THE EXPERT’S VOICE® IN ORACLE

Pro Oracle
Database 18c
Administration

Manage and Safeguard Your
Organization’s Data

Third Edition

Michelle Malcher
Darl Kuhn

Apress’ (IOUG)

eeeeeeeeeeeeeeeeeeeeeeeeeee

http://www.allitebooks.org

Pro Oracle Database
18¢c Administration

Manage and Safeguard Your
Organization’s Data

Third Edition

Michelle Malcher
Darl Kuhn

(IOUG) ApPress’

mmmmmmmmmmmmmmmmmmmm

vww .allitebooks.cond

http://www.allitebooks.org

Pro Oracle Database 18c Administration: Manage and Safeguard Your

Organization’s Data

Michelle Malcher Darl Kuhn

Huntley, IL, USA Morrison, CO, USA

ISBN-13 (pbk): 978-1-4842-4423-4 ISBN-13 (electronic): 978-1-4842-4424-1

https://doi.org/10.1007/978-1-4842-4424-1

Copyright © 2019 by Michelle Malcher and Darl Kuhn

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484244234. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-4424-1
http://www.allitebooks.org

Dedicated to my daughters.
They believe in me just like I believe in them.

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUtROrS........cscmmsmmmsenmssnmmssmsassssss s sn s sansnsannnas XXix
About the Technical REVIEWETccuseusssessssnssssnsssassssssssassssssssssssssssssassssnsssassssannsas XXXi
Acknowledgmentsccccuieeurmmssssnnnmmssssnsnmssssssnsssssssnsnsssssnnnnssssssnnnssssnnnsessssnnnnssss Xxxiii
INtroductioncccucmmiemmimmmsnmsensn s XXXV
Chapter 1: Installing the Oracle Binaries.....cccuussseessmmmmrsmsssssssssssnssssssssssssssssssssesssssas 1
Understanding the OFA ... s se e sssnens 2
Oracle INVENTOry DIFECIONY.......cuueerrserereserreserrsse s e e s s s se s sesss e sesseenns 4
0racle Base DIrECIONY.......c.cucierermrnserereser e 4
0racle HOME DIrBCLOTYc.ucoerrererersereresesresesesesessese e ses e s e e s sessssessssesesssenns 5
Oracle Network FileS DIir€CIOY.........ccvvererrerereneresesesesesese s s sesse s sessesenns 6
Automatic Diagnostic REPOSILOTYccccereererersererererese s s seenes 6
INSTAIING OFACIEcveereeereeerireser s sr e e r e a e sr e e nnn e s 7
Step 1. Create the 0S Groups and USEr ... s sessessesaes 8

Step 2. Ensure That the 0S Is Adequately Configured...........cccvveernrenersssnsesessesesesesessesenns 11

Step 3. Obtain the Oracle Installation Software..........cccccvvinininnnnn 12

Step 4. Unzip the FIlES......u s st stssessesnens 13

Step 5. Creating oralnSt.IoC Filecovcevveererenerer s 14

Step 6. Configure the Response File, and Run the Installer...........cccoovrvninncncninnininenne, 15

Step 7. TroubleShoot ANY ISSUES........cccoerererenerereserese s 20

Step 8. Apply Any Additional PatChes ..o 21
Installing with a Copy of an Existing Installationc.ccccvvvnennnsnnsesnesers e 22
Step 1. Copy the Binaries, Using an 0S ULtyccouervrenrenennsesnesessse e 22

Step 2. Attach the 0racle HOMe.........cccoiinininnnsrns s snens 24
Installing Read-0nly Oracle HOMEccoucricevneninesessse s sss s ssssesens 25
Upgrading Oracle SOIWAIE.........ccccveerevenririere s s s se s s ss e saesa e e s naenaes 26

v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Reinstalling After Failed Installation ... 27
Applying INTerim PAICRES ... e 28
Installing Remotely with the Graphical INStallercocccvvirrresrns s 30
Step 1. Install X Software and Networking Utilities on the Local PC............ccccvvrivvninicnnens 31
Step 2. Start an X Session on the Local COMPULEr.........cccvvvrininnnninre e 31
Step 3. Copy the Oracle Installation Media to the Remote Server..........ccoevvvvrinnininennn, 32
Step 4. Run the xhost Command ... s 33
Step 5. Log In to the Remote Computer from X........cccoriirinininnsnrnn e 33
Step 6. Ensure that the DISPLAY Variable Is Set Correctly on the Remote Computer............ 33
Step 7. Execute the runinstaller ULIIYcoocovrnnenrnscsncsesese e 34
Step 8. TroubIESNOOL ... ———————————— 35
Installation in the CloUd ... s 35
SUMIMAIY ...ttt r e e e b e e e e e Re e R e e e e e e Re e be e ne e e nrnna e 36
Chapter 2: Creating a Database........ccccusssemnsissssnnnmmssssnsnsessssnnssnssssnsnsessssnnssssssnnnnsnss 39
SEtting 0S VariabIeS......ccceverererrerererissesersesssssssese s ses e s ssssasessessesassessessessssassessesaesssssnsessees 40
A Manually Intensive APPrOACHcccceevvriererierrir s s e s s s s saesne e eae s 41
Oracle’s Approach to Setting 0S VariabIescccvvvverierernnnsensenesessessesessssessessessessssessessens 4

My Approach to Setting 0S Variablescccccvvrierernnerienenssessesessssessessessessssessessessssessesseses 43
Creating @ DAtabasE.........cccevverrerire e 46
Step 1. Set the 0S Variables ..ot 46
Step 2. Configure the Initialization File...........cccovvnnrnininncrn e 47
Step 3. Create the Required DIir€CIOMIEScccvverreririrern s 50
Step 4. Create the Database.........ccccvveverrrerrerierieressersere e s e ssessssessessessesessessesaes 50
Step 5. Create a Data DICIONAIYc.ccveevrererieriereresserserereesessese s ssssessessessessssessessessssessessesaes 56
Configuring and Implementing the Listener ..o 57
Implementing a Listener with the Net Configuration Assistant...........c.c.ccocvrnrrsnninriescrnscnen 58
Manually Configuring @ LISTENET.........ccoveeerercrrererere s 59
Connecting to a Database through the NetWorkcooeoreerncnnsesrese e 61
Creating @ PASSWOIA Filec.cucvoerenernsenenesesese s sesssse s se s s sessesssssssssssssessssensnnens 62

TABLE OF CONTENTS

Starting and Stopping the Database.........c.cccevvvrininncnin e —— 64
Understanding 0S AuthentiCation.........c.ccovvvvninnnsnin e 64
Starting the DatabaSE.cccoverrirrre e e 65
Stopping the DAtaDASE ..o ————————— 68

Using the dbca to Create a Database..........cccovvrvrininnsnn e 70

Dropping @ DAtabase.........ccccviirinirirr s s 73

How Many Databases 0n ONe SEIVEI? ... s sssssssssssessssessns 74

Understanding 0racle ArChitECIUIEccveerererirserie s sr e e 77

1] 1= R 80

Chapter 3: Configuring an Efficient Environmentcccuccmmnnnsnnnnnnsssssnssssssssnns 83

Customizing Your 0S Command Prompt ..o sessessessssessesse s 84

Customizing YOur SQAL Prompt..........ccoeeenenmeneresesessesesesesessesessessssssessssesessesssssssssssssssssssssenens 87

Creating Shortcuts for Frequently Used Commands..........cccoovvrvnrenennnnsenieninnensessesessssessessenns 89
USING ATIASES ...cveuererseerreeresesensesessse s sessesesss e s sesseses s e e sesssssssssnsssnsssnssssssssnssensssssssnns 89
LT T a1 T (o] SR 91

Rerunning Commands QUICKIYccooureerrenerrnsmmrnesnsesssrssssessesesssse s ssssessssssesssssssssssssssssssssessnns 93
Scrolling with the Up and DOWn ArroW KEYSccvvernenenssesnsessssssssse s sessssesessesenns 94
USing Ctrl+P @nd CErI+N.......ccoveiericernseriresene e se s s ss s sn s e senns 94
Listing the Command HiSTOrYcccvvernennenres s 94
Searching iN RBVEISE.......coiueerrererinire s s pe e s s 95
Setting the Command EdItOrccccvveernienenenmrese s 95

Developing Standard SCHPLS.......cooveviernenernse e 96
DA SBIUP....ce ettt re e e 97
L0 [0 T2 T (] SR 98
TDSP_ChKDSN ... ———————— 99
(000 T 1] SRS 102
FHlESP.DSH . ———————————— 103
(0 T R OSSOSO 106
B0D .Sl ——————————————————— 107
(0T 0K | ST ST PR Y SPRRRN 108
(1L o | SRS 110

TABLE OF CONTENTS

Organizing SCrPIS......ci i 111
Step 1. Create DIFCIOMIEScceccrieerire sttt 112
Step 2. Copy Files 10 DIrCIONIESccoveeerrererinicrire sttt 112
Step 3. Configure the Startup File ..o 113

Automating SCHPIS ...ccueiii e ————————— 114

£ 111 T S 114

Chapter 4: Tablespaces and Data Files........cccuemmmmmsnmmnmmssssnnnmnsssssnnsssssssssssssssnnns 117

Understanding the First FIVe ..o e sens 119

Understanding the Need fOr MOTE.........ccccvverernnenieniernsessene e sessessessessssessessesssssssessessessssessesaens 120

Creating TADIESPACEScvverrereererrerersererserersessesessessessessssersessessessssessesaessssessesaessesensesaessssennensesses 122

Renaming a TabIESPACEcccccvcririrr e 127

Changing a Tablespace’s Write MOcccoerecrmrererencrrererese s 128

Dropping @ TADIESPACE.......ccceriiirierire e s p e e s s p e 129

Using Oracle Managed FileS ..o s sssssssssssesessssenns 132

Creating a Bigfile TADIESPACE......cccevererreriererie st s s e e s s s e s ss e e s aesae e aenaes 133

Enabling Default Table Compression Within a Tablespace TableSpacecccvvcvvvvereverserieraens 134

Displaying TADIESPACE SiZE.......cccveveriererinierirenire s st 135

Altering TableSPACE SiZE........ccoceviiriiirerr e r e nne s 137

Toggling Data Files Offline and ONINEc.occoereernnerreser e 138

Renaming or Relocating @ Data File..........cccucerrinernsennnennesessse s s 141
Performing Online Data File Operations ... sessesees 142
Performing Offline Data File Operations..........ccccvvernnennnenmrsse s 142

USing ASM fOr TADIESPACEScovruererreerinerenseserre s se s ss s sr e se e 148

£ 1§14 RS 149

Chapter 5: Managing Control Files, Online Redo Logs, and Archivelogs 151

Managing Control FIlES ..o s s 151
Viewing Control File Names and LOCALIONSccucvvervinininienssnsese s sessesseenes 155
Adding @ CONTIOL Fileceeeereeee e cerer e r e r e sa e s s e e a e s s e e sneene s e s 155
MOVING @ CONEIOI FilE.....ccuceiireeereeccrescrir ettt e 159
Removing @ CONTIOl File.........cccoveiereicrinerire st se s s sa e s see s 160

viil

TABLE OF CONTENTS

0NliNE REUD LOUSveviirererieis et sse s s s s s s b e s b e 162
Displaying Online Redo Log INformationcccoovinvninnnnsnncnesssense s 166
Determining the Optimal Size of Online Redo Log GrOUPScccooveverererecerenvesenesesseserennes 168
Determining the Optimal Number of Redo Log GroUPSccccvvvernenenenennserinsesesesessesesenaes 169
Adding Online Redo LOG GrOUPSccovuererinerinenenesesesesessesssesessssessssesessesessssessssesessessssenens 172
Resizing and Dropping Online Redo LOg GrOUPSccoveverenerinserinesenesessesessesessesessssessnses 172
Adding Online Redo Log FileS t0 @ GIOUPcccvveverververereerersersersessssessessessesessessessesssssssessesees 175
Removing Online Redo Log FileS from @ GIOUPcovverereererrersersessssessersessssessessesssssssessesses 175
Moving or Renaming Redo Log FileScccvvrvrverirircrce s ses s see e ssesnens 176
Controlling the Generation 0f REAOD..........coveervererererreriereses s s rss s se e ssssessessessssessesseses 177

Implementing Archivelog MOdE ... 179
Making Architectural DECISIONS..........ccucrerirnrnrn e 179
Setting the Archive Redo File LOCAtioN...........cccoveerecenrecrccc e 181
Enabling Archivelog MOGE ... s 186
Disabling Archivelog MOdE ... s 187
Reacting to a Lack of Disk Space in Your Archive Log Destination............cceuevnierrnccnnnne. 188
Backing Up Archive Red0 LOQ FilEScccccvverierierrererirrsirnee s res s see e sessee e ssesessessnessessenns 190

SUMIMANY ..ttt e e e e R e e e R e e e e s e Re e R e e e e e Re e R e R e e e e e Re R e e e e e Renns 190

Chapter 6: Users and BasiC SECUritYcccussmmmmmmssssnmnmmsssssnnmsssssnnnsssssssnssssssnnnnss 193

Managing Default USEIS........ouvuuerrrenernessnesesese e sssesss e sss e sssse s sessssessssssssssssssssssesssssnns 193
Locking Accounts and EXPiring PaSSWOIUScccueeerrererrnsmsssesessssessssesssssssssssesssssssssssessans 196
Identifying DBA-Created ACCOUNTScccverernverrnenenenessse s ses s ssanes 198
Checking Default PASSWOIS........c.cucvvererinernsesrsesesese s sesse s ssssssssssssssanes 199

CrEALING USEIS....ciuereererereriereesessesseseesessessessesae e s e ssesaess s e s ssesa e e s e saesae e s e saesaessesensesaesaesensenaenaes 200
Choosing a Username and Authentication Method...........cccccvvrivnircninin s 201
Assigning Default Permanent and Temporary TableSPaceS........cevverrererererrerseressssessersenees 206

MOdifying PaSSWOIUS.......ccccuviririiriinsie st se e s s a e s s a e s 209

SChemMa ONIY ACCOUNLc..coeierrerererer s s e e re e e e s s sa e e s saesae e enesaesaesa e e e e saesae e e e naenaes 210

MOAITYING USEIS ...cueieiicircrer e p e e s e b e b e ne 212

DropPiNg USEIScoueiuiiiircneris it s e s s s st e e s ne e st ne 213

Enforcing Password Security and Resource Limitscccuouervnernsennienesissesssessssesesesesessesenns 214

TABLE OF CONTENTS

BasiC PaSSWOIU SECUIMLYccucereririnrire s s s 215
PasSWOrd SIrENGLN ..o e s 219
Limiting Database ReSoUrce USAQE.........cccucvvrerininnnieniss s s ssssessesne s 221
Managing PriVIIEGES........coueecrereerereneresc e 223
Assigning Database System Privileges ... 224
Assigning Database Object Privileges ..o snes 225
Grouping and AsSigning PrivilEges ... s 226
£ 7 o TS 229
Chapter 7: Tables and Constraints...........ccccimnnmmmmmmnsennnmmmsssnnmmssssnmssssssssnnm 231
Understanding Table TYPEScccveerrrerernsmsrnesesese s sss s ss s s sssss e sessesenns 232
Understanding Data TYPEScovvrveriereninnerienessssessessesssssssesse e sessessessessssessessessessssessessesssssnsessens 233
[T 2T O 234
LT 1< P 236
DALE/TIME .. 237
RAW ...ttt R R e 238
ROWID......ocuiiiiieeinisesesesesese e bbb 239
LOB ...t e e e 240
USON s 241
(=T LT o T - LR 241
Creating a Heap-0rganized TADIEccccevrvrervererenensersese s sessessessssessessesaessssessessesssssssessees 242
Implementing Virtual COIUMNScccvcevenniriene s s s ss e sae s 246
Implementing INViSible COIUMNSccccveviirirerr e eae s 250
Making Read-0nly TADIESccvcerierrreriererirsere s s et se s s sse e s e saesaessssessesnes 251
Understanding Deferred-Segment Creationcccccvvevevrsnseniennsensensesesessessessessssessessees 252
Creating a Table with an Autoincrementing (Identity) Column..........c.ccocvivrnvviniennsensenenn 253
Allowing for Default Parallel SQL EXECULIONccveererererreriere s ser s e e se e e ssesessessennes 256
Compressing Table Data........ccoccvvvrvrirennsrrer e s 257
Avoiding Redo Creationc..coovvvvrierennsiniene s s sse e s e ssesaessssesesaesnes 260
Creating a Table from @ QUEIYcccvcvierernririere s s sa e s e 263

TABLE OF CONTENTS

Modifying @TaADIE ..o ————————— 266
Obtaining the Needed LOCKcvcrerinisnscnc e 266
Renaming @ TaDIE ... s 267
Adding @ COIUMINccoiicriie sttt eene e 267
ARErING @ COIUMN ... e st e e e e n s pe s 268
ReNaming @ COUMNN ...ccccvuirreverereresessersessesessessessesae e s e ssesaesas e ssesaessssessesaessssessessesasssssenseaes 270
00T o T TR 0 1T 270

Displaying Table DDL..........cccoiniiiinsnene e s se s s s st nnen 271

Dropping @ TADIEcovevvicireree e e 273

UNdropping @ TaADIE ... e 274

Removing Data from @ TabIecccvecernienineninese s s 275
USING DELETEceiiirsissisisss st ss e e e ettt st 276
USING TRUNGCATE..........ceiuirrrnrninisisssssssesesese sttt 276

Viewing and Adjusting the High-Water Markccccvvrrrnnnnniniennsnsenesessssessesesesessesessens 278
Tracing to Detect Space Below the High-Water Markccceeevvvniniennnnsnsenenssensenenens 279
Using DBMS_SPACE to Detect Space Below the High-Water Mark...........cccccveerierenieniernenn 280
Selecting from Data Dictionary EXtentS VIEWc.ccvcvievnininiennsrsene e ses s sessessennens 282
Lowering the High-Water Mark ... s sessessessessssessessenes 282

Creating a Temporary TaDIE........ccoceveverrrrerierr e sae s saesa e se s saenaes 286

Creating an Index-0rganized TaDIEcccveveverrrierr s saeenes 288

Managing CoNSIraiNtScccuiiriiininnsrr s e p e nne 289
Creating Primary Key CONStraints.........cccoovcnvneniinsnncninsn s s s s sessesne s 289
Enforcing Unique Key VAIUBSc.cccvcrereninsincne e se s sns s s snas 291
Creating Foreign Key CONStraintsccccvecrnvennennssc s ses e ses e sessssessnnes 293
Checking for Specific Data Conditionsccecvrverrecrinienns e 295
Enforcing Not Null CONditions.........covcvnvinennnsrnsc st ssens 296
Disabling CONSIIAINTS.........ccovcerriirsrr s e s 297
ENablingCoNSIIaiNTS.......ccccciiieriririrese st et e s 299

SUMIMANY ..ttt e b e e e e e R e e e e e e e Re R e e e e e Re e R e R e e e e e Re R e e e e e Renns 302

xi

TABLE OF CONTENTS

Chapter 8: INUEXeS...uuuueeurrrssssnnnmsssssnnnssssssnnsesssssnnssssssnnnssssssnnnnssssssnnnsssssnnnssssssnnnnss 303
Deciding When to Create an INAeXcccccvrererenerinicrnerer s sessesens 304
Proactively Creating INAEXEScoverernerinienireness st se s st se e e s senses 305
Reactively Creating INAEXEScccccrivernierinieninnners st ss 306
Planning for RODUSTINESScoviiirierininsine s s s sre s s st se s snens 308
Determining Which Type of INdeX t0 USE ..o s 308
Estimating the Size of an Index Before Creationccccovvvvnvnnscncnnnnssncnese e, 311
Creating Separate Tablespaces for INAEXES ..o 313
Creating Portable SCripIS.......ccvirinincsr e 316
Establishing Naming Standards ... 317
Creating INAEXEScceoereeeererereree e e e e s e r e e e e 318
Creating B-1re€ INABXES......ccocveririrrirere st s p e e 318
Creating Concatenated INAEXES........cccvriirirnnn s 322
Implementing Function-Based INUEXES ..o 324
Creating Unique INAEXES......c.ccverivinirie s e sss s s 325
Implementing Bitmap INAEXES.......ccccviririnnir e 327
Creating Bitmap Join INAEXES........ccucviririnnin s 328
Implementing Reverse-Key INUEXES ... s sne s 329
Creating Key-Compressed INUEXES.......c.ccovirvrereninsiniene s s s ssessessssessesne s 330
Parallelizing Index Creation.........ccovcvirinnsnnn e s 331
Avoiding Redo Generation When Creating an INdeX...........ccovvevrerrncevensenenescsssesessesesenens 331
Implementing INViSible INAEXES ... s 332
Maintaining INABXESccvvririirir e s e p e e nne 335
Renaming an INUEX.......cccevvrcienieninsine e s e 336
Displaying Code to Re-create an INdeX ..o s sessesnes 336
Rebuilding an INAEX ... e 337
Making Indexes UnUSaDIE.........c.ccovvriririnninnesn s snas 338
Monitoring INAeX USAQE........ccucreririnrinerinissire et sn s s sas s e snes 339
Dropping @n INUEX ..o e e 341
Indexing Foreign Key COIUMNS........covcrnenreereeres s s s nenns 341

xii

TABLE OF CONTENTS

Implementing an Index on a Foreign Key COlUMN ... 342
Determining if Foreign Key Columns Are INAEXEdccoveeerercrnrereneseneserensesesesessesesennes 344
£ T S 347
Chapter 9: Views, Synonyms, and SEQUENCESccccerrrrrrssssssssssssnsssssssssssssnsnnnsnsnss 351
IMPIEMENTING VIBWS......cceiiecriresinesesie s ses e s ss s s sessssenns 351
Creating @ VIBW.......cvcoereerresere s se s s nns s 352
ChecKing UPAALesS........oveerevrererrenmrrnsesesesessese s sesssse e sesssssssssessssesessssssssssssssesssssssssssnsanes 354
Creating Read-0nly VIBWSccccoererernenereseressesessesesse e sesssssssssessssesessssnsssssssssesssssssssssnsnns 355
Updatable JOin VIEBWS ...t sne s 356
Creating an INSTEAD OF THQQETcccvrererrererersesessesessesesessesessssessesesessesessssessssesessssssssssssens 358
Implementing an Invisible COIUMNcco oo 360
Modifying a View Definition...........ccoverrinnienrese s 362
Displaying the SAL Used t0 Create @ VIEW.......c.cceveerererereneresesesesese e sennes 363
ReNAMING @ VIBWceeeeereecr e s nns s 364
Dropping @ VIBW ...cvcccieierieirene st s e e e 365
Managing SYNONYIMS.......ccucvrrererenereseressesesesessese s ssssesessesesss s sssse s s s e e e ssssssssssssssassssssessnns 365
Creating @ SYNONYM ..o s nns e s 366
Creating PUDIiC SYNONYMS.......cccoricnrererese s s neanis 367
Dynamically Generating SYNONYMSccovrererenernsmsessesessssessssessssssessssesssssssssssssssssssssessnses 368
Displaying Synonym Metadatacoueererrererenernnesnsesesesess s senns 369
Renaming @ SYNONYM........ccovoeerererenerresese e se s srs e nenns 370
Dropping @ SYNONYMcccoieeererereseresse e e se e s se e sesrs e nenns 370
Managing SEOUEINCES........cucerrrerrrreserresesrssesessesessa s sss e e e e ses e se s s e sss e e e s s e e nsesnssessssnsssenns 371
Creating @ SEUENCEccoveeereeresesrse s e s s se s sn s se s sns e nsass 371
Using Sequence PSEUAOCOIUMNScccceerenerennesesesesese s e sss e sessesessssessssesessssssssssssnns 373
Autoincrementing COIUMNSccovoeirenereserne s srs e sne e 374
SCAlADIE SEAUEBINCEScvicerererie it e s s ae e e nne s 375
Implementing Multiple Sequences That Generate Unique Valuescccoovervnevniensennenn 376
Creating One Sequence OF MaNYc.ccccovenernnesrsesmsese s sessssessssesessssssssssssanes 377
Viewing Sequence Metadata...........ccovermrenrnsennesesese s ssssesessssessenens 378
ReNaming @ SEQUENCE........c.veererererrenerrnsesesesessesesessesesse e s s ssssesessesessssessesesssssssssssssssnsssnnes 379

xiii

TABLE OF CONTENTS

Dropping @ SEQUENCEcovecirirererir e s sa e e 379
ReSetting @ SEQUENCE..........ccvcreririr e e e e 379

£ 10111 T S 381
Chapter 10: Data Dictionary Fundamentals........cccccusemmmmmsssssmnmmsssssnnsssssssssssssssnnnns 383
Data Dictionary ArChiteCIUIEccoeveeerreerresir e 384
STALC VIBWS ... nnn e nr s 384
Dynamic Performance VIBWS..........ccouernerrnsenesenessssssessesessssssssesessssessssessssssssssssssssssssssssanes 387

A Different View of Metadataccoveeeriieninneninesissse s s ssans 389
A Few Creative Uses of the Data DIiCtiONary........c.ccoovevverrerenennenieniesssensesesessssessessessesessessessens 392
Derivable DOCUMENTALION ... e 392
Displaying User INformationccvcvierennnnienennnensene s ses s sese s ssssessessesasssssessesnes 394
Displaying Table ROW COUNTS.......cccevrieriererennereressn s sesseseesessessessessssessessessesessessesasssssessesses 398
Showing Primary Key and Foreign Key Relationships.........ccccvvrvnnnninennnensnsenesensensenens 401
Displaying Object DEPENUENCIESccvcererirreriereresersere s s e e saesaes 402

£ 11134 R 406
Chapter 11: Large ODJectscccuuseemnrmsssnnnnmsssssnssssssssnssssssssssssssssssnsssssssnnssssssnnnnss 407
DeSCriDiNG LOB TYPES.....ccvcrerriirrerere s s e s sss e s st ss s s sne st s e snesnessssennennens 408
lllustrating LOB Locators, Indexes, and ChUNKS........c.ccccvvrinennsniniesnsinses s sessesessessssessessens 409
Distinguishing Between BasicFiles and SeCUreFilescccvvvvnnnniennesernsesesesesese e 411
372 L] [TS 412
SECUMBFIIESeieeecerreseriee s r e ne e r e ne e e nn e nr s 412
Creating a Table with @ LOB COIUMN.........ccovcininncserese s se s e 413
Creating a BasiCFiles LOB COIUMNccccuvcernnesrnesenesessssesssss s ssssesssssssssssessssssssssssssans 413
Implementing a LOB in a Specific TADIESPACE.........cccvvrernvninenn s 415
Creating a SecureFiles LOB COIUMNccocorveernesenene s se e ssenes 416
Implementing a Partitioned LOB............ccocurvnrnnennesrsese s s ssssessanes 417
Maintaining LOB COIUMNScuovieriereninseresesissessesse e sessessessesessessesaesssssssessesssssssessesaessssnsesnens 419
MoVINg @ LOB COIUMINcccivieeircsiree e sr s sr e sss s s s e 420
Adding @ LOB COIUMN......ccvecirieerrnesessesessssesesesssseses s ssssesssssssssssesssssssssessssessssssessssssssenens 420
Removing @ LOB COIUMNN ..o e sr e sss s s nsnss 421

Xiv

TABLE OF CONTENTS

(02 T 1 11 T 0 OO SRS 421
Storing LOBS In- and OUt 0F LINEcceceeirceeresere st ses s 422
Implementing SecureFiles Advanced FEAtUres...........covoorerrercrnrcnereser e 424
ComPressing LOBS ..o s s st s st s s 424
Deduplicating LOBSccccoiiriierisinsine s sss e s ss st ss s ssesas s s e e nnes 425
ENCrypting LOBScociiieicirer ittt st s s st 426
Migrating BasicFiles t0 SECUIEFIlES ... 428
LOAUING LOBScviueereeerieeresesessese s sesesesse e e e ses e sesse e e e ses s sessssessssessessssssssssssessesssssssenns 432
LT Vo a0 0 0 432
LT Lo a0 W 2 0 434
Measuring LOB Space CONSUME.........c.cccevermrrenmrnsmsesesesesessssesessessssssessssesesssssssssssssssssssesenns 435
BasSiCFiles SPace USEd ... s s se s s s snes 436
SecureFiles SPAce USEU.........ccviirirerinnsine s s st s s 437
REAMING BFILESccoeueiriecrinesissesesse e se e sr s ss s s ss s s e s s 439
BT 11134 R 440
Chapter 12: Partitioning: Divide and CONQUETccussemrrmssssnnnmsssssnnssssssssnsssssssnnnss 441
What Tables Should Be Partitioned? ..o 443
Creating Partitioned TADIEScccreerrierre e 445
Partitioning DY RANGE ...t s 445
Placing Partitions in TADIESPACEScoveererrerererererrerer e 450
Partitioning DY LiSt........ccoueocoeeeeeeeeer e 453
Partitioning DY HaSh ... s 454
Blending Different Partitioning Methods ... 455
Creating Partitions on Demand............cccoiinvnniinsnnn s 457
Partitioning to Match a Parent Tableccccvvrrninininnnnr e 462
Partitioning on a Virtual Column ... 466
Giving an Application Control Over Partitioning..........ccccocevvvnininninsnnne s 467
Maintaining Partitions..........cocuoerenrenrnsnresere s 467
Viewing Partition Metadataccovrenerenrnnnnesesese s snenens 468
MOVING @ PAILILIONcoeeeeceerceeeee e 469
Automatically Moving Updated ROWSccoeerrenerenernscrensesese e sessesesnenens 471

TABLE OF CONTENTS

Partitioning an EXisting TabIe ... 472
Adding @ Partition.........ccccucerieninnninnnesn s e e s 474
Exchanging a Partition with an Existing Table..........cccccrinnvnininincnc e, 476
Renaming @ Partition ... s 479
Splitting @ Partition.........cccovivnrrrc s s 479
Merging PartitionSccoccvicniiieniesnsine e e s 480
Dropping @ Partition...........cocvvriene e 482
Generating Statistics for @ Partitionc.ccvvivvvnrrini v 483
Removing Rows from @ Partition.........ccccceveririnrenc s s s 484
Manipulating Data Within @ Partition...........cccceceveririncnn st res e e seneens 485
Partitioning INGEXESccvceieriiirire e s e e s p e nne 486
Partitioning an Index to Follow It Table.........cccociiinininccnrr e 486
Partitioning an Index Differently from ts Table ..o, 490
Partial INGEBXES ... e 492
Partition Pruning ..o s st 494
Modifying the Partition Srategyccverrrerrenrnsrrese e 496
B30T 111 T o SRS 496
Chapter 13: Data PUMP.....cceeeeiiiiiimmssssssssssissnnss 499
Data PUMP ArCRITECTUIEeeee ettt r e s s s n e 500
GEtting STAMEU... ..o ————————— 505
Taking an EXPOrt......c.o i e e s 505
IMPOrtiNg @TaADIE ..o ———————— 509
Using @ Parameter File ... s s 509
Exporting and Importing with Granularity ..o 511
Exporting and Importing an Entire Database............ccccvvvvvnvnininnsnsnnsssenese e 511

T T T I 513
TaDIE LBV nr e e e e nne e 514
TabIESPACE LEVELceeeeereeer ettt s r e e e s 515
Transferring DAtAccoveeerneenrese s e nne e 516
Exporting and Importing Directly Across the Network...........coeevvenrnenresernscsnsesesenerennes 516

L0 03T Tl DF= = B T 519

TABLE OF CONTENTS

Features for Manipulating Storageccccvrvivninnnsnsn s 521
Exporting Tablespace Metadata...........c.ccocevvvnirnninnni e 522
Specifying Different Data File Paths and Names............ccocevevrnvvnienninsesnscss s e 522
Importing into a Tablespace Different from the Original...........cccoovvrvnininnincnnccncene 523
Changing the Size 0f Data FileS.........ccucevriirninncnr e 524
Changing Segment and Storage ALrbULES ... 525

Filtering Data and ODJECTS.........cccririinrnr e 526
SPECITYING @ QUETY .ervereeeeererereeressereressssesesse e sss e sse s sse s ssesaesaesassessessessssessessesasssssensessens 526
Exporting a Percentage of the Data..........cccccovvrniinininncncn e 528
Excluding Objects from the EXport File..........cccvriinininnnnsnc s 528
EXClUding StatiStiCScoccveriirire s s 530
Including Only Specific Objects in an EXPOrt Filecccovvevrevreccrnicnre s 531
Exporting Table, Index, Constraint, and Trigger DDLccccceervnreneneseneserensesesesessesesenas 531
Excluding Objects from IMPOrt ..o e 532
Including ObJECtS iN IMPOM.........ccoiirrcrr s 532

Common Data PUMP TaSKSccocveriniisircrirn s se s s s 533
Estimating the Size of EXPOrt JODS........ccoevicrcincrrrr e 533
Listing the Contents of DUMP FileS.......ccoovvrvriniinsninr e 534
ClONING @ USEN ...t r s s e e e e e e p e b e ne s 535
Creating a Consistent EXPOrccocvcrinisninr s e 535
Importing When Objects Already EXiSt.........ccccciriinnnininsn s 537
Renaming @ TabIE ... s 539
Remapping Data........ccccoiiiniieri s 539
SUPPresSiNg @ LG Fil ...ttt 541
USINgG ParalleliSMm.........ccocoiiiireicsinsne s s s p s s s e s 541
Specifying Additional DUMP FileScccvivrninnnrrnnnsen e s 543
Reusing Output File NAMEScccccvererrerierererrerersessssessessesssssssessessessssessessesssssssessesasssssessesses 543
Creating @ DAily DDL Fileccvevererrerereeressererseseesessessesaessssessessessssessessesasssssessessesssssnsesseses 544
COMPreSSiNG OULPUL.......coeieriererererrereresessere s see e s e ssesae s s e ssesaesae e s e saesaesssnessesaesssnsssesaeses 545
Changing Table Compression Characteristics on Import.........ccocvevvrvrievennnenrensesessessenenns 546
ENCrypling Data.........ccooeveririirie e ccerrrr e re e s s s n e s s n e e 546
EXporting Views as TaDIEScccccvveririninn e ses s s saessenns 548

TABLE OF CONTENTS

Disabling Logging of Redo on IMpOrt ... ses s 548
Attaching to @ RUNNINg JOD ...t 549
Stopping and Restarting @ Job ... 550
Terminating a Data Pump Job ... 550
Monitoring Data PUmpP JODS.........ccor e 551
Data PUMP LOG FilE ..o s 551
Data DiCtionary VIEWS.......coovcvcienininsine s st ss s s sas s snes 552
Datahase AlErt LOGcccceeviirirerienir s s e s s 553
STATUS TADIE ... s 553
Interactive Command Mode StatUsccocoreerrerrerrnrerere s 554

OS ULIIIEIES 1.vuvueuesesesesesssssssessssssssssssssssssesesesesesesessss s s s sssssssssssssssssssssssssnsnssssesssssessssnsssssssssasas 554

£ 10117 555
Chapter 14: External Tables........cccucccummmnsmmmmmmssssnnnmmsssssnnmmsssssnmsssssssesssssssssssssnnns 557
SQL*Loader vs. EXernal TADIESccccevrnieencnirisssse s ss s se e es 558
Loading CSV Files into the DAt@basecccvvrrreriernninienienesessesesessssessese e sessessessessssessessens 560
Creating a Directory Object and Granting ACCESS.......cueervvrrrrrseriernsensersesesessesessessssessessees 561
Creating an EXternal TADIE........ccovververieresinsersere e s s s s se s s s s e s saesa s e s sne s 561
Generating SQL to Create an External Table..........ccvvvvrerenrninennsenserse s sesese s sesesaens 563
Viewing External Table Metadataccocvievevrinininnrrrrse e enes 565
Loading a Regular Table from the External Tablec.cccvvvrvrievnnnrniene s sesesaens 566
Performing Advanced Transformations.............cccvvrvnnenininsn s senns 568
Viewing Text Files from SQL.........ccoviiiiininnisine e sss s ses e sessssessssesssas 570
Unloading and Loading Data Using an External Table..........c.ccocecvvninnnnnnnnnsnsnsesessnsensennens 572
Enabling Parallelism to Reduce Elapsed Time..........ccccccvvvninnnennsnnnc e sessennns 575
Compressing @ DUMP File.......c..coirniinsrr e s 576
Encrypting @ DUMP Filec.vovreeeerc s s 577
£SO 580
Chapter 15: Materialized VIEWS.......cccirusssnnnnmsssssnnnmsssssnnnmssssssnnsssssssnssssssssnsssssssnnnss 581
UNAerstanding MVS ..o s 581
MV TEIMINOIOQY ...veveeerreerreerinsesessesesssse s sssse e se e sss e s e s e e sse e srssesnsse e sa e ssssessnsensssssessass 584
Referencing USEfUul VIBWS........coveceiireinesinesene s sn e s sssss s senses 585

Xviii

TABLE OF CONTENTS

Creating Basic Materialized VIEWS.........cccocevvininiennnnsinse s se s s sss s s snas 586
Creating a Complete Refreshable MVcccovvvrenncrcrnsenne s se s sessenes 587
Creating a Fast Refreshable MV ...t 591

GOING BEYONd The BASICSceeoereeerererereereeresesese e se s se s s ses e e s 598
Creating MVs and Specifying Tablespace for MVs and Indexesccccvevvvvnrrennsensennens 598
Creating INdeXes 0N MVS ... s s s 598
Partitioning MVS ... e e 599
Compressing an MV...........o e e e e e 600
Encrypting MV COIUMINS ... st sre s 600
Building an MV on a Prebuilt TabIeccccovvvcrinnsirsr e 602
Creating an Unpopulated MV ... s 603
Creating an MV Refreshed on COMMIL...........cccocvrenrencrnicnne s seenes 604
Creating a Never Refreshable MV...........cccccorrinncnncscsncerne st se s ssenes 605
Creating MVS for QUErY REWIILEcccvveiiiriiiiiiinse e ss s s s s s ssenes 606
Creating a Fast Refreshable MV Based on a Complex QUErYccuvevmienernsernsesesenerennes 607
VIEWING MV DDLocvirititiiicrninsse ettt ss s s e s s s sssssssssssssasnas 611
Do) o] 011410 =T N S 611

MOAITYING MVS ... s e e e s p e ne 612
Modifying Base Table DDL and Propagating to MVS........c.cccocnininnsninnnnsnsne e 612
Toggling Redo Logging on an MV ... snes 617
Altering ParalleliSIm ... s 618
MOVING @N MV ... e e e b 619

ManNAGING MV LOGS.....ccueoeeeecrererersenesresesesesesesessesesessesessese e e ses e sessesessssesse e sessssessssessssesesssenns 619
Creating an MV LOQcococererereeresesesese e se s se e se s e e s s sns e nesns 620
Indexing MV LOg COIUMNScocoiiiiircnesin st s st 622
Viewing Space Used by an MV LOg........ccccuvrrinninnnnnsnsensese s sss s sssssssessesnes 622
Shrinking the Space in an MV LOg......c.ccoouciiiinininninisess s sese s sessessesssssssessessens 623
Checking the Row Count of an MV LOQcccocrrinnnnnninnn s ssssessesne s 624
MOVING @N MV LOGceiiiiicirine i sr e s 625
Dropping @n MV LOGQ ...ccccceviirirene e st se s s sas s ssennes 626

RefreSHING MVS......ooeeeeerecrercsere e 627

Xix

TABLE OF CONTENTS

Manually Refreshing MVs from SQL*PIUS.........ccocvivnininnnnrne e ses e 627
Creating an MV with a Refresh Interval...........cccovevrecrninnc s 629
Efficiently Performing a Complete Refresh ...t 630
Handling the ORA-12034 EITOrcccucviiiennrinere s s se s ssssnssessesnes 631
Monitoring MV RefreShes.........ccoriiiininn st se e snens 632
Viewing MVs’ Last Refresh TIMES........cccvvrinninininnssssse s ses s ssssessessessens 632
Determining Whether a Refresh IS in Progress........ccccvvnvninnnsnscnncnnssnssesese s sensennns 632
Monitoring Real-Time Refresh Progress.........cccuvnnnnnnnsne s sessessessssessessesnes 633
Checking Whether MVs Are Refreshing Within a Time Periodccccvivvnvninicnninicnnenn 634
Creating Remote MV RefrEShES ..o 635
Understanding Remote-Refresh ArchiteCtures..........covevvecereeseresssscsesesese e 636
Viewing MV Base Table INfOrmationccovevnenrenrnscsssesese s sessesessenens 638
Determining How Many MVs Reference a Central MV Log.........ccceeeverenerenerenscseneneseenerennes 639
Managing MVS iN GIOUPScovvereresmrreserensesessesessssesessesessessssssessssssssssssssssssssssssssssssssnsssesssssssssnns 641
Creating an MV GrOUP.......couoeererernsesesesessese s sessssessssesessessssssesssssssssssssssssssssessssssssssssssanes 642
Altering an MV RefreSh GIOUPccovererenernseneseses e resesese e sessesessssessssesesssssnsenens 642
Refreshing an MV GrOUP........cccovererenernsesesesesse s sessese s ss s sesse e s s ssssesessssessssssenns 643
DBMS_MVIEW vs. DBMS_REFRESHcccoouimmimininininirinesesesesesesesssss s ssssssssssssssenenes 643
Determining MVS iN @ GIOUP.......cccoerrenerrnseresesersese s seseses s s sessesesss e e ssssesesssssssssessnns 644
Adding an MV t0 @ RefreSh GrOUD.......cocoererererserereseseseresesessese s s e s sessesesssessenens 645
Removing MVs from @ RefreSh Group.......c.cveeeerererescrncseresess s 645
Dropping an MV Refresh GrOUP ... s 645
B30T 111 T S 646
Chapter 16: User-Managed Backup and RECOVErYcccuusssmmnsrsssssnnsssssssnnssssssnnnnss 647
Implementing a Cold-Backup STrategycccevererrerierererrerieriesessesseressssessessessesessessessessssessessens 649
Making a Cold Backup of @ DAtabase..........cecerverernrerrerererenseressessssesessessssessessesssssssessesaes 649
Restoring a Cold Backup in Noarchivelog Mode with Online Redo Logs..........ccoeervverreraenes 652
Restoring a Cold Backup in Noarchivelog Mode Without Online Redo L0gS........ccceverreruene. 653
Scripting a Cold Backup and RESIOre.ccuveverrrerrerieresesessesessesessessessessssessessesssssssessessens 655
Implementing a Hot Backup STrategy ... e sesse e 660
Making @ HOt BACKUPcc.covecircirercsin s sn s s 660

TABLE OF CONTENTS

SCripting HOt BACKUPScccveereiirirstrc et ss s s sss e sne s 665
Understanding the Split-BIOCK ISSUEc.cccrurverererircrcrn st 668
Understanding the Need for Redo Generated During Backupcccecevvererercrenienerencnenne 672
Understanding That Data Files Are Updated...........ccoccvcrnrnncnninsnsc s 673
Performing a Complete Recovery of an Archivelog Mode Database..........ccccceveerververseererierienns 675
Restoring and Recovering with the Database Offline...........ccccrivnvncninisncnc e, 676
Restoring and Recovering with a Database Onlingcccovvvernncncnnnncncne e, 681
Restoring Control FileS ... s sns s snas 682
Performing an Incomplete Recovery of an Archivelog Mode Databasec.ccovreverenerenserens 687
B30T 111 17 o SO 691
Chapter 17: Configuring RMAN.........ccccussmmmmmmmsnnmmmmmsssssnmmssssssnmsssssssssssssssssssssssnnnss 693
Understanding BIMAN.........ccoooviirierierenerserese s sessessesssssssessessesessessessesssssssessesssssssessessesssssssessens 694
STArtING RMAN ..ot bbb np e nr s 699
RMAN Architectural DECISIONSccoeecrerrererererrereres s 700
1. Running the RMAN Client Remotely or Locally...........cccooeerrvrniennencneserncesesesesesenenaes 704

2. Specifying the BACKUP USEFcccvreierererinerene st sesesse e s sessesessssessssesessesessssessnnes 704

3. Using Online or Offline BACKUPSccoverirenerinerinsenine s sessese s sessesens 705

4. Setting the Archivelog Destination and File Formatcccccovivniininnnnnennnssenncennne 705

5. Configuring the RMAN Backup Location and File Format............ccccooecrinvnninnnnncnniennn 706

6. Setting the Autobackup of the COntrol File..........ccvvvievernverieresensenesessesessesseseesessessensens 709

7. Specifying the Location of the Autobackup of the Gontrol File.........c.ccocevvvriererenseriennens 710

8. Backing Up ArChiVEIOGScoceveerreererirrie e res e e sessesseessesae s e e sessessessaesnessessesssssnesaesnes 711

9. Determining the Location for the Snapshot Control File............cccecvverrevnrenrerserenensenseneens 711
10. USiNg @ RECOVErY Catalog.......cererrerrerrerersersersersesersersersessssessessessssessessesssssssessesssssssensesses 712
11. Using @ Media MAnAgercccecvverieneniiniensie s e ssessessse e ssessssssessessesssssaesaessenns 713
12. Setting the CONTROL_FILE_RECORD_KEEP_TIME Initialization Parameter 714
13. Configuring RMAN’s Backup Retention POIICYcccvvvververierevensensenensssessessesessessensenes 715
14. Configuring the Archivelogs’ Deletion POIICYccvcevererverrerenessensenessssessessesessessessenes 717
15. Setting the Degree of ParalleliSm..........ccccvvrevnrniniene s ssesessessesnes 718
16. Using Backup Sets or IMage COPIES.......cccvrererrrrerseriereressersessessssessessesssssssessesssssssessesaes 719
17. Using Incremental BaCKUPS.......cccvvvrerererrerreressnsessessessesessessessessssessessesssssssessesssssssessesses 720

xxi

TABLE OF CONTENTS

18. Using Incrementally Updated Backups........c.ccovvrvnirnnnsnnenesssinsesess e s sessessesnes 721
19. Using Block Change TraCKiNgc.ccccurierererernseseniesesesessesesesesessesessesessssessssesessssessnses 721
20. Configuring Binary COMPIESSION........ccccrurvererererrererissesesesesse e sessesessesessesesessesessssessens 722
21. Configuring ENCIYPLiON ..ot 723
22. Configuring Miscellaneous Settings........cccvrerrinrrininn s 724
23. Configuring Informational QUEPUL..........cccorirriinnr s 725
Segueing from Decision 10 ACHON.........cccii e ————— 727
£ 7 o TS 732
Chapter 18: RMAN Backups and Reportingccccuusseemnmssssssnnssssssssssssssssnsssssssnnnss 733
Preparing to Run RMAN Backup COMMANGScccouverrrermrrenernsesssesesssessssessssessssssessssessssesenns 734
Setting NLS_DATE_FORMATcccoereermrmsssssssssssssssssssssssssssesesesssesesessssssssssssssssssssssssssnnns 734
SEtHNG ECHO ..ot np s 735
ShOWiNG VariabhIESccveierierinerins e sr s 736
RUNNING BACKUPScveteereriesiesessesese e e ssessesss e sessesassssessesaesessessessesssssssessessessssessessesssnsnsesnens 736
Backing Up the Entire Databaseccvevvvrrerennsersne s saesessessesnes 736
Backing Up TabIESPACESccurveruerierirrererseressesessessssessessessesessessessessssessessesssssssessesasssssessesses 738
Backing Up Data FilES........cvvrveriereninsirenenissese s s saeses e s e ssssessessessssessessesasssssensesaes 739
Backing Up the Control Filecccuvvvrienenininene e se s se s ssesassessessesnes 739
Backing Up the SPFile.....c.ccvvvrireninrrrrie e se s sse e sessessesnes 740
Backing Up ArChiVel0gSc.ueerruereriserinesssesesese s sss s s s snsss e ssssesssssssssssessnnes 740
BaCKING UP FRA.......oteerce e nna e 741
Excluding Tablespaces from BaCKUPSccccorvrernnesnsesmsesesssesssesesse s ssssesessessssssessnses 742
Backing Up Data Files Not BaCked Up.......cuccererernsnnessnesess s sssssssssssesennes 743
Skipping Read-0nly TADIESPACESc.ccvverrererrererirrerseresesee s sae e sse s ssssessessesaessssessessens 743
Skipping Offline or Inaccessible Files..........ccvvninnininnsn e 744
Backing Up Large Files in Parallel...........ccvveeninernnnnnesssesessse s ssssesssesessssesenses 745
Adding RMAN Backup Information to the Repositoryccucevesernsesnsesnnesesssesessesenseens 745
Taking Backups of Pluggable Databasescccevevnrrinennninsne s ssssesese s sessessessesessessesse s 747
While Connected to the Root CONtAINEr ..o 747
While Connected to a Pluggable Database............ccvevvevvnininienennsensene s sessessesessssessessesees 748

xXxii

TABLE OF CONTENTS

Creating Incremental BaCKUDS.........cccvvririninnscre e 749
Taking Incremental-Level BaCKUPScccvereininnne s sss s e snes 750
Making Incrementally Updating Backupsc.cccevvrnnnieninnnsnseness s sssssssessesnes 751
Using Block Change Trackingc.ccccvvevrinrninnesins s sessesessssesssses 753

Checking for Corruption in Data Files and Backups........cc.cccvvrninninnnnsninssnsessese s 754
USING VALIDATE........c.cieeirsnrsisssssssssssese e e e e ss s s sssssss s sessnsnensnessssssssssanas 754
USiNG BACKUP...VALIDATEcceosiueerereresrssesssesessssssssssssssessssssssssssssssssssssssssssssnssssssesssssssaes 756
USiNg RESTORE...VALIDATE...........c.ccoustrerermnrssesmsessssssssssssessssssssssssssssssssnsssssasssssnssssssssssssssaes 756

Using @ RECOVErY Catalogcocvererrerererserereserese s s 757
Creating @ ReCOVErY Catalogcooueevrrermrrenerensesesesessesesessesesss s sesse e ssssesessesesnsessnses 757
Registering a Target Database...........cccoverrnererenernssresessese s 759
Backing Up the Recovery Catalogccoveererenernsesenenesenese s s sessesessssesenses 760
Synchronizing the Recovery Catalog.........c.coocoerererrrererenereners s 760
Recovery Catalog VEISIONSccoceererernerernerereseressesessesesese e sessesessesessssesessesessssessssesenss 761
Dropping @ Recovery Catalog ... sssssssessesnes 761

Logging RMAN QUIPUL........ccorereirererese s s 762
Redirecting Output 10 @ File.......coeoeeecerecereere e 762
Capturing Output with Linux/Unix Logging Commands.........c.cccverernnerenrenmssenesessesesesessens 763
Logging OUIPUL 10 @ FilE ...cveueeeeecrece s 764
Querying for Output in the Data DICHONArYcoccorerrrserreseree s 764

RMAN REPOMING......cierreerreiresisessenessesesessessssessssassssssssessessssesesssssssssssssssssssansssssssssssnsssansssassssnns 765
LT 0 ST STSOTR 765
USING REPORTcoiiiinisnssisss i sse st e e se s sttt 766
USING SQL ...cueirriieneeeresssssesssesesss e sese s s s s s s sssss s s e s s s sss s s sssssssssssssasssssnsasssnsnsssansaes 767

11T 111 17 o OSSOSO 772

Chapter 19: RMAN Restore and RECOVErY.....cuueummmsssnnsesssssnssssssssnnsssssssnnsssssssnnnss 773

Determining if Media Recovery IS ReqUIred..........cccvvvrnnienesnsinscness s s e s sesennens 775

Determining What 10 RESIONEcoveccrrecrrerer e 777
HOW the ProCESS WOTKS......coccceereereerincsese e s e sns s sns e e 777
Using Data RECOVErY AUVISO........c..ccrrererrererereresese e ses e se s se e ses e ssseseenes 779

xxiii

TABLE OF CONTENTS

Using RMAN 10 Stop/Start Oracle..........coccvrerrenrnicsnerere s se s sessesens 783
SHULEING DOWN ...t s e st e e e s e e e ae e 783
R3] 2L] 10 R o O 783
COMPIELE RECOVEIYceeeeeecrercersee e se e s s s e ne e s 784
Testing Restore and RECOVEIY ...t se s 785
Restoring and Recovering the Entire Database............ccccovvvnvnvninnsnnnnnnssnsenese e 787
Restoring and Recovering TableSpaces..........ccccuviininnnnnsnse s sessesnes 789
Restoring Read-0nly TahlESPACESccccverrrvireririnsinsre s s se s snes 790
Restoring Temporary TabIESPACESccccevvvnrrennrir s 791
Restoring and Recovering Data Files...........ccoucirnininninnnsne s ses e 791
Restoring Data Files to Nondefault LOCAtionsccccuvvvvnvnienennsnsc s sessennes 793
Performing BIOCK-LEVEl RECOVEIYccccviviriinerirnsirsene s se s sae s snes 794
Restoring a Container Database and Its Associated Pluggable Databasesc.ccccceue.e. 796
Restoring Archivelog FilES.........covcorerrrecrrerereeres e 799
Restoring to the Default LOCALioN ... 800
Restoring to a Nondefault Location ... sessesns 800
Restoring @ Control File.........ooovenererrrenneser s 801
Using @ RECOVErY Catalog........c.ccoerreeerrrererrenerensesesesesre e ses e sesse s sesse s sessesessssessenes 801
USing an AUtODACKUP ..o s 802
Specifying a Backup File NAmMe.........ccccoverrienmrenernersese s sessesenns 803
Restoring the SPRile ..o e 803
INCOMPIETE RECOVEIY ..ot s n e n e nne s 805
Determining the Type of Incomplete RECOVErYcccvvvevrenerese s 808
Performing Time-Based RECOVEIYc.cucvverirenernsesisesese s ses e e sss s s s e ssnses 808
Performing Log Sequence-Based RECOVENYcuvvirenrenennsesnsesese s sssesessssessnnes 809
Performing SCN-Based RECOVEIY.......ccuuvvvermrenersse s s e s s sssssssssssessnnes 810
Restoring t0 @ Restore POINt..........ccovcininnennese s ssnnes 811
Restoring Tables 10 a Previous POiNtcccccveierisnniesnssess s seanes 811
Flashing Back @ TADIEccccvvververierininsinene s s s s ses e s sss e e s sasses e saesnesssesnesnens 813
FLASHBACK TABLE TO BEFORE DROP..........cccvsururerrrereresesesesesesesssssssssssssssssssssssssssssssesenes 813
Flashing Back a Table to a Previous Point in TIMecccueeervvrnnennesnnse e 815

XXiv

TABLE OF CONTENTS

FLASHING BACK A DATABASE..........cccouisuirmtsrnsnssssssssssesesesesesesssnsnsnenes 816
Restoring and Recovering to a Different SErvercovrcernscsnse s 819
Step 1. Create an RMAN Backup on the Originating Database..........c.ccccoovenrienerencrenscen. 821
Step 2. Copy the RMAN Backup to the Destination Server..........coccvvrivevncninienniniennens 821
Step 3. Ensure That Oracle Is Installed..........cccovvrvnininnsnin e 822
Step 4. Source the Required 0S Variables............cccvvrinninininnnnsnesess s sesensens 822
Step 5. Create an init.ora File for the Database to Be Restored..........ccccceverervrcerveercrenne. 822
Step 6. Create Any Required Directories for Data Files, Control Files,
and DUMP/TIACE FIlES.......cvceeerecrirene st r s e r e ene 823
Step 7. Start Up the Database in Nomount Mode..........ccccoovvniniinsncncs e 824
Step 8. Restore the Control File from the RMAN Backupcccoooovcnvriennnnscniesessnsensennens 824
Step 9. Start Up the Database in Mount Modecccooevvinineninnnsneness e 824
Step 10. Make the Control File Aware of the Location of the RMAN Backups.........c..coeeeuens 824
Step 11. Rename and Restore the Data Files to Reflect New Directory Locations.............. 825
Step 12. Recover the DAtabasecccovvcvrerercccrnccnre e e 828
Step 13. Set the New Location for the Online Redo LOgS.......cccccvvererniernscsennenenesesessenenns 829
Step 14. Open the Database..........ccvcvrcrrcric 830
Step 15. Add the TEMP Fl.......cccociereeiisssnsssssssssss s sssssssssssssasanns 831
Step 16. Rename the DAtabasec.ccevvevrerverererrerserere e re s see s ssessessesessessesasssssessessens 831
T30 T 834
Chapter 20: Automating JOBScccmssmmmmssansmssnnmsssnsssssnsssssnsssssnsssssnsssssnnssssnnssssns 837
Automating Jobs with Oracle SCheduler............coevrecrnsnres e 839
Creating and Scheduling @ JOD.........ccovevierrnnenrnesee e 839
Viewing JoD DEtailsccccveeeriiernesinesense s 841
Modifying Job Logging HiSOrYcccuciicennennsse s sssse s s sennes 842
MOGIfYING @ JODuceiecerei e s 842
STOPPING @ JOD ... ——————————— 843
DiSADIING @ JOD ..o —————————— 843
=40 T o I U o o OSSOSO 843
COPYING @ JOD ... e 844
Running @ Job Manuallycccveeerenmrnenneserese s 844
Deleting @ JOD.......ocoereere e ———————— 845

TABLE OF CONTENTS

0racle SChEAUIBK VS. CrONccoveeereeecrerererese e 845
Automating JODS Vi@ CrONcoeeceerermreerese s s sss e neens 846
HOW CrON WOTKScoeeeeereeceiecerese s s se s s 847
ENabling ACCESS 10 CIONcvecercereceeecre s 849
Understanding cron Table ENtries.........ccvvnvninnnsnn s 850
Scheduling a Job to Run Automaticallyccccovvrvnininnnnsn s 851
Redirecting Cron QUIPUL ... e 855
TroubleSh0OTiNG CrONccciiir e e s 856
Examples of Automated DBA JODS.........cccuviiiinnini s sss s s ssssessesnens 857
Starting and Stopping the Database and Listener..........cccovvirnninvninnnnsnsenesnsenennens 858
Checking for Archivelog Destination FUIINESSccooveerrerrenerescrsesese e 859
Truncating Large LOg FileS ..o s s sesssessenens 862
Checking for Locked Production ACCOUNTSccceeemreererenscrenenesee e 864
Checking for TOO Many PrOCESSES.......cccoerererernererererreseressesessesesseesesesessesessesesessesesssnessens 865
Verifying the Integrity of RMAN Backups........cccoovvrvrinninnnnness s sessesesnes 866
AUtoNOMOUS DAtaDASEcceeeereecrrerere e s 868
B30T 111 T o SRS 869
Chapter 21: Database Troubleshooting.........ccucccurrnssennnmnssssnnnmnssssnnnsssssssnssssssnnnns 871
QUICKIY THAGING. ... veveeeeereriree s se s se bbb e e b et a s 87
Checking Database AVailability..........ccccererererierierenensersere s serseresse s ses e ssessessssessesaees 872
Investigating DiSK FUIINESS.......ccccuverrirninne e s sn e sae s s 875
INSPECHING The AlBIT LOG......ciiieriee st s s 878
Identifying Bottlenecks via 0S ULIlItIESccccoerererniernierre s 882
Identifying System BOtHENECKSccoverriirnirincsns st 883
Mapping an Operating System Process to an SQL Statement...........cccccoovvrinvvnicvnieccnnne, 888
Finding Resource-Intensive SQL Statements.........c.ccoovvrvnininnsninnnsnsne s 891
Monitoring Real-Time SQL Execution Statisticsc.ccevivvnvninininsncnnss e, 891
Running Oracle Diagnostic ULIlItIeSccovvnrrinininsnc s ses e 894
Detecting and Resolving LOCKING ISSUES.........cccvurerrrrererenerseneressesesesessssessesesesssessssessssesessesenns 899
Res0IViNg OPen-CUrSOF ISSUEScccvrerererserersenesrasssrssesessessssesessssssessssssssssssassssssssssssssssesssssssssnns 902
Troubleshooting Undo TableSPACE ISSUEScccuvreeerrnserrsesessesesssessssesessssessssesssssssssssesessessssenens 904

XXVi

TABLE OF CONTENTS

Determining if Undo Is Correctly Sized...........cccvvvvinininnnnsn s 904
Viewing SQL That Is Consuming Undo SPaceccceecerrverereneresernsevenesesesessssesessesessenens 907
Handling Temporary TableSpace ISSUEScccrerrrrrerererene s 908
Determining if Temporary Tablespace Is Sized Correctlyccovevreerriesrnsnreesereserene 909
Viewing SQL That Is Consuming TemMpPOorary SPaceccccucvrerernnnsessesessssessessesssssssessesees 910

£ 117 SR 911
Chapter 22: Pluggable Databases......ccccusemmssnmssnsssessssnssssnssssssssnssssnsssassssnssssnsssans 915
Understanding Pluggable ArChiteCIUIEcccrveernsernesire s 919
Paradigm Shift........cccocuerenrninrnenr e e 922
Backup and Recovery IMpliCationsccouveverinernnennsessnesess s senss 924
TUNING NUANCESeveeerirrereere e s ss s se e ss s sr s se s ss e se s e s sae e senssssnsennns 925

[0 = T LT o T R 926
Using the Database Configuration Assistant (DBCA)ccccvvrrerrrensenienesessessesessssessessenes 927
Generating CDB Create Scripts Via DBCAccccovvrvriereninsensesessssessese s sessessessesssssssessees 928
Creating Manually With SQLccocvirinniriner e s se s sae s 929
Verifying That @ CDB Was Created...........ccvvvernrnnnienennnnnsense s sessessesssssssessessessssessessesees 932
Administrating the R0t CONTAINETc..coviririerierirserrerese e sss s ssssesessessesessessessens 934
Connecting to the Root CONTAINET........ccccevvverieriere s se e sae s 934
Displaying Currently Connected Container Information...........ccecveevnvniniennnnsenienesenseniennns 935
Starting/Stopping the R0t CONTAINETccccvierrrrrrierene e sessessessens 936
Creating CommON USEIS......cccverererrerieressesessessessesessessessessssessessesssssssessesassssnsssessesssnsssesnees 936
Creating CommON ROIESccveriieriererenir s s s s s sss e s sae e s e s saesasnessesneens 937
Creating Local Users and ROIES.........cccuevrrrrerereninsense s sesesesss e ssessesessessessesssssssesaees 938
Reporting on Container SPACE.........ccvvviereririeriere e s s se s s sae e ssesnes 938
SWItChiNG CONTAINEISecerceriereririre e s a e e sae e e s e nne s 940
Creating a Pluggable Database Within @ CDB..............ccoccvvrevrnnsennene s ssssessessessesessessesnes 941
Cloning the Seed DAtADASEccccvverrerererrirserere s s s e sae e s e ssesaessssessesnees 942
Cloning an EXIiStiNg PDBcccccviivirinierensnsessesesssses s sssssssessessesssssssessesaesssssssessesssssssesaees 943
Cloning from @ Non-CDB Database..........cccuvrverernnennenserinnsssessesesssssssesessessssessessesssssssessees 945
Unplugging @ PDB from @ CDB..........ccvceverirnerienienesesserese s sessessesssssssessessesssssssessesssssssesseses 947
Plugging an Unplugged PDB int0 @ CDB.........ccccocevvrernereresensensesessssesessessssessessesssssssessesaes 948

XXVii

TABLE OF CONTENTS

Using the DBCA to Create a PDB from the Seed Database............ccooverrienerencrnscnesenerennes 949
Checking the Status of Pluggable Databases...........ccccecrrierrenernrernsenre s e 950
Administrating Pluggable Databases........c..cccvrerererererernnerenesesese e seenes 951
Connecting t0 @ PDB........c.o o s e s 951
Managing a Listener in PDB ENVIronment ... sessessesssssssessesnes 952
Showing the Currently Connected PDBcooooreenrererercrs e 954
Starting/Stopping @ PDB..........coi i e ene 955
Modifying Initialization Parameters Specific t0 @ PDBccccccvnenrnenerenernseseseseseerennes 956
Renaming @ PDB.........cociirren st s e s e 957
Limiting the Amount of Space Consumed by PDB.........c.ccoovcrvrnninsnsene s 957
Restricting Changes t0 SYSTEM at PDB ..o 958
Viewing PDB HISTOIYcccuiiiirsinene e sre s s 958
Dropping @ PDB ...t e e e 959
Refreshable Clone PDB ... e 960
Databases in the CloUd ..o s 961
£ 1117 o S 961
INA@X .coiieerisssnnnsssnnnsssnnnsssnnssssnnsssssnsssssnnssssnnssssnnssssnnssssanssssannessannssssnnssssnnssssnnnnsnns 963

Xxviii

About the Authors

Michelle Malcher is a security architect for databases at Extreme-Scale Solutions.
Her deep technical expertise from database to security, as well as her senior-level
contributions as a speaker, author, Oracle ACE director, and customer advisory
board participant have aided many corporations in the areas of architecture and risk
assessment, purchasing and installation, and ongoing systems oversight. She is on
the board of directors for FUEL, the Palo Alto Networks User community, as well as
volunteering for the Independent Oracle User Group (IOUG). She has built out teams
for database security and data services and enjoys sharing knowledge about data
intelligence and providing secure and standardized database environments.

Darl Kuhn is a senior database administrator working for Oracle. He handles all facets of
database administration from design and development to production support. He also
teaches advanced database courses at Regis University in Colorado. Darl does volunteer
DBA work for the Rocky Mountain Oracle Users Group. He has a graduate degree from
Colorado State University and lives near Spanish Peaks, Colorado, with his wife, Heidi;
and daughters, Brandi and Lisa.

XXix

About the Technical Reviewer

Arup Nanda has been working in database management

for 25 years and counting. With 6 books, more than

700 published articles and 500 presentations in 22 countries,
he is very well known in the database area in general and
Oracle technologies in particular. Today he is the Chief

Data Officer of Priceline.com in New York area. He blogs

at arup.blogspot.com.

https://arup.blogspot.com

Acknowledgments

Every time I sit down to write or prepare a presentation, I spend a few minutes reflecting
on how I got to this place in my career. There are many people that I am thankful for: to
have their influence, guidance, and encouragement in my life. A few of these people I
might have told I was done writing books, four books ago. I enjoy seeing their smiles and
getting teased when they hear that another one is done.

The friendships that I have made in the database community have encouraged
me to learn more and share. I appreciate each of these fun database people who are
passionate about what they do and enjoy bringing along others by teaching, mentoring,
and supporting others. What an opportunity to be in this career and working with others
passionate about databases and being the best guardians of the data! Thank you!

xxxiii

Introduction

Cloud, automation, artificial intelligence, and machine learning are all keywords for the
direction of technology. The interesting thing about these areas is that data is still plays
a very important role. Obviously, it is something good for the database administrator or
the guardian of the data.

With these new environments and Oracle’s Autonomous Database in the cloud,
the question is being asked if DBAs are needed. Self-driving, tuning, and provisioning
of databases are the future of the environment. However, there are definitely different
tasks that the DBAs are going to be performing along with being the people to go to for
migrations to the cloud and automating processes.

So, why write a book about Oracle 18c database administration? This is an easy
question to answer. Even though the tasks are changing, understanding the database
is critical. Even with processes being automated, there are issues that might need
troubleshooting and automations put into place. Applications need database objects
designed, created and maintained, and tuned for performance. Is the job now just
troubleshooting issues and automating the rest? No, there are design and strategy for
data, application, and security. But this book is not just about the transitioning role
of the DBA, but to provide administration skills that are still relevant in the database
environment. It is also important to know that the internal understanding of the
database helps with all of these areas including previous versions.

Data are being integrated, migrated, and maintained in several databases. The
structures of these environments are what is needed and what it takes to create
consistent, reliable, and always-accessible data. Administration is needed for these
systems and support applications with database design and development.

This book provides details about the tasks that are needed to create Oracle 18c
databases and provide administration for the environments because it is more than just
building a database but managing it with the data and active applications. It provides
an inside look of the Oracle database, hardware, storage, and servers that are required
to run Oracle. Some of the tasks that are presented are now and should be done through
automated processes but stated in ways to being able to work through issues and
troubleshoot any problems.

INTRODUCTION

There was careful consideration for including chapters and sections in this book
to make sure it was providing the right topics to understand the database along with
previous versions, support the design and performance tuning of database objects, and
give DBAs the tools they need to be successful.

Backups and recovery are discussed heavily because scenarios of recovery are
difficult to automate. There are consistent themes throughout the book to look to
create repeatable tasks for automation, securing the environments, and utilizing the
new features and tools that come with the new releases of the database. DBAs play an
important role in creating backup and security strategies as there are several discussions
that support this.

Many of these topics are the same if the database is on-premise or in the cloud.
Understanding the difference and how the DBAs can support the migrations to the
cloud are included in the notes and sections of the chapters. Databases in the cloud
serve many purposes in the enterprise, and DBAs are the perfect resource to assist
in migrations and make sure the data are secure and integrated from the cloud
environment.

There are many examples, tips, and notes to provide any DBA with Oracle database
the tools they need to design, implement, and administer Oracle 18c database
environments.

CHAPTER 1

Installing the Oracle
Binaries

Oracle installations of the past can be large, complex, and cumbersome. The Oracle
database administrator (DBA) plans and performs the installation because he or she
knows how to troubleshoot and address problems as they arise through the steps. There
are several configuration and installation options that need to be reviewed, so installing
the Oracle software (binaries) is a task that requires proficiency by every DBA. Now
with Oracle 18c and even with 12c¢, Oracle software installations have become more
automated, but understanding the steps and configurations of installing is going to be
important for the DBA. The installation of the Oracle binaries should be repeatable for
large environments, and the DBA needs to set up the installs to be able to provision
databases on-demand and consistently.

Tip DBA tasks are changing and in cloud environments, the DBA tasks might be
preparing self-service databases or not even needing to install Oracle binaries.
Also, if you’re fairly new to Oracle, some of the overwhelming parts of Oracle
installation have been simplified. Chances are that another DBA has probably
already installed the Oracle binaries, and databases will just need to be created as
needed. However, it is valuable to understand the component of the installation and
the next section, “Understanding the Optimal Flexible Architecture.”

Many DBAs don’t use techniques for automating installations. Some are unaware
of these methods; others perceive them as unreliable. Therefore, most DBAs typically
use the graphical mode of the Oracle Universal Installer (OUI). Although the graphical
installer is a good tool, it doesn’t lend itself to repeatability and automation. Running the
graphical installer is a manual process during which you're presented with options to

© Michelle Malcher and Darl Kuhn 2019
M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_1

CHAPTER 1 INSTALLING THE ORACLE BINARIES

choose from on multiple screens. Even if you know which options to select, you may still
inadvertently click an undesired choice.

The graphical installer can also be problematic when you’re performing remote
installations, and the network bandwidth is insufficient. In these situations, you can find
yourself waiting for dozens of minutes for a screen to repaint itself on your local screen.
You need a different technique for efficient installation on remote servers.

This chapter focuses on techniques for installing Oracle in an efficient and
repeatable manner. This includes silent installations, which rely on a response file.

A response file is a text file in which you assign values to variables that govern the
installation. DBAs often don’t realize the powerful repeatability and efficiency that can

be achieved by using response files.

Note This chapter only covers installing the Oracle software. The task of

creating a database is covered in Chapter 2. The cloud also changes the tasks and
viewpoints of software and database creation, which will be discussed later in this
chapter under the section, “Installing in the Cloud and Responsibilities of the DBA.”

Understanding the OFA

Before you install Oracle and start creating databases, you must understand Oracle’s
Optimal Flexible Architecture (OFA) standard. This standard is widely employed for

specifying consistent directory structures and also the file-naming conventions used
when installing and creating Oracle databases.

Note One irony of this ubiquitous OFA “standard” is that almost every DBA,
in some manner, customizes it to fit the unique requirements of his or her
environment.

The OFA standard provides ways to understand where log files are available on a
consistent basis. If standards are followed, security, migrations, and automations are
going to be easier to implement because of consistency across the environments. The
consistent locations of the log files allow for the files to be used by other tools as well
as being secured. The ORACLE_BASE directory in 18c provides a way to separate the

2

CHAPTER 1 INSTALLING THE ORACLE BINARIES

ORACLE_HOME directories for read-only directories and have the writable files in

the ORACLE_BASE. Read-only ORACLE_HOME directories allow for implementing
separation of installation and configuration, which is important for the cloud and
securing the environment. This simplifies patching as one image can be used for a mass
rollout and distribute a patch to many servers and reduces downtime for patching and
updating of the Oracle software.

Because most shops implement a form of the OFA standard, understanding this
structure is critical. Figure 1-1 shows the directory structure and file names used with the
OFA standard. Not all the directories and files found in an Oracle environment appear
in this figure (there isn’t enough room). However, the critical and most frequently used
directories and files are displayed.

(root directo;)

oralnst.loc
letc 1
oratab

oraset

installActions<date>.log |
ContentsXML }—{ inventory.xml |

12.1.0 db_1
P (version) /\ ORACLE_HOME

oralnventory

binaries: oracle, sglplus,

rman, Isnrctl, expdp, oraenv,...
Tislener.ora
sqinet.ora
tnsnames.ora

fuD1.../uON

spfile or init.ora

Ivarfoptioracle orainsiioc w S0t e Re
(Solaris) oratab
oraset
bash_profile
HOME .profile
idiagncstic destj - instnamet
(init parameter) ADR_HOME 12¢ diagnostic info
log_archive_dest_N - adal datafiles, online redo logs, controlfiles:
(init par) archive redofog] "~)'@mam"’)‘l tbspNN.dbf, redoNN.log, control.ct
Fast Recovery Area (optional FRA) ~(backupset }—(YYYY_MM_DD)}-{ backup piece]
~~(autobackup HYYYY_MM_DD [backup piece |
db_recovery_file_dest -
(init parameter) dbname TN datafile)-{image copy |
~(onlinelog }—{online redo log |

~(controliile }—{ control file |

~(archivelog)—(YYYY_MM_DD)—{ archive redo log |
~(Nashback) flashbacklog |

Figure 1-1. Oracle’s OFA standard

The OFA standard includes several directories that you should be familiar with:
e Oracle inventory directory
o Oracle base directory (ORACLE_BASE)
o Oracle home directory (ORACLE_HOME)

CHAPTER 1 INSTALLING THE ORACLE BINARIES

o Oracle network files directory (TNS_ADMIN)
e Automatic Diagnostic Repository (ADR_HOME)

These directories are discussed in the following sections.

Oracle Inventory Directory

The Oracle inventory directory stores the inventory of Oracle software installed on the
server. This directory is required and is shared among all installations of Oracle software
on a server. When you first install Oracle, the installer checks to see whether there is

an existing OFA-compliant directory structure in the format /u[01-09]/app. If such a
directory exists, then the installer creates an Oracle inventory directory, such as

/u01/app/oralnventory

If the ORACLE_BASE variable is defined for the oracle operating system (OS) user,
then the installer creates a directory for the location of Oracle inventory, as follows:

ORACLE_BASE/../oralnventory

For example, if ORACLE_BASE is defined as /ora01/app/oracle, then the installer
defines the location of Oracle inventory as

/ora01/app/oralnventory

If the installer doesn’t find a recognizable OFA-compliant directory structure or an
ORACLE_BASE variable, then the location for Oracle inventory is created under the HOME
directory of the oracle user. For instance, if the HOME directory is /home/oracle, then the
location of Oracle inventory is

/home/oracle/oralnventory

Oracle Base Directory

The Oracle base directory is the topmost directory for Oracle software installation. You
can install one or more versions of the Oracle software beneath this directory. The OFA
standard for the Oracle base directory is as follows:

/<mount_point>/app/<software_ owner>

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Typical names for the mount point include /u01, /ora01, /oracle, and /oracle01.
You can name the mount point according to whatever your standard is for your
environment. I prefer to use a mount-point name such as /ora01. It is short, and
when I look at the mount points on a database server, I can immediately tell which are
used for the Oracle database. Also, a short mount-point name is easier to use when
you're querying the data dictionary to report on the physical aspects of your database.
Additionally, a shorter mount-point name makes for less typing when you're navigating
through directories via OS commands.

The software owner is typically named oracle. This is the OS user you use to install
the Oracle software (binaries). Listed next is an example of a fully formed Oracle base
directory path:

/u01/app/oracle

Oracle Home Directory

The Oracle home directory defines the installation location of software for a particular
product, such as Oracle Database 18c or Oracle Database 12c. You must install different
products or different releases of a product in separate Oracle homes. The recommended
OFA-compliant Oracle home directory is as follows:

ORACLE_BASE/product/<version>/<install_name>

In the previous line of code, possible versions include 18.1.0.1 and 12.2.0.1. Possible
install name valuesinclude db_1, devdb1i, test2, and prodi. Here is an example of an
Oracle home name for a 18c database:

/u01/app/oracle/product/18.1.0.1/dbhome_1/db1

Note Some DBAs dislike the db1 string on the end of the ORACLE_HOME
directory and see no need for it. The reason for the db1 is that you may have two
separate installations of binaries: a development installation and a test installation.
If you don’t require that configuration in your environment, feel free to drop the
extra string (db1).

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Oracle Network Files Directory

Some Oracle utilities use the value TNS_ADMIN to locate network configuration files.

This directory is defined as ORACLE_HOME/network/admin. It typically contains the
tnsnames.ora and listener.ora Oracle Net files. The listener.ora files are now typically
with the Oracle Grid installation and not in the database home. The listeners are
normally maintained by the system that manages the grid, cluster, and ASM software.
The tnsnames provide ways to connect to other databases so these files are part of the
centralized directory or part of the database network files.

Tip Sometimes DBAs will set TNS_ADMIN to point at one central directory
location (such as /etc or /var/opt/oracle). This allows them to maintain one
set of Oracle network files (instead of one for each ORACLE_HOME). This approach
also has the advantage of not requiring the copying or moving of files when a
database upgrade occurs, potentially changing the location of ORACLE HOME.

Automatic Diagnostic Repository

Starting with Oracle Database 11g, the ADR_HOME directory specifies the location of the
diagnostic files related to Oracle. These files are crucial for troubleshooting problems
with the Oracle database. This directory is defined as ORACLE_BASE/diag/rdbms/
lower(db_unique_name)/instance_name. You can query the V$PARAMETER view to get the
values of db_unique_name and instance_name.

For example, in the next line, the lowercase database unique name is db18c, and the
instance name is DB18C:

/u01/app/oracle/diag/rdbms/db18c/DB18C

Or with a clustered environment, the lowercase database unique name is db18c, and
the instance name is DB18CO01:

/u01/app/oracle/diag/rdbms/db18c/DB18C0O1
You can verify the location of the ADR_HOME directory via this query:

SOL> select value from v$diag info where name='ADR Home';

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Here is some sample output:

/u01/app/oracle/diag/rdbms/db18c/DB18C

Now that you understand the OFA standard, you'll next see how it’s used when
installing the Oracle binaries. For instance, you'll need to specify directory values for the
ORACLE_BASE and ORACLE_HOME directories when running the Oracle installer.

Tip See the Oracle Database Installation Guide for full details on OFA. This
document can be freely downloaded from the Technology Network area of the
Oracle web site (http://otn.oracle.com).

Installing Oracle

Suppose you're new on the job, and your manager asks you how long it will take to install
anew set of Oracle Database 18c software on a server. You reply that it will take less than
an hour. Your boss is incredulous and states that previous DBAs always estimated at
least a day to install the Oracle binaries on a new server. You reply, “Actually, it’s not that
complicated, but DBAs do tend to overestimate installations, because it’s hard to predict
everything that could go wrong.”

When you're handed a new server and are given the task of installing the Oracle
binaries, this usually refers to the process of downloading and installing the software
required before you can create an Oracle database. This process involves several steps:

1. Create the appropriate OS groups. In Oracle Database 18c, there
are several OS groups that you can form and use to manage the
level of granularity of SYSDBA permissions. Minimally, you'll need
to create an OS dba group and the OS oracle user.

2. Ensure that the OS is configured adequately for an Oracle
database.

3. Obtain the database installation software from Oracle.

4. Unzip the database installation software.

http://otn.oracle.com

CHAPTER 1 INSTALLING THE ORACLE BINARIES

5. Ifusing the silent installer when first installing Oracle software
on the box, create an oralnst.loc file. This step only needs to be
done once per server. Subsequent installations do not require this
step to be performed.

6. Configure the response file and run the Oracle silent installer.
7. Troubleshoot any issues.
8. Apply any additional patches.

These steps are detailed in the following sections.

Note Any version of the database that Oracle designates as a base release
(10.1.0.2,10.2.0.1,11.1.0.6, 11.2.0.1, 12.1.0.1, 18.1.0.1, and so on) can be freely
downloaded from the Technology Network area of the Oracle web site (http://
otn.oracle.com). However, be aware that any subsequent patch downloads
require a purchased license. In other words, downloading base software requires
an Oracle Technology Network (OTN) login (free), whereas downloading a patch set
requires a My Oracle Support account (for fee).

Step 1. Create the 0S Groups and User

If you work in a shop with a system administrator (SA), then steps 1 and 2 usually are
performed by the SA. If you don’t have a SA, then you have to perform these steps
yourself (this is often the case in small shops, where you may be required to perform
many different job functions). You need root access to accomplish these steps.

In the old days, a typical Oracle installation would contain one OS group (dba) and
one OS user (oracle). You can still install the Oracle software, using this minimalistic,
one-group, one-user approach; it works fine. If there is just one DBA in your shop, and
you don’t need a more granular division of privileges among team members, then go
ahead, and create only the dba group and the oracle OS user. There is nothing wrong
with this method.

Nowadays, there are multiple OS groups that Oracle recommends you create—the
idea being that you can add different OS users and assign them to groups on an as-
needed basis, depending on the job function. When an OS user is assigned to a group,

http://otn.oracle.com
http://otn.oracle.com

CHAPTER 1 INSTALLING THE ORACLE BINARIES

that assignment provides the user with specific database privileges. Table 1-1 documents
the OS groups and how each group maps to corresponding database privileges. For
example, if you have a user that is only responsible for monitoring a database and that
only needs privileges to start up and shut down the database, then that user would be
assigned the oper group (which ensures that subsequent connections to the database
can be done with sysoper privileges).

Table 1-1. Mapping of OS Groups to Privileges Related to Backup and Recovery

0S Group Database Authorized Operations Where Referenced
System Privilege

oinstall none 0S privileges to install and inst_group variable in
upgrade Oracle binaries oralnst.loc file; also defined
by UNIX_GROUP_NAME variable
in response file

dba sysdba All database privileges: start DBA_GROUP variable in
up, shut down, alter database, response file or when prompted
create and drop database, toggle by OUI graphical installer
archivelog mode, back up, and

recover database
oper sysoper Start up, shut down, alter OPER_GROUP variable in
database, toggle archivelog response file or when prompted
mode, back up, and recover by OUI graphical installer
database
asmdba sysdba for Administrative privileges to n/a
asm Oracle automatic storage

management (ASM) instances

asmoper sysoper for Starting up and stopping the n/a
asm Oracle ASM instance
asmadmin sysasm Mounting and dismounting of n/a

disk groups and other storage
administration

(continued)

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Table 1-1. (continued)

0S Group Database Authorized Operations Where Referenced
System Privilege

backupdba sysbackup New in 12c; privilege allowing ~ BACKUPDBA GROUP in
user to start up, shut down, and response file or when prompted
perform all backup and recovery by OUI graphical installer

operations
dgdba sysdg New in 12c; associated with DGDBA_GROUP variable in
privileges related to managing response file or when prompted
Data Guard environments by OUI graphical installer
kmdba syskm New in 12c; associated with KMDBA_GROUP variable in
privileges related to encryption response file or when prompted
management by OUI graphical installer

Table 1-1 contains recommended group names. You don’t have to use the group
names listed; you can adjust per your requirements. For example, if you have two
separate groups using the same server, you may want to create two separate Oracle
installations, each managed by different DBAs; the development DBA group might
create and install the Oracle binaries with a group named dbadev, whereas a test group
using the same box might install a separate set of Oracle binaries managed with a
group named dbatest. Each group would have permissions to manipulate only its set
of binaries. Or, as mentioned earlier, you may decide to use just one group (dba) for
everything. It all depends on your environment.

Once you decide which groups you need, then you need access to the root user to
run the groupadd command. As root, add the OS groups that you need. Here, I add the
three groups that I foresee will be needed:

groupadd oinstall
groupadd dba
groupadd oper

If you don’t have access to the root account, then you need to get your SA to run
the previous commands. You can verify that each group was added successfully by

10

CHAPTER 1 INSTALLING THE ORACLE BINARIES

inspecting the contents of the /etc/group file. Here are typical entries created in the
/etc/group file:

oinstall:x:500:
dba:x:501:
oper:x:502:

Now, create the oracle OS user. The following example explicitly sets the group
ID to 500 (your company may require use of the same group ID for all installations),
establishes the primary group as oinstall, and assigns the dba and oper groups to the
newly created oracle user:

useradd -u 500 -g oinstall -G dba,oper oracle

You can verify user account information by viewing the /etc/passwd file. Here is
what you can expect to see for the oracle user:

oracle:x:500:500: :/home/oracle:/bin/bash

If you need to modify a group, as root, use the groupmod command. If, for any
reason, you need to remove a group (as root) use the groupdel command.

If you need to modify a user, as root, use the usermod command. If you need to
remove an OS user, use the userdel command. You need root privileges to run the
userdel command. This example removes the oracle user from the server:

userdel oracle

Step 2. Ensure That the 0S Is Adequately Configured

The tasks associated with this step vary somewhat for each database release and OS. You
must refer to the Oracle installation manual for the database release and OS vendor to
get the exact requirements. To perform this step, you're required to verify and configure
OS components such as these:

e Memory and swap space

e System architecture (processor)

o Free disk space (Oracle now takes almost 5GB of space to install)
e Operating system version and kernel

e Operating system software (required packages and patches)

11

CHAPTER 1 INSTALLING THE ORACLE BINARIES
Run the following command to confirm the memory size on a Linux server:
$ grep MemTotal /proc/meminfo
To verify the amount of memory and swap space, run the following command:
$ free -t
To verify the amount of space in the /tmp directory, enter this command:
$ df -h /tmp
To display the amount of free disk space, execute this command:
$ df -h
To verify the OS version, enter this command:
$ cat /proc/version
To verify kernel information, run the following command:
$ uname -r

To determine whether the required packages are installed, execute this query, and
provide the required package name:

$ rpm -q <package_name>

Again, database server requirements vary quite a bit by OS and database version.
You can download the specific installation manual from the Documentation page of the
Oracle web site (www.oracle.com/documentation).

Note The OUI displays any deficiencies in OS software and hardware. Running
the installer is covered in step 6.

Step 3. Obtain the Oracle Installation Software

Usually, the easiest way to obtain the Oracle software is to download it from the Oracle
web site. Navigate to the software download page (www.oracle.com/technology/
software), and download the Oracle database version that is appropriate for the type of
OS and hardware on which you want to install it (Linux, Solaris, Windows, and so on).

12

http://www.oracle.com/documentation
http://www.oracle.com/technology/software
http://www.oracle.com/technology/software

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Step 4. Unzip the Files

For previous versions, it was recommended to unzip the files in a standard directory
where you can place the Oracle installation media. Now with Oracle 18c, there are
different ways that the media is presented, imaged based or by RPM. The image software
must now be extracted in the directory of the ORACLE_HOME. The zipped file can be
placed in a temporary directory but extracted to the ORACLE_HOME. The runInstaller
will run from the ORACLE_HOME directory for installation.

Create the directories for the ORACLE_HOME:

$ mkdir -p /u01/app/oracle/product/18.1.0/dbhome_1
$ chown oracle:oinstall /u01/app/oracle/product/18.1.0/dbhome_1

The zip files can be downloaded or copied over to a temporary directory such as
/tmp or /home/oracle.

Use the unzip command to the newly created ORACLE_HOME directory to the
newly created ORACLE_HOME directory:

$ cd /u01/app/oracle/product/18.1.0/dbhome_1
$ unzip -q /tmp/db_home.zip

RPM can now be used with Oracle 18c to perform the installation for a single
database instance. The RPM was used before as a preinstallation check and is now
available for installations, even of the Oracle client. This will need to be performed as
root.

$ yum -y install oracle-database-server-18c-preinstall
$ 1s -1t /opt
$ chown -R oracle:oinstall /opt

Now go to the directory for the rpm and run the command to perform the
RPM-based install. The ORACLE_HOME directory will be created in /opt/oracle/
product/18.1.0.0.0-1/dbhome_1.

$ cd /tmp/xpm
$ rpm -ivh oracle-ee-db-18.1.0.0.0-1.x86 64.rpm -- rpm name may vary based
on version

13

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Tip On some installations of previous versions of Oracle, you may find that the
distribution file is provided as a compressed cpio file. You can uncompress and
unbundle the file with one command, as follows: $ cat 10gr2 db _sol.cpio.
gz | gunzip | cpio -idvm

Step 5. Creating oralnst.loc File

If an oraInst.loc file already exists on your server, then you can skip this step. Creating
the oraInst.loc file only needs to be performed the first time you install binaries on a
server, using the silent install method. If you're using the OUI graphical installer, then
the oraInst.loc file is created automatically for you.

On Linux servers the oraInst.loc file is usually located in the /etc directory.
On other Unix systems (such as Solaris), this file is located in the /var/opt/oracle
directory. The oraInst.loc file contains the following information:

e Oracle inventory directory path

o Name of OS group that has permissions for installing and upgrading
Oracle software

The Oracle inventory directory path is the location of files associated with managing
Oracle installations and upgrades. Typically, there is one Oracle inventory per host.
Within this directory structure is the inventory.xml file, which contains a record of
where various versions of Oracle have been installed on the server.

The Oracle inventory OS group has the OS permissions required for installing and
upgrading Oracle software. Oracle recommends that you name this group oinstall.
You'll find that sometimes DBAs assign the inventory group to the dba group. If your
environment doesn’t require a separate group (such as oinstall), then using the dba
group is fine.

You can create the oralnst.loc file with a utility such as vi. Here are some sample
entries in the file:

inventory loc=/u01/app/oralnventory
inst_group=oinstall

14

CHAPTER 1 INSTALLING THE ORACLE BINARIES

As root, ensure that the response file is owned by the oracle OS user and that it has
the proper file access privileges:

chown oracle:oinstall oralInst.loc
chmod 664 oralnst.loc

Step 6. Configure the Response File, and Run the Installer

You can run the OUI in one of two modes: graphical or silent. Typically, DBAs use the
graphical installer. However, I strongly prefer using the silent install option for the
following reasons:

« Silent installs don’t require the availability of X Window System
software.

¢ You avoid performance issues with remote graphical installs, which
can be extremely slow when trying to paint screens locally.

o Silentinstalls can be scripted and automated. This means that
every install can be performed with the same, consistent standards,
regardless of which team member is performing the install (I even
have the SA install the Oracle binaries this way).

The key to performing a silent install is to use a response file.
After unzipping the Oracle software, navigate to the ORACLE_HOME directory; for

example,
$ cd /u01/app/oracle/product/18.1.0/dbhome_1

Next, find the sample response files that Oracle provides:
$ find . -name "*.rsp"

Depending on the version of Oracle and the OS platform, the names and number
of response files that you find may be quite different. The next two sections show two
scenarios: an Oracle Database 12c Release 1 silent install and an Oracle Database 18c
Release 1 silent install.

Keep in mind that the format of response files can differ quite a bit, depending on
the Oracle database version. For example, there are major differences between Oracle
Database 11g and 12c even between release 2 of these versions. When you install a new
release, you must inspect the response file and determine which parameters must be

15

CHAPTER 1 INSTALLING THE ORACLE BINARIES

set. Be sure to modify the appropriate parameters for your environment. If you're unsure
what to set the ORACLE_HOME and ORACLE_BASE values to, see the section “Understanding
the Optimal Flexible Architecture,” earlier in this chapter, for a description of the OFA
standard directories.

There are sometimes idiosyncrasies to these parameters that are specific to a
release. For instance, if you don’t want to specify your My Oracle Support (MOS) login
information, then you need to set the following parameter as follows:

DECLINE_SECURITY_UPDATES=true

If you don’t set DECLINE_SECURITY_UPDATES to TRUE, then you will be expected to
provide your MOS login information. Failure to do so will cause the installation to fail.
After you've configured your response file, you can run the Oracle installer in silent mode.
Note that you have to enter the entire directory path for the location of your response file.

Note On Windows the setup.exe command is equivalent to the Linux/Unix
runInstaller command.

If you encounter errors with the installation process, you can view the associated log
file. Each time you attempt to run the installer, it creates a log file with a unique name
that includes a timestamp. The log file is located in the oraInventory/logs directory.
You can stream the output to your screen as the OUI writes to it:

$ tail -f <logfile name>
Here is an example of a log file name:

installActions2012-04-33 11-42-52AM.log

Oracle Database 12c¢ Release 1 Scenario

Navigate to the database directory and issue the find command to locate sample
response files. Here are the response files provided with an Oracle Database 12c Release
1 on a Linux server:

$ find . -name "*.rsp"”
./response/db_install.rsp
./response/netca.rsp
./response/dbca.rsp

16

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Copy one of the response files so that you can modity it. This example copies the
db_install.rsp file to the current working directory and names the file inst.rsp:

$ cp response/db_install.rsp inst.rsp

Modify the inst.rsp file. Here is a partial listing of an Oracle Database 12c Release
1 response file (the first two lines are actually a single line of code but have been placed
on two lines in order to fit on the page). The lines of code are the only variables that I
modified. I removed the comments so that you could more clearly see which variables
were modified:

oracle.install.responseFileVersion=/oracle/install/rspfmt_dbinstall
response_schema_v12.1.0

oracle.install.option=INSTALL_DB_SWONLY

ORACLE_HOSTNAME=oraservi

UNIX GROUP NAME=oinstall

INVENTORY _LOCATION=/home/oracle/orainst/12.1.0.1/database/stage/products.xml
SELECTED LANGUAGES=en
ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1
ORACLE_BASE=/u01/app/oracle

oracle.install.db.InstallEdition=EE

oracle.install.db.DBA_ GROUP=dba

oracle.install.db.OPER_GROUP=oper
oracle.install.db.BACKUPDBA GROUP=dba

oracle.install.db.DGDBA GROUP=dba

oracle.install.db.KMDBA GROUP=dba

DECLINE_SECURITY_UPDATES=true

Be sure to modify the appropriate parameters for your environment. If you're unsure
what to set the ORACLE_HOME and ORACLE_BASE values to, see the section “Understanding
the Optimal Flexible Architecture,” earlier in this chapter, for a description of the OFA
standard directories.

After you've configured your response file, you can run the Oracle installer in silent
mode. Note that you have to enter the entire directory path for the location of your
response file:

$./runInstaller -ignoreSysPrereqs -force -silent -responseFile \
/home/oracle/orainst/12.1.0.1/database/inst.rsp

17

CHAPTER 1 INSTALLING THE ORACLE BINARIES

The previous command is entered on two lines. The first line is continued to the
second line via the backward slash (\).

If you encounter errors with the installation process, you can view the associated log
file. Each time you attempt to run the installer, it creates a log file with a unique name
that includes a timestamp. The log file is created in the oraInventory/logs directory.
You can stream the output to your screen as the OUI writes to it:

$ tail -f <logfile name>
Here is an example of a log file name:
installActions2012-11-04 02-57-29PM.log

If everything runs successfully, in the output you're notified that you need to run the
root.sh script as the root user:

/u01/app/oracle/product/12.1.0.1/db_1/root.sh

Run the root. sh script as the root OS user. Then, you should be able to create an
Oracle database (database creation is covered in Chapter 2).

Oracle Database 18c Release 1 Scenario

Navigate to the database directory and issue the find command to locate sample
response files. Here are the response files provided with an Oracle Database 18c Release
1 on a Linux server:

$ find . -name "*.rsp"”
./response/db_install.rsp
./response/netca.rsp
./response/dbca.rsp

Copy one of the response files so that you can moditfy it. This example copies the
db_install.rsp file to the current working directory and names the file inst.rsp:

$ cp response/db_install.rsp inst.rsp

Modify the inst.rsp file. Here is a partial listing of an Oracle Database 18c Release
1 response file (the first two lines are actually a single line of code but have been placed
on two lines in order to fit on the page). The lines of code are the only variables that I
modified. I removed the comments so that you could more clearly see which variables
were modified:

18

CHAPTER 1 INSTALLING THE ORACLE BINARIES

oracle.install.responseFileVersion=/oracle/install/rspfmt_dbinstall
response_schema v18.0.0

oracle.install.option=INSTALL DB_SWONLY

ORACLE_HOSTNAME=oraservi

UNIX_GROUP NAME=oinstall
INVENTORY_LOCATION=/home/oracle/orainst/18.1.0.1/database/stage/products.xml
SELECTED_LANGUAGES=en
ORACLE_HOME=/u01/app/oracle/product/18.1.0.1/db_1
ORACLE_BASE=/u01/app/oracle

oracle.install.db.InstallEdition=EE

oracle.install.db.DBA GROUP=dba

oracle.install.db.OPER_GROUP=oper
oracle.install.db.BACKUPDBA GROUP=dba
oracle.install.db.DGDBA_GROUP=dba

oracle.install.db.KMDBA GROUP=dba

DECLINE_SECURITY_UPDATES=true

Be sure to modify the appropriate parameters for your environment. If you're unsure
what to set the ORACLE_HOME and ORACLE_BASE values to, see the section “Understanding
the Optimal Flexible Architecture,” earlier in this chapter, for a description of the OFA
standard directories.

After you've configured your response file, you can run the Oracle installer in silent
mode. Note that you have to enter the entire directory path for the location of your
response file:

$./runInstaller -ignoreSysPrereqs -force -silent -responseFile \
/home/oracle/orainst/18.1.0.1/database/inst.rsp

The previous command is entered on two lines. The first line is continued to the
second line via the backward slash (\).

If you encounter errors with the installation process, you can view the associated log
file. Each time you attempt to run the installer, it creates a log file with a unique name
that includes a timestamp. The log file is created in the oraInventory/logs directory.
You can stream the output to your screen as the OUI writes to it:

$ tail -f <logfile name>

19

CHAPTER 1 INSTALLING THE ORACLE BINARIES
Here is an example of a log file name:
installActions2017-11-04 02-57-29PM.log

If everything runs successfully, in the output you're notified that you need to run the
root.sh script as the root user:

/u01/app/oracle/product/18.1.0.1/db_1/root.sh

Run the root. sh script as the root OS user. Then, you should be able to create an
Oracle database (database creation is covered in Chapter 2). The configuration assistants
can run in the response file or silent mode to run the Net Configuration and Database
Configuration Assistant.

Step 7. Troubleshoot Any Issues

If you encounter an error, using a response file, 90 percent of the time it’s due to an issue
with how you set the variables in the file. Inspect those variables carefully and ensure
that they’re set correctly. Also, if you don'’t fully specify the command-line path to the
response file, you receive errors such as this:

OUI-10203: The specified response file ... is not found.

Here is another common error when the path or name of the response file is
incorrectly specified:

OUI-10202: No response file is specified for this session.

Listed next is the error message you receive if you enter a wrong path to your
products.xml file within the response file’s FROM_LOCATION variable:

OUI-10133: Invalid staging area

Also, be sure to provide the correct command-line syntax when running a response
file. If you incorrectly specify or misspell an option, you may receive a misleading error
message, such as DISPLAY not set. When using a response file, you don’t need to have
your DISPLAY variable set. This message is confusing because, in this scenario, the error
is caused by an incorrectly specified command-line option and has nothing to do with
the DISPLAY variable. Check all options entered from the command line and ensure that
you haven’t misspelled an option.

20

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Problems can also occur when you specify an ORACLE_HOME, and the silent
installation “thinks” the given home already exists:

Check complete: Failed <<<«<
Recommendation: Choose a new Oracle Home for installing this product.

Check your inventory.xml file (in the oraInventory/ContentsXML directory), and
make sure there isn’t a conflict with an already existing Oracle home name.

There are log files that are generated with the installation, along with the files
that are part of the inventory. The /tmp directory is going to have log files based on
the timestamp of when the installation was performed. Make sure that all log files
are examined when trying to troubleshoot; even system logs are useful if there were
processes or memory issues hit during the process. When you’re troubleshooting issues
with Oracle installations, remember that the installer uses two key files to keep track of
what software has been installed, and where: oralnst.loc and inventory.xml. Table 1-2
describes the files used by the Oracle installer.

Table 1-2. Useful Files for Troubleshooting Oracle Installation Issues

File name Directory Location Contents

oralnst.loc The location of this file varies by 0S. On oraInventory directory location
Linux the file is in /etc; on Solaris, it’s in and installation OS group

/var/opt/oracle.
inst.loc \\HKEY_LOCAL_MACHINE\\Software\ Inventory information
Oracle (Windows registry)
inventory.xml oralnventory/ContentsXML/ Oracle home names and
inventory.xml corresponding directory location
.log files oralnventory/logs Installation log files, which are

extremely useful for troubleshooting

Step 8. Apply Any Additional Patches

As already stated before the first step, the Oracle software is available in the base
releases. However, if there are additional releases, patch sets, and security patches
available, these should all be applied before rolling out a new set of Oracle binaries. The

installation is going to be for a different reason on the server or in the environment, and

21

CHAPTER 1 INSTALLING THE ORACLE BINARIES

the installation should be the same as the other environments with a possible exception
of security patching.

Sections later in this chapter, “Upgrading Oracle Software” and “Applying Interim
Patches,” have the details to apply the patches, but it is important to have this step here
to get to the latest version of the software before releasing it for use. Right after the install
of the binaries is a good time to make sure everything has been updated and ready for
the database to be created.

Installing with a Copy of an Existing Installation

DBAs sometimes install Oracle software by using a utility such as tar to copy an existing
installation of the Oracle binaries to a different server (or a different location on the same
server). This approach is fast and simple (especially compared with downloading and
running the Oracle installer). This technique allows DBAs to easily install the Oracle
software on multiple servers, while ensuring that each installation is identical.

The new ways of delivering the media files provide ways to unzip in the ORACLE_
HOME directory, or just run the rpm package that will run the installation. The
advantage of using this method is be able to copy over a patched set of the binaries.
There cannot be any databases running during this time or Oracle processes during this
time of copying the files to provide a static copy of the files.

Installing Oracle with an existing copy of the binaries is a two-part process:

1. Copy the binaries, using an OS utility.
2. Attach the Oracle home.

These steps are detailed in the next two sections.

Tip See MOS note 300062.1 for instructions on how to clone an existing Oracle
installation.

Step 1. Copy the Binaries, Using an 0S Utility

You can use any OS copy utility to perform this step. The Linux/Unix tar, scp, and rsync
utilities are commonly used by DBAs to copy files. This example shows how to use the

22

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Linux/Unix tar utility to replicate an existing set of Oracle binaries to a different server.
First, locate the target Oracle home binaries that you want to copy:

$ echo $ORACLE_HOME
/ora01/app/oracle/product/18.1.0.1/db_1

In this example the tar utility copies every file and subdirectory in or below the db_1
directory:

$ cd $ORACLE_HOME
$cd ..
$ tar -cvf orahome.tar db 1

Now, copy the orahome. tar file to the server on which you want to install the
Oracle software. In this example, the tar file is copied to the /u01/app/oracle/
product/18.1.0.1 directory on a different server. The tar file is extracted there and
creates a db_1 directory as part of the extract:

$ cd /u01/app/oracle/product/18.1.0.1

Make sure you have plenty of disk space available to extract the files. A typical Oracle
installation can consume at least 3-4GB of space. Use the Linux/Unix df command to
verify that you have enough space:

$ df -h | sort
Next, extract the files:
$ tar -xvf orahome.tar

When the tar commanddb_1 directory beneath the /u01/app/oracle/
product/18.1.0.1 directory. directory.

Tip Usethe tar -tvf <tarfile name> command to preview which
directories and files are restored without restoring them.

Listed next is a powerful one-line combination of commands that allows you to

bundle the Oracle files, copy them to a remote server, and have them extracted remotely:

$ tar -cvf - <locDir> | ssh <remoteNode> "cd <remoteDir>; tar -xvf -"

23

CHAPTER 1 INSTALLING THE ORACLE BINARIES

For instance, the following command copies everything in the dev_1 directory to the
remote 0ra03 server /home/oracle directory:

$ tar -cvf - dev_1 | ssh orao3 "cd /home/oracle; tar -xvf -"

ABSOLUTE PATHS VS. RELATIVE PATHS

Some older, non-GNU versions of tar use absolute paths when extracting files. The next line
of code shows an example of specifying the absolute path when creating an archive file:

$ tar -cvf orahome.tar /home/oracle

Specifying an absolute path with non-GNU versions of tar can be dangerous. These older
versions of tar restore the contents with the same directories and file names from which they
were copied. This means that any directories and file names that previously existed on disk
are overwritten.

When using older versions of tar, it's much safer to use a relative pathname. This example
first changes to the /home directory and then creates an archive of the oracle directory
(relative to the current working directory):

$ cd /home
$ tar -cvf orahome.tar oracle

The previous example uses the relative pathname.

You don’t have to worry about absolute vs. relative paths on most Linux systems. This is
because these systems use the GNU version of tar. This version strips off the forward slash (/)
and restores files relative to where your current working directory is located.

Use the man tar command if you're not sure whether you have a GNU version of the tar
utility. You can also use the tar -tvf <tarfile name> command to preview which
directories and files are restored to what locations.

Step 2. Attach the Oracle Home

One issue with using a copy of an existing installation to install the Oracle software is
that if you later attempt to upgrade the software, the upgrade process will throw an error
and abort. This is because a copied installation isn’t registered in oraInventory. Before

24

CHAPTER 1 INSTALLING THE ORACLE BINARIES

you upgrade a set of binaries installed via a copy, you must first register the Oracle home
so that it appears in the inventory.xml file. This is called attaching an Oracle home.

To attach an Oracle home, you need to know the location of your oraInst.loc file on
your server. On Linux servers this file is usually located in the /etc directory. On Solaris
this file can generally be found in the /var/opt/oracle directory.

After you've located your oralnst. loc file, navigate to the ORACLE_HOME/oui/bin
directory (on the server on which you installed the Oracle binaries from a copy):

$ cd $ORACLE_HOME/oui/bin
Now, attach the Oracle home by running the runInstaller utility, as shown:

$./runInstaller -silent -attachHome -invPtrLoc /etc/oralnst.loc \
ORACLE_HOME="/u01/app/oracle/product/18.1.0.1/db_1" ORACLE_HOME_NAME="ONEW"

You should see this as the last message in the output, if successful:
'AttachHome' was successful.

You can also examine the contents of your oraInventory/ContentsXML/inventory.
xml file. Here is a snippet of the line inserted into the inventory.xml file as a result of
running the runInstaller utility with the attachHome option:

<HOME NAME="ONEW" LOC="/u01/app/oracle/product/18.1.0.1/db_1" TYPE="0"
IDX=||2||/>

Installing Read-Only Oracle Home

A new feature of Oracle 18c is to have a read-only Oracle Home for the binaries. The
database tools and processes will be under the ORACLE_BASE path instead of ORACLE_
HOME path. The ORACLE_HOME directory will have the database configurations and
logs for the databases created.

A read-only Oracle binary home will separate the software from the database
information and allows for sharing the software across different deployments. This
enables seamless patching and updating of the binaries to minimize database downtime
and allows for applying patches to one image in order to distribute to several servers.
This separation also simplifies the provisioning because the focus can be on the
database configuration.

25

CHAPTER 1 INSTALLING THE ORACLE BINARIES

There are now additional environment variables that will contain the directory path
for the Oracle Home, ORACLE_BASE_HOME, ORACLE_BASE_CONFIG.

To enable a read-only Oracle home, the software needs to be install as described
with the binaries only and not the configuration assistants. Then run the following:

$ cd /uo1/app/oracle/product/18.1.0.1/dbhome18c/bin
$ roohctl -enable

After enabling the read-only home, the DBCA can be run to create databases. There
is a check to know if the database is in a read-only home:

$ cd $0RACLE_HOME/bin
$./orabasehome

If a directory is returned, the Oracle home is in read-only.

Upgrading Oracle Software

You can also upgrade a version of the Oracle software, using the silent installation
method. Begin by downloading the upgrade version from the MOS web site (http://
support.oracle.com) (you need a valid support contract to do this). Read the upgrade
documentation that comes with the new software. The upgrade procedure can vary quite
a bit, depending on what version of Oracle you're using.

For the most recent upgrades that I've performed, the procedure was much like
installing a new set of Oracle binaries. You can use the OUI in either graphical or silent
mode to install the software. See the section “Installing Oracle,” earlier in this chapter, for
information on using the silent mode installation method.

Database migrations to new version are successful using the Database Upgrade
Assistant (DBUA). This will perform a migration to the latest version of the database and
upgrade the services. New with 18c the services must be upgraded with this method,
install the latest version of the software and then to complete the migration run the DBUA.

Note Upgrading the Oracle software isn’t the same as upgrading an Oracle
database. This section only deals with using the silent install method for upgrading
the Oracle software. Additional steps are involved for upgrading a database. See
MOS note 730365.1 for instructions on how to upgrade a database.

26

http://support.oracle.com
http://support.oracle.com

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Depending on the version being upgraded, you may be presented with two different
scenarios. Here is scenario A:

1. Shut down any databases using the Oracle home to be upgraded.

2. Upgrade the Oracle home binaries.

3. Startup the database and run any required upgrade scripts.
Here are the steps for the scenario B approach to an upgrade:

1. Leave the existing Oracle home as it is—don’t upgrade it.

2. Install a new Oracle home that is the same version as the old
Oracle home.

3. Upgrade the new Oracle home to the desired version.

4. When you're ready, shut down the database using the old Oracle
home; set the OS variables to point to the new, upgraded Oracle
home; start up the database; and run any required upgrade scripts.

Which of the two previous scenarios is better? Scenario B has the advantage of
leaving the old Oracle home as it is; therefore, if, for any reason, you need to switch
back to the old Oracle home, you have those binaries available. Scenario B has the
disadvantage of requiring extra disk space to contain two installations of Oracle home.
This usually isn’t an issue, because after the upgrade is complete, you can delete the old
Oracle home when it’s convenient.

Databases can also be upgraded to a new container database in a multitenant
environment. This will be discussed more in Chapter 22, but the pluggable databases
can be moved to a container database that has already been upgraded.

Tip Consider using the Database Upgrade Assistant (DBUA) to upgrade an Oracle
database.

Reinstalling After Failed Installation

You may run into a situation in which you’re attempting to install Oracle, and for some
reason the installation fails. You correct the issue and attempt to rerun the Oracle
installer. However, you receive this message:

27

CHAPTER 1 INSTALLING THE ORACLE BINARIES

CAUSE: The chosen installation conflicted with software already
installed in the given Oracle home.
ACTION: Install into a different Oracle home.

In this situation, Oracle thinks that the software has already been installed, for a
couple of reasons:

o Filesin the ORACLE_HOME directory are specified in the response file.

e An existing Oracle home and location in your oraInventory/
ContentsXML/inventory.xml file match what you have specified in
the response file.

Oracle doesn’t allow you to install a new set of binaries over an existing Oracle
home. If you're sure you don’t need any of the files in the ORACLE_HOME directory, you can
remove them (be very careful—ensure that you absolutely want to do this). This example
navigates to ORACLE_HOME and then removes the db_1 directory and its contents:

$ cd $ORACLE_HOME
$cd ..
$ rm -rf db_1

Also, even if there are no files in the ORACLE_HOME directory, the installer inspects the
inventory.xml file for previous Oracle home names and locations. In the inventory.xml
file, you must remove the entry corresponding to the Oracle home location that matches the
Oracle home you're trying to install to. To remove the entry, first, locate your oraInst.loc
file, which contains the directory of your oraInventory. Next, navigate to the oraInventory/
ContentsXML directory. Make a copy of inventory.xml before you modify it:

$ cp inventory.xml inventory.xml.old

Then, edit the inventory.xml file with an OS utility (such as vi), and remove the line
that contains the Oracle home information of your previously failed installation. You can
now attempt to execute the runInstaller utility again.

Applying Interim Patches

Sometimes, you're required to apply a patch to resolve a database issue or eradicate a
bug. You can usually obtain patches from the MOS web site and install them with the
opatch utility. Here are the basic steps for applying a patch:

28

CHAPTER 1 INSTALLING THE ORACLE BINARIES

1. Obtain the patch from MOS (requires a valid support contract).
2. Unzip the patch file.
3. Carefully read the README. txt file for special instructions.

4. Shut down any databases and processes using the Oracle home to
which the patch is being applied.

5. Apply the patch.
6. Verify that the patch was installed successfully.

A brief example will help illustrate the process of applying a patch. Here, the patch
number 14390252 is applied to an 11.2.0.3 database on a Solaris box. First, download
the p14390252_112030_SOLARIS64.zip file from MOS (https://support.oracle.com).
Next, unzip the file on the server to which the patch is being applied:

$ unzip p14390252 112030 SOLARIS64.zip
The README . txt instructs you to change the directory, as follows:
$ cd 14390252

Make sure you follow the instructions included in the README. txt, such as shutting
down any databases that use the Oracle home to which the patch is being applied:

$ sqlplus / as sysdba
SQL> shutdown immediate;

Next, apply the patch. Ensure that you perform this step as the owner of the Oracle
software (usually the oracle OS account). Also make sure your ORACLE_HOME variable
is set to point to the Oracle home to which you're applying the patch. In this example,
because the opatch utility isn’t in a path included in the PATH directory, you specify the
entire path:

$ $ORACLE_HOME/OPatch/opatch napply -skip subset -skip duplicate
Finally, verify that the patch was applied by listing the inventory of patches:

$ $ORACLE_HOME/OPatch/opatch lsinventory

29

https://support.oracle.com

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Here is some sample output for this example:

Patch 13742433 : applied on Sun Nov 04 13:49:07 MST 2012
Unique Patch ID: 15427576

Tip See MOS note 242993.1 for more information regarding the opatch utility.

Installing Remotely with the Graphical Installer

The installation can be performed once using the GUI for a Read-Only Oracle Home.
In today’s global environment, DBAs often find themselves tasked with installing Oracle
software on remote Linux/Unix servers. In these situations, I strongly suggest that you
use the silent installation mode with a response file (as mentioned earlier). However, if
you want to install Oracle on a remote server via the graphical installer, this section of

the chapter describes the required steps.

Note If you're in a Windows-based environment, use the Remote Desktop
Connection or Virtual Network Computing (VNC) to install software remotely.

One issue that frequently arises is how to run the Oracle installer on a remote server
and have the graphical output displayed to your local computer. Figure 1-2 shows the
basic components and utilities required to run the Oracle graphical installer remotely.

.
VS .
NS
1. Install X software
2. startx 6. Verify DISPLAY variable
3. Copy over files 7. /runinstaller
4. xhost + 8. Troubleshoot

5. ssh-Y -l oracle <remote_server>

Figure 1-2. Components needed for a remote Oracle graphical installation

30

CHAPTER 1 INSTALLING THE ORACLE BINARIES

Listed next are the steps for setting up your environment to display the graphical
screens on your local computer while remotely running the Oracle installer:

1. Install software on the local computer that allows for X Window
System emulation and secure networking.

2. Startan X session on the local computer and issue the startx
command.

3. Copy the Oracle installation files to the remote server.
4. Runthe xhost command.
5. Login to the remote computer from an X terminal.

6. Ensure that the DISPLAY variable is set correctly on the remote
computer.

7. Execute the runInstaller utility on the remote server.
8. Troubleshoot.

These steps are explained in the following sections.

Step 1. Install X Software and Networking Utilities
on the Local PC

If you're installing Oracle on a remote server, and you're using your home personal
computer (PC), then you first need to install software on your PC that allows you to run
X Window System software and to run commands such as ssh (secure shell) and scp
(secure copy). Several free tools are available that provide this functionality. One such
tool is Cygwin, which you can download from the Cygwin web site (http://x.cygwin.
com). Be sure to install the packages that provide the X emulation and secure networking
utilities, such as ssh and scp.

Step 2. Start an X Session on the Local Computer

After you install on your local computer the software that allows you to run X Window
System software, you can open an X terminal window and start the X server via the
startx command:

$ startx

31

http://x.cygwin.com
http://x.cygwin.com

CHAPTER 1 INSTALLING THE ORACLE BINARIES
Here is a snippet of the output:

xauth: creating new authority file /home/test/.serverauth.3012
waiting for X server to begin accepting connections.

When the X software has started, run a utility such as xeyes to determine whether X
is working properly:

$ xeyes

Figure 1-3 shows what a local terminal session looks like, using the Cygwin X
terminal session tool.

Figure 1-3. Running xeyes utility on a local computer

If you can'’t get a utility such as xeyes to execute, stop at this step until you get it
working. You must have correctly functioning X software before you can remotely install
Oracle, using the graphical installer.

Step 3. Copy the Oracle Installation Media to the Remote
Server

From the X terminal, run the scp command to copy the Oracle installation media to the
remote server. Here is the basic syntax for using scp:

$ scp <localfile> <username>@<remote server>:<remote_directory>

32

CHAPTER 1 INSTALLING THE ORACLE BINARIES

The next line of code copies the Oracle installation media to a remote Oracle OS user
on a remote server in the home directory oracle:

$ scp linux_18cR1 _database 1of2.zip oracle@shrek2:.

Step 4. Run the xhost Command

From the X screen, enable access to the remote host via the xhost command. This

command must be run from your local computer:

$ xhost +
access control disabled, clients can connect from any host.

The prior command allows any client to connect to the local X server. If you want to
enable remote access specifically for the remote computer on which you're installing the
software, provide an Internet protocol (IP) address or hostname (of the remote server).
In this example, the remote hostname is tst-z1.central.sun.com:

$ xhost +tst-zi.central.sun.com
tst-z1.central.sun.com being added to access control list

Step 5. Log In to the Remote Computer from X

From your local X terminal, use the ssh utility to log in to the remote server on which you
want to install the Oracle software:

$ ssh -Y -1 oracle <hostname>

Step 6. Ensure that the DISPLAY Variable Is Set Correctly
on the Remote Computer

When you've logged in to the remote box, verify that your DISPLAY variable has been set:
$ echo $DISPLAY
You should see something similar to this:

localhost:10.0

33

CHAPTER 1 INSTALLING THE ORACLE BINARIES

If your DISPLAY variable is set to localhost:10.0, then proceed to the next step.
Otherwise, follow the next set of recommendations.

If your DISPLAY variable isn’t set, you must ensure that it’s set to a value that reflects
your local home computer location. From your local home computer, you can use the
ping or arp utility to determine the IP address that identifies your local computer. Run
the following command on your home computer:

C:\> ping <local_computer>

Tip If you don’t know your local home computer name, on Windows you can look
in the Control Panel, then System, then reference the Computer name.

Now, from the remote server, execute this command to set the DISPLAY variable to
contain the IP address of the local computer:

$ export DISPLAY=129.151.31.147:0.0

Note that you must append the :0.0 to the end of the IP address. If you're using the
C shell, use the setenv command to set the DISPLAY variable:

$ setenv DISPLAY 129.151.31.147:0.0

If you're unsure which shell you're using, use the echo command to display the
SHELL variable:

$ echo $SHELL

Step 7. Execute the runinstaller Utility

Navigate to the directory where you copied and unzipped the Oracle software on the
remote server. Locate the runInstaller utility, and run it, as shown:

$./runInstaller

If everything goes well, you should see a screen appear in order to walk through the
steps of the installation.

From here, you can point and click your way through an Oracle installation of
the software. Many DBAs are more comfortable installing the software through a

34

CHAPTER 1 INSTALLING THE ORACLE BINARIES

graphical screen. This is a particularly good method if you aren’t familiar with Oracle’s
installation process and want to be prompted for input and presented with reasonable
default values.

Step 8. Troubleshoot

Most issues with remote installations occur in steps 4, 5, and 6. Make sure you've
properly enabled remote-client access to your local X server (running on your home
computer) via the xhost command. The xhost command must be run on the local
computer on which you want the graphical display presented. Using the + (plus sign)
with the remote hostname adds a host to the local access list. This enables the remote
server to display an X window on the local host. If you type the xhost command by itself
(with no parameters), it displays all remote hosts that can display X sessions on the local
computer:

$ xhost
access control disabled, clients can connect from any host

Setting the DISPLAY OS variable on the remote server is also crucial. This allows
you to log in to another host remotely and display an X application back to your local
computer. The DISPLAY variable must be set on the remote database server to contain
information that points it to the local computer on which you want the graphical screen
displayed.

Installation in the Cloud

Oracle 18c is a database released for the cloud first. Oracle 18c for server installation
became available several months after the use in the cloud and being able to perform
installs in the cloud. Oracle provides a couple of different options for databases in
the cloud, and a common one is Infrastructure as a Service (IaaS). IaaS provides the
infrastructure, server, OS, and users that are needed to be able to install your own
software and then create databases. Database provisioning is another option, Platform
as a Service (PaaS) can provide the Oracle binaries, and just the databases will need to
be created on that cloud service.

Since we have been discussing the software installation on a server and existing OS,
this will be an install on TaaS$ in the cloud. The database binaries would walk through

35

CHAPTER 1 INSTALLING THE ORACLE BINARIES

the same steps as described throughout this chapter. Configuration of the cloud service
provided would be based on the amount of storage, CPU, and memory requested. There
is flexibility of numbers of CPUs and memory that can be requested and then expanded
for future needs quickly and efficiently in the cloud.

Oracle is also available in AWS where it can be selected as an AMI from the store
and installed. Along with this option in other platforms, Oracle can be installed as part
of an [aaS. [aaS$ is available in the different cloud offerings, AWS, and others, but some
of the server configurations are going to be optimized on the Oracle Cloud and different
options of the licensing might be available. These are discussions with the Oracle sales
team to get licenses and requirements planned, but a decision to go to the cloud needs
to be discussed with the business and decide if the flexible resources and the time to
deployment are going to be of value.

In the Oracle Cloud, the database deployment is chosen, with an available Domain
and shape of the bare-metal machines based on the CPU and other resources for the
IaaS server. The software edition is the next choice, which is also the same with non-
cloud installations of the binary. Using IaaS in the cloud, their ssh keys, root access, and
other access such as SYS that is just for the customer and not accessible by the Oracle
cloud provider. This is just for the server that has been requested. The configuration
assistants can be run later after the binary install or select to run immediately after the
binaries are installed.

After these basic choices, the installation happens in the cloud. The server is then
ready for use to create databases and set up for management and monitoring. These
steps will be discussed later in the following chapters to include how to also manage the

databases in the cloud.

Summary

This chapter detailed techniques for efficiently installing the Oracle binaries. Oracle

18c provides new ways to deploy the Oracle binaries including a Read-Only Oracle
Home. These methods are especially useful if you work in environments in which you
are geographically separated from the database servers. The Oracle silent installation
method is efficient because it doesn’t require graphical software and uses a response
file that helps enforce consistency from one installation to the next. When working in
chaotic and constantly changing environments, you should benefit from the installation
tips and procedures described here.

36

CHAPTER 1 INSTALLING THE ORACLE BINARIES

The Oracle binaries are installed in cloud environments when using Infrastructure
as a Service (IaaS), and this makes provisioning of servers and databases very efficient.
TaaS allow for the DBAs to have full access of the provisioned server to perform database
creation, but the installation of the database binaries is simplified and similar to a
response file install. Many DBAs feel more comfortable using Oracle’s graphical installer
for installing the database software. However, the graphical installer can be troublesome
when the server is in a remote location or embedded deeply within a secure network.

A slow network or a security feature can greatly impede the graphical installation process.
In these situations, make sure you correctly configure the required X software and OS
variables (such as DISPLAY).

It's critical as a DBA to be an expert in Oracle installation procedures. If the Oracle
installation software isn’t correctly installed, you won’t be able to successfully create
a database. Once you have properly installed Oracle, you can go on to the next step of
starting the background processes and creating a database. The topics of starting Oracle
and issuing and creating a database are discussed next, in Chapter 2.

37

CHAPTER 2

Creating a Database

Chapter 1 detailed how to efficiently install the Oracle binaries. After you've installed
the Oracle software, the next logical task is creating a database. There are a few standard
ways for creating Oracle databases:

e Use the Database Configuration Assistant (dbca) utility.
¢ Run a CREATE DATABASE statement from SQL*Plus.
¢ Clone a database from an existing database.

Oracle’s dbca utility has a graphical interface from which you can configure and
create databases. This visual tool is easy to use and has a very intuitive interface. If you
need to create a development database and get going quickly, then this tool is more than
adequate. Having said that, I normally don’t use the dbca utility to create databases.

In Linux/Unix environments, the dbca tool depends on X software and an appropriate
setting for the OS DISPLAY variable. The dbca utility therefore requires some setup and
can perform poorly if you're installing on remote servers when the network throughput
is slow.

The dbca utility also allows you to create a database in silent mode, without the
graphical component. Using dbca in silent mode with a response file is an efficient way
to create databases in a consistent and repeatable manner. The dbca tool can run in
silent mode after the binary installation or launched separately. This approach also
works well when you're installing on remote servers, which could have a slow network
connection or not have the appropriate X software installed.

When you're creating databases on remote servers, it’s usually easier and more
efficient to use SQL*Plus. The SQL*Plus approach is simple and inherently scriptable.

In addition, SQL*Plus works no matter how slow the network connection is, and it isn’t
dependent on a graphical component. However, the dbca utility allows for new features
to be adopted quickly in the databases being created. This chapter starts by showing you
how to quickly create a database using SQL*Plus, and also how to make your database

39
© Michelle Malcher and Darl Kuhn 2019

M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_2

CHAPTER 2 CREATING A DATABASE

remotely available by enabling a listener process. Later, the chapter demonstrates how to
use the dbca utility in silent mode with a response file to create a database.

Setting 0S Variables

Before creating a database, you need to know a bit about OS variables, often called
environment variables. Before you run SQL*Plus (or any other Oracle utility), you must
set several OS variables:

o ORACLE_HOME

e ORACLE_SID

o LD LIBRARY_ PATH
e PATH

The ORACLE_HOME variable defines the starting point directory for the default location
for the initialization file, which is ORACLE_HOME/dbs on Linux/Unix. On Windows this
directory is usually ORACLE_HOME\database. The ORACLE_HOME variable is also important
because it defines the starting point directory for locating the Oracle binary files (such as
sqlplus, dbca, netca, rman, and so on) that are in ORACLE_HOME/bin.

The ORACLE _SID variable defines the default name of the database you're attempting
to create. ORACLE_SID is also used as the default name for the parameter file, which is
init<ORACLE_SID>.ora or spfile<ORACLE_SID>.ora.

The LD_LIBRARY_PATH variable is important because it specifies where to search
for libraries on Linux/Unix boxes. The value of this variable is typically set to include
ORACLE_HOME/1ib.

The PATH variable specifies which directories are looked in by default when you type
a command from the OS prompt. In almost all situations, ORACLE_HOME/bin (the
location of the Oracle binaries) must be included in your PATH variable.

You can take several different approaches to setting the prior variables. This chapter
discusses three, beginning with a hard-coded manual approach and ending with the
approach that I personally prefer: leveraging the oratab file. Why discuss different
approaches? Because it is important to understand that environments are configured
differently. Understanding that these steps are needed to connect to the database will
help with troubleshooting and verify that the binaries are installed and available. There
are also different tools that are available because of policies and server configurations,
such as doing silent installs compared to using the UL

40

CHAPTER 2 CREATING A DATABASE

A Manually Intensive Approach

In Linux/Unix, when you're using the Bourne, Bash, or Korn shell, you can set OS
variables manually from the OS command line with the export command:

$ export ORACLE_HOME=/u01/app/oracle/product/18.0.0.0/db 1
$ export ORACLE SID=o012c

$ export LD _LIBRARY PATH=/usr/lib:$ORACLE_HOME/1ib

$ export PATH=$0RACLE_HOME/bin:$PATH

For the C or tcsh shell, use the setenv command to set variables:

$ setenv ORACLE_HOME <path>

$ setenv ORACLE_SID <sid>

$ setenv LD _LIBRARY_PATH <path>
$ setenv PATH <path>

Another way that DBAs set these variables is by placing the previous export or
setenv commands into a Linux/Unix startup file, such as . bash_profile, . bashrc,
or . profile. Thatway, the variables are automatically set upon login. This is
accomplished by just editing the startup file or profile files to inserting the variables.
Even with the other options, it is still good to have a default ORACLE_HOME set in the
startup files.

However, manually setting OS variables (either from the command line or by
hard-coding values into a startup file) isn’t the optimal way to instantiate these variables.
For example, if you have multiple databases with multiple Oracle homes on a box,
manually setting these variables quickly becomes unwieldy and not very maintainable.

Oracle’s Approach to Setting 0S Variables

A much better method for setting OS variables is use of a script that uses a file that
contains the names of all Oracle databases on a server and their associated Oracle
homes. This approach is flexible and maintainable. For instance, if a database’s
ORACLE_HOME changes (e.g., after an upgrade), you only have to modify one file on the
server and not hunt down where the ORACLE_HOME variables may be hard-coded into
scripts.

Oracle provides a mechanism for automatically setting the required OS variables.
Oracle’s approach relies on two files: oratab and oraenv.

41

CHAPTER 2 CREATING A DATABASE

Understanding oratab

You can think of the entries in the oratab file as a registry of what databases are
installed on a box and their corresponding Oracle home directories. The oratab file
is automatically created for you when you install the Oracle software. On Linux boxes,
oratab is usually placed in the /etc directory. On Solaris servers, the oratab file is
placed in the /var/opt/oracle directory. If, for some reason, the oratab file isn’t
automatically created, you can manually create the directory and file.

The oratab file is used in Linux/Unix environments for the following purposes:

e Automating the sourcing of required OS variables
e Automating the start and stop of Oracle databases on the server

The oratab file has three columns with this format:
<database_sid>:<oracle home dir>:Y|N

The Y or N indicates whether you want Oracle to restart automatically on reboot of
the box; Y indicates yes, and N indicates no. Automating the startup and shutdown of
your database is covered in detail in Chapter 20. Oracle srvctl also has management
policies that are set for automatic restart of the databases that don’t use the oratab.

Comments in the oratab file start with a pound sign (#). Here is a typical oratab file
entry:

ol2c:/u01/app/oracle/product/18.0.0.0/db_1:N
rcat:/u01/app/oracle/product/18.0.0.0/db_1:N

The names of the databases on the previous lines are 012c and rcat. The path
of each database’s ORACLE_HOME directory is next on the line (separated from the
database name by a colon [:]).

Several Oracle-supplied utilities use the oratab file:

e oraenv uses oratab to set the OS variables.

o dbstart usesit to start the database automatically on server reboots
(if the third field in oratabisY).

o dbshut uses it to stop the database automatically on server reboots (if
the third field in oratabis Y).

The oraenv tool is discussed in the following section.

42

CHAPTER 2 CREATING A DATABASE

Using oraenv

If you don’t properly set the required OS variables for an Oracle environment, then
utilities such as SQL*Plus, Oracle Recovery Manager (RMAN), Data Pump, and so on
won’t work correctly. The oraenv utility automates the setting of required OS variables
(such as ORACLE_HOME, ORACLE_SID, and PATH) on an Oracle database server. This utility
is used in Bash, Korn, and Bourne shell environments (if you're in a C shell environment,
there is a corresponding coraenv utility).

The oraenv utility is located in the 0 RACLE_HOME/bin directory. You can run it
manually, like this:

$. oraenv

Note that the syntax to run this from the command line requires a space between the
dot (.) and the oraenv tool. You're prompted for ORACLE_SID and if the ORACLE_SID is
not in the oratab file, it will prompt for the ORACLE_HOME values:

ORACLE_SID = [oracle] ?
ORACLE_HOME = [/home/oracle] ?

You can also run the oraenv utility in a noninteractive way by setting OS variables
before you run it. This is useful for scripting when you don’t want to be prompted for
input:

$ export ORACLE_SID=018c
$ export ORAENV_ASK=NO
$. oraenv

Keep in mind that if you set your ORACLE_SID to a value that isn’t found with the
oratab file, then you may be prompted for values such as ORACLE_HOME.

My Approach to Setting 0S Variables

I don’t use Oracle’s oraenv file to set the OS variables (see the previous section, “Using
oraenv,” for details of Oracle’s approach). Instead, I use a script named oraset. The
oraset script depends on the oratab file’s being in the correct directory and expected

format:

<database_sid>:<oracle _home dir>:Y|N

43

CHAPTER 2 CREATING A DATABASE

As mentioned in the previous section, the Oracle installer should create an oratab
file for you in the correct directory. If it doesn’t, then you can manually create and
populate the file. In Linux, the oratab file is usually created in the /etc directory. On
Solaris servers, the oratab file is located in the /var/opt/oracle directory.

Next, use a script that reads the oratab file and sets the OS variables. Here is an
example of an oraset script that reads the oratab file and presents a menu of choices
(based on the database names in the oratab file):

#!/bin/bash

Sets Oracle environment variables.

Setup: 1. Put oraset file in /etc (Linux), in /var/opt/oracle (Solaris)
2. Ensure /etc or /var/opt/oracle is in $PATH

Usage: batch mode: . oraset <SID>

menu mode: . oraset

if [-f /etc/oratab]; then
OTAB=/etc/oratab
elif [-f /var/opt/oracle/oratab]; then
OTAB=/var/opt/oracle/oratab
else
echo 'oratab file not found.'
exit
fi
#
if [-z $1]; then
SIDLIST=$(egrep -v "#|*' ${OTAB} | cut -f1 -d:)
PS3 indicates the prompt to be used for the Bash select command.
PS3="'SID? '
select sid in ${SIDLIST}; do
if [-n $sid]; then
HOLD SID=$sid
break
fi
done
else
if egrep -v "#|*' ${OTAB} | grep -w "${1}:">/dev/null; then

44

CHAPTER 2 CREATING A DATABASE

HOLD SID=$1
else
echo "SID: $1 not found in $0TAB"
fi
shift
fi
#
export ORACLE_SID=$HOLD SID
export ORACLE_HOME=$(egrep -v "#|*' $0TAB|grep -w $ORACLE_SID:|cut -f2 -d:)
export ORACLE_BASE=${ORACLE_HOME%%/product*}
export TNS_ADMIN=$0RACLE_HOME/network/admin
export ADR_BASE=$0RACLE_BASE/diag
export PATH=$0RACLE_HOME/bin:/usr/ccs/bin:/opt/SENSsshc/bin/\
:/bin:/usr/bin:.:/var/opt/oracle:/usr/sbin
export LD_LIBRARY PATH=/usr/lib:$ORACLE_HOME/lib

You can run the oraset script either from the command line or from a startup file
(such as .profile, .bash_profile, or .bashrc). To run oraset from the command line,
place the oraset file in a standard location, such as /var/opt/oracle (Solaris) or /etc
(Linux), and run, as follows:

$. /etc/oraset

Note that the syntax to run this from the command line requires a space between the
dot (.) and the rest of the command. When you run oraset from the command line, you
should be presented with a menu such as this:

1) 018c
2) rcat
SID?

In this example you can now enter 1 or 2 to set the OS variables required for
whichever database you want to use. This allows you to set up OS variables interactively,
regardless of the number of database installations on the server.

You can also call the oraset file from an OS startup file. Here is a sample entry in the
. bashrc file:

. /etc/oraset

45

CHAPTER 2 CREATING A DATABASE

Now, every time you log in to the server, you're presented with a menu of choices
that you can use to indicate the database for which you want the OS variables set. If you
want the OS variables automatically set to a particular database, then put an entry such
as this in the .bashrc file:

. /etc/oraset 018c

The prior line will run the oraset file for the 018c database and set the OS variables
appropriately.

Creating a Database

This section explains how to create an Oracle database manually with the SQL*Plus
CREATE DATABASE statement. These are the steps required to create a database:

1. Setthe OS variables.

2. Configure the initialization file.
3. Create the required directories.
4. Create the database.

5. Create a data dictionary.

Each of these steps is covered in the following sections.

Step 1. Set the 0S Variables

As mentioned previously, before you run SQL*Plus (or any other Oracle utility), you
must set several OS variables. You can either manually set these variables or use a
combination of files and scripts to set the variables. Here’s an example of setting these
variables manually:

$ export ORACLE_HOME=/u01/app/oracle/product/18.0.0.0/db_1
$ export ORACLE_SID=018c

$ export LD _LIBRARY PATH=/usr/lib:$ORACLE_HOME/1lib

$ export PATH=$ORACLE_HOME/bin:$PATH

46

CHAPTER 2 CREATING A DATABASE

See the section “Setting OS Variables,” earlier in this chapter, for a complete
description of these variables and techniques for setting them.

Step 2. Configure the Initialization File

Oracle requires that you have an initialization file in place before you attempt to start
the instance. The initialization file is used to configure features such as memory and to
control file locations. You can use two types of initialization files:

o Server parameter binary file (spfile)
o init.oratextfile
Oracle recommends that you use a spfile for reasons such as these:

e You can modify the contents of the spfile with the SQL ALTER
SYSTEM statement.

¢ You can use remote-client SQL sessions to start the database without
requiring a local (client) initialization file.

e There are more dynamic parameters that can be set using the spfile
without any downtown.

These are good reasons to use an spfile. However, some shops still use the
traditional init.ora file. The init.ora file also has advantages:

e You can directly edit it with an OS text editor.
e You can place comments in it that detail a history of modifications.

When I first create a database, I find it easier to use an init.ora file. This file can
be easily converted later to a spfile if required (via the CREATE SPFILE FROM PFILE
statement). In this example, my database name is 018c, so I place the following contents
in a file named inito18c.ora and put the file in the ORACLE_HOME/dbs directory:

db_name=018c
db_block size=8192
memory target=300M
memory max_target=300M
processes=200
control files=(/u01/dbfile/018c/controlol.ctl,/u02/dbfile/018c/controlo2.ctl)
job_queue processes=10
47

CHAPTER 2 CREATING A DATABASE

open_cursors=500

fast_start_mttr target=500
undo_management=AUTO
undo_tablespace=UNDOTBS1
remote_login passwordfile=EXCLUSIVE

Ensure that the initialization file is named correctly and located in the appropriate
directory. This is critical because when starting your instance, Oracle first looks in the
ORACLE_HOME/dbs directory for parameter files with specific formats, in this order:

o spfile<SID>.ora
o spfile.ora
e 1init<SID>.ora

In other words, Oracle first looks for a file named spfile<SID>.ora. If found, the
instance is started; if not, Oracle looks for spfile.ora and then init<SID>.ora. If one of
these files is not found, Oracle throws an error.

This may cause some confusion if you're not aware of the files that Oracle looks for,
and in what order. For example, you may make a change to an init<SID>.ora file and
expect the parameter to be instantiated after stopping and starting your instance. If there
isa spfile<SID>.orain place, the init<SID>.ora is completely ignored.

Note You can manually instruct Oracle to look for a text parameter file in a
directory, using the pfile=<directory/filename> clause with the startup
command; under normal circumstances, you shouldn’t need to do this. You want
the default behavior, which is for Oracle to find a parameter file in the ORACLE _
HOME/dbs directory (for Linux/Unix). The default directory on Windows is ORACLE
HOME/database.

Table 2-1 lists best practices to consider when configuring an Oracle initialization file.

48

CHAPTER 2 CREATING A DATABASE

Table 2-1. Initialization File Best Practices

Best Practice

Reasoning

Oracle recommends that you use a binary server
parameter file (spfile).

In general, don’t set initialization parameters if
you’re not sure of their intended purpose. When
in doubt, use the default.

For 11g and higher, set the memory target and
memory max_target initialization parameters.

For 10g, set the sga_target and sga_
target_max initialization parameters.

For 109, set pga_aggregate target and
workarea size policy.

Starting with 10g, use the automatic UNDO
feature. This is set using the undo_management
and undo_tablespace parameters.

Set open_cursors to a higher value than the
default. | typically set it to 500. Active online
transaction processing (OLTP) databases may
need a much higher value.

Name the control files with the pattern
/<mount_point>/dbfile/<database_
name>/controloN.ctl.

Use at least two control files, preferably in
different locations, using different disks.

Spfile allows for dynamic changes to parameters.
If there is an acceptable maintenance window,
then using the init.ora file would be fine to use.

Setting initialization parameters can have far-
reaching consequences in terms of database
performance. Only modify parameters if you
know what the resulting behavior will be.

Doing this allows Oracle to manage all memory
components for you.

Doing this lets Oracle manage most memory
components for you.

Doing this allows Oracle to manage the memory
used for the sort space.

Doing this allows Oracle to manage most
features of the UNDO tablespace.

The default value of 50 is almost never enough.
Even a small, one-user application can exceed
the default value of 50 open cursors.

This deviates slightly from the OFA standard.
| find this location easier to navigate to, as
opposed to being located under ORACLE _BASE.

If one control file becomes corrupt, it’s always a
good idea to have at least one other control file
available.

49

CHAPTER 2 CREATING A DATABASE

Step 3. Create the Required Directories

Any OS directories referenced in the parameter file or CREATE DATABASE statement must
be created on the server before you attempt to create a database. For instance, in the
previous section’s initialization file, the control files are defined as

control files=(/u01/dbfile/018c/controlol.ctl,/u02/dbfile/018c/controlo2.ctl)

From the previous line, ensure that you've created the directories / uo1/dbfile/
018c and / u02/dbfile/018c (modify this according to your environment). In Linux/
Unix you can create directories, including any parent directories required, by using the m
kdir command with the p switch:

$ mkdir -p /u01/dbfile/018c
$ mkdir -p /u02/dbfile/018c

Also make sure you create any directories required for data files and online redo logs
referenced in the CREATE DATABASE statement (see step 4). For this example, here are the
additional directories required:

$ mkdir -p /u01/oraredo/o018c
$ mkdir -p /u02/oraredo/018c

If you create the previous directories as the root user, ensure that the oracle user
and dba groups are properly set to own the directories, subdirectories, and files. This
example recursively changes the owner and group of the following directories:

chown -R oracle:dba /u01
chown -R oracle:dba /u02

Step 4. Create the Database

After you've established OS variables, configured an initialization file, and created any
required directories, you can now create a database. This step explains how to use the
CREATE DATABASE statement to create a database.

Before you can run the CREATE DATABASE statement, you must start the background
processes and allocate memory via the STARTUP NOMOUNT statement:

$ sqlplus / as sysdba
SQL> startup nomount;

50

CHAPTER 2 CREATING A DATABASE

When you issue a STARTUP NOMOUNT statement, SQL*Plus attempts to read the
initialization file in the ORACLE_HOME/dbs directory (see step 2). The STARTUP NOMOUNT
statement instantiates the background processes and memory areas used by Oracle. At
this point, you have an Oracle instance, but you have no database.

Note An Oracle instance is defined as the background processes and memory
areas. The Oracle database is defined as the physical files (data files, control files,
online redo logs) on disk.

Listed next is a typical Oracle CREATE DATABASE statement:

CREATE DATABASE 018c
MAXLOGFILES 16
MAXLOGMEMBERS 4
MAXDATAFILES 1024
MAXINSTANCES 1
MAXLOGHISTORY 680
CHARACTER SET AL32UTF8
DATAFILE
'/u01/dbfile/018c/systemo1.dbf"
SIZE 500M REUSE
EXTENT MANAGEMENT LOCAL
UNDO TABLESPACE undotbs1 DATAFILE
"/u01/dbfile/018c/undotbso1.dbf"
SIZE 80o0M
SYSAUX DATAFILE
"/u01/dbfile/018c/sysaux01.dbf"
SIZE 500M
DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE
"/u01/dbfile/018c/temp01.dbf"
SIZE 500M
DEFAULT TABLESPACE USERS DATAFILE
"/u01/dbfile/018c/userso1.dbf"
SIZE 20M
LOGFILE GROUP 1

51

CHAPTER 2 CREATING A DATABASE

('/u01/oraredo/018c/redo01a.rdo",
"/u02/oraredo/018c/redo01b.rdo") SIZE 50M,
GROUP 2
('/u01/oraredo/018c/redo02a.rdo",
"/u02/oraredo/018c/redo02b.rdo") SIZE 50M,
GROUP 3
('/u01/oraredo/018c/redo03a.rdo",
"/u02/oraredo/018c/redo03b.rdo") SIZE 50M
USER sys IDENTIFIED BY foo
USER system IDENTIFIED BY foo;

In this example the script is placed in a file named credb.sql and is run from the
SQL*Plus prompt as the SYS user:

SQL> @credb.sql
If it’s successful, you should see the following message:

Database created.

Note See Chapter 22 for details on creating a pluggable database.

If any errors are thrown while the CREATE DATABASE statement is running, check the
alert log file. Typically, errors occur when required directories don’t exist, the memory
allocation isn’t sufficient, or an OS limit has been exceeded. If you're unsure of the
location of your alert log, issue the following query:

SOL> select value from v$diag info where name = 'Diag Trace';

The prior query should work even when your database is in the nomount state.
Another way to quickly find the alert log file is from the OS:

$ cd $ORACLE_BASE
$ find . -name "alert*.log"

Tip The default format for the name of the alert log file is alert <SID>.log.

52

CHAPTER 2 CREATING A DATABASE

There are few key things to point out about the prior CREATE DATABASE statement
example. Note that the SYSTEM data file is defined as locally managed. This means
that any tablespace created in this database must be locally managed (as opposed
to dictionary managed). Oracle throws an error if you attempt to create a dictionary-
managed tablespace in this database. This is the desired behavior.

A dictionary-managed tablespace uses the Oracle data dictionary to manage extents
and free space, whereas a locally managed tablespace uses a bitmap in each data file to
manage its extents and free space. Locally managed tablespaces have these advantages:

o Performance is increased.

e No coalescing is required.

o Contention for resources in the data dictionary is reduced.
o Recursive space management is reduced.

Also note that the TEMP tablespace is defined as the default temporary tablespace.
This means that any user created in the database automatically has the TEMP tablespace
assigned to him or her as the default temporary tablespace. After you create the data
dictionary (see step 5), you can verify the default temporary tablespace with this query:

select *
from database properties
where property name = 'DEFAULT TEMP_TABLESPACE';

Finally, note that the USERS tablespace is defined as the default permanent
tablespace for any users created that don’t have a default tablespace defined in a CREATE
USER statement. After you create the data dictionary (see step 5), you can run this query
to determine the default tablespace:

select *
from database properties
where property name = 'DEFAULT_PERMANENT TABLESPACE';

Table 2-2 lists best practices to consider when you are creating an Oracle database.

53

CHAPTER 2 CREATING A DATABASE

Table 2-2. Best Practices for Creating an Oracle Database

Best Practice Reasoning
Use the REUSE clause The REUSE clause instructs Oracle to overwrite existing files,
with caution. Normally, regardless of whether they are in use or not. This is dangerous.

you should use it only
when you’re re-creating a
database.

Create a default temporary Every user should be assigned a temporary tablespace of the type
tablespace with TEMP TEMP, including the SYS user. If you don’t specify a default temporary
somewhere in the name. tablespace, then the SYSTEM tablespace is used. You never want
a user to be assigned a temporary tablespace of SYSTEM. If your
database doesn’t have a default temporary tablespace, use the ALTER
DATABASE DEFAULT TEMPORARY TABLESPACE statement to assign
one.

Create a default permanent This ensures that users are assigned a default permanent tablespace

tablespace named USERS. other than SYSTEM. If your database doesn’t have a default permanent
tablespace, use the ALTER DATABASE DEFAULT TABLESPACE
statement to assign one.

Use the USER SYS and Doing this creates the database with nondefault passwords for
USER SYSTEM clauses database accounts that are usually the first targets for hackers.
to specify nondefault

passwords.

Create at least three At least three redo log groups provide time for the archive process to
redo log groups, with two write out archive redo logs between switches. Two members mirror the
members each. online redo log members, providing some fault tolerance.

Give the redo logs a name This deviates slightly from the OFA standard, but I've had files with the
such as redoNA. rdo. extension. log accidentally deleted more than once (it shouldn’t ever
happen, but it has).

(continued)

54

CHAPTER 2 CREATING A DATABASE

Table 2-2. (continued)

Best Practice Reasoning

Make the database name This helps you determine what database you’re operating in and
somewhat intelligent, such whether it’s a production, development, or test environment.

as PAPRD, PADEV1, or

PATST1.

Use the ? variable when SQL*Plus interprets the ? as the directory contained in the 0S
you’re creating the data ORACLE_HOME variable. This prevents you from accidentally running
dictionary (see step 5). scripts from the wrong version of ORACLE_HOME.

Don’t hard-code the

directory path.

Tip Many of these settings in the CREATE DATABASE are done for you using the
dbca. The tablespaces can be set up or defaults can be used along with making
sure the users are not going to be creating objects in the SYSTEM tablespaces and
no default passwords are used. Using dbca will take new features and security
options as part of the database creation.

Note that the CREATE DATABASE statement used in this step deviates slightly from
the OFA standard in terms of the directory structure. I prefer not to place the Oracle
data files, online redo logs, and control files under ORACLE_BASE (as specified by the OFA
standard). I instead directly place files under directories named /<mount_point>/<file_
type>/<database_name>, because the path names are much shorter. The shorter path
names make command-line navigation to directories easier, and the names fit more
cleanly in the output of SQL SELECT statements. Figure 2-1 displays this deviation from
the OFA standard.

55

CHAPTER 2 CREATING A DATABASE

(/)
root directory

(w0t)—app)—(oracle)~(product)(12.1.0)—(db_1)~bin)
N w02)—(dbfile “—(dbname 1) system01.dbf, temp01.dbf, data01.dbf |

\{ 103 }—(dbfile)—(dbname‘l)—{ sysaux01.dbf, undo01.dbf, index01.dbf, control01.cll |

(w04)—(dbfile)—(dbname1)| data02.dbf, temp02.dbf, users01.dbf, control02.cll |

\(105 }—(_dbfile)—(dbnameiH index02.dbf, undo02.dbf, control03.ctl |

™ 7u06)—(oraredo)—(dbname1)-{ redo01a.rdo, redo02a.rdo, redo03a.rdo |

~(w07)—(oraredo)—(dbnameiH redo01b.rdo, redo02b.rdo, redo03b.rdo I

™ 08 —(oraarch)—(dbna meo—{ log archive_dest_1, log_archive_format <dbname1>_%t_%s_%r.arc

™~ 09)—(oradump)—(dbname1 rman)—' backup piece |

dalapump}-—l data pump backups |
~(backupset)—~(YYYY_MM_DD) backup piece |
~(autobackup HYYYY_MM_DD)| backup piece |
~(datafile){image copy |

onlinelog online redo log
~(controlfile }—{ control file |
~(archivelog)~(YYYY_MM_DD)—{archive redo log |

~(flashback){flashbacklog |

If using FRA
db_recovery_file_dest
(init parameter)

oralnst.loc

\(home }—(oracle

installation media

database)— runinstaller |

orainst
bin

Figure 2-1. A slight deviation from the OFA standard for laying out database files

It’s not my intention to have you use nonstandard OFA structures. Rather, do what
makes sense for your environment and requirements. Apply reasonable standards that
foster manageability, maintainability, and scalability.

Step 5. Create a Data Dictionary

After your database is successfully created, you can instantiate the data dictionary by
running two scripts. These scripts are created when you install the Oracle binaries. You
must run these scripts as the SYS schema:

SQL> show user
USER is "SYS"

56

CHAPTER 2 CREATING A DATABASE

Before I create the data dictionary, I like to spool an output file that I can inspect in
the event of unexpected errors:

SQL> spool create dd.lis
Now, create the data dictionary:

SOL> @?/rdbms/admin/catalog.sql
SOL> @?/rdbms/admin/catproc.sql

After you successfully create the data dictionary, as the SYSTEM schema, create the
product user profile tables:

SOL> connect system/<password>
SQL> @?/sqlplus/admin/pupbld

These tables allow SQL*Plus to disable commands on a user-by-user basis. If the
pupbld.sql scriptisn’t run, then all non-sys users see the following warning when
logging in to SQL*Plus:

Error accessing PRODUCT USER PROFILE
Warning: Product user profile information not loaded!
You may need to run PUPBLD.SQL as SYSTEM

These errors can be ignored. If you don’t want to see them when logging in to
SQL*Plus, make sure you run the pupbld.sql script.

At this point, you should have a fully functional database. You next need to configure
and implement your listener to enable remote connectivity and, optionally, set up a
password file. These tasks are described in the next two sections.

Configuring and Implementing the Listener

After you've installed binaries and created a database, you need to make the database
accessible to remote-client connections. You do this by configuring and starting the
Oracle listener. Appropriately named, the listener is the process on the database server
that “listens” for connection requests from remote clients. If you don’t have a listener
started on the database server, then you can’t connect from a remote client.

The listener can be included as part of the database home or part of the grid home.
The listener only needs to be there once as there only can be one active grid home and

57

CHAPTER 2 CREATING A DATABASE

the possibility of multiple database homes. This is one place to manage and maintain the
listener. Having the listener as part of the grid environment allows for patching separate
from the databases and with the grid as part of an infrastructure patching process. Also
keep in mind when maintaining the listener to have the proper ORACLE_HOME set to
keep the listener running in the desired home. The next two methods show the listener
being configured in the database, but it can be easily followed for the grid home.

There are two methods for setting up a listener: the Oracle Net Configuration
Assistant (netca) or manually configuring the listener.ora file.

Implementing a Listener with the Net Configuration
Assistant

The netca utility assists you with all aspects of implementing a listener. You can run
the netca tool in either graphical or silent mode. Using the netca in graphical mode is
easy and intuitive. To use the netca in graphical mode, ensure that you have the proper
X software installed, then issue the xhost + command, and check that your DISPLAY
variable is set; for example,

$ xhost +
$ echo $DISPLAY
:0.0

You can now run the netca utility:
$ netca

Next, you will be guided through several screens from which you can choose options
such as name of the listener, desired port, and so on.

You can also run the netca utility in silent mode with a response file. This
mode allows you to script the process and ensure repeatability when creating and
implementing listeners. First, find the default listener response file within the directory
structure that contains the Oracle install media:

$ find . -name "netca.rsp"
./18.0.0.0/database/response/netca.rsp

Now, make a copy of the file so that you can modify it:

$ cp 18.0.0.0/database/response/netca.rsp mynet.rsp

58

CHAPTER 2 CREATING A DATABASE

If you want to change the default name or other attributes, then edit the mynet.xrsp
file with an OS utility such as vi:

$ vi mynet.rsp

For this example, I haven’t modified any values within the mynet.rsp file. In other
words, I'm using all the default values already contained within the response file. Next,
the netca utility is run in silent mode:

$ netca -silent -responsefile /home/oracle/orainst/mynet.rsp

The utility creates a 1istener.ora and sqlnet.ora file in the ORACLE_HOME/network/
admin directory and starts a default listener.

Manually Configuring a Listener

When you're setting up a new environment, manually configuring the listener is a two-
step process:

1. Configure the listener.ora file.
2. Start the listener.

The listener.ora file is located by default in the ORACLE_HOME/network/admin
directory. This is the same directory that the TNS_ADMIN OS variable should be set to.
When manually configuring the listener and updating the listener.ora file, be aware of
parentheses and any special characters, and a misconfigured listener.ora will result in
not being able to start, and along with another listener on the same port is the first place
to look.

Here is a sample listener.ora file that contains network configuration information
for one database:

LISTENER =
(DESCRIPTION LIST
(DESCRIPTION =
(ADDRESS_LIST
(ADDRESS = (PROTOCOL = TCP)(HOST = oracle18c)(PORT = 1521))

)
)
)

59

CHAPTER 2 CREATING A DATABASE

SID LIST LISTENER =
(SID_LIST =
(SID DESC =
(GLOBAL_DBNAME = 018c)
(ORACLE_HOME = /u01/app/oracle/product/18.0.0.0/db 1)
(SID NAME = 018c)

)
)

This code listing has two sections. The first defines the listener name and service; in
this example the listener name is LISTENER. The second defines the list of SIDs for which
the listener is listening for incoming connections (to the database). The format of the
SID list name is SID_LIST <name of listener>.The name of the listener must appear
in the SID list name. The SID list name in this example is SID_LIST LISTENER.

Also, you don’t have to explicitly specify the SID_LIST LISTENER section (the second
section) in the prior code listing. This is because the process monitor (PMON) background
process will automatically register any running databases as a service with the listener;
this is known as dynamic registration. However, some DBAs prefer to explicitly list
which databases should be registered with the listener and therefore include the second
section; this is known as static registration.

After you have a listener.ora file in place, you can start the listener background
process with the 1snrctl utility:

$ lsnrctl start
You should see informational messages, such as the following:

Listening Endpoints Summary...

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=oracle18c)(PORT=1521)))
Services Summary...
Service "018c" has 1 instance(s).

You can verify the services for which a listener is listening via
$ lsnrctl services
You can check the status of the listener with the following query:

$ 1lsnrctl status

60

CHAPTER 2 CREATING A DATABASE
For a complete listing of listener commands, issue this command:

$ lsnrctl help

Tip Use the Linux/Unix ps -ef | grep tns command to view any listener
Processes running on a server.

Connecting to a Database through the Network

Once the listener has been configured and started, you can test remote connectivity from
a SQL*Plus client, as follows:

$ sqlplus user/pass@'server:port/service name'

In the next line of code, the user and password are system/foo, connecting the
oracle18c server, port 1521, to a database named 018c:

$ sqlplus system/foo@'oracle18c:1521/018c’

This example demonstrates what is known as the easy connect naming method of
connecting to a database. It’s easy because it doesn’t rely on any setup files or utilities.
The only information you need to know is username, password, server, port, and service
name (SID).

Another common connection method is local naming. This method relies on
connection information in the ORACLE_HOME/network/admin /tnsnames.ora file. In
this example the tnsnames.ora file is edited, and the following Transparent Network
Substrate (TNS) (Oracle’s network architecture) entry is added:

018c =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = oracle18c)(PORT = 1521))
(CONNECT DATA = (SERVICE NAME = 018c)))

Now, from the OS command line, you establish a connection by referencing the 018c
TNS information that was placed in the tnsnames.ora file:

$ sqlplus system/foo@018c

61

CHAPTER 2 CREATING A DATABASE

This connection method is local because it relies on a local client copy of the
tnsnames.ora file to determine the Oracle Net connection details. By default, SQL*Plus
inspects the directory defined by the TNS_ADMIN variable for a file named tnsnames.ora.
If not found, then the directory defined by ORACLE_HOME/network/admin is searched.

If the tnsnames. ora file is found, and if it contains the alias specified in the SQL*Plus
connection string (in this example, 018c), then the connection details are derived from
the entry in the tnsnames.ora file.

The other connection-naming methods that Oracle uses are external naming and
directory naming. See the Oracle Net Services Administrator’s Guide, which can be freely
downloaded from the Technology Network area of the Oracle web site (http://otn.
oracle.com), for further details.

Tip You can use the netca utility to create a thsnames.ora file. Start the utility
and choose the Local Net Service Name Configuration option. You will be prompted
for input, such as the SID, hostname, and port.

Creating a Password File

Creating a password file is optional. There are some good reasons for requiring a
password file:

e You want to assign non-sys users sys* privileges (sysdba, sysoper,
sysbackup, and so on).

e You want to connect remotely to your database via Oracle Net with
sys* privileges.

Oracle Data Guard setup and needing password files on the standby servers.
e An Oracle feature or utility requires the use of a password file.
Perform the following steps to implement a password file:
1. Create the password file with the orapwd utility.

2. Set the initialization parameter REMOTE_LOGIN_PASSWORDFILE to
EXCLUSIVE.

62

http://otn.oracle.com
http://otn.oracle.com

CHAPTER 2 CREATING A DATABASE

In a Linux/Unix environment, use the orapwd utility to create a password file, as follows:

$ cd $ORACLE_HOME/dbs
$ orapwd file=orapw<ORACLE_SID> password=<sys password>

In a Linux/Unix environment, the password file is usually stored in ORACLE_HOME/
dbs; in Windows it’s typically placed in the ORACLE_HOME\database directory.

The format of the filename that you specify in the previous command may vary
by OS. For instance, in Windows the format is PAD<ORACLE_SID>.ora. The following
example shows the syntax in a Windows environment:

c:\> cd %O0RACLE_HOME%\database
c:\> orapwd file=PWD<ORACLE_SID>.ora password=<sys password>

To enable the use of the password file, set the initialization parameter REMOTE _
LOGIN_PASSWORDFILE to EXCLUSIVE (this is the default value). If the parameter is not set
to EXCLUSIVE, then you'll have to modify your parameter file:

SOL> alter system set remote login passwordfile='EXCLUSIVE' scope=spfile;

You need to stop and start the instance to instantiate the prior setting.

You can add users to the password file via the GRANT <any SYS privilege>
statement. You want to be careful with these privileges and use of the password file for
secure configurations. Only the accounts that need these privileges should be granted
along with access to the password file. The following example grants SYSDBA privileges to
the heera user (and thus adds heera to the password file):

VSQL> grant sysdba to heera;
Grant succeeded.

Enabling a password file also allows you to connect to your database remotely with
SYS*-level privileges via an Oracle Net connection. This example shows the syntax for a
remote connection with SYSDBA-level privileges:

$ sqlplus <username>/<password>@<database connection string> as sysdba

This allows you to do remote maintenance with sys* privileges (sysdba, sysoper,
sysbackup, and so on) that would otherwise require your logging in to the database
server physically. You can verify which users have sys* privileges by querying the
V$PWFILE USERS view:

SOL> select * from v$pwfile users;

63

CHAPTER 2 CREATING A DATABASE
Here is some sample output:

USERNAME SYSDB SYSOP SYSAS SYSBA SYSDG SYSKM CON_ID

SYS TRUE TRUE FALSE FALSE FALSE FALSE 0

The concept of a privileged user is also important to RMAN backup and recovery.
Like SQL*Plus, RMAN uses OS authentication and password files to allow privileged
users to connect to the database. Only a privileged account is allowed to back up, restore,
and recover a database.

Starting and Stopping the Database

Before you can start and stop an Oracle instance, you must set the proper OS variables
(previously covered in this chapter). You also need access to either a privileged OS
account or a privileged database user account. Connecting as a privileged user allows
you to perform administrative tasks, such as starting, stopping, and creating databases.
You can use either OS authentication or a password file to connect to your database as a
privileged user.

Understanding 0S Authentication

OS authentication means that if you can log in to a database server via an authorized
OS account, you're allowed to connect to your database without the requirement of
an additional password. A simple example demonstrates this concept. First, the id
command is used to display the OS groups to which the oracle user belongs:

$ id
uid=500(oracle) gid=506(oinstall) groups=506(oinstall),507(dba),508(oper)

Next, a connection to the database is made with SYSDBA privileges, purposely using a
bad (invalid) username and password:

$ sqlplus bad/notgood as sysdba
I can now verify that the connection as SYS was established:

SYS@o18c> show user
USER is "SYS"

64

CHAPTER 2 CREATING A DATABASE

How is it possible to connect to the database with an incorrect username and
password? Actually, it is not a bad thing (as you might initially think). The prior
connection works because Oracle ignores the username/password provided, as the user
was first verified via OS authentication. In that example the oracle OS user belongs to
the dba OS group and is therefore allowed to make a local connection to the database
with SYSDBA privileges without having to provide a correct username and password.

See Table 1-1, in Chapter 1, for a complete description of OS groups and the mapping
to corresponding database privileges. Typical groups include dba and oper; these
groups correspond to sysdba and sysoper database privileges, respectively. The sysdba
and sysoper privileges allow you to perform administrative tasks, such as starting and
stopping your database.

In a Windows environment, an OS group is automatically created (typically named
ora_dba) and assigned to the OS user that installs the Oracle software. You can verify
which OS users belong to the ora_dba group as follows: select Start » Control Panel »
Administrative Tools » Computer Management » Local Users and Groups » Groups.
You should see a group with a name such as ora_dba. You can click that group and view
which OS users are assigned to it. In addition, for OS authentication to work in Windows
environments, you must have the following entry in your sqlnet.ora file:

SQLNET.AUTHENTICATION SERVICES=(NTS)

The sqlnet.ora file is usually located in the ORACLE_HOME/network/admin directory.

Starting the Database

Starting and stopping your database is a task that you perform frequently. To start/stop
your database, connect with a sysdba- or sysoper-privileged user account, and issue
the startup and shutdown statements. The following example uses OS authentication to
connect to the database:

$ sqlplus / as sysdba

After you're connected as a privileged account, you can start your database, as
follows:

SQL> startup;

65

https://doi.org/10.1007/978-1-4842-4424-1_1#Tab1

CHAPTER 2 CREATING A DATABASE

For the prior command to work, you need either a spfile or init.ora file in the
ORACLE_HOME/dbs directory. See the section “Step 2: Configure the Initialization File,”
earlier in this chapter, for details.

Note Stopping and restarting your database in quick succession is known
colloquially in the DBA world as bouncing your database.

When your instance starts successfully, you should see messages from Oracle
indicating that the system global area (SGA) has been allocated. The database is
mounted and then opened:

ORACLE instance started.

Total System Global Area 313159680 bytes

Fixed Size 2259912 bytes
Variable Size 230687800 bytes
Database Buffers 75497472 bytes
Redo Buffers 4714496 bytes

Database mounted.
Database opened.

From the prior output, the database startup operation goes through three distinct
phases in opening an Oracle database:

1. Starting the instance
2. Mounting the database
3. Opening the database

You can step through these one at a time when you start your database. First, start
the Oracle instance (background processes and memory structures):

SQL> startup nomount;

Next, mount the database. At this point, Oracle reads the control files:
SQL> alter database mount;

Finally, open the data files and online redo log files:
SQL> alter database open;

66

CHAPTER 2 CREATING A DATABASE

This startup process is depicted graphically in Figure 2-2.

initialization memory background
—> I - .
file struclures processes SQL> startup nomount;

B

control files

..
online redo
logs

Figure 2-2. Phases of Oracle startup

SQL> alter database mount;

>- SQL= slartup;

P ——
} SQL> alter database open;

—

When you issue a STARTUP statement without any parameters, Oracle automatically

steps through the three startup phases (nomount, mount, open). In most cases, you will

issue a STARTUP statement with no parameters to start your database. Table 2-3 describes

the meanings of parameters that you can use with the database STARTUP statement.

Table 2-3. Parameters Available with the startup Command

Parameter Meaning

FORCE Shuts down the instance with ABORT before restarting it; useful for
troubleshooting startup issues; not normally used

RESTRICT Only allows users with the RESTRICTED SESSION privilege to connect to the
database

PFILE Specifies the client parameter file to be used when starting the instance

QUIET Suppresses the display of SGA information when starting the instance

NOMOUNT Starts background processes and allocates memory; doesn’t read control files

MOUNT Starts background processes, allocates memory, and reads control files

OPEN Starts background processes, allocates memory, reads control files, and opens

online redo logs and data files

(continued)

67

CHAPTER 2 CREATING A DATABASE

Table 2-3. (continued)

Parameter Meaning

OPEN RECOVER Attempts media recovery before opening the database
OPEN READ ONLY Opens the database in read-only mode

UPGRADE Used when upgrading a database
DOWNGRADE Used when downgrading a database
Stopping the Database

Normally, you use the SHUTDOWN IMMEDIATE statement to stop a database. The IMMEDIATE
parameter instructs Oracle to halt database activity and roll back any open transactions:

SQL> shutdown immediate;
Database closed.

Database dismounted.
ORACLE instance shut down.

Table 2-4 provides a detailed definition of the parameters available with the
SHUTDOWN statement. In most cases, SHUTDOWN IMMEDIATE is an acceptable method of
shutting down your database. If you issue the SHUTDOWN command with no parameters,
it'’s equivalent to issuing SHUTDOWN NORMAL.

Table 2-4. Parameters Available with the SHUTDOWN Command

Parameter Meaning

NORMAL Wait for users to log out of active sessions before shutting down.

TRANSACTIONAL Wait for transactions to finish, and then terminate the session.

TRANSACTIONAL Perform a transactional shutdown for local instance only.

LOCAL

IMMEDIATE Terminate active sessions immediately. Open transactions are rolled back.

ABORT Terminate the instance immediately. Transactions are terminated and aren’t
rolled back.

68

CHAPTER 2 CREATING A DATABASE

Starting and stopping your database is a fairly simple process. If the environment
is set up correctly, you should be able to connect to your database and issue the
appropriate STARTUP and SHUTDOWN statements.

Tip If you experience any issues with starting or stopping your database, look
in the alert log for details. The alert log usually has a pertinent message regarding
any problems.

You should rarely need to use the SHUTDOWN ABORT statement. Usually, SHUTDOWN
IMMEDIATE is sufficient. Having said that, there is nothing wrong with using SHUTDOWN
ABORT. If SHUTDOWN IMMEDIATE isn’t working for any reason, then use SHUTDOWN ABORT. Also
remember on startup after a SHUTDOWN ABORT command, the database is going to need
to recover media files and might take a significant amount of time to run through the files.

On a few, rare occasions the SHUTDOWN ABORT will fail to work. In those situations,
you canuse ps -ef | grep smon to locate the Oracle system-monitor process and then
use the Linux/Unixk ill command to terminate the instance. When you kill a required
Oracle background process, this causes the instance to abort. Obviously, you should use
an OS kill command only as a last resort.

DATABASE VS. INSTANCE

Although DBAs often use the terms database and instance synonymously, these two terms
refer to very different architectural components. In Oracle the term database denotes the
physical files that make up a database: the data files, online redo log files, and control files.
The term instance denotes the background processes and memory structures.

For example, you can create an instance without having a database present. Before a
database is physically created, you must start the instance with the STARTUP NOMOUNT
statement. In this state you have background processes and memory structures without any
associated data files, online redo logs, or control files. The database files aren’t created until
you issue the CREATE DATABASE statement.

Another important point to remember is that an instance can only be associated with one
database, whereas a database can be associated with many different instances (as with
Oracle Real Application Clusters [RAC]). An instance can mount and open a database one time

69

CHAPTER 2 CREATING A DATABASE

only. Each time you stop and start a database, a new instance is associated with it. Previously
created background processes and memory structures are never associated with a database.

To demonstrate this concept, close a database with the ALTER DATABASE CLOSE statement:
SQL> alter database close;
If you attempt to restart the database, you receive an error:

SOL> alter database open;
ERROR at line 1:
ORA-16196: database has been previously opened and closed

This is because an instance can only ever mount and open one database. You must stop and
start a new instance before you can mount and open the database.

Using the dbca to Create a Database

You can also use the dbca utility to create a database. This utility works in two modes:
graphical and silent. To use the dbca in graphical mode, ensure you have the proper X
software installed, then issue the xhost + command, and make certain your DISPLAY

variable is set; for example,

$ xhost +
$ echo $DISPLAY
:0.0

To run the dbca in graphical mode, type in dbca from the OS command line:

$ dbca

The graphical mode is very intuitive and will walk you through all aspects of creating
a database. You may prefer to use this mode if you are new to Oracle and want to be
explicitly prompted with choices.

You can also run the dbca in silent mode with a response file. In some situations,
using dbca in graphical mode isn’t feasible. This may be due to slow networks or the
unavailability of X software. To create a database, using dbca in silent mode, perform the
following steps:

1. Locatethed bca.rspfile.

2. Make a copy ofthed bca.rsp file.

70

CHAPTER 2 CREATING A DATABASE

3. Modify the copy of the d bca.rsp file for your environment.
4. Run the dbca utility in silent mode.

First, navigate to the location in which you copied the Oracle database installation
software, and use the find command to locate dbca.rsp:

$ find . -name dbca.rsp
./18.0.0.0/database/response/dbca.xsp

Copy the file so that you're not modifying the original (in this way, you'll always have
a good, original file):

$ cp dbca.rsp mydb.rsp

Now, edit the mydb. rsp file. Minimally, you need to modify the following parameters:
GDBNAME, SID, SYSPASSWORD, SYSTEMPASSWORD, SYSMANPASSWORD, DBSNMPPASSWORD,
DATAFILEDESTINATION, STORAGETYPE, CHARACTERSET, and NATIONALCHARACTERSET.
Following is an example of modified values in the mydb. rsp file:

[CREATEDATABASE]

GDBNAME = "018DEV"

SID = "018DEV"

TEMPLATENAME = "General Purpose.dbc"
SYSPASSWORD = "foo"

SYSTEMPASSWORD = "foo0"
SYSMANPASSWORD = "foo"
DBSNMPPASSWORD = "foo"
DATAFILEDESTINATION ="/u01/dbfile"
STORAGETYPE="FS"

CHARACTERSET = "AL32UTF8"
NATIONALCHARACTERSET= "UTF8"

Next, run the dbca utility in silent mode, using a response file:
$ dbca -silent -responseFile /home/oracle/orainst/mydb.rsp
You should see output such as

Copying database files
1% complete

71

CHAPTER 2 CREATING A DATABASE

Creating and starting Oracle instance

62% complete
Completing Database Creation

100% complete
Look at the log file ... for further details.

If you look in the log files, note that the dbca utility uses the rman utility to restore
the data files used for the database. Then, it creates the instance and performs
postinstallation steps. On a Linux server you should also have an entry in the /etc/
oratab file for your new database.

Many DBAs launch dbca and configure databases in the graphical mode, but a few
exploit the options available to them using the response file. With effective utilization
of the response file, you can consistently automate the database creation process. You
can modify the response file to build databases on ASM and even create RAC databases.
In addition, you can control just about every aspect of the response file, similar to
launching the dbca in graphical mode.

Tip You can view all options of the dbca via the help parameter: dbca -help

USING DBCA TO GENERATE A CREATE DATABASE STATEMENT

You can use the dbca utility to generate a CREATE DATABASE statement. You can perform
this either interactively with the graphical interface or via silent mode. The key is to choose
the “custom database template” and also specify the option to “generate database creation
scripts.” This example uses the silent mode to generate a script that contains a CREATE
DATABASE statement:

$ dbca -silent -generateScripts -customCreate -templateName New Database.dbt \
-gdbName DKDEV

The prior line of code instructs the dbca to create a script named CreateDB.sql and place it
in the ORACLE_BASE/admin/DKDEV/scripts directory. The CreateDB. sql file contains a
CREATE DATABASE statement within it. Also created is an init. ora file for initializing your
instance.

72

CHAPTER 2 CREATING A DATABASE

In this example, the scripts required to create a database are generated for you. No database
is created until you manually run the scripts.

This technique gives you an automated method for generating a CREATE DATABASE
statement. This is especially useful if you are new to Oracle and are unsure of how to
construct a CREATE DATABASE statement or if you are using a new version of the database
and want a valid CREATE DATABASE statement generated by an Oracle utility.

Dropping a Database

If you have an unused database that you need to drop, you can use the DROP DATABASE
statement to accomplish this. Doing so removes all data files, control files, and online
redo logs associated with the database.

Needless to say, use extreme caution when dropping a database. Before you drop
a database, ensure that you're on the correct server and are connected to the correct
database. On a Linux/Unix system, issue the following OS command from the OS prompt:

$ uname -a

Next, connect to SQL*Plus, and be sure you're connected to the database you want
to drop:

SQL> select name from v$database;

After you've verified that you're in the correct database environment, issue the
following SQL commands from a SYSDBA-privileged account:

SQ> shutdown immediate;
SQL> startup mount exclusive restrict;
SOL> drop database;

Caution Obviously, you should be careful when dropping a database. You aren’t
prompted when dropping the database and, as of this writing, there is no UNDROP
ACCIDENTALLY DROPPED DATABASE command. Use extreme caution when
dropping a database, because this operation removes data files, control files, and
online redo log files.

73

CHAPTER 2 CREATING A DATABASE

The DROP DATABASE command is useful when you have a database that needs
to be removed. It may be a test database or an old database that is no longer used.
The DROP DATABASE command doesn’t remove old archive redo log files. You must
manually remove those files with an OS command (such as rm, in Linux/Unix, or del,
at the Windows command prompt). You can also instruct RMAN to remove archive
redo log files.

How Many Databases on One Server?

Sometimes, when you're creating new databases, this question arises: How many
databases should you put on one server? One extreme is to have only one database
running on each database server. This architecture is illustrated in Figure 2-3,
which shows two different database servers, each with its own installation of the
Oracle binaries. This type of setup is profitable for the hardware vendor but in many
environments isn’t an economical use of resources.

Oracle _— :
binaries database1

serveri

Oracle
-
binaries daiabasp2

Figure 2-3. Architecture with one server per database

If you have enough memory, central processing unit (CPU), and disk resources,
then you should consider creating multiple databases on one server. You can create a
new installation of the Oracle binaries for each database or have multiple databases
share one set of Oracle binaries. Figure 2-4 shows a configuration using one set of
Oracle binaries that’s shared by multiple databases on one server. Of course, if you have
requirements for different versions of the Oracle binaries, you must have multiple Oracle
homes to house those installations.

74

CHAPTER 2 CREATING A DATABASE

<=ENE-

fromemeg (appusert)
appuser1

database1 @ _.

<

————

dalabase2

server

Oracle

binaries

Figure 2-4. Multiple databases sharing one set of Oracle binaries on a server

If you don’t have the CPU, memory, or disk resources to create multiple databases
on one server, consider using one database to host multiple applications and users,
as shown in Figure 2-5. In environments such as this, be careful not to use public
synonyms, because there may be collisions between applications. It’s typical to
create different schemas and tablespaces to be used by different applications in such
environments.

N

Oracle \“"'--—_—--"'J :
EE instance1
binaries database1
3

Figure 2-5. One database used by multiple applications and users

appuseri

server1

With Oracle Database 18c you have the option of using the pluggable database
feature. This technology allows you to house several pluggable databases within
one container database. The pluggable databases share the instance, background
processes, undo, and Oracle binaries but function as completely separate databases.
Each pluggable database has its own set of tablespaces (including SYSTEM) that are not
visible to any other pluggable databases within the container database. This allows you
to securely implement an isolated database that shares resources with other databases.
Figure 2-6 depicts this architecture (see Chapter 23 for details on how to implement a
pluggable database).

75

https://doi.org/10.1007/978-1-4842-4424-1_23

CHAPTER 2 CREATING A DATABASE

Oracle
binaries

appuser2

Figure 2-6. One container database with multiple pluggable databases

You must consider several architectural aspects when determining whether to use
one database to host multiple applications and users:

o Do the applications generate vastly different amounts of redo, which
may necessitate differently sized online redo logs?

e Are the queries used by applications dissimilar enough to require

different amounts of undo, sorting space, and memory?

o Does the type of application require a different database block size,
such as 8KB, for an OLTP database; or 32KB, for a data warehouse?

o Are there any security, availability, replication, or performance
requirements that require an application to be isolated?

e Does an application require any features available only in the
Enterprise Edition of Oracle?

e Does an application require the use of any special Oracle features,
such as Data Guard, partitioning, Streams, or RAC?

e What are the backup and recovery requirements for each application?
Does one application require online backups and the other
application doesn’t? Does one application require tape backups?

o Isanyapplication dependent on an Oracle database version? Will
there be different database upgrade schedules and requirements?

Table 2-5 describes the advantages and disadvantages of these architectural
considerations regarding how to use Oracle databases and applications. This is just
looking at the database instances without using multitenancy with container and
pluggable databases. We will revisit these disadvantages when leveraging containers as
this allows you to consolidate on fewer servers. This will be discussed in Chapter 22.

76

CHAPTER 2 CREATING A DATABASE

Table 2-5. Oracle Database Configuration Advantages and Disadvantages

Configuration Advantages Disadvantages

One database per server Dedicated resources for the Most expensive; requires more
application using the database; hardware
completely isolates applications
from each other;

Multiple databases and requires fewer servers Multiple databases competing for disk,
Oracle homes per server memory, and CPU resources

Multiple databases and Requires fewer servers; doesn’t Multiple databases competing for disk,
one installation of Oracle require multiple installations of memory, and CPU resources
binaries on the server the Oracle binaries

One database and one Only requires one server and one Multiple databases competing for

Oracle home serving database; inexpensive disk, memory, and CPU resources;

multiple applications multiple applications dependent on one
database; one single point of failure

Container database Least expensive; allows multiple Multiple databases competing for

containing multiple pluggable databases to use disk, memory, and CPU resources;

pluggable databases the infrastructure of one parent multiple applications dependent on one
container database securely database; one single point of failure

Understanding Oracle Architecture

This chapter introduced concepts such as database (data files, online redo log files,
control files), instance (background processes and memory structures), parameter

file, password file, and listener. Now is a good time to present an Oracle architecture
diagram that shows the various files and processes that constitute a database and
instance. Some of the concepts depicted in Figure 2-7 have already been covered in
detail: for example, database vs. instance. Other aspects of Figure 2-7 will be covered in
future chapters. However, it’s appropriate to include a high-level diagram such as this in
order to represent visually the concepts already discussed and to lay the foundation for
understanding upcoming topics in this book.

77

CHAPTER 2 CREATING A DATABASE

-] 909960 —

SGA L ool
Y Lcn, Bullu Shared Pool IMI
\ I Library Cache
Oracle Server Database Buffer Cache 3
-l PURICT treams
Processes) {Data Blocks Used in Memory) DD Cache Pool
r
listener LGWR { ARCn)
1 Data Blocks
Changed Checkpoint . Chan,
ge
Blocke 5(, N Ch e:ézmm Veetors
S :
Database

Figure 2-7. Oracle database architecture

There are several aspects to note about Figure 2-7. Communication with the
database is initiated through a sqlplus user process. Typically, the user process
connects to the database over the network. This requires that you configure and start
a listener process. The listener process hands off incoming connection requests to an
Oracle server process, which handles all subsequent communication with the client
process. If a remote connection is initiated as a sys*-level user, then a password file is
required. A password file is also required for local sys* connections that don’t use OS
authentication.

The instance consists of memory structures and background processes. When the
instance starts, it reads the parameter file, which helps establish the size of the memory
processes and other characteristics of the instance. When starting a database, the
instance goes through three phases: nomount (instance started), mount (control files
opened), and open (data files and online redo logs opened).

The number of background processes varies by database version (more than 30 in
the latest version of Oracle). You can view the names and descriptions of the processes
via this query:

SOL> select name, description from v$bgprocess;

78

CHAPTER 2 CREATING A DATABASE

The major background processes include

DBWn: The database writer writes blocks from the database buffer
cache to the data files.

CKPT: The checkpoint process writes checkpoint information to
the control files and data file headers.

LGWR: The log writer writes redo information from the log buffer
to the online redo logs.

ARCn: The archiver copies the content of online redo logs to
archive redo log files.

RVWR: The recovery writer maintains before images of blocks in
the fast recovery area.

MMON: The manageability monitor process gathers automatic
workload repository statistics.

MMNL: The manageability monitor lite process writes statistics
from the active session history buffer to disk.

SMON: The system monitor performs system level clean-up
operations, including instance recovery in the event of a failed
instance, coalescing free space, and cleaning up temporary space.

PMON: The process monitor cleans up abnormally terminated
database connections and also automatically registers a database
instance with the listener process.

RECO: The recoverer process automatically resolves failed
distributed transactions.

The structure of the SGA varies by Oracle release. You can view details for each
component via this query:

SQL> select pool, name from v$sgastat;

79

CHAPTER 2 CREATING A DATABASE

The major SGA memory structures include

SGA: The SGA is the main read/write memory area and is
composed of several buffers, such as the database buffer
cache, redo log buffer, shared pool, large pool, java pool, and
streams pool.

Database buffer cache: The buffer cache stores copies of blocks
read from data files.

Log buffer: The log buffer stores changes to modified data blocks.

Shared pool: The shared pool contains library cache information
regarding recently executed SQL and PL/SQL code. The shared
pool also houses the data dictionary cache, which contains
structural information about the database, objects, and users.

Finally, the program global area (PGA) is a memory area separate from the SGA.
The PGA is a process-specific memory area that contains session-variable information.

Summary

After you've installed the Oracle binaries, you can create a database. Before creating a
database, make sure you've correctly set the required OS variables. You also need an
initialization file and to pre-create any necessary directories. You should carefully think
about which initialization parameters should be set to a nondefault value. In general, I try
to use as many default values as possible and only change an initialization parameter
when there is a good reason. If performing too many manual processes and steps, the
process needs to be reexamined. With the latest version of the database, many of the
environment variables are set; directories will be created when using the configuration
assists, dbca, and netca. Using response files is another way to automate the processes
for creation.

This chapter focused on using SQL*Plus to create databases. This is an efficient and
repeatable method for creating a database. When you’re crafting a CREATE DATABASE
statement, consider the size of the data files and online redo logs for placement and
storage needs of the database. The internal parameters and sizing should be understood
as part of the internal knowledge of the databases for later troubleshooting and other

80

CHAPTER 2 CREATING A DATABASE

configurations. Using the new features of the latest release is going to increase the
efficiencies of the databases. Some environments might be using previous versions,
which makes it even more important to understand the internals of what is needed to
create the database.

I've worked in some environments in which management dictated the requirement
of one database per server; unless this is a container database with multiple pluggable
databases, there are unutilized resources on the server. A fast server with large memory
areas and many CPUs should be capable of hosting several different databases. You must
determine what architecture meets your business requirements when deciding how
many databases to place on one box.

After you've created a database, the next step is to configure the environment so
that you can efficiently navigate, operate, and monitor the database. These tasks are
described in the next chapter.

81

CHAPTER 3

Configuring an Efficient
Environment

After you install the Oracle binaries and create a database, you should configure your
environment to enable you to operate efficiently. Regardless of the functionality of
graphical database administration tools, DBAs still need to perform many tasks from the
OS command line and manually execute SQL statements. A DBA who takes advantage of
the OS and SQL has a clear advantage over a DBA who doesn't.

In any database environment (Oracle, MySQL, and so on), an effective DBA uses
advanced OS features to allow you to quickly navigate the directory, locate files, repeat
commands, display system bottlenecks, and so forth. To achieve this efficiency, you must
be knowledgeable about the OS that houses the database.

In addition to being proficient with the OS, you must also be skillful with the SQL
interface into the database. Although you can glean much diagnostic information from
graphical interfaces, SQL enables you to take a deeper dive into the internals to do
advanced troubleshooting and derive database intelligence.

This chapter lays the foundation for efficient use of the OS and SQL to manage
your databases. You can use the following OS and database features to configure your
environment for effectiveness:

e OSvariables

o Shell aliases

o Shell functions
o Shell scripts

o SQL scripts

83
© Michelle Malcher and Darl Kuhn 2019

M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_3

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

When you're in a stressful situation, it’s paramount to have an environment in which
you can quickly discern where you are and what accounts you're using and to have tools
that help you quickly identify problems. The techniques described in this chapter are
like levers: they provide leverage for doing large amounts of work fast. These tools let
you focus on the issues you may be facing instead of verifying your location or worrying
about command syntax.

This chapter begins by detailing OS techniques for enabling maximum efficiency.
Later sections show how you can use these tools to display environment details
automatically, navigate the file system, monitor the database proactively, and triage.

Tip Consistently use one OS shell when working on your database servers.

| recommend that you use the Bash shell; it contains all the most useful features
from the other shells (Korn and C), plus it has additional features that add to its
ease of use.

Customizing Your 0S Command Prompt

Typically, DBAs work with multiple servers and multiple databases. In these situations,
you may have numerous terminals’ sessions open on your screen. You can run the
following types of commands to identify your current working environment:

$ hostname -a

$ id

$ who am i

$ echo $ORACLE_SID
$ pwd

To avoid confusion about which server you're working on, it’s often desirable to
configure your command prompt to display information regarding its environment, such
as the machine name and database SID. In this example, the command prompt name is
customized to include the hostname, user, and Oracle SID:

$ PS1="[\h:\u:${ORACLE_SID}]$ '

84

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

The \h specifies the hostname. The \u specifies the current OS user. $ORACLE_SID
contains the current setting for your Oracle instance identifier. Here is the command
prompt for this example:

[oracle18c:oracle:018c]$

The command prompt contains three pieces of important information about the
environment: server name, OS username, and database name. When you're navigating
among multiple environments, setting the command prompt can be an invaluable tool
for keeping track of where you are and what environment you're in.

If you want the OS prompt automatically configured when you log in, then you need
to set it in a startup file. In a Bash shell environment, you typically use the . bashxrc file.
This file is normally located in your HOME directory. Place the following line of code in .
bashrc:

PS1="[\h:\u:${ORACLE_SID}]$ '

When you place this line of code in the startup file, then any time you log in to the
server, your OS prompt is set automatically for you. In other shells, such as the Korn
shell, the . profile file is the startup file.

Depending on your personal preference, you may want to modify the command
prompt for your particular needs. For example, many DBAs like the current working
directory displayed in the command prompt. To display the current working directory
information, add the \ w variable:

$ PS1="[\h:\u:\w:${ORACLE_SID}]$ '

As you can imagine, a wide variety of options are available for the information shown
in the command prompt. Here is another popular format:

$ PS1='[\u@${ORACLE_SID}@\h:\W]$ °

Table 3-1 lists many of the Bash shell variables you can use to customize the OS
command prompt.

85

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

Table 3-1. Bash Shell Backslash-Escaped Variables Used for Customizing the
Command Prompt

Variable Description

\ a ASCII bell character

\d Date in “weekday month day-of-month” format
\ h Hostname

\ e ASCII escape character

\ j Number of jobs managed by the shell

\ 1 Base name of the shell’s terminal device

\'n Newline

\'r Carriage return

\'s Name of the shell

\ t Time in 24-hour HH:MM:SS format

\T Time in 12-hour HH:MM:SS format

\ @ Time in 12-hour av/pm format

\ A Time in 24-hour HH:MM format

\u Current shell

\ v Version of the Bash shell

\V Release of the Bash shell

\ w Current working directory

\ W Base name of the current working directory (not the full path)
\ | History number of command

\$ If the effective user identifier (UID) is 0, then displays #; otherwise, displays $

The variables available for use with your command prompt vary somewhat by OS
and shell. For example, in a Korn shell environment, the hostname variable displays the
server name in the OS prompt:

$ export PS1="[hostname™]$ "

86

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

If you want to include the ORACLE_SID variable within that string, then set it as
follows:

$ export PSi=[hostname™':"${ORACLE _SID}"]$ '

Try not to go overboard in terms of how much information you display in the OS
prompt. Too much information limits your ability to type in and view commands on one
line. As a rule of thumb, minimally you should include the server name and database
name displayed in the OS prompt. Having that information readily available will save
you from making the mistake of thinking that you're in one environment when you're
really in another.

Customizing Your SQL Prompt

DBAs frequently use SQL*Plus to perform daily administrative tasks. Often, you'll work
on servers that contain multiple databases. Obviously, each database contains multiple
user accounts. When connected to a database, you can run the following commands to
verify information such as your username, database connection, and hostname:

SQL> show user;
SQL> select name from v$database;

This is very useful to verify development versus production accounts, in order to keep
them separate. Using a SQLPROMPT for a quick visual besides querying the database will
make sure the right environment is being used for any queries, changes, etc.

A more efficient way to determine your username and SID is to set your SQL prompt
to display that information; for example,

SQL> SET SQLPROMPT '& USER.@& CONNECT IDENTIFIER.> '

An even more efficient way to configure your SQL prompt is to have it automatically
run the SET SQLPROMPT command when you log in to SQL*Plus. Follow these steps to
fully automate this:

1. Create a file named login.sql, and place in it the SET SQLPROMPT

command.

87

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

2. Setyour SOLPATH OS variable to include the directory location of
login.sql. In this example, the SQLPATH OS variable is set in the
.bashrc OS file, which is executed each time a new shell is logged
in to or started. Here is the entry:

export SQLPATH=$HOME/scripts

3. Create afilenamed 1 ogin.sql intheH OME/scripts directory.
Place the following line in the file:

SET SQLPROMPT '& USER.@& CONNECT IDENTIFIER.> '

4. To see the result, you can either log out and log back in to your
server or source the . bashrc file directly:

$. ./.bashrc
Now, log in to SQL. Here is an example of the SQL*Plus prompt:
SYS@devdb1>
If you connect to a different user, this should be reflected in the prompt:
SOL> conn system/foo
The SQL*Plus prompt now displays
SYSTEM@devdb1

Setting your SQL prompt is an easy way to remind yourself which environment and
user you're currently connected as. This will help prevent you from accidentally running
an SQL statement in the wrong environment. The last thing you want is to think you're in
a development environment and then discover that you've run a script to delete objects
while connected in a production environment.

Table 3-2 contains a complete list of SQL*Plus variables that you can use to
customize your prompt.

88

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

Table 3-2. Predefined SQL*Plus Variables

Variable Description

_ CONNECT _IDENTIFIER Connection identifier, such as the Oracle SID

_ DATE Current date

_ EDITOR Editor used by the SQL EDIT command

_ 0 _VERSION Oracle version

_ 0 _RELEASE Oracle release

_ PRIVILEGE Privilege level of the current connected session

_ SQLPLUS_RELEASE SQL*Plus release number

_ USER Current connected user

Creating Shortcuts for Frequently Used Commands

In Linux/Unix environments, you can use two common methods to create shortcuts to
other commands: create aliases for often repeated commands and use functions to form
shortcuts for groups of commands. The following sections describe ways in which you
can deploy these two techniques.

Using Aliases

An alias is a simple mechanism for creating a short piece of text that will execute other
shell commands. Here is the general syntax:

$ alias <alias_name>='<shell command>'

For instance, when faced with database problems, it’s often useful to create an alias
that runs a cd command that places you in the directory containing the database alert
log. This example creates an alias (named bdump) that changes the current working
directory to where the alert log is located:

$ alias bdump="'cd /u01/app/oracle/diag/rdbms/018c/018c/trace’

89

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

Now, instead of having to type the cd command, along with a lengthy (and easily
forgettable) directory path, you can simply type in bdump, and they are placed in the
specified directory:

$ bdump
$ pwd
/u01/app/oracle/diag/rdbms/018c/018c/trace

The prior technique allows you to navigate to the directory of interest efficiently
and accurately. This is especially handy when you manage many different databases
on different servers. You simply have to set up a standard set of aliases that allow you to
navigate and work more efficiently.

To show all aliases that have been defined, use the alias command, with no arguments:

$ alias
Listed next are some common examples of alias definitions you can use:

alias 1.="1ls -d .*'

alias 11="1s -1'

alias 1sd='ls -altr | grep ~d'
alias sqlp='sqlplus "/ as sysdba"'

alias shutdb="echo "shutdown immediate;" | sqlp'
alias startdb="echo "startup;" | sqlp'

If you want to remove an alias definition from your current environment, use the

unalias command. The following example removes the alias for 1sd:

$ unalias 1lsd

LOCATING THE ALERT LOG

In Oracle Database 11g and higher, the alert log directory path has this structure:
ORACLE_BASE/diag/rdbms/LOWER(<db_unique_name>)/<instance_name>/trace

Usually (but not always) the db_unique_name is the same as the instance_name. In Data
Guard environments the db_unique_name will often not be the same as the instance_name.
You can verify the directory path with this query:

SOL> select value from v$diag info where name = 'Diag Trace';

90

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

The name of the alert log follows this format:
alert <ORACLE_SID>.log

You can also locate the alert log from the 0S (whether the database is started or not) via these
0S commands:

$ cd $ORACLE_BASE
$ find . -name alert <ORACLE_SID>.log

In the prior find command, you’ll need to replace the <ORACLE_SID> value with the name of
your database.

Using a Function

Much like an alias, you can also use a function to form command shortcuts. A function is
defined with this general syntax:

$ function <function_name> {
shell commands

For example, the following line of code creates a simple function (named bdump)
that allows you to change the current working directory, dependent on the name of the
database passed in:

function bdump {
if ["$1" = "engdev"]; then

cd /orahome/app/oracle/diag/rdbms/engdev/ENGDEV/trace
elif ["$1" = "stage"]; then

cd /orahome/app/oracle/diag/rdbms/stage/STAGE/trace
fi
echo "Changing directories to $1 Diag Trace directory"
pwd
}

91

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

You can now type bdump, followed by a database name at the command line, to
change your working directory to the Oracle background dump directory:

$ bdump stage
Changing directories to stage Diag Trace directory
/orahome/app/oracle/diag/rdbms/stage/STAGE/trace

Using functions is usually preferable to using aliases. Functions are more powerful
than aliases because of features such as the ability to operate on parameters passed in on
the command line and allowing for multiple lines of code and therefore more complex
coding.

DBAs commonly establish functions by setting them in the H OME/.bashrc file. A
better way to manage functions is to create a file that stores only function code and call
that file from the . bashrc file. It’s also better to store special purpose files in directories
that you've created for these files. For instance, create a directory named bin under HOME.
Then, in the bin directory, create a file named dba_fcns, and place in it your function
code. Now, call the dba_fcns file from the . bashrc file. Here is an example of an entry
ina .bashrc file:

. $HOME/bin/dba_fcns
Listed next is a small sample of some of the types of functions you can use:

show environment variables in sorted list
function envs {
if test -z "$1"
then /bin/env | /bin/sort
else /bin/env | /bin/sort | /bin/grep -i $1
fi

find largest files below this point
function f1f {
find . -1s | sort -nrk7 | head -10

92

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

find largest directories consuming space below this point
function fld {
du -S . | sort -nr | head -10

function bdump {
if [$ORACLE_SID = "018c"]; then
cd /u01/app/oracle/diag/rdbms/018c/018c/trace
elif [$ORACLE_SID = "CDB1"]; then
cd /u01/app/oracle/diag/rdbms/cdb1/CDB1/trace
elif [$ORACLE SID = "rcat"]; then
cd /u01/app/oracle/diag/rdbms/rcat/rcat/trace
fi
pwd
} # bdump

If you ever wonder whether a shortcut is an alias or a function, use the type
command to verify a command’s origin. This example verifies that bdump is a function:

$ type bdump

Rerunning Commands Quickly

When there are problems with a database server, you need to be able to quickly run
commands from the OS prompt. You may be having some sort of performance issue and
want to run commands that navigate you to directories that contain log files, or you may
want to display the top-consuming processes from time to time. In these situations, you
don’t want to waste time having to retype command sequences.

One time-saving feature of the Bash shell is that it has several methods for editing
and rerunning previously executed commands. The following list highlights several
options available for manipulating previously typed commands:

e Scrolling with the up (1) and down (|) arrow keys
e Using Ctrl+P and Ctrl+N

o Listing the command history

93

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

o Searchingin reverse
e Setting the command editor

Each of these techniques is described briefly in the following sections.

Scrolling with the Up and Down Arrow Keys

You can use the up arrow to scroll up through your recent command history. As you
scroll through previously run commands, you can rerun a desired command by pressing
the Enter or Return key.

If you want to edit a command, use the Backspace key to erase characters, or use the
left arrow to navigate to the desired location in the command text. After you've scrolled
up through the command stack, use the down arrow to scroll back down through
previously viewed commands.

Note If you're familiar with Windows, scrolling through the command stack is
similar to using the DOSKEY utility.

Using Ctrl+P and Ctrl+N

The Ctrl+P keystroke (pressing the Ctrl and P keys at the same time) displays your
previously entered command. If you've pressed Ctrl+P several times, you can scroll
back down the command stack by pressing Ctrl+N (pressing the Ctrl and N keys at the

same time).

Listing the Command History

You can use the history command to display commands that the user previously entered:
$ history

Depending on how many commands have previously been executed, you may see a
lengthy stack. You can limit the output to the last n number of commands by providing
a number with the command. For example, the following query lists the last five

commands that were run:
$ history 5

94

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT
Here is some sample output:

273 cd -

274 grep -i ora alert.log

275 ssh -Y -1 oracle 65.217.177.98
276 pwd

277 history 5

To run a previously listed command in the output, use an exclamation point (!)
(sometimes called the bang) followed by the history number. In this example, to run the
p wd command on line 276, use !, as follows:

$ 1276
To run the last command you ran, use !!, as shown here:

$ 1!

Searching in Reverse

Press Ctrl+R, and you're presented with the Bash shell reverse-search utility:
$ (reverse-i-search) ':

From the reverse-i-search prompt, as you type each letter, the tool automatically
searches through previously run commands that have text similar to the string you
entered. As soon as you're presented with the desired command match, you can rerun
the command by pressing the Enter or Return key. To view all commands that match a
string, press Ctrl+R repeatedly. To exit the reverse search, press Ctrl+C.

Setting the Command Editor

You can use the set - o0 command to make your command-line editor be either vi or
emacs. This example sets the command-line editor to be vi:

$ set -o vi

Now, when you press Esc+K, you're placed in a mode in which you can use vi
commands to search through the stack of previously entered commands.

95

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

For example, if you want to scroll up the command stack, you can use the K key;
similarly, you can scroll down using the] key. When in this mode you can use the slash
(/) key and then type a string to be searched for in the entire command stack.

Tip Before you attempt to use the command editor feature, be sure you'’re
thoroughly familiar with either the vi or emacs editor.

A short example will illustrate the power of this feature. Say you know that you ran
the 1s - altr command about an hour ago. You want to run it again, but this time
without the r (reverse-sort) option. To enter the command stack, press Esc+K:

$ Esc+K

You should now see the last command you executed. To search the command stack
for the 1s command, type /1s, and then press Enter or Return:

$ /1s
The most recently executed 1s command appears at the prompt:
$ 1s -altr

To remove the 1 option, use the right arrow key to place the prompt over the r on the
screen, and press X to remove the r from the end of the command. After you've edited
the command, press the Enter or Return key to execute it.

Developing Standard Scripts

I've worked in shops where the database administration team developed hundreds of
scripts and utilities to help manage an environment. One company had a small squad
of DBAs whose job function was to maintain the environmental scripts. I think that’s
overkill. I tend to use a small set of focused scripts, with each script usually less than 50
lines long. If you develop a script that another DBA can’t understand or maintain, then
it loses its effectiveness. Also, if you have to execute a command more than a couple of
times, a script should be created to execute it. If it is something that is now a standard,
regular check, or job, the script can be used to automate the process.

96

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

These scripts are handy to put into jobs that will be automatically run or during a
time of troubleshooting since it needs to be completed quickly. There are other tools
that also maintain database and provide proactive alerts and monitoring of multiple
databases instead of a script being run against one database at a time.

Note All the scripts in this chapter are available for download from the Source
Code/Download area of the Apress web site (www.apress.com).

This section contains several short shell functions, shell scripts, and SQL scripts that
can help you manage a database environment. This is by no means a complete list of
scripts—rather, it provides a starting point from which you can build. Each subsection
heading is the name of a script.

Note Before you attempt to run a shell script, ensure that it's executable. Use the
chmod command to achieve this: chmod 750 <script>

dba_setup

Usually, you'll establish a common set of OS variables and aliases in the same manner
for every database server. When navigating among servers, you should set these
variables and aliases in a consistent and repeatable manner. Doing so helps you (or your
team) operate efficiently in every environment. For example, it’s extremely useful to have
the OS prompt set in a consistent way when you work with dozens of different servers.
This helps you quickly identify what box you're on, which OS user you're logged in as,
and so on.

One technique is to store these standard settings in a script and then have that script
executed automatically when you log in to a server. I usually create a script named dba_
setup to set these OS variables and aliases. You can place this script in a directory such
as HOME/bin and automatically execute the script via a startup script (see the section
“Organizing Scripts” later in this chapter). Here are the contents of a typical dba_setup
script:

set prompt
PS1="[\h:\u:${ORACLE_SID}]$ '

97

http://www.apress.com

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

#

export EDITOR=vi

export VISUAL=$EDITOR

export SQLPATH=$HOME/scripts

set -0 vi

#

list directories only

alias 1sd="1ls -p | grep /"

show top cpu consuming processes

alias topc="ps -e -o pcpu,pid,user,tty,args | sort -n -k 1 -r | head"
show top memory consuming processes

alias topm="ps -e -o pmem,pid,user,tty,args | sort -n -k 1 -r | head"
#

alias sqlp="sqlplus "/ as sysdba
alias shutdb="echo "shutdown immediate;" | sqlp'
alias startdb="echo "startup;" | sqlp'

dba_fcns

Use this script to store OS functions that help you navigate and operate in your database
environment. Functions tend to have more functionality than do aliases. You can be
quite creative with the number and complexity of functions you use. The idea is that
you want a consistent and standard set of functions that you can call, no matter which
database server you're logged in to.

Place this script in a directory such as HOME/bin. Usually, you'll have this script
automatically called when you log in to a server via a startup script (see the section
“Organizing Scripts” later in this chapter). Here are some typical functions you can use:

show environment variables in sorted list
function envs {
if test -z "$1"
then /bin/env | /bin/sort
else /bin/env | /bin/sort | /bin/grep -i $1
fi
} # envs

98

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

login to sqlplus
function sp {
time sqlplus "/ as sysdba"

}#sp

find largest files below this point
function f1f {
find . -1s | sort -nrk7 | head -10

find largest directories consuming space below this point
function fld {
du -S . | sort -nr | head -10

change directories to directory containing alert log file
function bdump {

cd /u01/app/oracle/diag/rdbms/018c/018c/trace

} # bdump

tbsp_chk.bsh

This script checks to see if any tablespaces are surpassing a certain fullness threshold.
Store this script in a directory such as HOME/bin. Make sure you modify the script to
contain the correct username, password, and e-mail address for your environment.

You also need to establish the required OS variables, such as ORACLE_SID and
ORACLE_HOME. You can either hard-code those variables into the script or call a script
that sources the variables for you. The next script calls a script (named oraset) that sets
the OS variables (see Chapter 2 for the details of this script). You don’t have to use this
script—the idea is to have a consistent and repeatable way of establishing OS variables
for your environment.

99

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

You can run this script from the command line. In this example I passed it the
database name (018c) and wanted to see what tablespaces had less than 20 percent
space left:

$ tbsp chk.bsh 018c 20

The output indicates that two tablespaces for this database have less than 20 percent
space left:

space not okay
0 % free UNDOTBS1, 17 % free SYSAUX,

Here are the contents of the tbsp_chk.bsh script:

#!/bin/bash
#
if [$# -ne 2]; then
echo "Usage: $0 SID threshold"
exit 1
fi
either hard code 0S variables or source them from a script.
see Chapter 2 for details on using oraset to source oracle OS variables
. /var/opt/oracle/oraset $1
#
crit var=$(
sqlplus -s <<EOF
system/foo
SET HEAD OFF TERM OFF FEED OFF VERIFY OFF
COL pct free FORMAT 999
SELECT (f.bytes/a.bytes)*100 pct free,'% free',a.tablespace name||',’
FROM
(SELECT NVL(SUM(bytes),0) bytes, x.tablespace name
FROM dba_free space y, dba_tablespaces x
WHERE x.tablespace name = y.tablespace name(+)
AND x.contents != 'TEMPORARY' AND x.status != 'READ ONLY'
AND x.tablespace name NOT LIKE 'UNDO%'
GROUP BY x.tablespace name) f,
(SELECT SUM(bytes) bytes, tablespace name

100

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

FROM dba_data files

GROUP BY tablespace name) a

WHERE a.tablespace name = f.tablespace name
AND (f.bytes/a.bytes)*100 <= $2

ORDER BY 1;

EXIT;

EOF)

if ["$crit var" = ""]; then
echo "space okay"

else

echo "space not okay"

echo $crit var

echo $crit var | mailx -s "tbsp getting full on $1" dkuhn@gmail.com
fi
exit o

Usually, you run a script such as this automatically, on a periodic basis, from a
scheduling utility, such as cron. Here is a typical cron entry that runs the script once an
hour:

Tablespace check
2 * * * % /orahome/bin/tbsp_chk.bsh INVPRD 10 1>/orahome/bin/log/tbsp_chk.
log 2>&1

This cron entry runs the job and stores any informational output in the tbsp_chk.
log file.

When running tbsp_chk.bsh in an Oracle Database 12c pluggable database
environment from the root container, you'll need to reference the CDB_* views rather
than the DBA_* views for the script to properly report on space regarding all pluggable
databases (within the container database). You should also consider adding the NAME
and CON_ID to the query so that you can view which pluggable database is potentially
having space issues; for example,

SELECT a.name, (f.bytes/a.bytes)*100 pct free,'% free',a.tablespace name||"',"
FROM

(SELECT c.name, NVL(SUM(bytes),0) bytes, x.tablespace name

FROM cdb_free space y, cdb_tablespaces x, v$containers c

101

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

WHERE x.tablespace name = y.tablespace name(+)

AND x.contents != 'TEMPORARY' AND x.status != 'READ ONLY'
AND x.tablespace name NOT LIKE 'UNDO%'

AND x.con_id = y.con_id

AND x.con id = c.con_id

GROUP BY c.name, x.tablespace name) f,

(SELECT c.name, SUM(d.bytes) bytes, d.tablespace name
FROM cdb data files d, v$containers c

WHERE d.con id = c.con_id

GROUP BY c.name, tablespace name) a

WHERE a.tablespace name = f.tablespace name

AND (f.bytes/a.bytes)*100 <= 50

AND a.name NOT IN ('PDB$SEED")

AND a.name = f.name

ORDER BY 1;

conn.bsh

You need to be alerted if there are issues with connecting to databases. This script
checks to see if a connection can be established to the database. If a connection can’t be
established, an e-mail is sent. Place this script in a directory such as HOME/bin. Make sure
you modify the script to contain the correct username, password, and e-mail address for
your environment.

You also need to establish the required OS variables, such as ORACLE_SID and
ORACLE_HOME. You can either hard-code those variables into the script or call a script that
sources the variables for you. Like the previous script, this script calls a script (named
oraset) that sets the OS variables (see Chapter 2).

The script requires that the ORACLE_SID be passed to it; for example,

$ conn.bsh INVPRD

If the script can establish a connection to the database, the following message is
displayed:

success
db ok

102

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

Here are the contents of the conn.bsh script:

#!/bin/bash
if [$# -ne 1]; then
echo "Usage: $0 SID"
exit 1
fi
either hard code 0S variables or source them from a script.
see Chapter 2 for details on oraset script to source 0S variables
. /etc/oraset $1
#
echo "select 'success' from dual;" | sqlplus -s system/foo@o18c | grep success
if [[$? -ne 0]]; then
echo "problem with $1" | mailx -s "db problem" dkuhn@gmail.com
else
echo "db ok"
fi
#
exit 0

This script is usually automated via a utility such as cron. Here is a typical cron entry:

Check to connect to db.
18 * * * * /home/oracle/bin/conn.bsh 018c 1>/home/oracle/bin/log/conn.log 2>81

This cron entry runs the script once per hour. Depending on your availability
requirements, you may want to run a script such as this on a more frequent basis.

filesp.bsh

Use the following script to check for an operating mount point that is filling up. Place the
script in a directory such as HOME/bin. You need to modify the script so that the mntlist
variable contains a list of mount points that exist on your database server. Because this
script isn’t running any Oracle utilities, there is no reason to set the Oracle-related OS
variables (as with the previous shell scripts):

#!/bin/bash
mntlist="/orahome /ora01 /ora02 /ora03"

103

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

for ml in $mntlist

do

echo $ml

usedSpc=$(df -h $ml | awk '{print $5}' | grep -v capacity | cut -d "%" -f1 -)
BOX=$(uname -a | awk '{print $2}")

#

case $usedSpc in

[0-9])

arcStat="relax, lots of disk space: $usedSpc"

[1-71[0-9])

arcStat="disk space okay: $usedSpc"

[8][0-9])

arcStat="space getting low: $usedSpc"

echo $arcStat | mailx -s "space on: $BOX" dkuhn@gmail.com

[9][0-9])

arcStat="warning, running out of space: $usedSpc"

echo $arcStat | mailx -s "space on: $BOX" dkuhn@gmail.com

[1][o][0])

arcStat="update resume, no space left: $usedSpc"

echo $arcStat | mailx -s "space on: $BOX" dkuhn@gmail.com

)

*)

arcStat="huh?: $usedSpc"

esac

#

BOX=$(uname -a | awk '{print $2}")
echo $arcStat

#

done

#
exit 0

104

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT
You can run this script manually from the command line, like this:
$ filesp.bsh
Here is the output for this database server:

/orahome

disk space okay: 79

/ora01

space getting low: 84

/ora02

disk space okay: 41

/ora03

relax, lots of disk space: 9

This is the type of script you should run on an automated basis from a scheduling
utility such as cron. Here is a typical cron entry:

Filesystem check
7 * * * * /orahome/bin/filesp.bsh 1>/orahome/bin/log/filesp.log 2>&1

Keep in mind that the shell script used in this section (filesp.bsh) may require
modification for your environment. The shell script is dependent on the output of the
df -h command, which does vary by OS and version. For instance, on a Solaris box the
output of df -h appears as follows:

$ df -h

Filesystem size used avail capacity Mounted on
/oraoni 50G 42G 8.2G 84% /oraol
/0ran2 50G 20G 30G 41% /0ra02
/0rao3 50G 4.5G 46G 9% /0ra03
/orahome 30G 246G 6.5G 79% /orahome

This line in the shell script selectively reports on the “capacity” in the output of the
df -h command:

usedSpc=$(df -h $ml | awk '{print $5}' | grep -v capacity | cut -d "%" -f1 -)

105

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

For your environment, you'll have to modify the prior line to correctly extract the
information related to disk space remaining per mount point. For example, say you're on
a Linux box and issue a df -h command, and you observe the following output:

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
222G 162G 49G 77% /

There’s only one mount point, and the disk space percentage is associated with the
“Use%” column. Therefore, to extract the pertinent information, you'll need to modify
the code associated with usedSpc within the shell script; for example,

df -h / | grep % | grep -v Use | awk '{print $4}"' | cut -d "%" -f1 -
The shell script will thus need to have the following lines modified, as shown:

mntlist="/"

for ml in $mntlist

do

echo $ml

usedSpc=$(df -h / | grep % | grep -v Use | awk '{print $4}' | cut -d "%" -f1 -)

login.sql

Use this script to customize aspects of your SQL*Plus environment. When logging in

to SQL*Plus in Linux/Unix, the login.sql script is automatically executed if it exists in
a directory contained within the SQLPATH variable. If the SQLPATH variable hasn’t been
defined, then SQL*Plus looks for login.sql in the current working directory from which
SQL*Plus was invoked. For instance, here is how the SQLPATH variable is defined in my
environment:

$ echo $SQLPATH
/home/oracle/scripts

I created the login.sql scriptin the / home/oracle/scripts directory. It contains
the following lines:

-- set SOL prompt
SET SQLPROMPT '& USER.@& CONNECT IDENTIFIER.> '

106

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT
Now, when I'log in to SQL*Plus, my prompt is automatically set:

$ sqlplus / as sysdba
SYS@o12c¢c>

top.sql

The following script lists the top CPU-consuming SQL processes. It’s useful for
identifying problem SQL statements. Place this script in a directory such as HOME/
scripts:

select * from(

select

sql_text

,buffer gets

,disk reads

,sorts
,Cpu_time/1000000 cpu_sec
,executions
,Yows_processed

from v$sqlstats

order by cpu_time DESC)
where rownum < 11;

This is how you execute this script:
SQL> @top

Here is a snippet of the output, showing an SQL statement that is consuming a large
amount of database resources:

INSERT INTO "REP_MV"."GEM_COMPANY_ MV"

SELECT CASE GROUPING ID(trim(upper(nvl(ad.organization name,u.company))))
WHEN O THEN

trim(upper(nvl(ad.organization name,u.company)))

11004839 20937562 136 21823.59 17 12926019

107

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

lock.sql

This script displays sessions that have locks on tables that are preventing other sessions
from completing work. The script shows details about the blocking and waiting sessions.
You should place this script in a directory such as HOME/scripts. Here are the contents
of lock.sql:

SET LINES 83 PAGES 30

COL blkg user FORM a10

COL blkg machine FORM a10

COL blkg_sid FORM 99999999
COL wait_user FORM a10

COL wait_machine FORM a10

COL wait_sid FORM 9999999
COL obj_own FORM a10

COL obj_name FORM a10

SELECT

sl.username blkg user
,S1l.machine blkg machine
,s1.sid blkg sid
,sl.serial# blkg serialnum
,sl.sid || '," || si.serial# kill string
»S2.username wait user
»S2.machine wait_machine
,S2.sid wait sid
,S2.serial# wait_serialnum
,lo.object_id blkd _obj_id
,do.owner obj_own

,do.object name obj name

FROM v$lock 11
,v$session s1
,v$lock 12
,v$session s2
,v$locked object lo
,dba_objects do

108

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

WHERE si1.sid = 11.sid

AND s2.sid = 12.sid

AND 11.id1 = 12.id1

AND si.sid = lo.session_id

AND lo.object_id = do.object_id
AND 11.block =1

AND 12.request > 0O;

The lock.sql script is useful for determining what session has a lock on an object
and also for showing the blocked session. You can run this script from SQL*Plus, as
follows:

SOL> @lock.sql
Here is a partial listing of the output (truncated so that it fits on one page):

BLKG USER BLKG MACHI BLKG SID BLKG_SERIALNUM

WAIT USER WAIT MACHI WAIT SID WAIT SERTALNUM BLKD OBJ ID OBJ OWN OBJ_NAME

MV_MAINT speed 24 11
24,11
MV_MAINT speed 87 7 19095 MV _MAINT INV

When running lock.sql in an Oracle Database 18c pluggable database environment
from the root container, you'll need to change DBA OBJECTS to CDB_OBJECTS for the script
to properly report locks throughout the entire database. You should also consider adding
the NAME and CON_ID to the query so that you can view the container in which the lock
is occurring. Here’s a snippet of the modified query (you'll need to replace the “.” with
columns you want to report on):

SELECT
u.name
,S1l.username blkg user

,do.object name obj name

109

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

FROM v$lock 11
,v$session si
,v$lock 12
,v$session s2
,v$locked object lo
,cdb_objects do
,v$containers u
WHERE s1.sid = 11.sid
AND s2.sid = 12.sid
AND 11.id1 = 12.id1
AND si.sid = lo.session id
AND lo.object id = do.object id
AND 1li1.block = 1
AND 12.request > O
AND do.con_id = u.con_id;

users.sql

This script displays information about when users were created and whether their
account is locked. The script is useful when you’re troubleshooting connectivity issues.
Place the script in a directory such as HOME/scripts. Here is a typical users.sql script
for displaying user account information:

SELECT
username
,account_status
,lock date
,created

FROM dba_users

ORDER BY username;

You can execute this script from SQL*Plus, as follows:

SOL> @users.sql

110

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

Here is some sample output:

USERNAME ACCOUNT_ST LOCK DATE CREATED

SYS OPEN 09-NOV-12
SYSBACKUP OPEN 09-NOV-12
SYSDG OPEN 09-NOV-12

When running users.sql in an Oracle Database 18c pluggable database environment
from the root container, you'll need to change DBA_USERS to CDB_USERS and add the NAME
and CON_ID columns to report on all users in all pluggable databases; for example,

SELECT
c.name
,u.username
su.account_status
yu.lock date
,u.created
FROM cdb_users u
,v$containers c
WHERE u.con_id = c.con_id
ORDER BY c.name, u.username;

Organizing Scripts

When you have a set of scripts and utilities, you should organize them such that they're
consistently implemented for each database server. They should become part of your
steps for post installation of the Oracle binaries. These scripts will not only be able to be
consistently deployed as part of this process but can also be used to test the installation
and setup of databases. Follow these steps to implement the preceding DBA utilities for
each database server in your environment:

1. Create OS directories in which to store the scripts.
2. Copy your scripts and utilities to the directories created in step 1.
3. Configure your startup file to initialize the environment.

These steps are detailed in the following sections.

111

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

Step 1. Create Directories

Create a standard set of directories on each database server to store your custom scripts.
A directory beneath the HOME directory of the oracle user is usually a good location. I
generally create the following three directories:

e HOME/bin. Standard location for shell scripts that are run in an
automated fashion (such as from cron).

o HOME/bin/log. Standard location for log files generated from the
scheduled shell scripts.

e HOME/scripts. Standard location for storing SQL scripts.

You can use the mkdir command to create the previous directories, as follows:

$ mkdir -p $HOME/bin/log
$ mkdir $HOME/scripts

It doesn’t matter where you place the scripts or what you name the directories, as
long as you have a standard location so that when you navigate from server to server, you
always find the same files in the same locations. In other words, it doesn’t matter what
the standard is, only that you have a standard.

Step 2. Copy Files to Directories

Place your utilities and scripts in the appropriate directories. Copy the following files to
the HOME/bin directory:

dba_setup
dba_fcns
tbsp _chk.bsh
conn.bsh
filesp.bsh

Place the following SQL scripts in the HOME/scripts directory:

login.sql
top.sql
lock.sql
users.sql

112

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

Step 3. Configure the Startup File

Place the following code in the .bashzrc file or the equivalent startup file for the shell you
use (.profile for the Korn shell). Here is an example of how to configure the . bashrc file:

Source global definitions
if [-f /etc/bashrc]; then
. /etc/bashrc
fi
#
source oracle 0S variables
. /etc/oraset <default_database>
#
User specific aliases and functions
. $HOME/bin/dba_setup
. $HOME/bin/dba_fcns

Now, each time you log in to an environment, you have full access to all the OS
variables, aliases, and functions established in the dba_setup and dba_fcns files. If you
don’t want to log off and back in, then run the file manually, using the dot (.) command.
This command executes the lines contained within a file. The following example runs
the . bashrc file:

$. $HOME/.bashrc

The dot instructs the shell to source the script. Sourcing tells the shell process
you're currently logged in to, to inherit any variables set with an export command in an
executed script. If you don’t use the dot notation, then the variables set within the script
are visible only in the context of the subshell that is spawned when the script is executed.

Note In the Bash shell, the source command is equivalent to the dot (.)
command.

113

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

Automating Scripts

Having these scripts in your arsenal allows for quick resolution of issues or perform
tasks. It also provides a standard process for running these things against the database
instead of having different SQL or tasks running. It is a first step to automating the work
against the database.

The object is to have a database that can provide information and perform the
needed tasks to address these issues. It might seem that talking about these scripts in
this chapter does not make any sense now; however, having these scripts can provide the
basis for the automation or tools can. Understanding what needs to be monitored and
alerted assist in setting up the environment that is proactive and does not require a DBA
running scripts manually at all hours of the day and night.

Most of these scripts fit nicely with an Oracle Enterprise Management tool as they
can be inserted into scheduled jobs and run at different level of permissions. The scripts
are also good to deploy for the initial testing of the database environments when they are
provisioned by a more automated response file or cloud control. These tests can validate
that the creation steps are still properly set up and working with each version.

Summary

This chapter described how to configure an efficient environment. This is especially
important for DBAs who manage multiple databases on multiple servers. Regular
maintenance and troubleshooting activities require you to log in directly to the database
server. To promote efficiency and sanity, you should develop a standard set of OS tools
and SQL scripts that help you maintain multiple environments. You can use standard
features of the OS to assist with navigating, repeating commands, showing system
bottlenecks, quickly finding critical files, and so on.

The techniques for configuring a standard OS are especially useful when you're
working on multiple servers with multiple databases. When you have multiple terminal
sessions running simultaneously, it’s easy to lose your bearings and forget which session
is associated with a particular server and database. With just a small amount of setup,
you can make certain that your OS prompt always shows information such as the host
and database. Likewise, you can always set your SQL prompt to show the username and
database connection. These techniques help ensure that you don’t accidentally run a
command or script in the wrong environment.

114

CHAPTER 3 CONFIGURING AN EFFICIENT ENVIRONMENT

Anything that needs to be run against the database a few times is a perfect candidate
for automation. These scripts can be used to start to configure scheduled jobs and be
leveraged to develop proactive monitoring around the multiple databases.

After you have installed the Oracle binaries, created a database, and configured
your environment, you are ready to perform additional database administration tasks,
such as creating tablespaces for the applications. The topic of tablespace creation and
maintenance is discussed in the next chapter.

115

CHAPTER 4

Tablespaces and Data
Files

The term tablespace is something of a misnomer, in that it’s not just a space for tables.
Rather, a tablespace is a logical container that allows you to manage groups of data files,
the physical files on disk that consume space. Once a tablespace is created, you can then
create database objects (tables and indexes) within tablespaces, which results in space
allocated on disk in the associated data files.

A tablespace is logical in the sense that it is only visible through data dictionary views
(such as DBA_TABLESPACES); you manage tablespaces through SQL*Plus or graphical
tools (such as Enterprise Manager), or both. Tablespaces only exist while the database is
up and running.

Data files can also be viewed through data dictionary views DBA_DATA FILES) but
additionally have a physical presence, as they can be viewed outside the database
through OS utilities (such as the command 1s to list the files). Data files persist whether
the database is open, or closed.files persist whether the database is open or closed.

Oracle databases typically contain several tablespaces. A tablespace can have
one or more data files associated with it, but a data file can be associated with only
one tablespace. In other words, a data file can’t be shared between two (or more)
tablespaces.

Objects (such as tables and indexes) are owned by users and created within
tablespaces. An object is logically instantiated as a segment. A segment consists of
extents of space within the tablespace. An extent consists of a set of database blocks.
Figure 4-1 shows the relationships between these logical and physical constructs used to
manage space within an Oracle database.

117
© Michelle Malcher and Darl Kuhn 2019

M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_4

CHAPTER 4 TABLESPACES AND DATA FILES

database

il

J

physical storage

OS blocks

L l data files

=
users AN logical storage
(owners)
tablespaces segments:
- tables database
- indexes extents g
(T
- partitions
Schiomes - rollback
-and soon...
____J W)

Figure 4-1. Relationships of logical storage objects and physical storage

As you saw in Chapter 2, when you create a database, typically five tablespaces are
created when you execute the CREATE DATABASE statement:

e SYSTEM
e SYSAUX
o UNDO

o TEMP

e USERS

These five tablespaces are the minimal set of storage containers you need to operate
a database (one could argue, however, that you don’t need the USERS tablespace;
more on that in the next section). SYSTEM and SYSAUX are actually the only required
tablespaces, since UNDO and TEMP can be named differently. In a container database,
PDBs have the user tablespaces associated with it. In PDB creation, the tablespace is
part of the configuration. As you open a database for use, you should quickly create
additional tablespaces for storing application data. This chapter discusses the purpose of
the standard set of tablespaces, the need for additional tablespaces, and how to manage
these critical database storage containers. The chapter focuses on the most common
and critical tasks associated with creating and maintaining tablespaces and data files,
progressing to more advanced topics, such as moving and renaming data files.

118

CHAPTER 4 TABLESPACES AND DATA FILES

Understanding the First Five

The SYSTEM tablespace provides storage for the Oracle data dictionary objects. This
tablespace is where all objects owned by the SYS user are stored. The SYS user should be
the only user that owns objects created in the SYSTEM tablespace.

The SYSAUX (system auxiliary) tablespace is created when you create the database.
This is an auxiliary tablespace used as a data repository for Oracle database tools, such
as Enterprise Manager, Statspack, LogMiner, Logical Standby, and so on. Audit logs are
collected in the SYSAUX tablespace by default but should be configured to use another
tablespace created for audit records. Even some of these other tools can be configured
to use additional tablespaces depending on retention and separation rules and keep the
data outside of the default system tablespaces.

The UNDO tablespace stores the information required to undo the effects of a
transaction (insert, update, delete, or merge). This information is required in the event
a transaction is purposely rolled back (via a ROLLBACK statement). The undo information
is also used by Oracle to recover from unexpected instance crashes and to provide read
consistency for SQL statements. Additionally, some database features, such as Flashback
Query, use the undo information.

Some Oracle SQL statements require a sort area, either in memory or on disk. For
example, the results of a query may need to be sorted before being returned to the user.
Oracle first uses memory to sort the query results, and when there is no longer sufficient
memory, the TEMP tablespaceextra temporary storage may also be required when
creating or rebuilding indexes. The space is only used for transient data for the session,
and no permanent objects can be stored in a TEMP tablespace. If temporary objects are
needed for a process outside of one session, the object should be stored in a permanent
user tablespace. When you create a database, typically you create the TEMP tablespace
and specify it to be the default temporary tablespace for any users you create. There
can be multiple temporary tablespaces, with different names, that can be assigned to
different groups of users or applications to avoid conflicts between temp space usage.

The USERS tablespace is not absolutely required but is often used as a default
permanent tablespace for table and index data for users. As shown in Chapter 2, you
can create a default permanent tablespace for users when you create your database.
This means that when a user attempts to create a table or index, if no tablespace is
specified during object creation, by default the object is created in the default permanent
tablespace.

119

CHAPTER 4 TABLESPACES AND DATA FILES

Understanding the Need for More

Although you could put every database user’s data in the USERS tablespace, this usually
isn’t scalable or maintainable for any type of serious database application. Instead, it’s
more efficient to create additional tablespaces for application users. You typically create
at least two tablespaces specific to each application using the database: one for the
application table data and one for the application index data. For example, for the APP
user APP_DATA and APP_INDEX for table and index data, respectively.

DBAs used to separate table and index data for performance reasons. The thinking
was that separating table data from index data would reduce input/ouput (I/O)
contention. This is because the data files (for each tablespace) could be placed on
different disks, with separate controllers.

With modern storage configurations, which have multiple layers of abstraction
between the application and the underlying physical storage devices, it’s debatable
whether you can realize any performance gains by creating multiple separate tablespaces.
But, there still are valid reasons for creating multiple tablespaces for table and index data:

e Backup and recovery requirements may be different for the tables
and indexes.

o The indexes may have storage requirements different from those of
the table data.

» Simplify management of objects by logically grouping tables and
indexes separately.

In addition to separate tablespaces for data and indexes, you sometimes create
separate tablespaces for objects of different sizes. For instance, if an application has very
large tables, you can create an APP_DATA LARGE tablespace that has a large extent size
and a separate APP_DATA_SMALL tablespace that has a smaller extent size. This concept
also extends to binary large object (LOB) data types. You may want to separate a LOB
column in its own tablespace because you want to manage the LOB tablespace storage
characteristics differently from those of the regular table data. Automatic Segment
Space Management (ASSM) will be allocated extent size and based on information of
the objects stored. Even if not setting the large and smaller extents manually and using
ASSM, the grouping of the objects in this way will assist in the management of the
objects as well as the automated space management.

120

CHAPTER 4 TABLESPACES AND DATA FILES

Note The separation of objects by type and extent size is becoming less
important because of the physical storage devices and memory. The advances

in the storage technology will help databases perform better even without the
object configuration. Depending on your requirements, you should consider
creating separate tablespaces for each application using the database. There are
now application containers and PDBs for this separation of tablespaces. Even
though this will be discussed more in Chapter 22, Figure 4-2 shows the different
tablespaces in CDBs and PDBs.

CDB — ROOT Container

System Tablespaces:
SYSTEM, SYSAUX, Online Redo Logs
UNDO, TEMP
PDB - HR PDB —|Inventory
¢ NS N
System Tablespaces: System Tablespaces:
SYSTEM, SYSAUX, SYSTEM, SYSAUX,
UNDO, TEMP UNDO, TEMP
User/Application User/Application
Tablespaces: Tablespaces:
HRData INVData
. J . J

_

%

_

%

Figure 4-2. Tablespaces in CDBs and PDBs

However, to look at a separate tablespace example, for an inventory application INV_
DATA and INV_INDEX; for a human resources application create HR_DATA and HR_INDEX.
Here are some reasons to consider creating separate tablespaces for each application
using the database:

121

CHAPTER 4 TABLESPACES AND DATA FILES

o Applications may have different availability requirements. Separate
tablespaces let you take tablespaces offline for one application
without affecting another application.

o Applications may have different backup and recovery requirements.
Separate tablespaces let tablespaces be backed up and recovered
independently.

o Applications may have different storage requirements. Separate
tablespaces allow for different settings for space quotas, extent sizes,
and segment management.

e You may have some data that is purely read-only. Separate
tablespaces let you put a tablespace that contains only read-only data
into read-only mode.

e You may have security settings such as encryption of the tablespace
and other tablespaces without encryption.

The next section discusses creating tablespaces.

Creating Tablespaces

You use the CREATE TABLESPACE statement to create tablespaces. The Oracle SQL
Reference Manual contains more than a dozen pages of syntax and examples for creating
tablespaces. In most scenarios, you need to use only a few of the features available,
namely, locally managed extent allocation and automatic segment space management.
The following code snippet demonstrates how to create a tablespace that employs the
most common features:

create tablespace tools
datafile '/u01/dbfile/018c/tools01.dbf"
size 100m
extent management local
uniform size 128k
segment space management auto;

You need to modify this script for your environment. For example, the directory path,

data file size, and uniform extent size should be changed per environment requirements.

122

CHAPTER 4 TABLESPACES AND DATA FILES

You create tablespaces as locally managed by using the EXTENT MANAGEMENT LOCAL
clause. A locally managed tablespace uses a bitmap in the data file to efficiently
determine whether an extent is in use. The storage parameters NEXT, PCTINCREASE,
MINEXTENTS, MAXEXTENTS, and DEFAULT are not valid for extent options in locally managed
tablespaces.

Note A locally managed tablespace with uniform extents must be minimally
sized for at least five database blocks per extent.

As you add data to objects in tablespaces, Oracle automatically allocates more
extents to an associated tablespace data file as needed to accommodate the growth.
You can instruct Oracle to allocate a uniform size for each extent via the UNIFORM SIZE
[size] clause. If you don’t specify a size, then the default uniform extent size is 1MB.

The uniform extent size that you use varies, depending on the storage requirements
of your tables and indexes. In some scenarios, I create several tablespaces for a given
application. For instance, you can create a tablespace for small objects that has a
uniform extent size of 512KB, a tablespace for medium-sized objects that has a uniform
extent size of 4MB, a tablespace for large objects with a uniform extent size of 16MB, and
SO on.

Alternatively, you can specify that Oracle determine the extent size via the
AUTOALLOCATE clause. Oracle allocates extent sizes of 64KB, 1MB, 8MB, or 64MB. Using
AUTOALLOCATE is appropriate when you think objects in one tablespace will be of
varying sizes.

The SEGMENT SPACE MANAGEMENT AUTO clause instructs Oracle to manage the space
within the block. When you use this clause, there is no need to specify parameters,
such as PCTUSED, FREELISTS, and FREELIST GROUPS. The alternative to AUTO space
management is MANUAL. When you use MANUAL, you can adjust the parameters to the
requirements of your application. I recommend that you use AUTO and not MANUAL. Using
AUTO vastly reduces the number of parameters you need to configure and manage.

When a data file fills up, you can instruct Oracle to increase the size of the data file
automatically, with the AUTOEXTEND feature. Using AUTOEXTEND allows for processes
to run without needing DBA intervention when getting close to running out of space.
However, you must monitor tablespace growth and plan for additional space. This
includes watching for processes that might load a large amount of data. Manually adding
space might limit having a runaway SQL process that accidentally grows a tablespace

123

CHAPTER 4 TABLESPACES AND DATA FILES

until it has consumed all the space on a mount point, but a load process that is larger one
month over another might be rolled back if it fails on additional space requirements. Using
the parameter RESUMABLE in the database, you will be allowed to set a time to be able
to respond to tablespace issues. If you inadvertently fill up a mount point that contains
a control file or the Oracle binaries, you can hang your database. The use of Automatic
Storage Management (ASM) will also help here to be able to add another disk to the
diskgroup to avoid filling up a mount point and, used with RESUMABLE, provides the time
to manage. Monitoring and planning for storage and growth are still the best methods for
managing the tablespaces sizing to be able to proactively add the needed space.

If you do use the AUTOEXTEND feature, I suggest that you always specify a
corresponding MAXSIZE so that a runaway SQL process doesn’t accidentally fill up
a tablespace that in turn fills up a mount point. Here is an example of creating an
autoextending tablespace with a cap on its maximum size:

create tablespace tools
datafile '/u01/dbfile/018c/toolso1.dbf"
size 100m
autoextend on maxsize 1000m
extent management local
uniform size 128k
segment space management auto;

For security, tablepaces can be transparently encrypted. Transparent means that
the application does not need to change to use the encrypted tablespaces. This will
allow for data at rest in the data files to be encrypted, and when the database is open,
the tablespace is decrypted using the encryption key in the database wallet to be able to
see the data through queries. Using encryption makes it so that the data files cannot be
viewed in plain text, which is the same for backups of the data files. As already stated,
there are many options for creating tablespaces, and this security option does require
management of the encryption key, which can be centrally located or locally with the
database. The create tablespace command is simple enough:

create tablespace HRDATA encryption using 'AES256' default
storage(encrypt);

When you are using CREATE TABLESPACE scripts in different environments, it’s useful
to be able to parameterize portions of the script. For instance, in development you may
size the data files at 100MB, whereas in production the data files may be 100GB. Use

124

CHAPTER 4 TABLESPACES AND DATA FILES

ampersand (&) variables to make CREATE TABLESPACE scripts more portable among
environments.

The next listing defines ampersand variables at the top of the script, and those
variables determine the sizes of data files created for the tablespaces:

define tbsp large=5G
define tbsp med=500M
create tablespace reg data
datafile '/u01/dbfile/o018c/reg dataol.dbf'
size &&tbsp large
extent management local
uniform size 128k
segment space management auto;
create tablespace reg index
datafile '/u01/dbfile/o018c/reg_index01.dbf'
size &&tbsp med
extent management local
uniform size 128k
segment space management auto;

Using ampersand variables allows you to modify the script once and have the
variables reused throughout the script. You can parameterize all aspects of the script,
including data file mount points and extent sizes.

You can also pass the values of the ampersand variables in to the CREATE TABLESPACE
script from the SQL*Plus command line. This lets you avoid hard-coding a specific size
in the script and instead provide the sizes at runtime. To accomplish this, first define at
the top of the script the ampersand variables to accept the values being passed in:

define tbsp large=8&1

define tbsp _med=82

create tablespace reg data
datafile '/u01/dbfile/o12c/reg dataoil.dbf'
size &&tbsp large
extent management local

125

CHAPTER 4 TABLESPACES AND DATA FILES

uniform size 128k
segment space management auto;
create tablespace reg_index
datafile '/u01/dbfile/o12c/reg_index01.dbf’
size &&tbsp med
extent management local
uniform size 128k
segment space management auto;

Now, you can pass variables in to the script from the SQL*Plus command line. The
following example executes a script named cretbsp.sql and passes in two values that
set the ampersand variables to 5G and 500M, respectively:

SQL> @cretbsp 5G 500M

Automatic Storage Management (ASM) also simplifies the creation of the tablespace
because it will take the defaults of the DiskGroup and parameters that are set to use
ASM. This will be discussed later in this chapter, but here is a quick example:

SOL> create tablespace HRDATA;

Table 4-1 summarizes the best practices for creating and managing tablespaces.

Table 4-1. Best Practices for Creating and Managing Tablespaces

Best Practice Reasoning

Create separate tablespaces for different applications using If a tablespace needs to be taken
the same database. offline, it affects only one application.

For an application, separate table data from index data in Table and index data may have
different tablespaces. different storage requirements and
simplify object management.

With AUTOEXTEND, specify a maximum size. Specifying a maximum size prevents
a runaway SQL statement from filling
up a storage device.

(continued)

126

CHAPTER 4 TABLESPACES AND DATA FILES

Table 4-1. (continued)

Best Practice Reasoning

Create tablespaces as locally managed. You shouldn’t create This provides better performance and
a tablespace as dictionary managed. manageability.

For a tablespace’s data file naming convention, use a name Doing this makes it easy to identify
that contains the tablespace name followed by a two-digit ~ which data files are associated with
number that’s unique within data files for that tablespace. which tablespaces.

Try to minimize the number of data files associated witha You have fewer data files to manage.
tablespace.

In tablespace CREATE scripts, use ampersand variablesto This makes scripts more reusable
define aspects such as storage characteristics. among various environments.

If you ever need to verify the SQL required to re-create an existing tablespace, you
can do so with the DBMS_METADATA package. First, set the LONG variable to a large value:

SQL> set long 1000000

Next, use the DBMS_METADATA package to display the CREATE TABLESPACE data
definition language (DDL) for all tablespaces within the database:

select dbms metadata.get ddl('TABLESPACE',tablespace name)
from dba_tablespaces;

Tip You can also use Data Pump to extract the DDL of database objects. See
Chapter 13 for details.

Renaming a Tablespace

Sometimes you need to rename a tablespace. You may want to do this because a
tablespace was initially erroneously named, or you may want the tablespace name to
better conform to your database naming standards. Use the ALTER TABLESPACE statement
to rename a tablespace. This example renames a tablespace from TOOLS to TOOLS DEV:

SOL> alter tablespace tools rename to tools dev;

127

CHAPTER 4 TABLESPACES AND DATA FILES

When you rename a tablespace, Oracle updates the name of the tablespace in
the data dictionary, control files, and data file headers. Keep in mind that renaming
a tablespace doesn’t rename any associated data files. See the section “Renaming or
Relocating a Data File,” later in this chapter, for information on renaming data files.

Note You can’trenamethe S YSTEM tablespace or the S YSAUX tablespace.

Changing a Tablespace’s Write Mode

In environments such as data warehouses, you may need to load data into tables
and then never modify the data again. To enforce that no objects in a tablespace can
be modified, you can alter the tablespace to be read-only. To do this, use the ALTER
TABLESPACE statement:

SOL> alter tablespace inv_mgmt_rep read only;

One advantage of a read-only tablespace is that you only have to back it up once. You
should be able to restore the data files from a read-only tablespace no matter how long
ago the backup was made.

If you need to modify the tablespace out of read-only mode, you do so as follows:

SOL> alter tablespace inv_mgmt rep read write;

Make sure you re-enable backups of a tablespace after you place it in read/write mode.

Note You can’t make a tablespace that contains active rollback segments read-
only. For this reason, the SYSTEM tablespace can’t be made read-only because it
contains the SYSTEM rollback segment.

Be aware that individual tables can be modified to be read-only. This allows you to
control the read-only at a much more granular level (than at the tablespace level); for

example,

SOL> alter table my tab read only;

128

CHAPTER 4 TABLESPACES AND DATA FILES

While in read-only mode, you can’t issue any insert, update, or delete statements
against the table. Making individual tables read/write can be advantageous when you're
doing maintenance (such as a data migration) and you want to ensure that users don’t
update the data.

This example modifies a table back to read/write mode:

SOL> alter table my tab read write;

Dropping a Tablespace

If you have a tablespace that is unused, it is best to drop it so it does not clutter your
database, consume unnecessary resources, and potentially confuse DBAs who are not
familiar with the database. Before dropping a tablespace, it is a good practice to first take
it offline:

SOL> alter tablespace inv_data offline;

You may want to wait to see if anybody screams that an application is broken
because it can no longer write to a table or index in the tablespace to be dropped.
Depending on the reason for dropping a tablespace, objects can be moved to another
tablespace first before dropping. When you are sure the tablespace is not required, drop
it, and delete its data files:

SOL> drop tablespace inv_data including contents and datafiles;

Tip You can drop a tablespace whether it is online or offline. The exception to
this is the SYSTEM and SYSAUX tablespaces, which cannot be dropped. It’s always
a good idea to take a tablespace offline before you drop it. By doing so, you can
better determine if an application is using any objects in the tablespace. If you
attempt to query a table in an offline tablespace, you receive this error: ORA-
00376: file can't be read at this time.

Dropping a tablespace using INCLUDING CONTENTS AND DATAFILES permanently
removes the tablespace and any of its data files. Make certain the tablespace does not
contain any data you want to keep before you drop it.

129

CHAPTER 4 TABLESPACES AND DATA FILES

If you attempt to drop a tablespace that contains a primary key that is referenced by a
foreign key associated with a table in a tablespace different from the one you are trying to
drop, you receive this error:

ORA-02449: unique/primary keys in table referenced by foreign keys
Run this query first to determine whether any foreign key constraints will be affected:

select p.owner,
p.table name,
p.constraint_name,
f.table_name referencing table,
f.constraint_name foreign key name,
f.status fk_status
from dba constraints p,
dba_constraints f,
dba_tables t
where p.constraint name = f.r constraint name
and f.constraint_type = 'R’
and p.table name = t.table name
and t.tablespace name = UPPER('&tablespace name')
order by 1,2,3,4,5;

If there are referenced constraints, you need to first drop the constraints or use the
CASCADE CONSTRAINTS clause of the DROP TABLESPACE statement. This statement uses
CASCADE CONSTRAINTS to drop any affected constraints automatically:

SOL> drop tablespace inv_data including contents and data files cascade
constraints;

This statement drops any referential integrity constraints from tables outside the
tablespace being dropped that reference tables within the dropped tablespace.

If you drop a tablespace that has required objects in a production system, the results
can be catastrophic. You must perform some sort of recovery to get the tablespace and
its objects back. Needless to say, be very careful when dropping a tablespace. Table 4-2
lists recommendations to consider when you do this.

130

CHAPTER 4 TABLESPACES AND DATA FILES

Table 4-2. Best Practices for Dropping Tablespaces

Best Practice

Reasoning

Before dropping a tablespace, run a script such
as this to determine if any objects exist in the
tablespace:

select owner, segment_name,
segment_type

from dba_segments

where

tablespace name=upper('8&tbsp name');

Consider renaming tables in a tablespace before
you drop it.

If there are no objects in the tablespace, resize the
associated data files to a very small number, such
as 10MB.

Make a backup of your database before dropping
a tablespace.

Take the tablespace and data files offline
before you drop the tablespace. Use the ALTER
TABLESPACE statement to take the tablespace
offline.

When you are sure a tablespace is not in use,
use the DROP TABLESPACE ... INCLUDING
CONTENTS AND DATAFILES statement.

Doing this ensures that no tables or indexes
exist in the tablespace before you drop it.

If any applications are using tables within
the tablespace to be dropped, the application
throws an error when a required table is
renamed.

Reducing the size of the data files to a miniscule
amount of space quickly shows whether any
applications are trying to access objects that
require space in a tablespace.

This ensures that you have a way to recover
objects that are discovered to be in use after
you drop the tablespace.

This helps determine if any applications or
users are using objects in the tablespace. They
can’t access the objects if the tablespace and
data files are offline.

This removes the tablespace and physically
removes any data files associated with it. Some
DBAs don’t like this approach, but you should be
fine if you've taken the necessary precautions.

131

CHAPTER 4 TABLESPACES AND DATA FILES

Using Oracle Managed Files

The Oracle Managed File (OMF) feature automates many aspects of tablespace
management, such as file placement, naming, and sizing. You control OMF by setting the
following initialization parameters:

« DB _CREATE_FILE DEST
« DB_CREATE_ONLINE_LOG DEST N
« DB _RECOVERY FILE DEST

If you set these parameters before you create the database, Oracle uses them for
the placement of the data files, control files, and online redo logs. You can also enable
OMF after your database has been created. Oracle uses the values of the initialization
parameters for the locations of any newly added files. Oracle also determines the name
of the newly added file. These parameters are set as part input in dbca for the creation of
a database.

The advantage of using OMF is that creating tablespaces is simplified. For example, the
CREATE TABLESPACE statement does not need to specify anything other than the tablespace
name. First, enable the OMF feature by setting the DB_CREATE_FILE DEST parameter:

SOL> alter system set db create file dest='/u01';
Now, issue the CREATE TABLESPACE statement:
SOL> create tablespace invi;

This statement creates a tablespace named INV1, with a default data file size of
100MB. Keep in mind that you can override the default size of 100MB by specifying a size:

SOL> create tablespace inv2 datafile size 20m;

To view the details of the associated data files, query the V$DATAFILE view, and note
that Oracle has created subdirectories beneath the /u01 directory and named the file
with the OMF format:

SQL> select name from v$datafile where name like '%inv%';
NAME

/u01/018C/datafile/o1_mf_invi 8b5163q6_.dbf
/u01/018C/datafile/o1_mf_inv2 8b51flfc_.dbf

132

CHAPTER 4 TABLESPACES AND DATA FILES

One limitation of OMF is that you're limited to one directory for the placement of
data files. If you want to add data files to a different directory, you can alter the location
dynamically:

SOL> alter system set db_create file dest="/u02';

Creating a Bigfile Tablespace

The bigfile feature allows you to create a tablespace with a very large data file assigned
to it. The advantage of using the bigfile feature is this potential to create very large files.
With an 8KB block size, you can create a data file as large as 32TB. With a 32KB block
size, you can create a data file up to 128TB.

Use the BIGFILE clause to create a bigfile tablespace:

create bigfile tablespace inv_big data
datafile '/u01/dbfile/o018c/inv_big datao1.dbf’
size 10g
extent management local
uniform size 128k
segment space management auto;

As long as you have plenty of space associated with the filesystem supporting the
bigfile tablespace data file, you can store massive amounts of data in a tablespace.

One potential disadvantage of using a bigfile tablespace is that if, for any reason, you
run out of space on a filesystem that supports the data file associated with the bigfile,
you can’t expand the size of the tablespace (unless you can add space to the filesystem).
You can’t add more data files to a bigfile tablespace if they're placed on separate mount
points. A bigfile tablespace allows only one data file to be associated with it.

You can make the bigfile tablespace the default type of tablespace for a database,
using the ALTER DATABASE SET DEFAULT BIGFILE TABLESPACE statement. However, it is
not recommend to be doing that. You could potentially create a tablespace, not knowing
it was a bigfile tablespace, and when you discovered that you needed more space, you
would not know that you could not add another data file on a different mount point for
this tablespace. Using ASM is less of an issue because a new disk can be dynamically
added to a DISKGROUP for this tablespace.

133

CHAPTER 4 TABLESPACES AND DATA FILES

Enabling Default Table Compression Within
a Tablespace Tablespace

When working with large databases, you may want to consider compressing the data.
Compressed data results in less disk space, less memory, and fewer I/O operations.
Queries reading compressed data potentially execute faster because fewer blocks are
required to satisfy the result of the query. But compression does have a cost; it requires
more CPU resources, as the data are compressed and uncompressed while reading and
writing.

When creating a tablespace, you can enable data compression features. Doing so
does not compress the tablespace. Rather, any tables you create within the tablespace
inherit the compression characteristics of the tablespace. This example creates a
tablespace with ROW STORE COMPRESS ADVANCED:

CREATE TABLESPACE tools_comp
DATAFILE '/u01/dbfile/o018c/tools _comp01.dbf'
SIZE 100m
EXTENT MANAGEMENT LOCAL
UNIFORM SIZE 512k
SEGMENT SPACE MANAGEMENT AUTO
DEFAULT ROW STORE COMPRESS ADVANCED;

Note If you're using Oracle Database 11g, then use the COMPRESS FOR OLTP
clause instead of ROW STORE COMPRESS ADVANCED.

Now when a table is created within this tablespace, it will automatically be created
with the ROW STORE COMPRESS ADVANCED feature. You can verify the compression
characteristics of a tablespace via this query:

select tablespace name, def tab_compression, compress for
from dba_tablespaces;

Tip See Chapter 7 for full details on table compression.

134

CHAPTER 4 TABLESPACES AND DATA FILES

If a tablespace is already created, you can alter its compression characters, as
follows:

SOL> alter tablespace tools comp default row store compress advanced;
Here’s an example that alters a tablespace’s default compress to BASIC:

SOL> alter tablespace tools comp default compress basic;
You can disable tablespace compression via the NOCOMPRESS clause:

SQL> alter tablespace tools comp default nocompress;

Note Most compression features require the Enterprise Edition of Oracle and the
Advanced Compression option (for a fee). Using compression ratios and amount of
data existing, growth and retention can show the value of this option.

Displaying Tablespace Size

DBAs often use monitoring scripts to alert them when they need to increase the space
allocated to a tablespace. Depending on whether or not you are in a multitenant,
container database environment, your SQL for determining space usage will vary. For a
regular database (non-container), you can use the DBA-level views to determine space
usage. The following script displays the percentage of free space left in a tablespace and
data file:

SET PAGESIZE 100 LINES 132 ECHO OFF VERIFY OFF FEEDB OFF SPACE 1 TRIMSP ON
COMPUTE SUM OF a_byt t byt f byt ON REPORT

BREAK ON REPORT ON tablespace name ON pf

COL tablespace name FOR A17 TRU HEAD 'Tablespace|Name'

COL file_name FOR A40 TRU HEAD 'Filename’

COL a_byt FOR 9,990.999 HEAD 'Allocated|GB'
COL t_ byt FOR 9,990.999 HEAD 'Current|Used GB'
COL f byt FOR 9,990.999 HEAD 'Current|Free GB'
COL pct free FOR 990.0 HEAD 'File %|Free'

coL pf FOR 990.0 HEAD 'Tbsp %|Free'

135

CHAPTER 4 TABLESPACES AND DATA FILES

COL seq NOPRINT
DEFINE b div=1073741824
SELECT 1 seq, b.tablespace name, nvl(x.fs,0)/y.ap*100 pf, b.file name
file name,

b.bytes/&b _div a_byt, NVL((b.bytes-SUM(f.bytes))/&b div,b.bytes/88b div)
t byt,

NVL(SUM(f.bytes)/88b div,0) f byt, NVL(SUM(f.bytes)/b.bytes*100,0) pct free
FROM dba_free space f, dba_data files b

, (SELECT y.tablespace name, SUM(y.bytes) fs

FROM dba_free space y GROUP BY y.tablespace name) x
, (SELECT x.tablespace name, SUM(x.bytes) ap
FROM dba_data files x GROUP BY x.tablespace name) y

WHERE f.file id(+) = b.file id
AND x.tablespace name(+) = y.tablespace name
and y.tablespace name = b.tablespace name
AND f.tablespace name(+) = b.tablespace name
GROUP BY b.tablespace name, nvl(x.fs,0)/y.ap*100, b.file name, b.bytes
UNION
SELECT 2 seq, tablespace_name,

j.bf/k.bb*100 pf, b.name file name, b.bytes/88b div a_byt,

a.bytes used/&&b div t_byt, a.bytes free/&&b div f_byt,

a.bytes free/b.bytes*100 pct free
FROM v$temp space header a, v$tempfile b

, (SELECT SUM(bytes free) bf FROM v$temp space header) j

, (SELECT SUM(bytes) bb FROM v$tempfile) k
WHERE a.file id = b.file#
ORDER BY 1,2,4,3;

If you don’t have any monitoring in place, you are alerted via the SQL statement
that is attempting to perform an insert or update operation that the tablespace requires
more space but isn’t able to allocate more. At that point, an ORA-01653 error is thrown,
indicating the object can’t extend.

After you determine that a tablespace needs more space, you need to either increase
the size of a data file or add a data file to the tablespace. See the section “Altering
Tablespace Size,” later in this chapter, for a discussion of these topics.

136

CHAPTER 4 TABLESPACES AND DATA FILES

Tip See Chapter 22 for full details on reporting on space within a pluggable
database environment using the container database (CDB)-level views.

DISPLAYING ORACLE ERROR MESSAGES AND ACTIONS

You can use the oerr utility to quickly display the cause of an error and simple instructions on
what actions to take; for example,

$ oerr ora 01653

Here is the output for this example:

01653, 00000, "unable to extend table %s.%s by %s in tablespace %s"
// *Cause: Failed to allocate an extent of the required number of blocks for

// a table segment in the tablespace indicated.
// *Action: Use ALTER TABLESPACE ADD DATAFILE statement to add one or more
// files to the tablespace indicated.

The oerr utility’s output gives you a fast and easy way to triage problems. If the information
provided isn’t enough, then Google is a good second option.

Altering Tablespace Size

When you've determined which data file you want to resize, first make sure you have
enough disk space to increase the size of the data file on the mount point on which the
data file exists:

$ df -h | sort

Use the ALTER DATABASE DATAFILE ... RESIZE command to increase the data file’s
size. This example resizes the data file to 1GB:

SOL> alter database datafile '/u01/dbfile/o018c/usersoil.dbf' resize 1g;

If you don’t have space on an existing mount point to increase the size of a data file,
then you must add a data file. To add a data file to an existing tablespace, use the ALTER
TABLESPACE ... ADD DATAFILE statement:

137

CHAPTER 4 TABLESPACES AND DATA FILES

SQL> alter tablespace users
add datafile '/u02/dbfile/018c/users02.dbf' size 100m;

With bigfile tablespaces, you have the option of using the ALTER TABLESPACE
statement to resize the data file. This works because only one data file can be associated
with a bigfile tablespace:

SOL> alter tablespace inv_big data resize 1P;

Resizing data files can be a daily task when you’'re managing databases with heavy
transaction loads. Increasing the size of an existing data file allows you to add space to
a tablespace without adding more data files. If there isn’t enough disk space left on the
storage device that contains an existing data file, you can add a data file in a different
location to an existing tablespace.

To add space to a temporary tablespace, first query the V. $TEMPFILE view to verify
the current size and location of temporary data files:

SOL> select name, bytes from v$tempfile;
Then, use the TEMPFILE option of the ALTER DATABASE statement:

SOL> alter database tempfile '/u01/dbfile/018c/temp01.dbf' resize 500m;
You can also add a file to a temporary tablespace via the ALTER TABLESPACE statement:

SQL> alter tablespace temp add tempfile '/u01/dbfile/018c/temp02.dbf"
size 5000m;

Toggling Data Files Offline and Online

Sometimes when you are performing maintenance operations (such as renaming

data files), you may need to first take a data file offline. You can use either the ALTER
TABLESPACE or the ALTER DATABASE DATAFILE statement to toggle data files offline and
online.

Tip As of Oracle Database 12c, you can move and rename data files while they
are online and open for use. See “Renaming or Relocating a Data File,” later in this
chapter, for a discussion of this.

138

CHAPTER 4 TABLESPACES AND DATA FILES

Use the ALTER TABLESPACE ... OFFLINE NORMAL statement files offline. You do not
need to specify NORMAL, because it’s the default:

SOL> alter tablespace users offline;

When you place a tablespace offline in normal mode, Oracle performs a checkpoint
on the data files associated with the tablespace. This ensures that all modified blocks
in memory that are associated with the tablespace are flushed and written to the data
files. You will not need to perform media recovery when you bring the tablespace and its
associated data files back online.

You cannot use the ALTER TABLESPACE statement to place tablespaces offline when
the database is in mount mode. If you attempt to take a tablespace offline while the
database is mounted (but not open), you receive the following error:

ORA-01109: database not open

Note When in mount mode, you must use the ALTER DATABASE DATAFILE
statement to take a data file offline It might not be necessary, but there might be
more than one data file for the tablespace, and each file will need to be taken offline.

When taking a tablespace offline, you can also specify ALTER TABLESPACE ...
OFFLINE TEMPORARY. In this scenario, Oracle initiates a checkpoint on all data files
associated with the tablespace that are online. Oracle does not initiate a checkpoint on
offline data files associated with the tablespace.

You can specify ALTER TABLESPACE ... OFFLINE IMMEDIATE when takinga
tablespace offline. Your database must be in archivelog mode in this situation, or the
following error is thrown:

ORA-01145: offline immediate disallowed unless media recovery enabled

When using OFFLINE IMMEDIATE, Oracle does not issue a checkpoint on the data
files. You must perform media recovery on the tablespace before bringing it back online.

Note You cannot take the SYSTEM or UNDO tablespace offline while the database
is open. SYSAUX can be taken offline, however; some functions might not be
available, or errors might appear.

139

CHAPTER 4 TABLESPACES AND DATA FILES

You can also use the ALTER DATABASE DATAFILE statement to take a data file offline.
If your database is open for use, then it must be in archivelog mode in order for you to
take a data file offline with the ALTER DATABASE DATAFILE statement. If you attempt to
take a data file offline using the ALTER DATABASE DATAFILE statement, and your database
isnot in archivelog mode, the ORA-01145 error is thrown.

If your database is not in archivelog mode, you must specify ALTER DATABASE
DATAFILE ... OFFLINE FOR DROP when taking a data file offline. You can specify the
entire file name or provide the file number. In this example, data file 6 is taken offline:

SOL> alter database datafile 4 offline for drop;
Now, if you attempt to bring online the offline data file, you receive the following error:

SQL> alter database datafile 4 online;
ORA-01113: file 4 needs media recovery

When you use the OFFLINE FOR DROP clause, no checkpoint is taken on the data
file. This means you need to perform media recovery on the data file before bringing it
online. Performing media recovery applies any changes to the data file that are recorded
in the online redo logs that aren’t in the data files themselves. Before you can bring
online a data file that was taken offline with the OFFLINE FOR DROP clause, you must
perform media recovery on it. You can specify either the entire file name or the file
number:

SQL> recover datafile 4;

If the redo information that Oracle needs is contained in the online redo logs, you
should see this message:

Media recovery complete.

If your database is not in archivelog mode, and if Oracle needs redo information not
contained in the online redo logs to recover the data file, then you cannot recover the
data file and place it back online.

If your database is in archivelog mode, you can take it offline without the FOR DROP
clause. In this scenario, Oracle overlooks the FOR DROP clause. Even when your database
is in archivelog mode, you need to perform media recovery on a data file that has been
taken offline with the ALTER DATABASE DATAFILE statement. Table 4-3 summarizes the
options you must consider when taking a tablespace/data files offline.

140

CHAPTER 4 TABLESPACES AND DATA FILES

Note While the database is in mount mode (and not open), you can use the
ALTER DATABASE DATAFILE command to take any data file offline, including
SYSTEM and UNDO.

Table 4-3. Options for Taking Tablespaces/Data Files Offline

Statement Archivelog Mode Media Recovery Required Works in

Required? When Toggling Online? Mount Mode?
ALTER TABLESPACE ... No No No
OFFLINE NORMAL
ALTER TABLESPACE ... No Maybe: Depends on No
OFFLINE TEMPORARY whether any data files

already have offline status

ALTER TABLESPACE ... No Yes No
OFFLINE IMMEDIATE
ALTER DATABASE DATAFILE Yes Yes Yes
... OFFLINE
ALTER DATABASE DATAFILE No Yes Yes

... OFFLINE FOR DROP

These steps to offline data files and tablespaces provide opportunities to practice
media recovery and walk through these scenarios with new databases or test databases.
This practice is useful for taking notes, documenting the error messages, and gathering
notes on what happened and results for availability in a pressure situation when these
errors appear.

Renaming or Relocating a Data File

You may occasionally need to move or rename a data file. For example, you may need
to move data files because of changes in the storage devices or because the files were
created in the wrong location or with a nonstandard name. As of Oracle Database 12c,
you have the option of renaming or moving data files, or both, while they are online.
Otherwise, you will have to take data files offline for maintenance operations.

141

CHAPTER 4 TABLESPACES AND DATA FILES

Performing Online Data File Operations

New in Oracle Database 12c is the ALTER DATABASE MOVE DATAFILE command. This
command allows you to rename or move data files without any downtime. This vastly
simplifies the task of moving or renaming a data file, as there is no need to manually
place data files offline/online and use OS commands to physically move the files. This
once manually intensive (and error-prone) operation has now been simplified to a single
SQL command.

A data file must be online for the online move or rename to work. Here is an example

of renaming an online data file:

SQL> alter database move datafile '/u01/dbfile/018c/usersoi.dbf' to
'/uo1/dbfile/018c/users_devo1l.dbf';

Here is an example of moving a data file to a new mount point:

SOL> alter database move datafile '/u01/dbfile/o18c/hrdataoi.dbf' to
'/u02/dbfile/018c/hrdataol.dbf’;

You can also specify the data file number when renaming or moving a data file; for
example,

SOL> alter database move datafile 2 to '/u02/dbfile/018c/sysuax01.dbf’;

In the previous example, you are specifying that data file 2 be moved.
If you're moving a data file and, for any reason, want to keep a copy of the original
file, you can use the KEEP option:

SOL> alter database move datafile 4 to '/u02/dbfile/018c/users0Ol.dbf' keep;
You can specify the REUSE clause to overwrite an existing file:
SQL> alter database move datafile 4 to '/u01/dbfile/o018c/usersoil.dbf' reuse;

Oracle will not allow you to overwrite (reuse) a data file that is currently being used
by the database. That is a good thing.

Performing Offline Data File Operations

Previous to 12c to rename or move a data file, you must take the data file offline. There
are two somewhat different approaches to moving and renaming offline data files:

142

CHAPTER 4 TABLESPACES AND DATA FILES

¢ Use a combination of SQL commands and OS commands.
e Use a combination of re-creating the control file and OS commands.

Because these are offline functions, I have normally planned these steps to happen
before or after a patch or upgrade maintenance activity that requires some downtime as
well. Unless it is an emergency step to move off of a disk or mount point, this normally can
happen during that time. If these types of activities become a regular occurrence, it will be
worth the time and effort to looking into using ASM since that provides other options for
moving files around. These two techniques are discussed in the next two sections.

Using SQL and 0S Commands

Here are the steps for renaming a data file using SQL commands and OS commands:

1. Use the following query to determine the names of existing data files:

SQL> select name from v$datafile;

2. Take the data file offline, using either the ALTER TABLESPACE or
ALTER DATABASE DATAFILE statement (see the previous section,
“Performing Offline Data File Operations,” for details on how to
do this). You can also shut down your database and then start it
in mount mode; the data files can be moved while in this mode
because they aren’t open for use.

3. Physically move the data file to the new location, using either an
OS command (like mv or cp) or the COPY_FILE procedure of the
DBMS_FILE_TRANSFER built-in PL/SQL package.

4. Useeitherthe A LTER TABLESPACE ... RENAME DATAFILE ...
TO statement or the A LTER DATABASE RENAME FILE ... TO
statement to update the control file with the new data file name.

5. Alter the data file online.

Note If you need to rename data files associated with the SYSTEM or UNDO
tablespace, you must shut down your database and start it in mount mode. When
your database is in mount mode, you can rename these data files via the ALTER
DATABASE RENAME FILE statement.

143

CHAPTER 4 TABLESPACES AND DATA FILES

The following example demonstrates how to move the data files associated with a
single tablespace. First, take the data files offline with the ALTER TABLESPACE statement:

SQL> alter tablespace users offline;

Now, from the OS prompt, move the data files to a new location, using the Linux/
Unixm v command:

$ mv /uo1/dbfile/o018c/usersol.dbf /u02/dbfile/018c/usersol.dbf
Update the control file with the ALTER TABLESPACE statement:

alter tablespace users

rename datafile
"/u01/dbfile/018c/usersol.dbf’
to
"/u02/dbfile/018c/usersol.dbf’;

Finally, bring the data files within the tablespace back online:
SOL> alter tablespace users online;

If you want to rename data files from multiple tablespaces in one operation, you can
use the ALTER DATABASE RENAME FILE statement (instead of the ALTER TABLESPACE...
RENAME DATAFILE statement). The following example renames several data files in the
database. Because the SYSTEM and UNDO tablespaces’ data files are being moved, you
must shut down the database first and then place it in mount mode:

SQL> conn / as sysdba
SQL> shutdown immediate;
SQL> startup mount;

Because the database is in mount mode, the data files are not open for use, and thus
there is no need to take the data files offline. Next, physically move the files via the Linux
mv command:

$ mv /uo1/dbfile/o018c/systemo1.dbf /u02/dbfile/o018c/systemo1.dbf
$ mv /u01/dbfile/018c/sysaux01.dbf /u02/dbfile/018c/sysaux01.dbf
$ mv /u01/dbfile/018c/undotbso1.dbf /u02/dbfile/018c/undotbs01.dbf

144

CHAPTER 4 TABLESPACES AND DATA FILES

Note You must move the files before you update the control file. The ALTER
DATABASE RENAME FILE command expects the file to be in the renamed
location. If the file is not there, an error is thrown: ORA-27037: unable to
obtain file status.

Now, you can update the control file to be aware of the new file name:

alter database rename file
"/u01/dbfile/018c/systemo1.dbf",
'/u01/dbfile/018c/sysaux01.dbf",
'/u01/dbfile/018c/undotbso1.dbf’
to
"/u02/dbfile/018c/systemo1.dbf",
'/u02/dbfile/018c/sysaux01.dbf’,
"/u02/dbfile/018c/undotbso1.dbf’;

You should be able to open your database:

SOL> alter database open;

Re-creating the Control File and 0S Commands

Another way you can relocate all data files in a database is to use a combination of a
re-created control file and OS commands. The steps for this operation are as follows:

1. Create a trace file that contains a CREATE CONTROLFILE statement.
2. Modify the trace file to display the new location of the data files.
3. Shut down the database.

4. Physically move the data files, using an OS command.

5. Start the database in nomount mode.

6. Run the CREATE CONTROLFILE command.

145

CHAPTER 4 TABLESPACES AND DATA FILES

Note When you re-create a control file, be aware that any RMAN information
that was contained in the file will be lost. If you are not using a recovery catalog,
you can repopulate the control file with RMAN backup information, using the RMAN
CATALOG command.

The following example walks through the previous steps. First, you write a CREATE
CONTROLFILE statement to a trace file via an ALTER DATABASE BACKUP CONTROLFILE TO
TRACE statement:

SOL> alter database backup controlfile to trace as '/tmp/mvctrlfile.sql’
noresetlogs;

There are a couple of items to note about the prior statement. First, a file
named mvctrlfile.sql is created in the /tmp directory; this file contains a CREATE
CONTROLFILE statement. Second, the prior statement uses the NORESETLOGS clause; this
instructs Oracle to write only one SQL statement to the trace file. If you do not specify
NORESETLOGS, Oracle writes two SQL statements to the trace file: one to re-create the
control file with the NORESETLOGS option and one to re-create the control file with
RESETLOGS. Normally, you know whether you want to reset the online redo logs as part of
re-creating the control file. In this case, you know that you do not need to reset the online
redo logs when you re-create the control file (because the online redo logs have not been
damaged and are still in the normal location for the database).

Next, edit the /tmp/mvctrlfile.sql file, and change the names of the directory
paths to the new locations. Here is a CREATE CONTROLFILE statement for this example:

CREATE CONTROLFILE REUSE DATABASE "018C" NORESETLOGS NOARCHIVELOG
MAXLOGFILES 16
MAXLOGMEMBERS 4
MAXDATAFILES 1024
MAXINSTANCES 1
MAXLOGHISTORY 876
LOGFILE
GROUP 1 (
'/u01/oraredo/o018c/redo01a.rdo’,
'/u02/oraredo/018c/redo01b.rdo’
) SIZE 50M BLOCKSIZE 512,

146

CHAPTER 4 TABLESPACES AND DATA FILES

GROUP 2 (
'/u01l/oraredo/018c/redo02a.rdo’,
'/u02/oraredo/018c/redo02b.rdo’

) SIZE 50M BLOCKSIZE 512,

GROUP 3 (
'/u01l/oraredo/o018c/redo03a.rdo’,
'/u02/oraredo/018c/redo03b.rdo"

) SIZE 50M BLOCKSIZE 512

DATAFILE

'/u01/dbfile/018c/system01.dbf",

'/u01/dbfile/018c/sysaux01.dbf",

"/uo1/dbfile/018c/undotbsol1.dbf’,

'/u01/dbfile/018c/usersol.dbf’

CHARACTER SET AL32UTFS8;

Now, shut down the database:
SQL> shutdown immediate;

Physically move the files from the OS prompt. This example uses the Linux mv
command to move the files:

$ mv /u02/dbfile/018c/system01.dbf /u01/dbfile/o018c/systemo1.dbf

$ mv /uo2/dbfile/o018c/sysaux01.dbf /u01/dbfile/018c/sysaux01.dbf

$ mv /u02/dbfile/018c/undotbso1.dbf /u01/dbfile/018c/undotbso1.dbf
$ mv /u02/dbfile/o018c/users01.dbf /u01/dbfile/o018c/usersol.dbf

Start up the database in nomount mode:
SQL> startup nomount;

Then, execute the file that contains the CREATE CONTROLFILE statement (in this
example, mvctrlfile.sql):

SOL> @/tmp/mvctrlfile.sql

If the statement is successful, you see the following message:

Control file created.

147

CHAPTER 4 TABLESPACES AND DATA FILES
Finally, alter your database open:

SOL> alter database open;

Using ASM for Tablespaces

ASM is a way to manage the physical disk and storage allocation to the Oracle database
and files system. Adding storage becomes adding disks to a disk group and allows for
additional space to be dynamically available to the tablespaces. With storage hardware
advances, there are also ways to add disks to mount points as well. It just depends how
the databases and environments are being managed and configured if ASM is part of the
environment.

There are plenty of advantages for using ASM from shared storage, ease of disk
management to data file repairs, and verification specific for the database. ASM,
normally named +AS), is another instance that needs to be available for the database
to be able to use the disk groups. This is a way to share storage for several databases,
rebalance workloads, and provide higher availability for the database storage.

The parameters for using a default storage space have already been discussed
and instead of naming mount points that can change as databases grow or move, the
database using +ASM can use a disk group without having to worry about names for
mount points. A disk group oradata is created to be used for the database storage. The
parameters for file destinations are set using the following command:

SQL> alter system set DB CREATE FILE DEST = '+oradata’;
To create the tablespace:
SOL> create tablespace hrdata;

This will create a tablespace hrdata on the oradata diskgroup. The file names are
generated by +ASM and, to create aliases by default, a template for file names in +ASM. If
a template is used, the DB_CREATE_FILE_DEST parameter will point to that template
along with the disk group.

SQL> alter system set DB_CREATE FILE DEST = '+oradata(datatemplate)’;

The data files and tablespace views are still available to see what tablespaces
are created and the data files that are part of the database. The view v$datafile
and dba_data_files will show the files starting with the diskgroup +oradata.

148

CHAPTER 4 TABLESPACES AND DATA FILES

The dba_tablespaces view will still show the hrdata tablespace as with non-ASM
databases. There are also additional views that will show the files in the disk groups.
To see the ASM disks in a disk group view, v$asm_disk should be queried. The files in the
disk group are seen in the v$asm file and v$asm_alias views.

From v$asm_file the file number, type, and space information are available and
v$asm_alias brings in the data file name:

SOL> select file.file_number, alias.name, file.type

From v$asm_file file, v$asm_alias alias

Where file.group number=alias.group number and file.file number=alias.
file number;

The Oracle cloud uses the ASM and ASM Cluster File System (ACFS) to present
the storage. It does simplify and automate storage management. There is not a need
for another volume or file manager tool. Again, there are advantages to use the storage
management tools that come with the Oracle database. There are plenty of reference
materials to show how to create disk groups, add or drop disks, perform maintenance,
and manage the ASM storage and file systems.

Summary

This chapter discussed managing tablespace and data files. Tablespaces are logical
containers for a group of data files. Data files are the physical files on disk that contain
data. You should plan carefully when creating tablespaces and the corresponding
data files.

Tablespaces allow you to separate the data of different applications. You can also
separate tables from indexes. These allow you to customize storage characteristics
of the tablespace for each application. Furthermore, tablespaces provide a way to
better manage applications that have different availability and backup and recovery
requirements. Even though there are many options that are possible to configure with
tablespaces, the storage technology advances to handle many of the needs to separate
data files, extents, and autoextend. Using the storage features and tools such as ASM
will help manage the disk and performance of the storage needed for the database.
The tablespace options are simplified by these steps. Planning for storage is then in the
area of growth of the data and monitoring for space usage to proactively increase the
allocation of space for the tablespace.

149

CHAPTER 4 TABLESPACES AND DATA FILES

Security options allow for transparent encryption for the data at rest in the
tablespace. The tablespace is created with the encryption option, and the wallet and
keys are open with the database to allow for viewing of the data in the database but not
through the files on the server.

As a DBA you must be proficient in managing tablespaces and data files. In any type
of environment, you have to add, rename, relocate, and drop these storage containers.
These are ideal tests that can be done when first creating a database or in a test
environment to practice the commands and restoring data files. The commands, errors,
and issues can be logged for future reference to use in a pressure situation for data file
corruption and recovery.

Oracle requires three types of files for a database to operate: data files, control files,
and online redo log files. The next chapter focuses on control file and online redo log file
management.

150

CHAPTER 5

Managing Control Files,
Online Redo Logs, and
Archivelogs

An Oracle database consists of three types of mandatory files: data files, control files, and
online redo logs. Chapter 4 focused on tablespaces and data files. This chapter looks at
managing control files and online redo logs and implementing archivelogs. The first part
of the chapter discusses typical control file maintenance tasks, such as adding, moving,
and removing control files. The middle part of the chapter examines DBA activities
related to online redo log files, such as renaming, adding, dropping, and relocating these
critical files. Finally, the architectural aspects of enabling and implementing archiving
are covered.

Managing Control Files

A control file is a small binary file that stores the following types of information:
o Database name
e Names and locations of data files
o Names and locations of online redo log files
e Current online redo log sequence number
e Checkpoint information

e Names and locations of RMAN backup files

151
© Michelle Malcher and Darl Kuhn 2019

M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_5

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

You can query much of the information stored in the control file from data dictionary
views. This example displays the types of information stored in the control file by
querying vécontrolfile record section:

SOL> select distinct type from v$controlfile record section;

Here is a partial listing of the output:

FILENAME

TABLESPACE

RMAN CONFIGURATION
BACKUP CORRUPTION

PROXY COPY

FLASHBACK LOG

REMOVABLE RECOVERY FILES
AUXILIARY DATAFILE COPY
DATAFILE

You can view database-related information stored in the control file via the
v$database view. The v$ views are based on x$ tables or views, and the v$database is
based on an x$database, which is just a read of the control file:

SQL> select name, open _mode, created, current scn from v$database;
Here is the output for this example:

NAME OPEN_MODE CREATED CURRENT_SCN

018C READ WRITE 28-SEP-12 2573820

Every Oracle database must have at least one control file. When you start your
database in nomount mode, the instance is aware of the location of the control files
from the CONTROL_FILES initialization parameter in the spfile or init.ora file. When
you issue a STARTUP NOMOUNT command, Oracle reads the parameter file and starts the
background processes and allocates memory structures:

-- locations of control files are known to the instance
SQL> startup nomount;

152

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

At this point, the control files have not been touched by any processes. When you
alter your database into mount mode, the control files are read and opened for use:

-- control files opened
SQL> alter database mount;

If any of the control files listed in the CONTROL_FILES initialization parameter are not
available, then you cannot mount your database.

When you successfully mount your database, the instance is aware of the locations
of the data files and online redo logs but has not yet opened them. After you alter your
database into open mode, the data files and online redo logs are opened:

-- datafiles and online redo logs opened
SOL> alter database open;

Note Keep in mind that when you issue the STARTUP command (with no
options), the previously described three phases are automatically performed in this
order: nomount, mount, open. When you issue a SHUTDOWN command, the phases
are reversed: close the database, unmount the control file, stop the instance.

The control file is created when the database is created. As you saw in Chapter 2, you
should create at least two control files when you create your database (to avoid a single
point of failure). Previously, you should have multiple control files stored on separate
storage devices controlled by separate controllers, but because of storage devices it
might be difficult to know if it is a separate device, so it is important to have fault-tolerant
devices with mirroring. The control file is a very important part of the database and
needs to be available or very quickly restored if needed.

Control files can also be on ASM disk groups. This allows for one control file in the
+ORADATA disk group and another file in +FRA disk group. Managing the control files
and details inside remain the same as on the file system except that the control files are
just using ASM disk groups.

After the database has been opened, Oracle will frequently write information to
the control files, such as when you make any physical modifications (e.g., creating
a tablespace, adding/removing/resizing a data file). Oracle writes to all control files
specified by the CONTROL FILES initialization parameter. If Oracle cannot write to one of
the control files, an error is thrown:

ORA-00210: cannot open the specified control file
153

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

If one of your control files becomes unavailable, shut down your database, and
resolve the issue before restarting (see Chapter 19 for using RMAN to restore a control
file). Fixing the problem may mean resolving a storage-device failure or modifying the
CONTROL_FILES initialization parameter to remove the control file entry for the control
file that is not available.

DISPLAYING THE CONTENTS OF A CONTROL FILE

You can use the ALTER SESSION statement to display the physical contents of the control
file; for example,

SOL> oradebug setmypid

SOL> oradebug unlimit

SQL> alter session set events 'immediate trace name controlf level 9';
SOL> oradebug tracefile name

The prior line of code displays the following name of the trace file:
/ora01/app/oracle/diag/rdbms/018c/018c/trace/018c_ora_4153.trc

The trace file is written to the $ ADR_HOME/trace directory. You can also view the trace
directory name via this query:

SOL> select value from v$diag info where name='Diag Trace';

Here is a partial listing of the contents of the trace file:

Sk ok ok sk sk ok skok sk skok sk skosk sk sk sk sk sk sk sk sk sk skk sk skok sk skosk sk sk sk sk sk sk skok sk skok sk skok sk skok sk sk sk sk sk sk skok sk sk sk sk skok sk skok sk sk sksk sk sksk sk sk

DATABASE ENTRY

Skkesk skeok sk ok sk sk ok sk ok skk sk sk sk sk ok sk sk sk sk sk ko sksk sk sk sk kol sk sk sk skok skok sk sk sk skok skok sk sk sk skok skok skoskesk skok skok skoskosk skok skok skoksk kok ko
(size = 316, compat size = 316, section max = 1, section in-use = 1,
last-recid= 0, old-recno = 0, last-recno = 0)

(extent = 1, blkno = 1, numrecs = 1)

09/28/2012 16:04:54

DB Name "018C"

Database flags = 0x00404001 0x00001200

Controlfile Creation Timestamp 09/28/2012 16:04:57

Incmplt recovery scn: 0x0000.00000000

You can inspect the contents of the control file when troubleshooting or when trying to gain a
better understanding of Oracle internals.

154

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Viewing Control File Names and Locations

If your database is in a nomount state, a mounted state, or an open state, you can view the
names and locations of the control files, as follows:

SOL> show parameter control files

You can also view control file location and name information by querying the
V$CONTROLFILE view. This query works while your database is mounted or open:

SQL> select name from v$controlfile;

If, for some reason, you cannot start your database at all, and you need to know the
names and locations of the control files, you can inspect the contents of the initialization
(parameter) file to see where they are located. If you are using a spfile, even though it is
a binary file, you can still open it with a text editor. The safest approach is to make a copy
of the spfile and then inspect its contents with an OS editor:

$ cp $ORACLE_HOME/dbs/spfileo18c.ora $0RACLE_HOME/dbs/spfileo18c.copy
$ vi $ORACLE_HOME/dbs/spfileo18c.copy

You can also use the strings command to search for values in a binary file:
$ strings spfileoi8c.ora | grep -i control files

If you are using a text-based initialization file, you can view the file directly, with an
OS editor, or use the g rep command:

$ grep -i control files $ORACLE_HOME/dbs/inito18c.ora

Adding a Control File

Adding a control file means copying an existing control file and making your database
aware of the copy by modifying your CONTROL_FILES parameter. This task must be done
while your database is shut down. This procedure only works when you have a good
existing control file that can be copied. Adding a control file isn’t the same thing as

creating or restoring a control file.

155

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Tip See Chapter 4 for an example of re-creating a control file for the purpose of
renaming and moving data files. See Chapter 19 for an example of re-creating a
control file for the purpose of renaming a database.

If your database uses only one control file, and that control file becomes damaged,
you need to either restore a control file from a backup (if available) and perform a
recovery or re-create the control file. If you are using two or more control files, and one
becomes damaged, you can use the remaining good control file(s) to quickly get your
database into an operating state.

If a database is using only one control file, the basic procedure for adding a control
file is as follows:

1. Alter the initialization file CONTROL_FILES parameter to include
the new location and name of the control file.

2. Shut down your database.

3. Usean OS command to copy an existing control file to the new
location and name.

4. Restart your database.

Depending on whether you use a spfile or an init.ora file, the previous steps vary
slightly. The next two sections detail these different scenarios.

Spfile Scenario

If your database is open, you can quickly determine whether you are using a spfile with
the following SQL statement:

SOL> show parameter spfile

Here is some sample output:

spfile string /ora01/app/oracle/product/18.1
.0.1/db_1/dbs/spfileo18c.ora

156

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

When you have determined that you are using a spfile, use the following steps to
add a control file:

1. Determine the CONTROL_FILES parameter’s current value:
SOL> show parameter control files
The output shows that this database is using only one control file:

NAME TYPE VALUE

control files string /uo1/dbfile/o018c/controlol.ctl

2. Alter your CONTROL_FILES parameter to include the new control
file that you want to add, but limit the scope of the operation to
the spfile (you cannot modify this parameter in memory). Make
sure you also include any control files listed in step 1:

SOL> alter system set control files='/u01/dbfile/018c/controlol.ctl’,
"/u01/dbfile/o018c/controlo2.ctl’ scope=spfile;

3. Shut down your database:

SQL> shutdown immediate;

4. Copy an existing control file to the new location and name. In this
example, a new control file named control02.ctl is created via
the OS cp command:

$ cp /uo1/dbfile/018c/controlol.ctl /u01/dbfile/o018c/controlo2.ctl

5. Startup your database:
SQL> startup;

You can verify that the new control file is being used by displaying the
CONTROL_FILES parameter:

SOL> show parameter control files

157

CHAPTER 5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS
Here is the output for this example:

NAME TYPE VALUE

control files string /uo1/dbfile/o018c/controlol.ctl
,/u01/dbfile/018c/controlo2.ctl

Init.ora Scenario

Run the following statement to verify that you are using an init.ora file. If you are not
using a spfile, the VALUE column is blank:

SOL> show parameter spfile
NAME TYPE VALUE

To add a control file when using a text init.ora file, perform the following steps:
1. Shut down your database:
SQL> shutdown immediate;

2. Edityour init.ora file with an OS utility (such as vi), and add
the new control file location and name to the CONTROL_FILES
parameter. This example opens the init.ora file, using vi, and
adds controlo2.ctl to the CONTROL_FILES parameter:

$ vi $ORACLE_HOME/dbs/inito18c.ora

Listed next is the CONTROL_FILES parameter after controlo2.ctl
is added:

control files='/u01/dbfile/o018c/controlol.ctl’,
'/u01/dbfile/o018c/controlo2.ctl’

3. From the OS, copy the existing control file to the location and
name of the control file being added:

$ cp /u01/dbfile/o18c/controlol.ctl /u01/dbfile/o18c/controlo2.ctl
4. Start up your database:

SQL> startup;
158

CHAPTER 5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS
You can view the control files in use by displaying the CONTROL_FILES parameter:
SOL> show parameter control files

For this example, here is the output:

control_files string /uo1/dbfile/018c/controlol.ctl
,/u01/dbfile/018c/controlo2.ctl

Moving a Control File

You may occasionally need to move a control file from one location to another. For
example, if new storage is added to the database server, you may want to move an
existing control file to the newly available location.

The procedure for moving a control file is very similar to adding a control file. The
only difference is that you rename the control file instead of copying it. This example
shows how to move a control file when you are using a spfile:

1. Determine the CONTROL FILES parameter’s current value:
SOL> show parameter control files
The output shows that this database is using only one control file:

NAME TYPE VALUE

control_files string /u01/dbfile/018c/controlol.ctl

2. Alter your CONTROL_FILES parameter to reflect that you are moving
a control file. In this example, the control file is currently in this
location:

/u01/dbfile/o018c/controlol.ctl
You are moving the control file to this location:

/u02/dbfile/o018c/controlol.ctl

159

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Alter the spfile to reflect the new location for the control file.
You have to specify SCOPE=SPFILE because the CONTROL _FILES
parameter cannot be modified in memory:

SOL> alter system set
control files='/u02/dbfile/018c/controlol.ctl’ scope=spfile;

3. Shut down your database:
SQL> shutdown immediate;

4. At the OS prompt, move the control file to the new location. This
example uses the OS mv command:

$ mv /uoi/dbfile/o18c/controlol.ctl /u02/dbfile/o018c/controlol.ctl
5. Start up your database:
SQL> startup;

You can verify that the new control file is being used by displaying the CONTROL _
FILES parameter:

SOL> show parameter control files

Here is the output for this example:

control files string /u02/dbfile/018c/controlol.ctl

Removing a Control File

You may run into a situation in which you experience a media failure with a storage

device that contains one of your multiplexed control files:

ORA-00205: error in identifying control file, check alert log for more info

160

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

In this scenario, you still have at least one good control file. To remove a control file,
follow these steps:

1. Identify which control file has experienced media failure by
inspecting the alert. log for information:

ORA-00210: cannot open the specified control file
ORA-00202: control file: '/u01/dbfile/o018c/controlo2.ctl’

2. Remove the unavailable control file name from the CONTROL _
FILES parameter. If you are using an init.ora file, modify the file
directly with an OS editor (such as vi). If you are using a spfile,
modify the CONTROL_FILES parameter with the ALTER SYSTEM
statement. In this spfile example the control02.ctl control file is
removed from the CONTROL_FILES parameter:

SOL> alter system set control files='/u01/dbfile/018c/controlol.ctl’
scope=spfile;

This database now has only one control file associated with it. You should never run
a production database with just one control file. See the section “Adding a Control File,”
earlier in this chapter, for details on how to add more control files to your database.

3. Stop and start your database:

SOL> shutdown immediate;
SQL> startup;

Note If SHUTDOWN IMMEDIATE does not work, use SHUTDOWN ABORT to
shut down your database. There is nothing wrong with using SHUTDOWN ABORT
to quickly close a database when SHUTDOWN IMMEDIATE hangs; however,
remember that the database is rolling back changes and might not be hanging.
Depending on the transactions that are in a rollback state, the startup might take
some time or hinder performance.

Control files can be in an ASM diskgroup. This will allow for you to move the back-
end disk and storage around without having to move datafiles or control files. If the ASM
layer is used, the storage devices and disks become transparent to the database files. This

161

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

does not protect from a possible recovery from corruption of a file or if a file is removed,
but it does prevent having to move files because of location and disk being used. The
files will be of type CONTROLFILE in the ASM views to know the location of the files.

Online Redo Logs

Online redo logs store a record of transactions that have occurred in your database.
These logs serve the following purposes:

e Provide a mechanism for recording changes to the database so that
in the event of a media failure, you have a method of recovering

transactions.

o Ensure that in the event of total instance failure, committed
transactions can be recovered (crash recovery) even if committed
data changes have not yet been written to the data files.

o Allow administrators to inspect historical database transactions
through the Oracle LogMiner utility.

e They are read by Oracle tools such as GoldenGate or Streams to
replicate data.

You are required to have at least two online redo log groups in your database. Each
online redo log group must contain at least one online redo log member. The member is
the physical file that exists on disk. You can create multiple members in each redo log
group, which is known as multiplexing your online redo log group.

Tip I highly recommend that you multiplex your online redo log groups and, if
possible, have each member on a separate physical device governed by a separate
controller.

The log-writer log buffer (in the SGA) to the online redo log files (on disk). The
redo record has a system change number (SCN) assigned to it in order to identify the
transaction redo information. There are committed and uncommitted records written to
the redo logs. The log writer flushes the contents of the redo log buffer when any of the
following are true:

162

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

o A COMMIT is issued.

e Alogswitch occurs.

o Three seconds go by.

o Theredo log buffer is one-third full.

Since this is a database process, the container database (CDB) will manage the redo
logs. PDBs do not have their own redo logs, which also means that planning for space
and sizing of the redo logs is at the CDB level and includes all of the PDB transactions.
This architecture will be discussed more in Chapter 22, but the transaction sizing is
based on all of the PDBs for a CDB.

The online redo log group that the log writer is actively writing to is the current
online redo log group. The log writer writes simultaneously to all members of a redo log
group. The log writer needs to successfully write to only one member in order for the
database to continue operating. The database ceases operating if the log writer cannot
write successfully to at least one member of the current group.

When the current online redo log group fills up, a log switch occurs, and the log
writer starts writing to the next online redo log group. A log sequence number is assigned
to each redo log when a switch occurs to be used for archiving. The log writer writes to
the online redo log groups in a round-robin fashion. Because you have a finite number
of online redo log groups, eventually the contents of each online redo log group are
overwritten. If you want to save a history of the transaction information, you must place
your database in archivelog mode (see the section “Implementing Archivelog Mode”
later in this chapter).

When your database is in archivelog mode, after every log switch the archiver
background process copies the contents of the online redo log file to an archived redo
log file. In the event of a failure, the archived redo log files allow you to restore the
complete history of transactions that have occurred since your last database backup.

Figure 5-1 displays a typical setup for the online redo log files. This figure shows
three online redo log groups, each containing two members. The database is in
archivelog mode. In the figure, group 2 has recently been filled with transactions, a log
switch has occurred, and the log writer is now writing to group 3. The archiver process
is copying the contents of group 2 to an archived redo log file. When group 3 fills up,
another log switch will occur, and the log writer will begin writing to group 1. At the same
time, the archiver process will copy the contents of group 3 to archive log sequence 3
(and so forth).

163

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Log writer

/uOl/oraredo/ol2¢/ /u01/oraredo/o12¢/ /ull/oraredo/o12¢/
redo0la.rdo redo02a.rdo redo03a.rdo
N~

/u02/oraredo/o12¢/ /u02/oraredo/o12¢/ /u02/oraredo/o12¢/
redo01b.rdo redo02b.rdo redo03b.rdo
N~
\i
Archiver

Archive Log Sequence 2

Figure 5-1. Online redo log configuration

The online redo log files are not intended to be backed up. These files contain only
the most recent redo transaction information generated by the database. When you
enable archiving, the archived redo log files are the mechanism for protecting your
database transaction history.

The contents of the current online redo log files are not archived until a log switch
occurs. This means that if you lose all members of the current online redo log file, you
lose transactions. Listed next are several mechanisms log files:log files:

164

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

e Multiplex the groups.

o Consider setting the ARCHIVE_LAG_TARGET initialization parameter to
ensure that the online redo logs are switched at regular intervals.

o Ifpossible, never allow two members of the same group to share the
same physical disk.

o Ensure that OS file permissions are set appropriately (restrictive,
that only the owner of the Oracle binaries has permissions to write
and read).

o Use physical storage devices that are redundant (i.e., RAID
[redundant array of inexpensive disks]).

o Appropriately size the log files, so that they switch and are archived at
regular intervals.

Note The only tool provided by Oracle that can protect you and preserve all
committed transactions in the event that you lose all members of the current online
redo log group is Oracle Data Guard, implemented in maximum protection mode.
See MOS note 239100.1 for more details regarding Oracle Data Guard protection
modes.

Flash is another option for redo logs. Since the logs are written out to archivelogs and
require fast writes, flash drives are a way to improve performance of redo logs. If flash
is not available, the options are to place redo logs on physical disks and based on the
previous list to minimize failures. Solid state disks might not provide faster writes, which
does not make them the ideal choice for redo logs.

The online redo log files are never backed up by an RMAN backup or by a
user-managed hot backup. If you did back up the online redo log files, it would be
meaningless to restore them. The online redo log files contain the latest redo generated
by the database. You would not want to overwrite them from a backup with old redo
information. For a database in archivelog mode, the online redo log files contain the
most recently generated transactions that are required to perform a complete recovery.
The redo log files should also be excluded from other system backup (non-database)
along with other data files.

165

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Displaying Online Redo Log Information

Use the V$LOG and V$LOGFILE views to display information about online redo log groups

and corresponding members:

COL group# FORM 99999
COL thread# FORM 99999
COL grp_status FORM ai10
COL member FORM a30
COL mem_status FORM a10
COL mbytes FORM 999999
SELECT

a.group#

,a.thread#

,a.status grp status
,b.member member

,b.status mem status
,a.bytes/1024/1024 mbytes
FROM v$log a,

v$logfile b

WHERE a.group# = b.group#
ORDER BY a.group#, b.member;

Here is some sample output:

GROUP# THREAD# GRP_STATUS MEMBER

1 1 INACTIVE /u01/oraredo/o018c/redoOla.rdo
1 1 INACTIVE /u02/oraredo/o018c/redo01b.rdo
2 1 CURRENT /u0l/oraredo/o018c/redo02a.rdo
2 1 CURRENT /u02/oraredo/o018c/redo02b.rdo

MEM_STATUS MBYTES

50
50
50
50

When you are diagnosing online redo log issues, the V$L0G and V$LOGFILE views are

particularly helpful. You can query these views while the database is mounted or open.

Table 5-1 briefly describes each view.

166

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Table 5-1. Useful Views Related to Online Redo Logs

View Description
V$LOG Displays the online redo log group information stored in the control file
V$LOGFILE Displays online redo log file member information

The STATUS column of the V$LOG view is especially useful when you are working with
online redo log groups. Table 5-2 describes each status and its meaning for the V$LOG view.

Table 5-2. Status for Online Redo Log Groups in the V$L0G View

Status Meaning

CURRENT The log group is currently being written to by the log writer.

ACTIVE The log group is required for crash recovery and may or may not have been
archived.

CLEARING The log group is being cleared out by an ALTER DATABASE CLEAR

LOGFILE command.
CLEARING_CURRENT The current log group is being cleared of a closed thread.

INACTIVE The log group is not required for crash recovery and may or may not have
been archived.

UNUSED The log group has never been written to; it was recently created.

The STATUS column of the V$LOGFILE view also contains useful information. This
view offers information about each physical online redo log file member of a log group.
Table 5-3 provides descriptions of each status and its meaning for each log file member.

Table 5-3. Status for Online Redo Log File Members in the V$LOGFILE View

Status Meaning

INVALID The log file member is inaccessible or has been recently created.
DELETED The log file member is no longer in use.

STALE The log file member’s contents are not complete.

NULL The log file member is being used by the database.

167

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

It is important to differentiate between the STATUS column in V$LOG and the STATUS
column in V$LOGFILE. The STATUS column in V$LOG reflects the status of the log group.
The STATUS column in V$LOGFILE reports the status of the physical online redo log file
member. Refer to these tables when diagnosing issues with your online redo logs.

Determining the Optimal Size of Online Redo Log Groups

Try to size the online redo logs so that they switch anywhere from two to six times per
hour. The V$LOG_HISTORY contains a history of how frequently the online redo logs have
switched. Execute this query to view the number of log switches per hour:

select count(*)

,to _char(first time, 'YYYY:MM:DD:HH24")

from v$log history

group by to char(first time,'YYYY:MM:DD:HH24")
order by 2;

Here is a snippet of the output:

COUNT(*) TO CHAR(FIRST
1 2012:10:23:23
3 2012:10:24:03
28 2012:10:24:04
23 2012:10:24:05
68 2012:10:24:06
84 2012:10:24:07
15 2012:10:24:08

From the previous output, you can see that a great deal of log switch activity occurred
from approximately 4:00 AM to 7:00 AM This could be due to a nightly batch job or users
in different time zones updating data. For this database the size of the online redo logs
should be increased. You should try to size the online redo logs to accommodate peak
transaction loads on the database.

The V$LOG_HISTORYsystem change number (SCN). As stated, a general rule of thumb
is that you should size your online redo log files so that they switch approximately two to
six times per hour. You do not want them switching too often because there is overhead
with the log switch; however, leaving transaction information in the redo log without

168

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

archiving will create issues with recovery. If a disaster causes a media failure in your
current online redo log, you can lose those transactions that haven’t been archived.
If a disaster causes a media failure in your current online redo log, you can lose those
transactions that haven’t been archived.

Oracle initiates a checkpoint as part of a log switch. During a checkpoint, the
database-writer background process writes modified (also called dirty) blocks to disk,
which is resource intensive. Checkpoint messages in the alert log will also be a way of
looking at how fast logs are switching or if there are waits associated with archiving.

Tip Use the ARCHIVE LAG_TARGET initialization parameter to set a maximum
amount of time (in seconds) between log switches. A typical setting for this
parameter is 1,800 seconds (30 minutes). A value of 0 (default) disables this
feature. This parameter is commonly used in Oracle Data Guard environments to
force log switches after the specified amount of time elapses.

You can also query the OPTIMAL_LOGFILE_SIZE column from the V$INSTANCE
RECOVERY view to determine if your online redo log files have been sized correctly:

SOL> select optimal logfile size from v$instance recovery;
Here is some sample output:

OPTIMAL LOGFILE SIZE

This column reports the redo log file size (in megabytes) that is considered optimal,
based on the initialization parameter setting of FAST_START_MTTR_TARGET. Oracle
recommends that you configure all online redo logs to be at least the value of OPTIMAL
LOGFILE_SIZE. However, when sizing your online redo logs, you must take into consideration
information about your environment (such as the frequency of the switches).

Determining the Optimal Number of Redo Log Groups

Oracle requires at least two redo log groups in order to function. But, having just two
groups sometimes isn’t enough. To understand why this is so, remember that every time
a log switch occurs, it initiates a checkpoint. As part of a checkpoint the database writer

169

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

writes all modified (dirty) blocks from the SGA to the data files on disk. Also recall that
the online redo logs are written to in a round-robin fashion, and that eventually the
information in a given log is overwritten. Before the log writer can begin to overwrite
information in an online redo log, all modified blocks in the SGA associated with the
redo log must first be written to a data file. If not, all modified blocks have been written
to the data files, you see this message in the alert.log file:

Thread 1 cannot allocate new log, sequence <sequence number>
Checkpoint not complete

Another way to explain this issue is that Oracle needs to store in the online redo
logs any information that would be required to perform a crash recovery. To help you

@ Log buffer

visualize this, see Figure 5-2.

Data buffer cache

. Oracle
hgl?clzf process Change
vectors for
A J
v
Oracle DBWR LGWR

process o o

/"’"'"'__‘R\
\‘-‘--—._____.—--""/ -
w \“‘-—-—-—-"’J“--...._..../ e
Data file AA Online redo Online redo
log 1 log 2
Original Change
Block A vectors for
1111 Block A
e ——- A RSt

\-\.__-_-____,_./
Figure 5-2. Redo protected until the modified (dirty) buffer is written to disk
At time 1, Block A is read from Data File AA into the buffer cache and modified. At

time 2 the redo-change vector information (how the block changed) is written to the
log buffer. At time 3 the log-writer process writes the Block A change-vector information

170

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

to online redo log 1. At time 4 a log switch occurs, and online redo log 2 becomes the
current online redo log.

Now, suppose that online redo log 2 fills up quickly and another log switch occurs,
at which point the log-writer attempts to write to online redo log 1. The log writer
isn’t allowed to overwrite information in online redo log 1 until the database writer
writes Block A to Data File AA. Until Block A is written to Data File AA, Oracle needs
information in the online redo logs to recover this block in the event of a power failure or
shutdown abort. Before Oracle overwrites information in the online redo logs, it ensures
that blocks protected by redo have been written to disk. If these modified blocks haven’t
been written to disk, Oracle temporarily suspends processing until this occurs. There are
a few ways to resolve this issue:

e Add more redo log groups.

o Lower the value of FAST_START_MTTR_TARGET. Doing so causes the
database-writer process to write older modified blocks to disk in a
shorter time frame.

o Tune the database-writer process (modify DB_WRITER PROCESSES).

If you notice that the Checkpoint not complete message is occurring often (say,
several times a day), I recommend that you add one or more log groups to resolve the
issue. Adding an extra redo log gives the database writer more time to write modified
blocks in the database buffer cache to the data files before the associated redo with a
block is overwritten. There is little downside to adding more redo log groups. The main
concern is that you could bump up against the MAXLOGFILES value that was used when
you created the database. If you need to add more groups and have exceeded the value
of MAXLOGFILES, then you must re-create your control file and specify a high value for this
parameter.

If adding more redo log groups doesn’t resolve the issue, you should carefully
consider lowering the value of FAST_START_MTTR_TARGET. When you lower this value,
you can potentially see more I/O because the database-writer process is more actively
writing modified blocks to data files. Ideally, it would be nice to verify the impact of
modifying FAST_START_MTTR_TARGET in a test environment before making the change in
production. You can modify this parameter while your instance is up; this means you can
quickly moditfy it back to its original setting if there are unforeseen side effects.

Finally, consider increasing the value of the DB_WRITER _PROCESSES parameter.
Carefully analyze the impact of modifying this parameter in a test environment before

171

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

you apply it to production. This value requires that you stop and start your database;
therefore, if there are adverse effects, downtime is required to change this value back to
the original setting.

Adding Online Redo Log Groups

If you determine that you need to add an online redo log group, use the ADD LOGFILE
GROUP statement. In this example, the database already contains two online redo

log groups that are sized at 50M each. An additional log group is added that has two
members and is sized at 50MB:

alter database add logfile group 3
('/u01/oraredo/018c/redo03a.rdo",
'/u02/oraredo/018c/redo03b.rdo") SIZE 50M;

In this scenario I highly recommend that the log group you add be the same size and
have the same number of members as the existing online redo logs. If the newly added
group doesn’t have the same physical characteristics as the existing groups, it’s harder to
accurately determine performance issues. If a larger size is preferred, the new group can
be added at the larger size, then the other groups can be dropped and re-created with
the larger size value in order to keep the size of the redo logs the same (an example of
this is in the next section).

For example, if you have two log groups sized at 50MB, and you add a new log
group sized at 500MB, this is very likely to produce the Checkpoint not complete issue
described in the previous section. This is because flushing all modified blocks from the
SGA that are protected by the redo in a 500MB log file can potentially take much longer
than flushing modified blocks from the SGA that are protected by a 50MB log file.

Resizing and Dropping Online Redo Log Groups

You may need to change the size of your online redo logs (see the section “Determining
the Optimal Size of Online Redo Log Groups” earlier in this chapter). You cannot directly
modify the size of an existing online redo log (as you can a data file). To resize an online
redo log, you have to first add online redo log groups that are the size you want, and then
drop the online redo logs that are the old size.

172

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Say you want to resize the online redo logs to be 200MB each. First, you add new
groups that are 200MB, using the A DD LOGFILE GROUP statement. The following
example adds log group 4, with two members sized at 200MB:

alter database add logfile group 4
('/uo1/oraredo/o18c/redo04a.xrdo",
'/u02/oraredo/018c/redo04b.rdo") SIZE 200M;

Note You can specify the size of the log file in bytes, kilobytes, megabytes, or
gigabytes.

After you've added the log files with the new size, you can drop the old online redo
logs. A log group must have an INACTIVE status before you can drop it. You can check the
status of the log group, as shown here:

SOL> select group#, status, archived, thread#, sequence#f from v$log;

You can drop an inactive log group with the ALTER DATABASE DROP LOGFILE GROUP

statement:
SOL> alter database drop logfile group <group #>;

If you attempt to drop the current online log group, Oracle returns an ORA-01623
error, stating that you cannot drop the current group. Use the ALTER SYSTEM SWITCH
LOGFILE statement to switch the logs and make the next group the current group:

SOL> alter system switch logfile;

After a log switch the log group that was previously the current group retains an
active status as long as it contains redo that Oracle requires to perform crash recovery.
If you attempt to drop a log group with an active status, Oracle throws an ORA-01624
error, indicating that the log group is required for crash recovery. Issue an ALTER SYSTEM
CHECKPOINT command to make the log group inactive:

SOL> alter system checkpoint;

Additionally, you cannot drop an online redo log group if doing so leaves your
database with only one log group. If you attempt to do this, Oracle throws an ORA-01567
error and informs you that dropping the log group is not permitted because it would

173

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

leave you with fewer than two log groups for your database (as mentioned earlier, Oracle
requires at least two redo log groups in order to function).

Dropping an online redo log group does not remove the log files from the OS. You
have to use an OS command to do this (such as the rm Linux/Unix command). Before
you remove a file from the OS, ensure that it is not in use and that you do not remove a
live online redo log file. For every database on the server, issue this query to view which
online redo log files are in use:

SOL> select member from v$logfile;

Before you physically remove a log file, first switch the online redo logs enough times
that all online redo log groups have recently been switched; doing so causes the OS to
write to the file and thus give it a new timestamp. For example, if you have three groups,
make sure you perform at least three log switches:

SOL> alter system switch logfile;
soL> /
SQL> /

Tip These steps of adding and removing redo logs is another exercise to perform
before turning over a new database or a regularly scheduled testing period for
practice and testing scripts to perform in production databases.

Now, verify at the OS prompt that the log file you intend to remove does not have a
new timestamp. First, go to the directory containing the online redo log files:

$ c¢d /u0i1/oraredo/o18c
Then, list the files to view the latest modification date:

$ 1s -altr

When you are absolutely sure the file is not in use, you can remove it. The danger in
removing a file is that if it happens to be an in-use online redo log, and the only member
of a group, you can cause serious damage to your database. Ensure that you have a good
backup of your database and that the file you are removing is not used by any databases
on the server.

174

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Adding Online Redo Log Files to a Group

You may occasionally need to add a log file to an existing group. For example, if you have
an online redo log group that contains only one member, you should consider adding a
log file (to provide a higher level of protection against a single-log file member failure).
Use the ALTER DATABASE ADD LOGFILE MEMBER statement to add a member file to an
existing online redo log group. You need to specify the new member file location, name,
and group to which you want to add the file:

SOL> alter database add logfile member '/u02/oraredo/o18c/redo0O1b.rdo’
to group 1;

Make certain you follow standards with regard to the location and names of any
newly added redo log files.

Removing Online Redo Log Files from a Group

Occasionally, you may need to remove a log file from a group. For example, your
database may have experienced a failure with one member of a multiplexed group, and
you want to remove the apostate member. First, make sure the log file you want to drop is
not in the current group:

SELECT a.group#, a.member, b.status, b.archived, SUM(b.bytes)/1024/1024
mbytes

FROM v$logfile a, v$log b

WHERE a.group# = b.group#

GROUP BY a.group#, a.member, b.status, b.archived

ORDER BY 1, 2;

If you attempt to drop a log file that is in the group with the CURRENT status, you
receive the following error:

ORA-01623: log 2 is current log for instance 018c (thread 1) - cannot drop

Ifyou are attempting to drop a member from the current online redo log group, then
force a switch, as follows:

SOL> alter system switch logfile;

175

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Use the ALTER DATABASE DROP LOGFILE MEMBER statement log group. You do not
need to specify the group number because you are removing a specific file:

SOL> alter database drop logfile member '/u01/oraredo/o18c/redo0O4a.rdo’;

You also cannot drop the last remaining log file of a group. A group must contain at
least one log file. If you attempt to drop the last remaining log file of a group, you receive
the following error:

ORA-00361: cannot remove last log member ...

Moving or Renaming Redo Log Files

Sometimes you need to move or rename online redo log files. For example, you may have
added some new mount points to the system, and you want to move the online redo logs
to the new storage. You can use two methods to accomplish this task:

e Addthe newlog files in the new location and drop the old log files.
o Physically rename the files from the OS.

If you cannot afford any downtime, consider adding new log files in the new
location and then dropping the old log files. See the section “Adding Online Redo Log
Groups,” earlier in this chapter, for details on how to add a log group. See also the section
“Resizing and Dropping Online Redo Log Groups,” earlier in this chapter, for details on
how to drop a log group.

Alternatively, you can physically move the files from the OS. You can do this with the
database open or closed. If your database is open, ensure that the files you move are not
part of the current online redo log group (because those are actively written to by the
log-writer background process). It is dangerous to try to do this task while your database
is open because on an active system, the online redo logs may be switching at a rapid
rate, which creates the possibility of attempting to move a file while it is being switched
to be the current online redo log. Therefore, I recommend that you only try to do this
while your database is closed.

The next example shows how to move the online redo log files with the database shut
down. Here are the steps:

1. Shut down your database:

SQL> shutdown immediate;

176

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

2. From the OS prompt, move the files. This example uses the mv
command to accomplish this task:

$ mv /u02/oraredo/018c/redo02b.rdo /u0l/oraredo/o18c/redo02b.rdo
3. Startup your database in mount mode:

SQL> startup mount;
4. Update the control file with the new file locations and names:

SQL> alter database rename file '/u02/oraredo/o018c/redo02b.rdo’
to '/u0l/oraredo/018c/redo02b.rdo’;

5. Open your database:
SQL> alter database open;

You can verify that your online redo logs are in the new locations by querying the
V$LOGFILE view. I recommend as well that you switch your online redo logs several
times and then verify from the OS that the files have recent timestamps. Also check the
alert.log file for any pertinent errors.

Controlling the Generation of Redo

For some types of applications, you may know beforehand that you can easily re-create
the data. An example might be a data warehouse environment in which you perform
direct path inserts or use SQL*Loader to load data. In these scenarios you can turn off
the generation of redo for direct path loading. You use the N OLOGGING clause to do this:

create tablespace inv_mgmt data
datafile '/uo01/dbfile/o12c/inv_mgmt_dataoil.dbf' size 100m
extent management local
uniform size 128k
segment space management auto
nologging;

If you have an existing tablespace and want to alter its logging mode, use the ALTER
TABLESPACE statement:

SOL> alter tablespace inv_mgmt_data nologging;

177

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

You can confirm the tablespace logging mode by querying the DBA_TABLESPACES

view:
SOL> select tablespace name, logging from dba_tablespaces;

The generation of redo logging cannot be suppressed for regular INSERT, UPDATE,
and DELETE statements. For regular data manipulation language (DML) statements, the
NOLOGGING clause is ignored. The NOLOGGING clause does apply, however, to the following
types of DML:

o Direct path INSERT statements
e Direct path SQL*Loader
The NOLOGGING clause also applies to the following types of DDL statements:

o CREATE TABLE ... AS SELECT (NOLOGGING only affects the initial
create, not subsequent regular DML, statements against the table)

e ALTER TABLE ... MOVE

e ALTER TABLE ... ADD/MERGE/SPLIT/MOVE/MODIFY PARTITION
o CREATE INDEX

e ALTER INDEX ... REBUILD

o CREATE MATERIALIZED VIEW

e ALTER MATERIALIZED VIEW ... MOVE

o CREATE MATERIALIZED VIEW LOG

e ALTER MATERIALIZED VIEW LOG ... MOVE

Be aware that if redo isn’t logged for a table or index, and you have a media failure
before the object is backed up, then you cannot recover the data; you receive an ORA-
01578 error, indicating that there is logical corruption of the data.

Note You can also override the tablespace level of logging at the object level. For
example, even if a tablespace is specified as NOLOGGING, you can create a table
with the LOGGING clause.

178

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Implementing Archivelog Mode

Recall from the discussion earlier in this chapter that archive redo logs are created
only if your database is in archivelog mode. If you want to preserve your database
transaction history to facilitate point-in-time and other types of recovery, you need to
enable that mode.

In normal operation, changes to your data generate entries in the database redo log
files. As each online redo log group fills up, a log switch is initiated. When a log switch
occurs, the log-writer process stops writing to the most recently filled online redo log
group and starts writing to a new online redo log group. The online redo log groups are
written to in a round-robin fashion—meaning the contents of any given online redo
log group will eventually be overwritten. Archivelog mode preserves redo data for the
long term by employing an archiver background process to copy the contents of a filled
online redo log to what is termed an archive redo log file. The trail of archive redo log files
is crucial to your ability to recover the database with all changes intact, right up to the
precise point of failure.

Making Architectural Decisions

When you implement archivelog mode, you also need a strategy for managing the
archived log files. The archive redo logs consume disk space. If left unattended, these
files will eventually use up all the space allocated for them. If this happens, the archiver
cannot write a new archive redo log file to disk, and your database will stop processing
transactions. At that point, you have a hung database. You then need to intervene
manually by creating space for the archiver to resume work. For these reasons, there are
several architectural decisions you must carefully consider before you enable archiving:

o Where to place the archive redo logs and whether to use the fast
recovery area to store them

e How to name the archive redo logs

o How much space to allocate to the archive redo log location

o How often to back up the archive redo logs

e When it’s okay to permanently remove archive redo logs from disk

e How to remove archive redo logs (e.g., have RMAN remove the logs,
based on a retention policy)

179

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

e Whether multiple archive redo log locations should be enabled

e When to schedule the small amount of downtime that is required (if a
production database)

As a general rule of thumb, you should have enough space in your primary archive
redo location to hold at least a day’s worth of archive redo logs. This lets you back them
up on a daily basis and then remove them from disk after they have been backed up.

If you decide to use a fast recovery area (FRA) for your archive redo log location, you
must ensure that it contains sufficient space to hold the number of archive redo logs
generated between backups. Keep in mind that the FRA typically contains other types of
files, such as RMAN backup files, flashback logs, and so on. If you use an FRA, be aware
that the generation of other types of files can potentially impact the space required by
the archive redo log files. There are parameters that can be set to manage the FRA and
provide a way to resize the space for recovery in order for the database to continue
instead of having to increase space on the file system.

The parameters DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE
set the file location for the FRA and the size of the space to be used by the database.
These can also prevent one database filling up the space for other databases that
might be on the same server. The ASM diskgroup FRA can be created to manage the
space using ASM. DB_RECOVERY FILE DEST = +FRA, will allow the area to use the FRA
diskgroup. Again, there are advantages of managing space behind the scene in a scenario
that fills up space. Using these parameters along with ASM removes specific file systems
and allows for more options to quickly address issues with archive logs and using the
recovery areas. FRA is recommended for this since the parameters are dynamic and can
will allow for changes to occur to prevent the database hanging. This should be included
in the planning and architecting of the archive mode of the database.

You need a strategy for automating the backup and removal of archive redo log files.
For user-managed backups, this can be implemented with a shell script that periodically
copies the archive redo logs to a backup location and then removes them from the
primary location. As you will see in later chapters, RMAN automates the backup and
removal of archive redo log files.

If your business requirements are such that you must have a certain degree of
high availability and redundancy, then you should consider writing your archive redo
logs to more than one location. Some shops set up jobs to copy the archive redo logs
periodically to a different location on disk or even to a different server.

180

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Setting the Archive Redo File Location

Before you set your database mode to archiving, you should specifically instruct Oracle
where you want the archive redo logs to be placed. You can set the archive redo log file
destination with the following techniques:

o Setthe LOG_ARCHIVE _DEST N database initialization parameter.
e Implement FRA.

These two approaches are discussed in detail in the following sections.

Tip If you do not specifically set the archive redo log location via an initialization
parameter or by enabling the FRA, then the archive redo logs are written to a
default location. For Linux/Unix, the default location is ORACLE_HOME/dbs. For
Windows, the default location is ORACLE_HOME\database. For active production
database systems, the default archive redo log location is rarely appropriate.

Setting the Archive Location to a User-Defined Disk Location
(non-FRA)

If you are using an 1 nit<SID>.ora file, modify the file with an OS utility (such as vi). In
this example the archive redo log location is set to / u01/oraarch/o18c:

log_archive dest 1="location=/u01/oraarch/o18c’
log_archive format='o12c_%t %s %r.arc'

In the prior line of code, my standard for naming archive redo log files includes the
ORACLE_SID (in this example, 018c to start the string); the mandatory parameters %t, %s,
and %r; and the string .arc, to end. I like to embed the name of the ORACLE_SID in the
string to avoid confusion when multiple databases are housed on one server. I like to use
the extension .arc to differentiate the files from other types of database files.

181

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Tip If you do not specify a value for LOG_ARCHIVE FORMAT, Oracle uses a
default, such as %t_%s_%xr.dbf. One aspect of the default format that | do not like
is that it ends with the extension . dbf, which is widely used for data files. This can
cause confusion about whether a particular file can be safely removed because

it is an old archive redo log file or should not be touched because it is a live data
file. Most DBAs are reluctant to issue commands such as rm *. dbf for fear of
accidentally removing live data files.

If you are using a spfile, use ALTER SYSTEM to modify the appropriate initialization
variables:

SOL> alter system set log archive dest 1="location=/u01/oraarch/o18c’
scope=both;
SOL> alter system set log archive format='ol2c %t %s %r.arc' scope=spfile;

You can dynamically change the LOG_ARCHIVE DEST n parameters while your
database is open. However, you have to stop and start your database for the LOG_
ARCHIVE_FORMAT parameter to take effect.

RECOVERING FROM SETTING A BAD SPFILE PARAMETER

Take care not to set the LOG_ARCHIVE_FORMAT to an invalid value; for example,
SOL> alter system set log_archive format='%r %y %dk.arc' scope=spfile;

If you do so, when you attempt to stop and start your database, you won't even get to the
nomount phase (because the spfile contains an invalid parameter):

SQL> startup nomount;
ORA-19905: log archive format must contain %s, %t and %r

In this situation, if you are using a spfile, you cannot start your instance. You have a couple
of options here. If you are using RMAN and are backing up the spfile, then restore the
spfile from a backup.

If you are not using RMAN, you can also try to edit the spfile directly with an OS editor (such
as vi), but Oracle doesn’t recommend or support this.

182

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

The alternative is to create an init.oxra file manually from the contents of the spfile. First,
rename the spfile that contains a bad value:

$ cd $ORACLE_HOME/dbs
$ mv spfile<SID>.ora spfile<SID>.old

In SQLPIus create the init.ora file from the spfile.

SQL> create pfile=initoi18c.ora from spfile;
Then, open the pfile with a text editor, such as vi:

$ vi inito18c.ora

Modify the bad parameter to contain a valid value. Exit out of the pfile. You should now be able
to start up your database using the pfile. Then you can copy the pfile into a new spf

SOL> create spfile from pfile;

Then you can start up the database using the fixed spfile.

When you specify LOG_ARCHIVE_FORMAT, you must include %t (or %T), %s (or %S),

and d% in the format string. Table 5-4 lists the valid variables you can use with the
LOG_ARCHIVE FORMAT initialization parameter.

Table 5-4. Valid Variables for the Log Archive Format String

Format String Meaning

%s Log sequence number

%S Log sequence number padded to the left with zeros

%t Thread number

% Thread number padded to the left with zeros

%a Activation ID

%d Database ID

A Resetlogs ID required to ensure uniqueness across multiple incarnations of

the database

183

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

You can view the value of the LOG_ARCHIVE _DEST N parameter by running the
following:

SOL> show parameter log archive dest

Here is a partial listing of the output:

NAME TYPE VALUE

log archive dest string

log archive dest 1 string location=/u01/0raarch/o018c
log archive dest 10 string

You can enable up to 31 different locations for the archive redo log file destination.
For most production systems, one archive redo log destination location is usually
sufficient. If you need a higher degree of protection, you can enable multiple
destinations. Keep in mind that when you use multiple destinations, the archiver must
be able to write to at least one location successfully. If you enable multiple mandatory
locations and set LOG_ARCHIVE_MIN_SUCCEED DEST to be higher than 1, then your
database may hang if the archiver cannot write to all mandatory locations.

You can check the details regarding the status of archive redo log locations via this

query:

select
dest _name
,destination
,status
,binding
from v$archive dest;

Here is a small sample of the output:

DEST_NAME DESTINATION STATUS BINDING
LOG_ARCHIVE DEST 1 /uO1/oraarch/o18c VALID OPTIONAL
LOG_ARCHIVE DEST 2 INACTIVE OPTIONAL

184

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Using the FRA for Archive Log Files

The FRA is an area on disk—specified via database initialization parameters—that can
be used to store files, such as archive redo logs, RMAN backup files, flashback logs, and
multiplexed control files and online redo logs. To enable the use of FRA, you must set
two initialization parameters (in this order):

o DB _RECOVERY_FILE DEST SIZE specifies the maximum space to be
used for all files that are stored in the FRA for a database.

o DB _RECOVERY_FILE DEST specifies the base directory for the FRA.

When you create an FRA, you are not really creating anything—you are telling Oracle
which directory to use when storing files that go in the FRA. For example, say 200GB of
space are reserved on a mount point, and you want the base directory for the FRA to be
/u01/fra. To enable the FRA, first set DB_RECOVERY FILE DEST SIZE:

SOL> alter system set db recovery file dest size=200g scope=both;
Next, set the DB_RECOVERY_FILE DEST parameter:
SOL> alter system set db recovery file dest='/u01/fra' scope=both;

If you are using an init.ora file, modify it with an OS utility (such as vi) with the
appropriate entries.

After you enable FRA, by default, Oracle writes archive redo logs to subdirectories in
the FRA.

Note If you've set the LOG_ARCHIVE DEST N parameter to be a location on
disk, archive redo logs are not written to the FRA.

You can verify that the archive location is using FRA:
SQL> archive log list;

If archive files are being written to the FRA, you should see output like this:

Database log mode Archive Mode
Automatic archival Enabled
Archive destination USE_DB_RECOVERY_FILE_DEST

185

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS
You can display the directory associated with the FRA like this:
SQL> show parameter db recovery file dest

When you first implement FRA, there are no subdirectories beneath the base FRA
directory (specified with DB_RECOVERY_FILE_DEST). The first time Oracle needs to write
a file to the FRA, it creates any required directories beneath the base directory. For
example, after you implement FRA, if archiving for your database is enabled, then the
first time a log switch occurs, Oracle creates the following directories beneath the base
FRA directory:

<SID>/archivelog/<YYYY_MM_DD>

Each day that archive redo logs are generated results in a new directory’s being
created in the FRA, using the directory name format YYYY_MM_DD. Archive redo logs
written to the FRA use the OMF format naming convention (regardless of whether you've
set the LOG_ARCHIVE_FORMAT parameter).

If you want archive redo logs written to both FRA and a non-FRA location, you can
enable that, as follows:

SQL> alter system set log archive dest 1='location=/u01/oraarch/o18c"';
SOL> alter system set log archive dest 2='location=USE_DB_RECOVERY_FILE DEST';

Enabling Archivelog Mode

After you have set the location for your archive redo log files, you can enableSYS (or a
user with the SYSDBA privilege) and do the following:

$ sqlplus / as sysdba

SQL> shutdown immediate;

SQL> startup mount;

SOL> alter database archivelog;
SOL> alter database open;

You can confirm archivelog mode with this query:

SOL> archive log list;

186

CHAPTER 5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS
You can also confirm it as follows:
SOL> select log mode from v$database;

LOG_MODE

ARCHIVELOG

Disabling Archivelog Mode

Usually, you don’t disable archivelog mode for a production database. However, you may
be doing a big data load and want to reduce any overhead associated with the archiving
process, and so you want to turn off archivelog mode before the load begins and then
re-enable it after the load. If you do this, be sure you make a backup as soon as possible
after re-enabling archiving.

To disable archiving, do the following as SYS (or a user with the SYSDBA privilege):

$ sqlplus / as sysdba

SQL> shutdown immediate;

SQL> startup mount;

SOL> alter database noarchivelog;
SOL> alter database open;

You can confirm archivelog mode with this query:
SQL> archive log list;

You can also confirm the log mode, as follows:
SOL> select log mode from v$database;

LOG_MODE

NOARCHIVELOG

187

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Reacting to a Lack of Disk Space in Your Archive Log
Destination

The archiver background process writes archive redo logs to a location that you specify.
If, for any reason, the archiver process cannot write to the archive location, your
database hangs. Any users attempting to connect receive this error:

ORA-00257: archiver error. Connect internal only, until freed.

As a production-support DBA, you never want to let your database get into that state.
Sometimes, unpredictable events happen, and you have to deal with unforeseen issues.

Note DBAs who support production databases have a mindset completely
different from that of architect DBAs. Getting new ideas or learning about new
technologies is a perfect time to work together and communicate what might
work or not work in your environment. Set up time outside of troubleshooting with
production DBAs and architects to plan and set strategies for the environment.

In this situation your database is as good as down and completely unavailable. To fix
the issue, you have to act quickly:

» Move files to a different location.
o Compress old files in the archive redo log location.
e Permanently remove old files.

o Switch the archive redo log destination to a different location (this
can be changed dynamically, while the database is up and running).

o Ifusing FRA, increase the space allocation for DB_RECOVERY_FILE _
DEST_SIZE.

o Ifusing FRA, change the destination to different location in the
parameter DB_RECOVERY_FILE_DEST.

e RMAN backup and delete the archive log files.

o Remove expired files from the directory using RMAN.

188

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Moving files is usually the quickest and safest way to resolve the archiver error
along with increasing the allocation or directory with the DB_RECOVERY_FILE_DEST
parameters. You can use an OS utility such as mv to move old archive redo logs to
a different location. If they are needed for a subsequent restore and recovery, you
can let the recovery process know about the new location. Be careful not to move an
archive redo log that is currently being written to. If an archived redo log file appears in
V$ARCHIVED LOG, that means it has been completely archived.

You can use an OS utility such as gzip to compress archive redo log files in the
current archive destination. If you do this, you have to remember to uncompress any
files that may be later needed for a restore and recovery. Be careful not to compress an
archive redo log that is currently being written to.

Another option is to use an OS utility such as rm to remove archive redo logs from
the disk permanently. This approach is dangerous because you may need those archive
redo logs for a subsequent recovery. If you do remove archive redo log files, and you
don’t have a backup of them, you should make a full backup of your database as soon
as possible. Using RMAN to back up and delete the files is a much safer approach and
assures that recovery is possible until another backup is performed. Again, this approach
is risky and should only be done as a last resort; if you delete archive redo logs that
haven’t been backed up, then you chance not being able to perform a complete recovery.

If another location on your server has plenty of space, you can consider changing the
location to which the archive redo logs are being written. You can perform this operation
while the database is up and running; for example,

SOL> alter system set log archive dest 1="location=/u02/oraarch/o18c";

After you've resolved the issue with the primary location, you can switch back the

original location.

Note When a log switch occurs, the archiver determines where to write the
archive redo logs, based on the current FRA setting or a LOG_ARCHIVE_DEST_N
parameter. It doesn’t matter to the archiver if the destination has recently changed.

When the archive redo log file destination is full, you have to scramble to resolve
it. This is why a good deal of thought should precede enabling archiving for 24-7
production databases.

189

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

For most databases, writing the archive redo logs to one location is sufficient.
However, if you have any type of disaster recovery or high-availability requirement,
then you should write to multiple locations. Sometimes, DBAs set up a job to back up
the archive redo logs every hour and copy them to an alternate location or even to an
alternate server.

Backing Up Archive Redo Log Files

Depending on your business requirements, you may need a strategy for backing up
archive redo log files. Minimally, you should back up any archive redo logs generated
during a backup of a database in archivelog mode. Additional strategies may include the
following:

o Periodically copying archive redo logs to an alternate location and
then removing them from the primary destination

o Copying the archive redo logs to tape and then deleting them
from disk

o Using two archive redo log locations
o Using Data Guard for a robust disaster recovery solution

Keep in mind that you need all archive redo logs generated since the begin time of
the last good backup to ensure that you can completely recover your database. Only after
you are sure you have a good backup of your database should you consider removing
archive redo logs that were generated prior to the backup.

If you are using RMAN as a backup and recovery strategy, then you should use
RMAN to back up the archive redo logs. Additionally, you should specify an RMAN
retention policy for these files and have RMAN remove the archive redo logs only
after the retention policy requirements are met (e.g., back up files at least once before
removing from disk) (see Chapter 18 for details on using RMAN) .

Summary

This chapter described how to configure and manage control files and online redo log
files and enable archiving. Control files and online redo logs are critical database files; a
normally operating database cannot function without them.

190

CHAPTER5 MANAGING CONTROL FILES, ONLINE REDO LOGS, AND ARCHIVELOGS

Control files are small binary files that contain information about the structure of
the database. Any control files specified in the parameter file must be available in order
for you to mount the database. If a control file becomes unavailable, then your database
will cease operating with the next log switch or needed write to the control file until you
resolve the issue. I highly recommend that you configure your database with at least
three control files. If one control file becomes unavailable, you can replace it with a copy
of a good existing control file. It is critical that you know how to configure, add, and
remove these files.

Online redo logs are crucial files that record the database’s transaction history. If
you have multiple instances connected to one database, then each instance generates
its own redo thread. Each database must be created with two or more online redo log
groups. You can operate a database with each group’s having just one online redo log
member. However, I highly recommend that you create your online redo log groups with
two members in each group. If an online redo log has at least one member that can be
written to, your database will continue to function. If all members of an online redo log
group are unavailable, then your database will cease to operate. As a DBA you must be
extremely proficient in creating, adding, moving, and dropping these critical database
files. Using storage options such as flash will allow for faster writes to the redo logs. Solid
state disks might not provide faster writes, which does not make them the ideal choice
for redo logs.

Archiving is the mechanism for ensuring you have all the transactions required to
recover the database. Once enabled, the archiver needs to successfully copy the online
redo log after a log switch occurs. If the archiver cannot write to the primary archive
destination, then your database will hang. Therefore, you need to map out carefully the
amount of disk space required and how often to back up and subsequently remove
these files.

Using Fast Recovery Area (FRA) provides additional ways to manage the archive logs
and allows for some flexibility in planning for growth and sizing of the disk needed for
the archive logs.

The chapters up to this point in the book have covered tasks such as installing the
Oracle software; creating databases; and managing tablespaces, data files, control files,
online redo log files, and archiving. The next several chapters concentrate on how to
configure a database for application use and include topics such as creating users and
database objects.

191

CHAPTER 6

Users and Basic Security

After you have installed the binaries, implemented a database, and created tablespaces,
the next logical task is to secure your database and begin creating new users. When you
create a database, several default user accounts are created by default. As a DBA, you
must be aware of these accounts and how to manage them. The default accounts are
frequently the first place a hacker will look to gain access to a database; therefore, you
must take precautions to secure these users. Depending on what options you install
and which version of the database you implement, there could be 20 or more default
accounts.

As applications and users need access to the database, you'll need to create and
manage new accounts. This includes choosing an appropriate authentication method,
implementing password security, and allocating privileges to users. These topics are
discussed in detail in this chapter.

Managing Default Users

As stated, when you create a database, Oracle creates several default database users.
In earlier releases, these default users would either set a default password or take
input from database creation. With Oracle 18c, all of the default accounts are locked
on installation except for SYS and SYSTEM. Passwords can be set for each one or
unlocked on a custom basis; however, it would be recommended only to unlock the
accounts that are absolutely needed. As one of the steps of the dbca, all of the accounts
are listed and available to be changed instead of just the SYS and SYSTEM accounts,
seen in Figure 6-1.

193
© Michelle Malcher and Darl Kuhn 2019

M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_6

CHAPTER6 USERS AND BASIC SECURITY

& Password Management

Lock / unlock database user accounts and / or change the default passwords:

User Name Lock Account? - |New Password Confirm Password
SYSTEM

SYS

SYSDG

ORACLE_OCM

SYSKM

DIP

AUDSYS

SYSRAC

GSMUSER
REMOTE_SCHEDULER_AG...
SYSBACKUP

MDDATA
CSMCATUSER
ORDSYS

WMSYS

XDB

ORDDATA

OLAPSYS

MDSYS

ORDPLUGINS
GSMADMIN_INTERNAL
DVSYS
SI_INFORMTN_SCHEMA
DVF

CTXSYS

ANONYMOUS

CGSYS

DBSFWUSER
APPQOSSYS

DBSNMP

SYS$UMF

OUTLN

LBACSYS

A A A AR AR R AR AR AAAA A R AR A R AARALR A AR AR AAARN

| OK || cancel || Help |

Figure 6-1. Default accounts and password management

The specific users that are created vary by database version. If you have just created
your database, you can view the default user accounts, as follows:

SOL> select username from dba_users order by 1;

194

CHAPTER 6 USERS AND BASIC SECURITY

Here is a partial listing of some default database user accounts:

USERNAME

ANONYMOUS
APPQOSSYS

AUDSYS

DBSNMP

DIP
GSMADMIN_INTERNAL
GSMCATUSER
GSMUSER
ORACLE_OCM

OUTLN

SYS

SYSTEM

What DBAs find frustrating about the prior list is that it is hard to keep track of what
the default accounts are and if they’re really required. Some DBAs may be tempted to

drop default accounts so as not to clutter up the database. I would not advise that. It is

safer to change passwords and lock these accounts (as shown in the next section). If you

drop an account, it can be difficult to figure out exactly how it was originally created,

whereas if you lock an account, you can simply unlock it to reactivate it.

Note If you are working in a pluggable database environment, you can view all
users while connected as a privileged account to the root container by querying
CDB_USERS. Unless otherwise noted in this chapter, the queries assume that you
are not working in a pluggable environment (and that you are therefore using the
DBA-level views). If you are in a pluggable environment, to view information across
all pluggable databases, you’ll need to use the CDB level views while connected to

the root container.

195

CHAPTER6 USERS AND BASIC SECURITY

SYS VS. SYSTEM

Oracle novices sometimes ask, “What’s the difference between the SYS and SYSTEM schemas?”
The SYS schema is the superuser of the database; owns all internal data dictionary objects; and
is used for tasks such as creating a database, starting or stopping the instance, backup and
recovery, and adding or moving data files. These types of tasks typically require the SYSDBA or
SYSOPER role. Security for these roles is often controlled through access to the 0S account
owner of the Oracle software. Additionally, security for these roles can be administered via a
password file, which allows remote client/server access. Starting with 12¢ the SYS account could
also be locked in some databases. Locking the account prevented unauthorized access from the
server and another OS account but SYSDBA will need to be granted to an authorized user first.
Even though locking the SYS account will prevent a shared default account from being used,
there are some options or systems that might require SYS to remained unlocked. The password
should be managed appropriately and locked down, as with other highly privileged accounts.

In contrast, the SYSTEMaccount is not very special. It is just an account that has been granted
the DBA role. Many shops lock the SYSTEM schema after database creation and never use it
because it is often the first schema a hacker will try to access when attempting to break

into a database.

Rather than risking an easily guessable entry point to the database, privileged users should
be granted the role directly or as part of their security group. Another account might be used
for automated jobs and granted the DBA role for administrative tasks. Tasks such as creating
users, changing passwords, and granting database privileges are available through other APIs
to manage privileges instead of having these highly privileged accounts in the database. It

is normally a requirement that auditing shows which DBA logged on and when, then create

a separate privileged account for each DBA on the team (and, in turn, on database auditing).

| have normally had one account for regular use and a separate privileged account that was
granted the privileges needed to perform tasks as the DBA.

Locking Accounts and Expiring Passwords

To begin securing your database, you should minimally change the password for every
default account and then lock any accounts that you are not using. As already discussed,
this happens now by default in the database, but when performing upgrades there
might be other default accounts that come with older versions and should be locked
after changing passwords. Locking an account means that a user won’t be able to access
196

CHAPTER 6 USERS AND BASIC SECURITY

it unless a DBA explicitly unlocks it. Also consider having policies that change the
password for each account. Expiring the password means that when a user first attempts
to access an account, that user will be forced to change the password, but it does not
require the current password, so it is better to change passwords and lock the accounts.

After creating a database, I usually lock every default account and change their
passwords; I unlock default users only as they are needed. The following script generates
the SQL statements:

SOL> alter user <username> identified by <new password>;
SOL> select

'alter user ' || username || ' account lock;'
from dba_users;

A locked user can only be accessed by altering the user to an unlocked state; for
example,

SQL> alter user outln account unlock;

A user with an expired password is prompted for a new password when first
connecting to the database as that user. When connecting to a user, Oracle checks to see
if the current password is expired and, if so, prompts the user, as follows:

ORA-28001: the password has expired
Changing password for ...
New password:

After entering the new password, the user is prompted to enter it again:

Retype new password:
Password changed
Connected.

Using a password vault would allow you to change the passwords first and then
lock the accounts. If you need to use one of the default accounts, the account can be
unlocked and the password pulled from the password vault or changed again by the
security administrator.

Note You can lock the SYS account, but this has no influence on your ability to
connect as the SYS user through OS authentication or when using a password file.

197

CHAPTER6 USERS AND BASIC SECURITY

There isno alter user <user name> password unexpire command. To unexpire
a password, you simply need to change it. The user can change the password (as
demonstrated in the prior bits of code), or, as a DBA, you can change the password for
a user:

SOL> alter user <username> identified by <new password>;

Identifying DBA-Created Accounts

If you have inherited a database from another DBA, then sometimes it is useful to
determine whether the DBA created a user or if a user is a default account created by
Oracle. As mentioned earlier, usually several user accounts are created for you when you
create a database. The number of accounts varies somewhat by database version and
options installed. Run this query to display users that have been created by another DBA
versus those created by Oracle (such as those created by default when the database is
created):

select distinct u.username
,case when d.user _name is null then 'DBA created account'
else 'Oracle created account'
end
from dba_users u
,default pwd$ d
where u.username=d.user name(+);

For default users, there should be a record in the DEFAULT PWD$ view. So, if a user
doesn’t exist in DEFAULT _PWD$, then you can assume it is not a default account. Given
that logic, another way to identify just the default users would be this:

select distinct(user name)
from default pwd$
where user name in (select username from dba_users);

The prior queries are not 100 percent accurate, as there are users that exist in
DEFAULT_PWD$ that can be created manually by a DBA (e.g., F00). For example, in Oracle
18c, AUDSYS is a default account and does not have a row in DEFAULT_PWD#$. Having
said that, the prior queries do provide a starting point for separating the default accounts
from ones created by you (or another DBA).

198

CHAPTER 6 USERS AND BASIC SECURITY

Note The DEFAULT PWD$ view is available starting with Oracle Database 11g.
See MOS note 227010.1 for more details about guidelines on checking for default
passwords. The current versions of Oracle require a different password to be used
and no longer uses the default ones. New installations are not a problem, but
upgrades might still have users with default passwords, and the upgrade is an
optimal time to change the passwords and lock the accounts.

Checking Default Passwords

You should also check your database to determine whether any accounts are using
default passwords. If you are using an Oracle Database 11g or higher, you can check the
DBA USERS_WITH DEFPWD view whether any Oracle-created user accounts are still set to
the default password:

SOL> select * from dba users with defpwd;

If you are not using Oracle Database 11g or higher, then you have to check the
passwords manually or use a script. Listed next is a simple shell script that attempts to
connect to the database, using default passwords:

#!/bin/bash
if [$# -ne 1]; then
echo "Usage: $0 SID"
exit 1
fi
Source oracle 0S variables via oraset script.
See chapter 2 for more details on setting 0S variables.
. /etc/oraset $1
#
userlist="system sys dbsnmp dip oracle ocm outln"
for ul in $userlist
do
#
case $ul in
system)
pwd=manager

199

CHAPTER6 USERS AND BASIC SECURITY

cdb=%1
sys)
pwd="change_on_install"
cdb="%$1 as sysdba"
)
pwd=$ul
cdb=$1
esac
#
echo "select 'default' from dual;" | \
sqlplus -s $u1/$pwd@$cdb | grep default >/dev/null
if [[$? -eq 0]]; then
echo "ALERT: $u1/$pwd@$cdb default password"
echo "def pwd $ul on $cdb" | mailx -s "$ul pwd default" dkuhn@gmail.com
else
echo "cannot connect to $ul with default password."
fi
done
exit 0

If the script detects a default password, an e-mail is sent to the appropriate
DBA. This script is just a simple example, the point being that you need some sort of
mechanism for detecting default passwords. You can create your own script or modify
the previous script to suit your requirements.

Creating Users

When you are creating a user, you need to consider the following factors:
o Username and authentication method
e Basic privileges
o Default permanent tablespace and space quotas

e Default temporary tablespace

200

CHAPTER 6 USERS AND BASIC SECURITY

These aspects of creating a user are discussed in the following sections.

Note New in Oracle Database 12c, pluggable database environments have
common users and local users. Common users span all pluggable databases
within a container database. Local users exist within one pluggable database. See
Chapter 22 for details on managing common users and local users.

Choosing a Username and Authentication Method

Pick a username that gives you an idea as to what application the user will be using.

For example, if you have an inventory management application, a good choice for a

username is INV_MGMT. Choosing a meaningful username helps identify the purpose of a

user. This can be especially useful if a system is not documented properly.
Authentication is the method used to confirm that the user is authorized to use the

account. Oracle supports a robust set of authentication methods:

o Database authentication (username and password stored in database)
¢ OS authentication

¢ Network authentication

¢ Global user authentication and authorization

o External service authentication

A simple, easy, and reliable form of authentication is through the database. In this
form of authentication, the username and password are stored within the database.

The password is not stored in plain text; it is stored in a secure, encrypted format. When
connecting to the database, the user provides a username and password. The database
checks the entered username and password against information stored in the database,
and if there’s a match, the user is allowed to connect to the database with the privileges
associated with the account.

Another commonly implemented authentication method is through the OS. OS
authentication means that if you can successfully log in to a server, then it is possible to
establish a connection to a local database without providing username and password
details. In other words, you can associate database privileges with an OS account or and
associated OS group, or both. With 18c you can centrally manage your users in the Active
Directory and integrate as user or global users in the database.

201

CHAPTER 6 USERS AND BASIC SECURITY

Examples of database and OS authentication and global users are discussed in the
next two sections. If you have more sophisticated authentication requirements, then you
should investigate network, global, or external service authentication. See the Oracle
Database Security Guide and the Oracle Database Advanced Security Administrator’s
Guide, which can be freely downloaded from the Technology Network area of the Oracle
web site (http://otn.oracle.com), for more details regarding these methods.

Creating a User with Database Authentication

Database authentication is established with the CREATE USER SQL statement. Creating
users as a DBA, your account must have the CREATE USER system privilege. This example
creates a user named HEERA with the password CHAYA and assigns the default permanent
tablespace USERS, default temporary tablespace TEMP, and unlimited space quota on the
USERS tablespace: USERS tablespace:

create user heera identified by chaya
default tablespace users

temporary tablespace temp

quota unlimited on users;

This creates a bare-bones schema that has no privileges to do anything in the
database. To make the user useful, you must minimally grant it the CREATE SESSION
system privilege:

SOL> grant create session to heera;

If the new schema needs to be able to create tables, you need to grant it additional
privileges, such as CREATE TABLE:

SOL> grant create table to heera;

You can also use the GRANT. . .IDENTIFIED BY statement to create a user; for
example,

grant create table, create session
to heera identified by chaya;

If the user doesn’t exist, the account is created by the prior statement. If the user
does exist, the password is changed to the one specified by the IDENTIFIED BY clause
(and any specified grants are also applied).

202

http://otn.oracle.com

CHAPTER 6 USERS AND BASIC SECURITY

Note Sometimes, when DBAs create a user, they’ll assign default roles to a
schema, such as CONNECT and RESOURCE. These roles contain system privileges,
such as CREATE SESSION and CREATE TABLE (and several other privileges,
which vary by database release). | recommend against doing this, because Oracle
has stated that those roles may not be available in future releases. There are
security and audit reasons to create specific roles that are needed and only grant
those roles to users in the database.

Creating a User with 0S Authentication

OS authentication assumes that if the user can log in to the database server, then
database privileges can be associated with and derived from the OS user account. There
are two types of OS authentication:

o Authentication through assigning specific OS roles to users (allows
database privileges to be mapped to users)

o Authentication for regular database users via the IDENTIFIED
EXTERNALLY clause

Authentication through OS roles is detailed in Chapter 2. This type of authentication
is used by DBAs and allows them to connect to an OS account, such as oracle, and then
connect to the database with SYSDBA privileges without having to specify a username and
password.

After logging in to the database server, users created with the IDENTIFIED
EXTERNALLY clause can connect to the database without having to specify a username or
password. This type of authentication has some interesting advantages:

o Users with access to the server don’t have to maintain a database
username and password.

e Scripts that log in to the database don’t have to use hard-coded
passwords if executed by OS-authenticated users.

e Another database user can’t hack into a user by trying to guess the
username and password connection string. The only way to log in to
an OS-authenticated user is from the OS.

203

CHAPTER6 USERS AND BASIC SECURITY

When using OS authentication, Oracle prefixes the value contained in 0S_AUTHENT _
PREFIX database initialization parameter to the OS user connecting to the database. The
default value for this parameter is OPS$. Oracle strongly recommends that you set the
OS_AUTHENT_PREFIX parameter to a null string; for example,

SOL> alter system set os_authent prefix=" scope=spfile;

You have to stop and start your database for this modification to take effect. After you
have set the 0S_AUTHENT PREFIX parameter, you can create an externally authenticated
user. For instance, say you have an OS user named jsmith, and you want anybody with
access to this OS user to be able to log in to the database without supplying a password.
Use the CREATE EXTERNALLY statement to do this:

SOL> create user jsmith identified externally;
SOL> grant create session to jsmith;

Now, when jsmith logs in to the database server, this user can connect to SQL*Plus,
as follows:

$ sqlplus /

No username or password is required, because the user has already been
authenticated by the OS.

Configuring a Centrally Managed User

A centrally managed user is considered to be a user in one place, such as Active
Directory or another LDAP service. The user can be managed for authentication and
authorizations centrally, such that a user in Active Directory will have authentication
managed via password or another type of key, and with the use of security groups, has
the authorizations managed. If a user changes security groups, the authorization will
change, and if the user is inactive in Active Directory, the user cannot authenticate to
other applications or databases.

A user can be created in the database as a global user, which means that the database
will reach out to Active Directory to get details about the user, first just to authenticate
the password and then to verify the groups for authorization. The database is configured
with a user to Active Directory and the ldap.ora file is updated with the information to
use to authenticate against the Active Directory. Once this is configured, a user can be
created with the following syntax:

204

CHAPTER 6 USERS AND BASIC SECURITY

SOL> create user jsmithdba identified globally as
‘cn=jsmithdba group,ou=dbateam,dc=example,dc=com’;

This allows Oracle database to recognize the user jsmithdba, which is in Active
Directory, as a user that is allowed to access this database. The password is the same
as the one in Active Directory, and the group can be used to map to a database role for
permissions.

Identity management is important for an enterprise, and this allows a person to have
roles and tasks based on their functions in the enterprise, and as those functions may
change or no longer with the company, the account is then centrally managed instead
of in each database. The Oracle cloud has an Identity Management that will configure
roles and allow for users to be added, and they are managed as part of the Identity
Management service and not in each database.

Note Users can be imported into the Oracle Cloud so that each individual
account does not have to be entered. Even if not importing all of the enterprise
users, working in this way will allow for some consideration of which users should
be migrated over and then verify the roles.

Understanding Schemas vs. Users

A schema is a collection of database objects (such as tables and indexes). A is not usually
important, but there are some subtle differences.

When you log in to an Oracle database, you connect using a username and
password. In this example, the user is INV_MCMT, and the password is f00bar:

SOL> connect inv_mgmt/foobar

When you connect as a user, by default you can manipulate objects in the schema
owned by the user with which you connected to the database. For example, when
you attempt to describe a table, Oracle by default accesses the current user’s schema.
Therefore, there is no reason to preface the table name with the currently connected
user (owner). Suppose the currently connected user is INV_MGMT. Consider the following
DESCRIBE command:

SQL> describe inventory;

205

CHAPTER6 USERS AND BASIC SECURITY
The prior statement is identical in function to the following statement:
SOL> desc inv_mgmt.inventory;

You can alter your current user’s session to point at a different schema via the ALTER
SESSION statement:

SOL> alter session set current_schema = hr;

This statement does not grant the current user (in this example, INV_MGMT) any extra
privileges. The statement does instruct Oracle to use the schema qualifier HR for any
subsequent SQL statements that reference database objects. If the appropriate privileges
have been granted, the INV_MGMT user can access the HR user’s objects without having to
prefix the schema name to the object name.

Just as describe and desc are identical functions, describing the table EMPLOYEES is
the same as using HR. EMPLOYEES.

SQL> desc HR.EMPLOYEES
If alter session is set to HR, the results are the same:
SQL> desc EMPLOYEES

Note Oracle does have a CREATE SCHEMA statement. Ironically, CREATE
SCHEMA does not create a schema or a user. Rather, this statement provides a
method for creating several objects (tables, views, grants) in a schema as one
transaction. | have rarely seen the CREATE SCHEMA statement used, but it is
something to be aware of in case you are in a shop that does use it.

Assigning Default Permanent and Temporary Tablespaces

Ensuring that users have a correct default permanent tablespace and temporary
tablespace helps prevent issues of inadvertently filling up the SYSTEM or SYSAUX
tablespaces, which could cause the database to become unavailable as well as
engendering performance problems. The concern is that when you don’t define a default
permanent and temporary tablespace for your database, when you create a user, by
default the SYSTEM tablespace is used. This is never a good thing.

206

CHAPTER 6 USERS AND BASIC SECURITY

As outlined in Chapter 2, you should establish a default permanent tablespace
and temporary tablespace when creating the database. Also shown in Chapter 2 were
the SQL statements for identifying and altering the default permanent tablespace and
temporary tablespace. This ensures that when you create a user and don'’t specify default
permanent and temporary tablespaces, the database defaults will be applied. The
SYSTEM tablespace will therefore never be used for the default permanent and temporary
tablespaces.

Having said that, the reality is that you'll most likely encounter databases that
were not set up this way. When maintaining a database, you should verify the default
permanent and temporary tablespace settings to make certain they meet your database
standards. You can look at user information by selecting from the DBA_USERS view:

select

username

,password

,default tablespace
,temporary tablespace
from dba_users;

Here is a small sample of the output:

USERNAME PASSWORD DEFAULT_TABLESPACE TEMPORARY_TABLESPACE
JSMITH EXTERNAL USERS TEMP
MV_MAINT USERS TEMP
AUDSYS USERS TEMP
GSMUSER USERS TEMP
XS$NULL USERS TEMP

None of your users, other than the SYS user, should have a default permanent
tablespace of SYSTEM. You don’t want any users other than SYS creating objects in the
SYSTEM tablespace. The SYSTEM tablespace should be reserved for the SYS user’s objects.
If other users’ objects existed in the SYSTEM tablespace, you would run the risk of filling
up that tablespace and compromising the availability of your database. This also means
if you are logging in with the SYS account, caution should be used to specific tablespaces
when creating tables and other objects.

All your users should be assigned a temporary tablespace that has been created as
type temporary. Usually, this tablespace is named TEMP (see Chapter 4 for more details).

207

CHAPTER6 USERS AND BASIC SECURITY

Ifyou find any users with inappropriate default tablespace settings, you can modify
them with the ALTER USER statement:

SOL> alter user inv_mgmt default tablespace users temporary tablespace temp;

You never want any users with a temporary tablespace of SYSTEM. If a user has
a temporary tablespace of SYSTEM, then any sort area for which the user requires
temporary disk storage acquires extents in the SYSTEM tablespace. This can lead to the
SYSTEM tablespace’s filling up. You don’t want this ever to occur, because a SYS schema’s
inability to acquire more space as its objects grow can lead to a nonfunctioning database.
To check for users that have a temporary tablespace of SYSTEM, run this script:

SOL> select username from dba_users where temporary tablespace='SYSTEM';

Typically, I use the script name creuser.sql when creating a user. This script uses
variables that define the usernames, passwords, default tablespace name, and so on. For
each environment in which the script is executed (development, test, quality assurance
(QA), beta, production), you can change the ampersand variables, as required. For
instance, you can use a different password and different tablespaces for each separate
environment.

Here'’s an example creuser.sql script:

DEFINE cre user=inv_mgmt

DEFINE cre user_pwd=inv_mgmt_pwd

DEFINE def tbsp=inv_data

DEFINE idx_tbsp=inv_index

DEFINE def temp tbsp=temp

DEFINE smk_ttbl=zzzzzzz

CREATE USER &&cre user IDENTIFIED BY &&cre user pwd
DEFAULT TABLESPACE &&def tbsp

TEMPORARY TABLESPACE 88def temp tbsp;

GRANT CREATE SESSION TO &&cre user;

GRANT CREATE TABLE TO &&cre user;

ALTER USER &&cre user QUOTA UNLIMITED ON &&def tbsp;
ALTER USER &&cre user QUOTA UNLIMITED ON &&idx_tbsp;

208

CHAPTER 6 USERS AND BASIC SECURITY

-- Smoke test

CONN &&cre user/&&cre user_pwd

CREATE TABLE &&smk_ttbl(test id NUMBER) TABLESPACE &&def tbsp;

CREATE INDEX &&smk ttbl. idx1 ON &&smk_ttbl(test id) TABLESPACE 8&idx tbsp;
INSERT INTO &&smk ttbl VALUES(1);

DROP TABLE &&smk_ttbl;

SMOKE TEST

Smoke testis a term used in occupations such as plumbing, electronics, and software
development. The term refers to the first check done after initial assembly or repairs in order
to provide some level of assurance that the system works properly.

In plumbing, a smoke test forces smoke through the drainage pipes. The forced smoke helps
quickly identify cracks or leaks in the system. In electronics, a smoke test occurs when power
is first connected to a circuit. This sometimes produces smoke if the wiring is faulty.

In software development, a smoke test is a simple test of the system to ensure that it has
some level of workability. Many managers have reportedly been seen to have smoke coming
out their ears when the smoke test fails.

Modifying Passwords

Use the ALTER USER command to modify an existing user’s password. This example
changes the HEERA user’s password to FOOBAR:

SOL> alter user HEERA identified by FOOBAR;

You can change the password of another account only if you have the ALTER USER
privilege granted to your user. This privilege is granted to the DBA role. After you change a
password for a user, any subsequent connection to the database by that user requires the
password indicated by the ALTER USER statement.

In Oracle Database 11g or higher, when you modify a password, it is case sensitive.

If you are using Oracle Database 10g or lower, the password is not case sensitive. The
behavior with the case is set with a parameter SEC_CASE_SENSITIVE_LOGON and by
default is TRUE. This is a parameter that should be checked that it was not changed to

209

CHAPTER6 USERS AND BASIC SECURITY

make sure that case-sensitive passwords are used unless needed for legacy applications
that would be allowed until the password could be adjusted.

SQL*PLUS PASSWORD COMMAND

You can change the password for a user with the SQL*Plus PASSWORD command. After issuing
the command, you are prompted for a new password: prompted for a new password:

SOL> passw heera

Changing password for heera
New password:

Retype new password:
Password changed

This method has the advantage of changing a password for a user without displaying the new
password on the screen.

Schema Only Account

Previously without a schema only account, a DBA would have to log in as a different user
to perform some create table scripts and issue grants. With 18c there are new Schema
Only Accounts that can be created without passwords. This is for application schemas
and holds all of the objects, so changes to these objects can be done if granted the
privilege to access these accounts. These accounts have no privilege to log in directly to
the database. So even without a password, there is no possibility to log in, and an error
will occur.

SOL> create user appl NO AUTHENTICATION;

In the dba_users table, this user will have an AUTHENTICATION_TYPE=NONE,
and the password column will also be NULL. Schema only accounts can have
privileges granted to create table and other objects; however, it cannot have any of
the administrative privileges assigned to it. Even granting CONNECT SESSION to the
schema only account will not allow you to log in to this schema account directly.

SOL> grant create session to appi;
Grant succeeded.

210

CHAPTER 6 USERS AND BASIC SECURITY

SQL> connect app1

Enter password:

ERROR:

ORA-01005: null password given; logon denied

Warning: You are no longer connected to ORACLE.
SQL> connect app1

Enter password:

ERROR:

ORA-01017: invalid username/password; logon denied

In order to perform the DDL statements in other accounts including the schema only
accounts, a proxy connection can be made. Even before 18c, using a proxy connection
was possible, and with the schema only account, it continues to be possible in order to
perform any necessary code as the schema. Here is an example using jsmithdba as our
account as we log in to the database, and the schema only account is app1.

SOL> alter user appl grant connect through jsmithdba;
SOL> connect jsmithdba/passwordi
SQL> select sys context('USERENV','SESSION USER') as session user,
sys_context("USERENV','SESSION SCHEMA') as session schema,
sys_context("USERENV', 'PROXY_USER') as proxy_id,
user
from dual;

SESSION USER SESSION SCHEMA PROXY_ID USER

APP1 APP1 JSMITHDBA APP1

This schema without a password can simply be used to application schemas and
allow privileges to be granted to the objects or become this schema to run code. This
is something to consider for application schemas; and, as we will see in the upcoming
section on “Managing Privileges,” grants and permissions can still be handled by roles
for these objects.

211

CHAPTER6 USERS AND BASIC SECURITY

Modifying Users
Sometimes you need to modify existing users for the following types of reasons:
e Change a user’s password
e Lockorunlocka user
o Change the default permanent or temporary tablespace, or both
o Change a profile or role
« Change system or object privileges
e Modify quotas on tablespaces

Use the ALTER USER statement to modify users. Listed next are several SQL
statements that modify a user. This example changes a user’s password, using the
IDENTIFIED BY clause:

SOL> alter user inv_mgmt identified by i2jy22a;

If you don’t set a default permanent tablespace and temporary tablespace when you
initially create the user, you can modify them after creation, as shown here:

SOL> alter user inv_mgmt default tablespace users temporary tablespace
temp;

This example locks a user account:
SOL> alter user inv_mgmt account lock;
And, this example alters the user’s quota on the USERS tablespace:

SOL> alter user inv_mgmt quota 500m on users;

Note Since ALTER USER is a highly privileged command and there are many
reasons for using it, it might now fall in the hands of a security team to execute.
There are other commands and procedures that can be written around this, and
then the permissions are given to those to execute. Also, a database vault limits
the ability to alter users and allows for the security teams to perform these actions.

212

CHAPTER 6 USERS AND BASIC SECURITY

Dropping Users

Before you drop a user, I recommend that you first lock the user. Locking the user
prevents others from connecting to a locked database account. This allows you to
better determine whether someone is using the account before it is dropped. Here is an
example of locking a user:

SQL> alter user heera account lock;

Any user or application attempting to connect to this user now receives the following

error:
ORA-28000: the account is locked

To view the users and lock dates in your database, issue this query:
SOL> select username, lock date from dba_users;

To unlock an account, issue this command:
SQL> alter user heera account unlock;

Locking users is a very handy technique for securing your database and discovering
which users are active.

Be aware that by locking a user, you are not locking access to a user’s objects. For
instance, if a USER_A has select, insert, update, and delete privileges on tables owned by
USER_B, if you lock the USER_B account, USER_A can still issue DML statements against
the objects owned by USER_B. To determine whether the objects are being used, see the
auditing section of Chapter 20.

Tip If a user’s objects don’t consume inordinate amounts of disk space, then
before you drop the user, it is prudent to make a quick backup. See Chapter 13 for
details on using Data Pump to back up a single user.

After you are sure that a user and its objects are not needed, use the DROP USER
statement to remove a database account. This example drops the user HEERA:

SQL> drop user heera;

213

CHAPTER6 USERS AND BASIC SECURITY

The prior command won’t work if the user owns any database objects. Use the
CASCADE clause to remove a user and have its objects dropped:

SQL> drop user heera cascade;

Note The DROP USER statement may take a great deal of time to execute if the
user being dropped owns a vast number of database objects. In these situations,
you may want to consider dropping the user’s objects before dropping the user.

schemas are also dropped. Oracle invalidates but doesn’t drop any views, synonyms,

procedures, functions, or packages that are dependent on the dropped user’s objects.
This is why it is important that application objects are put in a different schema instead
of creating all of the objects under an individual account. If an application is being
decommissioned, then backups and retention policies should also be considered. This
is why it is important that application objects are put in a different schema instead

of creating all of the objects under an individual account. If an application is being
decommissioned, then backups and retention policies should also be considered.

Enforcing Password Security and Resource Limits

When you are creating users, sometimes requirements call for passwords to adhere to a
set of security rules: for example, necessitating that the password be of a certain length
and contain numeric characters. Also, when you set up database users, you may want
to ensure that a certain user is not capable of consuming inordinate amounts of CPU
resources.

You can use a database profile to meet these types of requirements. An Oracle profile
is a database object that serves two purposes:

o Enforces password security settings
o Limits system resources that a user consumes

These topics are discussed in the next several sections.

214

CHAPTER 6 USERS AND BASIC SECURITY

Tip Don’t confuse a database profile with a SQL profile. A database profile is an
object assigned to a user that enforces password security and constrains database
resource usage, whereas a SQL profile is associated with a SQL statement and
contains corrections to statistics that help the optimizer generate a more efficient
execution plan.

Basic Password Security

When you create a user, if no profile is specified, the DEFAULT profile is assigned to the

newly created user. To view the current settings for a profile, issue the following SQL:

select profile, resource name, resource type, limit
from dba_profiles
order by profile, resource type;

Here is a partial listing of the output:

PROFILE

RESOURCE_NAME

RESOURCE_TYPE

DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT

CONNECT_TIME
PRIVATE_SGA
COMPOSITE_LIMIT

SESSIONS PER_USER
LOGICAL_READS PER_SESSION
CPU_PER_CALL

IDLE_TIME
LOGICAL_READS PER CALL
CPU_PER_SESSION
PASSWORD_LIFE_TIME
PASSWORD GRACE_TIME
PASSWORD REUSE_TIME
PASSWORD REUSE_MAX
PASSWORD_LOCK_TIME

FAILED LOGIN ATTEMPTS
PASSWORD_VERIFY_FUNCTION
INACTIVE_ACCOUNT TIME

KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
KERNEL
PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD

UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
UNLIMITED
180

7
UNLIMITED
UNLIMITED
1

10

NULL
UNLIMITED

215

CHAPTER 6 USERS AND BASIC SECURITY

ORA_STIG PROFILE
ORA_STIG PROFILE
ORA_STIG_PROFILE
ORA_STIG PROFILE
ORA_STIG PROFILE
ORA_STIG_PROFILE
ORA_STIG PROFILE

ORA_STIG PROFILE
ORA_STIG PROFILE
ORA_STIG_PROFILE
ORA_STIG PROFILE
ORA_STIG PROFILE

CONNECT_TIME
IDLE_TIME
LOGICAL_READS_PER_CALL
CPU_PER_CALL

PASSWORD GRACE_TIME
PASSWORD_LOCK_TIME
PASSWORD VERIFY FUNCTION

PASSWORD REUSE_MAX
PASSWORD REUSE_TIME
PASSWORD LIFE_TIME
FAILED LOGIN ATTEMPTS
INACTIVE_ACCOUNT TIME

KERNEL
KERNEL
KERNEL
KERNEL
PASSWORD
PASSWORD
PASSWORD

PASSWORD
PASSWORD
PASSWORD
PASSWORD
PASSWORD

DEFAULT
15

DEFAULT
DEFAULT

5

UNLIMITED
ORA12C_
STIG VERIFY
FUNCTION

10

365

60

3

35

A profile’s password restrictions are in effect as soon as the profile is assigned to a

user. For example, from the previous output, if you have assigned the DEFAULT profile

to a user, that user is allowed only ten consecutive failed login attempts before the

user account is automatically locked by Oracle. See Table 6-1 for a description of the

password profile security settings.

Tip See MOS note 454635.1 for details on Oracle Database DEFAULT profile

changes

You can alter the DEFAULT profile to customize it for your environment. For instance,

say you want to enforce a cap on the maximum number of days a password can be used.
The next line of code sets the PASSWORD_LIFE_TIME of the DEFAULT profile to 300 days:

SOL> alter profile default limit password life time 300;

216

CHAPTER 6 USERS AND BASIC SECURITY

Table 6-1. Password Security Settings

Password Setting Description Default

FAILED LOGIN_ATTEMPTS Number of failed login attempts before the schema 10 attempts

is locked
PASSWORD_GRACE_TIME Number of days after a password expires that the 7 days
owner can log in with an old password
PASSWORD_LIFE_TIME Number of days a password is valid 180 days
PASSWORD _LOCK_TIME Number of days an account is locked after 1 day
FAILED_LOGIN_ATTEMPTS has been reached
PASSWORD REUSE_MAX Number of days before a password can be reused Unlimited
PASSWORD_REUSE_TIME Number of times a password must change before a Unlimited

password can be reused
PASSWORD VERIFY FUNCTION Database function used to verify the password Null

INACTIVE_ACCOUNT_TIME Number of days a user who has not logged in to the Unlimited
account, and then will lock the account

The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX settings must be used in
conjunction. If you specify an integer for one parameter (it doesn’t matter which one)
and UNLIMITED for the other parameter, the then current password can never be reused.

If you want to specify that the DEFAULT profile password must be changed 10 times
within 100 days before it can be reused, use a line of code similar to this:

SQL> alter profile default limit password reuse time 100 password reuse max 10;

Although using the DEFAULT profile is sufficient for many environments, you may
need tighter security management. I recommend that you create custom security
profiles and assign them to users, as required. For example, create a profile specifically
for application users:

CREATE PROFILE SECURE_APP LIMIT
PASSWORD_LIFE_TIME 200
PASSWORD_GRACE_TIME 10

PASSWORD REUSE_TIME 1
PASSWORD_REUSE_MAX 1

217

CHAPTER 6 USERS AND BASIC SECURITY

FAILED LOGIN ATTEMPTS 3
PASSWORD_LOCK_TIME 1
INACTIVE_ACCOUNT TIME 60;

After you create the profile, you can assign it to users, as appropriate. The following
SQL generates a SQL script, named alt_prof_dyn.sql, that you can use to assign the
newly created profile to users:

set head off;
spo alt _prof dyn.sql

select 'alter user ' || username || ' profile secure app;'
from dba_users where username like '%APP%';
spo off;

Be careful when assigning profiles to application accounts that use the database.
If you want to enforce that a password changes at a regular frequency, be sure you
understand the impact on production systems. Passwords tend to get hard-coded into
response files and code. Enforcing password changes in these environments can wreak
havoc, as you try to chase down all the places where the password is referenced. If you
don’t want to enforce the periodic changing of the password, you can set PASSWORD
LIFE_TIME to a high value such as 10,000 or unlimited.

HAS THE PASSWORD EVER CHANGED?

When you are determining if a password is secure, it is useful to check to see whether the
password for a user has ever been changed. If the password for a user has never been
changed, this may be viewed as a security risk. This example performs such a check:

select

name

,to_char(ctime, 'dd-mon-yy hh24:mi:ss")
,to_char(ptime, 'dd-mon-yy hh24:mi:ss")
,length(password)
from user$
where password is not null
and password not in ('GLOBAL','EXTERNAL")
and ctime=ptime;

218

CHAPTER 6 USERS AND BASIC SECURITY

In this script the CTIME column contains the timestamp of when the user was created. The
PTIME column contains the timestamp of when the password was changed. If the CTIME and
PTIME are identical, then the password has never changed.

Password Strength

A password that cannot be easily guessed is considered a strong password. The

strength of a password can be quantified in terms of length, use of upper/lowercase,
nondictionary-based words, numeric characters, and so on. For example, a password

of L5K0ta890g would be considered strong, whereas a password of pass would be
considered weak. There are a couple schools of thought on enforcing password strength:

e Use easily remembered passwords so that you don’t have them
written down or recorded in a file somewhere. Because the
passwords are not sophisticated, they are not very secure.

o Enforce alevel of sophistication (strength) for passwords. Such
passwords are not easily remembered and thus must be recorded
somewhere, which is not secure.

You may choose to enforce a degree of password strength because you think it is the
most secure option. Or you may be required to enforce password security sophistication
by your corporate security team (and thus have no choice in the matter). This section is
not about debating which of the prior methods is preferable. Should you choose to impose
a degree of strength for a password, this section describes how to enforce the rules.

You can enforce a minimum standard of password complexity by assigning a
password verification function to a user’s profile. Oracle supplies a default password
verification function that you create by running the following script as the SYS schema:

SOL> @?/rdbms/admin/utlpwdmg
The prior script creates the following password verification functions:
o oral2c_verify function (Oracle Database 12c and 18c)

e oral2c_strong verify function (very secure Oracle Database 12c
and 18c)

o verify function 11G (Oracle Database 11g)

o verify function (Oracle Database 10g)

219

CHAPTER6 USERS AND BASIC SECURITY

Once the password verify function has been created, you can use the ALTER
PROFILE command to associate the password verify function with all users to which a
given profile is assigned. There is no new password function for 18c, so the password
complexity function is the same one that is used for 12c. For instance, in Oracle Database
18c, to set the password verify function of the DEFAULT profile, issue this command:

SOL> alter profile default limit PASSWORD VERIFY_ FUNCTION
orai2c_verify function;

If, for any reason, you need to back out of the new security modifications, run this
statement to disable the password function:

SOL> alter profile default limit PASSWORD VERIFY_ FUNCTION null;

When enabled, the password verification function ensures that users are correctly
creating or modifying their passwords. The utlpwdmgsql script creates a function that
checks a password to make certain it meets basic security standards, such as minimum
password length and password not the same as username. You can verify that the new
security function is in effect by attempting to change the password of a user to which the
DEFAULT profile has been assigned. This example tries to change the password to less

than the minimum length:

SOL> password

Changing password for HEERA

0ld password:

New password:

Retype new password:

ERROR:

ORA-28003: password verification for the specified password failed
ORA-20001: Password length less than 8

Note For Oracle Database 18c, 12¢, and 11g, when using the standard password
verify function, the minimum password length is eight characters. For Oracle
Database 10g, the minimum length is four characters.

220

CHAPTER 6 USERS AND BASIC SECURITY

Keep in mind that it is possible to modify the code used to create the password
verification function. For example, you can open and modify the script used to create
this function:

$ vi $ORACLE_HOME/rdbms/admin/utlpwdmg.sql

If you feel that the Oracle-supplied verification function is too strong or overly
restrictive, you can create your own function and assign the appropriate database
profiles to it.

Note As of Oracle Database 129, the SEC_CASE_SENSITIVE LOGON parameter
has been deprecated. Setting this initialization parameter to FALSE allows you to
make passwords case insensitive.

Limiting Database Resource Usage

As mentioned earlier, the password profile settings take effect as soon as you assign
the profile to a user. Unlike password settings, kernel resource profile restrictions don’t
take effect until you set the RESOURCE _LIMIT initialization parameter to TRUE for your
database; for example,

SOL> alter system set resource limit=true scope=both;
To view the current setting of the RESOURCE_LIMIT parameter, issue this query:
SQL> select name, value from v$parameter where name='resource limit';

When you create a user, if you don’t specify a profile, then the DEFAULT profile
is assigned to the user. You can modify the DEFAULT profile with the ALTER PROFILE
statement. The next example modifies the DEFAULT profile to limit CPU_PER_SESSION to
240,000 (in hundredths of seconds):

SOL> alter profile default limit cpu_per session 240000;

This limits any user with the DEFAULT profile to 2,400 seconds of CPU use. You can
set various limits in a profile. Table 6-2 describes the database resource settings you can
limit via a profile.

221

CHAPTER6 USERS AND BASIC SECURITY

Table 6-2. Database Resource Profile Settings

Profile Resource Meaning

COMPOSITE_LIMIT Limit, based on a weighted-sum algorithm for these resources:
CPU_PER_SESSION, CONNECT TIME, LOGICAL READS PER
SESSION, and PRIVATE_SGA

CONNECT_TIME Connect time, in minutes

CPU_PER_CALL CPU time limit per call, in hundredths of seconds
CPU_PER_SESSION CPU time limit per session, in hundredths of seconds
IDLE_TIME [dle time, in minutes

LOGICAL_READS PER _CALL Blocks read per call

LOGICAL_READS PER_SESSION Blocks read per session

PRIVATE_SGA Amount of space consumed in the shared pool
SESSIONS_PER_USER Number of concurrent sessions

You can also create a custom profile and assign it to users via the CREATE PROFILE
statement. You can then assign that profile to any existing database users. The following
SQL statement creates a profile that limits resources, such as the amount of CPU an
individual session can consume:

create profile user profile limit
limit

sessions_per user 20
cpu_per_session 240000
logical reads per session 1000000
connect_time 480

idle time 120;

After you create a profile, you can assign it to a user. In the next example, the user
HEERA is assigned USER_PROFILE LIMIT:

SOL> alter user heera profile user profile limit;

222

CHAPTER 6 USERS AND BASIC SECURITY

Note Oracle recommends that you use Database Resource Manager to

manage database resource limits. However, for basic resource management
needs, | find database profiles (implemented via SQL) to be an effective and easy
mechanism for managing resource usage. If you have more sophisticated resource
management requirements, investigate the Database Resource Manager feature.

As part of the CREATE USER statement, you can specify a profile other than DEFAULT:
SOL> create user heera identified by foo profile user profile limit;

When should you use database profiles? You should always take advantage of the
password security settings of the DEFAULT profile. You can easily modify the default
settings of this profile, as required by your business rules.

A profile’s kernel resource limits are useful when you have power users who need to
connect directly to the database and run queries. For example, you can use the kernel
resource settings to limit the amount of CPU time a user consumes, which is handy when
a user writes a bad query that inadvertently consumes excessive database resources.

Note You can only assign one database profile to a user, so if you need to
manage both password security and resource limits, make certain you set both
within the same profile.

Managing Privileges

A database user must be granted privileges before the user can perform any tasks in the
database. In Oracle, you assign privileges either by granting a specific privilege to a user
or by granting the privilege to a role and then granting the role that contains the privilege
to a user. There are two types of privileges: system privileges and object privileges. The
following sections discuss these privileges in detail.

223

CHAPTER6 USERS AND BASIC SECURITY

Assigning Database System Privileges

Database system privileges allow you to do tasks such as connecting to the database and
creating and modifying objects. There are hundreds of different system privileges. You
can view system privileges by querying the DBA_SYS_PRIVS view:

SOL> select distinct privilege from dba_sys privs;

You can grant privileges to other users or roles. To be able to grant privileges, a user
needs the GRANT ANY PRIVILEGE privilege or must have been granted a system privilege
with ADMIN OPTION.

Use the GRANT statement to assign a system privilege to a user. For instance,
minimally a user needs CREATE SESSION to be able to connect to the database. You grant
this system privilege as shown:

SQL> grant create session to inv_mgmt;

Usually, a user needs to do more than just connect to the database. For instance, a
user may need to create tables and other types of database objects. This example grants a
user the CREATE TABLE and CREATE DATABASE LINK system privileges:

SOL> grant create table, create database link to inv_mgmt;
Same for the schema only account:
SOL> grant create table, create database link to appi;
If you need to take away privileges, use the REVOKE statement:
SOL> revoke create table from inv_mgmt;

Oracle has a feature that allows you to grant a system privilege to a user and also give
that user the ability to administer a privilege. You do this with the WITH ADMIN OPTION
clause:

SOL> grant create table to inv_mgmt with admin option;

Irarely use WITH ADMIN OPTION when granting privileges. Usually, a user with
the DBA role is used to grant privileges, and that privilege is not generally meted out
to non-DBA users in the database. This is because it would be hard to keep track of
who assigned what system privileges, for what reason, and when. In a production
environment, this would be untenable.

224

CHAPTER 6 USERS AND BASIC SECURITY

You can also grant system privileges to the PUBLIC user group (I don’t recommend
doing this). For example, you could grant CREATE SESSION to all users that ever need to
connect to the database, as follows:

SOL> grant create session to public;

Now, every user that is created can automatically connect to the database. Granting
system privileges to the PUBLIC user group is almost always a bad idea. As a DBA, one
of your main priorities is to ensure that the data in the database are safe and secure.
Granting privileges to the PUBLIC role is a sure way of not being able to manage who is
authorized to perform specific actions within the database. In other words, do not grant
system privileges to public.

Assigning Database Object Privileges

Database object privileges allow you to access and manipulate other users’ objects.

The types of database objects to which you can grant privileges include tables, views,
materialized views, sequences, packages, functions, procedures, user-defined types, and
directories. To be able to grant object privileges, one of the following must be true:

e You own the object.
e You have been granted the object privilege with GRANT OPTION.
e You have the GRANT ANY OBJECT PRIVILEGE system privilege.
This example grants object privileges (as the object owner) to the INV_MGMT_APP user:

SQL> grant insert, update, delete, select on registrations to inv_mgmt_app;

The GRANT ALL statement is equivalent to granting INSERT, UPDATE, DELETE, and
SELECT to an object. The next statement is equivalent to the prior statement:

SOL> grant all on registrations to inv_mgmt_app;

You can also grant INSERT and UPDATE privileges to tables, at the column level. The
next example grants INSERT privileges to specific columns in the INVENTORY table:

SQL> grant insert (inv_id, inv_name, inv_desc) on inventory to inv_mgmt_app;

225

CHAPTER6 USERS AND BASIC SECURITY

If you want a user that is being granted object privileges to be able to subsequently
grant those same object privileges to other users, then use the WITH GRANT OPTION
clause:

SOL> grant insert on registrations to inv_mgmt_app with grant option;

Now, the INV_MGMT_APP user can grant insert privileges on the REGISTRATIONS table
to other users.

Irarely use the WITH GRANT OPTION when granting object privileges. Allowing other
users to propagate object privileges to users makes it hard to keep track of who assigned
what object privileges, for what reason, when, and so on. In a production environment,
this would be untenable. When you are managing a production environment, when
problems arise, you need to know what changed, when, and for what reason.

You can also grant object privileges to the PUBLIC user group (I don’t recommend
doing this). For example, you could grant select privileges on a table to PUBLIC:

SQL> grant select on registrations to public;

Now, every user can select from the REGISTRATIONS table. Granting object privileges
to the PUBLIC role is almost always a bad idea. As a DBA, one of your main priorities is to
ensure that the data in the database are safe and secure. Granting object privileges to the
PUBLIC role is a sure way of not being able to manage who can access what data in the
database. Again, DO NOT grant object privileges to PUBLIC.

If you need to take away object privileges, use the REVOKE statement. This example
revokes DML privileges from the INV_MGMT_APP user:

SOL> revoke insert, update, delete, select on registrations from inv_mgmt app;

Grouping and Assigning Privileges

Arole is a database object that allows you to group together system or object privileges,
or both, in a logical manner so that you can assign those privileges in one operation to a
user. Roles help you manage aspects of database security in that they provide a central
object that has privileges assigned to it. You can subsequently assign the role to multiple
users or other roles.

To create a role, connect to the database as a user that has the CREATE ROLE system
privilege. Next, create a role and assign to it the system or object privileges that you

226

CHAPTER 6 USERS AND BASIC SECURITY

want to group together. This example uses the CREATE ROLE statement to create the
JR_DBArole:

SOL> create role jr_dba;
The next several lines of SQL grant system privileges to the newly created role:

SOL> grant select any table to jr_dba;
SOL> grant create any table to jr_dba;
SQL> grant create any view to jr_dba;

SOL> grant create synonym to jr_dba;

SOL> grant create database link to jr_dba;

Next, grant the role to any schema you want to possess those privileges:

SOL> grant jr_dba to lellison;
SQL> grant jr _dba to mhurd;

The users LELLISON and MHURD can now perform tasks such as creating synonyms
and views. To see the users to which a role is assigned, query the DBA_ROLE_PRIVS view:

SOL> select grantee, granted role from dba_role privs order by 1;

To see roles granted to your currently connected user, query from the USER_ROLE
PRIVS view:

SOL> select * from user role privs;
To revoke a privilege from a role, use the REVOKE command:
SOL> revoke create database link from jr_dba;
Similarly, use the REVOKE command to remove a role from a user:

SOL> revoke jr_dba from lellison;

Note Unlike other database objects, roles don’t have owners. A role is defined by
the privileges assigned to it.

227

CHAPTER6 USERS AND BASIC SECURITY

PL/SQL AND ROLES

If you work with PL/SQL, sometimes you get this error when attempting to compile a
procedure or a function;

PL/SQL: ORA-00942: table or view does not exist
What’s confusing is that you can describe the table:
SOL> desc app_table;

Why doesn’t PL/SQL seem to be able to recognize the table? It is because PL/SQL requires
that the owner of the package, procedure, or function be explicitly granted privileges to any
objects referenced in the code. The owner of the PL/SQL code can’t have obtained the grants
through a role.

When confronted with this issue, try this as the owner of the PL/SQL code:
SQL> set role none;

Now, try to run a SQL statement that accesses the table in question:

SQL> select count(*) from app table;

If you can no longer access the table, then you have been granted access through a role. To
resolve the issue, explicitly grant access to any tables to the owner of the PL/SQL code (as the
owner of the table):

SOL> connect owner/pass
SOL> grant select on app_table to proc_owner;

You should be able to connect as the owner of the PL/SQL code and successfully compile your
code.

Roles are going to provide a way to grant the needed privileges for a function or tasks
for the user to perform. As the user maps to security groups, the roles are the best way to
manage the privileges. Role-based access to the different objects and system privileges
are going to allow simple auditing to know who has a role and verify that there are not
individual privileges being granted.

228

CHAPTER 6 USERS AND BASIC SECURITY

Summary

After you create a database, one of your first tasks is to secure any default user accounts.
Default accounts are locked after database creation, and a valid approach is to open
them only as they are required. Other approaches include changing or expiring

the password, or both. After the default users’ accounts have been secured, you are
responsible for creating users that need access to the database. This often includes
application users, DBAs, and developers.

You should consider using a secure profile for any users you create. Additionally,
think about password security when creating users. Oracle provides a password
function that enforces a certain level of password strength. I recommend that you use
a combination of profiles and a password function as a first step in creating a secure
database.

Schema only accounts and managing privileges in roles will tighten up the user
security in the database and provide efficient ways to audit and verify that users are
receiving the appropriate privileges.

As the databases ages, you need to maintain the user accounts. Usually, the
requirements for database accounts change over time. You are responsible for ensuring
that the correct system and object privileges are maintained for each account. With any
legacy system, you'll eventually need to lock and drop users. Dropping unused accounts
helps ensure that your environment is more secure and maintainable. Using centrally
managed users simplifies these steps as the accounts have passwords changed and set to
inactive in one directory instead of in every database. Also, the security groups serve as
mappings to the database roles for privileges that match their job functions.

The next logical step after creating users is to create database objects. Chapter 7
deals with concepts related to table creation.

229

CHAPTER 7

Tables and Constraints

The previous chapters in this book covered topics that prepare you for the next logical
step in creating database objects. For example, you need to install the Oracle binaries
and create a database, tablespaces, and users before you start creating tables. Usually,
the first objects created for an application are the tables, constraints, and indexes. This
chapter focuses on the management of tables and constraints. The administration of
indexes is covered in Chapter 8.

A table is the basic storage container for data in a database. You create and modify
the table structure via DDL statements, such as CREATE TABLE and ALTER TABLE.
You access and manipulate table data via DML statements (INSERT, UPDATE, DELETE,
MERGE, SELECT).

Tip One important difference between DDL and DML statements is that with
DML statements, you must explicitly issue a COMMIT or ROLLBACK to end the
transaction.

A constraint is a mechanism for enforcing that data adhere to business rules.
For example, you may have a business requirement that all customer IDs be unique
within a table. In this scenario, you can use a primary key constraint to guarantee that
all customer IDs inserted or updated in a CUSTOMER table are unique. Constraints inspect
data as they’re inserted, updated, and deleted to ensure that no business rules are
violated.

This chapter deals with common techniques for creating and maintaining tables
and constraints. Almost always, when you create a table, the table needs one or
more constraints defined; therefore, it makes sense to cover constraint management
along with tables. The first part of the chapter focuses on common table creation and
maintenance tasks. The latter part of the chapter details constraint management.

231
© Michelle Malcher and Darl Kuhn 2019

M. Malcher and D. Kuhn, Pro Oracle Database 18c Administration,
https://doi.org/10.1007/978-1-4842-4424-1_7

CHAPTER 7 TABLES AND CONSTRAINTS

Understanding Table Types

The Oracle database supports a vast and robust variety of table types. These various
types are described in Table 7-1.

Table 7-1. Oracle Table Type Descriptions

Table Type Description Typical Use
Heap The default table type and the most Table type to use unless you have a specific
organized commonly used reason to use a different type
Temporary Session private data, stored for the Program needs a temporary table structure
duration of a session or transaction; to store and sort data; table is not required
space allocated in temporary segments after program ends
Index Data stored in a B-tree (balanced tree) Table is queried mainly on primary key
organized index structure sorted by primary key columns; provides fast random access
Partitioned A logical table that consists of separate Type used with large tables with millions of
physical segments rows
External Tables that use data stored in OS files Type lets you efficiently access data in a file
outside the database outside the database (such as a CSV file)
In-Memory Data that is not needed to load into Data that can be scanned for both RDBMS
External Oracle storage and used for scanning and Hadoop in-memory
as part of big data sets
Clustered A group of tables that share the same Type used to reduce I/0 for tables that are
data blocks often joined on the same columns
Hash A table with data that is stored and Reduces the I/0 for tables that are mostly
clustered retrieved using a hash function static (not growing after initially loaded)
Nested A table with a column with a data type Rarely used
that is another table
Object A table with a column with a data type Rarely used

that is an object type

This chapter focuses on the table types that are most often used: in particular,

heap organized, index organized, and temporary tables. Partitioned tables are used

extensively in data warehouse environments and are covered separately, in Chapter 12.

232

CHAPTER 7 TABLES AND CONSTRAINTS

External tables are covered in Chapter 14. For details on table types not covered in this
book, see the SQL Language Reference Guide, which is available for download from the
Oracle Technology Network web site (http://otn.oracle.com).

Understanding Data Types

When creating a table, you must specify the columns names and corresponding data
types. As a DBA you should understand the appropriate use of each data type. I've seen
many application issues (performance and accuracy of data) caused by the wrong choice
of data type. For instance, if a character string is used when a date data type should
have been used, this causes needless conversions and headaches when attempting to
do date math and reporting. Compounding the problem, after an incorrect data type is
implemented in a production environment, it can be very difficult to modify data types,
as this introduces a change that might possibly break existing code. Once you go wrong,
it is extremely tough to recant and backtrack and choose the right course. It is more likely
you will end up with hack upon hack as you attempt to find ways to force the ill-chosen
data type to do the job that it was never intended to do.

Having said that, Oracle supports the following groups of data types:

¢ Character
e Numeric

e Date/Time

e RAW

e ROWID
« LOB

e JSON

A brief description and usage recommendation are provided in the following sections.

Note Specialized data types, any types, spatial types, media types, and user-
defined types, are not covered in this book. For more details regarding these
data types, see the SQL Language Reference Guide available from the Oracle
Technology Network web site (http://otn.oracle.com). JSON will be briefly
covered as new features and enhancements as part of Oracle 18c.

233

http://otn.oracle.com
http://otn.oracle.com

CHAPTER 7 TABLES AND CONSTRAINTS

Character

Use a character data type to store characters and string data. The following character
data types are available in Oracle:

o VARCHAR2
e CHAR
e NVARCHAR2 and NCHAR

VARCHAR2

The VARCHAR2 data type is what you should use in most scenarios to hold character/
string data. A VARCHAR2 only allocates space based on the number of characters in the
string. If you insert a one-character string into a column defined to be VARCHAR2(30),
Oracle will only consume space for the one character. The following example verifies this
behavior:

SQL> create table d(d varchar2(30));
insert into d values ('a');
select dump(d) from d;

Here is a snippet of the output, verifying that only 1B has been allocated:

DUMP (D)

Typ=1 Len=1

Note Oracle does have another data type, the VARCHAR (without the “2”). | only
mention this because you are bound to encounter this data type at some point

in your Oracle DBA career. Oracle currently defines VARCHAR as synonymous

with VARCHAR2. Oracle strongly recommends that you use VARCHAR2 (and not
VARCHAR), as Oracle’s documentation states that VARCHAR might serve a different
purpose in the future.

When you define a VARCHAR2 column, you must specify a length. There are two ways
to do this: BYTE and CHAR. BYTE specifies the maximum length of the string in bytes,

234

CHAPTER 7 TABLES AND CONSTRAINTS

whereas CHAR specifies the maximum number of characters. For example, to specify a
string that contains at the most 30B, you define it as follows:

varchar2(30 byte)

To specify a character string that can contain at most 30 characters, you define it as
follows:

varchar2(30 char)

Many DBAs do not realize that if you do not specify either BYTE or CHAR, then the
default length is calculated in bytes. In other words, VARCHAR2(30) is the same as
VARCHAR2(30 byte).

In almost all situations, you are safer specifying the length using CHAR. When working
with multibyte character sets, if you specified the length to be VARCHAR2 (30 byte),
you may not get predictable results, because some characters require more than 1
byte of storage. In contrast, if you specify VARCHAR2(30 char), you can always store 30
characters in the string, regardless of whether some characters require more than 1 byte.

CHAR

In almost every scenario, a VARCHAR?2 is preferable to a CHAR. The VARCHAR2 data type

is more flexible and space efficient than CHAR. This is because a CHAR is a fixed-length
character field. If you define a CHAR(30) and insert a string that consists of only one
character, Oracle will allocate 30B of space. This can be an inefficient use of space.

If using CHAR, it does make sense to only use it if the size of the value will not change
and is absolutely static. have normally only used CHAR if the length was under 8, and
the size was absolutely fixed. The following example verifies this behavior:

SQL> create table d(d char(30));
insert into d values ('a');
select dump(d) from d;

Here is a snippet of the output, verifying that 30B have been consumed:

DUMP (D)

Typ=96 Len=30

235

CHAPTER 7 TABLES AND CONSTRAINTS

NVARCHAR2 and NCHAR

The NVARCHAR2 and NCHAR data types are useful if you have a database that was originally
created with a single-byte, fixed-width character set, but sometime later you need to
store multibyte character set data in the same database. You can use the NVARCHAR2 and
NCHAR data types to support this requirement.

It is simpler to standardize with use of VARCHAR2 and provide enough length
to handle the multibyte characters or use the length in character instead of using
NVARCHAR2 and NCHAR.

Note For Oracle Database 11g and lower, 4,000 was the largest size allowed for
a VARCHAR?2 or NVARCHAR?2 data type. In Oracle Database 12¢ and higher, you can
specify up to 32,767 characters in a VARCHAR2 or NVARCHAR?2 data type. Prior to
12c, if you wanted to store character data larger greater than 4,000 characters, the
logical choice was a CLOB (see the section “LOB,” later in this chapter, for more
details).

Numeric

Use a numeric data type to store data that you will potentially need to use with
mathematic functions, such as SUM, AVG, MAX, and MIN. Never store numeric information
in a character data type. When you use a VARCHAR2 to store data that are inherently
numeric, you are introducing future failures into your system. Eventually, you will want
to report or run calculations on numeric data, and if they’re not a numeric data type, you
will get unpredictable and oftentimes wrong results.

Oracle supports three numeric data types:

o NUMBER
o BINARY DOUBLE
o BINARY_FLOAT

For most situations, you will use the NUMBER data type for any type of number data.
Its syntax is NUMBER (scale, precision) where scale is the total number of digits, and
precision is the number of digits to the right of the decimal point. So, with a number

236

CHAPTER 7 TABLES AND CONSTRAINTS

defined as NUMBER(5, 2) you can store values +/-999.99. That is a total of five digits, with
two used for precision to the right of the decimal point. If defined as NUMBER(5) the
values can be to the right or left of the decimal with a total of five digits, this value will fit,
2.4563 as would 55,555.

Tip Oracle allows a maximum of 38 digits for a NUMBER data type. This is almost
always sufficient for any type of numeric application.

What sometimes confuses DBAs is that you can create a table with columns defined
as INT, INTEGER, REAL, DECIMAL, and so on. These data types are all implemented
by Oracle with a NUMBER data type. For example, a column specified as INTEGER is
implemented as a NUMBER(38).

The BINARY_DOUBLE and BINARY_FLOAT data types are used for scientific calculations.
These map to the DOUBLE and FLOAT Java data types. Unless your application is
performing rocket science calculations, then use the NUMBER data type for all your
numeric requirements.

Date/Time

When capturing and reporting on date-related information, you should always use a
DATE or TIMESTAMP data type (and not VARCHAR2). Using the correct date-related data
type allows you to perform accurate Oracle date calculations and aggregations and
dependable sorting for reporting. If you use a VARCHAR?2 for a field that contains date
information, you are guaranteeing future reporting inconsistencies and needless
conversion functions (such as TO_DATE and TO_CHAR).

Oracle supports three date-related data types:

o DATE
o TIMESTAMP
o INTERVAL

The DATE data type contains a date component as well as a time component that
is granular to the second. By default, if you do not specify a time component when
inserting data, then the time value defaults to midnight (0 hour at the 0 second). If
you need to track time at a more granular level than the second, then use TIMESTAMP;
otherwise, feel free to use DATE.

237

CHAPTER 7 TABLES AND CONSTRAINTS

The TIMESTAMP data type contains a date component and a time component that
is granular to fractions of a second. When you define a TIMESTAMP, you can specify
the fractional second precision component. For instance, if you wanted five digits of
fractional precision to the right of the decimal point, you would specify that as

TIMESTAMP(5)

The maximum fractional precision is 9; the default is 6. If you specify 0 fractional
precision, then you have the equivalent of the DATE data type.

The TIMESTAMP data type comes in two additional variations: TIMESTAMP WITH TIME
ZONE and TIMESTAMP WITH LOCAL TIME ZONE. These are time zone-aware data types,
meaning that when the user selects the data, the time value is adjusted to the time zone
of the user’s session.

Oracle also provides an INTERVAL data type. This is meant to store a duration, or
interval, of time. There are two types: INTERVAL YEAR TO MONTH and INTERVAL DAY TO
SECOND. Use the former when precision to the year and month is required. Use the latter
when you need to store interval data granular to the day and second.

CHOOSING YOUR INTERVAL TYPE

When choosing an interval type, let your choice be driven by the level of granularity you desire
in your results. For example, you can use INTERVAL DAY TO SECOND to store intervals
several years in length—it is just that you will express such intervals in terms of days, perhaps
of several hundreds of days. If you record only a number of years and months, then you can
never actually get to the correct number of days, because the number of days represented by
a year or a month depends on which specific year and month are under discussion.

Similarly, if you need granularity in terms of months, you can’t back into the correct number of
months based on the number of days. So, choose the type to match the granularity needed in
your application.

RAW

The RAW data type allows you to store binary data in a column. This type of data is
sometimes used for storing globally unique identifiers or small amounts of encrypted
data.

238

CHAPTER 7 TABLES AND CONSTRAINTS

Note Prior to Oracle Database 12c, the maximum size for a RAW column

was 2,000 bytes. As of Oracle Database 12c, you can declare a RAW to have a
maximum size of 32,767 bytes. If you have large amounts of binary data to store,
then use a BLOB.

If you select data from a RAW column, SQL*Plus implicitly applies the built-in
RAWTOHEX function to the data retrieved. The data are displayed in hexadecimal format,
using characters 0-9 and A-F. When inserting data into a RAW column, the built-in
HEXTORAW is implicitly applied.

This is important because if you create an index on a RAW column, the optimizer may
ignore the index, as SQL*Plus is implicitly applying functions where the RAW column is
referenced in the SQL. A normal index may be of no use, whereas a function-based index
using RAWTOHEX may result in a substantial performance improvement.

ROWID

When DBAs hear the word ROWID (row identifier), they often think of a pseudocolumn
provided with every table row that contains the physical location of the row on disk; that
is correct. However, many DBAs do not realize that Oracle supports an actual ROWID data
type, meaning that you can create a table with a column defined as the type ROWID.

There are a few practical uses for the ROWID data type. One valid application would
be if you are having problems when trying to enable a referential integrity constraint and
want to capture the ROWID of rows that violate a constraint. In this scenario, you could
create a table with a column of the type ROWID and store in it the ROWIDs of offending
records within the table. This affords you an efficient way to capture and resolve issues
with the offending data (see the section “Enabling Constraints,” later in this chapter, for
more details).

Tip Never be tempted to use a ROWID data type and the associated ROWID of

a row within the table for the primary key value. This is because the ROWID of a
row in a table can change. For example, an ALTER TABLE. . .MOVE command will
potentially change every ROWID within a table. Normally, the primary key values of
rows within a table should never change. For this reason, instead of using ROWID

239

CHAPTER 7 TABLES AND CONSTRAINTS

for a primary key value, use a sequence-generated nonmeaningful number (see
the section “Creating a Table with an Autoincrementing (Identity) Column,” later in
this chapter, for further discussion).

LOB

Oracle supports storing large amounts of data in a column via a LOB data type. Oracle
supports the following types of LOBs:

o« CLOB
e« NCLOB
« BLOB
e BFILE

Tip The LONG and LONG RAW data types are deprecated and should not be used.

If you have textual data that do not fit within the confines of a VARCHAR2, then you
should use a CLOB to store these data. A CLOB is useful for storing large amounts of
character data, such as log files. An NCLOB is similar to a CLOB but allows for information
encoded in the nation character set of the database.

BLOBs are large amounts of binary data that usually are not meant to be human
readable. Typical BLOB data include images, audio, and video files.

CLOBs, NCLOBs, and BLOBs are known as internal LOBs. This is because they are stored
inside the Oracle database. These data types reside within data files associated with the
database.

BFILEs are known as external LOBs. BFILE columns store a pointer to a file on the OS
that is outside the database. When it is not feasible to store a large binary file within the
database, then use a BFILE. BFILEs do not participate in database transactions and are
not covered by Oracle security or backup and recovery. If you need those features, then
use a BLOB and not a BFILE.

Tip See Chapter 11 for a full discussion of LOBs.

240

CHAPTER 7 TABLES AND CONSTRAINTS

JSON

Previous versions of Oracle had procedures to be able to convert table data into JSON or
read JSON into the database. The JSON can be put into the database tables with JSON
columns. The schema or any other details about the JSON data does not need to be
known, and it can be stored in the table with other data and queried using SQL.

Here is an example to create a table with a JSON column:

SOL> CREATE TABLE dept

(deptno NUMBER(10)

,dname VARCHAR2 (14 CHAR)

,dprojects VARCHAR2(32767)

CONSTRAINT ensure_json CHECK (dprojects is JSON));

JSON can be inserted into the column with the other columns using an SQL INSERT
statement, and the JSON data can be queried also using SQL.

SELECT dept.deptno, dept.dprojects.projectID, dept.dprojects.projectName
from dept;

This will pull out of the JSON data the projectID and projectName for each of the
projects contained in the data. There is definitely more to working with JSON, and there
are packages to make handling the data in the database simplified. It allows for data APIs
in JSON to be pulled and put into the database. Storing the JSON data in a column will
allow for simple queries to be run against the database to work with other data columns.

Creating a Table

The number of table features expands with each new version of Oracle. Consider this:
the 12c version of the Oracle SQL Language Reference Guide presents more than 80
pages of syntax associated with the CREATE TABLE statement. Moreover, the ALTER TABLE
statement takes up another 90-plus pages of details related to table maintenance. For
most situations, you typically need to use only a fraction of the table options available.
Listed next are the general factors that you should consider when creating a table:

o Type of table (heap organized, temporary, index organized,
partitioned, and so on)

o Naming conventions

241

CHAPTER 7 TABLES AND CONSTRAINTS

e Column data types and sizes

o Constraints (primary key, foreign keys, and so on)
o Indexrequirements (see Chapter 8 for details)

o Initial storage requirements

e Special features (virtual columns, read-only, parallel, compression,
no logging, invisible columns, and so on)

e Growth requirements
o Tablespace(s) for the table and its indexes

Before you run a CREATE TABLE statement, you need to give some thought to each
item in the previous list. To that end, DBAs often use data modeling tools to help manage
the creation of DDL scripts that are used to make database objects. Data modeling tools
allow you to define visually tables and relationships and the underlying database features.

Creating a Heap-Organized Table

You use the CREATE TABLE statement(s), and data types and lengths associated with the
columns. The Oracle default table type is heap organized. The term heap means that the
data are not stored in a specific order in the table (instead, they're a heap of data). Here
is a simple example of creating a heap-organized table:

SQL> CREATE TABLE dept

(deptno NUMBER(10)

,dname VARCHAR2(14 CHAR)
,loc VARCHAR2(14 CHAR));

If you do not specify a tablespace, then the table is created in the default permanent
tablespace of the user that creates the table. Allowing the table to be created in the
default permanent tablespace is fine for a few small test tables. For anything more
sophisticated, you should explicitly specify the tablespace in which you want tables
created. For reference (in future examples), here are the creation scripts for two sample
tablespaces: HR_DATA and HR_INDEX:

SQL> CREATE TABLESPACE hr_data
DATAFILE '/u01/dbfile/018C/hr_datao1.dbf' SIZE 1000m
EXTENT MANAGEMENT LOCAL

242

CHAPTER 7 TABLES AND CONSTRAINTS

UNIFORM SIZE 512k SEGMENT SPACE MANAGEMENT AUTO;
SOL> CREATE TABLESPACE hr_index

DATAFILE '/u01/dbfile/018C/hr_index01.dbf' SIZE 100m

EXTENT MANAGEMENT LOCAL

UNIFORM SIZE 512k SEGMENT SPACE MANAGEMENT AUTO;

Usually, when you create a table, you should also specify constraints, such as the
primary key. The following code shows the most common features you use when
creating a table. This DDL defines primary keys, foreign keys, tablespace information,
and comments:

SOL> CREATE TABLE dept

(deptno NUMBER(10)

,dname VARCHAR2 (14 CHAR)

,1oc VARCHAR2 (14 CHAR)
,CONSTRAINT dept_pk PRIMARY KEY (deptno)
USING INDEX TABLESPACE hr index

) TABLESPACE hr data;

SOL> COMMENT ON TABLE dept IS 'Department table';

SQL> CREATE UNIQUE INDEX dept_ukl ON dept(dname)
TABLESPACE hr_index;

SQL> CREATE TABLE emp

(empno NUMBER(10)

,ename VARCHAR2(10 CHAR)
,job VARCHAR2(9 CHAR)
,mgr NUMBER (4)
,hiredate DATE

,sal NUMBER(7,2)

,comm NUMBER(7,2)

,deptno NUMBER(10)

,CONSTRAINT emp_pk PRIMARY KEY (empno)
USING INDEX TABLESPACE hr_ index

) TABLESPACE hr data;

243

CHAPTER 7 TABLES AND CONSTRAINTS

SOL> COMMENT ON TABLE emp IS 'Employee table';
SOL> ALTER TABLE emp ADD CONSTRAINT emp_ tfk1
FOREIGN KEY (deptno)

REFERENCES dept(deptno);

SQL> CREATE INDEX emp fki ON emp(deptno)
TABLESPACE hr_index;

When creating a table, I usually do not specify table-level physical space properties.
The table inherits its space properties from the tablespace in which it is created. This
simplifies administration and maintenance. If you have tables that require different
physical space properties, then you can create separate tablespaces to hold tables with
differing needs. For instance, you might create a HR_DATA LARGE tablespace with extent
sizes of 16MB and a HR_DATA_SMALL tablespace with extent sizes of 128KB and choose
where a table is created based on its storage requirements. See Chapter 4 for details
regarding the creation of tablespaces.

Table 7-2 lists some guidelines that are not hard-and-fast rules; adapt them
as needed for your environment. Some of these guidelines may seem like obvious
suggestions. However, after inheriting many databases over the years, I have seen each of
these recommendations violated in some way that makes database maintenance difficult
and unwieldy.

Table 7-2. Guidelines to Consider When Creating Tables

Recommendation Reasoning

Use standards when naming tables, columns, Helps document the application and simplifies
constraints, triggers, indexes, and so on. maintenance.

If a column always contains numeric data, Enforces a business rule and allows for

make it a number data type. the greatest flexibility, performance, and

consistency when using Oracle SQL math
functions (which may behave differently for a
“01” character versus a “1” number).

(continued)

244

Table 7-2. (continued)

CHAPTER 7 TABLES AND CONSTRAINTS

Recommendation

Reasoning

If you have a business rule that defines the length
and precision of a number field, then enforce it;
for example, NUMBER(7,2). If you do not have a
business rule, make it NUMBER (38).

For character data that are of variable length, use
VARCHAR2 (and not VARCHAR).

For character data, specify the size in CHAR; for
example, VARCHAR2 (30 CHAR).

If you have a business rule that specifies the
maximum length of a column, then use that
length, as opposed to making all columns
VARCHAR2 (4000).

Use DATE and TIMESTAMP data types
appropriately.

Specify a separate tablespace for the table and
indexes. Let the table and indexes inherit storage
attributes from the tablespaces.

Most tables should be created with a primary key.

Create a numeric surrogate key to be the primary
key for each table. Use the identity column for the
surrogate key or a sequence to populate.

Enforces a business rule and keeps the data
cleaner.

Follows Oracle’s recommendation of using
VARCHAR?2 for character data (instead of
VARCHAR). The Oracle documentation states
that in the future, VARCHAR will be redefined as
a separate data type.

When working with multibyte data, you will
get more predictable results, as multibyte
characters are usually stored in more than1B.

Enforces a business rule and keeps the data
cleaner.

Enforces a business rule, ensures that the data
are of the appropriate format, and allows for
the greatest flexibility when using SQL date
functions.

Simplifies administration and maintenance.

Enforces a business rule and allows you to
uniquely identify each row.

Makes joins easier and more efficient.

(continued)

245

CHAPTER 7 TABLES AND CONSTRAINTS

Table 7-2. (continued)

Recommendation

Reasoning

Create primary key constraints out of line.

Create a unique key for the logical user—a
recognizable combination of columns that makes
a row one of a kind.

Create comments for the tables and columns.

Avoid LOB data types if possible.

If a column should always have a value, then
enforce it with a NOT NULL constraint.

Create audit-type columns, such as CREATE_DTT
and UPDATE_DTT, which are automatically
populated with default values or triggers, or both.

Use check constraints where appropriate.

Define foreign keys where appropriate.

Allows you more flexibility when creating the
primary key, especially if you have a situation
in which the primary key consists of multiple
columns.

Enforces a business rule and keeps the data
cleaner.

Helps document the application and eases
maintenance.

Prevents maintenance issues associated with
LOB columns, such as unexpected growth and
performance issues when copying.

Enforces a business rule and keeps the data
cleaner.

Helps with maintenance and determining when
data were inserted or updated, or both. Other
types of audit columns to consider include the
users that inserted and updated the row.

Enforces a business rule and keeps the data
cleaner.

Enforces a business rule and keeps the data
cleaner.

Implementing Virtual Columns

With Oracle Database 11g and higher, you can create a virtual column as part of your

table definition. A virtual column is based on one or more existing columns from the

same table or a combination of constants, SQL functions, and user-defined PL/SQL

functions, or both. Virtual columns are not stored on disk; they are evaluated at runtime,

when the SQL query executes. Virtual columns can be indexed and have stored statistics.

246

CHAPTER 7 TABLES AND CONSTRAINTS

Prior to Oracle Database 11g, you could simulate a virtual column via a SELECT
statement or in a view definition. For example, this next SQL SELECT statement generates
avirtual value when the query is executed:

SQL> select inv_id, inv_count,
case when inv_count <= 100 then 'GETTING LOW'
when inv_count > 100 then 'OKAY'
end
from inv;

Why use a virtual column? The advantages of doing so are as follows:

e You can create an index on a virtual column; internally, Oracle
creates a function-based index.

e You can store statistics in a virtual column that can be used by the
cost-based optimizer (CBO).

e Virtual columns can be referenced in WHERE clauses.

e Virtual columns are permanently defined in the database; there is
one central definition of such a column.

Here is an example of creating a table with a virtual column:

SQL> create table inv(
inv_id number
,inv_count number
,inv_status generated always as (
case when inv_count <= 100 then 'GETTING LOW'
when inv_count > 100 then 'OKAY'
end)

)5

In the prior code listing, specifying GENERATED ALWAYS is optional. For example, this
listing is equivalent to the previous one:

SQL> create table inv(
inv_id number
,inv_count number
,inv_status as (

247

CHAPTER 7 TABLES AND CONSTRAINTS

case when inv_count <= 100 then 'GETTING LOW'
when inv_count > 100 then 'OKAY'
end)

)5

I prefer to add GENERATED ALWAYS because it reinforces in my mind that the column
is always virtual. The GENERATED ALWAYS helps document inline what you've done. This
aids in maintenance for other DBAs who come along long after you.

To view values generated by virtual columns, first insert some data into the table:

SQL> insert into inv (inv_id, inv_count) values (1,100);
Next, select from the table to view the generated value:

SQL> select * from inv;
Here is some sample output:

INV_ID INV_COUNT INV_STATUS

1 100 GETTING LOW

Note If you insert data into the table, nothing is stored in a column set to
GENERATED ALWAYS AS. The virtual value is generated when you select from the
table.

You can also alter a table to contain a virtual column:

SQL> alter table inv add(
inv_comm generated always as(inv_count * 0.1) virtual

)
And, you can change the definition of an existing virtual column:

SQL> alter table inv modify inv_status generated always as(
case when inv_count <= 50 then 'NEED MORE'
when inv_count >50 and inv_count <=200 then 'GETTING LOW'
when inv_count > 200 then 'OKAY'
end);

248

CHAPTER 7 TABLES AND CONSTRAINTS

You can access virtual columns in SQL queries (DML or DDL). For instance, suppose
you want to update a permanent column based on the value in a virtual column:

SOL> update inv set inv_count=100 where inv_status='OKAY';

A virtual column itself can’t be updated via the SET clause of an UPDATE statement.
However, you can reference a virtual column in the WHERE clause of an UPDATE or DELETE
statement.

Optionally, you can specify the data type of a virtual column. If you omit the data
type, Oracle derives it from the expression you use to define the virtual column.

Several caveats are associated with virtual columns:

e You can only define a virtual column on a regular, heap-organized
table. You cannot define a virtual column on an index-organized table,
an external table, a temporary table, object tables, or cluster tables.

e Virtual columns cannot reference other virtual columns.

e Virtual columns can only reference columns from the table in which
the virtual column is defined.

e The output of a virtual column must be a scalar value (i.e., a single
value, not a set of values).

To view the definition of a virtual column, use the DBMS_METADATA package to see the
DDL associated with the table. If you are selecting from SQL*Plus, you need to set the
LONG variable to a value large enough to show all data returned:

SOL> set long 10000;
SQL> select dbms_metadata.get dd1('TABLE','INV') from dual;

Here is a snippet of the output:

SOL> CREATE TABLE "INV _MGMT"."INV"
("INV_ID" NUMBER,

"INV_COUNT" NUMBER,

"INV_STATUS" VARCHAR2(11) GENERATED ALWAYS AS (CASE WHEN "INV_COUNT"<=50
THEN
"NEED MORE' WHEN ("INV_COUNT">50 AND "INV COUNT"<=200) THEN 'GETTING LOW'
WHEN "
INV_COUNT">200 THEN 'OKAY' END) VIRTUAL ...

249

CHAPTER 7 TABLES AND CONSTRAINTS

Implementing Invisible Columns

Starting with Oracle Database 12c, you can create invisible columns. When a column is

invisible, it cannot be viewed via
e DESCRIBE command
e SELECT *(to access all of a table’s columns)
« %ROWTYPE (in PL/SQL)
e Describes within an Oracle Call Interface (OCI)

However, the column can be accessed if explicitly specified in a SELECT clause or
referenced directly in a DML statement (INSERT, UPDATE, DELETE, or MERGE). Invisible
columns can also be indexed (just like visible columns).

The main use for an invisible column is to ensure that adding a column to a table
will not disrupt any of the existing application code. If the application code does not
explicitly access the invisible column, then it appears to the application as if the column
does not exist.

A table can be created with invisible columns, or a column can be added or altered
so as to be invisible. A column that is defined as invisible can also be altered so as to be
visible. Here is an example of creating a table with an invisible column:

SQL> create table inv

(inv_id number

,inv_desc varchar2(30 char)
,inv_profit number invisible);

Now, when the table is described, note that the invisible column is not displayed:

SQL> desc inv

Name Null? Type
INV_ID NUMBER
INV_DESC VARCHAR2(30 CHAR)

A column that has been defined as invisible is still accessible if you specify it directly
in a SELECT statement or any DML operations. For example, when selecting from a table,
you can view the invisible column by specifying it in the SELECT clause:

SOL> select inv_id, inv_desc, inv_profit from inv;

250

CHAPTER 7 TABLES AND CONSTRAINTS

Note When you create a table that has invisible columns, at least one column
must be visible.

Making Read-Only Tables

You can place individual tables in read-only mode. Doing so prevents any INSERT,
UPDATE, or DELETE statements from running against a table. An alternate way to do
this is to make the tablespace read-only and use this table for the tables that are static

for read-only.
There are several reasons why you may require the read-only feature at the table

level:

e The datain the table are historical and should never be updated in

normal circumstances.

e You are performing some maintenance on the table and want to
ensure that it does not change while it is being updated.

¢ You want to drop the table, but before you do, you want to better
determine if any users are attempting to update the table.

Use the ALTER TABLE statement to place a table in read-only mode:

SOL> alter table inv read only;
You can verify the status of a read-only table by issuing the following query:

SOL> select table name, read only from user tables where read only='YES';
To modify a read-only table to read/write, issue the following SQL:

SQL> alter table inv read write;

Note The read-only table feature requires that the database initialization
COMPATIBLE parameter be set to 11.1.0 or higher.

251

CHAPTER 7 TABLES AND CONSTRAINTS

Understanding Deferred-Segment Creation

Starting with Oracle Database 11g Release 2, when you create a table, the creation of the
associated segment is deferred until the first row is inserted into the table. This feature
has some interesting implications. For instance, if you have thousands of objects that
you are initially creating for an application (such as when you first install it), no space
is consumed by any of the tables (or associated indexes) until data are inserted into the
application tables. This means that the initial DDL runs more quickly when you create a
table, but the first INSERT statement runs slightly slower.

To illustrate the concept of deferred segments, first create a table:

SQL> create table inv(inv_id number, inv_desc varchar2(30 CHAR));
You can verify that the table has been created by inspecting USER_TABLES:

SQL> select

table name
,segment_created

from user tables

where table name="INV';

Here is some sample output:

TABLE_NAME SEG

Next, query USER_SEGMENTS to verify that a segment has not yet been allocated for the
table:

SQL> select
segment_name
,segment type
,bytes
from user_segments
where segment name="INV'
and segment_type='TABLE';

Here is the corresponding output for this example:
no rows selected

252

CHAPTER 7 TABLES AND CONSTRAINTS
Now, insert a row into a table:
SQL> insert into inv values(1,'BOOK');

Rerun the query, selecting from USER_SEGMENTS, and note that a segment has been

created:
SEGMENT _NAME SEGMENT _TYPE BYTES
INV TABLE 65536

If you are used to working with older versions of Oracle, the deferred-segment
creation feature can cause confusion. For example, if you have space-related monitoring
reports that query DBA_SEGMENTS or DBA_EXTENTS, be aware that these views are not
populated for a table or any indexes associated with a table until the first row is inserted
into the table.

Note You can disable the deferred-segment creation feature by setting the
database initialization parameter DEFERRED_SEGMENT _CREATION to FALSE.
The default for this parameter is TRUE.

Creating a Table with an Autoincrementing (Identity)
Column

Starting with Oracle Database 12c, you can define a column that is automatically
populated and incremented when inserting data. This feature is ideal for automatically
populating primary key columns.

Tip Prior to Oracle Database 12c, you would have to create a sequence manually
and then access the sequence when inserting into the table. Sometimes, DBAs
would create triggers on tables to simulate an autoincrementing column based on
a sequence (see Chapter 9 for details).

You define an autoincrementing (identity) column with the GENERATED AS IDENTITY
clause. This example creates a table with primary key column that will be automatically
populated and incremented:

253

CHAPTER 7 TABLES AND CONSTRAINTS

SQL> create table inv(
inv_id number generated as identity
,inv_desc varchar2(30 char));

SQL> alter table inv add constraint inv_pk primary key (inv_id);
Now, you can populate the table without having to specify the primary key value:

SQL> insert into inv (inv_desc) values ('Book');
SQL> insert into inv (inv_desc) values ('Table');

Selecting from the table shows that the INV_ID column has been automatically
populated:

SQL> select * from inv;
Here is some sample output:

INV_ID INV_DESC

When you create an identity column, Oracle automatically creates a sequence and
associates the sequence with the column. You can view the sequence information in
USER_SEQUENCES:

SOL> select sequence_name, min_value, increment_ by from user_sequences;
Here is some sample output for this example:

SEQUENCE_NAME MIN_VALUE INCREMENT BY

ISEQ$$_43216 1 1
You can identify identity columns via this query:

SOL> select table name, identity_column
from user tab_columns
where identity column='YES';

254

CHAPTER 7 TABLES AND CONSTRAINTS

When creating a table with an identity column (such as in the prior example), you
can’t directly specify a value for the identity column; for example, if you try this:

SQL> insert into inv values(3,'Chair');
you will receive an error:
ORA-32795: cannot insert into a generated always identity column

If, for some reason, you need to occasionally insert values into an identity column,

then use the following syntax when creating:

SQL> create table inv(
inv_id number generated by default on null as identity
,inv_desc varchar2(30 char));

Because the underlying mechanism for populating an identity column is a sequence,
you have some control over how the sequence is created (just like you would if you
manually created a sequence). For instance, you can specify at what number to start the
sequence and by how much the sequence increments each time. This example specifies
that the underlying sequence starts at the number 50 and increments by two each time:

SQL> create table inv(
inv_id number generated as identity (start with 50 increment by 2)
,inv_desc varchar2(30 char));

There are some caveats to be aware of when using autoincrementing (identity)

columns:
e Only one per table is allowed.
e They must be numeric.
o They cannot have default values.
e NOT NULL and NOT DEFERRABLE constraints are implicitly applied.

o CREATE TABLE ... AS SELECT will not inherit identity column
properties.

Also keep in mind that after inserting into a column that is autoincremented, if you
issue a rollback, the transaction is rolled back, but not the autoincremented values from
the sequence. This is the expected behavior of a sequence. You can roll back such an
insert, but the sequence values are used and gone.

255

CHAPTER 7 TABLES AND CONSTRAINTS

Tip See Chapter 9 for details on how to manage a sequence.

Allowing for Default Parallel SQL Execution

If you work with large tables, you may want to consider creating your tables as PARALLEL.
This instructs Oracle to set the degree of parallelism for queries and any subsequent
INSERT, UPDATE, DELETE, MERGE, and query statements. This example creates a table with
a PARALLEL clause of 2:

SQL> create table inv

(inv_id number,

inv_desc varchar2(30 char),
create dtt date default sysdate)
parallel 2;

You can specify PARALLEL, NOPARALLEL, or PARALLEL N. Ifyou do not specify N, Oracle
sets the degree of parallelism based on the PARALLEL_THREADS PER_CPU initialization
parameter. You can verify the degree of parallelism with this query:

SOL> select table name, degree from user tables;

The main issue to be aware of here is that if a table has been created with a default
degree of parallelism, any subsequent queries will execute with parallel threads. You
may wonder why a query or a DML statement is executing in parallel (without explicitly
invoking a parallel operation).

WHERE ARE ALL THE P_0 PROCESSES COMING FROM?

[once got a call from a production support person who reported that nobody could connect to
the database because of an ORA-00020 maximum number of processes error.|logged
into the box and noted that there were hundreds of ora_p parallel query processes running.

| had to kill some of the processes manually so that | could connect to the database. Upon
further inspection, | traced the parallel query sessions to an SQL statement and table. The
table, in this case, had been created with a default parallel degree of 64 (do not ask me why),
which in turn spawned hundreds of processes and sessions when the table was queried.

256

CHAPTER 7 TABLES AND CONSTRAINTS

This maxed out the number of allowed connections to the database and caused the issue. This
can be resolved with setting the parallel to NOPARALLEL or to 1. Also, the resource manager
will limit the number of connections allowed.

You can also alter a table to modify its default degree of parallelism:
SOL> alter table inv parallel 1;

With Oracle 18c, the resource parameter PQ_TIMEOUT_ACTION is available to
timeout parallel queries that are inactive. This will allow parallel queries with high
priority to have the needed resources to execute. There is also a simpler way to cancel
the runaway SQL without having to manually kill the processes using ALTER SYSTEM
CANCEL SQL statement.

Tip Keep in mind that PARALLEL _THREADS PER_CPU is platform dependent
and can vary from a development environment to a production environment.
Therefore, if you do not specify the degree of parallelism, the behavior of parallel
operations can vary, depending on the environment.

Compressing Table Data

As your database grows, you may want to consider table level compression. Compressed
data have the benefit of using less disk space and less memory and reduced I/0. Queries
that read compressed data potentially run faster because there are fewer blocks to
process. However, CPU usage increases as the data are compressed and uncompressed
as writes and reads occur, so there is a tradeoff.

Starting with Oracle Database 12c, there are four types of compression available:

o Basic compression

e Advanced row compression (previously referred to as OLTP

compression)
e Warehouse compression (hybrid columnar compression)

o Archive compression (hybrid columnar compression)

257

CHAPTER 7 TABLES AND CONSTRAINTS

Basic compression is enabled with the COMPRESS or COMPRESS BASIC clause (they are
synonymous). This example creates a table with basic compression:

SQL> create table inv

(inv_id number,

inv_desc varchar2(300 char),
create_dtt timestamp)

compress basic;

Basic compression provides compression as data are direct-path inserted into the
table. By default, tables created with COMPRESS BASIC have a PCTFREE setting of 0. You
can override this by specifying PCTFREE when creating the table.

Note Basic compression requires the Oracle Enterprise Edition, but it does not

require an extra license. Other types of compression are additional license options
for the database. As with options of the database, evaluation needs to be done for
storage cost and compression ratio to provide the right cost analysis of this option.

Advanced row compression is enabled with the ROW STORE COMPRESS ADVANCED
clause:

SQL> create table inv

(inv_id number,

inv_desc varchar2(300 char),
create dtt timestamp)

row store compress advanced;

Advanced row compression provides compression when initially inserting data into
the table as well as in any subsequent DML operations. You can verify the compression
for a table via the following SELECT statement:

SOL> select table name, compression, compress for
from user tables
where table name="INV';

258

CHAPTER 7 TABLES AND CONSTRAINTS
Here is some sample output:

TABLE_NAME COMPRESS COMPRESS_FOR

INV ENABLED ADVANCED

Note OLTP table compression is a feature of the Oracle Advanced Compression
option. This option requires an additional license from Oracle and is only available
with the Oracle Enterprise Edition.

You can also create a tablespace with the compression clause. Any table created in
that tablespace will inherit the tablespace compression settings. For example, here is
how to set the default level of compression for a tablespace:

SQL> CREATE TABLESPACE hr data
DEFAULT ROW STORE COMPRESS ADVANCED
DATAFILE '/u01/dbfile/012C/hr_datao1.dbf' SIZE 100m
EXTENT MANAGEMENT LOCAL
UNIFORM SIZE 512k SEGMENT SPACE MANAGEMENT AUTO;

If you have a table that already exists, you can alter it to allow compression (either
basic or advanced):

SOL> alter table inv row store compress advanced;

Note Oracle does not support compression for tables with more than 255
columns.

Altering to allow compression does not compress the existing data in the table. You
will need to rebuild the table with Data Pump or move the table to compress the data
that were in it prior to enabling compression:

SQL> alter table inv move;

259

CHAPTER 7 TABLES AND CONSTRAINTS

Note If you move the table, then you will also need to rebuild any associated
indexes.

You can disable compression via the NOCOMPRESS clause. This does not affect
existing data within the table. Rather, it affects future inserts (basic and advanced row
compression) and future DML (advanced row compression); for example,

SOL> alter table inv nocompress;

Oracle also has a warehouse and archive hybrid columnar compression feature that is
available when using certain types of storage (such as Exadata). This type of compression
is enabled with the COLUMN STORE COMPRESS FOR QUERY LOW|HIGH or COLUMN STORE
COMPRESS FOR ARCHIVE LOW|HIGH clause. For more details regarding this type of
compression, see the Oracle Technology Network web site (http://otn.oracle.com).

Avoiding Redo Creation

When you are creating a table, you have the option of specifying the NOLOGGING clause.
The NOLOGGING feature can greatly reduce the amount of redo generation for certain
types of operations. Sometimes, when you are working with large amounts of data, it
is desirable, for performance reasons, to reduce the redo generation when you initially
create and insert data into a table.

The downside to eliminating redo generation is that you cannot recover the data
created via NOLOGGING in the event a failure occurs after the data are loaded (and
before you can back up the table). If you can tolerate some risk of data loss, then use
NOLOGGING, but back up the table soon after the data are loaded. If your data are critical,
then do not use NOLOGGING. If your data can be easily re-created, then NOLOGGING is
desirable when you are trying to improve performance of large data loads.

One perception is that NOLOGGING eliminates redo generation for the table for all
DML operations. That is not correct. The NOLOGGING feature never affects redo generation
for normal DML statements (regular INSERT, UPDATE, and DELETE).

The NOLOGGING feature can significantly reduce redo generation for the following
types of operations:

e SQL*Loader direct-path load
o Direct-path INSERT /*+ append */

260

http://otn.oracle.com

CHAPTER 7 TABLES AND CONSTRAINTS

o CREATE TABLE AS SELECT
o ALTER TABLE MOVE
o Creating or rebuilding an index

You need to be aware of some quirks (features) when using NOLOGGING. If your
database is in FORCE LOGGING mode, then redo is generated for all operations, regardless
of whether you specify NOLOGGING. Likewise, when you are loading a table, if the table has
a referential foreign key constraint defined, then redo is generated regardless of whether
you specify NOLOGGING.

You can specify NOLOGGING at one of the following levels:

o Statement
o CREATE TABLE or ALTER TABLE
e CREATE TABLESPACE or ALTER TABLESPACE

I prefer to specify the NOLOGGING clause at the statement or table level. In these
scenarios, it is obvious to the DBA executing the statement or DDL that NOLOGGING
is used. If you specify NOLOGGING at the tablespace level, then each DBA who creates
objects within that tablespace must be aware of this tablespace-level setting. In teams
with multiple DBAs, it is easy for one DBA to be unaware that another DBA has created a
tablespace with NOLOGGING.

This example first creates a table with the NOLOGGING option:

SQL> create table inv(inv_id number)
tablespace users
nologging;

Next, do a direct-path insert with some test data, and commit the data:

SOL> insert /*+ append */ into inv select level from dual
connect by level <= 10000;

SQL> commit;

What happens if you have a media failure after you have populated a table in
NOLOGGING mode (and before you have made a backup of the table)? After a restore and
recovery operation, it will appear that the table has been restored:

261

CHAPTER 7 TABLES AND CONSTRAINTS

SQL> desc inv
Name Null? Type

INV_ID NUMBER
However, try to execute a query that scans every block in the table:
SQL> select * from inv;
Here, an error is thrown, indicating that there is logical corruption in the data file:

ORA-01578: ORACLE data block corrupted (file # 5, block # 203)
ORA-01110: data file 5: '/u01/dbfile/018C/usersoi.dbf’
ORA-26040: Data block was loaded using the NOLOGGING option

In other words, the data are unrecoverable because the redo does not exist to restore
them. Again, the NOLOGGING option is suitable for large batch loading of data that can
easily be reproduced in the event a failure occurs before a backup of the database can be
taken after a NOLOGGING operation.

If you specify a logging clause at the statement level, it overrides any table or
tablespace setting. If you specify a logging clause at the table level, it sets the default
mode for any statements that do not specify a logging clause and overrides the logging
setting at the tablespace. If you specify a logging clause at the tablespace level, it sets the
default logging for any CREATE TABLE statements that do not specify a logging clause.

You verify the logging mode of the database as follows:

SOL> select name, log _mode, force logging from v$database;
The next statement verifies the logging mode of a tablespace:
SOL> select tablespace name, logging from dba_tablespaces;
And, this example verifies the logging mode of a table:
SOL> select owner, table name, logging from dba_tables where logging = 'NO';

You can view the effects of NOLOGGING in a few different ways. One way is to enable
autotracing with statistics and view the redo size:

SQL> set autotrace trace statistics;

262

CHAPTER 7 TABLES AND CONSTRAINTS
Then, run a direct-path INSERT statement, and view the redo size statistic:

insert /*+ append */ into inv select level from dual
connect by level <= 10000;

Here is a snippet of the output:

Statistics

13772 1redo size

With logging disabled, for direct-path operations, you should see a much smaller
redo size number than with a regular INSERT statement, such as,

SQL> insert into inv select level from dual
connect by level <= 10000;

Here is the partial output, indicating that the redo size is much greater:

Statistics

159152 redo size

Another method for determining the effects of NOLOGGING is to measure the amount
of redo generated for an operation with logging enabled versus operating in NOLOGGING
mode. If you have a development environment that you can test in, you can monitor how
often the redo logs switch while the operation is taking place. Another simple test is to
time how long the operation takes with and without logging. The operation performed
in NOLOGGING mode should be faster (because a minimal amount of redo is being
generated).

Creating a Table from a Query

Sometimes. it is convenient to create a table based on the definition of an existing table.
For instance, say you want to create a quick backup of a table before you modify the
table’s structure or data. Use the CREATE TABLE AS SELECT statement (CTAS) this; for
example,

create table inv_backup
as select * from inv;

263

CHAPTER 7 TABLES AND CONSTRAINTS

The previous statement creates an identical table, complete with data. If you do not
want the data included—you just want the structure of the table replicated—then provide
a WHERE clause that always evaluates to false (in this example, 1 will never equal 2):

SOL> create table inv_empty
as select * from inv
where 1=2;

You can also specify that no redo be logged when a CTAS table is created. For large
data sets, this can reduce the amount of time required to create the table:

SOL> create table inv_backup
nologging
as select * from inv;

Be aware that using the CTAS technique with the NOLOGGING clause creates the table
as NOLOGGING and does not generate the redo required to recover the data that populate
the table as the result of the SELECT statement. Also, if the tablespace (in which the
CTAS table is being created) is defined as NOLOGGING, then no redo is generated. In these
scenarios, you can’t restore and recover your table in the event a failure occurs before
you are able to back up the table. If your data are critical, then do not use the NOLOGGING
clause.

You can also specify parallelism and storage parameters. Depending on the number
of CPUs, you may see some performance gains:

SOL> create table inv_backup
nologging

tablespace hr_data

parallel 2

as select * from inv;

Note The CTAS technique does not create any indexes, constraints, or triggers.
You have to create indexes and triggers separately if you need those objects from
the original table.

264

CHAPTER 7 TABLES AND CONSTRAINTS

ENABLING DDL LOGGING

Oracle allows you to enable the logging of DDL statements to a log file. This type of logging
is switched on with the ENABLE_DDL_LOGGING parameter (the default is FALSE). You can
set this at the session or system level. This feature provides you with an audit trail regarding
which DDL statements have been issued and when they were run. Here is an example of
setting this parameter at the system level:

SOL> alter system set enable ddl logging=true scope=both;

After this parameter is set to TRUE, DDL statements will be logged to a log file. Oracle does not
log every type of DDL statement, only the most common ones to a log file. The exact location
of the DDL logging file and number of files vary by database version. The location (directory
path) of this file can be determined via this query:

SOL> select value from v$diag_info where name='Diag Alert’;
VALUE

/ora01/app/oracle/diag/rdbms/018c/018C/alert

Depending on the type of auditing, there are multiple files that capture DDL logging. To find
these files, first determine the location of your diagnostic home directory:

SOL> select value from v$diag info where name='ADR Home';
VALUE

/ora01/app/oracle/diag/rdbms/018c/018C

Now, change your current working directory to the prior directory and the subdirectory of log;
for example,

$ cd /orao1/app/oracle/diag/rdbms/018c/018C/log

Within this directory, there will be a file with the format dd1_<SID>.log. This contains a log
of DDL statements that have been issued after DDL logging has been enabled. You can also
view DDL logging in the 1og.xm1 file. This file is located in the dd1 subdirectory beneath the
previously mentioned log directory; for example,

$ cd /oraoi/app/oracle/diag/rdbms/018c/018C/log/ddl

Once you navigate to the prior directory, you can view the 1og.xml file with an OS utility such as vi.

265

CHAPTER 7 TABLES AND CONSTRAINTS

Modifying a Table

Altering a table is a common task. New requirements frequently mean that you need
to rename, add, drop, or change column data types. In development environments,
changing a table can be a trivial task: you do not often have large quantities of data or
hundreds of users simultaneously accessing a table. However, for active production
systems, you need to understand the ramifications of trying to change tables that are
currently being accessed or that are already populated with data, or both.

Obtaining the Needed Lock

When you modify a table, you must have an exclusive lock on the table. One issue is that
if a DML transaction has a lock on the table, you cannot alter it. In this situation, you
receive this error:

ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

The prior error message is somewhat confusing in that it leads you to believe that
you can resolve the problem by acquiring a lock with NOWAIT. However, this is a generic
message that is generated when the DDL you are issuing cannot obtain an exclusive lock
on the table. In this situation, you have a few options:

o After issuing the DDL command and receiving the ORA-00054
error, rapidly press the forward slash (/) key repeatedly in hopes of
modifying the table between transactions.

e Wait for a maintenance window to schedule the change the table to
not lock user out of the table. Shut down the database and start it in
restricted mode, modify the table, and then open the database for
normal use.

o SettheDDL_LOCK TIMEOUT parameter.

The last item in the previous list instructs Oracle to repeatedly attempt to run a
DDL statement until it obtains the required lock on the table. You can set the DDL_LOCK _
TIMEOUT parameter at the system or session level. This next example instructs Oracle to
repeatedly try to obtain a lock for 100 seconds:

SOL> alter session set ddl_lock timeout=100;

266

CHAPTER 7 TABLES AND CONSTRAINTS

The default value for the system-level DDL_LOCK_TIMEOUT initialization parameter is 0.
If you want to modify the default behavior for every session in the system, issue an ALTER
SYSTEM SET statement. The following command sets the default time-out value to 10
seconds for the system:

SOL> alter system set ddl lock timeout=10 scope=both;

Note There are online table operations with the DBMS_REDEFINITION package
that will allow for table changes from column types, name, size, etc., to renaming
tables. Using this package will also allow for online operations without disruption
of the database users for implementing other options. This is also a good way to
validate new procedures and table changes before making the switch.

Renaming a Table

There are a couple of reasons for renaming a table:
o Make the table conform to standards
o Better determine whether the table is being used before you drop it

This example renames a table, from INV to INV_OLD:
SQL> rename inv to inv_old;
If successful, you should see this message:

Table renamed.

Adding a Column

Use the ALTER TABLE ... ADD statement to add a column to a table. This example adds a
column to the INV table:

SQL> alter table inv add(inv_count number);
If successful, you should see this message:

Table altered.

267

CHAPTER 7 TABLES AND CONSTRAINTS

Altering a Column

Occasionally, you need to alter a column to adjust its size or change its data type. Use
the ALTER TABLE ... MODIFY statement to adjust the size of a column. This example
changes the size of a column to 256 characters:

SQL> alter table inv modify inv_desc varchar2(256 char);

If you decrease the size of a column, first ensure that no values exist that are greater
than the decreased size value:

SQL> select max(length(<column_name>)) from <table name>;

When you change a column to NOT NULL, there must be a valid value for each
column. First, verify that there are no NULL values:

SOL> select <column_name> from <table name> where <column_name> is null;

If any rows have a NULL value for the column you are modifying to NOT NULL, then
you must first update the column to contain a value. Here is an example of modifying a
column to NOT NULL:

SQL> alter table inv modify(inv_desc not null);

You can also alter the column to have a default value. The default value is used any
time a record is inserted into the table, but no value is provided for a column:

SQL> alter table inv modify(inv_desc default 'No Desc');
If you want to remove the default value of a column, then set it to NULL:
SOL> alter table inv modify(inv_desc default NULL);

Sometimes, you need to change a table’s data type; for example, a column that was
originally incorrectly defined as a VARCHAR2 needs to be changed to a NUMBER. Before you
change a column’s data type, first verify that all values for an existing column are valid
numeric values. Here is a simple PL/SQL script to do this:

SQL> create or replace function isnum(v_in varchar2)
return varchar is
val err exception;
pragma exception init(val err, -6502); -- char to num conv. error

268

CHAPTER 7 TABLES AND CONSTRAINTS

scrub_num number;

begin
scrub_num := to_number(v_in);
return 'Y';
exception when val err then
return 'N';

end;

/

You can use the ISNUM function to detect whether data in a column are numeric.
The function defines a PL/SQL pragma exception for the ORA-06502 character-to-number
conversion error. When this error is encountered, the exception handler captures it
and returns an N. If the value passed in to the ISNUM function is a number, then a Y is
returned. If the value can’t be converted to a number, then an N is returned. Here is a
simple example illustrating the prior concepts:

SQL> create table stage(hold col varchar2(30));

SQL> insert into stage values(1);

SQL> insert into stage values('x');

SOL> select hold col from stage where isnum(hold col)="N";

HOLD_coL

Similarly, when you modify a character column to a DATE or TIMESTAMP data type, it
is prudent to check first to see whether the data can be successfully converted. Here is a
function that does that:

SQL> create or replace function isdate(p_in varchar2, f in varchar2)
return varchar is

scrub_dt date;

begin

scrub_dt := to date(p_in, f _in);

return 'Y';

exception when others then

return 'N';

end;

/

269

CHAPTER 7 TABLES AND CONSTRAINTS

When you call the ISDATE function, you need to pass it a valid date-format mask,
such as YYYYMMDD. Here is a simple example to demonstrate the prior concept:

SQL> create table stage2 (hold col varchar2(30));

SQL> insert into stage2 values('20130103');

SQL> insert into stage2 values('03-JAN-13');

SQL> select hold col from stage2 where isdate(hold col,'YYYYMMDD')="N";

03-JAN-13

Renaming a Column

There are a couple of reasons to rename a column:

e Sometimes, requirements change, and you may want to modify the
column name to better reflect what the column is used for.

o Ifyouare planning to drop a column, it does not hurt to rename the
column first to better determine whether any users or applications
are accessing it.

Use the ALTER TABLE ... RENAME statement to rename a column:

SOL> alter table inv rename column inv_count to inv_amt;

Dropping a Column

Tables sometimes end up having columns that are never used. This may be because the
initial requirements changed or were inaccurate. If you have a table that contains an
unused column, you should consider dropping it. If you leave an unused column in a
table, you may run into issues with future DBAs not knowing what the column is used
for, and the column can potentially consume space unnecessarily.

Before you drop a column, I recommend that you first rename it. Doing so gives you
an opportunity to determine whether any users or applications are using the column.
After you are confident the column is not being used, first make a backup of the table,
using Data Pump export, and then drop the column. These strategies provide you with
options if you drop a column and then subsequently realize that it is needed.

270

CHAPTER 7 TABLES AND CONSTRAINTS

To drop a column, use the ALTER TABLE ... DROP statement:
SQL> alter table inv drop (inv_name);

Be aware that the DROP operation may take some time if the table from which you
are removing the column contains a large amount of data. This time lag may result in
the delay of transactions while the table is being modified (because the ALTER TABLE
statement locks the table). In scenarios such as this, you may want to first mark the
column unused and then later drop it, when you have a maintenance window:

SQL> alter table inv set unused (inv_name);

When you mark a column unused, it no longer shows up in the table description.
The SET UNUSED clause does not incur the overhead associated with dropping the
column. This technique allows you to quickly stop the column from being seen or used
by SQL queries or applications. Any query that attempts to access an unused column
receives the following error:

ORA-00904: ... invalid identifier

You can later drop any unused columns when you’ve scheduled some downtime for
the application. Use the DROP UNUSED clause to remove any columns marked UNUSED.

SOL> alter table inv drop unused columns;

Displaying Table DDL

Sometimes, DBAs do a poor job of documenting what DDL is used when creating or
modifying a table. Normally, you should maintain the database DDL code in a source
control repository or in some sort of modeling tool. If your shop does not have the DDL
source code, there are a few ways that you can manually reproduce DDL:

e Query the data dictionary.
¢ Use Data Pump.
o Use the DBMS_METADATA package.

271

CHAPTER 7 TABLES AND CONSTRAINTS

Back in the olden days, say, version 7 and earlier, DBAs often wrote SQL that queried
the data dictionary in an attempt to extract the DDL required to re-create objects.
Although this method was better than nothing, it was often prone to errors because the
SQL didn’t account for every object creation feature.

The Data Pump utility is an excellent method for generating the DDL used to create
database objects. Using Data Pump to generate DDL is covered in detail in Chapter 13.

The GET_DDL function of the DBMS_METADATA package is usually the quickest way to
display the DDL required to create an object. This example shows how to generate the
DDL for a table named INV:

SOL> set long 10000
SOL> select dbms_metadata.get dd1('TABLE','INV') from dual;

Here is some sample output:

DBMS_METADATA.GET DDL('TABLE','INV')

SOL> CREATE TABLE "MV_MAINT"."INV"
("INV_ID" NUMBER,
"INV DESC" VARCHAR2(30 CHAR),
"INV_COUNT" NUMBER
) SEGMENT CREATION DEFERRED
PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
NOCOMPRESS LOGGING
TABLESPACE "USERS";

The following SQL statement displays all the DDL for the tables in a schema:

SQL> select
dbms_metadata.get ddl('TABLE',table _name)
from user tables;

If you want to display the DDL for a table owned by another user, add the SCHEMA
parameter to the GET_DDL procedure:

SQL> select
dbms_metadata.get_ddl(object type=>'TABLE', name=>"INV', schema=>'INV_APP")
from dual;

272

CHAPTER 7 TABLES AND CONSTRAINTS

Note You can display the DDL for almost any database object type, such
as INDEX, FUNCTION, ROLE, PACKAGE, MATERIALIZED VIEW, PROFILE,
CONSTRAINT, SEQUENCE, and SYNONYM.

Dropping a Table

If you want to remove an object, such as a table, from a user, use the DROP TABLE
statement. This example drops a table named INV:

SOL> drop table inv;
You should see the following confirmation:
Table dropped.

If you attempt to drop a parent table that has either a primary key or unique key
referenced as a foreign key in a child table, you see an error such as

ORA-02449: unique/primary keys in table referenced by foreign keys

You need to either drop the referenced foreign key constraint(s) or use the CASCADE
CONSTRAINTS option when dropping the parent table:

SOL> drop table inv cascade constraints;

You must be the owner of the table or have the DROP ANY TABLE system privilege to
drop a table. If you have the DROP ANY TABLE privilege, you can drop a table in a different
schema by prepending the schema name to the table name:

SOL> drop table inv_mgmt.inv;

If you do not prepend the table name to a user name, Oracle assumes you are
dropping a table in your current schema.

Tip If flashback query or flashback database is enabled, keep in mind that you
can flash back a table to before drop for an accidentally dropped table.

273

CHAPTER 7 TABLES AND CONSTRAINTS

Undropping a Table

Suppose you accidentally drop a table, and you want to restore it. First, verify that the
table you want to restore is in the recycle bin:

SOL> show recyclebin;
Here is some sample output:

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME

INV BIN$OF27WtIGbXngQ4TQTwq5HW==$0 TABLE 2012-12-08:12:56:45

Next, use the FLASHBACK TABLE...TO BEFORE DROP statement to recover the
dropped table:

SQL> flashback table inv to before drop;

Note You cannot use the FLASHBACK TABLE...TO BEFORE DROP statement
for a table created in the SYSTEM tablespace.

When you issue a DROP TABLE statement (without PURGE), the table is actually
renamed (to a name that starts with BIN$) and placed in the recycle bin. The recycle bin
is a mechanism that allows you to view some of the metadata associated with a dropped
object. You can view complete metadata regarding renamed objects by querying
DBA_SEGMENTS:

SQL> select
owner
,segment _name
,segment_type
,tablespace name
from dba_segments
where segment_name like 'BIN$%';

274

CHAPTER 7 TABLES AND CONSTRAINTS

The FLASHBACK TABLE statement simply renames the table its original name.

By default, the RECYCLEBIN feature is enabled. You can change the default by setting
the RECYCLEBIN initialization parameter to OFF.

Irecommend that you not disable the RECYCLEBIN feature. It is safer to leave this
feature enabled and purge the RECYCLEBIN to remove objects that you want permanently
deleted. This means that the space associated with a dropped table is not released until
you purge your RECYCLEBIN. If you want to purge the entire contents of the currently
connected user’s recycle bin, use the PURGE RECYCLEBIN statement:

SOL> purge recyclebin;

If you want to purge the recycle bin for all users in the database, then do the
following, as a DBA-privileged user:

SOL> purge dba_recyclebin;

If you want to bypass the RECYCLEBIN feature and permanently drop a table, use the
PURGE option of the DROP TABLE statement:

SQL> drop table inv purge;

You cannot use the FLASHBACK TABLE statement to retrieve a table dropped with the
PURGE option. All space used by the table is released, and any associated indexes and
triggers are also dropped.

Removing Data from a Table

You can use either the DELETE statement or the TRUNCATE statement to remove
records from a table. You need to be aware of some important differences between
these two approaches. Table 7-3 summarizes the attributes of the DELETE and
TRUNCATE statements.

275

CHAPTER 7 TABLES AND CONSTRAINTS

Table 7-3. Features of DELETE and TRUNCATE

DELETE TRUNCATE

Choice of COMMIT or ROLLBACK YES NO

Generates undo YES NO

Resets the high-water mark to 0 NO YES

Affected by foreign key constraints NO YES

Performs well with large amounts of data NO YES
Using DELETE

One big difference is that the DELETE statement can be either committed or rolled back.
Committing a DELETE statement makes the changes permanent:

SQL> delete from inv;
SQL> commit;

Ifyou issue a ROLLBACK statement instead of COMMIT, the table contains data as they
were before the DELETE was issued.

Using TRUNCATE

TRUNCATE is a DDL statement. This means that Oracle automatically commits the
statement (and the current transaction) after it runs, so there is no way to roll back

a TRUNCATE statement. If you need the option of choosing to roll back (instead of
committing) when removing data, then you should use the DELETE statement. However,
the DELETE statement has the disadvantage of generating a great deal of undo and redo
information. Thus, for large tables, a TRUNCATE statement is usually the most efficient way
to remove data.

Note It might be possible to run flashback query with a CTAS statement to query
the table before the truncate and restore that data into another table. You would
CREATE TABLE tableflashback as SELECT * from table as of TIMESTAMP.... This
depends on UNDO size and retention, but is something to look into before pulling
from a backup.

276

CHAPTER 7 TABLES AND CONSTRAINTS

This example uses a TRUNCATE statement to remove all data from the COMPUTER _
SYSTEMS table:

SOL> truncate table computer systems;

By default, Oracle deallocates all space used for the table, except the space defined
by the MINEXTENTS table-storage parameter. If you do not want the TRUNCATE statement to
deallocate the extents, use the REUSE STORAGE parameter:

SOL> truncate table computer systems reuse storage;

The TRUNCATE statement sets the high-water mark of a table back to 0. When you use
a DELETE statement to remove data from a table, the high-water mark does not change.
One advantage of using a TRUNCATE statement and resetting the high-water mark is that
full-table scans only search for rows in blocks below the high-water mark. This can have
significant performance implications.

You can’t truncate a table that has a primary key defined that is referenced by an
enabled foreign key constraint in a child table—even if the child table contains zero
rows. Oracle prevents you from doing this because in a multiuser system, there is the
possibility that another session can populate the child table with rows in between
the time you truncate the child table and the time you subsequently truncate the
parent table. In this scenario, you must temporarily disable the referenced foreign key
constraints, issue the TRUNCATE statement, and then re-enable the constraints.

Because a TRUNCATE statement is DDL, you can’t truncate two separate tables as one
transaction. Compare this behavior with that of DELETE. Oracle does allow you to use the
DELETE statement to remove rows from a parent table while the constraints are enabled
that reference a child table. This is because DELETE generates undo, is read consistent,
and can be rolled back.

Note Another way to remove data from a table is to drop and re-create the table.
However, this means that you also have to re-create any indexes, constraints,
grants, and triggers that belong to the table. Additionally, when you drop a table,

it is unavailable until you re-create it and reissue any required grants. Usually,
dropping and re-creating a table are acceptable only in a development or test
environment.

277

CHAPTER 7 TABLES AND CONSTRAINTS

Viewing and Adjusting the High-Water Mark

Oracle defines the high-water mark of a table as the boundary between used and unused
space in a segment. When you create a table, Oracle allocates a number of extents to
the table, defined by the MINEXTENTS table-storage parameter. Each extent contains a
number of blocks. Before data are inserted into the table, none of the blocks have been
used, and the high-water mark is 0.

As data are inserted into a table, and extents are allocated, the high-water mark
boundary is raised. A DELETE statement does not reset the high-water mark.

You need to be aware of a couple of performance-related issues regarding the
high-water mark:

e SQL query full-table scans

e Direct-path load-space usage

Oracle sometimes needs to scan every block of a table (under the high-water mark)
when performing a query. This is known as a full-table scan. If a significant amount of
data have been deleted from a table, a full-table scan can take a long time to complete,
even for a table with zero rows.

Also, when doing direct-path loads, Oracle inserts data above the high-water mark
line. Potentially, you can end up with a large amount of unused space in a table that is
regularly deleted from and that is also loaded via a direct-path mechanism.

There are several methods for detecting space below the high-water mark:

e Autotrace tool
o DBMS_SPACE package
o Selecting from the data dictionary extents view

The autotrace tool offers a simple method for detecting high-water mark issues.
Autotrace is advantageous because it is easy to use, and the output is simple to
interpret.

278

CHAPTER 7 TABLES AND CONSTRAINTS

You can use the DBMS_SPACE package to determine the high-water mark of objects
created in tablespaces that use autospace segment management. The DBMS_SPACE
package allows you to check for high-water mark problems programmatically. The
downside to this approach is that the output is somewhat cryptic and difficult to derive
concrete answers from.

Selecting from DBA/ALL/USER_EXTENTS provides you with information such as the
number of extents and bytes consumed. This is a quick and easy way to detect high-
water mark issues.

Tracing to Detect Space Below the High-Water Mark

You can run this simple test to detect whether you have an issue with unused space
below the high-water mark:

1. SQL> set autotrace trace statistics
2. Run the query that performs the full-table scan.

3. Compare the number of rows processed with the number of
logical I/Os (memory and disk accesses).

If the number of rows processed is low, but the number of logical I/Os is high, you
may have an issue with the number of free blocks below the high-water mark. Here is a
simple example to illustrate this technique:

SQL> set autotrace trace statistics
The next query generates a full-table scan on the INV table:
SQL> select * from inv;

Here is a snippet of the output from AUTOTRACE:
no rows selected

Statistics

4 recursive calls

0 db block gets
7371 consistent gets
2311 physical reads

279

CHAPTER 7 TABLES AND CONSTRAINTS

The number of rows returned is zero, yet there are 7,371 consistent gets
(memory accesses) and 2,311 physical reads from disk, indicating free space beneath
the high-water mark.

Next, truncate the table, and run the query again:

SQL> truncate table inv;
SQL> select * from inv;

Here is a partial listing from the output of AUTOTRACE:
no rows selected

Statistics
recursive calls
db block gets
12 consistent gets
0 physical reads

Note that the number of memory accesses and physical reads are now quite small.

Using DBMS_SPACE to Detect Space Below the
High-Water Mark

You can use the DBMS_SPACE package to detect free blocks beneath the high-water mark.
Here is an anonymous block of PL/SQL that you can call from SQL*Plus:

SQL> set serverout on size 1000000

SQL> declare
p_fsi bytes number;
p_fs2 bytes number;
p_fs3_bytes number;
p_fs4 bytes number;
p_fsi blocks number;
p_fs2_blocks number;
p_fs3_blocks number;
p_fs4 blocks number;
p_full bytes number;

280

beg

end;

/

p_full blocks number;
p_unformatted bytes numbe
p_unformatted blocks numb
in
dbms_space.space_usage(

segment_owner =>
segment_name =>
segment_type =>
fs1_bytes =>
fs1_blocks =>
fs2_bytes =>
fs2_blocks =>
fs3_bytes =>
fs3_blocks =>

fs4_bytes =>
fs4 blocks =>
full bytes =>
full blocks =>
unformatted_blocks =>
unformatted bytes =>

)5

dbms_output.put line('FS1:
dbms_output.put line('FS2:
dbms_output.put line('FS3:
dbms_output.put line('FS4:

dbms_output.put line('Ful

)

CHAPTER 7

I;
er;

user,
"INV',

"TABLE',

p_fsi bytes,

p_fsi blocks,

p fs2 bytes,

p_fs2 blocks,

p_fs3 bytes,
p_fs3_blocks,

p_fs4 bytes,

p_fs4 blocks,

p_full bytes,

p_full blocks,
p_unformatted blocks,
p_unformatted bytes

blocks = "||p_fsi blocks);
blocks = "||p_fs2 blocks);
blocks = "||p_fs3 blocks);
blocks = "||p_fs4 blocks);
1 blocks = "||p_full blocks);

TABLES AND CONSTRAINTS

In this scenario, you want to check the INV table for free space below the high-water

mark. Here is the output of the previous PL/SQL:

FS1:
FS2:
FS3:
FS4:

Ful

blocks = 0

blocks = 0

blocks = 0

blocks = 3646
1 blocks =0

281

CHAPTER 7 TABLES AND CONSTRAINTS

In the prior output the FS1 parameter shows that 0 blocks have 0 to 25 percent free
space. The FS2 parameter shows that 0 blocks have 25 to 50 percent free space. The
FS3 parameter shows that 0 blocks have 50 to 75 percent free space. The FS4 parameter
shows there are 3,646 blocks with 75 to 100 percent free space. Finally, there are 0 full
blocks. Because there are no full blocks, and a large number of blocks are mostly empty,
you can see that free space exists below the high-water mark.

Selecting from Data Dictionary Extents View

You can also detect tables with high-water mark issues by selecting from DBA/ALL/USER _
EXTENTS views. If a table has a large number of extents allocated to it but has zero rows,
that is an indication that an extensive amount of data has been deleted from the table;
for example,

SQL> select count(*) from user extents where segment name="INV';

COUNT (*)

Now, inspect the number of rows in the table:

SQL> select count(*) from inv;

COUNT (*)

The prior table most likely has had data inserted into it, which resulted in extents
being allocated. And, subsequently, data were deleted, and the extents remained.

Lowering the High-Water Mark

How can you reduce a table’s high-water mark? You can use several techniques to set the
high-water mark back to 0:

o A TRUNCATE statement
e ALTER TABLE ... SHRINK SPACE
e ALTER TABLE ... MOVE

282

CHAPTER 7 TABLES AND CONSTRAINTS

Using the TRUNCATE statement was discussed earlier in this chapter (see the section
“Using TRUNCATE”). Shrinking a table and moving a table are discussed in the following
sections.

Shrinking a Table

To readjust the high-water mark, you must enable row movement for the table and then
use the ALTER TABLE...SHRINK SPACE statement. The tablespace in which the table is
created must have been built with automatic segment space management enabled. You
can determine the tablespace segment space management type via this query:

SOL> select tablespace name, segment space _management from dba_tablespaces;

The SEGMENT SPACE_MANAGEMENT value must be AUTO for the tablespace in which the
table is created. Next, you need to enable row movement for the table to be shrunk. This
example enables row movement for the INV table:

SQL> alter table inv enable row movement;
Now, you can shrink the space used by the table:
SOL> alter table inv shrink space;

You can also shrink the space associated with any in