
PostgreSQL
Configuration

Best Practices for Performance
and Security
—
Baji Shaik

www.allitebooks.com

http://www.allitebooks.org

PostgreSQL
Configuration

Best Practices for Performance
and Security

Baji Shaik

www.allitebooks.com

http://www.allitebooks.org

PostgreSQL Configuration

ISBN-13 (pbk): 978-1-4842-5662-6		 ISBN-13 (electronic): 978-1-4842-5663-3
https://doi.org/10.1007/978-1-4842-5663-3

Copyright © 2020 by Baji Shaik

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-5662-6.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Baji Shaik
Hyderabad, Andhra Pradesh, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5663-3
http://www.allitebooks.org

iii

About the Author��ix

About the Technical Reviewer��xi

Table of Contents

Chapter 1: Best Ways to Install PostgreSQL��1

Information Needed for Installation���2

Types of Installations���5

Source Installation��6

Binary Installation���13

RPM Installation���14

One-Click Installers for Linux, Windows, and Mac���16

Plan for the Installation��17

General Recommendations for PostgreSQL Disk/Storage�����������������������������������19

Choose the Right Location and Ownership���20

One Cluster and Database per Server��20

FileSystem Layouts��21

Tuning OS Parameters���25

Before Installation��25

After Installation���27

Troubleshooting Installation Issues��28

Summary���28

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 2: Configure Your Database for Better Performance��������������29

Initial Steps After Installation���29

For PostgreSQL Developers��30

For Administrators��32

Configuration Files and Recommendations���35

postgresql.conf���35

pg_hba.conf���36

pg_ident.conf���38

Parameter Recommendations��39

OS Recommendations��54

Why Allow Overcommits?���55

Overcommit Strategy 0���55

Overcommit Strategy 1���55

Overcommit Strategy 2���56

Hugepages��58

Summary���59

Chapter 3: User Management and Securing Databases����������������������61

Information That You Need to Know���62

Security Mechanisms���66

Authentication in HBA���67

ACLs���73

RLS (Row Level Security)���80

SSL���82

Event Trigger���84

Auditing��86

Monitoring Roles��87

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Encryption and PCI���88

Replication��90

PL Trusted vs. Untrusted���91

High Security and Encryption Guidelines���91

Summary���92

Chapter 4: Backup and Restore Best Practices�����������������������������������93

Purpose of Backing Up a Database��93

Gather Information to Set Up a Backup Strategy���94

Backup Types���96

Logical Backups���96

Physical Backups���98

Restore Your Database���106

Point-In-Time-Recovery���107

Design a Backup Strategy��108

Daily Backups���109

Weekly Backups���109

Monthly Backups��109

Yearly Backup���109

Monitoring Backups���109

Summary���110

Chapter 5: Enable Logging of Your Database and Monitoring
PostgreSQL Instances��111

Why/When/How to Log���111

Parameters to Set for Logging��112

Monitoring Databases��120

Levels of Monitoring���120

OS Level Monitoring���121

Table of ContentsTable of Contents

vi

Database Level Monitoring���123

Monitoring/Reporting Tools��125

Summary���130

Chapter 6: Execute Maintenance���131

What is MVCC���131

MVCC in PostgreSQL���131

Why/How—Maintenance Activities���134

Table and Index Bloat���134

AUTOVACUUM/VACUUM��135

Index Fragmentation���145

Other Database Maintenance���148

Summary���150

Chapter 7: High Availability Procedures and Implementing
a Pooler���151

Why High Availability?��152

Gather Information to Set Up HA��152

RPO and RTO��156

RPO (Recovery Point Objective)��156

RTO (Recovery Time Objective)���156

High Availability Solutions in Core PostgreSQL��157

Warm Standby/Log Shipping��157

Hot Standby��158

Streaming Replication��158

Cascading Replication��159

Warm/Hot Standby vs. Streaming Replication��159

Simple HA Solution���160

Table of ContentsTable of Contents

vii

Better HA Solution��161

Auto Failover Tools Available��163

Replication Lag���168

Common Replication Issues���169

Why Connection Pooling��170

pgBouncer��170

pgpool-II���171

Summary���172

Chapter 8: Basic Errors and Handy Queries��������������������������������������173

Basic Errors of PostgreSQL��173

Connection Errors���174

Configuration Errors���179

Query Errors���182

Other Errors��185

Handy Queries of PostgreSQL��192

Basic Queries���192

Monitoring Queries���192

Object Privileges Queries���209

Object Level Queries���212

Summary���217

Index��219

Table of ContentsTable of Contents

ix

About the Author

Baji Shaik is a database administrator and

developer. He was introduced to databases

in 2011 and over the years has worked with

Oracle, PostgreSQL, Postgres Advance Server,

RedShift, and Greenplum. He has a wide

range of expertise and experience in SQL/

NoSQL databases such as Cassandra and

DynamoDB. He is a database migration expert

and has developed many successful database

solutions addressing challenging business

requirements for moving databases from

on-premises to AWS Cloud using multiple AWS services. Baji has organized

a number of PostgreSQL meet-ups and maintains his own technical blog,

where he likes to share his knowledge with the community. He co-authored

Beginning PostgreSQL on the Cloud, released in March 2018.  

xi

About the Technical Reviewer

Jobin Augustine is a PostgreSQL expert and

open source advocate and has more than 18

years of working experience as a consultant,

architect, administrator, writer, and trainer

in PostgreSQL, Oracle, and other database

technologies. He has always been an active

participant in the open source communities,

and his main focus area is database

performance and optimization. He is a regular

face in many of the PostgreSQL conferences.

He is a contributor to various open source projects, is an active blogger,

and loves to code in C++ and Python. Jobin holds a Masters in Computer

Applications and joined Percona in 2018 as a Senior Support Engineer.

Prior to joining Percona, he worked at OpenSCG for 2 years as an Architect

and was part of the BigSQL core team, a complete PostgreSQL distribution

offering. Previous to his work at OpenScg, Jobin worked at Dell as a

Database Senior Advisor for 10 years and 5 years with TCS/CMC.  

1© Baji Shaik 2020
B. Shaik, PostgreSQL Configuration, https://doi.org/10.1007/978-1-4842-5663-3_1

CHAPTER 1

Best Ways to Install
PostgreSQL
This chapter covers the best ways to install PostgreSQL. It answers the

following questions:

	 1.	 What information do you need to install PostgreSQL

on a server?

	 2.	 What prerequisites should you follow?

	 3.	 What are the best ways to install PostgreSQL?

	 4.	 What are the post-installation steps that make your

life easier?

	 5.	 How do you troubleshoot installation issues?

	 6.	 How do you tune operating system (OS) parameters

to avoid issues in the future?

PostgreSQL is one of the most advanced open source databases in the

world. If anyone wants to migrate from an enterprise database to an open

source database to save some money, or for better security by use of

fully auditable source code or custom development, PostgreSQL is one

of the best databases to consider. It has a rich feature set and is famous

for constant major releases. Its huge community ensures the stability of

2

the database by continuously fixing bugs and adding new development

features, including a high percentage of ANSI SQL compliance with which

it competes with other major enterprise databases in the market.

Before you can use PostgreSQL, you need to install it. As it is open

source, there are multiple ways to install it. It depends on the environment

in which you are going to install and the PostgreSQL distribution

you install. Not all environments are user friendly to follow the same

installation procedure. So, it is very important to get as much information

as you can before you install it.

Sometimes, customers might not be able to provide all the details

needed for installation. So, as an admin, you need to explicitly ask for the

information required. It is always recommended to have a conversation

with your customer about this. To ensure an effective conversation about

installation, it is important to know what information you need and why

you need it.

�Information Needed for Installation
In this section, we are going to cover answers to the question: What

information do we need to have for installing PostgreSQL on a server?

Here are a few questions through which you will get the details to

install PostgreSQL.

Note  Every question has a specific purpose added to it, which helps
in the conversation with the customer and to proceed further.

Chapter 1 Best Ways to Install PostgreSQL

3

	Q1.	 What is the operating system? What is the

architecture of the OS (32/64 bit)?

�Purpose: This is a basic question that you should

ask. Installation procedures vary from one OS to

another. So, it is important to know which OS you

are going to install. It helps you in planning the

installation, which we are going to talk about in later

sections of the chapter.

	Q2.	 What are the machine specifications (RAM, CPU)?

�Purpose: PostgreSQL uses some shared memory

(based on its configuration) while it is up and

running. So, based on the server’s memory, you

should plan to set shared memory of the OS. It can be

set through some kernel parameters, which will be

covered later in this chapter.

	Q3.	 What is the current size and expected growth of the

application?

�Purpose: How much storage should be allocated to

PostgreSQL depends on the current data size and

expected growth of data. In general, companies

plan storage based on growth in the future. It is

recommended to plan by keeping the next 3 to 5

years of growth in mind.

	Q4.	 What is the type of storage?

�Purpose: Different storages have different behavior

with PostgreSQL. So, it is recommended to know

what kind of storage—like magnetic disks, SSD (Solid

State Drive), NVMe (Non-Volatile Memory express),

Chapter 1 Best Ways to Install PostgreSQL

4

SAN (Storage Area Network), LVM (Logical Volume

Management), or cloud storage like EBS (Elastic

Block Store)—that the customer wants to use.

	Q5.	 What filesystem is being used by the server?

�Purpose: One of the key factors that affect

PostgreSQL performance is the filesystem type.

You should know what filesystem is currently on

the server and what recommendations you can

give to get the best performance. As it varies from

application to application and environment to

environment (basically, it depends on workload

types), you should really benchmark your

performance for the filesystems available and

decide which is the best suited for your application.

However, there are some general recommendations

of filesystem types for PostgreSQL, which we will

talk about in the “General Recommendations for

PostgreSQL Disk/Storage” section.

	Q6.	 How many mount points?

�Purpose: This question helps you to know about

current mount points on the server. PostgreSQL is

designed to write into multiple files when something

is selected/inserted/updated/deleted in the database.

So, disk IO becomes a bottleneck most of the time.

If you can plan to add mount points as needed, it

would distribute the IO across mount points so that

IO bottlenecks can be avoided, which would reduce

much IO consumption on the server. We discuss what

files get written and how to plan for multiple mount

points in a later section of the chapter.

Chapter 1 Best Ways to Install PostgreSQL

5

	Q7.	 Is public Internet accessible from the server?

Purpose: Depending on the installation you choose,

it is necessary to know if the server can access the

public Internet or not. This may affect the way

you install PostgreSQL software and do future

maintenance, including upgrades. If the server

cannot connect to the public Internet, you need to

download the required software packages on a server

that has Internet access and copy those software

packages to a production server through a private

network or whatever way possible for the customer.

To plan for the right installation procedure, you need to know answers

to the preceding questions.

�Types of Installations
Let us talk about types of installations before we plan for the installation.

You can install PostgreSQL in four ways.

•	 Source installation

•	 Binary installation

•	 RPM installation

•	 One-click installer

As PostgreSQL is open source, the source code is available on the

PostgreSQL web site (postgresql.org). We are going to cover each

installation method in detail as follows.

Chapter 1 Best Ways to Install PostgreSQL

http://postgresql.org

6

�Source Installation
Source install is nothing but compiling the source code of PostgreSQL. You

need not be a coding expert to compile the source code. However,

you need to understand each step of the installation so that you can

troubleshoot installation issues.

The following are the high-level steps that you can take to install from

source.

Note P ostgreSQL Version 11.4 is used in the following example.
Similar steps work for other versions also.

	 1.	 You can download the source from the PostgreSQL

official web site (postgresql.org).

To download from browser:

https://ftp.postgresql.org/pub/source/v11.4/postgresql--

11.4.tar.bz2

On Linux:

wget https://ftp.postgresql.org/pub/source/v11.4/

postgresql-11.4.tar.bz2

On Mac:

curl -O https://ftp.postgresql.org/pub/source/v11.4/

postgresql-11.4.tar.bz2

	 2.	 Unpack the downloaded file as follows:

tar -xf postgresql-11.4.tar.bz2

All the source files will be unpacked into a directory

postgresql-11.4

Chapter 1 Best Ways to Install PostgreSQL

http://postgresql.org

7

	 3.	 Go inside the directory created in step 2 and run the

configure command as follows:

cd postgresql-11.4

./configure

The default installation directory for final PostgreSQL

binaries is /usr/local/pgsql. If you want to install it in a

different location, then a prefix option can be used for

the configure command as follows.

./configure --prefix=/location/to/install/

configure command basically looks at your machine

for dependency libraries necessary for PostgreSQL. It

reports if your machine is missing any. You can

install missing libraries first and then rerun the

configure command. So basically, you prepare your

machine for compiling the PostgreSQL source code

at this stage. If you are not able to capture configure

information while it is running or the terminal is

closed after configure command fails, it creates a

config.log in the same location from where you are

running the configure command. Using this log, you

will see configure command output.

If your application is going to be designed to use

languages like Perl, Python, Tcl, etc. at the database

side, then you need to opt for corresponding

language packages locations using the following

parameters:

--with-perl

--with-python

--with-tcl

Chapter 1 Best Ways to Install PostgreSQL

8

In the same way, if you want to use OpenSSL, provide

OpenSSL libs using the following parameter:

--with-openssl

There are multiple options available based on the

requirement. You can get help for configuring using

the following command:

./configure --help

	 4.	 Once configure is done, you can run make and make

install to complete the installation.

make -j 8 && make install

The -j option specifies parallel jobs. Define this

value based on your CPU cores, which can be

utilized for the compilation job.

Basically, make prepares builds all the libraries

and binaries for PostgreSQL and make install

copies all the necessary libraries and binaries to the

installation location (could be default location or the

location specified through the “--prefix” option).

	 5.	 Verify that all the binaries and libraries are installed

and they are in the location that you have specified.

	 6.	 Once the installation is done, create a data directory

where data can be stored. It is recommended

to create a “postgres” OS user to own that data

directory and Postgres Services.

Each instance of PostgreSQL is referred to as a “cluster.”

It just means that an instance can have multiple

databases. Please don’t get confused with a cluster of

Chapter 1 Best Ways to Install PostgreSQL

9

multiple server nodes. Each data directory contains all

data and configuration files of one instance. So, each

instance can be referred to in two ways:

•	 Location of the data directory

•	 Port number

A single server can have many installations, and you

can create multiple clusters using initdb.

Here are the commands that need to be executed to

create a user, create a data directory, and initialize

that data directory (assuming you have installed it in

default locations):

adduser postgres

mkdir /usr/local/pgsql/data

chown postgres /usr/local/pgsql/data

su – postgres

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

Note  “/usr/local/pgsql/data” is the data directory. initdb is the
binary to initialize a new data directory.

In order to start the PostgreSQL, we should specify

the associated data directory. Use the pg_ctl tool

and specify the data directory to start the instance as

follows:

/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/

data start

Chapter 1 Best Ways to Install PostgreSQL

10

Details of basic requirements, installation

procedure, postinstallation steps, and supported

platforms are here: www.postgresql.org/docs/

current/static/installation.html.

The complete build from source code and

installation can be scripted as a simple shell script.

We are going to see a sample shell script that does

source build and setup for you. This script file can

be executed with three parameters to specify OS

type, PostgreSQL version, and port number

For example, if we want to build PostgreSQL 11.4 on

Linux and set up the instance on default port 5432,

we use following command line:

sh <scriptfile> Linux 11.4 5432

Here is the content of the script file:

#!/bash/sh

export OS=$1

export VERSION=$2

export PORT=$3

export INSTALL_DIR=$HOME/pg_software

if [! -d "$INSTALL_DIR"]

then

 echo "$INSTALL_DIR directory doesn't exist. Creating now"

 mkdir $INSTALL_DIR

 echo "$INSTALL_DIR directory created"

else

 echo "$INSTALL_DIR exists"

fi

Chapter 1 Best Ways to Install PostgreSQL

http://www.postgresql.org/docs/current/static/installation.html
http://www.postgresql.org/docs/current/static/installation.html

11

cd $HOME/pg_software

Downloading the source code as per OS

if ["$1" == "Linux"] || ["$1" == "linux"]; then

 echo "Downloading PostgreSQL $VERSION.."

 �wget https://ftp.postgresql.org/pub/source/v$VERSION/

postgresql-$VERSION.tar.bz2 >/dev/null

 if ["$?" -gt "0"]; then

 �echo "Could not download the file, check if wget is

installed or not"

 exit

 else

 echo "Downloaded PostgreSQL $VERSION..."

 fi

elif ["$1" == "Mac"] || ["$1" == "mac"]; then

 echo "Downloading PostgreSQL $VERSION.."

 �curl -O https://ftp.postgresql.org/pub/source/v$VERSION/

postgresql-$VERSION.tar.bz2 > $HOME/pg_software/

comile_$VERSION.log 2>&1

 if ["$?" -gt "0"]; then

 �echo "Could not download the file, check if curl is

installed or not"

 exit

 else

 echo "Downloaded PostgreSQL $VERSION..."

 fi

else

 echo "currenly it works with linux and mac OSes"

 exit

fi

Chapter 1 Best Ways to Install PostgreSQL

12

Compiling the source code

echo "wait ! let it compile..."

cd $INSTALL_DIR/

tar -xf postgresql-$VERSION.tar.bz2

cd postgresql-$VERSION

./configure --prefix=$HOME/pg_software/$VERSION && make world

-j 8 && make install-world > $HOME/compile.log

if ["$?" -gt "0"]; then

 �echo "Could not compile the source, please look at

compile.log for more information"

 exit

else

 echo "Ok, compiled it for you !!.."

fi

Setting up evn

echo "setting up env...it makes your life easy.. "

touch $HOME/pg_software/$VERSION/source_$VERSION.env

echo "export PATH=$HOME/pg_software/$VERSION/bin:$PATH" >>

$HOME/pg_software/$VERSION/source.env

echo "export PGPORT=5432" >> $HOME/pg_software/$VERSION/source.env

echo "export PGDATA=$HOME/pg_software/$VERSION/data" >> $HOME/

pg_software/$VERSION/source.env

echo "export PGDATABASE=postgres" >> $HOME/pg_

software/$VERSION/source.env

echo "export PGUSER=postgres" >> $HOME/pg_software/$VERSION/

source.env

echo "source $HOME/pg_software/$VERSION/source.env" >> $HOME/.

bash_profile

. $HOME/.bash_profile

Chapter 1 Best Ways to Install PostgreSQL

13

echo "Ok, done with env setup.. now you can be lazy.. !"

Create DATA directory

echo "Oh, it's data time.. creating data directory...!"

initdb -D $PGDATA -U postgres >/dev/null 2>&1

echo "Done buddy !! .. let me enable logging and allow

connections from other hosts....."

Enable logging.. and allow other hosts.

echo "port=$PORT" >> $PGDATA/postgresql.conf

echo "logging_collector=on" >> $PGDATA/postgresql.conf

echo "listen_addresses='*'" >> $PGDATA/postgresql.conf

Start database

echo "you are having coffee !!!.. Ok, np, let me start it for you..!"

pg_ctl -D $PGDATA start >/dev/null

sleep 5

echo "hmm.. seems it started.. but let me check once.."

check DB is up

psql -p $PGPORT -U $PGUSER -d $PGDATABASE -c "select 1;" > /dev/null

if ["$?" -gt "0"]; then

 �echo "Sorry !!, it's not started.. I'm not yet smart

enough to fix.. :-(.. blame the author !!.."

else

 echo "hurray.. it works.. enjoy!"

fi

�Binary Installation
This installation is nothing but downloading already compiled binaries

(from source installation) from different repositories maintained by

communities and PostgreSQL support vendors.

Chapter 1 Best Ways to Install PostgreSQL

14

Binary installation expects the server to satisfy all the dependencies.

However, most of the package managers are smart enough to detect the

required dependencies and install them if required.

Some of the notable binary repositories are:

www.postgresql.org/ftp/binary/

https://yum.postgresql.org/

www.postgresql.org/download/linux/ubuntu/

�RPM Installation
PostgreSQL maintains a repository where you can see all versions of

PostgreSQL: https://yum.postgresql.org/rpmchart.php.

RHEL, CentOS, Oracle Enterprise Linux, and Scientific Linux are

currently supported by the PostgreSQL yum repository. Only the current

version of Fedora is supported due to a shorter support cycle, so Fedora is

not recommended for any business critical server deployments.

You need to add and update the PostgreSQL repository maintained by

the PostgreSQL Global Development Group (PGDG) to install a particular

version of PostgreSQL RPMs. You can select a version of PostgreSQL and

operating system at www.postgresql.org/download/linux/redhat/ to

update your repository, as shown in the following screenshot.

Figure 1-1.  rpm installation

Chapter 1 Best Ways to Install PostgreSQL

http://www.postgresql.org/ftp/binary/
https://yum.postgresql.org/
http://www.postgresql.org/download/linux/ubuntu/
https://yum.postgresql.org/rpmchart.php
http://www.postgresql.org/download/linux/redhat/

15

Let us add and update the repository and install RPMs.

Note P ostgreSQL 11 and RHEL 8 are used to show demo.

	 1.	 To add and update the pgdg repository to get

PostgreSQL 11, run the following command:

dnf install https://download.postgresql.org/

pub/repos/yum/reporpms/EL-8-x86_64/pgdg-

redhat-repo-latest.noarch.rpm

	 2.	 To install only client packages:

dnf install postgresql11

	 3.	 To install the server packages:

dnf install postgresql11-server

	 4.	 To initialize the database and enable automatic start:

/usr/pgsql-11/bin/postgresql-11-setup initdb

systemctl enable postgresql-11

systemctl start postgresql-11

	 5.	 To install language RPMs like Perl, Python, Tcl, etc.,

use the following command:

dnf install postgresql11-plperl*
dnf install postgresql11-plpython*
dnf install postgresql11-pltcl*

Chapter 1 Best Ways to Install PostgreSQL

16

	 6.	 Postinstallation

Automatic startup or auto-initialization of data

directory is not enabled for Red Hat family

distributions due to some policies. So, you need to

perform the following steps manually to complete

your database installation.

For RHEL / CentOS / SL / OL 6

service postgresql initdb

chkconfig postgresql on

For RHEL / CentOS / SL / OL 7, 8 Or Fedora 29 And

Later Derived Distributions:

postgresql-setup initdb

systemctl enable postgresql.service

systemctl start postgresql.service

�One-Click Installers for Linux, Windows,
and Mac
The easiest way to install PostgreSQL is through installers. One-click

installers provide a graphical wizard for installation. These installers have

options to choose your installation and data directory locations, port, user,

passwords, etc.

Download the installers from here (according to your OS): www.

enterprisedb.com/downloads/postgres-postgresql-downloads.

Double-click the installer and follow the GUI wizard, where you

can follow the simple steps to provide basic information of installation

location, data directory, and port.

Chapter 1 Best Ways to Install PostgreSQL

http://www.enterprisedb.com/downloads/postgres-postgresql-downloads
http://www.enterprisedb.com/downloads/postgres-postgresql-downloads

17

�Plan for the Installation
We have discussed types of PostgreSQL installation and how to install it

on different types of operating systems in the preceding section. However,

how do you plan for the installation?

To plan for the installation, you need to analyze the answers to questions

in the “Information Needed for Installation” section. So, note down:

	Q1.	 What is the operating system? What is the

architecture of the OS (32/64 bit)?

If it is Linux:

You can go for any kind of installation that was

discussed in the “Types of Installations” section.

However, RPM installation is recommended

because it is easy to update the repository and run

a few commands to install and set up the database.

For source and binary installations, you need to

take care of dependencies manually, which will

be a huge task if you have a server with minimal

installation due to security reasons. For an installer

installation you need a GUI, which will not be

allowed in a few servers.

If it is Mac or Windows:

You can go for installer installation using a

GUI. However, it is recommended to avoid

installation on Mac in production environments.

Chapter 1 Best Ways to Install PostgreSQL

18

	Q2.	 What are the machine specifications (CPU, RAM)?

Based on the amount of RAM on the server, you

can set the kernel level parameters before/after

installation. We will be covering more about what

parameters need to be changed and what are the

values in the “Tuning OS Parameters” section.

	Q3.	 What is the current size and expected growth of the

application?

Based on the current size and expected growth,

storage needs to be provisioned before you install

and set up the server. Once you get the filesystems

ready with the required storage, you can start with

the installation. It is difficult to increase the storage

without getting a down time of the database. So,

setting up storage at the time of installation will save

a lot of time in future.

	Q4.	 What filesystem is being used by the server?

PostgreSQL is best to work with the ext4 filesystem.

So, make sure you have the ext4 filesystem on the

server before installation. Sometimes, it will save a

lot of time in figuring out the performance issues

with the database.

Note  You need to benchmark the results and see which filesystem
is the best fit for your work loads.

Chapter 1 Best Ways to Install PostgreSQL

19

	Q5.	 How many mount points?

It is recommended to create multiple mount points

for PostgreSQL to avoid IO bottlenecks in future. We

will discuss more about what can be distributed across

mount points in the “General Recommendations for

PostgreSQL Disk/Storage” section.

	Q6.	 Is public Internet accessible from the server?

If you have public Internet access on the server, your

job will be easy. You can download source/binaries/

rpms directly on the server and install them.

If you do not have public Internet access on the

server, download source/binaries/rpms on a

bastion/jump machine that has public access and

copy it to a production server through a private

network.

Once you have noted all the details, prepare documentation and follow

the procedure to install the PostgreSQL.

�General Recommendations for PostgreSQL
Disk/Storage
Installation of PostgreSQL is a combined effort of database, system, and

storage admins. Database administrators (DBAs) must work closely with

the system and storage administrators. PostgreSQL relies heavily on the

host OS for storage management. It does not have the ASM kind of features

of Oracle for storage management.

Here are some recommendations to standardize and simplify

PostgreSQL database installations.

Chapter 1 Best Ways to Install PostgreSQL

20

�Choose the Right Location and Ownership
Most people go for the default location to install the PostgreSQL binaries.

However, you can install them in a specific location if you want, so

that they will not be mixed with OS stuff. As discussed in the “Types of

Installations” section, you can choose any custom location for installation.

It is a good practice to have a base directory like “/opt/PostgreSQL” and

differentiate versions using the first two digits in the version number, like

“/opt/PostgreSQL/11/.” It helps you to keep track of the binaries version

during an upgrade the database in future.

It is recommended to have a separate OS user for PostgreSQL

installation, “postgres”, for example, and make it the owner of PostgreSQL

installation.

�One Cluster and Database per Server
In PostgreSQL, there are objects that are cluster specific and database

specific. The following physical and logical objects are applicable at cluster

wide within a PostgreSQL instance.

•	 Configuration files

•	 WAL (online and archived) files

•	 Tablespaces

•	 User accounts and roles

•	 Server log file

An older style of database object separation was through the use

of multiple databases. An alternate and more manageable method to

separate database objects within a single database server is through the

use of schemas. However, too many schemas with a large number of tables

may have an adverse effect on autovacuum.

Chapter 1 Best Ways to Install PostgreSQL

21

To separate PostgreSQL clusters within a server, different data

areas and IP port numbers need to be used. However, the virtualization

capabilities of the OSes like Solaris’s zones and FreeBSD jails or

hypervisors like Xen and KVM make creation of multiple clusters within

a single host unnecessary. The recommendation is to have only one

PostgreSQL cluster per virtualized host.

�FileSystem Layouts
We talked about mount points in the “Information Needed for Installation”

section. PostgreSQL writes into multiple files, depending on the

transaction that you execute. Following are the files that get updated:

•	 Data files

•	 WAL files

•	 Log files

•	 Temp files

•	 Tablespaces

To distribute the IO when updating these files, it is recommended to

have these different kinds of files in different mount points. Let us look at

how to do it.

�Data Cluster Separation

While creating a data cluster, you can choose a mount point on which you

want your data to reside. While initializing the cluster, use the -D option

to mention data directory location or use the PGDATA variable to specify

location. For example:

initdb -D /filesystem/for/data

Chapter 1 Best Ways to Install PostgreSQL

22

�WAL Files Separation

You can have a separate mount point for WAL files, as these are files will

get updated on each transaction that modifies the database. There is no

configuration parameter that does this separation directly. Every data

cluster has a directory named “pg_xlog” (<= 9.6 version) or “pg_wal” (>=10

version). You can create a directory in the mount point that you want to

assign for WAL files and create a symlink from pg_xlog or pg_wal directory

to the new directory created.

Note T his change needs a restart of PostgreSQL. Once a symlink
is created and PostgreSQL is restarted, you can see new WAL files
generated in a new location. You can consider copying WALs from an
old location to the new location before restarting PostgreSQL.

�Log Files Separation

Log files are essential to start troubleshooting database issues. The amount

of logging is based on the log settings in the configuration file. If you want

to log everything for critical database systems, there can be huge log

generation. So, separating log files into another mount point than data saves

some IO pressure. You can do that using the “log_directory” parameter. This

change just requires a reload of cluster. You can use the following steps:

postgres=# show log_directory ;

 log_directory

 log

(1 row)

postgres=# alter system set log_directory TO '/path/to/log/

filesystem';

Chapter 1 Best Ways to Install PostgreSQL

23

ALTER SYSTEM

postgres=# select pg_reload_conf();

 pg_reload_conf

 t

(1 row)

postgres=# show log_directory ;

 log_directory

 /path/to/log/filesystem

(1 row)

postgres=#

�Temp Files Separation

PostgreSQL uses temp files for the sorting operation in a query if allocated

work memory is not sufficient. By default, it creates temp files in the “pgsql_

tmp” directory under $PGDATA/base. However, you can create a tablespace

and use it for temp file operations. You can use the following steps.

postgres=# show temp_tablespaces ;

 temp_tablespaces

(1 row)

postgres=# create tablespace for_temp_files location '/tmp';

CREATE TABLESPACE

postgres=#

postgres=# alter system set temp_tablespaces to '/tmp';

ALTER SYSTEM

postgres=#

postgres=# select pg_reload_conf();

Chapter 1 Best Ways to Install PostgreSQL

24

 pg_reload_conf

 t

(1 row)

postgres=# show temp_tablespaces ;

 temp_tablespaces

 "/tmp"

(1 row)

postgres=#

�Tablespaces

Data directory is not the only location to store the postgres data; however,

you can choose a different mount point to store the data. For that, you

need to create a tablespace and assign it to the object that you want to

move from the default data location to a new location. Or you can assign

the tablespace to the user or database level so that all objects created by

the user or all objects that are created inside the database will be stored

under the mount point for which a tablespace is created. You can create a

tablespace and assign objects using the following steps:

postgres=# create tablespace new_tblsc location '/Users/shbaji/

pg_software/newtblsc';

CREATE TABLESPACE

postgres=#

postgres=# alter table orders_1 set tablespace new_tblsc;

ALTER TABLE

postgres=#

postgres=# select relname, reltablespace from pg_class where

relname='orders_1';

Chapter 1 Best Ways to Install PostgreSQL

25

 relname | reltablespace

----------+---------------

 orders_1 | 33888

(1 row)

postgres=# select oid, spcname from pg_tablespace where

spcname='new_tblsc';

 oid | spcname

-------+-----------

 33888 | new_tblsc

(1 row)

postgres=#

�Tuning OS Parameters
Tuning of OS parameters is divided as:

•	 Before installation

•	 After installation

�Before Installation
The first thing you need to look for before you start installing PostgreSQL is

shared memory parameters. As PostgreSQL uses shared memory, you may

need to alter kernel parameters like SHMMAX, SHMMIN, SHMALL, etc.

For new versions from PostgreSQL 9.3, you may not need to do it, as it uses

POSIX memory allocation.

If you don’t change, PostgreSQL installation can exhaust resource

limits quickly.

You can change parameters according to your PostgreSQL parameter

settings. PostgreSQL shared memory usage is as follows:

Chapter 1 Best Ways to Install PostgreSQL

26

Name Description Values Needed to Run One
PostgreSQL Instance

SHMMAX Maximum size of shared memory

segment (bytes)

At least 1kB, but the default is usually

much higher

SHMMIN Minimum size of shared memory

segment (bytes)

1

SHMALL Total amount of shared memory

available (bytes or pages)

Same as SHMMAX if bytes, or ceil

(SHMMAX/PAGE_SIZE) if pages, plus

room for other applications

SHMSEG Maximum number of shared

memory segments per process

Only one segment is needed, but the

default is much higher.

SHMMNI Maximum number of shared

memory segments system-wide

Like SHMSEG plus room for other

applications

SEMMNI Maximum number of semaphore

identifiers (i.e., sets)

At least ceil((max_connections

+ autovacuum_max_workers +

max_wal_senders + max_worker_

processes + 5) / 16) plus room for

other applications

SEMMNS Maximum number of semaphores

system-wide

Ceil((max_connections +

autovacuum_max_workers +

max_wal_senders + max_worker_

processes + 5) / 16) * 17 plus

room for other applications

SEMMSL Maximum number of semaphores

per set

At least 17

SEMMAP Number of entries in semaphore

map

See text

SEMVMX Maximum value of semaphore At least 1000 (The default is often 32767;

do not change unless necessary.)

Chapter 1 Best Ways to Install PostgreSQL

27

According to usage of PostgreSQL as shown in the preceding table, you

can change the kernel parameters using the following table (it is applicable

<= PostgreSQL 9.2):

If you are changing these parameters, keep in mind that you will

have to reload the settings using “sysctl -p.” You can even change these in

runtime.

�After Installation
Here are the parameters that you can tune in a server where PostgreSQL is

running.

•	 overcommit_memory

•	 overcommit_ratio

•	 vm.dirty_ratio

•	 vm.dirty_background_ratio

•	 THP (Transparent Huge Pages)

•	 HP (Huge Pages)

Before you set any of these parameters, you should understand

exactly what these parameters are and what benefit would you get from

setting them. As it comes more under “configuration,” we will cover these

parameters in Chapter 2.

Chapter 1 Best Ways to Install PostgreSQL

28

�Troubleshooting Installation Issues
Here are a few things you should note for installations, as they help in

troubleshooting:

•	 In source installation, most of the issues come while

building. Most common issues are missing libraries like

readline or zlib. You can manually install those libraries

and try recompiling.

•	 Configure creates a compilation log where you can see

issues related to missing libraries and tools.

•	 In RPM installation, you have to update the repository

first and then try installation; otherwise you may not be

able to find the version you are trying to install.

•	 In a GUI installer-based installation, log files will

be created under a /tmp location. These are bitrock

installers, so, you can see log files with bitrock_xx.log,

for example.

�Summary
In this chapter, we talked about types of PostgreSQL installation

procedures and how to work with them. We also covered what information

you would need from the customer to plan for the installation, and some

general recommendations you should follow to set up a best environment.

We also covered, pre/post installation steps and some troubleshooting

procedures. In the next chapter, we talk about configuring the postgres, as

default settings come with wide compatibility. We will cover what areas

can be set to improve PostgreSQL performance.

Chapter 1 Best Ways to Install PostgreSQL

29© Baji Shaik 2020
B. Shaik, PostgreSQL Configuration, https://doi.org/10.1007/978-1-4842-5663-3_2

CHAPTER 2

Configure Your
Database for Better
Performance
In the last chapter, we talked about information that needed to be

gathered for PostgreSQL installation, and planning installation based on

that information. Also, we covered types of PostgreSQL installations,

pre/post-installation tuning, troubleshooting procedures, and some general

recommendations to consider during installation to avoid performance

issues in future. In this chapter, we will cover some initial postinstallation

steps for beginners, all important configuration files and their uses and

their default settings, recommendations to tune configuration files, and OS

parameters tuning for performance improvement.

�Initial Steps After Installation
Let us start with some initial steps right after the installation. These steps

are differentiated between PostgreSQL developers and administrators.

30

�For PostgreSQL Developers
Once PostgreSQL is installed by admins, developers need a client tool to

connect PostgreSQL and do their development work. The most popular

client tool for PostgreSQL is pgAdmin. This tool is from the PostgreSQL

community. You can download this tool from http://pgadmin.org.

Note  There are many client tools that you can use for PostgreSQL.
All available tools are in PostgreSQL Clients (https://wiki.
postgresql.org/wiki/PostgreSQL_Clients).

After you download and install pgAdmin, the window looks like Figure 2-1.

Figure 2-1.  pgAdmin home

Now you need to add your database to connect. If you right-click the

servers, you can see the Create Server option, as shown in Figure 2-2.

Chapter 2 Configure Your Database for Better Performance

https://www.pgadmin.org/
https://www.pgadmin.org/download/
https://wiki.postgresql.org/wiki/PostgreSQL_Clients
https://wiki.postgresql.org/wiki/PostgreSQL_Clients

31

Enter a name for the server that you want to add, and database details

and credentials as per installation and setup provided by the admin in the

connection section, as seen in Figure 2-3.

Figure 2-2.  Create server

Figure 2-3.  Provide database details

Chapter 2 Configure Your Database for Better Performance

32

After you connect with your database details, you can see the

databases/objects including some monitoring info, as seen in Figure 2-4.

Figure 2-4.  Database status

That is a bit basic and targeted to PostgreSQL beginners.

�For Administrators
After installation, administrators can set up environment variables to

connect the database easily. All PostgreSQL-related environment variables

are described in PostgreSQL documentation (www.postgresql.org/

docs/11/libpq-envars.html).

Here are some variables, for example:

PGPORT=5432

PGUSER=postgres

PGPASSWORD=postgres

PGDATABASE=postgres

PGDATA=/Users/username/pg_software/9.6.9/data

Chapter 2 Configure Your Database for Better Performance

http://www.postgresql.org/docs/11/libpq-envars.html
http://www.postgresql.org/docs/11/libpq-envars.html

33

You can export these into your bash_profile, including PostgreSQL

binary location. Administrators use psql client to connect the database.

Psql client can read a file named “.psqlrc” automatically. So, admins can

set up some monitoring queries in this file to see the information as soon

as they connect. This file should be placed in the PostgreSQL user’s home

directory. Here is a sample output you see if you set up the “.psqlrc” file.

 $ cat .psqlrc

\set QUIET ON

\set PROMPT1 '%[%033[1;32;40m%]%M:%>; %n@%/%[%033[0m%]% # '

\set PAGER OFF

\set HISTSIZE 2000

\set ECHO_HIDDEN ON

\set COMP_KEYWORD_CASE upper

\timing

\encoding unicode

\pset null 'NULL'

\pset border 2

\set QUIET OFF

\echo '\nCurrent Host Server Date Time : '`date` '\n'

\echo 'Administrative queries:\n'

\echo '\t\t\t:settings\t-- Server Settings'

\echo '\t\t\t:conninfo\t-- Server connections'

\echo '\t\t\t:activity\t-- Server activity'

\echo '\t\t\t:locks\t\t-- Lock info'

\echo '\t\t\t:waits\t\t-- Waiting queires'

\echo '\t\t\t:uptime\t\t-- Server uptime'

\echo '\t\t\t:menu\t\t-- Help Menu'

\echo '\t\t\t\\h\t\t-- Help with SQL commands'

\echo '\t\t\t\\?\t\t-- Help with psql commands\n'

Chapter 2 Configure Your Database for Better Performance

34

\echo 'Development queries:\n'

\echo '\t\t\t:sp\t\t-- Current Search Path'

\echo '\t\t\t:clear\t\t-- Clear screen'

\echo '\t\t\t:ll\t\t-- List\n'

-- Administration queries

\set menu '\\i ~/.psqlrc'

\set settings 'select name, setting,unit,context from pg_settings;'

\set locks 'SELECT bl.pid AS blocked_pid, a.usename AS

blocked_user, kl.pid AS blocking_pid, ka.usename AS blocking_

user, a.query AS blocked_statement FROM pg_catalog.pg_locks

bl JOIN pg_catalog.pg_stat_activity a ON bl.pid = a.pid JOIN

pg_catalog.pg_locks kl JOIN pg_catalog.pg_stat_activity ka

ON kl.pid = ka.pid ON bl.transactionid = kl.transactionid AND

bl.pid != kl.pid WHERE NOT bl.granted;'

\set conninfo 'select usename, count(*) from pg_stat_activity

group by usename;'

\set activity 'select datname, pid, usename, application_

name,client_addr, client_hostname, client_port, query, state

from pg_stat_activity;'

\set waits 'SELECT datname, usename, wait_event_type, wait_

event, pg_blocking_pids(pid) AS blocked_by, query FROM pg_stat_

activity WHERE wait_event IS NOT NULL;'

\set uptime 'select now() - pg_postmaster_start_time() AS uptime;'

-- Development queries:

\set sp 'SHOW search_path;'

\set clear '\\! clear;'

\set ll '\\! ls -lrt;'

Chapter 2 Configure Your Database for Better Performance

35

You can see the information as shown in Figure 2-5 when you connect

to psql with the preceding “.psqlrc” file.

Figure 2-5.  psqlrc info

�Configuration Files and Recommendations
Let us briefly talk about PostgreSQL configuration files. There are three
cluster configuration files that we should know about while working with
PostgreSQL. Those are the postgresql.conf, pg_hba.conf, and pg_ident.
conf files.

�postgresql.conf
This is the main configuration file of PostgreSQL. All settings related to

PostgreSQL behavior with regard to auditing, authentication, logging,

performance, etc. are configured through this configuration file. The

default location of this file is under the $PGDATA (data directory) location;

however, it can be customized through the “config_file” parameter. To

Chapter 2 Configure Your Database for Better Performance

https://www.postgresql.org/docs/current/config-setting.html
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://www.postgresql.org/docs/9.1/auth-username-maps.html
https://www.postgresql.org/docs/9.1/auth-username-maps.html

36

know the location of your configuration file, just type “show config_file;” in

the psql terminal.

[local]:5411; postgres@postgres # show config_file;

+--+

| config_file |

+--+

| /Users/shbaji/pg_software/10.2/bin/../data/postgresql.conf |

+--+

(1 row)

Time: 1.721 ms

Note  A parameter setting in postgres.conf can be overridden by the
next setting. So, if you have a duplicate setting of a parameter in the
file, the bottom one always will be in effect.

Depending on the parameter, you would need to reload or restart the

database accordingly. You will find which parameter needs reload and

which needs restart using the following query:

SELECT name, context FROM pg_settings WHERE name = '<parameter_

value>';

If the value of context is “postmaster” it needs a restart of the database.

For all other values, it is just a reload.

�pg_hba.conf
Client authentication will be controlled by this file. You can control from

which server you want connections to the database and in which way. The

default location of this file is the $PGDATA directory; however, this can be

changed using the “hba_file” parameter in the postgresql.conf file.

Chapter 2 Configure Your Database for Better Performance

37

[local]:5411; postgres@postgres # show hba_file ;

+--+

| hba_file |

+--+

| /Users/shbaji/pg_software/10.2/bin/../data/pg_hba.conf |

+--+

(1 row)

Time: 3.434 ms

Note  This file is read from top to bottom for the first match of the
rule. If you have similar lines with different authentication methods or
different IP ranges, the top one will be picked up.

Changing this file needs a reload of the database.

Records in this file can have one of these seven formats:

local database user auth-method [auth-options]

host database user address auth-method [auth-options]

hostssl database user address auth-method [auth-options]

hostnossl database user address auth-method [auth-options]

host database user IP-address IP-mask �auth-method

 [auth-options]

hostssl database user IP-address IP-mask �auth-method

[auth-options]

hostnossl database user IP-address IP-mask �auth-method

[auth-options]

Detailed information on this file is available in PostgreSQL documen-

tation: www.postgresql.org/docs/current/auth-pg-hba-conf.html.

Chapter 2 Configure Your Database for Better Performance

http://www.postgresql.org/docs/current/auth-pg-hba-conf.html

38

�pg_ident.conf
PostgreSQL provides ident-based authentication. It works by obtaining the

client’s operating system username and using it as the allowed database

username with an optional username mapping. When we use an external

authentication system, the system username might not be the same as

database username. To allow external authentication, we should map the

system username with the database username, and we can also set a map

name to hide the system username and database username-related details.

The default location of this file in under the $PGDATA directory and can be

changed using the “ident_file” parameter in the postgresql.conf file.

If you open your pg_ident.conf file, you will find the following line at

the bottom of the file:

MAPNAME SYSTEM-USERNAME PG-USERNAME

You can add value to map system username and database username:

MAPNAME SYSTEM-USERNAME PG-USERNAME

User123 LinuxUser PGUser

Once you map your system user and database user in the pg_ident.

conf file, you can use the map name in the pg_hba.conf file to allow

external authentication.

Go to your PostgreSQL data directory and open a pg_hba.conf file.

You can add the map name of the system user and database user in the

METHOD column. For example:

TYPE DATABASE USER ADDRESS METHOD

host all all 127.0.0.0/16 ident map=User123

Chapter 2 Configure Your Database for Better Performance

39

�Parameter Recommendations
PostgreSQL ships with a basic configuration tuned for wide compatibility

rather than performance. Although the default settings of PostgreSQL that

come with the installation are viable, it is always recommended to tune

some basic parameters according to your environment and application

behavior.

Before you change any setting in the postgresql.conf file, you should

know the types of settings and when they take effect.

�The Types of Settings

There are several different types of configuration settings, divided up based

on the possible inputs they can take:

•	 Boolean: true, false, on, off

•	 Integer: Whole numbers (2112)

•	 Float: Decimal values (21.12)

•	 Memory / Disk: Integers (2112) or “computer units”

(512MB, 2112GB). Avoid integers—you need to know

the underlying unit to figure out what they mean.

•	 Time: Time units, aka d, m, s (e.g., 30 s). Sometimes the

unit is left out; don’t do that.

•	 Strings: Single-quoted text (‘pg_log’)

•	 ENUMs: Strings, but from a specific list (‘WARNING’,

‘ERROR’)

•	 Lists: A comma-separated list of strings

(“$user”,public,tsearch2)

Chapter 2 Configure Your Database for Better Performance

40

�When They Take Effect

PostgreSQL settings have different levels of flexibility for when they can be

changed, usually related to internal code restrictions. The complete list of

levels is:

•	 Postmaster: Requires restart of server

•	 SIGHUP: Requires an HUP of the server, either by kill -HUP

(usually -1), pg_ctl reload, or SELECT pg_reload_conf();

•	 User: Can be set within individual sessions; takes effect

only within that session

•	 Internal: Set at compile time and can’t be changed;

mainly for reference

•	 Backend: Settings that must be set before session start

•	 Superuser: Can be set at runtime for the server by

superusers

�Tuning Tools

Instead of you analyzing your database manually, there are some tools

available on the market that do it for you:

•	 postgresqltuner (https://github.com/jfcoz/

postgresqltuner)

•	 pgBadger (https://github.com/darold/pgbadger)

PGTune (https://pgtune.leopard.in.ua/#/)

•	 PostgreSQL Configuration Tool (www.pgconfig.org/#/

tuning)

You can analyze your database using the tools listed, and they can

come up with some tuning advice.

Chapter 2 Configure Your Database for Better Performance

https://github.com/jfcoz/postgresqltuner
https://github.com/jfcoz/postgresqltuner
https://github.com/darold/pgbadger
https://pgtune.leopard.in.ua/#/
http://www.pgconfig.org/#/tuning
http://www.pgconfig.org/#/tuning

41

�Review Parameters

We are not going to cover all the parameters here; however, there are a few

parameters you must consider when you are setting up an environment for

the first time. Let us divide the parameters into sections like:

•	 Connections related

•	 Memory related

•	 Planner/Cost related

•	 WAL related

•	 Autovacuum related

•	 Logging related

•	 Replication related

Let us look at each section and see what parameters can be changed.

Connections Related

All the documentation for connection or authentication-related parameters

is here: www.postgresql.org/docs/current/runtime-config-

connection.html.

listen_addresses

By default, PostgreSQL listens only on the loopback interface so that it

responds to connections from the local host. If you want your server to be

accessible from other systems via standard TCP/IP networking, you need

to change listen_addresses from its default. The usual approach is to set it

to listen on all network interfaces on the server by a setting like this:

listen_addresses = '*'

And then control who can and cannot connect via the pg_hba.conf file.

Chapter 2 Configure Your Database for Better Performance

https://www.postgresql.org/docs/current/runtime-config-connection.html
https://www.postgresql.org/docs/current/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-MEMORY
https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-wal.html
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html
https://www.postgresql.org/docs/current/runtime-config-logging.html
https://www.postgresql.org/docs/current/runtime-config-replication.html
http://www.postgresql.org/docs/current/runtime-config-connection.html
http://www.postgresql.org/docs/current/runtime-config-connection.html

42

max_connections

The max_connections setting refers to the maximum number of client

connections allowed. Before setting this parameter, you should ask your

customer how many concurrent connections their application requests at

peak point.

If the system being reviewed uses a connection pooler, there will

likely be a predefined limit to the number of connections needed to the

database. So, max_connections should not be much higher than this limit,

but you will still need to take into account any superuser connections

(defined by superuser_reserved_connections) and any nonpooled

connections (such as those coming from reporting systems or scheduled

tasks).

You should be careful before increasing this parameter, as increasing

needs some memory setting as well, and it is explained in the “Before

Installation” section of Chapter 1. Generally, PostgreSQL on good

hardware can support a few hundred connections. If you want to have

thousands instead, you should consider using connection pooling

software to reduce the connection overhead, which we will discuss in the

“Implementing Pooler” section of Chapter 7.

Memory Related

You can see all memory-related parameters at: www.postgresql.org/

docs/current/runtime-config-resource.html.

We will discuss a few parameters for recommendations here.

shared_buffers

On Linux, there is a general rule of thumb that is used to determine a

decent value for shared_buffers. It’s recommended that it be set to a size

15% to 25% of total RAM. However, there is a point where the amount of

shared memory used for buffering pages stops yielding noticeable benefits.

Chapter 2 Configure Your Database for Better Performance

http://www.postgresql.org/docs/current/runtime-config-resource.html
http://www.postgresql.org/docs/current/runtime-config-resource.html

43

On versions of PostgreSQL prior to 8.4, the maximum value should be

2.5GB, otherwise the maximum should be dependent and should be

decided after benchmark. Note that when using PostgreSQL 9.2 or earlier,

kernel parameters may require adjustment to accommodate any changes

in this parameter on later versions.

On Windows, the general advice is to cap shared_buffers at

512MB. This is based on benchmarks the PostgreSQL community has

performed on it in the past. Increasing it beyond this size has not been

confirmed as useful.

effective_cache_size

The effective_cache_size parameter should be set to an estimate of how

much memory is available for disk caching by the operating system (page

cache) and within the database itself, after considering what’s used by the

OS itself and other applications. This is a guideline for the SQL planner

saying how much memory it should expect to be available in the OS and

PostgreSQL buffer caches, but not an allocation. This value is used only by

the PostgreSQL query planner to figure out whether plans it’s considering

would be expected to fit in RAM or not. If it’s set too low, indexes may not

be used for executing queries the expected way. The setting for shared_

buffers is not considered here—only the effective_cache_size value is, so it

should include memory dedicated to the database too.

This parameter can safely be set to a large value without any risk of

running out of memory, as it’s only used for query planning. In most cases

this should be 75% of RAM.

work_mem

This parameter is useful when SQL statements use a lot of complex sorts.

This allows PostgreSQL to do operations in in-memory, due to which

execution time will be reduced.

Chapter 2 Configure Your Database for Better Performance

44

Increasing work_mem can lead to far less disk swapping, and therefore

far quicker queries. However, it can cause problems if set too high,

and should be constrained taking into account max_connections. The

following calculation is what is typically recommended to determine a

decent work_mem value:

Total RAM * 0.25 / max_connections

If there are large reporting queries that run on the database that

require more work memory than a typical connection, work_mem can be

set for those particular queries. If, for example, there is a reporting user

that only runs infrequent but large reports, a specific work_mem setting

can be applied to that particular user/role.

For example:

ALTER ROLE reporting SET work_mem = '64MB';

maintenance_work_mem

This specifies the maximum amount of memory to be used by

maintenance operations, such as VACUUM, CREATE INDEX, and ALTER

TABLE ADD FOREIGN KEY. It’s important that maintenance_work_mem

be given enough memory so that VACUUM processes can complete their

work more quickly by working in larger batches. We typically recommend

1/20th of RAM (or Total RAM ∗ 0.05). Note that this has to be balanced

against the number of autovacuum_max_workers, as each autovacuum

worker allocates maintenance_work_mem size of memory. Otherwise, if

on a 64GB system you had:

maintenance_work_mem = 3GB

autovacuum_max_workers = 20

This would likely exhaust available memory (3GB ∗ 20 = 60GB),

assuming the database cluster was large enough for autovacuum processes

to make use of all the memory. So this should then be balanced out:

Chapter 2 Configure Your Database for Better Performance

45

maintenance_work_mem = 400MB

autovacuum_max_workers = 20

Resulting in 8GB (400MB ∗ 20) being used, which would be much

more reasonable on a 64GB system. To factor this into your calculation,

you may wish to use something like the following:

Total RAM ∗ 0.15 / autovacuum_max_workers

It’s worth noting that other processes can still request maintenance_

work_mem to build indexes and in setting up foreign keys, so there needs

to be some additional headroom.

Planner/Cost Related

All query planner-related parameters are here: www.postgresql.org/

docs/current/runtime-config-query.html.

You can set few parameters as hints to the query planner so that it

changes plan accordingly. So, all parameters starting with “enable_” refer

to hints.

[local]:5411; postgres@postgres # select name, setting from

pg_settings where name like 'enable_%';

+----------------------+---------+

| name | setting |

+----------------------+---------+

| enable_bitmapscan | on |

| enable_gathermerge | on |

| enable_hashagg | on |

| enable_hashjoin | on |

| enable_indexonlyscan | on |

| enable_indexscan | on |

| enable_material | on |

| enable_mergejoin | on |

| enable_nestloop | on |

Chapter 2 Configure Your Database for Better Performance

http://www.postgresql.org/docs/current/runtime-config-query.html
http://www.postgresql.org/docs/current/runtime-config-query.html

46

| enable_seqscan | on |

| enable_sort | on |

| enable_tidscan | on |

+----------------------+---------+

(12 rows)

seq_page_cost

This represents the estimated cost of a disk fetch as part of sequential scan.

The optimizer picks a plan depending on cost-related parameters. So, this

is one of the parameters you should consider for tuning. You should be

careful while modifying the value of this parameter, as the planner picks

different plans sometimes depending on the value.

It’s recommended to tune this parameter if you are using SSD for

storage.

random_page_cost

This setting suggests to the optimizer how long it will take your disks to

seek a random disk page, as a multiple of how long a sequential read (with

a cost of 1.0) takes. If you have particularly fast disks, as commonly found

with RAID arrays of SCSI disks, it may be appropriate to lower random_

page_cost, which will encourage the query optimizer to use random access

index scans. Some feel that 4.0 is always too large on current hardware;

it’s not unusual for administrators to standardize on always setting this

between 2.0 and 3.0 instead. In some cases that behavior is a holdover

from earlier PostgreSQL versions, where having random_page_cost too

high was more likely to screw up plan optimization than it is now (and

setting at or below 2.0 was regularly necessary). Since these cost estimates

are just that—estimates—it shouldn’t hurt to try lower values.

Chapter 2 Configure Your Database for Better Performance

47

But this is not where you should start to search for plan problems.

Note that random_page_cost is pretty far down this list (at the end in

fact). If you are getting bad plans, this shouldn’t be the first thing you

look at, even though lowering this value may be effective. Instead, you

should start by making sure autovacuum is working properly, that you are

collecting enough statistics, and that you have correctly sized the memory

parameters for your server—all the things just gone over. After you’ve done

all those much more important things, if you’re still getting bad plans, then

you should see if lowering random_page_cost is still useful.

cpu_tuple_cost

This is the cost of processing each row. The default is 0.01, but previous

performance benefits have been seen setting this to 0.03, which can result

in better query plans. This is particularly relevant to systems where the

database(s) fit in memory and CPU utilization is high

WAL Related

Documentation for all WAL-related parameters is available here: www.

postgresql.org/docs/current/runtime-config-wal.html.

wal_buffers

From PostgreSQL version 9.1 onward, the default for this is set to -1, which

automatically sets it to 1/32nd of shared_buffers capped at 16MB. This

is probably fine, but there have been performance benefits observed by

setting this to 32MB, although no higher. It’s recommended that this be

no lower than 16MB, as it’s a trivial amount of shared memory to reserve

relative to shared_buffers.

Chapter 2 Configure Your Database for Better Performance

http://www.postgresql.org/docs/current/runtime-config-wal.html
http://www.postgresql.org/docs/current/runtime-config-wal.html

48

wal_level

As we will always recommend that the customer uses point-in-time

recovery, we suggest that wal_level be set to at least “archive.” This will

need to be set to “hot_standby” or “replica” for using streaming replication.

bgwriter_delay

The default for this setting is 200ms. This should be set to no lower than 10

ms, but on systems with a high volume of writes, it’s a good idea to lower

this from its default value to at least 100 ms.

bgwriter_lru_maxpages

This setting is set to a very conservative value of 100 by default, which

means only 100 buffers are written in every round. This tends to get set to

1000 to ensure the background writer process can write a sizable amount

of buffers in each round.

bgwriter_lru_multiplier

This is set to a default of 2, but on systems with a heavy write load, it may

be beneficial to increase this to 3 or 4.

synchronous_commit

This is enabled by default, but if a customer is willing to risk the most

recent changes to improve write throughput, this can be disabled. This is a

safer alternative to disabling fsync. This can actually be set at the database

level, so it can be disabled on databases where the risk of losing some

data in a crash isn’t a big deal but performance is. It can also be disabled

for specific roles (such as those that perform bulk loading activities), or in

individual sessions if such a dedicated role doesn’t exist.

Chapter 2 Configure Your Database for Better Performance

49

fsync

This should almost always be enabled, because if the system crashes without

fsyncs occurring, the cluster will likely be corrupted. Some customers

will claim that their storage system’s battery-backed cache will solve any

problems flushing changes to disk. While a lot of storage devices claim this, it

cannot be the whole truth. If the customer is determined to keep this setting

off, it may be worth suggesting they instead set synchronous_commit to “off,”

as this will yield a performance benefit without the risk of corruption, but

will come with the risk of losing some of the most recent data.

effective_io_concurrency

If the database cluster’s main storage system has multiple spindles, set

effective_io_concurrency to match the number of spindles but don’t

include any parity drives. This can improve bitmap index scans by reading

ahead when multiple indexes are used.

For example, if they are using four disks in RAID 10 (striped and

mirrored), effective_io_concurrency should be 4. For SSDs and memory-

backed storages, this value can be in hundreds.

checkpoint_segments

This parameter exists in < PostgreSQL 9.5 version. The default of 3 is

always too low. Typically this should be set between 16 and 64 or 256; the

busier the writes on the system are, the higher this number should be. If

set too high, it can affect the impact of checkpoints and increase recovery

times by an excessive amount.

checkpoint_timeout

The more checkpoint_segments there are, the more time will be needed to

complete a checkpoint, so this should be somewhere in the 5 min to 15 min

range. Note that increasing this timeout would increase recovery time.

Chapter 2 Configure Your Database for Better Performance

50

checkpoint_completion_target

This default of 0.5 means that checkpoints will aim to complete in half

the time defined by checkpoint_timeout. To reduce the IO impact of

checkpoints, this should spread the checkpoint out to nearer to the

timeout, so a value of 0.8 or 0.9 is typically recommended.

checkpoint_warning

This needs to be changed to consider the expected amount of time for a

checkpoint to complete.

Autovacuum Related

All autovacuum-related parameters are here: www.postgresql.org/docs/

current/runtime-config-autovacuum.html.

autovacuum

This should nearly always be set to “on,” otherwise no autovacuuming will

occur in the database and there will certainly need to be routine manual

vacuums applied.

autovacuum_max_workers

The default of 3 tends to be too low for anything except small database

systems. This should probably be set to something within the 6 to 12 range,

leaning more toward the latter if there are a lot of tables with frequent

updates or deletes.

autovacuum_naptime

The default of 1 min may be sufficient for some systems, but on busier ones

with many writes it may be beneficial to increase this to stop autovacuum

waking up too often.

Chapter 2 Configure Your Database for Better Performance

http://www.postgresql.org/docs/current/runtime-config-autovacuum.html
http://www.postgresql.org/docs/current/runtime-config-autovacuum.html

51

Also, on systems with many databases, this should be increased

because this setting determines the wake up time per database. An

autovacuum worker process will begin as frequently as autovacuum_

naptime / number of databases.

For example, if autovacuum_naptime = 1 min (60 seconds), and there

were 60 databases, an autovacuum worker process would be started every

second (60 seconds / 60 databases = 1 second).

However, tuning this setting too high can result in more work needed

to be done in each vacuuming round.

autovacuum_vacuum_threshold / autovacuum_analyze_threshold

These both determine the minimum number of rows in a table that need

to have changed in order for the table to be scheduled for an autovacuum

and an autoanalyze, respectively. The default for both is 50, which is very

low for most tables.

autovacuum_vacuum_scale_factor / autovacuum_analyze_scale_factor

These both determine the percentage of a table that needs to have

changes in order for the table to be scheduled for an autovacuum and an

autoanalyze, respectively. The default for the autovacuum_vacuum_scale_

factor is 0.2 (meaning 20%), and autovacuum_analyze_scale_factor is 0.1

(meaning 10%). Both of these figures are fine for tables of a modest size (up

to around 500MB), but for larger tables they are too high. If, for example,

there was a table that was 120GB in size, 24GB (20% of 120GB) worth

of dead tuples would have to exist before they can start being cleaned

up, which would be a lot of vacuuming work once it kicks in. However,

if large tables are in the minority on the database, it’s better to set these

parameters on the table level rather than in the config file.

Chapter 2 Configure Your Database for Better Performance

52

autovacuum_vacuum_cost_delay

This defaults to 20 ms, which is very conservative and can prevent VACUUM

from keeping up with changes. This should nearly always be decreased,

and in many cases to as low as 2ms. It may need to be tested with various

settings to see what’s needed to keep up.

Logging Related

All logging-related parameters are here: www.postgresql.org/docs/

current/runtime-config-logging.html.

We will be covering a lot about logging in Chapter 5.

Replication Related

All replication-related parameters are here: www.postgresql.org/docs/

current/runtime-config-replication.html.

max_wal_senders

This must always be greater than the number of replicas. If the data is

replicated to multiple sites, then multiple max_wal_senders come into play.

So, it is important to ensure this parameter is set to an optimal number.

max_replication_slots

In general, all the data changes occurring on the tables are written to WAL

files in pg_xlog / pg_wal, which are known as WAL records. The wal sender

process would pick up those WAL records (belonging to the tables being

replicated) and send across to the replicas, and the wal_receiver process

on the replica site would apply those changes at the subscriber node.

The WAL files are removed from the pg_xlog/pg_wal location

whenever a checkpoint occurs. If the WAL files are removed even before

the changes are applied to the subscriber node, replication would break

Chapter 2 Configure Your Database for Better Performance

http://www.postgresql.org/docs/current/runtime-config-logging.html
http://www.postgresql.org/docs/current/runtime-config-logging.html
http://www.postgresql.org/docs/current/runtime-config-replication.html
http://www.postgresql.org/docs/current/runtime-config-replication.html

53

and lag behind. In case the subscriber node lags behind, a replication slot

would ensure all the WAL files needed for the subscriber to get in sync with

the provider are retained. It is recommended to configure one replication

slot to each subscriber node.

max_worker_processes

It is important to have an optimal number of worker processors configured.

This depends on the max number of processes a server can have. This is

possible only in multi-CPU environments. Max_worker_processes will

ensure multiple processes are spawned to get the job done in a faster way by

utilizing multiple CPU cores. When replicating data using logical replication,

this parameter can help generate multiple worker processes to replicate

the data faster. There is a specific parameter called max_logical_worker_

processes that will ensure multiple processes are used to copy the data.

max_logical_worker_processes

This parameter specifies the maximum number of logical worker processes

required to perform table data replication and synchronization. This value

is taken from max_worker_processes, which should be higher than this

parameter value. This parameter is very beneficial when replicating data to

multiple sites in multi-CPU environments. The default is 4. The max value

depends on how many worker processes the system supports.

max_sync_workers_per_subscription

This parameter specifies the maximum number of synchronization

processes required per subscription. The synchronization process takes

place during initial data sync and this parameter can be used to ensure

that happens faster. Currently, only one synchronization process can be

configured per table, which means multiple tables can be synced initially

in parallel. The default value is 2. This value is picked from the max_

logical_worker_processes value.

Chapter 2 Configure Your Database for Better Performance

54

�OS Recommendations
As mentioned in the “After Installation” section in Chapter 1, here are the

parameters that you can tune at Linux OS where PostgreSQL is running:

•	 overcommit_memory

•	 overcommit_ratio

•	 vm.dirty_ratio

•	 vm.dirty_background_ratio

•	 THP (Transparent Huge Pages)

•	 HP (Huge Pages)

Before we go for tuning, let us look at some definitions:

•	 Virtual Memory: The sum of all the RAM and SWAP

in a given system. When speaking about memory in

the context of this section, we are referring to virtual

memory.

•	 Overcommit: Allocating more memory than available

Virtual Memory

•	 Allocate: In the context of memory management, an

allocation of memory can be considered a “promise”

that the memory is available. The actually physical

memory is not assigned until it is actually needed. This

assignment is done at a page level. When a new page

(normally 8KB) is needed, the system triggers a page

fault.

Chapter 2 Configure Your Database for Better Performance

55

�Why Allow Overcommits?
The Linux virtual memory implementation uses several tactics to optimize

the amount of memory used (one such strategy is called “Copy on Write”

and is used when forking child processes). The result of this is that often

less memory is actually used than is reported via the /proc filesystem (and

by extension ps).

In this case, minor overcommits are acceptable, as normally sufficient

memory is available to service this. However, this approach can result in

memory being allocated when in truth not enough is free.

To handle this case, Linux supports several different overcommit

strategies specified by an integer value for the vm.overcommit setting.

�Overcommit Strategy 0
This is the default strategy that Linux uses. In this case, all of the virtual

memory is available to the system for allocations and all allocations are

granted unless they appear to require a significant overcommit.

If, when a page fault occurs, there is not enough memory available (i.e., we

have an overcommit), the system will trigger an “Out of Memory Killer” (OOM

Killer). The OOM Killer will select a process currently running on the system

and terminate that process. It uses a set of heuristics to select the process to

terminate. Note that it is usually not possible to predict when this process will

be required, nor which processes will be selected for termination.

�Overcommit Strategy 1
This strategy is normally reserved for systems running processes that will

be allocating very large arrays that are sparsely populated. In this mode,

any allocation will be successful. In the event that an overcommit is

detected, the process that detects the overcommit will generate a memory

error and fail catastrophically (no cleanup; process simply stops).

Chapter 2 Configure Your Database for Better Performance

56

Please note that as memory is not assigned until needed, a process that

fails is not necessarily the one that has allocated the most memory. Due

to the nature of memory usage predicting which process will fail due to

memory overcommits is not possible.

�Overcommit Strategy 2
With this mode Linux performs strict memory accounting and will only

grant an allocation if required memory is actually available. As this check is

done at the time of allocation, the programme requesting the memory can

deal with the failure gracefully (in the case of GPDB generating an “Out of

Memory” error) and cleaning up the session that’s encountered the error.

This strategy will also allocate a portion of the physical RAM strictly

for kernel use. The amount restricted is configured by the setting

vm.overcommit_ratio. This means the amount of virtual memory (over

committable memory) available for programs is actually:

SWAP + (RAM ∗ (overcommit_ratio/100))

The reserved memory is used for things such as IO buffers and system

calls.

Let’s look at some numbers:

Scenario 1:

4 GB RAM, 4 GB Swap, overcommit_memory = 2,

overcommit_ratio = 50

Memory Allocation Limit = 4 GB Swap Space + 4 GB

RAM ∗ (50% Overcommit Ratio / 100)

Memory Allocation Limit = 6 GB

Scenario 2:

4 GB RAM, 8 GB Swap, overcommit_memory = 2,

overcommit_ratio = 50

Chapter 2 Configure Your Database for Better Performance

57

Memory Allocation Limit = 8 GB Swap Space + 4 GB

RAM ∗ (50% Overcommit Ratio / 100)

Memory Allocation Limit = 10 GB

Scenario 3:

4 GB RAM, 2 GB Swap, overcommit_memory = 2,

overcommit_ratio = 50

Memory Allocation Limit = 2 GB Swap Space + 4 GB

RAM ∗ (50% Overcommit Ratio / 100)

Memory Allocation Limit = 4 GB

Note that this is the total amount of memory that Linux will allocate.

This includes all running daemons and other applications. Don’t assume

that your application will be able to allocate the total limit. Linux will also

provide the memory allocation limit in the field CommitLimit in /proc/

meminfo.

�vm.dirty_ratio

This determines the number of pages, as a percentage of total system

memory, after which the pdflush background writeback daemon will

start writing out dirty data. Default is 20. It’s recommended that this be

decreased to 2 to make flushes more frequent but result in fewer IO

spikes.

�vm.dirty_background_ratio

This determines the number of pages, as a percentage of available memory

(including cache), that the pdflush background writeback daemon

will start writing out dirty data. Default is 10. It’s recommended this be

decreased to 1 to make flushes more frequent but result in less IO.

Chapter 2 Configure Your Database for Better Performance

58

�THP

It is always recommended to disable THP on a Linux system for better

performance of PostgreSQL. To disable it:

Red Hat Enterprise Linux kernels:

cat /sys/kernel/mm/redhat_transparent_hugepage/enabled

Other kernels:

cat /sys/kernel/mm/transparent_hugepage/enabled

The following is a sample output that shows THP are being used as the

[always] flag is enabled:

[always] never

�Hugepages
Virtual memory is mapped to physical memory using a combination of

software and hardware mechanisms. This virtual memory feature allows

the OS to spread the addressable space into different areas of physical RAM.

But, this VM concept requires translation from virtual address to

physical address. Information for this transformation is stored in “page

tables.” To speed up the lookup/translations in these tables, this table is

stored in a cache called the Translation Lookaside Buffer (TLB)

The amount of memory that can be translated by this TLB cache

is called “TLB reach.” If there is a TLB miss, there is a bigger penalty

associated.

As per x86 architecture, page size is 4K bytes. That means when a

process uses 1GB of memory, that’s 262144 entries to look up! The effect of

this multiplies as memory size increases.

The idea of hugepage is to increase this 4K bytes to 2MB typically. That

will dramatically reduce the number of page references.

Chapter 2 Configure Your Database for Better Performance

59

The obvious performance gain is from fewer translations requiring

fewer cycles. A less obvious benefit is that address translation information

is typically stored in the L2 cache. Typically, database workloads get a 7%

instant performance gain.

The biggest benefit of hugepages is more stable performance of

database systems.

�Summary
In this chapter, we talked about some initial steps after installation for

developers and administrators, and also talked about all configuration

files of PostgreSQL and recommendations on how to use them. We

covered a few basic parameters that one should consider while setting up

their environment initially. These recommendations include database

parameters and OS parameters as well. In the next chapter, we will talk

about user management and securing databases.

Chapter 2 Configure Your Database for Better Performance

61© Baji Shaik 2020
B. Shaik, PostgreSQL Configuration, https://doi.org/10.1007/978-1-4842-5663-3_3

CHAPTER 3

User Management
and Securing
Databases
In the last chapter, we talked about configuring a PostgreSQL database for

a better performance, which includes tuning of several database-related

parameters based on their behavior and also about operating system-

related parameters that help to improve performance. In this chapter,

we are going to talk about user management in PostgreSQL and securing

databases by managing user privileges. We will also cover different types of

privileges at object level and how we can best plan to utilize those granular

level privileges to secure the databases, and different types of encryption

techniques that you can use to secure your data.

Before we talk about how to manage users and implement security,

let us talk about what information we need to know for the setup. If you

are working for a new implementation of a PostgreSQL environment

or migrating from any enterprise database, you need to know basic

information to start with. Let us go through a few questions, through which

you will get a starting point.

62

�Information That You Need to Know
When you are discussing security implementation, here are some

basic questions that you can ask your customer. Each of the following

questions has a specific purpose, which helps you in creating a plan while

implementing security on the PostgreSQL side.

	Q1.	 What is your current user management?

Purpose: This is basic information that you need

to know. Different customers have different user

managements, like:

•	 One user per one application

•	 Multiple users per one application

•	 One user per multiple applications

Most of the time it is multiple users per application

based on the user role. If a single user is used, it is

difficult to maintain security. So, it is recommended

to use multiple users and roles and assign privileges

to roles based on the requirement.

	Q2.	 How are users being created?

Purpose: You should know how the users are

being created in the current environment or how

they want users to be created. Some customers

use tools to dynamically create users based on the

requirement and remove those when they are done

with the user’s work. If that is the case, you might

need to develop a script that can do that.

Chapter 3 User Management and Securing Databases

63

	Q3.	 Are you using different users for writing and reading

the database?

Purpose: If the customer is using different users for

reading and writing, you might need to create users

according to the requirements. Basically, for writing,

it could be a normal user with necessary permissions

on objects that it can modify. However, for reading,

you will need a read-only role, which can only read

the required objects but not modify in any case.

Sometimes, you need a read-only role for monitoring

also. PostgreSQL 10 came up with few monitoring

roles by default, which we will be covering in this

chapter in the “Security Mechanisms” section.

	Q4.	 Do you have any password policy set up?

Purpose: Enterprise databases like Oracle and MS

SQL server have password policies for users, like:

•	 PASSWORD_LIFE_TIME

•	 PASSWORD_REUSE_TIME

•	 PASSWORD_REUSE_MAX

•	 PASSWORD_VERIFY_FUNCTION

•	 PASSWORD_LOCK_TIME

•	 PASSWORD_GRACE_TIME

•	 INACTIVE_ACCOUNT_TIME

However, PostgreSQL has only PASSWORD_LIFE_TIME

(basically, password expiration date) by default. No

other functionality is available by default. However, you

can use a password check module. More information

is available at www.postgresql.org/docs/current/

passwordcheck.html.

Chapter 3 User Management and Securing Databases

http://www.postgresql.org/docs/current/passwordcheck.html
http://www.postgresql.org/docs/current/passwordcheck.html

64

	Q5.	 Do you have row level security implemented?

Purpose: Check if the customer is currently using

any row level security. If so, PostgreSQL also has an

RLS (Row Level Security) feature available. If you

get this information from the customer, you can

prepare policies on PostgreSQL according to the

requirement. We will be covering more about RLS in

the “Security Mechanisms” section.

	Q6.	 Are you using SSL connectivity? If so, how are the

certificates being managed?

Purpose: If the customer is using SSL connections

(secure way to connect database), you need to

enable this feature in PostgreSQL by turning on the

ssl parameter in the configuration file. However,

you need to know how they are managing the

certificates. Are they self-managed or CA certified?

That will enable the requirement of keeping the

certificates on the PostgreSQL side.

	Q7.	 Do you have any auditing setup?

Purpose: Auditing is one of the key features that

every modern database has and every customer

tries to implement. Auditing can be a compliance

requirement in many systems. If the system has to

be equipped with auditing features, database level

auditing can set at PostgreSQL as well. We will be

covering more about this feature in the “Security

Mechanisms” section.

Chapter 3 User Management and Securing Databases

65

	Q8.	 What is your current implementation of security?

Purpose: You need to know their current

implementation of security so that you look for

alternatives in PostgreSQL, as it has its own way

of securing things. If they are using any external

tools for securing the data, you might need to look

for those functionalities in the available tools of

PostgreSQL.

	Q9.	 What are your expectations with PostgreSQL toward

security?

Purpose: This is very important. They cannot expect

everything to be working in the same way as their

source enterprise database (if they are migrating

from an enterprise database). Every database has its

own security mechanisms. They can be comparable;

however, they might not match sometimes.

So, you need to carefully evaluate their current

security implementation and set the expectations

accordingly when they are using PostgreSQL.

	Q10.	 Do you use encryption of data at rest or in motion?

If so, how is it implemented?

Purpose: Encryption is another key aspect of

security. It can be at rest or in motion. You need

to know how it is implemented and come up with

the tools that can give the same functionality

in PostgreSQL. We will be covering more about

encryption in the “Security Mechanisms” section.

Chapter 3 User Management and Securing Databases

66

�Security Mechanisms
When a customer is migrating from an enterprise database (like Oracle

or MS SQL server), they might want to know the basic level of security

that PostgreSQL provides. You can distinguish security as different

mechanisms, as follows:

•	 Authentication methods in HBA

•	 ACLs

•	 RLS—Row Level Security

•	 SSL/TLS connections

•	 Event triggers

•	 Auditing

•	 Monitoring roles

•	 Encryption and PCI

•	 Replication

•	 PL trusted vs. untrusted

The intent of this chapter is that after reading it, you will know what

features PostgreSQL has in terms of user management and security. So if

at any moment you encounter something, you may suddenly recall that

PostgreSQL has RLS or there’s something called event triggers that you

could use for security purposes.

First things first: the PostgreSQL web site has a security page that

contains information regarding all the common vulnerability information,

and which minor versions of PostgreSQL and major versions are

vulnerable and which aren’t: www.postgresql.org/support/security/.

It is highly recommended to bookmark this page and check it out at

least a few times a week by everyone who deals with PostgreSQL in their

Chapter 3 User Management and Securing Databases

http://www.postgresql.org/support/security/

67

production environment. Security fixes take precedence over regular

bugs. Security problems are identified and patched by the PostgreSQL

community even more quickly. It’s very useful.

�Authentication in HBA
PostgreSQL basically authenticates connections to itself using an HBA

file (Host Based Authentication file). If you install PostgreSQL and open a

pg_hba.conf file, this file looks like the following by default:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only

local all all trust

IPv4 local connections:

host all all 127.0.0.1/32 trust

IPv6 local connections:

host all all ::1/128 trust

Allow replication connections from localhost, by a user with the

replication privilege.

local replication all trust

host replication all 127.0.0.1/32 trust

host replication all ::1/128 trust

This is not ideally what it should look at once you have PostgreSQL

running in production.

There are a lot of authentication types that PostgreSQL supports in its

HBA. Different types of authentication methods are:

•	 PASSWORD

•	 MD5

•	 SCRAM

Chapter 3 User Management and Securing Databases

68

•	 TRUST

•	 REJECT

•	 PEER

•	 IDENT

•	 LDAP

•	 HOSTSSL

�PASSWORD

This is the simplest password-based authentication system that PostgreSQL

has. It is a plain text password. It is not encrypted and hence it is not ideal.

�MD5

This is what is still in many ways the standard password authentication

format and salted algorithm for hashing. It has some flaws that people

criticize PostgreSQL for, like: “Why does PostgreSQL have md5? Isn’t it

broken?” However, the way PostgreSQL uses md5 is better than how base

md5 would work. We actually have a random salt every time via authenticate

that makes it a little bit more secure than what pure md5 would.

�SCRAM

From PostgreSQL 10 onward, we have SCRAM (Salted Challenge Response

Authentication Mechanism). SCRAM is better than md5, as it overcomes

the flaws that md5 has. It is more secure; here is an example of setting up

SCRAM password encryption in PostgreSQL 10:

postgres=# set password_encryption ='scram-sha-256';

SET

postgres=# CREATE ROLE finance WITH PASSWORD 'mostcommonpassword';

CREATE ROLE

Chapter 3 User Management and Securing Databases

69

postgres=# select substr(rolpassword,1,14) from pg_authid where

rolname ='finance';

 substr

 SCRAM-SHA-256$

(1 row)

postgres=#

And so, what’s the difference when it comes to how SCRAM is better

than md5 here? In the pg_authid table, if you have passwords encrypted in

the md5 format, it is going to show you the md5 hash of it like the following:

postgres=# create role sales with password 'md5password';

CREATE ROLE

postgres=# select rolpassword from pg_authid where rolname

='sales';

 rolpassword

 md5059f18f30cad64836a01f936c9ba7dd4

(1 row)

It is not going to hide that information, so you can actually see the

password hash, which is not ideal. It is much better than MySQL, which in

its default format will store the password in plain text unless you wrap the

password with a password function explicitly. PostgreSQL does not need

you to wrap it in any function; if you give it a password it’s automatically

going to store it as a hashed value. However, with md5 the substring is a

pure md5 hash, whereas you can see how SCRAM works in the previous

example. So, SCRAM basically gives you the details of computing the

value of the password. It does not give the hash, hence it is more secure.

If you are thinking of upgrading to PostgreSQL 10 and possibly moving to

SCRAM from md5 for a limited time at least for PostgreSQL 10 and 11,

PostgreSQL is allowing fallback to md5. So, basically if you have your

Chapter 3 User Management and Securing Databases

70

password encryption set to SCRAM and some client is trying to connect

using md5 authentication, PostgreSQL is going to let that happen—just to

ease the transition for people, but not in later versions.

An example entry in a pg_hba.conf file is as follows:

All users (from 192.168.12.10) require SCRAM authentication

to connect postgres database.

TYPE DATABASE USER ADDRESS METHOD

host postgres all 192.168.12.10/32 scram-sha-256

�TRUST

Basically, “do not trust” the TRUST authentication. TRUST is basically

no password at all. For example, “I’m just going to trust that you my best

friend can do anything in my room you want to” and that leads to issues.

One of the worst ways that this can happen is if you saw in the default file

the very first line had TRUST authentication, so somebody who does not

look into the documentation might just think “TRUST is simple and it is

still authentication so I’m going to just use trust for all my other accesses as

well.” To eliminate that possibility there is a way in PostgreSQL: when you

initialize the data directory, you can tell PostgreSQL not to put that line in

the default HBA file. So, just remove it from the very root cause itself. That

option is -A in initdb:

8c85902e3a2c:data $ initdb --help|grep auth

 -A, --�auth=METHOD default authentication method for local

connections

 --�auth-host=METHOD default authentication method for

local TCP/IP connections

 --�auth-local=METHOD default authentication method for

local-socket connections

8c85902e3a2c:data $

Chapter 3 User Management and Securing Databases

71

It is the way to tell initdb to use md5 as the minimum level of

authentication so there would be no trust if you generate a file using this

option in a DB.

�REJECT

Oftentimes you have a subset of IPs that you want to allow access for a

particular role in a particular database; however, there might be one or two

IPs within that subset that you do not want to allow access to. So, either

you or one of your DBAs is lazy and they just think “nobody is going to

access from those few IPs and I am just going to allow them all” or your

DBA is nice where they just go the extra mile and don’t put in the IP as

a subnet but they put in individual IPS /32 even if there are a hundred.

However, note that there is a reject option. What you can do is allow access

to a subnet and set this particular IP reject, which means do not look at

any line after this line. It is really important that you reject any superuser

connecting from a host that is not the local host just for security purposes.

Usually, if it is a DBA, they can SSH into the database server and log in as a

superuser.

An example entry in pg_hba.conf file is as follows:

#All users from 192.168.54.1 server are rejected.

TYPE DATABASE USER ADDRESS METHOD

host all all 192.168.54.1/32 reject

�PEER and IDENT

In both these auth methods, PostgreSQL gets the OS user name from

which the client is connecting and matches it with the requested database

user name. The difference between these auth methods is that PEER is

available for local connections whereas IDENT is for TCP/IP connections.

Chapter 3 User Management and Securing Databases

72

For peer auth, pg_hba.conf entry looks like the following:

"local" is for Unix domain socket connections only

local all all peer

For ident auth, pg_hba.conf entry looks like the following:

host all all 192.168.10.22/24 ident map=my_ident_map

An $PGDATA/ident.conf file looks like the following:

MAPNAME SYSTEM-USERNAME PG-USERNAME

my_ident_map my_os_user ident_db_user

�LDAP

This auth method is used when your connection is being authenticated

from an LDAP server.

Note A ny change that you make to an HBA file needs a reload of
PostgreSQL server to take effect.

An example entry from pg_hba.conf looks like the following:

host all dbuser 0.0.0.0/0 ldap �ldapserver=ldapserver.

example.com

ldapprefix="cn="

ldapsuffix=",

dc=example, dc=com"

�HOSTSSL

This auth method is used when you use SSL connections. Before you use

this auth, you should turn on SSL parameters in the postgresql.conf

configuration file.

Chapter 3 User Management and Securing Databases

https://www.postgresql.org/docs/current/ssl-tcp.html

73

An example entry looks like the following:

hostssl all all 0.0.0.0/0 md5

�ACLs
ACL stands for Access Control List. So, basically this list shows a list of

privileges that a user has on an object. These privileges are assigned by

using the GRANT command and revoked by using the REVOKE command.

�Available Privileges

Before we talk further, you need to know ACL privilege abbreviations as

show in the following:

r — SELECT ("read")

w — UPDATE ("write")

a — INSERT ("append")

d — DELETE

D — TRUNCATE

x — REFERENCES

t — TRIGGER

X — EXECUTE

U — USAGE

C — CREATE

c — CONNECT

T — TEMPORARY

arwdDxt — ALL PRIVILEGES (for tables, varies for other objects)

* — grant option for preceding privilege

/yyyy — role that granted this privilege

Chapter 3 User Management and Securing Databases

74

These ACL abbreviations are well explained in the PostgreSQL

documentation at www.postgresql.org/docs/current/ddl-priv.

html#PRIVILEGE-ABBREVS-TABLE.

Every object type has different kinds of privileges that can be granted

on them. This table explains about it: www.postgresql.org/docs/

current/ddl-priv.html#PRIVILEGES-SUMMARY-TABLE.

So, based on the requirement, carefully GRANT/REVOKE privileges on

the objects. In this way, you can secure a database to be against being

accessed by unwanted users. When you compare it with other relational

and enterprise databases, you are going to notice, aside from all the

common ones (like SELECT, INSERT, DELETE, etc.), there is something

called USAGE. This has a different meaning in PostgreSQL. This privilege

lets user/role use a particular schema to access objects inside it for read/

write purposes. Note that, though you have certain privileges on an object,

unless you have usage on the schema in which the object exists, you

cannot access the object. You can use \z to see the access privileges of an

object. Here is an example:

postgres=# \z titles

 Access privileges

 Schema | Name | Type | Access privileges | Column privileges |

 Policies

--------+--------+-------+-------------------+-------------------+

 public | titles | table | | |

(1 row)

postgres=# grant select,insert on titles to sales;

GRANT

Time: 27.145 ms

Chapter 3 User Management and Securing Databases

http://www.postgresql.org/docs/current/ddl-priv.html#PRIVILEGE-ABBREVS-TABLE
http://www.postgresql.org/docs/current/ddl-priv.html#PRIVILEGE-ABBREVS-TABLE
http://www.postgresql.org/docs/current/ddl-priv.html#PRIVILEGES-SUMMARY-TABLE
http://www.postgresql.org/docs/current/ddl-priv.html#PRIVILEGES-SUMMARY-TABLE

75

postgres=# \z titles

 Access privileges

 Schema | Name | Type | Access privileges |

 Column privileges | Policies

--------+--------+-------+---------------------------+

-------------------+----------

 public | titles | table | postgres=arwdDxt/postgres+|

 |

 | | | sales=ar/postgres |

 |

(1 row)

�Transactional DDLs

Unlike other database engines (like Oracle, MySQL, etc.), PostgreSQL has

transaction DDLs. It means you can execute DDLs inside a transaction and

commit/rollback if needed. Some relational databases allow you to run the

DDLs inside a transaction but if you do a rollback, those do not really get

rolled back. However, rollback of a DDL in a transaction really rolls it back

in PostgreSQL. For example:

postgres=# begin;

BEGIN

postgres=# grant select on titles to sales;

GRANT

postgres=# \z titles

 Access privileges

Chapter 3 User Management and Securing Databases

76

 Schema | Name | Type | Access privileges |

 Column privileges | Policies

--------+--------+-------+---------------------------+

-------------------+----------

 public | titles | table | postgres=arwdDxt/postgres+|

 |

 | | | sales=r/postgres |

 |

(1 row)

postgres=# rollback;

ROLLBACK

postgres=# \z titles

 Access privileges

 Schema | Name | Type | Access privileges |

 Column privileges | Policies

--------+--------+-------+---------------------------+

-------------------+----------

 public | titles | table | postgres=arwdDxt/postgres |

 |

(1 row)

�Alter Default Privileges

If you have a new schema and you know that all tables in that schema

should have a set number of permissions by default, then you can give

default privileges using some syntax similar to this:

ALTER DEFAULT PRIVILEGES IN SCHEMA <schema_name> GRANT

<privilege> ON TABLES TO <role>;

Chapter 3 User Management and Securing Databases

77

What happens even if your schema is empty? It will know that these

are the default privileges for it, so the next step is to actually create a

table within that schema; if you check the privileges using \dp, you’ll

see whatever permissions you wanted it to have. One thing to take note

of is that you can set this on any schema even with existing objects in it

After you execute alter default privileges and you create another object

inside that schema, it is going to read these privileges and assign them

automatically. However, it is not going to assign its default privileges to

the objects that already exist inside the schema. You will have to do that

manually. You can prepare commands or generate a SQL script.

�Roles and Groups

The next thing about ACL is roles. Usually, roles and group roles are the

norm, but PostgreSQL does not give any special kind of definition within

itself to a group role. Any role can have other roles as its members. You

don’t have to have any special declaration for such a role. What you should

do is by convention and good policy; you can have group roles like sales

and have all the privileges that any person joining the sales team would

require on a set of databases or a set of schemas. Any new person who

joins the sales team will just have their own individual role and we just

made them a member of the sales role, with no extra or special privileges

for that particular salesperson. So, what happens that way is you have less

work to do when that person leaves or even when a new person joins in.

And that makes sure that there is no rogue permission for this particular

user anywhere, and you drop it and suddenly the database is broken

because that user doesn’t exist anymore and they created the table.

Chapter 3 User Management and Securing Databases

78

�Column Level ACLs

This is another very neat feature of PostgreSQL. You can have column level

ACLs, as shown in the following:

postgres=# GRANT update(emp_no) ON titles TO sales;

GRANT

postgres=# \z titles

 Access privileges

 Schema | Name | Type | Access privileges |

 Column privileges | Policies

--------+--------+-------+---------------------------+

--------------------+----------

 public | titles | table | postgres=arwdDxt/postgres |

 emp_no: +|

 | | | |

 sales=w/postgres |

(1 row)

postgres=#

You can give column level privileges to users. The preceding example

updates a particular column named emp_no to sales role and you can see

that it has that privilege.

�Avoid Public Schema

It is recommended that you should have your own schemas even though

granting usage is a pain sometimes, especially if you’re new to PostgreSQL,

because the public schema by default allows access to everyone. So, it

does not matter how important a function you create, if it’s in the public

schema, any user in your database can execute it. If you have one small

application, you may think “Why do we need a separate schema? We might

know exactly what roles are going to be there and we know exactly what

Chapter 3 User Management and Securing Databases

79

permissions they’re going to have.” However, your being restrictive does

not mean that PostgreSQL is going to be restrictive. By default, there is a

public role that is assigned to a newly created role/user. You cannot really

revoke the privileges from any users that are assigned through the public

schema.

�Read-Only Roles

A read-only role is one of the trickiest parts of PostgreSQL. As explained

in the previous section, a public role will be assigned to a newly created

user/role. So, by default the user/role gets privileges to create objects in the

public schema. However, if you mean for a read-only role, it is supposed to

read the objects from the database and should not have privilege to create

the objects. But you cannot really revoke that permission from a user/role

directly. However, you can revoke those privileges from a public role,

which inherits all created users and new users going to be created.

#this will revoke create privileges from all the users

REVOKE CREATE ON SCHEMA public FROM public;

#you would need to explicitly grant privileges if you want a

user with write permissions

GRANT CREATE ON SCHEMA public to write;

#create read-only

CREATE ROLE user_readonly WITH PASSWORD 'mypassword';

GRANT SELECT ON ALL TABLES IN SCHEMA public TO user_readonly;

Note  if you revoke privileges from the public role, note that you
will have to explicitly grant them to new users for whom you want to
grant read/write access to the public schema.

Chapter 3 User Management and Securing Databases

80

�RLS (Row Level Security)
RLS is all about restricting the access to a few rows of a table. It is

introduced in PostgreSQL 9.5. You can say it is partial access of the table.

Sometimes you may have a huge table (like accounts in the following

example) in which you have data about managers and employees. You may

have all sorts of sensitive information like salaries, and you might not want

a manager to see the employee details of employees who are not reporting

to him/her. So, in those cases either you can split the table into a thousand

parts depending on how big your company is or you can make use of

row level security. Some more important critical purposes arise if you go

into government databases and you have more privacy issues, so for that

purpose you can enable row level security. Here is an example:

postgres=# ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

ALTER TABLE

postgres=# CREATE POLICY account_managers ON accounts TO managers

postgres-# USING (manager = current_user);

CREATE POLICY

postgres=> \c - postgres

psql (11.2, server 10.2)

You are now connected to database "postgres" as user "postgres".

postgres=# select count(1) from accounts ;

 count

 2

(1 row)

postgres=# \c - managers

psql (11.2, server 10.2)

You are now connected to database "postgres" as user "managers".

postgres=> select * from accounts ;

Chapter 3 User Management and Securing Databases

81

 manager | employee | contact_email | salary

----------+----------+---------------+--------

 managers | employee | abc@abc.com | 100000

(1 row)

postgres=> select count(1) from accounts ;

 count

 1

(1 row)

So, basically in the preceding example, it is creating a policy that states

that if your current user is listed as a manager in a subset of the rows in

the accounts table, this user can only see those specific rows. This is a

very simple policy but that’s the way it works. Even if this current user

"selects * from accounts", they can only see the rows for which they

are manager. There are exceptions and you can grant exceptions. So, say,

abc user is the top level manager of the organization but you don’t want

him to be the owner of the table. He has a regular, non-superuser account

in PostgreSQL, but he needs to see the whole table; you can provide him

bypass RLS privilege as shown in the following:

ALTER ROLE abc BYPASSRLS;

The table owner is automatically exempted from the restriction of

RLS. If you own the table, even though you have row level enabled you will

be able to see all the rows. If you want that to happen, you have to do a

force keyword when you’re defining row level enabling.

ALTER TABLE accounts FORCE ROW LEVEL SECURITY;

Chapter 3 User Management and Securing Databases

82

Note T he default policy when you enable row level is all denied
so unless you create a policy, nobody can select anything from that
table. So, if you are planning to enable it, make sure you do both of
these things (enabling and creating policy) in a single transaction.

In PostgreSQL 9.5 and 9.6, if you have three policies on the table

and you’re trying to query something, then the user need not satisfy all

three policies. If the user can get through any one of those policies, that

is sufficient to get access. This was the only option you had when you

had multiple policies—only the OR logic. However, from PostgreSQL 10

onward, you also have AND or restrictive, wherein if a user cannot get

through all of these policies, they cannot read anything from the table.

�SSL
As you know, SSL is one of the secure ways to connect a database. If you

want to make SSL connections, you should turn on SSL, which will require

a restart. If you’re installing or compiling your own PostgreSQL, make sure

you compile it with open SSL like the following:

./configure --with-openssl

By default, SSL will allow for both authentication and encryption. You

can choose not to encrypt. Some people feel like it’s too much overhead,

but you have the option. But just because you have the option doesn’t

mean you should use it, because most of the workload in SSL goes into the

authentication and encryption, which doesn’t take much time or resource

consumption. So, if you are already decided to use SSL, why not just

encrypt it too.

Chapter 3 User Management and Securing Databases

83

Here are certificates you need and parameters to set the certificate

locations:

ssl = on # (change requires restart)

#ssl_ciphers = 'ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH' # allowed

SSL ciphers #ssl_prefer_server_ciphers = on # (change requires

restart) #ssl_ecdh_curve = 'prime256v1' # (change requires

restart)

ssl_cert_file = '/etc/ssl/postgres/starry.io.crt' # (change

requires restart)

ssl_key_file = '/etc/ssl/postgres/starry.io.key' # (change

requires restart) ssl_ca_file = " # (change requires restart)

#ssl_crl_file = " # (change requires restart)

Make sure the certificate permissions are 600, otherwise PostgreSQL

will refuse to start.

Until Postgres 9.6, whenever you had to change your certificate you
required a restart. However, you just need a reload from PostgreSQL 10.

�Tunneling

If you have SSL supported and you want all connections from SSL but you

have an outdated client that does not support SSL, there is always SSH

tunneling and you can still have SSL enabled

ssh -L 63333:localhost:5432 foo@bar.com

psql -h localhost -p 63333 postgres

Chapter 3 User Management and Securing Databases

84

�Event Trigger
The way event triggers differ from normal triggers is that these don’t fire

on DDLs at all. They fire on bigger events like you have a new DBA and it’s

their first day on the job and they drop the users table. Event triggers are

going to prevent that. It is not something that will get used every day, but

it’s the one thing that will save you and your web site. On the one day that

somebody makes a major mistake, an event trigger is going to save you. So,

basically the advantages of event triggers are:

•	 Auditing

•	 Unwanted modification of data

•	 Accidental data loss

Let us look at an example:

postgres=# CREATE FUNCTION to_avoid_object_drops()

postgres-# RETURNS event_trigger

postgres-# LANGUAGE plpgsql AS $$

postgres$# DECLARE

postgres$# object record;

postgres$# BEGIN

postgres$# �FOR object IN SELECT * FROM pg_event_trigger_

dropped_objects()

postgres$# LOOP

postgres$# RAISE EXCEPTION '% dropped object: % %.% %',

postgres$# tg_tag,

postgres$# object.object_type,

postgres$# object.schema_name,

postgres$# object.object_name,

postgres$# object.object_identity;

postgres$# END LOOP;

postgres$# END

Chapter 3 User Management and Securing Databases

85

postgres$# $$;

CREATE FUNCTION

postgres=# CREATE EVENT TRIGGER to_avoid_object_drops

postgres-# ON sql_drop

postgres-# EXECUTE PROCEDURE to_avoid_object_drops();

CREATE EVENT TRIGGER

postgres=# DROP TABLE join1;

NOTICE: �DROP TABLE dropped object: table public.join1 public.

join1

NOTICE: �DROP TABLE dropped object: index public.unq_index_join

public.unq_index_join

NOTICE: �DROP TABLE dropped object: type public.join1 public.

join1

NOTICE: �DROP TABLE dropped object: type public._join1 public.

join1[]

NOTICE: �DROP TABLE dropped object: toast table pg_toast.pg_

toast_16554 pg_toast.pg_toast_16554

NOTICE: �DROP TABLE dropped object: index pg_toast.pg_

toast_16554_index pg_toast.pg_toast_16554_index

NOTICE: �DROP TABLE dropped object: type pg_toast.pg_

toast_16554 pg_toast.pg_toast_16554

ERROR: �DROP TABLE dropped object: table public.join1 public.

join1

CONTEXT: �PL/pgSQL function to_avoid_object_drops() line 7 at RAISE

These are the four events that as of right now event triggers support:

•	 ddl_command_start

•	 ddl_command_end

•	 sql_drop

•	 table_rewrite in pg10

Chapter 3 User Management and Securing Databases

86

In our previous example, it was an SQL drop event. ddl_command_

start and ddl_command_end are equivalent to normal triggers before and

after a DDL command. As for table rewrites, some activities like altering

a columns data type or setting a default value to a column is not the best

thing to do when it is peak load time for your web site. You can prevent that

from happening by creating an event trigger that checks for a table rewrite

operation and you can disallow that sort of operation when it is a bad time.

So, you can say that you can only do these operations from 12 a.m. to 9 a.m.

�Auditing
PostgreSQL does not have a core auditing extension, so you can create a

normal DML trigger and just get the difference of the new values and the

old values and store it in another table. Here is a simple example:

CREATE FUNCTION test_audit_trig() RETURNS trigger

 LANGUAGE plpgsql

 AS $$

DECLARE

 v_dmltype text;

BEGIN

IF TG_OP = 'INSERT' THEN

 v_dmltype = 'I';

ELSE

 v_dmltype = 'U';

END IF;

INSERT INTO auditing.test (col1, col2,....dmltype,

change_timestamp)

VALUES (NEW.col1, NEW.col2,....v_dmltype, current_timestamp)

RETURN NULL;

Chapter 3 User Management and Securing Databases

87

Attach trigger to a table:

CREATE TRIGGER test_audit_trig BEFORE INSERT OR UPDATE OR

DELETE ON table_name

 FOR EACH ROW EXECUTE PROCEDURE test_audit_trig();

pgaudit is the closest that PostgreSQL has when it comes to an

auditing extension. However, keep in mind that it is not a core PostgreSQL

extension. The pgaudit extension is useful if your whole database needs to

be audited.

�Monitoring Roles
PostgreSQL 10 onward, when it comes to monitoring there are new

monitoring roles. Before PostgreSQL 10, if you wanted to connect a

monitoring tool with your instance, the user that tool used to talk to

PostgreSQL had to be a superuser because there are things in your catalog

metadata information that a non-superuser cannot query. So, if you

wanted certain types of information you had to have a superuser. However,

PostgreSQL 10 onward there are new monitoring roles available:

•	 pg_monitor

•	 pg_read_all_settings

•	 pg_read_all_stats

•	 pg_stat_scan_tables

Chapter 3 User Management and Securing Databases

88

�Encryption and PCI
pgcrypto is used to achieve database level encryption in PostgreSQL. It

is a PostgreSQL core extension and not a third-party tool. It is still

an extension, but it is supported by the PostgreSQL community so it

is trustworthy. Now, what should be encrypted when we talk about

encryption? Let’s talk about:

•	 Performance impact

•	 Backups

•	 Volumes

•	 Instance level

�Performance Impact

You can have different types of AES algorithms (like AES-128, AES-192,

or AES-256) in pgcrypto. There is going to be an obvious performance

impact. So, basically you are telling pgcrypto to encrypt each atomic value

in your table or set of tables. You can choose to either encrypt the whole

table or encrypt only the important columns that you want to protect.

When it comes to PCI and credit card data (for example), you have one of

the columns in your credit card table and that is the credit card number,

for example; that is the only one that you really need to protect depending

on what other columns you have. However, you certainly don’t need to

encrypt the whole table because you have information in there that by

itself is not going to be useful to a bad party. Here is an example on using

pgcrypto functions:

postgres=# CREATE TABLE crypt_table(uname varchar, pwd_crypt

text, pwd_md5 text);

CREATE TABLE

Chapter 3 User Management and Securing Databases

89

postgres=# create extension pgcrypto ;

CREATE EXTENSION

postgres=# INSERT INTO crypt_table VALUES ('Robert',

crypt('testpassword',gen_salt('md5')),md5('testpassword'));

INSERT 0 1

postgres=# INSERT INTO crypt_table VALUES ('Tom',

crypt('testpassword',gen_salt('md5')),md5('testpassword'));

INSERT 0 1

postgres=# select * from crypt_table ;

 uname | pwd_crypt |

 pwd_md5

--------+------------------------------------+

 Robert | 1Y3iUMA6h$OUTGwuH7hoFJnOO48taNV1 |

 e16b2ab8d12314bf4efbd6203906ea6c

 Tom | 1IfATTihP$A78rkOIIEvkZ2LjcRT6hd1 |

 e16b2ab8d12314bf4efbd6203906ea6c

(2 rows)

postgres=# select uname from crypt_table where uname='Tom' and

pwd_crypt=crypt('testpassword',pwd_crypt);

 uname

 Tom

(1 row)

�Backups

Backups should be encrypted. One key requirement about PCI is that

you do not want to have the encryption keys with your backup because

if your backup is stolen, the key goes with it. There goes all the data, so

it’s preferable to use pg_dump because that way you can just take a logical

backup. Your filesystem won’t get backed up and hence your keys.

Chapter 3 User Management and Securing Databases

90

�Volumes

There is also an option with certain filesystems to encrypt. You can have

an encrypted back volume on ZFS (for example) and you can do all sorts

of secure things like require a split key start. So, you cannot even restore or

bring the volume up unless two people put in their own specific passwords.

�Instance Level

What about instance level encryption on a running instance? There is

growing demand for data at rest encryption—TDE (Transparent Data

Encryption). However, there is nothing in PostgreSQL yet. There is a proof-

of-concept patch being discussed here: www.postgresql.org/message-id/

flat/CA%2BCSw_tb3bk5i7if6inZFc3yyf%2B9HEVNTy51QFBoeUk7UE_V%3Dw

%40mail.gmail.com. There are multiple efforts like this in the community,

but they are not completed yet.

�Replication
Why would replication be discussed as a part of security? Sometimes,

especially when it’s a PCI environment and you need to take care of

a credit card database, it is recommended to not have a hot standby.

Because, if you have a read-only replica, anybody can select and read

anything on your replica without getting trapped. If you have a PCI replica,

you have to be extremely sure that outside of that nobody can access it,

because even the DBA shouldn’t be able to.

If you have a recovery file—which you should if you have a replica—try

not to have the plain text password in the connection string in your recovery

file. The simplest way to avoid that is to have a .pgpass file. It is a secret file

in the PostgreSQL home directory and it is a dot file with very restricted

permission 600. It will allow you to connect without having to explicitly

write down your password or have it in plain text in your recovery conf.

Chapter 3 User Management and Securing Databases

http://www.postgresql.org/message-id/flat/CA+CSw_tb3bk5i7if6inZFc3yyf+9HEVNTy51QFBoeUk7UE_V=w@mail.gmail.com
http://www.postgresql.org/message-id/flat/CA+CSw_tb3bk5i7if6inZFc3yyf+9HEVNTy51QFBoeUk7UE_V=w@mail.gmail.com
http://www.postgresql.org/message-id/flat/CA+CSw_tb3bk5i7if6inZFc3yyf+9HEVNTy51QFBoeUk7UE_V=w@mail.gmail.com

91

�PL Trusted vs. Untrusted
Procedures untrusted are basically those that can access and manipulate

things outside the database, and trusted are those that are only allowed to

manipulate and do things inside the database management software.

If you want a nonprivileged user to have an escalated privilege for

the purpose of executing a particular function, you can use a “security

definer” keyword in the function that you’re creating. Basically, what

security definer does is that when a user tries to run a function, it gives

the user elevated privileges to be able to run that function as an owner of

the function. So, it’s quite useful if you just want a user to run a specific

function but do not want them to have that privilege all the time.

�High Security and Encryption Guidelines
•	 Never open port 5432 to the public Internet.

•	 Do not give permissions to any user to SSH to the

database server. Rather, use a bastion host and open

port for that host.

•	 If you plan for bastion host, restrict access with VPN.

•	 If you are on cloud-based managed services, make

sure you have the right security groups (open to

necessary hosts).

•	 Make sure you always update your database with the

latest security patches. Security patches information is

here: www.postgresql.org/support/security/.

•	 Never, ever use the “trust” auth method in pg_hba.conf.

•	 Always create “roles” with necessary grants and assign

right roles to right users.

Chapter 3 User Management and Securing Databases

http://www.postgresql.org/support/security/

92

•	 While encrypting the data, consider encrypting only

required columns but not all tables or the whole

database.

•	 Do not log sensitive information in cleartext.

•	 Make sure you encrypt backups.

•	 Restrict access of users to required rows using RLS.

•	 Try doing encryption at the application side, not on the

database.

�Summary
In this chapter, we have talked about object level privileges in PostgreSQL

and how to use them to secure your database. Creating roles and

separating them based on the usage from application gives you better

security over your data. Depending on the data sensitivity, you can encrypt

your data using available PostgreSQL extensions like pgcrypto. We have

also talked about a few guidelines that you can consider before you

implement your database security. In the next chapter, we will talk about

backup/restore options available and how to build a backup strategy of

your database, depending on the information available from the customer.

Chapter 3 User Management and Securing Databases

93© Baji Shaik 2020
B. Shaik, PostgreSQL Configuration, https://doi.org/10.1007/978-1-4842-5663-3_4

CHAPTER 4

Backup and Restore
Best Practices
In the last chapter, we talked about user management in PostgreSQL

using roles by assigning proper privileges and secure data by encrypting

using the pgcrypto module. It helps to improve security by controlling

object and data access. In this chapter, we are going to talk about backup/

restore strategies and procedures. Building these strategies needs a

lot of information. This chapter walks you through the stages in which

information will be gathered to set up backup/restore for a database, based

on the criticality of the data. This chapter also talks about when to/what

to/ how to backup/restore.

�Purpose of Backing Up a Database
It is actually surprising how often these days, as a consultant going out to

different customers, you run into this scenario: they don’t have backups

and you hear things like “Well, you know, we have replication. We don’t

really need to do backups because our replication will take care of that.”

That’s not really how it works. When you drop the wrong table, that

replicates instantly to the replica and there is never any chance to stop

that before it’s too late. In earlier days, backups were needed for disaster

recoveries (which meant bringing up the whole database in case of

failures). However, there are a lot of procedures to save databases from

disaster recoveries nowadays (which we will be discussing in Chapter 7).

94

You might have heard of customers saying they are running in the

cloud so they don’t need backups. You possibly need backups more than

ever if you do that now; you might have somebody else take the backups

for you as part of your service agreement, but there needs to be backups.

A few customers may say that they run their things on Docker, so they

don’t need to take separate backups. It is strongly recommended to take

the backups in either of the cases.

The main purpose of backup is point-in-time-recovery (PITR), which

means restoring the database to a point in time. PITR is needed when any

accidental changes happen in the database and those have to be corrected

or restored back in the database to continue business.

�Gather Information to Set Up a Backup
Strategy
There are a lot of questions that need to be answered to plan backup. Once

you gather all the information, you can plan a backup strategy. Let us look

at some questions:

	Q1.	 What is the criticality of the data?

Purpose: You need to know how critical data is

before setting up a backup strategy. Depending

on criticality, you plan on how frequently you take

backup, what should be the retention, and how fast

you can recover the data if needed.

	Q2.	 How sensitive is the data?

Purpose: If the data is too sensitive, you should plan

for encryption of backups. As encryption might be

overhead, you should know if the backups need to

be encrypted or not.

Chapter 4 Backup and Restore Best Practices

95

	Q3.	 How much downtime can you afford in case PITR is

needed?

Purpose: You should know how much downtime

you can afford in worst-case scenarios. Depending

on this information, you would know how

frequently you need to back up your database. You

always choose a worst-case scenario to calculate the

affordable downtime.

	Q4.	 How big is the database?

Purpose: Depending on database size, you would

plan for backup servers and retentions, and also

decide what kind of backup you can choose for your

database.

	Q5.	 Would you be able to afford cloud storage or a

physical/virtual server for backups?

Purpose: It is always recommended to store your

backups on a different machine than the database

machine. So, you should ask this question of the

customer before you implement a backup strategy.

	Q6.	 What will be the retention of backups?

Purpose: To plan storage for the backups, you need

to know the retention. Customer should know how

many backups they would need in case of failures.

	Q7.	 How much maintenance window can be provided

for taking backups?

Purpose: Depending on the maintenance window

of backups, you can plan on backup frequency and

kind of backups.

Chapter 4 Backup and Restore Best Practices

96

	Q8.	 What kind of backup do you want?

Purpose: Some customers might be specific about

what kind of backups they want. However, if the

customer requests, you need to recommend what

kind of backups they can go for, based on the

information you gather.

�Backup Types
When talking about database backups, what about backups in PostgreSQL?

There are two fundamentally different approaches to backing up

PostgreSQL databases:

•	 Logical backups

•	 Physical backups

�Logical Backups
Logical backups are also known as SQL dumps. PostgreSQL has “pg_

dump” through which you can take a logical backup. Here are a few

options using pg_dump:

As “pg_dump” is one of the most commonly known methods for

backing up of PostgreSQL and easy to use, people might decide to use it for

their backup solution. It lets you do some nice things like using a custom

format—you can do compression in parallel, do data only or schema only,

and pick exactly which things you want. So, pg_dump is awesome in a lot

of ways, but it has some limitations:

•	 Too slow to restore

•	 Too much overhead

•	 No PITR

Chapter 4 Backup and Restore Best Practices

97

However, nowadays, pg_dump really is not a backup solution. It has

many use cases but backup is not one of them unless your database is

really small (less than a couple of GB). Even if your database is really small,

it probably is not the right solution anyway due to limitations explained

previously.

Using pg_dump is very simple but it usually takes too long to do the

backup. That is usually OK, but the real problem is it takes too long to

restore because pg_dump will recreate your tables and then rebuild all

your indexes. So, if you’re using a pg-dump based backup for some reason,

make sure that you actually test it over time to see how long your restore

time is going to be. There is just too much overhead, and even on small

databases the problem is you cannot do PITR.

For more details on pg_dump and pg_dumpall, please go through:

www.postgresql.org/docs/current/app-pgdump.html and

www.postgresql.org/docs/current/app-pg-dumpall.html.

�How to Take Logical Backups

Let us see some examples here:

•	 To take the dump of a whole cluster:

pg_dumpall -p port > $backup_location/dumpall.sql

Where -p is port of cluster.

•	 To take the dump of a database (use pg_dump for that)

Plain format:

pg_dump -p port -U user_name db_name >

$backup_location/dump_postgres_db.sql

Compressed format:

pg_dump -p port -U user_name dbname -Fc -f

$backup_location/dump.dmp

Chapter 4 Backup and Restore Best Practices

http://www.postgresql.org/docs/current/app-pgdump.html
http://www.postgresql.org/docs/current/app-pg-dumpall.html

98

Where -p – port

 -U – user

 -Fc – �Format compressed (you can use tar by

using -Ft)

 -f – dumpfile.

•	 To take the dump of a table/sequence:

�pg_dump -p port -U user_name -t table_name db_name >

$backup_location/dump_test_table.sql

 Where -t - tablename/sequencename

�Physical Backups
If you are planning for backups, you should be looking at doing physical

backups. These backups are called base backups:

•	 Fast restore

•	 Full cluster only

•	 Platform specific

The biggest advantages of physical backup are it is fast to restore and

you can do PITR. You can only back up everything. You cannot back up

an individual database or an individual table or schema. It is platform

specific. You can take a dump or a backup on a 64-bit system and restore it

on a 32-bit. But you can’t switch from 32-bit to 64-bit.

�How to Take a Base Backup

Let us start with a sample script that a lot of people use to take a base backup:

Chapter 4 Backup and Restore Best Practices

99

#!/bin/bash

set -e

psql -U postgres -q "SELECT pg_start_backup('foo')" # 'foo' is

a label which identifies this backup.

tar cfz /backup/$(date +%Y%m%d).tar.gz /var/lib/pgsql/data

psql -U postgres -q "SELECT pg_stop_backup()"

This is a traditional procedure that is used to take the backup. So, it

starts the backup by using the pg_start_backup function, then copies

the data directory to a backup location, and then stops backup using the

pg_stop_backup function. However, the most common mistake is the error

check. When the tar command fails at some point:

•	 It will abort, leaving your system in backup mode, and

you will not be able to take another backup.

•	 You really do not want your system to crash now,

because it’s left things (backup_label file) around in

the data directory that will make your system unable to

start if it crashed.

There are so many ways to get this wrong; this used to be the only way,

but there are many scripts out there that people use that do this.

To overcome this, PostgreSQL provides the pg_basebackup tool, which

basically takes these base backups in the same way as the traditional

procedure but instead of you running commands, it runs just as a

PostgreSQL client.

If you need a simple PostgreSQL backup without making any setups

and don’t want to add a lot of complexity, then use the pg_basebackup

tool. Also, if you’re doing pg_dump for your backup solutions, you should

really look at just switching to pg_basebackup. Here is a simple script:

 #!/bin/bash

set -e

pg_basebackup -D /backup/$(date +%Y%m%d) -Ft -X fetch

Chapter 4 Backup and Restore Best Practices

100

-X includes required WALs in the backup. "fetch" indicates that

WALs are collected at the end of the backup.

You just need to give a directory to copy backup files and indicate

which format you want.

However, to make this work you need to have replication enabled in

the hba file. You should have a line like this:

local replication postgres peer

And the following parameters in postgresql.conf file:

wal_level = hot_standby

max_wal_senders = 10

If you are on PostgreSQL 10 or older, you would need to set the

preceding parameters. Otherwise, newer than 10, default value of wal_

level is replica and max_wal_senders is 10. “max_wal_senders” is the same

as max connections, just for replication connections.

Backup Formats

pg_basebackup can write your backups in two different formats:

•	 plain

•	 Safe copy of data directory

•	 Not good with multiple tablespaces

•	 tar

•	 Destination still a directory

•	 Each tablespace gets one file

Chapter 4 Backup and Restore Best Practices

101

It can use plain format, in which case basically your backup will be a

copy that looks exactly like your data directory with all the subdirectories

and all the files. However, it’s done in a safe way so it will actually be a

consistent data directory in the end, together with the transaction log.

Plain works well if you have one tablespace. If you have multiple

tablespaces, by default it will have to write all the tablespace in the same

location that they already are, which obviously only works if you’re doing

this across the network. In recent versions you can remap your tablespaces

to different locations, but it rapidly becomes very complicated to use

the plain format if you have multiple tablespaces. The other format for

pg_basebackup is tar, in which case the destination is still a directory and

you will put tar files into that directory. Your root tablespace will be in a

file called base.tar or, if you’re doing compression it will be base.tar.gz

and then there will be one tar file for each tablespace. So, in a lot of ways

that’s easier for dealing with scenarios where you have more than one

tablespace.

Always use -x or -X (using -x is equivalent to -X fetch) to include WAL

files in the backup. You can use the following command:

$ pg_basebackup -x -D /path/to/backupdir

pg_basebackup can also support compressed backups. It uses

standard gzip compression. You can use the “-Z” option for that. One thing

to remember is if you use -Z, the compression is done by pg_basebackup

and not by PostgreSQL. So, if you run pg-basebackup across the network

to PostgreSQL, the data will be sent uncompressed from PostgreSQL to

pg_basebackup and then compressed and written to disk

Note  Compression is only supported for the tar format and
compression is CPU bound.

Chapter 4 Backup and Restore Best Practices

102

What Needs to Be Backed Up?

In order to actually use a base backup, what do you need?

You need all the transaction logs (WALs) generated on your system

from the beginning of the backup to the end of the backup. PostgreSQL

basically takes an inconsistent copy of your data directory and then it

uses the transaction log to make it consistent. So, if you do not have the

transaction log, it is not a consistent backup, which means you don’t have

a valid backup.

pg_receivexlog/pg_receivewal

One recommended way to set WAL backup is using the built-in PostgreSQL

tool called pg_receivexlog (which is pg_receivewal from PostgreSQL 10).

It is very easier to set up than your archive_command. You can run it on

your archive server, but do not archive to the same machine that your

database is on. If you lose the primary machine, you will lose both your

backups and your primaries.

If you run pg_receivexlog, it connects to PostgreSQL over the replication

protocol. It’s basically a PostgreSQL replication standby without PostgreSQL,

and it regenerates the log archive based on the replication data on your

archive server. It gives you a more granular recovery. With an archive

command, data gets sent in blocks of 16 megabytes; but with pg_receivexlog,

they get sent in chunks, as it uses streaming protocol to stream the WALs.

Hence, it doesn’t need to wait for the WAL segment to get completed. It is

safe against server restarts. If your server reboots in the middle of running

your archived command—like your cp command is running but it didn’t

finish and then the server rebooted—then data loss or data corruption

can happen. pg_receivexlog can take care of that, as it can follow timeline

switches on the master.

Chapter 4 Backup and Restore Best Practices

103

Always use pg_receivexlog together with a replication slot so that no

xlog will be removed before they back up. The replication slot ensures

that no WAL is removed from primary until they have been received by all

standbys. More information is available at: www.postgresql.org/docs/

current/warm-standby.html#STREAMING-REPLICATION-SLOTS.

pg_receivewal -D /log/archive -h master -S backup

-S is for replication slot.

Backup Retention

The next question that people end up asking after the backup setup is

“What about backup retention? How long am I going to keep my backups?”

The best way to get answers to these questions is to contact the customer.

If they want 10 years retention, that is fine but it needs lot of space, and if

they want restore it will take a lot of time. If customers can come up with

a strategy on how far they might need to go back for any situation, then

you can set up retention based on it. Once that is decided, here is a sample

script to remove your backups based on retention:

 #!/bin/bash

find /var/backups/basebackup -type f -mtime +30 -print0 | xargs

-0 -r /bin/rm

find /var/backups/wal -type f -mtime +7 -print0 | xargs -0 -r /

bin/rm

So, in this example, we are deleting all our base backups older than

30 days. Sometimes, maybe that is not the best thing. You might want to

keep some backups older than that in your staging server or copy them to

tape. And then we are saying delete all the transaction log in the archive

older than 7 days. So, that means going back one week, you can restore

using PITR to an individual transaction or microsecond level. Beyond that,

you can restore with the granularity of 1 day up to 30 days; once you’ve

reached that point, you can’t restore anymore.

Chapter 4 Backup and Restore Best Practices

http://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION-SLOTS
http://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION-SLOTS

104

�Other Backup Tools

There are a couple of tools a little bit more advanced than what

pg_basebackup can do. Those are:

•	 pgBackRest

•	 Barman

Barman

The Barman tool is developed by the 2ndQuadrant company and written

in Python. Features of this tool are:

•	 Backup scheduling

•	 Log archiving

•	 Retention management

•	 Multiserver

•	 Restore shortcuts

It is gplv3 licensed. You can download from here: https://github.

com/2ndquadrant-it/barman. Documentation is available here: http://

docs.pgbarman.org/release/2.9/.

It primarily uses SSH and rsync to transfer both base backups

and transaction logs. It is pretty simple to set up. You can go through

documentation to set it up. However, you need to come up with a backup

strategy before you set it up.

pgBackRest

pgBackRest is another open source tool to set up backups. It is built by the

CrunchyData company and written in Perl. Features of this tool are:

Chapter 4 Backup and Restore Best Practices

https://github.com/2ndquadrant-it/barman
https://github.com/2ndquadrant-it/barman
http://docs.pgbarman.org/release/2.9/
http://docs.pgbarman.org/release/2.9/

105

•	 Backup scheduling

•	 Log archiving

•	 Retention management

•	 Multiserver

•	 Restore shortcuts

•	 Obsessive validation

That’s a fairly similar list of features when compared with Barman.

These tools solve the same problem, so the feature list is similar.

However, once you get into the details, the implementations are different.

Documentation is available here: https://pgbackrest.org/.

It’s MIT licensed. It uses SSH but it doesn’t use rsync. It uses its own

protocol tunneled over SSH. The protocol is the enabler of the features

that pgBackRest has that Barman doesn’t. In particular, it supports parallel

backup sessions so you can scale out and make your backups run faster.

For most people, single threaded backups are not really a problem. But if

your database is big, being able to do multithreaded backups can save your

backup time significantly and also obviously your restore time when you’re

getting things back, which is more important.

It also supports full differential and incremental backups, and it does

this at a segment basis. In PostgreSQL, we have all our tables split into

segments of one gigabyte, and backrest basically functions like “if nothing

in that one gigabyte has been modified, then I don’t need to back it up

again. If even a single byte has been modified, I’ll copy the whole segment.”

Because if you actually want to look at every block, it’ll just take too long to

figure out if something has changed. Doing it at a gigabyte means if large

portions of your database are read-only, your backups will be much faster

because we can just skip that and get it from the previous full or differential

backups.

It does not support concurrent backups

Chapter 4 Backup and Restore Best Practices

https://pgbackrest.org/

106

�Restore Your Database
Until now, we have talked about backup types. Let us look at restoring

database backups (logical and physical).

�Logical Backups

There are two ways to restore a PostgreSQL database:

•	 psql for restoring from a plain SQL script file created

with pg_dump

•	 pg_restore for restoring from a .tar file, directory, or

custom format created with pg_dump

Restoring a Plain Dump File

It is pretty simple to restore a plain dump file generated by pg_dump. You

can just use the “psql” utility for that. The following is an example:

psql -d db -U user -p port -h host -f dump_file.sql

Restoring Custom/tar Format Dump Files

You can use pg_restore to restore custom/tar format dump files. The

following is an example:

restoring a custom format file

$ pg_restore -U db_user -d db_name_new -v -1 db_name.dmp

restore a single table from the dump

$ pg_restore -U db_user -d db_name_new --table=mytable -v -1

db_name.dmp

restore a single function from the dump

$ pg_restore -U db_user -d db_name_new --function=myfunc -v -1

db_name.dmp

Chapter 4 Backup and Restore Best Practices

107

where db_user is the database user, db_name is the target database

name, and db_name.dmp is the name of your backup file.

If you use pg_restore, you have various options available, for example:

-c to drop database objects before recreating them

-C to create a database before restoring into it

-e exit if an error has encountered

-F format to specify the format of the archive

Use “pg_restore -?” to get the full list of available options.

�Restore Physical Backups

If it is offline backup that was taken when the database was down, then

restore is pretty straightforward. You can just copy the backup directory to

the location where you want your new restore database to run, and unzip

and start the instance using pg_ctl.

$ pg_ctl stop postgresql

$ sudo rm -rf /path/to/data/directory/*
$ tar -xvC /path/to/data/directory -f /path/to/dumpdir/base.tar.gz

$ pg_ctl start postgresql

�Point-In-Time-Recovery
To do a PITR, you need a full backup and WALs generated to the point of

recovery you want. You just have to copy all your archives to some location

and create a recovery.conf file in a restored data directory location.

restore_command = 'cp /tmp/demo/archive/%f "%p"'

recovery_target_time = '2019-08-31 15:00:00'

The restore_command specifies how to fetch a WAL file required by

PostgreSQL. It is the inverse of archive_command. The recovery_target_

time specifies the time until we need the changes.

Chapter 4 Backup and Restore Best Practices

108

All available recovery settings are here: www.postgresql.org/docs/11/

recovery-target-settings.html.

Once the recovery.conf file is ready with the preceding contents, you

can start the server using pg_ctl.

pg_ctl -D /restored/data/directory start

If it has to apply archive files on top of backup for recovery, you would

see messages like the following in the log file:

LOG: restored log file "000000010000000300000022" from archive

LOG: restored log file "000000010000000300000023" from archive

LOG: restored log file "000000010000000300000024" from archive

Once recovery is completed, you can see the following messages:

LOG: consistent recovery state reached at 0/40156B0

LOG: database system is ready to accept read only connections

You can now use the recovered database.

�Design a Backup Strategy
Now it’s time to set up a backup strategy based on the information from the

earlier “Gather Information to Set Up a Backup Strategy” section. You can

design backups as:

•	 Daily backups

•	 Weekly backups

•	 Monthly backups

•	 Yearly backups

You can find a few backup scripts to schedule automated backups

here: https://wiki.postgresql.org/wiki/Automated_Backup_on_Linux.

Chapter 4 Backup and Restore Best Practices

http://www.postgresql.org/docs/11/recovery-target-settings.html
http://www.postgresql.org/docs/11/recovery-target-settings.html
https://wiki.postgresql.org/wiki/Automated_Backup_on_Linux

109

�Daily Backups
Based on the information gathered, there might be some databases that

need backup every day. Typically, databases with the following behavior

might need a daily backup:

•	 Databases that hold users’ login (of a web site)

information

•	 Critical databases with small size

�Weekly Backups
Medium-sized databases will fall under this category. This is a very

common type of backup that an administrator prefers.

�Monthly Backups
If you have a backup retention of a few months, then it is recommended to

have a monthly backup policy as well. This way, you can avoid restoring of

weekly backup, which will reduce the restoration time.

�Yearly Backup
Very few databases need a yearly backup policy. If you have a backup

retention of multiple years, then it is recommended. These kinds of

databases might hold historical data and are mostly used for archival

purposes.

�Monitoring Backups
It is not sufficient to just add cron jobs for backup; you need to monitor

them too!

Chapter 4 Backup and Restore Best Practices

110

Be sure to monitor:

•	 Whether your backup jobs are completing successfully

•	 The time taken for each backup, and keep an eye on

how this goes up

Additionally, you should also have another cron job that picks up a

recent backup, tries to restore it into an empty database, and then deletes

the database. This ensures that your backups are accessible and usable.

Make sure you try restoring against the right versions of your PostgreSQL

server.

You should monitor this restoration cron job too, as well as the time

taken for the restoration. The restoration time has a direct impact on how

long it’ll be before you are back online after a database crash.

�Summary
In this chapter, we have talked about what information you need to set

up a backup strategy and how to set up a backup policy once you get the

required information. We have also covered types of backups (physical and

logical), how to take a backup, and how to restore the backups. Monitoring

backup is also important, as discussed. In the next chapter, we will talk

about the importance of logging database activities and best practices for

enabling logging. We will also talk about monitoring the databases using

database queries and external tools.

Chapter 4 Backup and Restore Best Practices

111© Baji Shaik 2020
B. Shaik, PostgreSQL Configuration, https://doi.org/10.1007/978-1-4842-5663-3_5

CHAPTER 5

Enable Logging of
Your Database
and Monitoring
PostgreSQL Instances
In the last chapter, we talked about the stages in which information can

be gathered to set up backup/restore for a database. We also talked about

the types of backup and how to restore them when required. We walked

through how you can set up a backup strategy for your data. In this chapter,

we will talk about the importance of logging your database and what

parameters should be considered as part of logging. We will also talk about

when to log and how to use the information logged. We will go through

how important monitoring of a database is and what factors should be

considered while monitoring it. We will also cover a few monitoring tools

available on the market.

�Why/When/How to Log
Let us start with why logging is so important. You may be wondering why

you even want logs. There could be many reasons to enable logging:

112

•	 Maybe you want to know when your database was

restarted. Somebody did this and you were not aware of it.

•	 Dropped an object or updated/deleted some data

•	 Detecting inefficient queries

It is always fun and challenge to know about these things when they

happen and a great way to find out about that is in your PostgreSQL

activity log.

Logging has upsides and downsides. The upside is that you get lots of

information, which helps you in debugging the issues. The downside is

that logging can actually slow your system down so that’s something to be

aware of and to consider.

�Parameters to Set for Logging
There are a lot of different parameters in the PostgreSQL configuration file

(postgresql.conf), and the following are some important parameters that

need to be considered to set logging:

•	 log_min_duration_statement

•	 log_line_prefix

•	 log_checkpoints

•	 log_connections

•	 log_disconnections

•	 log_lock_waits

•	 log_temp_files

•	 log_autovacuum_min_duration

Note  The logging_collector parameter should be enabled to log
anything in the database log files.

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

113

�log_min_duration_statement

This parameter causes each statement that ran for at least the specified

number of milliseconds to be logged. However, setting this parameter to

a lower value causes more statements to be logged, potentially resulting

in very large log files and increasing the amount of write activity on the

server. The main advantage of configuring this parameter is identifying

slow queries that would require optimization, and it is usually set at a value

above which queries would be considered unacceptably slow.

This parameter is what really allows you to get the information that you

need in the log file for something like pgBadger (it is a log analysis tool that

gives you detailed reports and graphs) or even some of the other tools. These

tools enable you to analyze those queries and roll them up, and give you that

the statistical information that you are looking for. Setting it to zero means

you are going to log every single statement sent to PostgreSQL. If you want to

set it to be a little bit less aggressive than that, you can set the number above

0; the number is in milliseconds by default. You can see both the duration

and the statement on the same log line like as follows:

LOG: duration: 2008.448 ms statement: select pg_sleep(2);

You will see the preceding log line in log files under the $PGDATA/

pg_log (in PostgreSQL 9.6 or older) or $PGDATA/log (in PostgreSQL 10 or

higher) directory.

This is really important for log analysis tools. If you’re using log

statement and log duration, you end up with those on two different lines,

which becomes much more difficult to analyze.

Note I f you set this parameter to 0, it generates a log of log files
if you have a busy database (where lots of queries are sent to the
database). Make sure you have enough disk space for log files and
have a retention to clean up unnecessary log files.

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

114

�log_line_prefix

When reading logs, it’s essential to know precisely when a query, action,

or error occurred, which database it occurred in, which user called it, and

which statements preceded it in the same transaction. For that reason,

log_line_prefix should be properly configured so that this information is

available.

The recommended value for this parameter is ‘%t [%p]: [%l-1] query=%

u,user=%u,db=%d,app=%a,client=%h ’.

%a Application name

%u User name

%d Database name

%r Remote host name or IP address, and remote port

%h Remote host name or IP address

%p Process ID

%t Time stamp without milliseconds

%m Time stamp with milliseconds

%i Command tag: type of session’s current command

%e SQLSTATE error code

%c Session ID

%l Number of the log line for each session or process, starting at 1

%s Process start time stamp

%v Virtual transaction ID (backendID/localXID)

%x Transaction ID (0 if none is assigned)

%q Produces no output, but tells non-session processes to stop at

this point in the string; ignored by session processes

%% Literal %

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

115

It is essentially ripped from exactly what pgBadger is looking for by

default, which I find to be a really good log line prefix. You can customize

it if you want, and pg badger actually allows you two options to set it to

whatever to configure it so that it knows what kind of log line prefix you

have.

2019-12-03 10:13:41 IST [46369]: [7-1] query=postgres,user=p

ostgres,db=postgres,app=psql,client=[local] LOG: duration:

2000.434 ms statement: select pg_sleep(2);

In the preceding line, we have the timestamp (2019-12-03 10:13:41

IST); this is really important for being able to do an analysis across time

of when a query ran. Process ID session and line number ([46369]: [7-1])

are pretty straightforward. The logged in user (user=postgres) is actually

the user that logged into the database; if you change the user using

something like set role, this doesn’t update. It will still be the user that was

logged in as. So, that is something to just be aware of when you’re using

that. The database that was logged into is db=postgres and app=psql is

the application name if set. So, many people may not be aware that we

have this capability to have the application name. If you are using the

psql terminal, it will be set to “psql” or if it is pgAdmin, it will set it to

“pgAdmin.” But if you’re writing your own custom code, you can have

this set to essentially whatever you want for each database connection;

that can be really handy for being able to break up your log file based on

what applications are connecting. You can use the “application_name”

parameter for that purpose.

�log_checkpoints

A checkpoint is a database process that occurs in order to synchronize

the database blocks in the buffer cache to data files on the disk. During a

checkpoint, dirty pages from shared_buffers will be written to disk by the

background writer, or as of PostgreSQL 9.2, the checkpointer process.

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

116

Checkpoints are very disrupting to your database performance and

can cause connections to stall for up to a few seconds while they occur.

Starting in PostgreSQL 8.3, you can get verbose logging of the checkpoint

process by turning on log_checkpoints:

2019-12-03 10:16:32 IST [46135]: [6-1]

query=,user=,db=,app=,client= LOG: checkpoint complete: wrote

64 buffers (0.4%); 0 WAL file(s) added, 0 removed, 0 recycled;

write=0.002 s, sync=0.002 s, total=0.008 s; sync files=16,

longest=0.000 s, average=0.000 s; distance=711 kB, estimate=711 kB

log_checkpoints is going to tell us all the information about when a

checkpoint started, why it started, how long it ran, and a whole bunch

of other really useful statistical information that tools like pgBadger can

pick up and provide information to you about. You may go into a place

where people are complaining that slow queries are happening—like every

couple minutes or every few minutes. That is probably because every few

minutes a checkpoint starts and we write out all of the data to disk. While

we are writing out all of the data, the entire system ends up being slow or

inquiries are slower, so that’s something to be looking for. Sometimes you

can correlate that between when the checkpoints are happening vs. when

the queries are happening, which is really useful information

�log_connections and log_disconnections

This is a straight-up connection logging information, just logging the

connections and disconnections. It is pretty straightforward: really

important and really useful but not too complicated.

Enabling these parameters, you end up with three log entries:

2019-12-03 10:17:47 IST [46595]: [1-1] query=[unknown],u

ser=[unknown],db=[unknown],app=[unknown],client=[local]

LOG: connection received: host=[local]

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

117

2019-12-03 10:17:47 IST [46595]: [2-1] query=postgres,user=post

gres,db=postgres,app=[unknown],client=[local] LOG: connection

authorized: user=postgres database=postgres

2019-12-03 10:18:33 IST [46595]: [3-1] query=postgres,user=pos

tgres,db=postgres,app=psql,client=[local] LOG: disconnection:

session time: 0:00:45.725 user=postgres database=postgres

host=[local]

You get a connection received entry and then you get the actual

authentication information when the connection’s been authorized and

then you get a disconnection. So, this can help you analyze how long

connections have been made to the database; in particular, if you have

a lot of short-lived connections, that’s usually a bad thing. You actually

want to use a connection pool. More about connection pool is covered in

Chapter 7.

�log_lock_waits

Logging of log_lock_waits is another really important one that people

don’t always realize. Your query slows because it may be waiting on a lock

on a table or a row. This happens all the time and people don’t know it. If

you turn on log_lock_waits, after one second PostgreSQL does something

called a deadlock check. It will run this deadlock checking routine, which

looks to see if there are any deadlocks between the existing queries that are

running. It will log lines like the following:

2019-12-03 10:21:46 IST [46729]: [4-1] query=postgres,user=pos

tgres,db=postgres,app=psql,client=[local] LOG: process 46729

still waiting for ShareLock on transaction 573 after 1000.186 ms

2019-12-03 10:21:46 IST [46729]: [5-1] query=postgres,user=p

ostgres,db=postgres,app=psql,client=[local] DETAIL: Process

holding the lock: 46705. Wait queue: 46729.

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

118

2019-12-03 10:21:46 IST [46729]: [6-1] query=postgres,user=p

ostgres,db=postgres,app=psql,client=[local] CONTEXT: while

updating tuple (0,1) in relation "lock_test"

2019-12-03 10:21:46 IST [46729]: [7-1] query=postgres,user=po

stgres,db=postgres,app=psql,client=[local] STATEMENT: update

lock_test set id=4;

The first line is saying that process 46729 is still waiting for this

sharelock on transaction 573. After waiting around for a second deadlock

timeout hit, we ran the deadlock checker and found out that we’re waiting

on a lock. We also know what’s holding that lock. So, the process 46705 is

holding the lock that we need. We also have the information about what

kind of lock we are waiting on. This is very useful information for doing

deadlock and lock analysis; if you don’t have this enabled, it’s definitely

recommended to enable it.

�log_temp_files

This parameter is to log the information about temp files. Whenever you

have temp files being created, that means the database has to do some

amount of disk IO.

2019-12-03 10:27:35 IST [46729]: [26-1] query=postgres,user=pos

tgres,db=postgres,app=psql,client=[local] LOG: duration: 9.927

ms statement: select * from temp_test order by id;

2019-12-03 10:27:40 IST [46729]: [27-1] query=postgres,

user=postgres,db=postgres,app=psql,client=[local] LOG: temporary

file: path "base/pgsql_tmp/pgsql_tmp46729.1", size 147456

In the preceding case, you can see that the query ran is “select ∗ from

temp_test order by id;”. So, what’s happened is that we’re doing a sort and

it is using a temp file to do this sort. That tends to be expensive because it

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

119

means you’re going out to disk to do a sort. You can detect this and realize

it by logging these temp files that PostgreSQL creates. You just set log temp

files equal to 0 and then every time PostgreSQL creates a temp file when

it’s trying to run a query for anything, it’s going to log information about

what that query was. This can be really helpful for figuring out the reason

behind slow queries that generate lot of temp files.

�log_autovacuum_min_duration

Another thing that people often complain about is “autovacuum is running

and it’s vacuuming the stuff and it is killing my system and I want to stop

it.” Do not ever do that, for starters. It just becomes a real problem because

you end up with a lot of bloat. We will cover more about bloat/vacuum in

Chapter 6.

If you set log_autovacuum_min_duration to zero, then you can see a

line like the following when autovacuum occurs on a table:

2019-12-03 10:30:28 IST [47078]: [1-1]

query=,user=,db=,app=,client= LOG: automatic vacuum of table

"postgres.public.autovac_test": index scans: 0

 �pages: 45 removed, 0 remain, 0 skipped due to pins, 0

skipped frozen

 �tuples: 10000 removed, 0 remain, 0 are dead but not yet

removable, oldest xmin: 577

 buffer usage: 161 hits, 0 misses, 4 dirtied

 avg read rate: 0.000 MB/s, avg write rate: 6.793 MB/s

 �system usage: CPU: user: 0.00 s, system: 0.00 s,

elapsed: 0.00 s

You can see everything that VACUUM is doing across every table every

time, and you get all of this wonderful information like how many dead

tuples were found, how many it was able to mark as completely removed,

and how many are dead but not removable.

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

120

�Monitoring Databases
Logging is a key thing for monitoring. Lots of monitoring tools are

dependent on logging information for monitoring. Monitoring helps you to

identify issues proactively and resolve them before they actually happen.

More than how to monitor, we will learn what to monitor in this

chapter. The intention is that there are lots of tools available on the market

with detailed documentation on how to use them; however, it is important

to know what to monitor first. So, we are going to discuss:

•	 Levels of monitoring

•	 OS level monitoring

•	 Database level monitoring

•	 Monitoring/reporting tools available

�Levels of Monitoring
You cannot just monitor everything all the time, so there are various levels

of monitoring:

•	 Every minute

•	 Every 5 mins

•	 Every hour

•	 Every 6 hours

•	 Daily once

•	 Weekly once

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

121

So, some values of some features you can monitor daily once, or weekly

once is also fine. But some things like number of database sessions or load

by each session you would ideally like to monitor every minute or 5 minutes.

It will help your debugging in case of database issues. If you want to debug

which session yesterday at 5 o’clock was taking more CPU and RAM and

what it was running, then that particular historical data has to be present.

Without the historical data, you cannot understand or cannot debug

which sessions or what queries are impacted by the session and how many

sessions are impacted. So, those parameters should be captured every

minute or 5 minutes.

However, if you capture every minute, you will have more data in your

monitoring system. This will impact the amount of data required in the

monitoring system to capture and store it. So, usually depending on the

storage space at your monitoring tool, decide whether it is 1 or 5 minutes

and take it forward from there.

�OS Level Monitoring
You should have OS level monitoring, as sometimes the reason behind

the slowness of a database is OS hardware or resource utilization. So, what

should be monitored at the OS level? And how should it be monitored?

•	 CPU

•	 Memory (RAM/SWAP)

•	 IO

•	 Network

•	 Filesystem

You can monitor all hardware-related metrics through the “sar”

command as explained in the “sar” subsection of the “Monitoring/

Reporting Tools” section later in the chapter.

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

122

�CPU

While monitoring CPU utilization, you should look at idle time, user CPU

usage, how much the system is using, total CPU usage, and how many CPU

context switches. If there are more context switches, it is likely you don’t

have enough cores to handle your processes.

�Memory

Keep an eye on RAM and swap usage. If swap is getting used, monitor how

many swap-ins or swap-outs are happening and page-ins or page-outs are

happening. This helps in knowing whether memory is sufficient or you

need to add additional memory.

IO

You should monitor your input/output operations per second (IOPS). It

tells you how much read/write is happening with your hard disk, which

helps to know if your app is more read/write intensive. If there are more

reads, your system is slow because the amount of data requested is high.

You have to monitor IO to know this information.

You would then know the system you have is enough to support

required IOPS or needs upgrade.

�Network

Monitor the network to see how much data is going in and out. If the

user is requesting huge data flowing in and out of the system, your

network may get stuck. You need to monitor how much network input

and output is happening so that you can allocate network bandwidth

accordingly.

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

123

�Filesystem

Monitor filesystem space usage so that you can avoid database down

issues when it is full. This is proactive monitoring. You can set an alarm on

70% or 80% full and when the alarm raises, you can add more storage or

remove unnecessary things from the filesystem.

�Database Level Monitoring
So, we are going to talk about what should be monitored at the database

level. Let us differentiate on the basis of frequency of monitoring.

�Frequent Monitoring

The following database information needs frequent monitoring every

minute or 5 minutes:

•	 Active session

•	 Inactive session

•	 Long-running query (session query running time)

•	 Locks

•	 Waiting sessions

•	 SQL queries being run

•	 CPU and memory occupied by each session

•	 Number of connections

•	 Primary/standby delay

•	 Any errors in logs

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

124

�Daily or Weekly Basis

Other database-related information that can be monitored on a daily or

weekly basis is:

•	 Database size

•	 Tablespace size

•	 Object (table/index) size

•	 Last vacuum/autovacuum

•	 Last analyze/auto analyzed

•	 Bloat on table/indexes

•	 Number of checkpoints

•	 Number of wal files generated

It is very important to monitor how frequently your db/tablespace/

objects are growing. It helps in capacity planning, like how much data will

increase in the next few years. If you have this data, you can plan for it. If

you are monitoring through a tool, then select a tool that has the feature of

monitoring it.

Monitor how frequently VACUUM is running and when was the

last vacuum/analyze run. Based on this, you can make sure current

autovacuum settings are enough or you can reconfigure autovacuum or

analyze settings. It helps in performance improvement.

Monitoring bloat helps to remove the bloat on table/index and

improve performance. Another advantage is you can remove space if you

see object size is huge due to bloat.

Frequent checkpoints impact performance. If checkpoints are

happening at a high rate, the issue would be loading too much data or lots

of update/delete. So, this information helps to investigate the issues.

If data load is huge, it generates a lot of wals, which is a lot of IO and

space. So, you can tune parameters to reduce the generation.

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

125

�Monitoring/Reporting Tools
There are various methods of monitoring a production system that can be

used to identify issues with system load and throughput. There are many

open source or enterprise tools available on the market for monitoring.

Tools information is available here: https://wiki.postgresql.org/wiki/

Monitoring.

Here are some tools you can consider using. We are not going to cover

all the tools, but a few:

•	 pgBadger

•	 pgCluu

•	 sar

•	 pg_buffercache

•	 Nagios

•	 Zabbix

•	 datadog

�pgBadger

pgBadger is a log-analysis tool specifically for PostgreSQL. It produces a

detailed report of activity on the database server (or at least activity that

makes it into the log files), including temp files, slow queries, VACUUM

operations, connections, and many other sets of information. It’s always

advised to use the latest version, as it will contain fixes and the latest

analysis features.

It can be downloaded from here: https://pgbadger.darold.net/.

It’s often necessary to enable various logging parameters ahead of time

for the reports to contain useful information. These are typically:

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

https://wiki.postgresql.org/wiki/Monitoring
https://wiki.postgresql.org/wiki/Monitoring
https://pgbadger.darold.net/

126

logging_collector = on

log_line_prefix = '%t [%p]: [%l-1] user=%u,db=%d '

log_min_duration_statement = 2s

log_checkpoints = on

log_connections = on

log_disconnections = on

log_lock_waits = on

log_temp_files = 0

log_autovacuum_min_duration = 0

Don’t use the preceding values blindly, but adjust each setting to

be appropriate to the customer’s system. Setting certain parameters too

low (like log_min_duration_statement) could adversely affect database

performance on a live system due to a very high volume of logging.

�pgCluu

pgCluu monitors an entire cluster for performance metrics, such as the

utilization of CPU, memory, swap, system load, number of processes, block

IO, changes in the size of individual databases, database connections,

temporary files, and many other measurements. It can be downloaded

from here: https://github.com/darold/pgcluu.

It comes in two parts: the collector process (pgcluu_collectd) and the

report-generating tool (pgcluu).

Typical usage would be:

mkdir /tmp/stat_db/

pgcluu_collectd -D -i 60 /tmp/stat_db/ -h localhost -d postgres

This would start collecting data every 60 seconds. Collection would

stop with:

pgcluu_collectd -k

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

https://github.com/darold/pgcluu

127

You’d then generate the report:

mkdir /tmp/report_db/

pgcluu -o /tmp/report_db/ /tmp/stat_db/

That directory will then contain an HTML report that can be opened in

the browser. All files in that directory will be needed.

�sar

sar (meaning System Activity Report) monitors CPU activity, memory,

paging, device load, and network activity. It’s readily available (and usually

already running) on most modern Linux installations via the sysstat

package; this makes it very useful for situations where the customer either

doesn’t have monitoring set up or won’t let you access it.

Find out if sar is already enabled and running by checking for collected

data in /var/log/sa (CentOS) or /var/log/sysstat (Ubuntu). saXX files are

binary data; sarXX are converted text.

Check the poll cycle by looking at the appropriate crontab in /etc/

cron.d/sysstat. The default is 10 minutes; determine if this is frequent

enough for your purposes.

Verify that collection of disk stats is enabled in the config file: /etc/

sysconfig/sysstat (CentOS) or /etc/default/sysstat (Ubuntu). You should

find an OPTIONS parameter set to “-S DISK.”

If sar is already running, you can just use the already collected

statistics. Only the binary data files will hold the most recent poll; the

conversion to text only happens once daily, so if you want immediate stats,

you need to run the conversion yourself.

If sar is not running, you can manually collect the data:

sar [stats options] -o [output_file] [poll interval in seconds]

[number of polls]

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

128

An example is:

sar -A -o my_cool_stats 60 30

-A = collect all stats

-o = store stats in this file (in binary format)

60 = collect every 60 seconds

30 = collect 30 times

Note that the -A option generates about 18MB of data per poll; plan

space accordingly.

You can then use the following command to generate a report:

sar -A -f my_cool_stats > my_cool_stats.txt

Note that the conversion from binary to text must be run on a machine

with the same architecture as the collector. Usually you will do the

conversion on the same machine that did the collection.

Here are useful options, if you don’t want to collect all stats with -A.

-b for IO stats – can be useful in tuning checkpoint_completion_target and

checkpoint_segments.

-dp activity per block device; pretty-print the block names (must use -S DISK

or -A when collecting) you REALLY REALLY want to pretty-print them

-n “DEV,EDEV” network stats, including errors

-r memory

-S swap

-u CPU usage (or -P “ALL” for CPU usage per process) – high % of system

time may indicate an issue with Transparent Huge Page compaction

-w context switching

-W pages swapped – a spike here may indicate tuning of shared_buffers

and work_mem/max_connections may be needed

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

129

What this looks like:

sar -bdprSuwW -n "DEV,EDEV" -f my_cool_stats > my_cool_stats.txt

The text data can be further analyzed in a spreadsheet or other

graphing tools.

You can also generate a graphical report directly from the binary data

using isag, ksar tools.

More information about data collection and conversion can be found

in the sar man pages.

�pg_buffercache

The pg_buffercache extension is useful to monitor which relations are

occupying space in shared memory. Permission will need to be obtained

from the customer before installing any extension such as this, and in

many cases it may not be possible to do so. If you do install it, it only needs

to be installed in one database, which can be one that isn’t used for any

production data.

Storing the results of the query that uses the pg_buffercache view

provided by this extension into a text file can reveal buffer page eviction

issues. This is where a single query might push out all pages frequently

used in the cache, meaning they need to be loaded back in, resulting in

periods where queries run slower. If you do this, ensure you output the

timestamp to see if there’s any correlation between those results and the

ones from pgBadger.

This is an example, where the query used to gather the buffer cache

data is put into a file at /tmp/pg_buffercache.sql. The query we’ll be using

is as follows:

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

130

SELECT now(), d.datname, c.relname, count(∗) AS buffers
FROM pg_buffercache b INNER JOIN pg_class c

 ON b.relfilenode = pg_relation_filenode(c.oid)

INNER JOIN pg_database d

 ON b.reldatabase = d.oid

GROUP BY d.datname, c.relname

ORDER BY 4 DESC

LIMIT 10;

We then call the file using psql, request comma-separated output, and

append the results to a file. On Unix/Linux systems systems, we could then

run:

while [true]; do psql -AtX -F ',' -f /tmp/pg_buffercache.sql

postgres >> /tmp/pg_buffercache.log;sleep 5;done

This would produce an output for buffers every 5 seconds.

�Summary
In this chapter, we covered why logging is important and how to log and

what information to log. We have also talked about what to consider while

turning on the logging parameters and how to use the information logged.

We have covered monitoring procedures, including what to monitor and

how frequent monitoring is required. In the next chapter, we will talk about

what is bloat in the database and how it can be removed. And we will cover

what are the best practices to execute maintenance activities like VACUUM

and reindex in detail.

Chapter 5 Enable Logging of Your Database and Monitoring PostgreSQL Instances

131© Baji Shaik 2020
B. Shaik, PostgreSQL Configuration, https://doi.org/10.1007/978-1-4842-5663-3_6

CHAPTER 6

Execute Maintenance
In the last chapter, we talked about the importance of logging and how

to/when to/what to log. We looked at different logging parameters and

their use cases. And we covered what should be monitored at the OS and

database level, and details about a few monitoring tools. In this chapter,

we will start with the MVCC concept in PostgreSQL and will continue

with the maintenance activities in PostgreSQL and how to schedule them

based on information available. We will also look at how autovacuum and

VACUUM works in PostgreSQL and how to improve the performance of

the database. We will also cover another important maintenance activity

which is REINDEX.

�What is MVCC
Multiversion concurrency control (MVCC) is currently the most popular

transaction management scheme in modern database management

systems (DBMSs). Although MVCC was designed in the late 1970s, it is

used in almost every major relational DBMS released in the last decade.

Maintaining multiple versions of data potentially increases parallelism

without sacrificing serializability when processing transactions.

�MVCC in PostgreSQL
To understand how MVCC perform when processing transactions in

modern hardware settings, we need to understand four key design

decisions: concurrency control protocol, version storage, garbage

132

collection, and index management. Concurrency control protocol talks

about how concurrent sessions in a database can be managed. This is

where you see different transaction levels. Version storage is storing

different versions of data. PostgreSQL stores old and new versions of data

in case of update/delete. Garbage collection is a process to remove old

versions of data. Index management is a way to store the index data.

Here is an example to understand MVCC in practical terms. Every

statement that modifies the database generates a transaction ID, which

is represented by a pseudo column xid within each table. And there are

a couple of other pseudo columns, xmin and xmax, which represent

transaction IDs depending on the status of the row.

Consider a table “test” with one column. Now see what happens if a

row is inserted:

postgres=# CREATE TABLE test(ID int);

CREATE TABLE

postgres=# INSERT INTO test VALUES(1);

INSERT 0 1

postgres=# SELECT xmin, xmax, id FROM test;

 xmin | xmax | id

------+------+----

 1739 | 0 | 1

(1 row)

So, xmin represents the xid (transaction ID) through which the row

was inserted and xmax is always 0 for visible rows. xmax > 0 represents an

expired row, which is not visible.

There are some cases where xmax > 0, but still the row is visible. It
is possible if you update/delete something in a transaction and it is
rolled back.

Chapter 6 Execute Maintenance

133

�If the Row Is Deleted

The row gets deleted and a version of that row still appears to maintain the

MVCC. In this scenario, for the deleted row, xmin is the xid of the INSERT

statement through which the row was inserted and xmax becomes the xid

of DELETE statement through which the row was deleted.

�If the Row Is Updated

In PostgreSQL, UPDATE is considered as DELETE + INSERT. The old row

gets deleted and the new row gets inserted. Both the rows are maintained

to fulfil MVCC. In this scenario, for the old row, xmin is the xid through

which the row was inserted and xmax is the xid through which the row

was updated. For the new row, xmin is the xid through which the row was

updated and xmax is 0, as the row is visible.

Figure 6-1 illustrates MVCC behavior.

Figure 6-1.  MVCC behavior

Chapter 6 Execute Maintenance

134

�Why/How—Maintenance Activities
The first question that comes to mind when we hear about maintenance

is “why would we need maintenance at all?” As explained in the “MVCC

in PostgreSQL” section, PostgreSQL uses different row versions as a part of

MVCC behavior. So, when you DELETE or UPDATE a table, it creates two

versions of data, in which one is visible and the other is invisible. Those

invisible rows, which we call “dead tuples” (we call it table/index bloat as

well), need to be cleaned up. This is where we need maintenance.

The next part of the question is “how can we do maintenance?”

VACUUM is a process to clean up dead tuples.

�Table and Index Bloat
Table and index bloat is caused by deleted or updated rows not being

VACUUMed. This means that such rows will occupy space and cannot be

reused until cleaned up. Such a state can cause tables to swell in size, even

if only UPDATEs are issued against the database.

The causes of this are either locks being held by long-running

transactions (although this has been mitigated somewhat since

PostgreSQL 8.4), or the autovacuum configuration for the database and/or

specific tables isn’t aggressive enough.

A query to get the most bloats tables and indexes is available in

PostgreSQL wiki:

https://wiki.postgresql.org/wiki/Show_database_bloat.

If there are tables or indexes with more than 10% bloat, and where

the number of wasted bytes is significant (e.g., 200MB), these should be

included in the report. Should there be a large number to report, put them

into a separate text file instead and reference that file in the report, which

should then be provided to the customer along with the final report.

Chapter 6 Execute Maintenance

https://wiki.postgresql.org/wiki/Show_database_bloat

135

�AUTOVACUUM/VACUUM
Let us talk about AUTOVACUUM a bit.

•	 What does autovacuum do?

•	 How does autovacuum work?

•	 What else important can autovacuum daemon do

•	 autovacuum parameters

•	 VACUUM strategies

•	 autovacuum IO overhead

�What Does Autovacuum Do?

Modern (classical) databases must deal with two fundamental problems:

•	 Concurrent operations: For that they can use

transactions.

•	 Failures: For that they can recover to the last successful

transaction using WAL.

To live with the first problem, concurrent operations, databases

usually implement some kind of concurrency scheduling algorithms and

transactions. The second problem is failures; if something goes wrong, we

usually have a WAL algorithm for PostgreSQL.

Technically, that means there is a combination of locking and MVCC

algorithms that provides transactions support. Undo and redo information

is stored somewhere to make recovery possible. PostgreSQL keeps redo

like many other databases in WAL, but undo is kept a bit nontraditional. It

is kept in data files itself. For example, Oracle has some undo information

and special segments that are called undo segments, and db2 stores some

undo information in modern Linux versions.

Chapter 6 Execute Maintenance

136

Due to this kind of undo mechanism, PostgreSQL needs to deal with

the garbage collection process called VACUUM. Tuples that are not visible

to any running transaction should be removed. Otherwise, fragmentation

increases and you run into bloat.

VACUUM removes all pages that are not visible to any running

transaction. You need to run VACUUM very frequently to prevent bloat.

If you don’t, you will need VACUUM FULL. It rebuilds the table, which can

be painful. Autovacuum automates VACUUM process.

�How Does Autovacuum Work?

There are two different kinds of autovacuum systems: the autovacuum

launcher and the auotvacuum worker.

Let us look at how the flow works:

•	 The auotvacuum launcher is a continuous running

process, which is started by the postmaster.

•	 The launcher schedules autovacuum workers to start

when needed.

•	 The auotvacuum worker process is the actual

process that does the vacuuming. They connect to a

database that is determined by the launcher and, once

connected, they read the catalog tables to select a table

as a candidate for vacuuming.

•	 There is an autovacuum shared memory area, where

the launcher stores information about the tables in a

database that needs a VACUUM.

•	 When the autovacuum launcher wants a new worker

to start, it sets a flag in the shared memory and sends a

signal to the postmaster.

Chapter 6 Execute Maintenance

137

•	 Then the postmaster starts a worker. This new worker

process connects to the shared memory and reads the

information in the autovacuum shared memory area

stored by the launcher process and does its work.

�What Else of Importance Can the Autovacuum
Daemon Do?

Besides vacuuming, autovacuum also:

•	 Collects statistics for the optimizer (autoanalyze)

•	 Performs transaction wraparound autovacuum

�Autovacuum Parameters

Basically, two things that might make DBAs not so happy are seeing a

database with auto VACUUM switched off or autovacuum with default

settings. There are a lot of ideas about how to improve the performance of

the database, but turning off the autovacuum is definitely not one of them.

It is not always recommended to leave autovacuum settings at default

values.

If your autovacuum process runs for hours and interferes with some

data definition language (DDL) statements like ALTER/TRUNCATE, to

simply terminate it is not an option. It will just postpone the VACUUM,

and work will be cumulated. Especially for online transaction processing

(OLTP), autovacuum should be configured aggressively enough so it can

work with small portions of data quickly.

Chapter 6 Execute Maintenance

138

If you see the settings of autovacuum, they look something like this:

postgres=# select name, setting, context from pg_settings

where category ~ 'Autovacuum';

 name | setting | context

-------------------------------------+-----------+------------

 autovacuum | on | sighup

 autovacuum_analyze_scale_factor | 0.1 | sighup

 autovacuum_analyze_threshold | 50 | sighup

 autovacuum_freeze_max_age | 200000000 | postmaster

 autovacuum_max_workers | 3 | postmaster

 autovacuum_multixact_freeze_max_age | 400000000 | postmaster

 autovacuum_naptime | 60 | sighup

 autovacuum_vacuum_cost_delay | 20 | sighup

 autovacuum_vacuum_cost_limit | -1 | sighup

 autovacuum_vacuum_scale_factor | 0.2 | sighup

 autovacuum_vacuum_threshold | 50 | sighup

(11 rows)

autovacuum

This should nearly always be set to on, otherwise no autovacuuming will

occur in the database, and there will certainly need to be routine manual

vacuums applied.

autovacuum_max_workers

The default of 3 tends to be too low for anything except small database

systems. This should probably be set to something within the 6 to 12 range,

leaning more to the latter if there are a lot of tables with frequent updates

or deletes.

Chapter 6 Execute Maintenance

139

autovacuum_naptime

It is minimum delay between autovacuum runs. The default of 1 min may

be sufficient for some systems, but on busier ones with many writes, it may

be beneficial to increase this to stop autovacuum waking up too often.

This should also be increased on systems with many databases, as this

setting determines the wake-up time per database. An autovacuum worker

process will begin as frequently as autovacuum_naptime / number of

databases.

For example, if autovacuum_naptime = 1 min (60 seconds), and there

were 60 databases, an autovacuum worker process would be started

every second (60 seconds / 60 databases = 1 second). However, tuning

this setting too high can result in more work needed to be done in each

vacuuming round.

autovacuum_vacuum_threshold / autovacuum_analyze_threshold

These both determine the minimum number of rows in a table that need

to have changed in order for the table to be scheduled for an autovacuum

and an autoanalyze, respectively. The default for both is 50, which is very

low for most tables.

autovacuum_vacuum_scale_factor / autovacuum_analyze_
scale_factor

These both determine the percentage of a table that needs to have

changes in order for the table to be scheduled for an autovacuum and an

autoanalyze, respectively. The default for the autovacuum_vacuum_scale_

factor is 0.2 (meaning 20%), and the autovacuum_analyze_scale_factor

is 0.1 (meaning 10%). Both of these figures are fine for tables of a modest

size (up to around 500MB), but for larger tables they are too high. If, for

example, there was a table that was 120GB in size, 24GB (20% of 120GB)

worth of dead tuples would have to exist before they can start being

Chapter 6 Execute Maintenance

140

cleaned up, which would be a lot of vacuuming work once it kicks in.

However, if large tables are in the minority on the database, it’s better to set

these parameters on the table level rather than in the config file.

autovacuum_vacuum_cost_delay

This defaults to 20ms, which is very conservative and can prevent VACUUM

from keeping up with changes. This should nearly always be decreased, in

many cases to as low as 2 ms. It may need to be tested with various settings

to see what’s needed to keep up.

�VACUUM Strategies

It is important to ensure that tables are being regularly VACUUMed.

The most useful starting metric is to ensure that all tables have been

VACUUMed at least once every 7 days (one week).

Although this number may need to be adjusted up or down, it is the

best starting point.

 SELECT schemaname,

 relname,

 now() - last_autovacuum AS "noautovac",

 now() - last_vacuum AS "novac",

 n_tup_upd,

 n_tup_del,

 �pg_size_pretty(pg_total_relation_size(schemaname||'.'

||relname)),

 autovacuum_count,

 last_autovacuum,

 vacuum_count,

 last_vacuum

 FROM pg_stat_user_tables

 WHERE (now() - last_autovacuum > '7 days'::interval

Chapter 6 Execute Maintenance

141

 OR now() - last_vacuum >'7 days'::interval)

 OR (last_autovacuum IS NULL AND last_vacuum IS NULL)

 ORDER BY novac DESC;

This list will provide a view to all of the tables and their VACUUM

need. If the list returns with a no rows, it means that all tables have been

VACUUMed within the last 7 days. The targetlist generated (if any) should

be prioritized by number of updates and deletes.

Manual VACUUM

One way of dealing with this table list is to manually run the command

“VACUUM VERBOSE <table>” against each of those tables. This will run an

unthrottled VACUUM of the table and provide output stats.

Throttle VACUUM

Although VACUUM doesn’t perform any blocking / locking operations, it

does perform a deep-scan of a table; this can cause an added stress to the

IO (and caching) subsystems. If the impact of VACUUM begins to affect

performance, you can cancel a running VACUUM by either ctrl+c or:

SELECT pid,

 state,

 query

 FROM pg_stat_activity

 WHERE query like '%VACUU%

 AND state = 'active';

Take the PID that you find, and run:

select pg_terminate_backend(pid);

From here, you can throttle VACUUM by setting the “vacuum_cost_

delay” parameter in just your session:

Chapter 6 Execute Maintenance

142

postgres=# set vacuum_cost_delay=10;

SET

postgres=# VACUUM VERBOSE pgbench_branches ;

INFO: vacuuming "public.pgbench_branches"

INFO: index "pgbench_branches_pkey" now contains 10 row

versions in 2 pages DETAIL: 0 index row versions were removed.

0 index pages have been deleted, 0 are currently reusable.

CPU 0.00s/0.00u sec elapsed 0.00 sec.

INFO: "pgbench_branches": found 0 removable, 10 nonremovable

row versions in 1 out of DETAIL: 0 dead row versions cannot be

removed yet.

There were 0 unused item pointers.

0 pages are entirely empty.

CPU 0.00s/0.00u sec elapsed 0.00 sec.

VACUUM

postgres=#

You can increment the cost delay in increments of 10 to increase

the amount of throttle you would like to enforce. It is possible (but not

recommended) to change this setting globally. Setting this like the

preceding will only affect your session and will reset when you close the

connection.

Schedule

To schedule this job, psql could be used to execute a job. Create an SQL file

(for example - vacuum.sql)

--set vacuum_cost_delay=

 VACUUM VERBOSE ANALYZE table1;

 VACUUM VERBOSE ANALYZE table2;

 VACUUM VERBOSE ANALYZE table3;

 etc...

Chapter 6 Execute Maintenance

143

Then, it can be run using psql from any host:

psql -h <server_ip> -f vacuum.sql -U <user> -d <db> >>

/log/vacuum.log

This could be done more dynamically. Create an sql file using the

following command (for example, gen_vacuum_list.sql):

 SELECT 'VACUUM VERBOSE ANALYZE ' || schemaname || '.' ||

relname ||';'

 FROM pg_stat_user_tables

 WHERE (now() - last_autovacuum > '7 days'::interval

 OR now() - last_vacuum >'7 days'::interval)

 OR (last_autovacuum IS NULL AND last_vacuum IS NULL);

Dump the output to a file, and execute the result against the database:

 psql -h <server_ip> -f gen_vacuum_list.sql -U <user> -d

<db> >> /tmp/vacuum_tables.sql

 psql -h <server_ip> -f /tmp/vacuum_tables.sql -U <user> -d

<db> >> /log/vacuum.log

�autovacuum IO

Autovacuum has its own mechanism to reduce IO overhead.

Autovacuum delays autovacuum_naptime seconds, then checks if

tables need a VACUUM. It runs VACUUM on a table until autovacuum_

vacuum_cost_limit is reached, then sleeps: autovacuum_vacuum_cost_

delay milliseconds.

This might not be a good algorithm, mostly because it was designed

for all the hardware. For example, it does not differentiate the logical

and physical IO. So, it may be IO from disk or IO from shared memory;

autovacuum behavior is the same for these mechanisms. So, the results

can be confusing. Modern SSDs are quite fast. So, such kinds of external

regulation of IO are not so necessary for them.

Chapter 6 Execute Maintenance

144

If you have slow disks, you can actually trick a bit by increasing

the amount of autovacuum_workers. Because autovacuum has three

workers by default, they begin to work with several tables. When they are

vacuuming these tables, actually the autovacuum_vacuum_scale_factor

comes in and probably the next table should be vacuumed for 1% of its

data changed. But due to a shortage of autovacuum workers, it cannot be

vacuumed at that point. By the time autovacuum workers are available,

this table data might change to 50% or 80%. This will increase the work

for autovacuum, which then, gets slow down. It actually depends on how

many CPUs you have for autovacuum workers though.

Another idea is to keep autovacuum_vacuum_cost_delay lower, maybe

at 10. Lower than 10 effectively does not help a lot but your autovacuum

workers will work as intensively as they can. PostgreSQL will not regulate its IO

activity in any way; in that case, you can try to regulate the activity externally

using ionice and renice on autovacuum workers on a regular basis.

In crontab:

* * * * * /usr/bin/pgrep -f 'postgres: autovacuum' | xargs

--no-run-if-empty -I $ renice -n 20 -p $ >/dev/null 2>/dev/null

* * * * * /usr/bin/pgrep -f 'postgres: autovacuum' | xargs

--no-run-if-empty -I $ ionice -c 3 -t -p $

In postgresql.conf:

autovacuum_max_workers = 20

autovacuum_vacuum_cost_delay = 10

Keep in mind that ionice could not work if you have a non-CFQ

(Completely Fair Queuing) scheduler on Linux.

Chapter 6 Execute Maintenance

145

�Index Fragmentation
Indexes can become fragmented over time the more they are updated.

This affects performance, and such indexes should be REINDEXed in

order to optimize their use. One way to identify index fragmentation is to

use the pgstattuple extension. If the customer grants you permission to

install it, you can use the pgstatindex function it provides like so:

postgres=# create table index_test (id int);

CREATE TABLE

postgres=# insert into index_test values (generate_series(1,10000000));

INSERT 0 10000000

postgres=# create index fragmented_index on index_test (id);

CREATE INDEX

postgres=#

postgres=# create extension pgstattuple ;

CREATE EXTENSION

postgres=# insert into index_test values (generate_series(1,10000000));

INSERT 0 10000000

postgres=# update index_test set id = 1 where id < 5000000;

UPDATE 4999999

postgres=# SELECT * FROM pgstatindex('fragmented_index');

-[RECORD 1]------+----------

version | 2

tree_level | 2

index_size | 366919680

root_block_no | 412

internal_pages | 177

leaf_pages | 44612

empty_pages | 0

deleted_pages | 0

avg_leaf_density | 82.79

leaf_fragmentation | 35.65

Chapter 6 Execute Maintenance

146

This shows that the index named "frangmented_index” is 35.65%

fragmented (as shown for leaf_fragmentation). On small indexes,

this may not be such an issue, but on larger indexes it can noticeably

degrade performance and occupy unnecessary space. A REINDEX would

defragment the index and therefore also reduce its size:

postgres=# reindex index fragmented_index ;

REINDEX

Time: 7960.823 ms (00:07.961)

postgres=# SELECT * FROM pgstatindex('fragmented_index');

-[RECORD 1]------+----------

version | 2

tree_level | 2

index_size | 224641024

root_block_no | 290

internal_pages | 98

leaf_pages | 27323

empty_pages | 0

deleted_pages | 0

avg_leaf_density | 90.09

leaf_fragmentation | 0

As you can see, in this example the leaf_fragmentation shows that

there’s now no fragmentation in the index, and index_size has gone from

366919680 bytes to 224641024bytes, reducing its size by almost half.

If using PostgreSQL 9.3 or above, you can use the following query to get

the details for every index at once:

SELECT a.indexrelname, b.*
FROM pg_stat_user_indexes a,

LATERAL pgstatindex(indexrelname) b

ORDER BY leaf_fragmentation DESC;

Chapter 6 Execute Maintenance

147

For previous versions, use:

SELECT (x.a).indexrelname, (x.b).*
FROM (SELECT a, pgstatindex(a.indexrelname) AS b

 FROM pg_stat_user_indexes a) x

ORDER BY leaf_fragmentation DESC;

However, on production system it is difficult to perform costly

operations like REINDEX, as this acquires various locks on the objects.

It is not advisable to rebuild indexes during peak times, and planning is

required for such operations. Plan such costly operations whenever there

will be a downtime for the application and database at the organizational

level. REINDEX acquires various locks on the objects and performs

dropping and recreating the index. PostgreSQL 8.2 onwards indexes can be

created concurrently as well if required.

REINDEX rebuilds an index using the data stored in the index’s table,

replacing the old copy of the index.

There are two main reasons to use REINDEX:

•	 An index has become corrupted, and no longer

contains valid data. REINDEX provides a recovery

method.

•	 The index contains a lot of mostly empty index pages

that are not being reclaimed. REINDEX provides a

way to reduce the space consumption of the index by

writing a new version of the index without the dead

pages.

Note  If you suspect corruption of an index on a user table, you can
simply rebuild that index, or all indexes on the table, using REINDEX
INDEX or REINDEX TABLE.

Chapter 6 Execute Maintenance

148

It is also recommended to perform ANALYZE after DDL changes

or REINDEX operations. PostgreSQL 9.0 provides a command-line tool

“reindexdb” that performs the same function. For more information

on reindexing, see: www.postgresql.org/docs/current/static/sql-

reindex.html.

�Other Database Maintenance
As a part of maintenance, it is recommended to get rid of:

•	 Unused indexes

•	 Duplicate indexes

�Unused Indexes

Indexes that aren’t used add maintenance overhead to the tables they

belong to and occupy space. As such, we should recommend that such

indexes are dropped.

A query to identify these indexes is as follows:

SELECT relname AS table, indexrelname AS index, pg_size_

pretty(pg_relation_size(indexrelid)) AS size

FROM pg_stat_user_indexes

WHERE idx_scan = 0

ORDER BY pg_relation_size(indexrelid) DESC;

If there are a large number of results (e.g., more than 15 rows), they

should be provided in a text file separate from the report. The results

are ordered by size so that the indexes occupying the most space are

listed first.

Chapter 6 Execute Maintenance

http://www.postgresql.org/docs/current/static/sql-reindex.html
http://www.postgresql.org/docs/current/static/sql-reindex.html

149

The benefits to removing redundant indexes are that they will free

up space, and will improve the performance of updates, deletions, and

insertions into tables because the indexes will no longer need to be

updated with those changes.

The decision to remove a particular index might be mitigated by

several possible factors:

•	 The traffic pattern currently in use does not cause the

indexes to be used, but anticipated changes would

cause them to be used.

•	 The planner is not properly using all the indexes it is

expected to. There are unusual cases where the query

execution planner should be using an index for execution

of SQL DML, but does not. In these cases the index should

not be removed, and the SQL in question examined and

possibly restructured to properly use the index.

�Duplicate Indexes

Duplicate indexes result in wasting space and increase overhead on table

updates. The following query will return duplicate indexes, but the indexes

may still differ in subtle ways, such as they could use a different collation

or index access method (btree, hash, gin, gist), so they should be manually

compared:

SELECT indrelid::regclass AS table, indkey AS column_numbers,

array_agg(indexrelid::regclass) AS indexes, pg_catalog.pg_get_

expr(indpred, indrelid, true) AS expression

FROM pg_index

GROUP BY indrelid, indkey, pg_catalog.pg_get_expr(indpred,

indrelid, true)

HAVING count(*) > 1;

Chapter 6 Execute Maintenance

150

This will return a row for each set of apparent duplicates, and an array

of duplicate indexes will be displayed in the “indexes” column.

�Summary
In this chapter, we have talked about MVCC in PostgreSQL, and how it

causes bloat in the database and how it can be removed. We explained

autovacuum work and its uses in detail. And we have covered the best

practices to execute maintenance activities like VACUUM and reindex

in detail. In the next chapter, we will talk about the importance of High

Availability and procedures to implement it in PostgreSQL. We will cover

some open source and enterprise tools to implement High Availability.

We will also cover the importance of a pooler, and available poolers in the

market and their implementation.

Chapter 6 Execute Maintenance

151© Baji Shaik 2020
B. Shaik, PostgreSQL Configuration, https://doi.org/10.1007/978-1-4842-5663-3_7

CHAPTER 7

High Availability
Procedures
and Implementing
a Pooler
In the last chapter, we talked about some basic things about MVCC in

PostgreSQL, and what is bloat in the database and how it can be removed.

We explained how autovacuum helps in removing bloat and improving

performance. We also covered the best practices to execute maintenance

activities like VACUUM and reindex in detail. In this chapter, we will talk

about the importance of High Availability (HA), and what information

we need to build an HA solution and the procedures to implement it

in PostgreSQL. We will cover some open source and enterprise tools

to implement HA. We will also cover the importance of a pooler, and

available poolers on the market and their implementation.

152

�Why High Availability?
This is a basic question that every DBA should answer. HA is to protect

your database from failures and helps in disaster recoveries. What exactly

does the “protection” mean? It is not a kind of repairing of the failed data,

but rather making data available for business in any way or at any cost. If

your database is unavailable due to some reason, you will have to make

sure that you have something to continue your application running with

the same data. Reasons for database failures could be:

•	 Due to a disaster

•	 Database crash and not starting up

•	 Database is unavailable due to heavy load

•	 Database is corrupted due to bad disk or bad hardware

�Gather Information to Set Up HA
Before setting up HA, we need to know what information is required. If you

have the right information, based on that you can suggest a HA solution.

So, here are few questions that you can ask your customer, to build the

solution. Every question has a purpose that helps in architecting:

	Q1.	 What are your expectations for this HA solution?

Purpose: This is a basic question that you

need answers to. You should ask about

customer expectations on HA solutions of

PostgreSQL. Customers come from different

database backgrounds and they expect similar kinds

of solutions are possible in PostgreSQL. It might not

be possible sometimes. PostgreSQL has its own HA

implementations and may not match with other

Chapter 7 High Availability Procedures and Implementing a Pooler

153

databases’ procedures all the time. So, if customers

have the same kind of expectations as their previous

databases (in case they are migrating from some

enterprise databases), then you should explain

possibilities and set expectations.

	Q2.	 What are your primary server specs?

Purpose: It is very important to know about the

customer’s primary server specs so that you can

suggest a similar kind of hardware for standby

servers as well. The reason behind having similar

hardware is if you do a failover, you would expect

the same behavior and performance on a newly

promoted standby server as well. So, if you have the

same hardware on both primary and standby, you

don’t see much difference in performance after the

failover.

	Q3.	 How many standby servers do you want?

Purpose: The number of standby servers depends

on customer choice. If they have a critical database

and need HA across their data centers as well, then

you would need to design a solution according to

that. We will be discussing a solution related to it in

this chapter.

	Q4.	 How critical is your data?

Purpose: Like the previous question, if they have a

critical database, you should suggest more standby

servers than one and more data centers than one.

Of course, you will have to take care of latencies for

different data centers.

Chapter 7 High Availability Procedures and Implementing a Pooler

154

	Q5.	 What are your RPO and RTO?

Purpose: This is very critical part at business level.

We should know the RTO and RPO in detail first

and then ask the customer for their expectations.

Based on the values, you can design your solution or

convince the customer if it is something that can’t

be achieved. RTO (recovery time objective) and RPO

(recovery point objective) are explained in the next

section.

	Q6.	 Is it a single data center or more than one?

Purpose: The customer may not be able to share

the details of their data centers until we specifically

ask them. So, this question helps us to know about

their data centers and implement cross-center

replications if needed.

	Q7.	 If you have more than one data center, how far apart

are they?

Purpose: If the customer wants a solution across

different data centers, you would need to know how

far apart they are located so that you would analyze

the replication lag upfront. You can explain to the

customer about lags between data centers,

	Q8.	 Are you specifically looking for any replication

solution?

Purpose: The customer has already done some

research and come up with some solutions

that include open source or enterprise tools for

implementation. You will need to look at the

architecture and the tools and let the customer

Chapter 7 High Availability Procedures and Implementing a Pooler

155

know if there are any known issues or limitations

using their architecture and tools. If needed, you

may want to redesign the solution.

	Q9.	 Do you open standby servers for read connections?

Purpose: PostgreSQL supports standby servers for

read purposes. So, if the customer is unaware it, you

may want to suggest read queries to standby servers

to reduce the load on the primary. However, if the

primary data is encrypted over the connections

while reading, you should let the customer know

and use the same process to pull the data.

	Q10.	 Do you want auto-failover solutions?

Purpose: Auto failover is something that

PostgreSQL doesn’t have in-built. You may want to

create a few scripts to do that, or there are a lot of

tools available on the market that you can use as a

part of your solution. We will be talking about the

tools in the next sections of this chapter.

	Q11.	 How much is the maximum delay that you are

expecting between the primary and standby?

Purpose: Some customers use standby servers

for read purposes. The way they use them could

be to modify data in the primary and retrieve it

immediately from the standby. If there is any lag

between the primary and standby, you will see

different data than expected. So, if you get the

details of how they are querying, you can suggest

timings to query if there is any lag that is expected.

Chapter 7 High Availability Procedures and Implementing a Pooler

156

�RPO and RTO
These are typical business items that need to be taken care of when you are

setting up HA solutions.

�RPO (Recovery Point Objective)
This represents the point to which you can stand to lose data at any

moment. It involves size of the data, that is, at the time of recovery in

disaster situations, how much data loss you can afford.

Sometimes, the standby may be behind (lag) the primary. In that case,

if you need a failover, it may lose some data that is not replicated to the

standby. So, test your solution with a production load and analyze how

much lag you see at any point. That will become your RPO.

�RTO (Recovery Time Objective)
It is all about 9s. It represents how long the application can be down. So,

this is the recovery time to make the standby act as primary in a failover.

Here is a typical table that represents application downtime based on

availability.

Availability
Downtime per
Year Month Week

90% (One Nine) 36.5 days 73 hours 16.8 hours

99% (Two Nines) 87.7 hours 7.3 hours 1.68 hours

99.9% (Three Nines) 8.77 hours 43.8 minutes 10.1 minutes

99.99% (Four Nines) 52.56 minutes 4.38minutes 1.01 minutes

99.999% (Five Nines) 5.26 minutes 26.3 seconds 6.05 seconds

99.9999% (Six Nines) 31.5 seconds 2.63 seconds 0.605 seconds

Chapter 7 High Availability Procedures and Implementing a Pooler

157

�High Availability Solutions in Core
PostgreSQL
PostgreSQL offers various HA options that provide a failover mechanism

for highly active and critical databases at the time of disaster. It is

important that application connections be routed to the standby site for

continued data accessibility.

•	 Warm standby/log shipping

•	 Hot standby

•	 Streaming replication

•	 Cascading replication

�Warm Standby/Log Shipping
Continuous archiving can be used to create an HA cluster configuration

with one or more standby servers ready to take over operations if the

primary server fails. This capability is widely referred to as warm standby

or log shipping. This is supported by PostgreSQL at the file level.

The primary and standby server work together to provide this capability

with loosely coupled servers. The primary server operates in continuous

archiving mode, while each standby server operates in continuous recovery

mode, reading the log files from the primary. No changes to the database

tables are required to enable this capability, so it offers low administration

overhead in comparison with some other replication approaches. This

configuration also has minimal performance impact on the primary server.

As the source waits until the log file is full before shipping the log file,

there is some delay between the source and the target; the slower the

volume of update, the greater the lag between the primary and standby.

The standby server is not available for access in a warm standby

configuration, since it is continually in recovery. Recovery performance

is sufficiently good that the standby will typically be only moments away

Chapter 7 High Availability Procedures and Implementing a Pooler

158

from full availability once it has been activated. As a result, we refer to

this capability as a warm standby configuration that offers HA. Restoring

a server from an archived base backup and roll-forward will take

considerably longer, so that technique only really offers a solution for

disaster recovery, not HA.

�Hot Standby
This feature (available from PostgreSQL 9.0) allows users to create a “hot

standby” database instance for read-only queries (SELECTs). Queries

execute normally while the standby database continually replays the

stream of binary modifications coming from the primary database.

For more information, refer to: www.postgresql.org/docs/current/

static/hot-standby.html.

�Streaming Replication
Streaming Replication (also available from PostgreSQL 9.0) improves the

archiving mechanism to make it as up-to-date as possible and to not rely

on log file shipping. Standby servers can now connect to the primary and

get sent WAL data on-demand as it is generated, rather than waiting for an

entire WAL segment to complete.

Streaming replication is asynchronous by default (doesn’t wait for

confirmation that the changes were applied to a standby server), but as

of PostgreSQL 9.1 it can also be configured to be synchronous. The lag on

streaming replication is very short, unlike other replication systems, and

replicated changes can be as small as a single transaction, depending on

network speed, database activity, and hot standby settings. Also, the load

on the primary for each standby is minimal, allowing a single primary to

support dozens of standbys.

A synchronous replication configuration also supports asynchronous

transactions, so that not all changes need to wait for confirmation from the

Chapter 7 High Availability Procedures and Implementing a Pooler

http://www.postgresql.org/docs/current/static/hot-standby.html
http://www.postgresql.org/docs/current/static/hot-standby.html

159

standby server. This means a mix of synchronous and asynchronous can

be used in the same system, and can be selected based on how important

the data in a particular table is.

To enable streaming replication, the wal_level setting should be set to

“archive” or “hot standby.”

Refer to the documentation for more details: www.postgresql.org/

docs/current/warm-standby.html#STREAMING-REPLICATION.

�Cascading Replication
PostgreSQL 9.2 provides the ability to stream changes from a standby

to other standbys. This can be useful if you have many standbys set up

and don’t wish to put replication stress on the primary. Refer to the

documentation for more details: www.postgresql.org/docs/current/

warm-standby.html#CASCADING-REPLICATION.

�Warm/Hot Standby vs. Streaming Replication
Many people get confused with warm/hot standby and streaming

replication and look at them as the same. However, there are some

differences.

�Warm/Hot Standby

•	 Both are created with a backup copy of the primary.

•	 Both work on the basis of WAL apply.

•	 Both are one WAL behind the primary, so in a worst

case, you will lose 16MB of data (i.e., one WAL that is

currently being written on the primary).

•	 The only difference is hot standby can be open for a

read purpose but warm standby cannot.

Chapter 7 High Availability Procedures and Implementing a Pooler

http://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION
http://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION
http://www.postgresql.org/docs/current/warm-standby.html#CASCADING-REPLICATION
http://www.postgresql.org/docs/current/warm-standby.html#CASCADING-REPLICATION

160

�Streaming Replication

•	 It is quite different than warm/hot standby.

•	 It works with WAL sender/receiver processes.

•	 XLOG records for every data modification operation

would be sent to standby.

•	 It is up-to-date with the primary, so in a worst case, you

will lose the current transaction that is being executed

on the primary.

�Simple HA Solution
Let us look at a simple HA solution that can be implemented with one

primary and one standby server.

As you see, this solution has one primary and one standby, which are

set up through streaming replication.

Chapter 7 High Availability Procedures and Implementing a Pooler

161

•	 Client connects to primary for read/write operation

and can connect to standby for read operation

•	 The failover mechanism here is manual. Either you can

create a trigger file on the standby server or promote

standby using the “pg_ctl promote” command.

•	 Once a new primary is available, you would need to

update application with new primary details.

This looks like a good solution but not the best. It has a few manual

steps, which would increase your downtime in case of failures.

�Better HA Solution
Let us look at another solution.

Chapter 7 High Availability Procedures and Implementing a Pooler

162

So here:

•	 Client connects to pgBouncer or HAProxy

•	 PgBouncer or HAProxy is set up to connect to available

server

•	 Two data centers with one primary and three standby

servers

•	 One primary and one standby in one data center, and

another two standbys in another data center

•	 Replication between primary and standby in same data

center is synchronous, as there will not be much delay

due to same data center

•	 Replication between primary and one of the standbys in

other data center is asynchronous, as there will be delay

•	 Fourth standby server is a cascading replica to third

standby in other data center. In that way, you can

reduce the load on the primary.

•	 If ONLY the primary server in first data center is not

available, then the standby on the same data center will

take the primary position

•	 If whole data center is down, then third standby takes

the primary position

•	 You can use repmgr or patroni as your auto failover

solution.

•	 If primary is not available and failover is done, then

pgBouncer or HAProxy would take care of sending

connections to new server.

•	 You might need to set up VIP if needed.

Chapter 7 High Availability Procedures and Implementing a Pooler

163

�Auto Failover Tools Available
There are many auto failover tools available on the market that you can

integrate with PostgreSQL. Here are a few tools:

•	 repmgr (https://repmgr.org/)

•	 Patroni (https://github.com/zalando/patroni)

•	 PAF (PostgreSQL Automatic Failover; https://

pgstef.github.io/2018/02/07/introduction_to_

postgresql_automatic_failover.html)

•	 pg_auto_failover (www.citusdata.com/

blog/2019/05/30/introducing-pg-auto-failover/)

•	 pgpool-II (www.pgpool.net/docs/latest/en/html/

intro-whatis.html)

We are not going to cover all the tools; however, we will show how

auto-failover can be done through repmgr. Note that these are only higher

level steps to setup.

�auto-failover through repmgr

Installation

You can follow this documentation to install repmgr: https://repmgr.

org/docs/4.2/installation.html.

Servers:

Primary server – 192.168.0.1

Standby server – 192.168.0.2

Make sure keys are exchanged between all these servers.

Chapter 7 High Availability Procedures and Implementing a Pooler

https://repmgr.org/
https://repmgr.org/
https://github.com/zalando/patroni
https://github.com/zalando/patroni
https://pgstef.github.io/2018/02/07/introduction_to_postgresql_automatic_failover.html
https://pgstef.github.io/2018/02/07/introduction_to_postgresql_automatic_failover.html
https://pgstef.github.io/2018/02/07/introduction_to_postgresql_automatic_failover.html
https://pgstef.github.io/2018/02/07/introduction_to_postgresql_automatic_failover.html
https://www.citusdata.com/blog/2019/05/30/introducing-pg-auto-failover/
http://www.citusdata.com/blog/2019/05/30/introducing-pg-auto-failover/
http://www.citusdata.com/blog/2019/05/30/introducing-pg-auto-failover/
https://www.pgpool.net/docs/latest/en/html/intro-whatis.html
http://www.pgpool.net/docs/latest/en/html/intro-whatis.html
http://www.pgpool.net/docs/latest/en/html/intro-whatis.html
https://repmgr.org/docs/4.2/installation.html
https://repmgr.org/docs/4.2/installation.html

164

Setup

On both primary and standby servers, set up a rep_mgr user and a rep_

mgr database on PostgreSQL.

psql -c 'CREATE USER REPLICATION rep_gmr';

psql -c 'CREATE DATABASE rep_mgr OWNER rep_mgr';

Make sure you create SUPERUSER.

Configuration

Set up the repmgr configuration file on both servers, as they need to be

aware of each other. Location of configuration file is /etc/repmgr.conf.

On primary server:

cluster=cls

node=1

node_name=node1

conninfo= 'host=192.168.0.1 user=repmgr dbname=repmgr'

pg_bindir='/usr/pgsql-9.5/bin'

loglevel=DEBUG

reconnect_attempts=1

reconnect_interval=1

logfile='/var/lib/pgsql/repmgr.log'

use_replication_slots=6

service_start_command = 'sudo /bin/systemctl start

postgresql-9.5'

service_stop_command = 'sudo /bin/systemctl stop

postgresql-9.5'

service_restart_command = 'sudo /bin/systemctl restart

postgresql-

9.5'

Chapter 7 High Availability Procedures and Implementing a Pooler

165

service_reload_command = '/usr/pgsql-9.5/bin/pg_ctl -D

/var/lib/pgsql/9.5/data reload'

service_promote_command = '/usr/pgsql-9.5/bin/pg_ctl -D

/var/lib/pgsql/9.5/data promote'

priority=100

failover='automatic'

promote_command='/var/lib/pgsql/standby_promote.sh'

follow_command='/usr/pgsql-9.5/bin/repmgr standby follow -f

/etc/repmgr/9.5/repmgr.conf -W'

On the standby server:

cluster=cls

node=2

node_name=node2

conninfo= 'host=192.168.0.2 user=repmgr dbname=repmgr'

pg_bindir='/usr/pgsql-9.5/bin'

loglevel=DEBUG

logfile='/var/lib/pgsql/repmgr.log'

use_replication_slots=6

service_start_command = 'sudo /bin/systemctl start

postgresql-9.5'

service_stop_command = 'sudo /bin/systemctl stop

postgresql-9.5'

service_restart_command = 'sudo /bin/systemctl restart

postgresql-

9.5'

service_reload_command = '/usr/pgsql-9.5/bin/pg_ctl -D

/var/lib/pgsql/9.5/data reload'

service_promote_command = '/usr/pgsql-9.5/bin/pg_ctl -D

/var/lib/pgsql/9.5/data promote'

priority=100

Chapter 7 High Availability Procedures and Implementing a Pooler

166

failover='automatic'

master_response_timeout=10

reconnect_attempts=1

reconnect_interval=1

promote_command='repmgr standby promote -f /etc/repmgr.conf

--log-to-file'

follow_command='/usr/pgsql-9.5/bin/repmgr standby follow -f

/etc/repmgr/9.5/repmgr.conf -W'

You would need to set up pg_hba.conf entries of the primary server

to let the primary server accept replication connections from the standby

server.

host rep_mgr rep_mgr 192.168.0.2/32 trust

host replication rep_mgr 192.168.0.2/32 trust

host rep_mgr rep_mgr 192.168.0.1/32 trust

Please now restart PostgreSQL and the repmgrd daemon.

sudo /bin/systemctl start postgresql-9.5

sudo /etc/init.d/repmgrd restart

Node Registration

Configuring of both the primary and standby servers is completed, and

now we need to verify which server is playing which role.

On primary server:

sudo -u postgres repmgr primary register

On primary server, you should see:

$ psql -U rep_mgr -c 'select node_id, node_name, type, conninfo

from repmgr.nodes' -d rep

Chapter 7 High Availability Procedures and Implementing a Pooler

167

-mgr

node_id | node_name | type | conninfo

---------+----------------+---------+------------------

 1 | primary-server | primary | host=192.168.0.1

You need to register the standby server now. For that you will need to

take a backup, and this is where the backup server comes up.

Let us clone the database on the primary server onto the standby

server.

On the standby server:

sudo /etc/init.d/postgresql stop

sudo -u postgres repmgr -h '192.168.0.1' -U repmgr -d repmgr -D

/var/lib/pgsql/9.5/data -f /etc/repmgr/9.5/repmgr.conf standby

clone

sudo /bin/systemctl start postgresql-9.5

repmgr -f /etc/repmgr/9.5/repmgr.conf standby register

--verbose

On both servers (primary and standby), you see:

$ psql -U rep_mgr -c 'select node_id, upstream_node_id, node_

name, type from repmgr.nodes' -d rep_mgr

node_id | upstream_node_id | node_name | type |

--------+------------------+-----------------+---------+

 1 | | primary-server | primary |

 2 | 1 | standby-server | standby |

Chapter 7 High Availability Procedures and Implementing a Pooler

168

Test Auto Failover

As the failover option in both (primary and standby) regmgr config files

is automatic, if you try to stop the primary, it will promote the standby

automatically.

�Replication Lag
On PostgreSQL 9.2 and above, this can be found by running:

SELECT application_name, pg_xlog_location_diff(sent_location,

flush_location) AS lag

FROM pg_stat_replication

ORDER BY replay_delta ASC, application_name;

On PostgreSQL 9.0 and 9.1, the following can be used to calculate the

replication lag:

DO $$

 DECLARE result int;

BEGIN

 EXECUTE 'SELECT x"' || replace(sent_location,'/',") ||

"'::int - x"' || replace(flush_location,'/',") || "'::int' FROM

pg_stat_replication INTO result;

 RAISE NOTICE 'Replication lag: % bytes', result;

END $$;

If there is a large amount of lag, it may be that the network interface

being used is contending with other network traffic. This can be caused

by other applications running on the same system that use network

bandwidth, or that multiple standbys are connected to the primary. If the

latter is true, we should recommend cascading replication, where only one

standby connects to the primary, and all other standbys connect to the first

standby. This, however, is only available on PostgreSQL 9.2 and above.

Chapter 7 High Availability Procedures and Implementing a Pooler

169

�Common Replication Issues
FATAL,58P01,"requested WAL segment 0000000100000B110000000D has

already been removed

This can be caused by WAL segment removal from the primary

that is required by the standby. This removal is a cleanup process in

PostgreSQL. The solution is to ensure proper planning for archive storage.

Make sure that archives are getting copied to the standby location, or use a

replication slot.

FATAL: could not connect to the primary server: could not

connect to server: No such file or directory

This can be caused due to connection loss between the primary and

standby. The solution is to set up a script or monitoring tools to check the

status of the connection between primary and standby.

FATAL: the database system is starting up

If the DB is in recovery, the user should wait till recovery completes. If

hot_standby is not enabled, you may see this Fatal error on the standby in

case you are using it for read-only queries.

FATAL: terminating connection due to conflict with recovery

You can see if there are any long-running queries in the standby. If

customers are getting the preceding FATAL error and queries are failing,

the DBA needs to check and set the following parameters.

hot_standby_feedback

vacuum_diffr_cleanup_age

max_standby_archive_delay

max_standby_stream_delay

Chapter 7 High Availability Procedures and Implementing a Pooler

170

�Why Connection Pooling
Connection pooling is used to cache the database connections and reuse

them for future connections. So, it removes the overhead in initializing

and closing connections on the database cluster, which can be a huge

performance benefit, particularly in environments with frequent and short-

lived transactions. It also can provide a queue for connections in excess of

max_connections so that incoming connections won’t be rejected but instead

delayed while they wait for the next available connection from the pool.

There are two connection poolers generally recommended for use with

PostgreSQL, although there are many others that will work.

•	 pgBouncer (www.pgbouncer.org/)

•	 pgpool (www.pgpool.net/docs/latest/en/html/

intro-whatis.html)

�pgBouncer
This is a very lightweight connection pooler that’s simple to set up and

configure. If connections to a single instance need to be pooled in a

simple way, this is the best option. It was originally developed by Skype

and was responsible for the entire Skype infrastructure (prior to Microsoft

acquisition). Essentially, pgBouncer acts as a transparent database proxy

that allows for high-performance reuse of database resources.

From a management perspective, pgBouncer also allows for a

dedicate control point for database connectivity. Essentially, a number

n of pgBouncer servers can be created that can be a funnel for a very

large number of application hosts. Since pgBouncer servers can be run

as independent entities without any coordination required, there is no

issue with scaling this tier very wide. If the pgBouncer tier is scaled, it is

recommended the configuration for pgBouncer (just a single pgbouncer.

ini file) be controlled by chef or similar to guarantee consistency.

Chapter 7 High Availability Procedures and Implementing a Pooler

http://www.pgbouncer.org/
http://www.pgbouncer.org/
https://www.pgpool.net/docs/latest/en/html/intro-whatis.html
http://www.pgpool.net/docs/latest/en/html/intro-whatis.html
http://www.pgpool.net/docs/latest/en/html/intro-whatis.html

171

Instructions to set up pgBouncer are here: www.pgbouncer.org/

install.html.

You can configure using this document: www.pgbouncer.org/config.

html.

Note, if SSL is added to the infrastructure, pgBouncer is not capable

of breaking the SSL connection natively. You can use Stunnel (which is a

proxy designed to add TLS encryption functionality to existing clients and

server without any changes in the programs), but this sometimes creates

problems (www.pgbouncer.org/faq.html#how-to-use-ssl-connections-

with-pgbouncer).

�Issues

There are a few issues that are commonly encountered with Java

applications and pgBouncer.

Unsupported Startup Parameter

This is an issue caused by the fact that the JDBC driver is always issuing

set extra_float_digits=...

To combat this issue, pgBouncer allows you to ignore this parameter

at startup and avoid throwing the error. You can set the ignore_startup_

parameters configuration option in pgbouncer.ini in order to get around this.

�pgpool-II
This provides features that pgBouncer doesn’t, namely load balancing to

allow read-only queries to be distributed among all standbys, and all write

queries to continue on to the primary. However, pgpool-II has various

caveats and is more complicated to set up and configure than pgBouncer.

More about pgpool is here: www.pgpool.net/docs/latest/en/html/

intro-whatis.html.

Chapter 7 High Availability Procedures and Implementing a Pooler

http://www.pgbouncer.org/install.html
http://www.pgbouncer.org/install.html
http://www.pgbouncer.org/config.html
http://www.pgbouncer.org/config.html
http://www.pgbouncer.org/faq.html#how-to-use-ssl-connections-with-pgbouncer
http://www.pgbouncer.org/faq.html#how-to-use-ssl-connections-with-pgbouncer
http://www.pgpool.net/docs/latest/en/html/intro-whatis.html
http://www.pgpool.net/docs/latest/en/html/intro-whatis.html

172

�Summary
In this chapter, we have talked about the importance of High Availability,

and what information we need to build a High Availability solution and the

procedures to implement it in PostgreSQL at a core level. We went through

a couple of HA solutions. We have mentioned some open source and

enterprise tools to implement High Availability. We have also talked about

some common issues that we see in the replication point of view. We have

covered the importance of a pooler, and available poolers on the market

and their implementation.

Chapter 7 High Availability Procedures and Implementing a Pooler

173© Baji Shaik 2020
B. Shaik, PostgreSQL Configuration, https://doi.org/10.1007/978-1-4842-5663-3_8

CHAPTER 8

Basic Errors and
Handy Queries
In the last chapter, we talked about why we need High Availability, and

what are the different kinds of procedures available to implement High

Availability using some open source and enterprise tools available in

the market. We also talked about the importance of a connection pooler,

available poolers in the market, and how to implement a pooler with

PostgreSQL instances. This chapter is basically targeted to the users who

just started working with PostgreSQL. In this chapter, we are going to talk

about basic errors that we face when we start working with PostgreSQL,

and some handy queries that are useful day-to-day for a database

administrator.

�Basic Errors of PostgreSQL
When you start working with PostgreSQL, you may see a lot of errors while

installing, connecting, and querying the databases. Some errors might be

very simple to resolve; however, you just need to know the reasons why

those errors occur.

Let us categorize the errors based on when they occur:

•	 Connection errors

•	 Configuration errors

174

•	 Query errors

•	 Other errors

�Connection Errors
This section talks about the errors that we see while connecting to the

database. Let us see Errors, and Cause/Resolution for each error in detail.

�Error

psql -p 5432 -U postgres -d postgres

psql: could not connect to server: No such file or directory

 Is the server running locally and accepting

 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

�Cause/Resolution

This error is caused by unavailability of the socket file in the location where

psql is looking. This could be because of reasons like:

	 1.	 PostgreSQL is not running.

	 2.	 You are using a different port to connect.

•	 �The first thing you would need to check is server

status (using below commands); if the server is not

running, start it and try to connect. You can use the

pg_ctl utility for checking the status and starting up

as follows:

 $ pg_ctl -D $PGDATA status

pg_ctl: no server running

 $ pg_ctl -D $PGDATA start

Chapter 8 Basic Errors and Handy Queries

175

waiting for server to start....2019-09-05

22:47:51.551 IST [87688] LOG: listening on IPv6

address "::1", port 5432

2019-09-05 22:47:51.552 IST [87688] LOG: listening

on IPv4 address "127.0.0.1", port 5432

2019-09-05 22:47:51.555 IST [87688] LOG: listening

on Unix socket "/tmp/.s.PGSQL.5432"

2019-09-05 22:47:51.576 IST [87689] LOG: database

system was shut down at 2019-09-05 22:46:37 IST

2019-09-05 22:47:51.621 IST [87688] LOG: database

system is ready to accept connections

 done

server started

 $ pg_ctl -D $PGDATA status

pg_ctl: server is running (PID: 87688)

/Users//pg_software/11.5/bin/postgres "-D" "/Users//

pg_software/11.5/data"

An alternate option to check whether PostgreSQL is

running is to check the process status as follows:

 $ ps -ef|grep postgres

1363659639 87690 87688 0 10:47PM ??

0:00.00 postgres: checkpointer

1363659639 87691 87688 0 10:47PM ??

0:00.01 postgres: background writer

1363659639 87692 87688 0 10:47PM ??

0:00.05 postgres: walwriter

1363659639 87693 87688 0 10:47PM ??

0:00.05 postgres: autovacuum launcher

1363659639 87694 87688 0 10:47PM ??

0:00.04 postgres: stats collector

Chapter 8 Basic Errors and Handy Queries

176

1363659639 87695 87688 0 10:47PM ??

0:00.05 postgres: logical replication launcher

1363659639 87688 1 0 10:47PM ttys002

0:00.03 /Users//pg_software/11.5/bin/postgres -D /

Users//pg_software/11.5/data

1363659639 87705 27416 0 10:48PM ttys002

0:00.01 grep postgres

 $

•	 �If you found that the cluster is running and still not

able to connect, then check the port number in the

postgresql.conf file and try to connect using the

correct port.

 $ grep -i port $PGDATA/postgresql.conf

port = 5432 # (change requires restart)

�Error

 psql -p 5435 -U postgres -h 192.168.225.185 postgres

psql: could not connect to server: Connection refused

 �Is the server running on host "192.168.225.185" and

accepting TCP/IP connections on port 5432?

�Cause/Resolution

This error means that there is no service listening on the specified port:

5432. This could be because the PostgreSQL (postmaster) is not listening

for an incoming connection on the port of the network interface. The

default for most of the PostgreSQL distributions is to listen only on the

loopback interface.

Chapter 8 Basic Errors and Handy Queries

177

	 1.	 You would need to look at your “listen_addresses”

parameter in the postgresql.conf file; check if

you have set this to allow the available network

interfaces. A setting to * will cause PostgreSQL to

listen on all interfaces.

 $ psql -p 5432 -U postgres -d postgres

psql (11.5)

Type "help" for help.

postgres=# show listen_addresses ;

 listen_addresses

 localhost

(1 row)

postgres=#

	 2.	 If you found that you set it to allow, then you will

have to look at your firewall setting. The port might

be blocked by the firewall for that server due to

security reasons.

�Error

 psql -p 5435 -U postgres -h 192.168.225.185 postgres

psql: FATAL: no pg_hba.conf entry for host "192.168.225.130",

user "postgres", database "postgres", SSL off

Chapter 8 Basic Errors and Handy Queries

178

�Cause/Resolution

As the error says, there is no entry in the pg_hba.conf file (which is located

at the data directory location) for the HBA (Host Based Authentication)

policy for the server. You can add an entry for that host like the following:

•	 Open pg_hba.conf located in the data directory of the

PostgreSQL server.

 $ vi $PGDATA/pg_hba.conf

•	 Add a line like this:

host all all

192.168.225.130/32 trust

Note T rust is a type of authentication. You will get more info here:
www.postgresql.org/docs/current/auth-pg-hba-conf.
html.

This policy allows a PostgreSQL client connection from

192.168.225.130.

•	 Reload the configuration.

 $ pg_ctl -D $PGDATA reload

server signaled

•	 Now try to connect.

 $ psql -p 5435 -U postgres -h 192.168.225.185 postgres

psql (11.5)

Type "help" for help.

postgres=#

Chapter 8 Basic Errors and Handy Queries

http://www.postgresql.org/docs/current/auth-pg-hba-conf.html
http://www.postgresql.org/docs/current/auth-pg-hba-conf.html

179

As you can see, the new HBA policy allows connection from the client

machine.

�Configuration Errors
�Error

 $ psql -p 5432 -U postgres -d postgres

psql.bin: FATAL: sorry, too many clients already

�Cause/Resolution

This error tells us that total number of client connections reached the

max_connections; check the parameter and connections to the cluster

from an already connected session:

postgres=# show max_connections ;

 max_connections

 2

(1 row)

postgres=# select count(*) from pg_stat_activity;

 count

 2

(1 row)

Chapter 8 Basic Errors and Handy Queries

180

To get rid of this, you probably need to increase the parameter or

disconnect some “idle” sessions from the application side. Terminating

idle connections from the back end could be dangerous, as the application

side might get an error. But you may select ad hoc idle connections for

termination. You will get idle sessions by using the following query:

postgres=# select pid,query,state from pg_stat_activity where

state like 'idle';

 pid | query | state

-------+-------+-------

 11855 | | idle

(1 row)

postgres=# select pg_terminate_backend(pid) from pg_stat_

activity where state='idle' and pid <> pg_backend_pid();

 pg_terminate_backend

 t

(1 row)

postgres=# select pid,query,state from pg_stat_activity where

state like 'idle';

 pid | query | state

-----+-------+-------

(0 rows)

Note  Changing any of the preceding parameters needs a restart of
the cluster.

Chapter 8 Basic Errors and Handy Queries

181

�Error

 psql -p 5432 -U test postgres

psql.bin: FATAL: remaining connection slots are reserved for

non-replication superuser connections

�Cause/Resolution

As the error says, remaining connections are reserved for superusers.

So, you would need to increase the max_connections parameter or

decrease the superuser_reserved_connections parameter to connect as

normal user.

Note  Changing any of the max_connections or superuser_
reserved_connections parameter needs a restart of the cluster.

�Error

ERROR: canceling statement due to statement timeout

�Cause/Resolution

Use statement_timeout to clean up queries that take too long. Often,

you know that you don’t have any use for queries running more than x

seconds. Maybe your Web front end just refuses to wait for more than 10

seconds for a query to complete and returns some default answer to users

if it takes longer, abandoning the query.

In such a case, it is a good idea to set statement_timeout = 15 sec either

in postgresql.conf or as a per user or per database setting, so that queries

running too long don’t consume precious resources and make others’

queries fail as well.

Chapter 8 Basic Errors and Handy Queries

182

The queries terminated by statement timeout show up in the log as

follows:

 hannu=# set statement_timeout = '3 s';

 SET

 hannu=# select pg_sleep (10);

 ERROR: canceling statement due to statement timeout

�Query Errors
�Error

postgres=# select * from test;

ERROR: relation "test" does not exist

LINE 1: select * from test;

 ^

�Cause/Resolution

	 1.	 As the first step, ensure that this table really exists.

	 2.	 If the table exists, then check whether the table

name given is correct or not. You might have created

the table with mixed chars (upper/lower). You can

get the exact name by using this query:

postgres=# select quote_literal(relname) from pg_class

where upper(relname)='TEST';

 quote_literal

 'TesT'

(1 row)

Chapter 8 Basic Errors and Handy Queries

183

postgres=# select * from "TesT";

 t

(0 rows)

	 3.	 Check if you have the table in different schema so

that you can specify the schema name explicitly

before the table name OR set the schema name in

the search_path parameter:

postgres=# \d '*'."TesT"

 Table "test.TesT"

 Column | Type | Modifiers

--------+---------+-----------

 t | integer |

So, you have the table in “test” schema, then use the

following query or set search_path as shown:

postgres=# select * from "test"."TesT";

 t

(0 rows)

postgres=# set search_path to "test";

SET

postgres=# select * from "TesT";

 t

(0 rows)

Chapter 8 Basic Errors and Handy Queries

184

�Error

testdb=# drop user bob;

ERROR: role "bob" cannot be dropped because some objects depend

on it

DETAIL: owner of table bobstable

owner of sequence bobstable_id_seq

�Cause/Resolution

There should not be any object owned by the user when we are trying to

drop a user. For dropping such users, there are two methods:

	 1.	 Reassign all the objects owned by the user to some

other user and then drop the user.

This is very useful if the employee who left the

company has written some procedure/objects that

are getting used in an application/process.

 REASSIGN OWNED BY old_role to new_role;

 DROP USER old_role;

Note T he reassign command needs to be executed for all the
databases under one PG instance.

	 2.	 First, drop all the objects owned by the user and

then drop the user.

This is useful if the admin doesn’t want to keep the users’ objects and

wants to drop all the objects owned by the user.

A command that can be used is the following:

 DROP OWNED BY name [, ...] [CASCADE | RESTRICT];

 DROP user username;

Chapter 8 Basic Errors and Handy Queries

185

Note DROP OWNED BY name needs to be executed in all the
databases.

�Other Errors
�Error

"LOG: out of file descriptors: Too many open files in system;

release and retry"

�Cause/Resolution

If you see this error message in a log file, then consider reducing Postgres’s

max_files_per_process setting.

�Error

postgres=> copy test from '/tmp/test.txt';

ERROR: must be superuser to COPY to or from a file

HINT: Anyone can COPY to stdout or from stdin. psql's \copy

command also works for anyone.

�Cause/Resolution

As the error says, a normal user can’t copy from a file to a table. You can

use “\COPY” instead.

postgres=> select current_user;

 current_user

 test

(1 row)

postgres=> \copy test from '/tmp/test.txt';

Chapter 8 Basic Errors and Handy Queries

186

postgres=> select * from test;

 t

 1

 2

 3

 4

 5

(5 rows)

OR

To let a user “test” copy directly from a file, the superuser can write a

special wrapper function for “test” user, as follows:

 �create or replace function copy_for_testuser(tablename text,

filepath text)

 returns void

 security definer

 as

 $$

 declare

 begin

 execute 'copy ' || tablename || ' from "' || filepath || "";

 end;

 $$ language plpgsql;

postgres=# \c postgres test

You are now connected to database "postgres" as user "test".

postgres=>

postgres=> select copy_for_testuser('test','/tmp/test.txt');

 copy_for_testuser

Chapter 8 Basic Errors and Handy Queries

187

(1 row)

postgres=> select * from test;

 t

 1

 2

 3

 4

 5

(5 rows)

�Error

ERROR: tablespace "old_tablespace" is not empty

�Cause/Resolution

As the error says, the tablespace directory should be empty if you are

creating a new tablespace. Try to create a new directory or remove the

contents from the current directory if they are not useful.

�Error

postgres=# INSERT INTO cust_view

 postgres-# VALUES (5, 'firstname', 'lastname', 133);

 ERROR: cannot insert into a view

 HINT: You need an unconditional ON INSERT DO INSTEAD rule.

Chapter 8 Basic Errors and Handy Queries

188

�Cause/Resolution

You can directly insert into a view. So, let us try what the HINT says in the

error.

 CREATE RULE cust_view_insert AS

 ON insert TO cust_view

 DO INSTEAD

 INSERT INTO cust

VALUES (new.customerid, new.firstname, new.lastname, new.age);

And now retry our INSERT as follows:

postgres=# INSERT INTO cust_view

postgres-# VALUES (5, 'firstname', 'lastname', 133);

 INSERT 0 1

�Error

postgres=> set log_min_duration_statement to 0;

ERROR: permission denied to set parameter "log_min_duration_

statement"

�Cause/Resolution

Several of the parameters controlling logging are reserved to be used only

by superusers.

If you want to let some of your developers set logging on, and if you can

write a function for them to do just that:

 create or replace function debugging_info_on()

 returns void

 security definer

 as

Chapter 8 Basic Errors and Handy Queries

189

$$ begin

 set client_min_messages to 'DEBUG1';

 set log_min_messages to 'DEBUG1';

 set log_error_verbosity to 'VERBOSE';

 set log_min_duration_statement to 0;

 end;

 $$ language plpgsql;

 revoke all on function debugging_info_on() from public;

 grant execute on function debugging_info_on() to bob;

�Error

postgres=# CREATE OR REPLACE VIEW test_view

 AS SELECT id as title2 FROM test;

 �ERROR: cannot change name of view column "title1" to

"title2"

�Cause/Resolution

If you want to change the output definition of a function or a view, then

using CREATE OR REPLACE is not sufficient. In that case, you must use

DROP and recreate, as follows:

postgres=# CREATE OR REPLACE VIEW test_view AS

postgres-# SELECT id as title1 FROM test;

CREATE VIEW

postgres=# CREATE OR REPLACE VIEW test_view AS

postgres-# SELECT id as title2 FROM test;

ERROR: cannot change name of view column "title1" to "title2"

Chapter 8 Basic Errors and Handy Queries

190

postgres=# DROP VIEW test_view;

DROP VIEW

postgres=# CREATE OR REPLACE VIEW test_view AS

postgres-# SELECT id as title2 FROM test;

CREATE VIEW

�Error

FATAL: could not create shared memory segment: Invalid

argument

DETAIL: Failed system call was shmget(key=5440001,

size=4011376640, 03600

�Cause/Resolution

When PostgreSQL starts, it throws error like the preceding; your

shared memory setting is less than what PostgreSQL is trying to create

(4011376640 bytes in this example). Or your kernel is not configured to

support System-V-style shared memory. As a temporary workaround, you

can try starting the server with a smaller-than-normal number of buffers

(shared_buffers). However, you should reconfigure your kernel-level

shared memory setting. Another reason this error might occur is when you

have multiple PostgreSQL servers running on the same machine. In that

case, all servers’ shared memory should not exceed the kernel limit.

Note  Changing shared_buffers needs a restart of the PostgreSQL
instance.

�Error

In pg_log, "pgstat wait timeout"

Chapter 8 Basic Errors and Handy Queries

191

�Cause/Resolution

This warning can happen in several cases.

Case 1 { Huge IO }

When the PostgreSQL autovacuum process is not able to get the

required IO to write the statistics to “stats_temp_directory,” then we can get

this kind of WARNING message. As discussed, the frequent checkpoints

are a good indication of high IO. Frequent checkpoints will create further

IO, and for analyzing the checkpoints, enabling of log_checkpoints is

recommended.

How to log the checkpoints information:

	 1.	 Edit the postgresql.conf file as log_checkpoints = on

	 2.	 Select Pg_Reload_Conf();

Case 2 {Invalid stats_temp_location}

When the PostgreSQL “stats_temp_directory” is in an invalid path,

then in this case also we can expect this kind of WARNING message. If you

want to change this location to some other place, then you need to follow

the below approach.

	 1.	 Edit the postgresql.conf file as stats_temp_

location=‘<PATH>’

	 2.	 Select pg_reload_conf();

Case 3 {Invalid Localhost IP}

There might be a chance that we have an invalid Localhost IP. Please

check the localhost entries in the “hosts” file and rectify if anything is

wrong.

Once we make any changes in this file, we need to restart the

PostgreSQL cluster to take its effect on the auto-vacuum worker processes.

Chapter 8 Basic Errors and Handy Queries

192

�Handy Queries of PostgreSQL
This section contains some basic queries that are useful on a daily basis.

These queries are categorized into the following:

•	 Basic queries

•	 Monitoring queries

•	 Object privileges queries

•	 Object level queries

�Basic Queries
Let us look into some basic queries.

�To Check Version

select version();

�To Check Size of Database

SELECT pg_size_pretty(pg_database_size('mydatabasename')) As

fulldbsize;

�To Get All Catalog Tables

\dt pg_catalog.*

�Monitoring Queries
The queries in this section will help you when you are monitoring your

database on a daily basis.

Chapter 8 Basic Errors and Handy Queries

193

�Top 10 WRITE Tables

select schemaname as "Schema Name", relname as "Table Name",

n_tup_ins+n_tup_upd+n_tup_del as "no.of writes" from

pg_stat_all_tables where schemaname not in ('snapshots','

pg_catalog')

order by n_tup_ins+n_tup_upd+n_tup_del desc limit 10;

�Top 10 READ Tables

SELECT schemaname as "Schema Name", relname as "Table

Name",seq_tup_read+idx_tup_fetch as "no. of reads" FROM

pg_stat_all_tables WHERE (seq_tup_read + idx_tup_fetch) > 0 and

schemaname NOT IN ('snapshots','pg_catalog') ORDER BY

seq_tup_read+idx_tup_fetch desc limit 10;

�Largest Tables in DB

SELECT QUOTE_IDENT(TABLE_SCHEMA)||'.'||QUOTE_IDENT(table_name)

as

table_name,pg_relation_size(QUOTE_IDENT(TABLE_SCHEMA)||

'.'||QUOTE_IDENT(table_name)) as size,

pg_total_relation_size(QUOTE_IDENT(TABLE_SCHEMA)||'.'||

QUOTE_IDENT(table_name)) as total_size,

pg_size_pretty(pg_relation_size(QUOTE_IDENT(TABLE_SCHEMA)||

'.'||QUOTE_IDENT(table_name))) as pretty_relation_size,

pg_size_pretty(pg_total_relation_size(QUOTE_IDENT(TABLE_

SCHEMA)||'.'||QUOTE_IDENT(table_name))) as pretty_total_

relation_size FROM information_schema.tables WHERE QUOTE_

IDENT(TABLE_SCHEMA) NOT IN ('snapshots') ORDER BY size

DESC LIMIT 10;

Chapter 8 Basic Errors and Handy Queries

194

�DB Size

SELECT datname, pg_database_size(datname),

pg_size_pretty(pg_database_size(datname))

FROM pg_database

ORDER BY 2 DESC;

�Table Size

SELECT schemaname, relname, pg_total_relation_size(schemaname

|| '.' || relname) ,

pg_size_pretty(pg_total_relation_size(schemaname || '.' ||

relname))

FROM pg_stat_user_tables

ORDER BY 3 DESC;

�Index Size

SELECT schemaname, relname, indexrelname,

pg_total_relation_size(schemaname || '.' || indexrelname) ,

pg_size_pretty(pg_total_relation_size(schemaname || '.' ||

indexrelname))

FROM pg_stat_user_indexes

ORDER BY 1,2,3,4 DESC;

�Index Utilization

SELECT schemaname, relname, indexrelname, idx_scan, idx_tup_fetch,

idx_tup_read

FROM pg_stat_user_indexes

ORDER BY 4 DESC,1,2,3;

Chapter 8 Basic Errors and Handy Queries

195

�Tables That Are Being Updated the Most and Looking
for VACUUM

select relname, /* pg_size_pretty(pg_relation_size(relid))

as table_size,

 �pg_size_pretty(pg_total_relation_size(relid

)) as table_total_size, */

 �n_tup_upd, n_tup_hot_upd, n_live_tup, n_dead_

tup, last_vacuum::date, last_autovacuum::date,

last_analyze::date, last_autoanalyze::date

from pg_stat_all_tables

where relid in (select oid from pg_class

 �where relnamespace not in (select oid

from pg_namespace

 �where nspname in ('information_

schema', 'pg_catalog','pg_

toast', 'edbhc')))

order by n_tup_upd desc, schemaname, relname;

SELECT schemaname,

 relname,

 now() - last_autovacuum AS "noautovac",

 now() - last_vacuum AS "novac",

 n_tup_upd,

 n_tup_del,

 autovacuum_count,

 last_autovacuum,

 vacuum_count,

 last_vacuum

FROM pg_stat_user_tables

WHERE (now() - last_autovacuum > '7 days'::interval

Chapter 8 Basic Errors and Handy Queries

196

 AND now() - last_vacuum >'7 days'::interval)

 �OR (last_autovacuum IS NULL AND last_vacuum IS NULL)

AND n_dead_tup > 0

ORDER BY novac DESC;

SELECT relname, n_live_tup, n_dead_tup, trunc(100*n_dead_tup/

(n_live_tup+1))::float "ratio%",

to_char(last_autovacuum, 'YYYY-MM-DD HH24:MI:SS') as

autovacuum_date,

to_char(last_autoanalyze, 'YYYY-MM-DD HH24:MI:SS') as

autoanalyze_date

FROM pg_stat_all_tables where schemaname not in

('pg_toast','pg_catalog','information_schema')

ORDER BY last_autovacuum;

�Bloated Index to Run Reindexing (Locking Operation)\
pgrepack (Online Rebuilding)

SELECT current_database(), nspname AS schemaname, tblname,

idxname, bs*(relpages)::bigint AS real_size,

 bs*(relpages-est_pages)::bigint AS extra_size,

 100 * (relpages-est_pages)::float / relpages AS extra_ratio,

 fillfactor, bs*(relpages-est_pages_ff) AS bloat_size,

 �100 * (relpages-est_pages_ff)::float / relpages AS

bloat_ratio,

 is_na

 �-- , 100-(sub.pst).avg_leaf_density, est_pages, index_tuple_

hdr_bm, maxalign, pagehdr, nulldatawidth, nulldatahdrwidth,

sub.reltuples, sub.relpages -- (DEBUG INFO)

FROM (

 SELECT coalesce(1 +

Chapter 8 Basic Errors and Handy Queries

197

 �ceil(reltuples/floor((bs-pageopqdata-pagehdr)/

(4+nulldatahdrwidth)::float)), 0 -- ItemIdData size +

computed avg size of a tuple (nulldatahdrwidth)

) AS est_pages,

 coalesce(1 +

 �ceil(reltuples/floor((bs-pageopqdata-pagehdr)*fill

factor/(100*(4+nulldatahdrwidth)::float))), 0

) AS est_pages_ff,

 �bs, nspname, table_oid, tblname, idxname, relpages,

fillfactor, is_na

 �-- , stattuple.pgstatindex(quote_ident(nspname)||

'.'||quote_ident(idxname)) AS pst, index_tuple_hdr_bm,

maxalign, pagehdr, nulldatawidth, nulldatahdrwidth,

reltuples -- (DEBUG INFO)

 FROM (

 �SELECT maxalign, bs, nspname, tblname, idxname, reltuples,

relpages, relam, table_oid, fillfactor,

 (index_tuple_hdr_bm +

 �maxalign - CASE -- Add padding to the index tuple

header to align on MAXALIGN

 WHEN index_tuple_hdr_bm%maxalign = 0 THEN maxalign

 ELSE index_tuple_hdr_bm%maxalign

 END

 �+ nulldatawidth + maxalign - CASE -- Add padding to the

data to align on MAXALIGN

 WHEN nulldatawidth = 0 THEN 0

 �WHEN nulldatawidth::integer%maxalign = 0 THEN

maxalign

 ELSE nulldatawidth::integer%maxalign

 END

Chapter 8 Basic Errors and Handy Queries

198

 �)::numeric AS nulldatahdrwidth, pagehdr, pageopqdata,

is_na

 -- , index_tuple_hdr_bm, nulldatawidth -- (DEBUG INFO)

 FROM (

 SELECT

 �i.nspname, i.tblname, i.idxname, i.reltuples,

i.relpages, i.relam, a.attrelid AS table_oid,

 �current_setting('block_size')::numeric AS bs,

fillfactor,

 �CASE -- MAXALIGN: 4 on 32bits, 8 on 64bits

(and mingw32 ?)

 �WHEN version() ~ 'mingw32' OR version() ~ '64-bit|x86

_64|ppc64|ia64|amd64' THEN 8

 ELSE 4

 END AS maxalign,

 �/* per page header, fixed size: 20 for 7.X, 24 for

others */

 24 AS pagehdr,

 /* per page btree opaque data */

 16 AS pageopqdata,

 �/* per tuple header: add IndexAttributeBitMapData if

some cols are null-able */

 CASE WHEN max(coalesce(s.null_frac,0)) = 0

 THEN 2 -- IndexTupleData size

 �ELSE 2 + ((32 + 8 - 1) / 8) -- IndexTupleData size

+ IndexAttributeBitMapData size (max num filed per

index + 8 - 1 /8)

 END AS index_tuple_hdr_bm,

 �/* data len: we remove null values save space using it

fractionnal part from stats */

Chapter 8 Basic Errors and Handy Queries

199

 �sum((1-coalesce(s.null_frac, 0)) * coalesce(s.avg_

width, 1024)) AS nulldatawidth,

 �max(CASE WHEN a.atttypid = 'pg_catalog.name'::regtype

THEN 1 ELSE 0 END) > 0 AS is_na

 FROM pg_attribute AS a

 JOIN (

 �SELECT nspname, tbl.relname AS tblname, idx.relname

AS idxname, idx.reltuples, idx.relpages, idx.relam,

 indrelid, indexrelid, indkey::smallint[] AS attnum,

 coalesce(substring(

 array_to_string(idx.reloptions, ' ')

 �from 'fillfactor=([0-9]+)')::smallint, 90) AS

fillfactor

 FROM pg_index

 JOIN pg_class idx ON idx.oid=pg_index.indexrelid

 JOIN pg_class tbl ON tbl.oid=pg_index.indrelid

 �JOIN pg_namespace ON pg_namespace.oid = idx.

relnamespace

 �WHERE pg_index.indisvalid AND tbl.relkind = 'r' AND

idx.relpages > 0

) AS i ON a.attrelid = i.indexrelid

 JOIN pg_stats AS s ON s.schemaname = i.nspname

 �AND ((s.tablename = i.tblname AND s.attname = pg_

catalog.pg_get_indexdef(a.attrelid, a.attnum, TRUE))

-- stats from tbl

 �OR (s.tablename = i.idxname AND s.attname =

a.attname))-- stats from functionnal cols

 JOIN pg_type AS t ON a.atttypid = t.oid

 WHERE a.attnum > 0

 GROUP BY 1, 2, 3, 4, 5, 6, 7, 8, 9

) AS s1

Chapter 8 Basic Errors and Handy Queries

200

) AS s2

 JOIN pg_am am ON s2.relam = am.oid WHERE am.amname = 'btree'

) AS sub

-- WHERE NOT is_na

ORDER BY 2,3,4;

�Bloated Tables to Do Vacuumfull (Locking Operation)\
pgrepack (Online Rebuilding)

SELECT current_database(), schemaname, tblname, bs*tblpages AS

real_size,

 (tblpages-est_tblpages)*bs AS extra_size,

 CASE WHEN tblpages - est_tblpages > 0

 THEN 100 * (tblpages - est_tblpages)/tblpages::float

 ELSE 0

 �END AS extra_ratio, fillfactor, (tblpages-est_tblpages_ff)*bs

AS bloat_size,

 CASE WHEN tblpages - est_tblpages_ff > 0

 THEN 100 * (tblpages - est_tblpages_ff)/tblpages::float

 ELSE 0

 END AS bloat_ratio, is_na

 �-- , (pst).free_percent + (pst).dead_tuple_percent AS real_

frag

FROM (

 �SELECT ceil(reltuples / ((bs-page_hdr)/tpl_size)) + ceil(

toasttuples / 4) AS est_tblpages,

 �ceil(reltuples / ((bs-page_hdr)*fillfactor/(tpl_size*100)

)) + ceil(toasttuples / 4) AS est_tblpages_ff,

 �tblpages, fillfactor, bs, tblid, schemaname, tblname,

heappages, toastpages, is_na

 �-- , stattuple.pgstattuple(tblid) AS pst

 FROM (

Chapter 8 Basic Errors and Handy Queries

201

 SELECT

 (4 + tpl_hdr_size + tpl_data_size + (2*ma)

 �- CASE WHEN tpl_hdr_size%ma = 0 THEN ma ELSE tpl_hdr_

size%ma END

 �- CASE WHEN ceil(tpl_data_size)::int%ma = 0 THEN ma

ELSE ceil(tpl_data_size)::int%ma END

 �) AS tpl_size, bs - page_hdr AS size_per_block,

(heappages + toastpages) AS tblpages, heappages,

 �toastpages, reltuples, toasttuples, bs, page_hdr, tblid,

schemaname, tblname, fillfactor, is_na

 FROM (

 SELECT

 �tbl.oid AS tblid, ns.nspname AS schemaname, tbl.relname

AS tblname, tbl.reltuples,

 �tbl.relpages AS heappages, coalesce(toast.relpages, 0)

AS toastpages,

 coalesce(toast.reltuples, 0) AS toasttuples,

 coalesce(substring(

 �array_to_string(tbl.reloptions, ' ')

 �FROM '%fillfactor=#"__#"%' FOR '#')::smallint, 100)

AS fillfactor,

 current_setting('block_size')::numeric AS bs,

 �CASE WHEN version()~'mingw32' OR version()~'64-

bit|x86_64|ppc64|ia64|amd64' THEN 8 ELSE 4 END AS ma,

 24 AS page_hdr,

 �23 + CASE WHEN MAX(coalesce(null_frac,0)) > 0 THEN (7

+ count(*)) / 8 ELSE 0::int END

 �+ CASE WHEN tbl.relhasoids THEN 4 ELSE 0 END AS tpl_

hdr_size,

 �sum((1-coalesce(s.null_frac, 0)) * coalesce(s.avg_

width, 1024)) AS tpl_data_size,

Chapter 8 Basic Errors and Handy Queries

202

 �bool_or(att.atttypid = 'pg_catalog.name'::regtype) AS

is_na

 FROM pg_attribute AS att

 JOIN pg_class AS tbl ON att.attrelid = tbl.oid

 JOIN pg_namespace AS ns ON ns.oid = tbl.relnamespace

 JOIN pg_stats AS s ON s.schemaname=ns.nspname

 �AND s.tablename = tbl.relname AND s.inherited=false

AND s.attname=att.attname

 �LEFT JOIN pg_class AS toast ON tbl.reltoastrelid =

toast.oid

 WHERE att.attnum > 0 AND NOT att.attisdropped

 AND tbl.relkind = 'r'

 GROUP BY 1,2,3,4,5,6,7,8,9,10, tbl.relhasoids

 ORDER BY 2,3

) AS s

) AS s2

) AS s3;

�Real-Time Bloated Tables

select relname, n_live_tup, n_dead_tup, (n_dead_tup/(n_dead_

tup+n_live_tup)::float)*100 as "% of bloat", last_autovacuum,

last_autoanalyze from pg_stat_all_tables where

(n_dead_tup+n_live_tup) > 0 and (n_dead_tup/

(n_dead_tup+n_live_tup)::float)*100 > 0;

�Get name and value from pg_settings

select name,setting from pg_settings;

Chapter 8 Basic Errors and Handy Queries

203

�Never-Used Indexes

WITH table_scans as (

 SELECT relid,

 tables.idx_scan + tables.seq_scan as all_scans,

 �(tables.n_tup_ins + tables.n_tup_upd + tables.n_tup_

del) as writes,

 pg_relation_size(relid) as table_size

 FROM pg_stat_user_tables as tables

),

all_writes as (

 SELECT sum(writes) as total_writes

 FROM table_scans

),

indexes as (

 SELECT idx_stat.relid, idx_stat.indexrelid,

 idx_stat.schemaname, idx_stat.relname as tablename,

 idx_stat.indexrelname as indexname,

 idx_stat.idx_scan,

 pg_relation_size(idx_stat.indexrelid) as index_bytes,

 indexdef ~* 'USING btree' AS idx_is_btree

 FROM pg_stat_user_indexes as idx_stat

 JOIN pg_index

 USING (indexrelid)

 JOIN pg_indexes as indexes

 ON idx_stat.schemaname = indexes.schemaname

 AND idx_stat.relname = indexes.tablename

 AND idx_stat.indexrelname = indexes.indexname

 WHERE pg_index.indisunique = FALSE

),

Chapter 8 Basic Errors and Handy Queries

204

index_ratios AS (

SELECT schemaname, tablename, indexname,

 idx_scan, all_scans,

 round((CASE WHEN all_scans = 0 THEN 0.0::NUMERIC

 �ELSE idx_scan::NUMERIC/all_scans * 100 END),2) as

index_scan_pct,

 writes,

 �round((CASE WHEN writes = 0 THEN idx_scan::NUMERIC ELSE

idx_scan::NUMERIC/writes END),2)

 as scans_per_write,

 pg_size_pretty(index_bytes) as index_size,

 pg_size_pretty(table_size) as table_size,

 idx_is_btree, index_bytes

 FROM indexes

 JOIN table_scans

 USING (relid)

),

index_groups AS (

SELECT 'Never Used Indexes' as reason, *, 1 as grp

FROM index_ratios

WHERE

 idx_scan = 0

 and idx_is_btree

UNION ALL

SELECT 'Low Scans, High Writes' as reason, *, 2 as grp

FROM index_ratios

WHERE

 scans_per_write <= 1

 and index_scan_pct < 10

 and idx_scan > 0

 and writes > 100

 and idx_is_btree

Chapter 8 Basic Errors and Handy Queries

205

UNION ALL

SELECT 'Seldom Used Large Indexes' as reason, *, 3 as grp

FROM index_ratios

WHERE

 index_scan_pct < 5

 and scans_per_write > 1

 and idx_scan > 0

 and idx_is_btree

 and index_bytes > 100000000

UNION ALL

SELECT 'High-Write Large Non-Btree' as reason, index_ratios.*,

4 as grp

FROM index_ratios, all_writes

WHERE

 (writes::NUMERIC / (total_writes + 1)) > 0.02

 AND NOT idx_is_btree

 AND index_bytes > 100000000

ORDER BY grp, index_bytes DESC)

SELECT reason, schemaname, tablename, indexname,

 �index_scan_pct, scans_per_write, index_size, table_size

FROM index_groups;

�Age of DB and Tables

SELECT datname, age(datfrozenxid) FROM pg_database;

SELECT c.oid::regclass as table_name,

 greatest(age(c.relfrozenxid),age(t.relfrozenxid)) as age

FROM pg_class c

LEFT JOIN pg_class t ON c.reltoastrelid = t.oid

WHERE c.relkind IN ('r', 'm');

Chapter 8 Basic Errors and Handy Queries

206

�Duplicate Indexes

SELECT

 indrelid::regclass AS TableName

 ,array_agg(indexrelid::regclass) AS Indexes

FROM pg_index

GROUP BY

 indrelid

 ,indkey

HAVING COUNT(*) > 1;

�Blocked Queries

SELECT blocked_locks.pid AS blocked_pid,

 blocked_activity.usename AS blocked_user,

 blocking_locks.pid AS blocking_pid,

 blocking_activity.usename AS blocking_user,

 blocked_activity.query AS blocked_statement,

 �blocking_activity.query AS current_statement_in_

blocking_process

 FROM pg_catalog.pg_locks blocked_locks

 �JOIN pg_catalog.pg_stat_activity blocked_activity ON

blocked_activity.pid = blocked_locks.pid

 JOIN pg_catalog.pg_locks blocking_locks

 ON blocking_locks.locktype = blocked_locks.locktype

 �AND blocking_locks.DATABASE IS NOT DISTINCT FROM

blocked_locks.DATABASE

 �AND blocking_locks.relation IS NOT DISTINCT FROM

blocked_locks.relation

 �AND blocking_locks.page IS NOT DISTINCT FROM blocked_

locks.page

Chapter 8 Basic Errors and Handy Queries

207

 �AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_

locks.tuple

 �AND blocking_locks.virtualxid IS NOT DISTINCT FROM

blocked_locks.virtualxid

 �AND blocking_locks.transactionid IS NOT DISTINCT FROM

blocked_locks.transactionid

 �AND blocking_locks.classid IS NOT DISTINCT FROM

blocked_locks.classid

 �AND blocking_locks.objid IS NOT DISTINCT FROM blocked_

locks.objid

 �AND blocking_locks.objsubid IS NOT DISTINCT FROM

blocked_locks.objsubid

 �AND blocking_locks.pid != blocked_locks.pid

 �JOIN pg_catalog.pg_stat_activity blocking_activity ON

blocking_activity.pid = blocking_locks.pid

 WHERE NOT blocked_locks.GRANTED;

Locking session :

SELECT bl.pid AS blocked_pid,

 a.query AS blocking_statement,

 now () - ka.query_start AS blocking_duration,

 kl.pid AS blocking_pid,

 a.query AS blocked_statement,

 now () - a.query_start AS blocked_duration

 FROM pg_catalog.pg_locks bl

 JOIN pg_catalog.pg_stat_activity a ON bl.pid = a.pid

 JOIN pg_catalog.pg_locks kl

 JOIN pg_catalog.pg_stat_activity ka

 ON kl.pid = ka.pid

 ON bl.transactionid = kl.transactionid

 AND bl.pid != kl.pid

 WHERE NOT bl.granted;

Chapter 8 Basic Errors and Handy Queries

208

Blocking query :

SELECT blocked_locks.pid AS blocked_pid,

 blocked_activity.usename AS blocked_user,

 blocking_locks.pid AS blocking_pid,

 blocking_activity.usename AS blocking_user,

 blocked_activity.query AS blocked_statement,

 �blocking_activity.query AS current_statement_in_

blocking_process

 FROM pg_catalog.pg_locks blocked_locks

 �JOIN pg_catalog.pg_stat_activity blocked_activity ON

blocked_activity.pid = blocked_locks.pid

 JOIN pg_catalog.pg_locks blocking_locks

 ON blocking_locks.locktype = blocked_locks.locktype

 �AND blocking_locks.DATABASE IS NOT DISTINCT FROM

blocked_locks.DATABASE

 �AND blocking_locks.relation IS NOT DISTINCT FROM

blocked_locks.relation

 �AND blocking_locks.page IS NOT DISTINCT FROM blocked_

locks.page

 �AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_

locks.tuple

 �AND blocking_locks.virtualxid IS NOT DISTINCT FROM

blocked_locks.virtualxid

 �AND blocking_locks.transactionid IS NOT DISTINCT FROM

blocked_locks.transactionid

 �AND blocking_locks.classid IS NOT DISTINCT FROM

blocked_locks.classid

 �AND blocking_locks.objid IS NOT DISTINCT FROM blocked_

locks.objid

 �AND blocking_locks.objsubid IS NOT DISTINCT FROM

blocked_locks.objsubid

 �AND blocking_locks.pid != blocked_locks.pid

Chapter 8 Basic Errors and Handy Queries

209

JOIN pg_catalog.pg_stat_activity blocking_activity ON blocking_

activity.pid = blocking_locks.pid WHERE NOT blocked_locks.

GRANTED;

�Slow Running Queries on DB from Last 5 Min

select now()-query_start as Running_Since,pid, datname,

usename, application_name, client_addr, left(query,60)

from pg_stat_activity where state in ('active','idle in

transaction') and (now() - pg_stat_activity.query_start) >

interval '2 minutes';

�Delete Duplicate Values in a Table Using CTID (Pseudo
Column)

DELETE FROM dupes a

WHERE a.ctid <> (SELECT min(b.ctid)

 FROM dupes b

 WHERE a.key = b.key);

�Total Number of Transactions Executed in All
Databases

SELECT sum(xact_commit+xact_rollback) FROM pg_stat_database;

�Object Privileges Queries
This section provides the queries which you can use to get privileges on

object or schema level.

Chapter 8 Basic Errors and Handy Queries

210

�Grant Privileges on All Tables

SELECT 'grant select,update,usage on '||c.relname||' to

username;' FROM pg_catalog.pg_class c

 �LEFT JOIN pg_catalog.pg_namespace n ON n.oid =

c.relnamespace

WHERE c.relkind IN ('r',") AND n.nspname='schemaname' AND

pg_catalog.pg_get_userbyid(c.relowner)='username';

�Check Privileges on Tables

SELECT n.nspname as "Schema",

 c.relname as "Name",

 �CASE c.relkind WHEN 'r' THEN 'table' WHEN 'v' THEN 'view'

WHEN 'S' THEN 'sequence' END as "Type",

 �pg_catalog.array_to_string(c.relacl, E'\n') AS "Access

privileges",

 pg_catalog.array_to_string(ARRAY(

 �SELECT attname || E':\n ' || pg_catalog.array_to_

string(attacl, E'\n ')

 FROM pg_catalog.pg_attribute a

 �WHERE attrelid = c.oid AND NOT attisdropped AND attacl IS

NOT NULL

 �), E'\n') AS "Column access privileges"

FROM pg_catalog.pg_class c

 �LEFT JOIN pg_catalog.pg_namespace n ON n.oid =

c.relnamespace

WHERE c.relkind IN ('r') AND pg_catalog.pg_get_userbyid

(c.relowner)='username' AND n.nspname='schemaname';

Chapter 8 Basic Errors and Handy Queries

211

�Find All Functions with Arguments

SELECT n.nspname || '.' || p.proname || '(' || pg_catalog.

oidvectortypes(p.proargtypes) || ')' as FunctionName,usename

as OWNER FROM pg_proc p LEFT JOIN pg_catalog.pg_namespace n

ON n.oid = p.pronamespace, pg_user u WHERE p.prorettype <>

'pg_catalog.cstring'::pg_catalog.regtype AND p.proargtypes[0]

<> 'pg_catalog.cstring'::pg_catalog.regtype AND pg_catalog.

pg_function_is_visible(p.oid) AND p.proowner=u.usesysid AND

n.nspname not in ('pg_catalog','sys');

select prona.me||'('||pg_get_function_arguments(pg_proc.

oid)||')' as function_arguments,usename,nspname from pg_

proc,pg_user,pg_namespace where proowner=pg_user.usesysid and

pronamespace=pg_namespace.oid and usename<>nspname and nspname

!~ '^pg_catalog|^information_schema|^sys';

�Find Privileges of a User on Objects

SELECT n.nspname as "Schema",

 c.relname as "Name",

 �CASE c.relkind WHEN 'r' THEN 'table' WHEN 'v' THEN 'view'

WHEN 'S' THEN 'sequence' WHEN 'f' THEN 'foreign table' END

as "Type",

 �pg_catalog.array_to_string(c.relacl, E'\n') AS "Access

privileges",

 pg_catalog.array_to_string(ARRAY(

 �SELECT attname || E':\n ' || pg_catalog.array_to_

string(attacl, E'\n ')

 FROM pg_catalog.pg_attribute a

 �WHERE attrelid = c.oid AND NOT attisdropped AND attacl IS

NOT NULL

), E'\n') AS "Column access privileges"

Chapter 8 Basic Errors and Handy Queries

212

 FROM pg_catalog.pg_class c

 �LEFT JOIN pg_catalog.pg_namespace n ON n.oid =

c.relnamespace

 WHERE c.relkind IN ('r', 'v', 'S', 'f')

 AND n.nspname !~ '^pg_' AND pg_catalog.pg_table_

is_visible(c.oid) and pg_catalog.pg_get_userbyid(c.

relowner)='owner'

 ORDER BY 1, 2;

�Granting Privileges on All Procedures

select 'grant execute on procedure

"CBF"."'||proname||'"('||pg_get_function_arguments(oid)||') to

cbf_ctrl_user;' from pg_proc where pronamespace=' <oid of

schema>' ;

�Object Level Queries
This section provides the queries which you can use for getting

information at object level.

�Get List of All Tables and Their Row Count

SELECT

pgClass.relname AS tableName,

pgClass.reltuples AS rowCount

FROM

pg_class pgClass

LEFT JOIN

pg_namespace pgNamespace ON (pgNamespace.oid = pgClass.

relnamespace)

WHERE

Chapter 8 Basic Errors and Handy Queries

213

pgNamespace.nspname NOT IN ('pg_catalog', 'information_

schema') AND

pgClass.relkind='r';

�Check Tables in Each User Defined Schema

SELECT n.nspname as "Schema",

 count(c.relname) as "Name"

FROM pg_catalog.pg_class c

 �LEFT JOIN pg_catalog.pg_namespace n ON n.oid =

c.relnamespace

WHERE c.relkind IN ('r',")

 AND n.nspname <> 'pg_catalog'

 AND n.nspname <> 'information_schema'

 AND n.nspname !~ '^pg_toast'

 AND pg_catalog.pg_table_is_visible(c.oid)

 group by n.nspname;

�Find Parameters Changes for a Table

SELECT c.relname, pg_catalog.array_to_string(c.reloptions

|| array(select 'toast.' || x from pg_catalog.unnest(tc.

reloptions) x), ', ')

FROM pg_catalog.pg_class c

 LEFT JOIN pg_catalog.pg_class tc ON (c.reltoastrelid = tc.oid)

WHERE c.relname = 'test'

Chapter 8 Basic Errors and Handy Queries

214

Generate a Script to Change or Rename All Table
Names� to lower case

SELECT 'alter table "'||c.relname||'" rename to '||lower

(c.relname)||';'

FROM pg_catalog.pg_class c

 �LEFT JOIN pg_catalog.pg_namespace n ON n.oid =

c.relnamespace

WHERE c.relkind ='r'

 AND n.nspname='schemaname'

ORDER BY 1;

�Generate a Script to Change or Rename All Columns
of a Table

For Tables

SELECT

 �'alter table "'||c.relname||'" rename "'||a.attname||'"

to '||lower(a.attname)||';'

FROM

 pg_class c

 JOIN pg_attribute a ON a.attrelid = c.oid

 JOIN pg_type t ON a.atttypid = t.oid

 �LEFT JOIN pg_catalog.pg_constraint r ON c.oid =

r.conrelid

 AND r.conname = a.attname

WHERE

 �c.relnamespace = (select oid from pg_namespace where

nspname='schemaname')

 AND a.attnum > 0 AND c.relkind in ('r', 'p')

 AND c.relname = 'table_name'

ORDER BY a.attnum

Chapter 8 Basic Errors and Handy Queries

215

For All Tables in a Schema

SELECT

 �'alter table "'||c.relname||'" rename "'||a.

attname||'" to '||lower(a.attname)||';'

FROM

 pg_class c

 JOIN pg_attribute a ON a.attrelid = c.oid

 JOIN pg_type t ON a.atttypid = t.oid

 �LEFT JOIN pg_catalog.pg_constraint r ON c.oid =

r.conrelid

 AND r.conname = a.attname

WHERE

 �c.relnamespace = (select oid from pg_namespace where

nspname='schemaname')

 AND a.attnum > 0

 AND c.relkind in ('r', 'p')

ORDER BY a.attnum

�Find Primary Keys on Tables of a Schema

SELECT c2.relname, i.indisprimary, i.indisunique, i.indisvalid,

pg_catalog.pg_get_indexdef(i.indexrelid, 0, true),

 pg_catalog.pg_get_constraintdef(con.oid, true), contype

FROM pg_catalog.pg_class c, pg_catalog.pg_class c2, pg_catalog.

pg_index i

 �LEFT JOIN pg_catalog.pg_constraint con ON (conrelid =

i.indrelid AND conindid = i.indexrelid AND contype IN ('p'))

WHERE c.relnamespace=(select oid from pg_namespace where

nspname='public') AND c.oid = i.indrelid AND i.indexrelid =

c2.oid

ORDER BY i.indisprimary DESC, i.indisunique DESC, c2.relname;

Chapter 8 Basic Errors and Handy Queries

216

�Find Sequences in a Schema

SELECT n.nspname as "Schema",

 c.relname as "Name",

 �CASE c.relkind WHEN 'r' THEN 'table' WHEN 'v' THEN 'view'

WHEN 'm' THEN 'materialized view' WHEN 'i' THEN 'index' WHEN

'S' THEN 'sequence' WHEN 's' THEN 'special' WHEN 'f' THEN

'foreign table' END as "Type",

 pg_catalog.pg_get_userbyid(c.relowner) as "Owner"

FROM pg_catalog.pg_class c

 �LEFT JOIN pg_catalog.pg_namespace n ON n.oid =

c.relnamespace

WHERE c.relkind IN ('S',”)

 AND n.nspname='schemaname'

ORDER BY 1,2;

�Find the Constraints

SELECT r.conname

FROM pg_catalog.pg_constraint r

WHERE r.connamespace = (select oid from pg_namespace where

nspname='public') AND r.contype = 'c'

ORDER BY 1;

�Find ForeignKeys

SELECT conname,

 pg_catalog.pg_get_constraintdef(r.oid, true) as condef

FROM pg_catalog.pg_constraint r

WHERE r.connamespace=(select oid from pg_namespace where

nspname='public') AND r.contype = 'f' ORDER BY 1;

Chapter 8 Basic Errors and Handy Queries

217

�Find Parent for ForeignKey

SELECT conname, conrelid::regclass, conindid::regclass,

 pg_catalog.pg_get_constraintdef(r.oid, true) as condef

FROM pg_catalog.pg_constraint r

WHERE r.connamespace=(select oid from pg_namespace where

nspname='public') AND r.contype = 'f' ORDER BY 1;

�Query to Find Sequence OWNED BY

select s.relname as "Sequence", n.nspname as "schema",

t.relname as "Owned by table", a.attname as "Owned by column"

from pg_class s

 �join pg_depend d on d.objid=s.oid and d.classid='pg_

class'::regclass and d.refclassid='pg_class'::regclass

 join pg_class t on t.oid=d.refobjid

 join pg_namespace n on n.oid=t.relnamespace

 �join pg_attribute a on a.attrelid=t.oid and a.attnum=d.

refobjsubid

where s.relkind='S'

�Summary
In this chapter, we have talked about some errors that you see when you

start working on PostgreSQL, and their causes and resolution. This will be

helpful for the beginners. Also, we have provided some handy queries that

you can use on a daily basis. Monitoring queries are useful for a database

administrator to check the health of a database.

Chapter 8 Basic Errors and Handy Queries

219© Baji Shaik 2020
B. Shaik, PostgreSQL Configuration, https://doi.org/10.1007/978-1-4842-5663-3

Index

A
Access control list (ACL)

alter default privileges, 76–77
avoid public schema, 78
column level, 78
privilege abbreviations,

73–75
read-only roles, 79
roles and groups, 77
transactional DDLs, 75–76

Administrators
bash_profile, 33
psqlrc file, setting up, 33–34
psqlrc info, 35

Allocate, 54
Alter default privileges, 76–77
Auditing extension, 86, 87
Auditing setup, 64
Authentication in HBA

HOSTSSL, 72
LDAP, 72
md5, 68
password, 68
PEER and IDENT, 71–72
reject, 71
SCRAM, 68–70
TRUST, 70–71

Auto-failover solutions, 155

Auto-failover through repmgr
configuration file, 164–166
installation, 163
node registration, 166–167
setup, 164
test auto failover, 168

Autovacuum
concurrent operations, 135
launcher, 136
parameters

autovacuum_max_
workers, 138

autovacuum_naptime, 139
autovacuum_vacuum_

cost_delay, 140
vacuuming, 137
worker, 136

Autovacuum IO, 143–144
Autovacuum-related

parameters, 50, 52

B
Backups, 89

information gathering,
set up, 94–96

logical (see Logical backups)
monitoring, 109
physical (see Physical backups)

https://doi.org/10.1007/978-1-4842-5663-3

220

PITR, 107
purpose, 93
retention, 103
strategy, set up, 109
tools

Barman, 104
pgBackRest, 104–105

Barman tool, 104
Base backup

formats, 100, 101
pg_receivexlog/pg_

receivewal, 102
pg_stop_backup function, 99

Basic queries, 192
Binary installation, 14

C
Cascading replication, 159
Checkpoints, 115
Column level ACLs, 78
Common replication issues, 169
Concurrency control protocol, 132
Concurrent operations, 135
Configuration errors, 179–182
Configuration files

pg_hba.conf, 36–37
pg_ident.conf, 38
postgresql.conf, 35–36

Configuration settings, 39
Connection errors, 174–179
Connection/authentication-related

parameters, 41, 42

Connection pooling
pgBouncer, 170–171
pgpool-II, 171

Core PostgreSQL extension, 87

D
Daily backups, 109
Database administrators

(DBAs), 19
Database failures, 152
Database level monitoring

daily/weekly basis, 124
frequent monitoring, 123

Database management systems
(DBMSs), 131

Data cluster separation, 21
Data definition language (DDL)

statements, 137
Duplicate indexes, 149, 150

E
Encryption

backups, 89
instance level, 90
performance impact, 88
volumes, 90

Errors, 191–197
Event triggers, 84–86

F
Failures, 135

Backups (cont.)

INDEX

221

G
Garbage collection, 132, 136
GRANT/REVOKE privileges, 74
GRANT privileges, 210

H
High availability (HA), 152

better HA solution, 161, 162
information gathering

auto-failover solutions, 155
critical data, 153
data center, 154
delay, 155
HA solution, 152
primary server specs, 153
read connections, standby

servers, 155
replication solution, 154
RPO and RTO, 154
single data center, 154
standby servers, 153

setting up
RPO, 156
RTO, 156

simple HA solution, 160, 161
solutions in Core PostgreSQL

auto failover tools (see
Auto-failover through
repmgr)

cascading replication, 159
connection pooling (see

Connection pooling)

hot standby, 158
streaming replication,

158, 159
warm standby/log

shipping, 157, 158
High security and encryption

guidelines, 91–92
Hot standby, 100, 158
Hugepages, 58–59

I, J, K
Index fragmentation, 145–148
Input/output operations per

second (IOPS), 122
Installation, PostgreSQL

binary, 14
current size and expected

growth, 18
filesystem, 4, 18
machine specifications, 3, 18
mount points, 4, 19
operating system, 3, 17
public Internet, 5, 19
source (see Source installation)
storage types, 3
troubleshooting issues, 28

Instance level encryption, 90

L
LDAP server, 72
Levels of monitoring, 120–121

INDEX

222

Linux OS recommendations
hugepages, 58
overcommits, 55–57
THP, 58
vm.dirty_background_ratio, 57
vm.dirty_ratio, 57

Linux virtual memory, 55
log_autovacuum_min_

duration, 119
log_checkpoints, 115, 116
Log files, 22, 23
Logging

parameters
log_autovacuum_min_

duration, 119
log_checkpoints, 115, 116
log_connections and log_

disconnections, 116, 117
log_line_prefix, 114, 115
log_lock_waits, 117, 118
log_min_duration_

statement, 113
log_temp_files, 118

reasons to enable, 111
Logging-related parameters, 52
Logical backups

examples, 97, 98
limitations, 96
pg_dump, 96, 97

log_line_prefix, 114
log_lock_waits, 117, 118
log_min_duration_

statement, 113
log_temp_files, 118

M, N
Maintenance activities

autovacuum IO, 143, 144
autovacuum/vacuum (see

Autovacuum)
duplicate indexes, 149, 150
index fragmentation, 145–148
table and index bloat, 134
unused indexes, 148, 149

Memory-related parameters,
42, 44, 45

Monitoring databases
database level (see Database

level monitoring)
levels, 120
OS level (see OS level

monitoring)
Monitoring queries

age of DB and tables, 205
bloated index, 196, 198, 199
bloated tables, 202
blocked queries, 206, 207, 209
DB size, 194
delete duplicate values, 209
duplicate indexes, 206
get name/values, pg_settings, 202
index sizes, 194
index utilization, 194
largest tables, DB, 193
never-used indexes, 203–205
real-time bloated tables, 202
slow running queries, 209
table size, 194
top 10 WRITE tables, 193

INDEX

223

total number, transactions
executed, 209

VACUUM, 195, 196
Monitoring/reporting tools

pgBadger, 125
pg_buffercache extension,

129, 130
pgCluu, 126, 127
sar, 127, 129

Monitoring roles, 87
Monthly backups, 109
Multiversion concurrency control

(MVCC)
behavior, 133
PostgreSQL, 132
transaction management

scheme, 131

O
Object level queries

change/rename all table names
to LOWERCASE, 214

change/rename all columns
for all tables in a schema, 215
for tables, 214

check tables, user defined
schema, 213

constraints, finding, 216
find parameters changes for a

table, 213
find sequence OWNED BY, 217
find sequences in a schema, 216
foreignkeys, 216

get list of all tables, 212
parent for foreignkey, finding, 217
primary keys on tables,

schema, 215
Object privileges queries

check privileges, tables, 210
find all functions, arguments, 211
find privileges, 211
GRANT privileges, 210, 212

One-click installers, 16
Online transaction processing

(OLTP), 137
OS level monitoring

CPU utilization, 122
filesystem, 123
IO, 122
memory, 122
network, 122

Overcommits, 54–57

P
Parameter recommendations

configuration settings,
types of, 39

review parameters
autovacuum-related, 50–52
connections related, 41–42
logging-related, 52
memory-related, 42–45
planner-related, 45–47
replication-related, 52–53
WAL-related, 47–50

tuning tools, 40

INDEX

224

Password-based authentication
system, 68

pgBackRest, 104–105
pgBadger, 125
pg_basebackup, 100, 101
pgBouncer, 170, 171
pg_buffercache extension,

129, 130
pgCluu monitors, 126, 127
pgcrypto, 88
pg_dump, 96, 97
pg_hba.conf, 36, 37
pg_ident.conf, 38
pgpool-II, 171
pg_start_backup function, 99
Physical backups

advantages, 98
error check, 99
formats, 100, 101
pg_basebackup, 99
preceding parameters, 100
replication enabled, 100
sample script, 98
traditional procedure, 99
transaction logs, 102

Planner-related parameters, 45–47
Point-in-time-recovery (PITR),

107–108
postgresql.conf, 35, 36
PostgreSQL developers

create server, 31
database details, 31
database status, 32
pgAdmin home, 30

PostgreSQL disk/storage
filesystem layouts

data cluster separation, 21
log files, 22, 23
tablespaces, 24
temp files separation,

23, 24
WAL files separation, 22

one cluster and database per
server, 20

right location and ownership,
choosing, 20

PostgreSQL Global Development
Group (PGDG), 14

PostgreSQL-related environment
variables, 32

Procedures untrusted, 91
Public schema, 78, 79

Q
Query errors, 182–184

R
Read-only role, 79
Recovery point objective

(RPO), 154, 156
Recovery time objective

(RTO), 154, 156
REINDEX, 146, 147
Replication lag, 154, 168
Replication-related

parameters, 52, 53

INDEX

225

Restoring database
logical backups

custom/tar format dump
files, 106

plain dump file, 106
physical backups, 107

Rollback, 75
Row level security (RLS), 64, 66,

80–82
RPM installation, 14–16

S
Salted challenge response

authentication mechanism
(SCRAM), 68–70

Security mechanisms
ACLs (see Access control list

(ACL))
auditing, 64, 86, 87
authentication (see

Authentication in HBA)
current user management, 62
encryption and PCI, 65, 88–90
event triggers, 84–86
implementation, 65
monitoring roles, 87
password policy set up, 63
PL trusted vs. untrusted, 91
PostgreSQL, 65
replication, 90
RLS, 80–82
row level security, 64

SSL, 64, 82, 83
users, creation, 62
writing and reading,

database, 63
Source installation

binaries and libraries, 8
cluster, 8
configure command, 7
downloaded file, unpack, 6
-j option, 8
OpenSSL libs, 8
pg_ctl tool, 9
script file, content, 10–13

SQL dumps, 96
SSL connections, 64, 72, 82, 83
Standby server, 157
Streaming replication, 158–160
System activity report (sar)

monitors, 127–129

T
Table and index bloat, 134
Tablespace, 24
Temp files separation, 23–24
Throttle VACUUM, 141–142
Transactional DDLs, 75, 76
Translation lookaside buffer

(TLB), 58
Transparent huge pages

(THP), 58
Troubleshooting issues, 28
TRUST authentication, 70–71

INDEX

226

Tuning OS parameters
after installation, 27
before installation, 25–27

U
Unused indexes, 148–149

V
VACUUM strategies

manual, 141–142
schedule, 142–143

Virtual memory, 54

W, X
WAL backup, 102
WAL files separation, 22
WAL-related parameters,

47–50
Warm/hot standby, 159
Warm standby/log shipping,

157–158
Weekly backups, 109

Y, Z
Yearly backups, 109

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Best Ways to Install PostgreSQL
	Information Needed for Installation
	Types of Installations
	Source Installation
	Binary Installation
	RPM Installation
	One-Click Installers for Linux, Windows, and Mac

	Plan for the Installation
	General Recommendations for PostgreSQL Disk/Storage
	Choose the Right Location and Ownership
	One Cluster and Database per Server
	FileSystem Layouts
	Data Cluster Separation
	WAL Files Separation
	Log Files Separation
	Temp Files Separation
	Tablespaces

	Tuning OS Parameters
	Before Installation
	After Installation

	Troubleshooting Installation Issues
	Summary

	Chapter 2: Configure Your Database for Better Performance
	Initial Steps After Installation
	For PostgreSQL Developers
	For Administrators

	Configuration Files and Recommendations
	postgresql.conf
	pg_hba.conf
	pg_ident.conf
	Parameter Recommendations
	The Types of Settings
	When They Take Effect
	Tuning Tools
	Review Parameters
	Connections Related
	listen_addresses
	max_connections

	Memory Related
	shared_buffers
	effective_cache_size
	work_mem
	maintenance_work_mem

	Planner/Cost Related
	seq_page_cost
	random_page_cost
	cpu_tuple_cost

	WAL Related
	wal_buffers
	wal_level
	bgwriter_delay
	bgwriter_lru_maxpages
	bgwriter_lru_multiplier
	synchronous_commit
	fsync
	effective_io_concurrency
	checkpoint_segments
	checkpoint_timeout
	checkpoint_completion_target
	checkpoint_warning

	Autovacuum Related
	autovacuum
	autovacuum_max_workers
	autovacuum_naptime
	autovacuum_vacuum_threshold / autovacuum_analyze_threshold
	autovacuum_vacuum_scale_factor / autovacuum_analyze_scale_factor
	autovacuum_vacuum_cost_delay

	Logging Related
	Replication Related
	max_wal_senders
	max_replication_slots
	max_worker_processes
	max_logical_worker_processes
	max_sync_workers_per_subscription

	OS Recommendations
	Why Allow Overcommits?
	Overcommit Strategy 0
	Overcommit Strategy 1
	Overcommit Strategy 2
	vm.dirty_ratio
	vm.dirty_background_ratio
	THP

	Hugepages

	Summary

	Chapter 3: User Management and Securing Databases
	Information That You Need to Know
	Security Mechanisms
	Authentication in HBA
	PASSWORD
	MD5
	SCRAM
	TRUST
	REJECT
	PEER and IDENT
	LDAP
	HOSTSSL

	ACLs
	Available Privileges
	Transactional DDLs
	Alter Default Privileges
	Roles and Groups
	Column Level ACLs
	Avoid Public Schema
	Read-Only Roles

	RLS (Row Level Security)
	SSL
	Tunneling

	Event Trigger
	Auditing
	Monitoring Roles
	Encryption and PCI
	Performance Impact
	Backups
	Volumes
	Instance Level

	Replication
	PL Trusted vs. Untrusted

	High Security and Encryption Guidelines
	Summary

	Chapter 4: Backup and Restore Best Practices
	Purpose of Backing Up a Database
	Gather Information to Set Up a Backup Strategy
	Backup Types
	Logical Backups
	How to Take Logical Backups

	Physical Backups
	How to Take a Base Backup
	Backup Formats
	What Needs to Be Backed Up?
	pg_receivexlog/pg_receivewal
	Backup Retention

	Other Backup Tools
	Barman
	pgBackRest

	Restore Your Database
	Logical Backups
	Restoring a Plain Dump File
	Restoring Custom/tar Format Dump Files

	Restore Physical Backups

	Point-In-Time-Recovery

	Design a Backup Strategy
	Daily Backups
	Weekly Backups
	Monthly Backups
	Yearly Backup

	Monitoring Backups
	Summary

	Chapter 5: Enable Logging of Your Database and Monitoring PostgreSQL Instances

	Why/When/How to Log
	Parameters to Set for Logging
	log_min_duration_statement
	log_line_prefix
	log_checkpoints
	log_connections and log_disconnections
	log_lock_waits
	log_temp_files
	log_autovacuum_min_duration

	Monitoring Databases
	Levels of Monitoring
	OS Level Monitoring
	CPU
	Memory
	IO
	Network
	Filesystem

	Database Level Monitoring
	Frequent Monitoring
	Daily or Weekly Basis

	Monitoring/Reporting Tools
	pgBadger
	pgCluu
	sar
	pg_buffercache

	Summary

	Chapter 6: Execute Maintenance
	What is MVCC
	MVCC in PostgreSQL
	If the Row Is Deleted
	If the Row Is Updated

	Why/How—Maintenance Activities
	Table and Index Bloat
	AUTOVACUUM/VACUUM
	What Does Autovacuum Do?
	How Does Autovacuum Work?
	What Else of Importance Can the Autovacuum Daemon Do?
	Autovacuum Parameters
	autovacuum
	autovacuum_max_workers
	autovacuum_naptime
	autovacuum_vacuum_threshold / autovacuum_analyze_threshold
	autovacuum_vacuum_scale_factor / autovacuum_analyze_scale_factor
	autovacuum_vacuum_cost_delay

	VACUUM Strategies
	Manual VACUUM
	Throttle VACUUM

	Schedule

	autovacuum IO

	Index Fragmentation
	Other Database Maintenance
	Unused Indexes
	Duplicate Indexes

	Summary

	Chapter 7: High Availability Procedures and Implementing a Pooler
	Why High Availability?
	Gather Information to Set Up HA
	RPO and RTO
	RPO (Recovery Point Objective)
	RTO (Recovery Time Objective)

	High Availability Solutions in Core PostgreSQL
	Warm Standby/Log Shipping
	Hot Standby
	Streaming Replication
	Cascading Replication
	Warm/Hot Standby vs. Streaming Replication
	Warm/Hot Standby
	Streaming Replication

	Simple HA Solution
	Better HA Solution
	Auto Failover Tools Available
	auto-failover through repmgr
	Installation
	Setup
	Configuration
	Node Registration
	Test Auto Failover

	Replication Lag

	Common Replication Issues
	Why Connection Pooling
	pgBouncer
	Issues

	pgpool-II

	Summary

	Chapter 8: Basic Errors and Handy Queries
	Basic Errors of PostgreSQL
	Connection Errors
	Error
	Cause/Resolution
	Error
	Cause/Resolution
	Error
	Cause/Resolution

	Configuration Errors
	Error
	Cause/Resolution
	Error
	Cause/Resolution
	Error
	Cause/Resolution

	Query Errors
	Error
	Cause/Resolution
	Error
	Cause/Resolution

	Other Errors
	Error
	Cause/Resolution
	Error
	Cause/Resolution
	Error
	Cause/Resolution
	Error
	Cause/Resolution
	Error
	Cause/Resolution
	Error
	Cause/Resolution
	Error
	Cause/Resolution
	Error
	Cause/Resolution

	Handy Queries of PostgreSQL
	Basic Queries
	To Check Version
	To Check Size of Database
	To Get All Catalog Tables

	Monitoring Queries
	Top 10 WRITE Tables
	Top 10 READ Tables
	Largest Tables in DB
	DB Size
	Table Size
	Index Size
	Index Utilization
	Tables That Are Being Updated the Most and Looking for VACUUM
	Bloated Index to Run Reindexing (Locking Operation)\pgrepack (Online Rebuilding)
	Bloated Tables to Do Vacuumfull (Locking Operation)\pgrepack (Online Rebuilding)
	Real-Time Bloated Tables
	Get name and value from pg_settings
	Never-Used Indexes
	Age of DB and Tables
	Duplicate Indexes
	Blocked Queries
	Slow Running Queries on DB from Last 5 Min
	Delete Duplicate Values in a Table Using CTID (Pseudo Column)
	Total Number of Transactions Executed in All Databases

	Object Privileges Queries
	Grant Privileges on All Tables
	Check Privileges on Tables
	Find All Functions with Arguments
	Find Privileges of a User on Objects
	Granting Privileges on All Procedures

	Object Level Queries
	Get List of All Tables and Their Row Count
	Check Tables in Each User Defined Schema
	Find Parameters Changes for a Table
	Generate a Script to Change or Rename All Table Names to lower case
	Generate a Script to Change or Rename All Columns of a Table
	For Tables
	For All Tables in a Schema

	Find Primary Keys on Tables of a Schema
	Find Sequences in a Schema
	Find the Constraints
	Find ForeignKeys
	Find Parent for ForeignKey
	Query to Find Sequence OWNED BY

	Summary

	Index

