable

deduplication:

SQL> alter table patchmain

modify lob(patch_desc) (deduplicate);

Here is another example that modifies a partitioned LOB to enable deduplication:

SQL> alter table patchmain modify partition p2

lob (patch_desc) (deduplicate lob);

If you decide that you do not want deduplication enabled, use the KEEP_DUPLICATES

clause:

SQL> alter table patchmain

modify lob(patch_desc) (keep_duplicates);

�Encrypting LOBs
You can transparently encrypt a SecureFiles LOB column (just like any other column).

Before you use encryption features, you must set up an encryption wallet. I’ve included a

sidebar at the end of this section that details how to set up a wallet.

Note T he SecureFiles encryption feature requires a license for the Oracle
Advanced Security option with the Enterprise Edition of the database.

The ENCRYPT clause enables SecureFiles encryption, using Oracle Transparent Data

Encryption (TDE). Traditional LOBS, when not using secure files, can be encrypted by

using the utility of DBMS_CRYPTO. The following example enables encryption for the

PATCH_DESC LOB column:

SQL> CREATE TABLE patchmain(

 patch_id number

Chapter 11 Large Objects

427

,patch_desc clob)

LOB(patch_desc) STORE AS SECUREFILE (encrypt)

tablespace lob_data;

When you describe the table, the LOB column now shows that encryption is in effect:

SQL> desc patchmain;

Name Null? Type

--- -------- ------------------------

PATCH_ID NUMBER

PATCH_DESC CLOB ENCRYPT

Here is a slightly different example that specifies the ENCRYPT keyword inline with the

LOB column:

SQL> CREATE TABLE patchmain(

 patch_id number

,patch_desc clob encrypt)

LOB (patch_desc) STORE AS SECUREFILE;

You can verify the encryption details by querying the DBA_ENCRYPTED_COLUMNS view:

SQL> select table_name, column_name, encryption_alg

from dba_encrypted_columns;

Here is the output for this example:

TABLE_NAME COLUMN_NAME ENCRYPTION_ALG

-------------------- -------------------- --------------------

PATCHMAIN PATCH_DESC AES 192 bits key

If you have already created the table, you can alter a column to enable encryption:

SQL> alter table patchmain modify

(patch_desc clob encrypt);

You can also specify an encryption algorithm; for example,

SQL> alter table patchmain modify

(patch_desc clob encrypt using '3DES168');

Chapter 11 Large Objects

428

You can disable encryption for a SecureFiles LOB column via the DECRYPT clause:

SQL> alter table patchmain modify

(patch_desc clob decrypt);

ENABLING AN ORACLE WALLET

An Oracle wallet is the mechanism Oracle uses to enable encryption. The wallet is an OS file

that contains encryption keys. The wallet is enabled via the following steps:

	1.	 Modify the SQLNET.ORA file to contain the location of the wallet:

ENCRYPTION_WALLET_LOCATION=

 (SOURCE=(METHOD=FILE) (METHOD_DATA=

 (�DIRECTORY=/ora01/app/oracle/product/18.1.0.0/db_1/network/admin)))

	2.	 Create the wallet file (ewallet.p18) with the ALTER SYSTEM command:

SQL> alter system set encryption key identified by foo;

	3.	E nable encryption:

SQL> alter system set encryption wallet open identified by foo;

See the Oracle Advanced Security Administrator’s Guide, which can be freely downloaded from

the Technology Network area of the Oracle web site (http://otn.oracle.com), for full

details on implementing encryption.

�Migrating BasicFiles to SecureFiles
You can migrate BasicFiles LOB data to SecureFiles via one of the following methods:

•	 Create a new table, load the data from the old table, and rename the

tables

•	 Move the table

•	 Redefine the table online

Each of these techniques is described in the following sections.

Chapter 11 Large Objects

http://otn.oracle.com

429

�Creating a New Table

Here is a brief example of creating a new table and loading data from the old table. In

this example, PATCHMAIN_NEW is the new table being created with a SecureFiles LOB.

SQL> create table patchmain_new(

 patch_id number

,patch_desc clob)

lob(patch_desc) store as securefile (tablespace lob_data);

Next, load the newly created table with data from the old table:

SQL> insert into patchmain_new select * from patchmain;

Now, rename the tables:

SQL> rename patchmain to patchmain_old;

SQL> rename patchmain_new to patchmain;

When using this technique, be sure any grants that were pointing to the old table are

reissued for the new table.

�Moving a Table to SecureFiles Architecture

You can also use the ALTER TABLE...MOVE statement to redefine the storage of a LOB as a

SecureFiles type; for example,

SQL> alter table patchmain

move lob(patch_desc)

store as securefile (tablespace lob_data);

You can verify that the column is now a SecureFiles type via this query:

SQL> select table_name, column_name, securefile from user_lobs;

The SECUREFILE column now has a value of YES:

TABLE_NAME COLUMN_NAME SEC

--------------- --------------- ---

PATCHMAIN PATCH_DESC YES

Chapter 11 Large Objects

430

�Migrating with Online Redefinition

You can also redefine a table while it is online via the DBMS_REDEFINITION package. Use

the following steps to do an online redefinition:

	 1.	 Ensure that the table has a primary key. If the table does not have

a primary key, then create one:

SQL> alter table patchmain

add constraint patchmain_pk

primary key (patch_id);

	 2.	 Create a new table that defines the LOB column(s) as a

SecureFiles type:

SQL> create table patchmain_new(

 patch_id number

,patch_desc clob)

lob(patch_desc)

store as securefile (tablespace lob_data);

	 3.	 Map the columns, and copy the data from the original table to the

new table (this can take a long time if there are many rows):

SQL> declare

 l_col_map varchar2(2000);

begin

 l_col_map := 'patch_id patch_id, patch_desc patch_desc';

 dbms_redefinition.start_redef_table(

 'MV_MAINT','PATCHMAIN','PATCHMAIN_NEW',l_col_map

);

end;

/

	 4.	 Clone dependent objects of the table being redefined (grants,

triggers, constraints, and so on):

SQL> set serverout on size 1000000

SQL> declare

 l_err_cnt integer :=0;

Chapter 11 Large Objects

431

begin

 dbms_redefinition.copy_table_dependents(

 �'MV_MAINT','PATCHMAIN','PATCHMAIN_NEW',1,TRUE, TRUE, TRUE,

FALSE, l_err_cnt

);

 dbms_output.put_line('Num Errors: ' || l_err_cnt);

end;

/

	 5.	 Finish the redefinition:

SQL> begin

 dbms_redefinition.finish_redef_table('MV_

MAINT','PATCHMAIN','PATCHMAIN_NEW');

end;

/

You can confirm that the table has been redefined via this query:

SQL> select table_name, column_name, securefile from user_lobs;

Here is the output for this example:

TABLE_NAME COLUMN_NAME SECUREFILE

-------------------- -------------------- --------------------

PATCHMAIN_NEW PATCH_DESC NO

PATCHMAIN PATCH_DESC YES

VIEWING LOB METADATA

You can use any of the DBA/ALL/USER_LOBS views to display information about LOBs in your

database:

SQL> select table_name, column_name, index_name, tablespace_name

from all_lobs

order by table_name;

Chapter 11 Large Objects

432

Also keep in mind that a LOB segment has a corresponding index segment.

SQL> select segment_name, segment_type, tablespace_name

from user_segments

where segment_name like 'SYS_LOB%'

or segment_name like 'SYS_IL%';

In this way, you can query both the segment and the index in the DBA/ALL/USER_SEGMENTS

views for LOB information.

�Loading LOBs
Loading LOB data is not typically the DBA’s job, but you should be familiar with

techniques used to populate LOB columns. Developers may come to you for help with

troubleshooting, performance, or space-related issues.

�Loading a CLOB
First, create an Oracle database directory object that points to the OS directory in

which the CLOB file is stored. This directory object is used when loading the CLOB.

In this example the Oracle directory object is named LOAD_LOB, and the OS directory is

/orahome/oracle/lob:

SQL> create or replace directory load_lob as '/orahome/oracle/lob';

For reference, listed next is the DDL used to create the table in which the CLOB file is

loaded:

SQL> create table patchmain(

 patch_id number primary key

,patch_desc clob

,patch_file blob)

lob(patch_desc, patch_file)

store as securefile (compress low) tablespace lob_data;

This example also uses a sequence named PATCH_SEQ. Here is the sequence creation

script:

SQL> create sequence patch_seq;

Chapter 11 Large Objects

433

The following bit of code uses the DBMS_LOB package to load a text file (patch.txt)

into a CLOB column. In this example the table name is PATCHMAIN, and the CLOB

column is PATCH_DESC:

SQL> declare

 src_clb bfile; -- point to source CLOB on file system

 dst_clb clob; -- destination CLOB in table

 src_doc_name varchar2(300) := 'patch.txt';

 src_offset integer := 1; -- where to start in the source CLOB

 dst_offset integer := 1; -- where to start in the target CLOB

 lang_ctx integer := dbms_lob.default_lang_ctx;

 warning_msg number; -- returns warning value if bad chars

begin

 src_clb := bfilename('LOAD_LOB',src_doc_name); -- assign pointer to file

 --

 insert into patchmain(patch_id, patch_desc) -- create LOB placeholder

 values(patch_seq.nextval, empty_clob())

 returning patch_desc into dst_clb;

 --

 dbms_lob.open(src_clb, dbms_lob.lob_readonly); -- open file

 --

 -- load the file into the LOB

 dbms_lob.loadclobfromfile(

 dest_lob => dst_clb,

 src_bfile => src_clb,

 amount => dbms_lob.lobmaxsize,

 dest_offset => dst_offset,

 src_offset => src_offset,

 bfile_csid => dbms_lob.default_csid,

 lang_context => lang_ctx,

 warning => warning_msg

);

 dbms_lob.close(src_clb); -- close file

 --

 dbms_output.put_line('Wrote CLOB: ' || src_doc_name);

end;

/

Chapter 11 Large Objects

434

You can place this code in a file and execute it from the SQL command prompt. In

this example, the file that contains the code is named clob.sql:

SQL> set serverout on size 1000000

SQL> @clob.sql

Here is the expected output:

Wrote CLOB: patch.txt

PL/SQL procedure successfully completed.

�Loading a BLOB
Loading a BLOB is similar to loading a CLOB. This example uses the directory object,

table, and sequence from the previous example (which loaded a CLOB). Loading a

BLOB is simpler than loading a CLOB because you do not have to specify character set

information.

This example loads a file named patch.zip into the PATCH_FILE BLOB column:

SQL> declare

 src_blb bfile; -- point to source BLOB on file system

 dst_blb blob; -- destination BLOB in table

 src_doc_name varchar2(300) := 'patch.zip';

 src_offset integer := 1; -- where to start in the source BLOB

 dst_offset integer := 1; -- where to start in the target BLOB

begin

 src_blb := bfilename('LOAD_LOB',src_doc_name); -- assign pointer to file

 --

 insert into patchmain(patch_id, patch_file)

 values(patch_seq.nextval, empty_blob())

 returning patch_file into dst_blb; -- create LOB placeholder column first

 dbms_lob.open(src_blb, dbms_lob.lob_readonly);

 --

 dbms_lob.loadblobfromfile(

 dest_lob => dst_blb,

 src_bfile => src_blb,

 amount => dbms_lob.lobmaxsize,

Chapter 11 Large Objects

435

 dest_offset => dst_offset,

 src_offset => src_offset

);

 dbms_lob.close(src_blb);

 dbms_output.put_line('Wrote BLOB: ' || src_doc_name);

end;

/

You can place this code in a file and run it from the SQL command prompt. Here, the

file that contains the code is named blob.sql:

SQL> set serverout on size 1000000

SQL> @blob.sql

Here is the expected output:

Wrote BLOB: patch.zip

PL/SQL procedure successfully completed.

�Measuring LOB Space Consumed
As discussed previously, a LOB consists of an in-row lob locator, a LOB index, and a

LOB segment that is made up of one or more chunks. The space used by the LOB index

is usually negligible compared with the space used by the LOB segment. You can view

the space consumed by a segment by querying the BYTES column of DBA/ALL/USER_

SEGMENTS (just like any other segment in the database). Here is a sample query:

SQL> select segment_name, segment_type, segment_subtype,

 bytes/1024/1024 meg_bytes

from user_segments;

You can modify the query to report on only LOBs by joining to the USER_LOBS view:

SQL> select a.table_name, a.column_name, a.segment_name, a.index_name

,b.bytes/1024/1024 meg_bytes

from user_lobs a, user_segments b

where a.segment_name = b.segment_name;

Chapter 11 Large Objects

436

You can also use the DBMS_SPACE.SPACE_USAGE package and procedure to report

on the blocks being used by a LOB. This package only works on objects that have

been created in an ASSM-managed tablespace. There are two different forms of the

SPACE_USAGE procedure: one form reports on BasicFiles LOBs, and the other reports on

SecureFiles LOBs.

�BasicFiles Space Used
Here is an example of how to call DBMS_SPACE.SPACE_USAGE for a BasicFiles LOB:

SQL> declare

 p_fs1_bytes number;

 p_fs2_bytes number;

 p_fs3_bytes number;

 p_fs4_bytes number;

 p_fs1_blocks number;

 p_fs2_blocks number;

 p_fs3_blocks number;

 p_fs4_blocks number;

 p_full_bytes number;

 p_full_blocks number;

 p_unformatted_bytes number;

 p_unformatted_blocks number;

begin

 dbms_space.space_usage(

 segment_owner => user,

 segment_name => 'SYS_LOB0000024082C00002$$',

 segment_type => 'LOB',

 fs1_bytes => p_fs1_bytes,

 fs1_blocks => p_fs1_blocks,

 fs2_bytes => p_fs2_bytes,

 fs2_blocks => p_fs2_blocks,

 fs3_bytes => p_fs3_bytes,

 fs3_blocks => p_fs3_blocks,

 fs4_bytes => p_fs4_bytes,

 fs4_blocks => p_fs4_blocks,

Chapter 11 Large Objects

437

 full_bytes => p_full_bytes,

 full_blocks => p_full_blocks,

 unformatted_blocks => p_unformatted_blocks,

 unformatted_bytes => p_unformatted_bytes

);

 dbms_output.put_line('Full bytes = '||p_full_bytes);

 dbms_output.put_line('Full blocks = '||p_full_blocks);

 dbms_output.put_line('UF bytes = '||p_unformatted_bytes);

 dbms_output.put_line('UF blocks = '||p_unformatted_blocks);

end;

/

In this PL/SQL, you need to modify the code so that it reports on the LOB segment in

your environment.

�SecureFiles Space Used
Here is an example of how to call DBMS_SPACE.SPACE_USAGE for a SecureFiles LOB:

SQL> DECLARE

 l_segment_owner varchar2(40);

 l_table_name varchar2(40);

 l_segment_name varchar2(40);

 l_segment_size_blocks number;

 l_segment_size_bytes number;

 l_used_blocks number;

 l_used_bytes number;

 l_expired_blocks number;

 l_expired_bytes number;

 l_unexpired_blocks number;

 l_unexpired_bytes number;

 --

 CURSOR c1 IS

 SELECT owner, table_name, segment_name

 FROM dba_lobs

 WHERE table_name = 'PATCHMAIN';

Chapter 11 Large Objects

438

BEGIN

 FOR r1 IN c1 LOOP

 l_segment_owner := r1.owner;

 l_table_name := r1.table_name;

 l_segment_name := r1.segment_name;

 --

 dbms_output.put_line('-----------------------------');

 dbms_output.put_line('Table Name : ' || l_table_name);

 dbms_output.put_line('Segment Name : ' || l_segment_name);

 --

 dbms_space.space_usage(

 segment_owner => l_segment_owner,

 segment_name => l_segment_name,

 segment_type => 'LOB',

 partition_name => NULL,

 segment_size_blocks => l_segment_size_blocks,

 segment_size_bytes => l_segment_size_bytes,

 used_blocks => l_used_blocks,

 used_bytes => l_used_bytes,

 expired_blocks => l_expired_blocks,

 expired_bytes => l_expired_bytes,

 unexpired_blocks => l_unexpired_blocks,

 unexpired_bytes => l_unexpired_bytes

);

 --

 dbms_output.put_line('segment_size_blocks: '|| l_segment_size_blocks);

 dbms_output.put_line('segment_size_bytes : '|| l_segment_size_bytes);

 dbms_output.put_line('used_blocks : '|| l_used_blocks);

 dbms_output.put_line('used_bytes : '|| l_used_bytes);

 dbms_output.put_line('expired_blocks : '|| l_expired_blocks);

 dbms_output.put_line('expired_bytes : '|| l_expired_bytes);

 dbms_output.put_line('unexpired_blocks : '|| l_unexpired_blocks);

 dbms_output.put_line('unexpired_bytes : '|| l_unexpired_bytes);

 END LOOP;

END;

/

Chapter 11 Large Objects

439

Again, in this PL/SQL, you need to modify the code so that it reports on the table

with the LOB segment in your environment.

�Reading BFILEs
As discussed previously, a BFILE data type is simply a column in a table that stores a

pointer to an OS file. A BFILE provides you with read-only access to a binary file on disk.

To access a BFILE, you must first create a directory object. This is a database object that

stores the location of an OS directory. The directory object makes Oracle aware of the

BFILE location on disk.

This example first creates a directory object, creates a table with a BFILE column, and

then uses the DBMS_LOB package to access a binary file:

SQL> create or replace directory load_lob as '/orahome/oracle/lob';

Next, a table is created that contains a BFILE data type:

SQL> create table patchmain

(patch_id number

,patch_file bfile);

For this example, a file named patch.zip is located in the aforementioned directory.

You make Oracle aware of the binary file by inserting a record into the table using the

directory object and the file name:

SQL> insert into patchmain values(1, bfilename('LOAD_LOB','patch.zip'));

Now, you can access the BFILE via the DBMS_LOB package. For \ instance, if you want

to verify that the file exists or display the length of the LOB, you can do so as follows:

SQL> select dbms_lob.fileexists(bfilename('LOAD_LOB','patch.zip')) from dual;

SQL> select dbms_lob.getlength(patch_file) from patchmain;

In this manner, the binary file behaves like a BLOB. The big difference is that the

binary file is not stored within the database.

Tip S ee the Oracle Database PL/SQL Packages and Types Reference guide
for full details on using the DBMS_LOB package. This guide is available on
http://otn.oracle.com.

Chapter 11 Large Objects

http://otn.oracle.com

440

�Summary
Oracle lets you store large objects in databases via various LOB data types. LOBs

facilitate the storage, management, and retrieval of video clips, images, movies,

word-processing documents, large text files, and so on. Oracle can store these files in

the database and thus provide backup and recovery and security protection (just as it

does for any other data type). BLOBs are used to store binary files, such as images (JPEG,

MPEG), movie files, sound files, and so on. If it is not feasible to store the file in the

database, you can use a BFILE LOB.

Oracle provides two underlying architectures for LOBS: BasicFiles and SecureFiles.

BasicFiles is the LOB architecture that has been available since Oracle version 8. The

SecureFiles feature was introduced in Oracle Database 11g and is now the default value

for LOBs. SecureFiles has many advanced options, such as compression, deduplication,

and encryption (these specific features require an extra license from Oracle).

LOBs provide a way to manage very large files. Oracle has another

feature—partitioning—which allows you to manage very large tables and indexes.

Partitioning is covered in detail in the next chapter.

Chapter 11 Large Objects

441
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_12

CHAPTER 12

Partitioning: Divide
and Conquer
Oracle provides two key scalability features that enable good performance, even with

massively large databases: parallelism and partitioning. Parallelism allows Oracle to start

more than one thread of execution to take advantage of multiple hardware resources.

Partitioning allows subsets of a table or index to be managed independently (Oracle’s

“divide and conquer” approach). The focus of this chapter is partitioning strategies.

Partitioning lets you create a logical table or index that consists of separate

segments that can each be accessed and worked on by separate threads of execution.

Each partition of a table or index has the same logical structure, such as the column

definitions, but can reside in separate containers. In other words, you can store each

partition in its own tablespace and associated data files. This allows you to manage one

large logical object as a group of smaller, more maintainable pieces. The main benefits

realized from partitioning are the following:

•	 Better performance; in some circumstances, SQL queries can operate

on a single partition or subset of partitions, which allows for faster

execution times.

•	 Higher availability; the availability of data in one partition is not

affected by the unavailability of data in another partition.

•	 Easier maintenance; inserting, updating, deleting, truncating,

rebuilding, and reorganizing data by partition allows for efficient

loading and archiving operations that would otherwise be difficult

and time consuming.

•	 Management of partitions; modifying strategies and managing

partitions can be online and automated activities.

442

Just because you implement partitioning does not mean you will automatically get

performance gains, achieve high availability, and ease your administration activities.

You need to be aware of how partitioning works and how to leverage various features to

reap any benefits. The goal of this chapter is to explain partitioning concepts and how to

implement partitioning and to offer guidelines on when to use which features.

Before getting into the details, there are several partitioning terms you should first be

familiar with. Table 12-1 describes the meanings of key partitioning terms that are used

throughout the chapter.

Table 12-1.  Oracle Partitioning Terminology

Term Meaning

Partitioning Transparently implementing one logical table or index as many

separate, smaller segments

Partition key One or more columns that unambiguously determine which partition

a row is stored in

Partition bound Boundary between partitions

Single-Level partitioning Partitioning, using a single method

Composite partitioning Partitioning, using a combination of methods

Subpartition Partition within a partition

Partition independence Ability to access partitions separately to perform maintenance

operations without affecting the availability of other partitions

Partition pruning Elimination of unnecessary partitions. Oracle detects which partitions

need to be accessed by an SQL statement and removes from

consideration any partitions that are not needed.

Partition-wise join Join executed in partition-sized pieces to improve performance by

executing many smaller tasks in parallel rather than one large

task in sequence

Local partitioned index Index that uses the same partition key as its table

Global partitioned index Index that does not use the same partition key as its table

Global nonpartitioned index Regular index created on a partitioned table. The index itself is not

partitioned.

Chapter 12 Partitioning: Divide and Conquer

443

Also keep in mind, if you work with mainly small OLTP databases, you do not need

to create partitioned tables and indexes. However, if you work with very large objects in

OLTP databases or in data warehouse environments, you can most likely benefit from

partitioning. Partitioning is a key to designing and building scalable, highly available,

large database systems.

�What Tables Should Be Partitioned?
Following are some rules of thumb for determining whether to partition a table. In

general, you should consider partitioning for tables:

•	 That are greater than 10GB

•	 That have more than 10 million rows, when SQL operations are

getting slower as more data are added

•	 That you know will grow large (it is better to create a table as

partitioned than to rebuild it as partitioned after performance begins

to suffer as the table grows)

•	 That have rows that can be divided in a way that facilitates parallel

operations, such as inserting, retrieval, deleting, and backup and

recovery

•	 For which you want to archive the oldest data on a periodic basis or

from which you want to drop the oldest partition regularly, as data

become stale

One rule is that any table greater than 10GB is a potential candidate for partitioning.

Run this query to show the top space-consuming objects in your database:

SQL> select * from (

select owner, segment_name, segment_type, partition_name

,sum(bytes)/1024/1024 meg_tot

from dba_segments

group by owner, segment_name, segment_type, partition_name

order by sum(extents) desc)

where rownum <= 10;

Chapter 12 Partitioning: Divide and Conquer

444

Here is a snippet of the output from the query:

OWNER SEGMENT_NAME SEGMENT_TYPE PARTITION_NAME MEG_TOT

-------- -------------------------------------- -------------- ----------

MV_MAINT F_SALES TABLE 15281

MV_MAINT F_SALES_IDX1 INDEX 8075

This output shows that a few large objects in this database may benefit from

partitioning. For this database, if there are performance issues with these large objects,

then partitioning may help.

If you are running the previous query from SQL*Plus, you need to apply some

formatting to the columns to reasonably display the output within the limited width of

your terminal:

set lines 132

col owner form a10

col segment_name form a25

col partition_name form a15

In addition to looking at the size of objects, if you can divide your data so that they

facilitate operations, such as loading data, querying, backups, archiving, and deleting,

you should consider using partitioning. For example, if you work with a table that

contains a large number of rows that are often accessed according to a particular time

range—such as by day, week, month, or year—it makes sense to consider partitioning.

Even data by regions might make sense to partition for loading or accessing because this

is how the data is mostly accessed by a list of regions, groups, or categories.

A large table size combined with a good business reason means that you should

think about partitioning. Keep in mind that there is more setup work and maintenance

when you partition a table. However, as mentioned earlier, it is much easier to partition

a table during setup than it is to convert it after it is grown to an unwieldy size. It is also

easier to work with the partitions after the table has grown with online maintenance, as

partitioning strategies can be modified or partitions can be merged together.

Note  Partitioning is an extra cost option that is available only with the Oracle
Enterprise Edition. You have to decide, based on your business requirements,
whether partitioning is worth the cost. Data warehouses and Very Large Databases
(VLDB) should evaluate this option with cost and data access requirements.

Chapter 12 Partitioning: Divide and Conquer

445

�Creating Partitioned Tables
Oracle provides a robust set of methods for dividing tables and indexes into smaller

subsets. For example, you can divide a table’s data by date ranges, such as by month or

year. Table 12-2 gives an overview of the partitioning strategies available.

Table 12-2.  Partitioning Strategies

Partition Type Description

Range Allows partitioning based on ranges of dates, numbers, or characters

List Useful when the partitions fit nicely into a list of values, such as state or

region codes

Hash Allows even distribution of rows when there is no obvious partitioning key

Composite Allows combinations of other partitioning strategies

Interval Extends range partitioning by automatically allocating new partitions when

new partition key values exceed the existing high range

Reference Useful for partitioning a child table based on a parent table column

Virtual Allows partitioning on a virtual column

System Allows the application inserting the data to determine which partition should

be used

The following sections show examples of each partitioning strategy. Additionally,

you learn how to place partitions in separate tablespaces; to take advantage of all the

benefits of partitioning, you need to understand how to assign a partition to its own

tablespace.

�Partitioning by Range
Range partitioning is frequently used. This strategy instructs Oracle to place rows in

partitions based on ranges of values, such as dates, numbers, or characters. As data are

inserted into a range-partitioned table, Oracle determines which partition to place a row

in based on the lower and upper bounds of each range partition.

Chapter 12 Partitioning: Divide and Conquer

446

The range-based partition key is defined by the PARTITION BY RANGE clauseCREATE

TABLE statement. This determines which column is used to control the partition a row

belongs in. You will see some examples shortly.

Each range partition requires a VALUES LESS THAN clause that identifies the non-

inclusive value of the upper bound of the range. The first partition defined for a range

has no lower bound. Any values less than those set in the first partition’s VALUES LESS

THAN clause are inserted into the first partition. For partitions other than the first

partition, the lower bound of a range is determined by the upper bound of the previous

partition.

Optionally, you can create a range-partitioned table’s highest partition with the

MAXVALUE clause. Any row that does not have a partition key that falls in the lower ranges

is inserted into this topmost MAXVALUE partition.

�Implementing a NUMBER for the Partition Key Column

Let’s look at an example to illustrate the previous concepts. Suppose you are working

in a data warehouse environment, in which you typically have a fact table that stores

information about an event, such as sales, profits, registrations, and so on. In a fact

table, usually one column represents an amount or a count, and another represents a

point in time.

Some data warehouse architects choose to represent the point-in-time column with

a number that translates into a date—the idea being that a number data type is efficient

when joining to multiple dimension tables. For instance, the value 20130101 is used

to represent January 1, 2013, and you use that number value (which represents a date)

as the column to partition the fact table. This SQL statement creates a table with three

partitions based on a range of numbers:

SQL> create table f_sales

(sales_amt number

,d_date_id number)

partition by range (d_date_id)(

partition p_2012 values less than (20130101),

partition p_2013 values less than (20140101),

partition p_max values less than (maxvalue));

Chapter 12 Partitioning: Divide and Conquer

447

When creating a range-partitioned table, you do not have to specify a MAXVALUE

partition. However, if you do not specify a partition with the MAXVALUE clause, and you

attempt to insert a row that does not fall within any other defined ranges, you receive an

error such as

ORA-14400: inserted partition key does not map to any partition

When you see that error, you have to add a partition that accommodates the partition

key value being inserted or that has the MAXVALUE clause.

Tip  Consider using an interval partitioning strategy, in which partitions are
automatically added by Oracle when the high range value is exceeded. See the
section “Creating Partitions on Demand” later in this chapter.

You can view information about the partitioned table you just created by running the

following query:

SQL> select table_name, partitioning_type, def_tablespace_name

from user_part_tables

where table_name='F_SALES';

Here is a snippet of the output:

TABLE_NAME PARTITION DEF_TABLESPACE_NAME

-------------------- --------- ------------------------------

F_SALES RANGE USERS

To view information about the partitions in the table, issue a query as follows:

SQL> select table_name, partition_name, high_value

from user_tab_partitions

where table_name = 'F_SALES'

order by table_name, partition_name;

Here is some sample output:

TABLE_NAME PARTITION_NAME HIGH_VALUE

-------------------- -------------------- --------------------

F_SALES P_2016 20170101

F_SALES P_2017 20180101

F_SALES P_MAX MAXVALUE

Chapter 12 Partitioning: Divide and Conquer

448

In this example the D_DATE_ID column is the partitioning key column. The VALUES

LESS THAN clauses create the partition boundaries; these define the partition into which

a row is inserted. The MAXVALUE parameter creates a partition in which to store rows that

do not fit into the other defined partitions (including NULL values).

DETECTING WHEN ADDITIONAL HIGH RANGE IS REQUIRED

When you partition by range without specifying a MAXVALUE partition, you may not accurately

predict when a new high partition will need to be added. Additionally, the HIGH_VALUE column

in the data dictionary is a LONG data type, which means that you cannot apply the MAX SQL

function to return the current high value.

Listed next is a simple shell script that attempts to insert a record that contains a future date

to determine if there is an accepting partition. If the record is inserted successfully, the script

rolls back the transaction. If the record fails to insert, an error is generated, and the script

sends you an e-mail:

#!/bin/bash

if [$# -ne 1]; then

 echo "Usage: $0 SID"

 exit 1

fi

export ORACLE_SID=o18c

export ORACLE_HOME=/ora01/app/oracle/product/18.0.0.1/db_1

#

sqlplus -s <<EOF

mv_maint/foo

WHENEVER SQLERROR EXIT FAILURE

COL date_id NEW_VALUE hold_date_id

SELECT to_char(sysdate+30,'yyyymmdd') date_id FROM dual;

--

INSERT INTO mv_maint.f_sales(sales_amt, d_date_id)

VALUES (0, '&hold_date_id');

ROLLBACK;

EOF

Chapter 12 Partitioning: Divide and Conquer

449

#

if [$? -ne 0]; then

 mailx -s "Partition range issue: f_sales" dkuhn@gmail.com <<EOF

 check f_sales high range.

EOF

else

 echo "f_sales ok"

fi

exit 0

Ensure that you do not inadvertently add data to a production table with a script such as

this. You have to modify the script carefully to match your table and high-range partition key

column.

�Implementing a TIMESTAMP for the Partition Key Column

As noted, the example in the previous section created the column D_DATE_ID as a NUMBER

data type instead of a DATE data type for the F_SALES table. As opposed to a NUMBER data

type, some data warehouse architects would advocate using a DATE or TIMESTAMP data

type for the partition key. Here is an example that creates the F_SALES table with a DATE

data type for the D_DATE_DTT column:

SQL> create table f_sales

(sales_amt number

,d_date_dtt date

)

partition by range (d_date_dtt)(

 partition p_2016 values less than (to_date('01-01-2017','dd-mm-yyyy')),

 partition p_2017 values less than (to_date('01-01-2018','dd-mm-yyyy')),

 partition p_max values less than (maxvalue));

Tip U sing the date format DD-MM-YYYY may be preferable to one such as
01-MON-YYYY. The DD-MM-YYYY format avoids using character names for the
month (JAN, FEB, and so on), which circumvents issues with different character-set
languages.

Chapter 12 Partitioning: Divide and Conquer

450

As shown in the prior code, I recommend that you always use TO_DATE to explicitly

instruct Oracle on how to interpret the date. Doing so also provides a minimal level of

documentation for anybody supporting the database.

Using a DATE data type for the partition key is every bit as valid as using a NUMBER field

for the partition key. Just keep in mind that whoever designs the data warehouse tables

may have a strong opinion about which technique to use.

�Placing Partitions in Tablespaces
Benefits of placing partitions on their own tablespace are now only to recognize the

partitions from other tables. There are simplified ways to back up, restore, and place

online/offline if each partition has its own tablespace, but online actions and backing

up of tables is available even without the partition being in its own tablespace. In certain

instances, it might even make sense to put a tablespace and partition in read-only mode,

and having their own tablespaces would allow this.

To understand the benefits of using a separate tablespace for each partition, first

consider a nonpartitioned table scenario. For reference, here is the CREATE TABLESPACE

statement used for this example:

SQL> CREATE TABLESPACE p1_tbsp

 DATAFILE '/u01/dbfile/o18c/p1_tbsp01.dbf' SIZE 100m

 EXTENT MANAGEMENT LOCAL

 UNIFORM SIZE 128K

 SEGMENT SPACE MANAGEMENT AUTO;

This example creates a partitioned table but does not specify tablespaces for the

partitions:

SQL> create table f_sales (

 sales_amt number

,d_date_id number)

tablespace p1_tbsp

partition by range(d_date_id)(

 partition y11 values less than (20120101)

,partition y12 values less than (20130101)

,partition y13 values less than (20140101));

Chapter 12 Partitioning: Divide and Conquer

451

Figure 12-1 illustrates this approach. Note that in this case, all partitions are stored in

the same tablespace.

Figure 12-1.  A partitioned table with only one tablespace

The next example places each partition in a separate tablespace:

SQL> create table f_sales (

 sales_amt number

,d_date_id number)

tablespace p1_tbsp

partition by range(d_date_id)(

 partition y11 values less than (20120101)

 tablespace p1_tbsp

Chapter 12 Partitioning: Divide and Conquer

452

,partition y12 values less than (20130101)

 tablespace p2_tbsp

,partition y13 values less than (20140101)

 tablespace p3_tbsp);

Now, the data for each partition are physically stored in their own tablespace and

corresponding data files (see Figure 12-2).

Figure 12-2.  Partitions stored in separate tablespaces

Chapter 12 Partitioning: Divide and Conquer

453

�Partitioning by List
List partitioning works well for partitioning unordered and unrelated sets of data. For

example, say you have a large table and want to partition it by state code. To do so, use

the PARTITION BY LIST clause Partitioning:table creation:PARTITION BY LIST clause

of the CREATE TABLE statement. This example uses state codes to create three list-based

partitions:

SQL> create table f_sales

 (sales_amt number

 ,d_date_id number

 ,state_code varchar2(3))

partition by list (state_code)

 (partition reg_west values ('AZ','CA','CO','MT','OR','ID','UT','NV')

 ,partition reg_mid values ('IA','KS','MI','MN','MO','NE','OH','ND')

 ,partition reg_def values (default));

The partition key for a list-partitioned table can be only one column. Use the

DEFAULT list to specify a partition for rows that do not match values in the list. If you do

not specify a DEFAULT list, then an error is generated when a row is inserted with a value

that does not map to the defined partitions. Run this SQL statement to view list values for

each partition:

SQL> select table_name, partition_name, high_value

from user_tab_partitions

where table_name = 'F_SALES'

order by 1;

Here is the output for this example:

TABLE_NAME PARTITION_NAME HIGH_VALUE

----------- ---------------- --

F_SALES REG_DEF default

F_SALES REG_MID 'IA', 'KS', 'MI', 'MN', 'MO', 'NE', 'OH', 'ND'

F_SALES REG_WEST 'AZ', 'CA', 'CO', 'MT', 'OR', 'ID', 'UT', 'NV'

Chapter 12 Partitioning: Divide and Conquer

454

The HIGH_VALUE column displays the list values defined for each partition. This

column is a LONG data type. If you are using SQL*Plus, you may need to set the LONG

variable to a value higher than the default (80B), to display the entire contents of the

column:

SQL> set long 1000

�Partitioning by Hash
Sometimes a large table does not contain an obvious column by which to partition the

table, whether by range or by list. For instance, suppose you use a sequence to populate

a surrogate primary key for a table, and you want rows spread evenly across partitions,

based on the unique primary key. You may do this because there is not another column

to partition, or you may be mainly concerned with the efficiency of inserts.

Hash partitioning maps rows to partitions based on an internal algorithm that

spreads data evenly across all defined partitions. You do not have any control over

the hashing algorithm or the way Oracle distributes the data. You specify how many

partitions you would like, and Oracle divides the data evenly, based on the hash key

column.

Tip  Oracle strongly recommends that you use a power of two (2, 4, 8, 16, and
so on) for the number of hash partitions. Doing so results in the optimal distribution
of rows throughout the partitions.

To create hash-based partitions, use the PARTITION BY HASH clause of the CREATE

TABLE statement. This example creates a table that is divided into two partitions; each

partition is created in its own tablespace:

SQL> create table f_sales(

 sales_id number primary key

,sales_amt number)

partition by hash(sales_id)

partitions 2 store in(p1_tbsp, p2_tbsp);

Chapter 12 Partitioning: Divide and Conquer

455

Of course, you have to modify details, such as the tablespace names, to match those

in your environment. Alternatively, you can eliminate the STORE IN clause, and Oracle

places all partitions in your default tablespace. If you want to name both the tablespaces

and the partitions, you can specify them as follows:

SQL> create table f_sales(

 sales_id number primary key

,sales_amt number)

partition by hash(sales_id)

(partition p1 tablespace p1_tbsp

,partition p2 tablespace p2_tbsp);

Hash partitioning has some interesting performance implications. All rows that

share the same value for the hash key are inserted into the same partition. This means

that inserts are particularly efficient, because the hashing algorithm ensures that the

data are distributed uniformly across partitions. Also, if you typically select for a specific

key value, Oracle has to access only one partition to retrieve those rows. However, if

you search by ranges of values, Oracle will most likely have to search every partition to

determine which rows to retrieve. Thus, range searches can perform poorly in hash-

partitioned tables.

�Blending Different Partitioning Methods
Oracle allows you to partition a table using multiple strategies (composite partitioning).

For example, suppose you have a table that you want to partition on a number range, but

you also want to subdivide each partition by a list of regions. The following example does

just that:

SQL> create table f_sales(

 sales_amt number

 ,state_code varchar2(3)

 ,d_date_id number)

partition by range(d_date_id)

subpartition by list(state_code)

(partition p2016 values less than (20170101)

 (subpartition p1_north values ('ID','OR')

 ,subpartition p1_south values ('AZ','NM')),

Chapter 12 Partitioning: Divide and Conquer

456

 partition p2017 values less than (20180101)

 (subpartition p2_north values ('ID','OR')

 ,subpartition p2_south values ('AZ','NM')));

You can view subpartition information by running the following query:

SQL> select table_name, partitioning_type, subpartitioning_type

from user_part_tables

where table_name = 'F_SALES';

Here is some sample output:

TABLE_NAME PARTITION SUBPARTIT

----------- --------- ---------

F_SALES RANGE LIST

Run the next query to view information about the subpartitions:

SQL> select table_name, partition_name, subpartition_name

from user_tab_subpartitions

where table_name = 'F_SALES'

order by table_name, partition_name;

Here is a snippet of the output:

TABLE_NAME PARTITION_NAME SUBPARTITION_NAME

----------- ---------------- --------------------

F_SALES P2016 P1_SOUTH

F_SALES P2016 P1_NORTH

F_SALES P2017 P2_SOUTH

F_SALES P2017 P2_NORTH

Composite partitioning can be implemented as range-hash (available since version

8i) and range-list (available since version 9i). Now here are the composite partitioning

strategies available:

•	 Range-Hash: Appropriate for ranges that can be subdivided by a

somewhat random key, such as a range of D_DATE_ID and then a hash

on SALES_ID

Chapter 12 Partitioning: Divide and Conquer

457

•	 Range-List: Useful when a range can be further partitioned by a list,

such as a range of D_DATE_ID and then a list on STATE_CODE

•	 Range-Range: Appropriate when you have two distinct partition

range values, such as D_DATE_ID and SHIP_DATE

•	 List-Range: Useful when a list can be further subdivided by a range,

such as a list on STATE_CODE and then a range of D_DATE_ID

•	 List-Hash: Useful for further partitioning a list by a somewhat random

key, such as a list on STATE_CODE and then a hash on SALES_ID

•	 List-List: Appropriate when a list can be further delineated by

another list, such as COUNTRY_CODE and then STATE_CODE

•	 Hash-Hash: Useful when a hash can be further subdivided by

another unique value, such as SALES_ID and CUSTOMER_ID

•	 Hash-List: Useful when a hash can be further partitioned by a list,

such as a hash on SALES_ID and a list on STATE_CODE

•	 Hash-Range: Useful when a hash can be further partitioned by a

range, such as a hash on SALES_ID and a range of SHIP_DATE

As you can see, composite partitioning gives you a great deal of flexibility in the way

you partition your data.

�Creating Partitions on Demand
You can instruct Oracle to add partitions to range-partitioned tables automatically. This

feature is known as interval partitioning. Oracle dynamically creates a new partition

when data inserted exceed the maximum bound of a range-partitioned table. The

newly added partition is based on an interval that you specify (hence, the name interval

partitioning).

Tip  Think of the interval as a rule you provide, stating how you want future
partitions to be created.

Chapter 12 Partitioning: Divide and Conquer

458

�Adding Yearly Partitions, Based on Date

Suppose, for instance, you have a range-partitioned table and want Oracle to add a

partition automatically when values are inserted above the highest value defined for

the highest range. You can use the INTERVAL clause of the CREATE TABLE statement to

instruct Oracle to add a partition automatically to the high end of a range-partitioned

table. The following example creates a table that initially has one partition, with a high

value range of 01-01-2018:

SQL> create table f_sales(

 sales_amt number

,d_date_dtt date)

partition by range (d_date_dtt)

interval(numtoyminterval(1, 'YEAR'))

store in (p1_tbsp, p2_tbsp, p3_tbsp)

(partition p1 values less than (to_date('01-01-2018','dd-mm-yyyy'))

tablespace p1_tbsp);

The first partition is created in the P1_TBSP tablespace. As Oracle adds partitions, it

assigns a new partition to the tablespaces defined in the STORE IN clause (the program is

supposed to store them in a round-robin fashion but is not always consistent).

Note  With interval partitioning, you can specify only a single key column from
the table, and it must be either a DATE or a NUMBER data type. This is because the
interval is mathematically added to these data types. You cannot use a VARCHAR2,
as you cannot add a number to a VARCHAR2 data type.

The interval in this example is one year, specified by the INTERVAL(NUMTOYMINTERVAL(1,

'YEAR')) clause. If a record is inserted into the table with a D_DATE_DTT value greater

than or equal to 01-01-2018, Oracle automatically adds a new partition to the high end of

the table. You can check the details of the partition by running this SQL statement:

SQL> set lines 132

col table_name form a10

col partition_name form a9

col part_pos form 999

col interval form a10

Chapter 12 Partitioning: Divide and Conquer

459

col tablespace_name form a12

col high_value form a30

--

SQL> select table_name, partition_name, partition_position part_pos

 ,interval, tablespace_name, high_value

from user_tab_partitions

where table_name = 'F_SALES'

order by table_name, partition_position;

Here is some sample output (the column headings have been shortened, and the

HIGH_VALUE column has been cut short so that the output fits on the page):

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE

--------- --------- -------- --------- ------------------------------

F_SALES P1 1 NO P1_TBSP TO_DATE(' 2018-01-01 00:00:00'

Next, insert data above the high value for the highest partition:

SQL> insert into f_sales values(1, sysdate+1000);

Here is what the output from selecting from USER_TAB_PARTITIONS now shows:

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE

---------- --------- -------- -------- -----------------------------

F_SALES P1 1 NO P1_TBSP TO_DATE(' 2018-01-01 00:00:00'

F_SALES SYS_P3344 2 YES P1_TBSP TO_DATE(' 2021-01-01 00:00:00'

A partition was automatically created with a high value of 2021-01-01. If you do not

like the name that Oracle gives the partition, you can rename it:

SQL> alter table f_sales rename partition sys_p3344 to p2;

Note what happens when a value is inserted that falls into a year interval between

the two partitions:

SQL> insert into f_sales values(1, sysdate+500);

USER_TAB_PARTITIONS view shows that another partition has been created because

the value inserted falls into a year interval that is not included in the existing partitions:

Chapter 12 Partitioning: Divide and Conquer

460

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N  HIGH_VALUE

---------- --------- -------- -------- ------------ ------------------------------

F_SALES P1 1 NO P1_TBSP  TO_DATE(' 2018-01-01 00:00:00'

F_SALES SYS_P3345 2 YES P3_TBSP  TO_DATE(' 2020-01-01 00:00:00'

F_SALES SYS_P3344 3 YES P1_TBSP  TO_DATE(' 2021-01-01 00:00:00'

Note  If there is more than one INTERVAL partition with a value of NO, then all
but the last one can be dropped. In other words, if there is only one partition with
an INTERVAL value of NO, then the partition cannot be dropped. For example,
attempting to drop partition P1 from the table in the prior example generates an
ORA-14758 error.

�Adding Weekly Partitions, Based on Date

You can also have Oracle add partitions by other increments of time, such as a week; for

example,

SQL> create table f_sales(

 sales_amt number

,d_date_dtt date)

partition by range (d_date_dtt)

interval(numtodsinterval(7,'day'))

store in (p1_tbsp, p2_tbsp, p3_tbsp)

(partition p1 values less than (to_date('01-01-2018', 'dd-mm-yyyy'))

tablespace p1_tbsp);

As data are inserted into future weeks, new weekly partitions will be created

automatically; for example,

SQL> insert into f_sales values(100, sysdate+7);

SQL> insert into f_sales values(200, sysdate+14);

Running this query verifies that partitions have automatically been added:

SQL> select table_name, partition_name, partition_position part_pos

 ,interval, tablespace_name, high_value

Chapter 12 Partitioning: Divide and Conquer

461

from user_tab_partitions

where table_name = 'F_SALES'

order by table_name, partition_position;

Here is some sample output:

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE

---------- --------- -------- -------- ------------ ------------------------------

F_SALES P1 1 NO P1_TBSP TO_DATE(' 2018-01-01 00:00:00'

F_SALES SYS_P3725 2 YES P3_TBSP TO_DATE(' 2018-01-15 00:00:00'

F_SALES SYS_P3726 3 YES P1_TBSP TO_DATE(' 2018-01-22 00:00:00'

In this way, Oracle automatically manages the addition of weekly partitions to the

table.

�Adding Daily Partitions, Based on Number

Recall from the section “Partitioning by Range,” earlier in this chapter, how a number

field (D_DATE_ID) was used as a range-based partition key. Suppose you want to create

daily interval partitions in a table with such a partitioning strategy automatically. In this

situation, you need to specify an INTERVAL of one. Here is an example:

SQL> create table f_sales(

 sales_amt number

,d_date_id number)

partition by range (d_date_id)

interval(1)

(partition p1 values less than (20180101));

As long as your application can correctly use a number that represents a valid date,

there should not be any issues. As each new day’s data are inserted, a new daily partition

is created. For example, suppose these data are inserted:

SQL> insert into f_sales values(100,20180130);

SQL> insert into f_sales values(50,20180131);

Chapter 12 Partitioning: Divide and Conquer

462

Two corresponding partitions are automatically created. This can be verified via this

query:

select table_name, partition_name, partition_position part_pos

 ,interval, tablespace_name, high_value

from user_tab_partitions

where table_name = 'F_SALES'

order by table_name, partition_position;

Here is the corresponding output:

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE

---------- --------- -------- ---------- ------------ --------------------

F_SALES P1 1 NO USERS 20180101

F_SALES SYS_P3383 2 YES USERS 20180131

F_SALES SYS_P3384 3 YES USERS 20180132

Be aware that the HIGH_VALUE column can contain numbers that map to invalid

dates. This is to be expected. For instance, when creating a partition with a D_DATE_ID of

20180131, Oracle will calculate the upper boundary to be the value 20180132. The high

boundary value is defined as less than (but not equal to) any values inserted into the

partition. The only reason I mention this here is because if you attempt to perform date

arithmetic on the value in HIGH_VALUE, you will need to account for potential numbers

that map to invalid dates. In this specific example, you would have to subtract one from

the value in HIGH_VALUE to obtain a valid date.

As previously shown in the section, a daily interval partitioning scheme based on a

number works fine. However, such a scheme does not work as well if you want to create

interval partitions by month or year. This is because there is no number that consistently

represents a month or year. If you need date-based interval functionality, then use a date

and not a number-based interval functionality.

�Partitioning to Match a Parent Table
You can use the PARTITION BY REFERENCE clause to specify that a child table should

be partitioned in the same way as its parent. This allows a child table to inherit the

partitioning strategy of its parent table. Any parent table partition maintenance

operations are automatically applied to the child record tables.

Chapter 12 Partitioning: Divide and Conquer

463

Note  Before the advent of the partitioning-by-reference feature, you had to
physically duplicate and maintain the parent table column in the child table.
Doing so not only requires more disk space, but also is a source of error when
maintaining the partitions.

For example, say you want to create a parent ORDERS table and a child ORDER_ITEMS

table that are related by primary key and foreign key constraints on the ORDER_ID

column. The parent ORDERS table will be partitioned on the ORDER_DATE column. Even

though it would not contain the ORDER_DATE column, you wonder whether you can

partition the child ORDER_ITEMS table so that the records are distributed the same way

as in the parent ORDERS table. This example creates a parent table with a primary key

constraint on ORDER_ID and range partitions on ORDER_DATE:

SQL> create table orders(

 order_id number

,order_date date

,constraint order_pk primary key(order_id))

partition by range(order_date)

(partition p16 values less than (to_date('01-01-2017','dd-mm-yyyy'))

,partition p17 values less than (to_date('01-01-2018','dd-mm-yyyy'))

,partition pmax values less than (maxvalue));

Next, you create the child ORDER_ITEMS table. It is partitioned by naming the foreign

key constraint as the referenced object:

SQL> create table order_items(

 line_id number

,order_id number not null

,sku number

,quantity number

,constraint order_items_pk primary key(line_id, order_id)

,constraint order_items_fk1 foreign key (order_id) references orders)

partition by reference (order_items_fk1);

Note that the foreign key column ORDER_ID must be defined as NOT NULL The foreign

key column must be enabled and enforced.

Chapter 12 Partitioning: Divide and Conquer

464

You can inspect the partition key columns via the following query:

SQL> select name, column_name, column_position

from user_part_key_columns

where name in ('ORDERS','ORDER_ITEMS');

Here is the output for this example:

NAME COLUMN_NAME COLUMN_POSITION

-------------------- -------------------- ---------------

ORDERS ORDER_DATE 1

ORDER_ITEMS ORDER_ID 1

Note that the child table is partitioned by the ORDER_ID column. This ensures that the

child record is partitioned in the same manner as the parent record (because the child

record is related to the parent record via the ORDER_ID key column).

When you create the referenced-partition child table, if you do not explicitly name

the child table partitions, by default, Oracle creates partitions for the child table with the

same partition names as its parent table. This example explicitly names the child table

referenced partitions:

SQL> create table order_items(

 line_id number

,order_id number not null

,sku number

,quantity number

,constraint order_items_pk primary key(line_id, order_id)

,constraint order_items_fk1 foreign key (order_id) references orders)

partition by reference (order_items_fk1)

(partition c16

,partition c17

,partition cmax);

Starting with Oracle Database 12c, you can also specify an interval-reference

partitioning strategy. This allows for partitions to be automatically created for both the

parent and child tables. Here is what the table creation scripts look like for this feature:

Chapter 12 Partitioning: Divide and Conquer

465

SQL> create table orders(

 order_id number

,order_date date

,constraint order_pk primary key(order_id))

partition by range(order_date)

interval(numtoyminterval(1, 'YEAR'))

(partition p1 values less than (to_date('01-01-2018','dd-mm-yyyy')));

--

SQL> create table order_items(

 line_id number

,order_id number not null

,sku number

,quantity number

,constraint order_items_pk primary key(line_id, order_id)

,constraint order_items_fk1 foreign key (order_id) references orders)

partition by reference (order_items_fk1);

Inserting some sample data will demonstrate how the partitions are automatically

created:

SQL> insert into orders values(1,sysdate);

SQL> insert into order_items values(10,1,123,1);

SQL> insert into orders values(2,sysdate+400);

SQL> insert into order_items values(20,2,456,1);

Now, run this query to verify the partition details:

SQL> select table_name, partition_name, partition_position part_pos

 ,interval, tablespace_name, high_value

from user_tab_partitions

where table_name IN ('ORDERS','ORDER_ITEMS')

order by table_name, partition_position;

Chapter 12 Partitioning: Divide and Conquer

466

Here is a snippet of the output:

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE

ORDERS P1 1 NO USERS TO_DATE(' 2018-01-01 00:00:00'

ORDERS SYS_P3761 2 YES USERS TO_DATE(' 2019-01-01 00:00:00'

ORDERS SYS_P3762 3 YES USERS TO_DATE(' 2020-01-01 00:00:00'

ORDER_ITEMS P1 1 NO USERS

ORDER_ITEMS SYS_P3761 2 YES USERS

ORDER_ITEMS SYS_P3762 3 YES USERS

�Partitioning on a Virtual Column
You can partition on a virtual column. (See Chapter 7 for a discussion of virtual

columns). Here is a sample script that creates a table named EMP, with the virtual column

COMMISSION and a corresponding range partition for the virtual column:

SQL> create table emp (

 emp_id number

,salary number

,comm_pct number

,commission generated always as (salary*comm_pct)

)

partition by range(commission)

(partition p1 values less than (1000)

,partition p2 values less than (2000)

,partition p3 values less than (maxvalue));

This strategy allows you to partition on a column that is not stored in the table but

that is computed dynamically. Virtual column partitioning is appropriate when there is

a business requirement to partition on a column that is not physically stored in a table.

The expression behind a virtual column can be a complex calculation, return a subset of

a column string, combine column values, and so on. The possibilities are endless.

For example, you may have a ten-character-string column in which the first two

digits represent a region, and the last eight digits represent a specific location (this is a

bad design, but it happens). In this case, it may make sense, from a business perspective,

to partition on the first two digits of this column (by region).

Chapter 12 Partitioning: Divide and Conquer

467

�Giving an Application Control Over Partitioning
You may have a rare scenario, in which you want the application inserting records into a

table to explicitly control which partition it inserts data into. You can use the PARTITION

BY SYSTEM clause INSERT statement to specify into which partition to insert data. This

next example creates a system-partitioned table with a three partitions: statement

to specify into which partition to insert data. This next example creates a system-

partitioned table with three partitions:

SQL> create table apps

(app_id number

,app_amnt number)

partition by system

(partition p1

,partition p2

,partition p3);

When inserting data into this table, you must specify a partition. The next line of

code inserts a record into partition P1:

SQL> insert into apps partition(p1) values(1,100);

When you are updating or deleting, if you do not specify a partition, Oracle scans all

partitions of a system-partitioned table to find the relevant rows. Therefore, you should

specify a partition when updating and deleting to avoid poor performance.

A system-partitioned table is helpful in the unusual situation of needing to explicitly

control which partition a record is inserted into. This allows your application code to

manage the distribution of records among the partitions. I recommend that you use this

feature only when you cannot use one of Oracle’s other partitioning mechanisms to meet

your business requirement.

�Maintaining Partitions
When using partitions, you will eventually have to perform some sort of maintenance

operation. For instance, you may be required to move, exchange, rename, split, merge,

or drop partitions. The various partition maintenance tasks are described in this section.

Chapter 12 Partitioning: Divide and Conquer

468

�Viewing Partition Metadata
When you are maintaining partitions, it is helpful to view metadata information about

the partitioned objects. Oracle provides many data dictionary views that contain

information about partitioned tables and indexes. Table 12-3 outlines these views.

Keep in mind that the DBA-level views contain data for all partitioned objects in the

database, the ALL level shows partitioning information to which the currently connect

user has access, and the USER-level offers information about the partitioned objects

owned by the currently connected user.

Table 12-3.  Data Dictionary Views Containing Partitioning Information

View Information Contained

DBA/ALL/USER_PART_TABLES Displays partitioned table information

DBA/ALL/USER_TAB_PARTITIONS Contains information regarding individual table

partitions

DBA/ALL/USER_TAB_SUBPARTITIONS Shows subpartition-level table information

regarding storage and statistics

DBA/ALL/USER_PART_KEY_COLUMNS Displays partition key columns

DBA/ALL/USER_SUBPART_KEY_COLUMNS Contains subpartition key columns

DBA/ALL/USER_PART_COL_STATISTICS Shows column-level statistics

DBA/ALL/USER_SUBPART_COL_STATISTICS Displays subpartition-level statistics

DBA/ALL/USER_PART_HISTOGRAMS Contains histogram information for partitions

DBA/ALL/USER_SUBPART_HISTOGRAMS Shows histogram information for subpartitions

DBA/ALL/USER_PART_INDEXES Displays partitioned index information

DBA/ALL/USER_IND_PARTITIONS Contains information regarding individual

index partitions

DBA/ALL/USER_IND_SUBPARTITIONS Shows subpartition-level index information

DBA/ALL/USER_SUBPARTITION_TEMPLATES Displays subpartition template information

Chapter 12 Partitioning: Divide and Conquer

469

Two views you will use quite often are DBA_PART_TABLES and the DBA_TAB_

PARTITIONS. The DBA_PART_TABLES view contains table-level partitioning information,

such as partitioning method and default storage settings. The DBA_TAB_PARTITIONS view

provides information about the individual table partitions, such as the partition name

and storage settings for individual partitions.information about the individual table

partitions, such as the partition name and storage settings for individual partitions.

�Moving a Partition
Suppose you create a list-partitioned table, as shown:

SQL> create table f_sales

 (sales_amt number

 ,d_date_id number

 ,state_code varchar2(20))

partition by list (state_code)

 (partition reg_west values ('AZ','CA','CO','MT','OR','ID','UT','NV')

 ,partition reg_mid values ('IA','KS','MI','MN','MO','NE','OH','ND')

 ,partition reg_rest values (default));

Also, for this partitioned table, you decide to create a locally partitioned index, as

follows:

SQL> create index f_sales_lidx1 on f_sales(state_code) local;

You decide to create as well a nonpartitioned global index, as follows:

SQL> create index f_sales_gidx1 on f_sales(d_date_id) global;

And, you create a global partitioned index column:

SQL> create index f_sales_gidx2 on f_sales(sales_amt)

global partition by range(sales_amt)

(partition pg1 values less than (25)

,partition pg2 values less than (50)

,partition pg3 values less than (maxvalue));

Chapter 12 Partitioning: Divide and Conquer

470

Later, you decide that you want to move a partition to a specific tablespace. In this

scenario, you can use the ALTER TABLE...MOVE PARTITION statement to relocate a table

partition. This example moves the REG_WEST partition to a new tablespace:

SQL> alter table f_sales move partition reg_west tablespace p1_tbsp;

Moving a partition to a different tablespace is a fairly simple operation. Whenever

you do this, however, make sure you check on the status of any indexes associated with

the table:

SQL> select b.table_name, a.index_name, a.partition_name

,a.status, b.locality

from user_ind_partitions a

 ,user_part_indexes b

where a.index_name=b.index_name

and table_name = 'F_SALES';

Here is some sample output:

TABLE_NAME INDEX_NAME PARTITION Status LOCALI

---------- -------------------- --------- --------- ------

F_SALES F_SALES_LIDX1 REG_MID USABLE LOCAL

F_SALES F_SALES_LIDX1 REG_REST USABLE LOCAL

F_SALES F_SALES_LIDX1 REG_WEST UNUSABLE LOCAL

F_SALES F_SALES_GIDX2 PG1 UNUSABLE GLOBAL

F_SALES F_SALES_GIDX2 PG2 UNUSABLE GLOBAL

F_SALES F_SALES_GIDX2 PG3 UNUSABLE GLOBAL

You must rebuild any unusable indexes. As opposed to rebuilding the indexes

manually, when moving a partition, you can specify that the indexes associated with it be

rebuilt with the UPDATE INDEXES clause:

SQL> alter table f_sales move partition reg_west tablespace p1_tbsp update

indexes;

Starting with Oracle Database 12c, when moving a partition, you can specify that all

indexes be updated via the ONLINE clause:

SQL> alter table f_sales move partition reg_west online tablespace p1_tbsp;

The prior line of code tells Oracle to maintain all indexes during the move operation.

Chapter 12 Partitioning: Divide and Conquer

471

�Automatically Moving Updated Rows
By default, Oracle does not let you update a row by setting the partition key to a value

outside the row’s current partition. For example, this statement updates the partition

key column (D_DATE_ID) to a value that would result in the row’s needing to exist in a

different partition:

SQL> update f_sales set d_date_id = 20130901 where d_date_id = 20120201;

You receive the following error:

ORA-14402: updating partition key column would cause a partition change

In this scenario, use the ENABLE ROW MOVEMENT clause of the ALTER TABLE statement

to allow updates to the partition key that would change the partition in which a value

belongs. For this example, the F_SALES table is first modified to enable row movement:

SQL> alter table f_sales enable row movement;

You should now be able to update the partition key to a value that moves the row to a

different segment. You can verify that row movement has been enabled by querying the

ROW_MOVEMENT column of the USER_TABLES view:

SQL> select row_movement from user_tables where table_name='F_SALES';

You should see the value ENABLED:

ROW_MOVE

ENABLED

To disable row movement, use the DISABLE ROW MOVEMENT clause:

SQL> alter table f_sales disable row movement;

Chapter 12 Partitioning: Divide and Conquer

472

�Partitioning an Existing Table
You may have a nonpartitioned table that has grown quite large and want to partition it.

There are several methods for converting a nonpartitioned table to a partitioned table.

Table 12-4 lists the pros and cons of various techniques.

Table 12-4.  Methods of Converting a Nonpartitioned Table

Conversion Method Advantages Disadvantages

ALTER TABLE ... MODIFY

PARTITION BY ... ONLINE

ONLINE operation to modify

table and add partitions

Additional

consideration with

indexes; can use

update indexes

CREATE <new_part_tab> AS

SELECT * FROM <old_tab>

Simple; can use NOLOGGING and

PARALLEL options; direct path load

Requires space for both

old and new tables

INSERT /*+ APPEND */

INTO <new_part_tab>

SELECT * FROM <old_tab>

Fast; simple; direct path load Requires space for both

old and new tables

Data Pump EXPDP old table;

IMPDP new table (or EXP IMP if

using older version of Oracle)

Fast; less space required; takes

care of grants, privileges, and so on.

Loading can be done per partition

with filtering conditions.

More complicated

because you need to use

a utility

Create partitioned new_part_

tab>; exchange partitions with

old_tab>

Potentially less downtime Many steps; complicated

Use DBMS_REDEFINITION

package

Converts existing table inline Many steps; complicated

Create CSV file or external table;

load new_part_tab> with

SQL*Loader

Loading can be done partition by

partition.

Many steps; complicated

Chapter 12 Partitioning: Divide and Conquer

473

As shown in Table 12-4, one of the easiest ways to partition an existing table is to use

ALTER TABLE; this has been available since Oracle 12c. By performing this modification,

indexes will need to be verified either as local or global indexes and possibly created for

new strategies, but the table is an ONLINE action that allows for use of the table while

the ALTER table is being completed.

To convert a nonpartitioned table into a partitioned one, the partitioning strategy

needs to be listed as well as the partitions.

SQL> alter table f_sales modify

partition by range (d_date_id)

(partition p2012 values less than(20130101),

 partition p2013 values less than(20140101),

 partition pmax values less than(maxvalue))

online;

Another easy method is to create a new table—one that is partitioned—and load it

with data from the old table. Listed next are the required steps:

	 1.	 If this is a table in an active production database, you should

schedule some downtime for the table to ensure that no active

transactions are occurring while it is being migrated.

	 2.	 Create a new, partitioned table from the old with CREATE TABLE

<new table> AS SELECT * FROM <old table>.

	 3.	 Drop or rename the old table.

	 4.	 Rename the table created in step 2 to the name of the dropped/

renamed table.

For instance, let’s assume that the F_SALES table used so far in this chapter was

created as a nonpartitioned table. The following statement creates a new table that is

partitioned, taking data from the old table, which is not:

SQL> create table f_sales_new

partition by range (d_date_id)

(partition p2012 values less than(20130101),

 partition p2013 values less than(20140101),

 partition pmax values less than(maxvalue))

nologging

as select * from f_sales;

Chapter 12 Partitioning: Divide and Conquer

474

Now, you can drop (or rename) the old, nonpartitioned table and rename the new,

partitioned table the old table’s name. Be sure you do not need the old table before you

drop it with the PURGE option, as this permanently drops the table:

SQL> drop table f_sales purge;

SQL> rename f_sales_new to f_sales;

Finally, create any required constraints, grants, indexes, and statistics for the new

table. You should now have a partitioned table that replaces the old, nonpartitioned

table.

For the last step, if the original table contains many constraints, grants, and indexes,

you may want to use Data Pump expd to export the original table without data. Then,

after the new table is created, use Data Pump impdp to create the constraints, grants, and

indexes for the new table. Also consider generating fresh statistics for the newly created

table.

Another thought is if there is any potential for a table to grow very large, it can be

created to handle partitioning and then additional partitions can be created as needed.

Even when performing the ALTER table command, testing should be done to confirm

creating the partitioning with a couple of partitions to add and modify with additional

ones as discussed in the next section.

�Adding a Partition
Sometimes it is hard to predict how many partitions you should initially establish for a

table. A typical example is a range-partitioned table that is created without a MAXVALUE-

created partition. You make a partitioned table that contains enough partitions for

two years into the future, and then you forget about the table. Sometime in the future,

application users report that this message is being thrown:

ORA-14400: inserted partition key does not map to any partition

Tip  Consider using interval partitioning, which enables Oracle to add range
partitions automatically when the upper bound is exceeded.

Chapter 12 Partitioning: Divide and Conquer

475

�Range

For a range-partitioned table, if the table’s highest bound is not defined with a MAXVALUE,

you can use the ALTER TABLE...ADD PARTITION statement to add a partition to the high

end of the table. If you are not sure what the current upper bound is, query the data

dictionary:

SQL> select table_name, partition_name, high_value

from user_tab_partitions

where table_name = UPPER('&&tab_name')

order by table_name, partition_name;

This example adds a partition to the high end of a range-partitioned table:

SQL> alter table f_sales add

partition p_2018 values less than (20190101) tablespace p18_tbsp;

Starting with Oracle Database 12c, you can add multiple partitions at the same time;

for example,

SQL> alter table f_sales add

 partition p_2018 values less than (20190101) tablespace p18_tbsp

,partition p_2019 values less than (20200101) tablespace p19_tbsp;

Note  If you have a range-partitioned table with the high range bounded by
MAXVALUE, you cannot add a partition. In this situation, you have to split an
existing partition (see the section “Splitting a Partition” later in this chapter).

�List

For a list-partitioned table, you can add a new partition only if there is not a DEFAULT

partition defined. The next example adds a partition to a list-partitioned table:

SQL> alter table f_sales add partition reg_east values('GA');

Starting with Oracle Database 12c, you can add multiple partitions with one statement:

SQL> alter table f_sales add partition reg_mid_east values('TN'),

 partition reg_north values('NY');

Chapter 12 Partitioning: Divide and Conquer

476

�Hash

If you have a hash-partitioned table, use the ADD PARTITION clause, as follows, to add a

partition:

SQL> alter table f_sales add partition p3 update indexes;

Note  When you are adding to a hash-partitioned table, if you do not specify the
UPDATE INDEXES clause, any global indexes must be rebuilt. Additionally, you
must rebuild any local indexes for the newly added partition.

After adding a partition to a hash-partitioned table, always check the indexes to be

sure they all still have a VALID status:

SQL> select b.table_name, a.index_name, a.partition_name, a.status,

b.locality

from user_ind_partitions a

 ,user_part_indexes b

where a.index_name=b.index_name

and table_name = upper('&&part_table');

Also check the status of any global nonpartitioned indexes:

SQL> select index_name, status

from user_indexes

where table_name = upper('&&part_table');

I highly recommend that you always test a maintenance operation in a

nonproduction database to determine any unforeseen side effects.

�Exchanging a Partition with an Existing Table
Exchanging a partition is a common technique for transparently loading new data into

large partitioned tables. The technique involves taking a stand-alone table and swapping

it with an existing partition (in an already partitioned table), allowing you to add fully

loaded new partitions (and associated indexes) without affecting the availability or

performance of operations against the other partitions in the table.

Chapter 12 Partitioning: Divide and Conquer

477

This simple example illustrates the process. Say you have a range-partitioned table,

created as follows:

SQL> create table f_sales

(sales_amt number

,d_date_id number)

partition by range (d_date_id)

(partition p_2016 values less than (20170101),

 partition p_2017 values less than (20180101),

 partition p_2018 values less than (20190101));

You also create a local bitmap index on the D_DATE_ID column:

SQL> create bitmap index d_date_id_fk1 on

f_sales(d_date_id) local;

Now, add a new partition to the table to store new data:

SQL> alter table f_sales add partition p_2019

values less than(20200101);

Next, create a staging table, and insert data that fall within the range of values for the

newly added partition:

SQL> create table workpart(

 sales_amt number

 ,d_date_id number);

--

SQL> insert into workpart values(100,20190201);

SQL> insert into workpart values(120,20190507);

Then, create a bitmap index on the WORKPART table that matches the structure of the

bitmap index on F_SALES:

SQL> create bitmap index d_date_id_fk2

on workpart(d_date_id);

Now, exchange the WORKPART table with the P_2019 partition:

SQL> alter table f_sales

exchange partition p_2019

Chapter 12 Partitioning: Divide and Conquer

478

with table workpart

including indexes without validation;

A quick query of the F_SALES table verifies that the partition was exchanged

successfully:

SQL> select * from f_sales partition(p_2019);

Here is the output:

SALES_AMT D_DATE_ID

--------- ---------

 100 20190201

 120 20190507

This query displays that the indexes are all still usable:

SQL> select index_name, partition_name, status from user_ind_partitions;

You can also verify that a local index segment was created for the new partition:

SQL> select segment_name, segment_type, partition_name

from user_segments

where segment_name IN('F_SALES','D_DATE_ID_FK1');

The ability to exchange partitions is an extremely powerful feature. It allows you

to take a partition in an existing table and make it a stand-alone table, while making

a stand-alone table (which can be fully populated before the partition exchange

operation) part of a partitioned table. When you exchange a partition, Oracle simple

updates the entries in the data dictionary to perform the exchange.

When you exchange a partition with the WITHOUT VALIDATION clause, you instruct

Oracle not to validate that the rows in the incoming partition (or subpartition) are

valid entries for the defined range. This has the advantage of making the exchange a

very quick operation because Oracle is only updating pointers in the data dictionary to

perform the exchange operation. You need to make sure your data are accurate if you use

WITHOUT VALIDATION.

If a primary key is defined for the partitioned table, the table being exchanged must

have the same primary key structure defined. If there is a primary key, the WITHOUT

VALIDATION clause does not stop Oracle from enforcing unique constraints.

Chapter 12 Partitioning: Divide and Conquer

479

�Renaming a Partition
Sometimes, you may be required to rename a table partition or index partition. For example,

you may want to rename a partition before you drop it (to ensure that it is not being

used). Also, you may want to rename objects so that they conform to standards. In these

scenarios, use the ALTER TABLE or ALTER INDEX statement as appropriate.

This example uses the ALTER TABLE statement to rename a table partition:

SQL> alter table f_sales rename partition p_2018 to part_2018;

The next line of code uses the ALTER INDEX statement to rename an index partition:

SQL> alter index d_date_id_fk1 rename partition p_2018 to part_2018;

You can query the data dictionary to verify the information regarding renamed

objects. This query shows partitioned table names:

SQL> select table_name, partition_name, tablespace_name

from user_tab_partitions;

Similarly, this query displays partitioned index information:

SQL> select index_name, partition_name, status

,high_value, tablespace_name

from user_ind_partitions;

�Splitting a Partition
Suppose you have identified a partition that has too many rows, and you want to split

it into two partitions. Use the ALTER TABLE...SPLIT PARTITION statement to split an

existing partition. The following example splits a partition in a range-partitioned table:

SQL> alter table f_sales split partition p_2018 at (20180601)

into (partition p_2018_a, partition p_2018)

update indexes;

If you do not specify UPDATE INDEXES, local indexes will become UNUSABLE,

and you need to rebuild any local indexes associated with the split partition as well as

any global indexes. You can verify the status of partitioned indexes with this SQL:

SQL> select index_name, partition_name, status from user_ind_partitions;

Chapter 12 Partitioning: Divide and Conquer

480

The next example splits a list partition. First, here is the CREATE TABLE statement,

which shows you how the list partitions were originally defined:

SQL> create table f_sales

 (sales_amt number

 ,d_date_id number

 ,state_code varchar2(3))

partition by list (state_code)

 (partition reg_west values ('AZ','CA','CO','MT','OR','ID','UT','NV')

 ,partition reg_mid values ('IA','KS','MI','MN','MO','NE','OH','ND')

 ,partition reg_rest values (default));

Next, the REG_MID partition is split:

SQL> alter table f_sales split partition reg_mid values

('IA','KS','MI','MN') into

(partition reg_mid_a,

 partition reg_mid_b)

update indexes;

The REG_MID_A partition now contains the values IA, KS, MI, and MN, and REG_MID_B

is assigned the remaining values, MO, NE, OH, and ND.

The split partition operation allows you to create two new partitions from a single

partition. Each new partition has its own segment, physical attributes, and extents.

The segment associated with the original partition is deleted.

�Merging Partitions
When you create a partition, sometimes it is hard to predict how many rows the partition

will eventually contain. You may have two partitions that do not contain enough data

to warrant separate partitions. In such a situation, use the ALTER TABLE...MERGE

PARTITIONS statement to combine partitions.

The following example merges two partitions into one existing partition:

SQL> alter table f_sales merge partitions p_2017, p_2018 into partition

p_2018;

Chapter 12 Partitioning: Divide and Conquer

481

In this example, the partitions are organized by a range of dates. The partition into

which you are merging is defined as accepting rows with the highest range of the two

merged partitions. Any local indexes are also merged into the new, single partition.

You can verify the status of the partitioned indexes by querying the data dictionary:

SQL> select index_name, partition_name, tablespace_name, high_value,status

from user_ind_partitions

order by 1,2;

With Oracle 18c, the merge operation can now be performed online using the

ONLINE clause. This will allow the data to still be available as the merge is being

executed, and the UPDATE INDEXES clause should be used to maintain and rebuild any

associated indexes at the same time.

SQL> alter table f_sales merge partitions p_2017, p_2018 into partition p_2018

tablespace p2_tbsp

update indexes

online;

Keep in mind that the merge operation takes longer when you use the UPDATE

INDEXES clause. If you want to minimize the length of the merge operation, do not use

this clause. Instead, manually rebuild local indexes associated with a merged partition:

SQL> alter table f_sales modify partition p_2018 rebuild unusable local indexes;

You can rebuild each partition of a global index with the ALTER INDEX...REBUILD

PARTITION statement:

SQL> alter index f_glo_idx1 rebuild partition sys_p680;

SQL> alter index f_glo_idx1 rebuild partition sys_p681;

SQL> alter index f_glo_idx1 rebuild partition sys_p682;

You can merge two or more partitions with the ALTER TABLE...MERGE PARTITIONS

statement. The name of the partition into which you are merging can be the name of one

of the partitions you are merging or a completely new name.

Before you merge two (or more) partitions, make certain the partition into which you

are merging has enough space in its tablespace to accommodate all the merged rows. If

there is not enough space, you receive an error that the tablespace cannot extend to the

necessary size. extend to the necessary size.

Chapter 12 Partitioning: Divide and Conquer

482

�Dropping a Partition
You occasionally need to drop a partition. A common scenario is that you have old data

that are not used anymore, meaning that the partition can be dropped.

First, identify the name of the partition you want to drop. Run the following query to

list partitions for a particular table for the currently connected user:

SQL> select segment_name, segment_type, partition_name

from user_segments

where segment_name = upper('&table_name');

Next, use the ALTER TABLE...DROP PARTITION statement to remove a partition from

a table. This example drops the P_2018 partition from the F_SALES table:

SQL> alter table f_sales drop partition p_2018;

When dropping a partition, you will need to rebuild any global indexes. This can be

done within the same DDL statement, as the following example shows:

SQL> alter table f_sales drop partition p_2018 update global indexes;

If you want to drop a subpartition, use the DROP SUBPARTITION clause:

SQL> alter table f_sales drop subpartition p2_south;

You can query USER_TAB_SUBPARTITIONS to verify that the subpartition has been

dropped.

Note  Oracle does not let you drop all subpartitions of a composite-partitioned
table. There must be at least one subpartition per partition.

When you drop a partition, there is no undrop operation. Therefore, before you do

this, be sure you are in the correct environment and really do need to drop the partition.

If you need to preserve the data in a partition to be dropped, merge the partition with

another partition instead of dropping it.

You cannot drop a partition from a hash-partitioned table. For hash-partitioned

tables, you must coalesce partitions to remove one. And, you cannot explicitly drop a

partition from a reference-partitioned table. When a parent table partition is dropped, it

is also dropped from corresponding child reference-partitioned tables.

Chapter 12 Partitioning: Divide and Conquer

483

�Generating Statistics for a Partition
After you load a large amount of data into a partition, you should generate statistics

to reflect the newly inserted data. Use the EXECUTE statement to run the DBMS_STATS

package in order to generate statistics for a particular partition. In this example, the

owner is STAR, the table is F_SALES, and the partition being analyzed is P_2018:

SQL> exec dbms_stats.gather_table_stats(ownname=>'MV_MAINT',-

tabname=>'F_SALES',-

partname=>'P_2018');

If you are working with a large partition, you probably want to specify the percentage

sampling size and degree of parallelism and also generate statistics for any indexes:

SQL> exec dbms_stats.gather_table_stats(ownname=>'MV_MAINT',-

tabname=>'F_SALES',-

partname=>'P_2018',-

estimate_percent=>dbms_stats.auto_sample_size,-

degree=>dbms_stats.auto_degree,-

cascade=>true);

For a partitioned table, you can generate statistics on either a single partition or the

entire table. I recommend that you generate statistics whenever a significant amount of

data change in the partition. You need to understand your tables and data well enough

to determine whether generating new statistics is required.

You can instruct Oracle to scan only newly added partitions when generating global

statistics. This feature is enabled via the DBMS_STATS package:

SQL> exec DBMS_STATS.SET_TABLE_PREFS(user,'F_SALES','INCREMENTAL','TRUE');

You can verify the table preferences for the table as follows:

SQL> select dbms_stats.get_prefs('INCREMENTAL', tabname=>'F_SALES') from

dual;

The incremental global statistics gathering must be used in conjunction with DBMS_

STATS.AUTO_SAMPLE_SIZE. This can greatly reduce the time and resources required to

gather incremental statistics for partitions newly added to large tables.

Chapter 12 Partitioning: Divide and Conquer

484

�Removing Rows from a Partition
You can use several techniques to remove rows from a partition. If the data in the

particular partition are no longer required, consider dropping the partition. If you want

to remove the data and leave the partition intact, then you can either truncate or delete

from it. Truncating a partition quickly and permanently removes the data. If you need

the option of rolling back the removal of records, then you should delete (instead of

truncate). Both truncating and deleting are described next.

First, identify the name of the partition from which you want to remove records:

SQL> select segment_name, segment_type, partition_name

from user_segments

where partition_name is not null;

Use the ALTER TABLE...TRUNCATE PARTITION statement to remove all records from a

partition. This example truncates a partition from the F_SALES table:

SQL> alter table f_sales truncate partition p_2013;

The prior command removes data only from the specified partition and not the

entire table. Also keep in mind that truncating a partition will invalidate any global

indexes. You can update the global indexes while you issue a TRUNCATE as follows:

SQL> alter table f_sales truncate partition p_2013 update global indexes;

Truncating a partition is an efficient way to remove large amounts of data. When you

truncate a partition, however, there is no rollback mechanism. The truncate operation

permanently deletes the data from the partition.

If you need the option of rolling back a transaction, use the DELETE statement:

SQL> delete from f_sales partition(p_2013);

The downside to this approach is that if you have millions of records, the DELETE

operation can take a long time to run. Also, for a large number of records, DELETE

generates a great deal of rollback information. This can cause performance issues for

other SQL statements contending for resources.

Chapter 12 Partitioning: Divide and Conquer

485

�Manipulating Data Within a Partition
If you need to select or manipulate data within one partition, specify the partition

name as part of the SQL statement. For instance, you can select the rows from a specific

partition, as shown:

SQL> select * from f_sales partition (p_2013);

If you want to select from two (or more) partitions, then use the UNION clause:

SQL> select * from f_sales partition (p_2013)

Union all

select * from f_sales partition (p_2014);

If you are a developer, and you do not have access to the data dictionary to view

which partitions are available, you can use the SELECT...PARTITION FOR <partition_

key_value> syntax. With this new syntax, you provide a partition key value, and Oracle

determines what partition the key value belongs in and returns the rows from that

partition; for example,

SQL> select * from f_sales partition for (20130202);

You can also update and delete partition rows. This example updates a column in a

partition:

SQL> update f_sales partition(p_2013) set sales_amt=200;

You can use the PARTITION FOR <partition_key_value> syntax for update, delete,

and truncate operations; for example,

SQL> update f_sales partition for (20130202) set sales_amt=200;

Note  See the previous section, “Removing Rows from a Partition,” for examples
of deleting and truncating a partition.

Chapter 12 Partitioning: Divide and Conquer

486

�Partitioning Indexes
In today’s large database environments, indexes can grow to unwieldy sizes. Partitioning

indexes provides the same benefits as partitioning tables: improved performance,

scalability, and maintainability.

You can create an index that uses the partitioning strategy of its table (local), or you

can create an index that is partitioned differently from its table (global). Both of these

techniques are described in the following sections.

�Partitioning an Index to Follow Its Table
When you create an index on a partitioned table, you have the option of making it a

LOCAL data type. A local partitioned index is partitioned in the same manner as the

partitioned table. Each table partition has a corresponding index that contains ROWID

values and index-key values for just that table partition. In other words, the ROWID values

in a local partitioned index only point to rows in the corresponding table partition.

The following example illustrates the concept of a locally partitioned index. First,

create a table that has only two partitions:

SQL> create table f_sales (

 sales_id number

,sales_amt number

,d_date_id number)

tablespace p1_tbsp

partition by range(d_date_id)(

 partition y12 values less than (20130101)

 tablespace p1_tbsp

,partition y13 values less than (20140101)

 tablespace p2_tbsp);

And, say five records are inserted into the table, with three records inserted into

partition Y12 and two records inserted into partition Y13:

SQL> insert into f_sales values(1,20,20120322);

SQL> insert into f_sales values(2,33,20120507);

SQL> insert into f_sales values(3,72,20120101);

SQL> insert into f_sales values(4,12,20130322);

SQL> insert into f_sales values(5,98,20130507);

Chapter 12 Partitioning: Divide and Conquer

487

Next, use the LOCAL clause of the CREATE INDEX statement to create a local index on

the partitioned table. This example creates a local index on the D_DATE_ID column of the

F_SALES table:

SQL> create index f_sales_fk1 on f_sales(d_date_id) local;

Run the following query to view information about partitioned indexes:

SQL> select index_name, table_name, partitioning_type

from user_part_indexes

where table_name = 'F_SALES';

Here is some sample output:

INDEX_NAME TABLE_NAME PARTITION

------------------------------ ---------- ---------

F_SALES_FK1 F_SALES RANGE

Now, query the USER_IND_PARTITIONS table to view information about the locally

partitioned index:

SQL> select index_name, partition_name, tablespace_name

from user_ind_partitions

where index_name = 'F_SALES_FK1';

Note that an index partition has been created for each partition of the table and that

the index is created in the same tablespace as the table partition:

INDEX_NAME PARTITION_NAME TABLESPACE_NAME

-------------------- -------------------- ---------------

F_SALES_FK1 Y12 P1_TBSP

F_SALES_FK1 Y13 P2_TBSP

Figure 12-3 conceptually shows how a locally managed index is constructed.

Chapter 12 Partitioning: Divide and Conquer

488

If you want the local index partitions to be created in a tablespace (or tablespaces)

separate from that of the table partitions, specify the tablespace(s) when creating the index:

SQL> create index f_sales_fk1 on f_sales(d_date_id) local

(partition y12 tablespace users

,partition y13 tablespace users);

Querying USER_IND_PARTITIONS now shows that the index partitions have been

created in tablespaces separate from the table partitions’ tablespace:

INDEX_NAME PARTITION_NAME TABLESPACE_NAME

-------------------- -------------------- ---------------

F_SALES_FK1 Y12 USERS

F_SALES_FK1 Y13 USERS

Figure 12-3.  Architecture of a locally managed index

Chapter 12 Partitioning: Divide and Conquer

489

If you specify the partition information when building a local partitioned index, the

number of partitions must match the number of partitions in the table on which the

partitioned index is built.

Oracle automatically keeps local index partitions in sync with the table partitions.

You cannot explicitly add a partition to or drop a partition from a local index. When you

add or drop a table partition, Oracle automatically performs the corresponding work for

the local index. Oracle manages the local index partitions, regardless of how the local

indexes have been assigned to tablespaces.

Local indexes are common in data warehouse and DSS environments. If you

query frequently by using the partitioned column(s), a local index is appropriate. This

approach lets Oracle use the appropriate index and table partition to quickly retrieve the

data.

There are two types of local indexes: local prefixed and local nonprefixed. A local

prefixed index is one in which the leftmost column of the index matches the table

partition key. The previous example in this section is a local prefixed index because its

leftmost column (D_DATE_ID) is also the partition key for the table.

A local nonprefixed index is one in which the leftmost column does not match

the partition key used to partition the corresponding table. For example, this is a local

nonprefixed index:

SQL> create index f_sales_idx1 on f_sales(sales_id) local;

The index is partitioned with the SALES_ID column, which is not the partition key

of the table, and is therefore a nonprefixed index. You can verify whether an index is

considered prefixed by querying the ALIGNMENT column from USER_PART_INDEXES:

SQL> select index_name, table_name, alignment, locality

from user_part_indexes

where table_name = 'F_SALES';

Here is some sample output:

INDEX_NAME TABLE_NAME ALIGNMENT LOCALI

-------------------- -------------------- ------------ ------

F_SALES_FK1 F_SALES PREFIXED LOCAL

F_SALES_IDX1 F_SALES NON_PREFIXED LOCAL

Chapter 12 Partitioning: Divide and Conquer

490

You may wonder why the distinction exists between prefixed and nonprefixed.

A local index that is nonprefixed does not include the partition key as a leading edge

of its index definition. This can have performance implications, in that a range scan

accessing a nonprefixed index may need to search every index partition. If there are a

large number of partitions, this can result in poor performance.

You can choose to create all local indexes as prefixed by including the partition key

column in the leading edge of the index. For instance, you can create the F_SALES_IDX2

index as prefixed as follows:

SQL> create index f_sales_idx2 on f_sales(d_date_id, sales_id) local;

Is a prefixed index preferable to a nonprefixed index? It depends on how you

query your tables. You have to generate explain plans for the queries you use and

examine whether a prefixed index is better able to take advantage of partition pruning

(eliminating partitions to search) than a nonprefixed index. Also keep in mind that a

multicolumn local prefixed index consumes more space and resources than a local

nonprefixed index.

�Partitioning an Index Differently from Its Table
An index that is partitioned differently from its base table is known as a global index. An

entry in a global index can point to any of the partitions of its base table. You can create a

global index on any type of partitioned table.

You can create either a range-partitioned or a hash-based global index. Use the

keyword GLOBAL to specify that the index is built with a partitioning strategy separate

from that of its corresponding table. You must always specify a MAXVALUE when creating a

range-partitioned global index.

The following example creates a range-based global index:

SQL> create index f_sales_gidx1 on f_sales(sales_amt)

global partition by range(sales_amt)

(partition pg1 values less than (25)

,partition pg2 values less than (50)

,partition pg3 values less than (maxvalue));

Figure 12-4 shows that with a global index, the partitioning strategy of the index does

not accord with the partitioning strategy of the table.

Chapter 12 Partitioning: Divide and Conquer

491

The other type of global partitioned index is hash based. This example creates a

hash-partitioned global index:

SQL> create index f_sales_gidx2 on f_sales(sales_id)

global partition by hash(sales_id) partitions 3;

In general, global indexes are more difficult to maintain than local indexes.

I recommend that you try to avoid using global indexes and use local indexes

whenever possible.

Figure 12-4.  Architecture of a global index

Chapter 12 Partitioning: Divide and Conquer

492

There is no automatic maintenance of global indexes (as there is with local indexes).

With global indexes, you are responsible for adding and dropping index partitions. Also,

many maintenance operations on the underlying partitioned table require that the

global index partitions be rebuilt. The following operations on a heap-organized table

render a global index unusable:

•	 ADD (HASH)

•	 COALESCE (HASH)

•	 DROP

•	 EXCHANGE

•	 MERGE

•	 MOVE

•	 SPLIT

•	 TRUNCATE

Consider using the UPDATE INDEXES clause when you perform maintenance

operations. Doing so keeps the global index available during the operation and

eliminates the need for rebuilding. The downside of using UPDATE INDEXES is that the

maintenance operation takes longer, owing to the indexes being maintained during the

action.

Global indexes are useful for queries that retrieve a small set of rows via an index.

In these situations, Oracle can eliminate (prune) any unnecessary index partitions and

efficiently retrieve the data. For example, global range-partitioned indexes are useful in

OLTP environments, where you need quick access to individual records.

�Partial Indexes
Starting with Oracle Database 12c, you can specify that index partitions be initially

created in an unusable state. You may want to do this if you have pre-created partitions

and do not yet have data for range partitions that map to future dates—the idea being

that you will build the index after the partitions have been loaded (at some future date).

You control whether a local index is created in a usable state via the INDEXING

ON|OFF clause. Here is an example that specifies by default that index partitions will be

unusable, unless explicitly turned on:

Chapter 12 Partitioning: Divide and Conquer

493

SQL> create table f_sales (

 sales_id number

,sales_amt number

,d_date_id number

)

indexing off

partition by range (d_date_id)

(partition p1 values less than (20170101) indexing on,

 partition p2 values less than (20180101) indexing on,

 partition p3 values less than (20190101) indexing on,

 partition p4 values less than (20200101) indexing off);

Next, a local partitioned index is created on the table, specifying that the partial

index functionality should be used:

SQL> create index f_sales_lidx1 on f_sales(d_date_id)

local indexing partial;

You can verify which partitions are usable (or not) via this query:

SQL> select a.index_name, a.partition_name, a.tablespace_name, a.status

from user_ind_partitions a, user_indexes b

where b.table_name = 'F_SALES'

and a.index_name = b.index_name;

Here is some sample output for this example:

INDEX_NAME PARTITION_ TABLESPACE_NAME STATUS

-------------------- ---------- --------------- --------

F_SALES_LIDX1 P1 USERS USABLE

F_SALES_LIDX1 P2 USERS USABLE

F_SALES_LIDX1 P3 USERS USABLE

F_SALES_LIDX1 P4 USERS UNUSABLE

In this way, you can control whether the index is maintained as data are inserted

into the partition. You may not initially want an index partition created in a usable state

because it will slow down bulk loads of data. In this situation, you would first load the

data and then make the index usable by rebuilding it:

SQL> alter index f_sales_lidx1 rebuild partition p4;

Chapter 12 Partitioning: Divide and Conquer

494

�Partition Pruning
Partition pruningin an SQL query specifically accesses a table on a partition key. Oracle

only searches the partitions that contain data the query needs (and does not access any

partitions that do not contain such data—pruning them, so to speak).

For example, say a partitioned table is defined as follows:

SQL> create table f_sales (

 sales_id number

,sales_amt number

,d_date_id number)

tablespace p1_tbsp

partition by range(d_date_id)(

 partition y17 values less than (20180101)

 tablespace p1_tbsp

,partition y18 values less than (20190101)

 tablespace p2_tbsp

,partition y19 values less than (20200101)

 tablespace p3_tbsp);

Additionally, you create a local index on the partition key column:

SQL> create index f_sales_fk1 on f_sales(d_date_id) local;

And, say you insert some sample data:

SQL> insert into f_sales values(1,100,20170202);

SQL> insert into f_sales values(2,200,20180202);

SQL> insert into f_sales values(3,300,20190202);

To illustrate the process of partition pruning, enable the autotrace facility:

SQL> set autotrace trace explain;

Now, execute an SQL statement that accesses a row based on the partition key:

SQL> select sales_amt from f_sales where d_date_id = '20180202';

Chapter 12 Partitioning: Divide and Conquer

495

Autotrace displays the explain plan. Some of the columns have been removed in

order to fit the output on the page neatly:

| Id | Operation | Name | Pstart| Pstop |

| 0 | SELECT STATEMENT | | | |

| 1 | PARTITION RANGE SINGLE | | 2 | 2 |

| 2 | TABLE ACCESS BY LOCAL

 INDEX ROWID BATCHED | F_SALES | 2 | 2 |

|* 3 | INDEX RANGE SCAN | F_SALES_FK1 | 2 | 2 |

In this output, Pstart shows that the starting partition accessed is partition 2. Pstop

shows that the last partition accessed is partition 2. In this example, partition 2 is the

only partition used to retrieve data; the other partitions in the table are not accessed at

all by the query.

If a query is executed that does not use the partition key, then all partitions are

accessed; for example,

SQL> select * from f_sales;

Here is the corresponding explain plan:

--

| Id | Operation | Name | Rows| Pstart| Pstop|

--

| 0 | SELECT STATEMENT | | 3 | | |

| 1 | PARTITION RANGE ALL | | 3 | 1 | 3 |

| 2 | TABLE ACCESS FULL | F_SALES | 3 | 1 | 3 |

--

Note in this output that the starting partition is partition 1, and the stopping partition

is partition 3. This means that partitions 1 through 3 are accessed by this query, with no

pruning of partitions.

This example is simple but demonstrates the concept of partition pruning. When

you access the table by the partition key, you can drastically reduce the number of rows

Oracle needs to inspect and process. This has huge performance benefits for queries that

are able to prune partitions.

Chapter 12 Partitioning: Divide and Conquer

496

�Modifying the Partition Strategy
Before Oracle 18c, if you created a partitioned table using a specific strategy such as

hash to some other strategy, you would have to re-create the table using one of the

methods mentioned to migrate from a nonpartitioned to a partitioned table. Now to a

hash-partitioned table to a composite range-hash partitioned table, it is an ALTER table

statement that can be performed online or offline. Indexes that are a prefix for the new

strategy will be migrated to a local partitioned index or automatically turn into a global

index.

SQL> create table f_sales(

 sales_id number

, sales_amt number

 ,state_code varchar2(3)

 ,d_date_id number)

partition by hash(sales_id);

SQL> alter table f_sales modify

partition by range(d_date_id)

subpartition by hash(sales_id)

subpartitions 8

(partition p2016 values less than (20170101),

partition p2017 values less than (20180101))

ONLINE

UPDATE INDEXES;

�Summary
Oracle provides a partitioning feature that is critical for implementing large tables and

indexes. Partitioning is vital for building highly scalable and maintainable applications.

This feature works on the concept of logically creating an object (table or index) but

implementing the object as several separate database segments. A partitioned object

allows you to build, load, maintain, and query on a partition-by-partition basis.

Maintenance operations, such as deleting, archiving, updating, and inserting data are

manageable because you are working on only a small subset of the large logical table.

Chapter 12 Partitioning: Divide and Conquer

497

If you work in data warehouse environments or with large databases, you must be

highly knowledgeable about partitioning concepts. As a DBA, you are required to create

and maintain partitioned objects. You have to make recommendations about table

partitioning strategies and where to use local and global indexes. These decisions have

a huge impact on the usability and performance of the system. Many of the new features

for partitioning allow for online operations, such as merging of partitions and changing

from nonpartitioned or changing partitioning strategies. This allows for the object and

data to be available while working on these large tables and managing the partitioning

strategies as needed.

The book now moves on to utilities used to copy and move users, objects, and data

from one environment to another. Oracle’s Data Pump and external tables feature are

coming up.

Chapter 12 Partitioning: Divide and Conquer

499
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_13

CHAPTER 13

Data Pump
Data Pump is often described as an upgraded version of the old exp/imp utilities. It is

a bit like calling a modern smartphone a replacement for an old rotary-dial landline.

Although the old utilities are dependable and work well, Data Pump encompasses that

functionality while adding completely new dimensions to how data can be lifted and

moved between environments. This chapter will help explain how Data Pump makes

your current data transfer tasks easier and will also show how to move information and

solve problems in ways that you did not think were possible.

Data Pump enables you to efficiently back up, replicate, secure, and transform large

amounts of data and metadata. You can use Data Pump in a variety of ways:

•	 Perform point-in-time logical backups of the entire database or

subsets of data

•	 Replicate entire databases or subsets of data for testing or

development

•	 Quickly generate DDL required to re-create objects

•	 Upgrade a database by exporting from the old version and importing

into the new version

Sometimes, DBAs exert an old-fashion-like attachment to the exp/imp utilities because

the DBAs are familiar with the syntax of these utilities, and they get the job done quickly.

Even if those legacy utilities are easy to use, you should consider using Data Pump going

forward. Data Pump contains substantial functionality over the old exp/imp utilities:

•	 Performance with large data sets, allowing efficient export and

import gigabytes of data

•	 Interactive command-line utility, which lets you disconnect and then

later attach to active Data Pump jobs along with monitoring of job

progress

500

•	 Ability to export large amounts of data from a remote database and

import them directly into a local database without creating a dump file

•	 Ability to make on-the-fly changes to schemas, tablespaces, data files,

and storage settings from export to import

•	 Sophisticated filtering of objects and data

•	 Use to perform transportable tablespace export

•	 Security-controlled (via database) directory objects and data

directories

•	 Advanced features, such as compression and encryption

The focus of this chapter begins with the Data Pump architecture. There are

additional ways to move data between databases with cloning and other functionality

that will be discussed in later chapters. Basic export and import utilities should no longer

be in use. Having data being written to client machines are a high security risk, and the

older utilities of export and import will do this, instead of what Data Pump provides to

write the files to the server or a secured file share. Security measures need to be in place

to prevent data from being placed in a non-secured area.

�Data Pump Architecture
Data Pump consists of the following components:

•	 expdp (Data Pump export utility)

•	 impdp (Data Pump import utility)

•	 DBMS_DATAPUMP PL/SQL package (Data Pump application

programming interface [API])

•	 DBMS_METADATA PL/SQL package (Data Pump Metadata API)

The expdp and impdp utilities use the DBMS_DATAPUMP and DBMS_METADATA built-in PL/

SQL packages when exporting and importing data and metadata. The DBMS_DATAPUMP

package moves entire databases or subsets of data between database environments. The

DBMS_METADATA package exports and imports information about database objects.

Chapter 13 Data Pump

501

Note  You can call the DBMS_DATAPUMP and DBMS_METADATA packages
independently (outside expdp and impdp) from SQL*Plus. DBMS_DATAPUMP
can be used to monitor the Data Pump jobs. DBMS_METADATA is very useful for
retrieving DDL statements. See the Oracle Database PL/SQL Packages and Types
Reference Guide, which is available for download from the Technology Network
area of the Oracle web site (http://otn.oracle.com) for more details.

When you start a Data Pump export or import job, a master OS process is initiated

on the database server. This master process name has the format ora_dmNN_<SID>.

On Linux/Unix systems, you can view this process from the OS prompt using the ps

command:

$ ps -ef | grep -v grep | grep ora_dm

oracle 14602 1 4 08:59 ? 00:00:03 ora_dm00_o12c

Depending on the degree of parallelism and the work specified, a number of worker

processes are also started. If no parallelism is specified, then only one worker process is

started. The master process coordinates the work between master and worker processes.

The worker process names have the format ora_dwNN_<SID>.

Also, when a user starts an export or import job, a database status table starts the

job. This table exists only for the duration of the Data Pump job. The name of the status

table is dependent on what type of job you are running. The table is named with the

format SYS_<OPERATION>_<JOB_MODE>_NN, where OPERATION is either EXPORT or IMPORT.

JOB_MODE can be one of the following types:

•	 FULL

•	 SCHEMA

•	 TABLE

•	 TABLESPACE

•	 TRANSPORTABLE

For example, if you are exporting a schema, a table is created in your account with

the name SYS_EXPORT_SCHEMA_NN, where NN is a number that makes the table name

unique in the user’s schema. This status table contains information such as the objects’

exported/imported, start time, elapsed time, rows, and error count. The status table has

more than 80 columns.

Chapter 13 Data Pump

http://otn.oracle.com

502

Tip T he Data Pump status table is created in the default permanent tablespace
of the user performing the export/import. Therefore, if the user has no privileges
to create a table in the default tablespace, the Data Pump job will fail, with an
ORA-31633 error.

The status table is dropped by Data Pump upon successful completion of an export

or import job. If you use the KILL_JOB interactive command, the master table is also

dropped. If you stop a job with the STOP_JOB interactive command, the table isn’t

removed and is used in the event you restart the job.

If your job terminates abnormally, the master table is retained. You can delete the

status table if you do not plan to restart the job.

When Data Pump runs, it uses a database directory object to determine where to

write and read dump files and log files. Usually, you specify which directory object you

want Data Pump to use. If you do not specify a directory object, a default directory is

used. The default directory path is defined by a data directory object named DATA_PUMP_

DIR. This directory object is automatically created when the database is first created. On

Linux/Unix systems, this directory object maps to the ORACLE_HOME/rdbms/log directory.

A Data Pump export creates an export file and a log file. The export file contains the

objects being exported. The log file contains a record of the job activities. Figure 13-1

shows the architectural components related to a Data Pump export job.

Chapter 13 Data Pump

503

Similarly, Figure 13-2 displays the architectural components of a Data Pump import

job. The main difference between export and import is the direction in which the data

flow. Export writes data out of the database, and import brings information into the

database. Refer back to these diagrams as you work through Data Pump examples and

concepts throughout this chapter.

Figure 13-1.  Data Pump export job components

Chapter 13 Data Pump

504

For each Data Pump job, you must ensure that you have access to a directory object.

The basics of exporting and importing are described in the next few sections.

Tip  Because Data Pump internally uses PL/SQL to perform its work, there needs
to be some memory available in the shared pool to hold the PL/SQL packages.
If there is not enough room in the shared pool, Data Pump will throw an ORA-
04031: unable to allocate bytes of shared memory... error and
abort. If you receive this error, set the database parameter SHARED_POOL_SIZE to
at least 50M. See MOS note 396940.1 for further details.

Figure 13-2.  Data Pump import job components

Chapter 13 Data Pump

505

�Getting Started
Now that you have an understanding of the Data Pump architecture, next is a simple

example showing the required export setup steps for exporting a table, dropping the

table, and then reimporting the table back into the database. This will lay the foundation

for all other Data Pump tasks covered in this chapter.

�Taking an Export
A small amount of setup is required when you run a Data Pump export job. Here are

the steps:

	 1.	 Create a database directory object that points to an OS directory

that you want to write/read Data Pump files to/from.

	 2.	 Grant read and write privileges on the directory object to the

database user running the export.

	 3.	 From the OS prompt, run the expdp utility.

�Step 1. Creating a Database Directory Object

Before you run a Data Pump job, first create a database directory object that corresponds

to a physical location on disk. This location will be used to hold the export and log files

and should be a location where you know you have plenty of disk space to accommodate

the amount of data being exported.

Use the CREATE DIRECTORY command to accomplish this task. This example creates a

directory named dp_dir and specifies that it is to map to the /oradump physical location

on disk:

SQL> create directory dp_dir as '/oradump';

To view the details of the newly created directory, issue this query:

SQL> select owner, directory_name, directory_path from dba_directories;

Here is some sample output:

OWNER DIRECTORY_NAME DIRECTORY_PATH

---------- --------------- --------------------

SYS DP_DIR /oradump

Chapter 13 Data Pump

506

Keep in mind that the directory path specified has to physically exist on the database

server. Furthermore, the directory has to be one that the oracle OS user has read/write

access to. Finally, the user performing the Data Pump operations needs to be granted

read/write access to the directory object (see step 2).

If you do not specify the DIRECTORY parameter when exporting or importing, Data

Pump will attempt to use the default database directory object (as previously discussed,

this maps to ORACLE_HOME/rdbms/log). This is not recommend using the default

directory for two reasons:

•	 If you are exporting large amounts of data, it is better to have on disk

the preferred location, where you know you have enough room to

accommodate your disk space requirements. If you use the default

directory, you run the risk of inadvertently filling up the mount point

associated with ORACLE_HOME and then potentially hanging your

database.

•	 If you grant privileges to non-DBA users to take exports, you do not

want them creating large dump files in a location associated with

ORACLE_HOME or having access to the ORACLE_HOME directories.

Again, you do not want the mount point associated with ORACLE_HOME

to become full to the detriment of your database.

�Step 2. Granting Access to the Directory

You need to grant permissions on the database directory object to a user that wants to

use Data Pump. Use the GRANT statement to allocate the appropriate privileges. If you

want a user to be able to read from and write to the directory, you must grant security

access. This example grants access to the directory object to a user named MV_MAINT:

SQL> grant read, write on directory dp_dir to mv_maint;

All directory objects are owned by the SYS user. If you are using a user account

that has the DBA role granted to it, then you have the requisite read/write privileges

on any directory objects. Permissions can be granted for migrations, data refreshes by

developers in test, so granting permissions to a specific directory that might be a file

share that is not local on the database server is possible. This also secures the data to

the directories that only groups of users can have access to and limits access to other

schemas and files.

Chapter 13 Data Pump

507

SECURITY ISSUES WITH THE OLD EXP UTILITY

The idea behind creating directory objects and then granting specific I/O access to the physical

storage location is that you can more securely administer which users have the capability to

generate read and write activities when normally they would not have permissions. With the

legacy exp utility, any user that has access to the tool by default has access to write or read

a file to which the owner (usually oracle) of the Oracle binaries has access. It is conceivable

that a malicious non-oracle OS user can attempt to run the exp utility to purposely overwrite

a critical database file. For example, the following command can be run by any non-oracle

OS user with execute access to the exp utility:

$ exp heera/foo file=/oradata04/SCRKDV12/users01.dbf

However, the user must also have permissions on the file system in order to write the file.

Without the permissions on the file system the export will fail.

EXP-00028: failed to open /opt/oracle/x.dmp for write

Export file: expdat.dmp >

Using another user to run these utilities may allow an unauthorized access to pull data from the

database, but the commands will fail if the user does not have write capabilities to the file s

Important note here is not to use the database software directory ORACLE_HOME/bin as

a client utility. The execute permissions should be removed from ORACLE_HOME/bin from

others so that non-Oracle users will not execute any of the utilities on the database server.

The export utility also allowed users to export directly to the client machine and did not have to

be a configured file system with the required privileges. This was mentioned at the beginning

of the chapter and a main reason for not allowing these old utilities to be used.

To prevent such issues, with Oracle Data Pump, you first have to create a database object

directory that maps to a specific directory and then additionally assign read and write

privileges to that directory per user. Thus, Data Pump doesn’t have the security problems that

exist with the old exp utility.

Chapter 13 Data Pump

508

�Step 3. Taking an Export

When the directory object and grants are in place, you can use Data Pump to export

information from a database. The simple example in this section shows how to export a

table. Later sections in this chapter describe in detail the various ways in which you can

export data. The point here is to work through an example that will provide a foundation

for understanding more complex topics that follow.

As a non-SYS user, create a table, and populate it with some data:

SQL> create table inv(inv_id number);

SQL> insert into inv values (123);

Next, as a non-SYS user, export the table. This example uses the previously created

directory, named DP_DIR. Data Pump uses the directory path specified by the directory

object as the location on disk to which to write the dump file and log file:

$ expdp mv_maint/foo directory=dp_dir tables=inv dumpfile=exp.dmp

logfile=exp.log

The expdp utility creates a file named exp.dmp in the /oradump directory, containing

the information required to re-create the INV table and populate it with data as it was at

the time the export was taken. Additionally, a log file named exp.log is created in the /

oradump directory, containing logging information associated with this export job.

If you do not specify a dump file name, Data Pump creates a file named expdat.dmp.

If a file named expdat.dmp already exists in the directory, then Data Pump throws an

error. If you do not specify a log file name, then Data Pump creates one named export.

log. If a log file named export.log already exists, then Data Pump overwrites it.

Tip A lthough it is possible to execute Data Pump as the SYS user, I do not
recommend it for a couple of reasons. First, SYS is required to connect to the
database with the AS SYSDBA clause. This requires a Data Pump parameter file
with the USERID parameter and quotes around the associated connect string. This
is unwieldy. Second, most tables owned by SYS cannot be exported (there are a
few exceptions, such as AUD$). If you attempt to export a table owned by SYS,
Data Pump will throw an ORA-39166 error and indicate that the table doesn’t
exist. This is confusing.

Chapter 13 Data Pump

509

FULL export no longer exports the system schemas SYS, ORDSYS or MDSYS,
even if exporting using an SYS account.

�Importing a Table
One of the key reasons to export data is so that you can re-create database objects.

You may want to do this as part of a backup strategy or to replicate data to a different

database. Data Pump import uses an export dump file as its input and re-creates

database objects contained in the export file. The procedure for importing is similar to

exporting:

	 1.	 Create a database directory object that points to an OS directory

that you want to read/write Data Pump files from.

	 2.	 Grant read and write privileges on the directory object to the

database user running the export or import.

	 3.	 From the OS prompt, run the impdp command.

Steps 1 and 2 were covered in the prior section, “Taking an Export,” and therefore will

not be repeated here.

Before running the import job, drop the INV table that was created previously.

SQL> drop table inv purge;

Next, re-create the INV table from the export taken:

$ impdp mv_maint/foo directory=dp_dir dumpfile=exp.dmp logfile=imp.log

You should now have the INV table re-created and populated with data as it was at

the time of the export. Now is a good time to inspect again Figures 13-1 and 13-2. Make

sure you understand which files were created by expdb and which files were used by impdp.

�Using a Parameter File
Instead of typing commands on the command line, in many situations it is better to store

the commands in a file and then reference the file when executing Data Pump export or

import. Using parameter files makes tasks more repeatable and less prone to error. You

can place the commands in a file once and then reference that file multiple times.

Chapter 13 Data Pump

510

Additionally, some Data Pump commands (such as FLASHBACK_TIME) require the use

of quotation marks; in these situations, it is sometimes hard to predict how the OS will

interpret these. Whenever a command requires quotation marks, it is highly preferable

to use a parameter file.

To use a parameter file, first create an OS text file that contains the commands you

want to use to control the behavior of your job. This example uses the Linux/Unix vi

command to create a text file named exp.par:

$ vi exp.par

Now, place the following commands in the exp.par file:

userid=mv_maint/foo

directory=dp_dir

dumpfile=exp.dmp

logfile=exp.log

tables=inv

reuse_dumpfiles=y

Next, the export operation references the parameter file via the PARFILE command

line option:

$ expdp parfile=exp.par

Data Pump processes the parameters in the file as if they were typed on the

command line. If you find yourself repeatedly typing the same commands or using

commands that require quotation marks, or both, then consider using a parameter file to

increase your efficiency.

Tip  Do not confuse a Data Pump parameter file with the database initialization
parameter file. A Data Pump parameter file instructs Data Pump as to which user
to connect to the database as, which directory locations to read/write files to and
from, what objects to include in the operation, and so on. In contrast, a database
parameter file establishes characteristics of the instance upon database startup.

Chapter 13 Data Pump

511

�Exporting and Importing with Granularity
Recall from the section “Data Pump Architecture,” earlier in this chapter, that there are

several different modes in which you can invoke the export/import utilities. For instance,

you can instruct Data Pump to export/import in the following modes:

•	 Entire database

•	 Schema level

•	 Table level

•	 Tablespace level

•	 Transportable tablespace level

Before diving into the many features of Data Pump, it is useful to discuss these

modes and ensure you are aware of how each operates. This will further lay the

foundation for understanding concepts introduced later in the chapter.

�Exporting and Importing an Entire Database
When you export an entire database, this is sometimes referred to as a full export. In

this mode, the resultant export file contains everything required to make a copy of your

database. Unless restricted by filtering parameters (see the section “Filtering Data and

Objects,” later in this chapter), a full export consists of the following:

•	 All DDL required to re-create tablespaces, users, user tables, indexes,

constraints, triggers, sequences, stored PL/SQL, and so on.

•	 All table data (except the SYS user’s tables).

A full export is initiated with the FULL parameter set to Y and must be done with a

user that has DBA privileges or that has the DATAPUMP_EXP_FULL_DATABASE role granted

to it. Here is an example of taking a full export of a database:

$ expdp mv_maint/foo directory=dp_dir dumpfile=full.dmp logfile=full.log full=y

As the export is executing, you should see this text in the output, indicating that a

full-level export is taking place:

Starting "MV_MAINT"."SYS_EXPORT_FULL_01":

Chapter 13 Data Pump

512

Be aware that a full export doesn’t export everything in the database:

•	 The contents of the SYS schema are not exported (there are a few

exceptions to this, such as the AUD$ table). Consider what would

happen if you could export the contents of the SYS schema from one

database and import them into another. The SYS schema contents

would overwrite internal data dictionary tables/views and thus

corrupt the database. Therefore, Data Pump never exports objects

owned by SYS.

•	 Index data are not exported, but rather, the index DDL that contains

the SQL required to re-create the indexes during a subsequent

import.

Once you have a full export, you can use its contents to either re-create objects in the

original database (e.g., in the event a table is accidentally dropped) or replicate the entire

database or subsets of users/tables to a different database. This next example assumes

that the dump file has been copied to a different database server and is now used to

import all objects into the destination database:

$ impdp mv_maint/foo directory=dp_dir dumpfile=full.dmp logfile=fullimp.log

full=y

Tip T o initiate a full database import, you must have DBA privileges or be
assigned the DATAPUMP_IMP_FULL_DATABASE role.

In the output displayed on your screen, you should see an indication that a full

import is transpiring:

Starting "MV_MAINT"."SYS_IMPORT_FULL_01":

Running a full-import database job has some implications to be aware of:

•	 The import job will first attempt to re-create any tablespaces. If

a tablespace already exists, or if the directory path a tablespace

depends on does not exist, then the tablespace creation statements

will fail, and the import job will move on to the next task.

Chapter 13 Data Pump

513

•	 Next, the import job will alter the SYS and SYSTEM user accounts

to contain the same password that was exported. Therefore, after

you import from a production system, it is prudent to change the

passwords for SYS and SYSTEM, to reflect the new environment.

•	 Additionally, the import job will then attempt to create any users

in the export file. If a user already exists, an error is thrown, and the

import job moves on to the next task.

•	 Users will be imported with the same passwords that were taken from

the original database. Depending on your security standards, you

may want to change the passwords.

•	 Tables will be re-created. If a table already exists and contains data,

you must specify how you want the import job to handle this. You can

have the import job either skip, append, replace, or truncate the table

(see the section “Importing When Objects Already Exist” later in this

chapter).

•	 After each table is created and populated, associated indexes are

created.

•	 The import job will also try to import statistics if available.

Furthermore, object grants are instantiated.

If everything runs well, the end result will be a database that is logically identical to

the source database in terms of tablespaces, users, objects, and so on.

�Schema Level
When you initiate an export, unless otherwise specified, Data Pump starts a schema-

level export for the user running the export job. User-level exports are frequently used

to copy a schema or set of schemas from one environment to another. The following

command starts a schema-level export for the MV_MAINT user:

$ expdp mv_maint/foo directory=dp_dir dumpfile=mv_maint.dmp

logfile=mv_maint.log

Chapter 13 Data Pump

514

In the output displayed on the screen, you should see some text indicating that a

schema-level export has been initiated:

Starting "MV_MAINT"."SYS_EXPORT_SCHEMA_01"...

You can also initiate a schema-level export for users other than the one running the

export job with the SCHEMAS parameter. The following command shows a schema-level

export for multiple users:

$ expdp mv_maint/foo directory=dp_dir dumpfile=user.dmp schemas=heera,chaya

You can initiate a schema-level import by referencing a dump file that was taken with

a schema-level export:

$ impdp mv_maint/foo directory=dp_dir dumpfile=user.dmp

When you initiate a schema-level import, there are some details to be aware of:

•	 No tablespaces are included in a schema-level export.

•	 The import job attempts to re-create any users in the dump file. If a

user already exists, an error is thrown, and the import job continues.

•	 The import job will reset the users’ passwords, based on the password

that was exported.

•	 Tables owned by the users will be imported and populated. If a table

already exists, you must instruct Data Pump on how to handle this

with the TABLE_EXISTS_ACTION parameter.

You can also initiate a schema-level import when using a full-export dump file. To do

this, specify which schemas you want extracted from the full export:

$ impdp mv_maint/foo directory=dp_dir dumpfile=full.dmp schemas=heera,chaya

�Table Level
You can instruct Data Pump to operate on specific tables via the TABLES parameter. For

example, say you want to export

$ expdp mv_maint/foo directory=dp_dir dumpfile=tab.dmp \

tables=heera.inv,heera.inv_items

Chapter 13 Data Pump

515

You should see some text in the output indicating that a table-level export is

transpiring:

Starting "MV_MAINT"."SYS_EXPORT_TABLE_01...

Similarly, you can initiate a table-level import by specifying a table-level-created

dump file:

$ impdp mv_maint/foo directory=dp_dir dumpfile=tab.dmp

A table-level import only attempts to import the tables and specified data. If a table

already exists, an error is thrown, and the import job continues. If a table already exists

and contains data, you must specify how you want the export job to handle this. You can

have the import job either skip, append, replace, or truncate the table with the TABLE_

EXISTS_ACTION parameter.

You can also initiate a table-level import when using a full-export dump file or a

schema-level export. To do this, specify which tables you want extracted from the full- or

schema-level export:

$ impdp mv_maint/foo directory=dp_dir dumpfile=full.dmp tables=heera.inv

�Tablespace Level
A tablespace-level export/import operates on objects contained within specific

tablespaces. This example exports all objects contained in the USERS tablespace:

$ expdp mv_maint/foo directory=dp_dir dumpfile=tbsp.dmp tablespaces=users

The text displayed in the output should indicate that a tablespace-level export is

occurring:

Starting "MV_MAINT"."SYS_EXPORT_TABLESPACE_01"...

You can initiate a tablespace-level import by specifying an export file that was

created with a tablespace-level export:

$ impdp mv_maint/foo directory=dp_dir dumpfile=tbsp.dmp

You can also initiate a tablespace-level import by using a full export, but specifying

the TABLESPACES parameter:

$ impdp mv_maint/foo directory=dp_dir dumpfile=full.dmp tablespaces=users

Chapter 13 Data Pump

516

A tablespace-level import will attempt to create any tables and indexes within the

tablespace. The import doesn’t try to re-create the tablespaces themselves. Since a PDB

database will have their own tablespaces, this might be an easy level to use for PDB exports.

Note T here is also a transportable tablespace mode export. See the section
“Copying Data Files” later in this chapter.

�Transferring Data
One of the main uses of Data Pump is the copying of data from one database to another.

Often, source and destination databases are located in data centers thousands of miles

apart. Data Pump offers several powerful features for efficiently copying data:

•	 Network link

•	 Copying data files (transportable tablespaces)

•	 External tables (see Chapter 14)

Using a network link allows you to take an export and import it into the destination

database without having to create a dump file. This is a very efficient way of moving data.

Oracle also provides the transportable tablespace feature, which lets you copy the

data files from a source database to the destination and then use Data Pump to transfer

the associated metadata. These two techniques are described in the following sections.

Note  See Chapter 14 for a discussion of using external tables to transfer data.

�Exporting and Importing Directly Across the Network
Suppose you have two database environments—a production database running on a

Solaris box and a test database running on a Linux server. Your boss comes to you with

these requirements:

•	 Make a copy of the production database on the Solaris box.

•	 Import the copy into the testing database on the Linux server.

•	 Change the names of the schemas when importing so as to meet the

testing database standards for names.

Chapter 13 Data Pump

517

First, consider the steps required to transfer data from one database to another, using

the old exp/imp utilities. The steps would look something like this:

	 1.	 Export the production database (which creates a dump file on the

database server).

	 2.	 Copy the dump file to the testing database server.

	 3.	 Import the dump file into the testing database.

You can perform those same steps using Data Pump. However, Data Pump provides

a much more efficient and transparent method for executing those steps. If you have

direct network connectivity between the production and testing database servers, you

can take an export and directly import it into your target database without having to

create or copy any dump files. Furthermore, you can rename schemas on the fly as you

perform the import. Additionally, it does not matter if the source database is running on

an OS different from that of the target database.

An example will help illustrate how this works. For this example, the production

database users are STAR2, CIA_APP, and CIA_SEL. You want to move these users into a

testing database and rename them STAR_JUL, CIA_APP_JUL, and CIA_SEL_JUL. This task

requires the following steps:

	 1.	 Create users in the test database to be imported into. Here is a

sample script that creates the users in the testing database:

define star_user=star_jul

define star_user_pwd=star_jul_pwd

define cia_app_user=cia_app_jul

define cia_app_user_pwd=cia_app_jul_pwd

define cia_sel_user=cia_sel_jul

define cia_sel_user_pwd=cia_sel_jul_pwd

--

create user &&star_user identified by &&star_user_pwd;

grant connect,resource to &&star_user;

alter user &&star_user default tablespace dim_data;

--

create user &&cia_app_user identified by &&cia_app_user_pwd;

grant connect,resource to &&cia_app_user;

alter user &&cia_app_user default tablespace cia_data;

Chapter 13 Data Pump

518

--

create user &&cia_sel_user identified by &&cia_app_user_pwd;

grant connect,resource to &&cia_app_user;

alter user &&cia_sel_user default tablespace cia_data;

	 2.	 In your testing database, create a database link that points to your

production database. The remote user referenced in the CREATE

DATABASE LINK statement must have the DBA role granted to it in the

production database. Here is a sample CREATE DATABASE LINK script:

create database link dk

connect to darl identified by foobar

using 'dwdb1:1522/dwrep1';

	 3.	 In your testing database, create a directory object that points to

the location where you want your log file to go:

SQL> create or replace directory engdev as '/orahome/oracle/ddl/engdev';

	 4.	 Run the import command on the testing box. This command

references the remote database via the NETWORK_LINK parameter.

The command also instructs Data Pump to map the production

database user names to the newly created users in the testing

database.

$ impdp darl/engdev directory=engdev network_link=dk \

schemas='STAR2,CIA_APP,CIA_SEL' \

remap_schema=STAR2:STAR_JUL,CIA_APP:CIA_APP_JUL,CIA_SEL:CIA_SEL_JUL

This technique allows you to move large amounts of data between disparate

databases without having to create or copy any dump files or data files. You can also

rename schemas on the fly via the REMAP_SCHEMA parameter. This is a very powerful Data

Pump feature that lets you transfer data quickly and efficiently.

Tip  When replicating entire databases, also consider using the RMAN duplicate
database functionality.

Chapter 13 Data Pump

519

DATABASE LINK VS. NETWORK_LINK

Do not confuse exporting while connected to a remote database over a database link with

exporting using the NETWORK_LINK parameter. When exporting while connected to a remote

database via a database link, the objects being exported exist in the remote database, and

the dump file and log file are created on the remote server in the directory specified by the

DIRECTORY parameter. For instance, the following command exports objects in the remote

database and creates files on the remote server:

$ expdp mv_maint/foo@shrek2 directory=dp_dir dumpfile=sales.dmp

In contrast, when you export using the NETWORK_LINK parameter, you are creating dump files

and log files locally, and the database objects being exported exist in a remote database; for

example,

$ expdp mv_maint/foo network_link=shrek2 directory=dp_dir dumpfile=sales.dmp

�Copying Data Files
Oracle provides a mechanism for copying data files from one database to another, in

conjunction with using Data Pump to transport the associated metadata. This is known

as the transportable tablespace feature. The amount of time this task requires depends

on how long it takes you to copy the data files to the destination server. This technique is

appropriate for moving data in DSS and data warehouse environments.

Tip T ransporting tablespaces can also be used (in conjunction with the RMAN
CONVERT TABLESPACE command) to move tablespaces to a destination server
that has a platform different from that of the host.

Follow these steps to transport tablespaces:

	 1.	 Ensure that the tablespace is self-contained. These are some

common violations of the self-contained rule:

•	 An index in one tablespace cannot point to a table in another

tablespace that is not in the set of tablespaces being transported.

Chapter 13 Data Pump

520

•	 A foreign key constraint is defined on a table in a tablespace that

references a primary key constraint on a table in a tablespace that

isn’t in the set of tablespaces being transported.

Run the following check to see if the set of tablespaces being transported

violates any of the self-contained rules:

SQL> exec dbms_tts.transport_set_check('INV_DATA,INV_INDEX', TRUE);

Now, see if Oracle detected any violations:

SQL> select * from transport_set_violations;

If you do not have any violations, you should see this:

no rows selected

If you do have violations, such as an index that is built on a table

that exists in a tablespace not being transported, then you will

have to rebuild the index in a tablespace that is being transported.

	 2.	 Make the tablespaces being transported read-only:

SQL> alter tablespace inv_data read only;

SQL> alter tablespace inv_index read only;

	 3.	 Use Data Pump to export the metadata for the tablespaces being

transported:

$ expdp mv_maint/foo directory=dp_dir dumpfile=trans.dmp \

transport_tablespaces=INV_DATA,INV_INDEX

	 4.	 Copy the Data Pump export dump file to the destination server.

	 5.	 Copy the data file(s) to the destination database. Place the files in

the directory where you want them in the destination database

server. The file name and directory path must match the import

command used in the next step.

	 6.	 Import the metadata into the destination database. Use the

following parameter file to import the metadata for the data files

being transported:

Chapter 13 Data Pump

521

userid=mv_maint/foo

directory=dp_dir

dumpfile=trans.dmp

transport_datafiles=/ora01/dbfile/rcat/inv_data01.dbf,

/ora01/dbfile/rcat/inv_index01.dbf

If everything goes well, you should see some output indicating success:

Job "MV_MAINT"."SYS_IMPORT_TRANSPORTABLE_01" successfully completed...

If the data files that are being transported have a block size different from that of

the destination database, then you must modify your initialization file (or use an ALTER

SYSTEM command) and add a buffer pool that contains the block size of the source

database. For example, to add a 16KB buffer cache, place this in the initialization file:

db_16k_cache_size=200M

You can check a tablespace’s block size via this query:

SQL> select tablespace_name, block_size from dba_tablespaces;

The transportable tablespace mechanism allows you to quickly move data files

between databases, even if the databases use different block sizes or have different

endian formats. This section does not discuss all the details involved with transportable

tablespaces; the focus of this chapter is to show how to use Data Pump to transport data.

See the Oracle Database Administrator’s Guide, which can be freely downloaded from

the Technology Network area of the Oracle Web site (http://otn.oracle.com), for

complete details on transportable tablespaces.

Note T o generate transportable tablespaces, you must use the Oracle Enterprise
Edition. You can use other editions of Oracle to import transportable tablespaces.

�Features for Manipulating Storage
Data Pump contains many flexible features for manipulating tablespaces and data

files when exporting and importing. The following sections show useful Data Pump

techniques when working with these important database objects.

Chapter 13 Data Pump

http://otn.oracle.com

522

�Exporting Tablespace Metadata
Sometimes, you may be required to replicate an environment—say, replicating a

production environment into a testing environment. One of the first tasks is to replicate

the tablespaces. To this end, you can use Data Pump to pull out just the DDL required to

re-create the tablespaces for an environment:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \

full=y include=tablespace

The FULL parameter instructs Data Pump to export everything in the database.

However, when used with INCLUDE, Data Pump exports only the objects specified with

that command. In this combination, only metadata regarding tablespaces are exported;

no data within the data files are included with the export. You could add the parameter

and value of CONTENT=METADATA_ONLY to the INCLUDE command, but this would be

redundant.

Now, you can use the SQLFILE parameter to view the DDL associated with the

tablespaces that were exported:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp sqlfile=tbsp.sql

When you use the SQLFILE parameter, nothing is imported. In this example the

prior command only creates a file named tbsp.sql, containing SQL statements

pertaining to tablespaces. You can modify the DDL and run it in the destination database

environment; or, if nothing needs to change, you can directly use the dump file by

importing tablespaces into the destination database.

�Specifying Different Data File Paths and Names
As previously discussed, you can use the combination of the FULL and INCLUDE

parameters to export only tablespace metadata information:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \

full=y include=tablespace

What happens if you want to use the dump file to create tablespaces on a separate

database server that has different directory structures? Data Pump allows you to change

the data file directory paths and file names in the import step with the REMAP_DATAFILE

parameter.

Chapter 13 Data Pump

523

For example, say the source data files existed on a mount point named /ora03, but

on the database being imported to, the mount points are named with /ora01. Here is a

parameter file that specifies that only tablespaces beginning with the string INV should

be imported and that their corresponding data files names be changed to reflect the new

environment:

userid=mv_maint/foo

directory=dp_dir

dumpfile=inv.dmp

full=y

include=tablespace:"like 'INV%'"

remap_datafile="'/ora03/dbfile/O18C/inv_data01.dbf':'/ora01/dbfile/O18C/

tb1.dbf'"

remap_datafile="'/ora03/dbfile/O18C/inv_index01.dbf':'/ora01/dbfile/O18C/

tb2.dbf'"

When Data Pump creates the tablespaces, for any paths that match the first part of

the string (to the left of the colon [:]), the string is replaced with the text in the next part

of the string (to the right of the colon).

Tip  When working with parameters that require both single and double quotation
marks, you will get predictable behavior when using a parameter file. In contrast, if
you were to try to enter in the various required quotation marks on the command
line, the OS may interpret and pass to Data Pump something other than what you
were expecting.

�Importing into a Tablespace Different from the Original
You may occasionally be required to export a table and then import it into a different

user and a different tablespace. The source database could be different from the

destination database, or you could simply be trying to move data between two users

within the same database. You can easily handle this requirement with the REMAP_SCHEMA

and REMAP_TABLESPACE parameters.

Chapter 13 Data Pump

524

This example remaps the user as well as the tablespace. The original user and

tablespaces are HEERA and INV_DATA. This command imports the INV table into the CHAYA

user and the DIM_DATA tablespace:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp

remap_schema=HEERA:CHAYA \

remap_tablespace=INV_DATA:DIM_DATA tables=heera.inv

The REMAP_TABLESPACE feature does not re-create tablespaces. It only instructs Data

Pump to place objects in tablespaces different from those they were exported from.

When importing, if the tablespace that you are placing the object in does not exist, Data

Pump throws an error.

�Changing the Size of Data Files
You can change the size of the data files when importing by using the TRANSFORM

parameter with the PCTSPACE option. Say you have created an export of just the

tablespace metadata:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp full=y

include=tablespace

Now, you want to create the tablespaces that contain the string DATA in the

tablespace name in a development database, but you do not have enough disk space to

create the tablespaces as they were in the source database. In this scenario, you can use

the TRANSFORM parameter to specify that the tablespaces be created as a percentage of the

original size.

For instance, if you want the tablespaces to be created at 20 percent of the original

size, issue the following command:

userid=mv_maint/foo

directory=dp_dir

dumpfile=inv.dmp

full=y

include=tablespace:"like '%DATA%'"

transform=pctspace:20

Chapter 13 Data Pump

525

The tablespaces are created with data files 20 percent of their original size. The

extent allocation sizes are also 20 percent of their original definition. This is important

because Data Pump does not check to see if the storage attributes meet the minimum

size restrictions for data files. This means that if the calculated smaller size violates

an Oracle minimum size (e.g., five blocks for the uniform extent size), an error will be

thrown during the import.

This feature is useful when used to export production data and then import it into

a smaller database. In these scenarios, you may be filtering out some of the production

data via the SAMPLE parameter or QUERY parameters (see the section “Filtering Data and

Objects” later in this chapter).

�Changing Segment and Storage Attributes
When importing, you can alter the storage attributes of a table by using the TRANSFORM

parameter. The general syntax for this parameter is this:

TRANSFORM=transform_name:value[:object_type]

When you use SEGMENT_ATTRIBUTES:N for the transformation name, you can remove

the following segment attributes during an import:

•	 Physical attributes

•	 Storage attributes

•	 Tablespaces

•	 Logging

You may require this feature when you are importing into a development

environment and do not want the tables to come in with all the storage attributes as they

were in the production database. For example, in development you may just have one

tablespace in which you store all your tables and indexes, whereas in production, you

spread the tables and indexes out in multiple tablespaces.

Here is an example that removes the segment attributes:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \

transform=segment_attributes:n

Chapter 13 Data Pump

526

You can remove just the storage clause by using STORAGE:N:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \

transform=storage:n

�Filtering Data and Objects
Data Pump has a vast array of mechanisms for filtering data and metadata. You can influence

what is excluded or included in a Data Pump export or import in the following ways:

•	 Use the QUERY parameter to export or import subsets of data.

•	 Use the SAMPLE parameter to export a percentage of the rows in a

table.

•	 Use the CONTENT parameter to exclude or include data and metadata.

•	 Use the EXCLUDE parameter to specifically name items to be excluded.

•	 Use the INCLUDE parameter to name the items to be included (thereby

excluding other nondependent items not included in the list).

•	 Use parameters such as SCHEMAS to specify that you only want a

subset of the database’s objects (those that belong to the specified

user or users).

Examples of each of these techniques are described in the following sections.

Note  You cannot use EXCLUDE and INCLUDE at the same time. These
parameters are mutually exclusive.

�Specifying a Query
You can use the QUERY parameter to instruct Data Pump to write to a dump file only

rows that meet a certain criterion. You may want to do this if you’re re-creating a test

environment and only need subsets of the data. Keep in mind that this technique is

unaware of any foreign key constraints that may be in place, so you can’t blindly restrict

the data sets without considering parent–child relationships.

Chapter 13 Data Pump

527

The QUERY parameter has this general syntax for including a query:

QUERY = [schema.][table_name:] query_clause

The query clause can be any valid SQL clause. The query must be enclosed by

either double or single quotation marks. I recommend using double quotation marks

because you may need to have single quotation marks embedded in the query to handle

VARCHAR2 data. Also, you should use a parameter file so that there is no confusion about

how the OS interprets the quotation marks.

This example uses a parameter file and limits the rows exported for two tables. Here

is the parameter file used when exporting:

userid=mv_maint/foo

directory=dp_dir

dumpfile=inv.dmp

tables=inv,reg

query=inv:"WHERE inv_desc='Book'"

query=reg:"WHERE reg_id <=20"

Say you place the previous lines of code in a file named inv.par. The export job

references the parameter file as shown:

$ expdp parfile=inv.par

The resulting dump file only contains rows filtered by the QUERY parameters. Again,

be mindful of any parent–child relationships, and ensure that what gets exported will not

violate any constraints on the import.

You can also specify a query when importing data. Here is a parameter file that limits

the rows imported into the INV table, based on the INV_ID column:

userid=mv_maint/foo

directory=dp_dir

dumpfile=inv.dmp

tables=inv,reg

query=inv:"WHERE inv_id > 10"

Chapter 13 Data Pump

528

This text is placed in a file named inv2.par and is referenced during the import as

follows:

$ impdp parfile=inv2.par

All the rows from the REG table are imported. Only the rows in the INV table that have

an INV_ID greater than 10 are imported.

�Exporting a Percentage of the Data
When exporting, the SAMPLE parameter instructs Data Pump to retrieve a certain

percentage of rows, based on a number you provide. Data Pump does not keep track of

parent–child relationships when exporting. Therefore, this approach does not work well

when you have tables linked via foreign key constraints and you are trying to select a

percentage of rows randomly.

Here is the general syntax for this parameter:

SAMPLE=[[schema_name.]table_name:]sample_percent

For example, if you want to export 10 percent of the data in a table, do so as follows:

$ expdp mv_maint/foo directory=dp_dir tables=inv sample=10 dumpfile=inv.dmp

This next example exports two tables, but only 30 percent of the REG table’s data:

$ expdp mv_maint/foo directory=dp_dir tables=inv,reg sample=reg:30

dumpfile=inv.dmp

Note T he SAMPLE parameter is only valid for exports.

�Excluding Objects from the Export File
For export the EXCLUDE parameter instructs Data Pump not to export specified objects

(whereas the INCLUDE parameter instructs Data Pump to include only specific objects in

the export file). The EXCLUDE parameter has this general syntax:

EXCLUDE=object_type[:name_clause] [, ...]

Chapter 13 Data Pump

529

The OBJECT_TYPE is a database object, such as TABLE or INDEX. To see which object

types can be filtered, view the OBJECT_PATH column of DATABASE_EXPORT_OBJECTS,

SCHEMA_EXPORT_OBJECTS, or TABLE_EXPORT_OBJECTS. For example, if you want to view

what schema-level objects can be filtered, run this query:

SELECT

 object_path

FROM schema_export_objects

WHERE object_path NOT LIKE '%/%';

Here is a snippet of the output:

OBJECT_PATH

STATISTICS

SYNONYM

SYSTEM_GRANT

TABLE

TABLESPACE_QUOTA

TRIGGER

The EXCLUDE parameterinstance, for example, says that you are exporting a table but

want to exclude the indexes and grants:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp tables=inv

exclude=index,grant

You can filter at a more granular level by using NAME_CLAUSE. The NAME_CLAUSE

option of EXCLUDE allows you to specify an SQL filter. To exclude indexes that have names

that start with the string “INV,” you use the following command:

exclude=index:"LIKE 'INV%'"

The previous line requires that you use quotation marks; in these scenarios,

I recommend that you use a parameter file. Here is a parameter file that contains an

EXCLUDE clause:

userid=mv_maint/foo

directory=dp_dir

dumpfile=inv.dmp

Chapter 13 Data Pump

530

tables=inv

exclude=index:"LIKE 'INV%'"

A few aspects of the EXCLUDE clause may seem counterintuitive. For example,

consider the following export parameter file:

userid=mv_maint/foo

directory=dp_dir

dumpfile=sch.dmp

exclude=schema:"='HEERA'"

If you attempt to exclude a user in this manner, an error is thrown. This is because

the default mode of export is SCHEMA level, and Data Pump cannot exclude and include

a schema at the same time. If you want to exclude a user from an export file, specify the

FULL mode, and exclude the user:

userid=mv_maint/foo

directory=dp_dir

dumpfile=sch.dmp

exclude=schema:"='HEERA'"

full=y

�Excluding Statistics
By default, when you export a table object, any statistics are also exported. You can

prevent statistics from being imported via the EXCLUDE parameter. Here is an example:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \

tables=inv exclude=statistics

When importing, if you attempt to exclude statistics from a dump file that did not

originally include the statistics, then you receive this error:

ORA-39168: Object path STATISTICS was not found.

You also receive this error if the objects in the exported dump file never had

statistics generated for them. If moving to a different environment, it is recommended to

regenerate statistics after the import, based on the new home for the data.

Chapter 13 Data Pump

531

�Including Only Specific Objects in an Export File
Use the INCLUDE parameter to include only certain database objects in the export file.

The following example exports only the procedures and functions that a user owns:

$ expdp mv_maint/foo dumpfile=proc.dmp directory=dp_dir

include=procedure,function

The proc.dmp file that is created contains only the DDL required to re-create any

procedures and functions the user owns.

When using INCLUDE, you can also specify that only specific PL/SQL objects should

be exported:

$ expdp mv_maint/foo directory=dp_dir dumpfile=ss.dmp \

include=function:\"=\'IS_DATE\'\"

Use a parameter file to be able to capture the specifics for PL/SQL exporting. The

following example shows the contents of a parameter file that exports specific objects:

directory=dp_dir

dumpfile=ss.dmp

include=function:"='ISDATE'",procedure:"='DEPTREE_FILL'"

If you specify an object that does not exist, Data Pump throws an error but continues

with the export operation:

ORA-39168: Object path FUNCTION was not found.

�Exporting Table, Index, Constraint, and Trigger DDL
Suppose you want to export the DDL associated with tables, indexes, constraints,

and triggers in your database. To do this, use the FULL export mode, specify

CONTENT=METADATA_ONLY, and only include tables:

$ expdp mv_maint/foo directory=dp_dir dumpfile=ddl.dmp \

content=metadata_only full=y include=table

When you export an object, Data Pump also exports any dependent objects. So,

when you export a table, you also get indexes, constraints, and triggers associated with

the table.

Chapter 13 Data Pump

532

�Excluding Objects from Import
In general, you can use the same techniques used to filter objects in exports to exclude

objects from being imported. Use the EXCLUDE parameter to exclude objects from being

imported. For example, to exclude triggers and procedures from being imported, use this

command:

$ impdp mv_maint/foo dumpfile=inv.dmp directory=dp_dir

exclude=TRIGGER,PROCEDURE

You can further refine what is excluded by adding an SQL clause. For example,

say you do not want to import triggers that begin with the letter B. Here is what the

parameter file looks like:

userid=mv_maint/foo

directory=dp_dir

dumpfile=inv.dmp

schemas=HEERA

exclude=trigger:"like 'B%'"

�Including Objects in Import
You can use the INCLUDE parameter to reduce what is imported. Suppose you have a

schema from which you want to import tables that begin with the letter A. Here is the

parameter file:

userid=mv_maint/foo

directory=dp_dir

dumpfile=inv.dmp

schemas=HEERA

include=table:"like 'A%'"

If you place the previous text in a file named h.par, then the parameter file can be

invoked as follows:

$ impdp parfile=h.par

In this example the HEERA schema must already exist. Only tables that start with the

letter A are imported.

Chapter 13 Data Pump

533

�Common Data Pump Tasks
The following sections describe common features you can use with Data Pump. Many

of these features are standard with Data Pump, such as creating a consistent export

and taking action when imported objects already exist in the database. Other features,

such as compression and encryption, require the Enterprise Edition of Oracle or an

extra license, or both. I will point out these requirements (if relevant) for the Data Pump

element being covered.

�Estimating the Size of Export Jobs
If you are about to export a large amount of data, you can estimate the size of the file that

Data Pump creates before you run the export. You may want to do this because you are

concerned about the amount of space an export job needs.

To estimate the size, use the ESTIMATE_ONLY parameter. This example estimates the

size of the export file for an entire database:

$ expdp mv_maint/foo estimate_only=y full=y logfile=n

Here is a snippet of the output:

Estimate in progress using BLOCKS method...

Total estimation using BLOCKS method: 6.75 GB

Similarly, you can specify a schema name to get an estimate of the size required to

export a user:

$ expdp mv_maint/foo estimate_only=y schemas=star2 logfile=n

Here is an example of estimating the size required for two tables:

$ expdp mv_maint/foo estimate_only=y

tables=star2.f_configs,star2.f_installations \

logfile=n

Chapter 13 Data Pump

534

�Listing the Contents of Dump Files
Data Pump has a very robust method of creating a file that contains all the SQL that

is executed when an import job runs. Data Pump uses the DBMS_METADATA package to

create the DDL that you can use to re-create objects in the Data Pump dump file.

Use the SQLFILE option of Data Pump import to list the contents of a Data Pump

export file. This example creates a file named expfull.sql, containing the SQL

statements that the import process calls (the file is placed in the directory defined by the

DPUMP_DIR2 directory object):

$ impdp hr/hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp \

SQLFILE=dpump_dir2:expfull.sql

If you do not specify a separate directory (such as dpump_dir2, in the previous

example), then the SQL file is written to the location specified in the DIRECTORY option.

Tip  You must run the previous command as a user with DBA privileges or the
schema that performed the Data Pump export. Otherwise, you get an empty SQL
file without the expected SQL statements in it.

When you use the SQLFILE option with an import, the impdp process does not import

any data; it only creates a file that contains the SQL commands that would be run by the

import process. It is sometimes handy to generate an SQL file for the following reasons:

•	 Preview and verify the SQL statements before running the import.

•	 Run the SQL manually to pre-create database objects.

•	 Capture the SQL that would be required to re-create database objects

(users, tables, index, and so on).

In regard to the last bulleted item, sometimes what is checked into the source

code control repository does not match what is really been applied to the production

database. This procedure can be handy for troubleshooting or documenting the state of

the database at a point in time.

Chapter 13 Data Pump

535

�Cloning a User
Suppose you need to move a user’s objects and data to a new database. As part of the

migration, you want to rename the user. First, create a schema-level export file that

contains the user you want to clone. In this example the user name is INV:

$ expdp mv_maint/foo directory=dp_dir schemas=inv dumpfile=inv.dmp

Now, you can use Data Pump import to clone the user. If you want to move the user

to a different database, copy the dump file to the remote database, and use the REMAP_

SCHEMA parameter to create a copy of a user. In this example the INV user is cloned to the

INV_DW user:

$ impdp mv_maint/foo directory=dp_dir remap_schema=inv:inv_dw dumpfile=inv.dmp

This command copies all structures and data in the INV user to the INV_DW user. The

resulting INV_DW user is identical, in terms of objects, to the INV user. The duplicated

schema also contains the same password as the schema from which it was copied.

If you just want to duplicate the metadata from one schema to another, use the

CONTENT parameter with the METADATA_ONLY option:

$ impdp mv_maint/foo directory=dp_dir remap_schema=inv:inv_dw \

content=metadata_only dumpfile=inv.dmp

The REMAP_SCHEMA parameter provides an efficient way to duplicate a schema, with

or without the data. During a schema duplication operation, if you want to change the

tablespace in which the objects reside, also use the REMAP_TABLESPACE parameter. This

allows you to duplicate a schema and also place the objects in a tablespace different

from that of the source objects.

You can also duplicate a user from one database to another without first creating a

dump file. To do this, use the NETWORK_LINK parameter. See the section “Exporting and

Importing Directly Across the Network,” earlier in this chapter, for details on copying

data directly from one database to another.

�Creating a Consistent Export
A consistent export means that all data in the export file are consistent as of a time or

an SCN. When you are exporting an active database with many parent–child tables, you

should ensure that you get a consistent snapshot of the data.

Chapter 13 Data Pump

536

You create a consistent export by using either the FLASHBACK_SCN or FLASHBACK_TIME

parameter. This example uses the FLASHBACK_SCN parameter to take an export. To

determine the current value of the SCN of your data set, issue this query:

SQL> select current_scn from v$database;

Here is some typical output:

 CURRENT_SCN

 5715397

The following command takes a consistent full export of the database, using the

FLASHBACK_SCN parameter:

$ expdp mv_maint/foo directory=dp_dir full=y flashback_scn=5715397 \

dumpfile=full.dmp

The previous export command ensures that all data exported are consistent with any

transactions committed in the database as of the specified SCN.

When you use the FLASHBACK_SCN parameter, Data Pump ensures that the data in

the export file are consistent as of the specified SCN. This means that any transactions

committed after the specified SCN are not included in the export file.

Note  If you use the NETWORK_LINK parameter in conjunction with FLASHBACK_
SCN, then the export is taken with the SCN consistent with the database referenced
in the database link.

You can also use FLASHBACK_TIME to specify that the export file should be created

with consistent committed transactions as of a specified time. When using FLASHBACK_

TIME, Oracle determines the SCN that most closely matches the time specified and uses

that to produce an export consistent with that SCN. The syntax for using FLASHBACK_TIME

is as follows:

FLASHBACK_TIME="TO_TIMESTAMP{<value>}"

For some OSs, double quotation marks appearing directly on the command line

must be escaped by a backslash (\) because the OS treats them as special characters.

Chapter 13 Data Pump

537

For this reason, it is much more straightforward to use a parameter file. Here are the

contents of a parameter file that uses FLASHBACK_TIME:

directory=dp_dir

content=metadata_only

dumpfile=inv.dmp

flashback_time="to_timestamp('24-jan-2013 07:03:00','dd-mon-yyyy

hh24:mi:ss')"

Depending on your OS, the command-line version of the previous example must be

specified as follows:

flashback_time=\"to_timestamp\(\'24-jan-2013 07:03:00\',

\'dd-mon-yyyy hh24:mi:ss\'\)\"

This line of code should be specified on one line. Here, the code has been placed on

two lines in order to fit on the page.

You cannot specify both FLASHBACK_SCN and FLASHBACK_TIME when taking an export;

these two parameters are mutually exclusive. If you attempt to use both parameters at

the same time, Data Pump throws the following error message and halts the export job:

ORA-39050: parameter FLASHBACK_TIME is incompatible with parameter

FLASHBACK_SCN

�Importing When Objects Already Exist
When exporting and importing data, you often import into schemas in which the objects

have been created (tables, indexes, and so on). In this situation, you should import the

data but instruct Data Pump to try not to create already existing objects.

You can achieve this with the TABLE_EXISTS_ACTION and CONTENT parameters. The

next example instructs Data Pump to append data in any tables that already exist via

the TABLE_EXISTS_ACTION=APPEND option. Also used is the CONTENT=DATA_ONLY option,

which instructs Data Pump not to run any DDL to create objects (only to load data):

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \

table_exists_action=append content=data_only

Chapter 13 Data Pump

538

Existing objects are not modified in any way, and any new data that exist in the dump

file are inserted into any tables.

You may wonder what happens if you just use the TABLE_EXISTS_ACTION option and

do not combine it with the CONTENT option:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \

table_exists_action=append

The only difference is that Data Pump attempts to run DDL commands to create

objects if they exist. This does not stop the job from running, but you see an error

message in the output, indicating that the object already exists. Here is a snippet of the

output for the previous command:

Table "MV_MAINT"."INV" exists. Data will be appended ...

The default for the TABLE_EXISTS_ACTION parameter is SKIP, unless you also specify

the parameter CONTENT=DATA_ONLY. If you use CONTENT=DATA_ONLY, then the default for

TABLE_EXISTS_ACTION is APPEND.

The TABLE_EXISTS_ACTION parameter takes the following options:

•	 SKIP (default if not combined with CONTENT=DATA_ONLY)

•	 APPEND (default if combined with CONTENT=DATA_ONLY)

•	 REPLACE

•	 TRUNCATE

The SKIP option tells Data Pump not to process the object if it exists. The APPEND

option instructs Data Pump not to delete existing data, but rather, to add data to the table

without modifying any existing data. The REPLACE option instructs Data Pump to drop

and re-create objects; this parameter is not valid when the CONTENT parameter is used

with the DATA_ONLY option. The TRUNCATE parameter tells Data Pump to delete rows from

tables via a TRUNCATE statement.

The CONTENT parameter takes the following options:

•	 ALL (default)

•	 DATA_ONLY

•	 METADATA_ONLY

Chapter 13 Data Pump

539

The ALL option instructs Data Pump to load both data and metadata contained in

the dump file; this is the default behavior. The DATA_ONLY option tells Data Pump to load

only table data into existing tables; no database objects are created. The METADATA_ONLY

option only creates objects; no data are loaded.

�Renaming a Table
You have the option of renaming a table during import operations. There are many

reasons you may want to rename a table when importing it. For instance, you may have

a table in the target schema that has the same name as the table you want to import. You

can rename a table when importing by using the REMAP_TABLE parameter. This example

imports the table from the HEERA user INV table to the HEERA user INVEN table:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp tables=heera.inv \

remap_table=heera.inv:inven

Here is the general syntax for renaming a table:

REMAP_TABLE=[schema.]old_tablename[.partition]:new_tablename

Note that this syntax does not allow you to rename a table into a different schema. If

you are not careful, you may attempt to do the following (thinking that you’re moving a

table and renaming it in one operation):

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp tables=heera.inv \

remap_table=heera.inv:scott.inven

In the prior example, you end up with a table in the HEERA schema named SCOTT.

That can be confusing.

�Remapping Data
You can apply a PL/SQL function to alter a column value during either an export or

import. For example, you may have an auditor who needs to look at the data, and one

requirement is that you apply a simple obfuscation function to sensitive columns. The

data do not need to be encrypted; they just need to be changed enough that the auditor

cannot readily determine the value of the LAST_NAME column in the CUSTOMERS table.

Chapter 13 Data Pump

540

This example first creates a simple package that is used to obfuscate the data:

create or replace package obfus is

 function obf(clear_string varchar2) return varchar2;

 function unobf(obs_string varchar2) return varchar2;

end obfus;

/

--

create or replace package body obfus is

 fromstr varchar2(62) := '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' ||

 'abcdefghijklmnopqrstuvwxyz';

 tostr varchar2(62) := 'defghijklmnopqrstuvwxyzabc3456789012' ||

 'KLMNOPQRSTUVWXYZABCDEFGHIJ';

--

function obf(clear_string varchar2) return varchar2 is

begin

 return translate(clear_string, fromstr, tostr);

end obf;

--

function unobf(obs_string varchar2) return varchar2 is

begin

 return translate(obs_string, tostr, fromstr);

end unobf;

end obfus;

/

Now, when you import the data into the database, you apply the obfuscation

function to the LAST_NAME column of the CUSTOMERS table:

$ impdp mv_maint/foo directory=dp_dir dumpfile=cust.dmp tables=customers \

remap_data=customers.last_name:obfus.obf

Selecting LAST_NAME from CUSTOMERS shows that it has been imported in an

obfuscated manner:

SQL> select last_name from customers;

LAST_NAME

Chapter 13 Data Pump

541

yYZEJ

tOXXSMU

xERX

You can manually apply the package’s UNOBF function to see the real values of the

column:

SQL> select obfus.unobf(last_name) from customers;

OBFUS.UNOBF(LAST_NAME)

Lopuz

Gennick

Kuhn

�Suppressing a Log File
By default, Data Pump creates a log file when generating an export or an import. If you

know that you do not want a log file generated, you can suppress it by specifying the

NOLOGFILE parameter. Here is an example:

$ expdp mv_maint/foo directory=dp_dir tables=inv nologfile=y

If you choose not to create a log file, Data Pump still displays status messages on the

output device. In general, I recommend that you create a log file with every Data Pump

operation. This gives you an audit trail of your actions.

�Using Parallelism
Use the PARALLEL parameter to parallelize a Data Pump job. For instance, if you know

you have four CPUs on a box, and you want to set the degree of parallelism to 4, use

PARALLEL as follows:

$ expdp mv_maint/foo parallel=4 dumpfile=exp.dmp directory=dp_dir full=y

To take full advantage of the parallel feature, ensure that you specify multiple files

when exporting. The following example creates one file for each thread of parallelism:

$ expdp mv_maint/foo parallel=4 dumpfile=exp1.dmp,exp2.dmp,exp3.dmp,exp4.dmp

Chapter 13 Data Pump

542

You can also use the %U substitution variable to instruct Data Pump to create dump

files automatically to match the degree of parallelism. The %U variable starts at the value 01

and increments as additional dump files are allocated. This example uses the %U variable:

$ expdp mv_maint/foo parallel=4 dumpfile=exp%U.dmp

Now, say you need to import from the dump files created from an export. You can

either individually specify the dump files or, if the dump files were created with the %U

variable, use that on import:

$ impdp mv_maint/foo parallel=4 dumpfile=exp%U.dmp

In the prior example, the import process starts by looking for a file with the name

exp01.dmp, then exp02.dmp, and so on.

Tip  Oracle recommends that the degree of parallelism not be set to more than
two times the number of CPUs available on the server. Also, a word of caution
using parallelism with a RAC environment: make sure you have CLUSTER=N to
avoid parallelism across nodes.

You can also modify the degree of parallelism while the job is running. First, attach in

the interactive command mode to the job (see the section “Interactive Command Mode,”

later in this chapter) for which you want to modify the degree of parallelism. Then, use

the PARALLEL option. In this example, the job attached to is SYS_IMPORT_TABLE_01:

$ impdp mv_maint/foo attach=sys_import_table_01

Import> parallel=6

You can check the degree of parallelism via the STATUS command:

Import> status

Here is some sample output:

Job: SYS_IMPORT_TABLE_01

 Operation: IMPORT

 Mode: TABLE

 State: EXECUTING

 Bytes Processed: 0

 Current Parallelism: 6

Chapter 13 Data Pump

543

Note T he PARALLEL feature is only available in the Enterprise Edition of Oracle.

�Specifying Additional Dump Files
If you run out of space in the primary data pump location, then you can specify

additional data pump locations on the fly. Use the ADD_FILE command from the

interactive command prompt. Here is the basic syntax for adding additional files:

ADD_FILE=[directory_object:]file_name [,...]

This example adds another output file to an already existing Data Pump export job:

Export> add_file=alt2.dmp

You can also specify a separate database directory object:

Export> add_file=alt_dir:alt3.dmp

�Reusing Output File Names
By default, Data Pump does not overwrite an existing dump file. For example, the first

time you run this job, it will run fine because there is no dump file named inv.dmp in the

directory being used:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp

If you attempt to run the previous command again with the same directory and the

same data pump name, this error is thrown:

ORA-31641: unable to create dump file "/oradump/inv.dmp"

You can either specify a new data pump name for the export job or use the REUSE_

DUMPFILES parameter to direct Data Pump to overwrite an existing dump file; for

example,

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp reuse_dumpfiles=y

Chapter 13 Data Pump

544

You should now be able to run the Data Pump export regardless of an existing dump

file with the same name in the output directory. When you set REUSE_DUMPFILES to a

value of y, if Data Pump finds a dump file with the same name, it overwrites the file.

Note T he default value for REUSE_DUMPFILES is N.

�Creating a Daily DDL File
Sometimes, in database environments, changes occur to database objects in unexpected

ways. You may have a developer who somehow obtains the production user passwords

and decides to make a change on the fly, without telling anybody. Or a DBA may

decide not to follow the standard release process and make a change to an object while

troubleshooting an issue. These scenarios can be frustrating for production-support

DBAs. Whenever there is an issue, the first question raised is, “What changed?”

When you use Data Pump, it is fairly simple to create a file that contains all the DDL

to re-create every object in your database. You can instruct Data Pump to export or

import just the metadata via the CONTENT=METADATA_ONLY option.

For instance, in a production environment, you can set up a daily job to capture this

DDL. If there is ever a question about what changed and when, you can go back and

compare the DDL in the daily dump files.

Listed next is a simple shell script that first exports the metadata content from the

database and then uses Data Pump import to create a DDL file from that export:

#!/bin/bash

source OS variables, see Chapter 2 for details

. /etc/oraset o18c

#

DAY=$(date +%Y_%m_%d)

SID=DWREP

#---

First create export dump file with metadata only

expdp mv_maint/foo dumpfile=${SID}.${DAY}.dmp content=metadata_only \

directory=dp_dir full=y logfile=${SID}.${DAY}.log

Chapter 13 Data Pump

545

#---

Now create DDL file from the export dump file.

impdp mv_maint/foo directory=dp_dir dumpfile=${SID}.${DAY}.dmp \

SQLFILE=${SID}.${DAY}.sql logfile=${SID}.${DAY}.sql.log

#

exit 0

This code listing depends on a database directory object being created that points to

where you want the daily dump file to be written. You may also want to set up another

job that periodically deletes any files older than a certain amount of time.

�Compressing Output
When you use Data Pump to create large files, you should consider compressing the

output. As of Oracle Database 11g, the COMPRESSION parameter can be one of the

following values: ALL, DATA_ONLY, METADATA_ONLY, or NONE. If you specify ALL, then both

data and metadata are compressed in the output. This example exports one table and

compresses both the data and metadata in the output file:

$ expdp dbauser/foo tables=locations directory=datapump \

dumpfile=compress.dmp compression=all

Note T he ALL and DATA_ONLY options of the COMPRESS parameter require a
license for the Oracle Advanced Compression option.

New with Oracle Database 12c, you can specify a compression algorithm.

The choices are BASIC, LOW, MEDIUM, and HIGH. Here is an example of using MEDIUM

compression:

$ expdp mv_maint/foo dumpfile=full.dmp directory=dp_dir full=y \

compression=all compression_algorithm=MEDIUM

Using the COMPRESSION_ALGORITHM parameter can be especially useful if you are

running low on disk space or exporting over a network connection (as it reduces the

number of bytes that need to be transferred).

Chapter 13 Data Pump

546

Note T he COMPRESSION_ALGORITHM parameter requires a license for the
Oracle Advanced Compression option.

�Changing Table Compression Characteristics on Import
Starting with Oracle Database 12c, you can change a table’s compression characteristics

when importing the table. This example changes the compression characteristics for all

tables imported in the job to COMPRESS FOR OLTP. Because the command in this example

requires quotation marks, it is placed in a parameter file, as shown:

userid=mv_maint/foo

dumpfile=inv.dmp

directory=dp_dir

transform=table_compression_clause:"COMPRESS FOR OLTP"

Assume that the parameter file is named imp.par. It can now be invoked as follows:

$ impdp parfile=imp.par

All tables included in the import job are created as COMPRESS FOR OLTP, and the data

are compressed as they are loaded.

Note T able-level compression (for OLTP) requires a license for the Oracle
Advanced Compression option.

�Encrypting Data
One potential security issue with Data Pump dump files is that anybody with OS access

to the output file can search for strings in the file. On Linux/Unix systems, you can do

this with the strings command:

$ strings inv.dmp | grep -i secret

Chapter 13 Data Pump

547

Here is the output for this particular dump file:

Secret Data<

top secret data<

corporate secret data<

This command allows you to view the contents of the dump file because the data are

in regular text and not encrypted. If you require that the data be secured, you can use

Data Pump’s encryption features.

This example uses the ENCRYPTION parameter to secure all data and metadata in the

output:

$ expdp mv_maint/foo encryption=all directory=dp_dir dumpfile=inv.dmp

For this command to work, your database must have an encryption wallet in

place and open. See the Oracle Advanced Security Administrator’s Guide, available

for download from the Technology Network area of the Oracle web site (http://otn.

oracle.com), for more details on how to create and open a wallet.

Note T he Data Pump ENCRYPTION parameter requires that you use the
Enterprise Edition of Oracle Database and also requires a license for the Oracle
Advanced Security option.

The ENCRYPTION parameter takes the following options:

•	 ALL

•	 DATA_ONLY

•	 ENCRYPTED_COLUMNS_ONLY

•	 METADATA_ONLY

•	 NONE

The ALL option enables encryption for both data and metadata. The DATA_ONLY

option encrypts just the data. The ENCRYPTED_COLUMNS_ONLY option specifies that only

columns encrypted in the database are written to the dump file in an encrypted format.

The METADATA_ONLY option encrypts just metadata in the export file.

Chapter 13 Data Pump

http://otn.oracle.com
http://otn.oracle.com

548

�Exporting Views as Tables
Starting with Oracle Database 12c, you can export a view and later import it as a table.

You may want to do this if you need to replicate the data contained in a view to a

historical reporting database.

Use the VIEWS_AS_TABLES parameter to export a view into a table structure. This

parameter has the following syntax:

VIEWS_AS_TABLES=[schema_name.]view_name[:template_table_name]

Here is an example:

$ expdp mv_maint/foo directory=dp_dir dumpfile=v.dmp \

views_as_tables=sales_rockies

The dump file can now be used to import a table named SALES_ROCKIES into a

different schema or database.

$ impdp mv_maint/foo directory=dp_dir dumpfile=v.dmp

If you just want to import the table (which was created from a view during the

export), you can do so as follows:

$ impdp mv_maint/foo directory=dp_dir dumpfile=v.dmp tables=sales_rockies

The table will have the same columns and data types as per the view definition. The

table will additionally contain rows of data that match what would have been selected

from the view at the time of the export.

�Disabling Logging of Redo on Import
Starting with Oracle Database 12c, you can specify that objects be loaded with nologging

of redo. This is achieved via the DISABLE_ARCHIVE_LOGGING parameter:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \

transform=disable_archive_logging:Y

While performing the import, the logging attributes for objects are set to NO; after

the import the logging attributes are set back to their original values. For operations that

Data Pump can perform with direct path (such as inserting into a table), this can reduce

the amount of redo generated during an import.

Chapter 13 Data Pump

549

�Attaching to a Running Job
One powerful feature of Data Pump is that you can attach to a currently running job and

view its progress and status. If you have DBA privileges, you can even attach to a job if

you are not the owner. You can attach to either an import or an export job via the ATTACH

parameter.

Data Pump is not a job that is run in the foreground like the older utility, exp. Data

Pump runs in the background, so that if you press Control-C to break the job, the

data pump job continues to run and just the command-line interface is interrupted.

Attaching the Data Pump job allows you to perform operations on the job.

Before you attach to a job, you must first determine the Data Pump job name (and

owner name, if you’re not the owner of the job). Run the following SQL query to display

currently running jobs:

SQL> select owner_name, operation, job_name, state from dba_datapump_jobs;

Here is some sample output:

OWNER_NAME OPERATION JOB_NAME STATE

---------- --------------- -------------------- --------------------

MV_MAINT EXPORT SYS_EXPORT_SCHEMA_01 EXECUTING

In this example the MV_MAINT user can directly attach to the export job, as shown:

$ expdp mv_maint/foo attach=sys_export_schema_01

If you are not the owner of the job, you attach to the job by specifying the owner

name and the job name:

$ expdp system/foobar attach=mv_maint.sys_export_schema_01

You should now see the Data Pump command-line prompt:

Export>

Type STATUS to view the status of the currently attached job:

Export> status

Chapter 13 Data Pump

550

�Stopping and Restarting a Job
If you have a currently running Data Pump job that you want to temporarily stop, you

can do so by first attaching to the interactive command mode. You may want to stop a

job to resolve space issues or performance issues and then, after resolving the issues,

restart the job. This example attaches to an import job:

$ impdp mv_maint/foo attach=sys_import_table_01

Now, stop the job, using the STOP_JOB parameter:

Import> stop_job

You should see this output:

Are you sure you wish to stop this job ([yes]/no):

Type YES to proceed with stopping the job. You can also specify that the job be

stopped immediately:

Import> stop_job=immediate

When you stop a job with the IMMEDIATE option, there may be some incomplete tasks

associated with the job. To restart a job, attach to interactive command mode, and issue

the START_JOB command:

Import> start_job

If you want to resume logging job output to your terminal, issue the CONTINUE_

CLIENT command:

Import> continue_client

�Terminating a Data Pump Job
You can instruct Data Pump to permanently kill an export or import job. First, attach to

the job in interactive command mode, and then issue the KILL_JOB command:

Import> kill_job

Chapter 13 Data Pump

551

You should be prompted with the following output:

Are you sure you wish to stop this job ([yes]/no):

Type YES to permanently kill the job. Data Pump unceremoniously kills the job and

drops the associated status table from the user running the export or import.

�Monitoring Data Pump Jobs
When you have long-running Data Pump jobs, you should occasionally check the status

of the job to ensure it has not failed, become suspended, and so on. There are several

ways to monitor the status of Data Pump jobs:

•	 Screen output

•	 Data Pump log file

•	 Querying data dictionary views

•	 Database alert log

•	 Querying the status table

•	 Interactive command mode status

•	 Using the process status (ps) OS utility

•	 Oracle Enterprise Manager

The most obvious way to monitor a job is to view the status that Data Pump displays

on the screen as the job is running. If you have disconnected from the command mode,

then the status is no longer displayed on your screen. In this situation, you must use

another technique to monitor a Data Pump job.

�Data Pump Log File
By default, Data Pump generates a log file for every job. When you start a Data Pump job,

it’s good practice to name a log file that is specific to that job:

$ impdp mv_maint/foo directory=dp_dir dumpfile=archive.dmp logfile=archive.log

Chapter 13 Data Pump

552

This job creates a file, named archive.log, that is placed in the directory referenced

in the database object DP. If you do not explicitly name a log file, Data Pump import

creates one named import.log, and Data Pump export creates one named export.log.

Note T he log file contains the same information you see displayed interactively
on your screen when running a Data Pump job.

�Data Dictionary Views
A quick way to determine whether a Data Pump job is running is to check the DBA_

DATAPUMP_JOBS view for anything running with a STATE that has an EXECUTING status:

select job_name, operation, job_mode, state

from dba_datapump_jobs;

Here is some sample output:

JOB_NAME OPERATION JOB_MODE STATE

------------------------- -------------------- ---------- ---------------

SYS_IMPORT_TABLE_04 IMPORT TABLE EXECUTING

SYS_IMPORT_FULL_02 IMPORT FULL NOT RUNNING

You can also query the DBA_DATAPUMP_SESSIONS view for session information via the

following query:

select sid, serial#, username, process, program

from v$session s,

 dba_datapump_sessions d

where s.saddr = d.saddr;

Here is some sample output, showing that several Data Pump sessions are in use:

 SID SERIAL# USERNAME PROCESS PROGRAM

---------- ----------- ----------- ----------- ------------------------

 1049 6451 STAGING 11306 oracle@xengdb (DM00)

 1058 33126 STAGING 11338 oracle@xengdb (DW01)

 1048 50508 STAGING 11396 oracle@xengdb (DW02)

Chapter 13 Data Pump

553

�Database Alert Log
If a job is taking much longer than you expected, look in the database alert log for any

messages similar to this:

statement in resumable session 'SYS_IMPORT_SCHEMA_02.1' was suspended due to

ORA-01652: unable to extend temp segment by 64 in tablespace REG_TBSP_3

This message indicates that a Data Pump import job is suspended and is waiting

for space to be added to the REG_TBSP_3 tablespace. After you add space to the

tablespace, the Data Pump job automatically resumes processing. By default, a Data

Pump job waits 2 hours for space to be added.

Note  In addition to writing to the alert log, for each Data Pump job, Oracle
creates a trace file in the ADR_HOME/trace directory. This file contains
information such as the session ID and when the job started. The trace file is
named with the following format: <SID>_dm00_<process_ID>.trc.

�Status Table
Every time you start a Data Pump job, a status table is automatically created in

the account of the user running the job. For export jobs the table name depends

on what type of export job you are running. The table is named with the format

SYS_<OPERATION>_<JOB_MODE>_NN, where OPERATION is either EXPORT or IMPORT. JOB_

MODE can be FULL, SCHEMA, TABLE, TABLESPACE, and so on.

Here is an example of querying the status table for particulars about a currently

running job:

select name, object_name, total_bytes/1024/1024 t_m_bytes

,job_mode

,state ,to_char(last_update, 'dd-mon-yy hh24:mi')

from SYS_EXPORT_TABLE_01

where state='EXECUTING';

Chapter 13 Data Pump

554

�Interactive Command Mode Status
A quick way to verify that Data Pump is running a job is to attach in interactive command

mode and issue a STATUS command; for example,

$ impdp mv_maint/foo attach=SYS_IMPORT_TABLE_04

Import> status

Here is some sample output:

Job: SYS_IMPORT_TABLE_04

 Operation: IMPORT

 Mode: TABLE

 State: EXECUTING

 Bytes Processed: 0

 Current Parallelism: 4

You should see a state of EXECUTING, which indicates that the job is actively running.

Other items to inspect in the output are the number of objects and bytes processed.

Those numbers should increase as the job progresses.

�OS Utilities
You can use the ps OS utility to display jobs running on the server. For example, you can

search for master and worker processes, as follows:

$ ps -ef | egrep 'ora_dm|ora_dw' | grep -v egrep

Here is some sample output:

 oracle 29871 717 5 08:26:39 ? 11:42 ora_dw01_STAGE

 oracle 29848 717 0 08:26:33 ? 0:08 ora_dm00_STAGE

 oracle 29979 717 0 08:27:09 ? 0:04 ora_dw02_STAGE

If you run this command multiple times, you should see the processing time

(seventh column) increase for one or more of the current jobs. This is a good indicator

that Data Pump is still executing and doing work.

Chapter 13 Data Pump

555

�Summary
Data Pump is an extremely powerful and feature-rich tool. If you have not used Data

Pump much, then I recommend that you take some time to reread this chapter and work

through the examples. This tool greatly simplifies tasks such as moving users and data

from one environment to another. You can export and import subsets of users, filter and

remap data via SQL and PL/SQL, rename users and tablespaces, compress, encrypt, and

parallelize, all with one command. It really is that powerful.

Data Pump provides the features needed to move data between databases without

even storing the data on disk for transport. Data can be filtered or remapped to other

schemas and tables with the features of Data Pump. The Data Pump jobs are started and

can be monitored, paused, or stopped.

Although Data Pump is an excellent tool for moving database objects and data from

one environment to another, sometimes you need to transfer large quantities of data to

and from OS flat files. You use external tables to achieve this task. This is the topic of the

next chapter in this book.

Chapter 13 Data Pump

557
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_14

CHAPTER 14

External Tables
Sometimes, DBAs and developers do not grasp the utility of external tables. The Oracle

external table feature enables you to perform a few operations:

•	 Transparently select information from OS files that has delimited or

fixed fields into the database.

•	 Create platform-independent dump files that can be used to transfer

data. You can also create these files as compressed and encrypt them

for efficient and secure data transportation.

•	 Allow SQL to be run inline against the file data without creating an

external table in the database.

Tip  Comma Separated files (CSV) files are a type of flat files and may be referred
to as just flat files.

One common use of an external table is the selection of data from an OS flat file via

SQL*Plus. Simply put, external tables allow for reading data in the database from flat

files without having to load the data into a table first. This will allow for transformations

to be done against the files while loading the needed data into the database. Using the

external table can simplify or enhance ETL processes (Extract Transformation and

Loading). When using an external table in this mode, you must specify the type of data in

the file and how the data are organized. You can select from an external table but are not

permitted to modify the contents (no inserts, updates, or deletes).

You can also use an external table feature that enables you to select data from the

database and write that information to a binary dump file. The definition of the external

table determines what tables and columns will be used to unload data. Using an external

table in this mode provides a method for extracting large amounts of data to a platform-

independent file that you can later load into a different database.

558

All that is required to enable external tables is to first create a database directory

object that specifies the location of the OS file. Then, you use the CREATE TABLE...

ORGANIZATION EXTERNAL statement to make the database aware of OS files that can be

used as sources or targets of data.

This chapter starts by comparing using SQL*Loader—Oracle’s traditional data-

loading utility—with external tables for the loading of data into the database. Several

examples illustrate the flexibility and power of using external tables as a loading and

data-transformation tool. The chapter finishes with an external table example of how to

unload data into a dump file.

�SQL*Loader vs. External Tables
One general use of an external table is to employ SQL to load data from an OS file into

a regular database table. This facilitates the loading of large amounts of data from flat

files into the database. In older versions of Oracle, this type of loading was performed via

SQL*Loader or through custom Pro*C programs.

Almost anything you can do with SQL*Loader, you can achieve with external tables.

An important difference is that SQL*Loader loads data into a table, and external tables

do not need to do this. External tables are more flexible and intuitive than SQL*Loader.

Additionally, you can obtain very good performance when loading data with external

tables by using direct path and parallel features.

A quick comparison of how data are loaded into the database via SQL*Loader and

external tables highlights the usage. Listed next are the steps that you use to load and

transform data with SQL*Loader:

	 1.	 Create a parameter file that SQL*Loader uses to interpret the

format of the data in the OS file.

	 2.	 Create a regular database table into which SQL*Loader will insert

records. The data will be staged here until they can be further processed.

	 3.	 Run the SQL*Loader sqlldr utility to load data from the OS file

into the database table (created in step 2). When loading data,

SQL*Loader has some features that allow you to transform data.

This step is sometimes frustrating because it can take several trial-

and-error runs to correctly map the parameter file to the table and

corresponding columns.

Chapter 14 External Tables

559

	 4.	 Create another table that will contain the completely transformed

data.

	 5.	 Run SQL to extract the data from the staging table (created in step 2),

and then transform and insert the data into the production table

(created in step 4).

Compare the previous SQL*Loader list to the following steps for loading and

transforming data, using external tables:

	 1.	 Execute a CREATE TABLE...ORGANIZATION EXTERNAL script that

maps the structure of the OS file to table columns. After this script

is run, you can directly use SQL to query the contents of the OS file.

	 2.	 Create a regular table to hold the completely transformed data.

	 3.	 Run SQL statements to load and fully transform the data from the

external table (created in step 1) into the table created in step 2.

For many shops, SQL*Loader underpins large data-loading operations. It continues

to be a good tool for that task. However, you may want to investigate using external

tables. External tables have the following advantages:

•	 Loading data with external tables is more straightforward and

requires fewer steps.

•	 The interface for creating and loading from external tables is

SQL*Plus. Many DBAs/developers find SQL*Plus more intuitive and

powerful than SQL*Loader’s parameter file interface.

•	 You can view data (via SQL) in an external table before they’re loaded

into a database table.

•	 You can load, transform, and aggregate the data without an

intermediate staging table. For large amounts of data, this can be a

huge space savings.

The next several sections contain examples of using external tables to read from

OS files.

Chapter 14 External Tables

560

�Loading CSV Files into the Database
You can load small or very large CSV flat files into the database, using external tables and

SQL. Figure 14-1 shows the architectural components involved with using an external

table to view and load data from an OS file. A directory object is required that specifies

the location of the OS file. The CREATE TABLE...ORGANIZATION EXTERNAL statement

creates a database object that SQL*Plus can use to directly select from the OS file.

Figure 14-1.  Architectural components of an external table used to read a flat file

Here are the steps for using an external table to access an OS flat file:

	 1.	 Create a database directory object that points to the location of

the CSV file.

	 2.	 Grant read and write privileges on the directory object to the user

creating the external table. (Even though it is easier to use a DBA-

privileged account, with various security options, access to the

tables and data might not be available to the account. Permissions

need to be verified and granted as needed.)

	 3.	 Run the CREATE TABLE...ORGANIZATION EXTERNAL statement.

	 4.	 Use SQL*Plus to access the contents of the CSV file.

Chapter 14 External Tables

561

In this example, the flat file is named ex.csv and is located in the /u01/et directory.

It contains the following data:

5|2|0|0|12/04/2011|Half

6|1|0|1|09/06/2012|Quarter

7|4|0|1|08/10/2012|Full

8|1|1|0|06/15/2012|Quarter

Note  Some of the delimited file examples in this chapter are separated by
characters other than a comma, such as a pipe (|). The character used depends on
the data and the user supplying the flat file. A comma is not always useful as the
delimiter, as the data being loaded may contain commas as valid characters within
the data. Fixed field length can also be used instead of using a delimiter.

�Creating a Directory Object and Granting Access
First, create a directory object that points to the location of the flat file on disk:

SQL> create directory exa_dir as '/u01/et';

This example uses a database account that has the DBA role granted to it; therefore,

you don’t need to grant READ and WRITE on the directory object to the user (your

account) that is accessing the directory object. If you are not using a DBA account to read

from the directory object, then grant these privileges to the account, using this object:

SQL> grant read, write on directory exa_dir to reg_user;

�Creating an External Table
Then, fashion the script that creates the external table that will reference the flat file.

The CREATE TABLE...ORGANIZATION EXTERNAL statement provides the database with the

following information:

•	 How to interpret data in the flat file and a mapping of data in file to

column definitions in the database

Chapter 14 External Tables

562

•	 A DEFAULT DIRECTORY clause that identifies the directory object,

which in turn specifies the directory of the flat file on disk

•	 The LOCATION clause, which identifies the name of the flat file

The next statement creates a database object that looks like a table but that is able to

retrieve data directly from the flat file:

SQL> create table exadata_et(

 exa_id NUMBER

 ,machine_count NUMBER

 ,hide_flag NUMBER

 ,oracle NUMBER

 ,ship_date DATE

 ,rack_type VARCHAR2(32)

)

organization external (

 type oracle_loader

 default directory exa_dir

 access parameters

 (

 records delimited by newline

 fields terminated by '|'

 missing field values are null

 (exa_id

 ,machine_count

 ,hide_flag

 ,oracle

 ,ship_date char date_format date mask "mm/dd/yyyy"

 ,rack_type)

)

 location ('ex.csv')

)

reject limit unlimited;

Chapter 14 External Tables

563

An external table named EXADATA_ET is created when you execute this script. Now,

use SQL*Plus to view the contents of the flat file:

SQL> select * from exadata_et;

 EXA_ID MACHINE_COUNT HIDE_FLAG ORACLE SHIP_DATE RACK_TYPE

---------- ------------- ---------- ---------- ---------- ----------------

 5 2 0 0 04-DEC-11 Half

 6 1 0 1 06-SEP-12 Quarter

 7 4 0 1 10-AUG-12 Full

 8 1 1 0 15-JUN-12 Quarter

�Generating SQL to Create an External Table
If you are currently working with SQL*Loader and want to convert to using external

tables, you can use SQL*Loader to generate the SQL required to create the external table,

using the EXTERNAL_TABLE option. A small example will help demonstrate this process.

Suppose you have the following table DDL:

SQL> create table books

(book_id number,

 book_desc varchar2(30));

In this situation, you want to load the following data from a CSV file into the BOOKS

table. The data are in a file named books.dat and are as follows:

1|RMAN Recipes

2|Linux for DBAs

3|SQL Recipes

You also have a books.ctl SQL*Loader control file that contains the following data:

load data

INFILE 'books.dat'

INTO TABLE books

APPEND

FIELDS TERMINATED BY '|'

(book_id,

 book_desc)

Chapter 14 External Tables

564

You can use SQL*Loader with the EXTERNAL_TABLE=GENERATE_ONLY clause to

generate the SQL required to create an external table; for example,

$ sqlldr dk/f00 control=books.ctl log=books.log external_table=generate_only

The prior line of code does not load any data. Rather it creates a file, named books.

log, that contains the SQL required to create an external table. Here is a partial listing of

the code generated:

CREATE TABLE "SYS_SQLLDR_X_EXT_BOOKS"

(

 "BOOK_ID" NUMBER,

 "BOOK_DESC" VARCHAR2(30)

)

ORGANIZATION external

(

 TYPE oracle_loader

 DEFAULT DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000

 ACCESS PARAMETERS

 (

 RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII

 BADFILE 'SYS_SQLLDR_XT_TMPDIR_00000':'books.bad'

 LOGFILE 'books.log_xt'

 READSIZE 1048576

 FIELDS TERMINATED BY "|" LDRTRIM

 REJECT ROWS WITH ALL NULL FIELDS

 (

 "BOOK_ID" CHAR(255)

 TERMINATED BY "|",

 "BOOK_DESC" CHAR(255)

 TERMINATED BY "|"

)

)

 location

 (

 'books.dat'

)

)REJECT LIMIT UNLIMITED;

Chapter 14 External Tables

565

Before you run the prior code, create a directory that points to the location of the

books.dat file; for example,

SQL> create or replace directory SYS_SQLLDR_XT_TMPDIR_00000

 as '/u01/sqlldr';

Now, if you run the SQL code generated by SQL*Loader, you should be able to view

the data in the SYS_SQLLDR_X_EXT_BOOKS table:

SQL> select * from SYS_SQLLDR_X_EXT_BOOKS;

Here is the expected output:

 BOOK_ID BOOK_DESC

---------- ------------------------------

 1 RMAN Recipes

 2 Linux for DBAs

 3 SQL Recipes

This is a powerful technique, especially if you already have existing SQL*Loader

control files and want to ensure that you have the correct syntax when converting to

external tables.

�Viewing External Table Metadata
At this point, you can also view metadata regarding the external table. Query the DBA_

EXTERNAL_TABLES view for details:

SQL> select

 owner

,table_name

,default_directory_name

,access_parameters

from dba_external_tables;

Here is a partial listing of the output:

OWNER TABLE_NAME DEFAULT_DIRECTORY_NA ACCESS_PARAMETERS

---------- --------------- -------------------- --------------------

SYS EXADATA_ET EXA_DIR records delimited ...

Chapter 14 External Tables

566

Additionally, you can select from the DBA_EXTERNAL_LOCATIONS table for information

regarding any flat files referenced in an external table:

SQL> select

 owner

,table_name

,location

from dba_external_locations;

Here is some sample output:

OWNER TABLE_NAME LOCATION

---------- --------------- --------------------

SYS EXADATA_ET ex.csv

�Loading a Regular Table from the External Table
Now, you can load data contained in the external table into a regular database table.

When you do this, you can take advantage of Oracle’s direct-path loading and parallel

features. This example creates a regular database table that will be loaded with data from

the external table:

SQL> create table exa_info(

 exa_id NUMBER

 ,machine_count NUMBER

 ,hide_flag NUMBER

 ,oracle NUMBER

 ,ship_date DATE

 ,rack_type VARCHAR2(32)

) nologging parallel 2;

You can direct-path load this regular table (via the APPEND hint) from the contents of

the external table, as follows:

SQL> insert /*+ APPEND */ into exa_info select * from exadata_et;

You can verify that the table was direct-path loaded by attempting to select from it

before you commit the data:

SQL> select * from exa_info;

Chapter 14 External Tables

567

Here is the expected error:

ORA-12838: cannot read/modify an object after modifying it in parallel

After you commit the data, you can select from the table:

SQL> commit;

SQL> select * from exa_info;

Note  Conversion errors may appear when reading or writing data with external
tables. Conversion of numbers to dates or to character fields should be recognized,
but when receiving these errors, it is possible to explicitly create the conversion
in the statements. Using TO_NUMBER, TO_DATE, and TO_CHAR will help to avoid
these issues if the conversion is not made implicitly.

The other way to direct-path load a table is to use the CREATE TABLE AS SELECT

(CTAS) statement. A CTAS statement automatically attempts to do a direct-path load. In

this example, the EXA_INFO table is created and loaded in one statement:

SQL> create table exa_info nologging parallel 2 as select * from exadata_et;

By using direct-path loading and parallelism, you can achieve loading performance

similar to that of SQL*Loader. The advantage of using SQL to create a table from an

external table is that you can perform complex data transformations using standard

SQL*Plus features when building your regular database table (EXA_INFO, in this example).

Any CTAS statements automatically process with the degree of parallelism that

has been defined for the underlying table. However, when you use INSERT AS SELECT

statements, you need to enable parallelism for the session:

SQL> alter session enable parallel dml;

As a last step, you should generate statistics for any table that has been loaded with a

large amount of data. Here is an example:

SQL> exec dbms_stats.gather_table_stats(-

 ownname=>'SYS',-

 tabname=>'EXA_INFO',-

 estimate_percent => 20, -

 cascade=>true);

Chapter 14 External Tables

568

�Performing Advanced Transformations
Oracle provides sophisticated techniques for transforming data. This section details how

to use a pipelined function to transform data in an external table. Listed next are the

steps for doing this:

	 1.	 Create an external table.

	 2.	 Create a record type that maps to the columns in the external table.

	 3.	 Create a table, based on the record type created in step 2.

	 4.	 Create a pipelined function that is used to inspect each row as it is

loaded and to transform data, based on business requirements.

	 5.	 Use an INSERT statement that selects from the external table and that

uses the pipelined function to transform data as they are loaded.

This example uses the same external table and CSV file created in the section,

“Loading CSV Files into the Database,” earlier in this chapter. Recall that the external

table name is EXADATA_ET and that the CSV file name is ex.csv. After you create the

external table, then create a record type that maps to the column names in the external

table:

SQL> create or replace type rec_exa_type is object

(

 exa_id number

 ,machine_count number

 ,hide_flag number

 ,oracle_flag number

 ,ship_date date

 ,rack_type varchar2(32)

);

Next, create a table based on the previous record type:

SQL> create or replace type table_exa_type is table of rec_exa_type;

Oracle PL/SQL allows you to use functions as a row source for SQL operations. This

feature is known as pipelining. It lets you use complex transformation logic, combined

with the power of SQL*Plus. For this example, you create a pipelined function to

Chapter 14 External Tables

569

transform selected column data as they are loaded. Specifically, this function randomly

generates a number for the ORACLE_FLAG column:

SQL> create or replace function exa_trans

return table_exa_type pipelined is

begin

for r1 in

 (select rec_exa_type(

 exa_id, machine_count, hide_flag

 ,oracle_flag, ship_date, rack_type

) exa_rec

 from exadata_et) loop

 if (r1.exa_rec.hide_flag = 1) then

 r1.exa_rec.oracle_flag := dbms_random.value(low => 1, high => 100);

 end if;

 pipe row (r1.exa_rec);

end loop;

return;

end;

/

Now, you can use this function to load data into a regular database table. For

reference, here is the CREATE TABLE statement that instantiates the table to be loaded:

SQL> create table exa_info(

 exa_id NUMBER

 ,machine_count NUMBER

 ,hide_flag NUMBER

 ,oracle_flag NUMBER

 ,ship_date DATE

 ,rack_type VARCHAR2(32)

) nologging parallel 2;

Next, use the pipelined function to transform data selected from the external table

and insert them into the regular database table, in one step:

SQL> insert into exa_info select * from table(exa_trans);

Chapter 14 External Tables

570

Here is the data that are loaded into the EXA_INFO table for this example:

SQL> select * from exa_info;

Here is some sample output, showing the rows with a random value in the ORACLE_

FLAG column:

 EXA_ID MACHINE_COUNT HIDE_FLAG ORACLE_FLAG SHIP_DATE RACK_TYPE

---------- ------------- ---------- ---------------- ---------- ---------

 5 2 1 32 03-JAN-17 Half

 6 1 0 0 06-SEP-17 Quarter

 7 4 0 0 10-AUG-17 Full

 8 1 1 58 15-JUL-17 Quarter

Although the example in this section is simple, you can use the technique to

apply any level of transformational logic. This technique allows you to embed the

transformation requirements in a pipelined PL/SQL function that modifies data as each

row is loaded.

�Viewing Text Files from SQL
External tables allow you to use SQL SELECT statements to retrieve information from OS

flat files. For example, say you want to report on the contents of the alert log file. First,

create a directory object that points to the location of the alert log:

SQL> select value from v$diag_info where name = 'Diag Trace';

Here is the output for this example:

/ora01/app/oracle/diag/rdbms/o18c/o18c/trace

Next, create a directory object that points to the diagnostic trace directory:

SQL> create directory t_loc as '/ora01/app/oracle/diag/rdbms/o18c/o18c/trace';

Chapter 14 External Tables

571

Now, create an external table that maps to the database alert log OS file. In this

example, the database name is o18c, and thus the alert log file name is alert_o18c.log:

SQL> create table alert_log_file(

 alert_text varchar2(4000))

organization external

(type oracle_loader

 default directory t_loc

 access parameters (

 records delimited by newline

 nobadfile

 nologfile

 nodiscardfile

 fields terminated by '#$~=ui$X'

 missing field values are null

 (alert_text)

)

 location ('alert_o18c.log')

)

reject limit unlimited;

You can query the table via SQL queries; for example,

SQL> select * from alert_log_file where alert_text like 'ORA-%';

This allows you to use SQL to view and report on the contents of the alert log. You

may find this a convenient way to provide SQL access to otherwise inaccessible OS files.

The ACCESS PARAMETERS clause of an external table’s ORACLE_LOADER access driver

may look familiar if you have previously worked with SQL*Loader. Table 14-1 describes

some of the more commonly used access parameters. See the Oracle Database Utilities

Guide, which can be freely downloaded from the Technology Network area of the Oracle

web site (http://otn.oracle.com), for a full list of access parameters.

Chapter 14 External Tables

http://otn.oracle.com

572

Table 14-1.  Selected Access Parameters for the ORACLE_LOADER Driver

Access Parameter Description

DELIMITED BY Indicates which character delimits the fields

TERMINATED BY Indicates how a field is terminated

FIXED Specifies the size of records having a fixed length

BADFILE Name of the file that stores records that can’t be loaded

because of an error

NOBADFILE Specifies that a file shouldn’t be created to hold records

that can’t be loaded because of errors

LOGFILE Name of the file in which general messages are recorded

when creating an external table

NOLOGFILE Specifies that no log file should be created

DISCARDFILE Names the file to which records are written that fail the

LOAD WHEN clause

NODISCARDFILE Specifies that no discard file should be created

SKIP Skips the specified number of records in the file before

loading

PREPROCESSOR Specifies the user-named program that runs and modifies

the contents of the file before Oracle loads the data

MISSING FIELD VALUES ARE NULL Loads fields that have no data as NULL values

�Unloading and Loading Data Using an External Table
External tables may also be used to select data from a regular database table and create

a binary dump file. This is known as unloading data. The advantage of this technique is

that the dump file is platform independent and can be used to move large amounts of

data between servers of different platforms.

You can also encrypt or compress data, or both, when creating the dump file. Doing

so provides you with an efficient and secure way of transporting databases between

database servers.

Chapter 14 External Tables

573

Figure 14-2 illustrates the components in using an external table to unload and load

data. On the source database (database A), you create a dump file, using an external

table that selects data from a table named INV. After it is created, you copy the dump file

to a destination server (database B) and subsequently load the file into the database,

using an external table. using an external table.

Figure 14-2.  Using external tables to unload and load data

Chapter 14 External Tables

574

A small example illustrates the technique of using an external table to unload data.

Here are the steps required:

	 1.	 Create a directory object that specifies where you want the dump

file placed on disk. If you are not using a DBA account, then grant

read and write access to the directory object to the database user

that needs access.

	 2.	 Use the CREATE TABLE...ORGANIZATION EXTERNAL...AS SELECT

statement to unload data from the database into the dump file.

First, create a directory object. The next bit of code creates a directory object, named

DP, that points to the /oradump directory:

SQL> create directory dp as '/oradump';

If you are not using a user with DBA privileges, then explicitly grant access to the

directory object to the required user:

SQL> grant read, write on directory dp to larry;

This example depends on a table named INV; for reference, here is the DDL for the

INV table:

SQL> CREATE TABLE inv

(inv_id NUMBER,

 inv_desc VARCHAR2(30));

To create a dump file, use the ORACLE_DATAPUMP access driver of the CREATE

TABLE...ORGANIZATION EXTERNAL statement. This example unloads the INV table’s

contents into the inv.dmp file:

SQL> CREATE TABLE inv_et

ORGANIZATION EXTERNAL (

 TYPE ORACLE_DATAPUMP

 DEFAULT DIRECTORY dp

 LOCATION ('inv.dmp')

)

AS SELECT * FROM inv;

Chapter 14 External Tables

575

The previous command creates two things:

•	 An external table named INV_ET, based on the structure and data

within the INV table

•	 A platform-independent dump file named inv.dmp

Now, you can copy the inv.dmp file to a separate database server and base an

external table on this dump file. The remote server (to which you copy the dump file) can

be a platform different from the server on which you created the file. For example, you

can create a dump file on a Windows box, copy to a Unix/Linus server, and select from

the dump file via an external table. In this example the external table is named INV_DW:

SQL> CREATE TABLE inv_dw

(inv_id number

,inv_desc varchar2(30))

ORGANIZATION EXTERNAL (

 TYPE ORACLE_DATAPUMP

 DEFAULT DIRECTORY dp

 LOCATION ('inv.dmp')

);

After it’s created, you can access the external table data from SQL*Plus:

SQL> select * from inv_dw;

You can also create and load data into regular tables, using the dump file:

SQL> create table inv as select * from inv_dw;

This provides a simple and efficient mechanism for transporting data from one

platform to another.

�Enabling Parallelism to Reduce Elapsed Time
To maximize the unload performance when you create a dump file via an external table,

use the PARALLEL clause. This example creates two dump files, in parallel:

SQL> CREATE TABLE inv_et

ORGANIZATION EXTERNAL (

 TYPE ORACLE_DATAPUMP

Chapter 14 External Tables

576

 DEFAULT DIRECTORY dp

 LOCATION ('inv1.dmp','inv2.dmp')

)

PARALLEL 2

AS SELECT * FROM inv;

To access the data in the dump files, create a different external table that references

the two dump files:

SQL> CREATE TABLE inv_dw

(inv_id number

,inv_desc varchar2(30))

ORGANIZATION EXTERNAL (

 TYPE ORACLE_DATAPUMP

 DEFAULT DIRECTORY dp

 LOCATION ('inv1.dmp','inv2.dmp')

);

You can now use this external table to select data from the dump files:

SQL> select * from inv_dw;

�Compressing a Dump File
You can create a compressed dump file via an external table. For example, use the

COMPRESS option of the ACCESS PARAMETERS clause:

SQL> CREATE TABLE inv_et

ORGANIZATION EXTERNAL (

 TYPE ORACLE_DATAPUMP

 DEFAULT DIRECTORY dp

 ACCESS PARAMETERS (COMPRESSION ENABLED BASIC)

 LOCATION ('inv1.dmp')

)

AS SELECT * FROM inv;

Chapter 14 External Tables

577

You should see quite good compression ratios when using this option. In my testing,

the output dump file was 10 to 20 times smaller when compressed. Your mileage may

vary, depending on the type data being compressed.

Starting with Oracle Database 12c, there are four levels of compression: BASIC, LOW,

MEDIUM, and HIGH. Before using compression, ensure that the COMPATIBLE initialization

parameter is set to 12.0.0 or higher.

Note  Using compression requires the Oracle Enterprise Edition, along with the
Advanced Compression option.

�Encrypting a Dump File
You can also create an encrypted dump file, using an external table. This example uses

the ENCRYPTION option of the ACCESS PARAMETERS clause:

SQL> CREATE TABLE inv_et

ORGANIZATION EXTERNAL (

 TYPE ORACLE_DATAPUMP

 DEFAULT DIRECTORY dp

 ACCESS PARAMETERS

 (ENCRYPTION ENABLED)

 LOCATION ('inv1.dmp')

)

AS SELECT * FROM inv;

For this example to work, you need to have a security wallet in place and open for

your database.

Note  Using encryption requires the Oracle Enterprise Edition along with the
Advanced Security option.

Chapter 14 External Tables

578

ENABLING AN ORACLE WALLET

An Oracle Wallet is the mechanism Oracle uses to enable encryption. The wallet is an OS file

that contains encryption keys. The wallet is enabled via the following steps:

	1.	 Modify the SQLNET.ORA file to contain the location of the wallet:

ENCRYPTION_WALLET_LOCATION=

 (SOURCE=(METHOD=FILE) (METHOD_DATA=

 (DIRECTORY=/ora01/app/oracle/product/12.1.0.1/db_1/network/admin)))

	2.	 Create the wallet file (ewallet.p12) with the ALTER SYSTEM command:

SQL> alter system set encryption key identified by foo;

	3.	E nable encryption:

SQL> alter system set encryption wallet open identified by foo;

See the Oracle Advanced Security Administrator’s Guide, which can be freely downloaded from

the Technology Network area of the Oracle web site (http://otn.oracle.com), for full

details on implementing encryption.

You enable compression and encryption via the ACCESS PARAMETERS clause.

Table 14-2 contains a listing of all access parameters available with the ORACLE_DATAPUMP

access driver.

Table 14-2.  Parameters of the ORACLE_DATAPUMP Access Driver

Access Parameter Description

COMPRESSION Compresses the dump file; DISABLED is the default value.

ENCRYPTION Encrypts the dump file; DISABLED is the default value.

NOLOGFILE Suppresses the generation of a log file

LOGFILE=[directory_object:]

logfile_name

Allows you to name a log file

VERSION Specifies the minimum version of Oracle that can read the

dump file

Chapter 14 External Tables

http://otn.oracle.com

579

�Inline SQL from External Table

With Oracle 18c, it is possible to select directly from the file with the use of EXTERNAL

without actually creating an external table in the data dictionary. This allows for external

data to be part of a subquery, virtual view, or another transformation type of process.

Here is an example of how this works.

SELECT columns FROM EXTERNAL ((column definitions) TYPE [access_driver_

type] external_table_properties [REJECT LIMIT clause])

SQL> SELECT first_name, last_name, hiredate, department_name from EXTERNAL(

(first_name varchare2(50),

last_name varchar2(50),

hiredate date,

department_name varchar2(50))

TYPE ORACLE_LOADER

DEFAULT DIRECTORY EXT_DATA

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE nobadfile, nologfile

fields date_format date mask "mm/dd/yy")

LOCATION ('empbydep.csv') REJECT LIMIT UNLIMITED) empbydep_external

where department='HR';

The empbydep_external table is not actually created as an external table, and this

data is available to query and specify any of the columns or filter by a different selection

in the WHERE CLAUSE. This is also possible with json and useful when accessing data

APIs that are provided in the json format. This does not load the data into the table but

can be queried and used in several different methods for views, reference data that is

available by API to complete data sets in data integrations. Here is the example of the

json file:

SQL> select * from external ((json_document CLOB)

TYPE ORACLE_LOADER

DEFAULT DIRECTORY EXT_DATA

ACCESS PARAMETERS (

RECORDS DELIMITED BY 0x'0A' FIELDS (json_document CHAR(5000)))

location ('empbydep.json') REJECT LIMIT UNLIMITED) json_tab;

Chapter 14 External Tables

580

�Summary
SQL*Loader is a useful utility for all types of data-loading tasks, and external tables are

useful for data transformations in the process of loading or querying the data. Almost

anything you can do with SQL*Loader, you can also do with an external table. The

external table approach is advantageous because there are fewer moving parts and

because the interface is SQL*Plus. Most DBAs and developers find SQL*Plus easier to use

than a SQL*Loader control file.

You can easily use an external table to enable SQL*Plus access to OS flat files. You

simply have to define the structure of the flat file in your CREATE TABLE...ORGANIZATION

EXTERNAL statement. After the external table is created, you can select directly from

the flat file, as if it were a database table. You can select from an external table, but you

cannot insert, update, or delete.

When you create an external table, if required, you can then create regular database

tables by using CREATE TABLE AS SELECT from the external table or use a view based on

the external table for use in other queries. Doing so provides a fast and effective way to

load data stored in external OS files.

The external table feature also allows you to select data from a table and write them

to a binary dump file. The external table CREATE TABLE...ORGANIZATION EXTERNAL

statement defines which tables and columns are used to unload the data. A dump file

created in this manner is platform independent, meaning you can copy it to a server

using a different OS and seamlessly load the data. Additionally, the dump file can be

encrypted and compressed for secure and efficient transportation. You can also use

parallel features to reduce the amount of time it takes to create the dump file.

External table design allows you to also query data directly from the file. This is

also very useful for the json format, which is the format of which many data APIs might

be available. Filtering of the data or a simplified way to load data into other tables is

extremely useful for data integrations and ETL processes.

The next chapter deals with materialized views. These database objects provide

you with a flexible, maintainable, and scalable mechanism for aggregating and

replicating data.

Chapter 14 External Tables

581
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_15

CHAPTER 15

Materialized Views
Materialized view (MV) technology was introduced in Oracle Database version 7. This

feature was originally called snapshots, and you can still see this nomenclature reflected

in some data dictionary structures. An MV allows you to execute an SQL query at a point

in time and store the result set in a table (either locally or in a remote database). After the

MV is initially populated, you can later rerun the MV query and store the fresh results in

the underlying table. There are three main uses for MVs:

•	 Replicating of data to offload query workloads to separate reporting

databases

•	 Improving performance of queries by periodically computing and

storing the results of complex aggregations of data, which lets users

query point-in-time results (of the complex aggregations)

•	 Stopping the query from executing if the query rewrite does not

happen.

The MV can be a query based on tables, views, and other MVs. The base tables are

often referred to as master tables. When you create an MV, Oracle internally creates a

table (with the same name as the MV) as well as an MV object (visible in DBA/ALL/USER_

OBJECTS).

�Understanding MVs

Note  The SALES table will be used as the basis for the majority of the examples
in this chapter.

582

A good way of introducing MVs is to walk through how you would manually perform a

task if the MV feature were not available. Suppose you have a table that stores sales data:

SQL> create table sales(

 sales_id number

,sales_amt number

,region_id number

,sales_dtt date

,constraint sales_pk primary key(sales_id));

--

SQL> insert into sales values(1,101,10,sysdate-10);

SQL> insert into sales values(2,511,20,sysdate-20);

SQL> insert into sales values(3,11,30,sysdate-30);

SQL> commit;

And, you have a query that reports on historical daily sales:

SQL> select

sum(sales_amt) sales_amt

,sales_dtt

from sales

group by sales_dtt;

You observe from a database performance report that this query is executed

thousands of times a day and is consuming a large amount of database resources. The

business users use the report to display historical sales information and therefore do not

need the query to be re-executed each time they run a report. To reduce the amount of

resources the query is consuming, you decide to create a table and populate it as follows:

SQL> create table sales_daily as

select

 sum(sales_amt) sales_amt

,sales_dtt

from sales

group by sales_dtt;

Chapter 15 Materialized Views

583

After the table is created, you put in a daily process to delete from it and completely

refresh it:

-- Step 1 delete from daily aggregated sales data:

SQL> delete from sales_daily;

--

-- Step 2 repopulate table with a snapshot of aggregated sales table:

SQL> insert into sales_daily

select

 sum(sales_amt) sales_amt

,sales_dtt

from sales

group by sales_dtt;

You inform the users that they can have subsecond query results by selecting from

SALES_DAILY (instead of running the query that directly selects and aggregates from the

master SALES table):

SQL> select * from sales_daily;

The prior procedure roughly describes an MV complete refresh process. Oracle’s

MV technology automates and greatly enhances this process. This chapter covers the

procedures for implementing both basic and complex MV features. After reading this

chapter and working through the examples, you should be able to create MVs to replicate

and aggregate data in a wide variety of situations.

Before delving into the details of creating MVs, it is useful to cover basic terminology

and helpful data dictionary views related to MVs. The next two sections briefly describe

the various MV features and the many data dictionary views that contain MV metadata.

Note  This chapter does not cover topics such as multimaster replication and
updatable MVs. See the Oracle Advanced Replication Guide, which is available
for download from the Technology Network area of the Oracle web site (http://
otn.oracle.com), for more details on those topics.

Chapter 15 Materialized Views

http://otn.oracle.com
http://otn.oracle.com

584

Table 15-1.  MV Terminology

Term Meaning

Materialized view (MV) Database object used for replicating data and improving query

performance

MV SQL statement SQL query that defines what data are stored in the underlying

MV base table

MV underlying table Database table that has the same name as the MV and that stores the

result of the MV SQL query

Master (base) table Table that an MV references in its FROM clause of the MV SQL statement

Complete refresh Process in which an MV is deleted from and completely refreshed with

an MV SQL statement

Fast refresh Process during which only DML changes (against base table) that have

occurred since the last refresh are applied to an MV

MV log Database object that tracks DML changes to the MV base table. An MV

log is required for fast refreshes. It can be based on the primary key,

ROWID, or object ID.

Simple MV MV based on a simple query that can be fast refreshed

Complex MV MV based on a complex query that isn’t eligible for fast refresh

Build mode Mode that specifies whether the MV should be immediately populated or

deferred

Refresh mode Mode that specifies whether the MV should be refreshed on demand, on

commit, or never

Refresh method Option that specifies whether the MV refresh should be complete or fast

�MV Terminology
A great many terms relate to refreshing MVs. You should be familiar with these terms

before delving into how to implement the features. Table 15-1 defines the various terms

relevant to MVs.

(continued)

Chapter 15 Materialized Views

585

Refer back to Table 15-1 as you read the rest of this chapter. These terms and

concepts are explained and expounded on in subsequent sections.

�Referencing Useful Views
When you are working with MVs, sometimes it is hard to remember which data

dictionary view to query under a particular circumstance. A wide variety of data

dictionary views are available. Table 15-2 contains a description of the MV-related data

dictionary views. Examples of using these views are shown throughout this chapter

where appropriate. These views are invaluable for troubleshooting, diagnosing issues,

and understanding your MV environment.

Table 15-2.  MV Data Dictionary View Definitions

Data Dictionary View Meaning

DBA/ALL/USER_MVIEWS Information about MVs, such as owner, base

query, last refresh time, and so on

DBA/ALL/USER_MVIEW_REFRESH_TIMES MV last refresh times, MV names, master

table, and master owner

DBA/ALL/USER_REGISTERED_MVIEWS All registered MVs; helps identify which MVs

are using which MV logs

DBA/ALL/USER_MVIEW_LOGS MV log information

(continued)

Term Meaning

Query rewrite Feature that allows the optimizer to choose to use MVs (instead of base

tables) to fulfill the requirements of a query (even though the query

doesn’t directly reference the MVs)

Local MV MV that resides in the same database as the base table(s)

Remote MV MV that resides in a database separate from that of the base table(s)

Refresh group Set of MVs refreshed at the same consistent transactional point

Table 15-1.  (continued)

Chapter 15 Materialized Views

586

�Creating Basic Materialized Views
This section covers how to create an MV. The two most common configurations used are

as follows:

•	 Creating complete refresh MVs that are refreshed on demand

•	 Creating fast refresh MVs that are refreshed on demand

Table 15-2.  (continued)

Data Dictionary View Meaning

DBA/ALL/USER_BASE_TABLE_MVIEWS Base table names and last refresh dates for

tables that have MV logs

DBA/ALL/USER_MVIEW_AGGREGATES Aggregate functions that appear in SELECT

clauses for MVs

DBA/ALL/USER_MVIEW_ANALYSIS Information about MVs. Oracle recommends

that you use DBA/ALL/USER_MVIEWS instead

of these views.

DBA/ALL/USER_MVIEW_COMMENTS Any comments associated with MVs

DBA/ALL/USER_MVIEW_DETAIL_PARTITION Partition and freshness information

DBA/ALL/USER_MVIEW_DETAIL_SUBPARTITION Subpartition and freshness information

DBA/ALL/USER_MVIEW_DETAIL_RELATIONS Local tables and MVs that an MV is dependent

on

DBA/ALL/USER_MVIEW_JOINS Joins between two columns in the WHERE

clause of an MV definition

DBA/ALL/USER_MVIEW_KEYS Columns or expressions in the SELECT clause

of an MV definition

DBA/ALL/USER_TUNE_MVIEW Result of executing the DBMS_ADVISOR.

TUNE_MVIEW procedure

V$MVREFRESH Information about MVs currently being refreshed

DBA/ALL/USER_REFRESH Details about MV refresh groups

DBA_RGROUP Information about MV refresh groups

DBA_RCHILD Children in an MV refresh group

Chapter 15 Materialized Views

587

It is important to understand these basic configurations. They lay the foundation for

everything else you do with the MV feature. Therefore, this section starts with these basic

configurations. Later, the section covers more advanced configurations.

�Creating a Complete Refreshable MV
This section explains how to set up an MV that is periodically completely refreshed,

which is about the simplest example possible. Complete refreshes are appropriate for

MVs that have base tables in which significant portions of the rows change from one

refresh interval to the next. Complete refreshes are also required in situations in which a

fast refresh is not possible because of restrictions imposed by Oracle (more on this later

in this section; see also the section “Manually Refreshing MVs from SQL *Plus” later in

this chapter).

Note  To create an MV, you need both the CREATE MATERIALIZED VIEW
system privilege and the CREATE TABLE system privilege. If a user creating MVs
doesn’t own the base table, then SELECT access on the base table is also required
to perform a refresh-on-commit ON COMMIT REFRESH.

The MV example in this section is based on the previously created SALES table. Suppose

you wanted to create an MV that reports on daily sales. Use the CREATE MATERIALIZED

VIEW...AS SELECT statement to do this. The following statement names the MV,

specifies its attributes, and defines the SQL query on which the MV is based:

SQL> create materialized view sales_daily_mv

segment creation immediate

refresh

complete

on demand

as

select

 sum(sales_amt) sales_amt

,trunc(sales_dtt) sales_dtt

from sales

group by trunc(sales_dtt);

Chapter 15 Materialized Views

588

The SEGMENT CREATION IMMEDIATE clause is available with Oracle 11g Release 2

and higher. This clause instructs Oracle to create the segment and allocate an extent

when you create the MV. This was the behavior in previous versions of Oracle. If you do

not want immediate segment creation, use the SEGMENT CREATION DEFERRED clause. If

the newly created MV contains any rows, then segments are created, and extents are

allocated, regardless of whether you use SEGMENT CREATION DEFERRED.

Let’s look at the USER_MVIEWS data dictionary to verify that the MV was created as

expected. Run this query:

SQL> select mview_name, refresh_method, refresh_mode

,build_mode, fast_refreshable

from user_mviews

where mview_name = 'SALES_DAILY_MV';

Here is the output for this MV:

MVIEW_NAME REFRESH_ REFRES BUILD_MOD FAST_REFRESHABLE

--------------- -------- ------ --------- ------------------

SALES_DAILY_MV COMPLETE DEMAND IMMEDIATE DIRLOAD_LIMITEDDML

It is also informative to inspect the USER_OBJECTS and USER_SEGMENTS views to see

what has been created. When you query USER_OBJECTS, note that an MV and table object

have been created:

SQL> select object_name, object_type

from user_objects

where object_name like 'SALES_DAILY_MV'

order by object_name;

Here is the corresponding output:

OBJECT_NAME OBJECT_TYPE

-------------------- -----------------------

SALES_DAILY_MV MATERIALIZED VIEW

SALES_DAILY_MV TABLE

Chapter 15 Materialized Views

589

The MV is a logical container that stores data in a regular database table. Querying

the USER_SEGMENTS view shows the base table, its primary key index, and the table that

stores data returned by the MV query:

SQL> select segment_name, segment_type

from user_segments

where segment_name like '%SALES_DAILY%'

order by segment_name;

Here is the output for this example:

SEGMENT_NAME SEGMENT_TYPE

------------------------- ------------------

I_SNAP$_SALES_DAILY_MV INDEX

SALES_DAILY TABLE

SALES_DAILY_MV TABLE

In the prior output the I_SNAP$_SALES_DAILY_MV is a unique index associated with

the MV that Oracle automatically creates to help improve refresh performance. Recall

that the MV feature was originally called snapshots, and so sometimes you will find

objects with names derived from the early days of the feature.

Finally, let’s look at how to refresh the MV. Here are data contained in the MV:

SQL> select sales_amt, to_char(sales_dtt,'dd-mon-yyyy') from sales_daily_mv;

Here is the output:

SALES_AMT TO_CHAR(SALES_DTT,'D

---------- --------------------/

 101 20-jan-2013

 511 10-jan-2013

 11 31-dec-2012

Next, insert some additional data into the base SALES table:

SQL> insert into sales values(4,99,200,sysdate);

SQL> insert into sales values(5,127,300,sysdate);

SQL> commit;

Chapter 15 Materialized Views

590

Now, you attempt to initiate a fast refresh of the MV, using the REFRESH procedure of

the DBMS_MVIEW package. This example passes two parameters to the REFRESH procedure:

the name and the refresh method. The name is SALES_DAILY_MV, and the parameter is F

(for fast):

SQL> exec dbms_mview.refresh('SALES_DAILY_MV','F');

Because this MV was not created in conjunction with an MV log, a fast refresh is not

possible. The following error is thrown:

ORA-23413: table "MV_MAINT"."SALES" does not have a materialized view log

Instead, a complete refresh is initiated. The parameter passed in is C (for complete):

SQL> exec dbms_mview.refresh('SALES_DAILY_MV','C');

The output indicates success:

PL/SQL procedure successfully completed.

Now, when you select from the MV, it returns data showing that more information

has been added:

SQL> select sales_amt, to_char(sales_dtt,'dd-mon-yyyy') from sales_daily_mv;

Here is the output:

 SALES_AMT TO_CHAR(SALES_DTT,'D

---------- --------------------

 101 20-jan-2013

 226 30-jan-2013

 511 10-jan-2013

 11 31-dec-2012

Figure 15-1 illustrates the architectural components that are new to MVs; pause for a

few minutes here, and make sure you understand all the components.

Chapter 15 Materialized Views

591

This diagram illustrates that a complete refresh is not difficult to understand. The

numbers show the flow of data in the complete refresh process:

	 1.	 Users/applications create transactions.

	 2.	 Data are committed in the base table.

	 3.	 A complete refresh is manually initiated with the DBMS_MVIEW

package.

	 4.	 Data in the underlying MV are deleted and completely refreshed

with the contents of the base table.

	 5.	 Users can query data from the MV, which contains a point-in-time

snapshot of the base table’s data.

In the next section, a more complicated example shows you how to set up a fast

refreshable MV.

�Creating a Fast Refreshable MV
When you create a fast refreshable MV, it first populates the MV table with the entire

result set of the MV query. After the initial result set is in place, only data modified

(in the base table) since the last refresh need to be applied to the MV. In other words, any

updates, inserts, or deletes from the master table that have occurred since the last refresh

are copied over. This feature is appropriate when you have a small number of changes to

a base table over a period of time compared with the total number of rows in the table.

Figure 15-1.  Architectural components of a complete refresh MV

Chapter 15 Materialized Views

592

Here are the steps for implementing a fast refreshable MV:

	 1.	 Create a base table (if it has not already been created).

	 2.	 Create an MV log on the base table.

	 3.	 Create an MV as fast refreshable.

This example uses the previously created SALES table. A fast refreshable MV requires

an MV log on the base table. When a fast refresh occurs, the MV log must have a unique

way to identify which records have been modified and thus need to be refreshed. You can

do this with two different approaches. One method is to specify the PRIMARY KEY clause

when you create the MV log; the other is to specify the ROWID clause. If the underlying

base table has a primary key, then use the primary key–based MV log. If the underlying

base table has no primary key, then you have to create the MV log, using ROWID. In most

cases, you will probably have a primary key defined for every base table. However, the

reality is that some systems are poorly designed or have some rare reason for a table not to

have a primary key.

In this example, a primary key is defined on the base table, so you create the MV log

with the PRIMARY KEY clause:

SQL> create materialized view log on sales with primary key;

If there was no primary key defined on the base table, this error is thrown when

attempting to create the MV log:

ORA-12014: table does not contain a primary key constraint

If the base table has no primary key, and you do not have the option of adding one,

you must specify ROWID when you create the MV log:

SQL> create materialized view log on sales with rowid;

When you use a primary key-based fast refreshable MV, the primary key column(s) of

the base table must be part of the fast refreshable MV SELECT statement;see the section

“Creating a Fast Refreshable MV Based on a Complex Query” later in the chapter). For

this example, there will be no aggregated columns in the MV. This type of MV would

typically be used to replicate data from one environment to another: there will be no

Chapter 15 Materialized Views

593

aggregated columns in the MV. This type of MV would typically be used to replicate data

from one environment to another:

SQL> create materialized view sales_rep_mv

segment creation immediate

refresh

 with primary key

 fast

 on demand

as

select

 sales_id

,sales_amt

,trunc(sales_dtt) sales_dtt

from sales;

At this point, it is useful to inspect the objects that are associated with the MV. The

following query selects from USER_OBJECTS:

SQL> select object_name, object_type

from user_objects

where object_name like '%SALES%'

order by object_name;

Here are the objects that have been created:

OBJECT_NAME OBJECT_TYPE

-------------------- -----------------------

MLOG$_SALES TABLE

RUPD$_SALES TABLE

SALES TABLE

SALES_PK INDEX

SALES_PK1 INDEX

SALES_REP_MV TABLE

SALES_REP_MV MATERIALIZED VIEW

Chapter 15 Materialized Views

594

A few objects in the previous output require some explanation:

•	 MLOG$_SALES

•	 RUPD$_SALES

•	 SALES_PK1

First, when an MV log is created, a corresponding table is also created that stores the

rows in the base table that changed and how they changed (insert, update, or delete).

The MV log table name follows the format MLOG$_<base table name>.

A table is also created with the format RUPD$_<base table name>Oracle

automatically creates this RUPD$ table when you create a fast refreshable MV, using a

primary key. The table is there to support the updatable MV feature. You do not have

to worry about this table unless you are dealing with updatable MVs (see the Oracle

Advanced Replication Guide for more details on updatable MVs). If you’re not using the

updatable MV feature, then you can ignore the RUPD$ table. table.

Furthermore, Oracle creates an index with the format <base table name>_PK1. This

index is automatically created for primary key-based MVs and is based on the primary

key column(s) of the base table. If this is a ROWID instead of a primary key, then the index

name has the format I_SNAP$_<table_name> and is based on the ROWID. If you do not

explicitly name the primary key index on the base table, then Oracle gives the MV table

primary key index a system-generated name, such as SYS_C008780.

Now that you understand the underlying architectural components, let’s look at the

data in the MV:

SQL> select sales_amt, to_char(sales_dtt,'dd-mon-yyyy')

from sales_rep_mv

order by 2;

Here is the output:

SALES_AMT TO_CHAR(SALES_DTT,'D

---------- --------------------

 511 10-jan-2013

 101 20-jan-2013

 127 30-jan-2013

 99 30-jan-2013

 11 31-dec-2012

Chapter 15 Materialized Views

595

Let’s add two records to the base SALES table:

SQL> insert into sales values(6,99,20,sysdate-6);

SQL> insert into sales values(7,127,30,sysdate-7);

SQL> commit;

At this point, it is instructional to inspect the M$LOG table. You should see two records

that identify how the data in the SALES table have changed:

SQL> select count(*) from mlog$_sales;

There are two records:

 COUNT(*)

 2

Next, let’s refresh the MV. This MV is fast refreshable, so you call the REFRESH

procedure of the DBMS_MVIEW package with the F (for fast) parameter:

SQL> exec dbms_mview.refresh('SALES_REP_MV','F');

A quick inspection of the MV shows two new records:

SQL> select sales_amt, to_char(sales_dtt,'dd-mon-yyyy')

from sales_rep_mv

order by 2;

Here is some sample output:

SALES_AMT TO_CHAR(SALES_DTT,'D

---------- --------------------

 511 10-jan-2013

 101 20-jan-2013

 127 23-jan-2013

 99 24-jan-2013

 127 30-jan-2013

 99 30-jan-2013

 11 31-dec-2012

Chapter 15 Materialized Views

596

Additionally, the count of the MLOG$ has dropped to zero. After the MV refresh is

complete, those records are no longer required:

SQL> select count(*) from mlog$_sales;

Here is the output:

 COUNT(*)

 0

You can verify the last method whereby an MV was refreshed by querying the USER_

MVIEWS view:

SQL> select mview_name, last_refresh_type, last_refresh_date

from user_mviews

order by 1,3;

Here is some sample output:

MVIEW_NAME LAST_REF LAST_REFR

------------------------- -------- ---------

SALES_REP_MV FAST 30-JAN-13

Figure 15-2 illustrates the architectural components that are new to MVs; once again,

understanding of these components is important, so pause for a few minutes here.

Figure 15-2.  Architectural components of a fast refreshable MV

Chapter 15 Materialized Views

597

The numbers in the diagram describe the flow of data for a fast refreshable MV:

	 1.	 Users create transactions.

	 2.	 Data are committed in the base table.

	 3.	 An internal trigger on the base table populates the MV log table.

	 4.	 A fast refresh is initiated via the DBMS_MVIEW package.

	 5.	 DML changes that have been created since the last refresh are

applied to the MV. Rows no longer needed by the MV are deleted

from the MV log.

	 6.	 Users can query data from the MV, which contains a point-in-time

snapshot of the base table’s data.

When you have a good understanding of the architecture of a fast refresh, you will

not have difficulty learning advanced MV concepts. If this is the first time looking atMVs,

it is important to realize that an MV’s data are stored in a regular database table. This

will help you understand architecturally what is and is not possible. For the most part,

because the MV and MV log are based on tables, most features available with a regular

database table can also be applied to the MV table and MV log table. For instance, the

following Oracle features are readily applied to MVs:

•	 Storage and tablespace placement

•	 Indexing

•	 Partitioning

•	 Compression

•	 Encryption

•	 Logging

•	 Parallelism

The next section shows examples of how to create MVs with various features.

Chapter 15 Materialized Views

598

�Going Beyond the Basics
Numerous MV features are available. Many are related to attributes that you can apply

to any table, such as storage, indexing, compression, and encryption. Other features are

related to the type of MV created and how it is refreshed. These features are described in

the next several sections.

�Creating MVs and Specifying Tablespace for MVs
and Indexes
Every MV has an underlying table associated with it. Additionally, depending on the

type of MV, an index may be automatically created. When you create an MV, you can

specify the tablespace and storage characteristics for both the underlying table and

index. The next example shows how to specify the tablespace to be used for the MV

table and the index:

SQL> create materialized view sales_mv

tablespace users

using index tablespace users

refresh with primary key

 fast on demand

as

select sales_id ,sales_amt, sales_dtt

from sales;

�Creating Indexes on MVs
An MV stores its data in a regular database table. Therefore, you can create indexes

on the underlying table (just as you can for any other table). In general, follow the

same guidelines for creating an index on an MV table as you would a regular table (see

Chapter 8 for more details on creating indexes). Keep in mind that although indexes can

significantly improve query performance, overhead is associated with maintaining the

index for any inserts, updates, and deletes. Indexes also consume disk space.

Chapter 15 Materialized Views

599

Listed next is an example of creating an index based on a column in an MV. The

syntax is the same as for creating an index on a regular table:

SQL> create index sales_mv_idx1 on sales_mv(sales_dtt) tablespace users;

You can display the indexes created for an MV by querying the USER_INDEXES view:

SQL> select a.table_name, a.index_name

from user_indexes a

 ,user_mviews b

where a.table_name = b.mview_name;

Note I f you create, using the WITH PRIMARY KEY clause, a simple MV that
selects from a base table that has a primary key, Oracle automatically creates an
index on the corresponding primary key columns in the MV. If you create, using the
WITH ROWID clause, a simple MV that selects from a base table that has a primary
key, Oracle automatically creates an index named I_SNAP$_<table_name> on a
hidden column named M_ROW$$.

�Partitioning MVs
You can partition an MV table like any other table in the database. If you work with large

MVs, you may want to consider partitioning to better manage and maintain a large table.

Use the PARTITION clause when you create the MV. This example builds an MV that is

partitioned by hash on SALES_ID:

SQL> create materialized view sales_mv

partition by hash (sales_id)

partitions 4

refresh on demand complete with rowid

as

select sales_id, sales_amt, region_id, sales_dtt

from sales;

The result set from the query is stored in a partitioned table. You can view the

partition details for this table in USER_TAB_PARTITIONS and USER_PART_TABLES (just

like any other partitioned table in your database). See Chapter 12 for more details on

partitioning strategies and maintenance.

Chapter 15 Materialized Views

600

�Compressing an MV
As mentioned earlier, when you create an MV, an underlying table is created to store the

data. Because this table is a regular database table, you can implement features such as

compression; for example,

SQL> create materialized view sales_mv

compress

as

select sales_id, sales_amt

from sales;

You can confirm the compression details with the following query:

SQL> select table_name, compression, compress_for

from user_tables

where table_name='SALES_MV';

Here is the output:

TABLE_NAME COMPRESS COMPRESS_FOR

------------------------------ -------- ------------

SALES_MV ENABLED BASIC

Note  Basic table compression does not require an extra license from Oracle,
whereas ROW STORE COMPRESS ADVANCED compression (prior to 12c; this was
enabled via COMPRESS FOR OLTP) calls for the Advanced Compression option,
which does require an extra license from Oracle. See Oracle Database Licensing
Information, available from the Technology Network area of the Oracle Web site
(http://otn.oracle.com), for details.

�Encrypting MV Columns
As mentioned earlier, when you create an MV, an underlying table is created to store the

data. Because this table is a regular database table, you can implement features such as

encryption of columns; for example,

Chapter 15 Materialized Views

http://otn.oracle.com

601

SQL> create materialized view sales_mv

(sales_id encrypt no salt

,sales_amt encrypt)

as

select

 sales_id

,sales_amt

from sales;

For the previous statement to work, you must create and open a security wallet for

your database. This feature requires the Advanced Security option from Oracle. Since

the MV is stored in a tablespace, the encryption can also be done at the tablespace level

instead of just a column.

You can verify that encryption is in place by describing the MV:

SQL> desc sales_mv

Name Null? Type

 ----------------------------------- ----------------------------

 SALES_ID NOT NULL NUMBER ENCRYPT

 SALES_AMT NUMBER ENCRYPT

ENABLING AN ORACLE WALLET

An Oracle Wallet is the mechanism Oracle uses to enable encryption. The wallet is an OS file

that contains encryption keys. The wallet is enabled via the following steps:

	1.	 Modify the SQLNET.ORA file to contain the location of the wallet:

ENCRYPTION_WALLET_LOCATION=

 (SOURCE=(METHOD=FILE) (METHOD_DATA=

 (DIRECTORY=/ora01/app/oracle/product/18.1.0.1/db_1/network/admin)))

	2.	 Create the wallet file (ewallet.p18) with the ALTER SYSTEM command:

SQL> alter system set encryption key identified by foo;

Chapter 15 Materialized Views

602

	3.	E nable encryption:

SQL> alter system set encryption wallet open identified by foo;

See the Oracle Advanced Security Administrator’s Guide, which can be freely downloaded from

the Technology Network area of the Oracle web site (http://otn.oracle.com), for full

details on implementing encryption.

�Building an MV on a Prebuilt Table
In data warehouse environments, sometimes you need to create a table, populate it with

large quantities of data, and then transform it into an MV. Or, you may be replicating

a large table and find that it is more efficient to initially populate the remote MV by

prebuilding the table with data, using Data Pump. Listed next are the steps for building

an MV on a prebuilt table:

	 1.	 Create a table.

	 2.	 Populate it with data.

	 3.	 Create an MV on the table created in step 1.

Here is a simple example to illustrate the process. First, you create a table:

SQL> create table sales_mv

(sales_id number

,sales_amt number);

Now, populate the table with data. For instance, in a data warehouse environment, a

table can be loaded using Data Pump, SQL*Loader, or external tables.

Finally, run the CREATE MATERIALIZED VIEW...ON PREBUILT TABLE statement

to turn the table into an MV. The MV name and the table name must be identical.

Additionally, each column in the query must correspond to a column in the table; for

example,

SQL> create materialized view sales_mv

on prebuilt table

using index tablespace users

as

select sales_id, sales_amt

from sales;

Chapter 15 Materialized Views

http://otn.oracle.com

603

Now, the SALES_MV object is an MV. If you attempt to drop the SALES_MV table, the

following error is thrown, indicating that SALES_MV is now an MV:

SQL> drop table sales_mv;

ORA-12083: must use DROP MATERIALIZED VIEW to drop "MV_MAINT"."SALES_MV"

The prebuilt-table feature is useful in data warehouse environments, in which

typically there are long periods when a base table is not being actively updated. This

gives you time to load a prebuilt table and ensure that its contents are identical to those

of the base table. After you create the MV on the prebuilt table, you can fast refresh the

MV and keep it in sync with the base table.

If your base table (specified in the SELECT clause of the MV) is continuously being

updated, then creating an MV on a prebuilt table may not be a viable option. This is

because there is no way to ensure that the prebuilt table will stay in sync with the base table.

Note  For MVs created on prebuilt tables, if you subsequently issue a DROP
MATERIALIZED VIEW statement, the underlying table isn’t dropped. This has
some interesting implications when you need to modify a base table (such as
adding a column). See the section “Modifying Base Table DDL and Propagating to
MVs,” later in this chapter, for details.

�Creating an Unpopulated MV
When you create an MV, you have the option of instructing Oracle whether or not to

initially populate the MV with data. For example, if it takes several hours to initially build

an MV, you may want to first define the MV and then populate it as a separate job.

This example uses the BUILD DEFERRED clause to instruct Oracle not to initially

populate the MV with the results of the query:

SQL> create materialized view sales_mv

tablespace users

build deferred

refresh complete on demand

as

select sales_id, sales_amt

from sales;

Chapter 15 Materialized Views

604

At this point, querying the MV results in zero rows returned. At some later point, you

can initiate a complete refresh to populate the MV with data.

�Creating an MV Refreshed on Commit
You may be required, when data are modified in the master table, to have them

immediately copied to an MV. In this scenario, use the ON COMMIT clause when you create

the MV. The master table must have an MV log created on it for this technique to work:

SQL> create materialized view log on sales with primary key;

Next, an MV is created that refreshes on commit:

SQL> create materialized view sales_mv

refresh

on commit

as

select sales_id, sales_amt from sales;

As data are inserted and committed in the master table, any changes are also

available in the MV that would be selected by the MV query.

The ON COMMIT refreshable MV has a few restrictions you need to be aware of:

•	 The master table and MV must be in the same database.

•	 You cannot execute a distributed transaction on the base table.

•	 This approach is not supported with MVs that contain object types or

Oracle-supplied types.

Also consider the overhead associated with committing data simultaneously in two

places; this can affect the performance of a high-transaction OLTP system. Additionally,

if there is any problem with updating the MV, then the base table cannot commit a

transaction. For example, if the tablespace in which the MV is created becomes full (and

cannot allocate another extent), you see an error such as this when trying to insert into

the base table:

ORA-12008: error in materialized view refresh path

ORA-01653: unable to extend table MV_MAINT.SALES_MV by 16 in tablespace...

Chapter 15 Materialized Views

605

For these reasons, you should use this feature only when you are sure it would not

affect performance or availability.

Note  You cannot specify that an MV be refreshed with both ON COMMIT and
ON DEMAND. In addition, ON COMMIT is not compatible with the START WITH and
NEXT clauses of the CREATE MATERIALIZED VIEW statement.

�Creating a Never Refreshable MV
You may never want an MV to be refreshed. For example, you may want to guarantee

that you have a snapshot of a table at a point in time for auditing purposes. Specify the

NEVER REFRESH clause when you create the MV to achieve this:

SQL> create materialized view sales_mv

never refresh

as

select sales_id, sales_amt

from sales;

If you attempt to refresh a nonrefreshable MV, you receive this error:

ORA-23538: cannot explicitly refresh a NEVER REFRESH materialized view

You can alter a never refreshable view to be refreshable. Use the ALTER

MATERIALIZED VIEW statement to do this:

SQL> alter materialized view sales_mv refresh on demand complete;

You can verify the refresh mode and method with the following query:

SQL> select mview_name, refresh_mode, refresh_method from user_mviews;

Chapter 15 Materialized Views

606

�Creating MVs for Query Rewrite
Query rewrite allows the optimizer to recognize that an MV can be used to fulfill the

requirements of a query instead of using the underlying master (base) tables. If you

have an environment in which users frequently write their own queries and are unaware

of the available MVs, this feature can greatly help with performance. There are three

prerequisites for enabling query rewrite:

•	 Oracle Enterprise Edition

•	 Setting database initialization parameter QUERY_REWRITE_ENABLED to TRUE

•	 MV either created or altered with the ENABLE QUERY REWRITE clause

This example creates an MV with query rewrite enabled:

SQL> create materialized view sales_daily_mv

segment creation immediate

refresh

complete

on demand

enable query rewrite

as

select

 sum(sales_amt) sales_amt

,trunc(sales_dtt) sales_dtt

from sales

group by trunc(sales_dtt);

You can verify that query rewrite is in use by examining a query’s explain plan via the

autotrace utility:

SQL> set autotrace trace explain

Now, suppose a user runs the following query, unaware that an MV exists that

already aggregates the required data:

SQL> select

 sum(sales_amt) sales_amt

,trunc(sales_dtt) sales_dtt

from sales

group by trunc(sales_dtt);

Chapter 15 Materialized Views

607

Here is a partial listing of autotrace output that verifies that query rewrite is in use:

| Id | Operation | Name | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 3 (0)| 00:00:01 |

| 1 | MAT_VIEW REWRITE ACCESS FULL| SALES_DAILY_MV | 3 (0)| 00:00:01 |

As you can see from the prior output, even though the user selected directly from the

SALES table, the optimizer determined that it could more efficiently satisfy the results of

the query by accessing the MV.

You can tell if query rewrite is enabled for an MV by selecting the REWRITE_ENABLED

column from USER_MVIEWS:

SQL> select mview_name, rewrite_enabled, rewrite_capability

from user_mviews

where mview_name = 'SALES_DAILY_MV';

If for any reason a query is not using the query rewrite functionality, and you think it

should be, use the EXPLAIN_REWRITE procedure of the DBMS_MVIEW package to diagnose

issues.

�Creating a Fast Refreshable MV Based on a Complex
Query
In many situations, when you base an MV on a query that joins multiple tables, it is

deemed complex and therefore is available only for a complete refresh. However, in

some scenarios, you can create a fast refreshable MV when you reference two tables that

are joined together in the MV query.

This section describes how to use the EXPLAIN_MVIEW procedureDBMS_MVIEW to

determine whether it is possible to fast refresh a complex query. To help you completely

understand the example, this section shows the SQL used to create the base tables. Say

you have two base tables, defined as follows:

SQL> create table region(

 region_id number

,reg_desc varchar2(30)

Chapter 15 Materialized Views

608

,constraint region_pk primary key(region_id));

--

SQL> create table sales(

 sales_id number

,sales_amt number

,region_id number

,sales_dtt date

,constraint sales_pk primary key(sales_id)

,constraint sales_fk1 foreign key (region_id) references region(region_

id));

Additionally, REGION and SALES have MV logs created on them, as shown:

SQL> create materialized view log on region with primary key;

SQL> create materialized view log on sales with primary key;

Also, for this example, the base tables have these data inserted into them:

SQL> insert into region values(10,'East');

SQL> insert into region values(20,'West');

SQL> insert into region values(30,'South');

SQL> insert into region values(40,'North');

--

SQL> insert into sales values(1,100,10,sysdate);

SQL> insert into sales values(2,200,20,sysdate-20);

SQL> insert into sales values(3,300,30,sysdate-30);

Suppose you want to create an MV that joins the REGION and SALES base tables as follows:

SQL> create materialized view sales_mv

as

select

 a.sales_id

,b.reg_desc

from sales a

 ,region b

where a.region_id = b.region_id;

Chapter 15 Materialized Views

609

Next, let’s attempt to fast refresh the MV:

SQL> exec dbms_mview.refresh('SALES_MV','F');

This error is thrown:

ORA-12032: cannot use rowid column from materialized view log...

The error indicates that the MV has issues and cannot be fast refreshed. To

determine whether this MV can become fast refreshable, use the output of the EXPLAIN_

MVIEW procedure of the DBMS_MVIEW package. This procedure requires that you first create

an MV_CAPABILITIES_TABLE. Oracle provides a script to do this. Run this script as the

owner of the MV:

SQL> @?/rdbms/admin/utlxmv.sql

After you create the table, run the EXPLAIN_MVIEW procedure to populate it:

SQL> exec dbms_mview.explain_mview(mv=>'SALES_MV',stmt_id=>'100');

Now, query MV_CAPABILITIES_TABLE to see what potential issues this MV may have:

SQL> select capability_name, possible, msgtxt, related_text

from mv_capabilities_table

where capability_name like 'REFRESH_FAST_AFTER%'

and statement_id = '100'

order by 1;

Next is a partial listing of the output. The P (for possible) column contains an N (for no)

for every fast refresh possibility:

CAPABILITY_NAME P MSGTXT RELATED_TEXT

------------------------- - ---------------------------- ---------------

REFRESH_FAST_AFTER_INSERT N the SELECT list does not have B

 �the rowids of all the detail

tables

REFRESH_FAST_AFTER_INSERT N mv log must have ROWID MV_MAINT.REGION

REFRESH_FAST_AFTER_INSERT N mv log must have ROWID MV_MAINT.SALES

Chapter 15 Materialized Views

610

MSGTXT indicates the issues: The MV logs need to be ROWID based, and the ROWID of

the tables must appear in the SELECT clause. So, first drop and re-create the MV logs with

ROWID (instead of a primary key):

SQL> drop materialized view log on region;

SQL> drop materialized view log on sales;

--

SQL> create materialized view log on region with rowid;

SQL> create materialized view log on sales with rowid;

--

SQL> drop materialized view sales_mv;

--

SQL> create materialized view sales_mv

as

select

 a.rowid sales_rowid

,b.rowid region_rowid

,a.sales_id

,b.reg_desc

from sales a

 ,region b

where a.region_id = b.region_id;

Next, reset the MV_CAPABILITIES_TABLE, and repopulate it via the EXPLAIN_MVIEW

procedure:

SQL> delete from mv_capabilities_table where statement_id=100;

SQL> exec dbms_mview.explain_mview(mv=>'SALES_MV',stmt_id=>'100');

The output shows that it is now possible to fast refresh the MV:

CAPABILITY_NAME P MSGTXT RELATED_TEXT

------------------------------ - -------------------------- ------------

REFRESH_FAST_AFTER_ANY_DML Y

REFRESH_FAST_AFTER_INSERT Y

REFRESH_FAST_AFTER_ONETAB_DML Y

Chapter 15 Materialized Views

611

Execute the following statement to see if the fast refresh works:

SQL> exec dbms_mview.refresh('SALES_MV','F');

PL/SQL procedure successfully completed.

The EXPLAIN_MVIEW procedure is a powerful tool that allows you to determine

whether a refresh capability is possible and, if it is not possible, why it is not and how to

potentially resolve the issue.

�Viewing MV DDL
To quickly view the SQL query on which an MV is based, select from the QUERY column

of DBA/ALL/USER_MVIEWS. If you are using SQL*Plus, first set the LONG variable to a value

large enough to display the entire contents of a LONG column:

SQL> set long 5000

SQL> select query from dba_mviews where mview_name=UPPER('&&mview_name');

To view the entire DDL required to re-create an MV, use the DBMS_METADATA package

(you also need to set the LONG variable to a large value if using SQL*Plus):

SQL> select dbms_metadata.get_ddl('MATERIALIZED_VIEW','SALES_MV') from dual;

Here is a partial listing of the output for this example:

DBMS_METADATA.GET_DDL('MATERIALIZED_VIEW','SALES_MV')

 CREATE MATERIALIZED VIEW "MV_MAINT"."SALES_MV" ("SALES_ROWID", "REGION_ROWID",

 "SALES_ID", "REG_DESC")

 ORGANIZATION HEAP PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255

This output shows the DDL that Oracle thinks is required to re-create the MV. This is

usually the most reliable way to generate the DDL associated with an MV.

�Dropping an MV
You may occasionally need to drop an MV. Perhaps a view is no longer being used, or you

may need to drop and re- create an MV to change the underlying query on which the MV

is based (such as adding a column). Use the DROP MATERIALIZED VIEW command to drop

an MV; for example,

SQL> drop materialized view sales_mv;

Chapter 15 Materialized Views

612

When you drop an MV, the MV object, the table object, and any corresponding

indexes are also dropped. Dropping an MV doesn’t affect any MV logs—an MV log is

dependent only on the master table.

You can also specify that the underlying table be preserved. You may want to do this

if you are troubleshooting and need to drop the MV definition but keep the MV table and

data; for example,

SQL> drop materialized view sales_mv preserve table;

In this scenario, you can also use the underlying table later as the basis for an MV by

building the MV, using the ON PREBUILT TABLE clause.

If the MV was originally built using the ON PREBUILT TABLE clause, then when you

drop the MV, the underlying table is not dropped. If you want the underlying table

dropped, you must use a DROP TABLE statement:

SQL> drop materialized view sales_mv;

SQL> drop table sales_mv;

�Modifying MVs
The following sections describe common maintenance tasks associated with MVs.

Topics covered include how to modify an MV to reflect column changes that have been

applied to the base table sometime after the MV was initially created and modifying

attributes such as logging and parallelism.

�Modifying Base Table DDL and Propagating to MVs
A common task involves adding a column to or dropping a column from a base table

(because business requirements have changed). After the column is added to or dropped

from the base table, you want those DDL changes to be reflected in any dependent MVs.

You have a few options for propagating base table column changes to dependent MVs:

•	 Drop and re-create the MV with the new column definitions.

•	 Drop the MV, but preserve the underlying table, modify the MV table,

and then re-create the MV (with the new column changes), using the

ON PREBUILT TABLE clause.

Chapter 15 Materialized Views

613

•	 If the MV was originally created using the ON PREBUILT TABLE clause,

drop the MV object, modify the MV table, and then re-create the

MV (with the new column changes), using the ON PREBUILT TABLE

clause.

With any of the prior options, you have to drop and recreate the MV so that

it incorporates the new column changes in the base table. These approaches are

described next.

�Re-creating an MV to Reflect Base Table Modifications

Using the previously created SALES table, suppose you have an MV log and an MV,

created as shown:

SQL> create materialized view log on sales with primary key;

--

SQL> create materialized view sales_mv

refresh with primary key

 fast on demand as

select sales_id ,sales_amt, sales_dtt

from sales;

Then, sometime later, a column is added to the base table:

SQL> alter table sales add(sales_loc varchar2(30));

You want the base table modification to be reflected in the MV. How do you

accomplish this task? You know the MV contains an underlying table that stores the

results. You decide to modify the underlying MV table directly:

SQL> alter table sales_mv add(sales_loc varchar2(30));

The alteration is successful. You next refresh the MV but realize that the additional

column is not being refreshed. To understand why, recall that an MV is an SQL query

that stores its results in an underlying table. Therefore, to modify an MV, you have to

change the SQL query that the MV is based on. Because there is no ALTER MATERIALIZED

Chapter 15 Materialized Views

614

VIEW ADD/DROP/MODIFY <column> statement, you must do the following to add/delete

columns in an MV:

	 1.	 Alter the base table.

	 2.	 Drop and re-create the MV to reflect the changes in the base table.

SQL> drop materialized view sales_mv;

--

SQL> create materialized view sales_mv

refresh with primary key

 complete on demand as

select sales_id, sales_amt, sales_dtt, sales_loc

from sales;

This approach may take a long time if large quantities of data are involved. You have

downtime for any application that accesses the MV while it is being rebuilt. If you work

in a data warehouse environment, then because of the amount of time it takes to refresh

the MV completely, you may want to consider not dropping the underlying table. This

option is discussed in the next section.

�Altering an MV but Preserving the Underlying Table

When you drop an MV, you have the option of preserving the underlying table and its

data. You may find this approach advantageous when you are working with large MVs in

data warehouse environments. Here are the steps:

	 1.	 Alter the base table.

	 2.	 Drop the MV, but preserve the underlying table.

	 3.	 Modify the underlying table.

	 4.	 Re-create the MV, using the ON PREBUILT TABLE clause.

Here is a simple example to illustrate this procedure:

SQL> alter table sales add(sales_loc varchar2(30));

Chapter 15 Materialized Views

615

Drop the MV, but specify that you want to preserve the underlying table:

SQL> drop materialized view sales_mv preserve table;

Now, modify the underlying table:

SQL> alter table sales_mv add(sales_loc varchar2(30));

Next, create the MV, using the ON PREBUILT TABLE clause:

SQL> create materialized view sales_mv

on prebuilt table

refresh with primary key

 complete on demand as

select sales_id, sales_amt, sales_dtt, sales_loc

from sales;

This allows you to redefine the MV without dropping and completely refreshing the

data. Be aware that if there is any DML activity against the base table during the MV

rebuild operation, those transactions are not reflected in the MV when you attempt to

refresh it. In data warehouse environments, you typically have a known schedule for

loading base tables and therefore should be able to perform the MV alteration during a

maintenance window in which no transactions are occurring in the base table.

�Altering an MV Created on a Prebuilt Table

If you originally created an MV using the ON PREBUILT TABLE clause, then you can

perform a procedure similar to the one shown in the previous section when preserving

the underlying table. Here are the steps for modifying an MV that was created using the

ON PREBUILT TABLE clause:

	 1.	 Alter the base table.

	 2.	 Drop the MV. For MVs built on prebuilt tables, this doesn’t drop

the underlying table.

Chapter 15 Materialized Views

616

	 3.	 Alter the prebuilt table.

	 4.	 Re-create the MV on the prebuilt table.

Here is a simple example to illustrate this process. First, the base table is altered:

SQL> alter table sales add(sales_loc varchar2(30));

Then, drop the MV:

SQL> drop materialized view sales_mv;

For MVs created on prebuilt tables, this does not drop the underlying table—only the

MV object. Next, add a column to the prebuilt table:

SQL> alter table sales_mv add(sales_loc varchar2(30));

Now, you can rebuild the MV, using the prebuilt table with the new column added:

SQL> create materialized view sales_mv

on prebuilt table

refresh with primary key

 complete on demand as

select sales_id, sales_amt, sales_dtt, sales_loc

from sales;

This process has the advantage of allowing you to modify an MV definition without

dropping the underlying table. You have to drop the MV, alter the underlying table, and

then re-create the MV with the new definition. If the underlying table contains a large

amount of data, this method can prevent unwanted downtime.

As mentioned in the previous section, you need to be aware that if there is any DML

activity against the base table during the MV rebuild operation, those transactions aren’t

reflected in the MV when you attempt to refresh it.

Chapter 15 Materialized Views

617

�Toggling Redo Logging on an MV
Recall that an MV has an underlying database table. When you refresh an MV, this

initiates transactions in the underlying table that result in the generation of redo (just

as with a regular database table). In the event of a database failure, you can restore and

recover all the transactions associated with an MV.

By default, redo logging is enabled when you create an MV. You have the option of

specifying that redo not be logged when an MV is refreshed. To enable nologging, create

the MV with the NOLOGGING option:

SQL> create materialized view sales_mv

nologging

refresh with primary key

 fast on demand as

select sales_id ,sales_amt, sales_dtt

from sales;

You can also alter an existing MV into nologging mode:

SQL> alter materialized view sales_mv nologging;

If you want to reenable logging, then do as follows:

SQL> alter materialized view sales_mv logging;

To verify that the MV has been switched to NOLOGGING, query the USER_TABLES view:

SQL> select a.table_name, a.logging

from user_tables a

 ,user_mviews b

where a.table_name = b.mview_name;

The advantage of enabling nologging is that refreshes take place more quickly. The

refresh mechanism uses a direct path insert, which, when combined with NOLOGGING,

eliminates most of the redo generation. The big downside is that if a media failure occurs

soon after an MV has been refreshed, you cannot recover the data in the MV. In this

scenario the first time you attempt to access the MV, you receive an error such as

ORA-01578: ORACLE data block corrupted (file # 5, block # 899)

ORA-01110: data file 5: '/u01/dbfile/o12c/users02.dbf'

ORA-26040: Data block was loaded using the NOLOGGING option

Chapter 15 Materialized Views

618

If you get the previous error, then you will most likely have to rebuild the MV to

make the data accessible again. In many environments this may be acceptable. You save

on database resources by not generating redo for the MV, but the downside is a longer

restore process (in the event of a failure) that requires you to rebuild the MV.

Note I f your database is in force logging mode, then the NOLOGGING clause has
no effect. The force logging mode is required in environments using Data Guard.

�Altering Parallelism
Sometimes, an MV is created with a high degree of parallelism to improve the

performance of the creation process:

SQL> create materialized view sales_mv

parallel 4

refresh with primary key

 fast on demand as

select sales_id ,sales_amt, sales_dtt

from sales;

After you create the MV, you may not need the same degree of parallelism associated

with the underlying table. This is important because queries against the MV will start

parallel threads of execution. In other words, you may require parallelism for building

the MV quickly but do not want parallelism used when subsequently querying the

MV. You can alter an MV’s parallelism as follows:

SQL> alter materialized view sales_mv parallel 1;

You can check on the degree of parallelism by querying USER_TABLES:

SQL> select table_name, degree from user_tables where table_name=

upper('&mv_name');

Chapter 15 Materialized Views

619

�Moving an MV
As the operating environment’s conditions change, you may need to move an MV from

one tablespace to another. In these scenarios, use the ALTER MATERIALIZED VIEW...

MOVE TABLESPACE statement. This example moves the table associated with an MV to a

different tablespace:

SQL> alter materialized view sales_mv move tablespace users;

If any indexes are associated with the MV table, the move operation renders them

unusable. You can check the status of the indexes as follows:

SQL> select a.table_name, a.index_name, a.status

from user_indexes a

 ,user_mviews b

where a.table_name = b.mview_name;

You must rebuild any associated indexes after moving the table; for example,

SQL> alter index sales_pk2 rebuild;

�Managing MV Logs
MV logs are required for fast refreshable MVs. The MV log is a table that stores DML

information for a master (base) table. The MV log is created in the same database as the

master table with the same user that owns the master table. You need the CREATE TABLE

privilege to create an MV log.

The MV log is populated by an Oracle internal trigger (that you have no control over).

This internal trigger inserts a row into the MV log after an INSERT, UPDATE, or DELETE on

the master table. You can view the internal triggers in use by querying DBA/ALL/USER_

INTERNAL_TRIGGERS.

An MV log is associated with only one table, and each master table can have only one

MV log defined for it. You can create an MV log on a table or on another MV. Multiple fast

refreshable MVs can use one MV log.

After an MV performs a fast refresh, any records in the MV log that are no longer needed

are deleted. In the event that multiple MVs are using one MV log, then records are purged

from the MV log only once they are not required by any of the fast refreshable MVs.

Chapter 15 Materialized Views

620

Table 15-3 defines the terms used with MV logs. These terms are referred to in the

following sections in this chapter that relate to MV logs.

Table 15-3.  MV Log Terminology and Features

Term Meaning

Materialized view (MV) log Database object that tracks DML changes to MV base table; required

for fast refreshes

Primary key MV log MV log that uses the base table primary key to track DML changes

ROWID MV log MV log that uses the base table ROWID to track DML changes

Commit SCN MV log MV log based on the commit SCN instead of a timestamp

Object ID Object identifier used to track DML changes

Filter column Nonprimary key column referenced by an MV subquery; required for

some fast refresh scenarios

Join column Nonprimary key column that defines a join in the subquery WHERE

clause; required for some fast refresh scenarios

Sequence Sequence value required for some fast refresh scenarios

New values Specifies that old and new values be recorded in the MV log; required

for single-table aggregate views to be eligible for fast refresh

�Creating an MV Log
Fast refreshable views require an MV log to be created on the master (base) table. Use

the CREATE MATERIALIZED VIEW LOG command to create an MV log. This example

creates an MV log on the SALES table, specifying that the primary key should be used to

identify rows in the MV log:

SQL> create materialized view log on sales with primary key;

You can also specify storage information, such as the tablespace name:

SQL> create materialized view log on sales

pctfree 5

tablespace users

with primary key;

Chapter 15 Materialized Views

621

When you create an MV log on a table, Oracle creates a table to store the changes

since the last refresh to a base table. The name of the MV log table follows this format:

MLOG$_<master_table_name>. You can use the SQL*Plus DESCRIBE statement to view the

columns of the MV log:

SQL> desc mlog$_sales;

Name Null? Type

 -------------------------------- -------- ----------------------------

 SALES_ID NUMBER

 SNAPTIME$$ DATE

 DMLTYPE$$ VARCHAR2(1)

 OLD_NEW$$ VARCHAR2(1)

 CHANGE_VECTOR$$ RAW(255)

 XID$$ NUMBER

You can query this underlying MLOG$ table to determine the number of transactions

since the last refresh. After each refresh the MV log table is purged. If multiple MVs use

the MV log, the log table is not purged until all dependent MVs are refreshed.

If you create the MV log on a table with a primary key, then a RUPD$_<master_table_

name> table is also created. This table is used for updatable MVs. If you are not using the

updatable MV feature, then this table is never used, and you can ignore it.

When you create an MV log, you can specify that it uses one of the following clauses

to uniquely identify rows in the MV log table:

•	 WITH PRIMARY KEY

•	 WITH ROWID

•	 WITH OBJECT ID

If the master table has a primary key, use WITH PRIMARY KEY when you create the

MV log. If the master table does not have a primary key, you have to use WITH ROWID to

specify that a ROWID value be used to uniquely identify MV log records. You can use WITH

OBJECT ID when you create an MV log on an object table.

Oracle uses the SNAPTIME$$ column to determine which records need to be refreshed

or purged, or both. You have the option of creating a COMMIT SCN–based MV log (not based

on a timestamp). This type of MV log uses the SCN of a transaction to determine which

Chapter 15 Materialized Views

622

records need to be applied to any dependent MVs. COMMIT SCN–based MV logs are more

efficient than timestamp-based MV logs. Use the WITH COMMIT SCN clause to do this:

SQL> create materialized view log on sales with commit scn;

You can view whether an MV log is SCN based by querying USER_MVIEW_LOGS:

SQL> select log_table, commit_scn_based from user_mview_logs;

Note  MV logs created with COMMIT SCN do not have a SNAPTIME$$ column.

�Indexing MV Log Columns
Sometimes, you may need better performance from your fast refreshing MVs. One way

to do this is through indexes on columns of the MV log table. In particular, Oracle uses

the SNAPTIME$$ column or the primary key column, or both, when refreshing or purging.

Therefore, indexes on these columns can improve performance:

SQL> create index mlog$_sales_idx1 on mlog$_sales(snaptime$$);

SQL> create index mlog$_sales_idx2 on mlog$_sales(sales_id);

You should not add indexes just because you think it may be a good idea. Only

add indexes on the MV log tables when you have known performance issues with fast

refreshes. Keep in mind that adding indexes consumes resources in the database. Oracle

has to maintain the index for DML operations on the table, and an index uses disk space.

�Viewing Space Used by an MV Log
You should consider periodically checking the space consumed by an MV log. If the

space consumed is growing (and never shrinking), you may have an issue with an MV

not successfully refreshing and hence causing the MV log never to be purged. Here is a

query to check the space of MV logs:

SQL> select segment_name, tablespace_name

,bytes/1024/1024 meg_bytes, extents

from dba_segments

where segment_name like 'MLOG$%'

order by meg_bytes;

Chapter 15 Materialized Views

623

Here is some sample output:

SEGMENT_NAME TABLESPACE_NAME MEG_BYTES EXTENTS

-------------------- ------------------------------ ---------- ----------

MLOG$_USERS MV_DATA 1609 3218

MLOG$_ASSET_ATTRS MV_DATA 3675.5 7351

This output indicates that a couple of MV logs most likely have purging issues. In this

situation, there are probably multiple MVs that are using the MV log, and one of them is

not refreshing on a daily basis, thus preventing the log from being purged.

You may run into a situation in which an MV log has not been purged for quite some

time. This can happen because you have multiple MVs using the same MV log, and

one of those MVs is not successfully refreshing anymore. This can happen when a DBA

builds a development environment and connects development MVs to the production

environment (it should not happen, but it does). At some later point in time, the DBA

drops the development database. The production environment still has information

regarding the remote development MV and would not purge MV log records because it

would need the log data for a fast refreshable MV, which is not the case.

In these scenarios, you should determine which MVs are using the log (see the

section “Determining How Many MVs Reference a Central MV Log” later in this

chapter), and resolve any issues. After the problem is solved, check the space being used

by the log, and see if it can be shrunk (see the next section, “Shrinking the Space in an

MV Log”). Monitoring the space of the MVs and MVs logs is important in this case and

can provide insight into these issues.

�Shrinking the Space in an MV Log
If an MV log does not successfully delete records, it grows large. After you resolve the

issue, and the records are deleted from the MV log, you can set the high-water mark for

the MV log table to a high value. But, doing so may cause performance issues and also

unnecessarily consumes disk space. In this situation, consider shrinking the space used

by the MV log.

Chapter 15 Materialized Views

624

In this example, MLOG$_SALES had a problem with purging records because of an

associated MV not successfully refreshing. This MV log subsequently grew large. The issue

was identified and resolved, and now the log’s space needs to be reduced. To shrink the

space in an MV log, first enable row movement on the appropriate MV log MLOG$ table:

SQL> alter table mlog$_sales enable row movement;

Next, issue the ALTER MATERIALIZED VIEW LOG ON...SHRINK statement. Note that

the table name (after the keyword ON) is that of the master table:

SQL> alter materialized view log on sales shrink space;

This statement may take a long time, depending on the amount of space it shrinks.

After the statement finishes, you can disable row movement:

SQL> alter table mlog$_sales disable row movement;

You can verify that the space has been reduced by running the query from the prior

section, which selects from DBA_SEGMENTS.

�Checking the Row Count of an MV Log
As mentioned earlier, sometimes there are problems with an MV’s refreshing, and this

results in the building up of a large number of rows in the corresponding MV log table.

This can happen when multiple MVs are using one MV log, and one of the MVs can’t

perform a fast refresh. In this situation the MV log continues to grow until the issue is

resolved.

One way of detecting whether an MV log isn’t being purged is to check the row

counts of the MV log tables periodically. The following query uses SQL to generate an

SQL that creates a script that checks row counts for MV log tables owned by the currently

connected user:

SQL> set head off pages 0 lines 132 trimspool on

SQL> spo mvcount_dyn.sql

SQL> select 'select count(*) || ' || "" || ': ' || table_name || ""

|| ' from ' || table_name || ';'

from user_tables

where table_name like 'MLOG%';

SQL> spo off;

Chapter 15 Materialized Views

625

This script generates a script named mvcount_dyn.sql, containing the SQL

statements to select row counts from the MLOG$ tables. When you are inspecting row

counts, you must be somewhat familiar with your application and have an idea of what a

normal row count is. Here is some sample code generated by the previous script:

SQL> select count(*) || ': MLOG$_SALES' from MLOG$_SALES;

SQL> select count(*) || ': MLOG$_REGION' from MLOG$_REGION;

�Moving an MV Log
You may need to move an MV log because the initial creation script did not specify the

correct tablespace. A common scenario is that the tablespace is not specified, and the

MV log is placed by default in a tablespace such as USERS. You can verify the tablespace

information with this query:

SQL> select table_name, tablespace_name

from user_tables

where table_name like 'MLOG%';

If any MV log tables need to be relocated, use the ALTER MATERIALIZED VIEW LOG ON

<table_name> MOVE statement. Note that you specify the name of the master table (and

not the underlying MLOG$ table) on which the MV is created:

SQL> alter materialized view log on sales move tablespace users;

Also keep in mind that when you move a table, any associated indexes are rendered

unusable (because the ROWID of every record in the table has just changed). You can

check the status of the indexes as shown:

SQL> select a.table_name, a.index_name, a.status

from user_indexes a

 ,user_mview_logs b

where a.table_name = b.log_table;

Any unusable indexes must be rebuilt. Here is an example of rebuilding an index:

SQL> alter index mlog$_sales_idx2 rebuild;

Chapter 15 Materialized Views

626

�Dropping an MV Log
There are a couple of reasons why you may want to drop an MV log:

•	 You initially created an MV log, but requirements have changed and

you no longer need it.

•	 The MV log has grown large and is causing performance issues, and

you want to drop it to reset the size.

Before you drop an MV log, you can verify the owner, master table, and MV log table

with the following query:

SQL> select

 log_owner

,master -- master table

,log_table

from user_mview_logs;

Use the DROP MATERIALIZED VIEW LOG ON statement to drop an MV log. You do not

need to know the name of the MV log, but you do need to know the name of the master

table on which the log was created. This example drops the MV log on the SALES table:

SQL> drop materialized view log on sales;

You should see the following message if successful:

Materialized view log dropped.

If you have permissions, and you do not own the table on which the MV log is

created, you can specify the schema name when dropping the MV log:

SQL> drop materialized view log on <schema>.<table>;

If you are cleaning up an environment and want to drop all MV logs associated with

a user, then use SQL to generate SQL to accomplish this. The following script creates the

SQL required to drop all MV logs owned by the currently connected user:

SQL> set lines 132 pages 0 head off trimspool on

SQL> spo drop_dyn.sql

SQL> select 'drop materialized view log on ' || master || ';'

from user_mview_logs;

SQL> spo off;

Chapter 15 Materialized Views

627

The previous SQL*Plus code creates a script named drop_dyn.sql, containing the

SQL statements that can be used to drop all MV logs for a user.

�Refreshing MVs
Typically, you refresh MVs at periodic intervals. You can either refresh the MVs manually

or automate this task. The following sections cover these related topics:

•	 Manually refreshing MVs from SQL*Plus

•	 Automating refreshes, using a shell script and scheduling utility

•	 Automating refreshes, using the built-in Oracle job scheduler

Note I f you require that a group of MV be refreshed as a set, see the section
“Managing MVs in Groups” later in this chapter.

�Manually Refreshing MVs from SQL*Plus
You will need to refresh an MV periodically so as to synchronize it with the base table.

To do this, use SQL*Plus to call the REFRESH procedure of the DBMS_MVIEW package. The

procedure takes two parameters: the MV name and the refresh method. This example

uses the EXEC[UTE] statement to call the procedure. The MV being refreshed is SALES_MV,

and the refresh method is F (for fast):

SQL> exec dbms_mview.refresh('SALES_MV','F');

You can also manually run a refresh from SQL*Plus, using an anonymous block of

PL/SQL. This example performs a fast refresh:

SQL> begin

 dbms_mview.refresh('SALES_MV','F');

 end;

 /

Chapter 15 Materialized Views

628

Additionally, you can use a question mark (?) to invoke the force refresh method.

This instructs Oracle to perform a fast refresh if possible. If a fast refresh is not possible,

then Oracle performs a complete refresh:

SQL> exec dbms_mview.refresh('SALES_MV','?');

You can also use a C (for complete) to specifically execute the complete refresh

method:

SQL> exec dbms_mview.refresh('SALES_MV','C');

MVS VS. RESULT CACHE

Oracle has a result cache feature that stores the result of a query in memory and makes

that result set available to any subsequent identical queries that are issued. If a subsequent

identical query is issued, and none of the underlying table data have changed since the

original query was issued, Oracle makes the result available to the subsequent query. For

databases with relatively static data and many identical queries being issued, using the result

cache can significantly improve performance.

How do MVs compare with the result cache? Recall that an MV stores the result of a query in a

table and makes that result available to reporting applications. The two features sound similar

but differ in a couple of significant ways:

	1.	 The result cache stores results in memory. An MV stores results in a table.

	2.	 The result cache needs to be refreshed any time the underlying data in the

tables change. MVs are refreshed on commit or at a periodic interval (such as

on a daily basis). Because of this MVs can have stale data if not refreshed.

The result cache can significantly improve performance if you have long-running queries that

operate on relatively static data. MVs are better suited for replicating data and storing the

results of complex queries that only require new results on a periodic basis (such as daily,

weekly, or monthly).

Chapter 15 Materialized Views

629

�Creating an MV with a Refresh Interval
When you initially create an MV, you have the option of specifying START WITH and NEXT

clauses, that instruct Oracle to set up an internal database job (via the DBMS_SCHEDULER

package) to initiate the refresh of an MV on a periodic basis. The START WITH parameter

specifies the date you want the first refresh of an MV to occur. The NEXT parameter

specifies a date expression that Oracle uses to calculate the interval between refreshes.

For instance, this MV initially refreshes 1 minute in the future (sysdate+1/1440) and

subsequently refreshes on a daily basis (sysdate+1):

SQL> create materialized view sales_mv

refresh

with primary key

fast on demand

start with sysdate+1/1440

next sysdate+1

as

select sales_id, sales_amt, sales_dtt

from sales;

You can view details of the scheduled job by querying USER_JOBS:

SQL> select job, schema_user

,to_char(last_date,'dd-mon-yyyy hh24:mi:ss') last_date

,to_char(next_date,'dd-mon-yyyy hh24:mi:ss') next_date

,interval, broken

from user_jobs;

Here is some sample output:

JOB SCHEMA_USE LAST_DATE NEXT_DATE INTERVAL B

---- ---------- -------------------- -------------------- ------------ -

 1 MV_MAINT 28-jan-2013 14:55:33 29-jan-2013 14:55:33 sysdate+1 N

You can also view job information in the USER_REFRESH view:

SQL> select rowner, rname, job

,to_char(next_date,'dd-mon-yyyy hh24:mi:ss')

,interval, broken

from user_refresh;

Chapter 15 Materialized Views

630

Here is some sample output:

ROWNER RNAME JOB TO_CHAR(NEXT_DATE,'DD-MON-YYY INTERVAL B

---------- ---------- ---- ----------------------------- ------------ -

MV_MAINT SALES_MV 1 29-jan-2013 14:55:33 sysdate+1 N

When you drop an MV, the associated job is also removed. If you want to remove a

job manually, use the REMOVE procedure DBMS_JOB. This example removes job number 1,

which was identified from the previous queries:

SQL> exec dbms_job.remove(1);

Note  You cannot use START WITH or NEXT in conjunction with an MV that
refreshes ON COMMIT.

�Efficiently Performing a Complete Refresh
When an MV does a complete refresh, the default behavior is to use a DELETE statement

to remove all records from the MV table. After the delete is finished, records are selected

from the master table and inserted into the MV table. The delete and insert are done as

one transaction; this means that anybody selecting from the MV during the complete

refresh process sees the data as they existed before the DELETE statement. Anybody

accessing the MV immediately after the INSERT commits sees a fresh view of the data.

In some scenarios, you may want to modify this behavior. If a large amount of data

are being refreshed, the DELETE statement can take a long time. You have the option

of instructing Oracle to perform the removal of data as efficiently as possible via the

ATOMIC_REFRESH parameter. When this parameter is set to FALSE, it allows Oracle to use a

TRUNCATE statement instead of a DELETE when performing a complete refresh:

SQL> exec dbms_mview.refresh('SALES_MV',method=>'C',atomic_refresh=>false);

TRUNCATE works faster than DELETE for large data sets because TRUNCATE does not

have the overhead of generating redo. The disadvantage of using the TRUNCATE statement

is that a user selecting from the MV may see zero rows while the refresh is taking place.

Chapter 15 Materialized Views

631

�Handling the ORA-12034 Error
When you attempt to perform a fast refresh of an MV, you may sometimes get the ORA-

12034 error; for example,

SQL> exec dbms_mview.refresh('SALES_MV','F');

The statement subsequently throws this error message:

ORA-12034: materialized view log on "MV_MAINT"."SALES" younger than last

refresh

To resolve this error, try to refresh the MV completely:

SQL> exec dbms_mview.refresh('SALES_MV','C');

After the complete refresh has finished, you should be able to perform a fast refresh

without receiving an error:

SQL> exec dbms_mview.refresh('SALES_MV','F');

The ORA-12034 error is thrown when Oracle determines that the MV log was created

after the last refresh took place in the associated MV. In other words, the MV log is

younger than the last refresh of MV. There are several possible causes:

•	 The MV log was dropped and re-created.

•	 The MV log was purged.

•	 The master table was reorganized.

•	 The master table was truncated.

•	 The previous refresh failed.

In this situation, the transactions may have been created between the last refresh

time of the MV and when the MV log was created. In this scenario, you have to first

perform a complete refresh before you can start using the fast refresh mechanism.

Chapter 15 Materialized Views

632

�Monitoring MV Refreshes
The following sections contain some very handy examples of how to monitor MV refresh

jobs. Examples include how to view the last refresh time, determine whether a job is

currently executing, establish the progress of a refresh job, and check to see whether

MVs have not refreshed within the last day. Scripts such as these are invaluable for

troubleshooting and diagnosing refresh problems.

�Viewing MVs’ Last Refresh Times
When you are troubleshooting issues with MVs, usually the first item to check is the

LAST_REFRESH_DATE in DBA/ALL/USER_MVIEWS. Viewing this information allows you to

see whether the MVs are refreshing on schedule. Run this query as the owner of the MV

to display the last refresh date:

SQL> select mview_name

,to_char(last_refresh_date,'dd-mon-yy hh24:mi:ss')

,refresh_mode, refresh_method

from user_mviews;

The LAST_REFRESH_DATE column of DBA/ALL/USER_MVIEWS shows the last date and

time that an MV successfully finished refreshing. The LAST_REFRESH_DATE is NULL if the

MV has never successfully refreshed.

�Determining Whether a Refresh Is in Progress
If you need to know what MVs are running, use this query:

SQL> select sid, serial#, currmvowner, currmvname from v$mvrefresh;

Here is some sample output:

 SID SERIAL# CURRMVOWNER CURRMVNAME

---------- --------- ----------------------- -------------------

 108 3037 MV_MAINT SALES_MV

Chapter 15 Materialized Views

633

�Monitoring Real-Time Refresh Progress
If you deal with large MVs, the next query shows you the real-time progress of the refresh

operation. When you are troubleshooting issues, this query can be very useful. Run the

following script as the user, with privileges on the internal SYS tables:

SQL> column "MVIEW BEING REFRESHED" format a25

SQL> column inserts format 9999999

SQL> column updates format 9999999

SQL> column deletes format 9999999

--

SQL> select

 currmvowner_knstmvr || '.' || currmvname_knstmvr "MVIEW BEING REFRESHED",

 decode(reftype_knstmvr, 1, 'FAST', 2, 'COMPLETE', 'UNKNOWN') reftype,

 decode(groupstate_knstmvr, 1, 'SETUP', 2, 'INSTANTIATE',

 3, 'WRAPUP', 'UNKNOWN') STATE,

 total_inserts_knstmvr inserts,

 total_updates_knstmvr updates,

 total_deletes_knstmvr deletes

from x$knstmvr x

where type_knst = 6

and exists (select 1

 from v$session s

 where s.sid=x.sid_knst

 and s.serial#=x.serial_knst);

When an MV first starts refreshing, you see this output:

MVIEW BEING REFRESHED REFTYPE STATE INSERTS UPDATES DELETES

------------------------- -------- ----------- -------- -------- --------

MV_MAINT.SALES_MV UNKNOWN SETUP 0 0 0

After a few seconds the MV reaches the INSTANTIATE state:

MV_MAINT.SALES_MV FAST INSTANTIATE 0 0 0

As the MV refreshes, the INSERTS, UPDATES, and DELETES columns are updated

appropriately:

MV_MAINT.SALES_MV FAST INSTANTIATE 860 274 0

Chapter 15 Materialized Views

634

When the MV is almost finished refreshing, it reaches the WRAPUP state:

MV_MAINT.SALES_MV FAST WRAPUP 5284 1518 0

After the MV has completed refreshing, the query returns no rows:

no rows selected

As you can imagine, this query can be quite useful for troubleshooting and

diagnosing MV refresh issues.

�Checking Whether MVs Are Refreshing Within a Time Period
When you are dealing with MVs, it is nice to have an automated way of determining

whether refreshes are occurring. Use the following shell script to detect which MVs have

not refreshed within the last day and then send an e-mail if any are detected:

#!/bin/bash

Source oracle OS variables, see Chapter 2 for details

. /etc/oraset $1

#

crit_var=$(sqlplus -s <<EOF

mv_maint/foo

SET HEAD OFF FEED OFF

SELECT count(*) FROM user_mviews

WHERE sysdate-last_refresh_date > 1;

EOF)

#

if [$crit_var -ne 0]; then

 echo $crit_var

 echo "mv_ref refresh problem with $1" | mailx -s "mv_ref problem" \

dkuhn@gmail.com

else

 echo $crit_var

 echo "MVs ok"

fi

#

exit 0

Chapter 15 Materialized Views

635

This script takes the output of the SQL*Plus statement and returns it to the shell

crit_var variable. If any MVs for the REP_MV user haven’t refreshed within the last day,

then the crit_var variable has a nonzero value. If crit_var isn’t equal to zero, then an

e-mail is sent, indicating that there is an issue.

�Creating Remote MV Refreshes
You can create MVs that select from remote tables, MVs, or views, or a combination of

these. Doing so allows you to quickly and efficiently replicate data. The setup for basing

MVs on remote objects is as follows:

	 1.	 Ensure that Oracle Net connectivity exists from the replicated

database environment to the database with the master tables. If

you do not have this connectivity, you can’t replicate using MVs.

	 2.	 Obtain access to a user account in the remote database that

has access to the remote tables, MVs, or views that you want to

replicate.

	 3.	 For fast refreshes, create an MV log on the master (base) table. You

only need to do this if you intend to perform fast refreshes.

	 4.	 Create a database link in the replicated database environment that

points to the master database.

	 5.	 Create MVs in the replicated database environment that access

remote master objects via the database link created in step 4.

Here is a simple example. First, ensure that you can establish Oracle Net connectivity

from the replicated environment to the master database. You can verify connectivity

and ensure that you can log in to the master database by connecting via SQL*Plus from

the replicated database environment to the remote master. From the command prompt

on the database that will contain the MVs, attempt to connect to the user REP_MV in the

master database named ENGDEV on the XENGDB server:

$ sqlplus rep_mv/foo@'xengdb:1522/engdev'

When you are connected to the remote master database, you have access to the tables

that you base the MV on. In this example the name of the remote master table is SALES:

SQL> select count(*) from sales;

Chapter 15 Materialized Views

636

Next, create a database link in the database that will contain the MVs. The database

link points to the user in the remote master database:

SQL> create database link engdev

connect to rep_mv identified by foo

using 'xengdb:1522/engdev';

Now, create an MV that accesses the master SALES table:

SQL> create materialized view sales_mv

refresh complete on demand

as

select

 sales_id

,sales_amt

from sales@engdev;

You access the remote database by appending the @<database_link_name> to the

table name. This instructs Oracle to select from the remote table. The remote table’s

location is defined in the CREATE DATABASE LINK statement.

�Understanding Remote-Refresh Architectures
You can use numerous configurations with remotely refreshed MVs. This section details

three common scenarios; you can build on them to meet most remote-replication needs.

Figure 15-3 shows a common configuration using MV logs on the master OLTP

database. The remote database uses MV logs to enable fast refreshes. This configuration

is typically used when you cannot report directly from an OLTP database because of

concern that the reporting activity will greatly hamper production performance. This

architecture is also useful when you have users on the other side of the planet, and you

want to replicate data to a database that is physically closer to them so that they have

acceptable reporting performance.

Chapter 15 Materialized Views

637

Figure 15-4 illustrates a scenario in which you are not allowed to create MV logs on

the master base tables. This may happen because another team or organization owns

the master (base) database, and the owners are unwilling to let you create MV logs in the

master environment. In this case, you have to use complete MV refreshes to the remote

reporting database. This architecture is also appropriate when a large percentage of the

base table records are modified each day. In this situation, a complete refresh may be

more efficient than a fast refresh (because you are replicating most of the data, not just a

small subset).

Figure 15-3.  Remote refresh, using MV logs at a master site

Figure 15-4.  Remote refresh, using complete MV refreshes

Chapter 15 Materialized Views

638

Figure 15-5 shows a scenario in which you replicate the base tables to a staging

database and then replicate from the staging database to a reporting database. This

situation is common when the network architecture is configured such that the reporting

database is placed on a network segment that cannot be directly connected to a

hardened production environment. In this case, you can build an intermediate database

that resides in a network that can connect to both the OLTP database and the reporting

database. Note that MV logs built are on the MVs in the secure staging database. When

refreshing in this configuration, you must coordinate the refresh times of the staging and

reporting databases so that there is no overlap during the refresh.

Figure 15-5.  Two-hop remote fast MV refresh

Note S ometimes, an MV built on another MV is called a nested MV.

�Viewing MV Base Table Information
When you are diagnosing issues with MVs, it is useful to view the MV and its associated

remote master table. Run the following query on the database that contains the MV to

extract master owner and table information:

SQL> select

 owner mv_owner

,name mv_name

,master_owner mast_owner

,master mast_table

from dba_mview_refresh_times

order by 1,2;

Chapter 15 Materialized Views

639

The previous query reports on each MV and the master table it is based on. The base

table can be local or remote.

�Determining How Many MVs Reference a Central MV Log
Say you have one master table with an MV log. Additionally, more than one remote MV

uses the central master MV log. Figure 15-6 illustrates this configuration.

Figure 15-6.  Multiple remote MVs using the same centralized MV log

In this situation, Oracle keeps records in the MV log until all MVs have refreshed.

For example, suppose MV A has a LAST_REFRESH_DATE of July 1, 2013, and MV B has a

LAST_REFRESH_DATE of September 1, 2013. Then, MV A refreshes on October 1, 2013. The

master log only purges records older than September 1, 2013 (because the more recent

log records are still needed by MV B).

If an MV was dropped and unable to unregister itself from a master MV log table,

then records grow indefinitely in the master MV log table. To resolve this issue, you need

information regarding which MVs are tied to which MV logs. This query displays the

master table owner information and the SNAPID (MV ID) of all dependent MVs:

Chapter 15 Materialized Views

640

SQL> select mowner

,master base_table

,snapid, snaptime

from sys.slog$;

Here is some sample output that shows two MVs connected to one MV log:

MOWNER BASE_TABLE SNAPID SNAPTIME

--------------- -------------------- ---------- ---------

INV_MGMT PRODUCT_TAXONOMY 653 28-JAN-13

INV_MGMT COMPANY_ACCOUNTS 650 28-JAN-13

INV_MGMT CMP_GRP_ASSOC 651 28-JAN-13

The next query displays information regarding all MVs that have been created that tie

into an MV log. Run this query on the master site:

SQL> select a.log_table, a.log_owner

,b.master mast_tab

,c.owner mv_owner

,c.name mview_name

,c.mview_site, c.mview_id

from dba_mview_logs a

 ,dba_base_table_mviews b

 ,dba_registered_mviews c

where b.mview_id = c.mview_id

and b.owner = a.log_owner

and b.master = a.master

order by a.log_table;

Here is some sample output:

LOG_TABLE LOG_OWNE MAST_TAB MV_OWN MVIEW_NAME

------------------- -------- ------------- ------ ----------------

MVIEW_S MVIEW_ID

------- -------

MLOG$_CMP_GRP_ASSOC INV_MGMT CMP_GRP_ASSOC REP_MV CMP_GRP_ASSOC_MV

DWREP 651

MLOG$_CMP_GRP_ASSOC INV_MGMT CMP_GRP_ASSOC TSTDEV CMP_GRP_ASSOC_MV

ENGDEV 541

Chapter 15 Materialized Views

641

When you drop a remote MV, it should unregister from the master database.

However, this does not always happen. A remote database may get wiped out (e.g., a

short-term development database), and the MV does not get a chance to unregister itself

(via the DROP MATERIALIZED VIEW statement). In this situation the MV log is unaware

that a dependent MV is no longer available and therefore keeps records indefinitely.

To purge unwanted MV information from the database that contains the MV log,

execute the PURGE_MVIEW_FROM_LOG procedure of DBMS_MVIEW. This example passes in

the ID of the MV to be purged:

SQL> exec dbms_mview.purge_mview_from_log(541);

This statement should update the data dictionary and remove information from the

internal table SLOG$ and DBA_REGISTERED_MVIEWS. If the MV being purged is the oldest MV

associated with the MV log table, the associated old records are also deleted from the MV log.

If a remote MV is no longer available but is still registered with the MV log table, you

can manually unregister it at the master site. Use the UNREGISTER_MVIEW procedure of the

DBMS_MVIEW package to unregister a remote MV. To do this, you need to know the remote

MV owner, MV name, and MV site (available from the output of the previous query in

this section):

SQL> exec dbms_mview.unregister_mview('TSTDEV','CMP_GRP_ASSOC_MV','ENGDEV');

If successful, the prior operation removes a record from DBA_REGISTERED_MVIEWS.

�Managing MVs in Groups
An MV group is a useful feature that enables you to refresh a set of MVs at a consistent

transactional point in time. If you refresh MVs based on master tables that have parent–

child relationships, then you should most likely use a refresh group. This method

guarantees that you would not have any orphaned child records in your set of refreshed

MVs. The following sections describe how to create and maintain MV refresh groups.

Note  You use the DBMS_REFRESH package to accomplish most of the tasks
involved in managing MV refresh groups. This package is fully documented in the
Oracle Advanced Replication Management API Reference Guide, which is available
for download from the Technology Network area of the Oracle Web site (http://
otn.oracle.com).

Chapter 15 Materialized Views

http://otn.oracle.com
http://otn.oracle.com

642

�Creating an MV Group
You use the MAKE procedure of the DBMS_REFRESH package to create an MV group. When

you create an MV group, you must specify a name, a comma-separated list of MVs in the

group, the next date to refresh, and the interval used to calculate the next refresh time.

Here is an example of a group that consists of two MVs:

SQL> begin

 dbms_refresh.make(

 name => 'SALES_GROUP'

 ,list => 'SALES_MV, SALES_DAILY_MV'

 ,next_date => sysdate-100

 ,interval => 'sysdate+1'

);

end;

/

When you create an MV group, Oracle automatically creates a database job to

manage the refresh of the group. You can view the details of an MV group by querying

from DBA/ALL/USER_REFRESH:

SQL> select rname, job, next_date, interval from user_refresh;

Here is some sample output:

RNAME JOB NEXT_DATE INTERVAL

--------------- ---- ------------------- --------------

SALES_GROUP 3 20-OCT-12 sysdate+1

�Altering an MV Refresh Group
You can alter characteristics of a refresh group, such as the refresh date or interval. If you

rely on a database job for your refresh mechanism, then you may occasionally need to

tweak your refresh characteristics. Use the CHANGE function of the DBMS_REFRESH package

to achieve this. The following example changes the INTERVAL calculation:

SQL> exec dbms_refresh.change(name=>'SALES_GROUP',interval=>'SYSDATE+2');

Chapter 15 Materialized Views

643

Again, you need to change refresh intervals only if you are using the internal

database job to initiate the materialized group refresh. You can verify the details of a

refresh group’s interval and job information with this query:

SQL> select a.job, a.broken, b.rowner, b.rname, b.interval

from dba_jobs a

 ,dba_refresh b

where a.job = b.job

order by a.job;

Here is the output for this example:

JOB B ROWNER RNAME INTERVAL

---- - ---------- --------------- ---------------

 3 N MV_MAINT SALES_GROUP SYSDATE+2

�Refreshing an MV Group
After you have created a group, you can manually refresh it, using the REFRESH function

of the DBMS_REFRESH package. This example refreshes the group that you previously

created:

SQL> exec dbms_refresh.refresh('SALES_GROUP');

If you inspect the LAST_REFRESH_DATE column of USER_MVIEWS, you will note that all

MVs in the group have the same refresh time. This is the expected behavior because the

MVs in the group are all refreshed at a consistent transactional point in time.

�DBMS_MVIEW vs. DBMS_REFRESH
You may have noted that you can use the DBMS_MVIEW package to refresh a group of MVs.

For instance, you can refresh a set of MVs in a list as follows, using DBMS_MVIEW:

SQL> exec dbms_mview.refresh(list=>'SALES_MV,SALES_DAILY_MV');

This method refreshes each MV in the list in a single transaction. It is the equivalent

of using an MV group. However, when you use DBMS_MVIEW, you have the option of

setting the ATOMIC_REFRESH parameter to TRUE (default) or FALSE. For example, here the

ATOMIC_REFRESH parameter is set to FALSE:

Chapter 15 Materialized Views

644

SQL> exec dbms_mview.refresh(list=>'SALES_MV,SALES_DAILY_MV',atomic_

refresh=>false);

This setting instructs DBMS_MVIEW to refresh each MV in the list as a separate

transaction. The previous line of code is equivalent to the following two lines:

SQL> exec dbms_mview.refresh(list=>'SALES_MV', atomic_refresh=>false);

SQL> exec dbms_mview.refresh(list=>'SALES_DAILY_MV', atomic_

refresh=>false);

Compare that with the behavior of DBMS_REFRESH, which is the package you should

use to set up and maintain an MV group. The DBMS_REFRESH package always refreshes a

group of MVs as a consistent transaction.

If you always need a set of MVs to be refreshed as a transactionally consistent group,

use DBMS_REFRESH. If you need some flexibility as to whether a list of MVs is refreshed as

a consistent transaction (or not), use DBMS_MVIEW.

�Determining MVs in a Group
When you are investigating issues with an MV refresh group, a good starting point is to

display which MVs the group contains. Query the data dictionary views DBA_RGROUP and

DBA_RCHILD, and see the MVs in a refresh group:

SQL> select a.owner

 ,a.name mv_group

 ,b.name mv_name

from dba_rgroup a

 ,dba_rchild b

where a.refgroup = b.refgroup

and a.owner = b.owner

order by a.owner, a.name, b.name;

Here is a snippet of the output:

OWNER MV_GROUP MV_NAME

---------- -------------------- --------------------

MV_MAINT SALES_GROUP SALES_DAILY_MV

MV_MAINT SALES_GROUP SALES_MV

Chapter 15 Materialized Views

645

In the DBA_RGROUP view, the NAME column represents the name of the refresh group.

The DBA_RCHILD view contains the name of each MV in the refresh group.

�Adding an MV to a Refresh Group
As your business requirements change, you occasionally need to add an MV to a group.

Use the ADD procedure of the DBMS_REFRESH package to accomplish this task:

SQL> exec dbms_refresh.add(name=>'SALES_GROUP',list=>'PRODUCTS_MV,USERS_MV');

You must specify a name and provide a comma-separated list of the MV names to

add. The newly added MVs are refreshed the next time the group is refreshed.

The other way to add an MV to a group is to drop the group and re-create it with the

new MV. However, it is usually preferable to add an MV.

�Removing MVs from a Refresh Group
Sometimes, you need to remove an MV from a group. To do this, use the SUBTRACT

function of the DBMS_REFRESH package. This example removes one MV from a group:

SQL> exec dbms_refresh.subtract(name=>'SALES_GROUP',list=>'SALES_MV');

You have to specify the name of the MV group and provide a comma-separated list

containing the names of the MVs you want to remove.

The other way to remove an MV from a group is to drop the group and re-create it

without the unwanted MV(s). However, it is usually preferable to remove an MV.

�Dropping an MV Refresh Group
If you need to drop an MV refresh group, use the DESTROY procedure of the DBMS_REFRESH

package. This example drops the MV group named SALES_GROUP:

SQL> exec dbms_refresh.destroy('SALES_GROUP');

This method only drops the MV refresh-group object—it does not drop any of

the actual MVs. If you need to also drop the MVs, use the DROP MATERIALIZED VIEW

statement.

Chapter 15 Materialized Views

646

�Summary
Sometimes, the term materialized view confuses people who are new to the technology.

Perhaps Oracle should have named this feature “periodically purge and repopulate

a table that contains the results of a query,” but that is probably too long a phrase.

Regardless, when you understand the power of this tool, you can use it to replicate and

aggregate large amounts of data. You can greatly improve the performance of queries by

periodically computing and storing the results of complex aggregations of data.

MVs can be fast refreshable, which means that they copy over only changes from the

master table that have occurred since the last refresh. To use this type of MV, you must

create an MV log on the master table. It is not always possible to create an MV log; in

these scenarios, the MV must be completely refreshed.

If need be, you can also compress and encrypt the data with an MV. This allows for

better space management and security. Additionally, you can partition the underlying

table used by an MV, to allow for greater scalability, performance, and availability.

There are plenty of options for MVs to be able to use this data for reporting, another

database, integrations and data APIs. It is important to discuss the use of the data in

order to provide the right refresh plan and understand the data that is being provided in

the MVs.

The last several chapters have focused on specialized database features that DBAs

often use. These include large objects, partitioning, Data Pump, external tables, and

MVs. The book now shifts focus to one of the most important topics a DBA must be

familiar with: backup and recovery. User-managed backups and RMAN are covered in

the next several chapters.

Chapter 15 Materialized Views

647
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_16

CHAPTER 16

User-Managed Backup
and Recovery
All DBAs should know how to back up a database. Even more critical, a DBA must be

able to restore and recover a database. When media failures occur, everybody looks to

the DBA to get the database up and running. There are two common, yet very different,

Oracle approaches for backup and recovery:

•	 User-managed approach

•	 RMAN approach

User-managed backups are aptly named because you manually perform all steps

associated with the backup or recovery, or both. There are two types of user-managed

backups: cold backups and hot backups. Cold backups are sometimes called offline backups

because the database is shut down during the backup process. Hot backups are also referred

to as online backups because the database is available during the backup procedure.

RMAN is Oracle’s backup and recovery tool. It simplifies and manages most aspects

of backup and recovery. For Oracle backup and recovery, you should use RMAN. RMAN

automatically determines which data files need to be backed up, locations, and how

to restore and recover. So, why have a chapter about user-managed backups when this

approach has been gathering dust for more than a decade? Consider the following

reasons for understanding user-managed backup and recovery:

•	 You still find shops using user-managed backup and recovery

techniques. Therefore, you are required to be knowledgeable about

this technology.

•	 It is possible that during a recovery or backup failure, using this

approach will help troubleshoot an issue or resolve a backup issue.

648

•	 Solidify your understanding of the Oracle backup and recovery

architecture. This helps immensely when you are troubleshooting

issues with any backup and recovery tool and lays the foundation of

core knowledge for key Oracle tools, such as RMAN and Data Guard.

•	 You will more fully appreciate RMAN and the value of its features.

•	 Nightmarish database recovery stories recounted by the old DBAs

will now make sense.

For these reasons, you should be familiar with user-managed backup and recovery

techniques. Manually working through the scenarios in this chapter will greatly increase

your understanding of which files are backed up and how they are used in a recovery.

You will be much better prepared to use RMAN. RMAN makes much of backup and

recovery automated and push-button. However, knowledge of how to back up and

recover a database manually helps you think through and troubleshoot issues with any

type of backup technology.

This chapter begins with cold backups. These types of backups are viewed as the

simplest form of user-managed backup because even a system administrator can

implement them. Next, the chapter discusses hot backups. You also investigate several

common restore-and-recovery scenarios. These examples build your base knowledge of

Oracle backup and recovery internals.

Tip  In Oracle Database 12c, you can perform user-managed hot backups and
cold backups on pluggable databases; the user-managed backup and recovery
technology works fine. Just as with other Oracle databases, it is strongly
recommended that you use RMAN to manage backup and recovery in a pluggable
environment. User-managed backup tasks quickly become unwieldy, in which
the DBA must manage this information for the root container and, potentially,
numerous pluggable databases.

Chapter 16 User-Managed Backup and Recovery

649

�Implementing a Cold-Backup Strategy
You perform a user-managed cold backup by copying files after the database has been

shut down. This type of backup is also known as an offline backup. Your database can be

in either noarchivelog mode or archivelog mode when you make a cold backup.

DBAs tend to think of a cold backup as being synonymous with a backup of a

database in noarchivelog mode. That is not correct. You can make a cold backup of

a database in archivelog mode, which might be used before a data center move or a

large migration requiring an outage. A cold backup is a backup of the database while it

is shut down, which means there is not a difference if the database is in archivelog or

noarchivelog mode. It is a backup at a point in time and, if used to restore, can only be

restored to that point.

�Making a Cold Backup of a Database
One main reason for making a cold backup of a database in noarchivelog mode is to

give you a way to restore a database back to a point in time in the past. You should use

this type of backup only if you do not need to recover transactions that occurred after

the backup. It is not possible to take hot backups, or while the database is started and

running, of a database in noarchivelog mode because the changes cannot be captured

as part of the backup. This type of backup and recovery strategy is acceptable only if your

business requirements allow for the loss of data and downtime. Rarely would you ever

implement this type of backup and recovery solution for a production business database

since it is normal for the production database to be in archivelog mode.

Having said that, there are some good reasons to implement this type of backup.

One common use is to make a cold backup of a development/test/training database

and periodically reset the database back to the baseline. This gives you a way to restart a

performance test or a training session with the same point-in-time snapshot of the database.

Tip  Consider using the Flashback Database feature to set your database back to
a point in time in the past (see Chapter 19 for more details).

The example in this section shows you how to make a backup of every critical file

in your database: all control files, data files, and online redo log files. With this type of

backup, you can easily restore your database back to the point in time when the backup

Chapter 16 User-Managed Backup and Recovery

650

was made. The main advantages of this approach are that it is conceptually simple and

easy to implement. Here are the steps required for a cold backup of a database:

	 1.	 Determine where to copy the backup files and how much space

is required.

	 2.	 Identify the locations and names of the database files to copy.

	 3.	 Shut down the database with the IMMEDIATE, TRANSACTIONAL,

or NORMAL clause.

	 4.	 Copy the files (identified in step 2) to the backup location

(determined in step 1).

	 5.	 Restart your database.

The following sections elaborate on these steps.

�Step 1. Determine Where to Copy the Backup Files and How
Much Space Is Required

Ideally, the backup location should be on a set of disks separate from your live data files

location. However, in many shops, you may not have a choice and may be told which

mount points are to be used by the database. For this example, the backup location is the

directory /u01/cbackup/o18c. To get a rough idea of how much space you need to store

one copy of the backups, you can run this query:

SQL> select sum(sum_bytes)/1024/1024 m_bytes

from(

select sum(bytes) sum_bytes from v$datafile

union

select (sum(bytes) * members) sum_bytes from v$log

group by members);

You can verify how much operating disk space is available with the Linux/Unix df

(disk free) command. Make sure that the amount of disk space available at the OS is

greater than the sum returned from the prior query:

$ df -h

Chapter 16 User-Managed Backup and Recovery

651

Tip T emporary files are only needed to be backed up if the database is before
release 10g.

�Step 2. Identify the Locations and Names of the Database
Files to Copy

Run this query to list the names (and paths) of the files that are included in a cold

backup of a noarchivelog mode database:

SQL> select name from v$datafile

union

select name from v$controlfile

union

select member from v$logfile;

BACKING UP ONLINE REDO LOGS (OR NOT)

Do you need to back up the online redo logs? No; you never need to back up the online redo logs

as part of any type of backup. Then, why do DBAs back up the online redo logs as part of a cold

backup? One reason is that it makes the restore process for the noarchivelog mode scenario

slightly easier. The online redo logs are required to open the database in a normal manner.

If you back up all files (including the online redo logs), then to get your database back to the

state it was in at the time of the backup, you restore all files (including the online redo logs)

and start up your database.

�Step 3. Shut Down the Database

Connect to your database as the SYS (or as a SYSDBA-privileged user), and shut down

your database, using IMMEDIATE, TRANSACTIONAL, or NORMAL. In almost every situation,

using IMMEDIATE is the preferred method. This mode disconnects users, rolls back

incomplete transactions, and shuts down the database:

$ sqlplus / as sysdba

SQL> shutdown immediate;

Chapter 16 User-Managed Backup and Recovery

652

�Step 4. Create Backup Copies of the Files

For every file identified in step 2, use an OS utility to copy the files to a backup

directory (identified in step 1). In this simple example, all the data files, control files,

temporary database files, and online redo logs are in the same directory. In production

environments, you will most likely have files spread out in several different

directories. This example uses the Linux/Unix cp command to copy the database files

from /u01/dbfile/o18c to the /u01/cbackup/o18c directory:

$ cp /u01/dbfile/o18c/*.* /u01/cbackup/o18c

�Step 5. Restart Your Database

After all the files are copied, you can start up your database:

$ sqlplus / as sysdba

SQL> startup;

�Restoring a Cold Backup in Noarchivelog Mode
with Online Redo Logs
The next example explains how to restore from a cold backup of a database in

noarchivelog mode. If you included the online redo logs as part of the cold backup,

you can include them when you restore the files. Here are the steps involved in this

procedure:

	 1.	 Shut down the instance.

	 2.	 Copy the data files, online redo logs, and control files back from

the backup to the live database data file locations.

	 3.	 Start up your database.

These steps are detailed in the following sections.

Chapter 16 User-Managed Backup and Recovery

653

�Step 1. Shut Down the Instance

Shut down the instance, if it is running. In this scenario, it does not matter how you shut

down the database, because you are restoring back to a point in time (with no recovery

of transactions). Any files in the live database directory locations are overwritten when

the backup files are copied back. If your instance is running, you can abruptly abort it. As

a SYSDBA-privileged user, do the following:

$ sqlplus / as sysdba

SQL> shutdown abort;

�Step 2. Copy the Files Back from the Backup

This step does the reverse of the backup: you are copying files from the backup location

to the live database file locations. In this example, all the backup files are located in the

/u01/cbackup/o18c directory, and all files are being copied to the /u01/dbfile/o18c

directory:

$ cp /u01/cbackup/o18c/*.* /u01/dbfile/o18c

�Step 3. Start Up the Database

Connect to your database as SYS (or a user that has SYSDBA privileges), and start up your

database:

$ sqlplus / as sysdba

SQL> startup;

After you finish these steps, you should have an exact copy of your database as it was

when you made the cold backup. It is as if you set your database back to the point in time

when you made the backup.

�Restoring a Cold Backup in Noarchivelog Mode
Without Online Redo Logs
As mentioned earlier, you do not ever need the online redo logs when restoring from

a cold backup. If you made a cold backup of your database in noarchivelog mode and

did not include the online redo logs as part of the backup, the steps to restore are nearly

Chapter 16 User-Managed Backup and Recovery

654

identical to the steps in the previous section. The main difference is that the last step

requires you to open your database, using the OPEN RESETLOGS clause. Here are the

steps:

	 1.	 Shut down the instance.

	 2.	 Copy the control files and data files back from the backup.

	 3.	 Start up the database in mount mode.

	 4.	 Open the database with the OPEN RESETLOGS clause.

�Step 1. Shut Down the Instance

Shut down the instance, if it is running. In this scenario, it does not matter how you

shut down the database, because you are restoring back to a point in time. As a SYSDBA-

privileged user, do the following:

$ sqlplus / as sysdba

SQL> shutdown abort;

�Step 2. Copy the Files Back from the Backup

Copy the control files and data files from the backup location to the live data file

locations:

$ cp <backup directory>/*.* <live database file directory>

�Step 3. Start Up the Database in Mount Mode

Connect to your database as SYS or a user with SYSDBA privileges, and start the database

in mount mode:

$ sqlplus / as sysdba

SQL> startup mount

�Step 4. Open the Database with the OPEN RESETLOGS Clause

Open your database for use with the OPEN RESETLOGS clause:

SQL> alter database open resetlogs;

Chapter 16 User-Managed Backup and Recovery

655

If you see the Database altered message, the command was successful. However,

you may see this error:

ORA-01139: RESETLOGS option only valid after an incomplete database

recovery

In this case, issue the following command:

SQL> recover database until cancel;

You should see this message:

Media recovery complete.

Now, attempt to open your database with the OPEN RESETLOGS clause:

SQL> alter database open resetlogs;

This statement instructs Oracle to re-create the online redo logs. Oracle uses

information in the control file for the placement, name, and size of the redo logs. If there

are old online redo log files in those locations, they are overwritten.

If you are monitoring your alert.log throughout this process, you may see ORA-

00312 and ORA-00313. This means that Oracle cannot find the online redo log files; this is

okay, because these files are not physically available until they are re-created by the OPEN

RESETLOGS command.

�Scripting a Cold Backup and Restore
It is instructional to view how to script a cold backup. The basic idea is to dynamically

query the data dictionary to determine the locations and names of the files to be backed

up. This is preferable to hard-coding the directory locations and file names in a script.

The dynamic generation of a script is less prone to errors and surprises (e.g., the addition

of new data files to a database but not to an old, hard-coded backup script).

Note T he scripts in this section are not meant to be production-strength backup
and recovery scripts. Rather, they illustrate the basic concepts of scripting a cold
backup and subsequent restore.

Chapter 16 User-Managed Backup and Recovery

656

The first script in this section makes a cold backup of a database. Before you use

the cold backup script, you need to modify these variables in the script to match your

database environment:

•	 ORACLE_SID

•	 ORACLE_HOME

•	 cbdir

The cbdir variable specifies the name of the backup-directory location. The script

creates a file named coldback.sql, which is executed from SQL*Plus to initiate a cold

backup of the database:

#!/bin/bash

ORACLE_SID=o18c

ORACLE_HOME=/u01/app/oracle/product/18.1.0.1/db_1

PATH=$PATH:$ORACLE_HOME/bin

#

sqlplus -s <<EOF

/ as sysdba

set head off pages0 lines 132 verify off feed off trimsp on

define cbdir=/u01/cbackup/o18c

spool coldback.sql

select 'shutdown immediate;' from dual;

select '!cp ' || name || ' ' || '&&cbdir' from v\$datafile;

select '!cp ' || member || ' ' || '&&cbdir' from v\$logfile;

select '!cp ' || name || ' ' || '&&cbdir' from v\$controlfile;

select 'startup;' from dual;

spool off;

@@coldback.sql

EOF

exit 0

This file generates commands that are to be executed from an SQL*Plus script to

make a cold backup of a database. You place an exclamation mark (!) in front of the

Unix cp command to instruct SQL*Plus to host out to the OS to run the cp command.

You also place a backward slash (\) in front of each dollar sign ($) when referencing

v$ data dictionary views; this is required in a Linux/Unix shell script. The \ escapes

Chapter 16 User-Managed Backup and Recovery

657

the $ and tells the shell script not to treat the $ as a special character (the $ normally

signifies a shell variable).

After you run this script, here is a sample of the copy commands written to the

coldback.sql script:

shutdown immediate;

!cp /u01/dbfile/o18c/system01.dbf /u01/cbackup/o18c

!cp /u01/dbfile/o18c/sysaux01.dbf /u01/cbackup/o18c

!cp /u01/dbfile/o18c/undotbs01.dbf /u01/cbackup/o18c

!cp /u01/dbfile/o18c/users01.dbf /u01/cbackup/o18c

!cp /u01/dbfile/o18c/tools01.dbf /u01/cbackup/o18c

!cp /u01/oraredo/o18c/redo02a.rdo /u01/cbackup/o18c

!cp /u02/oraredo/o18c/redo02b.rdo /u01/cbackup/o18c

!cp /u01/oraredo/o18c/redo01a.rdo /u01/cbackup/o18c

!cp /u02/oraredo/o18c/redo01b.rdo /u01/cbackup/o18c

!cp /u01/oraredo/o18c/redo03a.rdo /u01/cbackup/o18c

!cp /u02/oraredo/o18c/redo03b.rdo /u01/cbackup/o18c

!cp /u01/dbfile/o18c/control01.ctl /u01/cbackup/o18c

!cp /u01/dbfile/o18c/control02.ctl /u01/cbackup/o18c

startup;

While you make a cold backup, you should also generate a script that provides the

commands to copy data files, log files, and control files back to their original locations.

You can use this script to restore from the cold backup. The next script in this section

dynamically creates a coldrest.sql script that copies files from the backup location to

the original data file locations. You need to modify this script in the same manner that

you modified the cold backup script (i.e., change the ORACLE_SID, ORACLE_HOME, and

cbdir variables to match your environment):

#!/bin/bash

ORACLE_SID=o18c

ORACLE_HOME=/u01/app/oracle/product/18.1.0.1/db_1

PATH=$PATH:$ORACLE_HOME/bin

#

sqlplus -s <<EOF

/ as sysdba

Chapter 16 User-Managed Backup and Recovery

658

set head off pages0 lines 132 verify off feed off trimsp on

define cbdir=/u01/cbackup/o18c

define dbname=$ORACLE_SID

spo coldrest.sql

select 'shutdown abort;' from dual;

select '!cp ' || '&&cbdir/' || substr(name, instr(name,'/',-1,1)+1) ||

 ' ' || name from v\$datafile;

select '!cp ' || '&&cbdir/' || substr(member, instr(member,'/',-1,1)+1) ||

 ' ' || member from v\$logfile;

select '!cp ' || '&&cbdir/' || substr(name, instr(name,'/',-1,1)+1) ||

 ' ' || name from v\$controlfile;

select 'startup;' from dual;

spo off;

EOF

exit 0

This script creates a script, named coldrest.sql, that generates the copy commands

to restore your data files, log files, and control files back to their original locations. After

you run this shell script, here is a snippet of the code in the coldrest.sql file:

shutdown abort;

!cp /u01/cbackup/o18c/system01.dbf /u01/dbfile/o18c/system01.dbf

!cp /u01/cbackup/o18c/sysaux01.dbf /u01/dbfile/o18c/sysaux01.dbf

!cp /u01/cbackup/o18c/undotbs01.dbf /u01/dbfile/o18c/undotbs01.dbf

!cp /u01/cbackup/o18c/users01.dbf /u01/dbfile/o18c/users01.dbf

!cp /u01/cbackup/o18c/tools01.dbf /u01/dbfile/o18c/tools01.dbf

...

!cp /u01/cbackup/o18c/redo03b.rdo /u02/oraredo/o18c/redo03b.rdo

!cp /u01/cbackup/o18c/control01.ctl /u01/dbfile/o18c/control01.ctl

!cp /u01/cbackup/o18c/control02.ctl /u01/dbfile/o18c/control02.ctl

startup;

Chapter 16 User-Managed Backup and Recovery

659

If you need to restore from a cold backup using this script, log in to SQL*Plus as SYS,

and execute the script:

$ sqlplus / as sysdba

SQL> @coldrest.sql

	 1.	 For the restore of a database in archivelog mode, it is the same if

from a cold or hot backup. These restore examples are covered

in sections “Performing a Complete Recovery of an Archivelog

Mode Database” and “Performing an Incomplete Recovery of an

Archivelog Mode Database” later in this chapter.

UNDERSTANDING THE MECHANICS DOES MATTER

Knowing how a hot backup works also helps in untangling and surviving difficult RMAN

scenarios. RMAN is a sophisticated tool and yet provides simplified management of backup

and recovery. With just a few commands, you can back up, restore, and recover your database.

However, if there is a failure with any RMAN command or step, an understanding of Oracle’s

underlying internal restore-and-recovery architecture pays huge dividends. A detailed

knowledge of how to restore and recover from a hot backup helps you logically think your way

through any RMAN scenario.

Knowing that RMAN is restoring a file from a backup and can perform the recovery, relates

back to how to restore a data file through the copy commands without RMAN. The few

things that can go wrong with RMAN in a restore should be listed as part of the testing

documentation in order to work through the issues with RMAN in order to continue with the

recovery, if not, document the commands through the command line to copy files, and recover

the data file.

Similarly, effort you put into understanding how backup and recovery is implemented pays

off in the long run. You actually have less to remember—because your understanding of the

underlying operation enables you to think through problems and solve them in ways that

checklists do not.

Chapter 16 User-Managed Backup and Recovery

660

�Implementing a Hot Backup Strategy
As discussed previously, RMAN should be your tool of choice for any type of Oracle

database backup (either online or offline). RMAN is more efficient than user-managed

backups and improves the process as well as offers a framework to schedule and

maintain backup and recovery internals is to make a hot backup and then use that

backup to restore and recover your database. Manually issuing the commands involved

in a hot backup, followed by a restore and recovery, helps you understand the role of

each type of file (control files, data files, archive redo logs, online redo logs) in a restore-

and-recovery scenario.

The following sections begin by showing you how to implement a hot backup. They

also provide basic scripts that you can use to automate the hot backup process. Later

sections explain some of the internal mechanics of a hot backup and clarify why you

must put tablespaces in backup mode before the hot backup takes place.

�Making a Hot Backup
Here are the steps required for a hot backup:

	 1.	 Ensure that the database is in archivelog mode.

	 2.	 Determine where to copy the backup files.

	 3.	 Identify which files need to be backed up.

	 4.	 Note the maximum sequence number of the online redo logs.

	 5.	 Alter the database/tablespace into backup mode.

	 6.	 Copy the data files with an OS utility to the location determined

in step 2.

	 7.	 Alter the database/tablespace out of backup mode.

	 8.	 Archive the current online redo log, and note the maximum

sequence number of the online redo logs.

	 9.	 Back up the control file.

	 10.	 Back up any archive redo logs generated during the backup.

These steps are covered in detail in the following sections.

Chapter 16 User-Managed Backup and Recovery

661

�Step 1. Ensure That the Database Is in Archivelog Mode

Run the following command to check the archivelog mode status of your database:

SQL> archive log list;

The output shows that this database is in archivelog mode:

Database log mode Archive Mode

Automatic archival Enabled

Archive destination /u01/oraarch/o18c

If you are not sure how to enable archiving, see Chapter 5 for details.

�Step 2. Determine Where to Copy the Backup Files

Now, determine the backup location. For this example, the backup location is the

directory /u01/hbackup/o18c. To get a rough idea of how much space you need, you can

run this query:

SQL> select sum(bytes) from dba_data_files;

Ideally, the backup location should be on a set of disks separate from your live data

files. But, in practice, many times you are given a slice of space on a SAN and have no

idea about the underlying disk layout. In these situations, you rely on redundancies

being built into the SAN hardware (RAID disks, multiple controllers, and so on) to ensure

high availability and recoverability.

�Step 3. Identify Which Files Need to Be Backed Up

For this step, you only need to know the locations of the data files:

SQL> select name from v$datafile;

When you get to step 5, you may want to consider altering tablespaces one at a time

into backup mode. If you take that approach, you need to know which data files are

associated with which tablespace:

SQL> select tablespace_name, file_name

from dba_data_files

order by 1,2;

Chapter 16 User-Managed Backup and Recovery

662

�Step 4. Note the Maximum Sequence Number of the Online
Redo Logs

To successfully recover using a hot backup, you require, at minimum, all the archive

redo logs that were generated during the backup. For this reason, you need to note the

archivelog sequence before starting the hot backup:

SQL> select thread#, max(sequence#)

from v$log

group by thread#

order by thread#;

�Step 5. Alter the Database/Tablespaces into Backup Mode

You can put all your tablespaces into backup mode at the same time, using the ALTER

DATABASE BEGIN BACKUP statement:

SQL> alter database begin backup;

If it is an active OLTP database, doing this can greatly degrade performance. This is

because when a tablespace is in backup mode, Oracle copies a full image of any block

(when it is first modified) to the redo stream (see the section “Understanding the Split-

Block Issue,” later in this chapter, for more details).

The alternative is to alter only one tablespace at a time into backup mode. After the

tablespace has been altered into backup mode, you can copy the associated data files

(step 6) and then alter the tablespace out of backup mode (step 7). You have to do this

for each tablespace:

SQL> alter tablespace <tablespace_name> begin backup;

�Step 6. Copy the Data Files with an OS Utility

Use an OS utility (Linux/Unix cp command) to copy the data files to the backup location.

In this example, all the data files are in one directory, and they are all copied to the same

backup directory:

$ cp /u01/dbfile/o18c/*.dbf /u01/hbackup/o18c

Chapter 16 User-Managed Backup and Recovery

663

�Step 7. Alter the Database/Tablespaces out of Backup Mode

After you are finished copying all your data files to the backup directory, you need to

alter the tablespaces out of backup mode. This example alters all tablespaces out of

backup mode at the same time:

SQL> alter database end backup;

If you are altering your tablespaces into backup mode one at a time, you need to alter

each tablespace out of backup mode after its data files have been copied:

SQL> alter tablespace <tablespace_name> end backup;

If you do not take the tablespaces out of backup mode, you can seriously degrade

performance and compromise the ability to recover your database. I have also seen

RMAN failure leave a tablespace or datafile in backup mode and cause future backups

also to fail, and this same check will show if there is something still in backup mode. You

can verify that no data files have an ACTIVE status with the following query:

SQL> alter session set nls_date_format = 'DD-MON-RRRR HH24:MI:SS';

SQL> select * from v$backup where status='ACTIVE';

Note S etting the NLS_DATE_FORMAT parameter appropriately will allow you to
see the exact date/time when the data file was placed into backup mode. This is
useful for determining the starting sequence number of the archivelog needed, in
the event that the data file needs to be recovered.

�Step 8. Archive the Current Online Redo Log, and Note
the Maximum Sequence Number of the Online Redo Logs

The following statement instructs Oracle to archive any unarchived online redo logs

and to initiate a log switch. This ensures that an end-of-backup marker is written to the

archive redo logs:

SQL> alter system archive log current;

Chapter 16 User-Managed Backup and Recovery

664

Also, note the maximum online redo log sequence number. If a failure occurs

immediately after the hot backup, you need any archive redo logs generated during the

hot backup to fully recover your database:

SQL> select thread#, max(sequence#)

from v$log

group by thread#

order by thread#;

�Step 9. Back Up the Control File

For a hot backup, you cannot use an OS copy command to make a backup of the control

file. Oracle’s hot backup procedure specifies that you must use the ALTER DATABASE

BACKUP CONTROLFILE statement. This example makes a backup of the control file and

places it in the same location as the database backup files:

SQL> alter database backup controlfile

 to '/u01/hbackup/o18c/controlbk.ctl' reuse;

The REUSE clause instructs Oracle to overwrite the file if it already exists in the

backup location.

�Step 10. Back Up Any Archive Redo Logs Generated
During the Backup

Back up the archive redo logs that were generated during the hot backup. You can do this

with an OS copy command:

$ cp <archive redo logs generated during backup> <backup directory>

This procedure guarantees that you have the logs, even if a failure should occur

soon after the hot backup finishes. Be sure you do not back up an archive redo log that

is currently being written to by the archiver process—doing so results in an incomplete

copy of that file. Sometimes, DBAs script this process by checking the maximum

SEQUENCE# with the maximum RESETLOGS_ID in the V$ARCHIVED_LOG view. Oracle

updates that view when it is finished copying the archive redo log to disk. Therefore, any

archive redo log file that appears in the V$ARCHIVED_LOG view should be safe to copy.

Chapter 16 User-Managed Backup and Recovery

665

�Scripting Hot Backups
The script in this section covers the minimal tasks associated with a hot backup. For a

production environment, a hot backup script can be quite complex. The script given

here provides you with a baseline of what you should include in a hot backup script. You

need to modify these variables in the script for it to work in your environment:

•	 ORACLE_SID

•	 ORACLE_HOME

•	 hbdir

The ORACLE_SID OS variable defines your database name. The ORACLE_HOME OS

variable defines where you installed the Oracle software. The SQL*Plus hbdir variable

points to the directory for the hot backups.

#!/bin/bash

ORACLE_SID=o18c

ORACLE_HOME=/u01/app/oracle/product/18.1.0.1/db_1

PATH=$PATH:$ORACLE_HOME/bin

#

sqlplus -s <<EOF

/ as sysdba

set head off pages0 lines 132 verify off feed off trimsp on

define hbdir=/u01/hbackup/o18c

spo hotback.sql

select 'spo &&hbdir/hotlog.txt' from dual;

select 'select max(sequence#) from v\$log;' from dual;

select 'alter database begin backup;' from dual;

select '!cp ' || name || ' ' || '&&hbdir' from v\$datafile;

select 'alter database end backup;' from dual;

select 'alter database backup controlfile to ' || "" || '&&hbdir'

 || '/controlbk.ctl' || "" || ' reuse;' from dual;

select 'alter system archive log current;' from dual;

select 'select max(sequence#) from v\$log;' from dual;

select 'select member from v\$logfile;' from dual;

Chapter 16 User-Managed Backup and Recovery

666

select 'spo off;' from dual;

spo off;

@@hotback.sql

EOF

The script generates a hotback.sql script. This script contains the commands for

performing the hot backup. Here is a listing of the hotback.sql script for a test database:

spo /u01/hbackup/o18c/hotlog.txt

select max(sequence#) from v$log;

alter database begin backup;

!cp /u01/dbfile/o18c/system01.dbf /u01/hbackup/o18c

!cp /u01/dbfile/o18c/sysaux01.dbf /u01/hbackup/o18c

!cp /u01/dbfile/o18c/undotbs01.dbf /u01/hbackup/o18c

!cp /u01/dbfile/o18c/users01.dbf /u01/hbackup/o18c

!cp /u01/dbfile/o18c/tools01.dbf /u01/hbackup/o18c

alter database end backup;

alter database backup controlfile to '/u01/hbackup/o18c/controlbk.ctl' reuse;

alter system archive log current;

select max(sequence#) from v$log;

select member from v$logfile;

spo off;

You can run this script manually from SQL*Plus, like this:

SQL> @hotback.sql

Caution  If the previous script fails on a statement before ALTER DATABASE
END BACKUP is executed, you must take your database (tablespaces) out of
backup mode by manually running ALTER DATABASE END BACKUP from
SQL*Plus (as the SYS user).

Chapter 16 User-Managed Backup and Recovery

667

While you generate the hot backup script, it is prudent to generate a script that you

can use to copy the data files from a backup directory. You have to modify the hbdir

variable in this script to match the location of the hot backups for your environment.

Here is a script that generates the copy commands:

#!/bin/bash

ORACLE_SID=o18c

ORACLE_HOME=/u01/app/oracle/product/18.1.0.1/db_1

PATH=$PATH:$ORACLE_HOME/bin

#

sqlplus -s <<EOF

/ as sysdba

set head off pages0 lines 132 verify off feed off trimsp on

define hbdir=/u01/hbackup/o18c/

define dbname=$ORACLE_SID

spo hotrest.sql

select '!cp ' || '&&hbdir' || substr(name,instr(name,'/',-1,1)+1)

 || ' ' || name from v\$datafile;

spo off;

EOF

#

exit 0

For my environment, here is the code generated that can be executed from SQL*Plus

to copy the data files back from the backup directory, if a failure should occur:

!cp /u01/hbackup/o18c/system01.dbf /u01/dbfile/o18c/system01.dbf

!cp /u01/hbackup/o18c/sysaux01.dbf /u01/dbfile/o18c/sysaux01.dbf

!cp /u01/hbackup/o18c/undotbs01.dbf /u01/dbfile/o18c/undotbs01.dbf

!cp /u01/hbackup/o18c/users01.dbf /u01/dbfile/o18c/users01.dbf

!cp /u01/hbackup/o18c/tools01.dbf /u01/dbfile/o18c/tools01.dbf

In this output, you can remove the exclamation point (!)from each line if you prefer

to run the commands from the OS prompt. The main idea is that these commands are

available in the event of a failure, so you know which files have been backed up to which

location and how to copy them back.

Chapter 16 User-Managed Backup and Recovery

668

Tip  Do not use user-managed hot backup technology for online backups; use
RMAN. RMAN does not need to place tablespaces in backup mode and automates
nearly everything related to backup and recovery.

�Understanding the Split-Block Issue
To perform a hot backup, one critical step is to alter a tablespace into backup mode

before you copy any of the data files associated with the tablespace, using an OS utility.

To understand why you have to alter a tablespace into backup mode, you must be

familiar with what is sometimes called the split- (or fractured-) block issue.

Recall that the size of a database block is often different from that of an OS block.

For instance, a database block may be sized at 8KB, whereas the OS block size is 4KB. As

part of the hot backup, you use an OS utility to copy the live data files. While the OS

utility is copying the data files, the possibility exists that database writers are writing to a

block simultaneously. Because the Oracle block and the OS block are different sizes, the

following may happen:

	 1.	 The OS utility copies part of the Oracle block.

	 2.	 A moment later, a database writer updates the entire block.

	 3.	 A split second later, the OS utility copies the latter half of the

Oracle block.

This can result in the OS copy of the block’s being inconsistent with what Oracle

wrote to the OS. Figure 16-1 illustrates this concept.

Chapter 16 User-Managed Backup and Recovery

669

Looking at Figure 16-1, the block copied to disk at time 3 is corrupt, as far as Oracle

is concerned. The first half of the block is from time 1, and the latter half is copied at

time 3. When you make a hot backup, you are guaranteeing block-level corruption in the

backups of the data files.

To understand how Oracle resolves the split-block issue, first consider a database

operating in its normal mode (not in backup mode). The redo information that is written

to the online redo logs is only what Oracle needs, to reapply transactions. The redo

stream contains entire blocks of data. Oracle only records a change vector in the redo

stream that specifies which block changed and how it was changed. Figure 16-2 shows

Oracle operating under normal conditions.

Figure 16-1.  Hot backup split- (or fractured-) block issue

Chapter 16 User-Managed Backup and Recovery

670

Now, consider what happens during a hot backup. For a hot backup, before you

copy the data files associated with a tablespace, you must first alter the tablespace into

backup mode. While in this mode, before Oracle modifies a block, the entire block

is copied to the redo stream. Any subsequent changes to the block only require that

the normal redo-change vectors be written to the redo stream. This is illustrated in

Figure 16-3.

Figure 16-2.  Oracle normally only writes change vectors to the redo stream

Chapter 16 User-Managed Backup and Recovery

671

To understand why Oracle logs the entire block to the redo stream, consider what

happens during a restore and recovery. First, the backup files from the hot backup are

restored. As explained earlier, these backup files contain corrupt blocks, owing to the

split-block issue. But it does not matter, because once Oracle recovers the data files, for

any block that was modified during the hot backup, Oracle has an image copy of the

block as it was before it was modified. Oracle uses the copy of the block it has in the redo

stream as a starting point for the recovery (of that block). This process is illustrated in

Figure 16-4.

Figure 16-3.  Entire blocks are written to the redo stream

Chapter 16 User-Managed Backup and Recovery

672

In this way, it does not matter if there are corrupt blocks in the hot backup files.

Oracle always starts the recovery process for a block from a copy of the block (as it was

before it was modified) in the redo stream.

�Understanding the Need for Redo Generated
During Backup
What happens if you experience a failure soon after you make a hot backup? Oracle

knows when a tablespace was put in backup mode (begin backup system SCN written to

the redo stream), and Oracle knows when the tablespace was taken out of backup mode

(end-of-backup marker written to the redo stream). Oracle requires every archive redo

log generated during that time frame to successfully recover the data files.

Figure 16-5 shows that, at minimum, the archive redo logs from sequence numbers

100 to 102 are required to recover the tablespace. These archive redo logs were generated

during the hot backup.

Figure 16-4.  Restore and recovery of a split block

Chapter 16 User-Managed Backup and Recovery

673

Figure 16-5.  Recovery applied

If you attempt to stop the recovery process before all redo between the begin and

end markers has been applied to the data file, Oracle throws this error:

ORA-01195: online backup of file 1 needs more recovery to be consistent

All redo generated during the hot backup of a tablespace must be applied to the

data files before they can be opened. Oracle, at a minimum, needs to apply everything

between the begin-backup SCN marker and the end-backup marker, to account for every

block modified while the tablespace was in backup mode. This redo is in the archive

redo log files; or, if the failure happened right after the backup ended, some of the redo

may not have been archived and may be in the online redo logs. Therefore, you have to

instruct Oracle to apply what’s in the online redo logs.

�Understanding That Data Files Are Updated
Note that, in Figures 16-2 and 16-3, the behavior of the database writer is, for the most

part, unchanged throughout the backup procedure. The database writer continues to

write blocks to data files, regardless of the backup mode of the database. The database

writer does not care if a hot backup is taking place; its job is to write blocks from the

buffer cache to the data files.

Every once in a while, you run into a DBA who states that the database writer

does not write to data files during user-managed hot backups. This is a widespread

misconception. Use some common sense: If the database writer is not writing to the data

files during a hot backup, then where are the changes being written? If the transactions

are being written to somewhere other than the data files, how would those data files be

resynchronized after the backup? It does not make any sense.

Chapter 16 User-Managed Backup and Recovery

674

Some DBAs say, “The data file header is frozen, which means no changes to the data

file.” Oracle does freeze the SCN to indicate the start of the hot backup in the data file

header and does not update that SCN until the tablespace is taken out of backup mode.

This “frozen SCNdoes not mean that blocks are not being written to data files during the

backup. You can easily demonstrate that a data file is written to during backup mode by

doing this:

	 1.	 Put a tablespace in backup mode:

SQL> alter tablespace users begin backup;

	 2.	 Create a table that has a character field:

SQL> create table cc(cc varchar2(20)) tablespace users;

	 3.	 Insert a string into that table:

SQL> insert into cc values('DBWR does write');

	 4.	 Force a checkpoint (which ensures that all modified buffers are

written to disk):

SQL> alter system checkpoint;

	 5.	 From the OS, use the strings and grep commands to search for

the string in the data file:

$ strings /u01/dbfile/o18c/users01.dbf | grep "DBWR does write"

	 6.	 Here is the output, proving that the database writer did write the

data to disk:

DBWR does write

	 7.	 Do not forget to take the tablespace out of backup mode:

SQL> alter tablespace users end backup;

Chapter 16 User-Managed Backup and Recovery

675

�Performing a Complete Recovery of an Archivelog
Mode Database
The term complete recovery means that you can recover all transactions that were

committed before a failure occurred. Complete recovery does not mean you that

completely restore and recover the entire database. For instance, if only one data file has

experienced media failure, you need to restore and recover only the damaged data file to

perform a complete recovery.

Tip  If you have access to a test or development database, take the time to walk
through every step in each of the examples that follow. Going through these steps
can teach you more about backup and recovery than any documentation.

The steps outlined here apply to any database backed up while in archivelog mode.

It does not matter if you made a cold backup or hot backup. The steps to restore and

recover data files are the same, as long as the database was in archivelog mode during

the backup. For a complete recovery, you need the following:

•	 To be able to restore the data files that have experienced

media failure

•	 Access to all archive redo logs generated since the last backup

was started

•	 Intact online redo logs

Here is the basic procedure for a complete recovery:

	 1.	 Place the database in mount mode; this prevents normal user

transaction processing from reading/writing to data files being

restored. (If you are not restoring the SYSTEM or UNDO tablespace,

you have the option of opening the database and manually taking

the data files offline before restoring them. If you do this, make

sure you place the data files online after the recovery is complete.)

	 2.	 Restore the damaged data files with an OS copy utility.

Chapter 16 User-Managed Backup and Recovery

676

	 3.	 Issue the appropriate SQL*Plus RECOVER command to apply

any information required in the archive redo logs and online

redo logs.

	 4.	 Alter the database open.

The next several sections demonstrate some common complete restore-and-recovery

scenarios. You should be able to apply these basic scenarios to diagnose and recover

from any complex situation you find yourself in.

�Restoring and Recovering with the Database Offline
This section details a simple restore-and-recovery scenario. Described next are the steps

to simulate a failure and then perform a complete restore and recovery. Try this scenario

in a development database. Ensure that you have a good backup and that you are not

trying this experiment in a database that contains critical business data.

Before you start this example, create a table, and insert some data. This table and

data are selected from the end of the complete recovery process to demonstrate a

successful recovery:

SQL> create table foo(foo number) tablespace users;

SQL> insert into foo values(1);

SQL> commit;

Now, switch the online logs several times. Doing so ensures that you have to apply

archive redo logs as part of the recovery:

SQL> alter system switch logfile;

The forward slash (/) reruns the most recently executed SQL statement:

SQL> /

SQL> /

SQL> /

Chapter 16 User-Managed Backup and Recovery

677

Next, simulate a media failure by renaming the data file associated with the USERS

tablespace. You can identify the name of this file with this query:

SQL> select file_name from dba_data_files where tablespace_name='USERS';

FILE_NAME

/u01/dbfile/o18c/users01.dbf

From the OS, rename the file:

$ mv /u01/dbfile/o18c/users01.dbf /u01/dbfile/o18c/users01.dbf.old

And, attempt to stop your database:

$ sqlplus / as sysdba

SQL> shutdown immediate;

You should see an error such as this:

ORA-01116: error in opening database file ...

If this were a real disaster, it would be prudent to navigate to the data file directory,

list the files, and see if the file in question was in its correct location. You should also

inspect the alert.log file to see if any relevant information is logged there by Oracle.

Now that you have simulated a media failure, the next several steps walk you through

a restore and complete recovery.

�Step 1. Place Your Database in Mount Mode

Before you place your database in mount mode, you may need to first shut it down,

using ABORT:

$ sqlplus / as sysdba

SQL> shutdown abort;

SQL> startup mount;

�Step 2. Restore the Data File from the Backup

The next step is to copy from the backup the data file that corresponds to the one that

has had a failure:

$ cp /u01/hbackup/o18c/users01.dbf /u01/dbfile/o18c/users01.dbf

Chapter 16 User-Managed Backup and Recovery

678

At this point, it is instructional to ponder what Oracle would do if you attempted

to start your database. When you issue the ALTER DATABASE OPEN statement, Oracle

inspects the SCN in the control file for each data file. You can examine this SCN by

querying V$DATAFILE:

SQL> select checkpoint_change# from v$datafile where file#=4;

CHECKPOINT_CHANGE#

 3543963

Oracle compares the SCN in the control file with the SCN in the data file header. You

can check the SCN in the data file header by querying V$DATAFILE_HEADER; for example,

SQL> select file#, fuzzy, checkpoint_change#

from v$datafile_header

where file#=4;

 FILE# FUZ CHECKPOINT_CHANGE#

---------- --- ------------------

 4 YES 3502285

Note that the SCN recorded in V$DATAFILE_HEADER is less than the SCN in

V$DATAFILE for the same data file. If you attempt to open your database, Oracle throws

an error stating that media recovery is required (meaning that you need to apply redo) to

synchronize the SCN in the data file with the SCN in the control file. The FUZZY column

is set to YES. This indicates that redo must be applied to the data file before it can be

opened for use. Here is what happens when you try to open the database at this point:

SQL> alter database open;

alter database open;

alter database open

*

ERROR at line 1:

ORA-01113: file 4 needs media recovery...

Oracle does not let you open the database until the SCN in all data file headers

matches the corresponding SCN in the control file.

Chapter 16 User-Managed Backup and Recovery

679

�Step 3. Issue the Appropriate RECOVER Statement

The archive redo logs and online redo logs have the information required to catch up the

data file SCN to the control file SCN. You can apply redo to the data file that needs media

recovery by issuing one of the following SQL*Plus statements:

•	 RECOVER DATAFILE

•	 RECOVER TABLESPACE

•	 RECOVER DATABASE

Because only one data file in this example needs to be recovered, the RECOVER

DATAFILE statement is appropriate. However, keep in mind that you can run any of

the previously listed RECOVER statements, and Oracle will figure out what needs to be

recovered. In this particular scenario, you may find it easier to remember the name

of the tablespace that contains the restored data file(s) than to remember the data file

name(s). Next, any data files that need recovery in the USERS tablespace are recovered:

SQL> recover tablespace users;

At this point, Oracle uses the SCN in the data file header to determine which archive

redo log or online redo log to use to begin applying redo. You can view the starting log

sequence number that RMAN will use to begin the recovery process via the following

query:

SQL> select

 HXFNM file_name

,HXFIL file_num

,FHTNM tablespace_name

,FHTHR thread

,FHRBA_SEQ sequence

from X$KCVFH

where FHTNM = 'USERS';

If all the redo required is in the online redo logs, Oracle applies that redo and

displays this message:

Media recovery complete.

Chapter 16 User-Managed Backup and Recovery

680

If Oracle needs to apply redo that is only contained in archived redo logs (meaning

that the online redo log that contained the appropriate redo has already been

overwritten), you are prompted with a recommendation from Oracle as to which archive

redo log to apply first:

ORA-00279: change 3502285 generated at 11/02/2018 10:49:39 needed for

thread 1

ORA-00289: suggestion : /u01/oraarch/o18c/1_1_798283209.dbf

ORA-00280: change 3502285 for thread 1 is in sequence #1

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

You can press Enter or Return (<RET>) to have Oracle apply the suggested archive

redo log file, specify a file name, specify AUTO to instruct Oracle to apply any suggested

files automatically, or type CANCEL to cancel out of the recovery operation.

In this example, specify AUTO. Oracle applies all redo in all archive redo log files and

online redo log files to perform a complete recovery:

AUTO

The last message displayed after all required archive redo and online redo have been

applied is this:

Log applied.

Media recovery complete.

�Step 4. Alter Your Database Open

After the media recovery is complete, you can open your database:

SQL> alter database open;

You can now verify that the transaction you committed just prior to the media failure

was restored and recovered:

SQL> select * from foo;

 FOO

 1

Chapter 16 User-Managed Backup and Recovery

681

�Restoring and Recovering with a Database Online
If you lose a data file associated with a tablespace other than SYSTEM and UNDO, you can

restore and recover the damaged data file while leaving the database online. For this to

work, any data files being restored and recovered must be taken offline first. You may

be alerted to an issue with a data file in which a user is attempting to update a table and

sees an error such as this:

SQL> insert into foo values(2);

ORA-01116: error in opening database file ...

You navigate to the OS directory that contains the data file and determine that it has

been erroneously removed by a system administrator.

In this example, the data file associated with the USERS tablespace is taken offline

and subsequently restored and recovered while the rest of the database remains online.

First, place take the data file offline:

SQL> alter database datafile '/u01/dbfile/o18c/users01.dbf' offline;

Now, restore the appropriate data file from the backup location:

$ cp /u01/hbackup/o18c/users01.dbf /u01/dbfile/o18c/users01.dbf

In this situation, you cannot use RECOVER DATABASE. The RECOVER DATABASE

statement attempts to recover all data files in the database, of which the SYSTEM

tablespace is part. The SYSTEM tablespace cannot be recovered while the database is

online. If you use the RECOVER TABLESPACE, all data files associated with the tablespace

must be offline. In this case, it is more appropriate to recover at the data file level of

granularity:

SQL> recover datafile '/u01/dbfile/o18c/users01.dbf';

Oracle inspects the SCN in the data file header and determines which archive redo

log or online redo log to use to start applying redo. If all redo required is in the online

redo logs, you see this message:

Media recovery complete.

Chapter 16 User-Managed Backup and Recovery

682

If the starting point for redo is contained only in an archive redo log file, Oracle

suggests which file to start with:

ORA-00279: change 3502285 generated at 11/02/2018 10:49:39 needed for

thread 1

ORA-00289: suggestion : /u01/oraarch/o18c/1_1_798283209.dbf

ORA-00280: change 3502285 for thread 1 is in sequence #1

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

You can type AUTO to have Oracle apply all required redo in archive redo log files and

online redo log files:

AUTO

If successful, you should see this message:

Log applied.

Media recovery complete.

You can now bring the data file back online:

SQL> alter database datafile '/u01/dbfile/o18c/users01.dbf' online;

If successful, you should see this:

Database altered.

�Restoring Control Files
When you are dealing with user-managed backups, you usually restore the control file in

one of these situations:

•	 A control file is damaged, and the file is multiplexed.

•	 All control files are damaged.

These two situations are covered in the following sections.

Chapter 16 User-Managed Backup and Recovery

683

�Restoring a Damaged Control File When Multiplexed

If you configure your database with more than one control file, you can shut down the

database and use an OS command to copy an existing control file to the location of the

missing control file. For example, from the initialization file, you know that two control

files are used for this database:

SQL> show parameter control_files

NAME TYPE VALUE

---------------------------- ----------- ------------------------------

control_files string /u01/dbfile/o18c/control01.ctl

 ,/u02/dbfile/o18c/control02.ctl

Suppose the control02.ctl file has become damaged. Oracle throws this error

when querying the data dictionary:

ORA-00210: cannot open the specified control file...

When a good control file is available, you can shut down the database, move the

old/bad control file (this preserves it, in the event that it is later needed for root cause

analysis), and copy the existing good control file to the name and location of the bad

control file:

SQL> shutdown abort;

$ mv /u02/dbfile/o18c/control02.ctl /u02/dbfile/o18c/control02.ctl.old

$ cp /u01/dbfile/o18c/control01.ctl /u02/dbfile/o18c/control02.ctl

Now, restart the database:

SQL> startup;

In this manner, you can restore a control file from an existing control file.

Chapter 16 User-Managed Backup and Recovery

684

�Restoring When All Control Files Are Damaged

If you lose all of your control files, you can restore one from a backup, or you can re-

create the control file. As long as you have all your data files and any required redo

(archive redo and online redo), you should be able to recover your database completely.

The steps for this scenario are as follows:

	 1.	 Shut down the database.

	 2.	 Restore a control file from the backup.

	 3.	 Start the database in mount mode, and initiate database recovery,

using the RECOVER DATABASE USING BACKUP CONTROLFILE clause.

	 4.	 For a complete recovery, manually apply the redo contained in

the online redo logs.

	 5.	 Open the database with the OPEN RESETLOGS clause.

In this example, all control files for the database were accidentally deleted, and

Oracle subsequently reports this error:

ORA-00210: cannot open the specified control file...

Step 1. Shut Down the Database

First, shut down the database:

SQL> shutdown abort;

Step 2. Restore the Control File from the Backup

This database was configured with just one control file, which you copy back from the

backup location, as shown:

$ cp /u01/hbackup/o18c/controlbk.ctl /u01/dbfile/o18c/control01.ctl

If more than one control file is being used, you have to copy the backup control file to

each control file and location name listed in the CONTROL_FILES initialization parameter.

Chapter 16 User-Managed Backup and Recovery

685

Step 3. Start the Database in Mount Mode, and Initiate Database Recovery

Next, start the database in mount mode:

SQL> startup mount;

After the control file(s) and data files have been copied back, you can perform a

recovery. Oracle knows that the control file was from a backup (because it was created

with the ALTER DATABASE BACKUP CONTROLFILE statement), so the recovery must be

performed with the USING BACKUP CONTROLFILE clause:

SQL> recover database using backup controlfile;

At this point, you are prompted for the application of archive redo log files:

ORA-00279: change 3584431 generated at 11/02/2018 11:48:46 needed for

thread 1

ORA-00289: suggestion : /u01/oraarch/o18c/1_8_798283209.dbf

ORA-00280: change 3584431 for thread 1 is in sequence #8

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

Type AUTO to instruct the recovery process to apply all archive redo logs

automatically:

AUTO

The recovery process applies all available archive redo logs. The recovery process

has no one way of determining where the archive redo stream ends and therefore tries to

apply an archive redo log that does not exist, resulting in a message such as this:

ORA-00308: cannot open archived log '/u01/oraarch/o18c/1_10_798283209.dbf'

ORA-27037: unable to obtain file status

The prior message is to be expected. Now, attempt to open the database:

SQL> alter database open resetlogs;

Oracle throws the following error in this situation:

ORA-01113: file 1 needs media recovery

ORA-01110: data file 1: '/u01/dbfile/o18c/system01.dbf'

Chapter 16 User-Managed Backup and Recovery

686

Step 4. Apply Redo Contained in the Online Redo Logs

Oracle needs to apply more redo to synchronize the SCN in the control file with the SCN

in the data file header. In this scenario, the online redo logs are still intact and contain

the required redo. To apply redo contained in the online redo logs, first identify the

locations and names of the online redo log files:

SQL> select a.sequence#, a.status, a.first_change#, b.member

from v$log a, v$logfile b

where a.group# = b.group#

order by a.sequence#;

Here is the partial output for this example:

SEQUENCE# STATUS FIRST_CHANGE# MEMBER

---------- --------------- --------------- ----------------------

 6 INACTIVE 3543960 /u01/oraredo/o12c/redo03a.rdo

 6 INACTIVE 3543960 /u02/oraredo/o12c/redo03b.rdo

 7 INACTIVE 3543963 /u02/oraredo/o12c/redo01b.rdo

 7 INACTIVE 3543963 /u01/oraredo/o12c/redo01a.rdo

 8 CURRENT 3583986 /u02/oraredo/o12c/redo02b.rdo

 8 CURRENT 3583986 /u01/oraredo/o12c/redo02a.rdo

Now, reinitiate the recovery process:

SQL> recover database using backup controlfile;

The recovery process prompts for an archive redo log that does not exist:

ORA-00279: change 3584513 generated at 11/02/2018 11:50:50 needed for

thread 1

ORA-00289: suggestion : /u01/oraarch/o18c/1_10_798283209.dbf

ORA-00280: change 3584513 for thread 1 is in sequence #10

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

Chapter 16 User-Managed Backup and Recovery

687

Instead of supplying the recovery process with an archive redo log file, type in the

name of a current online redo log file (you may have to attempt each online redo log

until you find the one that Oracle needs). This instructs the recovery process to apply any

redo in the online redo log:

/u01/oraredo/o18c/redo01a.rdo

You should see this message when the correct online redo log is applied:

Log applied.

Media recovery complete.

Step 5. Open the Database with RESETLOGS

The database is completely recovered at this point. It is important after this type of

recovery that a new backup performed against the database. However, because a backup

control file was used for the recovery process, the database must be opened with the

RESETLOGS clause:

SQL> alter database open resetlogs;

Upon success, you should see this:

Database altered.

�Performing an Incomplete Recovery
of an Archivelog Mode Database
Incomplete recovery means that you do not restore all transactions that were committed

before the failure. With this type of recovery, you are recovering to a point in time in

the past, and transactions are lost. This is why incomplete recovery is also known as

database point-in-time recovery (DBPITR).

Incomplete recovery does not mean that you are restoring and recovering only a

subset of data files. In fact, with most incomplete scenarios, you have to restore all data

files from the backup as part of the procedure. If you do not want to recover all data

files, you first need to take offline any data files you do not intend to participate in the

incomplete recovery process. When you initiate the recovery, Oracle will only recover

data files that have an ONLINE value in the STATUS column of V$DATAFILE_HEADER.

Chapter 16 User-Managed Backup and Recovery

688

You may want to perform an incomplete recovery for many different reasons:

•	 You attempt to perform a complete recovery but are missing the

required archive redo logs or unarchived online redo log information.

•	 You want to restore the database back to a point in time in the past

just prior to an erroneous user error (deleted data, dropped table,

and so on).

•	 You have a testing environment. (Flashback database might be an

option here.)

You can perform user-managed incomplete recovery three ways:

•	 Cancel based

•	 SCN based

•	 Time based

Cancel based allows you to apply archive redo and halt the process at the boundary,

based on an archive redo log file. For instance, say you are attempting to restore and

recover your database, and you realize that you are missing an archive redo log. You have

to stop the recover process at the point of your last good archive redo log. You initiate

cancel-based incomplete recovery with the CANCEL clause of the RECOVER DATABASE

statement:

SQL> recover database until cancel;

If you want to recover up to and including a certain SCN number, use SCN-based

incomplete recovery. You may know from the alert log or from the output of LogMiner

the point to which you want to restore to a certain SCN. Use the UNTIL CHANGE clause to

perform this type of incomplete recovery:

SQL> recover database until change 12345;

If you know the time at which you want to stop the recovery process, use time-based

incomplete recovery. For example, you may know that a table was dropped at a certain

time and want to restore and recover the database up to the specified time. The format for

a time-based recovery is always as follows: YYYY-MM-DD:HH24:MI:SS. Here is an example:

SQL> recover database until time '2018-10-21:02:00:00';

Chapter 16 User-Managed Backup and Recovery

689

When you perform an incomplete recovery, you have to restore all data files that you

plan to have online when the incomplete restoration is finished. Here are the steps for an

incomplete recovery:

	 1.	 Shut down the database.

	 2.	 Restore all the data files from the backup.

	 3.	 Start the database in mount mode.

	 4.	 Apply redo (roll forward) to the desired point, and halt the

recovery process (use cancel-, SCN-, or time-based recovery).

	 5.	 Open the database with the OPEN RESETLOGS clause.

The following example performs a cancel-based incomplete recovery. If the database

is open, shut it down:

$ sqlplus / as sysdba

SQL> shutdown abort;

Next, copy all data files from the backup (either a cold or hot backup). This example

restores all data files from a hot backup. For this example, the current control file is intact

and does not need to be restored. Here is a snippet of the OS copy commands for the

database being restored:

cp /u01/hbackup/o18c/system01.dbf /u01/dbfile/o18c/system01.dbf

cp /u01/hbackup/o18c/sysaux01.dbf /u01/dbfile/o18c/sysaux01.dbf

cp /u01/hbackup/o18c/undotbs01.dbf /u01/dbfile/o18c/undotbs01.dbf

cp /u01/hbackup/o18c/users01.dbf /u01/dbfile/o18c/users01.dbf

cp /u01/hbackup/o18c/tools01.dbf /u01/dbfile/o18c/tools01.dbf

After the data files have been copied back, you can initiate the recovery process. This

example performs a cancel-based incomplete recovery:

$ sqlplus / as sysdba

SQL> startup mount;

SQL> recover database until cancel;

Chapter 16 User-Managed Backup and Recovery

690

At this point, the Oracle recovery process suggests an archive redo log to apply:

ORA-00279: change 3584872 generated at 11/02/2018 12:02:32 needed for

thread 1

ORA-00289: suggestion : /u01/oraarch/o18c/1_1_798292887.dbf

ORA-00280: change 3584872 for thread 1 is in sequence #1

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

Apply the logs up to the point you where want to stop, and then type CANCEL:

CANCEL

This stops the recovery process. Now, you can open the database with the RESETLOGS

clause:

SQL> alter database open resetlogs;

The database has been opened to a point in time in the past. The recovery is deemed

incomplete because not all redo was applied.

Tip  Now would be a good time to get a good backup of your database. This will
give you a clean point from which to initiate a restore and recovery should a failure
happen soon after you have opened your database.

PURPOSE OF OPEN RESETLOGS

Sometimes, you are required to open your database with the OPEN RESETLOGS clause. You

may do this when recreating a control file, performing a restore and recovery with a backup

control file, or performing an incomplete recovery. When you open your database with the

OPEN RESETLOGS clause, it either wipes out any existing online redo log files or, if the files

do not exist, re-creates them. You can query the MEMBER column of V$LOGFILE to see which

files are involved in an OPEN RESETLOGS operation.

Why would you want to wipe out what’s in the online redo logs? Take the example of an

incomplete recovery, in which the database is deliberately opened to a point in time in the

past. In this situation, the SCN information in the online redo logs contains transaction data

that will never be recovered. Oracle forces you to open the database with OPEN RESETLOGS

to purposely wipe out that information.

Chapter 16 User-Managed Backup and Recovery

691

When you open your database with OPEN RESETLOGS, you create a new incarnation of your

database and reset the log sequence number back to 1. Oracle requires a new incarnation

so as to avoid accidentally using any old archive redo logs (associated with a separate

incarnation of the database), in the event that another restore and recovery is required.

�Summary
Some studies have indicated that airplane pilots who are over dependent on autopilot

technology are less able to cope with catastrophic in-flight problems than the pilots

who have spent considerable time flying without autopilot assistance. The over-

autodependent pilots tend to forget key procedures when serious problems arise,

whereas pilots who are not as dependent on autopilot are more adept at diagnosing and

resolving stressful in-flight failures.

Similarly, DBAs who understand how to backup, restore, and recover a database

manually, using user-managed techniques, are more proficient at troubleshooting

and resolving serious backup and recovery problems than DBAs who only navigate

backup and recovery technology via screens. This is why this chapter is included in

the book. Understanding what happens at each step and why the step is required is

vital for complete knowledge of the Oracle backup and recovery architecture. Having

additional knowledge and tools in a stressful recovery scenario is extremely valuable.

This awareness translates into key troubleshooting skills when you are using Oracle tools

such as RMAN (backup and recovery), Enterprise Manager, and Data Guard (disaster

recovery, high availability, and replication).

The user-managed backup and recovery techniques covered in this chapter are not

taught or used much anymore. Most DBAs are (and should be) using RMAN for their

Oracle backup and recovery requirements. However, it is critical for you to understand

how cold backups and hot backups work. You may find yourself employed in a shop in

which old technology has been implemented and needing to restore and recover the

database, troubleshoot, or assist in migrating to RMAN. In these scenarios, you must

fully understand the old backup technologies.

Now that you have an in-depth understanding of Oracle backup and recovery

mechanics, you are ready to investigate RMAN. The next several chapters examine how

to configure and use RMAN for production-strength backup and recovery.

Chapter 16 User-Managed Backup and Recovery

693
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_17

CHAPTER 17

Configuring RMAN
Oracle Recovery Manager (RMAN) is provided by default when you install the Oracle

software (for both the Standard Edition and Enterprise Edition). RMAN offers a robust

and flexible set of backup and restore features. The following list highlights some of the

most salient qualities:

•	 Easy-to-use commands for backup, restore, and recovery.

•	 Ability to track which files have been backed up and where to.

•	 Manages the deletion of obsolete backups and archivelogs.

•	 Parallelization: can use multiple processes for backup, restore,

and recovery.

•	 Incremental backups that only back up changes since the

previous backup.

•	 Ability to apply incremental backups to an image copy.

•	 Recovery at the database, tablespace, data file, table, or block level.

•	 Advanced compression and encryption features.

•	 Integration with media managers for tape backups.

•	 Backup validation and testing. Restore validation and testing.

•	 Cross-platform data conversion.

•	 Data Recovery Advisor, which assists with diagnosing failures and

proposing solutions.

•	 Ability to detect corrupt blocks in data files.

•	 Advanced reporting capabilities from the RMAN command line.

694

The goal of this chapter is to present enough information about RMAN that you

can make reasonable decisions about how to implement a solid backup strategy. The

basic RMAN components are described first, after which you walk through many of the

decision points involved in implementing RMAN.

Note  The RMAN-related chapters in this book are not intended to be a complete
reference on all aspects of backup and restore. That would take an entire book.
These chapters contain the basic information you need to successfully use
RMAN. If you require advanced RMAN information regarding backup, restore, and
recovery, see RMAN Recipes for Oracle Database 12c, second edition, by Darl
Kuhn, Sam Alapati, and Arup Nanda (Apress, 2013).

�Understanding RMAN
RMAN ecosystem consists of many different components. Figure 17-1 shows the

interactions of the main RMAN pieces. Refer back to this diagram when reading through

this section.

Figure 17-1.  RMAN architectural components

Chapter 17 Configuring RMAN

695

The following list describes the RMAN architectural components:

DBA: Human interaction to ensure successful backups and

restores.

Target database: The database being backed up by RMAN. You

connect to the target database with the RMAN command-line

TARGET parameter (see the next section for more details).

RMAN client: The rman utility from which you issue BACKUP,

RESTORE, and RECOVER commands. On most database servers, the

rman utility is located in the ORACLE_HOME/bin directory (along

with all the other Oracle utilities, such as sqlplus and expdp).

Oracle server processes: When you execute the rman client and

connect to the target database, two Oracle server background

processes are started. The first default server process interacts

with the PL/SQL packages to coordinate the backup activities.

The secondary polling process occasionally updates Oracle data

dictionary structures.

Channel (s): The Oracle server processes for handling I/O

between files being backed up (or restored) and the backup device

(disk or tape).

PL/SQL packages: RMAN uses two internal PL/SQL packages

(owned by SYS) to perform backup and restore tasks: DBMS_RCVMAN

and DBMS_BACKUP_RESTORE. DBMS_RCVMAN accesses information in

the control file and passes that to the RMAN server processes. The

DBMS_BACKUP_RESTORE package performs most of RMAN’s work.

For example, this package creates the system calls that direct the

channel processes to perform B&R operations.

Memory buffers (PGA or SGA): RMAN uses a memory area in the

PGA (and sometimes in the SGA) as a buffer when reading from

data files and copying subsequent blocks to back up files.

Chapter 17 Configuring RMAN

696

Auxiliary database: A database to which RMAN restores target

database data files for the purpose of duplicating a database,

creating a Data Guard standby database, or performing a database

point in time recovery (DBPITR).

Backup/Back up: Can be either a noun or a verb. The physical

files (backup) that store the backed-up files; or, the act of copying

and archiving (backing up) files. Backups can consist of backup

sets and backup pieces or image copies.

Backup set: When you run an RMAN BACKUP command, by

default, it creates one or more backup sets. A backup set is a

logical RMAN construct that groups backup piece files. You can

think of the relationship of a backup set to a backup piece as

similar to the relationship between a tablespace and a data file:

one is a logical construct, the other is a physical file.

Backup piece file: RMAN binary backup files. Each logical backup

set consists of one or more backup piece files. These are the physical

files that RMAN creates on disk or tape. They are binary, proprietary

format files that only RMAN can read or write to. A backup piece

can contain blocks from many different data files. Backup piece files

are typically smaller than data files, because backup pieces only

contain blocks that have been used in the data files.

Image copy: Initiated with the BACKUP AS COPY command.

A type of backup in which RMAN creates identical copies of a data

file, archivelog file, or control file. Image copies can be operated

on by OS utilities such as the Linux cp and mv commands. Image

copies are used as part of incrementally updated image backups.

Sometimes, it is preferable to use image copies rather than backup

sets if you need to be able to restore quickly.

Recovery catalog: An optional database schema that contains

tables used to store metadata information regarding RMAN

backup operations. Oracle strongly recommends using a recovery

catalog, because it provides more options for backup and restore.

The catalog is normally remote and does not have to be in each of

the databases.

Chapter 17 Configuring RMAN

697

Media manager: Third-party software that allows RMAN to back

up files directly to tape. Backing up to tape is desirable when you

do not have enough room to back up directly to disk or when

disaster recovery requirements necessitate a backup to storage

that can be easily moved offsite.

Fast Recovery Area (FRA): A disk area that RMAN can use for

backups. You can also use the FRA to multiplex control files and

online redo logs. You instantiate a fast recovery with the

database initialization parameters DB_RECOVERY_FILE_DEST_SIZE

and DB_RECOVERY_FILE_DEST.

Snapshot control file: RMAN requires a read-consistent view

of the control file when either backing up the control file or

synchronizing with the recovery catalog (if it is being used). In

these situations, RMAN first creates a temporary copy (snapshot)

of the control file. This allows RMAN to use a version of the control

file that is guaranteed not to change while backing up the control

file or synchronizing with the recovery catalog being used). In

these situations, RMAN first creates a temporary copy (snapshot)

of the control file. This allows RMAN to use a version of the control

file that is guaranteed not to change while backing up the control

file or synchronizing with the recovery catalog.

You can make several types of backups with RMAN:

Full backup: All modified blocks associated with the data file are

backed up. A full backup is not a backup of the entire database.

For example, you can make a full backup of one data file.

Incremental level 0 backup: Backs up the same blocks as a full

backup. The only difference between a level 0 backup and a full

backup is that you can use a level 0 backup with other incremental

backups, but not a full backup.

Chapter 17 Configuring RMAN

698

Incremental level 1 backup: Backs up only blocks that have been

modified since the previous backup. Level 1 incremental backups

can be either differential or cumulative. A differential level 1

backup is the default and backs up all blocks that have been

modified since the last level 0 or level 1 backup. A cumulative level

1 backup backs up all blocks that have changed since the last level

0 backup.

Incrementally updated backup: First creates an image copy of

the data files, after which subsequent backups are incremental

backups that are merged with the image copy. This is an efficient

way to use image copies for backups. Media recoveries using

incrementally updated backups are fast because the image copy of

the data file is used during the restore.

Block change tracking: Database feature that keeps track of

blocks that have changed in the database. A record of the changed

blocks is kept in a binary file. RMAN can use the contents of the

binary file to improve the performance of incremental backups:

instead of having to scan all modified blocks in a data file, RMAN

can determine which blocks have changed from the binary block

change tracking.

Archivelog backups: This performs the backup of the archivelogs

and allows for freeing up space in the archivelog directory.

Archivelog backups are normally included as part of the data files

but can also be run separately to manage the disk space for the

archivelogs.

Now that you understand the RMAN architectural components and the types

of backups you can make, you are ready to start up RMAN and configure it for your

environment.

Chapter 17 Configuring RMAN

699

�Starting RMAN
To connect to RMAN, you need to establish:

•	 OS environment variables

•	 Access to a privileged OS account or a database user with SYSBACKUP

privileges

The easiest way to connect to RMAN is to log in to the server on which the target

database resides as the owner of the Oracle software (usually named oracle, on Linux/

Unix boxes). When you log in as oracle, you need to establish several OS variables

before you can use utilities such as rman and sqlplus. Setting these required OS

variables is covered in detail in Chapter 2. RMAN can be run from another server with

the Oracle software installed. The service or SID name is what is needed to connect to

the target database in order to perform the backup.

At minimum, you need to set ORACLE_HOME and ORACLE_SID. Additionally, it is

convenient if the PATH variable includes the directory ORACLE_HOME/bin. This is the

directory that contains the Oracle utilities.

After you have established your OS variables, you can invoke RMAN from the OS, as

shown:

$ rman target /

Or

$ rman target backupuser@ora18c

When connecting to RMAN, you do not have to specify the AS SYSDBA clause

(as you do when connecting to a database as a privileged user in SQL*Plus). This

is because RMAN always requires that you connect as a database user with SYSDBA

privileges. Any user will need to have the SYSBACKUP role granted to it in order to

perform the backups.

Tip  New in Oracle Database 12c, the SYSBACKUP privilege allows you to assign
privileges to a user that include only the permissions needed to perform backup
and restore operations. The SYSBACKUP privilege contains the subset of SYSDBA
privileges required for carrying out such operations.

Chapter 17 Configuring RMAN

700

The previous example of logging in to RMAN uses OS authentication. This type

of authentication means that if you can log in to an authorized OS account (such as

the owner of the Oracle software, usually oracle), then you are allowed to connect

to the database without having to provide a username and password. You administer

OS authentication by assigning special groups to OS accounts. When you install the

Oracle binaries in a Linux/Unix environment, you are required to specify at the time

of installation the names of the OS groups that are assigned the database privileges

of SYSDBA, SYSOPER, SYSBACKUP—typically, the dba, oper, and backupdba groups,

respectively (see Chapter 1 for details). As part of an enterprise backup solution, it would

be recommended to create a separate user for backups in order to perform the backups

to disk or tape and schedule to run automatically.

(NOT) CALLING RMAN FROM SQL*PLUS

It is very typical to be in a SQLPLUS session and accidentally attempt an RMAN command or

just try running RMAN from SQLPLUS. Well, it does not work:

SQL> rman

SP2-0042: unknown command "rman" - rest of line ignored.

The answer is short: the rman client is an OS utility, not an SQL*Plus function. You must invoke

the rman client from the OS prompt.

�RMAN Architectural Decisions
If archiving is enabled for your database (see Chapter 5 for details on archiving), you can

use RMAN out of the box to run commands such as this to back up your entire target

database:

$ rman target /

RMAN> backup database;

If you experience a media failure, you can restore all data files, as follows:

RMAN> shutdown immediate;

RMAN> startup mount;

RMAN> restore database;

Chapter 17 Configuring RMAN

701

After your database is restored, you can fully recover it:

RMAN> recover database;

RMAN> alter database open;

You are good to go, right? No, not quite. RMAN’s default attributes are reasonably set

for simple backup requirements. The RMAN out-of-the-box settings may be appropriate

for small development or test databases. But, for any type of business-critical database,

you need to consider carefully where the backups are stored, how long to store backups

on disk or tape, which RMAN features are appropriate for the database, and so on. The

following sections in this chapter walk you through many of the backup and recovery

architectural decisions necessary for implementing RMAN in a production environment.

RMAN has a vast and robust variety of options for customizing backups, managing

backup files, and performing restores; and, typically, you do not need to implement

many of RMAN’s features. However, each time you implement RMAN to back up a

production database, you should think through each decision point and decide whether

you require an attribute.

Table 17-1 summarizes the RMAN implementation on in subsequent sections. Many

DBAs will have differing opinions concerning some of these recommendations; that

is fine. The point is that you need to consider each architectural aspect and determine

what makes sense for your business requirements fine.

Table 17-1.  Overview of Architectural Decisions and Recommendations

Decision Point Recommendation

1. �Running the RMAN client

remotely or locally

Run the client locally on the target database server.

2. Specifying the backup user Create a user for performing backups.

3. �Using online or offline

backups

Depends on your business requirements. Most production databases

require online backups, which means that you must enable

archiving.

4. �Setting the archivelog

destination and file format

If you are using an FRA, archive logs are written there with a default

format. To use the LOG_ARCHIVE_DEST_N initialization parameter

to specifically set the location outside the FRA.

(continued)

Chapter 17 Configuring RMAN

702

Decision Point Recommendation

5. �Configuring the RMAN

backup location and file

format

Depends on your business requirements. Some shops require tape

backups. If you are using disk, place the backups in the FRA, or

specify a location via channel settings. Using FRA will allow for

increasing the storage sizing dynamically. Backups to tape can be

run after creating the backup set and is normally more efficient.

6. �Setting the autobackup of

the control file

Always enable autobackup of the control file.

7. �Specifying the location

of the autobackup of the

control file

Either place it in the FRA, or configure a location. It makes sense to

write the autobackup of the control file to the same location as that

of the database backups.

8. Backing up archivelogs Depends on your business requirements. For many environments,

backing up the archivelogs can be done just on a daily basis, with

the same command use to back up the database or triggered when

space requires it.

9. �Determining the location

for the snapshot control file

Use the default location.

10. Using a recovery catalog Depends on your business requirements. Oracle recommends

that you do use a recovery catalog. If the RMAN retention policy

is greater than CONTROL_FILE_RECORD_KEEP_TIME, then I

recommend that you use a recovery catalog.

11. Using a media manager This is required for backing up directly to tape.

12. �Setting the CONTROL_

FILE_RECORD_KEEP_

TIME initialization

parameter

Usually, the default of 7 days is sufficient.

13. �Configuring RMAN’s

backup retention policy

Depends on your database and business requirements. For many

environments, I use a backup retention redundancy of 1 or 2.

(continued)

Table 17-1.  (continued)

Chapter 17 Configuring RMAN

703

Table 17-1.  (continued)

Decision Point Recommendation

14. �Configuring the

archivelogs’ deletion

policy

Depends on your database and business requirements. In many

scenarios, applying the backup retention policy to the archivelogs is

sufficient (this is the default behavior).

15. �Setting the degree of

parallelism

Depends on the available hardware resources and business

requirements. For most production servers, on which there are

multiple CPUs, configure a degree of parallelism of 2 or more based

on CPUs available.

16. �Using backup sets or

image copies

Backup sets are generally smaller than image copies and easier to

manage.

17. �Using incremental

backups

Use incremental backups for large databases when a small

percentage of the database changes between backups and when

you want to conserve on disk space. Use incremental backups in a

large database and data warehouse-type databases.

18. �Using incrementally

updated backups

Use this approach if you require image copies of data files.

19. �Using block change

tracking

Use this to improve the performance of incremental backups. For

large, data warehouse-type databases, block change tracking can

result in significant time savings for backups because it keeps track

of the blocks changed so the backup does not have to read the

headers to determine if the block has changed.

20. �Configuring binary

compression

Depends on your business requirements. Compressed backups

consume less space but require more CPU resources (and time) for

backup and restore operations.

21. Configuring encryption Depends on your business requirements.

22. �Configuring miscellaneous

settings

You can set many channel-related properties, such as the backup

set size and backup piece size. Configure as needed.

23. �Configuring informational

output

Configure the OS variable NLS_DATE_FORMAT to display date

and time. Use SET ECHO ON and SHOW ALL to display RMAN

commands and settings.

Chapter 17 Configuring RMAN

704

�1. Running the RMAN Client Remotely or Locally
It is possible to run the rman utility from a remote server and connect to a target database

via Oracle Net:

$ rman target sys/foo@remote_db

This allows you to run RMAN backups on disparate remote servers from one central

location. When you run RMAN remotely, the backup files are always created on the

target database server.

When running locally and after the database environment variables are configured,

RMAN can be run like this:

$ rman target /

If you run RMAN remotely, you need to be sure the remote rman executable is

compatible with the target database. For example, you may establish that the remote

rman executable you are running is an Oracle Database 12c version of the RMAN client,

and it is compatible with several earlier versions of Oracle database. If you run the rman

client locally on the target server, there is never a compatibility issue because the rman

client is always the same version as the target database.

�2. Specifying the Backup User
As discussed previously, RMAN requires that you use a database user with SYSDBA

privileges. Whether I’m running RMAN from the command line or invoking RMAN in a

script, in most scenarios, using a backup user is appropriate. For example, here is how to

connect to RMAN from the command line:

$ rman target BACKUPUSER/$password

Some DBAs do not use this approach; they opt to set up a user separate from

SYS and cite security concerns as a rationale for doing this. The password variable can

either read in the password from a secured encrypted file or use another method for

getting the password. Other examples in this chapter will probably be showing the use

for the SYS users:

$ rman target

Chapter 17 Configuring RMAN

705

�3. Using Online or Offline Backups
Most production databases have 24-7 availability requirements. Therefore, your only

option is online RMAN backups. Your database must be in archivelog mode for online

backups. You need to consider carefully how to place archivelogs, how to format them,

how often to back them up, and how long to retain them before deletion. These topics

are discussed in subsequent sections.

Note  If you make offline backups, you must shut down your database with
IMMEDIATE, NORMAL, or TRANSACTIONAL and then place it in mount mode.
RMAN needs the database in mount mode so that it can read from and write to the
control file.

�4. Setting the Archivelog Destination and File Format
Enabling archive redo log mode is a prerequisite for making online backups (see Chapter

5 for a full discussion of architectural decisions regarding the archivelog destination and

format and how to enable/disable archivelog mode).

When archivelog mode is enabled, Oracle writes the archivelogs to one or more of

the following locations (you can configure archivelogs to be written to the FRA as well as

to several other locations that you manually set via initialization parameters):

•	 Default location

•	 FRA (Fast Recovery Area)

•	 Location specified via the LOG_ARCHIVE_DEST_N initialization

parameter(s)

If you do not use an FRA, and if you do not explicitly set the archivelog destination

via a LOG_ARCHIVE_DEST_N initialization parameter, then by default the archivelogs are

written to an OS-dependent location. On many Linux/Unix boxes the default location

is the ORACLE_HOME/dbs directory. The default file name format for archivelogs is

%t_%s_%r.dbf. The format is a shorthand to reference date, backup set number, etc.

The %t is timestamp, %s is log sequence number and %r is reset logs ID.

Chapter 17 Configuring RMAN

706

If you enable an FRA (and do not set LOG_ARCHIVE_DEST_N), then, by default, the

archivelogs are written to a directory in the FRA. The default file name format of the of

archivelog files created in the FRA is an Oracle Managed File (OMF) format. The files

are stored in a subdirectory given the same name as the database’s unique name; for

example,

/<fra>/<dbuname>/archivelog/<YYYY_MM_DD>/o1_mf_1_1078_68dx5dyj_.arc

It is recommended to use an FRA. To use the LOG_ARCHIVE_DEST_N parameter to set

the location of the archivelog files, follow this example:

log_archive_dest_1='LOCATION=/oraarch1/CHNPRD'

Here is also a preferred format for the default archivelog file name:

log_archive_format='%t_%s_%r.arc'

Sometimes, DBAs use .dbf as an extension for both data files and archivelog files.

I prefer to use .arc for the archivelog files. The .arc extension avoids the potentially

confusing task of identifying a file as an archivelog file or a live database data file.

�5. Configuring the RMAN Backup Location and File Format
When you run a BACKUP command for disk-based backups, RMAN creates backup pieces

in one of the following locations:

•	 Default location

•	 FRA

•	 Location specified via the BACKUP...FORMAT command

•	 Location specified via the CONFIGURE CHANNEL...FORMAT command

�Default Location

If you do not configure any RMAN variables and do not set up an FRA, by default RMAN

allocates one disk-based channel and writes the backup files to a default location. For

example, you can run the following command without configuring any RMAN parameters:

RMAN> backup database;

Chapter 17 Configuring RMAN

707

The default location varies by OS. In many Linux/Unix environments, the default

location is ORACLE_HOME/dbs. The default format of the name of the backup files created

is an OMF format; for example,

<ORACLE_HOME>/dbs/01ln9g7e_1_1

Tip  The default location is okay for small development databases. However, for
most other environments (especially production), you will need to plan ahead for
how much disk space you will need for backups and explicitly set the location
for the backups via one of the other methods (such as implementing an FRA or
CONFIGURE CHANNEL).

�FRA

When backing up to disk, if you do not explicitly instruct RMAN to write the backups to

a specific location (via the FORMAT or CONFIGURE command), you are using an FRA, RMAN

automatically writes the backup files to directories in the FRA. When you are using an

FRA, RMAN automatically creates separate directories when backing up a database for

the first time on a given date. The files are stored in a subdirectory with the same name

as the database’s unique name. Also, the default format of the name of the backup files

created in the FRA is an OMF format; for example,

/<fra>/<dbuname>/backupset/<YYYY_MM_DD>/o1_mf_nnndf_TAG20100907T025402_

68czfbdf_.bkp

Dynamically being able to set the size or location of the FRA is available with

SYSTEM parameters. This is useful if the backsets are still being purged or archivelogs

are filling up the space; instead of hoping a backup or move of files completes, the FRA

size can be adjusted, and then you can shrink it back down to the original size.

�BACKUP...FORMAT

If you have configured an FRA and do not want to place RMAN backup files in the FRA

automatically, you can directly specify where you want backups to be placed when you

issue the B command; for example,

RMAN> backup database format '/u01/O18C/rman/rman_%U.bkp';

Chapter 17 Configuring RMAN

708

Here is a corresponding file generated by RMAN:

/u01/O18C/rman/rman_0jnv0557_1_1.bkp

The %U instructs RMAN to dynamically construct a unique string for the backup file

name. A unique name is required in most situations, because RMAN won’t write over the

top of a file that already exists. This is important, because if you instruct RMAN to write

in parallel, it needs to create unique file names for each channel; for example,

RMAN> configure device type disk parallelism 2;

Now, when you run the BACKUP command, you see this message:

RMAN> backup database format '/u01/O18C/rman/rman_%U.bkp';

RMAN allocates multiple channels and writes in parallel to two different backup

files. The U% in the format string guarantees that unique file names are created.

�CONFIGURE CHANNEL...FORMAT

When writing to multiple disk locations, it is easier to specify the directories using

CONFIGURE CHANNEL...FORMAT. Here is a typical configuration specifying the following:

RMAN> configure device type disk parallelism 3;

RMAN> configure channel 1 device type disk format '/u01/O18C/rman/rman1_%U.bk';

RMAN> configure channel 2 device type disk format '/u02/O18C/rman/rman2_%U.bk';

RMAN> configure channel 3 device type disk format '/u03/O18C/rman/rman3_%U.bk';

In these lines of code, you should configure the device-type parallelism degree to

match the number of channels that you allocated. RMAN only allocates the number

of channels as specified by the degree of parallelism; other configured channels are

ignored. For instance, if you specify a degree of parallelism of 2, RMAN allocates only

two channels, regardless of the number of channels you configured via the CONFIGURE

CHANNEL command.

In this example of configuring three channels, suppose the BACKUP command is

issued, like this:

RMAN> backup database;

Chapter 17 Configuring RMAN

709

RMAN allocates three channels, all on separate mount points (/u01, /u02, /u03), and

writes in parallel to the specified locations. RMAN creates as many backup pieces in the

three locations as it deems necessary to create a backup of the database.

If you need to unconfigure a channel, do so as follows:

RMAN> configure channel 3 device type disk clear;

Note  Also consider what happens if you configure a degree of parallelism higher
than the number of preconfigured channels. RMAN will open a channel for each
degree of parallelism, and if the number of channels opened is greater than the
number of preconfigured channels, for the unconfigured channels, RMAN will write
backup files to the FRA (if configured) or the default location.

�6. Setting the Autobackup of the Control File
You should always configure RMAN to back up the control file automatically after

running any RMAN BACKUP or COPY command or after you make physical changes to the

database that result in updates to the control file (such as adding/removing a data file).

Use the SHOW command to display the current setting of the control file autobackup:

RMAN> show controlfile autobackup;

Here is some sample output:

RMAN configuration parameters for database with db_unique_name O18C are:

CONFIGURE CONTROLFILE AUTOBACKUP ON;

The following line of code shows how to enable automatic backup of the control

file feature:

RMAN> configure controlfile autobackup on;

The automatic control file backup always goes into its own backup set. When

autobackup of the control file is enabled, if you are using an spfile, it is automatically

backed up along with the control file.

Chapter 17 Configuring RMAN

710

If, for any reason, you want to disable automatic backup of the control file, you can

do so as follows:

RMAN> configure controlfile autobackup off;

Note  If autobackup of the control file is off, then any time you back up data file 1
(SYSTEM tablespace data file), RMAN automatically backs up the control file.

�7. Specifying the Location of the Autobackup
of the Control File
When you enable autobackup of the control file, RMAN creates the backup of the control

file in one of the following locations:

•	 Default location

•	 FRA

•	 Location specified via the CONFIGURE CONTROLFILE AUTOBACKUP

FORMAT command

If you are not using an FRA, or if you have not specified a location for the control file

autobackups, the control file autobackup is written to an OS-dependent default location.

In Linux/Unix environments, the default location is ORACLE_HOME/dbs; for example,

/u01/app/oracle/product/18.1.0.1/db_1/dbs/c-3423216220-20130109-01

If you have enabled an FRA, then RMAN automatically writes the control file

autobackup files to directories in the FRA, using an OMF format for the name; for example,

/<fra>/<dbuname>/autobackup/<YYYY_MM_DD>/o1_mf_s_729103049_68fho9z2_.bkp

Control file backups can be placed in the same directory that the database backups

are in. Here is an example:

RMAN> configure controlfile autobackup format for device type disk to

'/u01/O18C/rman/rman_ctl_%F.bk';

If you want to set the autobackup format back to the default, do so as follows:

RMAN> configure controlfile autobackup format for device type disk clear;

Chapter 17 Configuring RMAN

711

�8. Backing Up Archivelogs
You should back up your archivelogs on a regular basis. The archivelog files should not

be removed from disk until you have backed them up at least once. I usually like to keep

on disk any archivelogs that have been generated since the last good RMAN backup.

Generally, I instruct RMAN to back up the archivelogs while the data files are being

backed up. This is a sufficient strategy in most situations. Here is the command to back

up the archivelogs along with the data files:

RMAN> backup database plus archivelog;

Sometimes, if your database generates a great deal of redo, you may need to back up

your archivelogs at a frequency different from that of the data files. DBAs may back up

the archivelogs two or three times a day; after the logs are backed up, the DBAs delete

them to make room for more current archivelog files.

In most situations, you do not need any archivelogs that were generated before your

last good backup. For example, if a data file has experienced media failure, you need to

restore the data file from a backup and then apply any archivelogs that were generated

during and after the backup of the data file.

On some occasions, you may need archivelogs that were generated before the last

backup. For instance, you may experience a media failure, attempt to restore your

database from the last good backup, find corruption in that backup, and therefore need

to restore from an older backup. At that point, you need a copy of all archivelogs that

have been generated since that older backup was made.

�9. Determining the Location for the Snapshot Control File
RMAN requires a read-consistent view of the control file for the following tasks:

•	 Synchronizing with the recovery catalog

•	 Backing up the current control file

RMAN creates a snapshot copy of the current control file that it uses as a read-

consistent copy while it is performing these tasks. This ensures that RMAN is working

from a copy of the control file that is not being modified.

Chapter 17 Configuring RMAN

712

The default location of the snapshot control file is OS specific. On Linux platforms,

the default location/format is ORACLE_HOME/dbs/snapcf_@.f. Note that the default

location is not in the FRA.

You can display the current snapshot control file details, using the SHOW command:

RMAN> show snapshot controlfile name;

Here is some sample output:

CONFIGURE SNAPSHOT CONTROLFILE NAME TO

 '/ora01/app/oracle/product/18.1.0.1/db_1/dbs/snapcf_o18c.f'; # default

For most situations, the default location and format of the snapshot control file are

sufficient. This file does not use much space or have any intensive I/O requirements.

I recommend that you use the default setting.

If you have a good reason to configure the snapshot control file to a nondefault

location, you can do so as follows:

RMAN> configure snapshot controlfile name to '/u01/O18C/rman/snapcf.ctl';

If you accidentally configure the snapshot control file location to a nonexistent

directory, then when running a BACKUP or COPY command, the autobackup of the control

file will fail, with this error:

ORA-01580: error creating control backup file ...

You can set the snapshot control file back to the default, like this:

RMAN> configure snapshot controlfile name clear;

�10. Using a Recovery Catalog
RMAN always stores its latest backup operations in the target database control file. You

can set up an optional recovery catalog to store metadata regarding RMAN backups. The

recovery catalog is a separate schema (usually in a database different from that of the

target database) that contains database objects (tables, indexes, and so on) that store

the RMAN backup information. The recovery catalog does not store RMAN backup

pieces—only backup metadata.

Chapter 17 Configuring RMAN

713

The main advantages of using a recovery catalog are as follows:

•	 Provides a secondary repository for RMAN metadata. If you lose

all your control files and backups of your control files, you can still

retrieve RMAN metadata from the recovery catalog.

•	 Stores RMAN metadata for a much longer period than is possible

when you just use a control file for the repository.

•	 Offers access to all RMAN features. Some restore and recovery

features are simpler when using a recovery catalog.

The disadvantage of using a recovery catalog is that this is another database you have

to set up, maintain, and back up. Additionally, when you start a backup and attempt to

connect to the recovery catalog, if the recovery catalog is not available for any reason

(server down, network issues, and so on), you can continue with the backup without a

recovery catalog.

You must also be aware of versioning aspects when using a recovery catalog. You

need to make sure the version of the database you use to store the recovery catalog is

compatible with the version of the target database. When you upgrade a target database,

be sure the recovery catalog is upgraded (if necessary).

Note  See Chapter 18 for details on how to implement a recovery catalog.

�11. Using a Media Manager
A media manager is required for RMAN to back up directly to tape. Several vendors

provide this feature (for a cost). Media managers are used in large database environments,

such as data warehouses, in which you may not have enough room to back up a database

to disk. You may also have a disaster recovery requirement to back up directly to tape.

If you have such requirements, then you should purchase a media management

package and implement it. If you do not need to back up directly to tape, there’s no

need to implement a media manager. RMAN works fine backing up directly to disk. The

backup files can be copied off to tape for offsite storage and because of retention policies.

If copying to tape, you can have a job run the RMAN backup and then initiate the copy to

tape. The backup files need to be complete and not in the middle of a backup; otherwise

there is the risk of only getting partial files copied to tape.

Chapter 17 Configuring RMAN

714

Tip  See Chapter 20 for details on how to implement Oracle Secure Backup as a
media management layer.

�12. Setting the CONTROL_FILE_RECORD_KEEP_TIME
Initialization Parameter
The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter specifies the minimum

number of days a reusable record in the control file is retained before the record can be

overwritten. The RMAN metadata are stored in the reusable section of the control file

and therefore are eventually overwritten.

If you are using a recovery catalog, then you do not need to worry about this parameter

because RMAN metadata are stored in the recovery catalog indefinitely. Therefore, when

you use a recovery catalog, you can access any historical RMAN metadata.

If you are using only the control file as the RMAN metadata repository, then

the information stored there will eventually be overwritten. The default value for

CONTROL_FILE_RECORD_KEEP_TIME is 7 days:

SQL> show parameter control_file_record_keep_time

NAME TYPE VALUE

------------------------------------ ----------- --------------------------

control_file_record_keep_time integer 7

You can set the value to anything from 0 to 365 days. Setting the value to 0 means that

the RMAN metadata information can be overwritten at any time.

The CONTROL_FILE_RECORD_KEEP_TIME parameter was more critical in older versions

of Oracle, in which it was not easy to repopulate the control file with RMAN information,

in the event that metadata were overwritten. The C command can be used to quickly

make the control file aware of RMAN backup files.

If you run daily backups, then I recommend that you leave this parameter at 7 days.

However, if you only back up your database once a month, or if, for some reason, you

have a retention policy greater than 7 days, and you are not using a recovery catalog,

then you may want to consider increasing the value. The downside to increasing this

parameter is that if you have a significant amount of RMAN backup activity, this can

increase the size of your control file.

Chapter 17 Configuring RMAN

715

�13. Configuring RMAN’s Backup Retention Policy
RMAN retention policies allow you to specify how long you want to retain backups.

RMAN has two mutually exclusive methods of specifying a retention policy:

•	 Recovery window

•	 Number of backups (redundancy)

�Recovery Window

With a recovery window, you specify a number of days in the past for which you want

to be able recover to any point in that window. For example, if you specify a retention

policy window of 5 days, then RMAN does not mark as obsolete backups of data files and

archivelogs that are required to be able to restore to any point in that 5-day window:

RMAN> configure retention policy to recovery window of 5 days;

For the specified recovery, RMAN may need backups older than the 5-day window

because it may need an older backup to start with to be able to recover to the recovery

point specified. For example, suppose your last good backup was made 6 days ago, and

now you want to recover to 4 days in the past. For this recovery window, RMAN needs

the backup from 6 days ago to restore and recover to the point specified.

�Redundancy

You can also specify that RMAN keep a minimum number of backups. For instance, if

redundancy is set to 2, then RMAN does not mark as obsolete the latest two backups of

data files and archivelog files:

RMAN> configure retention policy to redundancy 2;

I find that a retention policy based on redundancy is easier to work with and more

predictable with regard to how long backups are retained. If I set redundancy to 2,

I know that RMAN will not mark as obsolete the latest two backups. In contrast, the

recovery window retention policy depends on the frequency of the backups and the

window length to determine whether a backup is obsolete.

Chapter 17 Configuring RMAN

716

�Deleting Backups, Based on Retention Policy

You can report on backups that RMAN has determined to be obsolete per the retention

policy, as follows:

RMAN> report obsolete;

To delete obsolete backups, run the DELETE OBSOLETE command:

RMAN> delete obsolete;

You are prompted with this:

Do you really want to delete the above objects (enter YES or NO)?

If you are scripting the procedure, you can specify the delete not to prompt for input:

RMAN> delete noprompt obsolete;

I usually have the DELETE NOPROMPT OBSOLETE command coded into the shell script

that backs up the database. This instructs RMAN to delete any obsolete backups and

obsolete archivelogs, as specified by the retention policy (see the section “Segueing from

Decisions to Action,” later in this chapter, for an example of how to automate the deleting

of obsolete backups with a shell script).

�Clearing the Retention Policy

The default retention policy is redundancy of 1. You can completely disable the RMAN

retention policy via the TO NONE command.

RMAN> configure retention policy to none;

When the policy is set to NONE, no backups are ever considered obsolete and

therefore cannot be removed via the DELETE OBSOLETE command. This normally is not

the behavior you want. You want to let RMAN delete backups per a retention policy

based on a window or number of backups.

To set the retention policy back to the default, use the CLEAR command:

RMAN> configure retention policy clear;

Chapter 17 Configuring RMAN

717

�14. Configuring the Archivelogs’ Deletion Policy
In most scenarios, I have RMAN delete the archivelogs based on the retention policy of

the database backups. This is the default behavior. You can view the database retention

policy, using the SHOW command:

RMAN> show retention policy;

CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default

To remove archivelogs (and backup pieces) based on the database retention policy,

run the following:

RMAN> delete obsolete;

As of Oracle Database 11g, you can specify an archivelog deletion policy that is

separate from that of the database backups. This deletion policy applies to archivelogs

both outside and in the FRA.

Note P rior to Oracle Database 11g, the archive deletion policy only applied to
archivelogs associated with a standby database.

To configure an archivelog deletion policy, use the CONFIGURE ARCHIVELOG DELETION

command. The following command configures the archive redo deletion policy so that

archivelogs aren’t deleted until they have been backed up twice to disk:

RMAN> configure archivelog deletion policy to backed up 2 times to device

type disk;

To have RMAN delete obsolete archivelogs, as defined by the archivelog deletion

policy, issue the following command:

RMAN> delete archivelog all;

Tip  Run the CROSSCHECK command before running the DELETE command.
Doing so ensures that RMAN is aware of whether a file is on disk.

Chapter 17 Configuring RMAN

718

To see whether a retention policy has been set specifically for the archivelog files, use

this command:

RMAN> show archivelog deletion policy;

To clear the archive deletion policy, do this:

RMAN> configure archivelog deletion policy clear;

�15. Setting the Degree of Parallelism
You can significantly increase the performance of RMAN backup and restore operations

if your database server is equipped with the hardware to support multiple channels. If

your server has multiple CPUs and multiple storage devices (disks or tape devices), then

you can improve performance by enabling multiple backup channels.

If you require better performance from backup and restore operations and have

hardware that facilitates parallel operations, you should enable parallelism and perform

tests to determine the optimal degree. If your hardware can take advantage of parallel

RMAN channels, there is little downside to enabling parallelism.

If you have multiple CPUs, but just one storage device location, you can enable

multiple channels to write to and read from one location. For example, if you are backing

up to an FRA, you can still take advantage of multiple channels by enabling parallelism.

Suppose you have four CPUs on a server and want to enable a corresponding degree of

parallelism:

RMAN> configure device type disk parallelism 4;

You can also write to separate locations in parallel by configuring multiple channels

associated with different mount points; for example,

RMAN> configure device type disk parallelism 4;

RMAN> configure channel 1 device type disk format '/u01/O18C/rman/rman1_%U.bk';

RMAN> configure channel 2 device type disk format '/u02/O18C/rman/rman2_%U.bk';

RMAN> configure channel 3 device type disk format '/u03/O18C/rman/rman3_%U.bk';

RMAN> configure channel 4 device type disk format '/u04/O18C/rman/rman4_%U.bk';

This code configures four channels that write to separate locations on disk. When

you configure separate channels for different locations, make sure you enable the degree

of parallelism to match the number of configured device channels. If you allocate more

Chapter 17 Configuring RMAN

719

channels than the specified degree of parallelism, RMAN only writes to the number of

channels specified by the degree of parallelism and ignores the other channels.

If you need to clear the degree of parallelism, you can do so as follows:

RMAN> configure device type disk clear;

Similarly, to clear the channel device types, use the CLEAR command. This example

clears channel 4:

RMAN> configure channel 4 device type disk clear;

�16. Using Backup Sets or Image Copies
When you issue an RMAN BACKUP command, you can specify that the backup be one of

the following:

•	 Backup set

•	 Image copy

A backup set is the default type of RMAN backup. A backup set contains backup

pieces, which are binary files that only RMAN can write to or read from. Backup sets are

desirable because they are generally smaller than the data files being backed up. RMAN

automatically attempts to create backup pieces with unused block compression. In this

mode, RMAN reads a bitmap to determine which blocks are allocated and only reads

from those blocks in the data files. This feature is supported only for disk-based backup

sets and Oracle Secure Backup tape backups.

Note  RMAN can also create backup sets using true binary compression. This
is the type of compression you get from an OS compression utility (such as zip).
Oracle supports several levels of binary compression. The BASIC compression
algorithm is available without an additional license. Oracle provides further
compression features with the Oracle Advanced Compression option (see the
section “Configuring Binary Compression,” later in this chapter, for details on how
to enable binary compression).

Chapter 17 Configuring RMAN

720

When you create a backup as a backup set, the binary backup piece files can only

be manipulated by RMAN processes. Some DBAs view this as a disadvantage because

they must use RMAN to back up and restore these files (you have no direct access to or

control over the backup pieces). But these perceptions are not warranted. Unless you hit

a rare bug, RMAN is dependable and works reliably in all backup and restore situations.

Contrast the backup set with an image copy. An image copy creates a byte-for-

byte identical copy of each data file. The advantage of creating an image copy is that

(if necessary) you can manipulate the image copy without using RMAN (as with an OS

copy utility). Additionally, in the event of a media failure, an image copy is a fast method

of restoring data files, because RMAN only has to copy the file back from the backup

location (there is no reconstructing of the data file, because it is an exact copy).

The size of the backup to disk is almost always a concern. Backup sets are more

efficient regarding disk space consumption. Because backup sets can take advantage

of RMAN compression, there is also less I/O involved, compared with an image copy.

In many environments, reducing the I/O so as not to impact other applications is a

concern.

However, if you feel that you need direct control over the backup files that RMAN

creates, or you are in an environment in which the speed of the restore process is

paramount, consider using image copies.

�17. Using Incremental Backups
Incremental backup strategies are appropriate for large databases in which only a small

portion of the database blocks change from one backup to the next. If you are in a data

warehouse environment, you may want to consider an incremental backup strategy,

because it can greatly reduce the size of your backups. For example, you may want to run

a weekly level 0 backup and then run a daily level 1 incremental backup.

The term RMAN level 0 incremental backup doesn’t exactly describe itself very well,

either. A level 0 incremental backup is backing up the same blocks as a full backup. In

other words, the following two commands back up the same blocks in a database:

RMAN> backup as backupset full database;

RMAN> backup as backupset incremental level=0 database;

Chapter 17 Configuring RMAN

721

The only difference between the prior two commands is that an incremental level

0 backup can be used in conjunction with other incremental backups, whereas a full

backup cannot participate in an incremental backup strategy. Therefore, I almost always

prefer to use the INCREMENTAL LEVEL=0 syntax (as opposed to a full backup); it gives me

the flexibility to use the level 0 incremental backup along with subsequent incremental

level 1 backups.

�18. Using Incrementally Updated Backups
Incrementally updated backups are an efficient way to implement an image copy backup

strategy. This technique instructs RMAN to first create image copies of data files; then,

the next time the backup runs, instead of creating a fresh set of image copies, RMAN

makes an incremental backup (changes to blocks since the image copy was created) and

applies that incremental backup to the image copies.

If you have the disk space available for full image copies of your database and you

want the flexibility to use the image copies directly, in the event of a media failure,

consider this backup strategy.

One potential disadvantage of this approach is that if you are required to restore and

recover to some point in the past, you can only restore and recover to the point at which

the image copies were last updated with the incremental backup.

�19. Using Block Change Tracking
This feature keeps track of when a database block changes. The idea is that if you are

using an incremental backup strategy, you can enhance performance, because by

implementing this feature, RMAN does not have to scan each block (under the high-

water mark) in the data files to determine whether it needs to be backed up. Rather,

RMAN only has to access the block change tracking file to find which blocks have

changed since the last backup and directly access those blocks. If you work in a large,

data warehouse environment and are using an incremental backup strategy, consider

enabling block change tracking to enhance performance.

Note  See Chapter 18 for more details on implementing incremental and block
change backup and restores.

Chapter 17 Configuring RMAN

722

�20. Configuring Binary Compression
You can configure RMAN to use true binary compression when generating backup sets.

You can enable compression in one of two ways:

•	 Specify AS COMPRESSED BACKUPSET with the BACKUP command.

•	 Use a one-time CONFIGURE command.

Here is an example of backing up with compression when issuing the BACKUP command:

RMAN> backup as compressed backupset database;

In this example, compression is configured for the disk device:

RMAN> configure device type disk backup type to compressed backupset;

If you need to clear the device-type compression, issue this command:

RMAN> configure device type disk clear;

The default compression algorithm proves to be quite efficient. For a typical

database, the backups are usually approximately four to five times smaller than the

regular backups. Of course, your compression results may vary, depending on your data.

Why not compress all backups? Compressed backups consume more CPU resources

and take longer to create and restore from, but they result in less I/O, spread out over

a longer period. If you have multiple CPUs, and the speed of making a backup isn’t an

issue, then you should consider compressing your backups.

You can view the type of compression enabled, using the SHOW command:

RMAN> show compression algorithm;

Here is some sample output:

CONFIGURE COMPRESSION ALGORITHM 'BASIC' AS OF RELEASE 'DEFAULT'

OPTIMIZE FOR LOAD TRUE ; # default

The basic compression algorithm does not require an extra license from Oracle. If

you have a license for the Advanced Compression option, then you have available three

additional configurable levels of binary compression; for example,

RMAN> configure compression algorithm 'HIGH';

RMAN> configure compression algorithm 'MEDIUM';

RMAN> configure compression algorithm 'LOW';

Chapter 17 Configuring RMAN

723

In my experience the prior compression algorithms are very efficient, both in

compression ratios and time taken to create backups.

You can query V$RMAN_COMPRESSION_ALGORITHM to view details regarding the

compression algorithms available for your release of the database. To reset the current

compression algorithm to the default of BASIC, use the CLEAR command:

RMAN> configure compression algorithm clear;

�21. Configuring Encryption
You may be required to encrypt backups. Some shops especially require this for backups

that contain sensitive data and that are stored offsite. To use encryption when backing

up, you must use the Oracle Enterprise Edition and possess a license for the Advanced

Security option.

If you have configured a security wallet (see the Oracle Advanced Security

Administrator’s Guide, which can be freely downloaded from the Technology Network

area of the Oracle web site (http://otn.oracle.com, for details), you can configure

transparent encryption for backups, as shown:

RMAN> configure encryption for database on;

Any backups that you make now will be encrypted. If you need to restore from a

backup, it is automatically unencrypted (assuming the same security wallet is in place as

when you encrypted the backup). To disable encryption, use the C command:

RMAN> configure encryption for database off;

Encrypted tablespaces will remain encrypted in the backup sets. The configuration

for backup encryption does not need to be on for this, but only the tablespaces that are

encrypted will remain encrypted.

You can also clear the encryption setting with CLEAR:

RMAN> configure encryption for database clear;

You can query V$RMAN_ENCRYPTION_ALGORITHMS to view details regarding the

encryption algorithms available for your release of the database.

Chapter 17 Configuring RMAN

http://otn.oracle.com

724

RUNNING SQL FROM WITHIN RMAN

Starting with Oracle Database 12c, you can run SQL statements (and see the results) directly

from within RMAN:

RMAN> select * from v$rman_encryption_algorithms;

Prior to 12c, you could run the prior SQL statement with the RMAN sql command, but no

results would be displayed:

RMAN> sql 'select * from v$rman_encryption_algorithms';

The RMAN sql command was meant more for running commands such as ALTER SYTEM:

RMAN> sql 'alter system switch logfile';

Now, in 12c, you can run the SQL directly:

RMAN> alter system switch logfile;

This ability to run SQL from within RMAN is a really nice enhancement; it allows you to see the

results of SQL queries and eliminates the need for specifying the sql keyword as well as for

placing quotation marks around the SQL command itself.

�22. Configuring Miscellaneous Settings
RMAN provides a flexible number of channel configuration commands. You will

occasionally need to use them, depending on special circumstances and the

requirements for your database. Here are some of the options:

•	 Maximum backup set size

•	 Maximum backup piece size

•	 Maximum rate

•	 Maximum open files

By default, the maximum backup set size is unlimited. You can use the MAXSETSIZE

parameter with the CONFIGURE or BACKUP command to specify the overall maximum

Chapter 17 Configuring RMAN

725

backup set size. Make sure the value of this parameter is at least as great as the largest

data file being backed up by RMAN. Here is an example:

RMAN> configure maxsetsize to 2g;

Sometimes, you may want to limit the overall size of a backup piece because

of physical limitations of storage devices. Use the MAXPIECESIZE parameter of the

CONFIGURE CHANNEL or ALLOCATE CHANNEL command do this; for example,

RMAN> configure channel device type disk maxpiecesize = 2g;

If you need to set the maximum number of bytes that RMAN reads each second on

a channel, you can do so, using the RATE parameter. This configures the maximum read

rate for channel 1 to 200MB per second:

configure channel 1 device type disk rate 200M;

If you have a limit on the number of files you can have open simultaneously, you can

specify a maximum open files number via the MAXOPENFILES parameter:

RMAN> configure channel 1 device type disk maxopenfiles 32;

You may need to configure any of these settings when you need to make RMAN

aware of some OS or hardware limitation. You will rarely need to use these parameters

but should know of them.

�23. Configuring Informational Output
A good practice is to always set the OS NLS_DATE_FORMAT variable (before running

RMAN) so that both the date and time information are displayed in the RMAN log

instead of just the date, which is the default:

export NLS_DATE_FORMAT='dd-mon-yyyy hh24:mi:ss'

This is useful during troubleshooting, especially when RMAN fails, because we can

use the exact date/time information for when the RMAN error occurred and compare

it with the alert.log and OS/MML logs to verify what other events occurred in the

database/server.

Chapter 17 Configuring RMAN

726

Also consider executing SET ECHO ON to ensure that RMAN commands are

displayed within the log before the command is executed. Execute SHOW ALL as well

to display the current settings of RMAN variables. These settings are useful when

troubleshooting and tuning.

CLEARING ALL RMAN CONFIGURATIONS

There is no CLEAR ALL command for resetting all RMAN configurations back to the default

values. However, you can easily simulate this by running a script that contains CONFIGURE...

CLEAR commands:

CONFIGURE RETENTION POLICY clear;

CONFIGURE BACKUP OPTIMIZATION clear;

CONFIGURE DEFAULT DEVICE TYPE clear;

CONFIGURE CONTROLFILE AUTOBACKUP clear;

CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK clear;

CONFIGURE DEVICE TYPE DISK clear;

CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK clear;

CONFIGURE CHANNEL 1 DEVICE TYPE DISK clear;

CONFIGURE CHANNEL 2 DEVICE TYPE DISK clear;

CONFIGURE CHANNEL 3 DEVICE TYPE DISK clear;

CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK clear;

CONFIGURE MAXSETSIZE clear;

CONFIGURE ENCRYPTION FOR DATABASE clear;

CONFIGURE ENCRYPTION ALGORITHM clear;

CONFIGURE COMPRESSION ALGORITHM clear;

CONFIGURE RMAN OUTPUT clear; # 12c

CONFIGURE ARCHIVELOG DELETION POLICY clear;

CONFIGURE SNAPSHOT CONTROLFILE NAME clear;

Depending on what you have set (and the version of your database), you may need to set

additional configurations.

Chapter 17 Configuring RMAN

727

�Segueing from Decision to Action
Now that you have a good understanding of what types of decisions you should make

before implementing RMAN, it is instructional to view a script that implements some

of these components. Scripts can be used to automate the RMAN backups. These shell

scripts are automated through a scheduling utility such as cron. RMAN can also be run

from Oracle Enterprise Manager. Additionally, if there are tools that are used to copy files

to tape or other schedulers, RMAN scripts can be included in these jobs; however, there

is less flexibility if the RMAN script does not remain on the database side.

This section contains a typical shell script for RMAN backups. The shell script has

line numbers in the output for reference in the discussion of the architectural decisions

there were made when writing the script. (If you copy the script, take out the line

numbers before running it.)

Following is the script. Table 17-2 details every RMAN architectural decision point

covered in this chapter, how it is implemented (or not) in the shell script, and the

corresponding line number in the shell script. The script does not cover every aspect of

how to use RMAN. If you use the script, be sure to modify it to meet the requirements

and RMAN standards for your own environment:

 1 #!/bin/bash

 2 HOLDSID=${1} # SID name

 3 PRG=`basename $0`

 4 USAGE="Usage: ${PRG} <database name> "

 5 if [-z "${HOLDSID}"]; then

 6 echo "${USAGE}"

 7 exit 1

 8 fi

 9 #--

 10 # source environment variables (see Chapter 2 for details on oraset)

 11 . /etc/oraset $HOLDSID

 12 BOX=`uname -a | awk '{print$2}'`

 13 MAILX='/bin/mailx'

 14 MAIL_LIST='dkuhn@gmail.com'

 15 export NLS_DATE_FORMAT='dd-mon-yyyy hh24:mi:ss'

 16 date

 17 #--

Chapter 17 Configuring RMAN

728

 18 LOCKFILE=/tmp/$PRG.lock

 19 if [-f $LOCKFILE]; then

 20 echo "lock file exists, exiting..."

 21 exit 1

 22 else

 23 echo "DO NOT REMOVE, $LOCKFILE" > $LOCKFILE

 24 fi

 25 #--

 26 rman nocatalog <<EOF

 27 connect target /

 28 set echo on;

 29 show all;

 30 crosscheck backup;

 31 crosscheck copy;

 32 configure controlfile autobackup on;

 33 configure controlfile autobackup format for device type disk to

 '/u01/O18C/rman/o18c_ctl_%F.bk';

 34 configure retention policy to redundancy 1;

 35 configure device type disk parallelism 2;

 36 configure channel 1 device type disk format '/u01/O18C/rman/o18c_%U.bk';

 37 configure channel 2 device type disk format '/u02/O18C/rman/o18c_%U.bk';

 38 backup as compressed backupset incremental level=0 database plus archivelog;

 39 delete noprompt obsolete;

 40 EOF

 41 #--

 42 if [$? -ne 0]; then

 43 echo "RMAN problem..."

 44 �echo "Check RMAN backups" | $MAILX -s "RMAN issue: $ORACLE_SID on

$BOX" $MAIL_LIST

 45 else

 46 echo "RMAN ran okay..."

 47 fi

 48 #--

 49 if [-f $LOCKFILE]; then

 50 rm $LOCKFILE

Chapter 17 Configuring RMAN

729

 51 fi

 52 #--

 53 date

 54 exit 0

Table 17-2.  Implementation of Architectural Decisions

Decision Point Implementation in Script Line Number in Script

1. �Running the RMAN client remotely

or locally

Running script locally on the

database server

Line 26, connecting locally

(not a network connection)

2. Specifying the backup user Using SYS to connect Line 27, starting rman

connecting with forward

slash (/)

3. Using online or offline backups Online backup N/A. Database is assumed

to be up during the backup

4. �Setting the archivelog destination

and file format

LOG_ARCHIVE_DEST_N and

LOG_ARCHIVE_FORMAT

initialization parameters set

outside the script in a database

parameter file

N/A; set outside the script

5. �Configuring the RMAN backup

location and file format

Using the CONFIGURE

command directly in the script

Lines 33–37

6. �Setting the autobackup of the

control file

Enabled in the script Line 32

7. �Specifying the location of the

autobackup of the control file

Placed in the same directory as

the backups

Line 33

8. Backing up archivelogs Backing up with the rest of the

database; specifically, using the

PLUS ARCHIVELOG clause

Line 38

(continued)

Chapter 17 Configuring RMAN

730

Decision Point Implementation in Script Line Number in Script

9. �Determining the location for the

snapshot control file

Using the default location N/A

10. Using a recovery catalog Not using Line 26, connecting as

nocatalog

11. Using a media manager Not using Lines 35–37, device

type disk

12. �Setting the CONTROL_

FILE_RECORD_KEEP_TIME

initialization parameter

Using the default N/A

13. �Configuring RMAN’s backup

retention policy

Configuring to a redundancy

of 1, cross-checking, and

deleting obsolete backups and

archivelog files

Line 34, configuring; lines

30 and 31 crosscheck; line

39, using RMAN to delete

old files

14. �Configuring the archivelogs’

deletion policy

Using the same retention policy

applied to the backups

N/A

15. Setting the degree of parallelism Setting a degree of 2 Lines 35–37

16. �Using backup sets or image

copies

Using backup sets Line 38

17. Using incremental backups Incremental level 0, the same

as a full backup

Line 38

18. �Using incrementally updated

backups

Not using N/A

19. Using block change tracking Not using N/A

20. Configuring binary compression Using basic compression Line 38

21. Configuring encryption Not using N/A

22. �Configuring miscellaneous

settings

Not using N/A

23. Configuring informational output Setting Lines 15, 28, and 29

Table 17-2.  (continued)

Chapter 17 Configuring RMAN

731

A few aspects of this script need further discussion. Line 11 sets the required OS

variables by running a script named oraset (see Chapter 2 for details on running oraset

and sourcing OS variables). Many DBAs choose to hard-code OS variables, such as

ORACLE_HOME and ORACLE_SID, into the script. However, you should avoid hard-coding

variables and instead use a script to source the required variables. Running a script is

much more flexible, especially when you have many databases on a box with different

versions of Oracle installed.

Line 15 sets the NLS_DATE_FORMAT OS variableyou are debugging and diagnoses

issues. By default, RMAN displays only the date component. Knowing just the date when

a command ran is rarely enough information to determine the timing of the commands

as they were executed. At minimum, you need to see hours and minutes (along with the

date).

Lines 18–24 check for the existence of a lock file. You do not want to run this script

if it is already running. The script checks for the lock file, and, if it exists, the script exits.

After the backup has finished, the lock file is removed (lines 49–51).

Line 28 sets the ECHO parameter to on. This instructs RMAN to display in the output

the command before running it. This can be invaluable for debugging issues. Line 29

displays all the configurable variables. This also comes in handy for troubleshooting

issues because you can see what the RMAN variables were set to before any commands

are executed.

Lines 32–37 use the CONFIGURE command. These commands run each time the script is

executed. Why do that? You only need to run a CONFIGURE command once, and it is stored

in the control file—you do not have to run it again, right? That is correct. However, I’ve

occasionally been burned when a DBA with poor habits configured a setting for a database

and didn’t tell anybody, and I didn’t discover the misconfiguration until I attempted to

make another backup. I strongly prefer to place the CONFIGURE commands in the script

so that the behavior is the same, regardless of what another DBA may have done outside

the script. The CONFIGURE settings in the script also act as a form of documentation: I can

readily look at the script and determine how settings have been configured.

Lines 30 and 31 run CROSSCHECK commands. Why do that? Sometimes, files go

missing, or a rogue DBA may remove archivelog files from disk with an OS command

outside RMAN. When RMAN runs, if it can’t find files that it thinks should be in place, it

throws an error and stops the backup. I prefer to run the CROSSCHECK command and let

RMAN reconcile which files it thinks should be on disk with those that are actually on

disk. This keeps RMAN running smoothly.

Chapter 17 Configuring RMAN

732

You run DELETE NOPROMPT OBSOLETE on line 39. This removes all backup files

and archivelog files that have been marked as OBSOLETE by RMAN, as defined by the

retention policy. This lets RMAN manage which files should be kept on disk. I prefer to

run the DELETE command after the backup has finished (as opposed to running it before

the backup). The retention policy is defined as 1, so if you run DELETE after the backup,

RMAN leaves one backup copy on disk. If you run DELETE before the backup, RMAN

leaves one copy of the backup on disk. After the backup runs, there are be two copies of

the backup on disk, which I do not have room for on this server.

You can execute the shell script from the Linux/Unix scheduling utility cron, as follows:

0 16 * * * $HOME/bin/rmanback.bsh INVPRD >$HOME/bin/log/INVPRDRMAN.log 2>&1

The script runs daily at 1600 hours military time on the database server. A log file is

created (INVPRDRMAN.log) to capture any output and errors associated with the RMAN

job. See Chapter 21 for details on automating jobs through cron.

Again, the script in this section is basic; you will no doubt want to enhance and

modify it to meet your requirements. This script gives you a starting point, with concrete

RMAN recommendations and how to implement them.

�Summary
RMAN is not only the backup tool for Oracle database but the restore and recovery

manager. If you are still using the older, user-managed backup technologies, then

I strongly recommend that you switch to RMAN. RMAN contains a powerful set of

features that are unmatched by any other backup tool available. RMAN is easy to use

and configure. It will save you time and effort and give you peace of mind when you are

implementing a rock-solid restore and backup strategy.

If you are new to RMAN, it may not be obvious which features should always be

enabled and implemented and, likewise, which aspects you will rarely need. This

chapter contains a checklist that walks you through each architectural decision point.

Many of the strategies need to be discussed to make sure that the business requirements

are going to be met. The point is that you should carefully consider each component and

how to implement the features that make sense.

The chapter ended with a real-world example of a script used to implement RMAN

in a production environment. Now that you have a good idea of RMAN’s features and

how to use them, you are ready to start making backups. The next chapter deals with

RMAN backup scenarios.

Chapter 17 Configuring RMAN

733
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_18

CHAPTER 18

RMAN Backups
and Reporting
Chapter 17 provided the details on configuring RMAN and using specialized features to

control the behavior of RMAN. After you consider which features you require, you are

ready to create backups. RMAN can back up the following types of files:

•	 Data files

•	 Control files

•	 Archived redo log files

•	 spfiles

•	 Backup pieces

For most scenarios, you will use RMAN to back up data files, control files, and

archivelog files. If you have the autobackup of the control file feature enabled, then

RMAN will automatically back up the control file and the spfile when a BACKUP or COPY

command is issued. You can also back up the backup piece files that RMAN has created.

RMAN does not back up Oracle Net files, password files, block change tracking files,

flashback logs, or the Oracle binary files (files created when you installed Oracle). If

required, you should put in place OS backups that include those files.

Also note that RMAN does not back up online redo log files. If you were to back up

the online redo log files, it would be pointless to restore them. The online redo log files

contain the latest redo generated by the database. You would not want to overwrite them

from a backup with old redo information. When your database is in archivelog mode,

the online redo log files contain the most recently generated transactions required to

perform complete recovery.

734

This chapter details many of the features related to running the RMAN BACKUP

command. Also covered are creating a recovery catalog and techniques for logging

output and reporting on RMAN backup operations. This chapter begins by discussing

a few common practices used to enhance what is displayed in the RMAN output when

running commands.

�Preparing to Run RMAN Backup Commands
Before running RMAN backups, it usually makes sense to set a few things so as to

enhance what is shown in the output. You do not need to set these variables every time

you log in and run an RMAN command. However, when troubleshooting or debugging

issues, it is almost always a good idea to perform the following tasks:

•	 Set NLS_DATE_FORMAT OS variable

•	 Set ECHO

•	 Show RMAN variables

The bulleted items are discussed in the following sections.

�Setting NLS_DATE_FORMAT
Before running any RMAN job, set the OS variable NLS_DATE_FORMAT to include a time

(hours, minutes, seconds) component; for example,

$ export NLS_DATE_FORMAT='dd-mon-yyyy hh24:mi:ss'

Additionally, if a shell script calls RMAN, put the prior line directly in the shell script

(see the shell script at the end of Chapter 17 for an example):

NLS_DATE_FORMAT='dd-mon-yyyy hh24:mi:ss'

This ensures that when RMAN displays a date, it always includes the hours, minutes,

and seconds as part of the output. By default, RMAN only includes the date component

(DD-MON-YY) in the output. For instance, without setting NLS_DATE_FORMAT, when starting

a backup, here is what RMAN displays:

Starting backup at 11-JAN-13

Chapter 18 RMAN Backups and Reporting

735

When you set the NLS_DATE_FORMAT OS variable to include a time component, the

output will look like this instead:

Starting backup at 11-jan-2013 16:43:04

When troubleshooting, it is essential to have a time component so that you can

determine how long a command took to run or how long a command was running

before a failure occurred. Oracle Support will almost always ask you to set this variable to

include the time component before capturing output and sending it to them.

The only downside to setting the NLS_DATE_FORMAT is that if you set it to a value

unknown to RMAN, connectivity issues can occur. For example, here the NLS_DATE_FORMAT

is set to an invalid value:

$ export NLS_DATE_FORMAT='dd-mon-yyyy hh24:mi:sd'

$ rman target /

When set to an invalid value, you get this error when logging in to RMAN:

RMAN-03999: Oracle error occurred while converting a date: ORA-01821:

To unset the NLS_DATE_FORMAT variable, set it to a blank value, like so:

$ export NLS_DATE_FORMAT="

�Setting ECHO
Another value that should be set in RMAN scripts is the ECHO command, seen here:

RMAN> set echo on;

This instructs RMAN to display the command that it is running in the output, so

you can see what RMAN command is running. along with any relevant error or output

messages associated with the command. This is especially important when you are

running RMAN commands within scripts, because you are not directly typing in a

command (and may not know what command was issued within the shell script). For

example, without SET ECHO ON, here is what is displayed in the output for a command:

Starting backup at...

Chapter 18 RMAN Backups and Reporting

736

With SET ECHO ON, this output shows the actual command that was run:

backup datafile 4;

Starting backup at...

From the prior output, you can see which command is running, when it started,

and so on.

�Showing Variables
Another good practice is to run the SHOW ALL command within any script, as follows:

RMAN> show all;

This displays all the RMAN configurable variables. When troubleshooting, you may

not be aware of something that another DBA has configured. This gives you a snapshot

of the settings as they were when the RMAN session executed.

�Running Backups
Before you run an RMAN backup, make sure you read Chapter 17 for details on how to

configure RMAN with settings for a production environment. For production databases,

run RMAN from Oracle Cloud Control or a shell script similar to the one shown at the

end of Chapter 17. Within the shell script, it is useful to configure every aspect of RMAN

to use for a particular database. If you run RMAN out of the box, with its default settings,

you will be able to back up your database. However, these settings will not be adequate

for most production database applications.

�Backing Up the Entire Database
If you are not sure where RMAN will be backing up your database files, you need to read

Chapter 17, because it describes how to configure RMAN to create the backup files in the

location of your choice. To configure RMAN to write to specific locations on disk (note

that the CONFIGURE command must be executed before you run the BACKUP command):

RMAN> configure channel 1 device type disk format '/u01/O18C/rman/rman1_%U.bk';

Chapter 18 RMAN Backups and Reporting

737

After a backup location is configured, use a command similar to the one shown next

to back up the entire database:

RMAN> backup incremental level=0 database plus archivelog;

This command ensures that RMAN will back up all data files in the database, all

available archivelogs generated prior to the backup, and all archivelogs generated during

the backup. This command also ensures that you have all the data files and archivelogs

that would be required to restore and recover your database.

If you have the autobackup of the control file feature enabled, run this command next:

RMAN> configure controlfile autobackup on;

The last task RMAN does as part of the backup is to generate a backup set that

contains a backup of the control file. This control file will contain all information

regarding the backup that took place and any archivelogs that were generated during

the backup.

Tip A lways enable the autobackup of the control file feature.

There are many nuances to the RMAN BACKUP command. For production databases,

it is usually recommended to back up the database with the BACKUP INCREMENTAL

LEVEL=0 DATABASE PLUS ARCHIVELOG command. That is generally sufficient. However,

you will encounter many situations in which you need to run a backup that uses a

specific RMAN feature, or you might troubleshoot an issue requiring that you be aware

of the other ways to invoke an RMAN backup. These aspects are discussed in the next

several sections.

�Full Backup vs. Incremental Level=0

The term RMAN full backup sometimes causes confusion. A more apt way of phrasing

this task would be RMAN backing up all modified blocks within one or more data files.

The term full does not mean that all blocks are backed up or that all data files are backed

up. It simply means that all blocks that would be required to rebuild a data file (in the

event of a failure) are being backed up. You can take a full backup of a single data file,

and the contents of that backup piece may be quite a bit smaller than the data file itself.

Chapter 18 RMAN Backups and Reporting

738

�Backup Sets vs. Image Copies

The default backup mode of RMAN instructs it to back up only blocks that have been

used in a data file; these are known as backup sets. RMAN can also make byte-for-byte

copies of the data files; these are known as image copies. Creating a backup set is the

default type of backup that RMAN creates. The next command creates a backup set

backup of the database:

RMAN> backup database;

If you prefer, you can explicitly place the AS BACKUPSET command when creating

backups:

RMAN> backup as backupset database;

You can instruct RMAN to create image copies by using the AS COPY command. This

command creates image copies of every data file in the database:

RMAN> backup as copy database;

Because image copies are identical copies of the data files, they can be directly

accessed by the DBA with OS commands. For example, say you had a media failure, and

you did not want to use RMAN to restore an image copy. You could use an OS command

to copy the image copy of a data file to a location where it could be used by the database.

In contrast, a backup set consists of binary files that only the RMAN utility can write to or

read from.

It is preferred to use backup sets when working with RMAN. The backup sets tend

to be smaller than the data files and can have true binary compression applied to them.

Also, it is not inconvenient to use RMAN as the mechanism for creating backup files that

only RMAN can restore. Using RMAN with backup sets is efficient and very reliable and

extremely useful in the time of restore.

�Backing Up Tablespaces
RMAN has the ability to back up at the database level (as shown in the prior section), the

tablespace level, or, even more granularly, at the data file level. When you back up a

tablespace, RMAN backs up any data files associated with the tablespaces(s) that you specify.

Chapter 18 RMAN Backups and Reporting

739

For instance, the following command will back up all the data files associated with the

SYSTEM and SYSAUX tablespaces:

RMAN> backup tablespace system, sysaux;

One scenario to use the tablespace level is if a new tablespace has been recently

added and you want to take a backup of just the data files associated with the newly

added tablespace. Note that when restore and backup issues, it is often more efficient to

work with one tablespace and especially a data block (because it is generally much faster

to back up one tablespace than the entire database).

�Backing Up Data Files
You may occasionally need to back up individual data files. For example, when

troubleshooting issues with backups, it is often helpful to attempt to successfully back up

one data file. You can specify data files by file name or by file number, as follows:

RMAN> backup datafile '/u01/dbfile/o18c/system01.dbf';

In this example, file numbers are specified:

RMAN> backup datafile 1,4;

Here are some other examples of backing up data files, using various features:

RMAN> backup as copy datafile 4;

RMAN> backup incremental level 1 datafile 4;

Tip U se the RMAN REPORT SCHEMA command to list tablespace, data file name,
and data file number information.

�Backing Up the Control File
The most reliable way to back up the control file is to configure the autobackup feature:

RMAN> configure controlfile autobackup on;

This command ensures that the control file is automatically backed up when a

BACKUP or COPY command is issued. Enable the autobackup of the control file feature,

Chapter 18 RMAN Backups and Reporting

740

and then you never have to worry about explicitly issuing a separate command to back

up the control file. When in this mode, the control file is always created in its own backup

set and backup piece after the data file backup pieces have been created.

If you need to back up the control file manually, you can do so like this:

RMAN> backup current controlfile;

The location of the backup is either a default OS location, the FRA, or a manually

configured location:

RMAN> configure controlfile autobackup format for device type disk to

'/u01/O18C/rman/rman_ctl_%F.bk';

�Backing Up the spfile
If you have enabled the autobackup of the control file feature, the spfile will be backed

up automatically (along with the control file) anytime a BACKUP or COPY command is

issued. If you need to back up the spfile manually, use the following command:

RMAN> backup spfile;

The location of the file that contains the backup of the spfile is dependent on what

you have configured for the autobackup of the control file (see the previous section for an

example). By default, if you do not use an FRA, and have not explicitly configured a location

via a channel, then for Linux/Unix servers, the backup goes to the ORACLE_HOME/dbs directory.

Note R MAN can only back up the spfile if the instance was started using a
spfile.

�Backing Up Archivelogs
Archivelogs can run in backups separately from the database backups and with backups.

Because of the space of the FRA and amount of archivelogs being generated, an

archivelog backup can run several times a day. Even if this runs separately, it should also

run along with the backup of the database using the following command:

RMAN> backup incremental level=0 database plus archivelog;

Chapter 18 RMAN Backups and Reporting

741

However, you will occasionally find yourself in a situation in which you need to take

a special, one-off backup of the archivelogs. You can issue the following command to

back up the archivelogs files:

RMAN> backup archivelog all;

If you have a mount point that is nearly full, and you determine that you want to back

up the archivelogs (so that they exist in a backup file), but then you want to immediately

delete the files (that were just backed up) from disk, you can use the following syntax to

back up the archivelogs and then have RMAN delete them from the storage media:

RMAN> backup archivelog all delete input;

Listed next are some other ways in which you can back up the archivelog files:

RMAN> backup archivelog sequence 300;

RMAN> backup archivelog sequence between 300 and 400 thread 1;

RMAN> backup archivelog from time "sysdate-7" until time "sysdate-1";

If an archivelog has been removed from disk manually via an OS delete command,

RMAN will throw the following error when attempting to back up the nonexistent

archivelog file:

RMAN-06059: expected archived log not found, loss of archived log

compromises recoverability

In this situation, first run a CROSSCHECK command to let RMAN know which files are

physically available on disk:

RMAN> crosscheck archivelog all;

�Backing Up FRA
If you use an FRA, one nice RMAN feature is that you can back up all the files in that

location with one command. If you are using a media manager and have a tape backup

channel enabled, you can back up everything in the FRA to tape, like this:

RMAN> backup device type sbt_tape recovery area;

Chapter 18 RMAN Backups and Reporting

742

You can also back up the FRA to a location on disk. Use the TO DESTINATION

command to accomplish this:

RMAN> backup recovery area to destination '/u01/O18C/fra_back';

RMAN will automatically create directories as required beneath the directory

specified by the TO DESTINATION command.

Note T he format of the subdirectory under the directory TO_DESTINATION> is
db_uniuqe_name/backupset/YYYY_MM_DD.

RMAN will back up full backups, incremental backups, control file autobackups, and

archivelog files. Keep in mind that flashback logs, online redo log files, and the current

control file are not backed up.

�Excluding Tablespaces from Backups
Suppose you have a tablespace that contains noncritical data, and you do not ever want

to back it up. RMAN can be configured to exclude such tablespaces from the backup.

To determine if RMAN is currently configured to exclude any tablespaces, run this

command:

RMAN> show exclude;

RMAN configuration parameters for database with db_unique_name O18C are:

RMAN configuration has no stored or default parameters

Use the EXCLUDE command to instruct RMAN as to which tablespaces not to back up:

RMAN> configure exclude for tablespace users;

Now, for any database-level backups, RMAN will exclude the data files associated

with the USERS tablespace. You can instruct RMAN to back up all data files and any

excluded tablespaces with this command:

RMAN> backup database noexclude;

You can clear the exclude setting via the following command:

RMAN> configure exclude for tablespace users clear;

Chapter 18 RMAN Backups and Reporting

743

�Backing Up Data Files Not Backed Up
Suppose you have just added several data files to your database, and you want to ensure

that you have a backup of them. You can issue the following command to instruct Oracle

to back up data files that have not yet been backed up:

RMAN> backup database not backed up;

You can also specify a time range for such files that have not yet been backed up.

Say you discover that your backups have not been running for the last several days,

and you want to back up everything that has not been backed up within the last 24 hours.

The following command backs up all data files that have not been backed up within the

last day:

RMAN> backup database not backed up since time='sysdate-1';

The prior command is also useful if, for any reason (a power failure in the data

center, your backup directory’s becoming full during backups, and so on), your backups

aborted. After you have resolved the issue that caused your backup job to fail, you can

issue the previous command, and RMAN will back up only the data files that have not

been backed up in the specified time period.

�Skipping Read-Only Tablespaces
Because data in read-only tablespaces cannot change, you may only want to back up

read-only tablespaces once and then skip them in subsequent backups. Use the SKIP

READONLY command to achieve this:

RMAN> backup database skip readonly;

Keep in mind that when you skip read-only tablespaces, you will need to keep

available a backup that contains these tablespaces. As long as you only issue the

RMAN command DELETE OBSOLETE, the RMAN backup set containing the read-only

tablespaces will be retained and not deleted, even if that RMAN backup set contains

other read-write tablespaces.

Chapter 18 RMAN Backups and Reporting

744

�Skipping Offline or Inaccessible Files
Suppose you have one data file that is missing or corrupt, and you do not have a

backup of it, so you cannot restore and recover it. You cannot start your database in this

situation:

SQL> startup;

ORA-01157: cannot identify/lock data file 6 - see DBWR trace file

ORA-01110: data file 6: '/u01/dbfile/o18c/reg_data01.dbf'

In this scenario, you will have to take the data file offline before you can start your

database:

SQL> alter database datafile '/u01/dbfile/o18c/reg_data01.dbf' offline for drop;

Now, you can open your database:

SQL> alter database open;

Suppose you then attempt to run an RMAN backup:

RMAN> backup database;

The following error is thrown when RMAN encounters a data file that it cannot back up:

RMAN-03002: failure of backup command at ...

RMAN-06056: could not access datafile 6

In this situation, you will have to instruct RMAN to exclude the offline data file from

the backup. The SKIP OFFLINE command instructs RMAN to ignore data files with an

offline status:

RMAN> backup database skip offline;

If a file has gone completely missing, use SKIP INACCESSIBLE to instruct RMAN to

ignore files that are not available on disk. This might happen if the data file was deleted

using an OS command. Here is an example of excluding inaccessible data files from the

RMAN backup:

RMAN> backup database skip inaccessible;

Chapter 18 RMAN Backups and Reporting

745

You can skip read-only, offline, and inaccessible data files with one command:

RMAN> backup database skip readonly skip offline skip inaccessible;

When dealing with offline and inaccessible files, you should figure out why the files

are offline or inaccessible and try to resolve any issues.

�Backing Up Large Files in Parallel
Normally, RMAN will only use one channel to back up a single data file. When you

enable parallelism, it allows RMAN to spawn multiple processes to back up multiple

files. However, even when parallelism is enabled, RMAN will not use parallel channels

simultaneously to back up one data file.

You can instruct RMAN to use multiple channels to back up one data file in parallel.

This is known as a multisection backup. This feature can speed up the backups of very

large data files. Use the SECTION SIZE parameter to make a multisection backup. The

following example configures two parallel channels to back up one file:

RMAN> configure device type disk parallelism 2;

RMAN> configure channel 1 device type disk format '/u01/O18C/rman/r1%U.bk';

RMAN> configure channel 2 device type disk format '/u02/O18C/rman/r2%U.bk';

RMAN> backup section size 2500M datafile 10;

When this code runs, RMAN will allocate two channels to back up the specified data

file in parallel.

Note I f you specify a section size greater than the size of the data file, RMAN will
not back up the file in parallel.

�Adding RMAN Backup Information to the Repository
Suppose you have had to re-create your control file. The process of re-creating the

control file wipes out any information regarding RMAN backups. However, you want

to make the newly created control file aware of RMAN backups sitting on disk. In this

situation, use the CATALOG command to populate the control file with RMAN metadata.

Chapter 18 RMAN Backups and Reporting

746

For example, if all the RMAN backup files are kept in the /u01/O18C/rman directory, you

can make the control file aware of these backups files in the directory, as follows:

RMAN> catalog start with '/u01/O18C/rman';

This instructs RMAN to look for any backup pieces, image copies, control file copies,

and archivelogs in the specified directory, and, if found, to populate the control file with

the appropriate metadata. For this example, two backup piece files are found in the given

directory:

searching for all files that match the pattern /u01/O18C/rman

List of Files Unknown to the Database

=====================================

File Name: /u01/O18C/rman/r1otlns90o_1_1.bk

File Name: /u01/O18C/rman/r1xyklnrveg_1_1.bk

Do you really want to catalog the above files (enter YES or NO)?

If you enter YES, then metadata regarding the backup files will be added to the

control file. In this way, the CATALOG command allows you to make the RMAN repository

(control file and recovery catalog) aware of files that RMAN can work with for backup

and recovery.

You can also instruct RMAN to catalog any files in the FRA that the control file is not

currently aware of, like this:

RMAN> catalog recovery area;

Additionally, you can catalog specific files. This example instructs RMAN to add

metadata to the control file for a specific backup piece file:

RMAN> catalog backuppiece '/u01/O18C/rman/r159nv562v_1_1.bk';

Chapter 18 RMAN Backups and Reporting

747

�Taking Backups of Pluggable Databases
Starting with Oracle Database 12c, you can create pluggable databases within a root

container database (see Chapter 22 for more details). If you are using this option, there

are a few features to be aware of in regard to backups:

•	 While connected to the root container, you can back up all the

data files within the database or just the root database data files; a

specific pluggable database; or specific tablespaces or data files, or a

combination of these.

•	 While connected to a pluggable database, you can only back up data

files associated with that pluggable database.

The bulleted items are detailed in the following two sections.

�While Connected to the Root Container
Suppose you are connected to the root container as SYS and want to back up all data files

(including any data files with associated pluggable databases). First, verify that you are

indeed connected to the root container as SYS:

RMAN> SELECT SYS_CONTEXT('USERENV', 'CON_ID') AS con_id,

 SYS_CONTEXT('USERENV', 'CON_NAME') AS cur_container,

 SYS_CONTEXT('USERENV', 'CURRENT_SCHEMA') AS cur_user

 FROM DUAL;

Here is some sample output:

CON_ID CUR_CONTAINER CUR_USER

-------------------- -------------------- --------------------

1 CDB$ROOT SYS

Now, to back up all data files, both in the root container and in any associated

pluggable databases, do so as follows:

RMAN> backup database;

If you want to back up only the data files associated with the root container, then

specify ROOT:

Chapter 18 RMAN Backups and Reporting

748

RMAN> backup database root;

You can also back up a specific pluggable database:

RMAN> backup pluggable database salespdb;

Additionally, you can back up specific tablespaces within a pluggable database:

RMAN> backup tablespace SALESPDB:SALES;

Also, you can specify the file name to back up any data file within the root container

or associated pluggable databases:

RMAN> backup datafile '/ora01/app/oracle/oradata/CDB/salespdb/sales01.dbf';

�While Connected to a Pluggable Database
First, start RMAN, and connect to the pluggable database you want to back up. You must

connect as a user with SYSDBA or SYSBACKUP privileges. Also, there must be a listener

running for the PDB service. This example connects to the SALESPDB pluggable database:

$ rman target sys/foo@salespdb

Once connected to a pluggable database, you can only back up data files specific to

that database. Therefore, for this example, the following command takes a backup of just

data files associated with the SALESPDB pluggable database:

RMAN> backup database;

This example backs up the data files associated with the pluggable database SYSTEM

tablespace:

RMAN> backup tablespace system;

I should emphasize again that when you are connected directly to a pluggable

database, you can only back up data files associated with that database. You cannot back

up data files associated with the root container or with any other pluggable databases

within the container. Figure 18-1 illustrates this concept. A connection as SYSDBA to

the SALESPDB pluggable database can only back up and view data files related to that

database. The SYSDBA connection cannot see outside its pluggable box in regard to data

files and RMAN backups of data files. In contrast, the SYSDBA connection to the root

Chapter 18 RMAN Backups and Reporting

749

container can back up all data files (root, seed, and all pluggable databases) as well as

access RMAN backups that were initiated from a connection to a pluggable database.

�Creating Incremental Backups
RMAN has three separate and distinct incremental backup features:

•	 Incremental-level backups

•	 Incrementally updating backups

•	 Block change tracking

With incremental-level backups, RMAN only backs up the blocks that have been

modified since a previous backup. Incremental backups can be applied to the entire

database, tablespaces, or data files. Incremental-level backups are the most commonly

used incremental feature with RMAN.

Figure 18-1.  Purview of a SYSDBA connection to root container vs. a SYSDBA
connection to a pluggable database

Chapter 18 RMAN Backups and Reporting

750

Incrementally updating backups is a separate feature from incremental-level

backups. These backups take image copies of the data files and then use incremental

backups to update the image copies. This gives you an efficient way to implement and

maintain image copies as part of your backup strategy. You only take the image copy

backup once and then use incremental backups to keep the image copies updated with

the most recent transactions.

Block change tracking is another feature designed to speed up the performance of

incremental backups. The idea here is that an OS file is used to record which blocks have

changed since the last backup. RMAN can use the block change tracking file to quickly

identify which blocks need to be backed up when performing incremental backups. This

feature can greatly improve the performance of incremental backups.

�Taking Incremental-Level Backups
RMAN implements incremental backups through levels. There are only two documented

levels of incremental backups: level 0 and level 1. Prior to version 10g of Oracle offer

five levels, 0–4. These levels (0–4) are still available but are not specified in the Oracle

documentation. You must first take a level 0 incremental backup to establish a baseline,

after which you can take a level 1 incremental backup.

Note A full backup backs up the same blocks as a level 0 backup. However, you
cannot use a full backup with incremental backups. Furthermore, you have to start
an incremental backup strategy with a level 0 backup. If you attempt to take a level
1 backup, and no level 0 exists, RMAN will automatically take a level 0 backup.

Here is an example of taking an incremental level 0 backup:

RMAN> backup incremental level=0 database;

Suppose for the next several backups you want to back up only the blocks that have

changed since the last incremental backup. This line of code takes a level 1 backup:

RMAN> backup incremental level=1 database;

Chapter 18 RMAN Backups and Reporting

751

There are two different types of incremental backups: differential and cumulative.

Which type you use depends on your requirements. Differential backups (the default)

are smaller but take more time to recover from. Cumulative backups are larger than

differential backups but require less recovery time.

A differential incremental level 1 backup instructs RMAN to back up blocks that

have changed since the last level 1 or level 0 backup, whereas a cumulative incremental

level 1 backup instructs RMAN to back up blocks that have changed since the last level

0 backup. Cumulative incremental backups, in effect, ignore any level 1 incremental

backups.

Note T he RMAN incremental level 0 backups are used to restore the data files,
whereas the RMAN incremental level 1 backups are used to recover the data files.

When using incremental backups, the default is differential. If you require

cumulative backups, you must specify the key word CUMULATIVE. Here is an example of

taking a cumulative level 1 backup:

RMAN> backup incremental level=1 cumulative database;

Here are some examples of taking incremental backups at a more granular level than

the database:

RMAN> backup incremental level=0 tablespace sysaux;

RMAN> backup incremental level=1 tablespace sysaux plus archivelog;

RMAN> backup incremental from scn 4343352 datafile 3;

�Making Incrementally Updating Backups
The basic idea behind an incrementally updating backup is to create image copies of

data files and then use incremental backups to update the image copies. In this manner,

you have image copies of your database that are kept somewhat current. This can be an

efficient way to combine image copy backups with incremental backups.

Chapter 18 RMAN Backups and Reporting

752

To understand how this backup technique works, you will need to inspect the

commands that perform an incrementally updating backup. The following lines of

RMAN code are required to enable this feature:

run{recover copy of database with tag 'incupdate';

backup incremental level 1 for recover of copy with tag 'incupdate'

database;}

In the first line a tag is specified (this example uses incupdate). You can use

whatever you want for the tag name; the tag name lets RMAN associate the backup files

being used each time the commands are run. This code will perform as follows the first

time you run the script:

•	 RECOVER COPY generates a message saying there is nothing for it to do.

•	 If no image copies exist, the BACKUP INCREMENTAL creates an image

copy of the database data files.

You should see messages such as this in the output when the RECOVER COPY and

BACKUP INCREMENTAL commands run the first time:

no copy of datafile 1 found to recover

...

no parent backup or copy of datafile 1 found

...

The second time you run the incrementally updating backup, it does as follows:

•	 RECOVER COPY again generates a message saying it has nothing to do.

•	 BACKUP INCREMENTAL makes an incremental level 1 backup and

assigns it the tag name specified; this backup will subsequently be

used by the RECOVER COPY command.

The third time you run the incrementally updating backup, it does this:

•	 Now that an incremental backup has been created, the RECOVER COPY

applies the incremental backup to the image copies.

•	 BACKUP INCREMENTAL makes an incremental level 1 backup and

assigns it the tag name specified; this backup will subsequently be

used by the RECOVER COPY command.

Chapter 18 RMAN Backups and Reporting

753

Going forward, each time you run the two lines of code, you will have a regularly

repeating backup pattern. If you use image copies for backups, you might consider using

an incrementally updating backup strategy, because with it, you avoid creating entire

image copies whenever the backup runs. The image copies are updated each time the

backup runs with the incremental changes from the previous backup.

�Using Block Change Tracking
Block change tracking is the process in which a binary file is used to record changes

to database data file blocks. The idea is that incremental backup performance can be

improved because RMAN can use the block change tracking file to pinpoint which blocks

have changed since the last backup. This saves a great deal of time because otherwise

RMAN would have to scan all the blocks that had been backed up to determine if they

had changed since the last backup.

Listed next are the steps for enabling block change tracking:

	 1.	 If not already enabled, set the DB_CREATE_FILE_DEST parameter to

a location (that already exists on disk); for example,

SQL> alter system set db_create_file_dest='/u01/O18C/bct' scope=both;

	 2.	 Enable block change tracking via the ALTER DATABASE command:

SQL> alter database enable block change tracking;

This example creates a file with an OMF name in the directory specified by

DB_CREATE_FILE_DEST. In this example the file created is given this name:

/u01/O18C/bct/O18C/changetracking/o1_mf_8h0wmng1_.chg

You can also enable block change tracking by directly specifying a file name, which

does not require that DB_CREATE_FILE_DEST be set; for example,

SQL> alter database enable block change tracking using file

'/u01/O18C/bct/btc.bt';

You can verify the details of block change tracking by running the following query:

SQL> select * from v$block_change_tracking;

Chapter 18 RMAN Backups and Reporting

754

For space-planning purposes, the size of the block change tracking file is

approximately 1/30,000 the size of the total size of the blocks being tracked in the

database. Therefore, the size of the block change tracking file is proportional to the size

of the database and not to the amount of redo generated.

To disable block change tracking, run this command:

SQL> alter database disable block change tracking;

Note  When you disable block change tracking, Oracle will automatically delete
the block change tracking file.

�Checking for Corruption in Data Files and Backups
You can use RMAN to check for corruption in data files, archivelogs, and control files.

You can also verify whether a backup set is restorable. The RMAN VALIDATE command

is used to perform these types of integrity checks. There are three ways you can run the

VALIDATE command:

•	 VALIDATE

•	 BACKUP...VALIDATE

•	 RESTORE...VALIDATE

Note T he stand-alone VALIDATE command is available in Oracle Database 11g
and higher. The BACKUP...VALIDATE and RESTORE...VALIDATE commands
are available in Oracle Database 10g and higher.

�Using VALIDATE
The VALIDATE command can be used as a stand-alone to check for missing files or physical

corruption in database data files, archivelog files, control files, spfiles, and backup set

pieces. For example, this command will validate all data files and the control files:

RMAN> validate database;

Chapter 18 RMAN Backups and Reporting

755

You can also validate just the control file, as follows:

RMAN> validate current controlfile;

You can validate the archivelog files, like so:

RMAN> validate archivelog all;

You may want to combine all the prior integrity checks into one command, as

shown:

RMAN> validate database include current controlfile plus archivelog;

Under normal conditions, the VALIDATE command only checks for physical

corruption. You can specify that you also want to check for logical corruption by using

the CHECK LOGICAL clause:

RMAN> validate check logical database include current controlfile plus

archivelog;

VALIDATE has a variety of uses. Here are a few more examples:

RMAN> validate database skip offline;

RMAN> validate copy of database;

RMAN> validate tablespace system;

RMAN> validate datafile 3 block 20 to 30;

RMAN> validate spfile;

RMAN> validate backupset <primary_key_value>;

RMAN> validate recovery area;

If you are using the Oracle Database 12c pluggable database feature, you can validate

specific databases within the container. While connected as SYS to the root container,

validate any associated pluggable databases:

RMAN> validate pluggable database salespdb;

If RMAN detects any corrupt blocks, the V$DATABASE_BLOCK_CORRUPTION is

populated. This view contains information on the file number, block number, and

number of blocks affected. You can use this information to perform a block-level

recovery (see Chapter 19 for more details).

Chapter 18 RMAN Backups and Reporting

756

Note P hysical corruption is a change to a block, such that its contents do
not match the physical format that Oracle expects. By default, RMAN checks
for physical corruption when backing up, restoring, and validating data files.
With logical corruption, a block is in the correct format, but the contents are not
consistent with what Oracle expects, such as in a row piece or an index entry.

�Using BACKUP...VALIDATE
The BACKUP...VALIDATE command is very similar to the VALIDATE command, in that it

can check to see if data files are available and if the data files contain any corrupt blocks;

for example,

RMAN> backup validate database;

This command does not actually create any backup files; it only reads the data files

and checks for corruption. Like the VALIDATE command, BACKUP VALIDATE, by default,

only checks for physical corruption. You can instruct it to check as well for logical

corruption, as shown:

RMAN> backup validate check logical database;

Here are some variations of the BACKUP...VALIDATE command:

RMAN> backup validate database current controlfile;

RMAN> backup validate check logical database current controlfile plus

archivelog;

Also like the VALIDATE command, BACKUP...VALIDATE will populate V$DATABASE_

BLOCK_CORRUPTION if it detects any corrupt blocks. The information in this view can be

used to determine which blocks can potentially be restored by block-level recovery (see

Chapter 19 for more details.

�Using RESTORE...VALIDATE
The RESTORE...VALIDATE command is used to verify backup files that would be used in a

restore operation. This command validates backup sets, data file copies, and archivelog files:

RMAN> restore validate database;

Chapter 18 RMAN Backups and Reporting

757

No actual files are restored when using RESTORE...VALIDATE. This means that you

can run the command while the database is online and available.

�Using a Recovery Catalog
When you use a recovery catalog, it is possible to create the recovery catalog user in the

same database, on the same server, as your target database. However, that approach is

not recommended because you do not want the availability of your target database or of

the server on which the target database resides to affect the recovery catalog. Therefore,

you should create the recovery catalog database on a server different from that of your

target databases. The recovery catalog can be used for the whole database environment

depending on sizing, but remember it normally is going to store the information stored

in control files.

�Creating a Recovery Catalog
When I use a recovery catalog, I prefer to have a dedicated database that is used only

for the recovery catalog. This ensures that the recovery catalog is not affected by any

maintenance or downtime required by another application (and vice versa).

Listed next are the steps for creating a recovery catalog:

	 1.	 Create a database on a server different from that of your target

database, to be used for the recovery catalog. Make sure

the database is adequately sized. I have found that Oracle’s

recommended sizes are usually much too small. Here are some

adequate recommendations for initial sizing:

SYSTEM tablespace: 500MB

SYSAUX tablespace: 500MB

TEMP tablespace: 500MB

UNDO tablespace: 500MB

Online redo logs: 25MB each; three groups, multiplexed with two

members per group

RECCAT tablespace: 500MB

Chapter 18 RMAN Backups and Reporting

758

	 2.	 Create a tablespace to be used by the recovery catalog user. I

recommend giving the tablespace a name such as RECCAT so that it

is readily identifiable as the tablespace that contains the recovery

catalog metadata:

SQL> CREATE TABLESPACE reccat

 DATAFILE '/u01/dbfile/O12C/reccat01.dbf' SIZE 500M

 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128k

 SEGMENT SPACE MANAGEMENT AUTO;

	 3.	 Create a user that will own the tables and other objects used

to store the target database metadata. I recommend giving the

recovery catalog user a name such as RCAT so that it is readily

identifiable as the user that owns the recovery catalog objects.

Also, grant the RECOVERY_CATALOG_OWNER role to the RCAT user as

well as CREATE SESSION:

SQL> CREATE USER rcat IDENTIFIED BY foo

TEMPORARY TABLESPACE temp

DEFAULT TABLESPACE reccat

QUOTA UNLIMITED ON reccat;

--

GRANT RECOVERY_CATALOG_OWNER TO rcat;

GRANT CREATE SESSION TO rcat;

	 4.	 Connect through RMAN as RCAT, and create the recovery

catalog objects:

$ rman catalog rcat/foo

	 5.	 Now, run the CREATE CATALOG command:

RMAN> create catalog;

RMAN> exit;

	 6.	 This command may take a few minutes to run. When it is finished,

you can verify that the tables were created with the following query:

$ sqlplus rcat/foo

SQL> select table_name from user_tables;

Chapter 18 RMAN Backups and Reporting

759

	 7.	 Here is a small sample of the output:

TABLE_NAME

DB

NODE

CONF

DBINC

�Registering a Target Database
Now, you can register a target database with the recovery catalog. Log in to the target

database server. Ensure that you can establish Oracle Net connectivity to the recovery

catalog database. For instance, one approach is to populate the TNS_ADMIN/tnsnames.

ora file with an entry that points to the remote database. On the target database server,

register the recovery catalog, as follows:

$ rman target / catalog rcat/foo@rcat

When you connect, you should see verification that you are connecting to both the

target and the recovery catalog:

connected to target database: O18C (DBID=3423216220)

connected to recovery catalog database

Next, run the REGISTER DATABASE command:

RMAN> register database;

Now, you can run backup operations and have the metadata about the backup tasks

written to both the control file and the recovery catalog. Make sure you connect to the

recovery catalog, along with the target database, each time you run RMAN commands:

$ rman target / catalog rcat/foo@rcat

RMAN> backup database;

Chapter 18 RMAN Backups and Reporting

760

�Backing Up the Recovery Catalog
Make certain you include a strategy for backing up and recovering the recovery catalog

database. For the most protection, be sure the recovery catalog database is in archivelog

mode, and use RMAN to back up the database.

You can also use a tool such as Data Pump to take a snapshot of the database. The

downside to using Data Pump is that you can potentially lose some information in the

recovery catalog that was created after the Data Pump export.

Keep in mind that if you experience a complete failure on your recovery catalog

database server, you can still use RMAN to back up your target databases; you just

cannot connect to the recovery catalog. Therefore, any scripts that instruct RMAN to

connect to the target and the recovery catalog must be modified.

Also, if you completely lose a recovery catalog and do not have a backup, one option

is to re-create it from scratch. As soon as you re-create it, you reregister the target

databases with the recovery catalog. You lose any long-term historical recovery catalog

metadata.

�Synchronizing the Recovery Catalog
You may have an issue with the network that renders the recovery catalog inaccessible.

In the meantime, you connect to your target database and perform backup operations.

Sometime later, the network issues are resolved, and you can again connect to the

recovery catalog.

In this situation, you need to resynchronize the recovery catalog with the target

database so that the recovery catalog is aware of any backup operations that are not

stored in it. Run the following command to ensure that the recovery catalog has the most

recent backup information:

$ rman target / catalog rcat/foo@rcat

RMAN> resync catalog;

Keep in mind that you have to resynchronize the catalog only if, for some reason,

you are performing backup operations without connecting to the catalog. Under normal

conditions, you do not have to run the RESYNC command.

Chapter 18 RMAN Backups and Reporting

761

�Recovery Catalog Versions
I recommend that you create a recovery catalog for each version of the target databases

that you are backing up. Doing so will save you some headaches with compatibility

issues and upgrades. I have found it easier to use a recovery catalog when the database

version of the rman client is the same version used when creating the catalog.

Yes, having multiple versions of the recovery catalog can cause some confusion.

However, if you are in an environment in which you have several different versions of the

Oracle database, then multiple recovery catalogs may be more convenient.

�Dropping a Recovery Catalog
If you determine that you are not using a recovery catalog and that you no longer need

the data, you can drop it. To do so, connect to the recovery catalog database as the

catalog owner, and issue the DROP CATALOG command:

$ rman catalog rcat/foo

RMAN> drop catalog;

You are prompted as follows:

recovery catalog owner is RCAT

enter DROP CATALOG command again to confirm catalog removal

If you enter the DROP CATALOG command again, all the objects in the recovery catalog

are removed from the recovery catalog database. It would be recommended to take a

back of the catalog before performing any drop commands or after registering databases.

The other way to drop a catalog is to drop the owner. To do so, connect to the

recovery catalog as a user with DBA privileges, and issue the DROP USER statement:

$ sqlplus system/manager

SQL> drop user rcat cascade;

SQL*Plus does not prompt you twice; it does as you instructed and drops the user

and its objects. Again, the only reason to do this is when you are certain you do not

need the recovery catalog or its data any longer. Use caution when dropping a user or

the recovery catalog: another good practice is that you take a Data Pump export of the

recovery catalog owner before dropping it.

Chapter 18 RMAN Backups and Reporting

762

�Logging RMAN Output
When troubleshooting RMAN output or checking the status of a backup job, it is

essential to have a record of what RMAN ran and the status of each command. There are

several methods for logging RMAN output. Some are built-in aspects of the Linux/Unix

OS. Others are RMAN-specific features:

•	 Linux/Unix redirect output to file

•	 Linux/Unix logging commands

•	 RMAN SPOOL LOG command

•	 V$RMAN_OUTPUT view

These logging features are discussed in the next sections.

�Redirecting Output to a File
The shell scripts are usually run automatically from a scheduling tool such as cron.

When running RMAN commands in this fashion, capture the output by instructing the

shell command to redirect standard output messaging and standard error messaging to

a log file. This is done with the redirection (>) character. This example runs a shell script

(rmanback.bsh) and redirects both standard output and standard error output to a log

file named rmanback.log:

$ rmanback.bsh 1>/home/oracle/bin/log/rmanback.log 2>&1

Here, 1> instructs standard output to be redirected to the specified file. The 2>&1

instructs the shell script to send standard error output to the same location as standard

output.

Tip  For further details on how DBAs use shell scripts and Linux features, see
Linux Recipes for Oracle DBAs by Darl Kuhn (Apress, 2008).

Chapter 18 RMAN Backups and Reporting

763

�Capturing Output with Linux/Unix Logging Commands
You can instruct Linux/Unix to create a log file to capture any output that is also being

displayed on your screen. This can be done in one of two ways:

•	 tee

•	 script

�Capturing Output with tee

When you start RMAN, you can send the output you see on your screen to an OS text file,

using the tee command:

$ rman | tee /tmp/rman.log

Now, you can connect to the target database and run commands. All the output seen

on your screen will be logged to the /tmp/rman.log file:

RMAN> connect target /

RMAN> backup database;

RMAN> exit;

The tee party session stops writing to the log file when you exit RMAN.

�Capturing Output with script

The script command is useful because it instructs the OS to log any output that appears

at the terminal to a log file. To capture all output, run the script command before

connecting to RMAN:

$ script /tmp/rman.log

Script started, file is /tmp/rman.log

$ rman target /

RMAN> backup database;

RMAN> exit;

To end a script session, press Ctrl+D, or type exit. The tmp/rman.log file will contain

all output that was displayed on your screen. The script command is useful when you

need to capture all the output from a particular time range. For example, you may be

running RMAN commands, exiting from RMAN, running SQL*Plus commands, and so

Chapter 18 RMAN Backups and Reporting

764

on. The script session lasts from the point at which you start script to the point at which

you press Ctrl+D.

�Logging Output to a File
An easy way to capture RMAN output is to use the SPOOL LOG command to send the

output to a file. This example spools a log file from within RMAN:

RMAN> spool log to '/tmp/rmanout.log'

RMAN> set echo on;

RMAN> <run RMAN commands>

RMAN> spool log off;

By default, the SPOOL LOG command will overwrite an existing file. If you want to

append to the log file, use the keyword APPEND:

RMAN> spool log to '/tmp/rmanout.log' append

You can also direct output to a log file when starting RMAN on the command line,

which will overwrite an existing file:

$ rman target / log /tmp/rmanout.log

You can also append to the log file, as follows:

$ rman target / log /tmp/rmanout.log append

When you use SPOOL LOG as shown in the previous examples, the output goes to a file

and not to your terminal. Therefore, I hardly ever use SPOOL LOG when running RMAN

interactively. The command is mainly a tool for capturing output when running RMAN

from scripts.

�Querying for Output in the Data Dictionary
If you do not capture any RMAN output, you can still view the most recent RMAN output

by querying the data dictionary. The V$RMAN_OUTPUT view contains messages recently

reported by RMAN:

SQL> select sid, recid, output

from v$rman_output

order by recid;

Chapter 18 RMAN Backups and Reporting

765

The V$RMAN_OUTPUT view is an in-memory object that holds up to 32,768 rows.

Information in this view is cleared out when you stop and restart your database. The

view is handy when you are using the RMAN SPOOL LOG command to spool output to a

file and cannot view what is happening at your terminal.

�RMAN Reporting
There are several different methods for reporting on the RMAN environment:

•	 LIST command

•	 REPORT command

•	 Query metadata via data dictionary views

When first learning RMAN, the difference between the LIST and REPORT commands

may seem confusing because the distinction between the two is not clear-cut. In general,

I use the LIST command to view information about existing backups and the REPORT

command to determine which files need to be backed or to display information on

obsolete or expired backups.

SQL queries can provide details for specialized reports (not available via LIST or REPORT)

or for automating reports: for example, generally implementing an automated check via a

shell script and SQL that reports whether the RMAN backups have run within the last day.

�Using LIST
When investigating issues with RMAN backups, usually one of the first tasks I undertake

is connecting to the target database and running the LIST BACKUP command. This

command allows you to view backup sets, backup pieces, and the files included in the

backup:

RMAN> list backup;

The command shows all RMAN backups recorded in the repository. You may want

to spool the backups to an output file so that you can save the output and then use an OS

editor to search through and look for specific strings in the output.

To get a summarized view of backup information, use the LIST BACKUP SUMARY

command:

RMAN> list backup summary;

Chapter 18 RMAN Backups and Reporting

766

You can also use the LIST command to report just image copy information:

RMAN> list copy;

To list all files that have been backed up, and the associated backup set, issue the

following command:

RMAN> list backup by file;

These commands display archivelogs on disk:

RMAN> list archivelog all;

RMAN> list copy of archivelog all;

Also, this command lists the backups of the archivelogs (and which archivelogs are

contained in which backup pieces):

RMAN> list backup of archivelog all;

There are a great many ways in which you can run the LIST command (and, likewise,

the REPORT command, covered in the next section). The prior methods are the ones

you will run most of the time. See the Oracle Database Backup and Recovery Reference

Guide, available from the Technology Network area of the Oracle web site (http://otn.

oracle.com), for a complete list of options.

�Using REPORT
The RMAN REPORT command is useful for reporting on a variety of details. You can

quickly view all the data files associated with a database, as follows:

RMAN> report schema;

The REPORT command provides detailed information about backups marked

obsolete via the RMAN retention policy; for example,

RMAN> report obsolete;

You can report on data files that need to be backed up, as defined by the retention

policy, like this:

RMAN> report need backup;

Chapter 18 RMAN Backups and Reporting

http://otn.oracle.com
http://otn.oracle.com

767

There are several ways to report on data files that need to be backed up. Here are

some other examples:

RMAN> report need backup redundancy 2;

RMAN> report need backup redundancy 2 datafile 2;

The REPORT command may also be used for data files that have never been backed up

or that may contain data created from a NOLOGGING operation. For example, say you have

direct-path loaded data into a table, and the data file in which the table resides has not

been backed up. The following command will detect these conditions:

RMAN> report unrecoverable;

�Using SQL
There are a number of data dictionary views available for querying about backup

information. Table 18-1 describes RMAN-related data dictionary views. These views are

available regardless of your use of a recovery catalog (the information in these views is

derived from the control file).

Table 18-1.  Description of RMAN Backup Data Dictionary Views

View Name Information Provided

V$RMAN_BACKUP_JOB_DETAILS RMAN backup jobs

V$BACKUP Backup status of online data files placed in backup mode

(for hot backups)

V$BACKUP_ARCHIVELOG_DETAILS Archive logs backed up

V$BACKUP_CONTROLFILE_DETAILS Control files backed up

V$BACKUP_COPY_DETAILS Control file and data file copies

V$BACKUP_DATAFILE Control files and data files backed up

V$BACKUP_DATAFILE_DETAILS Data files backed up in backup sets, image copies, and

proxy copies

V$BACKUP_FILES Data files, control files, spfiles, and archivelogs backed up

(continued)

Chapter 18 RMAN Backups and Reporting

768

Sometimes, DBAs new to RMAN have a hard time grasping the concept of backups,

backup sets, backup pieces, and data files and how they relate. I find the following query

useful when discussing RMAN backup components. This query will display backup sets,

the backup pieces with the set, and the data files that are backed up within the backup

pieces:

SQL> SET LINES 132 PAGESIZE 100

SQL> BREAK ON REPORT ON bs_key ON completion_time ON bp_name ON file_name

SQL> COL bs_key FORM 99999 HEAD "BS Key"

SQL> COL bp_name FORM a40 HEAD "BP Name"

SQL> COL file_name FORM a40 HEAD "Datafile"

SQL> --

SQL> SELECT

 s.recid bs_key

,TRUNC(s.completion_time) completion_time

,p.handle bp_name

,f.name file_name

FROM v$backup_set s

 ,v$backup_piece p

 ,v$backup_datafile d

 ,v$datafile f

WHERE p.set_stamp = s.set_stamp

AND p.set_count = s.set_count

AND d.set_stamp = s.set_stamp

AND d.set_count = s.set_count

AND d.file# = f.file#

View Name Information Provided

V$BACKUP_PIECE Backup piece files

V$BACKUP_PIECE_DETAILS Backup piece details

V$BACKUP_SET Backup sets

V$BACKUP_SET_DETAILS Backup set details

Table 18-1.  (continued)

Chapter 18 RMAN Backups and Reporting

769

ORDER BY

 s.recid

,p.handle

,f.name;

The output here has been shortened to fit on the page:

BS Key COMPLETIO BP Name Datafile

------ --------- -------------------------------- -------------------------------

 159 11-JAN-18 /u01/O18C/rman/r16qnv59jj_1_1.bk /u01/dbfile/o18c/inv_data2.dbf

 /u01/dbfile/o18c/lob_data01.dbf

 /u01/dbfile/o18c/p14_tbsp.dbf

 /u01/dbfile/o18c/p15_tbsp.dbf

 /u01/dbfile/o18c/p16_tbsp.dbf

Sometimes, it is useful to report on the performance of RMAN backups. The

following query reports on the time taken for an RMAN backup per session.

SQL> COL hours FORM 9999.99

SQL> COL time_taken_display FORM a20

SQL> SET LINESIZE 132

SQL> --

SQL> SELECT

 session_recid

,compression_ratio

,time_taken_display

,(end_time - start_time) * 24 as hours

,TO_CHAR(end_time,'dd-mon-yy hh24:mi') as end_time

FROM v$rman_backup_job_details

ORDER BY end_time;

Here is some sample output:

SESSION_RECID COMPRESSION_RATIO TIME_TAKEN_DISPLAY HOURS END_TIME

------------- ----------------- -------------------- -------- ---------------

 15 1 00:05:08 .09 11-jan-18 13:41

 27 3.79407176 00:00:09 .00 11-jan-18 13:52

 33 1.19992137 00:05:01 .08 11-jan-18 14:07

Chapter 18 RMAN Backups and Reporting

770

The contents of V$RMAN_BACKUP_JOB_DETAILS are summarized by a session

connection to RMAN. Therefore, the report output is more accurate if you connect

to RMAN (establishing a session) and then exit out of RMAN after the backup job is

complete. If you remain connected to RMAN while running multiple backup jobs, the

query output reports on all backup activity while connected (for that session).

You should have an automated method of detecting whether or not RMAN backups

are running and if data files are being backed up. One reliable method of automating

such a task is to embed SQL into a shell script and then run the script on a periodic basis

from a scheduling utility such as cron.

I typically run two basic types of checks regarding the RMAN backups:

•	 Have the RMAN backups run recently?

•	 Are there any data files that have not been backed up recently?

The following shell script checks for these conditions. You will need to modify the

script and provide it with a username and password for a user that can query the data

dictionary objects referenced in the script and also change the e-mail address of where

messages are sent. When running the script, you will need to pass in two variables: the

Oracle SID and the threshold number of past days that you want to check for the last

time the backups ran or for when a data file was backed up.

#!/bin/bash

#

if [$# -ne 2]; then

 echo "Usage: $0 SID threshold"

 exit 1

fi

source oracle OS variables

. /var/opt/oracle/oraset $1

crit_var=$(sqlplus -s <<EOF

/ as sysdba

SET HEAD OFF FEEDBACK OFF

SELECT COUNT(*) FROM

(SELECT (sysdate - MAX(end_time)) delta

 FROM v\$rman_backup_job_details) a

WHERE a.delta > $2;

EOF)

Chapter 18 RMAN Backups and Reporting

771

#

if [$crit_var -ne 0]; then

 �echo "rman backups not running on $1" | mailx -s "rman problem" dkuhn@

gmail.com

else

 echo "rman backups ran ok"

fi

#--

crit_var2=$(sqlplus -s <<EOF

/ as sysdba

SET HEAD OFF FEEDBACK OFF

SELECT COUNT(*)

FROM

(

SELECT name

FROM v\$datafile

MINUS

SELECT DISTINCT

 f.name

FROM v\$backup_datafile d

 ,v\$datafile f

WHERE d.file# = f.file#

AND d.completion_time > sysdate - $2);

EOF)

#

if [$crit_var2 -ne 0]; then

 �echo "datafile not backed up on $1" | mailx -s "backup problem" dkuhn@

gmail.com

else

 echo "datafiles are backed up..."

fi

#

exit 0

Chapter 18 RMAN Backups and Reporting

772

For example, to check if backups have been running successfully within the past 2

days, run the script (named rman_chk.bsh):

$ rman_chk.bsh INVPRD 2

The prior script is basic but effective. You can enhance it as required for your RMAN

environment.

�Summary
RMAN offers many flexible and feature-rich options for backups. By default, RMAN

backs up only blocks that have been modified in the database. The incremental features

allow you to back up only blocks that have been modified since the last backup. These

incremental features are particularly useful in reducing the size of backups in large

database environments, in which only a small percentage of data in the database

changes from one backup to the next.

You can instruct RMAN to back up every block in each data file via an image copy.

An image copy is a block-for-block identical copy of the data file. Image copies have the

advantage of being able to restore the backup files directly from the backup (without

using RMAN). You can use the incrementally updated backup feature to implement an

efficient hybrid of image copy backups and incremental backups.

There are configurations that will help match recovery strategies and requirements

from image copies with incremental backups to backup sets and archivelogs. The CDB

and PDB databases can all be backed up in the CDB, but when connecting to a PDB as

target, only the PDB can be backed up. Database data block changes can be backed up

along with tablespaces, data files, and databases.

RMAN contains built-in commands for reporting on many aspects of backups.

The LIST command reports on backup activity. The REPORT command is useful for

determining which files need to be backed up, as dictated by the retention policy.

After you have successfully configured RMAN and created backups, you are in a

position to be able to restore and recover your database in the event of a media failure.

Backups are only as good as the ability to restore the database. Restore and recovery

topics are detailed in the next chapter.

Chapter 18 RMAN Backups and Reporting

773
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_19

CHAPTER 19

RMAN Restore
and Recovery
There are quite a few stories I can tell you about needing to recover and even the

monthly drills that were practiced to perform restores. A backup is only good if you can

restore; hopefully it is not needed, but a restore process needs to be documented, tested,

and practiced. Practicing allows for errors to occur and document strange things that can

happen, so in the moment of panic and needing to complete the restore under pressure,

the years of practice will help. It will also help verify that there are good backups

available, as described by the co-author in a tale from a DBA:

A couple of years ago, I was out on a long Saturday morning bike ride. About halfway

through the ride, my cell phone rang. It was one of the data center operational support

technicians. He told me that a mission critical database server was acting strange and

that I should log in as soon as possible and make sure things were okay. I told him that

I was about 15 minutes from being able to log in. So, I scurried home as fast as I could to

check out the production box. When I got home and logged in to the database server,

I tried to start SQL*Plus and immediately got an error indicating that the SQL*Plus

binary file had corruption. Great. I couldn’t even log in to SQL*Plus. This was not good.

I had the SA restore the Oracle binaries from an OS backup. I started SQL*Plus. The

database had crashed, so I attempted to start it. The output indicated that there was a

media failure with all the data files. After some analysis, it was discovered that there had

been some filesystem issues and that all these files on disk were corrupt:

•	 Data files

•	 Control files

•	 Archive redo logs

774

•	 Online redo log files

•	 RMAN backup pieces

This was almost a total disaster. My director asked about our options. I responded,

“All we have to do is restore the database from our last tape backup, and we’ll lose

whatever data are in archive redo logs that haven’t been backed up to tape yet.”

The storage administrators were called in and instructed to restore the last set of

RMAN backups that had been written to tape. About 15 minutes later, we could hear

the tape guys talking to each other in hushed voices. One of them said, “We are sooooo

hosed. We do not have any tape backups of RMAN for any databases on this box.”

That was a dark moment. The worst-case scenario was to rebuild the database from

DDL scripts and lose 3 years of production data. Not a very palatable option.

After looking around the production box, I discovered that the prior production

support DBAwho, ironically, had just been let go a few days before, owing to budget

cuts) had implemented a job to copy the RMAN backups to another server in the

production environment. The RMAN backups on this other server were intact. I was

able to restore and recover the production database from these backups. We lost about a

day’s worth of data (between corrupt archive logs and downtime, in which no incoming

transactions were allowed), but we were able to get the database restored and recovered

approximately 20 hours after the initial phone call. That was a long day.

Most situations in which you need to restore and recover will not be as bad as the

one just described. Even in places where there are safeguards and little natural disasters,

there always seems to be something that occurs to make you want to test the recovery

and validate the backups. However, the previous scenario does highlight the need for the

following:

•	 A backup strategy

•	 A DBA with backup and recovery skills

•	 A restore-and-recovery strategy, including a requirement to test the

restore and recovery periodically

This chapter walks you through restore and recovery, using RMAN. The chapter

covers many of the common tasks you will have to perform when dealing with media

failures.

Chapter 19 RMAN Restore and Recovery

775

�Determining if Media Recovery Is Required
The term media recovery means the restoration of files that have been lost or damaged,

owing to the failure of the underlying storage media (usually a disk of some sort) or

accidental removal of files. Usually, you know that media recovery is required through an

error such as the following:

ORA-01157: cannot identify/lock data file 1 - see DBWR trace file

ORA-01110: data file 1: '/u01/dbfile/o12c/system01.dbf'

The error may be displayed on your screen when performing DBA tasks, such as

stopping and starting the database. Or, you might see such an error in a trace file or the

alert.log file. It is also possible that since the file has not been written to or because of

the OS, the error might be delayed in appearing. If you do not notice the issue right away,

with a severe media failure, the database will stop processing transactions, and users will

start calling you.

To understand how Oracle determines that media recovery is required, you must

first understand how Oracle determines that everything is okay. When Oracle shuts

down normally (IMMEDIATE, TRANSACTIONAL, NORMAL), part of the shutdown process is to

flush all modified blocks (in memory) to disk, mark the header of each data file with the

current SCN, and update the control file with the current SCN information.

Upon startup, Oracle checks to see if the SCN in the control file matches the SCN

in the header of the data files. If there is a match, then Oracle attempts to open the data

files and online redo log files. If all files are available and can be opened, Oracle starts

normally. The following query compares the SCN in the control file (for each data file)

with the SCN in the data file header:

SQL> SET LINES 132

SQL> COL name FORM a40

SQL> COL status FORM A8

SQL> COL file# FORM 9999

SQL> COL control_file_SCN FORM 999999999999999

SQL> COL datafile_SCN FORM 999999999999999

--

SQL> SELECT

 a.name

,a.status

Chapter 19 RMAN Restore and Recovery

776

,a.file#

,a.checkpoint_change# control_file_SCN

,b.checkpoint_change# datafile_SCN

,CASE

 �WHEN ((a.checkpoint_change# - b.checkpoint_change#) = 0) THEN 'Startup

Normal'

 WHEN ((b.checkpoint_change#) = 0) THEN 'File Missing?'

 �WHEN ((a.checkpoint_change# - b.checkpoint_change#) > 0) THEN 'Media

Rec. Req.'

 �WHEN ((a.checkpoint_change# - b.checkpoint_change#) < 0) THEN 'Old

Control File'

 ELSE 'what the ?'

 END datafile_status

FROM v$datafile a -- control file SCN for datafile

 ,v$datafile_header b -- datafile header SCN

WHERE a.file# = b.file#

ORDER BY a.file#;

If the control file SCN values are greater than the data file SCN values, then media

recovery is most likely required. This would be the case if you restored a data file from

a backup, and the SCN in the restored data file had an SCN less than the data file in the

current control file.

Tip T he V$DATAFILE_HEADER view uses the physical data file on disk as its
source. The V$DATAFILE view uses the control file as its source.

You can also directly query the V$DATAFILE_HEADER for more information. The ERROR

and RECOVER columns report any potential problems. For example, a YES or null value in

the RECOVER column indicates that there is a problem:

SQL> select file#, status, error, recover from v$datafile_header;

Chapter 19 RMAN Restore and Recovery

777

Here is some sample output:

 FILE# STATUS ERROR REC

---------- ------- -------------------- ---

 1 ONLINE FILE NOT FOUND

 2 ONLINE NO

 3 ONLINE NO

�Determining What to Restore
Media recovery requires that you perform manual tasks to get your database back in one

piece. These tasks usually involve a combination of RESTORE and RECOVER commands.

You will have to issue an RMAN RESTORE command if, for some reason (accidental

deleting of files, disk failure, and so on), your data files have experienced media failure.

�How the Process Works
When you issue the RESTORE command, RMAN automatically decides how to extract the

data files from any of the following available backups:

•	 Full database backup

•	 Incremental level-0 backup

•	 Image copy backup generated by BACKUP AS COPY command

After the files are restored from a backup, you are required to apply redo to them

via the RECOVER command. When you issue the RECOVER command, Oracle examines

the SCNs in the affected data files and determines whether any of them need to be

recovered. If the SCN in the data file is less than the corresponding SCN in the control

file, then media recovery will be required.

Oracle retrieves the data file SCN and then looks for the corresponding SCN in the

redo stream to establish where to start the recovery process. If the starting recovery SCN

is in the online redo log files, the archivelog files are not required for recovery.

During a recovery, RMAN automatically determines how to apply redo. First, RMAN

applies any incremental backups available that are greater than level 0, such as the

incremental level 1. Next, any archivelog files on disk are applied. If the archivelog files

do not exist on disk, RMAN attempts to retrieve them from a backup set.

Chapter 19 RMAN Restore and Recovery

778

To be able to perform a complete recovery, all the following conditions need to be true:

•	 Your database is in archivelog mode.

•	 You have a good baseline backup of your database.

•	 You have any required redo that has been generated since the backup

(archivelog files, online redo log files, or incremental backups that

RMAN can use for recovery instead of applying redo).

There are a wide variety of restore-and-recovery scenarios. How you restore and

recover depends directly on your backup strategy and which files have been damaged.

Listed next are the general steps to follow when facing a media failure:

	 1.	 Determine which files need to be restored.

	 2.	 Depending on the damage, set your database mode to nomount,

mount, or open.

	 3.	 Use the RESTORE command to retrieve files from RMAN backups.

	 4.	 Use the RECOVER command for data files requiring recovery.

	 5.	 Open your database.

Your particular restore-and-recovery scenario may not require that all the previous

steps be performed. For instance, you may just want to restore your spfile, which does

not require a recovery step.

The first step in the restore-and-recovery process is to determine which files have

experienced media failure. You can usually determine which files need to be restored

from the following sources:

•	 Error messages displayed on your screen, either from RMAN or

SQL*Plus

•	 Alert.log file and corresponding trace files

•	 Data dictionary views

Additionally, to the previously listed methods, you should consider the Data

Recovery Advisor for obtaining information about the extent of a failure and

corresponding corrective action.

Chapter 19 RMAN Restore and Recovery

779

�Using Data Recovery Advisor
The Data Recovery Advisor tool was introduced in Oracle Database 11g. In the event

of a media failure, this tool will display the details of the failure, recommend corrective

actions, and perform the recommended actions if you specify that it do so. It is like

having another set of eyes to provide feedback when in a restore-and-recovery situation.

There are four modes to Data Recovery Advisor:

•	 Listing failures

•	 Suggesting corrective action

•	 Running commands to repair failures

•	 Changing the status of a failure

The Data Recovery Advisor is invoked from RMAN. You can think of the Data

Recovery Advisor as a set of RMAN commands that can assist you when dealing with

media failure.

�Listing Failures

When using the Data Recovery Advisor, the LIST FAILURE command is used to display

any issues with the data files, control files, or online redo logs:

RMAN> list failure;

If there are no detected failures, you will see a message indicating that there are

no failures. Here is some sample output indicating that there may be an issue with a

data file:

List of Database Failures

=========================

Failure ID Priority Status Time Detected Summary

---------- -------- --------- ------------- -------

6222 CRITICAL OPEN 12-JAN-18 System datafile 1:

 '/u01/dbfile/o18c/system01.dbf' is missing

To display more information about the failure, use the DETAIL clause:

RMAN> list failure 6222 detail;

Chapter 19 RMAN Restore and Recovery

780

Here is the additional output for this example:

Impact: Database cannot be opened

With this type of failure, the prior output indicates that the database cannot be opened.

Tip  If you suspect there is a media failure, yet the Data Recovery Advisor is not
reporting any issues, run the VALIDATE DATABASE command to verify that the
database is intact.

�Suggesting Corrective Action

The ADVISE FAILURE command gives advice about how to recover from potential

problems detected by the Data Recovery Advisor. If you have multiple failures with your

database, you can directly specify the failure ID to get advice on a given failure, like so:

RMAN> advise failure 6222;

Here is a snippet of the output for this particular issue:

Optional Manual Actions

=======================

1. If file /u01/dbfile/o18c/system01.dbf was unintentionally renamed or moved,

restore it

Automated Repair Options

========================

Option Repair Description

------ ------------------

1 Restore and recover datafile 1

 Strategy: The repair includes complete media recovery with no data loss

 Repair script: /ora01/app/oracle/diag/rdbms/o18c/o18c/hm/reco_4116328280.hm

In this case, the Data Recovery Advisor created a script that can be used to

potentially fix the problem. The contents of the repair script can be viewed with an OS

utility; for example,

$ cat /ora01/app/oracle/diag/rdbms/o18c/o18c/hm/reco_4116328280.hm

Chapter 19 RMAN Restore and Recovery

781

Here are the contents of the script for this example:

 # restore and recover datafile

 restore (datafile 1);

 recover datafile 1;

 sql 'alter database datafile 1 online';

After reviewing the script, you can decide to run the suggested commands manually,

or you can have the Data Recovery Advisor run the script via the REPAIR command (see

the next section for details).

�Repairing Failures

If you have identified a failure and viewed the recommended advice, you can proceed

to the repair work. If you want to inspect what the REPAIR FAILURE command will do

without actually running the commands, use the PREVIEW clause:

RMAN> repair failure preview;

Before you run the REPAIR FAILURE command, ensure that you first run the LIST

FAILURE and ADVISE FAILURE commands from the same connected session. In other

words, the RMAN session that you are in must run the LIST and ADVISE commands

within the same session before running the REPAIR command.

If you are satisfied with the repair suggestions, then run the REPAIR FAILURE

command:

RMAN> repair failure;

You will be prompted at this point for confirmation:

Do you really want to execute the above repair (enter YES or NO)?

Type YES to proceed:

YES

If all goes well, you should see a final message such as this in the output:

repair failure complete

Chapter 19 RMAN Restore and Recovery

782

Note Y ou can run the Data Recovery Advisor commands from the RMAN
command prompt or from Enterprise Manager.

In this way, you can use the RMAN commands LIST FAILURE, ADVISE FAILURE, and

REPAIR FAILURE to resolve media failures.

�Changing the Status of a Failure

One last note on the Data Recovery Advisor: if you know that you have had a failure and

that it is not critical (e.g., a data file missing from a tablespace that is no longer used),

then use the CHANGE FAILURE command to alter the priority of a failure. In this example,
there is a missing data file that belongs to a noncritical tablespace. First, obtain the failure
priority via the LIST FAILURE command:

RMAN> list failure;

Here is some sample output:

Failure ID Priority Status Time Detected Summary

---------- -------- --------- ------------- -------

5 HIGH OPEN 12-JAN-18 One or more non-system datafiles

 are missing

Next, change the priority from HIGH to LOW with the CHANGE FAILURE command:

RMAN> change failure 5 priority low;

You will be prompted to confirm that you really do want to change the priority:

Do you really want to change the above failures (enter YES or NO)?

If you do want to change the priority, then type YES, and press the Enter key. If you

run the LIST FAILURE command again, you will see that the priority has now been

changed to LOW:

RMAN> list failure low;

Chapter 19 RMAN Restore and Recovery

783

�Using RMAN to Stop/Start Oracle
You can use RMAN to stop and start your database with methods that are almost

identical to those available through SQL*Plus. When performing restore-and-recovery

operations, it is often more convenient to stop and start your database from within

RMAN. The following RMAN commands can be used to stop and start your database:

•	 SHUTDOWN

•	 STARTUP

•	 ALTER DATABASE

�Shutting Down
The SHUTDOWN command works the same from RMAN as it does from SQL*Plus. There

are four types of shutdown: ABORT, IMMEDIATE, NORMAL, and TRANSACTIONAL. I usually first

attempt to stop a database using SHUTDOWN IMMEDIATE. Here are some examples:

RMAN> shutdown immediate;

RMAN> shutdown abort;

If you do not specify a shutdown option, NORMAL is the default. Shutting down a

database with NORMAL is rarely viable, as this mode waits for currently connected users to

disconnect at their leisure.

�Starting Up
As with SQL*Plus, you can use a combination of STARTUP and ALTER DATABASE

commands with RMAN to step the database through startup phases, like this:

RMAN> startup nomount;

RMAN> alter database mount;

RMAN> alter database open;

Here is another example:

RMAN> startup mount;

RMAN> alter database open;

Chapter 19 RMAN Restore and Recovery

784

If you want to start the database with restricted access, use the DBA option:

RMAN> startup dba;

Tip S tarting with Oracle Database 12c, you can run all SQL statements directly
from within RMAN without having to specify the RMAN sql command.

�Complete Recovery
As discussed in Chapter 16, the term complete recovery means that you can restore all

transactions that were committed before a failure occurred. Complete recovery does not

mean that you are restoring and recovering all data files in your database. For instance,

you are performing a complete recovery if you have a media failure with one data file,

and you restore and recover the one data file. For complete recovery, the following

conditions must be true:

•	 Your database is in archivelog mode.

•	 You have a good baseline backup of the data files that have

experienced media failure.

•	 You have any required redo that has been generated since the last

backup.

•	 All archive redo logs start from the point at which the last backup

began.

•	 Any incremental backups that RMAN can use for recovery are

available (if using).

•	 Online redo logs that contain transactions that have not yet been

archived are available.

If you have experienced a media failure, and you have the required files to perform a

complete recovery, then you can restore and recover your database.

Chapter 19 RMAN Restore and Recovery

785

�Testing Restore and Recovery
You can determine which files RMAN will use for restore and recovery before you

actually perform the restore and recovery. You can also instruct RMAN to verify the

integrity of the backup files that will be used for the restore and recovery.

�Previewing Backups Used for Recovery

Use the RESTORE...PREVIEW command to list the backups and archive redo log files

that RMAN will use to restore and recover database data files. The RESTORE...PREVIEW

command does not actually restore any files. Rather, it lists the backup files that will be

used for a restore operation. This example previews in detail the backups required for

restore and recovery for the entire database:

RMAN> restore database preview;

You can also preview require backup files at a summarized level of detail:

RMAN> restore database preview summary;

Here is a snippet of the output:

List of Backup Sets

===================

BS Key Type LV Size Device Type Elapsed Time Completion Time

------- ---- -- ---------- ----------- ------------ ---------------

224 Full 775.37M DISK 00:02:22 12-JAN-18

 BP Key: 229 Status: AVAILABLE Compressed: NO Tag: TAG20130112T120713

 Piece Name: /u02/O18C/rman/r29gnv7q7i_1_1.bk

 List of Datafiles in backup set 224

 File LV Type Ckp SCN Ckp Time Name

 ---- -- ---- ---------- --------- ----

 1 Full 4586940 12-JAN-18 /u01/dbfile/o18c/system01.dbf

 3 Full 4586940 12-JAN-18 /u01/dbfile/o18c/undotbs01.dbf

 4 Full 4586940 12-JAN-18 /u01/dbfile/o18c/users01.dbf

Chapter 19 RMAN Restore and Recovery

786

Here are some more examples of how to preview backups required for restore

and recovery:

RMAN> restore tablespace system preview;

RMAN> restore archivelog from time 'sysdate -1' preview;

RMAN> restore datafile 1, 2, 3 preview;

�Validating Backup Files Before Restoring

There are several levels of verification that you can perform on backup files without

actually restoring anything. If you just want RMAN to verify that the files exist and check

the file headers, then use the RESTORE...VALIDATE HEADER command, as shown:

RMAN> restore database validate header;

This command only validates the existence of backup files and checks the file

headers. You can further instruct RMAN to verify the integrity of blocks within backup

files required to restore the database data files via the RESTORE...VALIDATE command

(sans the HEADER clause). Again, RMAN will not restore any data files in this mode:

RMAN> restore database validate;

This command only checks for physical corruption within the backup files. You can

also check for logical corruption (along with physical corruption), as follows:

RMAN> restore database validate check logical;

Here are some other examples of using RESTORE...VALIDATE:

RMAN> restore datafile 1,2,3 validate;

RMAN> restore archivelog all validate;

RMAN> restore controlfile validate;

RMAN> restore tablespace system validate;

�Testing Media Recovery

The prior sections covered reporting and verifying the restore operations. You can also

instruct RMAN to verify the recovery process via the RECOVER...TEST command. Before

performing a test recovery, you need to ensure that the data files being recovered are

offline. Oracle will throw an error for any online data files being recovered in test mode.

Chapter 19 RMAN Restore and Recovery

787

In this example, the tablespace USERS is restored first, and then a trial recovery is

performed:

RMAN> connect target /

RMAN> startup mount;

RMAN> restore tablespace users;

RMAN> recover tablespace users test;

If there are any missing archive redo logs that are required for recovery, the following

error is thrown:

RMAN-06053: unable to perform media recovery because of missing log

RMAN-06025: no backup of archived log for thread 1 with sequence 6 ...

If the testing of the recovery succeeded, you will see messages such as the following,

indicating that the application of redo was tested but not applied:

ORA-10574: Test recovery did not corrupt any data block

ORA-10573: Test recovery tested redo from change 4586939 to 4588462

ORA-10572: Test recovery canceled due to errors

ORA-10585: Test recovery can not apply redo that may modify control file

Here are some other examples of testing the recovery process:

RMAN> recover database test;

RMAN> recover tablespace users, tools test;

RMAN> recover datafile 1,2,3 test;

�Restoring and Recovering the Entire Database
The RESTORE DATABASE command will restore every data file in your database. The

exception to this is when RMAN detects that data files have already been restored; in that

case, it will not restore them again. If you want to override that behavior, use the FORCE

command.

Chapter 19 RMAN Restore and Recovery

788

When you issue the RECOVER DATABASE command, RMAN will automatically apply

redo to any data files that need recovery. The recovery process includes applying

changes found in the following files:

•	 Incremental backup pieces (applicable only if using incremental

backups)

•	 Archivelog files (generated since the last backup or incremental

backup applied)

•	 Online redo log files (current and unarchived)

You can open your database after the restore-and-recovery process is complete.

Complete database recovery works only if you have good backups of your database and

access to all redo generated after the backup was taken. You need all the redo required

to recover the database data files. If you do not have all the required redo, then you

will most likely have to perform an incomplete recovery (see the section “Incomplete

Recovery” later in this chapter).

Note Y our database has to be at least mounted to restore data files, using
RMAN. This is because RMAN reads information from the control file during the
restore-and-recovery process.

You can perform a complete database-level recovery with either the current control

file or a backup control file.

�Using the Current Control File

You must first put your database in mount mode to perform a database-wide restore and

recovery. This is because Oracle will not allow you to operate your database in open mode

while data files associated with the SYSTEM tablespace are being restored and recovered.

In this situation, start up the database in mount mode, issue the RESTORE and RECOVER

commands, and then open the database, like so:

$ rman target /

RMAN> startup mount;

RMAN> restore database;

RMAN> recover database;

RMAN> alter database open;

Chapter 19 RMAN Restore and Recovery

789

If everything goes as expected, the last message you should see is this:

Statement processed

�Using the Backup Control File

This technique uses an autobackup of the control file retrieved from the FRA. (see the

section “Restoring a Control File,” later in this chapter, for more examples of how to

restore your control file). In this scenario, the control file is first retrieved from a backup

before restoring and recovering the database:

$ rman target /

RMAN> startup nomount;

RMAN> restore controlfile from autobackup;

RMAN> alter database mount;

RMAN> restore database;

RMAN> recover database;

RMAN> alter database open resetlogs;

If successful, the last message you should see is this:

Statement processed

�Restoring and Recovering Tablespaces
Sometimes you will have a media failure that is localized to a particular tablespace or set of

tablespaces. In this situation, it is appropriate to restore and recover at the tablespace level

of granularity. The RMAN RESTORE TABLESPACE and RECOVER TABLESPACE commands

will restore and recover all data files associated with the specified tablespace(s).

�Restoring Tablespaces While the Database Is Open

If your database is open, then you must take offline the tablespace you want to restore

and recover. You can do this for any tablespace except SYSTEM and UNDO. This example

restores and recovers the USERS tablespace while the database is open:

$ rman target /

RMAN> alter tablespace users offline immediate;

RMAN> restore tablespace users;

Chapter 19 RMAN Restore and Recovery

790

RMAN> recover tablespace users;

RMAN> alter tablespace users online;

After the tablespace is brought online, you should see a message such as this:

sql statement: alter tablespace users online

�Restoring Tablespaces While the Database Is in Mount Mode

Usually when performing a restore and recovery, DBAs will shut down the database and

restart it in mount mode in preparation for performing the recovery. Placing a database

in mount mode ensures that no users are connecting to the database and that no

transactions are transpiring.

Also, if you are restoring and recovering the SYSTEM tablespace, then you must start

the database in mount mode. Oracle does not allow for restoring and recovering the

SYSTEM tablespace data files while the database is open. This next example restores the

SYSTEM tablespace while the database is in mount mode:

$ rman target /

RMAN> shutdown immediate;

RMAN> startup mount;

RMAN> restore tablespace system;

RMAN> recover tablespace system;

RMAN> alter database open;

If successful, the last message you should see is this:

Statement processed

�Restoring Read-Only Tablespaces
RMAN will restore read-only tablespaces along with the rest of the database when you

issue a RESTORE DATDABASE command. For example, the following command will restore

all data files (including those in read-only mode):

RMAN> restore database;

Chapter 19 RMAN Restore and Recovery

791

Note  If you are using a backup that was created after the read-only
tablespace was placed in read-only mode, then no recovery is necessary for the
read-only data files. In this situation, no redo has been generated for the read-only
tablespace since it was backed up.

�Restoring Temporary Tablespaces
You do not have to restore or re-create missing locally managed temporary tablespace

temp files. When you open your database for use, Oracle automatically detects and re-

creates locally managed temporary tablespace temp files.

When Oracle automatically re-creates a temporary tablespace, it will log a message

to your target database alert.log such as this:

Re-creating tempfile <your temporary tablespace filename>

If, for any reason, your temporary tablespace becomes unavailable, you can also

re-create it yourself. Because there are never any permanent objects in temporary

tablespaces, you can simply re-create them as needed. Here is an example of how to

create a locally managed temporary tablespace:

SQL> CREATE TEMPORARY TABLESPACE temp TEMPFILE

'/u01/dbfile/o18c/temp01.dbf' SIZE 1000M

EXTENT MANAGEMENT

LOCAL UNIFORM SIZE 512K;

If your temporary tablespace exists, but the temporary data files are missing, you can

just add them, as shown:

SQL> alter tablespace temp

add tempfile '/u01/dbfile/o18c/temp02.dbf' SIZE 5000M REUSE;

�Restoring and Recovering Data Files
A data file-level restore and recovery works well when a media failure is confined to a

small set of data files. With data file-level recoveries, you can instruct RMAN to restore

and recover either with a data file name or data file number. For data files not associated

Chapter 19 RMAN Restore and Recovery

792

with the SYSTEM or UNDO tablespaces, you have the option of restoring and recovering

while the database remains open. While the database is open, however, you must first

take offline any data files being restored and recovered.

�Restoring and Recovering Data Files While the Database Is Open

Use the RESTORE DATAFILE and RECOVER DATAFILE commands to restore and recover at

the data file level. When your database is open, you are required to take offline any data

files that you are attempting to restore and recover. This example restores and recovers

data files while the database is open:

RMAN> alter database datafile 4, 5 offline;

RMAN> restore datafile 4, 5;

RMAN> recover datafile 4, 5;

RMAN> alter database datafile 4, 5 online;

Tip  Use the RMAN REPORT SCHEMA command to list data file names and file
numbers. You can also query the NAME and FILE# columns of V$DATAFILE to
take names and numbers.

You can also specify the name of the data file that you want to restore and recover;

for example,

RMAN> alter database datafile '/u01/dbfile/o18c/users01.dbf' offline;

RMAN> restore datafile '/u01/dbfile/o18c/users01.dbf';

RMAN> recover datafile '/u01/dbfile/o18c/users01.dbf';

RMAN> alter database datafile '/u01/dbfile/o18c/users01.dbf' online;

�Restoring and Recovering Data Files While the Database
Is Not Open

In this scenario, the database is first shut down and then started in mount mode. You can

restore and recover any data file in your database while the database is not open. This

example shows the restoring of data file 1, which is associated with the SYSTEM tablespace:

$ rman target /

RMAN> shutdown abort;

RMAN> startup mount;

Chapter 19 RMAN Restore and Recovery

793

RMAN> restore datafile 1;

RMAN> recover datafile 1;

RMAN> alter database open;

You can also specify the file name when performing a data file recovery:

$ rman target /

RMAN> shutdown abort;

RMAN> startup mount;

RMAN> restore datafile '/u01/dbfile/o18c/system01.dbf';

RMAN> recover datafile '/u01/dbfile/o18c/system01.dbf';

RMAN> alter database open;

�Restoring Data Files to Nondefault Locations
Sometimes a failure will occur that renders the disks associated with a mount point

inoperable. In these situations, you will need to restore and recover the data files to a

location different from the one where they originally resided. Another typical need for

restoring data files to nondefault locationsis for files that you are restoring to a different

database server, on which the mount points are completely different from those of the

server on which the backup originated.

Use the SET NEWNAME and SWITCH commands to restore data files to nondefault

locations. Both of these commands must be run from within an RMAN run{} block. You

can think of using SET NEWNAME and SWITCH as a way to rename data files (similar to the

SQL*Plus ALTER DATABASE RENAME FILE statement).

This example changes the location of data files when doing a restore and recover.

First, place the database in mount mode:

$ rman target /

RMAN> startup mount;

Then, run the following block of RMAN code:

run{

set newname for datafile 4 to '/u02/dbfile/o18c/users01.dbf';

set newname for datafile 5 to '/u02/dbfile/o18c/users02.dbf';

restore datafile 4, 5;

switch datafile all; # Updates repository with new datafile location.

Chapter 19 RMAN Restore and Recovery

794

recover datafile 4, 5;

alter database open;

}

This is a partial listing of the output:

datafile 4 switched to datafile copy

input datafile copy RECID=79 STAMP=804533148 file

name=/u02/dbfile/o18c/users01.dbf

datafile 5 switched to datafile copy

input datafile copy RECID=80 STAMP=804533148 file

name=/u02/dbfile/o18c/users02.dbf

If the database is open, you can place the data files offline and then set their new

names for restore and recovery, as follows:

run{

alter database datafile 4, 5 offline;

set newname for datafile 4 to '/u02/dbfile/o18c/users01.dbf';

set newname for datafile 5 to '/u02/dbfile/o18c/users02.dbf';

restore datafile 4, 5;

switch datafile all; # Updates repository with new datafile location.

recover datafile 4, 5;

alter database datafile 4, 5 online;

}

�Performing Block-Level Recovery
Block-level corruption is rare and is usually caused by some sort of I/O error. It can

rescue you from having to do a complete restore of a datafile with recovery. I have

actually run into this issue once before, and now with block checking and auto repair

with ASM, this might even become rarer. However, if you do have an isolated corrupt

block within a large data file, it is nice to have the option of performing a block-level

recovery. Block-level recovery is useful when a small number of blocks are corrupt

within a data file. Block recovery is not appropriate if the entire data file needs media

recovery.

Chapter 19 RMAN Restore and Recovery

795

RMAN will automatically detect corrupt blocks whenever a BACKUP, VALIDATE, or

BACKUP VALIDATE command is run. Details on corrupt blocks can be viewed in the

V$DATABASE_BLOCK_CORRUPTION view. In the following example the regular backup job

has reported a corrupt block in the output:

ORA-19566: exceeded limit of 0 corrupt blocks for file...

Querying the V$DATABASE_BLOCK_CORRUPTION view indicates which file contains

corruption:

SQL> select * from v$database_block_corruption;

 FILE# BLOCK# BLOCKS CORRUPTION_CHANGE# CORRUPTIO CON_ID

---------- ---------- ---------- ------------------ --------- ----------

 4 20 1 0 ALL ZERO 0

Your database can be either mounted or open when performing block-level recovery.

You do not have to take offline the data file being recovered. You can instruct RMAN to

recover all blocks reported in V$DATABASE_BLOCK_CORRUPTION, as shown:

RMAN> recover corruption list;

If successful, the following message is displayed:

media recovery complete...

Another way to recover the block is to specify the data file and block number, like so:

RMAN> recover datafile 4 block 20;

It is preferable to use the RECOVER CORRUPTION LIST syntax because it will clear out

any blocks recovered from the V view.

Note R MAN cannot perform block-level recovery on block 1 (data file header) of
the data file.

Block-level media recovery allows you to keep your database available and also

reduces the mean time to recovery, as only the corrupt blocks are offline during

the recovery. Your database must be in archivelog mode for performing block-level

recoveries. RMAN can restore the block from the flashback logs (if available). If the

Chapter 19 RMAN Restore and Recovery

796

flashback logs are not available, then RMAN will attempt to restore the block from a full

backup, a level-0 backup, or an image copy backup generated by the BACKUP AS COPY

command. After the block has been restored, any required archivelogs must be available

to recover the block. RMAN cannot perform block media recovery using incremental

level-1 (or higher) backups.

�Restoring a Container Database and Its Associated
Pluggable Databases
Starting with Oracle Database 12c, you can create pluggable databases within one

container database (see Chapter 22 for details). When dealing with container and

associated pluggable databases, there are three basic scenarios:

•	 All data files have experienced media failure (container root data files

as well as all associated pluggable database data files).

•	 Just the data files associated with the container root database have

experienced media failure.

•	 Only data files associated with a pluggable database have

experienced media failure.

The prior scenarios are covered in the following sections.

�Restoring and Recovering All Data Files

To restore and recover all data files associated with a container database (this includes

the root container, the seed container, and all associated pluggable databases), use

RMAN to connect to the container database as a user with sysdba or sysbackup

privileges. Because the data files associated with the root system tablespace are being

restored, the database must be started in mount mode (and not open):

$ rman target /

RMAN> startup mount;

RMAN> restore database;

RMAN> recover database;

RMAN> alter database open;

Chapter 19 RMAN Restore and Recovery

797

Keep in mind that when you open a container database, this does not, by default,

open the associated pluggable databases. You can do that from the root container,

as follows:

RMAN> alter pluggable database all open;

�Restoring and Recovering Root Container Data Files

If just data files associated with the root container have been damaged, then you can

restore and recover at the root level. In this example, the root container’s system data file

is being restored, so the database must not be open. The following commands instruct

RMAN to restore only the data files associated with the root container database, via the

keyword root:

$ rman target /

RMAN> startup mount;

RMAN> restore database root;

RMAN> recover database root;

RMAN> alter database open;

In the prior code the restore database root command instructs RMAN to restore

only data files associated with the root container database. After the container database

is opened, you must open any associated pluggable databases. You can do so from the

root container, as shown:

RMAN> alter pluggable database all open;

You can check the status of your pluggable databases via this query:

SQL> select name, open_mode from v$pdbs;

�Restoring and Recovering a Pluggable Database

You have two options for restoring and recovering a pluggable database:

•	 Connect as the container root user, and specify the pluggable

database to be restored and recovered.

•	 Connect directly to the pluggable database as a privileged

pluggable-level user, and issue RESTORE and RECOVER commands.

Chapter 19 RMAN Restore and Recovery

798

This first example connects to the root container and restores and recovers the data

files associated with the salespdb pluggable database. For this to work, the pluggable

database must not be open (because the pluggable database’s system data files are also

being restored and recovered):

$ rman target /

RMAN> alter pluggable database salespdb close;

RMAN> restore pluggable database salespdb;

RMAN> recover pluggable database salespdb;

RMAN> alter pluggable database salespdb open;

You can also connect directly to a pluggable database and perform restore and

recovery operations. When connected directly to the pluggable database, the user only

has access to the data files associated with the pluggable database:

$ rman target sys/foo@salespdb

RMAN> shutdown immediate;

RMAN> restore database;

RMAN> recover database;

RMAN> alter database open;

Note  When you are connected directly to a pluggable database, you cannot
specify the name of the pluggable database as part of the RESTORE and RECOVER
commands. In this situation, you will get an RMAN-07536: command not
allowed when connected to a Pluggable Database error.

The prior code only affects data files associated with the pluggable database to which

you are connected. The pluggable database needs to be closed for this to work. However,

the root container database can be open or mounted. Also, you must use a backup that

was taken while connected to the pluggable database as a privileged user. The privileged

pluggable database user cannot access backups of data files initiated by the root

container database privileged user.

Chapter 19 RMAN Restore and Recovery

799

�Restoring Archivelog Files
RMAN will automatically restore any archivelog files that it needs during a recovery

process. You normally do not need to restore archivelog files manually. However, you

may want to do so if any of the following situations apply:

•	 You need to restore archivelog files in anticipation of later performing

a recovery; the idea is that if the archivelog files are already restored,

it will speed the recovery operation.

•	 You are required to restore the archivelog files to a nondefault

location, either because of media failure or because of storage space

issues.

•	 You need to restore specific archivelog files in order to inspect them

via LogMiner.

If you have enabled an FRA, then RMAN will, by default, restore archivelog files

to the destination defined by the initialization parameter DB_RECOVERY_FILE_DEST.

Otherwise, RMAN uses the LOG_ARCHIVE_DEST_N initialization parameter (where N is

usually 1) to determine where to restore the archivelog files.

If you restore archivelog files to a nondefault location, RMAN knows the location

they were restored to and automatically finds these files when you issue any subsequent

RECOVER commands. RMAN will not restore archivelog files that it determines are already

on disk. Even if you specify a nondefault location, RMAN will not restore an archivelog

file to disk if the file already exists. In this situation, RMAN simply returns a message

stating that the archivelog file has already been restored. Use the FORCE option to

override this behavior.

If you are uncertain of the sequence numbers to use during a restore of log files, you

can query the V$LOG_HISTORY view.

Tip  Keep in mind that you cannot restore an archivelog that you never backed
up. Also, you cannot restore an archivelog if the backup file containing the
archivelog is no longer available. Run the LIST ARCHIVELOG ALL command to
view archivelogs currently on disk, and LIST BACKUP OF ARCHIVELOG ALL to
verify which archivelog files are in available RMAN backups.

Chapter 19 RMAN Restore and Recovery

800

�Restoring to the Default Location
The following command will restore all archivelog files that RMAN has backed up:

RMAN> restore archivelog all;

If you want to restore from a specified sequence, use the FROM SEQUENCE clause.

You may want to run this query first to establish the most recent log files and sequence

numbers that have been generated:

SQL> select sequence#, first_time from v$log_history order by 2;

This example restores all archivelog files from sequence 68:

RMAN> restore archivelog from sequence 68;

If you want to restore a range of archivelog files, use the FROM SEQUENCE and UNTIL

SEQUENCE clauses or the SEQUENCE BETWEEN clause, as shown. The following commands

restore archivelog files from sequence 68 through sequence 78, using thread 1:

RMAN> restore archivelog from sequence 68 until sequence 78 thread 1;

RMAN> restore archivelog sequence between 68 and 78 thread 1;

By default, RMAN will not restore an archivelog file if it is already on disk. You can

override this behavior if you use the FORCE, like so:

RMAN> restore archivelog from sequence 1 force;

�Restoring to a Nondefault Location
Use the SET ARCHIVELOG DESTINATION clause if you want to restore archivelog files to

a location different from the default. The following example restores to the nondefault

location /u01/archtemp. The option of the SET command must be executed from within

an RMAN run{} block.

run{

set archivelog destination to '/u01/archtemp';

restore archivelog from sequence 8 force;

}

Chapter 19 RMAN Restore and Recovery

801

Space is the main reason for having to do this, but these types of restores are great

test and practice cases to work through to experience this behavior and document for

the “just in case” scenario.

�Restoring a Control File
If you are missing one control file, and you have multiple copies, then you can shut down

your database and simply restore the missing or damaged control file by copying a good

control file to the correct location and name of the missing control file (see Chapter 5 for

details). This works if only all except one file are corrupted and the multiple copies are

truly on separate disks. If there is a disk or controller failure, it is possible that at least one

of the control files is still available. Part of the RMAN strategy is to take the backup of the

control file for these issues.

Listed next are three typical scenarios when restoring a control file:

•	 Using a recovery catalog

•	 Using an autobackup

•	 Specifying a backup file name

�Using a Recovery Catalog
When you are connected to the recovery catalog, you can view backup information

about your control files even while your target database is in nomount mode. To list

backups of your control files, use the LIST command, as shown:

$ rman target / catalog rcat/foo@rcat

RMAN> startup nomount;

RMAN> list backup of controlfile;

If you are missing all your control files, and you are using a recovery catalog, then

issue the STARTUP NOMOUNT and the RESTORE CONTROLFILE commands:

RMAN> startup nomount;

RMAN> restore controlfile;

Chapter 19 RMAN Restore and Recovery

802

RMAN restores the control files to the location defined by your CONTROL_FILES

initialization parameter. You should see a message indicating that your control files have

been successfully copied back from an RMAN backup piece. You can now alter your

database into mount mode and perform any additional restore-and-recovery commands

required for your database.

Note  When you restore a control file from a backup, you are required to
perform media recovery on your entire database and open your database
with the OPEN RESETLOGS command, even if you did not restore any data
files. You can determine whether your control file is a backup by querying the
CONTROLFILE_TYPE column of the V$DATABASE view.

�Using an Autobackup
When you enable the autobackup of your control file and are using an FRA, restoring

your control file is fairly simple. First, connect to your target database, then issue a

STARTUP NOMOUNT command, followed by the RESTORE CONTROLFILE FROM AUTOBACKUP

command, like this:

$ rman target /

RMAN> startup nomount;

RMAN> restore controlfile from autobackup;

RMAN restores the control files to the location defined by your CONTROL_FILES

initialization parameter. You should see a message indicating that your control files have

been successfully copied back from an RMAN backup piece. Here is a snippet of the

output:

channel ORA_DISK_1: control file restore from AUTOBACKUP complete

You can now alter your database into mount mode and perform any additional

restore-and-recovery commands required for your database. Practicing this example

would be to move your control files off to another directory in a TEST environment and

walk through the restore options. Copying off the files allow you to quickly get back up

and running by moving them back, but it does give you practice with these restores.

Chapter 19 RMAN Restore and Recovery

803

�Specifying a Backup File Name
When restoring a database to a different server, these are generally the first few steps in

the process: take a backup of the target database, copy to the remote server, and then

restore the control file from the RMAN backup. In these scenarios, the name of the

backup piece is known that contains the control file. Here is an example in which you

instruct RMAN to restore a control file from a specific backup piece file:

RMAN> startup nomount;

RMAN> restore controlfile from

'/u01/O18C/rman/rman_ctl_c-3423216220-20130113-01.bk';

The control file will be restored to the location defined by the CONTROL_FILES

initialization parameter.

�Restoring the spfile
You might want to restore a spfile for several different reasons:

•	 You accidentally set a value in the spfile that keeps your instance

from starting.

•	 You accidentally deleted the spfile.

•	 You are required to see what the spfile looked like at some point in

time in the past.

One scenario (this has happened to me more than once) is that you are using a

spfile, and one of the DBAs on your team does something inexplicable, such as this:

SQL> alter system set processes=1000000 scope=spfile;

The parameter is changed in the spfile on disk, but not in memory. Sometime later,

the database is stopped for some maintenance. When attempting to start the database,

you cannot even get the instance to start in a nomount state. This is because a parameter

has been set to a ridiculous value that will consume all the memory on the box. In this

scenario, the instance may hang, or you may see one or more of the following messages:

ORA-01078: failure in processing system parameters

ORA-00838: Specified value of ... is too small

Chapter 19 RMAN Restore and Recovery

804

If you have an RMAN backup available that has a copy of the spfile as it was before

it was modified, you can simply restore the spfile. If you are using a recovery catalog,

here is the procedure for restoring the spfile:

$ rman target / catalog rcat/foo@rcat

RMAN> startup nomount;

RMAN> restore spfile;

•	 If you are not using a recovery catalog, there are a number of ways

to restore your spfile. The approach you take depends on several

variables, such as whether you are using an FRA.

•	 You have configured a channel backup location for the autobackup.

•	 You are using the default location for autobackups.

This is a general overview of these scenarios to show steps that need to be taken, but

not every detail is listed here. Determine the location of the backup piece that contains

the backup of the spfile and do the restore, like this:

RMAN> startup nomount force;

RMAN> restore spfile to '/tmp/spfile.ora'

 from '/u01/O18C/rman/rman_ctl_c-3423216220-20130113-00.bk';

You should see a message such as this:

channel ORA_DISK_1: SPFILE restore from AUTOBACKUP complete

In this example the spfile is restored to the /tmp directory. Once restored, you

can copy the spfile to ORACLE_HOME/dbs, with the proper name. For my environment

(database name: o18c) this would be as follows:

$ cp /tmp/spfile.ora $ORACLE_HOME/dbs/spfileo18c.ora

Note  For a complete description of all possible spfile and control file restore
scenarios, see RMAN Recipes for Oracle Database 12c, second edition, by Darl
Kuhn, Sam Alapati, and Arup Nanda (Apress, 2013).

Chapter 19 RMAN Restore and Recovery

805

�Incomplete Recovery
The term incomplete database recovery means that you cannot recover all committed

transactions. Incomplete means that you do not apply all redo to restore up to the point

of the last committed transaction that occurred in your database. In other words, you

are restoring and recovering to a point in time in the past. For this reason, incomplete

database recovery is also called database point-in-time recovery (DBPITR). Typically,

you perform incomplete database recovery for one of the following reasons:

•	 You do not have all the redo required to perform a complete recovery.

You are missing either the archivelog files or the online redo log files

that are required for complete recovery. This situation could arise

because the required redo files are damaged or missing.

•	 You purposely want to roll back the database to a point in time in

the past. For example, you would do this if somebody accidentally

truncated a table, and you intentionally wanted to roll back the

database to just before the truncate table command was issued.

Incomplete database recovery consists of two : restore and recovery. The restore step

re-creates data files, and the recover step applies redo up to the specified point in time.

The restore process can be initiated from RMAN in a couple of different ways:

•	 RESTORE DATABASE UNTIL

•	 FLASHBACK DATABASE (May not need the restore depending on

the UNDO information)

For the majority of incomplete database recovery circumstances, you use the

RESTORE DATABASE UNTIL command to instruct RMAN to retrieve data files from the

RMAN backup files. This type of incomplete database recovery is the main focus of

this section of the chapter. The Flashback Database feature is covered in the section

“Flashing Back a Database” later in this chapter.

The UNTIL portion of the RESTORE DATABASE command instructs RMAN to retrieve

data files from a point in time in the past, based on one of the following methods:

•	 Time

•	 SCN

•	 Log sequence number

•	 Restore point

Chapter 19 RMAN Restore and Recovery

806

The RMAN RESTORE DATABASE UNTIL command will retrieve all data files from

the most recent backup set or image copy. RMAN will automatically determine from

the UNTIL clause which backup set contains the required data files. If you omit the

UNTIL clause of the R command, RMAN will retrieve data files from the latest available

backup set or image copy. In some situations, this may be the behavior you desire. It

is recommended that you use the UNTIL clause to ensure that RMAN restores from the

correct backup set. When you issue the RESTORE DATABASE UNTIL command, RMAN will

establish how to extract the data files from any of the following types of backups:

•	 Full database backup

•	 Incremental level-0 backup

•	 Image copy backup generated by the BACKUP AS COPY command

You cannot perform an incomplete database recovery on a subset of your database’s

online data files. When performing incomplete database recovery, all the checkpoint

SCNs for all online data files must be synchronized before you can open your database

with the ALTER DATABASE OPEN RESETLOGS command. You can view the data file header

SCNs and the status of each data file via this SQL query:

SQL> select file#, status, fuzzy,

error, checkpoint_change#,

to_char(checkpoint_time,'dd-mon-rrrr hh24:mi:ss') as checkpoint_time

from v$datafile_header;

Note T he FUZZY column V$DATAFILE_HEADER contains data files that have
one or more blocks with an SCN value greater than or equal to the checkpoint SCN
in the data file header. If a data file is restored and has a FUZZY value of YES, then
media recovery is required.

The only exception to this rule of not performing an incomplete recovery on a subset

of online database files is a tablespace point-in-time recovery (TSPITR), which uses the

RECOVER TABLESPACE UNTIL command. TSPITR is used in rare situations; it restores and

recovers only the tablespace(s) you specify.

Chapter 19 RMAN Restore and Recovery

807

The recovery portion of an incomplete database recovery is always initiated with the

RECOVER DATABASE UNTIL command. RMAN will automatically recover your database

up to the point specified with the UNTIL clause. Just like the RESTORE command, you

can recover up to the time, change/SCN, log sequence number, or restore point. When

RMAN reaches the specified point, it will automatically terminate the recovery process.

Note R egardless of what you specify in the UNTIL clause, RMAN will convert
that into a corresponding UNTIL SCN clause and assign the appropriate SCN. This
is to avoid any timing issues, particularly those caused by Daylight Saving Time.

During a recovery, RMAN will automatically determine how to apply redo. First,

RMAN will apply any incremental backups available. Next, any archivelog files on disk

will be applied. If the archivelog files do not exist on disk, then RMAN will attempt to

retrieve them from a backup set. If you want to apply redo as part of an incomplete

database recovery, the following conditions must be true:

•	 Your database is in archivelog mode.

•	 You have a good backup of all data files.

•	 You have all redo required to restore up to the specified point.

When performing an incomplete database recovery with RMAN, you must have your

database in mount mode. RMAN needs the database in mount mode to be able to read

and write to the control file. Also, with an incomplete database recovery, any SYSTEM

tablespace data files are always recovered. Oracle will not allow your database to be open

while restoring the SYSTEM tablespace data file(s).

Note A fter incomplete database recovery is performed, you are required to open
your database with the ALTER DATABASE OPEN RESETLOGS command. Any time
after issuing an ALTER DATABASE OPEN RESETLOGS, make sure a new backup
is taken to be able to have available after this point as other backups may become
invalid if trying to restore to after the resetlogs.

Depending on the scenario, you can use RMAN to perform a variety of incomplete

recovery methods. The next section discusses how to determine what type of incomplete

recovery to perform.

Chapter 19 RMAN Restore and Recovery

808

�Determining the Type of Incomplete Recovery
Time-based restore and recovery is commonly used when you know the approximate

date and time to which you want to recover your database. For instance, you may know

approximately the time you want to stop the recovery process, but not a particular SCN.

Log sequence-based and cancel-based recovery work well in situations in which you

have missing or damaged log files. In such scenarios, you can recover only up to your last

good archivelog file.

SCN-based recovery works well if you can pinpoint the SCN at which you want to

stop the recovery process. You can retrieve SCN information from views such as V$LOG

and V$LOG_HISTORY. You can also use tools such as LogMiner to retrieve the SCN of a

particular SQL statement.

Restore point recoveries work only if you have established restore points. In these

situations, you restore and recover up to the SCN associated with the specified restore

point.

TSPITR is used in situations in which you need to restore and recover just a few

tablespaces. You can use RMAN to automate many of the tasks associated with this type

of incomplete recovery.

�Performing Time-Based Recovery
To restore and recover your database back to a point in time in the past, you can use

either the UNTIL TIME clause of the RESTORE and RECOVER commands or the SET UNTIL

TIME clause within a run{} block. It is very useful to have run{} blocks of code with the

correct syntax available to replace a TIME to be able to perform the restores without

having to search for the syntax. Using these examples in the book and running test and

practice restores will give you the blocks of code needed to have ready to use. RMAN will

restore and recover the database up to, but not including, the specified time. In other

words, RMAN will restore any transactions committed prior to the time specified. RMAN

automatically stops the recovery process when it reaches the time you specified.

The default date format that RMAN expects is YYYY-MM-DD:HH24:MI:SS. However,

it is recommended to use the TO_DATE function and specifying a format mask. This

eliminates ambiguities with different national date formats and having to set the OS

Chapter 19 RMAN Restore and Recovery

809

NLS_DATE_FORMAT variable. The following example specifies a time when issuing the

restore and recover commands:

$ rman target /

RMAN> startup mount;

RMAN> restore database until time

 "to_date('15-jan-2018 12:20:00', 'dd-mon-rrrr hh24:mi:ss')";

RMAN> recover database until time

 "to_date('15-jan-2018 12:20:00', 'dd-mon-rrrr hh24:mi:ss')";

RMAN> alter database open resetlogs;

If everything goes well, you should see output such as this:

Statement processed

�Performing Log Sequence-Based Recovery
Usually this type of incomplete database recovery is initiated because you have a missing

or damaged archivelog file. If that is the case, you can recover only up to your last good

archivelog file, because you cannot skip a missing archivelog.

How you determine which archivelog file to restore up to (but not including) will

vary. For example, if you are physically missing an archivelog file, and RMAN cannot

find it in a backup set, you will receive a message such as this when trying to apply the

missing file:

RMAN-06053: unable to perform media recovery because of missing log

RMAN-06025: no backup of archived log for thread 1 with sequence 19...

Based on the previous error message, you would restore up to (but not including) log

sequence 19.

$ rman target /

RMAN> startup mount;

RMAN> restore database until sequence 19;

RMAN> recover database until sequence 19;

RMAN> alter database open resetlogs;

If successful, you should see output such as this:

Statement processed

Chapter 19 RMAN Restore and Recovery

810

Note  Log sequence-based recovery is similar to user-managed cancel-based
recovery. See Chapter 16 for details on a user-managed cancel-based recovery.

�Performing SCN-Based Recovery
SCN-based incomplete database recovery works in situations in which you know the

SCN value at which you want to end the restore-and-recovery session. RMAN will

recover up to, but not including, the specified SCN. RMAN automatically terminates the

restore process when it reaches the specified SCN.

You can view your database SCN information in several ways:

•	 Using LogMiner to determine an SCN associated with a DDL or DML

statement

•	 Looking in the alert.log file

•	 Looking in your trace files

•	 Querying the FIRST_CHANGE# column of VLOG, VLOG_HISTORY and

V$ARCHIVED_LOG

After establishing the SCN to which you want to restore, use the UNTIL SCN clause

to restore up to, but not including, the SCN specified. The following example restores all

transactions that have an SCN that is less than 95019865425:

$ rman target /

RMAN> startup mount;

RMAN> restore database until scn 95019865425;

RMAN> recover database until scn 95019865425;

RMAN> alter database open resetlogs;

If everything goes well, you should see output such as this:

Statement processed

Chapter 19 RMAN Restore and Recovery

811

�Restoring to a Restore Point
There are two types of restore points: normal and guaranteed. The main difference

between a guaranteed restore point and a normal restore point is that a guaranteed

restore point is not eventually aged out of the control file; a guaranteed restore point

will persist until you drop it. Guaranteed restore points do require an FRA. However, for

incomplete recovery using a guaranteed restore point, you do not have to have flashback

database enabled.

You can create a normal restore point using SQL*Plus, as follows:

SQL> create restore point MY_RP;

This command creates a restore point, named MY_RP, which is associated with the

SCN of the database at the time the command was issued. You can view the current SCN

of your database, as shown:

SQL> select current_scn from v$database;

You can view restore point information in the V$RESTORE_POINT view, like so:

SQL> select name, scn from v$restore_point;

The restore point acts like a synonym for the particular SCN. The restore point allows

you to restore and recover to an SCN without having to specify a number. RMAN will

restore and recover up to, but not including, the SCN associated with the restore point.

This example restores and recovers to the MY_RP restore point:

$ rman target /

RMAN> startup mount;

RMAN> restore database until restore point MY_RP;

RMAN> recover database until restore point MY_RP;

RMAN> alter database open resetlogs;

�Restoring Tables to a Previous Point
Starting with Oracle Database 12c, you can restore individual tables from RMAN backups

via the RECOVER TABLE command. This gives you the ability to restore and recover a table

back to a point in time in the past.

Chapter 19 RMAN Restore and Recovery

812

The table-level restore feature uses a temporary auxiliary instance and the Data

Pump utility. Both the auxiliary instance and Data Pump create temporary files when

restoring the table. Before initiating a table-level restore, first create two directories: one

to hold files used by the auxiliary instance and one to store a Data Pump dump file:

$ mkdir /tmp/oracle

$ mkdir /tmp/recover

The prior two directories are referenced within the RECOVER TABLE command via

the AUXILIARY DESTINATION and DATAPUMP DESTINATION clauses. In the following bit of

code, the INV table, owned by MV_MAINT, is restored as it was at a prior SCN:

RMAN> recover table mv_maint.inv

until scn 4689805

auxiliary destination '/tmp/oracle'

datapump destination '/tmp/recover';

Providing that RMAN backups are available that contain the state of the table at the

specified SCN, a table-level restore and recovery is performed.

Note Y ou can also restore a table to an SCN, a point in time, or a log sequence
number.

When RMAN performs a table-level recovery, it automatically creates a temporary

auxiliary database, uses Data Pump to export the table, and then imports the table

back into the target database as it was at the specified restore point. After the restore is

finished, the auxiliary database is dropped, and Data Pump dump file is removed.

Tip A lthough the RECOVER TABLE command is a nice enhancement, I would
recommend that, if you have an accidentally dropped table, you first explore using
the recycle bin or Flashback Table to Before Drop feature to restore the table. Or,
if the table was erroneously deleted from, then use the Flashback Table feature to
restore the table back to a point in time in the past. It might even be possible to
restore from a FLASBACK QUERY using CTAS (create table as). If neither of the prior
options are viable, then consider using the RMAN Recover Table feature.

Chapter 19 RMAN Restore and Recovery

813

�Flashing Back a Table
To simplify recovery of an accidentally dropped table, Oracle introduced the Flashback

Table feature. Oracle offers two different types of Flashback Table operations:

•	 FLASHBACK TABLE TO BEFORE DROP quickly undrops a previously

dropped table. This feature uses a logical container named the

recycle bin.

•	 FLASHBACK TABLE flashes back to a recent point in time to undo the

effects of undesired DML statements. You can flash back to an SCN, a

timestamp, or a restore point.

Oracle introduced FLASHBACK TABLE TO BEFORE DROP to allow you to quickly

recover a dropped table. When you drop a table, if you do not specify the PURGE clause,

Oracle does not drop the table—instead, the table is renamed. Any tables you drop (that

Oracle renames) are placed in the recycle bin. The recycle bin provides you with an

efficient way to view and manage dropped objects.

Note T o use the Flashback Table feature, you do not need to implement an FRA,
nor do you need Flashback Database to be enabled.

The FLASHBACK TABLE TO BEFORE DROP operation only works if your database has

the recycle bin feature enabled (which it is by default). You can check the status of the

recycle bin, as follows:

SQL> show parameter recyclebin

NAME TYPE VALUE

------------------------------------ ----------- --------------------------

recyclebin string on

�FLASHBACK TABLE TO BEFORE DROP
Here is an example. Suppose the INV table is accidentally dropped:

SQL> drop table inv;

Chapter 19 RMAN Restore and Recovery

814

Verify that the table has been renamed by viewing the contents of the recycle bin:

SQL> show recyclebin;

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME

--------------- ------------------------------ ------------ --------------

INV BIN$0zIqhEFlcprgQ4TQTwq2uA==$0 TABLE 2018-01-11:12:16:49

The SHOW RECYCLEBIN statement shows only tables that have been dropped. To get a

more complete picture of renamed objects, query the RECYCLEBIN view:

select object_name, original_name, type

from recyclebin;

Here is the output:

OBJECT_NAME ORIGINAL_NAM TYPE

----------------------------------- ------------ -------------------------

BIN$0zIqhEFjcprgQ4TQTwq2uA==$0 INV_PK INDEX

BIN$0zIqhEFkcprgQ4TQTwq2uA==$0 INV_TRIG TRIGGER

BIN$0zIqhEFlcprgQ4TQTwq2uA==$0 INV TABLE

In this output, the table also has a primary key that was renamed when the object

was dropped. To undrop the table, do this:

SQL> flashback table inv to before drop;

The prior command restores the table to its original name. This statement, however,

does not restore the index to its original name:

SQL> select index_name from user_indexes where table_name='INV';

INDEX_NAME

BIN$0zIqhEFjcprgQ4TQTwq2uA==$0

In this scenario, you have to rename the index:

SQL> alter index "BIN$0zIqhEFjcprgQ4TQTwq2uA==$0" rename to inv_pk;

You also have to rename any trigger objects in the same manner. If referential

constraints were in place before the table was dropped, you must manually re-create them.

Chapter 19 RMAN Restore and Recovery

815

If, for some reason, you need to flash back a table to a name different from the

original name, you can do so as follows:

SQL> flashback table inv to before drop rename to inv_bef;

�Flashing Back a Table to a Previous Point in Time
If a table was erroneously deleted from, you have the option of flashing back the table

to a previous point in time. The Flashback Table feature uses information in the undo

tablespace to restore the table. The point in time in the past depends on your undo

tablespace retention period, which specifies the minimum time that undo information

is kept.

If the required flashback information is not in the undo tablespace, you receive an

error such as this:

ORA-01555: snapshot too old

In other words, to be able to flash back to a point in time in the past, the required

information in the undo tablespace must not have been overwritten.

�FLASHBACK TABLE TO SCN

Suppose you are testing an application feature, and you want to quickly restore a table

back to a specific SCN. As part of the application testing, you record the SCN before

testing begins:

SQL> select current_scn from v$database;

CURRENT_SCN

 4760099

You perform some testing and then want to flash back the table to the SCN

previously recorded. First, ensure that row movement is enabled for the table:

SQL> alter table inv enable row movement;

SQL> flashback table inv to scn 4760089;

Chapter 19 RMAN Restore and Recovery

816

The table should now reflect transactions that were committed as of the historical

SCN value specified in the FLASHBACK statement.

�FLASHBACK TABLE TO TIMESTAMP

You can also flash back a table to a prior point in time. For example, to flash back a table

to 15 minutes in the past, first enable row movement, and then use FLASHBACK TABLE:

SQL> alter table inv enable row movement;

SQL> flashback table inv to timestamp(sysdate-1/96) ;

The timestamp you provide must evaluate to a valid format for an Oracle timestamp.

You can also explicitly specify a time, as follows:

SQL> flashback table inv to timestamp

 to_timestamp('14-jan-18 12:07:33','dd-mon-yy hh24:mi:ss');

�FLASHBACK TABLE TO RESTORE POINT

A restore point is a name associated with a timestamp or an SCN in the database. You

can create a restore point that contains the current SCN of the database, as shown:

SQL> create restore point point_a;

Later, if you decide to flash back a table to that restore point, first enable row

movement:

SQL> alter table inv enable row movement;

SQL> flashback table inv to restore point point_a;

The table should now contain transactions as they were at the SCN associated with

the specified restore point.

�FLASHING BACK A DATABASE
The Flashback Database featurebacks to a point in time in the past. Flashback Database

uses information stored in flashback logs; it does not rely on restoring database files (as

do cold backup, hot backup, and RMAN).

Chapter 19 RMAN Restore and Recovery

817

Tip  Flashback Database is not a substitute for a backup of your database. If you
experience a media failure with a data file, you cannot use Flashback Database to
flash back to before the failure. If a data file is damaged, you have to restore and
recover, using a physical backup (hot, cold, or RMAN).

The Flashback Database feature may be desirable in situations in which you want to

consistently reset your database back to a point in time in the past. For instance, you may

periodically want to set a test or training database back to a known baseline. Or, you may

be upgrading an application and, before making large-scale changes to the application

database objects, mark the starting point. After the upgrade, if things do not go well, you

want the ability to quickly reset the database back to the point in time before the upgrade

took place.

There are several prerequisites for Flashback Database:

•	 The database must be in archivelog mode.

•	 You must be using an FRA.

•	 The Flashback Database feature must be enabled.

See Chapter 5 for details on enabling archivelog mode and/or enabling an FRA. You

can verify the status of these features using the following SQL*Plus statements:

SQL> archive log list;

SQL> show parameter db_recovery_file_dest;

To enable the Flashback Database feature, alter your database into flashback mode,

as shown:

SQL> alter database flashback on;

You can verify the flashback status, as follows:

SQL> select flashback_on from v$database;

After you enable Flashback Database, you can view the flashback logs in your FRA

with this query:

SQL> select name, log#, thread#, sequence#, bytes

from v$flashback_database_logfile;

Chapter 19 RMAN Restore and Recovery

818

The range of time in which you can flash back is determined by the

DB_FLASHBACK_RETENTION_TARGET parameter. This specifies the upper limit, in minutes,

of how far your database can be flashed back.

You can view the oldest SCN and time you can flash back your database to by

running the following SQL:

SQL> select

 oldest_flashback_scn

,to_char(oldest_flashback_time,'dd-mon-yy hh24:mi:ss')

from v$flashback_database_log;

If, for any reason, you need to disable Flashback Database, you can turn it off, as follows:

SQL> alter database flashback off;

You can use either RMAN or SQL*Plus to flash back a database. You can specify a

point in time in the past, using one of the following:

•	 SCN

•	 Timestamp

•	 Restore point

•	 Last RESETLOGS operation (works from RMAN only)

This example creates a restore point:

SQL> create restore point flash_1;

Next, the application performs some testing, after which the database is flashed back

to the restore point so that a new round of testing can begin:

SQL> shutdown immediate;

SQL> startup mount;

SQL> flashback database to restore point flash_1;

SQL> alter database open resetlogs;

At this point, your database should be transactionally consistent with how it was at

the SCN associated with the restore point.

Chapter 19 RMAN Restore and Recovery

819

�Restoring and Recovering to a Different Server
When you think about architecting your backup strategy, as part of the process, you must

also consider how you are going to restore and recover. Your backups are only as good

as the last time you tested a restore and recovery. A backup strategy can be rendered

worthless without a good restore-and-recovery strategy. The last thing you want to

happen is to have a media failure, go to restore your database, and then find out you are

missing critical pieces, you do not have enough space to restore, something is corrupt,

and so on.

One of the best ways to test an RMAN backup is to restore and recover it to a different

database server. This will exercise all your backup, restore, and recovery DBA skills.

If you can restore and recover an RMAN backup on a different server, it will give you

confidence when a real disaster hits. You can think of all the prior material in this book

as the building blocksof how backup and recovery works.

Note R MAN does have a DUPLICATE DATABASE command, which works
well for copying a database from one server to another. If you are going to be
performing this type of task often, I would recommend that you use RMAN’s
duplicate database functionality. However, you may still have to copy a backup
of a database manually from one server to another, especially when the security
is such that you cannot directly connect a production server to a development
environment. You can use RMAN to duplicate a database based on backups you
copy from the target to the auxiliary server. See MOS note 874352.1 for details on
targetless duplication.

In this example, the originating server and destination server have different mount

points. Listed next are the high-level steps required to take an RMAN backup and use it

to re-create a database on a separate server:

	 1.	 Create an RMAN backup on the originating database.

	 2.	 Copy the RMAN backup to the destination server. All steps that

follow are performed on the destination database server.

	 3.	 Ensure that Oracle is installed.

	 4.	 Source the required OS variables.

Chapter 19 RMAN Restore and Recovery

820

	 5.	 Create an init.ora file for the database to be restored.

	 6.	 Create any required directories for data files, control files, and

dump/trace files.

	 7.	 Start up the database in nomount mode.

	 8.	 Restore the control file from the RMAN backup.

	 9.	 Start up the database in mount mode.

	 10.	 Make the control file aware of the location of the RMAN backups.

	 11.	 Rename and restore the data files to reflect new directory locations.

	 12.	 Recover the database.

	 13.	 Set the new location for the online redo logs.

	 14.	 Open the database.

	 15.	 Add the temp file.

	 16.	 Rename the database (optional).

Each of the prior steps is covered in detail in the next several sections. Steps 1

and 2 occur on the source database server. All remaining steps are performed on

the destination server. For this example, the source database is named o18c, and the

destination database will be named DEVDB.

Furthermore, the originating server and destination server have different mount

point names. On the source database, the data files and control files are here:

/u01/dbfile/o18c

On the destination database, the data files and control files will be renamed and

restored to this directory:

/ora01/dbfile/DEVDB

The destination database online redo logs will be placed in this directory:

/ora01/oraredo/DEVDB

The destination database archive redo log file location will be set as follows:

/ora01/arc/DEVDB

Chapter 19 RMAN Restore and Recovery

821

Keep in mind that these are the directories used on servers in my test environment.

You will have to adjust these directory names to reflect the directory structures on your

database servers.

�Step 1. Create an RMAN Backup on the
Originating Database
When backing up a database, make sure you have the autobackup control file feature

turned on. Also, include the archive redo logs as part of the backup, like so:

RMAN> backup database plus archivelog;

You can verify the names and locations of the backup pieces via the LIST BACKUP

command. For example, this is what the backup pieces look like for the source database:

rman1_bonvb2js_1_1.bk

rman1_bqnvb2k5_1_1.bk

rman1_bsnvb2p3_1_1.bk

rman_ctl_c-3423216220-20130113-06.bk

In the prior output, the file with the c-3423216220 string in the name is the backup

piece that contains the control file. You will have to inspect the output of your LIST

BACKUP command to determine which backup piece contains the control file. You will

need to reference that backup piece in step 8.

�Step 2. Copy the RMAN Backup to the Destination Server
For this step, use a utility such as rsync or scp to copy the backup pieces from one server

to another. This example uses the scp command to copy the backup pieces:

$ scp rman* oracle@DEVBOX:/ora01/rman/DEVDB

In this example, the /ora01/rman/DEVDB directory must be created on the

destination server before copying the backup files. Depending on your environment, this

step might require copying the RMAN backups twice: once from the production server to

a secure server and once from the secure server to a test server.

Chapter 19 RMAN Restore and Recovery

822

Note  If the RMAN backups are on tape instead of on disk, then the same media
manager software must be installed/configured on the destination server. Also, that
server must have direct access to the RMAN backups on tape.

�Step 3. Ensure That Oracle Is Installed
Make sure you have the same version of the Oracle binaries installed on the destination

server as you do on the originating database.

�Step 4. Source the Required OS Variables
You need to establish the OS variables, such as ORACLE_SID, ORACLE_HOME, and PATH.

Typically, the ORACLE_SID variable is initially set to match what it was on the original

database. The database name will be changed as part of the last step in this recipe

(optional). Here are the settings for ORACLE_SID and ORACLE_HOME on the destination

server:

$ echo $ORACLE_SID

o18c

$ echo $ORACLE_HOME

/ora01/app/oracle/product/18.1.0.1/db_1

At this point, also consider adding the Oracle SID to the oratab file. If you plan on

using this database after you have replicated it, then you should have an automated

method for setting the required OS variables. See Chapter 2 for details on sourcing OS

variables in conjunction with the oratab file.

�Step 5. Create an init.ora File for the Database
to Be Restored
Copy the init.ora file from the original server to the destination server, and modify it

so that it matches the destination box in terms of any directory paths. Ensure that you

change the parameters, such as the CONTROL_FILES, to reflect the new path directories on

the destination server (/ora01/dbfile/DEVDB, in this example).

Chapter 19 RMAN Restore and Recovery

823

Initially, the name of the init.ora file is ORACLE_HOME/dbs/inito18c.ora, and the

name of the database is o18c. Both will be renamed in a later step. Here are the contents

of the init.ora file:

control_files='/ora01/dbfile/DEVDB/control01.ctl',

 '/ora01/dbfile/DEVDB/control02.ctl'

db_block_size=8192

db_name='o18c'

log_archive_dest_1='location=/ora01/arc/DEVDB'

job_queue_processes=10

memory_max_target=300000000

memory_target=300000000

open_cursors=100

os_authent_prefix="

processes=100

remote_login_passwordfile='EXCLUSIVE'

resource_limit=true

shared_pool_size=80M

sql92_security=TRUE

undo_management='AUTO'

undo_tablespace='UNDOTBS1'

workarea_size_policy='AUTO'

�Step 6. Create Any Required Directories for Data Files,
Control Files, and Dump/Trace Files
For this example, the directories /ora01/dbfile/DEVDB and /ora01/oraredo/DEVDB

are created:

$ mkdir -p /ora01/dbfile/DEVDB

$ mkdir -p /ora01/oraredo/DEVDB

$ mkdir -p /ora01/arc/DEVDB

Chapter 19 RMAN Restore and Recovery

824

�Step 7. Start Up the Database in Nomount Mode
You should now be able to start up the database in nomount mode:

$ rman target /

RMAN> startup nomount;

�Step 8. Restore the Control File from the RMAN Backup
Next, restore the control file from the backup that was previously copied; for example,

RMAN> restore controlfile from

'/ora01/rman/DEVDB/rman_ctl_c-3423216220-20130113-06.bk';

The control file will be restored to all locations specified by the CONTROL_FILES

initialization parameter. Here is some sample output:

channel ORA_DISK_1: restore complete, elapsed time: 00:00:03

output file name=/ora01/dbfile/DEVDB/control01.ctl

output file name=/ora01/dbfile/DEVDB/control02.ctl

�Step 9. Start Up the Database in Mount Mode
You should now be able to start up your database in mount mode:

RMAN> alter database mount;

At this point, your control files exist and have been opened, but none of the data files

or online redo logs exist yet.

�Step 10. Make the Control File Aware of the Location
of the RMAN Backups
First, use the CROSSCHECK command to let the control file know that none of the backups

or archive redo logs are in the same location that they were in on the original server:

RMAN> crosscheck backup; # Crosscheck backups

RMAN> crosscheck copy; # Crosscheck image copies and archive logs

Chapter 19 RMAN Restore and Recovery

825

Then, use the CATALOG command to make the control file aware of the location and

names of the backup pieces that were copied to the destination server.

Note D o not confuse the CATALOG command with the recovery catalog schema.
The CATALOG command adds RMAN metadata to the control file, whereas the
recovery catalog schema is a user, generally created in a separate database, which
can be used to store RMAN metadata.

In this example, any RMAN files that are in the /ora01/rman/DEVDB directory will be

cataloged in the control file:

RMAN> catalog start with '/ora01/rman/DEVDB';

Here is some sample output:

List of Files Unknown to the Database

=====================================

File Name: /ora01/rman/DEVDB/rman1_bqnvb2k5_1_1.bk

File Name: /ora01/rman/DEVDB/rman1_bonvb2js_1_1.bk

File Name: /ora01/rman/DEVDB/rman_ctl_c-3423216220-20130113-06.bk

File Name: /ora01/rman/DEVDB/rman1_bsnvb2p3_1_1.bk

Do you really want to catalog the above files (enter YES or NO)?

Now, type YES (if everything looks okay). You should then be able to use the RMAN

LIST BACKUP command to view the newly cataloged backup pieces:

RMAN> list backup;

�Step 11. Rename and Restore the Data Files to Reflect
New Directory Locations
If your destination server has the exact same directory structure as the original server

directories, you can issue the RESTORE command directly:

RMAN> restore database;

Chapter 19 RMAN Restore and Recovery

826

However, when restoring data files to locations that are different from the original

directories, you will have to use the SET NEWNAME command. Create a file that uses an

RMAN run{} block that contains the appropriate SET NEWNAME and RESTORE commands.

Here is a sample SQL script to generate a starting point for the run{} block:

SQL> set head off feed off verify off echo off pages 0 trimspool on

SQL> set lines 132 pagesize 0

SQL> spo newname.sql

--

SQL> select 'run{' from dual;

--

SQL> select

'set newname for datafile ' || file# || ' to ' || "" || name || "" || ';'

from v$datafile;

--

SQL> select

'restore database;' || chr(10) ||

'switch datafile all;' || chr(10) ||

'}'

from dual;

--

SQL> spo off;

After running the script, these are the contents of the newname.sql script that was

generated:

run{

set newname for datafile 1 to '/u01/dbfile/o18c/system01.dbf';

set newname for datafile 2 to '/u01/dbfile/o18c/sysaux01.dbf';

set newname for datafile 3 to '/u01/dbfile/o18c/undotbs01.dbf';

set newname for datafile 4 to '/u01/dbfile/o18c/users01.dbf';

restore database;

switch datafile all;

}

Chapter 19 RMAN Restore and Recovery

827

Then, modify the contents of the newname.sql script to reflect the directories on the

destination database server. Here is what the final newname.sql script looks like for this

example:

run{

set newname for datafile 1 to '/ora01/dbfile/DEVDB/system01.dbf';

set newname for datafile 2 to '/ora01/dbfile/DEVDB/sysaux01.dbf';

set newname for datafile 3 to '/ora01/dbfile/DEVDB/undotbs01.dbf';

set newname for datafile 4 to '/ora01/dbfile/DEVDB/users01.dbf';

restore database;

switch datafile all;

}

Now, connect to RMAN, and run the prior script to restore the data files to the new

locations:

$ rman target /

RMAN> @newname.sql

Here is a snippet of the output:

datafile 1 switched to datafile copy

input datafile copy RECID=5 STAMP=790357985 file

name=/ora01/dbfile/DEVDB/system01.dbf

All the data files have been restored to the new database server. You can use the

RMAN REPORT SCHEMA command to verify that the files have been restored and are in the

correct locations:

RMAN> report schema;

Here is some sample output:

RMAN-06139: WARNING: control file is not current for REPORT SCHEMA

Report of database schema for database with db_unique_name O12C

List of Permanent Datafiles

===========================

Chapter 19 RMAN Restore and Recovery

828

File Size(MB) Tablespace RB segs Datafile Name

---- -------- -------------------- ------- ------------------------

1 500 SYSTEM *** /ora01/dbfile/DEVDB/system01.dbf

2 500 SYSAUX *** /ora01/dbfile/DEVDB/sysaux01.dbf

3 800 UNDOTBS1 *** /ora01/dbfile/DEVDB/undotbs01.dbf

4 50 USERS *** /ora01/dbfile/DEVDB/users01.dbf

List of Temporary Files

=======================

File Size(MB) Tablespace Maxsize(MB) Tempfile Name

---- -------- -------------------- ----------- --------------------

1 500 TEMP 500 /u01/dbfile/o12c/temp01.dbf

From the prior output, you can see that the database name and temporary

tablespace data file still do not reflect the destination database (DEVDB). These will be

modified in subsequent steps.

�Step 12. Recover the Database
Next, you need to apply any archive redo files that were generated during the backup.

These should be included in the backup because the ARCHIVELOG ALL clause was used to

take the backup. Initiate the application of redo via the RECOVER DATABASE command:

RMAN> recover database;

RMAN will restore and apply as many archive redo logs as it has in the backup pieces

and then may throw an error when it reaches an archive redo log that does not exist; for

example,

RMAN-06054: media recovery requesting unknown archived log for...

That error message is fine. The recovery process will restore and recover archive

redo logs contained in the backups, which should be sufficient to open the database. The

recovery process does not know where to stop applying archive redo logs and therefore

Chapter 19 RMAN Restore and Recovery

829

will continue to attempt to do so until it cannot find the next log. Having said that, now is

a good time to verify that your data files are online and not in a fuzzy state:

SQL> select file#, status, fuzzy, error, checkpoint_change#,

to_char(checkpoint_time,'dd-mon-rrrr hh24:mi:ss') as checkpoint_time

from v$datafile_header;

�Step 13. Set the New Location for the Online Redo Logs
If your source and destination servers have the exact same directory structures, then you

do not need to set a new location for the online redo logs (so you can skip this step).

However, if the directory structures are different, then you will need to update the

control file to reflect the new directory for the online redo logs. I sometimes use an SQL

script that generates SQL to assist with this step:

SQL> set head off feed off verify off echo off pages 0 trimspool on

SQL> set lines 132 pagesize 0

SQL> spo renlog.sql

SQL> select

'alter database rename file ' || chr(10)

|| "" || member || "" || ' to ' || chr(10) || "" || member || "" ||';'

from v$logfile;

SQL> spo off;

For this example, here is a snippet of the renlog.sql file that was generated:

SQL> alter database rename file

'/u01/oraredo/o18c/redo01a.rdo' to

'/u01/oraredo/o18c/redo01a.rdo';

...

SQL> alter database rename file

'/u02/oraredo/o18c/redo03b.rdo' to

'/u02/oraredo/o18c/redo03b.rdo';

Chapter 19 RMAN Restore and Recovery

830

The contents of renlog.sql need to be modified to reflect the directory structure on

the destination server. Here is what renlog.sql looks like after being edited:

SQL> alter database rename file

'/u01/oraredo/o18c/redo01a.rdo' to

'/ora01/oraredo/DEVDB/redo01a.rdo';

...

SQL> alter database rename file

'/u02/oraredo/o18c/redo03b.rdo' to

'/ora01/oraredo/DEVDB/redo03b.rdo';

Update the control file by running the renlog.sql script:

SQL> @renlog.sql

You can select from V$LOGFILE to verify that the online redo log names are correct:

SQL> select member from v$logfile;

Here is the output for this example:

/ora01/oraredo/DEVDB/redo01a.rdo

/ora01/oraredo/DEVDB/redo02a.rdo

/ora01/oraredo/DEVDB/redo03a.rdo

/ora01/oraredo/DEVDB/redo01b.rdo

/ora01/oraredo/DEVDB/redo02b.rdo

/ora01/oraredo/DEVDB/redo03b.rdo

Make sure the directories exist on the new server that will contain the online redo

logs. For this example, here is the mkdir command:

$ mkdir -p /ora01/oraredo/DEVDB

�Step 14. Open the Database
You must open the database with the OPEN RESETLOGS command (because there are no

redo logs, and they must be re-created at this point):

SQL> alter database open resetlogs;

Chapter 19 RMAN Restore and Recovery

831

If successful, you should see this message:

Statement processed

Note  Keep in mind that all the passwords from the newly restored copy are as
they were in the source database. You will want to change the passwords in a
replicated database, especially if it was copied from production.

�Step 15. Add the Temp File
When you start your database, Oracle will automatically try to add any missing temp

files to the database. Oracle will not be able to do this if the directory structure on the

destination server is different from that of the source server. In this scenario, you will

have to add any missing temp files manually. To do this, first take offline the temporary

tablespace temp file. The file definition from the originating database is taken offline

like so:

SQL> alter database tempfile '/u01/dbfile/o18c/temp01.dbf' offline;

SQL> alter database tempfile '/u01/dbfile/o18c/temp01.dbf' drop;

Next, add a temporary tablespace file to the TEMP tablespace that matches the

directory structure of the destination database server:

SQL> alter tablespace temp add tempfile '/ora01/dbfile/DEVDB/temp01.dbf'

 size 100m;

You can run the REPORT SCHEMA command to verify that all files are in the correct

locations.

�Step 16. Rename the Database
This step is optional. If you need to rename the database to reflect the name for a

development or test database, create a trace file that contains the CREATE CONTROLFILE

statement, and use it to rename your database.

Chapter 19 RMAN Restore and Recovery

832

Tip  If you do not rename the database, be careful about connect and resync
operations to the same recovery catalog used by the original/source database. This
causes confusion in the recovery catalog as to which is the real source database
and may jeopardize your ability to recover and restore the real source database.

The steps for renaming your database are as follows:

	 1.	 Generate a trace file that contains the SQL command to re-create

the control files:

SQL> alter database backup controlfile to trace as '/tmp/cf.sql' resetlogs;

	 2.	 Shut down the database:

SQL> shutdown immediate;

	 3.	 Modify the /tmp/cf.sql trace file; be sure to specify SET DATABASE

"<NEW DATABASE NAME>" in the top line of the output:

CREATE CONTROLFILE REUSE SET DATABASE "DEVDB" RESETLOGS ARCHIVELOG

 MAXLOGFILES 16

 MAXLOGMEMBERS 4

 MAXDATAFILES 1024

 MAXINSTANCES 1

 MAXLOGHISTORY 876

LOGFILE

 GROUP 1 (

 '/ora01/oraredo/DEVDB/redo01a.rdo',

 '/ora01/oraredo/DEVDB/redo01b.rdo'

) SIZE 50M BLOCKSIZE 512,

 GROUP 2 (

 '/ora01/oraredo/DEVDB/redo02a.rdo',

 '/ora01/oraredo/DEVDB/redo02b.rdo'

) SIZE 50M BLOCKSIZE 512,

 GROUP 3 (

 '/ora01/oraredo/DEVDB/redo03a.rdo',

 '/ora01/oraredo/DEVDB/redo03b.rdo'

Chapter 19 RMAN Restore and Recovery

833

) SIZE 50M BLOCKSIZE 512

DATAFILE

 '/ora01/dbfile/DEVDB/system01.dbf',

 '/ora01/dbfile/DEVDB/sysaux01.dbf',

 '/ora01/dbfile/DEVDB/undotbs01.dbf',

 '/ora01/dbfile/DEVDB/users01.dbf'

CHARACTER SET AL32UTF8;

If you do not specify SET DATABASE in the top line of the prior

script, when you run the script (as shown later in this example),

you will receive an error such as this:

ORA-01161: database name ... in file header does not match...

	 4.	 Create an init.ora file that matches the new database name:

$ cd $ORACLE_HOME/dbs

$ cp init<old_sid>.ora init<new_sid>.ora

$ cp inito18c.ora initDEVDB.ora

	 5.	 Modify the DB_NAME variable within the new init.ora file (in this

example, it is set to DEVDB):

db_name='DEVDB'

	 6.	 Set the ORACLE_SID OS variable to reflect the new SID name (in

this example, it is set to DEVDB):

$ echo $ORACLE_SID

DEVDB

	 7.	 Start up the instance in nomount mode:

SQL> startup nomount;

	 8.	 Run the trace file (from step 2) to re-create the control file:

SQL> @/tmp/cf.sql

Chapter 19 RMAN Restore and Recovery

834

Note  In this example, the control files already exist in the location specified by
the CONTROL_FILES initialization parameter; therefore, the REUSE parameter is
used in the CREATE CONTROL FILE statement.

	 9.	 Open the database with OPEN RESETLOGS:

SQL> alter database open resetlogs;

If successful, you should have a database that is a copy of the

original database. All the data files, control files, archive redo logs,

and online redo logs are in the new locations, and the database

has a new name.

	 10.	 As a last step, ensure that your temporary tablespace exists:

ALTER TABLESPACE TEMP ADD TEMPFILE '/ora01/dbfile/DEVDB/temp01.dbf'

 SIZE 104857600 REUSE AUTOEXTEND OFF;

Tip Y ou can also use the NID utility to change the database name and database
identifier (DBID). See MOS note 863800.1 for more details.

�Summary
RMAN is an acronym for Recovery Manager. It is worth noting that Oracle did not name

this tool Backup Manager. The Oracle team recognized that although backups are

important, the real value of a backup and recovery tool is its ability to restore and recover

the database. Being able to manage the recovery process is the critical skill. When a

database is damaged and needs to be restored, everybody looks to the DBA to perform a

smooth and speedy recovery of the database. Oracle DBAs should use RMAN to protect,

secure, and ensure the availability of the company’s data assets.

The restore-and-recovery process is analogous to the healing process involved when

you break a bone. Restoring data files from a backup and placing them in their original

directories can be likened to setting a bone back to its original position. Recovering a

data file is similar to the healing of a broken bone—returning the bone back to the state

Chapter 19 RMAN Restore and Recovery

835

it was in before it was broken. However, the database recovery will not take as long as

a bone healing. When you recover data files, you apply transactions (obtained from

archive redo and online redo) to transform the restored data files back to the state they

were in before the media failure occurred.

RMAN can be used for any type of restore-and-recovery scenario. Depending on

the situation, RMAN can be used to restore the entire database, specific data files,

control files, server parameter files, archive redo logs, or just specific data blocks. You

can instruct RMAN to perform a complete or an incomplete recovery. It is important to

set up scenarios and practice each one. This not only tests the backups but validates a

successful restore can take place using the backups. A regular scheduled exercise or even

a restore using the backup files to a DEV environment that can be schedule will provide

these important tests. You will gain much confidence and fully understand backup

and recovery internals once you can successfully restore a database to a server that is

different from the original.

Chapter 19 RMAN Restore and Recovery

837
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_20

CHAPTER 20

Automating Jobs
In almost any type of database environment—from development, to testing, to

production—DBAs rely heavily on SQL statements, blocks of code, and scripts to

perform tasks. Typical jobs that DBAs automate include the following:

•	 Shutdown and startup of databases and listeners

•	 Backups

•	 Validating the integrity of backups

•	 Checking for errors

•	 Removing old trace or log files

•	 Checking for errant processes

•	 Checking for abnormal conditions

Automation comes into play when these scripts, blocks of code, become part of a

process that does not require DBA intervention to run. The tasks are performed regularly

by scheduled processes or workflows that execute the necessary scripts without direct

interaction. Routine maintenance jobs are normally the easiest jobs to automate and

produce a check that it completed successfully, or possibly failed, for verification. What

sometimes get complicated are the jobs that require a change or understanding of a

failure to correct an continue without the human interaction to the process. Allowing a

database for self-healing, tuning and patching is what Oracle 18c database has become.

Oracle 18c is providing in the Oracle Cloud an autonomous database. These tasks

happen as expected so that the DBA can work in other areas and provide consulting in

data integrations, development, and data strategies.

Automating routine tasks allows DBAs to be much more effective and productive.

Automated environments are inherently smoother running and more efficient

than manually administered systems. DBA jobs that run automatically from scripts

838

consistently execute the same set of commands each time and therefore are less prone

to human error and mistakes. Using Oracle 18c on-premise also allows for many of the

tasks to be automated as well as the handful of scripts that are needed for applications

and other maintenance jobs. Two scheduling utilities are described in this chapter:

•	 Oracle Scheduler

•	 Linux/Unix cron utility

There is of course the option to use an enterprise solution that is provided instead

of the cron utility on every server. This allows for centralized management of the jobs.

Since there are so many different options here, this chapter is not going to cover using

an enterprise tool, but the scripts and jobs that are scheduled in cron and Oracle

utility can also utilize the enterprise tool. This chapter begins by detailing the basic

aspects of the Oracle Scheduler utility. This scheduler is available if you have an Oracle

database installed. Oracle Scheduler can be used to schedule jobs in a wide variety of

configurations.

Also covered in this chapter is how to use the Linux/Unix cron scheduling tool.

In Linux/Unix environments, DBAs often use the cron scheduling utility to run jobs

automatically. The cron utility is ubiquitous and easy to implement and use. If you are

an Oracle DBA, you must be familiar with cron, because sooner or later, you will find

yourself in an environment that relies heavily on this tool to automate database jobs.

Other environments may not allow access to cron scheduling, so strategies of the jobs

to be automated are important here in this chapter and can be implemented in another

tool based on policies (probably security policies).

The last several sections in this chapter show you how to implement many real-

world DBA jobs, such as automatically starting/stopping the database, monitoring, and

OS file maintenance. You should be able to extend these scripts to meet the automation

requirements of your environment.

Note  Enterprise Manager Grid/Cloud Control can also be used to schedule and
manage automated jobs. If you work in a shop that uses Enterprise Manager, then
it is appropriate to use this tool for automating your environment.

Chapter 20 Automating Jobs

839

�Automating Jobs with Oracle Scheduler
Oracle Scheduler is a tool that provides a way of automating the scheduling of jobs.

Oracle Scheduler is implemented via the DBMS_SCHEDULER internal PL/SQL package.

Oracle Scheduler offers a sophisticated set of features for scheduling jobs. DBMS_JOB

is the older package for running jobs on the database. They both schedule and execute

jobs against the database, but the Schedule offers additional features such as logging,

privileged-based models, more detailed scheduling, and storing of the schedules. With

these features, it is favorable to use the DBMS_SCHEDULER over DBMS_JOBS. The

following sections of this chapter cover the basics of using Oracle Scheduler to automate

jobs with simple requirements.

Tip T here are currently more than 70 procedures and functions available within
the DBMS_SCHEDULER package. For complete details, see the Oracle Database PL/
SQL Packages and Types Reference Guide, which is available for download from
the Technology Network area of the Oracle web site (http://otn.oracle.com).

�Creating and Scheduling a Job
The example in this section shows how to use DBMS_SCHEDULER to run an OS shell script

on a daily basis. First, a shell script is created that contains an RMAN backup command.

For this example, the shell script is named rmanback.bsh and is located in the /orahome/

oracle/bin directory. The shell script also assumes that there is an /orahome/oracle/

bin/log directory available. Here is the shell script:

#!/bin/bash

source oracle OS variables; see chapter 2 for an example of oraset script

. /etc/oraset o18c

rman target / <<EOF

spool log to '/orahome/oracle/bin/log/rmanback.log'

backup database;

spool log off;

EOF

exit 0

Chapter 20 Automating Jobs

http://otn.oracle.com

840

Next, the CREATE_JOB procedure of the DBMS_SCHEDULER package is used to create a

daily job. Next, connect as SYS or as the SYSBACKUP user with CREATE and ALTER

JOB permissions, and execute the following command:

SQL> BEGIN

DBMS_SCHEDULER.CREATE_JOB(

job_name => 'RMAN_BACKUP',

job_type => 'EXECUTABLE',

job_action => '/orahome/oracle/bin/rmanback.bsh',

repeat_interval => 'FREQ=DAILY;BYHOUR=9;BYMINUTE=35',

start_date => to_date('17-01-2018','dd-mm-yyyy'),

job_class => '"DEFAULT_JOB_CLASS"',

auto_drop => FALSE,

comments => 'RMAN backup job',

enabled => TRUE);

END;

/

In the prior code the JOB_TYPE parameter can be one of the following types:

STORED_PROCEDURE, PLSQL_BLOCK, EXTERNAL_SCRIPT, SQL_SCRIPT, or EXECUTABLE. In this

example, an external shell script is executed, so the job is of type EXTERNAL.

The REPEAT_INTERVAL parameter is set to FREQ=DAILY;BYHOUR=9;BYMINUTE=35.

This instructs the job to run daily, at 9:35 AM. The REPEAT_INTERVAL parameter of the

CREATE_JOB is capable of implementing sophisticated calendaring frequencies. For

instance, it supports a variety of yearly, monthly, weekly, daily, hourly, by the minute,

and by the second schedules. The Oracle Database PL/SQL Packages and Types

Reference Guide contains several pages of syntax details for just the REPEAT_INTERVAL

parameter.

The JOB_CLASS parameter specifies which job class to assign the job to. Typically, you

would create a job class and assign a job to that class, whereby the job would inherit the

attributes of that particular class. For example, you may want all jobs in a particular class

to have the same logging level or to purge log files in the same manner. There is a default

job class that can be used if you have not created any job classes. The previous example

uses the default job class.

Chapter 20 Automating Jobs

841

Tip S et up credentials for local and remote external jobs. Oracle can use default
users, but for security policies and capturing of the execution of the job, it is better
to create a user for authenticating the external jobs. DBMS_CREDENTIAL stores the
user details and can store a Windows domain user, such as a service account, to
execute these jobs. Credentials are owned by SYS and can also be managed using
DBMS_CREDENTIAL.

The AUTO_DROP parameter is set to FALSE in this example. This instructs the Oracle

Scheduler not to drop the job automatically after it runs (the default is TRUE).

�Viewing Job Details
To view details about how a job is configured, query the DBA_SCHEDULER_JOBS view. This

query selects information for the RMAN_BACKUP job:

SQL> SELECT job_name

 ,last_start_date

 ,last_run_duration

 ,next_run_date

 ,repeat_interval

FROM dba_scheduler_jobs

WHERE job_name='RMAN_BACKUP';

Each time a job runs, a record of the job execution is logged in the data dictionary.

To check the status of a job execution, query the DBA_SCHEDULER_JOB_LOG view. There

should be one entry for every time a job has run:

SQL> SELECT job_name

,log_date

,operation

,status

FROM dba_scheduler_job_log

WHERE job_name='RMAN_BACKUP';

Chapter 20 Automating Jobs

842

�Modifying Job Logging History
By default, the Oracle Scheduler keeps 30 days’ worth of log history. You can modify the

default retention period via the SET_SCHEDULER_ATTRIBUTE procedure. For example, this

command changes the default number of days to 15:

SQL> exec dbms_scheduler.set_scheduler_attribute('log_history',15);

To remove the contents of the log history completely, use the PURGE_LOG procedure:

SQL> exec dbms_scheduler.purge_log();

�Modifying a Job
You can modify various attributes of a job via the SET_ATTRIBUTE procedure. This

example modifies the RMAN_BACKUP job to run weekly, on Mondays:

SQL> BEGIN

 dbms_scheduler.set_attribute(

 name=>'RMAN_BACKUP'

 ,attribute=>'repeat_interval'

 ,value=>'freq=weekly; byday=mon');

END;

/

You can verify the change by selecting the REPEAT_INTERVAL column from the

DBA_SCHEDULER_JOBS view. Here is what the REPEAT_INTERVAL column now shows for the

RMAN_BACKUP job:

21-JAN-18 12.00.00.200000 AM -07:00 freq=weekly; byday=mon

From the prior output, you can see that the job will run on the next Monday, and

because no BYHOUR and BYMINUTE options were specified (when modifying the job), the

job is scheduled to run at the default time of 12:00 AM.

Chapter 20 Automating Jobs

843

�Stopping a Job
If you have a job that has been running for an abnormally long period of time, you

may want to abort it. Use the STOP_JOB procedure to stop a currently running job. This

example stops the RMAN_BACKUP job while it is running:

SQL> exec dbms_scheduler.stop_job(job_name=>'RMAN_BACKUP');

The STATUS column of DBA_SCHEDULER_JOB_LOG will show STOPPED for jobs stopped

using the STOP_JOB procedure.

�Disabling a Job
You may want to temporarily disable a job because it is not running correctly. You need

to ensure that the job does not run while you are troubleshooting the issue. Use the

DISABLE procedure to disable a job:

SQL> exec dbms_scheduler.disable('RMAN_BACKUP');

If the job is currently running, consider stopping the job first or using the FORCE

option of the DISABLE procedure:

SQL> exec dbms_scheduler.disable(name=>'RMAN_BACKUP',force=>true);

�Enabling a Job
You can enable a previously disabled job via the ENABLE procedure of the

DBMS_SCHEDULER package. This example re-enables the RMAN_BACKUP job:

SQL> exec dbms_scheduler.enable(name=>'RMAN_BACKUP');

Tip  You can check to see if a job has been disabled or enabled by selecting the
ENABLED column from the DBA_SCHEDULER_JOBS view.

Chapter 20 Automating Jobs

844

�Copying a Job
If you have a current job that you want to clone, you can use the COPY_JOB procedure to

accomplish this. The procedure takes two arguments: the old job name and the new job

name. Here is an example of copying a job, where RMAN_BACKUP is a previously created

job, and RMAN_NEW_BACK is the new job that will be created:

begin

 dbms_scheduler.copy_job('RMAN_BACKUP','RMAN_NEW_BACK');

end;

/

The copied job will be created but not enabled. You must enable the job first (see the

previous section for an example) before it will run.

�Running a Job Manually
You can manually run a job outside its regular schedule. You might want to do this to test

the job to ensure that it is working correctly. Use the RUN_JOB procedure to initiate a job

manually. This example manually runs the previously created RMAN_BACKUP job:

SQL> BEGIN

 DBMS_SCHEDULER.RUN_JOB(

 JOB_NAME => 'RMAN_BACKUP',

 USE_CURRENT_SESSION => FALSE);

END;

/

The USE_CURRENT_SESSION parameter instructs Oracle Scheduler to run the job as

the current user (or not). A value of FALSE instructs the scheduler to run the job as the

user who originally created and scheduled the job.

Chapter 20 Automating Jobs

845

�Deleting a Job
If you no longer require a job, you should delete it from the scheduler. Use the DOP_JOB

procedure to permanently remove a job. This example removes the RMAN_BACKUP job:

SQL> BEGIN

 dbms_scheduler.drop_job(job_name=>'RMAN_BACKUP');

END;

/

The code will drop the job and remove any information regarding the dropped job

from the DBA_SCHEDULER_JOBS view.

�Oracle Scheduler vs. cron
DBAs often debate whether they should use Oracle Scheduler or the Linux/Unix cron

utility for scheduling and automating tasks. These are some of the benefits that Oracle

Scheduler has over cron:

•	 Can make the execution of a job dependent on the completion of

another job

•	 Robust resource balancing and flexible scheduling features

•	 Can run jobs based on a database event

•	 The job does not need to check if the database is up and running

•	 Program’s DBMS_SCHEDULER PL/SQL package syntax works the same,

regardless of the OS

•	 Can run status reports, using the data dictionary

•	 The job does not need to pass the password through the cron job

•	 If working in a clustered environment, no need to worry about

synchronizing multiple con tables for each node in the cluster

•	 Can be maintained and monitored via Enterprise Manager

Chapter 20 Automating Jobs

846

The Oracle Scheduler is implemented via the DBMS_SCHEDULER PL/SQL package. As

discussed previously, it is fairly easy to create and maintain jobs using this utility. Yet,

despite Oracle Scheduler’s benefits, many DBAs prefer to use a scheduling utility such as

cron. These are some of the advantages of cron:

•	 Easy to use; simple, tried and true; only takes seconds to create or

modify jobs

•	 Almost universally available on all Linux/Unix boxes; for the most

part, runs nearly identically, regardless of the Linux/Unix platform

(yes, there are minor differences)

•	 Database agnostic; operates independently of the database and

works the same, regardless of the database vendor or version

•	 Works whether or not the database is available

The prior lists are not comprehensive but should give you a flavor of the uses of each

scheduling tool. It is preferred to have the jobs be the same on all servers but even better

to have a centralized way of managing the jobs and executing, such as Cloud Control or

an enterprise scheduling tool. The following sections in this chapter provide information

on how to implement and schedule automated jobs ia cron.

Note  If you are in a Windows environment, use the Task Scheduler utility to
run batch jobs automatically. You can access the Task Scheduler by going to the
Control Panel and then to Administrative Tools.

�Automating Jobs via cron
The cron program is a job-scheduling utility that is ubiquitous in Linux/Unix

environments. This tool derives its name from chrónos (the Greek word for “time”). The

cron (the geek word for “scheduler”) tool allows you to schedule scripts or commands to

run at a specified time and repeat at a designated frequency.

Chapter 20 Automating Jobs

847

�How cron Works
When your Linux server boots up, a cron background process is automatically started

to manage all cron jobs in the system. The cron background process is also known as

the cron daemon. This process is started upon system startup by the etc/init.d/crond

script. You can check to see whether the cron daemon process is running with the ps

command:

$ ps -ef | grep crond | grep -v grep

root 3081 1 0 2012 ? 00:00:18 crond

On Linux boxes, you can also check to see whether the cron daemon is running,

using the service command:

$ /sbin/service crond status

crond (pid 3081) is running...

The root user uses several files and directories when executing system cron jobs.

The etc/crontab file contains commands for running system cron jobs. Here is a typical

listing of the contents of the etc/crontab file:

SHELL=/bin/bash

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

HOME=/

run-parts

01 * * * * root run-parts /etc/cron.hourly

02 4 * * * root run-parts /etc/cron.daily

22 4 * * 0 root run-parts /etc/cron.weekly

42 4 1 * * root run-parts /etc/cron.monthly

This etc/crontab file uses the run-parts utility to run scripts located in the

following directories: etc/cron.hourly, etc/cron.daily, etc/cron.weekly, and

etc/cron.monthly. If there is a system utility that needs to run other than on an hourly,

daily, weekly, or monthly basis, then it can be placed in the /etc/cron.d directory.

Each user can create a crontab (also known as a cron table) file. This file contains

the list of programs that you want to run at a specific time and interval. This file is usually

located in the var/spool/cron directory. For every user who creates a cron table, there

Chapter 20 Automating Jobs

848

will be a file in the /var/spool/cron directory named after the user. As root, you can list

the files in that directory, as shown:

ls /var/spool/cron

oracle root

The cron background process is mostly idle. It wakes up once every minute and

checks etc/crontab, etc/cron.d, and the user cron table files and determines whether

there are any jobs that need to be executed.

Table 20-1 summarizes the purpose of the various files and directories used by cron.

Knowledge of these files and directories will help you troubleshoot any issues as well as

get a better understanding of cron.

Table 20-1.  Descriptions of Files and Directories Used by the cron Utility

File Purpose

/etc/init.d/crond Starts the cron daemon upon system boot

/var/log/cron System messages related to the cron process; useful for

troubleshooting problems

/var/spool/

cron/<username>

User crontab files are stored in the /var/spool/cron directory

/etc/cron.allow Specifies users who can create a cron table

/etc/cron.deny Specifies users who are not allowed to create a cron table

/etc/crontab The system cron table that has commands to run scripts located

in the following directories: /etc/cron.hourly, /etc/cron.

daily,

/etc/cron.weekly, and /etc/cron.monthly

/etc/cron.d Directory that contains cron tables for jobs that need to run on a

schedule other than hourly, daily, weekly, or monthly

/etc/cron.hourly Directory that contains system scripts to run on an hourly basis

/etc/cron.daily Directory that contains system scripts to run on a daily basis

/etc/cron.weekly Directory that contains system scripts to run on a weekly basis

/etc/cron.monthly Directory that contains system scripts to run on a monthly basis

Chapter 20 Automating Jobs

849

�Enabling Access to cron
Sometimes when SAs set up a new box, they do not (by default) enable the use of cron

for all users on the system. To verify whether you have access to cron, invoke the utility

as follows:

$ crontab -e

If you receive the following error message, then you do not have access:

You (oracle) are not allowed to use this program (crontab)

To enable cron access as the root user, add oracle to the etc/cron.allow file with

the echo command:

echo oracle >> /etc/cron.allow

Once the oracle entry is added to the etc/cron.allow file, you can use the crontab

utility to schedule a job.

Note  You can also use an editing utility (such as vi) to add an entry to the
cron.allow file.

The root user can always schedule jobs with the crontab utility. Other users must be

listed in the etc/cron.allow file. If the /etc/cron.allow file does not exist, then the OS

user must not appear in the etc/cron.deny file. If neither the /etc/cron.allow nor the

/etc/cron.deny file exists, then only the root user can access the crontab utility. (These

rules may vary slightly, depending on the version of Linux/Unix you are using.)

On some Unix OSs (such as Solaris), the cron.allow and cron.deny files are located

in the etc/cron.d directory. These files usually can only be modified by the root user.

Tip O n some Linux/Unix platforms, newer and more flexible variants of cron are
available, such as the anacron utility. Use the man anacron command to view
details on the implementation of this utility on your system.

Chapter 20 Automating Jobs

850

�Understanding cron Table Entries
Your cron table is a list of numbers and commands that the cron background process

(cron daemon) will run at a specified time and schedule. The crontab utility expects

entries to follow a well-defined format. It is a good idea to add a comment line at the

beginning of your crontab file that documents the required format, like so:

min(0-59) hr(0-23) dayMonth(1-31) monthYear(1-12) dayWeek(0/7-6)

commandOrScript

In the previous example, the number sign (#) in the cron file represents the start of a

comment. Any text entered after # is ignored by cron.

Each entry in the crontab is a single line composed of six fields. The first five fields

specify the execution time and frequency. Entries in these fields can be separated by

commas or hyphens. A comma indicates multiple values for an entry, whereas a hyphen

indicates a range of values. An entry can also be an asterisk (*), which indicates that all

possible values are in effect. Here is an example to help clarify. The following entry sends

an e-mail saying, “Wake up,” every half hour, from 8 am to 4:30 PM, Monday through

Friday:

0,30 8-16 * * 1-5 echo "wake up" | mailx -s "wake up" dkuhn@gmail.com

On some Linux systems, you can skip a value within a range by following the entry

with /<integer>. For instance, if you wanted to run a job every other minute, use 0-59/2

in the minute column. You can also use a slash (/) with an asterisk to skip values. For

instance, to run a job every fourth minute, you would use */4 in the minute column.

The sixth field in the crontab can be one or more Linux commands or a shell script.

Or, put another way, the sixth column can be any combination of commands or a script

that you can run on one line from the Linux command line.

The cron utility has a few quirks that need further explanation. The fifth column is

the day of the week. Sunday is designated by either a 0 or a 7; Monday, by a 1; Tuesday,

by a 2; and so on, to Saturday, which is indicated with a 6.

The hour numbers in the second column are in military time format, ranging from

0 to 23. The fourth column (month of the year) and fifth column (day of the week) can

be represented with numeric values or by three-letter abbreviations. For example, the

following entry in the crontab uses three-letter abbreviations for months and days:

0,30 8-16 * Jan-Dec Mon-Fri echo "wake up" | mailx -s "get up" dkuhn@gmail.com

Chapter 20 Automating Jobs

851

There also appear to be overlapping columns, such as the third column (day of

the month) and the fifth column (day of the week). These columns allow you to create

flexible schedules for jobs that need to run on schedules such as the 1st and 15th day of

the month or every Tuesday. Put an asterisk in the column that you are not using. If you

need to run a job on the 1st and 15th and every Tuesday, then fill in both columns.

If you are running a shell script from cron that contains a call to an Oracle utility

such as sqlplus or rman, ensure that you instantiate within the script any required OS

variables, such as ORACLE_SID and ORACLE_HOME. If you do not source these variables, you

will see errors such as the following when your shell script runs from cron:

sqlplus: command not found

When cron runs a script (in a user’s crontab), it does not run the user’s startup

or login files (such as .bashrc). Therefore, any script (being run from cron) needs to

explicitly set any required variables. You can directly set the variables within the script or

call another script that exports these variables (such as Oracle’s oraenv script).

Tip  Do not schedule the jobs that you enter in cron to run all at the same
time. Rather, spread them out so as not to bog down cron or the system at any
particular point in time.

�Scheduling a Job to Run Automatically
To schedule a job, you must add a line in your cron table, specifying the time you want

the job to execute. There are two methods for adding entries in your cron table:

•	 Editing the cron table file directly

•	 Loading the cron table from a file

These two techniques are described in the following sections.

�Editing the cron Table Directly

You an edit your cron table directly with the -e (editor) option of the crontab command:

$ crontab -e

Chapter 20 Automating Jobs

852

When issuing the previous command, you will be presented with a file to edit. This

file is known as your cron table (crontab). To schedule a script named backup.bsh to

run daily, at 11:05 PM, enter the following line into your cron table:

5 23 * * * /home/oracle/bin/backup.bsh

Here, the 5 specifies that the job will run at 5 minutes after the top of the hour. The

23 is military time, specifying that the job should run in the 2300 hour window (in this

example, 5 minutes after the hour). The three stars (* * *) signify that the job should

run every day of the month, every month of the year, and every day of the week.

Exit the cron table file. If your default editor is vi, then type wq to exit. When you

exit crontab, your cron table is saved for you. To view your cron entries, use the -l (list)

option of the crontab command:

$ crontab -l

To remove your cron table completely, use the r option:

$ crontab -r

Before running the previous command, you should save your cron table in a text file,

as shown:

$ crontab -l > saved.cron

In this way, you can refer to the saved file, in the event that you didn’t mean to delete

your cron table.

Tip  “I once worked with a DBA who thought crontab -r meant “read the cron
table.” Do not ever make that mistake. It’s always good to back up your crontab
to a text files so the schedule is safe for these type of issues with the crontab -l >
crontab.backup. This can also be used to load into other servers.

�Setting Default Editor

The default editor invoked to modify the cron table is dependent on the value of your

VISUAL OS variable. In my current environment, the VISUAL variable is set to vi:

$ echo $VISUAL

vi

Chapter 20 Automating Jobs

853

If the VISUAL OS variable isn’t set, then the value of EDITOR is used to define the

default editor. Make sure that either VISUAL or EDITOR is set to your editor of choice.

If neither VISUAL nor EDITOR is set, your system will default to the ed editor. In this

scenario, you will be presented with the following prompt:

26

<blank prompt>

Press the Q key to exit from ed. You can have the VISUAL or EDITOR variable

automatically set for you when you log in to the system. You can also manually set the

editor with the export command. The following example sets the default editor to vi:

$ export EDITOR=vi

Consider putting the prior line of code in a startup file (such as .bashrc) so that your

editor is set consistently.

�Loading the cron Table from a File

The other way to modify your cron table is to load it directly with a file name. This will

allow you to save your contab jobs and have them be the same on each server by just

loading it directly, using the following syntax:

$ crontab <filename>

Here, the crontab utility will load the contents of the specified file into your

cron table. The recommended steps to modify your cron table with this method are as

follows:

	 1.	 Before modifying your cron table, first populate a file with the

cron table’s current contents; for example,

$ crontab -l > mycron.txt

	 2.	 Next, make a copy of the previously created file (mycron.txt).

This allows you to revert back to the original file, in the event

that you introduce errors and cannot readily figure out what is

incorrect. This also provides you with an audit trail of changes to

your cron table:

$ cp mycron.txt mycron.jul29.txt

Chapter 20 Automating Jobs

854

	 3.	 Now, edit the mycron.txt file with your favorite text editor:

$ vi mycron.txt

For example, to schedule a script named backup.bsh to run daily, at 11:05 PM, add

the following lines:

#--

File backup, dk: 20-jan-14, inserted.

5 23 * * * /home/oracle/bin/backup.bsh

#--

	 4.	 When you are finished making edits, load the contents of mycron.

txt into the cron table, as shown:

$ crontab mycron.txt

If your file does not conform to the cron syntax, you will receive an error such as the

following:

"mycron.txt":6: bad day-of-week

errors in crontab file, cannot install.

In this situation, either correct the syntax error, or reload the original copy of the

cron table.

EXAMPLE OF A TYPICAL CRON TABLE

Listed here is a sample entry from a cron table on a database server:

#--

min(0-59) hr(0-23) dayMonth(1-31) monthYear(1-12) dayWeek(0/7-6)

commandOrScript

#--

RMAN backups, dk: 01-may-12, updated.

1 16 * * * /u01/oracle/bin/rmanback.bsh INV >/u01/oracle/bin/log/bck.log 2>&1

#---

Tablespace check, sp: 17-dec-12, created.

5 * * * * /u01/oracle/bin/tbsp_chk.bsh INV 10 1>/u01/oracle/bin/log/tbsp.log 2>&1

#---

Chapter 20 Automating Jobs

855

Take note of a few aspects in this entry. Place a line at the top of every cron table (on every

database server) that briefly explains the meanings of the date scheduling features:

min(0-59) hr(0-23) dayMonth(1-31) monthYear(1-12) dayWeek(0/7-6)

commandOrScript

Separate each entry with a comment line. This makes the entry much more readable:

#---

Additionally, include a brief note (with the initials of author or modifier), describing the cron

job and when the edit was made:

RMAN backups, dk: 01-jan-18, updated.

If you manage dozens of database servers (each with its own cron table), with multiple DBAs,

you will need some mechanism (and it does not have to be sophisticated) for tracking who

made changes and when.

�Redirecting cron Output
Whenever you run a Linux shell command, by default the standard output (of the

command) will be displayed on your screen. Also, if any error messages are generated,

they will, by default, be displayed on your screen. You can use either > or 1> (they are

synonymous) to redirect any standard output to an OS file. Additionally, you can use 2>

to redirect any error messages to a file. The notation 2>&1 instructs the shell to send any

error messages to the same location as standard output. Even with sending output of the

execution of the script, make sure that the script has appropriate logging and reporting

for success or failure either in a log file or database table.

When you create a cron job, you can use these redirection features to send the

output of a shell script to a log file. For example, in the following cron table entry,

any standard output and error messages generated by the backup.bsh shell script are

captured in a file named bck.log:

11 12 * * * /home/oracle/bin/backup.bsh 1>/home/oracle/bin/log/bck.log 2>&1

Chapter 20 Automating Jobs

856

If you do not redirect the cron job output, then any output will be e-mailed to the

user that owns the cron table. You can override this behavior by specifying the MAILTO

variable directly within the cron table. With the next few lines of code, the cron output

will go to the root user:

MAILTO=oraclebkup

11 12 * * * /home/oracle/bin/backup.bsh

If you do not want the output to go anywhere, then redirect it to the proverbial

bit bucket. The following entry sends the standard output and standard error to the

dev/null device:

11 12 * * * /home/oracle/bin/backup.bsh 1>/dev/null 2>&1

�Troubleshooting cron
If you have a cron job that is not running correctly, follow these steps to troubleshoot

the issue:

	 1.	 Copy your cron entry, paste it into the OS command line, and

manually run the command. Frequently, a slight typo in a

directory or file name can be the source of the problem. Manually

running the command will highlight errors such as these.

	 2.	 If the script runs Oracle utilities, make sure you source (set) the

required OS variables within the script, such as ORACLE_HOME and

ORACLE_SID. Oftentimes, these variables are set by startup scripts

(such as HOME/.bashrc) when you log in. Because cron does not

run a user’s startup scripts, any required variables must be set

explicitly within the script.

	 3.	 Ensure that the first line of any shell scripts invoked from cron

specify the name of the program that will be used to interpret the

commands within the script. For instance, #!/bin/bash should be

the first entry in a Bash shell script. Because cron does not run a

user’s startup scripts (such as HOME/.bashrc), you cannot assume

that your OS user’s default shell will be used to run a command or

script evoked from cron.

Chapter 20 Automating Jobs

857

	 4.	 Make certain that the cron background process is running. Issue

the following command from the OS to verify:

$ ps -ef | grep cron

If the cron daemon (background process) is running, you should

see something similar to this:

root 2969 1 0 Mar23 ? 00:00:00 crond

	 5.	 Check your e-mail on the server. The cron utility will usually

send an e-mail to the OS account when there are issues with a

misbehaving cron job.

	 6.	 Inspect the contents of the var/log/cron file for any errors.

Sometimes, this file has relevant information regarding a cron job

that has failed to run.

	 7.	 Verify the times that the job is set to run, and make sure that all of

the columns line up with the date, time, etc.

�Examples of Automated DBA Jobs
In today’s often chaotic business environment, it is almost mandatory to automate jobs.

If you do not automate, you may forget to do a task; or, if performing a job manually, you

may introduce error into the procedure. If you do not automate, you could find yourself

replaced by a more efficient or cheaper set of DBAs.

When a script fails it makes sense to receive an e-mail, but too many successful job

e-mails can cause noise and miss a failure. However, not receiving an e-mail in success

or failure is really a failure since it is in a state of uncertainty. A way to report on scripts

that run for databases is a centralized report that shows success or failure from the

consolidated logs or queries from an output table. Reviewing a daily e-mail will validate

that all jobs are running properly.

DBAs automate a wide variety of tasks and jobs. Almost any type of environment

requires that you create some sort of OS script that encapsulates a combination of OS

commands, SQL statements, and PL/SQL blocks.

The following scripts in this chapter are a sample of the wide variety of different

types of tasks that DBAs automate. This set of scripts is, by no means, complete. Many of

Chapter 20 Automating Jobs

858

these scripts may not be needed in your environment. The point is to give you a

good sampling of the types of jobs automated and the techniques used to accomplish a

given task.

Note  Chapter 3 contains basic examples of some core scripts that DBAs
require. This section provides examples of tasks and scripts that DBAs commonly
automate.

�Starting and Stopping the Database and Listener
In case a database server was to reboot or restart, it is desirable to have the Oracle

databases and listener automatically restart with the server. This process used to be part

of a parameter in the /etc/oratab file for the database to automatically restart. It would

be called in the dbstart and dbshut commands and was ‘Y’ for restart ‘N’ for manual

intervention.

Now there is Oracle Restart, and it is especially useful for a multicomponent

environment with RAC and ASM, but is simple to add databases as part of the restart.

When the database is created using dbca, the database is added to Oracle Restart

configuration. The same is true when you remove the database using dbca, the database

is removed from Oracle Restart. If you use Oracle Net Configuration Assistant (netca) to

create or delete a listener, netca will add or remove from the Oracle Restart.

There are a few ways to add a database and listener to the Oracle Restart if using

a different method from dbca, either scripted or manual with creatdb steps. With the

database software install, there is a version of Enterprise Manager Database Control

that can only add databases and listeners to the Oracle Restart configuration. The srvctl

utility will allow for adding, modifying, and deleting of databases and listeners with the

commands. The commands can become part of the scripted creation of databases so

this task becomes part of the steps and not a manual task that is done afterward.

For the listener, the GRID_HOME or ORACLE_HOME needs to be set, depending

on if the listener is started in the GRID or ORACLE_HOME. The default listener is added

with the following:

cd $GRID_HOME/bin

. /srvctl add listener

Chapter 20 Automating Jobs

859

To add another listener, the name of the listener would be provided.

To add a database:

cd $ORACLE_HOME/bin

./ srvctl add service -d o18c -o /u01/app/oracle/product/18.1.0/db_1

-o is the ORACLE_HOME directory

-d is the database name

To remove a database:

srvctl remove database -d o18c

A service can also be disabled to still be available but not run with the automatic

restart. To disable or enable a database:

srvctl disable database -d o18c

The srvctl utility is part of the Oracle software and available in the ORACLE_HOME,

so the grid infrastructure does not need to be installed in order to use this method for

adding databases and services to Oracle Restart. Oracle Restart will make sure that the

databases are automatically restarted with a server restart as long as they are enabled in

the restart configuration.

�Checking for Archivelog Destination Fullness
Sometimes DBAs and SAs do not adequately plan and implement a location for storing

archivelog files on disk. In these scenarios, it is sometimes convenient to have a script

that checks for space in the primary location and that sends out warnings before the

archivelog destination becomes full. Additionally, you may want to implement within

the script that the archivelog location automatically start an RMAN job to back up and

delete the archivelogs to free up space.

Scripts such as this proves useful in chaotic environments that have issues with

the archivelog destination’s filling up at unpredictable frequencies. If the archivelog

destination fills up, the database will hang. In some environments, this is highly

unacceptable. You could argue that you should never let yourself get into this type of

situation. Therefore, if you are brought in to maintain an unpredictable environment,

and you are the one getting the phone calls at 2:00 AM, you may want to consider

implementing a script such as the one provided in this section.

Chapter 20 Automating Jobs

860

Before using the following script, change the variables within the script to match

your environment. The script will send a warning e-mail when the threshold goes below

the amount of space specified by the THRESH_GET_WORRIED variable and run a RMAN

backup of the archivelogs.

#!/bin/bash

PRG=`basename $0`

DB=$1

USAGE="Usage: ${PRG} <sid>"

if [-z "$DB"]; then

 echo "${USAGE}"

 exit 1

fi

source OS variables

. /var/opt/oracle/oraset ${DB}

Set thresholds for getting concerned.

THRESH_GET_WORRIED=2000000 # 2Gig from df -k

MAILX="/bin/mailx"

MAIL_LIST="dkuhn@gmail.com "

BOX=`uname -a | awk '{print$2}'`

#

loc=`sqlplus -s <<EOF

CONNECT / AS sysdba

SET HEAD OFF FEEDBACK OFF

SELECT SUBSTR(destination,1,INSTR(destination,'/',1,2)-1)

FROM v\\$archive_dest WHERE dest_name='LOG_ARCHIVE_DEST_1';

EOF`

The output of df depends on your version of Linux/Unix,

you may need to tweak the next line based on that output.

free_space=`df -k | grep ${loc} | awk '{print $4}'`

echo box = ${BOX}, sid = ${DB}, Arch Log Mnt Pnt = ${loc}

echo "free_space = ${free_space} K"

echo "THRESH_GET_WORRIED= ${THRESH_GET_WORRIED} K"

#

if [$free_space -le $THRESH_GET_WORRIED]; then

Chapter 20 Automating Jobs

861

$MAILX -s "Arch Redo Space Low ${DB} on $BOX" $MAIL_LIST <<EOF

Archive log dest space low running backup now,

box: $BOX, sid: ${DB}, free space: $free_space

EOF

Run RMAN backup of archivelogs and delete after backed up

rman nocatalog <<EOF

connect target /

backup archivelog all delete input;

EOF

else

 echo no need to backup and delete, ${free_space} KB free on ${loc}

fi

#

exit 0

If you are using an FRA for the location of your archivelog files, you can derive the

archive location from the V$ARCHIVED_LOG view; for example,

SQL> select

 substr(name,1,instr(name,'/',1,2)-1)

from v$archived_log

where first_time =

 (select max(first_time) from v$archived_log);

There are also a few other ways to manage this space when using FRA, and it is

definitely another reason to use FRA instead of just setting a directory. The threshold can

be determined using SQL from v$recovery_file_dest instead of looking at the file system.

SQL> select name, space_limit, space_used from v$recovery_file_dest;

NAME SPACE_LIMIT SPACE_USED

--

/u02/oradata/FRA 1048576 48576

The FRA size can be increased to accommodate more archivelogs until the space is

freed up by a backup and delete or purge of old backups. The FRA destination can also

be changed. It is easier to automate the process of increasing the FRA size and running a

Chapter 20 Automating Jobs

862

backup to make sure that the archivelog directory does not fill up. The following can be

inserted into the previous script before the RMAN script:

SQL> alter system set DB_RECOVERY_FILE_DEST_SIZE=20G scope=both;

Typically, a script to check the archive log destination runs once an hour. Here is a

typical cron entry (this entry should actually be a single line of code but has been placed

on two lines in order to fit on the page):

38 * * * * /u01/oracle/bin/arch_check.bsh DWREP

 1>/u01/oracle/bin/log/arch_check.log 2>&1

�Truncating Large Log Files
Sometimes log files can grow very large and cause issues by filling up critical mount

points. The listener.log will record information about incoming connections to the

database. The alert.log is another file that records errors, changes, and activity of the

database. With active systems, this file can quickly grow to several gigabytes. For many

environments, the information in the listener.log file does not need to be retained.

If there are Oracle Net connectivity issues, then the file can be inspected to help

troubleshoot issues.

The listener.log and alert.log files are actively written to, so you should not just

delete them. If you remove the file, the listener process will not re-create the file and

start writing to it again; you have to stop and restart the listener to restart its writing

to the listener.log file. The alert.log will get re-created but should be handled in

the same way as the following example for the listener.log. You can, however, null out

the listener.log file or truncate it. In Linux/Unix environments, this is done via the

following technique:

$ cat /dev/null >listener.log

The previous command replaces the contents of the listener.log file with the

contents of dev/null (a default file on Linux/Unix systems that contains nothing). The

result of this command is that the listener.log file is truncated, and the listener can

continue to actively write to it.

Chapter 20 Automating Jobs

863

Listed next is a shell script that truncates the default listener.log file after making

a backup for retention until overwritten next time it runs This script is dependent on

setting the OS variable ORACLE_BASE. If you do not set that variable in your environment,

you will have to hard-code the directory path within this script:

#!/bin/bash

#

if [$# -ne 1]; then

 echo "Usage: $0 SID"

 exit 1

fi

See chapter 2 for details on setting OS variables

Source oracle OS variables with oraset script

. /etc/oraset $1

#

MAILX='/bin/mailx'

MAIL_LIST='dkuhn@gmail.com'

BOX=$(uname -a | awk '{print $2}' | cut -f 1 -d'.')

#

if [-f $ORACLE_BASE/diag/tnslsnr/$BOX/listener/trace/listener.log]; then

 cp $ORACLE_BASE/diag/tnslsnr/$BOX/listener/trace/listener.log $ORACLE_

BASE/diag/tnslsnr/$BOX/listener/trace/listener.bkup

 cat /dev/null > $ORACLE_BASE/diag/tnslsnr/$BOX/listener/trace/listener.log

fi

if [$? -ne 0]; then

 echo "trunc list. problem" | $MAILX -s "trunc list. problem $1" $MAIL_LIST

else

 echo "no problem..."

fi

exit 0

The following cron entry runs the prior script on a monthly basis (this entry should

all be on one line but has been placed on two lines in order to fit on the page):

30 6 1 * * /orahome/oracle/bin/trunc_log.bsh DWREP

 1>/orahome/oracle/bin/log/trunc_log.log 2>&1

Chapter 20 Automating Jobs

864

�Checking for Locked Production Accounts
Usually having a database profile should be in place that specifies that a database

account become locked after a designated number of failed login attempts. For example,

set the DEFAULT profile FAILED_LOGIN_ATTEMPTS to 5. Sometimes, however, a rogue

user or developer will attempt to guess the production account password, and after five

attempts, locks the production account. When this happens, an alert is needed to know

about it as soon as possible so that it can be investigated for either a security incident or

the issue for the user and then unlock the account.

The following shell script checks the LOCK_DATE value in DBA_USERS for a list of

production database accounts:

#!/bin/bash

if [$# -ne 1]; then

 echo "Usage: $0 SID"

 exit 1

fi

source oracle OS variables

. /etc/oraset $1

#

crit_var=$(sqlplus -s <<EOF

/ as sysdba

SET HEAD OFF FEED OFF

SELECT count(*)

FROM dba_users

WHERE lock_date IS NOT NULL

AND username in ('CIAP','REPV','CIAL','STARPROD');

EOF)

#

if [$crit_var -ne 0]; then

 echo $crit_var

 echo "locked acct. issue with $1" | mailx -s "locked acct. issue" dkuhn@sun.com

Chapter 20 Automating Jobs

865

else

 echo $crit_var

 echo "no locked accounts"

fi

exit 0

This shell script is called from a scheduling tool, such as cron. For example, this cron

entry instructs the job to run every 10 minutes (this entry should actually be a single line

of code but has been placed on two lines in order to fit on the page):

0,10,20,30,40,50 * * * * /home/oracle/bin/lock.bsh DWREP

 1>/home/oracle/bin/log/lock.log 2>&1

In this way, an e-mail notification goes out when one of the production database

accounts becomes locked. If the risk level is acceptable, as part of this script, there

should be a step to unlock the account after a set amount of time, and it is recorded that

there were the failed login attempts.

�Checking for Too Many Processes
On some database servers, you may have many background SQL*Plus jobs. These batch

jobs may perform tasks such as copying data from remote databases and large daily

update jobs. In these environments, it is useful to know if, at any given time, there are an

abnormal number of shell scripts or SQL*Plus processes running on the database server.

An abnormal number of jobs could be an indication that something is broken or hung.

The next shell script has two checks in it: one to determine the number of shell

scripts that are named with the extension of bsh and one to determine the number of

processes that contain the string of sqlplus:

#!/bin/bash

#

if [$# -ne 0]; then

 echo "Usage: $0"

 exit 1

fi

#

crit_var=$(ps -ef | grep -v grep | grep bsh | wc -l)

if [$crit_var -lt 20]; then

Chapter 20 Automating Jobs

866

 echo $crit_var

 echo "processes running normal"

else

 echo "too many processes"

 echo $crit_var | mailx -s "too many bsh procs: $1" dkuhn@gmail.com

fi

#

crit_var=$(ps -ef | grep -v grep | grep sqlplus | wc -l)

if [$crit_var -lt 30]; then

 echo $crit_var

 echo "processes running normal"

else

 echo "too many processes"

 echo $crit_var | mailx -s "too many sqlplus procs: $1" dkuhn@gmail.com

fi

#

exit 0

The prior shell script, named proc_count.bsh, is run once an hour from a cron job

(this entry should actually be a single line of code but is placed on two lines in order to fit

on the page):

33 * * * * /home/oracle/bin/proc_count.bsh

 1>/home/oracle/bin/log/proc_count.log 2>&1

�Verifying the Integrity of RMAN Backups
As part of your backup-and-recovery strategy, you should periodically validate the

integrity of the backup files. This is also included as part of using RMAN to back up the

database, but a separate job can run against them to validate for restore. RMAN provides

a RESTORE...VALIDATE command that checks for physical corruption within the backup

files. The following script starts RMAN and spools a log file. The log file is subsequently

searched for the keyword error. If there are any errors in the log file, an e-mail is sent:

#!/bin/bash

#

if [$# -ne 1]; then

Chapter 20 Automating Jobs

867

 echo "Usage: $0 SID"

 exit 1

fi

source oracle OS variables

. /etc/oraset $1

#

date

BOX=`uname -a | awk '{print$2}'`

rman nocatalog <<EOF

connect target /

spool log to $HOME/bin/log/rman_val.log

set echo on;

restore database validate;

EOF

grep -i error $HOME/bin/log/rman_val.log

if [$? -eq 0]; then

 echo "RMAN verify issue $BOX, $1" | \

 mailx -s "RMAN verify issue $BOX, $1" dkuhn@sun.com

else

 echo "no problem..."

fi

#

date

exit 0

The RESTORE...VALIDATE does not actually restore any files; it only validates that the

files required to restore the database are available and checks for physical corruption.

If you need to check for logical corruption as well, specify the CHECK LOGICAL clause.

For example, to check for logical corruption, the prior shell script would have this line in it:

restore database validate check logical;

For large databases the validation process can take a great deal of time (because the

script checks each block in the backup file for corruption). If you only want to verify that

the backup files exist, specify the VALIDATE HEADER clause, like so:

restore database validate header;

Chapter 20 Automating Jobs

868

This command only checks for valid information in the header of each file that

would be required for a restore and recovery.

�Autonomous Database
The previous scripts and tasks when scheduled are just scratching the surface of

automating jobs for the Oracle database. Processes that start to take the results

of these scripts and apply the fixes and perform the next actions are getting to

closer to automation. Oracle 18c database has may processes and hooks that allow

for environments to configure even more automation. Oracle 18c itself is not an

autonomous database, but in the Oracle Cloud environment, it becomes the Oracle

Autonomous Database. This is what is being called the self-healing, self-patching and

self-driving database.

In the Oracle Cloud, the databases are managed, backed up by automated processes,

and, if needed, performs failover and basic troubleshooting to handle issues. Issues can

be increase in processing power that is needed or additional storage. If the database is

not heavily utilized, it can shrink back down to save costs. The database has information

about when activities occur and through learning it can monitor performance issues and

take measures to remediate.

A secure configuration along with security options are implemented by default in the

Oracle Cloud. The Autonomous has enabled threat detection and encryption, which protect

the data that it is storing. Patching is also automated so that when there is a vulnerability the

patching process can apply the fix. These steps happen without manual intervention, and

with a highly available environment the database experiences no downtime.

In this cloud environment, what is a DBA to do? There are plenty of opportunities

with development, data integrations, and quality, and other areas of security and

business intelligence that add value to the enterprise based. Also, is this not what we

have been discussing to automate basic tasks and ways to remediate issues for more

consistent, stable database environments?

There are plenty of features of the database that can be used to manage other

areas of the business, and even new features of the database that should be built into

applications. The DBAs can be the ones to help drive this. The chapter is not going

to into detail in the Oracle Cloud because it is still the Oracle 18c database that we

have been talking about. The difference is the location or hardware that is running the

database. The Oracle Cloud and Oracle Cloud Machine (in your data center) provide

Chapter 20 Automating Jobs

869

the monitoring, support, and automation of the processes for provisioning and patching

databases to backup.

The Oracle Cloud databases can even be managed the same as an on-premise

database with tools that DBAs are already familiar with such as SQL Developer and

Cloud Control (formally known as Enterprise Manager). Users are managed through

the cloud services, and DBAs can help manage these resources and provide input for

migrations to the cloud environments.

As the Autonomous Database continues to gather information about the activity for

performance and security, it provides changes in query plans and indexes to improve

and detect anomalies for security prevention controls. The Oracle 18c database is being

used to transform how database environments are being implemented. The databases

are just services that can be supplied on demand for business needs. The processes

and steps to make that service available need to have fewer manual steps and more

automated processes along with remediation.

�Summary
Automating routine database jobs is a key strategy of the successful DBA. Automated

jobs ensure that tasks are repeatable and verifiable and that you are quickly notified

when there are any problems. For example, your job as a DBA greatly depends on

successfully running backups and ensuring that the database is highly available. This

chapter includes several scripts and examples that detail how to run routine jobs at

defined frequencies.

Oracle provides the Oracle Scheduler utility (implemented via the DBMS_SCHEDULER

PL/SQL package) for scheduling jobs. This tool can be used to automate any type of

database task. You can also initiate jobs based on system events or on the success/failure

of other scheduled jobs

If you are a DBA who works in a Linux/Unix shop, you should familiarize yourself

with the cron utility. This scheduler is simple to use and is almost universally available.

Even if you do not use cron for your current assignment, you are sure to encounter its

use in future work environments.

Most of these scripts just check and alert, and the next step is to actually automate

an action if something needs to be addressed or fixed. The corrective action could be

unlocking the account or adding space to the FRA for the archivelog space in order to

immediately handle the issue and allow for time to review and validate the action.

Chapter 20 Automating Jobs

870

At this point in the book, you have learned how to implement and perform many

tasks required of a DBA. With this knowledge and understanding, the database is more

familiar and tasks to automate are probably being listed right now. The knowledge

will carry over to cloud migrations and managing databases in the cloud. Even if you

manage just one database, no doubt you have been embroiled in a vast number of

troubleshooting activities. The next chapter focuses on diagnosing and resolving many

of the issues that a DBA encounters.

Chapter 20 Automating Jobs

871
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_21

CHAPTER 21

Database Troubleshooting
Database troubleshooting is a vague and general term that is applied to a wide variety

of topics. It can mean anything from investigating database connectivity issues to

detailed performance tuning. In this chapter, the following troubleshooting activities will

be covered:

•	 Assessing database availability issues quickly

•	 Identifying system performance issues with OS utilities

•	 Querying data dictionary views to display resource-intensive

SQL statements

•	 Using Oracle performance tools to identify resource-consuming

SQL statements

•	 Identifying and resolving locking issues

•	 Troubleshooting open-cursor issues

•	 Investigating issues with the undo and temporary tablespaces

The prior list does not encompass all the types of database troubleshooting and

performance issues that you will encounter. Rather, it is a sampling of the database

problems that you are likely to encounter and demonstrates useful techniques for

resolving problems.

�Quickly Triaging
When getting the call that there is an issue with the database, it is critical to be able to ask

questions and know the right questions to ask. Understanding the issue is the first step

and must be done quickly to get to other troubleshooting steps. DBAs are going to be

called upon to troubleshoot database and non-database issues, server, connection and

872

network as these are all part of the database system what might only be seen is that the

data are not being returned in fast enough or at all.

Here are a handful of questions that are useful:

•	 Is this in the application or with a direct connection to the database?

•	 Is this a new process, query, piece of code?

•	 How long has this been slow? Has it happened before or is this the

first time?

•	 Is anything being returned?

•	 Do you have any error messages that you are receiving?

As the answers are coming in, you can be checking the alert logs, script output from

the regular jobs, pinging the database and database server, and seeing if you are able to

log in. This should give you a good start for troubleshooting the issue.

Tip  Keep in mind that you should automate jobs that perform tasks such as
verifying the database availability (see Chapter 19 for examples of automating DBA
tasks). Automated jobs help you proactively handle issues so that they do not turn
into database downtime.

�Checking Database Availability
The first few checks do not require logging in to the database server. Rather, they can

be performed remotely via SQL*Plus and OS commands. Performing the initial checks

remotely over the network establishes whether all the system components are working.

One quick check to determine whether the remote server is available, the database

is up, the network is working, and the listener is accepting incoming connections is

to connect via an SQL*Plus client to the remote database over the network. The initial

testing could use a non-DBA account. Here is an example of connecting over the

network to a remote database as the michelle user with a password of ora123; the

network connect information is embedded directly into the connect string (where dwdb1

is the server, 1521 is the port, and dwrep1 is the database service name):

$ sqlplus michelle/ora123@'dwdb1:1521/dwrep1'

Chapter 21 Database Troubleshooting

873

If a connection can be made, then the remote server is available, and the database

and listener are up and working. At this point and with the questions that were asked, we

can verify if the connectivity issue has to do with the application or with something other

than the database.

If the prior SQL*Plus command does not work, try to establish whether the remote

server is available. In this example, the ping command is issued to the remote server,

named dwdb1:

$ ping dwdb1

If ping works, you should see output such as this:

64 bytes from dwdb1 (192.168.254.215): icmp_seq=1 ttl=64 time=0.044 ms

If ping does not work, there is probably an issue with either the network or the

remote server. If the remote server is not available, it is time to contact a system

administrator or network administrator.

If ping does work, then check to see if the remote server is reachable via the port that

the listener is listening on. The telnet command to accomplish this:

$ telnet IP <port>

In this example, a network connection is attempted to the server’s IP address on the

1521 port:

$ telnet 192.168.254.215 1521

If the IP address is reachable on the specified port, you should see “Connected to . . .”

in the output, like so:

Trying 192.168.254.216...

Connected to ora04.

Escape character is '^]'.

If the telnet command does not work, contact the SA or the network administrator.

If the telnet command does work, and there is network connectivity to the server

on the specified port, then use the tnsping command to test network connectivity to

the remote server and database, using Oracle Net. This example attempts to reach the

DWREP1 remote service:

$ tnsping DWREP1

Chapter 21 Database Troubleshooting

874

If successful, the output should contain the OK string, like so:

Attempting to contact (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST = DWDB1)

(PORT = 1521)) (CONNECT_DATA = (SERVICE_NAME = DWREP1)))

OK (20 msec)

If tnsping works, it means that the remote listener is up and working. It does not

necessarily mean that the database is up, so you may need to log in to the database

server to investigate further. If tnsping does not work, then the listener or the database is

down or hung.

To further investigate issues, log in directly to the server to perform additional

checks, such as a mount point filling up. Hopefully, if there was another issue, one of

the logs or monitoring scripts reported it; however, the checks on the server might be

necessary at this point.

ORACLE INSTANT CLIENT

Sometimes you are working with SAs and developers who sneed to test remote connectivity to

a database but who do not have access to an Oracle installation with the SQL*Plus executable.

In these situations, recommend that they download and use Oracle Instant Client or even

SQLDeveloper (no client needed). It has a very small footprint and takes just a few minutes to

install. Here are the steps:

	1.	 Download the Instant Client from the Technology Network area of the Oracle

web site (http://otn.oracle.com).

	2.	 Create a directory for storing the files.

	3.	U nzip the files to that directory.

	4.	S et the LD_LIBRARY_PATH and PATH variables to include the directory to

which the files were unzipped.

	5.	 Connect to a remote database, using the easy connect syntax:

$ sqlplus user/pass@'host:port/database_service_name'

This process allows you to access SQL*Plus without having to perform a large and

cumbersome Oracle install. Instant Client is available for most hardware platforms (Windows,

Mac, Linux, and Unix). SQLDeveloper will take the database name, host, and port to be able to

log in just as the instant client and this might prove to be a useful tool for them, too.

Chapter 21 Database Troubleshooting

http://otn.oracle.com

875

�Investigating Disk Fullness
To further diagnose issues (such as running low on disk space), you need to log in

directly to the remote server. Typically, you will need to log in as the owner of the Oracle

software (usually the oracle OS account). When first logging in to a box, one issue that

will cause a database to hang or have problems is a full mount point. The df command

with the human readable -h switch assists with verifying disk fullness:

$ df -h

Any mount point that is full needs to be investigated. If the mount point that contains

ORACLE_HOME becomes full, then you’ll receive errors such as this when connecting to the

database:

Linux Error: 28: No space left on device

To fix issues with a full mount point, first identify files that can be either moved or

removed. Generally, start by looking for old trace files; often, there are old files that can

be safely removed.

�Locating the Alert Log and Trace Files

The default alert log directory path has this structure:

ORACLE_BASE/diag/rdbms/LOWER(<db_unique_name>)/<instance_name>/trace

Or in SQLPlus for the directory

SQL> show parameter background

Note  You can override the default directory path for the alert log by setting the
DIAGNOSTIC_DEST initialization parameter.

Usually, the db_unique_name is the same as the instance_name. In RAC and

Data Guard environments, however, the db_unique_name is often different from the

instance_name. You can verify the directory path with this query:

SQL> select value from v$diag_info where name = 'Diag Trace';

Chapter 21 Database Troubleshooting

876

The name of the alert log follows this format:

alert_<ORACLE_SID>.log

You can also locate the alert log from the OS (whether or not the database is started)

via these OS commands:

$ cd $ORACLE_BASE

$ find . -name alert_<ORACLE_SID>.log

In the prior find command, you will need to replace the <ORACLE_SID> value with

the name of your database.

As shown in Chapter 3, it is advisable to set up an OS function that helps you

navigate to the location of the alert log. Here is such a function (you will have to modify

this to match your environment):

function bdump {

 if ["$ORACLE_SID" = "O18C"]; then

 cd /orahome/app/oracle/diag/rdbms/o18c/O18C/trace

 elif ["$ORACLE_SID" = "O12c"]; then

 �cd /orahome/app/oracle/diag/rdbms/o12c/O12C/trace elif ["$ORACLE_SID"

= "O11R2"]; then

 cd /orahome/app/oracle/diag/rdbms/o11r2/O11R2/trace

 fi

}

You can now type bdump and will be placed in the working directory that contains the

database alert log. Once you have found the correct file, inspect the most recent entries

for errors, and then look for trace files in the same directory:

$ ls -altr *.tr*

If any of these trace files are more than several days old, consider moving or

removing them.

�Removing Files

Needless to say, be very careful when removing files. When trying to resolve issues, the

last thing you want to do is make things worse. Accidentally removing one critical file can

be catastrophic. For any files you identify as candidates for deletion, consider moving

Chapter 21 Database Troubleshooting

877

(instead of deleting) them. If you have a mount point that has free space, move the files

there, and leave them for a couple of days before removing them.

Tip  Consider using the Automatic Diagnostic Repository Command Interpreter
(ADRCI) utility to purge old trace files. For more details, see the Oracle Database
Utilities Guide, which is available for download from the Technology Network area
of the Oracle web site (http://otn.oracle.com).

If you have identified files that can be removed, first create a list of the files that will

be removed before you actually delete them. Minimally, do this before removing any file:

$ ls -altr <file_name>

After viewing the results returned by the ls command, remove the file(s). This

example uses the Linux/Unix rm command to permanently delete the file:

$ rm <file_name>

You can also remove files based on the age of the file. For example, say you

determine that any trace files more than 2 days old can be safely deleted. Typically, the

find command is used in conjunction with the rm command to accomplish this task.

Before removing files, first display the results of the find command:

$ find . -type f -mtime +2 -name "*.tr*"

If you are satisfied with the list of files, then add the rm command to remove them:

$ find . -type f -mtime +2 -name "*.tr*" | xargs rm

In the prior line of code, the results of the find command are piped to the xargs

command, which executes the rm command for every file found by the find command.

This is an efficient method for deleting files based on age. However, be very sure you

know which files will be deleted.

Another file that sometimes consumes large amounts of space is the listener.log

file. Because this file is actively written to by the listener process, you cannot simply

remove it. In Chapter 19, there is an example of this job, and this job can either be

executed or look to see if it is running. If you need to preserve the contents of this file to

inspect for connection issues, first copy it to a backup location (that contains free disk

Chapter 21 Database Troubleshooting

http://otn.oracle.com

878

space), and then truncate the file. In this example the listener.log file is copied to

ora01/backups, and then the file is truncated, as follows:

$ cp listener.log /u01/backups

Next, use the cat command to replace the contents of the listener.log with the

/dev/null file (which contains zero bytes):

$ cat /dev/null > listener.log

The file needs to be replaced with nothing (/dev/null) instead of removing the file

and letting a new one get created since this file is attached to a process, the listener.

Replacing the file will allow the writes to continue to the file with the process running.

This is also what needs to be done with the alert.log.

�Inspecting the Alert Log
When dealing with database issues, the alert.log file should be one of the first files you

check for relevant error messages. You can use either OS tools or the ADRCI utility to

view the alert.log file and corresponding trace files.

�Viewing the Alert Log via OS Tools

After navigating to the directory that contains the alert.log, you can see the most

current messages by viewing the end (furthest down) of the file (in other words, the most

current messages are written to the end of the file). To view the last 50 lines, use the tail

command:

$ tail -50 alert_<SID>.log

You can continuously view the most current entries by using the f switch:

$ tail -f alert_<SID>.log

You can also directly open the alert.log with an OS editor (such as vi):

$ vi alert_<SID>.log

Sometimes, it is handy to define a function that will allow you to open the alert.log,

regardless of your current working directory. The next few lines of code define a function

Chapter 21 Database Troubleshooting

879

that locates and opens the alert.log with the view command in either an 11g or a 10g

environment:

#---#

view alert log

 function valert {

 if ["$ORACLE_SID" = "O18C"]; then

 view /orahome/app/oracle/diag/rdbms/o18c/O18C/trace/alert_O18C.log

elif ["$ORACLE_SID" = "O12C"]; then

 �view /orahome/app/oracle/diag/rdbms/o12c/O12C/trace/alert_O12C.log

elif ["$ORACLE_SID" = "O11R2"]; then

 view /orahome/app/oracle/diag/rdbms/o11r2/O11R2/trace/alert_O11R2.log

 fi

 } # valert

#---#

Usually, the prior lines of code are placed in a startup file so that the function is

automatically defined when you log in to a server. Once the function is defined, you can

view the alert.log by typing this command:

$ valert

When inspecting the end of the alert.log, look for errors that indicate these

types of issues:

•	 Archiver process hung, owing to inadequate disk space

•	 File system out of space

•	 Tablespace out of space

•	 ORA- 600 or 7445 errors

•	 Running out of memory in the buffer cache or shared pool

•	 Media error indicating that a data file is missing or damaged

•	 Error indicating an issue with writing an archivelog; for example,

ORA-19502: write error on file "/ora01/fra/o18c/archivelog/...

Chapter 21 Database Troubleshooting

880

For a serious error message listed in the alert.log file, there is almost always a

corresponding trace file. For example, here is the accompanying message for the prior

error message:

Errors in file /orahome/app/oracle/diag/rdbms/o18c/O18C/trace/O18C_

ora_5665.trc

Inspecting the trace file will often (but not always) provide additional insight into

the issue.

�Viewing the alert.log, Using the ADRCI Utility

You can use the ADRCI utility to view the contents of the alert.log file. Run the

following command from the OS to start the ADRCI utility:

$ adrci

You should be presented with a prompt:

adrci>

Use the SHOW ALERT command to view the alert.log file:

adrci> show alert

If there are multiple Oracle homes on the server, then you will be prompted to

choose which alert.log you want to view. The SHOW ALERT command will open the

alert.log with the utility that has been set as the default editor for your OS. On Linux/

Unix systems, the default editor is derived from the OS EDITOR variable (which is usually

set to a utility such as vi).

Tip  When presented with the alert.log, if you are unfamiliar with vi and want
to exit, first press the Escape key, then press and hold down the Shift key while
pressing the colon (:) key. Next, type q!. That should exit you out of the vi editor
and back to the ADRCI prompt.

You can override the default editor within ADRCI, using the SET EDITOR command.

This example sets the default editor to emacs:

adrci> set editor emacs

Chapter 21 Database Troubleshooting

881

You can view the last N number of lines in the alert.log with the TAIL option. The

following command shows the last 50 lines of the alert.log:

adrci> show alert -tail 50

If you have multiple Oracle homes, you may see a message such as this:

DIA-48449: Tail alert can only apply to single ADR home

The ADRCI utility does not assume that you want to work with one Oracle home over

another on a server. To specifically set the Oracle home for the ADRCI utility, first use the

SHOW HOMES command to display all available Oracle homes:

adrci> show homes

Here is some sample output for this server:

diag/rdbms/o18c/O18C

diag/rdbms/o18cp/O18CP

Now, use the SET HOMEPATH command. This sets the HOMEPATH to diag/rdbms/

e64208/E64208:

adrci> set homepath diag/rdbms/o18c/O18C

To continuously display the end of the file, use this command:

adrci> show alert -tail -f

Press Ctrl+C to break off continuously viewing the alert.log file. To display lines

from the alert.log that contain specific strings, use the MESSAGE_TEXT LIKE command.

This example shows messages that contain the ORA-27037 string:

adrci> show alert -p "MESSAGE_TEXT LIKE '%ORA-27037%'"

You will be presented with a file that contains all the lines in the alert.log that

match the specified string.

Tip S ee the Oracle Database Utilities Guide for full details on how to use the
ADRCI utility.

Chapter 21 Database Troubleshooting

882

�Identifying Bottlenecks via OS Utilities
In the Oracle world, there is sometimes a tendency to assume that you have a dedicated

machine for one Oracle database. Furthermore, this database is the latest version of

Oracle, fully patched, and monitored by a sophisticated graphical tool. This database

environment is completely automated and kept trouble free through the use of visual

tools that quickly pinpoint problems and efficiently isolate and resolve issues. If you live

in this ideal world, then you probably do not need any of the material in this chapter.

Let me paint a slightly different picture. An environment in which one machine has

a dozen databases running on it. There’s a MySQL database; a PostgreSQL database;

and a mix of Oracle version 11g, 12c, and 18c databases. Furthermore, many of these

old databases are on nonterminal releases of Oracle and are therefore not supported

by Oracle Support. There are no plans to upgrade any of these unsupported databases

because the business cannot take the risk of potentially breaking the applications

that depend on these databases. Note: the security risk to the business should also be

understood at this point; nevertheless, multiple database platforms are a possibility.

So, what does one do in this type of environment when somebody reports that a

database application is performing poorly? In this scenario, it is often something in a

different database that is causing other applications on the box to behave poorly. It may

not be an Oracle process or an Oracle database that is causing problems.

In this situation, it is almost always more effective to start investigating issues by

using an OS tool. The OS tools are database agnostic. OS performance utilities help

pinpoint where the most resources are consumed, regardless of database vendor or

version.

In Linux/Unix environments, there are several tools available for monitoring

resource usage. Table 21-1 summarizes the most commonly used OS utilities for

diagnosing performance issues. Being familiar with how these OS commands work

and how to interpret the output will allow you to better diagnose server performance

issues, especially when it is a non-Oracle or even a non-database process that is tanking

performance for every other application on the box.

Chapter 21 Database Troubleshooting

883

When diagnosing performance issues, it is useful to determine where the OS is

constrained. For instance, try to identify whether the issue is related to CPU, memory, or

I/O, or a combination of these.

�Identifying System Bottlenecks
Whenever there are application performance issues or availability problems, seemingly

(from the DBA’s perspective), the first question asked is, “What’s wrong with the

database?” Regardless of the source of the problem, the onus is often on the DBA

to establish whether the database is behaving well. I usually approach this issue by

determining which system-wide resources are being consumed. There are two Linux/

Unix OS tools that are particularly useful for displaying system-wide resource usage:

•	 vmstat

•	 top

Table 21-1.  Performance and Monitoring Utilities

Tool Purpose

vmstat Monitors processes, CPU, memory, and disk I/O bottlenecks

top Identifies sessions consuming the most resources

watch Periodically runs another command

ps Identifies highest CPU- and memory-consuming sessions; used to identify Oracle

sessions consuming the most system resources

mpstat Reports CPU statistics

sar Displays CPU, memory, disk I/O, and network usage, both current and historical

free Displays free and used memory

df Reports on free disk space

du Displays disk usage

iostat Displays disk I/O statistics

netstat Reports on network statistics

Chapter 21 Database Troubleshooting

884

The vmstat (virtual memory statistics) tool is intended to help you quickly identify

bottlenecks on your server. The top utility provides a dynamic, real-time view of system

resource usage. These two utilities are discussed in the next two sections.

�Using vmstat

The vmstat utility displays real-time performance information about processes,

memory, paging, disk I/O, and CPU usage. This example shows using vmstat to display

the default output, with no options specified:

$ vmstat

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

 r b swpd free buff cache si so bi bo in cs us sy id wa

14 0 52340 25272 3068 1662704 0 0 63 76 9 31 15 1 84 0

Here are some general heuristics you can use when interpreting the output of vmstat:

•	 If the wa (time waiting for I/O) column is high, this is usually an

indication that the storage subsystem is overloaded.

•	 If b (processes blocked) is consistently greater than 0, then you may

not have enough CPU processing power.

•	 If so (memory swapped out to disk) and si (memory swapped in

from disk) are consistently greater than 0, you may have a memory

bottleneck.

By default, only one line of server statistics is displayed when running vmstat

(without supplying any options). This one line of output gives average statistics

calculated from the last time the system was rebooted. This is fine for a quick snapshot.

However, if you want to gather metrics over a period of time, use vmstat with this syntax:

$ vmstat <interval in seconds> <number of intervals>

While in this mode, vmstat reports statistics, sampling from one interval to the next.

For example, if you wanted to report system statistics every 2 seconds, for 10 intervals,

you’d issue this command:

$ vmstat 2 10

Chapter 21 Database Troubleshooting

885

You can also send the vmstat output to a file. This is useful for analyzing historical

performance over a period of time. This example samples statistics every 5 seconds, for a

total of 60 reports, and records the output in a file:

$ vmstat 5 60 > vmout.perf

Additionally, the vmstat utility can be used with the watch tool. The watch command

is used to execute another program on a periodic basis. In this example, watch runs the

vmstat command every 5 seconds and highlights on the screen any differences between

each snapshot:

$ watch –n 5 –d vmstat

Every 5.0s: vmstat Thu Aug 9 13:27:57 2007

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

 r b swpd free buff cache si so bi bo in cs us sy id wa

 0 0 144 15900 64620 1655100 0 0 1 7 16 4 0 0 99 0

When running vmstat in watch -d (differences) mode, you’ll visually see changes on

your screen, from snapshot to snapshot. To exit watch, press Ctrl+C.

Note that the default unit of measure for the memory columns of vmstat is kilobytes.

If you want to view the memory statistics in megabytes, then use the S m (statistics in

megabytes) option:

$ vmstat –S m

Tip U se the man vmstat or vmstat --help command for further documentation
on this utility.

�Using top

Another tool for identifying resource-intensive processes is the top command. Use this

utility to quickly identify which processes are the highest consumers of resources on the

server. By default, top will repetitively refresh (every 3 seconds) information regarding

the most CPU-intensive processes. The simplest way to run top is as follows:

$ top

Chapter 21 Database Troubleshooting

886

Here is a fragment of the output:

top - 13:34:32 up 19 min, 2 users, load average: 0.05, 0.16, 0.24

Tasks: 176 total, 1 running, 175 sleeping, 0 stopped, 0 zombie

Cpu(s): 2.0%us, 0.7%sy, 0.0%ni, 91.6%id, 5.7%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 787028k total, 748744k used, 38284k free, 1836k buffers

Swap: 1605624k total, 31896k used, 1573728k free, 377668k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 4683 root 20 0 279m 14m 7268 S 2.0 1.9 0:01.61 gnome-terminal

 3826 root 20 0 218m 9944 4200 S 1.7 1.3 0:02.80 Xorg

 3592 oracle -2 0 601m 18m 15m S 0.7 2.4 0:09.36 ora_vktm_o12c

The process identifiers (PIDs) of the top-consuming sessions are listed in the first

column (PID). You can use this information to see if a PID maps to a database process

(see the next section, “Mapping an OS Process to an SQL Statement,” for details on

mapping a PID to a database process).

While top is running, you can interactively change its output. For example, if you

type the redirection character (>), this will move the column that top is sorting one

position to the right. Table 21-2 lists some key features that you can use to alter the top

display to the desired format.

Table 21-2.  Commands to Interactively Change the top Output

Command Function

Spacebar Immediately refreshes the output

< or > Moves the sort column one position to the left or to the right. By default, top sorts on

the CPU column.

D Changes the refresh time

R Reverses the sort order

Z Toggles the color output

H Displays the Help menu

F or O Chooses a sort column

Chapter 21 Database Troubleshooting

887

Type q, or press Ctrl+C, to exit top. Table 21-3 describes several of the columns

displayed in the default output of top.

Table 21-3.  Column Descriptions of the top Output

Column Description

PID Unique process identifier

USER OS username running the process

PR Priority of the process

NI Nice value or process. Negative value means high priority; positive value means low

priority.

VIRT Total virtual memory used by process

RES Nonswapped physical memory used by process

SHR Shared memory used by process

S Process status

CPU Processes percentage of CPU consumption since last screen refresh

MEM Percentage of physical memory the process is consuming

TIME Total CPU time used by process

TIME+ Total CPU time, showing hundredths of seconds, used by process

COMMAND Command line used to start a process

You can also run top using the b (batch mode) option and send the output to a file

for later analysis:

$ top –b > tophat.out

While running in batch mode, the top command will run until you kill it (with

Ctrl+C) or until it reaches a specified number of iterations. You could run the previous

top command in batch mode, with a combination of nohup and & to keep it running,

regardless of whether you were logged in to the system. The danger there is that you

might forget about it and eventually create a very large output file (and an angry SA).

If you have a particular process that you are interested in monitoring, use the p

option to monitor a PID or the U option to monitor a username. You can also specify a

Chapter 21 Database Troubleshooting

888

delay and the number of iterations by using the d and -n options. The following example

monitors the oracle user with a delay of 5 seconds, for 25 iterations:

$ top –u oracle –d 5 –n 25

Tip U se the man top or top --help command to list all the options available
in your OS version.

�Mapping an Operating System Process to an SQL Statement
When identifying OS processes, it is useful to view which processes are consuming the

greatest amount of CPU. If the resource hog is a database process, it is also useful to

map the OS process to a database job or query. To determine the ID of the processes

consuming the most CPU resources, use a command such as ps, like so:

$ ps -e -o pcpu,pid,user,tty,args | sort -n -k 1 -r | head

Here is a snippet of the output:

14.6 24875 oracle ? oracleo18c (DESCRIPTION=(LOCAL=YES)(ADDRESS=...

 0.8 21613 oracle ? ora_vktm_o18c

 0.1 21679 oracle ? ora_mmon_o18c

From the output, you can see that the OS session 24875 is the top consumer of

CPU resources. The output also indicates that the process is associated with the o12c

database. With that information in hand, log in to the appropriate database, and use the

following SQL statement to determine what type of program is associated with the OS

process 24875:

SQL> select

 'USERNAME : ' || s.username|| chr(10) ||

 'OSUSER : ' || s.osuser || chr(10) ||

 'PROGRAM : ' || s.program || chr(10) ||

 'SPID : ' || p.spid || chr(10) ||

 'SID : ' || s.sid || chr(10) ||

 'SERIAL# : ' || s.serial# || chr(10) ||

Chapter 21 Database Troubleshooting

889

 'MACHINE : ' || s.machine || chr(10) ||

 'TERMINAL : ' || s.terminal

from v$session s,

 v$process p

where s.paddr = p.addr

and p.spid = &PID_FROM_OS;

When you run the command, SQL*Plus will prompt you for the value to use in place

of &PID_FROM_OS. In this example, you’ll enter 24875. Here is the relevant output:

USERNAME : MV_MAINT

OSUSER : oracle

PROGRAM : sqlplus@speed2 (TNS V1-V3)

SPID : 24875

SID : 111

SERIAL# : 899

MACHINE : speed2

TERMINAL : pts/4

In this output the PROGRAM value indicates that an SQL*Plus session is the program

consuming the inordinate amount of resources on the server. Next, run the following

query to display the SQL statement associated with the OS PID (in this example, the

server process identifier [SPID] is 24875):

SQL> select

 'USERNAME : ' || s.username || chr(10) ||

 'OSUSER : ' || s.osuser || chr(10) ||

 'PROGRAM : ' || s.program || chr(10) ||

 'SPID : ' || p.spid || chr(10) ||

 'SID : ' || s.sid || chr(10) ||

 'SERIAL# : ' || s.serial# || chr(10) ||

 'MACHINE : ' || s.machine || chr(10) ||

 'TERMINAL : ' || s.terminal || chr(10) ||

 'SQL TEXT : ' || sa.sql_text

from v$process p,

v$session s,

v$sqlarea sa

Chapter 21 Database Troubleshooting

890

where p.addr = s.paddr

and s.username is not null

and s.sql_address = sa.address(+)

and s.sql_hash_value = sa.hash_value(+)

and p.spid= &PID_FROM_OS;

The results show the resource-consuming SQL as part of the output, in the SQL TEXT

column. Here is a snippet of the output:

USERNAME : MV_MAINT

OSUSER : oracle

PROGRAM : sqlplus@speed2 (TNS V1-V3)

SPID : 24875

SID : 111

SERIAL# : 899

MACHINE : speed2

TERMINAL : pts/4

SQL TEXT : select a.table_name from dba_tables a,dba_indexes b,dba_objects c...

When you run multiple databases on one server and are experiencing server

performance issues, it can sometimes be difficult to pinpoint which database and

associated process are causing the problems. In these situations, you have to use an OS

tool to identify the top resource-consuming sessions on the system.

In a Linux/Unix environment, you can use utilities such as ps, top, or vmstat to

identify top-consuming OS processes. The ps utility is handy because it lets you identify

processes consuming the most CPU or memory. The previous ps command identified

the top-consuming CPU processes. Here, it is used to identify the top Oracle memory-

using processes:

$ ps -e -o pmem,pid,user,tty,args | grep -i oracle | sort -n -k 1 -r | head

Once you have identified a top-consuming process associated with a database, you

can query the data dictionary views, based on the SPID, to identify what the database

process is executing.

Chapter 21 Database Troubleshooting

891

OS WATCHER

Oracle provides a collection of scripts that gather and store metrics for CPU, memory, disk, and

network usage. On Linux/Unix systems, the OS Watcher tool suite automates the gathering of

statistics, using tools such as top, vmstat, iostat, mpstat, netstat, and traceroute.

This utility also has an optional graphical component for visually displaying performance

metrics.

You can obtain OS Watcher from Oracle’s MOS web site. For the Linux/Unix version, see MOS

note 301137.1 or the document titled “OS Watcher User Guide.” For details on the Windows

version of OS Watcher, see MOS note 433472.1.

�Finding Resource-Intensive SQL Statements
One of the best ways to isolate a poorly performing query is to have a user or developer

complain about a specific SQL statement. In this situation, there is no detective work

involved. You can directly pinpoint the SQL query that is in need of tuning.

However, you do not often have the luxury of a human letting you know specifically

where to look when investigating performance issues. There are a number of methods

for determining which SQL statements are consuming the most resources in a database:

•	 Real-time execution statistics

•	 Near real-time statistics

•	 Oracle performance reports

These techniques are described in the next several sections.

�Monitoring Real-Time SQL Execution Statistics
You can use the following query to select from the V$SQL_MONITOR to monitor the near

real-time resource consumption of SQL queries:

SQL> select * from (

select a.sid session_id, a.sql_id

,a.status

,a.cpu_time/1000000 cpu_sec

Chapter 21 Database Troubleshooting

892

,a.buffer_gets, a.disk_reads

,b.sql_text sql_text

from v$sql_monitor a

 ,v$sql b

where a.sql_id = b.sql_id

order by a.cpu_time desc)

where rownum <=20;

The output for this query does not fit easily onto a page. Here is a subset of the

output:

SESSION_ID SQL_ID STATUS CPU_SEC BUFFER_GETS DISK_READS

---------- ------------- --------- -------- ----------- -----------

SQL_TEXT

 139 d07nngmx93rq7 DONE 331.88 5708 3490 select

count(*)

 130 9dtu8zn9yy4uc EXECUTING 11.55 5710 248 select

task_name

In the query, an inline view is used to first retrieve all records and organize them

by CPU_TIME, in descending order. The outer query then limits the result set to the top

20 rows, using the ROWNUM pseudocolumn. You can modify the previous query to order

the results by the statistic of your choice or to display only the queries that are currently

executing. For example, the next SQL statement monitors currently executing queries,

ordered by the number of disk reads:

SQL> select * from (

select a.sid session_id, a.sql_id, a.status

,a.cpu_time/1000000 cpu_sec

,a.buffer_gets, a.disk_reads

,substr(b.sql_text,1,35) sql_text

from v$sql_monitor a

 ,v$sql b

where a.sql_id = b.sql_id

and a.status='EXECUTING'

order by a.disk_reads desc)

where rownum <=20;

Chapter 21 Database Troubleshooting

893

The statistics in V$SQL_MONITOR are updated every second, so you can view resource

consumption as it changes. These statistics are gathered by default if an SQL statement

runs in parallel or consumes more than 5 seconds of CPU or I/O time.

The V$SQL_MONITOR view includes a subset of statistics contained in the V$SQL,

V$SQLAREA, and V$SQLSTATS views. The V$SQL_MONITOR view displays real-time statistics

for each execution of a resource-intensive SQL statement, whereas VSQL, VSQLAREA,

and V$SQLSTATS contain cumulative sets of statistics resulting from several executions of

an SQL statement.

Once the SQL statement execution ends, the runtime statistics are not immediately

flushed from V$SQL_MONITOR. Depending on activity in your database, the statistics can

be available for some time. If you have a very active database, however, the statistics can

potentially be flushed soon after the query finishes.

Tip  You can uniquely identify the execution of an SQL statement in
V$SQL_MONITOR from a combination of the following columns: SQL_ID,
SQL_EXEC_START, SQL_EXEC_ID.

You can also query views such as V$SQLSTATS to determine which SQL statements

are consuming an inordinate amount of resources. For example, use the following query

to identify the ten most resource-intensive queries, based on CPU time:

SQL> select * from(

select s.sid, s.username, s.sql_id

,sa.elapsed_time/1000000, sa.cpu_time/1000000

,sa.buffer_gets, sa.sql_text

from v$sqlarea sa

 ,v$session s

where s.sql_hash_value = sa.hash_value

and s.sql_address = sa.address

and s.username is not null

order by sa.cpu_time desc)

where rownum <= 10;

In the prior query, an inline view is used to first retrieve all records and sort the

output by CPU_TIME, in descending order. The outer query then limits the result set to the

top 10 rows, using the ROWNUM pseudocolumn. The query can be easily modified to sort

Chapter 21 Database Troubleshooting

894

by a column other than CPU_TIME. For instance, if you want to report resource usage by

BUFFER_GETS, simply substitute BUFFER_GETS for CPU_TIME in the ORDER BY clause. The

CPU_TIME column is calculated in microseconds; to convert it to seconds, it is divided by

1,000,000.

Tip  Keep in mind that V$SQLAREA contains statistics that are cumulative for the
duration for a given session. So, if a session runs an identical query several times,
the statistics for that connection will be the total for all the runs of a query. In
contrast, V$SQL_MONITOR shows statistics that have accumulated for the current
run of a given SQL statement. Therefore, each time a query runs, new statistics are
reported for that query in V$SQL_MONITOR.

�Running Oracle Diagnostic Utilities
Oracle provides several utilities for diagnosing database performance issues:

•	 Automatic workload repository (AWR)

•	 Automatic database diagnostic monitor (ADDM)

•	 Active session history (ASH)

•	 Statspack

AWR, ADDM, and ASH were introduced many years ago, in Oracle Database 10g.

These tools provide advanced reporting capabilities that allow you to troubleshoot and

resolve performance issues. These new utilities require an extra license from Oracle. The

older Statspack utility is free and requires no license.

All these tools rely heavily on the underlying V$ dynamic performance views. Oracle

maintains a vast collection of these views, which track and accumulate metrics of

database performance. For example, if you run the following query, you will notice that

for Oracle Database 18c, there are approximately 760 V$ views:

SQL> select count(*) from v$fixed_table where name like 'V$%';

 COUNT(*)

 767

Chapter 21 Database Troubleshooting

895

V$FIXED_TABLE provides information about the dynamic performance views

including the underlying X$ tables and GV$ views for RAC environments.

The Oracle performance utilities rely on periodic snapshots gathered from these

internal performance views. Two of the most useful views, with regard to performance

statistics, are the V$SYSSTAT and V$SESSTAT views. The V$SYSSTAT view offers more than

800 types of database statistics. This V$SYSSTAT view contains information about the

entire database, whereas the V$SESSTAT view contains statistics on individual sessions.

A few of the values in the V$SYSSTAT and V$SESSTAT views represent the current usage of

the resource. These values are

•	 Opened cursors current

•	 Logins current

•	 Session cursor cache current

•	 Work area memory allocated

The rest of the values are cumulative. The values in V$SYSSTAT are cumulative for

the entire database, from the time the instance was started. The values in V$SESSTAT

are cumulative per session, from the time the session was started. Some of the more

important performance-related cumulative values are these:

•	 CPU used

•	 Consistent gets

•	 Physical reads

•	 Physical writes

For the cumulative statistics, the way to measure periodic usage is to note the value

of a statistic at a starting point, then note the value again at a later point in time and

capture the delta. This is the approach used by the Oracle performance utilities, such

as AWR and Statspack. Periodically, Oracle will take snapshots of the dynamic wait

interface views and store them in a repository.

The following sections detail how to access AWR, ADDM, ASH, and Statspack via the

SQL command line.

Chapter 21 Database Troubleshooting

896

Tip  You can access AWR, ADDM, and ASH from the Enterprise Manager. If you
have access to the Enterprise Manager, you will find the interface fairly intuitive
and visually helpful.

�Using AWR

An AWR report is good for viewing the entire system’s performance and identifying the

top resource-consuming SQL queries. Run the following script to generate an AWR

report:

SQL> @?/rdbms/admin/awrrpt

From the AWR output, you can identify top resource-consuming statements by

examining the “SQL Ordered by Elapsed Time” or “SQL Ordered by CPU Time” section

of the report. Here is some sample output:

SQL ordered by CPU Time DB/Inst: O18C/o18c Snaps: 1668-1669

-> Resources reported for PL/SQL code includes the resources used by all SQL

 statements called by the code.

-> %Total - CPU Time as a percentage of Total DB CPU

-> %CPU - CPU Time as a percentage of Elapsed Time

-> %IO - User I/O Time as a percentage of Elapsed Time

-> Captured SQL account for 3.0E+03% of Total CPU Time (s): 0

-> Captured PL/SQL account for 550.9% of Total CPU Time (s): 0

 CPU CPU per Elapsed

 Time (s) Executions Exec (s) %Total Time (s) %CPU %IO SQL Id

---------- ------------ ---------- ------ ---------- ------ ----- --------------

 3.2 1 3.24 930.5 10.5 30.9 74.9 93jktd5vtxb98

Oracle will automatically take a snapshot of your database once an hour and

populate the underlying AWR tables that store the statistics. By default, 7 days of statistics

are retained.

Chapter 21 Database Troubleshooting

897

You can also generate an AWR report for a specific SQL statement by running the

awrsqrpt.sql report. When you run the following script, you will be prompted for the

SQL_ID of the query of interest:

SQL> @?/rdbms/admin/awrsqrpt.sql

�Using ADDM

The ADDM report provides useful information on which SQL statements are candidates

for tuning. Use the following SQL script to generate an ADDM report:

SQL> @?/rdbms/admin/addmrpt

Look for the section of the report labeled “SQL Statements Consuming Significant

Database Time.” Here is some sample output:

FINDING 2: 29% impact (65043 seconds)

SQL statements consuming significant database time were found.

 RECOMMENDATION 1: SQL Tuning, 6.7% benefit (14843 seconds)

 ACTION: Investigate the SQL statement with SQL_ID "46cc3t7ym5sx0" for

The ADDM report analyzes data in the AWR tables to identify potential bottlenecks

and high resource-consuming SQL queries.

�Using ASH

The ASH report allows you to focus on short-lived SQL statements that have been

recently run and that may have only executed for briefly. Run the following script to

generate an ASH report:

SQL> @?/rdbms/admin/ashrpt

Search the output for the section labeled “Top SQL.” Here is some sample output:

Top SQL with Top Events DB/Inst: O18C/o18c (Jan 30 14:49 to 15:14)

Chapter 21 Database Troubleshooting

898

 Sampled #

 SQL ID Planhash of Executions % Activity

----------------------- -------------------- -------------------- --------------

Event % Event Top Row Source % RwSrc

------------------------------ ------- --------------------------------- -------

 dx5auh1xb98k5 1677482778 1 46.57

CPU + Wait for CPU 46.57 HASH JOIN 23.53

The previous output indicates that the query is waiting for CPU resources. In this

scenario, the problem may be that another query is consuming the CPU resources.

When is the ASH report more useful than the AWR or ADDM report? The AWR and

ADDM output shows top-consuming SQL in terms of total database time. If the SQL

performance problem is transient and short-lived, it may not appear on the AWR and

ADDM reports. In these situations, an ASH report is more useful.

�Using Statspack

If you do not have a license to use the AWR, ADDM, and ASH reports, the free Statspack

utility can help you identify poorly performing SQL statements. Run the following script

as SYS to install Statspack:

SQL> @?/rdbms/admin/spcreate.sql

The prior script creates a PERFSTAT user that owns the Statspack repository. Once

crated, then connect as the PERFSTAT user, and run this script to enable the automatic

gathering of Statspack statistics:

SQL> @ ?/rdbms/admin/spauto.sql

After some snapshots have been gathered, you can run the following script as the

PERFSTAT user to create a Statspack report:

SQL> @?/rdbms/admin/spreport.sql

Once the report is created, search for the section labeled “SQL Ordered by CPU.”

Here is some sample output:

SQL ordered by CPU DB/Inst: O18C/o18c Snaps: 30-31

-> Total DB CPU (s): 1,432

-> Captured SQL accounts for 100.5% of Total DB CPU

-> SQL reported below exceeded 1.0% of Total DB CPU

Chapter 21 Database Troubleshooting

899

 CPU CPU per Elapsd Old

 Time (s) Executions Exec (s) %Total Time (s) Buffer Gets Hash Value

---------- ------------ ---------- ------ ---------- --------------- ----------

 1430.41 1 1430.41 99.9 1432.49 482 690392559

Module: SQL*Plus

select a.table_name from my_tables

Tip S ee the ORACLE_HOME/rdbms/admin/spdoc.txt file for Statspack
documentation.

�Detecting and Resolving Locking Issues
Sometimes, a developer or application user will report that a process that normally takes

seconds to run is now taking several minutes and does not appear to be doing anything.

In these situations, the problem is usually one of the following:

•	 Space-related issue (e.g., the archive redo destination is full and has

suspended all transactions).

•	 A process has a lock on a table row and is not committing or rolling

back, thus preventing another session from modifying the same row.

In this scenario, first check the alert.log to see if there are any obvious issues that

have occurred recently (such as a tablespace’s not being able to allocate another extent).

If there is nothing obvious in the alert.log file, run an SQL query to look for locking

issues. The query listed here is a more sophisticated version of the lock-detecting script

introduced in Chapter 3. This query shows information such as the locking session SQL

statement and the waiting SQL statement:

SQL> set lines 80

SQL> col blkg_user form a10

SQL> col blkg_machine form a10

SQL> col blkg_sid form 99999999

SQL> col wait_user form a10

SQL> col wait_machine form a10

SQL> col wait_sid form 9999999

Chapter 21 Database Troubleshooting

900

SQL> col obj_own form a10

SQL> col obj_name form a10

SQL> col blkg_sql form a50

SQL> col wait_sql form a50

--

SQL> select

 s1.username blkg_user, s1.machine blkg_machine

,s1.sid blkg_sid, s1.serial# blkg_serialnum

,s1.process blkg_OS_PID

,substr(b1.sql_text,1,50) blkg_sql

,chr(10)

,s2.username wait_user, s2.machine wait_machine

,s2.sid wait_sid, s2.serial# wait_serialnum

,s2.process wait_OS_PID

,substr(w1.sql_text,1,50) wait_sql

,lo.object_id blkd_obj_id

,do.owner obj_own, do.object_name obj_name

from v$lock l1

 ,v$session s1

 ,v$lock l2

 ,v$session s2

 ,v$locked_object lo

 ,v$sqlarea b1

 ,v$sqlarea w1

 ,dba_objects do

where s1.sid = l1.sid

and s2.sid = l2.sid

and l1.id1 = l2.id1

and s1.sid = lo.session_id

and lo.object_id = do.object_id

and l1.block = 1

and s1.prev_sql_addr = b1.address

and s2.sql_address = w1.address

and l2.request > 0;

Chapter 21 Database Troubleshooting

901

The output from this query does not fit well on one page. When running this query,

you will have to format it so that it is on your screen. Here is some sample output,

indicating that the SALES table is locked and that another process is waiting for the lock

to be released:

BLKG_USER BLKG_MACHI BLKG_SID BLKG_SERIALNUM BLKG_OS_PID

---------- ---------- --------- -------------- ------------------------

BLKG_SQL C WAIT_USER WAIT_MACHI

-- - ---------- ----------

WAIT_SID WAIT_SERIALNUM WAIT_OS_PID

-------- -------------- ------------------------

WAIT_SQL BLKD_OBJ_ID OBJ_OWN

-- ----------- ----------

OBJ_NAME

MV_MAINT speed2 32 487 26216

update sales set sales_amt=100 where sales_id=1 MV_MAINT speed2

 116 319 25851

This situation is typical when applications do not explicitly issue a COMMIT or

ROLLBACK at appropriate times in the code. This leaves a lock on a row and prevents a

transaction from continuing until the lock is released. In this scenario, you can try to

locate the user that is blocking the transaction and see if the user needs to click a button

that says something like “Commit your changes.” If that is not possible, you can manually

kill one of the sessions. Keep in mind that terminating a session may have unforeseen

effects (such as rolling back data that a user thought was committed).

If you decide to kill one of the user sessions, you need to identify the SID and serial

number of the session you want to terminate. Once identified, use the ALTER SYSTEM

KILL SESSION statement to terminate the session:

SQL> alter system kill session '32,487';

Again, be careful when killing sessions. Ensure that you know the impact of killing a

session and thereby rolling back any active transactions currently open in that session.

Chapter 21 Database Troubleshooting

902

The other way to kill a session is to use an OS command such as KILL. In the prior

output, you can identify the OS processes from the BLKG_OS_PID and WAIT_OS_PID

columns. Before you terminate a process from the OS, ensure that the process is not critical.

For this example, to terminate the blocking OS process, first check the blocking PID:

$ ps -ef | grep 26216

Here is some sample output:

oracle 26222 26216 0 16:49 ? 00:00:00 oracleo12c

Next, use the KILL command, as shown:

$ kill -9 26216

The KILL command will unceremoniously terminate a process. Any open transactions

associated with the process will be rolled back by the Oracle process monitor.

�Resolving Open-Cursor Issues
The OPEN_CURSORS initialization parameter determines the maximum number of cursors

a session can have open. This setting is per session. The default value of 50 is usually

too low for any application. When an application exceeds the number of open cursors

allowed, the following error is thrown:

ORA-01000: maximum open cursors exceeded

Usually, the prior error is encountered when

•	 OPEN_CURSORS initialization parameter is set too low

•	 Developers write code that does not close cursors properly

To investigate this issue, first determine the current setting of the parameter:

SQL> show parameter open_cursors;

If the value is less than 300, consider setting it higher. It is typical to set this value to

1,000 for busy OLTP systems. You can dynamically modify the value while your database

is open, as shown:

SQL> alter system set open_cursors=1000;

Chapter 21 Database Troubleshooting

903

If you are using an spfile, consider making the change both in memory and in the

spfile, at the same time:

SQL> alter system set open_cursors=1000 scope=both;

After setting OPEN_CURSORS to a higher value, if the application continues to exceed

the maximum value, you probably have an issue with code that is not properly closing

cursors.

If you work in an environment that has thousands of connections to the database,

you may want to view only the top cursor-consuming sessions. The following query uses

an inline view and the pseudocolumn ROWNUM to display the top 20 values:

SQL> select * from (

select a.value, c.username, c.machine, c.sid, c.serial#

from v$sesstat a

 ,v$statname b

 ,v$session c

where a.statistic# = b.statistic#

and c.sid = a.sid

and b.name = 'opened cursors current'

and a.value != 0

and c.username IS NOT NULL

order by 1 desc,2)

where rownum < 21;

If a single session has more than 1,000 open cursors, then the code is probably

written such that the cursors are not closing. When the limit is reached, somebody

should inspect the application code to determine if a cursor is not being closed.

Tip I t is recommended that you query V$SESSION instead of V$OPEN_CURSOR
to determine the number of open cursors. V$SESSION provides a more accurate
count of the cursors currently open.

Chapter 21 Database Troubleshooting

904

�Troubleshooting Undo Tablespace Issues
Problems with the undo tablespace are usually of the following nature:

•	 ORA-01555: snapshot too old

•	 ORA-30036: unable to extend segment by ... in undo

tablespace 'UNDOTBS1'

The prior errors can be caused by many different issues, such as incorrect sizing of

the undo tablespace or poorly written SQL or PL/SQL code. Snapshot being too old can

also occur during exports due to updates to very large tables, and normally seen when

either the undo retention or size is not properly set. For an export, it is an easy fix to

rerun at a quieter time.

�Determining if Undo Is Correctly Sized
Suppose you have a long-running SQL statement that is throwing an ORA-01555:

snapshot too old error, and you want to determine if adding space to the undo

tablespace might help alleviate the issue. Run this next query to identify potential issues

with your undo tablespace. The query checks for issues that have occurred within the

last day:

SQL> select to_char(begin_time,'MM-DD-YYYY HH24:MI') begin_time

,ssolderrcnt ORA_01555_cnt, nospaceerrcnt no_space_cnt

,txncount max_num_txns, maxquerylen max_query_len

,expiredblks blck_in_expired

from v$undostat

where begin_time > sysdate - 1

order by begin_time;

Here is some sample output. Part of the output has been omitted to fit this on the page:

BEGIN_TIME ORA_01555_CNT NO_SPACE_CNT MAX_NUM_TXNS BLCK_IN_EXPIRED

---------------- ------------- ------------ ------------ ---------------

01-31-2013 08:21 0 0 51 0

01-31-2013 08:31 0 0 0 0

01-31-2013 12:11 0 0 629 256

Chapter 21 Database Troubleshooting

905

The ORA_01555_CNT column indicates the number of times your database has

encountered the ORA-01555: snapshot too old error. If this column reports a nonzero

value, you need to do one or more of the following tasks:

•	 Ensure that code does not contain COMMIT statements within cursor

loops.

•	 Tune the SQL statement throwing the error so that it runs faster.

•	 Ensure that you have good statistics (so that your SQL runs

efficiently).

•	 Increase the UNDO_RETENTION initialization parameter.

The NO_SPACE_CNT column displays the number of times space was requested in

the undo tablespace. In this example, there were no such requests. If the NO_SPACE_CNT

is reporting a nonzero value, however, you may need to add more space to your undo

tablespace.

A maximum of 4 days’ worth of information is stored in the V$UNDOSTAT view. The

statistics are gathered every 10 minutes, for a maximum of 576 rows in the table. If you

have stopped and started your database within the last 4 days, this view will only contain

information from the time you last started your database.

Another way to get advice on the undo tablespace sizing is to use the Oracle Undo

Advisor, which you can invoke by querying the PL/SQL DBMS_UNDO_ADV package

from a SELECT statement. The following query displays the current undo size and the

recommended size for an undo retention setting of 900 seconds:

SQL> select

 sum(bytes)/1024/1024 cur_mb_size

 ,dbms_undo_adv.required_undo_size(900) req_mb_size

from dba_data_files

where tablespace_name =

 (select

 value

 from v$parameter

 where name = 'undo tablespace');

Chapter 21 Database Troubleshooting

906

Here is some sample output:

CUR_MB_SIZE REQ_MB_SIZE

----------- -----------

 36864 20897

The output shows that the undo tablespace currently has 36.8GB allocated to it.

In the prior query, you used 900 seconds as the amount of time to retain information

in the undo tablespace. To retain undo information for 900 seconds, the Oracle Undo

Advisor estimates that the undo tablespace should be 20.8GB. In this example, the undo

tablespace is sized adequately. If it were not sized adequately, you would have to either

add space to an existing data file or add a data file to the undo tablespace.

Here is a slightly more complex example of using the Oracle Undo Advisor to find the

required size of the undo tablespace. This example uses PL/SQL to display information

about potential issues and recommendations for fixing the problem:

SQL> SET SERVEROUT ON SIZE 1000000

SQL> DECLARE

 pro VARCHAR2(200);

 rec VARCHAR2(200);

 rtn VARCHAR2(200);

 ret NUMBER;

 utb NUMBER;

 retval NUMBER;

BEGIN

 DBMS_OUTPUT.PUT_LINE(DBMS_UNDO_ADV.UNDO_ADVISOR(1));

 �DBMS_OUTPUT.PUT_LINE('Required Undo Size (megabytes): ' || DBMS_UNDO_ADV.

REQUIRED_UNDO_SIZE (900));

 retval := DBMS_UNDO_ADV.UNDO_HEALTH(pro, rec, rtn, ret, utb);

 DBMS_OUTPUT.PUT_LINE('Problem: ' || pro);

 DBMS_OUTPUT.PUT_LINE('Advice: ' || rec);

 DBMS_OUTPUT.PUT_LINE('Rational: ' || rtn);

 DBMS_OUTPUT.PUT_LINE('Retention: ' || TO_CHAR(ret));

 DBMS_OUTPUT.PUT_LINE('UTBSize: ' || TO_CHAR(utb));

END;

/

Chapter 21 Database Troubleshooting

907

If no issues are found, a 0 will be returned for the retention size. Here is some

sample output:

Finding 1:The undo tablespace is OK.

Required Undo Size (megabytes): 64

Problem: No problem found

Advice:

Rational:

Retention: 0

UTBSize: 0

�Viewing SQL That Is Consuming Undo Space
Sometimes, a piece of code does not commit properly, which results in large amounts of

space being allocated in the undo tablespace and never being released. Sooner or later,

you will get the ORA-30036 error, indicating that the tablespace cannot extend. Usually,

the first time a space-related error is thrown, you can simply increase the size of one of

the data files associated with the undo tablespace.

However, if an SQL statement continues to run and fills up the newly added space,

then the issue is probably with a poorly written application. For example, a developer

may not have appropriate commit statements in the code.

In these situations, it is helpful to identify which users are consuming space in

the undo tablespace. Run this query to report on basic information regarding space

allocated on a per-user basis:

SQL> select s.sid, s.serial#, s.osuser, s.logon_time

,s.status, s.machine

,t.used_ublk, t.used_ublk*16384/1024/1024 undo_usage_mb

from v$session s

 ,v$transaction t

where t.addr = s.taddr;

If you want to view the SQL statement associated with a user consuming undo space,

then join to V$SQL, as shown:

SQL> select s.sid, s.serial#, s.osuser, s.logon_time, s.status

,s.machine, t.used_ublk

,t.used_ublk*16384/1024/1024 undo_usage_mb

Chapter 21 Database Troubleshooting

908

,q.sql_text

from v$session s

 ,v$transaction t

 ,v$sql q

where t.addr = s.taddr

and s.sql_id = q.sql_id;

If you need more information, such as the name and status of the rollback segment,

run a query that joins to the V$ROLLNAME and V$ROLLSTAT views, like so:

SQL> select s.sid, s.serial#, s.username, s.program

,r.name undo_name, rs.status

,rs.rssize/1024/1024 redo_size_mb

,rs.extents

from v$session s

 ,v$transaction t

 ,v$rollname r

 ,v$rollstat rs

where s.taddr = t.addr

and t.xidusn = r.usn

and r.usn = rs.usn;

The prior queries allow you to pinpoint which users are responsible for space

allocated within the undo tablespace. This can be especially useful when there is code

that is not committing at appropriate times and is excessively consuming undo space.

�Handling Temporary Tablespace Issues
Issues with temporary tablespaces are somewhat easy to spot. For example, when the

temporary tablespace runs out of space, the following error will be thrown:

ORA-01652: unable to extend temp segment by 128 in tablespace TEMP

When you see this error, you need to determine if there is not enough space in

the temporary tablespace or if a rare runaway SQL query has temporarily consumed

an inordinate amount of temporary space. Both of these issues are discussed in the

following sections.

Chapter 21 Database Troubleshooting

909

�Determining if Temporary Tablespace Is Sized Correctly
The temporary tablespace is used as a sorting area on disk when a process has

consumed the available memory and needs more space. Operations that require a

sorting area include

•	 Index creation

•	 SQL sorting operations

Temporary tables and indexes

•	 Temporary LOBs

•	 Temporary B-trees

There is no exact formula for determining if your temporary tablespace is sized

correctly. It depends on the number and types of queries, index build operations, and

parallel operations, and on the size of your memory sort space (PGA). You will have to

monitor your temporary tablespace while there is a load on your database to establish its

usage patterns. Since TEMP tablespaces are temporary files, they are handled differently

than the data files and details are found in a in different view. Run the following query to

show both the allocated and free space within the temporary tablespace:

SQL> select tablespace_name

,tablespace_size/1024/1024 mb_size

,allocated_space/1024/1024 mb_alloc

,free_space/1024/1024 mb_free

from dba_temp_free_space;

Here is some sample output:

TABLESPACE_NAME MB_SIZE MB_ALLOC MB_FREE

--------------- ---------- ---------- ----------

TEMP 200 200 170

If the FREE_SPACE (MB_FREE) value drops to near 0, there are SQL operations in your

database consuming most of the available space. The FREE_SPACE (MB_FREE) column is

the total free space available, including space currently allocated and available for reuse.

Chapter 21 Database Troubleshooting

910

If the amount used is getting near your current allocated amount, you may need to

allocate more space to the temporary tablespace data files. Run the following query to

view the temporary data file names and allocated sizes:

SQL> select name, bytes/1024/1024 mb_alloc from v$tempfile;

Here is some typical output:

NAME MB_ALLOC

-- ----------

/u01/dbfile/o18c/temp01.dbf 400

/u01/dbfile/o18c/temp02.dbf 100

/u01/dbfile/o18c/temp03.dbf 100

When first creating a database, if you have no idea as to “correct” size of the

temporary tablespace, usually size this tablespace at approximately 20GB. If I’m building

a data warehouse–type database, I might size the temporary tablespace at approximately

80GB. You will have to monitor your temporary tablespace with the appropriate SQL and

adjust the size as necessary.

You can also create multiple TEMP tablespaces to be used for different applications

and users. If there is an application that seems to be consuming all of the TEMP

tablespace, create another TEMP tablespace, such as TEMP2, and assign it to that

application user. This will isolate the problem, until the code, sorting, and index creation

can be researched and fixed.

�Viewing SQL That Is Consuming Temporary Space
When Oracle throws the ORA-01652: unable to extend temp error, this may be an

indication that your temporary tablespace is too small. However, Oracle may throw that

error if it runs out of space because of a one-time event, such as a large index build.

You will have to decide whether a one-time index build or a query that consumes large

amounts of sort space in the temporary tablespace warrants adding space.

To view the space a session is using in the temporary tablespace, run this query:

SQL> SELECT s.sid, s.serial#, s.username

,p.spid, s.module, p.program

,SUM(su.blocks) * tbsp.block_size/1024/1024 mb_used

,su.tablespace

Chapter 21 Database Troubleshooting

911

FROM v$sort_usage su

 ,v$session s

 ,dba_tablespaces tbsp

 ,v$process p

WHERE su.session_addr = s.saddr

AND su.tablespace = tbsp.tablespace_name

AND s.paddr = p.addr

GROUP BY

 s.sid, s.serial#, s.username, s.osuser, p.spid, s.module,

 p.program, tbsp.block_size, su.tablespace

ORDER BY s.sid;

If you determine that you need to add space, you can either resize an existing

temp file or add a new one. To resize a temporary tablespace temp file, use the ALTER

DATABASE TEMPFILE...RESIZE statement. The following command resizes a temporary

data file to 12GB:

SQL> alter database tempfile '/u01/dbfile/o18c/temp02.dbf' resize 12g;

You can add a data file to a temporary tablespace, as follows:

SQL> alter tablespace temp add tempfile '/u02/dbfile/o18c/temp04.dbf' size 2g;

�Summary
A senior DBA must be adept at efficiently determining the source of database

unavailability and performance problems. The ability to identify and resolve problems

defines a professional-level DBA. Anyone can google a topic (there is nothing worse

than being on a trouble call with a manager who is googling and recommending

random solutions). Besides confirming that the proper Oracle version is being googled,

finding the appropriate solution and confidently applying it in a production database

environment is how you add tremendous value.

Diagnosing issues sometimes requires some system and network administrator

skills. Additionally, an effective DBA must know how to leverage the Oracle data

dictionary to identify problems. As part of your strategy, you should also proactively

monitor for the common sources of database unavailability. Ideally, you will be aware of

the problem before anybody else and will proactively solve the issue.

Chapter 21 Database Troubleshooting

912

No book can cover every troubleshooting activity. This chapter includes some of

the most common techniques for identifying problems and dealing with them. Often,

basic OS utilities will help you ascertain the source of a hung database. In almost every

scenario, the alert.log and corresponding trace files should be inspected. Finding

the root cause of a problem is often the hardest task. Use a consistent and methodical

approach, and you will be much more successful in diagnosing and resolving issues.

This chapter tries to convey techniques and methods that will help you survive

even the most chaotic database environments. To summarize these thoughts, a DBA’s

manifesto, of sorts:

•	 Automate and monitor through scripts and schedulers. Be the first to

know when something is broken.

•	 Strive for repeatability and efficiency in processes and scripts.

Be consistent.

•	 Keep it simple. If a module is more than a page long, it is too long.

Do not implement a script or feature that another DBA will not be

able to understand or maintain. Sometimes, the simple solution is

the correct solution.

•	 Remain calm regardless of the disaster. Be respectful.

•	 Do not be afraid to seek or take advice. Welcome feedback and

criticism. Listen to others. Entertain the thought that you might be

wrong.

•	 Take advantage of graphical tools, but always know how to

implement a feature manually.

•	 Expect failure, predict failure, prepare for failure. You do not know

what will go wrong, but you do know something will go wrong. Be

happy that you prepared for failure. The best lessons are painful.

•	 Test and document your operating procedures, backup, and restores.

This will help you stay calm(er) and focused when in stressful

database-down situations.

•	 Do not write code to implement a feature that the database vendor

has already provided a solution for (replication, disaster recovery,

backup and recovery, and so on).

Chapter 21 Database Troubleshooting

913

•	 Become proficient with SQL, procedural SQL, and OS commands.

These skills separate the weak from the strong. The best DBAs posses

both SA and developer expertise.

•	 Continually investigate new features and technology. Learning is a

never-ending process. Question everything, reevaluate, and look for a

better way. Verify your solutions with repeatable, peer-reviewed tests.

Document and freely share your knowledge.

•	 Know what questions to ask to understand a problem or situation

better.

•	 Look to assist in database migrations to the cloud, to move to the

right database, and to take advantage of autonomous database

processes.

•	 Do what it takes to get the job done. You compete with the world

now. Work harder and smarter.

The job of a DBA can be quite rewarding. It can also be very painful and stressful.

Hopefully, the techniques documented in this book will get you from being mostly

stressed to an occasionally happy state.

Chapter 21 Database Troubleshooting

915
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_22

CHAPTER 22

Pluggable Databases
New with Oracle Database 12c is Oracle Multitenant. This feature allows you to create

and maintain many pluggable databases within an overarching multitenant container

database. Following is a concise introduction to pluggable terminology.

A multitenant container database (CDB) is defined as a database capable of housing

one or more pluggable databases (PDB). A container is defined as a collection of data

files and metadata that exist within a CDB. A PDB is a special type of container that

can be easily provisioned by cloning another database. If need be, a PDB can also be

transferred from one CDB to another.

A CDB is going to be the container for the resources of the database, and you should

view it as the database for the processes, full memory, and CPU allocation. There is one

set of processes that will start up with each CDB, and the memory is allocated to the CDB

to be used by each PDB. There is resource management that we will get into later that

will allow for certain allocation of memory and CPUs to each of the PDBs; otherwise it is

shared as needed across all of the PDBs in the one CDB.

Instead of having multiple database instances on a server, one or a few CDBs can

be created to contain all of the PDBs. PDBs are separate from each other with data and

users so that they do not each need their own CDB for isolation.

Every CDB contains a master set of data files and metadata known as the root

container. Each CDB also contains a seed PDB, which is used as a template for creating

other PDBs. Each CDB consists of one master root container, one seed PDB, and one or

more PDBs.

A pluggable enabled CDB must be created with the ENABLE PLUGGABLE DATABASE

clause. A database that was not created in this manner (a non-CDB) cannot contain

PDBs. A non-CDB was the only type of database available prior to Oracle Database 12c

and can currently still be created this way. When using the dbca utility a CDB with a PDB

is the default setting. Each CDB consists of the following elements:

916

•	 One root container, named CDB$ROOT. The root contains the master

set of data dictionary views, which have metadata regarding the root

as well as every child PDB within the CDB.

•	 One static seed container, named PDB$SEED. This container exists

solely as a template for providing data files and metadata used to

create new PDBs within the CDB.

•	 Zero, or one or more, PDBs (with a maximum of 4096). Each PDB

is self-contained and functions like an isolated non-CDB database.

Additionally, each PDB contains its own data files and application

objects (users, tables, indexes, and so on). When connected to a PDB,

there is no visibility to the root container or any other PDBs present

within the CDB.

New with Oracle Database 12c, there is a CDB level of data dictionary views that

overarch the DBA/ALL/USER-level views. The CDB-level views report across all containers

(root, seed, and all pluggable databases) in a CDB. For instance, if you wanted to view

all users within a CDB database, you would do so from the root container, by querying

CDB_USERS. If you are not using a CDB, then DBA_USERS is still an accurate view for

reporting all user information. Many of the data dictionary views now contain a new

column, named CON_ID, which is a unique identifier for each container within the

CDB. The root container has a CON_ID of 1. The seed has a CON_ID of 2. Each new

pluggable database created within the CDB is assigned a unique sequential container ID.

Table 22-1 defines terms used in a pluggable database environment. Refer back to

this table as you read through this chapter.

Chapter 22 Pluggable Databases

917

Table 22-1.  Summary of Pluggable Database Terms

Term Meaning

Container database (CDB),

multitenant database

A database capable of housing one or more pluggable databases,

processes, and shared resources

Pluggable database, (PDB) A set of data files and metadata that can be seamlessly transferred

from one CDB to another, user databases for applications

Root container A master set of data files and metadata containing information

regarding all containers within a CDB. The root container is named

CDB$ROOT.

Container A collection of data files and metadata. Can be root, seed, or a

pluggable database.

Seed pluggable database A template of data files and metadata used to create new pluggable

databases. The seed pluggable database is named PDB$SEED.

Plugging Associating the metadata and data files of a pluggable database with

a CDB

Unplugging Disassociating the metadata and data files of a pluggable database

from a CDB

Cloning Creating a pluggable database from a copy of another database

(seed, PDB, or non-CDB)

CON_ID A unique identifier for each container within a CDB. The CDB-level

views contain a CON_ID column that identifies the container with

which the information being viewed is associated.

CDB data dictionary views Views that contain metadata regarding all pluggable databases

within a CDB. These views only display meaningful information when

queried via a privileged connection from the root container. The

pluggable databases must be open for use.

non-CDB database An Oracle database created without the pluggable database feature

enabled (the only type of database that was available prior to 12c)

Chapter 22 Pluggable Databases

918

The goal of this chapter is to make you proficient in administering a

container/pluggable database environment. By the end of this chapter, you should

understand how to create a pluggable environment, provision PDBs, connect and

navigate within PDB, and transfer PDBs from one CDB to another. The foundation

for this starts with understanding the pluggable architecture. Figure 22-1 might be

oversimplified but represents the overall view of the database with the CDB and PDBs.

It provides the basic view of the multitenant architecture.

Note  Oracle Multitenant is an extra cost option available with the Enterprise
Edition. However, it is available for use with one pluggable database for all editions.
It is recommended to create one CDB and one PDB even if not planning on using
the option and creating more PDBs. Figure 22-1 shows how this architecture
would look even without using the option. Setting up the database this way will
allow for future use of multitenant option without having to migrate. Check the
Oracle licensing guide for details.

Figure 22-1.  Overview of Oracle Multitenant, recommended one CDB with one PDB

Chapter 22 Pluggable Databases

919

�Understanding Pluggable Architecture
PDBs have some important architectural differences with a non-CDB database

environment. Figure 22-2 displays a container database, named CDB, which contains a

root container, a seed database, and two PDBs named SALESPDB and HRPDB.

Figure 22-2.  Pluggable database architecture

Take a minute to inspect Figure 22-2. If you are a curious DBA, most likely dozens

of thoughts immediately come to mind. The following list highlights some key points to

understand about the new architecture in Figure 22-2:

•	 A connection to the CDB database is synonymous with connecting to

the CDB$ROOT root container. The main purpose of the root container is

to provide the resources and house metadata for any associated PDBs.

•	 You can access the root container via the SYS user, just as you

would a non-CDB database. In other words, when logged in to the

database server, you can use OS authentication to connect directly

to the root container without specifying a username and password

(sqlplus / as sysdba).

Chapter 22 Pluggable Databases

920

•	 The seed PDB (PDB$SEED) only exists as a template for creating new

PDBs. You can connect to the seed, but it is read-only, meaning you

cannot issue transactions against it.

•	 Besides the two default containers (root and seed), for this particular

CDB, two additional PDBs have been manually created, named

SALESPDB and HRPDB (more on creating PDBs later in the chapter).

•	 PDBs exist within individual namespaces. PDBs must be unique

within the CDB, but objects within a PDB follow the namespace rules

of a non-CDB database. For example, tablespace names and user

names have to be unique within the individual PDBs, but not across

other PDBs within the CDB.

•	 Each PDB has its own SYSTEM and SYSAUX tablespaces and, optionally,

a TEMP tablespace.

•	 If a PDB does not have its own TEMP file, it can consume resources in

the root container TEMP file.

•	 The SYSTEM tablespace of each PDB contains information regarding

the PDB metadata, such as its users and objects; these metadata are

accessible via the DBA/ALL/USER-level views from the PDB and are

visible via CDB-level views from the root container.

•	 The CDB can house PDBs of different character sets (since 12.2).

•	 You can set the time zones for the CDB and all associated PDBs, or

you can set the time zone individually per PDB.

•	 The CDB instance is started and stopped while connected as SYS to

the root container. You cannot start/stop the CDB instance while

connected to a PDB (separation of duties from system DBAs and

application DBAs).

•	 There is one initialization parameter file that is read by the instance

when starting. A privileged user connected to the root container can

modify all initialization parameters. In contrast, a privileged user

connected to a PDB can only modify parameters applicable to the

currently connected PDB.

Chapter 22 Pluggable Databases

921

•	 When connected to a PDB and modifying initialization parameters,

these modifications only apply to the currently connected PDB and

persist for the PDB across database restarts. The ISPDB_MODIFIABLE

column in V$PARAMETER shows which parameters are modifiable

while connected as a DBA to a PDB. (There are additional security

permissions for locking parameters and configurations.)

•	 Application users can only access the PDBs via a network connection.

Therefore, a listener must be running and listening for service names

corresponding to associated PDBs. If a listener is not running, then

there is no way for an application user to connect to a PDB.

•	 The individual PDBs are not stopped or started per se (not in the

terms of a database instance). When you start/stop a PDB, you are

not allocating memory or starting/stopping background processes.

Rather, PDBs are either made available or not (open or closed).

•	 There is one set of control files for the CDB. The control files are

managed while connected to the root container as a privileged user.

•	 There is one UNDO tablespace for the CDB. All PDBs within the

CDB use the same UNDO tablespace (if RAC, then one active undo

tablespace per instance).

•	 There is one thread of redo (per instance) that is managed while

connected to the root container as a user with appropriate privileges.

Only privileged connections to root can enable archiving or switching

online logs. Connections of SYSDBA privileged users to PDBs cannot

alter online redo or archiving settings.

•	 There is one alert log and set of trace files for a CDB. Any applicable

database messages for associated PDBs are written to the common

CDB alert log.

•	 Each container is assigned a unique container ID. The root container

is assigned a container ID of 1; the seed database is assigned a

container ID of 2. Each subsequently created PDB is assigned a

unique sequential container ID.

Chapter 22 Pluggable Databases

922

•	 There is one FRA for the CDB. Separate directories are not created for

PDBs within the FRA. RMAN backup files, control files, and online

redo logs are placed in a directory associated with the CDB and are

not segregated by PDB. Backup files can be separated out if only

backing up the PDB but are still in the same FRA.

•	 The Flashback Database feature is turned on and off via a privileged

connection to the root container. You cannot enable flashback at the

PDB level.

•	 AWR, ADDM, and ASH reports are issued across all PDBs in the

CDB. Resource consumption is identified per PDB.

•	 When resolving SQL performance issues, queries are associated with

a particular PDB via the CON_ID column in views such as V$SQL and

V$SQLAREA.

•	 Security options such as Database Vault can be enabled at a PDB

level. The privileges in CDBs and PDBs provide another level of

security and separation of duties.

The prior list is long with a ton of information, but once you digest the nuances of a

PDB environment, you will be able to effectively implement and manage this technology.

One of the main points here is that you can have dozens or more securely isolated PDBs

housed within one CDB with only one instance (memory and background processes),

one thread of redo, and one set of control files to manage. There is also much more to

discuss in this chapter to fill in more details.

�Paradigm Shift
It is fairly common for a specific application to request that its database objects (users,

tables, indexes, and so on) be placed in a database isolated from other applications.

Reasons cited for doing this are often security issues or performance concerns.

Before the advent of PDBs, think about how you solved the requirement of separate

Chapter 22 Pluggable Databases

923

environments for various applications and development teams. Two common solutions

employed are as follows:

•	 Create a separate database for each team/application that needs an

environment. Sometimes this approach is implemented with one

database per server, which often translates into additional hardware

and licensing costs.

•	 Create separate environments within one database. Usually this is

achieved through separate schemas and distinct tablespaces. This

approach requires that there not be any database object naming

collisions between applications, for example, with objects such as

user names, tablespace names, and public synonyms.

Starting with Oracle Database 12c, PDBs give you another tool for addressing the

prior needs. PDBs provide the security isolation requirement; there is no direct access

from one PDB to another. Even a user connected with SYSDBA privileges to a given PDB

has no direct SQL access to other PDBs within the CDB. This is just like with non-CDB

databases. From a security and application perspective, you have totally isolated PDBs

within the larger CDB.

As a DBA, instead of having to implement and maintain dozens of individual

databases and associated operational tasks (such as provisioning new databases, installs,

upgrades, tuning, availability, monitoring, replication, disaster recovery, and backup and

recovery), you can manage any number of PDBs as if they were one database. From the

root container perspective, it is similar to managing one non-CDB database.

Another significant advantage of the pluggable architecture is that a PDB can

easily be cloned or transferred from one CDB to another. This allows for more options

when performing tasks such as provisioning new databases, upgrading databases, load

balancing, or moving application data from one environment to another (such as from a

development database to a test database). Creating a new environment can be done by

cloning another PDB. And, moving a PDB from a CDB simply requires that you unplug

(via SQL commands) the PDB from the CDB and then associate the metadata and data

files (plug in) with a new CDB.

As mentioned, a few times in previous chapters, the new database structure should

be a CDB with at least one PDB. This supports the new shift to have one CDB manage

many PDBs with centralized resource management and planning.

Chapter 22 Pluggable Databases

924

PDB IN THE ORACLE CLOUD: EXADATA EXPRESS

A great way to test, develop, and start a migration to the cloud is to use the Exadata Express

offering in the Oracle Cloud. This is a PDB on Exadata. It has everything you can do in a PDB,

basically a Platform as a Service (PaaS) with features of Exadata, Enterprise Edition of the

database available. This is not only a good way to test some applications but to get used to

administration of a PDB without having to worry about anything else.

The infrastructure and CDB are already taken care of, and provisioning of the PDB just takes

a few minutes. Maintenance scripts and applications can quickly be tested along with using a

cloud service for the database.

This entry point for PDBs and Oracle Cloud is a great to get familiar with the needed services

and administration of the PDBs. Add users, objects, and data to spend time exploring the PDB

data dictionary in the cloud.

�Backup and Recovery Implications
A pluggable environment has some interesting backup and recovery architectural

aspects. The following list highlights these features:

•	 While connected to the root container with SYSDBA or SYSBACKUP

privileges, you have the option of backing up all the data files within

the CDB (root, seed, and all PDBs) via one backup command. You

also have the choice of performing backup and recovery tasks at a

PDB level of granularity.

•	 While connected directly to a PDB with SYSDBA or SYSBACKUP

privileges, you can only back up and recover data files associated

with the currently connected PDB; you cannot view or operate on the

root container data files or other PDB data files.

•	 An incomplete recovery of the entire CDB must be performed with a

connection to the root container with SYSDBA or SYSBACKUP privileges.

All data files within the CDB (root container and associated PDBs)

are unavailable during an incomplete recovery of the entire CDB.

Chapter 22 Pluggable Databases

925

•	 A direct connection to a PDB with SYSDBA or SYSBACKUP privileges

can perform an incomplete recovery only on the currently connected

PDB without affecting any other PDBs within the CDB.

•	 Because there is a shared UNDO tablespace, any point-in-time

incomplete recoveries of a PDB will also have to temporarily restore

the root container’s UNDO tablespace to an auxiliary database location

so that it can participate in the point-in-time recovery of the PDB.

This means that as a root-level DBA, you can treat backup and recovery operations as

if they were one database. From the pluggable perspective, if need be, you can perform

backup and recovery per PDB.

Note S ee Chapters 18 and 19 for examples of using RMAN to back up, restore,
and recover in a pluggable environment.

�Tuning Nuances
Tuning in a pluggable environment presents new challenges but will seem familiar to

tuning on a server with several database instances. The advantage is here is a CDB that

has the resources and a view into the other PDBs that are plugged in consuming the

resources. Performance tuning can start at the PDB level and continue to the CDB to

understand the other PDB activities. Also, there are ways to manage the resources for the

PDBs based on different service levels, priority, or data tiers for the PDB.

The AWR, ADDM, and ASH reports now show resource usage at the PDB level; this

will allow you to focus your tuning efforts on the appropriate PDB. For any homegrown

tuning SQL queries that you have written, you will need to modify these to report on the

CDB-level views where appropriate. Likewise, when analyzing SQL statements, you will

have to consider which PDB the SQL statement is executing within.

The previous sections of this chapter place an emphasis on discussion of the

pluggable architecture. Before creating a CDB, it is critical that you understand these

architectural underpinnings; hence, the lengthy introduction to this topic. Now that you

have a pluggable foundation, you are ready to turn theoretical concepts into usable and

sustainable database technology. The first real task at hand is to create a CDB.

Chapter 22 Pluggable Databases

926

PLUGGABLE SHIPPING CONTAINERS: STRENGTH IN NUMBERS

Security: PDBs within a CDB are similar to the shipping containers present on a large

merchant ship. Each container is securely isolated and self-contained. If you were to find

yourself inside a particular shipping container, you would not necessarily be aware of any

other containers on the mother ship. The captain (SYS connection to the root container) is

aware of all the containers on the vessel and can view the contents of each container via the

shipping manifest (CDB-level metadata views).

Granularity: If need be, repair and maintenance can be performed at the container level.

Likewise, you can take PDBs offline for maintenance or move without affecting any other PDBs

within the CDB.

Synergy: Each container efficiently shares the ship’s communal resources, such as the engine,

crew, and navigation systems. This is similar to PDBs sharing a common SGA, UNDO tablespace,

FRA, parameter file, and redo logs and archivelogs as well as background processes and control

files. Economies of scale are generated through sharing a mutual database infrastructure;

hardware, and human resource (DBA) costs are spread across many databases.

Provisioning: For this analogy, assume that you can easily replicate a shipping container

(perhaps with a giant three-dimensional scanner/printer); this would allow you to create

containers as copies of existing containers. Similarly, PDBs can quickly and efficiently be

created from existing databases (seed, PDB, or non-CDB).

Transferability: When required, a shipping container can be easily transferred to another form

of transportation (another ship, a freight train, or piggyback on a semi-truck). In the same way,

PDBs can be easily unplugged and plugged into other CDBs. It does not necessarily matter if

the destination CDB is the same version and type as the source CDB.

�Creating a CDB
To use the pluggable database feature, you have to specifically create a pluggable

enabled CDB. There are several different techniques for creating a CDB:

•	 Using the dbca utility

•	 Generating the required scripts with the DBCA, and then manually

running the scripts to create a CDB

Chapter 22 Pluggable Databases

927

•	 Manually issuing the SQL CREATE DATABASE command using RMAN

to duplicate an existing CDB

The next two sections focus on showing you how to create a database with the

CREATE DATABASE command and the DBCA. For details on using RMAN to duplicate a

CDB or pluggable database, see RMAN Recipes for Oracle Database 12c, Second Edition,

by Darl Kuhn, Sam Alapati, and Arup Nanda (Apress, 2013).

�Using the Database Configuration Assistant (DBCA)
You can use the DBCA utility to create a CDB through either a graphical interface or

the command-line mode. When using the graphical interface, you’ll be prompted as to

whether or not you want to create a CDB.

This example walks you through using the command-line mode. First, ensure that

your ORACLE_SID, ORACLE_HOME, and PATH variables are set for your CDB environment

(see Chapter 2 for details on setting OS variables); for example,

$ export ORACLE_SID=CDB

$ export ORACLE_HOME=/u01/app/oracle/product/18.1.0.1/db_1

$ export PATH=$ORACLE_HOME/bin:$PATH

Now, use the DBCA to create a CDB. When using the command-line mode of the

DBCA, you must specify the createAsContainerDatabase clause. The following bit of

code creates a database named CDB:

dbca -silent -createDatabase -templateName General_Purpose.dbc -gdbname CDB

-sid CDB -responseFile NO_VALUE -characterSet AL32UTF8 -memoryPercentage 30

-emConfiguration LOCAL -createAsContainerDatabase true

-sysPassword foo -systemPassword foo

The prior code must be entered on one line (it only appears here on multiple lines in

order to fit on the page). The SID that you provide (in this example, CDB) must not exist in

your oratab file. On Linux systems the oratab file is usually located in the /etc directory.

On other Unix systems (such as Solaris), the oratab file is generally located in the /var/

opt/oracle directory.

Chapter 22 Pluggable Databases

928

After pressing the Enter key, you should see some output similar to this:

Copying database files

...

9% complete

41% complete

Creating and starting Oracle instance

43% complete

48% complete

...

It will take the DBCA assistant several minutes to create the new CDB. Ensure that

you have enough disk space available when creating this database (approximately

5GB should be enough). After the DBCA is finished running, you should have a fully

functional CDB database and can start creating PDBs within it.

�Generating CDB Create Scripts via DBCA
You can use the DBCA to generate the scripts required to create a CDB, and then you

have the option of manually running the scripts to carry out the process. This next bit of

code invokes the DBCA utility from the command line and generates the scripts needed

to create a CDB named CDB1:

dbca -silent -generateScripts -templateName General_Purpose.dbc -gdbname CDB1

-sid CDB1 -responseFile NO_VALUE -characterSet AL32UTF8 -memoryPercentage 30

-emConfiguration LOCAL -createAsContainerDatabase true

-sysPassword foo -systemPassword foo

The prior code must be entered on one line when executed. Here is a snippet of

typical output:

Database creation script generation

1% complete

.....

100% complete

Look at the log file "/orahome/app/oracle/admin/CDB1/scripts/CDB1.log"...

Chapter 22 Pluggable Databases

929

After the DBCA is finished running, change the directory to the location of the newly

generated scripts:

$ cd $ORACLE_BASE/admin/CDB1/scripts

Now, display the scripts in the directory:

$ ls

Here is some sample output:

CDB1.log cloneDBCreation.sql lockAccount.sql

CDB1.sh init.ora postDBCreation.sql

CDB1.sql initCDB1Temp.ora postScripts.sql

CloneRmanRestore.sql initCDB1TempOMF.ora rmanRestoreDatafiles.sql

tempControl.ctl

To create the database, run the CDB1.sh script:

$ CDB1.sh

The prior shell script calls CDB1.sql, which subsequently invokes the RMAN utility.

RMAN creates the required data files from a backup and also creates a database named

CDB1. You should be able to start the database after you’ve set your ORACLE_SID OS

variable to contain the name of the freshly created CDB.

�Creating Manually with SQL
First, ensure that your ORACLE_SID, ORACLE_HOME, and PATH variables are set for your CDB

environment (see Chapter 2 for details on setting OS variables); for example,

$ export ORACLE_SID=CDB

$ export ORACLE_HOME=/u01/app/oracle/product/18.1.0.1/db_1

$ export PATH=$ORACLE_HOME/bin:$PATH

Chapter 22 Pluggable Databases

930

Next, create a parameter initialization file in the ORACLE_HOME/dbs directory. Make

certain you set the ENABLE_PLUGGABLE_DATABASE parameter to TRUE. Here, it shows an

OS text editor to create a file named initCDB.ora and placed within it the following

parameter specifications:

db_name='CDB'

enable_pluggable_database=true

audit_trail='db'

control_files='/u01/dbfile/CDB/control01.ctl','/u01/dbfile/CDB/control02.ctl'

db_block_size=8192

db_domain="

memory_target=629145600

memory_max_target=629145600

open_cursors=300

processes=300

remote_login_passwordfile='EXCLUSIVE'

undo_tablespace='UNDOTBS1'

Now, use an OS text editor to create a file named credb.sql, and place within it an

appropriate CREATE DATABASE statement:

SQL> CREATE DATABASE CDB

 MAXLOGFILES 16

 MAXLOGMEMBERS 4

 MAXDATAFILES 1024

 MAXINSTANCES 1

 MAXLOGHISTORY 680

 CHARACTER SET US7ASCII

 NATIONAL CHARACTER SET AL16UTF16

DATAFILE

'/u01/dbfile/CDB/system01.dbf' SIZE 500M

 EXTENT MANAGEMENT LOCAL

UNDO TABLESPACE undotbs1 DATAFILE

'/u01/dbfile/CDB/undotbs01.dbf' SIZE 800M

SYSAUX DATAFILE

'/u01/dbfile/CDB/sysaux01.dbf' SIZE 500M

DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE

Chapter 22 Pluggable Databases

931

'/u01/dbfile/CDB/temp01.dbf' SIZE 500M

DEFAULT TABLESPACE USERS DATAFILE

'/u01/dbfile/CDB/users01.dbf' SIZE 50M

LOGFILE GROUP 1

 ('/u01/oraredo/CDB/redo01a.rdo') SIZE 50M,

 GROUP 2

 ('/u01/oraredo/CDB/redo02a.rdo') SIZE 50M

USER sys IDENTIFIED BY foo

USER system IDENTIFIED BY foo

USER_DATA TABLESPACE userstbs DATAFILE

 '/u01/dbfile/CDB/userstbsp01.dbf' SIZE 500M

ENABLE PLUGGABLE DATABASE

SEED FILE_NAME_CONVERT = ('/u01/dbfile/CDB','/u01/dbfile/CDB/pdbseed');

There are a few clauses of the CREATE DATABASE statement relevant only to PDBs.

For instance, the ENABLE PLUGGABLE DATABASE clause is required if you want to create

a PDB within the CDB. The USER_DATA TABLESPACE clause specifies that an additional

tablespace be created within the seed database; this tablespace will also be replicated

to any PDBs that are cloned from the seed database. Also, the SEED FILE_NAME_CONVERT

specifies how the seed database files will be named and in what directories they will be

located.

Next, ensure you have created any directories referenced in the parameter file and

the CREATE DATABASE statement:

$ mkdir -p /u01/dbfile/CDB/pdbseed

$ mkdir -p /u01/dbfile/CDB

$ mkdir -p /u01/oraredo/CDB

Now, start up your database in nomount mode, and run the credb.sql script:

$ sqlplus / as sysdba

SQL> startup nomount;

SQL> @credb.sql

If successful, you should see this:

Database created.

Chapter 22 Pluggable Databases

932

Oracle recommends that you use the catcon.pl Perl script to run any Oracle supplied

SQL scripts for a CDB. Therefore, to create the data dictionary for a CDB, use the catcon.pl

Perl script. First change directories to the ORACLE_HOME/rdbms/admin directory:

$ cd $ORACLE_HOME/rdbms/admin

Now use catcon.pl to run the catalog.sql script as SYS:

$ perl catcon.pl -u sys/foo -s -e -d $ORACLE_HOME/rdbms/admin -b catalog1

catalog.sql > catcon-catalog.log

Next, use catcon.pl to run the catproc.sql script as SYS:

$ perl catcon.pl -u sys/foo -s -e -d $ORACLE_HOME/rdbms/admin -b catproc1

catproc.sql > catcon-catproc.log

After you have created the data dictionary, as the S schema, create the product user

profile tables:

$ perl catcon.pl -u system/foo -s -e -d $ORACLE_HOME/sqlplus/admin -b pupbld1

pupbld.sql >catcon-pupbld.log

At this point, you should have a fully functional CDB database and can start creating

PDBs within it.

�Verifying That a CDB Was Created
To verify whether a database was created as a CDB, first connect to the root

container as SYS:

$ sqlplus / as sysdba

You can now confirm that the CDB was successfully created via this query. If a

database was created as a CDB, the CDB column of V$DATABASE will contain a YES value:

SQL> select name, cdb from v$database;

Here is some sample output:

NAME CDB

--------- ---

CDB YES

Chapter 22 Pluggable Databases

933

At this point, you should have two containers in your CDB database: the root

container and the seed pluggable database. You can check with this query:

SQL> select con_id, name from v$containers;

Here is some sample output:

CON_ID NAME

------ --------------------

 1 CDB$ROOT

 2 PDB$SEED

You should also have data files associated with the root and the seed database. You

can view the data files associated with each container via this query:

SQL> select con_id, file_name from cdb_data_files order by 1;

Here is some output:

CON_ID FILE_NAME

------ ---

 1 /u01/app/oracle/oradata/CDB/system01.dbf

 1 /u01/app/oracle/oradata/CDB/sysaux01.dbf

 1 /u01/app/oracle/oradata/CDB/undotbs01.dbf

 1 /u01/app/oracle/oradata/CDB/users01.dbf

 2 /u01/app/oracle/oradata/CDB/pdbseed/system01.dbf

 2 /u01/app/oracle/oradata/CDB/pdbseed/sysaux01.dbf

Note that if you had selected from DBA_DATA_FILES instead of CDB_DATA_FILES, you

would only see the four data files associated with the root container (the container you

are currently connected to); for example,

SQL> select file_name from dba_data_files;

FILE_NAME

--

/u01/app/oracle/oradata/CDB/system01.dbf

/u01/app/oracle/oradata/CDB/sysaux01.dbf

/u01/app/oracle/oradata/CDB/users01.dbf

/u01/app/oracle/oradata/CDB/undotbs01.dbf

Chapter 22 Pluggable Databases

934

�Administrating the Root Container
When you manage a CDB, for the most part, you are connecting to the root container as

SYS and performing tasks as you would with a non-CDB database. However, there are

several points to be aware of that are specific to maintaining a CDB. The following tasks

can only be performed while connected to the root container with SYSDBA privileges:

•	 Starting/stopping instance

•	 Enabling/disabling archive log mode

•	 Managing instance settings that affect all databases within the CDB,

such as overall memory size

•	 Backup and recovery of all data files within the database

•	 Managing control files (adding, restoring, removing, and so on)

•	 Managing online redo logs

•	 Managing the root UNDO tablespace

•	 Managing the root TEMP tablespace

•	 Creating common users and roles

These topics are discussed in the following sections.

�Connecting to the Root Container
Connecting to the root container as SYS allows you to perform all the tasks you normally

associate with database administration. You can connect as SYS locally from the

database server through OS authentication or a network connection (which requires a

listener and password file). It is recommended that there are roles that are set up for CDB

administrators to be able to use individual accounts and not log in via SYS. Logins on the

server would be needed only when performing the server tasks otherwise connection

to the CDB through a network connection should be what is allowed for security and

compliance.

Chapter 22 Pluggable Databases

935

�Through Network

If you’re initiating a remote connection through the network, then you need to first set

up a listener on the target database server and create a password file (see Chapter 2 for

details). Once a listener and password file are established, you can connect remotely

over the network, as shown:

$ sqlplus user/pass@connection_string as sysdba

SQL> show user cond_id, conname user

USER is "user"

CON_ID

1

CON_NAME

CDB$ROOT

USER is "user"

For details on how to implement a listener in a pluggable environment, see the

section “Managing a Listener in a PDB Environment” later in this chapter.

�Displaying Currently Connected Container Information
From SQL*Plus there are a couple of easy techniques for displaying the name of the CDB

that you are currently connected to. This example uses the SHOW command to display the

container ID, the name, and the user:

SQL> show con_id con_name user

You can also display the same information via an SQL query:

SQL> SELECT SYS_CONTEXT('USERENV', 'CON_ID') AS con_id,

SYS_CONTEXT('USERENV', 'CON_NAME') AS cur_container,

SYS_CONTEXT('USERENV', 'SESSION_USER') AS cur_user

FROM DUAL;

Chapter 22 Pluggable Databases

936

Here is some sample output:

CON_ID CUR_CONTAINER CUR_USER

-------------------- -------------------- --------------------

1 CDB$ROOT USER

�Starting/Stopping the Root Container
You can only start/stop the CDB while connected as a privileged user to the root

container. The procedure for starting and stopping the root container is the same as

for a non-CDB database. To start a CDB, first connect as SYS, and issue the startup

command:

$ sqlplus / as sysdba

SQL> startup;

Starting the CDB database does not open any associated PDBs. You can open all

PDBs with this command:

SQL> alter pluggable database all open;

To shut down a CDB database, issue the following command:

SQL> shutdown immediate;

Just as with a non-CDB database, the prior line shuts down the CDB instance and

disconnects any users connected to the database. If any pluggable databases are open,

they are closed, and users are disconnected.

�Creating Common Users
There are two types of users in a pluggable environment: local and common. A local user

is nothing more than a regular user that is created in a PDB. The local type of user in a

PDB behaves the same as a user in a non-CDB environment. There is nothing special

about administering local users. You administer them as you would a user in a non-CDB

environment.

A common user is a new concept in Oracle Database 12c and only pertains to a

pluggable database environment. A common user is one that exists in the root container

Chapter 22 Pluggable Databases

937

and in every PDB. This type of user must be initially created in the root container and is

automatically created in all existing PDBs as well as in any PDBs created in the future.

Tip T he SYS and SYSTEM accounts are common users that Oracle creates
automatically in a pluggable environment.

Common users must be created with the string C## or c## at the start of the

username. For instance, the following command creates a common user in all PDBs:

SQL> create user c##dba identified by foo;

Common users must be granted privileges from within each pluggable database.

In other words, if you grant privileges to a common user while connected to the root

container, this does not cascade to the PDBs. If you need to grant a common user a

privilege that spans PDBs, then create a common role, and assign it to the common user.

What use is there for a common user? One situation would be the performance of

common DBA maintenance activities across PDBs not requiring SYSDBA-level privileges.

For example, you want to set up a DBA account that has the privileges to create users,

grants, and so on, but you don’t want to use an account such as SYS (which has all

privileges in all databases). In this scenario, you would create a common DBA user and

also create a DBA common role that contains the appropriate privileges. The common

role would then be assigned to the common DBA.

�Creating Common Roles
Much like you can create a common user that spans all PDBs, you can, in the same

manner, create a common role. Common roles provide a single object to which you can

grant privileges that are valid within all pluggable databases associated with the root

container.

A common role is created in the root container and is automatically created in all

associated PDBs as well as any PDBs created in the future. Like common users, common

roles must start with the C## or c## string; for example,

SQL> create role c##dbaprivs container = all;

Chapter 22 Pluggable Databases

938

Next, you can assign privileges, as desired, to the common role. Here, the DBA role is

assigned to the previously created role:

SQL> grant dba to c##dbaprivs container = all;

Now, if you assign this common role to a common user, the privileges associated

with the role are in effect when the common user connects to any pluggable database

associated with the root container:

SQL> grant c##dbaprivs to c##dba container = all;

�Creating Local Users and Roles
A local user is a user that is only for that contain and “local” to the container. This is

especially used for application users and users that are only authorized in specific PBDs.

There is not really any difference between database users and local users, and these are

users without “C##” for the CDB.

You can create a local user in a PDB by specifying the CONTAINER clause or without

it. Connect to the PDB where the local users are to be created for:

SQL> CREATE USER pdbsys IDENTIFIED BY pass CONTAINER=CURRENT;

SQL> CREATE USER appuser IDENTIFIED BY pass;

Roles are also common or local. All Oracle supplied roles are common but can be

granted to a local user.

�Reporting on Container Space
To report on all containers (root, seed, and all PDBs) within a CDB, you must follow this

procedure:

•	 Connect to the root container as a user with privileges to view the

CDB-level views.

•	 Make sure your query uses the CDB-level views where appropriate.

•	 Ensure that any PDBs you wish to report on are open. If the PDBs are

not open, then no information will be displayed.

Chapter 22 Pluggable Databases

939

Here is a query that uses the CDB-level views to report basic space usage information

relating to all containers within a CDB:

SQL> SET LINES 132 PAGES 100

SQL> COL con_name FORM A15 HEAD "Container|Name"

SQL> COL tablespace_name FORM A15

SQL> COL fsm FORM 999,999,999,999 HEAD "Free|Space Meg."

SQL> COL apm FORM 999,999,999,999 HEAD "Alloc|Space Meg."

--

SQL> COMPUTE SUM OF fsm apm ON REPORT

SQL> BREAK ON REPORT ON con_id ON con_name ON tablespace_name

--

SQL> WITH x AS (SELECT c1.con_id, cf1.tablespace_name, SUM(cf1.

bytes)/1024/1024 fsm

 FROM cdb_free_space cf1

 ,v$containers c1

 WHERE cf1.con_id = c1.con_id

 GROUP BY c1.con_id, cf1.tablespace_name),

 y AS (SELECT c2.con_id, cd.tablespace_name, SUM(cd.bytes)/1024/1024 apm

 FROM cdb_data_files cd

 ,v$containers c2

 WHERE cd.con_id = c2.con_id

 GROUP BY c2.con_id

 ,cd.tablespace_name)

SELECT x.con_id, v.name con_name, x.tablespace_name, x.fsm, y.apm

FROM x, y, v$containers v

WHERE x.con_id = y.con_id

AND x.tablespace_name = y.tablespace_name

AND v.con_id = y.con_id

UNION

SELECT vc2.con_id, vc2.name, tf.tablespace_name, null, SUM(tf.

bytes)/1024/1024

FROM v$containers vc2, cdb_temp_files tf

WHERE vc2.con_id = tf.con_id

GROUP BY vc2.con_id, vc2.name, tf.tablespace_name

ORDER BY 1, 2;

Chapter 22 Pluggable Databases

940

Here is some sample output:

 Container Free Alloc

 CON_ID Name TABLESPACE_NAME Space Meg. Space Meg.

---------- --------------- --------------- ---------------- ----------------

 1 CDB$ROOT SYSAUX 42 780

 SYSTEM 7 790

 TEMP 88

 UNDOTBS1 206 230

 USERS 4 5

 2 PDB$SEED SYSAUX 2 640

 SYSTEM 5 260

 TEMP 87

********** *************** *************** ---------------- ----------------

sum 266 2,880

Make sure any PDBs you want to report on are open before attempting to query the

CDB-level views. If a PDB is not open, it will not appear in the report output. A PDB is set to be

open by default; for reference, here is the statement again to open all pluggable databases:

SQL> alter pluggable database all open;

Tip R eporting on tablespace and data file usage for an individual pluggable database
is not significantly different from reporting on the space in a non-CDB database. First,
connect directly to the pluggable database as a user that has privileges to select from
the DBA-level views. Then, run a report that queries the space-related views. See
Chapter 4 for a query for reporting on space usage in a non-CDB.

�Switching Containers
Once you connect as a common user to any container within the database (either the

root or a PDB), you can use the ALTER SESSION command to switch to another container

for which you have been granted access. For example, to set the current container to a

PDB named SALESPDB, you would do as follows:

SQL> alter session set container = salespdb;

Chapter 22 Pluggable Databases

941

You can switch back to the root container by specifying the CDB$ROOT:

SQL> alter session set container = cdb$root;

You do not need a listener to be up and running or a password file to switch

containers. As long as the common user has privileges, then the user is successfully

switched to the new container context. Having the ability to switch containers is

especially useful when you need to connect to a PDB to troubleshoot issues and then

connect back to the root container.

�Creating a Pluggable Database Within a CDB
After you have created a CDB, you can start creating PDBs within it. When you instruct

Oracle to create a PDB, under the covers, it is actually copying data files from an existing

database (seed, PDB, or non-CDB) and then instantiating the CDB with the new PDB’s

metadata. The key here is to correctly reference what database you want Oracle to use as

a template for creating the new PDB.

There are several tools for creating (cloning) a PDB: namely the CREATE PLUGGABLE

DATABASE SQL statement, the DBCA utility, and Enterprise Manager Cloud Control. This

chapter focuses on using SQL and the DBCA utilities. If you understand how to create

PDBs using SQL and DBCA, you should easily be able to use the Enterprise Manager

screens to achieve the same objectives.

With the CREATE PLUGGABLE DATABASE statement, you can use any of the following

sources to create a PDB:

•	 Seed database

•	 Existing PDB (either local or remote)

•	 Non-CDB database

•	 Unplugged PDB

With the DBCA, you can create a PDB from any of the following sources:

•	 Seed database

•	 RMAN backup

•	 Unplugged PDB

Chapter 22 Pluggable Databases

942

In the following sections, all the CREATE PLUGGABLE DATABASE variants of creating

a PDB are covered. With the DBCA, I only show how to create a PDB from the seed

database. You should be able to modify that example for your various needs.

�Cloning the Seed Database
The CREATE PLUGGABLE DATASE statement can be used to create a PDB by copying the

seed database’s data files. To do this, first connect to the root container database as the

SYS user (or a common user with create PDB privileges):

$ sqlplus sysuser/pass@CDB1 as sysdba

The following SQL statement creates a pluggable database named SALESPDB:

SQL> CREATE PLUGGABLE DATABASE salespdb

ADMIN USER salesadm IDENTIFIED BY foo

FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/CDB/pdbseed',

 '/u01/app/oracle/oradata/CDB/salespdb');

After running the prior code, you should see some output similar to this:

Pluggable database created.

Note  If you are using OMF, you do not need to specify the FILE_NAME_CONVERT
clause when creating a pluggable database, because Oracle automatically
determines the names and locations of the pluggable database data files.

Note that the FILE_NAME_CONVERT clause in this example has two strings. One

specifies the location of the seed database data files:

/u01/app/oracle/oradata/CDB/pdbseed

The second string is the location where you want the new PDB’s data files created:

/u01/app/oracle/oradata/CDB/salespdb

You will have to modify these strings to the appropriate values for your environment.

There are several options available when using the CREATE PLUGGABLE DATABASE

statement to create a PDB. Table 22-2 summarizes the meanings of the various clauses.

Chapter 22 Pluggable Databases

943

�Cloning an Existing PDB
You can create a PDB from an existing PDB within the currently connected (local) CDB,

or you can create a PDB as a copy of a PDB from a remote CDB. These two techniques

are detailed in the next two sections.

�Local

In this example an existing PDB (SALESPDB) is used to create a new PDB (SALESPDB2).

First, connect to the root container, and place the existing source PDB in read-only mode:

$ sqlplus sysuser/pass@CDB1 as sysdba

SQL> alter pluggable database salespdb close;

SQL> alter pluggable database salespdb open read only;

Table 22-2.  Pluggable Database Creation Options

Parameter Description

ADMIN USER A local user that is created and used for administrative tasks. This

user is assigned the PDB_DBA role.

MAXSIZE Maximum amount of storage a pluggable database can consume;

if not specified,then there is no limit to the amount of storage a PDB

can use

MAX_SHARED_TEMP_SIZE Maximum amount of shared temporary tablespace that can be used

by sessions connected to the PDB

DEFAULT TABLESPACE Specifies the default permanent tablespace assigned to new users

created withinthe pluggable database.

DATAFILE Path and file name of the data file associated with the default

tablespace

PATH_PREFIX Specifies that any new data files added to the pluggable database

must exist within this directory or its subdirectories

FILE_NAME_CONVERT Specifies the location of the seed database data files and the location

where an if theyshould be copied

Chapter 22 Pluggable Databases

944

Now, run the following SQL to create the new PDB:

SQL> CREATE PLUGGABLE DATABASE salespdb2

FROM salespdb

FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/CDB/salespdb',

 '/u01/dbfile/CDB/salespb2')

STORAGE (MAXSIZE 6G MAX_SHARED_TEMP_SIZE 100M);

In the prior example the data files (associated with SALESPDB) in the

/u01/app/oracle/oradata/CDB/salespdb directory are used to create data files in

the /u01/dbfile/CDB/salespdb2 directory. The destination directory will be created for

you if it does not preexist. You can also specify governing restrictions on the cloned PDB

such as limiting its maximum size to 6GB and the maximum amount of shared resources

it can consume in the shared temporary tablespace to 100MB.

�Remote

You can also create a PDB as a clone of a remote PDB. First, you need to create a

database link from the CDB to the PDB that will serve as the source for the clone.

Both the local user and the user specified in the database link must have the CREATE

PLUGGABLE DATABASE privilege.

This example shows a local connection as SYS to the root container. This is the

database in which the new PDB will be created:

$ sqlplus sysuser/pass@CDB1 as sysdba

In this database, create a database link to the PDB in the remote CDB. The remote

CDB contains a PDB named SALESPDB, with a user that has been created with the CREATE

PLUGGABLE DATABASE privilege granted to it. This is the user that will be used in the

database link:

create database link salespdb

connect to mv_maint identified by foo

using 'speed2:1521/salespdb';

Next, connect to the remote database that contains the PDB that will be cloned:

$ sqlplus sysuser/foo@speed2:1521/salespdb as sysdba

Chapter 22 Pluggable Databases

945

Close the PDB and open it in read-only mode:

SQL> alter pluggable database salespdb close;

SQL> alter pluggable database salespdb open read only;

Now, connect to the destination CDB as SYS, and create the new PDB as shown by

cloning the remote PDB:

$ sqlplus sysuser/pass@CDB1 as sysdba

SQL> CREATE PLUGGABLE DATABASE salespdb3

FROM salespdb@salespdb

FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/CDB/salespdb',

 '/u01/dbfile/CDB2/salespdb3');

�Cloning from a Non-CDB Database
There are three ways of creating a PDB from an existing non-CDB:

•	 Using the DBMS_PDB package to generate metadata and then create

PDB with CREATE PLUGGABLE DATABASE SQL statement

•	 Data Pump (using the transportable tablespace feature)

•	 GoldenGate replication

The following example uses the DBMS_PDB package to create a PDB from a non-

CDB. For details on Data Pump and GoldenGate, see the Oracle Database Utilities Guide

and GoldenGate-specific documentation, respectively, available from the Technology

Network area of the Oracle web site (http://otn.oracle.com).

Note  When using the DBMS_PDB package to convert a non-CDB to a PDB, the
non-CDB must be Oracle12c or higher.

First, place the non-CDB in read-only mode:

SQL> startup mount;

SQL> alter database open read only;

Chapter 22 Pluggable Databases

http://otn.oracle.com

946

Then, run the DBMS_PDB package to create an XML file that describes the structure of

the non-CDB database:

BEGIN

 DBMS_PDB.DESCRIBE(pdb_descr_file => '/orahome/oracle/ncdb.xml');

END;

/

After the XML file is created, shut down the non-CDB database:

SQL> shutdown immediate;

Next, set your oracle OS variables (such as ORACLE_SID and ORACLE_HOME), and

connect to the CDB database that will house the non-CDB as a PDB:

$ sqlplus / as sysdba

Now, you can optionally check to see if the non-CDB is compatible with the CDB in

which it will be plugged. When you run this code, provide the directory and name of the

XML file that was created previously:

SQL> SET SERVEROUTPUT ON

SQL> DECLARE

hold_var boolean;

begin

hold_var := DBMS_PDB.CHECK_PLUG_COMPATIBILITY(pdb_descr_file=>'/orahome/

oracle/ncdb.xml');

if hold_var then

 dbms_output.put_line('YES');

else

 dbms_output.put_line('NO');

end if;

end;

/

If there are no compatibility issues, a YES is displayed by the prior code; a NO is displayed

if the PDB is not compatible. You can query the contents of the PDB_PLUG_IN_VIOLATIONS

view for details on why a PDB is not compatible with a CDB.

Chapter 22 Pluggable Databases

947

Next, use the following SQL to create a PDB from the non-CDB. You must specify

details such as the name and location of the previously created XML file, the location of

the non-CDB data files, and the location where you want the new data files created:

SQL> CREATE PLUGGABLE DATABASE dkpdb

USING '/orahome/oracle/ncdb.xml'

COPY

FILE_NAME_CONVERT = ('/u01/dbfile/dk/',

 '/u01/dbfile/CDB/dkpdb/');

If successful, you should see this:

Pluggable database created.

Now, connect as SYS to the newly created PDB as SYS:

$ sqlplus sys/foo@'speed2:1521/dkpdb' as sysdba

As a last step, run the following script:

SQL> @?/rdbms/admin/noncdb_to_pdb.sql

You should now be able to open the PDB and begin using it.

�Unplugging a PDB from a CDB
Before plugging a PDB into another CDB, it must first be unplugged. Unplugging

translates to disassociating a PDB from a CDB and generating an XML file that describes

the PDB being unplugged. This XML file can be used in the future to plug the PDB into

another CDB.

Here are the steps required to unplug a PDB:

	 1.	 Close the PDB (which changes its open mode to MOUNTED)

	 2.	 Unplug the pluggable database via the ALTER PLUGGABLE

DATABASE ... UNPLUG command

First, connect to the root container as the SYS user, and then close the PDB:

$ sqlplus sysuser/pass@CDB1 as sysdba

SQL> alter pluggable database dkpdb close immediate;

Chapter 22 Pluggable Databases

948

Next, unplug the PDB. Make sure you specify a directory that exists in your

environment for the location of the XML file:

SQL> alter pluggable database dkpdb unplug into

'/orahome/oracle/dba/dkpdb.xml';

The XML file contains metadata regarding the PDB, such as its data files. This XML is

required if you want to plug the PDB into another CDB:.

Note  Once a PDB is unplugged, it must be dropped before it can be plugged
back into the original CDB.

�Plugging an Unplugged PDB into a CDB
Before a PDB can be plugged: into a CDB, it must be compatible with a CDB in terms

of data file endianness and compatible database options installed. The character set

can be different in the PDB compared to the PDB starting with 18c. You can verify the

compatibility via the DBMS_PDB package. You must provide as input to the package the

directory and name of the XML file created when the PDB was unplugged. Here is an

example:

SQL> SET SERVEROUTPUT ON

SQL> DECLARE

hold_var boolean;

begin

hold_var := DBMS_PDB.CHECK_PLUG_COMPATIBILITY(pdb_descr_file=>'/orahome/

oracle/dba/dkpdb.xml');

if hold_var then

 dbms_output.put_line('YES');

else

 dbms_output.put_line('NO');

end if;

end;

/

Chapter 22 Pluggable Databases

949

If there are no compatibility issues, a YES is displayed by the prior code;

a NO is displayed if the PDB is not compatible. You can query the contents of the

PDB_PLUG_IN_VIOLATIONS view for details on why a PDB is not compatible with a CDB.

Plugging in a PDB is done with the CREATE PLUGGABLE DATABASE command. When

you plug a PDB into a CDB, you must provide some key pieces of information, using

these two clauses:

•	 USING clause: This clause specifies the location of the XML file

created when the PDB was unplugged.

•	 COPY FILE_NAME_CONVERT clause: This clause specifies the source of

the PDB data files and the location where the PDB data files will be

created within the destination CDB.

To plug in a PDB, connect to the CDB as a privileged user, and run the following:

SQL> CREATE PLUGGABLE DATABASE dkpdb

USING '/orahome/oracle/dba/dkpdb.xml'

COPY

FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/CDB1/dkpdb',

 '/u01/dbfile/CDB2/dkpdb');

You can now open the PDB and begin using it.

�Using the DBCA to Create a PDB from the Seed Database
You can use the DBCA utility to create a PDB from the seed database by specifying the

–createPDBFrom DEFAULT clause. Here is an example that creates a pluggable database

named HRPDB within a CDB named CDB:

$ dbca -silent -createPluggableDatabase -sourceDB CDB -pdbName hrpdb

-createPDBFrom DEFAULT

-pdbAdminUserName adminplug -pdbAdminPassword foo

-pdbDatafileDestination /u01/dbfile/CDB/hrpdb

Chapter 22 Pluggable Databases

950

The prior lines of code must be entered on one line. Also, if the PDB destination

directory does not exist, the DBCA will automatically create it. As the command

progresses, you should see output similar to this:

Creating Pluggable Database

4% complete

12% complete

...

Completing Pluggable Database Creation

100% complete

Look at the log file "/orahome/app/oracle/cfgtoollogs/dbca/CDB.log" for

further details.

As a last step, you should inspect the log file and ensure that there were no issues

with the creation of the PDB.

�Checking the Status of Pluggable Databases
After creating a PDB, you may want to check its status. You can view the status of all

PDBs within a CDB while connected in the root container. For instance, a user with DBA

privileges can report on the status of all PDBs via this query:

SQL> select pdb_id, pdb_name, status from cdb_pdbs;

Here is some sample output:

 PDB_ID PDB_NAME STATUS

---------- -------------------- -------------

 2 PDB$SEED NORMAL

 3 SALESPDB NORMAL

 4 HRPDB NORMAL

This next query reports on whether or not the pluggable databases are open:

SQL> select con_id, name, open_mode from v$pdbs;

Chapter 22 Pluggable Databases

951

Here is some sample output:

 CON_ID NAME OPEN_MODE

---------- ------------------------------ ----------

 2 PDB$SEED READ ONLY

 3 SALESPDB READ WRITE

 4 HRPDB READ WRITE

If you run the prior queries while connected directly to a PDB, no information will

be displayed in CDB_PDBS. Also, the V$PDBS will only display information for the currently

connected PDB.

�Administrating Pluggable Databases
You can perform many database administrative tasks while connected directly to the

PDB. You can open/close a PDB, check its status, show currently connected users, and

so on. You can administer a pluggable database as a privileged connection to the root

container, or you can perform tasks while connected as a privileged user directly to the

PDB itself.

Keep in mind that when you connect as SYS to a PDB within the CDB, you can only

perform SYS-privileged operations for the PDB to which you are connected. You cannot

start/stop the container instance or view data dictionary information related to other

PDBs within the CDB. Separation of duties for a PDB to just be able to administer one or

more PDBs and another team or DBAs would be taking care of the CDB administration.

�Connecting to a PDB
You can connect to a PDB as SYS either locally or over the network. To make a local

connection, first connect to the root container as a common user with privileges on the

PDB, and then use the SET CONTAINER command to connect to the desired PDB:

SQL> alter session set container=salespdb;

The prior connection does not require a listener or password file; a connection over the

network requires both. This next example makes a network connection via SQL*Plus and

specifies the host, listener port, and service name of the PDB when connecting via SQL*Plus:

$ sqlplus pdbsys/foo@speed2:1521/salespdb as sysdba

Chapter 22 Pluggable Databases

952

If you are unsure how to set up a listener and a password file, see Chapter 2.

If you use the DBCA utility to create the PDB, the listener for the PDB will be set up. For

instructions on how to register a PDB service name with the listener, see the next section.

�Managing a Listener in PDB Environment
Recall from Chapter 2 that a listener is the process that enables remote network

connections to a database. Most database environments require a listener in order to

operate. When a client attempts to connect to a remote database, the client provides

three key pieces of information: the host the listener is on, the host port the listener is

listening on, and a database service name.

Each database has one or more service names assigned to it. By default, there is

usually one service name that is derived from the database’s unique name and domain.

You can manually create one or more service names for a database. DBAs sometimes

create more than one service so that resource usage can be controlled or monitored for

each service. For example, a service may be created for a sales application, and a service

may be created for the HR application. Each application connects to the database via its

service name. The service connection information appears in the SERVICE_NAME column

of the V$SESSION view for each session.

If you start a default listener with no listener.ora file in place, the PMON

background process will automatically register any databases (including any pluggable)

as a service:

$ lsnrctl start

Eventually, you should see the databases (including any PDBs) registered with the

default listener.

Note  When starting the listener, if there is a listener.ora file present,
the listener will attempt to statically register any service names that appear in the
listener.ora file.

By default, the PDBs are registered with a service name that is the same as the PDB

name. The default service is typically the one that you would use to make connections:

$ sqlplus pdbsys/foo@speed2:1521/salespdb as sysdba

Chapter 22 Pluggable Databases

953

You can verify which services are running by connecting as SYS to the root container

and querying:

SQL> select name, network_name, pdb from v$services order by pdb, name;

You can also verify which services a listener is listing for via the lsnrctl utility:

$ lsnrctl services

Oracle recommends that you configure an additional service (besides the default

service) for any applications that need to access a PDB. You can manually configure

services by using the SRVCTL utility or the DBMS_SERVICE package. This example shows

how to configure a service via the DBMS_SERVICE package. First, connect as SYS to the

PDB that you want to create the service in via the default service:

$ sqlplus pdbsys/foo@speed2:1521/salespdb as sysdba

Make sure the PDB is open for read-write mode:

SQL> SELECT con_id, name, open_mode FROM v$pdbs;

Next, create a service. This code creates and starts a service named SALESWEST:

SQL> exec DBMS_SERVICE.CREATE_SERVICE(service_name => 'SALESWEST',

network_name => 'SALESWEST');

SQL> exec DBMS_SERVICE.START_SERVICE(service_name => 'SALESWEST');

Now, application users can connect to the SALESPDB pluggable database via the service:

$ sqlplus appuser/pass@speed2:1521/saleswest

Caution  If you have multiple CDB databases on one server, ensure that the
PDB service names are unique across all CDB databases on the server. It is not
advisable to register two PDB databases with the exact same name with one
common listener. This will lead to confusion as to which PDB you are actually
connecting to.

Chapter 22 Pluggable Databases

954

�Showing the Currently Connected PDB
From SQL*Plus, there are a couple of easy techniques for displaying the name of the PDB

that you are currently connected to. This example uses the SHOW command to display the

container ID, the name, and the user:

SQL> show con_id con_name user

Here is some sample output:

CON_ID

3

CON_NAME

SALESPDB

USER is "SYS"

You can also display the same information via an SQL query:

SELECT SYS_CONTEXT('USERENV', 'CON_ID') AS con_id,

SYS_CONTEXT('USERENV', 'CON_NAME') AS cur_container,

SYS_CONTEXT('USERENV', 'SESSION_USER') AS cur_user

FROM DUAL;

Here is some sample output:

CON_ID CUR_CONTAINER CUR_USER

---------- --------------- ----------

3 SALESPDB SYS

Keep in mind that the SYS_CONTEXT function can be used to display other

useful information, such as the SERVICE_NAME, DB_UNIQUE_NAME, INSTANCE_NAME, and

SERVER_HOST; for example,

SELECT

 SYS_CONTEXT('USERENV', 'SERVICE_NAME') as service_name,

 SYS_CONTEXT('USERENV', 'DB_UNIQUE_NAME') as db_unique_name,

Chapter 22 Pluggable Databases

955

 SYS_CONTEXT('USERENV', 'INSTANCE_NAME') as instance_name,

 SYS_CONTEXT('USERENV', 'SERVER_HOST') as server_host

from dual;

�Starting/Stopping a PDB
When you start/stop a PDB, you are not starting/stopping an instance. Rather, you are

making the PDB either available or unavailable, open or closed. You can change the

open mode of a PDB from either a connection to the root container as SYS or a direct

connection to the PDB as SYS.

�From Root Container

To change the open mode of a PDB from the root container, do as follows:

SQL> alter pluggable database salespdb open;

You can also start a pluggable database in a particular state, such as read-only:

SQL> startup pluggable database salespdb open read only;

To close a PDB, you can specify the name of the PDB:

SQL> alter pluggable database salespdb close immediate;

You can also open or close all pluggable databases while connected to the root

container. In a live production system, this is not recommended since these can all be

different applications, and unless server maintenance was being performed, there might

not be a reason to close all PDBs.

SQL> alter pluggable database all open;

SQL> alter pluggable database all close immediate;

�From Pluggable

To open/start a pluggable database, connect to the pluggable database as SYS:

$ sqlplus pdbsys/foo@salespdb as sysdba

SQL> startup;

Chapter 22 Pluggable Databases

956

To shut down the database, issue the following command:

SQL> shutdown immediate;

�Modifying Initialization Parameters Specific to a PDB
Oracle allows some initialization parameters to be modified while connected as a

privileged user to a PDB. You can view these parameters via the following query:

SQL> SELECT name

FROM v$parameter

WHERE ispdb_modifiable='TRUE'

ORDER BY name;

Here is a snippet of the output:

NAME

sort_area_size

sql_trace

sqltune_category

star_transformation_enabled

statistics_level

When you make initialization parameter changes while connected directly to a PDB,

these changes only affect the currently connected PDB. The parameter changes do not

affect the root container or other PDBs. For example, say you wanted to change the value

of OPEN_CURSORS. First, connect directly to the PDB as a privileged user, and issue the

ALTER SYSTEM statement:

$ sqlplus pdbsys/foo@speed2:1521/salespdb as sysdba

SQL> alter system set open_cursors=100;

The prior change modifies the value of OPEN_CURSORS only for the SALESPDB PDB.

Furthermore, the setting of OPEN_CURSORS for SALESPDB will persist across database

restarts.

Chapter 22 Pluggable Databases

957

�Renaming a PDB
Occasionally, you may be required to rename a PDB. For instance, the database may

have been originally misnamed, or you may no longer be using the database and want

to append an _OLD to its name. To rename a pluggable database, first connect to it as a

SYSDBA-privileged account:

$ sqlplus pdbsys/foo@invpdb as sysdba

Next, stop the PDB and restart it in restricted mode:

SQL> shutdown immediate;

SQL> startup restrict;

Now, the pluggable database can be renamed:

SQL> alter pluggable database INVPDB rename global_name to INVPDB_OLD;

�Limiting the Amount of Space Consumed by PDB
You can place an overall limit on the amount of disk space a PDB can consume. It is

possible that the max size of the PDB datafiles would do this, but this is if there are

multiple tablespaces and datafiles. The sizing of the databases should be available

through ASM diskgroups or filesystem sizing.

In this example an overall limit of 100GB is placed on a pluggable database. First,

connect to the pluggable database as SYS:

$ sqlplus pdbsys/foo@speed2:1521/salespdb as sysdba

Then, alter the pluggable database‘s’ maximum size limit. This command limits the

size of the pluggable database to a maximum of 100GB:

SQL> alter pluggable database salespdb storage(maxsize 100G);

The space is not the only resource that can be limited by PDB. CPU and memory can

be limited by using the parameters in the PDB or using resource management plans. As

a privileged user in the PDB, you can alter the system to set CPU_COUNT equal to less

than over all CPU_COUNT for the CDB. This will not allow the PDB to use more than

those CPU resources. The same is for memory in setting the memory limit parameters

Chapter 22 Pluggable Databases

958

in the PDB, again less than the CDB. Connect to the PDB and use the following alter

statements:

SQL> alter system set CPU_COUNT = 2 scope = both;

SQL> alter system set SGA_TARGET = 16GB scope = both;

�Restricting Changes to SYSTEM at PDB
In administering the PDB, the parameters can be changed as described at the PDB

level. You can also change these parameters for a PDB at the CDB level. The changes

can be restricted so that only CDB administrators can modify these settings for the

PDB. This will allow the CDB DBAs to know how many PDBs are in the CDB and manage

it. The changes will be kept even while the sysdba user in each PDB can have the DBA

permissions in the PDB and administer the PDB.

This is done with PDB_LOCKDOWN. The lockdown profile is created, set for a PDB,

and the commands are added to the profile to restrict PDB DBAs from changing the

configurations, such as those set with CPU, memory, etc.

In the CDB here is a quick overview of creating PDB_LOCKDOWNs:

SQL> CREATE LOCKDOWN PROFILE pdbprofile1;

SQL> ALTER SYSTEM SET PDB_LOCKDOWN=pdbprofile1;

And you can view the parameters in PBD_LOCKDOWN:

SQL> SHOW PARAMETER PDB_LOCKDOWN

Oracle 18c has dynamic lockdown profiles that allow for additional parameter

settings, resource manager plans, and options. They are dynamic because they do not

require that the PDB to be restarted and take effect immediately.

�Viewing PDB History
If you need to view when a PDB was created, you can query the CDB_PDB_HISTORY view,

as shown:

SQL> COL db_name FORM A10

SQL> COL con_id FORM 999

SQL> COL pdb_name FORM A15

Chapter 22 Pluggable Databases

959

SQL> COL operation FORM A16

SQL> COL op_timestamp FORM A10

SQL> COL cloned_from_pdb_name FORMAT A15

--

SQL> SELECT db_name, con_id, pdb_name, operation,

 op_timestamp, cloned_from_pdb_name

FROM cdb_pdb_history

WHERE con_id > 2

ORDER BY con_id;

Here is some sample output:

DB_NAME CON_ID PDB_NAME OPERATION OP_TIMESTA CLONED_FROM_PDB

---------- ------ -------------- -------------- ----------- ---------------

CDB 3 SALESPDB CREATE 04-DEC-12 PDB$SEED

CDB 4 HRPDB CREATE 10-FEB-13 PDB$SEED

In this way, you can determine when a PDB was created and from what source.

�Dropping a PDB
Occasionally, you may need to drop a PDB. You may want to do so because you do

not need the PDB anymore or because you are transferring (unplugging/plugging) to

a different CDB and you want to drop the PDB from the original CDB. If you need to

remove a PDB, you can do it in two ways:

•	 Drop the PDB and its data files.

•	 Drop the PDB and leave its data files in place.

If you never plan on using the PDB again, then you can drop it and specify that the

data files also be removed. If you plan on plugging the PDB into a different CDB, then (of

course) don’t drop the data files, as doing so removes them from disk.

To drop a PDB, first connect to the root container as a privileged account, and close

the PDB:

SQL> alter pluggable database dkpdb close immediate;

Chapter 22 Pluggable Databases

960

This example drops the PDB and its data files:

SQL> drop pluggable database dkpdb including datafiles;

If successful, you should see this message:

Pluggable database dropped.

This next example drops a PDB without removing the data files. You may want to do

this if you’re moving the pluggable database to a different CDB:

SQL> drop pluggable database dkpdb;

In this manner, the PDB is disassociated from the CDB, but its data files remain

intact on disk.

�Refreshable Clone PDB
In Oracle 18c, PDBs can be refreshed from the source PDB periodically. This helps for

clones that take a long time and updates the PDB in another CDB for failover, load-

balance and only needing to manage two CDBs. The roles can also be reversed, making

the source PDB the clone and the clone the source PDB. This basically replaces Data

Guard failover for a PDB.

The PDB is created with a refresh mode and configures the clone. This allows for

automatic refreshes of the clone PDB and sets intervals for it to happen. A manual

refresh can be triggered as well. To create the clone:

SQL> CREATE PLUGGABLE DATABASE pdbclone1 REFRESH MODE EVERY 5 MINUTES

Change the refresh mode to manual:

SQL> ALTER PLUGGABLE DATABASE pdbclone1 REFRESH MODE MANUAL;

The clone can be switched using the following in the clone PDB container:

SQL> ALTER PLUGGABLE DATABASE REFRESH MODE MANUAL FROM pdb1@CDB1_dblink

SWITCHOVER;

Chapter 22 Pluggable Databases

961

�Databases in the Cloud
Oracle databases can be created the different cloud platforms. There are templates,

containers, and other ways to install the Oracle software as part of Infrastructure as a

Service (IaaS) or Platform as a Service (PaaS) to create the databases and administer the

environment.

Oracle Autonomous Database Cloud is the autonomous database offering from

Oracle in their public cloud. It is powered by Oracle 18c and was first the Autonomous

Data Warehouse Cloud (ADWC) and is now including the Autonomous Transaction

Processing Database (ATP). This self-driving database provides several automated

processes for maintenance, performance, and security in form of patching. The

advantage of using the Oracle Cloud is the Oracle software and options come available

and implemented, ready to use. The Express Edition gives you a PDB that was discussed

earlier in the chapter. The creation of CDB service and multiple PDBs would be

recommended for a cloud implementation. The access in the cloud may not include

server access and why connections with sysdba users over the network is important for

the CDB and PDB. The other tasks for managing users, objects, and other containers are

going to be the same in the cloud or on-premise.

The Autonomous Database can literally be taken for a test drive, and understanding

the CDB and PDB concepts with users and administration is going to simplify the testing

in the cloud and support any migration and future environment in the cloud.

�Summary
New with Oracle Database 12c, a PDB is a collection of data files and metadata that exist

within a CDB. PDBs have several interesting architectural features:

•	 When connected to a PDB, you have no visibility to other PDBs

that exist within the CDB. It is as if you are connected to an isolated

database.

•	 Multiple PDBs share common database resources (memory

structures, background processes, and so on) within the CDB. From

the root container level, you can manage many DBA databases as if

they were one database.

•	 You can shut down a PDB without affecting other PDBs within the CDB.

Chapter 22 Pluggable Databases

962

•	 New PDBs can be quickly created by cloning the seed database,

an existing PDB, or a non-CDB.

•	 PDBs can be created and set up with an automatic refresh.

•	 PDBs can be easily transferred from one CDB to another by

unplugging from one CDB and plugging the PDB into another CDB.

These features provide new ways in which you can create and manage databases.

The main advantage of PDB technology is that it allows you to consolidate many

databases into one overarching database. This generates economies of scale, in that

more databases can be implemented and maintained on fewer servers with less support

personnel. As a DBA, understanding this technology and how to implement it makes

you all the more valuable to your company. The database environment that is configured

on-premise is available in the cloud. Understanding how to administer the database

on-premise will apply to management in the cloud. Having the PDB level of the database

allows for separate administration that does not need to administer the CDB or database

server.

Even with the autonomous database in the Oracle Cloud, the DBA is still needed

to work through application data, integrations, and strategies for data security. Always

enough to do when you understand databases, data, and how to use them.

Chapter 22 Pluggable Databases

963
© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1

Index

A
Active session history (ASH), 894, 897–898
ADD LOGFILE GROUP statement, 172–173
ADRCI utility, 881
ADR_HOME directory, 6
Advanced row compression, 258
ADVISE FAILURE command, 780–782
alert.log file, 878–881
alias command, 90
ALTER DATABASE BACKUP

CONTROLFILE TO TRACE
statement, 146

ALTER DATABASE command, 783
ALTER DATABASE DATAFILE

statement, 140
ALTER DATABASE DATAFILE ... OFFLINE

FOR DROP, 140
ALTER DATABASE DROP LOGFILE

MEMBER statement, 176
ALTER DATABASE MOVE DATAFILE

command, 142
ALTER DATABASE RENAME FILE

statement, 143–144
ALTER SEQUENCE statement, 380
ALTER SESSION command, 154, 940
ALTER SYSTEM KILL SESSION

statement, 901
ALTER SYSTEM SWITCH LOGFILE

statement, 173
ALTER TABLE statement, 251

ALTER TABLE ... MOVE statement, 283
ALTER TABLE...SHRINK SPACE

statement, 283
ALTER TABLESPACE statement, 127–128,

138, 144
ALTER TABLESPACE ... ADD DATAFILE

statement, 137
ALTER TABLESPACE ... OFFLINE

IMMEDIATE, 139
ALTER TABLESPACE ... OFFLINE

NORMAL statement, 139
ALTER USER command, 209–210
APP_DATA_LARGE tablespace, 120
APP_DATA_SMALL tablespace, 120
ARCHIVE_LAG_TARGET initialization

parameter, 165
Archivelog mode

architectural decisions, 179–180
archive log destination, 188–190
backing up archive redo log files, 190
disabling, 187
enable, 186–187
Redo file location

FRA, 185–186
LOG_ARCHIVE_DEST_N

database, 181
user-defined disk location, 181–182

Archive redo log file, 179
ASM cluster file system (ACFS), 149
AUTOALLOCATE clause, 123

https://doi.org/10.1007/978-1-4842-4424-1

964

AUTOEXTEND feature, 123
Autoincrementing (identity) column,

253–255
Automatic database diagnostic monitor

(ADDM), 306, 894, 897
Automatic diagnostic repository command

interpreter (ADRCI), 877
Automatic segment space management

(ASSM), 120
Automatic storage management (ASM),

124, 126
disk groups, 153
tablespaces, 148–149

Automatic workload repository (AWR),
306, 894, 896–897

Automating jobs
cron utility, 838

background process, 848
cron daemon process, 847
crontab entry, 850–851
default editor, 852
editing cron table, 851, 852
enabling access, 849
etc/crontab file, 847
files and directory, 848
loading, 853–854
redirecting output, 855–856
root user, 847
troubleshooting, 856–857
var/spool/cron directory, 847

DBA
locked production accounts, 864–865
OS script, 857
reboot/restart database, 858–859
redo log destination, 859, 861
RMAN backups, 866–868
SQL*Plus process, 865
truncating large log files, 862–863

Linux/Unix environment, 838
Oracle Scheduler utility

COPY_JOB procedure, 844
CREATE_JOB procedure, 840
vs. cron, 845–846
deleting, 845
DISABLE procedure, 843
ENABLE procedure, 843
JOB_CLASS parameter, 840
logging history, 842
modification, 842
orahome/oracle/bin

directory, 839
PL/SQL package, 839
REPEAT_INTERVAL

parameter, 840
run, 844
stopping, 843
view details, 841

Autonomous Database
Oracle Cloud, 869
patching, 868
secure configuration, 868

Autonomous data warehouse cloud
(ADWC), 961

Autonomous transaction processing
database (ATP), 961

autotrace tool, 278

B
BACKUP command, 695, 707, 722, 795
BACKUP AS COPY command, 796, 806
backup.bsh script, 855
Backup retention policy

CLEAR command, 716
delete obsolete backups, 716
recovery window, 715

Index

965

redundancy, 715
TO NONE command, 716

BACKUP...VALIDATE
command, 756, 795

Bash Shell Backslash, 86
Bash shell environment, 85
BASIC compression algorithm, 719
BasicFiles, 412

LOB Column, 413
SecureFile migration, 428
vs. SecureFiles, 411
space, 436

bdump, 91
BIGFILE clause, 133
Binary file (BFILE), 240, 408, 439
Binary large object (BLOB), 240, 408, 434
Bitmap index, 327
Bitmap join index, 328–329
Block-level recovery, 794–795
Bottlenecks identification

OS utilitity
database application, 882
Linux/Unix environments, 882
mapping, OS process, 888, 890
performance and monitoring, 883
top command, 885, 887
vmstat utility, 884–885

B-tree index, 309, 318–321
BUILD DEFERRED clause, 603

C
cat command, 878
CATALOG command, 714
CB_RAD_COUNTS view, 403
CDB_USERS, 195
Central MV Log, 639–641
CHANGE FAILURE command, 782

Character data type
CHAR, 235
NVARCHAR2 and NCHAR, 236
VARCHAR2, 234–235

Character large object (CLOB), 408, 432
Check constraint, 295–296
CHECK LOGICAL clause, 755, 867
CLEAR command, 719
CLOB command, 240
Clustered table, 232
Cold-backup strategy

archivelog mode database, 659
noarchivelog mode database

backup copies, 652
backup location, 650
database locations and names, 651
disk space, 650
flashback database, 649
restart database, 652
shut down database, 651
with Online Redo Logs, 652–653
without Online Redo Logs, 653–655

RMAN scenario, 659
scripts

cbdir variables, 656
coldback.sql script, 657
coldrest.sql script, 658

Comma-separated-value (CSV) files, 557
Common roles creation, 937
Common user creation, 936–937
Complete recovery

block-level recovery, 794–795
control files, 682, 684–687
data file

mount mode database, 792–793
entire database

backup control file, 789
current control file, 788

Index

966

nondefault location, 793–794
pluggable database, 796–797
restore-and-recovery scenario

database open, 680
data file data file, 677
mount mode, 677
online logs, 676
RECOVER DATABASE

statement, 681
RECOVER DATAFILE statement, 679
RECOVER TABLESPACE, 681
RMAN, 679
SYSTEM tablespace, 681

tablespace
mount mode, 790
read-only, 790
temporary restore, 791

testing
Backup preview, 785–786
media recovery, 786–787

Complete refreshable MV
architectural components, 590–591
CREATE MATERIALIZED VIEW...AS

SELECT statement, 587
CREATE MATERIALIZED VIEW system

privilege, 587
CREATE TABLE system privilege, 587
DBMS_MVIEW package, 590
REFRESH procedure, 590
SEGMENT CREATION IMMEDIATE

clause, 588
USER_MVIEWS data dictionary, 588
USER_OBJECTS view, 588
USER_SEGMENTS view, 588–589

Compressed data, 257
Concatenated index, 322–323
CONFIGURE command, 707, 722–723, 731

CONFIGURE ARCHIVELOG DELETION
command, 717

CONFIGURE CHANNEL
command, 708

CONFIGURE...CLEAR
commands, 726

conn.bsh script, 102–103
Constraints

definition, 231
disabling, 297–299
enabling, 299–301
foreign key constraints,

creation, 293–294
NOT NULL constraint, 296
primary key constraints,

creation, 289–290
specific data conditions,

checking, 295–296
types, 289
unique key constraints,

creation, 291–292
Container database (CDB), 163

creation
DBCA, 927–928
scripts, 928–929
SQL, 929, 931–932
verification, 932–933

CREATE ANY VIEW privilege, 352
CREATE CONTROLFILE

statement, 146–147
CREATE DATABASE

command, 118, 386
CREATE GLOBAL TEMPORARY TABLE

statement, 286
CREATE OR REPLACE method, 362
CREATE SCHEMA statement, 206
CREATE SYNONYM

command, 366–367

Complete recovery (cont.)

Index

967

CREATE TABLE statement, 242, 356
CREATE TABLE AS SELECT (CTAS)

statement, 263, 567
CREATE TABLESPACE statement,

122, 132, 450–452
CREATE USER SQL statement, 202
CREATE VIEW statement, 352
cron utility

background process, 848
cron daemon process, 847
crontab entry, 850
default editor, 852
editing cron table, 851
enabling access, 849
etc/crontab file, 847
files and directory, 848
load, 853
redirecting output, 855
root user, 847
troubleshooting, 856

CROSSCHECK command, 717
CTIME column, 219

D
Database buffer cache, 80
Database Configuration Assistant

(DBCA), 927
CREATE DATABASE

statement, 72
find command, 71
graphical mode, 70
mydb.rsp file, 71
OS command line, 70
rman utility, 72
silent mode, 70–71
utility, 39

Database directory object, 502

Database environment
OS command prompt, 84–87
rerunning commands

Bash shell, 93
command-line editor, 95–96
Ctrl+P and Ctrl+N, 94
history command, 94–95
ls - altr command, 96
reverse search, 95
set - o command, 95
up and down arrow keys

scrolling, 94
shell aliases, 89–90
shell function, 91–93
shell scripts

conn.bsh, 102–103
dba_fcns, 98–99
dba_setup, 97–98
filesp.bsh, 103, 105–106
lock.sql, 108–109
login.sql, 106
tbsp_chk.bsh, 99–102
top.sql, 107
users.sql, 110–111

SQL prompt, 87–89
SQL scripts (see SQL scripts)

Database index
application behavior, 334–335
bitmap index creation, 327
bitmap join index creation, 328–329
B-tree index creation, 318–321
concatenated index creation, 322–323
existing index invisible, 333
foreign key columns

index determination, 344–346
index implementation, 342–343
table locks, 346–347

function-based index creation, 324

Index

968

guidelines for index creation, 348–349
index maintenance

display DDL, 336
drop index, 341
monitor index, 339–340
rebuild index, 337–338
rename index, 336
UNUSABLE index, 338–339

invisible index creation, 332–333
key-compressed index creation, 330
parallelism, 331
proactive index creation, 305
reactive index creation, 306–307
redo generation avoidance, 331–332
reverse-key index creation, 329–330
robustness

index placement in
tablespace, 315–316

index size, 311–313
index type, 308–310
naming standards, 317
portable scripts creation, 316
separate tablespace

creation, 313–315
storage parameters, 315

ROWID, 303
unique index creation, 325–326

Database intelligence, 83
Database offline, incomplete recovery, see

Incomplete recovery
Database online, complete recovery, see

Complete recovery
Database point-in-time recovery

(DBPITR), 805, see also Incomplete
recovery,

Database Upgrade Assistant
(DBUA), 26–27

Database writer writes blocks (DBWn), 79
Data definition language (DDL), 127, 364
Data dictionary

architecture
dynamic performance, 387, 389
read-only view, 384
static view, 384–387

DBMS_STATS package, 400
derivable documentation, 393–394
metadata

database issues, 389
logical and physical structure, 389
Oracle database, 390
relationship, 391
SQL queries, 392
TABLESPACE_NAME column, 392
tablespaces, 389

object dependency, 402, 404–405
primary key and foreign key, 401–402
SQL query, 383
table row count, 398, 400
user information, 394–396

Data files
data dictionary views, 117
offline data file operations, 142

re-creating the control file and OS
commands, 145–147

SQL and OS commands, 143–145
online data file operations, 142

Data Manipulation Language (DML), 385
Data pump

additional dump files, 543
architecture

components, 503
exports and imports information, 500
Linux/Unix systems, 502
ps command, 501
status table, 502

Database index (cont.)

Index

969

COMPRESSION parameter, 545
consistent export files, 535–537
database directory object, 502
data export

access to the directory, 506
directory object, creation, 505–506
export information, database, 508

data pump jobs
database alert log, 553
data dictionary views, 552
interactive command mode

status, 554
log file, 551
OS utilities, 554
status table, 553

data remapping, 539–541
DBMS_DATAPUMP and DBMS_

METADATA built-in PL/SQL
packages, 500

DDL file, 544–545
DISABLE_ARCHIVE_LOGGING

parameter, 548
dump files, 534
ENCRYPTION parameter, 546–547
exclude objects, 532
expdp and impdp utilities, 500
export and import

entire database, 511–513
Linux server, 516
schema level, 513–514
Solaris box, 516
table level, 514–515
tablespace level, 515
transferring data, 516

export job components, 503
file size estimation, 533
filtering data and objects, 526
import job components, 504

interactive command mode
KILL_JOB command, 550
running job and view, 549
STOP_JOB parameter, 550

log file suppresion, 541
master process, 501
old exp/imp utilities, 499
parallelism, 541–542
parameter file, 509–510
PL/SQL packages, 504
REUSE_DUMPFILES parameter, 543
status table, 501
substantial functionality, 499–500
TABLE_EXISTS_ACTION and

CONTENT parameters, 537–538
table import, 509
table-level compression, 546
table renaming, 539
testing database, 517
transferring data, 516

copying data files, 519–521
export and import, network, 516

user clone, 535
utility, 272
VIEWS_AS_TABLES parameter, 548
worker process, 501

Data recovery advisor, 779
Data types

characters
CHAR, 235
NVARCHAR2 and NCHAR, 236
VARCHAR2, 234–235

Date/Time, 237–238
JSON, 241
LOB, 240
numeric, 236–237
RAW, 238
ROWID, 239

Index

970

DATE data type, 237
Date/Time data type, 237–238
DBA/ALL/USER_CONSTRAINTS

views, 326
DBA/ALL/USER_EXTENTS, 279, 282
DBA/ALL/USER_INDEXES views, 321
DBA_DEPENDENCIES view, 403
dba_fcns script, 98–99
DBA_ROLE_PRIVS view:, 227
DBA_SCHEDULER_JOBS, 845
DBA_SEQUENCES view, 378
dba_setup script, 97–98
DBA_SYS_PRIVS view, 224
DBA_TAB_PARTITIONS view, 469
DBA_USERS_WITH_DEFPWD

view, 199, 200
DB_CREATE_FILE_DEST, 753
DB_FLASHBACK_RETENTION_TARGET

parameter, 818
DBMS_METADATA package, 127
DBMS_SCHEDULER package, 840, 846
DBMS_SPACE package, 279, 280
DBMS_STATS package, 483
DBMS_UNDO_ADV package, 905
DB_WRITER_PROCESSES parameter, 171
DDL_LOCK_TIMEOUT parameter, 266
DDL LOGGING, 265
DEFAULT_PWD$ view, 198
Default user, 193–195
Deferred segment creation, 252
DELETE statement, 275–276, 717
DELETE NOPROMPT OBSOLETE

command, 716
DELETE OBSOLETE command, 716
Deterministic, 324
DEVDB database, 820
DICT_COLUMNS view, 394
DICTIONARY view, 393

DIRECTORY parameter, 506
DISABLE procedure, 843
Displaying archivelog

mode, 187
DISTINCT clauses, 307
DML statements, 307
DOP_JOB procedure, 845
DROP CATALOG command, 761
Drop database, 73
DROP SEQUENCE

statement, 379
DROP SYNONYM statement, 370
DROP TABLE command, 273, 287
DROP TABLESPACE statement, 130
DROP USER statement, 213–214
DROP VIEW statement, 365
DUAL table, 405
dump directory, 92
DUPLICATE DATABASE command, 819

E
ECHO command, 735–736, 849
ENABLE procedure, 843
ENABLED column, 843
ENABLE PLUGGABLE DATABASE

clause, 915
Environment seperation, applications, 923
Exadata Express, 924
EXCLUDE command, 742
EXPLAIN_MVIEW procedure, 607
Export command, 41
EXTENT MANAGEMENT LOCAL

clause, 123
External table, 232

advanced transformation
CREATE TABLE statement, 569
embedded transformation, 570

Index

971

EXA_INFO table, 570

exa_trans function, 569

pipelined function, 568

rec_exa_type, 568

CSV file, 557

architectural components, 560

CREATE TABLE...ORGANIZATION

EXTERNAL statement, 561

database object creation, 562

directory object and granting

access, 561

EXADATA_ET, 563

ex.csv file, 561

loading regular table, 566

SQL generation, 563

steps to access, 560

view metadata, 565–566

data selection, 557

definition, 557

vs. SQL*Loader, 558

text files, 570

unloading and loading data

advantage, 572

components, 573

definition, 572

directory object, 574

dump file, 574

dump file compression, 577

dump file encryption, 577

elapsed time reduction, parallel

process, 575

inline SQL, 579

INV table, 574

INV_DW, 575

ORACLE_DATAPUMP access

driver, 578

F
Fast Recovery Area (FRA), 697
Fast refreshable MV

architectural components, 594, 596
complex query, 607–610
implementation steps, 592
log, 592
MLOG$_<base table name>, 594
Oracle features, 597
<base table name>_PK1, 594
PRIMARY KEY clause, 592
records, adding, 595
ROWID clause, 592
RUPD$_<base table name>, 594
SALES table, 592
SELECT statement, 592
USER_MVIEWS view, 596
USER_OBJECTS, 593

FAST_START_MTTR_TARGET, 171
filesp.bsh script, 103, 105–106
Filtering data and objects

constraint and trigger DDL, 531
exclude objects, 532
EXCLUDE parameter, 528–530
include objects, 532
INCLUDE parameter, 531
percentage data, 528
query, 526–528
statistics, 530
table and index, 531

find command, 16, 18, 877
Flashback database feature, 816
FLASHBACK TABLE statement, 275
Flashback table operations, 813
Foreign keys, 334

check index, 344–346
constraints, 293–294

Index

972

index on, 342–343
table locks, 346–347

FORMAT command, 707
Full-table scans, 303
Function-based index, 324

G
Gap-free sequences, 376
GET_DDL function, 272, 364, 370
Graphical installer, Oracle binaries

components and utilities, 30
DISPLAY variable, 31, 33
install X software and networking

utilities, PC, 31
runInstaller utility, 31, 34
scp command, 32
secure networking, 31
ssh utility, 33
startx command, 31
troubleshoot, 31, 35
xhost command., 31, 33
X Window System

emulation, 31
groupadd command, 10
GROUP BY clauses, 307
groupdel command, 11
groupmod command, 11

H
Hash clustered table, 232
Heap-organized table

creation, 242, 244–246
description, 232

High-water mark, 278
history command, 94

Hot-backup strategy
ALTER DATABASE BEGIN BACKUP

statement, 662
archivelog mode, 661
archive redo logs, 664, 672
back up location, 661
backup location, 661
control files, 664
frozen SCN, 674
NLS_DATE_FORMAT

parameter, 663
Online Redo Logs, 663
OS utility, 662
script

hotback.sql script, 666
ORACLE_HOME OS variable, 665
ORACLE_SID OS variables, 665
SQL*Plus hbdir variable, 665, 667

split-block issue, 669
redo stream, 669–671
restore and recovery, 672

tablespaces out of backup
mode, 663

I, J
Incomplete recovery

archive redo logs/unarchived online
redo log, 688

cancel-based incomplete
recovery, 688–689

database back, 688
data pump dump file, 812
DBPITR, 805
log sequence-based recovery, 809
OPEN RESETLOGS clause, 690
RESTORE DATABASE UNTIL

command, 805

Foreign keys (cont.)

Index

973

restore point, 811
SCN based incomplete

recovery, 688
SCN-based recovery, 810
steps, 805
testing environment, 688
time based incomplete recovery, 688
time-based recovery, 808–809
TSPITR, 806
type of, 808
user-managed incomplete

recovery, 688
INCREMENT BY setting, 380
Index-organized tables (IOTs), 232, 288
INDEX_STATS view, 321
Infrastructure as a Service

(IaaS), 35–36, 961
Init.ora Scenario, 158–159
INTERVAL data type, 238
interval partition type, 445
inventory.xml file, 21
Invisible columns, 250
Invisible index, 332–335
ISDATE function, 270
ISNUM function, 269

K
Key-compressed index, 330

L
Large objects (LOB)

BasicFiles vs. SecureFiles, 411
BFILE, 408, 439
BLOB, 408, 434
chunks, 409
CLOB, 408, 432

column
adding columns, 420
BasicFiles, 413
cache descriptions, 421
In- and Out of Line, 422
moving columns, 420
partition, 417
removing column, 421
SecureFiles, 416
tablespace, 415

index, 409
locators, 409
LONG and LONG RAW, 407
metadata, 431
NCLOB, 408
oracle data types, 409
SecureFiles, 412

BasicFiles migration, 428
deduplication, 425
degrees of compression, 424
encryption feature, 426

space, 435
VARCHAR2 data type, 407

LELLISON user, 227
Linux/Unix, 763
LIST BACKUP command, 765
LIST BACKUP SUMARY

command, 765
Listener.log file, 862
LIST FAILURE command, 779, 782
LOB data type, 240
Local user creation, 938
Locking issues, 899–902
lock.sql script, 108–109
LOG_ARCHIVE_FORMAT, 182
Log Archive Format String, 183
Log buffer, 80
login.sql script, 106

Index

974

M
MAILTO variable, 856
Managing control files

adding, 155–156
ALTER SESSION statement, 154
binary file, 151
data dictionary, 152
Init.ora Scenario, 158–159
moving, 159–160
names and locations, 155
remove, 160–162
spfile or init.ora file, 152
Spfile Scenario, 156–157

Manipulating storage
data file paths and names, 522–523
REMAP_TABLESPACE feature, 523
segment and storage

attributes, 525–526
tablespace metadata, 522
TRANSFORM parameter, 524

man tar command, 24
Materialized view (MV)

complete refreshable (see Complete
refreshable MV)

compressing, 600
database performance report, 582
data dictionary view, 585–586
DDL view, 611
dropping, 611
encrypting columns, 600–601
fast refreshable (see Fast

refreshable MV)
groups

adding to refresh group, 645
CHANGE function, 642
creation, 642
DBA_RGROUP and DBA_RCHILD

views, 644

DBMS_MVIEW vs. DBMS_
REFRESH, 643–644

dropping, 645
INTERVAL calculation, 642
refreshing, 643
removing from refresh

group, 645
indexes, 598
logs

CREATE TABLE privilege, 619
creating, 620–621
dropping, 626
Indexing columns, 622
master table, 619
moving, 625
Oracle internal trigger, 619
row count, 624
shrinking space, 623–624
terminology and features, 620
viewing space, 622–623

master tables, 581
modification

ALTER MATERIALIZED VIEW...
MOVE TABLESPACE
statement, 619

base table DDL, 612
ON PREBUILT TABLE clause,

615–616
parallelism, 618
recreation, 613–614
redo logging, 617–618
underlying table

preservation, 614
never refreshable, 605
ON COMMIT refreshable, 604
partitioning, 599
prebuilt table, 602
query rewrite, 606–607

Index

975

refresh
efficient performance, 630
interval, 629
manual, 627
ORA-12034 error handling, 631
progress determination, 632
real-time refresh progress, 633–634
remote (see Remote MV refreshes)
viewing last refresh times, 632
within time period, 634–635

SALES table, 581
SALES_DAILY, 583
sales table, 582
tablespace, 598
terminology, 584–585
unpopulated, 603

MAX SQL function, 448
Media recovery testing, 786–787
MESSAGE_TEXT LIKE command, 881
MHURD user, 227
m kdir command, 50, 112
MV_CAPABILITIES_TABLE, 610
My Oracle Support (MOS), 16, 26, 28

N
NCLOB command, 240
Nested table, 232
Net configuration assistant

(netca), 58, 858
Never refreshable MV, 605
NEXT clause, 629
NLS_DATE_FORMAT, 734–735
NOCOMPRESS clause, 135
NOLOGGING feature, 260, 617
NORESETLOGS clause, 146
NOT NULL constraint, 296
NOVALIDATE clause, 300

Numeric data type, 236–237
NVARCHAR2 and NCHAR data type, 236

O
Object table, 232
Offline and online data files, tablespaces,

138–141
ON COMMIT DELETE ROWS, 286
ON COMMIT refreshable MV, 604
Online redo logs

ADD LOGFILE GROUP statement, 172
ALTER DATABASE ADD LOGFILE

MEMBER statement, 175
archivelog mode, 163
back up, 165
configuration, 164
FAST_START_MTTR_TARGET

value, 171
GoldenGate/Streams, 162
log writer, 162
MAXLOGFILES value, 171
mechanisms, 164–165
moving/renaming, 176–177
optimal number determination,

169–170
Oracle LogMiner utility, 162
recovering transactions, 162
remove, 175–176
resizing and dropping, 172–174
round-robin fashion, 163
size, 168–169
useful views, 167
V $INSTANCE_RECOVERY, 169
V $LOG_HISTORY, 168
V $LOG View, 167
V$LOGFILE View, 167

ON PREBUILT TABLE clause, 612, 615

Index

976

opatch utility, 28
OPEN_CURSORS parameter, 902–903
OPEN RESETLOGS

command, 690, 802, 830
Optimal flexible architecture (OFA)

automatic diagnostic repository, 6–7
directory structure and file names, 3
Oracle base directory, 4–5
Oracle home directory, 5
Oracle inventory directory, 4
Oracle network files directory, 6

OR Operation, results, 328
Oracle autonomous database cloud, 961
ORACLE_BASE variable, 4
Oracle binaries installations

database, 7–8
existing copy

binaries copy, OS utility, 22, 24
Oracle home attachment, 24

free disk space, 11
graphical installer (see Graphical

installer, Oracle binaries)
graphical or silent install, 15
interim patches, 28–29
memory and swap space, 11
OFA (see Optimal Flexible

Architecture (OFA))
operating system software, 11
operating system version and

kernel, 11
oraInst.loc file creation, 14
OS Groups and user creation, 8–11
reinstallation, 27–28
software, 26–27
software download page, 12
system architecture, 11
troubleshoot issues, 20–21
unzip the files, 13

Oracle B-tree hierarchical index, 319
Oracle (circa version 8), 323
Oracle database

architecture, 77
one server database

advantages and
disadvantages, 77

applications and users, 76
architecture, 74
multiple applications and users, 75
multiple databases, 75
multiple pluggable databases, 76

OS authentication, 64–65
starting database, 65–66

phases, 67
startup command, 67–68

stopping database, 68
SHUTDOWN command, 68, 69

Oracle Database 12c, 374
Oracle Database 12c Release 1

Scenario, 16–20
Oracle enterprise management

tool, 114
ORACLE_HOME directory, 28
Oracle index type, 309–310
Oracle internal trigger, 619
Oracle listener

database connection, 61–62
manual configuration, 59–61
netca, 58–59

ORACLE_LOADER Driver, 572
Oracle managed files (OMF)

tablespaces, 132–133
Oracle Multitenant, 918
Oracle Scheduler utility

COPY_JOB procedure, 844
CREATE_JOB procedure, 840
vs. cron, 845

Index

977

deleting, 845
DISABLE procedure, 843
ENABLE procedure, 843
JOB_CLASS parameter, 840
logging history, 842
modification, 842
orahome/oracle/bin directory, 839
PL/SQL package, 839
REPEAT_INTERVAL parameter, 840
run, 844
stopping, 843
view details, 841

Oracle universal installer (OUI), 1, 14, 26
Oracle wallet, 428, 578, 601
oraInst.loc file, 14
ORDER BY clauses, 307
OS techniques, 84
OVERFLOW clause, 288

P, Q
P_0 PROCESSES, 256
PARALLEL clause, 256
PARALLEL_THREADS_PER_CPU, 257
Partitioned table, 232
Partitioning

benefits, 441
indexes
architecture, 487–488
global index, 490–492
LOCAL clause, 487
partial, 492–493
prefixed vs. nonprefixed, 490
ROWID values, 486
tablespace, 488
types, 489
USER_IND_PARTITIONS table, 487
USER_PART_INDEXES, 489

maintenance
ADD PARTITION clause, 474–477
dropping, 482
exchange, 476, 478
existing table, 472, 474
manipulating data, 485
merging, 480–481
metadata, 468
moving, 469–470
removing rows, 484
renaming, 479
splitting, 479–480
statistics, 483
updated rows, 471

modifying specific strategy, 496
OLTP databases, 443
Oracle partitioning terminology, 442
parallelism, 441
pruning, 494
table creation

based on date, 458–461
based on number, 461–462
composite partitioning, 455–457
MAX SQL function, 448, 449
NUMBER implemention, 446–448
parent table, 462–466
PARTITION BY HASH

clause, 454–455
PARTITION BY LIST clause, 453–454
PARTITION BY RANGE clause, 446
PARTITION BY SYSTEM clause, 467
strategies, 445
TIMESTAMP implemention, 449
virtual column, 466

tables, 443–444
PCTTHRESHOLD, 288
PERFSTAT user, 898
ping command, 873

Index

978

Platform as a Service (PaaS), 35, 924, 961
PL/SQL function, 539

role, 228
Pluggable architecture, advantage, 923
Pluggable databases (PDB)

administrative tasks, 951
architecture, 919–922
backup and recovery, 924–925
clone, 960
connection, 951–952
creation

DBCA, 949–950
existing PDB, 943
non-CDB, 945–947
options, 943
plugging, 948–949
remote PDB, 944–945
seed database, 942
sources, 941
status check, 950–951
unplug, 947–948

dropping, 959–960
Exadata Express, 924
history view, 958–959
initialization parameters, 956
listener, 952–953
lockdown profile, 958
renaming, 957
shipping containers, 926
SHOW command, 954, 955
space limit, 957–958
start/stop

pluggable database, 955
root container, 955

terms, 917
tuning, 925

Process monitor (PMON), 60
Primary key constraints, 289–290

Process identifiers (PIDs), 886
Program global area (PGA), 80
ps command, 847
ps utility, 890
PURGE_LOG procedure, 842
PURGE_MVIEW_FROM_LOG

procedure, 641
pwd command, 95

R
RAW data type, 238
README.txt, 29
Read-only tables, 251
RECOVER command, 695, 777, 788, 799
RECOVER DATABASE command, 788
RECOVER DATABASE UNTIL

command, 807
RECOVER DATAFILE commands, 792
RECOVER TABLE command, 811
RECOVER TABLESPACE command, 789
RECOVER TABLESPACE UNTIL

command, 806
Recovery manager (RMAN), 43
RECYCLEBIN feature, 275
Reference partition type, 445
Referential integrity constraints, see

Foreign keys
REMAP_SCHEMA parameter, 518
Remote MV refreshes

architectures, 636–638
base table information, 638
central MV Log, 639–641
master database, 635
setup, 635

RENAME statement, 364
REPAIR FAILURE command, 781–782
REPORT command, 766

Index

979

REPORT SCHEMA command, 739
RMAN REPORT SCHEMA command, 792
RESETLOGS, 146, 687
RESTORE command, 695, 777, 788, 807
RESTORE CONTROLFILE

command, 801
RESTORE DATABASE

command, 787, 805–806
RESTORE DATABASE UNTIL

command, 805
RESTORE DATAFILE command, 792
RESTORE...PREVIEW command, 785, 786
RESTORE TABLESPACE command, 789
RESTORE...VALIDATE command,

756–757, 786
RESTORE...VALIDATE HEADER

command, 786
Reverse-key index, 309, 329–330
REVOKE statement, 226
$RMAN_BACKUP_JOB_DETAILS, 770
RMAN backups

command initialisation
ECHO command, 735–736
NLS_DATE_FORMAT, 734–735
SHOW ALL command, 736

corruption
BACKUP...VALIDATE

command, 756
RESTORE...VALIDATE

command, 756–757
VALIDATE command, 754–755

execution
archive redo logs, 740–741
autobackup, 737
backup sets vs. image copies, 738
control file, 739–740
data files, 739
data files (not backed up), 743

EXCLUDE command, 742
FRA, 741–742
full backup vs. incremental

level=0, 737
parallelism, 745
repository, 745–746
skip offline or inaccessible

files, 744
SKIP READONLY command, 743
spfile, 740
tablespaces, 738–739

incremental backup features
block change tracking, 753–754
incremental level, 750–751
updating backup, 751–753

output
cron, 762
data dictionary, 764–765
Linux/Unix, 763
shell script (rmanback.bsh), 762
SPOOL LOG command, 764

pluggable databases, 747
root container, 747–748
SYSDBA/SYSBACKUP

privileges, 748–749
recovery catalog

back up, 760
creation, 757–759
DROP CATALOG command, 761
synchronization, 760
target database register, 759
version, 761

report
LIST, 765–766
REPORT command, 766–767
SQL, 767–772

types of, 733
RMAN CATALOG command, 146

Index

980

RMAN configuration
architectural components

auxiliary database, 696
backup/back up, 696
backup piece file, 696
backup set, 696
channel(s), 695
DBA, 695
FRA, 697
image copy, 696
media manager, 697
memory buffers (PGA or SGA, 695)
Oracle server processes, 695
PL/SQL packages, 695
recovery catalog, 696
RMAN client, 695
snapshot control file, 697
target database, 695

architectural decision
archive redo log destination and file

format, 705
archive redo logs’ deletion

policy, 717–718
backing up, 711
BACKUP...FORMAT, 707
backup retention policy (see Backup

retention policy)
backup sets/image copy, 719
backup user specification, 704
binary compression, 722
block change tracking, 721
CONFIGURE command, 731
CONFIGURE CHANNEL...FORMAT,

708–709
control file autobackup, 709
CONTROL_FILE_RECORD_KEEP_

TIME initialization parameter, 714
cron utility, 727, 732

CROSSCHECK command, 731
default location, 706–707
DELETE NOPROMPT

OBSOLETE, 732
ECHO parameter, 731
encryption algorithm, 723
FRA, 707
implementation, 701–703, 729–730
incremental backups, 720–721
incrementally updated

backups, 721
informational output, 725–726
media manager, 713
miscellaneous settings, 724–725
NLS_DATE_FORMAT OS

variable, 731
online/offline backups, 705
oraset variable, 731
parallelism degree, 718
recovery catalog, 712–713
remotely/locally, 704
snapshot control file, 711–712
specifying location of, 710

OS variables, 699
PATH variable, 699
rman and sqlplus, 699
SQL statements, 724
types of

archivelog backups, 698
block change tracking, 698
full backup, 697
incremental level 0

backup, 697
incremental level 1

backup, 698
incrementally updated

backup, 698
RMAN duplicate database, 518

Index

981

RMAN restore and recovery
complete recovery (see Complete

recovery)
control file

Autobackup, 802
recovery catalog, 801
specific backup piece file, 803

data recovery advisor
change failure, 782
listing failure, 779–780
repairing failure, 781–782
suggesting corrective action,

780–781
DBA, 774
flashback table feature

recycle bin feature, 813
RESTORE POINT, 816
SCN, 815–816
SHOW RECYCLEBIN

statement, 814
TIMESTAMP, 816
undo tablespace, 815

incomplete recovery
archived redo log file, 807
Data Pump dump file, 812
DBPITR, 805
log sequence-based recovery, 809
RESTORE DATABASE UNTIL

command, 805
restore point, 811
SCN-based recovery, 810
SQL query, 806
steps, 805
time-based recovery, 808–809
TSPITR, 806
type of, 808

media recovery, 775
RECOVER command, 777

redo log file, 777
default location, 800
nondefault Location, 800–801

RESTORE command, 777
server, 819

building block, 819
control file, 824
control file aware, 824
copy, 821
database, origination, 821
database recover, 828
database rename, 831–834
data file, control file and dump/

trace file, 823
data file location, 826
init.ora file creation, 823
mount mode, 824
nomount mode, 824
online redo logs, 829
oracle binaries install, 822
OS variable, 822
temp file, 831

spfile, 803–804
SQL*Plus, 773
steps, 778
stop/start Oracle, 783

ROLLBACK statement, 276
Root container

administration, 934
name display, 935–936
network connection, 935
space report, 938–940
start/stop, 936

Row identifier (ROWID), 303
data type, 239, 285

ROWNUM pseudocolumn,
892–893, 903

runInstaller command, 16

Index

982

S
SALESPDB pluggable database, 748–749
Scalable sequence, 375
Schemas vs. users, 205–206
scp command, 32
script command, 763
SecureFile

advanced features
deduplication, 425
degrees of compression, 424
encryption feature, 426

vs. BasicFiles, 411
LOB column, 416
space, 437

SEGMENT SPACE MANAGEMENT
AUTO clause, 123

SELECT statement, 364
Sequence

autoincrementing column, 374–375
creation, options, 372
definition, 371
dropping, 379
metadata, 378
pseudocolumns, 373
renaming, 379
resetting, 379–381
single/multiple sequence, 377–378
unique values, 376–377

service command, 847
Service name (SID), 61
SET_ATTRIBUTE procedure, 842
SET CONTAINER command, 951
SET EDITOR command, 880
SET HOMEPATH command, 881
SET NEWNAME command, 793, 826
SET_SCHEDULER_ATTRIBUTE

procedure, 842
SET SQLPROMPT command, 87

setup.exe command, 16
SHOW command, 722
SHOW ALERT command, 880
SHOW ALL command, 736
SHOW HOMES command, 881
SHUTDOWN command, 153, 783
SHUTDOWN IMMEDIATE

statement, 68, 783
SKIP INACCESSIBLE command, 744
SKIP OFFLINE command, 744
SKIP READONLY command, 743
Skip-scan feature, 323
Smoke test, 209
Spfile, 740

parameter, 182–184
scenario, 156–157

SPOOL LOG command, 764
SQL, 767–772
SQL*Plus, 336

drop database, 73
Oracle database

CREATE DATABASE
statement, 50, 52

data dictionary creation, 56
initialization file, 47
OFA structures, 56
OS variables, 46
TEMP tablespace, 53

Oracle listener, 61
OS variables

LD_LIBRARY_PATH, 40
manually intensive approach, 41
ORACLE_HOME, 40
ORACLE_SID, 40
oraenv, 43
oraset file, 45
oratab file, 42
PATH variable, 40

Index

983

PASSWORD command, 210
password file, 62
variables, 89

SQL scripts
.bashrc file, 113
directories creation, 112
HOME/bin directory, 112
HOME/scripts directory, 112
startup file configuration, 113

SQL TEXT column, 890
STARTUP command, 153, 783
STARTUP NOMOUNT command, 387, 801
START WITH clause, 629
startx command, 31
STATE column, 355
Statspack, 898
Status table, 502
STOP_JOB procedure, 843
Storage area network (SAN), 314
SWITCH command, 793
SWITCH_DIR variable, 861
Synonyms

creation, 366–367
definition, 366
dropping, 370
generates synonyms, 368
metadata, 369–370
public synonyms, 367–368
renaming, 370
types, 365
USER2’s EMP table, 365

SYSAUX tablespace, 119
SYS_CONTEXT function, 395–396
SYSDBA role, 196
SYS vs. SYSTEM, 196
SYSOPER role, 196
SYSTEM schema, 196
SYSTEM tablespace, 119, 207

System change number (SCN), 162, 168
System global area (SGA), 66
system partition type, 445
SYSTEM schema, 932

T
Tables

character data type
CHAR, 235
NVARCHAR2 and NCHAR, 236
VARCHAR2, 234–235

constraints (see Constraints)
creation

autoincrementing (identity)
column, 253–255

compressing table data, 257, 259–260
default parallel SQL execution,

256–257
deferred segment creation, 252
factors, 241
from a query, 263
guidelines, 244
heap-organized table, 242, 244–246
invisible columns, 250
IOTs, 288
read-only tables, 251
redo creation, avoid, 260–261, 263
temporary table, 286–287
virtual columns, 246, 248–249

Date/Time data type, 237–238
definition, 231
displaying table DDL, 271
dropping, 273
LOB data type, 240
modification

adding column, 267
altering column, 268, 270

Index

984

dropping unused column, 270
locking, 266–267
renaming column, 270
renaming table, 267

numeric data type, 236–237
RAW data type, 238
removing data from table, 275
restoring dropped table, 274–275
ROWID data type, 239
types, 232
viewing and adjusting high-water mark

lowering method, 282
performance-related issues, 278–279
readjusting, 283
rebuilding table, 283–284
selecting from data dictionary

extents view, 282
space detecting methods, 278–282

Tablespace point-in-time recovery
(TSPITR), 806

Tablespaces
ampersand variables, 125
APP user, 120
best practices for creating and

managing, 126–127
bigfile features, 133
CREATE TABLESPACE statement, 122
database space usage, 135–136
data dictionary views, 117
default table compression, 134–135
dropping, 129, 131
human resources application, 121
inventory application, 121
logical storage objects and physical

storage, 118, 121
N OLOGGING clause, 177–178
objects, 117

Oracle managed files, 132–133
read-only mode, 128
read/write mode, 128
reasons, separate tablespaces, 121
rename, 127
resize, 137–138

Tablespaces partitions
CREATE TABLESPACE

statement, 450–452
data files, 452
single tablespace, 451
storage clauses, 453

TAIL option, 881
tar command, 23
TARGET parameter, 695
tar -tvf <tarfile name> command, 23, 24
tbsp_chk.bsh script, 99–102
telnet command, 873
TEMP tablespace, 119
Temporary table, 232
Temporary tablespace, 313
Temporary tablespace issues, 908–911
THRESH_GET_WORRIED

variable, 860
TIMESTAMP data type, 238
tnsping command, 874
TO NONE command, 716
top.sql script, 107
Transparent network substrate

(TNS), 61
Troubleshooting

automating job, 856–857
bottlenecks (see Bottlenecks

identification)
locking issues

COMMIT/ROLLBACK, 901
KILL command, 902
OS command, 902

Tables (cont.)

Index

985

output, 901
space-related issue, 899
SQL statement, 899

open-cursor issues, 902–903
oracle installation issues, 21
OS Watcher tool, 891
SQL statement

ADDM report, 897
ASH report, 897
AWR report, 896
diagnosing database, 894–895
monitoring real-time statistics,

891, 893–894
Oracle performance utility, 895
Statspack, 898
V$SYSSTAT and V$SESSTAT

views, 895
temporary tablespace issues

determination, 909
SQL view, 910

triaging
ADRCI utility, 880
alert log and trace files, 875–876
database availability, 872–874
OS tools, 878
removing files, 876, 878

undo tablespace issues
determination, 904–906
SQL view, 907–908

TRUNCATE statement, 275–277

U
unalias command, 90
UNDO tablespace, 119

issues, 904–906
UNIFORM SIZE [size] clause, 123
UNION clauses, 307

Unique index, 325–326
Unique key constraint creation

methods, 291
Unpopulated MV, 603
UNTIL SCN clause, 810
unzip command, 13
USE_CURRENT_SESSION parameter, 844
userdel command, 11
USERENV namespace, 395
User-managed backups and recovery

archivelog mode database
complete recovery (see Complete

recovery)
incomplete recovery (see

Incomplete recovery)
cold-backup strategy (see Cold-backup

strategy)
hot backup strategy (see Hot backup

strategy)
usermod command, 11
USER_ROLE_PRIVS view, 227
Users

ALTER USER command, 209–210
choosing name, 201–202
configuration, 204–205
creation, 200

CREATE USER SQL statement, 202
OS authentication, 203–204
schemas, 205–206

DBA-created accounts, 198
DBA role, 196
DBA_USERS_WITH_DEFPWD

view, 200
default, 193–195
default permanent tablespace and

temporary tablespace, 206–209
DEFAULT_PWD$ view, 198
different user logging in, 210–211

Index

986

DROP USER statement, 213–214
grouping and assigning

privileges, 226–227
limiting database resource

usage, 221–223
modifying users, 212
object privileges, 225–226
password change, 196–198
password check, 199–200
password security, 215–218
password strength, 219–221
SQL statements, 197
SYS account, 197
SYSDBA role, 196
SYSOPER role, 196
system privileges, 224–225
SYSTEM schema, 196

USERS tablespace, 119, 787
users.sql script, 110–111
USER_TABLES view, 385

V
V$CONTROLFILE_RECORD_SECTION:,

152
V$DATABASE_BLOCK_CORRUPTION,

755, 795
V$LOG_HISTORY, 168
V$SESSTAT view, 895
V$SQL_MONITOR view, 893
V$SQLSTATS view, 893
V$SYSSTAT view, 895

VALIDATE command, 754, 795
VALIDATE DATABASE command, 780
VALIDATE HEADER clause, 867
VARCHAR2 data type, 234–235
view command, 879
Views

creation, 352–354
definition, 362–363
dropping, 365
INSTEAD OF triggers, 358–359
invisible column, 360–361
read-only views, 355
renaming, 364
SQL query, 363–364
updatable join view, 356–358
updation, 354–355
uses, 352
WITH CHECK OPTION, 354

Virtual columns, 246, 248–249
virtual partition type, 445
VRMAN_OUTPUT view, 764
V$CONTROLFILE view, 155

W
WITH CHECK OPTION, 355
WITHOUT VALIDATION

clause, 478

X, Y, Z
xargs command, 877
xhost command, 31, 33, 35

Users (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Installing the Oracle Binaries
	Understanding the OFA
	Oracle Inventory Directory
	Oracle Base Directory
	Oracle Home Directory
	Oracle Network Files Directory
	Automatic Diagnostic Repository

	Installing Oracle
	Step 1. Create the OS Groups and User
	Step 2. Ensure That the OS Is Adequately Configured
	Step 3. Obtain the Oracle Installation Software
	Step 4. Unzip the Files
	Step 5. Creating oraInst.loc File
	Step 6. Configure the Response File, and Run the Installer
	Oracle Database 12c Release 1 Scenario
	Oracle Database 18c Release 1 Scenario

	Step 7. Troubleshoot Any Issues
	Step 8. Apply Any Additional Patches

	Installing with a Copy of an Existing Installation
	Step 1. Copy the Binaries, Using an OS Utility
	Step 2. Attach the Oracle Home

	Installing Read-Only Oracle Home
	Upgrading Oracle Software
	Reinstalling After Failed Installation
	Applying Interim Patches
	Installing Remotely with the Graphical Installer
	Step 1. Install X Software and Networking Utilities on the Local PC
	Step 2. Start an X Session on the Local Computer
	Step 3. Copy the Oracle Installation Media to the Remote Server
	Step 4. Run the xhost Command
	Step 5. Log In to the Remote Computer from X
	Step 6. Ensure that the DISPLAY Variable Is Set Correctly on the Remote Computer
	Step 7. Execute the runInstaller Utility
	Step 8. Troubleshoot

	Installation in the Cloud
	Summary

	Chapter 2: Creating a Database
	Setting OS Variables
	A Manually Intensive Approach
	Oracle’s Approach to Setting OS Variables
	Understanding oratab
	Using oraenv

	My Approach to Setting OS Variables

	Creating a Database
	Step 1. Set the OS Variables
	Step 2. Configure the Initialization File
	Step 3. Create the Required Directories
	Step 4. Create the Database
	Step 5. Create a Data Dictionary

	Configuring and Implementing the Listener
	Implementing a Listener with the Net Configuration Assistant
	Manually Configuring a Listener
	Connecting to a Database through the Network

	Creating a Password File
	Starting and Stopping the Database
	Understanding OS Authentication
	Starting the Database
	Stopping the Database

	Using the dbca to Create a Database
	Dropping a Database
	How Many Databases on One Server?
	Understanding Oracle Architecture
	Summary

	Chapter 3: Configuring an Efficient Environment
	Customizing Your OS Command Prompt
	Customizing Your SQL Prompt
	Creating Shortcuts for Frequently Used Commands
	Using Aliases
	Using a Function

	Rerunning Commands Quickly
	Scrolling with the Up and Down Arrow Keys
	Using Ctrl+P and Ctrl+N
	Listing the Command History
	Searching in Reverse
	Setting the Command Editor

	Developing Standard Scripts
	dba_setup
	dba_fcns
	tbsp_chk.bsh
	conn.bsh
	filesp.bsh
	login.sql
	top.sql
	lock.sql
	users.sql

	Organizing Scripts
	Step 1. Create Directories
	Step 2. Copy Files to Directories
	Step 3. Configure the Startup File

	Automating Scripts
	Summary

	Chapter 4: Tablespaces and Data Files
	Understanding the First Five
	Understanding the Need for More
	Creating Tablespaces
	Renaming a Tablespace
	Changing a Tablespace’s Write Mode
	Dropping a Tablespace
	Using Oracle Managed Files
	Creating a Bigfile Tablespace
	Enabling Default Table Compression Within a Tablespace Tablespace
	Displaying Tablespace Size
	Altering Tablespace Size
	Toggling Data Files Offline and Online
	Renaming or Relocating a Data File
	Performing Online Data File Operations
	Performing Offline Data File Operations
	Using SQL and OS Commands
	Re-creating the Control File and OS Commands

	Using ASM for Tablespaces
	Summary

	Chapter 5: Managing Control Files, Online Redo Logs, and Archivelogs
	Managing Control Files
	Viewing Control File Names and Locations
	Adding a Control File
	Spfile Scenario
	Init.ora Scenario

	Moving a Control File
	Removing a Control File

	Online Redo Logs
	Displaying Online Redo Log Information
	Determining the Optimal Size of Online Redo Log Groups
	Determining the Optimal Number of Redo Log Groups
	Adding Online Redo Log Groups
	Resizing and Dropping Online Redo Log Groups
	Adding Online Redo Log Files to a Group
	Removing Online Redo Log Files from a Group
	Moving or Renaming Redo Log Files
	Controlling the Generation of Redo

	Implementing Archivelog Mode
	Making Architectural Decisions
	Setting the Archive Redo File Location
	Setting the Archive Location to a User-Defined Disk Location (non-FRA)
	Using the FRA for Archive Log Files

	Enabling Archivelog Mode
	Disabling Archivelog Mode
	Reacting to a Lack of Disk Space in Your Archive Log Destination
	Backing Up Archive Redo Log Files

	Summary

	Chapter 6: Users and Basic Security
	Managing Default Users
	Locking Accounts and Expiring Passwords
	Identifying DBA-Created Accounts
	Checking Default Passwords

	Creating Users
	Choosing a Username and Authentication Method
	Creating a User with Database Authentication
	Creating a User with OS Authentication
	Configuring a Centrally Managed User
	Understanding Schemas vs. Users

	Assigning Default Permanent and Temporary Tablespaces

	Modifying Passwords
	Schema Only Account
	Modifying Users
	Dropping Users
	Enforcing Password Security and Resource Limits
	Basic Password Security
	Password Strength
	Limiting Database Resource Usage

	Managing Privileges
	Assigning Database System Privileges
	Assigning Database Object Privileges
	Grouping and Assigning Privileges

	Summary

	Chapter 7: Tables and Constraints
	Understanding Table Types
	Understanding Data Types
	Character
	VARCHAR2
	CHAR
	NVARCHAR2 and NCHAR

	Numeric
	Date/Time
	RAW
	ROWID
	LOB
	JSON

	Creating a Table
	Creating a Heap-Organized Table
	Implementing Virtual Columns
	Implementing Invisible Columns
	Making Read-Only Tables
	Understanding Deferred-Segment Creation
	Creating a Table with an Autoincrementing (Identity) Column
	Allowing for Default Parallel SQL Execution
	Compressing Table Data
	Avoiding Redo Creation
	Creating a Table from a Query

	Modifying a Table
	Obtaining the Needed Lock
	Renaming a Table
	Adding a Column
	Altering a Column
	Renaming a Column
	Dropping a Column

	Displaying Table DDL
	Dropping a Table
	Undropping a Table
	Removing Data from a Table
	Using DELETE
	Using TRUNCATE

	Viewing and Adjusting the High-Water Mark
	Tracing to Detect Space Below the High-Water Mark
	Using DBMS_SPACE to Detect Space Below the High-Water Mark
	Selecting from Data Dictionary Extents View
	Lowering the High-Water Mark
	Shrinking a Table
	Moving a Table

	Creating a Temporary Table
	Creating an Index-Organized Table
	Managing Constraints
	Creating Primary Key Constraints
	Enforcing Unique Key Values
	Creating Foreign Key Constraints
	Checking for Specific Data Conditions
	Enforcing Not Null Conditions
	Disabling Constraints
	EnablingConstraints

	Summary

	Chapter 8: Indexes
	Deciding When to Create an Index
	Proactively Creating Indexes
	Reactively Creating Indexes

	Planning for Robustness
	Determining Which Type of Index to Use
	Estimating the Size of an Index Before Creation
	Creating Separate Tablespaces for Indexes
	Inheriting Storage Parameters from the Tablespace
	Placing Indexes in Tablespaces, Based on Extent Size

	Creating Portable Scripts
	Establishing Naming Standards

	Creating Indexes
	Creating B-tree Indexes
	Creating Concatenated Indexes
	Implementing Function-Based Indexes
	Creating Unique Indexes
	Implementing Bitmap Indexes
	Creating Bitmap Join Indexes
	Implementing Reverse-Key Indexes
	Creating Key-Compressed Indexes
	Parallelizing Index Creation
	Avoiding Redo Generation When Creating an Index
	Implementing Invisible Indexes
	Making an Existing Index Invisible
	Guaranteeing Application Behavior Is Unchanged When You Add an Index

	Maintaining Indexes
	Renaming an Index
	Displaying Code to Re-create an Index
	Rebuilding an Index
	Making Indexes Unusable
	Monitoring Index Usage
	Dropping an Index

	Indexing Foreign Key Columns
	Implementing an Index on a Foreign Key Column
	Determining if Foreign Key Columns Are Indexed

	Summary

	Chapter 9: Views, Synonyms, and Sequences
	Implementing Views
	Creating a View
	Checking Updates
	Creating Read-Only Views
	Updatable Join Views
	Creating an INSTEAD OF Trigger
	Implementing an Invisible Column
	Modifying a View Definition
	Displaying the SQL Used to Create a View
	Renaming a View
	Dropping a View

	Managing Synonyms
	Creating a Synonym
	Creating Public Synonyms
	Dynamically Generating Synonyms
	Displaying Synonym Metadata
	Renaming a Synonym
	Dropping a Synonym

	Managing Sequences
	Creating a Sequence
	Using Sequence Pseudocolumns
	Autoincrementing Columns
	Scalable Sequences
	Implementing Multiple Sequences That Generate Unique Values
	Creating One Sequence or Many
	Viewing Sequence Metadata
	Renaming a Sequence
	Dropping a Sequence
	Resetting a Sequence

	Summary

	Chapter 10: Data Dictionary Fundamentals
	Data Dictionary Architecture
	Static Views
	Dynamic Performance Views

	A Different View of Metadata
	A Few Creative Uses of the Data Dictionary
	Derivable Documentation
	Displaying User Information
	Displaying Table Row Counts
	Showing Primary Key and Foreign Key Relationships
	Displaying Object Dependencies

	Summary

	Chapter 11: Large Objects
	Describing LOB Types
	Illustrating LOB Locators, Indexes, and Chunks
	Distinguishing Between BasicFiles and SecureFiles
	BasicFiles
	SecureFiles

	Creating a Table with a LOB Column
	Creating a BasicFiles LOB Column
	Implementing a LOB in a Specific Tablespace
	Creating a SecureFiles LOB Column
	Implementing a Partitioned LOB

	Maintaining LOB Columns
	Moving a LOB Column
	Adding a LOB Column
	Removing a LOB Column
	Caching LOBs
	Storing LOBs In- and Out of Line

	Implementing SecureFiles Advanced Features
	Compressing LOBs
	Deduplicating LOBs
	Encrypting LOBs
	Migrating BasicFiles to SecureFiles
	Creating a New Table
	Moving a Table to SecureFiles Architecture
	Migrating with Online Redefinition

	Loading LOBs
	Loading a CLOB
	Loading a BLOB

	Measuring LOB Space Consumed
	BasicFiles Space Used
	SecureFiles Space Used

	Reading BFILEs
	Summary

	Chapter 12: Partitioning: Divide and Conquer
	What Tables Should Be Partitioned?
	Creating Partitioned Tables
	Partitioning by Range
	Implementing a NUMBER for the Partition Key Column
	Implementing a TIMESTAMP for the Partition Key Column

	Placing Partitions in Tablespaces
	Partitioning by List
	Partitioning by Hash
	Blending Different Partitioning Methods
	Creating Partitions on Demand
	Adding Yearly Partitions, Based on Date
	Adding Weekly Partitions, Based on Date
	Adding Daily Partitions, Based on Number

	Partitioning to Match a Parent Table
	Partitioning on a Virtual Column
	Giving an Application Control Over Partitioning

	Maintaining Partitions
	Viewing Partition Metadata
	Moving a Partition
	Automatically Moving Updated Rows
	Partitioning an Existing Table
	Adding a Partition
	Range
	List
	Hash

	Exchanging a Partition with an Existing Table
	Renaming a Partition
	Splitting a Partition
	Merging Partitions
	Dropping a Partition
	Generating Statistics for a Partition
	Removing Rows from a Partition
	Manipulating Data Within a Partition

	Partitioning Indexes
	Partitioning an Index to Follow Its Table
	Partitioning an Index Differently from Its Table
	Partial Indexes

	Partition Pruning
	Modifying the Partition Strategy
	Summary

	Chapter 13: Data Pump
	Data Pump Architecture
	Getting Started
	Taking an Export
	Step 1. Creating a Database Directory Object
	Step 2. Granting Access to the Directory
	Step 3. Taking an Export

	Importing a Table
	Using a Parameter File

	Exporting and Importing with Granularity
	Exporting and Importing an Entire Database
	Schema Level
	Table Level
	Tablespace Level

	Transferring Data
	Exporting and Importing Directly Across the Network
	Copying Data Files

	Features for Manipulating Storage
	Exporting Tablespace Metadata
	Specifying Different Data File Paths and Names
	Importing into a Tablespace Different from the Original
	Changing the Size of Data Files
	Changing Segment and Storage Attributes

	Filtering Data and Objects
	Specifying a Query
	Exporting a Percentage of the Data
	Excluding Objects from the Export File
	Excluding Statistics
	Including Only Specific Objects in an Export File
	Exporting Table, Index, Constraint, and Trigger DDL
	Excluding Objects from Import
	Including Objects in Import

	Common Data Pump Tasks
	Estimating the Size of Export Jobs
	Listing the Contents of Dump Files
	Cloning a User
	Creating a Consistent Export
	Importing When Objects Already Exist
	Renaming a Table
	Remapping Data
	Suppressing a Log File
	Using Parallelism
	Specifying Additional Dump Files
	Reusing Output File Names
	Creating a Daily DDL File
	Compressing Output
	Changing Table Compression Characteristics on Import
	Encrypting Data
	Exporting Views as Tables
	Disabling Logging of Redo on Import
	Attaching to a Running Job
	Stopping and Restarting a Job
	Terminating a Data Pump Job

	Monitoring Data Pump Jobs
	Data Pump Log File
	Data Dictionary Views
	Database Alert Log
	Status Table
	Interactive Command Mode Status
	OS Utilities

	Summary

	Chapter 14: External Tables
	SQL*Loader vs. External Tables
	Loading CSV Files into the Database
	Creating a Directory Object and Granting Access
	Creating an External Table
	Generating SQL to Create an External Table
	Viewing External Table Metadata
	Loading a Regular Table from the External Table

	Performing Advanced Transformations
	Viewing Text Files from SQL
	Unloading and Loading Data Using an External Table
	Enabling Parallelism to Reduce Elapsed Time
	Compressing a Dump File
	Encrypting a Dump File
	Inline SQL from External Table

	Summary

	Chapter 15: Materialized Views
	Understanding MVs
	MV Terminology
	Referencing Useful Views

	Creating Basic Materialized Views
	Creating a Complete Refreshable MV
	Creating a Fast Refreshable MV

	Going Beyond the Basics
	Creating MVs and Specifying Tablespace for MVs and Indexes
	Creating Indexes on MVs
	Partitioning MVs
	Compressing an MV
	Encrypting MV Columns
	Building an MV on a Prebuilt Table
	Creating an Unpopulated MV
	Creating an MV Refreshed on Commit
	Creating a Never Refreshable MV
	Creating MVs for Query Rewrite
	Creating a Fast Refreshable MV Based on a Complex Query
	Viewing MV DDL
	Dropping an MV

	Modifying MVs
	Modifying Base Table DDL and Propagating to MVs
	Re-creating an MV to Reflect Base Table Modifications
	Altering an MV but Preserving the Underlying Table
	Altering an MV Created on a Prebuilt Table

	Toggling Redo Logging on an MV
	Altering Parallelism
	Moving an MV

	Managing MV Logs
	Creating an MV Log
	Indexing MV Log Columns
	Viewing Space Used by an MV Log
	Shrinking the Space in an MV Log
	Checking the Row Count of an MV Log
	Moving an MV Log
	Dropping an MV Log

	Refreshing MVs
	Manually Refreshing MVs from SQL*Plus
	Creating an MV with a Refresh Interval
	Efficiently Performing a Complete Refresh
	Handling the ORA-12034 Error

	Monitoring MV Refreshes
	Viewing MVs’ Last Refresh Times
	Determining Whether a Refresh Is in Progress
	Monitoring Real-Time Refresh Progress
	Checking Whether MVs Are Refreshing Within a Time Period

	Creating Remote MV Refreshes
	Understanding Remote-Refresh Architectures
	Viewing MV Base Table Information
	Determining How Many MVs Reference a Central MV Log

	Managing MVs in Groups
	Creating an MV Group
	Altering an MV Refresh Group
	Refreshing an MV Group
	DBMS_MVIEW vs. DBMS_REFRESH
	Determining MVs in a Group
	Adding an MV to a Refresh Group
	Removing MVs from a Refresh Group
	Dropping an MV Refresh Group

	Summary

	Chapter 16: User-Managed Backup and Recovery
	Implementing a Cold-Backup Strategy
	Making a Cold Backup of a Database
	Step 1. Determine Where to Copy the Backup Files and How Much Space Is Required
	Step 2. Identify the Locations and Names of the Database Files to Copy
	Step 3. Shut Down the Database
	Step 4. Create Backup Copies of the Files
	Step 5. Restart Your Database

	Restoring a Cold Backup in Noarchivelog Mode with Online Redo Logs
	Step 1. Shut Down the Instance
	Step 2. Copy the Files Back from the Backup
	Step 3. Start Up the Database

	Restoring a Cold Backup in Noarchivelog Mode Without Online Redo Logs
	Step 1. Shut Down the Instance
	Step 2. Copy the Files Back from the Backup
	Step 3. Start Up the Database in Mount Mode
	Step 4. Open the Database with the OPEN RESETLOGS Clause

	Scripting a Cold Backup and Restore

	Implementing a Hot Backup Strategy
	Making a Hot Backup
	Step 1. Ensure That the Database Is in Archivelog Mode
	Step 2. Determine Where to Copy the Backup Files
	Step 3. Identify Which Files Need to Be Backed Up
	Step 4. Note the Maximum Sequence Number of the Online Redo Logs
	Step 5. Alter the Database/Tablespaces into Backup Mode
	Step 6. Copy the Data Files with an OS Utility
	Step 7. Alter the Database/Tablespaces out of Backup Mode
	Step 8. Archive the Current Online Redo Log, and Note the Maximum Sequence Number of the Online Redo Logs
	Step 9. Back Up the Control File
	Step 10. Back Up Any Archive Redo Logs Generated During the Backup

	Scripting Hot Backups
	Understanding the Split-Block Issue
	Understanding the Need for Redo Generated During Backup
	Understanding That Data Files Are Updated

	Performing a Complete Recovery of an Archivelog Mode Database
	Restoring and Recovering with the Database Offline
	Step 1. Place Your Database in Mount Mode
	Step 2. Restore the Data File from the Backup
	Step 3. Issue the Appropriate RECOVER Statement
	Step 4. Alter Your Database Open

	Restoring and Recovering with a Database Online
	Restoring Control Files
	Restoring a Damaged Control File When Multiplexed
	Restoring When All Control Files Are Damaged
	Step 1. Shut Down the Database
	Step 2. Restore the Control File from the Backup
	Step 3. Start the Database in Mount Mode, and Initiate Database Recovery
	Step 4. Apply Redo Contained in the Online Redo Logs
	Step 5. Open the Database with RESETLOGS

	Performing an Incomplete Recovery of an Archivelog Mode Database
	Summary

	Chapter 17: Configuring RMAN
	Understanding RMAN
	Starting RMAN
	RMAN Architectural Decisions
	1. Running the RMAN Client Remotely or Locally
	2. Specifying the Backup User
	3. Using Online or Offline Backups
	4. Setting the Archivelog Destination and File Format
	5. Configuring the RMAN Backup Location and File Format
	Default Location
	FRA
	BACKUP...FORMAT
	CONFIGURE CHANNEL...FORMAT

	6. Setting the Autobackup of the Control File
	7. Specifying the Location of the Autobackup of the Control File
	8. Backing Up Archivelogs
	9. Determining the Location for the Snapshot Control File
	10. Using a Recovery Catalog
	11. Using a Media Manager
	12. Setting the CONTROL_FILE_RECORD_KEEP_TIME Initialization Parameter
	13. Configuring RMAN’s Backup Retention Policy
	Recovery Window
	Redundancy
	Deleting Backups, Based on Retention Policy
	Clearing the Retention Policy

	14. Configuring the Archivelogs’ Deletion Policy
	15. Setting the Degree of Parallelism
	16. Using Backup Sets or Image Copies
	17. Using Incremental Backups
	18. Using Incrementally Updated Backups
	19. Using Block Change Tracking
	20. Configuring Binary Compression
	21. Configuring Encryption
	22. Configuring Miscellaneous Settings
	23. Configuring Informational Output

	Segueing from Decision to Action
	Summary

	Chapter 18: RMAN Backups and Reporting
	Preparing to Run RMAN Backup Commands
	Setting NLS_DATE_FORMAT
	Setting ECHO
	Showing Variables

	Running Backups
	Backing Up the Entire Database
	Full Backup vs. Incremental Level=0
	Backup Sets vs. Image Copies

	Backing Up Tablespaces
	Backing Up Data Files
	Backing Up the Control File
	Backing Up the spfile
	Backing Up Archivelogs
	Backing Up FRA
	Excluding Tablespaces from Backups
	Backing Up Data Files Not Backed Up
	Skipping Read-Only Tablespaces
	Skipping Offline or Inaccessible Files
	Backing Up Large Files in Parallel
	Adding RMAN Backup Information to the Repository

	Taking Backups of Pluggable Databases
	While Connected to the Root Container
	While Connected to a Pluggable Database

	Creating Incremental Backups
	Taking Incremental-Level Backups
	Making Incrementally Updating Backups
	Using Block Change Tracking

	Checking for Corruption in Data Files and Backups
	Using VALIDATE
	Using BACKUP...VALIDATE
	Using RESTORE...VALIDATE

	Using a Recovery Catalog
	Creating a Recovery Catalog
	Registering a Target Database
	Backing Up the Recovery Catalog
	Synchronizing the Recovery Catalog
	Recovery Catalog Versions
	Dropping a Recovery Catalog

	Logging RMAN Output
	Redirecting Output to a File
	Capturing Output with Linux/Unix Logging Commands
	Capturing Output with tee
	Capturing Output with script

	Logging Output to a File
	Querying for Output in the Data Dictionary

	RMAN Reporting
	Using LIST
	Using REPORT
	Using SQL

	Summary

	Chapter 19: RMAN Restore and Recovery
	Determining if Media Recovery Is Required
	Determining What to Restore
	How the Process Works
	Using Data Recovery Advisor
	Listing Failures
	Suggesting Corrective Action
	Repairing Failures
	Changing the Status of a Failure

	Using RMAN to Stop/Start Oracle
	Shutting Down
	Starting Up

	Complete Recovery
	Testing Restore and Recovery
	Previewing Backups Used for Recovery
	Validating Backup Files Before Restoring
	Testing Media Recovery

	Restoring and Recovering the Entire Database
	Using the Current Control File
	Using the Backup Control File

	Restoring and Recovering Tablespaces
	Restoring Tablespaces While the Database Is Open
	Restoring Tablespaces While the Database Is in Mount Mode

	Restoring Read-Only Tablespaces
	Restoring Temporary Tablespaces
	Restoring and Recovering Data Files
	Restoring and Recovering Data Files While the Database Is Open
	Restoring and Recovering Data Files While the Database Is Not Open

	Restoring Data Files to Nondefault Locations
	Performing Block-Level Recovery
	Restoring a Container Database and Its Associated Pluggable Databases
	Restoring and Recovering All Data Files
	Restoring and Recovering Root Container Data Files
	Restoring and Recovering a Pluggable Database

	Restoring Archivelog Files
	Restoring to the Default Location
	Restoring to a Nondefault Location

	Restoring a Control File
	Using a Recovery Catalog
	Using an Autobackup
	Specifying a Backup File Name

	Restoring the spfile
	Incomplete Recovery
	Determining the Type of Incomplete Recovery
	Performing Time-Based Recovery
	Performing Log Sequence-Based Recovery
	Performing SCN-Based Recovery
	Restoring to a Restore Point
	Restoring Tables to a Previous Point

	Flashing Back a Table
	FLASHBACK TABLE TO BEFORE DROP
	Flashing Back a Table to a Previous Point in Time
	FLASHBACK TABLE TO SCN
	FLASHBACK TABLE TO TIMESTAMP
	FLASHBACK TABLE TO RESTORE POINT

	FLASHING BACK A DATABASE
	Restoring and Recovering to a Different Server
	Step 1. Create an RMAN Backup on the Originating Database
	Step 2. Copy the RMAN Backup to the Destination Server
	Step 3. Ensure That Oracle Is Installed
	Step 4. Source the Required OS Variables
	Step 5. Create an init.ora File for the Database to Be Restored
	Step 6. Create Any Required Directories for Data Files, Control Files, and Dump/Trace Files
	Step 7. Start Up the Database in Nomount Mode
	Step 8. Restore the Control File from the RMAN Backup
	Step 9. Start Up the Database in Mount Mode
	Step 10. Make the Control File Aware of the Location of the RMAN Backups
	Step 11. Rename and Restore the Data Files to Reflect New Directory Locations
	Step 12. Recover the Database
	Step 13. Set the New Location for the Online Redo Logs
	Step 14. Open the Database
	Step 15. Add the Temp File
	Step 16. Rename the Database

	Summary

	Chapter 20: Automating Jobs
	Automating Jobs with Oracle Scheduler
	Creating and Scheduling a Job
	Viewing Job Details
	Modifying Job Logging History
	Modifying a Job
	Stopping a Job
	Disabling a Job
	Enabling a Job
	Copying a Job
	Running a Job Manually
	Deleting a Job

	Oracle Scheduler vs. cron
	Automating Jobs via cron
	How cron Works
	Enabling Access to cron
	Understanding cron Table Entries
	Scheduling a Job to Run Automatically
	Editing the cron Table Directly
	Setting Default Editor
	Loading the cron Table from a File

	Redirecting cron Output
	Troubleshooting cron

	Examples of Automated DBA Jobs
	Starting and Stopping the Database and Listener
	Checking for Archivelog Destination Fullness
	Truncating Large Log Files
	Checking for Locked Production Accounts
	Checking for Too Many Processes
	Verifying the Integrity of RMAN Backups

	Autonomous Database
	Summary

	Chapter 21: Database Troubleshooting
	Quickly Triaging
	Checking Database Availability
	Investigating Disk Fullness
	Locating the Alert Log and Trace Files
	Removing Files

	Inspecting the Alert Log
	Viewing the Alert Log via OS Tools
	Viewing the alert.log, Using the ADRCI Utility

	Identifying Bottlenecks via OS Utilities
	Identifying System Bottlenecks
	Using vmstat
	Using top

	Mapping an Operating System Process to an SQL Statement

	Finding Resource-Intensive SQL Statements
	Monitoring Real-Time SQL Execution Statistics
	Running Oracle Diagnostic Utilities
	Using AWR
	Using ADDM
	Using ASH
	Using Statspack

	Detecting and Resolving Locking Issues
	Resolving Open-Cursor Issues
	Troubleshooting Undo Tablespace Issues
	Determining if Undo Is Correctly Sized
	Viewing SQL That Is Consuming Undo Space

	Handling Temporary Tablespace Issues
	Determining if Temporary Tablespace Is Sized Correctly
	Viewing SQL That Is Consuming Temporary Space

	Summary

	Chapter 22: Pluggable Databases
	Understanding Pluggable Architecture
	Paradigm Shift
	Backup and Recovery Implications
	Tuning Nuances

	Creating a CDB
	Using the Database Configuration Assistant (DBCA)
	Generating CDB Create Scripts via DBCA
	Creating Manually with SQL
	Verifying That a CDB Was Created

	Administrating the Root Container
	Connecting to the Root Container
	Through Network

	Displaying Currently Connected Container Information
	Starting/Stopping the Root Container
	Creating Common Users
	Creating Common Roles
	Creating Local Users and Roles
	Reporting on Container Space
	Switching Containers

	Creating a Pluggable Database Within a CDB
	Cloning the Seed Database
	Cloning an Existing PDB
	Local
	Remote

	Cloning from a Non-CDB Database
	Unplugging a PDB from a CDB
	Plugging an Unplugged PDB into a CDB
	Using the DBCA to Create a PDB from the Seed Database
	Checking the Status of Pluggable Databases

	Administrating Pluggable Databases
	Connecting to a PDB
	Managing a Listener in PDB Environment
	Showing the Currently Connected PDB
	Starting/Stopping a PDB
	From Root Container
	From Pluggable

	Modifying Initialization Parameters Specific to a PDB
	Renaming a PDB
	Limiting the Amount of Space Consumed by PDB
	Restricting Changes to SYSTEM at PDB
	Viewing PDB History
	Dropping a PDB

	Refreshable Clone PDB
	Databases in the Cloud
	Summary

	Index

