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"| can pretty much guarantee that anyone who uses SQL
Server on a reqgular basis (even those located in Redmond
working on SQL Server) can learn something new from
reading this book."

-David Campbell, Product Unit Manager,Relational Server
Team, Microsoft Corporation

The latest book from the highly regarded and best-selling
author Ken Henderson, The Guru's Guide to SQL Server
Architecture and Internals is the consummate reference to
Microsoft SQL Server. Picking up where documentation and
white papers leave off, this book takes an all-inclusive
approach to provide the most depth and breadth of
coverage of any book on SQL Server architecture, internals,
and tuning.
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Blending in-depth discussion with practical application, the
guide begins with several chapters on the fundamental
Windows technologies behind SQL Server, including
processes and threads, memory management, Windows |/O,
and networking. The focus then moves on to the
architectural details of SQL Server and how to practically
apply them.

The entire SQL Server product is covered--not just the
functionality that resides within the core executable or
product features that have been in place for years. SQL
Server has matured and broadened substantially with each
release, and the author explores the "fringe" technologies
that have yet to be covered elsewhere, including
Notification Services, Full Text Search, SQLXML, replication,
DTS, and a host of others.

Throughout the book, the author uses WinDbg, Microsoft's
free downloadable symbolic debugger, to look under the
hood of SQL Server. Armed with new debugging and coding
skills, readers will be ready to master SQL Server on their
own.

The accompanying CD-ROM is packed with additional
material, including full source code for the book's 900+
examples, as well as three invaluable tools: DTSDIAG, the
VBODSOLE Library, and DTS Package Guru. DTSDIAG allows
developers and administrators to simultaneously collect
Profiler traces, perform logs, blocking script output, system
event logs, and SQLDIAG reports from a specified SQL
Server. The VBODSOLE Library features more than twenty
new COM-based functions for Transact-SQL, including T-SQL
enhancements such as array-manipulation routines,
financial functions, string-manipulation functions, and
system functions. DTS Package Guru is a .NET-based
package editor for SQL Server's Data Transformation



Services that allows editing of any modifiable package and
supports the automation of mass package changes.

The Guru's Guide to SQL Server Architecture and Internals is
the essential guide for database developers and
administrators alike, regardless of skill level.
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Foreword

When | first started programming computers, | wrote many programs before taking
the time to understand the instruction set of the system | was developing on. | got
most of these programs working, but debugging complex issues was a painstaking
process. As the sophistication of the programs evolved, | eventually hit a wall. When
| stepped back and learned the instruction set and underlying architecture of the
system, an amazing thing happened: | was able to break through the wall, and |
became much more proficient. Frustration and complexity melted away, and, armed
with a deep knowledge of the system, | was able to do things that were impossible
before.

You've no doubt experienced something similar. Maybe it was while programming
computers. Perhaps it was in learning to play a musical instrument@after a short
time, you could play scales or simple melodies. However, to truly master an
instrument to the point where you can improvise freely requires deep knowledge in
both musical theory and proficiency in the instrument. This is the difference between
surface knowledge (having the ability to use something) and deep knowledge
(knowing how something really works so that you can master it and synthesize new
knowledge based on your deep understanding).

Ken Henderson has invested tremendous effort in unlocking the secrets of Microsoft
SQL Server, having recently written The Guru's Guide to Transact-SQL (Addison-
Wesley, 2000) and The Guru's Guide to SQL Server Stored Procedures, XML, and
HTML (Addison-Wesley, 2002). Ken is one of those people who seek deep knowledge.
He isn't satisfied in knowing how to operate something®he needs to know how
something operates. In his research for The Guru's Guide to SQL Server Architecture
and Internals, Ken learned how SQL Server operates, from the ground up€and that
is how he presents it.

Part I, Foundations, describes the fundamental substrate on which SQL Server is
built. By discussing various Windows services and facilities, this section helps
familiarize readers with how SQL Server (or any other high-performance Windows
application) communicates with Windows.

Part Il, Subsystems, Components, and Technologies, delves into the architecture of
SQL Server's core relational engine. Ken discusses the User Mode Scheduler (UMS), a
base component of SQL Server that allows it to efficiently scale to thousands of
users and process tens of thousands of transactions per second. A highlight of this
section is the chapter on the query processor. Ken offers an incredibly clear
description of how a query is transformed from SQL text (supplied by an application
or user) through parsing, normalization, optimization, and ultimate conversion into a
series of physical operators that the execution engine runs to solve the query.
Throughout this section Ken describes many of the optimizer's inputs, plan choices,
and execution strategies. He also offers a number of "under the cover" tips for how
you can peer into this complex portion of the product to determine why the
optimizer may have chosen a particular plan to solve your complex query.

Part Ill, Data Services, discusses the various ways you can interact with SQL Server's
core data engine. In this section Ken describes SQL Server's XML facilities and how
Data Transformation Services (DTS) can be used to transform and move data into
and out of SQL Server. The recently released Notification Services, which can be



used to create highly scaled event- and subscription-based data services, is also
covered. Finally, Ken describes the various replication technologies supported by
SQL Server in great detail.

One obligation in writing a foreword for a book is to provide guidance about who
should read it. In this instance, the recommendation is clear: This book is for anyone
interested in furthering their existing knowledge of SQL Server into deep knowledge.
Some people are naturally inclined to explore any new subject in a deep way. If you
are someone who is not satisfied in knowing that something works, but rather you
need to know how and why it works, Ken's book will quench your thirst. Perhaps you
find that your knowledge of SQL Server, built over a period of time by using the
product, no longer offers you explanations to complex issues and questions you
face. Ken's book will take you beyond Books Online and into the inner workings of
the product. Maybe you simply want to know how SQL Server, a complex and high-
performance application, was designed and constructed. Again, The Guru's Guide to
SQL Server Architecture and Internals will meet your needs.

I can pretty much guarantee that anyone who uses SQL Server on a regular basis
(even those located in Redmond working on SQL Server) can learn something new
by reading this book.

David Campbell
June 2003

David Campbell joined Microsoft in 1994 as a developer on the core storage engine
of Microsoft SQL Server. He has been with the SQL Server team since then and is
currently the Product Unit Manager of the Relational Server team.
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Historical Perspective

It is hard to believe that it has been ten years since | was offered a job to work at
Microsoft to support its new SQL Server Windows NT product. | never thought | would
find myself or our product in the position we are today. My previous experience was
as a C programmer and database developer on UNIX systems mainly working with
Oracle and Ingres. My perception of Microsoft was purely as a desktop company. The
only database | had even seen on a PC was dBase. As | contemplated the job offer, |
was naturally skeptical. How could Microsoft even create a product that could
compete with the biggest names in the database industry? Fortunately for me,
Andrea Stoppani, the director of SQL Support for Microsoft in 1993, convinced me
that not only would Microsoft and SQL Server be successful but also that | would find
a rewarding career with Microsoft because | would have an opportunity like never
before: to train, learn, debug, and dig into the internal "nuts and bolts" of a
relational database engine.

Ten years later, that promise has held true. In my role as an escalation engineer at
Microsoft, I've had to train, learn, debug, and dig into the internal mechanics of the
engine that drives SQL Server. Because of that gained knowledge, I've been asked to
advise and provide feedback and insight to the development team with each new
release. Through these years, I've witnessed an evolution and revolution with this
product, from the early years of supporting SQL Server 4.20 for 0S/2 when
customers on single processor machines were limited to 16MB of RAM to the
enterprise-ready, TPC record-breaking SQL Server 2000 Enterprise Server running on
a machine with 64CPUs and 512GB of RAM.

The engine itself has clearly evolved from its early origin. The storage engine and
query processor for SQL Server 4.20 through SQL Server 6.5 were all based on the
original architectural design that came from the port of the Sybase engine on 0S/2.
During these years, remarkable changes and additions were performed to make the
engine run faster and become a reliable, affordable platform for many users looking
to deploy database systems. However, these efforts ultimately reached their limits.
This is why SQL Server 7.0 was so significant. Microsoft attracted some of the
leading developers in the database industry to design and implement a new
architecture for the engine, a foundation to build on for years to come.

The changes and evolution have not just been with the SQL Server engine. In fact, in
my early years of supporting SQL Server, the engine was the primary focus of the
job because the product was pretty much the engine, sqlservr.exe. The development
community back then focused its efforts on Visual Basic or C applications using DB-
Library communicating over named pipes or IPX/SPX. ODBC was just an idea on Kyle
Geiger's computer. Today, it is more common for Microsoft support engineers to deal
with multitiered Web-based applications supporting online business retail
applications with thousands of users all communicating over TCP/IP. The mind-set of
supporting "just the engine" no longer applies. The SQL Server product has
expanded to include a rich framework of data services including Multi-Server Job
Scheduling, Data Replication, XML, Data Transformation Services, and Notification
Services.

As | reflect on the changes to the engine and the core additions that have made it
such a popular product, | think about the common questions | get from customers
and other Microsoft employees: "How can | learn more about what makes SQL Server



so powerful? How can | gain expert knowledge of some of the internals of the SQL
Server engine in order to maximize the usage of the product?" My answer is always,
"Think like a programmer." To be more specific, "Think like a Windows programmer."

| have learned the importance of gaining a solid understanding of the foundation of
technology that the engine uses to perform its work. This includes a range of
Windows programming topics such as processes, threads, synchronization,
asynchronous 1/O, dynamic linked libraries, virtual memory, networking, and COM.
Regardless of the various SQL Server releases over the years, learning these topics
has been essential to my understanding of the internals of the product. Learning
these topics takes much more than just reading about them. You must apply the
knowledge and truly understand the meaning behind the concepts. Don't just read
about what structure exception handling is@understand why it has become an
important feature for the SQL Server engine to use. Part | of this book can help guide
you toward that goal. It provides concise, comprehensible coverage of Windows
programming fundamentals. But don't just read those chapters. Go through the
examples and be sure you understand the answers to the questions in each chapter.
Once you master a solid knowledge of these concepts, you will have the right
foundation and frame of mind to understand Part |l of this book, which covers the
internals of the core components that make up the SQL Server engine. Armed with
this information, you will be able to broaden and round your skills by understanding
the technologies covered in Part lll that complement the engine and provide the
complete database services product that SQL Server has become.

SQL Server has grown as a technology and as a force in the database industry. The
number of high-quality books on this product alone is a leading indicator. When |
started at Microsoft in 1993, there were no books on Microsoft SQL Server (and only
one was produced within the next year). Today you can search the Web or go to your
local bookstore and find dozens of books dedicated to this product ranging from
topics on performance tuning to database administration to XML. The development
of this book is a testament to the product's success. The book seeks to expand the
knowledge of important topics about SQL Server in order to broaden the level of
expertise worldwide. With knowledge there is power, and this book is about
empowering SQL Server users, developers, and administrators to get the most out of
the product.

Bob Ward
June 2003

Bob Ward joined Microsoft in 1993 as a support engineer for Microsoft SQL Server. He
is currently an escalation engineer in SQL Server Support.






Preface

| grew up on a farm in America's heartland. From the time | was eight years old until
| left home for college, | lived in a small wood-frame house in rural Oklahoma with
my parents and sisters. | experienced life as a bona fide country boy with all its
attendant wholesomeness, adventure, and isolation.

| came up in a time when running water and electricity were already commonplace,
even in rural Oklahoma, so | have no horror stories to relate about the lack of basic
accoutrements or outhouses or dirt floors. | did, however, milk five cows every day
before | went to school; | bailed hay in the summer and cut firewood in the fall; and
my sisters and | helped our parents plant and harvest a large truck garden every
spring and summer. | fed chickens, hogs, and various other creatures, and |
delivered my share of baby calves and slaughtered perhaps more than my share of
feeder steers.

My parents' motivation for moving to the country was never quite clear to me. My
dad's work as a government engineer afforded us a comfortable life in suburbia that
didn't seem to be in need of such a major overhaul. Nevertheless, during my ninth
year on earth, my parents uprooted us and took us to a life that we city dwellers had
never even dreamt of. Prior to that time, I'd never seen a live cow except on
television, nor had | ever ridden a horse. We pulled up stakes and went to the
country, and all that changed.

| still remember my mother sitting us down the day before we moved and telling us
that leaving the city was a chance to learn some wonderful new aspects of life, to
gain perspective, to see things through different eyes than most people ever had the
chance to. She countered our litany of complaints and misgivings with enthusiasm
and reassurance that not only would everything work out, it would actually be for
the best. She believed that every experience was a chance to learn something. Like
Thoreau, she wanted to suck the very marrow out of life. She decided early on that
we would get the most out of our time on the farm, and she did everything in her
power to make sure that happened. | didn't really understand the import of all she
said back then€ did not want to move€but | understand now.

Without a doubt, moving to the country was a wonderful opportunity to learn life's
lessons. They were all right there in nature: in the rivers, in the trees, and in the
cycle of living and dying so evident all around us. For a boy of eight, there was no
better place to learn. Exploring the woods, rafting down the creek, fishing in the
pond, pulling fresh fruit from a tree and eating it unwashed@every day was an
adventure, a time of exploration to learn more about the observable world. | learned
what life had to teach in ways | never could have had we stayed in the city, and I'll
always be thankful for that.

My mother went to great lengths to make sure our education did not suffer as a
result of our being transplanted to the sticks. She started a personal library for each
of us and tried to infuse in us all the same love for reading that she'd had her whole
life. When the county wouldn't open a library anywhere near us, she convinced the
library to start up a summer bookmobile program. Bookmobile Day, as it came to be
known, was a joyous occasion, a time when a rambunctious pack of little kids raced
each other up the quarter-mile jaunt to the old country church where the mobile
library parked. Inside the converted RV, the walls were lined with books, and the air-



conditioned coolness was a wonderful respite from the hot Oklahoma sun. We would
stay until they kicked us out, each time leaving with an armload of books to be
returned on the next Bookmobile Day.

It was during this time that | first began to explore the mysteries of life itself. |
wanted to know where it all came from, how it all worked. | read voraciously, my
eight-year-old mind gobbling up every science book and every electronics book |
could get my hands on. | wanted to know the secret of it all; | wanted to know what
the basic essence of everything was. | wanted to know how life, how the world@how
everything@worked. | wanted to understand what literally made the world go 'round.

It was in those days that | came across my first physics books and realized that | was
on to something. | had found a trail that might lead me to the understanding |
sought. | read about gravity and magnetism, about strong and weak particles. |
formed a mind model of how the universe worked. | gained an
understanding@however imperfect it might have been®@of how everything
interoperated, how it was designed, and how reality as | understood it came down to
just a handful of fundamental concepts that | could readily see at work in the natural
world around me. | came to know a basic "system" of life, a framework that could
explain pretty much everything that existed. Suddenly, the country, nature, and the
world as | knew it began to make sense.

Since that time, | have approached almost everything I've learned with the same raw
curiosity. | want to know how it works; | want to understand it holistically. | work hard
not to settle for cursory explanations or shallow understanding. | am driven to know
precisely how something is put together and how its component parts interoperate
and interrelate. | believe this is the only real way to master something, to truly grasp
its raison d'étre.

That philosophy was the genesis of this book. | wrote it to pass on what | have
learned about how SQL Server and its fundamental technologies are designed, how
they work, and how they interoperate. | wrote it because | enjoy exploring SQL
Server. | have covered how to use and program SQL Server in previous books; |
wrote this book to detail how SQL Server is put together from an architectural
standpoint. By doing so, it's my hope that | can pass on to you the same
wonderment, the same love for technology and for all things SQL Server that | have.

It's my belief that the road to true mastery of SQL Server or any other technology
begins with exploring its design. Knowing how to put a technology to practical use is
certainly important, but that begins with understanding how it works and how it was
intended to be used. Being intimately familiar with how SQL Server is designed will
make you a better SQL Server practitioner. It will take you to heights that otherwise
would have been unreachable.

| said goodbye to that sandy-haired boy running barefoot through the backwoods of
rural Oklahoma long ago. I live in the city now, but the country lives in me still. My
mind often drifts back to moonlit walks in the field, the open sky, the wonderment of
all that was and all that could be. I still recall the smell of fresh alfalfa on the evening
breeze, the unfettered joy of rolling headlong down golden hills, the abandonment of
all of life's cares for that one rapturous moment. | miss the adventure and the
oneness with life that | came to know back then. | grow wistful for the echo of the
crow in the distance; | miss twilight in the forest. | miss the tire swing over the pond
and the taste of fresh corn pulled ripe from the stalk.



As I've said, although | left the country, the country never really left me. The same is
true of my insatiable desire to explore and understand all that | can about the world
around me and the things that pique my interest. Although I've moved around a bit
and changed jobs from time to time, the sense of adventure that drove me to
explore the strange new place | found myself in at the age of eight is with me still. |
have spent my life since those days on one journey after another, exploring one new
world after another in hopes of learning all that | possibly can. I am still on my quest
to learn all that | can about SQL Server. I've been working with the technology since
1990, and still there's plenty left to be discovered. Here's hoping that you'll join me
as | retrace my path through the technology, exploring new places and discovering
sights yet unseen. And here's hoping that you will enjoy the trip as much as | have.

Ken Henderson
March 11, 2003
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Introduction

One day | started writing, not knowing that | had chained myself for life to a
noble but merciless master. When God hands you a gift, he hands you a whip;
and the whip is intended solely for self-flagellation. . . . I'm here alone in my
dark madness, all by myself with my deck of cards€®and, of course, the whip
God gave me.

©Truman Capotel?!

(1] Capote, Truman. Music for Chameleons (reprint edition). New York: Vintage Books, 1994, pp. xi and xix.

| wrote this book to get inside SQL Server. | wanted to see what we could learn about
the product and the technologies on which it's based through the use of a freely
downloadable debugger, a few well-placed xprocs, and a lot of tenacity. The book
you're reading is the result of that experiment.

In my two previous SQL Server books, | focused more on the pragmatic aspects of
SQL Server€how to program it and how to make practical use of its many features.
As the title suggests, this book focuses more on the architectural design of the
product. Here, we dwell on the technical underpinnings of the product more than on
how to use it. It's my belief that understanding how the product works will make you
a better SQL Server practitioner. You will use the product better and leverage its
many features more successfully in your work because you will have a deeper
understanding of how those features work and how they were intended to be used.
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About Books Online

As with my previous books, one of the design goals of this book was to avoid
needlessly repeating the information in Books Online. This necessitated omitting
certain subjects that you might expect to find in a book like this. For example, | had
originally planned to include an overview chapter that covered the architectural
layout of the product from a high-level point of view. | had also planned to have a
chapter on the architecture of the storage engine. However, on rereading the
coverage of these subjects in Books Online (see the topic SQL Server Architecture
Overview and the subtopics it links) and in other sources, | didn't feel | could
improve on it substantially.

My purpose isn't to fill these pages with information that is already readily available
to you; it is to pick up where the product documentation (and other books and
whitepapers) leave off and take the discussion to the next level. As such, in this book
| assume that you've read through Books Online and that you understand the basic
concepts it relates.
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About WinDbg

This book features a good deal of work with WinDbg, Microsoft's freely downloadable
symbolic debugger. You may be wondering why we need a debugger to explore SQL
Server in the first place. After all, we obviously aren't going to "debug" SQL Server,
and we certainly don't have source code for it, so we won't be stepping through code
as is typically the case with a debugger.

The reason we use a debugger is that it gives us the ability to look under the hood of
a running process in ways no other tool can. A debugger lets us see the threads
currently running inside the process, their current call stacks, the state of virtual
memory and heaps within the process, and various other important process-wide
and thread-specific data. It lets us set breakpoints, view registers, and see when
DLLs are loaded by the process or rebased by Windows. It lets us pause execution,
dump memory regions, and save and restore the complete process state. In short, a
debugger provides a kind of "X-ray" facility€a tool that lets us peer inside a process
and see what's really going on within it. In this case, the object of our interest is SQL
Server, but the basic debugging skills you'll learn in this book could be used to
investigate any Win32 application. One of the chief goals of this book is to equip you
with some basic coding and debugging skills so that you can continue the
exploration of SQL Server on your own.

If we are to truly get inside the product and understand how it works, using a
debugger is a must. Trying to understand the internal workings of a technology by
merely reading about it in books or whitepapers is like trying to learn about a foreign
country without actually visiting it@there's no substitute for just going there.

Given that WinDbg is freely downloadable from the Microsoft Web site, has the
features we need, and is relatively easy to use, it seems the obvious choice. A
symbolic debugger, it can use the symbols that ship with SQL Server and that are
publicly available over the Internet, so it's a suitable choice for exploring the inner
workings and architectural design of the product.
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About the Fundamentals

You'll notice an emphasis in this book on understanding the technologies behind SQL
Server in order to understand how it works. | spend several chapters going through
the fundamentals of processes and threads, memory management, Windows 1/O,
networking, and several other topics. To the uninitiated, these topics may seem only
tangentially related at best. After all, why do you need to know about asynchronous
I/0 to understand SQL Server? You need to know something about it and the other
fundamental technologies on which SQL Server is based in order to have a proper
frame of reference and to gain a deep understanding of how the product itself works.
You need to understand the fundamental Windows concepts on which SQL Server, a
complex Windows application, is based for the same reason that a medical student
needs to understand basic biology in order to get into medical school: Without this
fundamental knowledge, you lack the perspective and foundation necessary to
properly root and ground the more advanced concepts you will be attempting to
learn. Humans learn by association®@by associating new data with knowledge
already acquired. Without a solid grounding in the fundamentals of Windows
application design, you lack the basic knowledge required to systematically
associate the details of how a complex Windows application such as SQL Server
works.

To be sure, you can gain a superficial idea of how SQL Server works (for example, by
reading that it makes use of scatter-gather 1/0) without really understanding what
the details mean. If you really want to master the product@if you really want to
know it literally inside-out@you have to have some understanding of the
technologies from which it's composed. Knowing how scatter-gather I/O works will
give you immediate insight into why SQL Server uses it and why it enhances
performance. The same is true for virtual memory, thread synchronization,
networking, and the many other foundational topics we explore in this book. Not
only are they relevant; having a basic understanding of them is essential to truly
understanding SQL Server. Without a basic understanding of the fundamental
technologies on which SQL Server is based®Win32 processes and threads, virtual
memory, asynchronous I/O, COM, Windows networking, and various others€you
have neither the tools nor the frame of reference to truly grasp how the product
works or to master how to use it.

| fully realize that not every reader will be interested in the Windows technologies
and APIs behind SQL Server's functionality. That's okay. If the nitty-gritty details of
the Win32 APIs, how to use them, and how applications such as SQL Server typically
employ them don't interest you, feel free to skip the Foundations section (Part ) of
this book. There's still plenty of useful information in the rest of the book, and you
don't have to understand every detail of every API to benefit from it.



About the "How-To"

I've tried very hard to provide the architectural details behind how the various
components of SQL Server work without neglecting the discussion of how to apply
them in practical use. | am still a coder at heart, and there is still plenty of "how-to"
information in this book. At last count, there were some 900 source code files slated
for inclusion on the book's CD. That's more than either of my last two books, both of
which were very focused on putting SQL Server to practical use, as I've said.

In terms of the central topic of all three of my SQL Server books@namely, getting
the most out of the product®l've attempted to elevate the discussion to an
exploration of the architectural design behind the product without leaving behind my
core reader base. Regardless of whether you came to this book expecting the
mother lode of code and practical use information that you typically find in my books
or you agree with me that understanding how the product works is key to using it
effectively, | hope you won't be disappointed with what you find here.



About the Breadth of Topics

You will notice that this book covers a wide range of product features and
technologies. It is not limited merely to the functionality provided within
sqlservr.exe@it tries to cover the entire product. It's my opinion that a book that
purports to discuss the internal workings and architectural design of a complex
product such as SQL Server should cover the whole product, not just the
functionality that resides within the core executable or product features that have
been in place for many years. The world of SQL Server is a lot bigger than just a
single executable. Prior to the 7.0 release of the product, | suppose you could get
away with just covering the functionality provided by the main executable, but that's
no longer the case and hasn't been for years. The product has matured and has
broadened substantially with each new release.

This book isn't titled The Guru's Guide to sqlservr.exe®it's about all of SQL Server
and how its many component pieces work and fit together. So, you'll see coverage in
this book of what might seem like fringe SQL Server technologies such as Full Text
Search, Notification Services, and SQLXML. We'll explore replication, DTS, and a host
of other SQL Server technologies that are not implemented in the main SQL Server
executable. Of necessity, | can't cover every feature in the product or even as many
as I'd like. The book would take ten years to write and would be 5,000 pages long.
However, I've tried to strike a balance between covering topics in the depth that
people have come to expect from my books and exploring a sufficient breadth of
features and technologies such that you can get a good feel for the overall design
and architecture of SQL Server as a product.
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About C++

I'm fully aware that many SQL Server people are more comfortable in Visual Basic
than in any C or C++ dialect. | used C and C++ to cover Windows programming
fundamentals and elsewhere in the book for a couple of reasons.

First, the Win32 API itself is written in C. Although whole books have been written on
accessing the Win32 API from VB, it has been my experience that this ranges from
clunky to outright impossible in some circumstances, depending on the API function
in question. The Win32 APl was originally written in C, and therefore C and C++ are
the purest and most direct methods of accessing it. Any other approach@be it from
VB, Delphi, C#, or some other language or tool®adds a layer of indirection that can
cloud the discussion.

Second, | used C++ because | happen to believe that the language is not that hard
to learn and that most VB people are more than capable of developing basic C++
programming skills and effectively reading C++ code, regardless of whether they
believe that themselves. There seems to be a natural aversion or fear of all things
C++ among those in the VB community. It's my belief that these concerns are
largely unfounded and that they needlessly limit people's ability to really understand
Windows and complex Windows apps such as SQL Server. My advice: Even if you
don't know C++ and feel you're out of your depth when reading through C++ code,
don't be afraid of it. Work through the examples in this book, follow the instructions |
provide, and see where your exploration leads you. Pick up an introductory book on
the language if it suits you. You may find that the language isn't nearly as hard to
get around in as you thought, and you may benefit@perhaps immensely@from the
experience.

All that said, C++ is far from the only language used in this book. | know that no one
language is used by everyone so I've tried to keep the book balanced in terms of the
language tools used. A good deal of the example code used throughout the book is
some flavor of Visual Basic®VB6, VBScript, or VB.NET. In the ODSOLE chapter, for
example, | show you how to build COM objects in VB6. In the SQLXML chapter, |
show you how to access SQLXML using VBScript. And in the Notification Services
chapter, | show you how to implement a subscription management application using
VB.NET. There's also a healthy helping of C#, Delphi, CMD files, and even a
discussion or two of assembly language. And, of course, there's a wealth of Transact-
SQL code throughout the book. Regardless of your preferred language(s), you should
find code of interest to you in this book.



About Visual C++ 6.0

Some of you may question the decision to use Visual C++ 6.0 for most of the C++
code examples in this book. | chose VC6 over Visual Studio .NET for two reasons: (1)
having been around considerably longer, VC6 is much more pervasive, and (2) Visual
Studio .NET (both the 2001 and the 2003 releases) will automatically upgrade VC6
projects when they are first opened. So, regardless of whether you have Visual
Studio 6 or Visual Studio .NET, the C++ projects on the CD accompanying this book
should open just fine for you. You should be able to compile and run them without
incident. Also, when teaching basic Windows concepts such as thread
synchronization and memory management, | do not use any version-specific
features, so there's no advantage to using Visual Studio .NET over VC6.
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About the Terms and Knowledge Measures

Readers of my previous books may notice a significant amount of "supplementary"
material in several of the chapters. You'll likely notice the term definitions that
precede some of the chapter discussions and the knowledge measures at the end of
each discussion. Don't worry: | still hate filler material and have gone to great
lengths to avoid unnecessary screen shots, summaries, and other devices commonly
used to lengthen technical books.

Though | personally don't like putting together term definition tables, knowledge
measures, and the like and have avoided them in previous books, a growing number
of readers have asked for additions such as these in order to make my books more
suitable for classroom use. Several of my previous books are regularly used in
classroom settings even though, admittedly, those books do not lend themselves
well to it. Therefore, I've finally decided to try to do something about that. If you do
not find these sections particularly useful, feel free to skip over them. All of the data
contained in the term definitions is also in the chapter text®you won't miss anything
by skipping them. That said, you may find that having a basic understanding of
some of the terms and concepts before we get into them in depth may be useful to
you. It really comes down to your individual preferences.

| have intentionally not included the answers to the questions in the knowledge
measure sections in order to get a feel for how much they are used. Again, this is an
adaptation intended to make the book more usable in classroom scenarios. | may or
may not continue it in future books, depending on how useful it proves to be. If you
want the answers to the knowledge measure questions, e-mail me at
khen@khen.com, and I'll provide them.
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About SQL Server Versions

This book targets the latest release of SQL Server currently available, SQL Server
2000. Throughout the book, when you see a reference to SQL Server, you can
assume that it definitely applies to SQL Server 2000 and probably to other releases
as well. | rarely mention SQL Server's version number because I've found it to be a
little cumbersome. That said, when in doubt, assume what you read in this book
applies to SQL Server 2000.



About Master Programming

With the sheer volume of code and code-related discussions in this book, it might
appear to some that I'm trying to turn you into a master programmer rather than a
master SQL Server practitioner. Nothing could be further from the truth. In order to
really address that concern, let's first define what a master programmer is.

To begin with, a master programmer is someone who likely codes for a living. You
cannot develop expert-level coding skills and keep them sharp by merely studying
other people's code or reading programming books. You have to get in there and get
your hands dirty, and you have to keep doing it. Technology changes and software
engineering evolves quickly enough that there's simply no substitute for coding
every day.

Second, a master programmer is someone who doesn't just know how to churn out
source code. A person | worked with once suggested that the defining characteristic
of an expert coder is great typing skill! I laughed out loud at that assertion because
being an expert coder has nothing to do with typing®! know expert coders who
don't type well at all. That notion reminds me of what Truman Capote said when
asked about Jack Kerouac's work: "That isn't writing at all, it's typing."?! Just as good
writing amounts to a lot more than typing, so does expert-level coding. Cranking out
reams of source code does not a master programmer make. In fact, there's a paucity
and efficacy about the code of the programming masters that often accomplishes an
astonishing amount of work with a surprisingly small amount of code. The idea isn't
to write lots of code; it is to write good code. It's a question of quality versus
quantity.

(2] Capote, Truman. As quoted in New Republic, Feb. 9, 1959.

Third, a master programmer is well rounded. A master programmer knows a humber
of languages and works on multiple operating systems and platforms. He does not
use one language at the expense of all others regardless of the problem. He uses the
right tool for the job and constantly seeks to broaden his horizons and immerse
himself in the art and science of computer language mastery. A master programmer
is not a "jack of all trades and master of none" but maintains expert-level skills in
several areas at once.

Fourth, an expert programmer masters the operating system environment and
fundamental technologies with which he works just as much as he masters
programming languages. He knows that simply mastering the language with which
he happens to be working on a particular project is not enough; he must also know a
good deal about the operating system and the foundational components with which
he will construct applications. Whether this is COM or EJB, Windows or Linux, the
master programmer knows that he must also have expert-level knowledge of the
environment in which his code will run and the components from which it will be
constructed in order to produce software that is robust, efficient, and extensible.

Fifth, a master programmer keeps up with the technology and developments in
software engineering. A master programmer can tell you the difference between the
decorator design pattern and the facade design pattern. He can tell you why COM is
preferable to plain DLL use and about the advantages the .NET Framework offers
over COM. He can tell you where Java fits in the grand scheme of things and how it



compares to other languages. You can mention the term "refactoring" to him without
getting a blank stare, and he can describe the relationship between eXtreme
Programming and Aspect-Oriented Programming. He may not work every day with
these concepts and technologies, but he stays current enough with the industry in
which he works to understand them conceptually, to be able to explain the
relationships between them, and to be able to discuss them articulately.

Sixth, a master programmer is well read. He knows who Martin Fowler is. He reads
Kent Beck, and he's well versed in Erich Gamma's work. He reads both technology-
specific books as well as those related to software engineering as a discipline. He
reads Steve McConnell, and he also reads Donald Knuth. He knows who Jon Bentley
is, and he also knows Brian Kernighan's work. He is well versed in Grady Booch's
work and also reads Charles Petzold. In a day and age in which technology and the
engineering required to master and put it to practical use seem to evolve at the
speed of light, one can't read too much or stay too current with the latest
developments in the industry. A master programmer knows this and dedicates
himself to a lifelong course of continuing education.

So, with this in mind, | hope it's obvious that I'm not trying to turn anyone into a
master programmer. This book isn't about software development; it's about SQL
Server. To the extent that | delve into subjects seemingly more related to coding
than to SQL Server, there is a method to the madness: | am trying to help develop
basic coding and debugging skills in those who may lack them so that they can
better understand how and why SQL Server is designed the way it is and so that
they can continue the exploration of SQL Server on their own. The whole thrust of
this book is about gaining as deep an understanding of SQL Server as possible so
that we can put it to better use in the real world.
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Part 1: Foundations



file:///tmp/calibre_4.8.0_tmp_X7A_Qz/8v4bug_pdf_out/0201700476_3071533.html




Chapter 1. Overview

That which is borne of loneliness and from the heart cannot be defended
against the judgment of a committee of sycophants.

©Raymond Chandlert!

(1] Chandler, Raymond. "Writers in Hollywood." Atlantic Monthly, November 1945.

I'll begin by touching on each of the major subjects covered in this book and give a
brief overview of each chapter. This will give you a high-level view of what the book
itself is about and what we'll be talking about in the chapters ahead.



Chapter Overview

Chapter 2: Windows Architectural Overview

In this chapter, we'll talk about how Windows works from an architectural standpoint.
We'll discuss the various components of Windows and how Windows applications are
constructed. You'll learn about DLLs, virtual memory, CPU nuances, and a variety of
other Windows elements that affect how complex Windows applications such as SQL
Server behave.

Chapter 3: Processes and Threads

This chapter covers Windows' process and threading architecture. You'll learn what a
process is, how it differs from a thread, and how SQL Server behaves itself as a
process. You'll learn about Windows' scheduler and how threads are scheduled for
execution, and you'll explore thread synchronization in depth. You'll work through
several C++ applications and xprocs that demonstrate how processes and threads
work under Windows and how this applies to SQL Server. Starting in this chapter and
continuing throughout the Foundations section, we'll build a series of applications
that search text files for strings. We'll create several different versions of a text
search application®@each one employing different Windows foundational
concepts®so that you can readily see how the various Windows technologies are
typically used in real applications. We'll pick up where this chapter leaves off when
we discuss SQL Server's User Mode Scheduler (UMS) later in the book (Chapter 10).

Chapter 4: Memory Fundamentals

In this chapter, you'll learn about Windows' memory management. You'll learn about
the difference between virtual memory and physical memory, as well as the
difference between virtual memory and heaps. You'll learn how Windows apportions
memory to applications and how it translates virtual memory addresses into physical
memory addresses. We'll continue the text file search theme started in the previous
chapter and build several applications that illustrate how Windows applications can
make use of the memory management facilities provided by the operating system.
You'll gain insight into how SQL Server makes use of some of these facilities by
building apps that feature them. We'll build on the concepts taught in this chapter
when we get to SQL Server Memory Management (Chapter 11) later in the book.

Chapter 5: 1/0 Fundamentals

We'll take a tour of Windows' foundational 1/O facilities in this chapter. We'll continue
the text file search theme and build applications that make use of synchronous 1/0,
asynchronous I/O, nonbuffered file 1/O, scatter-gather I/O, and file I/O using memory-
mapped files. You'll gain insight into how SQL Server makes use of Windows' 1/0



facilities by seeing them at work in real applications. In SQL Server as a Server
(Chapter 9), we'll discuss how SQL Server makes use of these concepts.

Chapter 6: Networking

In this chapter, we'll explore Windows' networking application programming
interfaces (APIs). You'll learn about Windows sockets and named pipes, as well as the
RPC API. We'll continue our exploration of text search applications and build
applications that make use of Windows' networking APIs to communicate with one
another and process input and output. You'll also gain some insight into how SQL
Server makes use of Windows' networking facilities. We'll build on the information in
this chapter when we discuss how SQL Server employs the various networking APIs
in Chapter 9.

Chapter 7: COM

We'll explore the basics of Microsoft's Component Object Model (COM) technology
and discuss how COM is used by SQL Server. You'll learn about threading models,
interfaces, marshaling, reference counting, and many other COM concepts. We'll talk
about how Windows applications typically make use of COM, and we'll talk about
some of the ways in which SQL Server uses it. This chapter will provide the
background you'll need to work through the ODSOLE chapter later in the book.

Chapter 8: XML

In this chapter, you'll learn about the eXtensible Markup Language (XML). You'll learn
how to construct your own XML documents and how HTML and XML fundamentally
differ. You'll learn about attributes, elements, and schemas, and you'll learn to apply
XML style sheets to transform your data. This chapter will provide the background
and foundational information you'll need to work through Chapter 18 (SQLXML) later
in the book.

Chapter 9: SQL Server as a Server

We'll discuss how SQL Server behaves as a Windows server application in this
chapter. We'll pull together several of the concepts discussed earlier in the book and
show how they're employed by SQL Server. For example, we'll show how SQL Server
uses the Windows networking APIs to listen for new connections and schedule them
for processing via UMS. We'll talk about the DLLs imported by SQL Server and what
they're used for, and we'll talk about where SQL Server fits in the general taxonomy
of Windows applications.

Chapter 10: User Mode Scheduler



In this chapter, we'll investigate how SQL Server schedules work to be done using
worker threads and fibers. You'll learn how SQL Server's scheduler compares to
Windows' scheduler, and you'll learn how SQL Server makes use of Windows
scheduling facilities and synchronization objects. By delving into UMS, you'll develop
great insight into how SQL Server carries out client requests.

Chapter 11: SQL Server Memory Management

We'll build on the earlier discussion of Windows memory management fundamentals
and show how the concepts we learned are applied by SQL Server to manage its
memory. You'll learn about the BPool and the MemToLeave regions, about how
Address Windowing Extensions (AWE) fits into the whole picture, and how SQL
Server attempts to balance high performance with efficient resource utilization.

Chapter 12: Query Processor

In this chapter, we'll document how the SQL Server query processor works internally
and how it processes and optimizes queries. You'll learn about the four major stages
of query optimization and how each one affects the overall optimization process.
You'll learn how indexes, statistics, and constraints are used by the optimizer to
generate efficient execution plans, and you'll learn how to structure queries for
maximum performance.

Chapter 13: Transactions

The Transactions chapter examines SQL Server transactions in depth. We'll write
several Transact-SQL queries that make use of transactions, then explore how they
work and how SQL Server's transaction management constructs work in general.
You'll learn how to avoid common errors and how to properly use SQL Server's
transaction management facilities in your own applications.

Chapter 14: Cursors

In this chapter, we'll explore how SQL Server cursors work. You'll learn about the
different types of cursors, how to use them, and how to avoid common mistakes.
We'll talk about how transactions and cursors interrelate and how you can avoid
common concurrency and performance issues caused by cursor misuse.

Chapter 15: ODSOLE

We'll explore how you can make use of COM objects from within Transact-SQL via
SQL Server's Open Data Services Object Linking and Embedding (ODSOLE) facility.
You'll learn about the sp_OA extended procedures, how to use them, and when not to
use them. You'll build several interesting COM objects for use within Transact-SQL



including a bevy of financial functions, array functions, and string manipulation
functions. You'll likely find much of the sample code in this chapter to be very useful.

Chapter 16: Full-Text Search

In this chapter, we'll explore SQL Server's Full-Text Search (FTS) facility. You'll learn
how it works and how it is designed. You'll explore FTS queries and how to make use
of FTS in your own code.

Chapter 17: Server Federations

You'll learn about distributed partitioned views and how they relate to server
federations in this chapter. You'll dig into a few execution plans and delve into how
partitioned views affect performance and scalability.

Chapter 18: SQLXML

In this chapter, you'll explore the many aspects of SQL Server's XML technology.
You'll learn about FOR XML, OPENXML(), sp_xml_preparedocument, updategrams,
templates, the SQLXML managed classes, and so on. We'll build on the XML
fundamentals we explored in Chapter 8 and explore how SQL Server exposes a
powerful collection of XML-enabled features and how to make use of those features
in your own applications.

Chapter 19: Notification Services

In this chapter, you'll get to explore SQL Server's Notification Services technology.
You'll learn about how it is designed and how the typical Notification Services
application is architected. You'll see how easy the Notification Services platform
makes building and deploying notification-oriented applications that are fully
functional, very powerful, and scalable. You'll finish up the chapter by building a
Notification Services application of your own and a subscription management
application using VB.NET.

Chapter 20: Data Transformation Services

You'll explore SQL Server's Data Transformation Services (DTS) in this chapter. We'll
talk about how DTS is designed, the fundamental components that make up DTS
packages, and the ways you can leverage them to build data transformation
applications that are powerful and flexible. We'll build a number of packages that
explore the many features and facilities of DTS. You'll finish up with a project that
teaches you how to access and control DTS packages via Automation.



Chapter 21: Snapshot Replication

In this chapter, you'll explore snapshot replication. You'll learn how data typically
moves between a publisher and a subscriber in snapshot replication and how you
can track exactly what is moved between them. You'll learn about the distribution
database and how the Snapshot Agent facilitates the replication process.

Chapter 22: Transactional Replication

As with the previous chapter, this chapter is dedicated to replication. In this case,
we'll discuss transactional replication and the ways it differs from snapshot
replication and merge replication. You'll learn how the Log Reader Agent reads the
transaction log and sends changes to subscribers by way of the distribution
database. You'll learn about immediate and queued updating subscribers, and you'll
see how they work internally.

Chapter 23: Merge Replication

As the title suggests, you'll explore merge replication in this chapter. You'll set up
several subscriptions, then watch as they participate in a generic merge replication
scenario. You'll learn about generations and conflict resolvers, and you'll see how
merge provides a flexible (yet complex) data replication facility.

Chapter 24: Finding Undocumented Features

In this chapter, you'll learn how to track down undocumented features. Rather than
provide a smorgasbord of undocumented features as I've done in previous books,
this chapter shows how to find these hidden goodies yourself. You'll learn how to use
Profiler to find undocumented features and commands, as well as how to search the
text of system procedures for undocumented DBCC commands and trace flags. With
the skills and data you acquire in this chapter, you should be able to dig up
undocumented features and commands on your own.

Chapter 25: DTSDIAG

In this chapter, I'll introduce you to a utility implemented via a collection of DTS
packages that can collect diagnostic data from SQL Server. Using this tool, you can
concurrently collect Profiler traces, blocking script output, SQLDIAG reports, Perfmon
logs, event logs, and a number of other useful diagnostics. This tool demonstrates
several useful DTS techniques including how to automate a DTS package from Visual
Basic, how to modularize a DTS application by breaking it up into separate
packages, and how to use a DTS package as a workflow manager for other tasks.



Chapter Pairs

It's probably pretty self-evident, but | guess | should point out my intent to construct
much of the book using "chapter pairs." A chapter pair is a pair of chapters where
the second chapter builds directly on the information shared in the first one. You'll
see these throughout the book. For example, rather than assume that the typical
DBA has an intimate understanding of the Windows scheduler (and can, therefore,
explain why SQL Server implements its own scheduler), | provide a chapter that
explains in detail how the Windows scheduler works. The book is aimed at the
database professional who may or may not have an in-depth understanding of
Windows internals. | felt an obligation to explain some of these foundational
concepts rather than flippantly assuming most of my readers already understood
them well. | could have constantly referred to external books and other sources, but |
felt that would be taking the easy way out, and | also felt | had something to add to
the discussion of Windows application fundamentals that has not been said before.

| build on this foundational information throughout the rest of the book as | delve
into the various parts of SQL Server. For example, in the User Mode Scheduler
chapter, | leverage the discussion of the Windows scheduler from earlier in the book.
The same is true of the Memory Fundamentals chapter and the SQL Server Memory
Management chapter: The first chapter lays the groundwork for the second one.
Ditto for the Networking chapter and the SQL Server as a Server chapter€one plays
off the other. Each of the main chapters in the Foundations section sets up one or
more chapters later in the book that cover specific SQL Server technologies or
components. Because of this, you will likely want to read through the Foundations
section before you dive into the rest of the book. If it doesn't make complete sense
the first time through or its applicability isn't immediately apparent, don't worry @it
will become clearer as you work through the remainder of the book.

If you already have a good understanding of Windows internals, COM, XML, and so
on, you may be able to skip these foundational chapters. As | said in the
Introduction, I'm well aware that such details may not be for everyone. If you have
doubts about the value of some of this information to you or your work, my
suggestion would be to start with the SQL Server@specific coverage (e.g., Chapter
9, SQL Server as a Server) and see whether you understand it reasonably well
without first reading through the earlier material (e.g., Chapter 3, Processes and
Threads). If so, good for you. If not, you have a thorough tutorial on many of the
foundational concepts you'll need right here in this book. Either way you go about it,
you should find all you need in this book to learn a good deal about SQL Server
architecture and internals.
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About the Code

With the sheer volume of code in this book and the emphasis on exploring SQL
Server as a program, it might at first appear that you'd need to be a seasoned coder
to really understand the book. That's not my intent. | wanted to take a fresh
approach to the discussion of SQL Server's architecture and the way that its various
components are constructed and fit together, so this book explores the product from
the perspective of the professional developer. | think this is appropriate given that
SQL Server is, after all, an application. It was obviously built by developers. There is
no greater insight into the way an application works@no higher level of
mastery€than to understand the application in the same way the people that built it
do. By exploring SQL Server as an application, we attempt to get inside the heads of
the people who built it, to understand what they were thinking when they designed
it. Of course, there are limits as to how far we can go€@we didn't write the app and
we don't have source code for it. But there is a great deal we can learn just by
approaching SQL Server as we would any other complex Windows application. By
using tools such as WinDbg, Perfmon, and others, we can look under the hood, so to
speak, and gain a deep understanding of much of the architecture and internals of
the product. In my opinion, there is no better way to master SQL Server or any other
third-party application.

So, do you need to be a coder to master SQL Server or glean everything this book
has to teach? No, but it certainly wouldn't hurt. If you don't consider yourself a
coder, my suggestion would be not to fret. Read through the text and examples in
this book, retrace my steps where you can, and work at your own pace. The fact that
the book is an in-depth study of a particular program doesn't mean that it's only for
programmers. It's my hope that many readers who don't consider themselves coders
will discover their inner programmer and, in taking their coding skill to the next
level, come to understand SQL Server in ways that would otherwise not be possible
and as they never have before. And it's my hope that they will then be sufficiently
equipped to continue the exploration of SQL Server on their own. Rather than just
divulging a mother lode of technical data as is so often the case with even the best
technical books, | wanted to teach readers how to investigate complex Windows
applications such as SQL Server. The investigatory skills you pick up in this book
should be applicable regardless of the product or program you're studying and
should allow you to continue your exploration of SQL Server for years to come.
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Chapter 2. Windows Fundamentals

You have two ears and one mouth. If you use them in those proportions, we'll
get along just fine.

@¥Neil Coy

As | said in the Introduction, knowing how Windows works is foundational to
understanding how a complex Windows application such as SQL Server works.
Without a good understanding of how the operating system (OS) works, you have
neither the tools nor the frame of reference to understand how SQL Server works.
Humans store knowledge in neural networks built through associating new
knowledge with existing knowledge. The knowledge and insight you gain from
exploring SQL Server fits within the larger framework of how Windows works and
how Windows applications in general are constructed. My purpose in this chapter is
to acquaint you with some of Windows' fundamental elements and to lay the
groundwork for the deeper discussions of these topics that follow in the chapters
ahead.
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The Win32 API

The Win32 API is the programming interface for 32-bit Windows. Windows
applications make calls to this APl in order to invoke OS services. The actual code
behind this API is located in a collection of dynamic-link libraries (DLLs) such as
Kernel32.DLL, User32.DLL, and GDI32.DLL and, of course, in the OS kernel itself,
which resides primarily in a file named NTOSKRNL.EXE.

The programming interface slated for use with the original version of 32-bit Windows
was not the Win32 API. It was the OS/2 Presentation Manager API. Midway through
the development of what was to become the first version of Windows NT, Windows
3.0 was released, and adoption of Windows as a development platform exploded.
Microsoft then decided that the 32-bit programming API should be compatible with
the 16-bit APl in order to make porting apps from Windows 3.x easier. This was the
genesis of the Win32 APl and is why it may seem a bit incongruous or uneven at
times®it was designed to be as compatible as possible with the old 16-bit Windows
API.

Given that SQL Server is a complex Windows application, it of course makes heavy
use of the Win32 API. In the first section of this book, we will explore many of the
Win32 API functions that SQL Server uses. You'll learn how they work and how to use
them, and you'll gain some insight into how SQL Server makes use of them. You'll
see the relationship between certain key SQL Server features and the Win32 API
functions they rely upon.

You can download the Platform SDK, which contains the C header files and libraries,
as well as the online documentation for the Win32 API, directly from the Microsoft
Web site. The Platform SDK also ships with several of Microsoft's development tools
and is included with the MSDN Library.



User Mode vs. Kernel Mode

In order to keep misbehaving application code from destabilizing the system,
Windows uses two processor modes: user mode and kernel mode. User application
code runs in user mode; OS code and device drivers run in kernel mode. Kernel
mode has a higher hardware privilege level than user mode and provides access to
all system memory and all CPU instructions. By running at a higher privilege than
application software, Windows can keep a misbehaving application from directly
destabilizing the system.

The Intel x86 family of processors actually supports four operating modes (also
known as rings). These are numbered 0 through 3, and each is isolated from the
others by the hardware€a crash in a lower-priority mode will not destabilize higher-
priority modes. Because it was originally designed to support chips such as the
Compagq Alpha and the Silicon Graphics MIPS that provide only two processor modes,
Windows uses only two of these modes (rings 0 and 3, for kernel and user modes,
respectively). Now that these chips are no longer supported, it would probably make
sense for Windows to use at least one additional operating mode on the Intel x86
processor family. Doing so would allow device drivers, for example, to run at a lower
privilege level than the OS and would prevent an errant driver from being able to
bring down the entire system.
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Processes and Threads

An instance of a running application is known as a process. Actually, that's a
misnomer. Processes don't actually run@threads do. Every process has at least one
thread (the main thread) but can have many. Each thread represents an independent
execution mechanism. Any code that runs within an application runs via a thread.

Each process is allotted its own virtual memory address space. All threads within the
process share this virtual memory space. Multiple threads that modify the same
resource must synchronize access to the resource in order to prevent erratic
behavior and possible access violations. A process that correctly serializes access to
resources shared by multiple threads is said to be thread-safe.

Each thread in a process gets its own set of volatile registers. A volatile register is
the software equivalent of a CPU register. In order to allow a thread to maintain a
context that is independent of other threads, each thread gets its own set of volatile
(software) registers that are used to save and restore hardware registers. These
volatile registers are copied to/from the CPU registers every time the thread is
scheduled/unscheduled to run by Windows. The process by which this happens is
known as a context switch.

Processes can be initiated by many different types of applications. Console apps,
graphical user interface (GUI) apps, Windows services, out-of-process COM servers,
and so on are examples of EXEs that can be executed to instantiate a process. SQL
Server can run as both a console app and a Windows service.
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Virtual Memory vs. Physical Memory

Windows provides all processes a 4GB virtual memory sandbox in which to play. By
"virtual" | mean that the memory isn't memory in the traditional sense. It is merely a
range of addresses with no physical storage implicitly associated with it. As a
process makes memory allocations, these addresses are used and physical storage
is associated with them. However, this physical storage is not necessarily (and not
usually) physical memory. It is usually disk drive space. Specifically, it's space in the
system paging file(s). That's how multiple applications can run on a system with
128MB of memory, each with a virtual address space of 4GB@it's not real memory,
but it seems like it to the application. Windows transparently handles copying data
to and from the paging file so that the app can allocate more memory than
physically exists in the machine and so that multiple apps can have equal access to
the machine's physical RAM.

This 4GB address space is divided into two partitions: the user mode partition and
the kernel mode partition. By default, each of these is sized at 2GB, though you can
change this through BOOT.INI switches on the Windows NT family of the OS.
(Windows NT, Windows 2000, Windows XP, and Windows Server 2003 are members
of the Windows NT family; Windows 9x and Windows ME are not.)

Although each process receives its own virtual memory address space, OS code and
device driver code share a single private address space. Each virtual memory page
is associated with a particular processor mode. In order for the page to be accessed,
the processor must be in the required mode. This means that user applications
cannot access kernel mode virtual memory directly; the system must switch into
kernel mode in order for kernel mode memory to be accessible.

We'll talk more about virtual memory and how Windows manages it in Chapter 4,
Memory Fundamentals. For now, just understand that virtual memory does not
necessarily correlate to physical memory. It is a service provided by Windows that
allows applications (and Windows itself) to allocate and use more primary storage
(memory) than physically exists in a machine without having to handle paging data
to and from secondary storage (disk drives).



Subsystems

Windows ships with three environment subsystems: Win32, 0S/2, and POSIX. Each of
these provides a different environment or personality for the OS. Of these, Win32 is
preeminent because it's not optional (it must always be running, regardless of the
environmental subsystem chosen and regardless of whether anyone is logged in)
and because it provides the most direct and most complete access to Windows itself.
The other environment subsystems aren't used much and don't provide the same
level of functionality as the Win32 subsystem. Applications that run on Windows are
compiled and linked to run under a particular environment subsystem. Obviously,
most of these, including SQL Server, are Win32 applications.

The Win32 environment subsystem can be broken down into the following major
components.

® (Csrss.exe, the environment subsystem process, supports creating processes
and threads, console windows, portions of the 16-bit virtual DOS machine, and
miscellaneous functions.

® Win32k.sys, the kernel mode device driver, includes two facilities: (1) the
window manager, the facility responsible for collecting input from the keyboard
and mouse, for managing screen output, and for passing messages to
applications; and (2) the Graphics Device Interface (GDI), the facility
responsible for output to graphics devices.

® The subsystem DLLs (which include Kernel32.DLL, User32.DLL, GDI32.DLL, and
Advapi32.DLL) handle translating Win32 API functions into kernel mode service
calls.

Windows applications interact with the OS kernel via the subsystem DLLs. These
DLLs hide the actual native OS calls (which are undocumented) from the application.
The purpose of these DLLs is to translate Win32 API calls into OS service calls. These
calls may or may not involve sending a message to the environment subsystem
process hosting the application.

Given my statement that user mode code cannot access kernel mode memory, you
may be wondering how user mode code can invoke code and access data that is
obviously in the kernel@after all, the operating system's core functionality is
implemented in the kernel, hence the name. The way this works is that user mode
applications make Win32 API calls to functions exported from subsystem DLLs. These
DLLs then make calls to undocumented native API functions in NTDLL.DLL. The
functions in NTDLL.DLL then invoke the platform-specific instructions to switch the
processor chip into kernel mode and invoke the appropriate code in the OS kernel.
This code may reside in the kernel executable, NTOSKRNL.EXE, or in the kernel mode
device driver, Win32k.sys. (Purists may quibble that it's a little more complicated
than that, but this gives you a basic picture of how a user mode app interacts with
the Windows kernel.)
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Dynamic-Link Libraries

A DLL is a binary file that serves as a shared library of routines that can be
dynamically loaded and unloaded at runtime by applications that use the routines.
Runtime libraries and class libraries for language products such as Visual C++ and
Delphi can take the form of DLLs. The user mode portion of the Win32 API is
ensconced in DLLs such as Kernel32.DLL and User32.DLL. One advantage of a DLL
over a static library is that multiple applications can share a single DLL. Windows
ensures that only one copy of a DLL's code is mapped into memory regardless of the
number of applications that reference it.

DLLs make the functions they contain visible to the outside world by exporting them.
A DLL's export table can be viewed using external tools such as the Depends tool
that comes with Visual Studio or the dumpbin utility that comes with several
Microsoft products. A DLL routine can be exported by name or ordinal or both. DLLs
(and executables) also have import tables@tables listing the DLLs they depend on
and the functions they statically import. I'll talk more about static importing in just a
moment.

A process can load DLLs through one of two means: either implicitly when it starts or
explicitly via a call to the LoadLibrary(Ex) API. The manner in which it loads a
particular DLL is determined by the way in which its executable references the
functions exported (made visible to the outside world) by the DLL. There are two
ways these references can occur. When an executable is compiled and linked, it can
statically import the functions exported by a DLL by importing the DLL's .LIB file.
(.LIB files are not universally required by all compilers and linkers for static linking
but are most prominent with C and C++ products€e.g., neither Visual Basic nor
Delphi require or use .LIB files.) A static import causes the DLL to load automatically
when the executable is started. If the DLL can't be located, the executable won't
start. Static importing is usually the way Windows apps load DLLs. It requires less
code and is managed mostly by the OS. All Windows apps statically import at least
Kernel32.DLL, and most also import User32.DLL because these DLLs contain the
lion's share of the Win32 API.

A DLL can also be loaded at runtime by an executable through a call to the
LoadLibrary API. In this case, LoadLibrary is passed the name of the DLL to load and
returns a module handle if it finds it (if it doesn't, it returns NULL). Then, this module
handle is passed into GetProcAddress to get the address of a specific function
exported by the DLL. This address can then be cast to the appropriate function type
so that it can be called. This is how SQL Server calls extended procedures, for
example, and is the way the SQL Server Net-Libraries are loaded. Anytime an
application doesn't know at compile/link time whether a DLL it might want to load
will be present on the system, it must use LoadLibrary to load it. For example, when
ah application loads replaceable database drivers via ODBC, ODBC loads the DLLs
that house them via LoadLibrary because there was no way for it to know which
drivers would be present on a given system when it was compiled and linked.

So, when a DLL is loaded into a process's address space, it becomes code the
process can call. Each DLL has a default load address within the 4GB process
address space that is specified when it is linked. If nothing occupies the address
range where the DLL was configured to load in the calling process, it will load at that
address. If something else is already there, it will have to be "rebased," which



involves reading the entire image and updating all fix-ups, debugging information,
checksums, and time-stamp values to use a different base address. Because this
amounts to updating pages contained in the DLL image, Windows must load each
page that must be modified into virtual memory and make the changes there.

As | said earlier and as Chapter 4 details, the normal mode of operation for
allocations within a process's address space is that those allocations are backed by
the paging file (or physical memory). An exception is made in the case of binary
code, though, because it is normally read-only and copying it to the paging file is
wasteful. Instead, the EXE or DLL file itself "backs" (provides physical storage for)
the range of virtual memory addresses within a process's address space set aside for
the executable or DLL. So, when the process makes a call to a part of the executable
or DLL that is not in physical memory, it will not go to the paging file to get that
page of the EXE or DLL file. Instead, it will go to the appropriate binary file and load
the page into physical memory directly from it. In that sense, EXE and DLL files
become read-only extensions of the paging file.

Normally, only one copy of the pages that make up a DLL or EXE file is maintained in
memory regardless of the number of processes using it. An exception to this is when
a process makes a change to a global or static variable in the DLL or EXE. When this
occurs, Windows makes a copy of the page that's local to the process, carries out
the change, then alters the process to reference the new version of the page going
forward. The mechanism by which this happens is known as copy-on-write memory.

The ability to use a DLL or EXE as the physical storage for the virtual memory
address range it occupies relies on Windows' memory-mapped file facility, which can
actually be used with any type of file, not just binaries. A memory-mapped file
serves as the physical storage for the virtual memory it occupies. Rather than
copying the file to the system paging file, Windows uses the file as though it were a
paging file itself and automatically saves/loads pages to/from this file as the virtual
memory into which it has been mapped is referenced. Virtual memory is just that:
virtual. It doesn't represent actual memory until physical storage is committed to it.
Windows' memory-mapped file facility provides applications the ability to treat files
as though they were memory, with Windows handling all the I/O behind the scenes.
Windows itself uses this facility when it accesses EXEs and DLLs. This is all explained
in great detail in Chapter 4.
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Tools

In this section, I'll touch on a few of the tools we'll use throughout the book to
explore SQL Server. These tools come from a variety of sources, and you certainly
don't need all of them to work through the book. | mention them in various places in
order to point out their usefulness and to give you some tips on how to leverage
them to solve a particular problem or examine a particular piece of data. That said,
you can work through most of the examples in the book with little more than the
tools that come with Windows and Microsoft's freely downloadable WinDbg
debugger.

TList

This tool comes on the Windows Support Tools CD. You can use it to list the running
processes and to list the modules loaded within each process. A variety of other
process-specific information can be returned as well.

Pviewer

Pviewer also comes with the Windows Support Tools. It allows you to view
information about running processes and threads. You can also kill processes and
change process priority classes. One really handy aspect of it is that you can use it
to view processes on your local machine as well as those across a network on a
remote machine.

Pview

This tool comes with the Platform SDK and is essentially the same tool as Pviewer. It
offers the same functionality and displays the same type of information. Of course,
the features it sports vary based on the release of the SDK and how recent the build
you have is, but it is basically the same tool as Pviewer.

Perfmon

Windows' Performance Monitor is probably the single most valuable tool included
with the product for looking under the hood to see what's happening within the OS.
Perfmon (or Sysmon, as it's now known) provides the ability to monitor several key
statistics about running processes and threads, memory and CPU utilization, disk
use, and a bevy of other interesting objects and diagnostics.

You use Perfmon by adding counters to a data collection, then allowing the tool to
sample them over time as the system runs. You can view these counters as lines on
a chart, as literal values, or as bars on a histogram. You can save logs created by
Perfmon as binary files, as delimited text files, and as SQL Server tables. Throughout



the book, I'll mention Perfmon counters that are useful in exploring a particular
technology or subsystem within Windows or SQL Server.

WinDbg

As | mentioned in the Introduction, we'll frequently use Microsoft's freely
downloadable standalone debugger, WinDbg, to peer under the SQL Server hood.
We won't actually be using WinDbg for the normal purpose debuggers are typically
used for: debugging apps. Instead, WinDbg will serve as a type of "X-ray machine"
for SQL Server, a tool that lets us see what's happening behind the scenes.

A version of WinDbg comes with Windows, and you can also download it from the
Microsoft public Web site (as of this writing, you can find it at
http://www.microsoft.com/ddk/debugging/default.asp). For working through the
examples in this book, | suggest you get WinDbg from the Microsoft Web site so that
you can be sure to have the latest version.

NOTE: Microsoft also includes a command line debugger, cdb.exe, in its Debugging
Tools for Windows package that you may find preferable to WinDbg if you prefer
command lines to GUIs. This debugger uses the same debugger "engine" as WinDbg,
and the debugger commands presented in this book will work equally well with it.

Probably the single most important thing to remember when using WinDbg or any
symbolic debugger is that, in order to successfully debug much of anything, you
must have debugging symbols and the debugger's symbol path must be set so that
it can find them. Debugging symbols are generated by your compiler/linker product.
For Microsoft products, the standard symbol file format is the Program Database
(PDB) format and is automatically produced for debug builds in Visual C++ and for
any executable in VB whose Create Symbolic Debug Info project property is set.
Typically, if you have debug symbols, you will find a PDB file corresponding to your
EXE or DLL name in the same folder with the executable.

An exception to this is SQL Server. SQL Server's symbol files are located in the exe
and dll subfolders under the main SQL Server Binn folder. (The symbols for
sqlservr.exe, the main SQL Server executable, are in the exe folder; the symbols for
the key DLLs it uses are in the dll folder.) These symbols are retail debug
symbols@symbol files that have been stripped of many things essential to real-world
debugging such as parameter types, local variables, and the like. These symbols
aren't suitable for true debugging, but they're just right for our purposes. Retail
symbols work fine for looking under the hood of an application and exploring a
running process.
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As I've mentioned, in order to successfully debug anything with WinDbg, you'll need
to correctly set the symbol path. You can set the symbol path in WinDbg by pressing
Ctrl+S or by choosing File | Symbol File Path from the menu system.

The retail symbols for much of Windows (and for many other products) are available
over the Internet via Microsoft's symbols server. You don't have to download
these@you simply point the debugger at the symbols server and it takes care of
downloading (and caching) symbols files as it needs them. As of this writing, you can
use http://msdl.microsoft.com/download/symbols in your symbol path to reference
Microsoft's publicly available symbol server over the Internet. Microsoft has a great
Web page explaining exactly how this works and how to use it at
http://www.microsoft.com/ddk/debugging/symbols.asp. Read this page and set your
symbol path accordingly in WinDbg. Currently, my WinDbg symbol path is set to
SRV*c:\temp\symbols*http://msdl.microsoft.com/download/symbols.

When debugging a component or program to which you have source code, it's also
important to set the WinDbg source path correctly. You can do this by pressing
Ctrl+P or by selecting File | Source File Path in the WinDbg menu system. Setting the
source path allows WinDbg to find the source code to your app while debugging so
that you can step through it, set breakpoints, and so on.

NOTE: | should point out here that there's no guarantee that SQL Server will
continue to ship symbol files of any kind. For now, they're included with the product,
but they may not be at some point in the future. If that ever happens, hopefully
Microsoft will make them available via its public symbols server as it has for some of
its other products.


http://msdl.microsoft.com/download/symbols
http://www.microsoft.com/ddk/debugging/symbols.asp

Recap

Windows is a sophisticated, robust operating system that is comprised of several
subsystems. Programmed using the Win32 API, it provides a mechanism that allows
user applications to (indirectly) make calls into the system kernel code.

Windows provides an architecture that protects the system from being destabilized
by errant user applications. It provides a virtual memory facility to alleviate the need
for apps to implement their own virtual memory managers. And it provides memory-
mapped files and copy-on-write support for making advanced memory management
easy and efficient.



Knowledge Measure

1.

10.

How much virtual memory does the user mode portion of a process have by
default?

. How many operating modes (rings) does the Intel x86 processor family

support?

. True or false: No code actually runs via a process itself@a thread is required to

execute an application's code.

. Explain the function of copy-on-write memory.

. True or false: You must download symbolic debug information from Microsoft

and copy it to a local symbols server in order to use WinDbg to debug a
Microsoft product.

. True or false: Windows uses all the operating modes supported by whatever

processor chip it is running on.

. Describe the relationship between the LoadLibrary and GetProcAddress Win32

API functions.

. What is a context switch?

. True or false: Windows provides a mechanism that an application can use to

optionally load a DLL at runtime.

What's the single most important thing you must do in order to ensure a
symbolic debugger is able to debug a process?






Chapter 3. Processes and Threads

It is necessary to the happiness of man that he be mentally faithful to himself.
Infidelity does not consist in believing, or in disbelieving; it consists in
professing to believe what he does not believe.

©Thomas Paine'l!

(1] Paine, Thomas. The Age of Reason, ed. Philip S. Foner. New York: Citadel Press, 1974, p. 50.

In this chapter, we'll explore processes and threads within Windows. We'll discuss
how processes and threads differ and how they're similar, and we'll talk about the
unique role each plays within the Windows operating system.

We'll also explore in detail how the Windows thread scheduler works and how
threads are scheduled on and off of processors. We'll talk about thread
synchronization and how multithreaded apps such as SQL Server use
synchronization objects to serialize access to shared resources and ensure thread
safety.



Processes

Key Process Terms and Concepts

v Process® the encapsulation of a running program in Windows. A process
provides a context in which threads can carry out the work of an application.

v Process address space® the virtual memory address space for an
application. This is limited to 4GB for 32-bit Windows applications. Addresses in
Win32 applications are limited to 4GB because 4GB is the largest integer value
a 32-bit pointer can store. Of these 4GB, by default 2GB are reserved for the
kernel and 2GB are set aside for user mode access. On some editions of the
Windows NT family, the user mode address space can be increased to 3GB (at
the expense of kernel mode space) via the /3GB BOOT.INI switch for
applications that have been linked with a special flag that allows them to take
advantage of this. All memory allocated by an application comes from this
space.

v Main thread® the first thread of an application. Windows automatically
allocates a main thread for every process it starts. This is also often referred to
as the application's primary thread.

v Entry-point function® the function address at which a thread begins
executing. For the main thread, this is the entry point of the application (often a
function named main() or something similar); for all other threads, the entry-
point function is specified when the thread is created and is basically a simple
callback routine.



Overview

A Win32 process is completely passive®it doesn't actually execute or do anything. It
is merely a container for threads. When you start or stop a process, you are actually
starting and stopping its threads@the process itself doesn't run. And, technically
speaking, you don't terminate a process; you terminate its threads. A process serves
only to provide resources and context in which the threads that actually carry out the
work of an application can run.

Each process consists mainly of two components, a process kernel object and a
virtual address space. The operating system uses the kernel object to manage the
process and to provide a means for applications to interact with the process. The
virtual address space contains the executable module's code and data, the code and
data of the DLLs it loads, and dynamic memory allocations such as thread stacks and
heap allocations.

The fact that they provide the virtual address space for the application means that
processes require a lot more system resources than threads. The creation of a
process's virtual address space requires a significant amount of system resources.
The tracking and management of this space is handled by the operating system's
memory manager using virtual address descriptors (VADs), and this requires
resources that threads don't have to concern themselves with.

| should mention here that the executable code (and data) that's contained within the
process's virtual address space isn't actually loaded until needed. It is mapped within
the virtual address space®which merely reserves certain address ranges for it within
the space while the physical storage for the region remains the EXE or DLL file itself.
It is loaded or unloaded as needed by the operating system in page-sized chunks (4K
for Win32 on x86). Every executable or DLL file mapped into a process's address
space is assigned a unique instance handle.

Beyond the kernel object and virtual address space, a process also encapsulates:

® A process-specific table of open handles to system resources such as files,
events, mutexes, and semaphores

® An access token that defines the process's security context and identifies the
user, privileges, and security groups associated with the process

® A unique identifier called a process ID or client ID

® At |least one thread

Key Process APIs



Table 3.1. Key API Functions for Processes

Function

Description

CreateProcess

ExitProcess

OpenProcess

TerminateProcess

Creates a new process handle

Exits the current process

Opens an existing process

Terminates an existing process

Key Process Tools

As | mentioned in Chapter 2, there's a fair amount of overlap between the various
system information tools and the data they return regarding system objects. Process-
related tools are no exception to this. Table 3.2 summarizes the process-related
information returned by several of these tools.

Table 3.2. Process-Related Tools and the Information They Display

Process Image Priority C:/;U Handle U;/(:ar P(:'Ai)v Ela_psed Com_mand
ID Name Class Time Count Time Time Time Line
Perfmon v v v v v v
Pstat v
Pviewer v
Qslice v v v v
TaskMgr v v
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ID Name Class Count Time Time

Elapsed Command

Time Time Line

TList v v v

Key Perfmon Counters

Perfmon is an indispensable tool when working with processes. Table 3.3 lists some of
the more important process-related Perfmon counters.

Table 3.3. Process-Related Perfmon Counters

Counter Description

Process:% The time the process has spent in kernel mode
Privileged Time

Process:% User The time the process has spent in user mode

Time
Process:% The total processor time for the process; should be a sum of the
Processor Time first two counters and may exceed 100% on a multiprocessor

machine

Process:Elapsed The number of seconds that have passed since the process was
Time created

Process:ID The internal ID for the process
Process

Process:Creating The internal ID of the process that created this one
Process ID

Process:Thread The number of threads the process currently contains
Count




Counter Description

Process:Handle The number of handles in the process-specific handle table
Count

Process Internals

Each thread runs within the context of the process that owns it. The process provides
the resources and environment in which the thread executes its code. By virtue of
Windows' process separation, a thread can't access the address space of other
processes without a shared memory section or the use of the ReadProcessMemory or
WriteProcessMemory functions.

Internally, a process is represented by an executive process (EPROCESS) block, which
is stored in the system space along with its related data structures. Of these internal
structures, only the process environment block (PEB) is stored within the process
address space.

When a process object is first created (through a call to CreateProcess), Windows
creates a process kernel object with an initial usage count of 1. Note that this object
is not the process itself but a small data structure Windows uses to manage the
process and track statistical information about it.

Once the kernel object is created, Windows creates the process's virtual address
space and maps the code and data for the executable module (and any other
required modules) into this space.

Note that CreateProcess can return TRUE before the process has been completely
initialized, even before the operating system loader has located all the DLLs required
by the executable. If a required module can't be located or fails to initialize, Windows
terminates the new process. Because CreateProcess may have returned TRUE before
this was known, the creating process is not aware of the problem and may attempt to
erroneously use the process or thread handle returned by CreateProcess. One way to
avoid this is to check the process status via the GetExitCodeProcess API function
before attempting to use its process or main thread handle. GetExitCodeProcess will
return FALSE if you pass it an invalid handle. Also, you can wrap calls to CloseHandle
in exception blocks such that they trap the INVALID_HANDLE exception that's raised
when CloseHandle is passed a bad handle.

Once a process is created, the system automatically creates its primary or main
thread. Every process has at least one thread represented by an executive thread
(ETHREAD) block in system memory.

After you've created a new process using CreateProcess, you should close the handle
to its main thread in order to allow the corresponding thread object to be freed by the
system when it is no longer needed. Closing this handle doesn't terminate the thread;
it just releases the caller's reference to it. There is no advantage to keeping a handle
to the spawned process's primary thread unless you intend to manipulate that thread



directly through API calls. You can pass the handle of the process itself into a wait
function if you want to wait on the process to finish executing before proceeding.

During the initialization of a new process, the instruction pointer for the process's
primary thread is set to an undocumented and unexported function called
BaseProcessStart. This is where all new processes begin executing in Win32.

Other Internal Structures

The PEB, EPROCESS block, and related structures aren't the only internal structures
Windows uses to track processes. The Win32 subsystem process (CSRSS) maintains a
parallel structure for each process that executes a Win32 program. Additionally, the
kernel mode piece of the Win32 subsystem (Win32k.sys) maintains a per-process
data structure that is created the first time a thread in the process calls a Win32
USER or GDI function that is implemented in kernel mode.

Process Termination

A process can be terminated by using one of the following four methods.

1. The primary thread's entry-point function returns. This is preferable because it
ensures that:

a. Any C++ objects created by the thread will have their destructors called
and the runtime library (RTL) will be allowed to run its cleanup code.

b. Windows will immediately release the memory used by the thread's stack.

c. The process's exit code will be set to the return value of the thread's
entry-point.

d. Windows will decrement the corresponding process kernel object's usage
count.

2. A thread in the process calls ExitProcess. You want to avoid this because it
prevents C++ object destructors and RTL cleanup code from being called.

3. A thread in another process calls TerminateProcess. Avoid this because it does
not notify the process's DLLs of the termination, nor are object destructors or
RTL cleanup routines allowed to run. Note that TerminateProcess is
asynchronous@the process isn't guaranteed to be terminated by the time the
function returns. You can use WaitForSingleObject to suspend execution of the
calling thread until the process becomes sighaled (terminates).

4. All the threads in the process terminate on their own. This is fairly rare.

Once terminated, a process will leak absolutely nothing. Windows ensures that all
resources allocated by the process are freed when it exits.

Speaking of process termination, here's what happens when a process terminates.



® All object handles opened by the process are closed.
e All threads in the process also terminate.

® The kernel process object becomes signaled.

® All the process's threads become signaled.

® GetExitCodeProcess will return the exit value of the process rather than
STILL_ACTIVE.

SetErrorMode

Each process has a set of flags associated with it that tells the system how the
process should respond to serious errors such as unhandled exceptions, media
failures, and file open failures. You can set these flags via the SetErrorMode API call.
Table 3.4 summarizes the options available to you.

SQL Server calls this function on startup, and, as a rule, you should never call it from
code that runs within the SQL Server process (e.g., from an extended procedure or in-
process COM object) as this could interfere with the server's ability to handle errors.

Table 3.4. SetErrorMode Parameters and Their Meanings

Value Meaning
0 The system default@display all error dialog boxes.
SEM_FAILCRITICALERRORS Don't display dialog boxes for critical errors;

instead, send the error to the calling process.

SEM_NOALIGNMENTFAULTEXCEPT Automatically fix any memory alignment problems
(this applies only to RISC processors).

SEM_NOGPFAULTERRORBOX Don't display the General Protection Fault dialog.

SEM_NOOPENFILEERRORBOX Don't display a dialog box when file find error
occurs; instead, send the error to the calling
process.




Exercises

In these exercises, we'll monitor various aspects of the SQL Server process. We'll
check out its CPU usage, the threads it creates, and the modules it loads. You can use
these same techniques to monitor other types of Win32 processes.

Exercise 3.1 Monitoring Process CPU Usage

In this exercise, we'll monitor a CPU spike in the SQL Server process. You'll learn how
to monitor processor use via Task Manager. To complete the exercise, follow these
steps.

1. Start SQL Server (this should not be a production system) it if isn't already
started and connect to it with Query Analyzer. Ideally, you should be the only
user on the system.

2. Start Task Manager (e.g., press Ctrl+Shift+Esc).

3. Click the Processes tab, then click the CPU column to sort the list so that
processes with high CPU usage appear at the top of the list.

4. Minimize Task Manager, then switch back to Query Analyzer and run the
following query: declare @var int set @var=1 while @var<100000 begin set
@var=@var+1 end

5. Switch back to Task Manager while the query runs. In the Processes list, you
should see that sqlservr.exe has moved near the top of the list.

The effect will be more dramatic on uniprocessor machines and, of course, on slower
processors, but you should see some type of spike in the CPU use by the SQL Server
process.

If you'd like to see a graphical depiction of this spike, run the query again and switch
to the Performance tab in Task Manager. On a uniprocessor machine, you will see a
chart like the one in Figure 3.1.

Exercise 3.2 Monitoring Thread Creation in SQL Server

Multithreaded applications usually take one of two approaches in deciding when to
create new threads: Either all threads are created at application startup, or they are
created as needed while the application runs. SQL Server creates new worker threads
as necessary up to the maximum number of worker threads specified with
sp_configure (or in Enterprise Manager). To see how this works, follow these steps.

1. Stop and restart SQL Server. This should not be a production server and you
should be its only user for the duration of this test.

2. Start Perfmon and click the Add Counters button.
3. In the Add Counters dialog, change the Performance Object to Process.

4. In the instances list, find sqlservr and click it. (This may have #1 or #2 or some
other number appended to it if you have multiple instances of SQL Server



running; make sure you know which instance you select.)
5. Select Thread Count from the counters list.

6. Click the Add button. You should now see a line chart in Perfmon indicating the
current number of threads running within the SQL Server process. Make a note
of how many threads are currently running (the Last field will tell you the exact
count from the last sample interval). Figure 3.2 illustrates how to add the
counter.

Figure 3.2. Adding the thread count to a Perfmon session
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7. Open a command window, change to a folder into which you can copy some
files and run some tests, and copy the files STRESS.CMD and STRESS.SQL from
the CHO3 folder on the CD accompanying this book. STRESS.CMD runs a
specified T-SQL script or scripts using a specified number of connections (it calls
osgl.exe). You can use it to simulate multiple users connecting to your server
and running a given query or queries. Run it without parameters to see usage
help. STRESS.SQL simply dumps the pubs..authors table, then pauses for 15
seconds via the T-SQL WAITFOR DELAY. Start STRESS.CMD with this command
line: STRESS STRESS.SQL 15 N normal Y YourServerName\lnstance

Replace YourServerName\lnstance with your SQL Server machine name and
instance.

You should see 15 command windows open, each of them running STRESS.SQL.

8. Now switch back to Perfmon. You should see a noticeable increase in the
number of threads within the SQL Server process. This is because your new
connections have forced the server to create new worker threads to service
them. Note that there's no strict ratio between worker threads and connections.



SQL Server can often effectively service thousands of connections with only a
few hundred worker threads.

9. About 15 seconds after you started STRESS.CMD, you should see the command
windows it opened automatically close. However, you won't see SQL Server's
worker thread count dip immediately. The server will not immediately destroy
its newly created worker threads even though they're currently sitting idle
because it may need them when the next wave of work comes rolling in.
Caching idle worker threads allows SQL Server to provide stable performance in
environments where the number of connections and queries being sent into the
server varies significantly over time. At the same time, the server doesn't
continue to use system resources that aren't needed@after 15 minutes, SQL
Server will time out an idle worker thread and destroy it.

Figure 3.1. A spike in CPU use by SQL Server can spike the CPU use
for the entire machine.
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Note that a process's thread count can also be viewed by numerous other tools@you
don't have to use Perfmon. One tool I'm particularly fond of is Pview (from the
Platform SDK tools). Figure 3.3 illustrates viewing the thread count for SQL Server
using Pview.




Exercise 3.3 Listing Modules and Processes within SQL Server

In this last exercise, you'll use a custom extended procedure, xp_modlist, to list the
currently loaded modules and processes under SQL Server. You'll see all DLLs within
the SQL Server process space, as well as any executables it has spawned. While
Windows does not provide an official mechanism for establishing parent-child
relationships between processes, there are undocumented functions that a routine
can use to get this information. To run xp_modlist under SQL Server, follow these

steps.

1. Start Query Analyzer and connect to a development or test SQL Server
instance. This should not be a production server, and, ideally, you should be its

only user.

2. Copy the file xp_sysinfo.dll from the CHO3\xp_sysinfo\release subfolder on the
CD accompanying this book to the binn folder under your SQL Server

installation root.

3. Install xp_modlist by running this command from Query Analyzer:

sp_addextendedproc 'xp modlist', 'xp sysinfo.dll'

4. Run the following command to instantiate a child process under SQL Server:
xp_cmdshell 'notepad'

Note: You will not see Notepad started unless you are running SQL Server as a
console application. Don't worry about that€we're only starting it in order to
have a subprocess that never completes.

5. Your xp_cmdshell call will appear to hang. Open a new Query Analyzer window

and run the following command: xp_modlist

You should see a list of processes that looks something like this:

ParentProcessID ProcessID Handle

0x00400000
0x77F80000
0x77E80000
0x77DB0O0O0O0O
0x77D30000
0x77E10000
0x77F40000
0x41060000
0x41070000
0x42AE0000
0x41080000
0x25900000
0x410D0000O
0x26A70000
0x26B10000
0x10000000
0x10010000
0x4AD0O0O0O0O0O

ModuleName

:\PROGRA~1\MICROS~3\MSSQL$~2
:\WINNT\System32\ntdll.d11l
:\WINNT\system32\KERNEL32.DLL
:\WINNT\system32\ADVAPI32.DLL
:\WINNT\system32\RPCRT4.DLL
:\WINNT\system32\USER32.DLL
:\WINNT\system32\GDI32.d11l
:\PROGRA~1\MICROS~3\MSSQL$~2
:\PROGRA~1\MICROS~3\MSSQL$~2
:\PROGRA~1\MICROS~3\MSSQL$~2
:\PROGRA~1\MICROS~3\MSSQL$~2
:\PROGRA~1\MICROS~3\MSSQL$~2
:\PROGRA~1\MICROS~3\MSSQL$~2
:\PROGRA~1\MICROS~3\MSSQL$~2
:\PROGRA~1\MICROS~3\MSSQL$~2
:\PROGRA~1\MICROS~3\MSSQL$~2
:\WINNT\system32\PSAPI.DLL
:\WINNT\system32\cmd.exe

OOOOOOOOOOOOO0O0O0O0On0n



3544
3544
3544
3544
652
652
652
652
652
652
652

652
652
652
652
3468
3468
3468
3468
3468
3468
3468

0x77F80000
0x77E80000
0x77E10000
0x77F40000
0x01000000
0x77F80000
0x77E80000
0x77F40000
0x77E10000
0x77DB0O0O0OO
0x76620000

OOOOOO0O0O0O0O0nO0n

:\WINNT\System32\ntdll.d11l
:\WINNT\system32\KERNEL32.d11l
:\WINNT\system32\USER32.d11
:\WINNT\system32\GDI32.d11l
:\WINNT\system32\notepad.exe
:\WINNT\System32\ntdll.d11l
:\WINNT\system32\KERNEL32.d11l
:\WINNT\system32\GDI32.d11l
:\WINNT\system32\USER32.d11
:\WINNT\system32\ADVAPI32.d1l1l
:\WINNT\system32\MPR.DLL

Note the three different ParentProcessld values. When you call xp_cmdshell, it
calls the command interpreter, Cmd.exe, which in turn calls Notepad.exe, the
command you passed into xp_cmdshell. By calling your process using cmd.exe,
xp_cmdshell allows it to use command shell services such as piping and

redirection.

. If you are running SQL Server as a service, you may have to cycle your server
machine in order to get rid of the Notepad instance you just started, depending
on the user account you're logged in with and its permissions.

Figure 3.3. Viewing the thread count using Pview
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Process Recap

Although we tend to think of processes as objects that carry out the work of an
application, a process is really just a context provider for threads. In Windows,
threads carry out the work of the application; processes provide an environment in
which to do that work.

SQL Server is a process that can run as either a service or a console mode
application. As with all other Windows processes, it consists of threads, a virtual
address space, kernel objects, and so forth.

Process Knowledge Measure

1. What Windows API routine is used to construct a new process object?

2. What is the preferred method of shutting down a process?

3. Is it possible for an application to leak handles once it has been terminated?

4. What does GetExitCodeProcess return for a process that is still running?



10.

11.
12.

13.

14.

. In which of the two main sections of the process address space®the user mode

section and the kernel section®is the process environment block (PEB) stored?

. Of the 4GB set aside for a 32-bit process's address space, how much is reserved

for the kernel and how much is resolved for user mode space by default?

. True or false: It's possible to create a new process that does not have a main

thread, but this is not recommended since the app won't be able to do
anything.

. What is the largest size an application's user mode space can be set to under

32-bit Windows?

. What file contains the kernel mode piece of the Win32 subsystem?

True or false: It is safe to call SetErrorMode from an extended stored procedure
so long as you wrap the call in an exception handling block.

What is the signal status of a process that is terminated using Task Manager?

What BOOT.INI switch is used to configure Windows to provide applications with
a larger-than-normal user mode address space?

True or false: Because of the way that Windows protects processes from each
other, it is impossible for one process to alter memory allocated within another
process's address space.

True or false: CreateProcess can return TRUE even when the new process
cannot be created because DLLs on which it depends cannot be located.



Threads

A thread is the facility by which program code is executed in Windows. It is the only
Windows object capable of running code. A thread is always created within the
context of a process and lives its entire life within that process.

A thread is the only means by which a process carries out work. Without threads,
processes can't do anything.

Key Thread Terms and Concepts

v Entry-point function® the function address at which a thread begins
executing. For the main thread, this is the entry point of the application (often
a function named main() or something similar); for all other threads, the entry-
point function is specified when the thread is created and is basically a simple
callback routine.

v Thread® the Windows object by which application code is executed. Every
thread runs within the context of an application or the operating system.

v Context switch® what happens when Windows saves off the contextual
information for one thread and loads that of another so that the other thread
can run. This consists of saving/loading volatile register values and other
elements pertinent to the runtime environment of the thread.

v Fiber® a lightweight, thread-like user mode construct that runs within the
context of a thread. Fiber mode imposes a humber of restrictions on SQL
Server that you may find unacceptable (e.g., you can't use SQLXML when
running fiber mode). For this reason, fiber mode is generally not



recommended, but it is sometimes useful for achieving greater scalability by
reducing context switching.

v SEH® structured exception handling, specifically that provided by Windows.
SEH constructs provide the mechanisms necessary to allow an application to
logically divide the tasks it wants to carry out from the steps it must take if one
of those tasks fails for some reason.

v TLS® thread local storage, a mechanism by which threads can store data
that is unique to each thread. TLS values are accessed by index. You use the
Win32 API function TIsAlloc to allocate a TLS index and the functions
TlsSetValue and TlsGetValue to set and get values, respectively.

Key Thread APIs

Table 3.5. Key Thread-Related Win32 API Functions

Function Description
CreateThread Creates a new thread object
ExitThread Exits the current thread
TerminateThread Terminates another thread

GetExitCodeThread Gets the return code of the thread's entry-point function




TIP: Note that you can pass a pseudohandle into a Win32 API function that requires
a process or thread handle. This causes the function to perform its action on the
calling process or thread.

Key Thread Tools

As | said in Chapter 2, there is considerable overlap between the various system
diagnostic tools. Thread-related diagnostic tools are no exception. Table 3.6
summarizes many of the ways you can access basic thread information.

Table 3.6. Basic Thread Diagnostic Tools and the Information They

Return
THISR St CPU SonteXt Thread user priv Lask ait L%
Time Time Time State
Perfmon v v v v v v v
Pstat v v v
Pviewer v v v v v v
Qslice v/ v v
TList v/ v v v

Key Perfmon Counters

As with processes, Perfmon is invaluable for monitoring thread usage in an
application and across the system. Table 3.7 lists some of the more useful thread-
related Perfmon counters.



Table 3.7. Useful Thread-Related Performance Counters

Counter Description

Process:Priority The base execution priority of the owning process
Base

Thread:% The percentage of time the thread has spent in kernel mode
Privileged Time

Thread:% User The percentage of time the thread has spent in user mode
Time

Thread:% The percentage of time the thread has used the CPU; should be a
Processor Time sum of the % Privileged Time and % User Time counters

Thread:Context The number of context switches per second
Switches/sec

Thread:Elapsed The elapsed time since the thread was started
Time

Thread:Id The internal ID of the owning process
Process

Thread:ld The internal ID of the thread

Thread

Thread:Priority The thread's priority base
Base

Thread:Priority The thread's current priority
Current

Thread:Start The thread's start address
Address

Thread:Thread The current thread state, an integer from 0 to 7 (see Table 3.11 on
State page 64)




Counter Description

Thread:Thread If the thread is waiting, the reason it is waiting
Wait Reason

Thread Internals

A Win32 thread includes the following components:

® A set of volatile CPU registers that represent the state of the processor.
® A stack for executing in kernel mode.

® A stack for executing in user mode.

® ATLS area.

® A unique identifier known as a thread ID. (As with processes, this is also

internally called a client ID@process and thread IDs never overlap because
they are generated from the same namespace.)

® An optional security context. (By default, a thread inherits the security context
of its parent process. Multithreaded apps will sometimes obtain a separate
access token for individual threads in order to impersonate the security context
of the clients they serve.)

The TLS area, registers, and thread stacks are collectively known as a thread's
context. Data about them is stored in the thread's CONTEXT structure. CONTEXT is
the only processor-dependent structure in the Win32 API. The structure itself is
contained in the thread's kernel object.

Of the items stored in the CONTEXT structure, the thread's instruction pointer and
stack pointer registers are probably the two most important. When a thread's kernel
object is initialized, the stack pointer is set to the address of the location of the
thread's entry-point function on the thread's stack. The instruction pointer is set to
the undocumented BaseThreadStart function.

All threads in a process share the process's virtual memory address space and
handle table. By default, they also inherit the process's security access token,
though they can obtain their own for impersonation if necessary, as mentioned
above. And, as | mentioned in the Processes section, the system prevents threads
from accessing the address space of other processes without a shared memory
section or the use of the ReadProcessMemory or WriteProcessMemory API functions.

A thread is represented at the system level by an ETHREAD block. As with the
process EPROCESS block, the ETHREAD block and related structures live in the




system address space. The lone exception is the thread environment block (TEB),
which lives in the user mode address space. The TEB stores context information for
the image loader and various Win32 DLLs and is located in the process space
because they need a structure that is writable from user mode.

As with processes, the Win32 subsystem (CSRSS) maintains a parallel structure for
each thread created in a Win32 process. And for threads that have called a Win32
subsystem USER or GDI function, Win32k.sys, the kernel mode portion of the Win32
subsystem, maintains a parallel data structure (a W32THREAD struct) that the
ETHREAD block references.

The Primary Thread

When CreateProcess creates a new process, the system handles automatically
creating its first thread. This thread is usually referred to as the primary thread or
main thread. For single-threaded applications, this is the only thread the process will
contain. For multithreaded applications, the primary thread will usually either spawn
or at least interact with the other threads in the process. These other threads are
usually referred to as worker or background threads.

When a process finishes its work and is ready to shut down, it should signal any
worker threads it has created that they need to return from their entry-point
functions, then simply return from the entry point to its main thread. Returning from
the primary thread's entry-point function ensures that:

®* Any objects created by the thread will have their destructors called so that
they can be destroyed properly.

®* Windows will immediately release the memory used by the thread's stack.
® The process's exit code will be set to the entry-point function's return value.

® The system will decrement the usage count of the process kernel object for the
thread's owning process.

Processes vs. Threads

Given that threads use fewer system resources than processes, it makes sense to try
to solve your programming problems using threads rather than processes when
possible. The overhead of managing the virtual address space is not insignificant;
creating too many processes on a machine can run the system out of virtual
memory and bring performance to a standstill.

That said, don't assume that every problem is better solved with multiple threads
rather than multiple processes. Some designs are better implemented using
separate processes. My advice is to educate yourself as to the trade-offs with each
approach and weigh them against one another before deciding which way to go.



Beyond the obvious efficiencies with respect to system resources, multithreading an
application also allows its interface to be simplified. If certain tasks that you
normally trigger by clicking menu options or buttons can be performed automatically
in the background by separate threads, you may be able to eliminate those user
interface elements altogether. Keep in mind, though, that in most apps, a single
thread should handle all user interface updates. This is because, unlike other types
of objects, the window handles to user interface components such as buttons and
text boxes are actually owned by individual threads, not the parent process.
Synchronizing multiple user interface threads such that the app displays and works
correctly is usually more trouble than it's worth.

Multithreading also allows an application to scale. If your machine has multiple CPUs,
you can truly run multiple tasks simultaneously by creating multiple threads, each of
which might get its own CPU.

For all its benefits, keep in mind that multithreading is not the best way to solve
every problem. Performing tasks over multiple threads introduces complexities into
an app that would otherwise not be there@there are always trade-offs. Some
developers believe the first thing you do with a complex task is break it up into
multiple threads. This is a questionable design practice that will get you into trouble
as an application builder if you follow it.

Creating and Destroying Threads

When CreateThread is called, the system creates a thread kernel object to manage
the thread. This object's initial usage count is 2. The thread's kernel object will not
be destroyed until the thread terminates and the handle returned by CreateThread is
closed.

Creating a thread initializes its stack. This stack is allocated from the process's
virtual address space since threads don't have an address space of their own. Once
the stack is allocated, the system writes two values to the upper end of it (thread
stacks always build from high memory addresses downward): the entry-point
function address that was supplied to CreateThread and the value of the user-
defined parameter that was passed in along with it.

The routine pointed to by the instruction pointer immediately after thread
initialization depends on the type of thread being created. If the thread being
initialized is the process's main thread, the instruction pointer will be set to the
undocumented (and unexported) function BaseProcessStart. If the thread is one
created by the application (a worker or background thread), the instruction pointer is
set to the BaseThreadStart function (also undocumented and unexported).

NOTE: Usually, developers aren't concerned with the thread ID of a newly created
thread@they only need the object handle in order to interact with the thread.
Therefore, CreateThread allows you to pass NULL for its final parameter, IpThreadid,
and this is a common practice among experienced NT developers. This works fine on
the Windows NT family of operating systems (which includes Windows NT, Windows
2000, and all subsequent versions of Windows) but will cause an access violation on



Windows 9x. If you want your code to run on Win9x, you must pass a value for this
parameter whether you actually intend to do anything with it or not.

Thread Termination

You can terminate a thread using one of the following four methods.

1. Return from the thread's entry-point function. This is the cleanest and best way
to shut down a thread. It ensures that C++ object destructors are called, RTL
cleanup code runs, buffers are flushed to disk, and so on.

2. Have the thread commit suicide by calling ExitThread. This approach prevents
C++ object destructors and RTL cleanup code from running, so you should
avoid it.

3. Call TerminateThread from the same or another process. You shouldn't use
TerminateThread to kill a thread for three reasons.

a. The thread doesn't receive any notification that it is dying. Naturally, this
can present problems with running cleanup code.

b. Code wired up to the DLL_THREAD_ DETACH notification doesn't run when
you use TerminateThread. Again you may have cleanup issues because of
this. Note also that TerminateThread is asynchronous. It can return before
the thread is signaled (terminated). You can use a wait function to pause
the execution of the calling thread until the thread is actually signaled.

¢. The memory in which the thread's stack is stored is not freed up until the
process terminates. TerminateThread was implemented this way so that
other threads that might still be running and accessing variables that
were on the terminated thread's stack can continue to run unaffected.

4. Terminate the containing process. This has the same caveats as
TerminateThread since it basically calls TerminateThread for every thread in
the process.

When a thread terminates, the following happens.

® The thread kernel object is signaled.

®* Windows frees all user object handles owned by the thread. As | said earlier,
usually a process owns the objects created by its threads. However, there are
two exceptions: windows and hooks. When a thread terminates, any window or
hook handles it has open are freed.



®* Windows changes the thread's exit code from STILL_ACTIVE to the return value
of the entry-point function or the value passed to ExitThread or
TerminateThread.

® Windows decrements the thread kernel object's usage count by 1.

®* Windows considers the process terminated if the thread is the last active
thread in the process.

NOTE: For obvious reasons, many of the thread-specific Win32 API functions are not
available from Visual C++ if you link with the single-threaded runtime library. You'll
get "unresolved external" errors for functions such as CreateThread and
_beginthreadex if you attempt to call these functions while linking with the single-
threaded RTL. The single-threaded version of the RTL is the default when you build a
non-MFC application, but the multithreaded RTL is the default when you build an
MFC app or use the extended stored procedure wizard to build a SQL Server
extended procedure. If you're going to write code that is to run in a multithreaded
environment you must link with the multithreaded version of the RTL because, in
addition to multithreading-specific functions not even being present in the single-
threaded RTL, several base RTL functions are not thread-safe in the single-threaded
version of the library. Examples include errno, _strerror, tmpnam, strtok, and many,
many others. And, in case you're wondering, there are separate single-threaded and
multithreaded RTLs for C because the original RTL was created around 1970 before
threads were available on operating systems.

_beginthreadex and _endthreadex

Even though CreateThread and ExitThread are the standard Win32 API functions for
creating and ending threads, Visual C++ developers should consider using
_beginthreadex and _endthreadex instead. There are three main reasons for this.

1. beginthreadex allocates a structure (known as a tiddata block) that allows
certain C/C++ RTL functions (such as those mentioned in the note above) to
work correctly when accessed simultaneously by multiple threads.

2. beginthreadex uses an entry-point function that wraps your thread entry-point
function in an SEH frame. This frame handles many conditions and errors that
would not be caught were you to create the thread directly with CreateThread.

3. When _endthreadex is used instead of ExitThread to terminate a thread, the
thread's tiddata block is freed (it is leaked until process shutdown when



ExitThread is used).

Given that CreateThread is the only way to create a new thread in Windows,
_beginthreadex does ultimately call it. However, it makes a few changes en route
that make your code more robust and protect it from thread-safety issues in the RTL.
It pulls this off by substituting its own thread entry-point function for yours and
storing the address of your function, along with the user-defined parameter you
originally supplied, in the tiddata structure it allocates from the RTL heap for your
thread. It then calls CreateThread and passes its thread entry-point function
(_threadstartex) as the entry-point function and the address of the tiddata block as
the user-defined parameter. This _threadstartex function sets up the SEH frame |
mentioned earlier, does some other initialization work, then retrieves the address of
your entry-point function from the tiddata block passed into it and calls it, passing it
the user-defined parameter you originally passed to _beginthreadex. The end result
is a far safer and more robust thread creation mechanism. SQL Server uses
_beginthreadex and _beginthread to instantiate new threads.

The parameter lists differ slightly between CreateThread/ _beginthreadex and
ExitThread/_endthreadex, so you may have to do some casting to pass muster with
the compiler, but these functions are very similar, so this shouldn't be too difficult.

Thread Functions

A thread function is the entry point for the thread. It's where execution begins when
the thread starts. A few points about these types of functions appear below.

® Thread functions can be named anything.

® You don't have the ANSI/Unicode issues that you have with the primary thread
and its main/wmain and WinMain/wWinMain entry points.

® A thread function must return a value.

® You should try to use function parameters and local variables as much as

possible; using static and global variables makes your code inherently
unthread-safe.

In order to ensure that system cleanup code runs properly, you want to write code
such that it returns from your entry-point function rather than calling
ExitThread/_endthreadex. Returning properly from your thread function ensures the
following.

® The destructors of your C++ objects will be called so that the objects can be
disposed of properly.

® Windows will release the memory used by the thread's stack immediately
(rather than waiting until process shutdown).



® The thread's exit code (stored in the thread's kernel object) will be set to your
thread function's return value.

® The usage count of the thread's kernel object will be decremented.

Threads and Exception Handling

Windows has built-in support for structured exception handling (SEH). This allows
you to write code that separates the task at hand from what it is supposed to do if
an error occurs.

SEH is different from language exceptions (implemented through keywords such as
throw and catch) in that the operating system, rather than the RTL, provides the
facilities that make it work. You can certainly use both types of exceptions in your
code; in fact, in Visual C++, language exceptions are implemented under the covers
using Windows' SEH facilities.

When an operating system exception occurs that is not handled by a thread, the
system's default handler is triggered (unless the application has installed its own), a
dialog box is displayed, and the process is shut down. (What actually happens when
an unhandled exception occurs can be changed with SetErrorMode, as mentioned
earlier.)

Of course, this has important implications for code you write that runs inside the SQL
Server process. What happens when you call an xproc from T-SQL and the xproc
causes an exception to be raised? The answer depends on whether the exception
was raised within the context of the SQL Server worker thread or a thread created by
the xproc.

If the exception was raised by the SQL Server worker thread running the xproc, the
thread's default exception handler catches the exception and kills the connection
responsible for causing it. If the exception was raised by a thread created by the
xproc (and the thread has no exception handling code of its own), SQL Server will
generate a symptom dump file, then write a message to the error log indicating that
it is terminating, and exit. This means that an unhandled exception in a thread
created by an xproc could cause your server to crash®not a pleasant scenario.

How do you protect against this? Always wrap the thread entry-point function for any
threads you create in an xproc (or in an in-process COM object) with SEH code.
Listing 3.1 provides an example.

Listing 3.1 A Thread Function with SEH Code in Place

DWORD WINAPI StartThrd(LPVOID lpParameter)
{

try

{

CHAR *pCh=NULL;

//null pointer ref -- forces an exception
*pCh="x";



| -

except (EXCEPTION EXECUTE HANDLER)

MessageBeep(0);

S A

eturn 1;

}

In this example, we intentionally try to dereference a NULL pointer in order to force
an exception. When the exception occurs, we simply execute the MessageBeep
Win32 API function. Obviously, in a real application, you'd do something more
substantial in your exception handling block, but you get the point.

GetLastError

Every thread stores the result of the last Win32 API call, commonly referred to as last
error. Though there's no guarantee that a Win32 function will set the last error value
on an error condition, it's very unusual for this not to be the case. You can retrieve
this value using the GetLastError API function. In addition to setting last error on an
error condition, some functions also set it when no error occurs@in other words,
they reset it. You can set the value of last error via the SetLastError API function.

You should call GetLastError immediately after API function calls from which you wish
to obtain error information because, as I've mentioned, some functions reset this
value when they complete without an error. Once a last error value has been lost
because a function has reset it, there's no way to retrieve it.

You can use bitwise operators to retrieve important information from last error
values. For example, bit 29 indicates that the error is a user-defined error. No system
error will have this bit set. If you're defining your own error codes, be sure to set this
bit in order to ensure that it does not conflict with a system-defined error code.

The file winerror.h in the Platform SDK documents the exact format of Win32 error
codes and includes #defines for the most common ones. You can also use NET
HELPMSG nnnn from the command prompt to display a brief description of the most
common Win32 error codes. For example, type this at a command prompt:

NET HELPMSG 5

You should see:

Access is denied.

This means that Win32 error code 5 indicates an access denied error condition.

The Win32 API FormatMessage allows you to translate an error code into its textual
description. You can use this function to display a message when an error occurs or
to return an error string to a caller. For example, you could use FormatMessage to
translate a Win32 error encountered in an extended procedure into a string that you
can return to SQL Server. SQL Server will then pass this message on to the client.

Fibers



Fibers are often thought of as lightweight threads. They were added to Windows to
make porting UNIX server applications easier. UNIX doesn't implement threading in
the same sense that Windows does. If we view them from the perspective of the
Windows threading model, UNIX apps are single-threaded but can serve multiple
clients. This basically means that UNIX developers have created their own threading
library that they use to simulate the type of pure threading offered by Windows. This
package does many of the same things Windows does when managing threads and
thread context®it saves/restores certain CPU registers, maintains multiple stacks,
and switches between these thread contexts in order to service client requests.

The chief difference between threads and fibers in Windows is that threads are
kernel objects, while fibers are user objects. The operating system knows threads
intimately and has highly tuned and tunable methods of scheduling them,
synchronizing them, and managing them to maximize system performance and
concurrency. Fibers, by contrast, are invisible to the operating system kernel. They
are implemented in user mode code of which the kernel knows nothing.

SQL Server can be configured to use Windows' fiber APIs. This is something Microsoft
generally recommends against, and you should do so only when instructed to by
Microsoft or a Microsoft partner. There are numerous facilities in SQL Server that
either do not work at all or that cannot work correctly when the system is in fiber
mode. For example, the SQLXML facilities in SQL Server (e.g.,
sp_xml_preparedocument) are not available when the system is in fiber mode. This
same is true of SQLMAIL@you can't use it while in fiber mode. Seemingly innocuous
activities such as initializing COM from an xproc that in thread mode would have
potentially affected just one SQL Server worker could conceivably affect many
workers when the server is running in fiber mode since a single thread can own
multiple fibers. A word to the wise is sufficient: Avoid fiber mode if you can.

That said, what would be a valid scenario in which it would be appropriate to
consider enabling fiber mode on SQL Server? Again, you should do so only when
instructed to by Microsoft, but a common scenario that fiber mode may be able to
help address is the situation we see when there are far too many context switches
between SQL Server's worker threads. Context switches are expensive; too many of
them can bring system performance to a crawl. Furthermore, since threads are
kernel objects, waiting on them (which SQL Server does most of the time) causes the
thread to switch from user to kernel mode, which is, again, a costly (~1,000 CPU
cycles) operation. Since fibers are user objects (implemented in Kernel32.DLL), it's
possible to use fiber mode to improve SQL Server's performance in pathological
situations where context switches are contending heavily with the real work of the
server for CPU resources. In such scenarios, you may find that the many cons of
using fiber mode are outweighed by its benefits to your specific situation.

Exercises

In these exercises, we'll investigate SQL Server's ability to handle exceptions and do
some general research into how it manages threads. We'll begin in Exercise 3.4 by
creating an extended procedure whose whole purpose is to raise different types of
exceptions within the SQL Server process to see how it handles them. Working
through this example will give you a greater understanding of the methods Win32
processes in general®and SQL Server in particular@typically use to deal with critical
errors.



Exercise 3.5 takes you through attaching to SQL Server with a debugger so that we
can look under the hood a bit and see how to inspect thread-relevant information for
a running process. You'll use Microsoft's standard WinDbg debugger to attach to SQL
Server, list some thread stacks, and do some other basic tasks having to do with
threading.

Exercise 3.4 Exceptions in Extended Procedures

In this exercise, we'll explore what can happen when an extended procedure causes
an exception within the SQL Server process. This exercise will cause your SQL Server
to stop, so be sure to run the exercise against a test or development server. Ideally,
you should be the only user on the server. Let's begin by setting up an xproc called
xp_exception in the master database by following these steps.

1. Locate the file xp_exception.dll in the CHO3 subfolder on the CD accompanying
this book.

2. Copy it to the binn folder under your SQL Server.

3. Start Query Analyzer and add the xproc to the master database using
sp_addextendedproc, like this:

exec sp addextendedproc 'xp exception', 'xp exception.dll’

For curious readers, Listing_3.2 provides the main routine in xp_exception.

Listing 3.2 xp_exception's Main Module

RETCODE  declspec(dllexport) xp exception(SRV_PROC *srvproc)

{
int iParams=srv_rpcparams(srvproc);
BYTE bType;

ULONG cbMaxLen;
ULONG cbActuallLen;
BYTE bCrashType;
BOOL bNultl;

DWORD dwThreadID;

if (0==iParams) bCrashType=0;
else srv _paraminfo(srvproc,1,&bType,&cbMaxLen,&cbActuallen,
&bCrashType, &bNull);

switch (bCrashType)
{
case 0: { //Crash the worker thread
srv_sendmsg(srvproc,SRV _MSG INFO,0, (DBTINYINT)O, (DBTINYINT)O,
NULL,0,0,
"Generating an access violation on the worker thread",
SRV _NULLTERM) ;



CHAR *pCh=NULL;

//null pointer ref

*pCh="x";

break;

}

case 1: { //Crash a new thread with exception handling

srv_sendmsg(srvproc,SRV_MSG INFO,0, (DBTINYINT)O, (DBTINYINT)O,
NULL,0,0,

"Generating an access violation on a new thread with exception
handling",SRV_NULLTERM);

CreateThread (NULL,

0,

(LPTHREAD START ROUTINE)StartThrdHandled,
NULL,

0,

(LPDWORD) &dwThreadID) ;

break;

case 2: { //Throw a language exception
srv_sendmsg(srvproc,SRV_MSG INFO,0, (DBTINYINT)O, (DBTINYINT)O,
NULL,0,0,
"Generating a language exception on a new thread without
exception handling",SRV_NULLTERM) ;

CreateThread (NULL,

0,

(LPTHREAD START ROUTINE)StartThrdLanguageException,
NULL,

0,

(LPDWORD) &dwThreadID) ;

break;

}
case 3: { //Crash a new thread WITHOUT exception handling
srv_sendmsg(srvproc,SRV_MSG INFO,0, (DBTINYINT)O, (DBTINYINT)O,

NULL,0,0,
"Generating an access violation on a new thread WITHOUT
exception handling -- your server should crash",

SRV_NULLTERM) ;

CreateThread (NULL,

0,

(LPTHREAD START ROUTINE)StartThrdUnhandled,
NULL,

0,

(LPDWORD) &dwThreadID) ;

break;

}
return XP_NOERROR ;

}
}

As you can see, the xproc takes a single parameter@an integer@then fails in
different ways based on the parameter passed. Table 3.8 lists the supported



parameter values and what each one causes to happen.

Table 3.8. xp_exception Parameter
Values and Their Meanings

Value Action

0 Generates an exception on the calling SQL
Server worker thread

1 Generates an exception on a new thread
that includes an SEH wrapper

2 Generates a language exception

3 Generates an exception on a new thread
that does not include an SEH wrapper

. Now, let's run the xproc. Let's start by passing it a parameter value of 0:
exec Xxp_exception 0
You should see something like this in Query Analyzer:

ODBC: Msg 0, Level 20, State 1

Stored function 'xp _exception' in the library
'Xp_exception.dll’

generated an access violation. SQL Server is terminating
process 51.

Generating an access violation on the worker thread

Connection Broken

The SEH block that SQL Server sets up for its worker threads caught the
exception generated by the xproc and killed the corresponding connection.



5. Let's see what happens when we generate an exception on a new thread that
has an SEH wrapper around its entry-point function:

exec Xxp_exception 1

All you should see in Query Analyzer is a message returned by the xproc€SQL
Server is unaffected by the exception because of the SEH code:

Generating an access violation on a new thread with
exception handling

6. Now let's see what happens when we force a language exception to be
generated on a new thread without an SEH wrapper:

exec Xp_exception 2

Again, all you see in Query Analyzer is the message returned by the xproc
itself@SQL Server is unaffected by the language exception:

Generating a language exception on a new thread without
exception handling

As | said earlier in the chapter, language exceptions and Win32 exceptions are
two different things. A language exception won't bring down the server, but a
Win32 exception can if not handled properly.

7. Now let's try an access violation on a new thread without an SEH wrapper
around its entry-point function. (Warning: This will cause your server to stop.)

exec Xxp_exception 3
Here's what we see in Query Analyzer:

Generating an access violation on a new thread WITHOUT
exception handling -- your server should crash

If you then check your server status in SQL Server Service Manager, you
should find that it has stopped. The unhandled exception generated by
Xp_exception caused the process to crash. This should reinforce how important
it is, especially in multithreaded xprocs, to handle any exceptions your code
might raise. Failing to do so can quickly cause a server crash.

Note that | don't recommend that you necessarily handle all exceptions in the main
thread (the SQL Server worker thread from which it was called) of an xproc. If you
want to have the calling connection killed in the event of a catastrophic failure in
your xproc, you can simply allow SQL Server's default SEH handling to take care of
this for you®@there's no need to set up your own version of it.

That said, you should definitely handle all exceptions in any new threads you create
in an xproc. Failing to do so will bring down your server when an exception occurs.

If you check the LOG folder under your SQL Server installation, you should find two
new files: an exception log file and a stack dump file. Both are text files that you can
view with Notepad. Feel free to open each of these and inspect them for additional
data about the exception that was raised. The dump file in particular contains



interesting details about DLLs loaded within the SQL Server process address space
and the call stacks of the worker threads when the exception was raised.

Exercise 3.5 Displaying Thread Information Using a Debugger

In this next exercise, we'll attach to SQL Server using WinDbg and inspect some
thread-related information exposed by the debugger. To take a peek under the SQL
Server hood, follow these steps.

1.

If your server is still stopped from the previous exercise, restart it. As before,
this should be a test or development server, and, ideally, you should be the
only user on it (since attaching to it with a debugger will also stop it
momentarily).

. Start WinDbg. As | mentioned in Chapter 2, be sure your symbol path is set

correctly.

. Press F6 to attach to SQL Server. Find the sqlservr.exe instance in the list of

processes and select it. If you have more than one instance running there may
be more than one sqlservr.exe in the list. If so, expand the tree node of each
sqlservr.exe process to view its command line@you should be able to identify
each instance from its command line. If you just restarted your SQL Server, the
correct instance should be near the bottom of the list of processes.

. Once you've attached, the Disassembly window should open automatically.

Close it. If the Disassembly window reopens at any point during this exercise,
close it@we won't be using it for the time being.

. Find the command window and dump the thread stacks using this command:

~*ky

You should see the call stacks of every thread in the SQL Server process listed.
You'll notice that most of the threads are in Win32's WaitForSingleObject API
function. This is because they are waiting on a synchronization object of some
type to be signaled; we'll talk more about WaitForSingleObject and
synchronization objects later in the chapter.

. Now run this command:

Iteb

This will dump the TEB for the current thread. The current thread is indicated
by the prompt to the left of the edit box in the command window. (Given that
we haven't changed it, this should be the last worker thread in the SQL Server
process space.) Your TEB will likely look something like this:

TEB at 7FF99000

ExceptionlList: 26caffdc
Stack Base: 26¢cb0000
Stack Limit: 26Ccae000
SubSystemTib: 0
FiberData: 1e00
ArbitraryUser: 0

Self: 71199000



EnvironmentPtr: 0

ClientId: bcc.cf8
Real ClientId: bcc.cf8
RpcHandle: 0

Tls Storage: f3b38
PEB Address: 7ffdfo00
LastErrorValue: 0

LastStatusValue: 0
Count Owned Locks:0
HardErrorsMode: 0

Note the inclusion of the LastErrorValue in the output. This is the value you
would see were the thread to call the Win32 API GetLastError at this point.

7. You can also retrieve the last error value for the current thread via this
command:

Igle
This dumps the last error value as well as the last status value for the thread:

LastErrorValue: (Win32) 0 (0) - The operation completed
successfully.
LastStatusValue: (NTSTATUS) 0 - STATUS WAIT 0O

8. Let's conclude by dumping SQL Server's process environment block (PEB):
Ipeb

This displays a wealth of information, including a list of all the modules
currently loaded in the SQL Server process space, the command line specified
for the process, its DLL path, and many other useful tidbits.

9. You can now exit the debugger. If you are running on a version of Windows
prior to Windows XP, you will have to restart SQL Server because exiting the
debugger leaves it stopped.

Thread Recap

A thread is the mechanism by which code gets executed in Windows. No application
can execute a single instruction without doing so via a thread. Threads run within
the context of their owning process and terminate when the process terminates.
Although the relationship between fibers and threads is similar to that of threads and
processes, it's usually better to rely on threads and avoid fiber mode if you can, both
in the apps you build and in those you use, such as SQL Server. Windows was
designed to use threads and has been optimized to work with them. There are
numerous scenarios where the functionality of Win32 fibers falls well short of that
offered by kernel-based threads.

Thread Knowledge Measure



10.
11.
12.
13.

14.

15.
16.
17.

18.
19.
20.

. What happens if an application starts a new worker thread that terminates due

to an exception and the thread's entry-point function does not have an SEH
wrapper?

. What is the name of the only processor-dependent structure in the entire

Win32 API, and why is it processor-dependent?

. In what section of a process's address space@kernel space or user mode

space®is the TEB stored?

. True or false: You can use the TList utility to list the percentage of CPU

utilization for a given process.

. True or false: When a new process is created, the system will automatically

create its first thread regardless of the parameters passed into CreateProcess.

. What happens if you attempt to compile and link a Visual C++ program that

calls the CreateThread Win32 API function but links with the single-threaded
version of the runtime library?

. What is the preferred method of terminating a thread?

. True or false: When designing most types of complex applications, the first

thing an application architect should do is divide the work the app must
perform into threaded tasks and design threads to carry them out.

. Name the main reason creating a process is slower and more resource

intensive than creating a thread.

What WinDbg command do we use to list the PEB for a thread?
Describe the purpose of the ReadProcessMemory Win32 API function.
What Win32 API function is used to create a thread?

What WinDbg command can we use to list only the last error value and last
status value for the current thread?

True or false: It's possible for thread and process IDs to overlap because they
are generated from different namespaces.

What Win32 API function is used to allocate a TLS index?
What is the source of error code 0x80000004€9Windows or a user application?

| have received a last error value of 6. What command line sequence can | use
to display the textual description for this error code?

What does the Thread:% Privileged Time Perfmon counter indicate?
What WinDbg command do we use to list only the TEB for a thread?

True or false: The LastErrorValue field included in WinDbg's TEB output is the
same information as that returned by the Win32 GetLastError API function.



Thread Scheduling

A preemptive, multitasking operating system must use some type of formal process to determine which
threads should run and for how long. The algorithms Windows uses to determine when a thread gets
scheduled aren't always well documented, but Microsoft has designed them to be as fair and as generally
applicable as possible. Below, I'll document how a few of these algorithms work; just understand that future
versions of Windows may alter them significantly.

Before we go any further, | should stop and point out that SQL Server does not use the Windows scheduler and
the scheduling APIs as you might expect. That's because it handles most of its thread scheduling needs itself
via its UMS component. One noteworthy side effect of this is that, to the operating system, only one SQL
Server thread generally appears to be active at a time per processor. So, even though the server may have
hundreds of worker threads at any given time, only one of them for each processor on the server appears to
Windows to be actually doing anything.

I'll talk more about the reasons for this in Chapter 10, but just understand for the time being that SQL Server
makes use of the Windows scheduler and scheduling APIs in different ways than you might expect. We'll plumb
the depth of those differences and the reasons behind them later.

Key Scheduling Terms and Concepts

¥ Context switch® what happens when Windows saves off the contextual information for one thread
and loads that of another so that the other thread can run. This consists of saving/loading volatile
register values and other elements pertinent to the runtime environment of the thread.

v Quantum® the time slice a thread is given to run by the Windows scheduler.

v Preemption® what happens when Windows stops one thread before its quantum has expired so that
another thread can run.

v Clock interval® the frequency at which the CPU's clock interrupt fires.

v Thread state® the current execution status of a thread, represented by an integer value between 0
and 7.



v Process priority® the execution priority of a process ranging from Idle through Real-Time.

v Thread priority® the process-relative execution priority of a particular thread ranging from Idle
through Time-Critical.

¥ Processor affinity® a bitmap indicating the processors on which a process or thread can run.

v Ideal processor® the processor considered the best host for a particular thread. Windows gives
preference to this processor when scheduling the thread to run but will allow the thread to run on
another processor if its ideal processor is busy.

v Thread starvation® what happens when a lower-priority thread is continuously preempted by higher-
priority threads and not allowed to run.

Overview

Windows schedules work using a priority-driven, preemptive scheduling system. This means that the highest-
priority thread that is ready to run (runnable) preempts lower-priority threads (within the limits of processor
affinity, which we'll discuss more in a moment). When a lower-priority thread is preempted, it is interrupted
(perhaps just momentarily) while a higher-priority thread is allowed to run. Thread starvation occurs when a
thread is continually preempted and not allowed to run for an extended period of time.

Windows schedules work at thread granularity. Given that processes don't run but only provide an
environment in which threads can run, this makes sense.

Windows creates the illusion that all threads run concurrently by partitioning the time each thread is allowed
to run into time slices called quantums. It hands quantums to threads in a round-robin fashion.

There is no single routine within Windows that performs all task scheduling. Within the Windows kernel, there
are numerous routines and modules involved in the scheduling of work. We refer to them collectively as the
kernel's dispatcher or scheduler.

Key Thread Scheduling APIs

Table 3.9. Key Thread Scheduling APIs



Function Description

Suspend/ResumeThread Pauses/resumes a thread

Sleep/SleepEx Suspends execution of the current thread for a specified amount of time
Get/SetPriorityClass Gets/sets the base priority for the specified process
Get/SetThreadPriority Gets/sets the process-relative priority for the specified thread

Get/SetProcessAffinityMask Gets/sets the processors a process is allowed to run on

SetThreadAffinityMask Sets the processors a thread is allowed to run on

Get/SetThreadPriorityBoost Gets/sets the system's ability to temporarily boost the priority of a thread

SetThreadldealProcessor  Sets the ideal processor on which a thread should run

Get/SetProcessPriorityBoost Gets/sets the system's ability to temporarily boost the priority of a process

SwitchToThread Allows a thread to give up the remainder of its quantum so that other threads can
run

Key Thread Scheduling Tools

Perfmon is, again, a key diagnostic tool here. Pview and Pviewer are also very valuable for monitoring what's
happening with specific processes. Given that much of the scheduling code actually resides in the kernel,
there is only so much information that user mode tools can provide (Table 3.10).

Table 3.10. Scheduling-Related Tools and the Information They Provide

Process Base Priority Process Priority Class Thread Base Priority Thread CurrentPriority
TaskMgr v
Perfmon v v v
Pstat v v
Pviewer v v

Thread Scheduling Internals



The scheduling of threads is handled by the Windows kernel and is transparent to applications. Unlike 16-bit
Windows' cooperative multitasking architecture, every version of Windows since Windows NT 3.1 (the very first
version of the Windows NT product family, currently represented by Windows 2000, Windows XP, and Windows
Server 2003) has implemented a scheduling system that does not require an application to do anything
special to allow other applications to run smoothly or to perform multiple tasks at once. One thread or process
need not yield to another in order to keep the system humming along.

Quantums

As I've mentioned, a quantum refers to the length of time a thread is allowed to run before the system
interrupts it. The quantum value isn't actually a time length@it's an integer value that represents what are
commonly referred to as quantum units. Each time a thread is scheduled, it starts with a certain amount of
quantum units. Each time the processor's clock interrupt fires, a given number of these units are deducted
from this amount. When this count reaches 0, the thread is interrupted and another thread is allowed to run.

Of course, this assumes that no higher-priority threads are waiting for the thread's processor. If a higher-
priority thread needs to run and has affinity with the processor on which a lower-priority thread is currently
running, all bets are off@the higher-priority thread preempts the lower-priority thread and runs regardless of
whether the latter has finished its quantum.

The frequency of the clock interval varies from platform to platform. Clock interrupt frequency is dictated by
Windows' hardware abstraction layer (HAL), not the kernel. On most x86 uniprocessor systems, the clock
interval is 10 milliseconds (ms); on most x86 multiprocessor systems, it's 15 ms.

The number of quantum units deducted for each clock interrupt is 3. On Windows 2000 Professional and
Windows XP, the default quantum amount for a thread is 6. On Windows 2000 Server and Windows Server
2003, it's 36. Given a uniprocessor clock interval of 10 ms, this means that a thread quantum can span 2 clock
interrupts (approximately 20 ms) on Windows XP, or 12 clock interrupts (120 ms) on Windows Server 2003.
And on a multiprocessor system with a clock interval of 15 ms, a thread's quantum can last for a maximum of
30 ms on Windows XP, and 180 ms on Windows Server 2003.

As I've mentioned, a thread might not get to complete its quantum. The numbers above are maximums: if a
higher-priority thread becomes schedulable for a given processor, it will preempt a running lower-priority
thread.

You might be wondering why a quantum is expressed as a multiple of 3 per clock tick rather than the simpler
1:1 ratio. The reason for this is to allow for partial quantum decay when a thread comes out of a wait state.
When a thread whose base priority is less than 14 executes a wait function (e.g., WaitForSingleObject), its
quantum is reduced by 1. (Threads with a base priority of 14 or higher have their quantums reset after coming
out of a wait state.) So, instead of possibly having its entire 6-unit quantum remaining when it comes out of its
wait state, it will have, at most, 5 remaining quantum units. This addresses the situation where a thread
continuously runs and goes to sleep between clock ticks. Were it not for the system enforcing quantum decay
on the thread each time it came out of its wait state, it would have what amounted to an infinite quantum so
long as it did not happen to be running when the clock interrupt fired.

Thread States

If you start Perfmon and display the explanation for the Thread State counter for the Thread object, you'll see
that there are eight potential thread states (Table 3.11).

Table 3.11. Thread States and Their Values

Value State

0 Initialized

1 Ready€ waiting on a processor




Value State
2 Running® currently using a processor
3 Standby4 about to use a processor
4 Terminated® has been stopped
5 Wait€ waiting on a peripheral operation or a resource
6 Transition® waiting for resource in order to execute
7 Unknown

You will probably be surprised to learn that most threads spend most of their time waiting. In almost any given
application, threads spend the majority of their time waiting for some event@keyboard input, a mouse click,
I/O operations, and so on®to occur or complete. This is certainly the case with SQL Server, as we discovered
earlier in the chapter when we dumped the SQL Server thread stacks using WinDbg.

Thread Priorities

Windows supports 32 priority levels, ranging from 0 to 31931 being the highest. Threads begin life inheriting
the base priority of their process. This priority can be set when the process is first created with CreateProcess
and can be changed afterward by using SetPriorityClass or externally by using Task Manager or a similar tool.
Table 3.12 summarizes the process priorities supported by Windows.

Once created, a thread's priority can be changed using SetThreadPriority. You never set an exact thread
priority value but instead use one of the predefined constants provided by the Win32 API (e.g., THREAD_
PRIORITY_NORMAL, THREAD_PRIORITY_ABOVE_NORMAL, and so on) to set the priority of a thread. The precise
numeric values of these constants are subject to change (and have changed) between releases of Windows.
Table 3.13 lists the currently supported thread priority levels.

As I've mentioned, higher-priority threads preempt lower-priority ones. This means that, all other things being

equal, as long as a higher-priority thread is runnable, lower-priority threads will not get time on the
processor@they will starve indefinitely until the higher-priority thread either terminates or enters a wait state.

Table 3.12. Process Priority Levels

Priority Description

Idle The threads in this process run only when the system is idle.

Below On Windows 2000 and later, threads in a Below normal priority process run at a lower priority than
normal Normal but at a higher one than Idle.

Normal This process has no special scheduling needs.




Priority Description

Above On Windows 2000 and later, process threads in the Above normal class run at a higher priority than
normal Normal but at a lower one than High.

High This class is used for time-critical tasks. Task Manager runs at this class so that it can kill processes
that are CPU-intensive.

Real-  This class is used for time-critical tasks. Threads in a time-critical process must respond immediately

Time to events. Note that tasks with this base priority compete with the operating system for processor
time and can adversely affect overall system performance. You should not use this priority class
unless absolutely necessary.

Table 3.13. Thread Priority Levels

Priority Description

Idle The thread runs at a priority level of 1 for Above normal, Below normal, High, Idle, and Normal
priority processes, and a priority level of 16 for Real-Time priority processes.

Lowest The thread runs at 2 points below the Normal priority for the base priority class.

Below The thread runs at 1 point below the Normal priority for the base priority class.
normal

Normal The thread runs at Normal priority for the priority class.

Above The thread runs at 1 point above the Normal priority for the base priority class.
normal

Highest The thread runs at 2 points above Normal priority for the base priority class.

Time-  The thread runs at a base priority level of 15 for Above normal, Below normal, High, Idle, and Normal
critical priority processes, and a base priority level of 31 for Real-Time priority processes.

All priorities are not equally available to applications. Priorities 17€21 and 27930 are not available to user
mode applications (but they are available to device drivers). Also, only one thread in the system can run at
priority 0: Windows' zero page thread. The zero page thread's job is to zero free pages in RAM when there are
no other runnable threads. It runs only when the system is otherwise completely idle. The system always tries
to keep the CPU busy and sits idle only when there is absolutely no work to do.

If the scheduler sees that a thread has completed its quantum and there are no other threads at its priority, it
will reschedule the thread to run for another quantum. This is why it's so easy for lower-priority threads to
become starved®the fact that a thread has just completed its quantum has no bearing on whether it will be
allowed to run again.

That said, when the scheduler detects that a thread has been starved for about 394 seconds, it boosts the
thread's priority in hopes of allowing it to run. It also doubles its quantum length. Once the thread runs, its
priority is reset to its former level and its quantum is restored to its default length.



TIP: You can change the base priority of an interactive (nonservice) application by using Task Manager. Simply
right-click the process in the Processes list and select Set Priority from the menu. You can also start a process
using a nondefault priority using the Windows start command and one of the priority command line switches
such as /abovenormal, /high, or /realtime.

Foreground Process Tweaking

Using Windows' Performance Options dialog (My Computer | Properties | Advanced in Windows 2000), you can
opt to have Windows boost the performance of foreground applications. In this dialog, you have two
application prioritization options: Applications and Background services. If you select Background services, no
boost occurs. But if you select Applications, Windows will increase the quantum length of whatever process is
currently in the foreground whenever the foreground application changes. This will generally make the
application that currently has focus more responsive but will do so at the expense of background services such
as SQL Server. On Windows 2000 Professional and Windows XP, the default is Applications. On Windows 2000
Server and Windows Server 2003, the default is Background services.

Real-Time Threads

A real-time thread is a thread whose priority is 16 or higher. Although you can create a process with a base
priority of real-time, keep in mind that real-time threads can block system threads, which may cause Windows
to behave erratically. Important system functions such as disk writes and memory allocations may be delayed
by your real-time thread. The mode in which a thread is running (user mode versus kernel mode) has no
bearing on preemption: A thread running in user mode can preempt a kernel mode thread and vice versa. This
means, of course, that as long as a priority 31 thread remains schedulable on a given processor, no other
thread@kernel mode or otherwise@can run on that processor.

An important difference between real-time threads and threads in other priority classes is that real-time thread
quantums are reset when they're preempted. So, whereas a normal thread would retain whatever was
remaining of its quantum when it was preempted and, once rescheduled, would run for the remainder of that
quantum or until again preempted, a real-time thread gets a brand new quantum once it's rescheduled after
preemption. This gives real-time threads yet another advantage over regular threads in terms of scheduling
and means that, in general, high-priority threads should not be schedulable most of the time if you want even
system throughput.

Note that "real-time" within the world of Windows does not mean real-time in the traditional sense of the term.
Windows doesn't provide conventional real-time operating system features such as guaranteed interrupt
latency or a way for a thread to obtain a guaranteed execution time. Even real-time threads can be
preempted@by other higher-priority real-time threads.

Scheduling Queues

The first thing to understand about the scheduling queue is that it is really a series of queues, one for each
scheduling priority. Each of the 32 thread priority levels has its own scheduling queue. When Windows begins
looking for a thread to run, it simply starts with the highest-priority thread queue (31) and works downward
through the other queues until it finds a ready thread.

In order to avoid having to physically walk all 32 thread queues every time it needs to find a ready thread,
Windows maintains a 32-bit bitmap called the ready summary. Each bit in the bitmap indicates that one or
more threads for the corresponding priority level are ready to run. This allows Windows to quickly detect which
thread queues to search for ready threads without having to iterate through all of them.

Windows also maintains a bitmap that indicates which processors are idle. This allows it to quickly find an idle
processor when it needs to schedule a thread to run.

Approximately every 20 ms, Windows examines all the thread kernel objects that have been created. Usually,
most of these are not runnable because they are waiting on something else to occur (an event, I/0, and so on).
Some, however, will be schedulable, so Windows will select one, load the CPU register values using the ones
last saved to the thread's CONTEXT structure, and schedule it to run. This process is called a context switch.



Once scheduled, a thread executes code and manipulates data in the process's address space until it is either
preempted or its quantum expires. When the system switches to another thread, it saves the CPU registers
back to the currently running thread's CONTEXT structure, restores those saved with the thread about to be
scheduled, and schedules the new thread. This process of switching between threads begins at system startup
and continues until system shutdown. It is Windows' main loop, if you will.

Context Switching

As | mentioned earlier, a context switch involves swapping the values in the CPU registers with those in each
thread's CONTEXT structure. Specifically, a context switch causes the following pieces of data to be
saved/loaded:

® The process status register

® User and kernel stack pointers

® Other register contents

® The program counter

® A pointer to the address space in which the thread runs

Windows actually keeps track of how many times a thread gets scheduled, as you can see by inspecting the
thread with Spy++ or by checking the Thread:Context Switches/sec Perfmon counter.

Threads and Processor Affinity

By default, a process's threads can execute on any of the processors in the host machine. If a process has
multiple threads and the host machine has multiple processors, Windows will attempt to distribute the threads
such that the processors are kept as busy as possible.

It's usually preferable to allow Windows to decide which processor a thread can run on. Windows always
strives to keep the processors in the host machine as active as possible, and it goes to great lengths to ensure
that the selection and scheduling process is fair.

There are situations when it's advantageous to limit the processors on which a thread may run. For example,
you may have a high-priority task for which you want to dedicate a CPU. You can set the thread-processor
affinity for the other threads in the process such that they will not be scheduled on a particular CPU. This
leaves the CPU for use by your high-priority task (and by other processes), whose thread you can then
affinitize to it. This technique of partitioning an application such that certain threads run only on certain
processors is fairly common in high-end, high-performance software.

Sometimes you'll find that a combination of the two approaches is best@you affinitize some threads but let
Windows decide what processors the others can run on. For example, in the scenario above, it would likely be
better to leave the high-priority task's thread unaffinitized. All other things being equal, Windows will not
attempt to schedule the thread on processors that are busy doing other things if there is an idle processor in
the system. Furthermore, since Windows defaults to running a thread on the processor on which it last ran,
once the thread is scheduled on the dedicated processor, it will likely stay there (because the other threads
cannot be scheduled on that processor due to their affinity masks). In that particular scenario, the hybrid
approach is probably more scalable overall because it allows for the possibility that you might add another
concurrent high-priority task thread at some point. In that case, you'd likely leave the new thread unaffinitized
as well. And even though you've set aside a single processor on which the two threads can run, by not
affinitizing them, you allow for the possibility that another processor may become available and permit one of
the high-priority threads to run without requiring it to wait on the other high-priority task to complete. In other
words, even though you've set aside one processor to serve the needs of your high-priority task threads, you
allow them to run on a different processor if the dedicated processor is busy. Since other threads cannot use
that processor, the only time when this will occur is when the dedicated CPU is busy with one of the high-
priority tasks and the other one needs to run. By not affinitizing them, you avoid wasting unused CPU
resources in the machine and you keep from having to set up a dedicated processor for every high-priority
task your application needs to carry out.

Of course, moving threads between processors is expensive because the likelihood that each processor's
secondary cache will be optimally used is much lower than if a thread always runs on the same processor. So,



there are certainly situations where it makes sense to set up strict affinities for the threads in a process rather
than allowing Windows to decide what processor each thread runs on. There is no right answer for all
applications. My advice is to allow Windows to manage processor-thread affinity unless there is simply no
other way to get the performance and scalability you need. You can usually find a way via thread priorities and
synchronization to get the performance you need without resorting to hard processor affinity. Once you get to
the place in application tuning that you are down to considering setting aside dedicated CPUs for certain tasks,
trial and error will probably be your best approach®you will have to experiment a little, and experience will be
your guide.

Types of Affinity

Threads in a Windows process can have one of three basic types of processor affinity: last processor (or soft)
affinity, ideal affinity, and hard affinity. Hard affinity is the type of affinity we were just discussing and is what
typically comes to mind when we talk about processor affinity: A thread is assigned to a given set of
processors and can run on no others. Once a thread has been affinitized to a particular processor or
processors, Windows ensures that it runs only on those processors. Even though other processors may be
sitting idle while the thread waits for its processor(s) to become available, the system will force the thread to
wait. You can set the hard affinity for an individual thread by calling the SetThreadAffinityMask Win32 API
function.

You can also set processor affinity in the header of an executable, but there's no linker switch for it. You can,
however, edit the executable header with ImageCfg.exe to change a processor affinity for a process.

TIP: The Windows Task Manager allows you to set processor affinity for a process via the Set Affinity menu
option. Find the process in the Processes list, right-click it, and select Set Affinity from the menu. Note that this
option is available only on multiprocessor computers and only on the Windows NT family. (Windows 9x offers
no special support for multiprocessor machines.)

As I've mentioned, from a performance standpoint, hard affinity is often not the most optimal approach. You
might limit a thread to a particular process while other processors on the machine sit idle. In that scenario,
ideal affinity may be a better solution. Setting a thread's ideal affinity tells the system which processor you'd
prefer that the thread ran on but allows it to schedule the thread on other processors if the preferred processor
is busy. You can set the ideal processor for a thread using the Win32 API call SetThreadldealProcessor.

The third type of thread-processor affinity model supported by Windows is last processor affinity. By default,
Windows employs this type of affinity@all other things being equal, Windows attempts to schedule a thread on
the processor on which it last ran. This helps maximize the use of the secondary case on the processor (the
hope is that some of the thread's data may still be in the cache when the thread gets a new quantum).

Windows knows which processor a thread last ran on because it tracks this information in the thread's kernel
block. In fact, Windows maintains two CPU numbers for each thread®the last processor on which the thread
ran and its ideal processor.

When a thread is ready to be scheduled, Windows will first check to see whether it has an ideal processor. If it
does, Windows will attempt to schedule it on that processor. If that processor is busy or the thread does not
have an ideal processor, Windows will attempt to schedule it on the currently executing processor@the CPU on
which the scheduler itself is currently running. If that processor is not idle, the system will select the first idle
processor it finds by scanning the idle processor mask from highest- to lowest-numbered CPU.

If there are no idle processors, Windows checks the priority of the thread against the priority of the thread
currently executing on its ideal processor. If the thread has a higher priority than the one running on its ideal
processor, it preempts the other thread and is scheduled on that processor.

If it has a lower priority than the thread running on its ideal processor (or doesn't have an ideal processor),
Windows checks the processor on which it last ran. If it has a higher thread priority than the thread currently
running on that processor, it preempts that thread and the system sets it up to run.

If the thread cannot preempt either the thread running on its ideal processor or the one running on its last
processor, the system checks the other processors on the system to see whether it can preempt any of their



running threads. The CPUs are checked beginning with the highest processor in the active affinity mask down
to the lowest one. If a thread with a lower priority is found executing on one of these processors, the system
will preempt it in favor of the ready thread.

If a thread has a hard processor affinity mask associated with it, this obviously limits the processors visible to
the preceding search process. For example, even though a thread may have an ideal processor associated
with it, if that processor is not in its processor affinity mask, the thread will never run on its ideal processor.

If no processors are idle and the thread cannot preempt any other running threads, the thread will be placed in
the ready queue and reevaluated for scheduling on the next go-round. Note that Windows never moves
threads to make room for affinitized threads. If Thread A has affinity to CPU 0 and CPU 0 is busy, but Thread B
has affinity to both CPU 0 and CPU 1 (which is idle), the system will not move Thread B from CPU 0 to CPU 1 in
order to allow Thread A to run. Thread A will simply have to wait its turn on CPU 0.

Thread Selection

When the scheduler needs to find a new thread to run on a CPU that is currently executing code (e.g., when
the currently executing thread goes into a wait state, lowers its priority, changes it affinity, and so on),
Windows uses a simple algorithm for picking which thread gets to run. On a single processor system, it picks
the first ready thread in the list of ready queues, starting with the highest-priority ready queue and working
downward. For a multiprocessor machine, it picks a thread that meets one of the following conditions:

® |t executed last on the processor.
® |t has the specified processor set as its ideal processor.
® |t has a thread priority greater than or equal to 24.

® |t has been ready to run longer than 2 quantums.

Suspending and Resuming Threads

Windows allows threads to be suspended and resumed using the SuspendThread and ResumeThread API calls,
respectively. A suspended thread uses no CPU time and will not be scheduled until you resume it.

The system maintains a suspend count for each thread in its kernel object. The suspend count for a thread
indicates how many times the thread has been suspended. As long as this is not 0, the thread will not be
scheduled. When a thread's suspend count reaches 0, it is schedulable unless it is waiting for some other
event (e.g., I/O to complete).

When an application first creates a thread, Windows sets its suspend count to 1 to prevent it from being
scheduled while it is being initialized. Once the thread is initialized, the system checks to see whether the
thread was created with the CREATE_SUSPENDED flag. If it was, the suspend count is left unchanged;
otherwise it is reset to 0. When a thread is created in a suspended state, an application must call
ResumeThread in order to allow it to run.

When ResumeThread is successful, it returns the thread's previous suspend count. If it's not successful, it
returns OXFFFFFFFF (-1). This is useful information to have given that you must resume as many times as you
suspend in order for a thread to be schedulable. For example, you could use ResumeThread's return value as
the control variable for a loop so that you could be sure a thread's suspend count was set to 0 when you
wanted it to run.

It should be self-evident that a thread can suspend itself, but it can't resume itself. Once a thread is
suspended, another thread will have to resume it in order for it to run.

You have to be careful about suspending running threads because you don't necessarily have a good idea of
what a thread is up to when you suspend it. It's usually preferable to code your thread functions so that a
thread enters a wait state (e.g., because it is waiting on a synchronization object) when you want to
momentarily suspend it than to force it to pause by calling SuspendThread when you may not know exactly
what it is doing. For example, if you suspend a thread with an open mutex or critical section, you may
inadvertently block other threads from executing that are waiting for the object to be released.

Putting a Thread to Sleep



In addition to being able to suspend a thread indefinitely (until it is resumed by another thread), Windows
allows you to suspend a thread for a specified period of time by putting it to sleep. You use either the Sleep or
SleepEx functions to put a thread to sleep for a specified number of milliseconds.

As with Win32's wait functions, you can pass in the constant INFINITE to Sleep/SleepEx to cause a thread to
sleep indefinitely, but | can't think of a practical application of this. If you're using Sleep, you won't be able to
awaken the thread in order to make further use of it, so you would be better off destroying it in order to free
up the system resources associated with it. If you're using SleepEx, an INFINITE delay can be terminated only
by an 1/0 completion callback or an asynchronous procedure call (APC).

Note that you can pass a delay of 0 into Sleep/SleepEx to cause the thread to allow other threads of at least
the same priority to run. On versions of Windows prior to Windows Server 2003, if you want lower-priority
threads to be allowed to run, you'll have to put the thread to sleep for a longer duration (even sleeping for a
single millisecond will allow lower-priority threads to run). Prior to Windows Server 2003, sleeping with a
duration of 0 will cause the calling thread to be rescheduled immediately even if lower-priority threads are
being starved.

An interesting alternative to using Sleep to yield to other runnable threads is the SwitchToThread function.
SwitchToThread exists for the very purpose of allowing a thread to surrender the remainder of its time slice
and allow other threads to run, regardless of whether they have a lower priority than the current thread.

Exercises

In these exercises, you'll experiment with SQL Server and thread/process priorities. You'll learn to start SQL
Server as a real-time process and how to view process priority using Task Manager. You'll learn how SQL Server
"sleeps" while it waits for T-SQL commands such as WAITFOR DELAY to complete. And you'll use an xproc to
look under the hood a bit and display thread priorities, affinities masks, and other useful information for SQL
Server's worker threads.

Exercise 3.6 Running SQL Server at Real-Time Process Priority

You're probably aware that you can configure SQL Server to run at the High process priority. You do this in
Enterprise Manager via the Processor tab in the Properties dialog for your server.

When you change this setting and restart your server, Task Manager will show that it's running at High priority.
Microsoft doesn't normally recommend that customers change this setting, but it's not uncommon to find
those who have.

You can take this a step farther and actually run SQL Server as a real-time process. Again, this isn't
recommended, but, from a technical standpoint, it is possible. As | mentioned earlier, running a process at
Real-Time priority will cause its threads to contend with operating system threads for processor time, possibly
slowing down or even blocking key operating systems such as disk I/O and memory allocations. So, | offer the
following to you merely as an experiment. You should not run SQL Server at the Real-Time priority in
production, nor should you conduct the following tests on anything but a test or development machine as the
OS itself may become unresponsive.

To start SQL Server in Real-Time mode, follow these steps.

1. Stop your SQL Server via the SQL Server Service Manager. Again, this should be a test or development
instance, and, ideally, you should be its only user.

2. Open a command prompt and switch to the folder that contains sqlservr.exe, the SQL Server executable.
This should be the binn subfolder under your SQL Server main installation folder.

3. Start sqglservr.exe in console mode with the following command:
start /realtime sqlservr.exe -c -sYourInstanceName

Replace YourinstanceName with the name of the instance you're starting. Omit the -s parameter
altogether if you're starting a default instance.

4. You should see SQL Server start as a console application in a separate window. Switch to Task Manager
and check the base process priority column. (If the Base Pri column isn't visible in Task Manager, select
the View | Select Columns menu option and select it from the list of available columns.) The base process
priority should now be Real-Time.

5. Let's do a quick test to see whether running at Real-Time priority helps CPU-intensive queries finish more
quickly. Connect to your SQL Server instance using Query Analyzer and run the following query.



declare @var int

set @var=1

while @var<100000 begin
set @var=@var+l

end

6. Note the amount of time it takes to run. Depending on your processor, this shouldn't be more than a few
seconds.

7. Now stop your SQL Server (go to the console window and press Ctrl+C) and restart it using SQL Server
Service Manager. This should put it back at its default process priority.

8. Now run the query again from Query Analyzer and check how much time it takes to run.

On my system, the execution times of the two runs are the same®@running SQL Server at Real-Time priority
didn't speed up my CPU-intensive query. Normally, | wouldn't expect running SQL Server at a higher priority to
make much difference unless there were other things running on the machine at the same time and they had
a high enough base priority that they would often preempt SQL Server.

My point is this: You shouldn't expect running SQL Server at a higher priority to automatically turbocharge your
system all by itself. Setting a process's priority affects who wins when there's contention for processor
resources; it does not automatically speed anything up in and of itself.

For this reason€and because SQL Server has not been certified to be safe to run at Real-Time priority @I
recommend that you leave SQL Server at its default priority.

Exercise 3.7 Determining How SQL Server Sleeps

In this exercise, you'll learn what SQL Server does when you tell it to put a connection to sleep with the
Transact-SQL WAITFOR DELAY command. Having just learned about the Win32 API Sleep and SleepEx
functions, it might seem obvious that SQL Server calls one of these functions to put a thread to sleep when
you execute WAITFOR DELAY in Transact-SQL. Understanding how the server actually handles this scenario
and how it handles language events versus remote procedure call (RPC) events will give us some insight into
how it works internally. Let's take a peek under the hood by following these steps.

1. Start an instance of SQL Server to which you can attach a debugger. This should not be a production
machine, and, ideally, you should be its only user. You may find that starting the server as a console
application is preferable to starting it as a service because doing so prevents SQL Server Agent from
running because it depends on the service.

2. Start WinDbg and make sure that your symbol path is set correctly, as outlined in Chapter 2.

3. Attach to your SQL Server using the debugger (press F6). Find sqlservr.exe in WinDbg's list of running
processes and double-click it. If you just started the SQL Server instance, sqlservr.exe should be near the
bottom of the list.

4. When the Disassembly window opens, close it. We won't need it for this exercise. If it reopens at any
time during the exercise, feel free to close it then as well.

5. Type g in the command prompt window and hit Enter. This will cause the SQL Server process to continue
running.

6. Open a Query Analyzer connection to the server and run the following command:
WAITFOR DELAY '00:00:30'
This will cause the connection to pause for 30 seconds.

7. Return to the debugger now, and hit Ctrl+Break to stop the SQL Server process. Type the following
command to see what each thread is doing:

~*ky

This will list off the call stack for each thread. We'll be able to tell what each thread is up to during our
WAITFOR call by examining these stacks.

8. If you look closely at each call stack (and provided that you are the server's lone user), you should see
that nearly all of the threads are performing identical work except one. Skip past the first few threads, as
these are system threads that don't correspond to user connections. Scan down through the list of call
stacks, and you should find one thread with a list of function calls that differs markedly from the others.
Its stack features a call to a function named language_exec. See if you can find it. Note that the topmost



10.

11.
12.

function on this call stack is not Sleep or SleepEx. If this is the thread servicing our WAITFOR DELAY
command, it obviously isn't using the Sleep or SleepEx functions to do it. Under my instance of WinDbg,
the stack that contains the call to language_exec (set in boldface type below) looks like this:

21 1Id: 8f8.65c Suspend: 1 Teb: 7ffa6000 Unfrozen
ChildEBP RetAddr Args to Child

2619f674 77e8780f 000002fc 00000001 00000000 ntdll!
NtWaitForSingleObject+0xb (FPO: [3,0,0])

2619f69c 4107149d 000002fc ffffffff 00000001 KERNEL32!
WaitForSingleObjectEx+0x71 (FPO: [Non-Fpo])

2619f6b8 4107173f 251c8bd8 251c86e0 00bc66d8 UMS!
UmsThreadScheduler: :Switch+0x58

2619f6dc 410717ff 00bc66d8 251c8bd8 42dd36fc UMS!
UmsScheduler: :IdleLoop+0x11f

2619f6f4 41071918 00007530 00000001 42dd36ec UMS!
UmsScheduler: :Suspend+0x7e

2619710 0040129c 00007530 00000000 0OOOOEOO UMS!
UmsEvent: :Wait+0x95

2619f754 00637256 00007530 00a6997c 00000000
sqlservr!ExecutionContext: :WaitForSignal+0x1b5
2619f7a8 004160db 42dc8060 42dd3240 42dc8060 sqlservr!
CStmtWait: :XretExecute+0x128

2619814 00415765 42dd3550 00000000 2619f8d4
sqlservr!CMsqlExecContext: :ExecuteStmts+0x27e
2619f858 00415410 00000000 00000000 42dd3240 sqlservr!
CMsqlExecContext: :Execute+0x1c7

2619f8a4 00459a54 00000000 4200e700 42dd4038 sqlservr!
CSQLSource: :Execute+0x343

2619fa64 004175d8 42dd6090 0024004c 251c43cO
sqlservr!language_exec+0x3c8

2619fefc 410735d0 42dd6090 2619fe90 00000000 sqlservr!
process commands+0xe0

2619ff68 4107382c 00bc6770 00bc6770 00bc66d8 UMS!
ProcessWorkRequests+0x264

2619ff80 7800c9eb 251c21b0 0024004c 00530053 UMS!
ThreadStartRoutine+0xbd

2619ffb4 77e887dd 251c43cO 0024004c 00530053 MSVCRT!
_beginthread+0xce

2619ffec 00000000 7800c994 251c43cO 00000000 KERNEL32!
BaseThreadStart+0x52 (FPO: [Non-Fpo])

The topmost function on this stack is a call to the NtWaitForSingleObject function, the native API function
that calls into the Windows kernel to actually carry out the wait requested by WaitForSingleObject. So, as
I've said, if this thread is executing our WAITFOR DELAY call (we'll answer that question definitively in a
moment), we can say with certainty that WAITFOR DELAY does not result in a call to the Win32 Sleep
function. (If you think about it, this makes sense without even knowing anything about UMS@WAITFOR
also supports waiting until an absolute date/time and supports being canceled, which Sleep obviously
could not service.)

. We might infer from language_exec's name that it's what gets executed when we submit a T-SQL

language batch to the server. To verify that, let's set a breakpoint on it and see what happens when we
run our command again. Type this command into the command window:

bp language exec

You can type bl in the command window to verify that your breakpoint is set. You should see output like
this from bl:

0 e 004597ef 0001 (0001) 0:*** sglservr!language exec
It's important that the second column of the output is set to e, indicating that the breakpoint is enabled.

Type g in the command prompt window and hit Enter. This will cause the SQL Server process to continue
running.

Return to Query Analyzer and click the stop button to cancel your query, then run it again.

Return to WinDbg, and you should see the debugger stopped at your breakpoint. Your output should look
something like this:



13.

14.

15.

16.

17.
18.

19.

20.
21.

22,

23.

24.

25.
26.

Breakpoint 0 hit

€ax=00000000 ebx=0097fb00 ecx=0000003c edx=00000000
esi1=42d9a090 edi=00000001

eip=004597ef esp=260afab8 ebp=260afefc iopl=0

nv up ei pl zr na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000
efl=00000246

sqlservr!language_exec:

004597ef b8ff619300 mov eax,0x9361ff

This tells us that we hit the breakpoint we set earlier, but, beyond the inference we're drawing from its
name, how do we know that language_exec is the function called when a T-SQL language event is
received by the server? Let's test sending an RPC event to the server to see whether the language_exec
breakpoint is tripped in that situation.

Type bd 0 in the command window and press Enter. This will disable the breakpoint we set up earlier. We
need to disable this breakpoint for now so that we can create a procedure for use in our RPC event.

Type g in the command prompt window and hit Enter. This will cause the SQL Server process to continue
running.

Return to Query Analyzer and stop your query if it is still running. Open a new Query Analyzer window
and create a new procedure in the pubs database using this command:

USE pubs

GO

CREATE PROC waiter as WAITFOR DELAY '00:00:30'

Run this command batch to create your new procedure.

Now open a new Query Analyzer window and type the following into it:

{CALL waiter}

This syntax will submit a call to the waiter stored procedure as an RPC event. Do not run it yet.
Return to WinDbg and press Ctrl+Break to stop the SQL Server process.

Now reenable your breakpoint by typing this command in the command window and pressing Enter:

be 0

Type g in the command prompt window and hit Enter. This will cause the SQL Server process to continue
running.

Return to Query Analyzer and run the waiter procedure via the RPC syntax you typed in earlier.

Switch back to WinDbg and see whether your breakpoint was hit. It should not have been. This gives us
pretty conclusive evidence that language_exec is the internal function used for T-SQL language events in
SQL Server. Feel free to try some other queries to see whether they trip the breakpoint you set up on
language_exec. Unless you submit the query using the RPC syntax outlined above, each batch you
submit to the server should trip the breakpoint at least once. Those with GOs embedded will trip it
multiple times as these are submitted separately to the server by Query Analyzer.

You may be wondering what internal function is called due to an RPC event. Let's find out. Hit Ctrl+Break
to stop the SQL Server process, then type ~*kv to list the call stacks of the process's threads.

As before, the call stacks of most of the nonsystem threads are virtually identical except for one that
features a call to a routine named execute_rpc. Let's set a breakpoint on execute_rpc to see whether it
gets tripped when we submit our RPC event. Type the following into the WinDbg command window:

bp execute rpc

Type g in the command prompt window and hit Enter. This will cause the SQL Server process to continue
running.

Return to Query Analyzer and stop your procedure call if it is still running, then run it again.

Return to WinDbg and you should see that your breakpoint has been hit. Your output should look
something like this:



Breakpoint 1 hit

€ax=00000000 ebx=0097fb00 ecx=00000018 edx=42dd30a8
esi=42dd6090 edi=00000003

eip=0043b7d2 esp=2619fa68 ebp=2619fefc iopl=0

nv up ei pl zr na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000
efl=00000246

sqlservr!execute_rpc:

0043b7d2 55 push ebp

So, we can reasonably conclude that language_exec is called when a language event comes into the
server, and execute _rpc is called when an RPC event is received. Feel free to experiment with other
language and RPC events to see how this works.

27. Type q to quit the Debugger. You will then need to restart your SQL Server instance with SQL Server
Service Manager.

Exercise 3.8 Viewing Thread Priorities, Affinities, and Other Useful Information

In this last exercise, you'll run an extended procedure to iterate through SQL Server's currently active worker
threads and list important information for each one. Follow these steps.

1. Copy the file xp_sysinfo.dll from the CHO3\xp_sysinfo\release subfolder on the CD accompanying this
book to the binn folder under your SQL Server installation path. (This DLL may already be installed from
a previous exercise in this chapter.)

2. Install xp_threadlist by running this command in Query Analyzer:
sp_addextendedproc 'xp threadlist', 'xp sysinfo.dll'

3. Open the xp_threadlist.sql T-SQL script from CHO3\xp_sysinfo subfolder in Query Analyzer. Do not run it
yet.

4. Create a scratch folder on your hard drive and copy to it the files STRESS.CMD and STRESS.SQL from the
CHO3 subfolder on the CD.

5. Run STRESS.CMD with a command line like this one, substituting your server name for the one specified:
stress stress.sql 15 N normal Y YourServerName

6. You should see 15 windows open on your desktop, all of them using osql.exe to run a select against a
table in pubs, then issuing a WAITFOR DELAY command.

7. While the queries run, switch back to Query Analyzer and run the script you loaded previously. You
should see output like this:

ThreadID ImpersonationLevel HasAccessToken TebBaseAddress AffinityMask BasePriority SID

556 N/A 0 Ox7FF9A000 3 9 S-1-
1784 N/A 0 Ox7FFDCOOO 3 9 S-1-
2784 N/A 0 Ox7FF98000 3 9 S-1-
2808 N/A 0 Ox7FF9B0OOO 3 9 S-1-
2908 N/A 0 0x7FF91000 3 9 S-1-
2912 N/A 0 Ox7FF9C0O00 3 9 S-1-
2920 N/A 0 Ox7FF95000 3 9 S-1-
3068 N/A 0 Ox7FF96000 3 8 S-1-
3232 N/A 0 Ox7FF90000 3 9 S-1-
3280 N/A 0 Ox7FF8D0O0O 3 9 S-1-
3292 N/A 0 Ox7FF92000 3 9 S-1-
3372 N/A 0 OxX7FF97000 3 9 S-1-
3380 N/A 0 Ox7FF93000 3 9 S-1-
3404 N/A 0 Ox7FFA1000 3 9 S-1-
3452 N/A 0 Ox7FFDDOOO 3 9 S-1-
3640 N/A 0 Ox7FFA4000 3 9 S-1-
3812 N/A 0 Ox7FF94000 3 9 S-1-

8. On a multiprocessor box, you can experiment with SQL Server's processor affinity to cause different
values to show up in the AffinityMask column. In the above example, each thread has an affinity to
processors 1 and 2 in the box, resulting in a bitmask of 3.



You can also use linked server queries to set up impersonation for a particular worker thread. The
threads in the example output above have all inherited SQL Server's security context and do not have
access tokens of their own.

Note that you may see different values for the BasePriority column depending on when you run the xproc
and what the system is doing. I've personally seen a fair amount of fluctuation across the worker
threads.

Note also that the threads listed are the currently active worker threads; inactive or idle threads are not
listed. If you want to see all the threads currently instantiated within the SQL Server process, use a tool
like Perfmon or Pview.

9. The 15 windows should close on their own and your system should now be back to normal.

Thread Scheduling Recap

Windows implements a preemptive, priority-based scheduler for scheduling and running application code via
threads. The system is designed to keep a single application from taking over the system and to provide for
even performance across the system.

There are 32 priority levels at which a thread can run. Threads running at higher priorities preempt those
running at lower priorities.

Each thread gets a schedule time slice called a quantum in which to run. The exact length of the quantum
varies between versions of Windows and between multiprocessor and uniprocessor machines. A thread is not
guaranteed a full quantum because it may be preempted by a higher-priority thread.

SQL Server does not use the Windows scheduler and scheduling APIs in the same way that most multithreaded
applications do. This is because it handles most of its scheduling needs using its UMS facility.

Thread Scheduling Knowledge Measure

. What is a quantum?
. Name one thing that happens during a context switch.

. What Win32 API sets the ideal processor for a thread?

A W N =

. True or false: One of the eight thread states (numbered 0 through 7) is Suspended, indicating that the
thread has been suspended through a call to SuspendThread.

. True or false: Task Manager cannot display the base priority for individual threads in a process.
. What part of the Windows architecture determines clock interrupt frequency?
. What is the highest process priority available on Windows?

. True or false: No threads in the system run at a thread priority of 0.
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. Name the term for what happens when a lower-priority thread is continuously preempted by higher-
priority threads and not allowed to run.

10. What does Windows do when it sees that a thread has not been allowed to run for 394 seconds? What
happens after the thread gets to run?

11. True or false: Windows implements a cooperative multitasking system wherein processes must be careful
to yield to one another in order to keep the system running smoothly.

12. What Win32 API is used to set the processor affinity for an individual thread?

13. What is the clock interval on most x86 uniprocessor machines?

14. For each clock interrupt, how many quantum units are deducted from a thread's quantum?

15. True or false: Windows automatically takes into account the fact that a thread has just completed its

quantum when it decides which thread to schedule next and will automatically allow lower-priority
threads to run before allowing the high-priority thread to run again.



16.
17.

18.

19.
20.

21.

22.

23.

24.

25.
26.

27.
28.
29.
30.

Name the term that describes associating a thread or process with a given set of CPUs.

True or false: When a thread with a priority lower than 14 successfully waits on a kernel object using
WaitForSingleObject, the system automatically deducts 1 unit from its quantum.

True or false: The function responsible for performing the lion's share of scheduling within the Windows
kernel is named ScheduleThread.

When you issue a Sleep(0) call, are lower-priority threads allowed to run?

True or false: Windows keeps a separate ready list for each thread priority and maintains a bitmap to
make accessing that list faster.

What happens to the quantum of a thread with a priority of 14 or higher that has just successfully waited
on a kernel object via WaitForSingleObject?

What internal function within SQL Server is responsible for processing language events? How about RPC
events?

True or false: SQL Server does not use the Win32 Sleep or SleepEx API functions in order to service the
Transact-SQL WAITFOR DELAY command.

True or false: Running SQL Server with a Real-Time process priority will speed up CPU-intensive queries
on an otherwise idle system.

True or false: You can change the base priority for a process using the Windows Task Manager.

True or false: The Spy++ utility included with the Platform SDK and recent versions of Visual Studio can
display the number of context switches for a given thread.

What is the default quantum length on Windows 2000 Professional and Windows XP?
Describe the functionality of the SwitchToThread API function.
At what numeric priority level is a thread considered a real-time thread?

True or false: If a thread's ideal CPU is not in its affinity mask, it can still be scheduled on that CPU
because Windows will ignore the mask when the two conflict.
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Thread Synchronization

When you get beyond the simplicity of single-threaded applications and begin to
explore the world of multithreaded programming, one of the first things you discover
is the need to synchronize the activities of the threads in your application. Allowing
one thread to modify a global variable while another is using it to control flow logic is
a recipe for erratic application behavior and possibly even an access violation. The
fact that multiple threads can truly execute simultaneously on multiprocessor
machines does not mean that you literally want all of them running all of the time.
There are times when you need one thread to wait on others to finish what they're
doing before proceeding. There are times when you need to synchronize them.

The single most important element of thread synchronization is atomic
access®ensuring that a thread has access to a resource in a manner that
guarantees that no other thread will access the same resource simultaneously.
Windows provides a number of objects and API calls to facilitate atomic access. We'll
discuss each of these and delve into each one separately.

Key Thread Synchronization Terms and Concepts

v Synchronization® ensuring that resources are accessed by threads in a
manner that allows them to be used safely and their data to be trusted.

v Deadlock® what happens when two or more threads wait indefinitely on
resources owned by each other.

v Wait function® one of the Win32 functions designed to put a thread to sleep
until a resource becomes available or a timeout period expires.



v Signaled® the state of an object when it is available for use by a thread or
when a Win32 wait function should not wait on it.

v Unsignaled® the state of an object when it is not available for use by a
thread or when a Win32 wait function should wait on it.

v Spinlock® a user mode construct that continuously polls a resource to check
its availability. Spinlocks often make use of the interlocked family of functions.

v Interlocked function® a member of the Win32 family of functions that
provides simple, atomic updates of variables.

v Kernel synchronization object® one of several different types of kernel
objects that can be used to synchronize access to a resource. Examples of
kernel synchronization objects include mutexes, semaphores, and events, to
name just a few.

v Thread-safe code® code that has been designed such that multiple threads
accessing the same resources do so in a safe and predictable manner.



v Atomic access® ensuring that a thread retrieves, modifies, and returns a
value or resource as a single operation without having to be concerned about
another thread modifying the value simultaneously.

Key Thread Synchronization APIs

Table 3.14. Key Synchronization-Related API Functions

Function

Description

EnterCriticalSection

LeaveCriticalSection

InterlockedExchange

CreateEvent

SetEvent/ResetEvent

CreateSemaphore

ReleaseSemaphore

CreateWaitableTimer

SetWaitableTimer

CreateMutex

Denotes a section of code that only one thread can access
at a time

Leaves a section of code that was designed for single-
threaded access

Assigns one value to another in an atomic fashion

InterlockedExchangeAdd Adds one value to another in an atomic fashion

Creates a kernel event object

Signals/unsignals an event object

Creates a semaphore object

Releases a reference to a semaphore

Creates a waitable timer object

Configures a waitable timer

Creates a mutex (mutually exclusive) object




Function Description

ReleaseMutex Releases an owned mutex
WaitForSingleObject Waits for a kernel object to become signaled

WaitForMultipleObjects Waits for multiple kernel objects to become signaled

Key Thread Synchronization Tools

Given that most synchronization objects are kernel mode objects, there's a limit to
how much information a user mode tool can give us about thread synchronization. A
kernel mode debugger is unfortunately the best option here. That said, the tools in
Table 3.15 provide several useful pieces of synchronization-related data.

Table 3.15. Thread Synchronization Diagnostic Tools

Handle Co_ntext sTeTuez:Iy Kernel Object Th_ref:ld Thread (_:PU

Count Switches Context Count by Type Priority State Times
Perfmon v v v v
Pview v v v v v v v
Spy++ v v v v/ v

Synchronization Using User Mode Constructs

Windows provides two types of thread synchronization: user mode synchronization
and kernel mode synchronization. User mode synchronization is implemented by
functions in Kernel32.DLL and, as the name suggests, does not require the thread to
switch into kernel mode. User mode synchronization is consequently faster than
synchronizing threads using kernel objects. On the other hand, user mode objects
cannot be used to synchronize threads in multiple processes and cannot be used
with the Win32 wait functions, which allow a thread to wait on a resource without
consuming any CPU resources and allow the waiter to timeout. Examples of user
mode synchronization objects/constructs include spinlocks and critical sections.




Spinlocks

Simply put, a spinlock is a loop that iterates until a resource becomes available.
Listing_3.3 shows a simple example in C++.

Listing 3.3 A Simple Spinlock Implementation

void CSpinLock::GetLock() {
while (TRUE == InterlockedExchange(&g bLocked, TRUE))
SwitchToThread();

// use the resource

// "unlock" the resource
InterlockedExchange (&g bLocked, FALSE);

}

InterlockedExchange, which we'll talk about more in a moment, assigns the value of
its second parameter to its first parameter in an atomic fashion and returns the
original value of the first parameter. The spinlock code above simply loops while the
original value of g_blLocked is TRUE®in other words, while the global resource in
qguestion is locked. It continuously assigns TRUE to g_bLocked until
InterlockedExchange no longer returns TRUE. When InterlockedExchange returns
FALSE@meaning that the resource was not locked when the function was called@the
loop exits. Since InterlockedExchange has already set g_bLocked to TRUE, other
threads calling the GetLock method will stop at the while loop until g_bLocked is set
to FALSE by the thread that just acquired the spinlock.

As you can see, a spinlock isn't a separate type of user mode object; rather, it is
implemented by using user mode objects and code®in this case, a global variable
and one of the interlocked functions. Though it is often wrapped in a class of some
type in object-oriented languages such as C++, as far as Windows is concerned, a
spinlock is really more of a programming construct than a distinct type of
synchronization object.

Spinlocks and CPU Use

Even though the above example tries to be as CPU efficient as possible by calling
SwitchToThread in its spin loop, it's still using some amount of CPU time while it
waits on the resource. This is, unfortunately, unavoidable without the assistance of a
scheduling facility (such as the one provided by Windows) that can maintain lists of
waiting threads and the resources they need independent of the threads
themselves, basically putting them to sleep until the resources they need become
available.

This is the main reason that kernel mode objects such as mutexes and semaphores
have a distinct advantage over spinlocks in terms of CPU usage. Because Windows
can act on behalf of a waiting thread and allow the thread to consume no resources
while the resources it needs are unavailable, waiting on a kernel object is often more



CPU efficient than using a spinlock to wait on a resource even though a thread must
transition from user mode to kernel mode in order to wait on a kernel object.

Because they are not coordinated by the operating system, spinlocks like the one
above must make a few assumptions.

1. Spinlocks assume that all threads run at the same thread priority level. (You
might want to disable thread priority boosting for this very reason.)

2. Spinlocks assume that the lock variable and the data to which the lock
provides access are maintained in different CPU cache lines. If they are on the
same cache line, you'll see contention between the processor using the
resource and any CPUs waiting on it. In other words, the continual assignment
of the control variable by the other CPUs will contend with the code accessing
the protected resource.

3. For this reason, spinlocks assume you are running on a multiprocessor
machine. If the threads attempting to access the resource and the one that
currently has it locked share a single processor, you will see significant
contention as the waiting threads continually assign the control variable.

Generally speaking, you should avoid techniques and design elements that
continuously poll for resource availability. Windows provides a rich set of tools for
waiting on resources with minimal CPU usage. It makes sense to use what you get
for free in the OS box.

Often you'll find that a hybrid approach is the best fit for a particular scenario@use
spinlocks and critical sections to protect some types of resources; use kernel objects
for others. Or, use a spinlock to wait a fixed number of iterations, then transition to a
kernel object if it appears that the thread might have to wait for an extended period
of time. This is, in fact, how critical sections themselves are implemented. A critical
section starts off using a spinlock that iterates a specified number of times, then
transitions to kernel mode where it waits on the resource in question.

The Interlocked Functions

Windows provides a family of APl functions commonly referred to as the interlocked
functions. You saw a basic example of their use above. These functions provide
simple, lightweight thread synchronization that does not rely on kernel objects. Table
3.16 summarizes the interlocked functions.

You'll note that there's no interlocked function for reading a value. That's because
none is necessary. If a thread attempts to read a value that is always modified using
an interlocked function, it can depend on getting a good value. That is, it can
assume that it will see either the value before it was changed or the value
afterward@the system guarantees that it will be one or the other.

Table 3.16. The Interlocked Family of Functions



Function Operation

InterlockedIncrement Allows a variable to be incremented and its
value to be checked in a single atomic
operation

InterlockedDecrement Allows a variable to be decremented and its
value to be checked in a single atomic
operation

InterlockedExchangePointer Atomically exchanges the value pointed to by
the first parameter for the value passed in the
second parameter

InterlockedExchangeAdd Atomically adds the value passed in the
second parameter to the first parameter

InterlockedCompareExchangePointer Atomically compares two values and replaces
the first value with a third value based on the
outcome of the comparison

Critical Sections

A critical section is a user mode object you can use to synchronize threads and
serialize access to shared resources. A critical section denotes a piece of code that
you want executed by only one thread at a time. The process of using a critical
section goes something like this.

1. Initialize the critical section with a call to InitializeCriticalSection. This
frequently occurs at program startup and is often used to set up a critical
section stored in a global variable.

2. On entrance to a routine that you want only one thread to execute at a time,
call EnterCriticalSection, passing in the previously initialized critical section
structure. Once you've done this, any other thread that attempts to enter this
routine will be put to sleep until the critical section is exited.

3. On exit, call LeaveCriticalSection.

4. On program shutdown (or some other similar termination event that occurs
after the critical section is no longer needed), call DeleteCriticalSection to free
up the system resources used by the object.

Because you can't specify the amount of time to wait before giving up on a critical
section, it's entirely possible for a thread to wait indefinitely for a resource. This
happens, for example, when a critical section has been orphaned due to an



exception. The waiting threads have no way of knowing that the thread that
previously acquired the critical section never released it, so they wait indefinitely on
a resource that will never be available.

One way to mitigate this all-or-nothing proposition is to use TryEnterCriticalSection
rather than EnterCriticalSection. TryEnterCriticalSection will never allow a thread to
be put into a wait state. It will either acquire the critical section or return FALSE
immediately. The fact that it has this ability to return immediately is the reason that
it has a return value while EnterCriticalSection does not.

When a thread calls EnterCriticalSection for a critical section object that is already
owned by another thread, Windows puts the thread in a wait state. This means that
it must transition from user mode to kernel mode, costing approximately 1,000 CPU
cycles. This transition is usually cheaper than using a spinlock of some type to
continuously poll a resource to see whether it is available.

You can integrate the concept of a spinlock with a critical section by using the
InitializeCriticalSectionAndSpinCount function. This function allows you to specify a
spin count for entrance into the critical section. If the critical section is not available,
the function will spin for the specified number of iterations before going into a wait
state. For short-duration waits, this may save you the expense of transitioning to
kernel mode unnecessarily.

Note that it makes sense to specify a spin count only on a multiprocessor machine.
The thread owning the critical section can't relinquish it if another thread is spinning,
so InitializeCriticalSectionAndSpinCount ignores a nonzero spin count specification
on uniprocessor machines and immediately enters a wait state if the critical section
is not available.

You can set the spin count for a specific critical section using the Win32 API function
SetCriticalSectionSpinCount. The optimal value will vary from situation to situation,

but the fact that the critical section that's used to synchronize access to a process's
heap has a spin count of 4000 can serve as a guide to you.

As a rule, use one critical section variable per shared resource. Don't try to conserve
system resources by sharing critical sections across different resources. Critical
sections don't consume that much memory in the first place, and attempting to
share them unnecessarily can introduce complexities and deadlock potential into
your code that don't need to be there.

Threads and Wait States

As I've mentioned, while your thread is waiting on a resource, the system acts as an
agent on its behalf. The thread itself consumes no CPU resources while it waits. The
system puts the thread in a wait state and automatically awakens it when the
resource(s) it has been waiting for becomes available.

If you check the states of the threads across all processes on the system, you'll
discover that most are in a wait state of some type most of the time. It is normal for
most of the threads in a process to spend most of their time waiting on some event
to occur (e.g., keyboard or mouse input). This is why it's particularly important for
the operating system to provide mechanisms for waiting on resources that are as
CPU efficient as possible.



Thread Deadlocks

A thread deadlock occurs when two threads each wait on resources the other has
locked. If each is set up to wait indefinitely, the threads are for all intents and
purposes dead and will never be scheduled again. Unlike SQL Server, Windows does
not automatically detect deadlocks. Once threads are caught in a deadly embrace,
the only resolution is to terminate them. Listing_3.4 presents some C++ code that
illustrates a common deadlock scenario.

Listing 3.4 A Classic Deadlock Scenario

// deadlock.cpp
//

#include "stdafx.h"
#include "windows.h"

CRITICAL SECTION g CS1;
CRITICAL SECTION g CS2;

int g HiTemps[100];
int g LoTemps[100];

DWORD WINAPI ThreadFuncl(PVOID pvParam)

{
EnterCriticalSection(&g CS1);
Sleep(5000);
EnterCriticalSection(&g CS2);

for (int i=0; 1i<100; i++)
g HiTemps[i]=g LoTemps[i];

printf("Exiting ThreadFuncl\n");

LeaveCriticalSection(&g CS1);
LeaveCriticalSection(&g CS2);

return(0);

}
DWORD WINAPI ThreadFunc2(PVOID pvParam)
{
EnterCriticalSection(&g CS2);
EnterCriticalSection(&g CS1);

for (int i=0; 1i<100; i++)
g HiTemps[i]=g LoTemps[i];

printf("Exiting ThreadFunc2\n");

LeaveCriticalSection(&g CS2);



LeaveCriticalSection(&g CS1);

return(0);

}

int main(int argc, char* argv[])
{

DWORD dwThreadId;

HANDLE hThreads[2];

InitializeCriticalSection(&g CS1);
InitializeCriticalSection(&g CS2);

hThreads[0]=CreateThread (NULL,®, ThreadFuncl,NULL,0,&dwThreadId);
hThreads[1]=CreateThread (NULL,®, ThreadFunc2,NULL,0,&dwThreadId);

WaitForMultipleObjects(2,hThreads, TRUE, INFINITE);

DeleteCriticalSection(&g CS1);
DeleteCriticalSection(&g CS2);

return 0;

}

The problem with this code is that the two worker threads access resources in
different orders: ThreadFuncl enters the critical sections in numerical order;
ThreadFunc2 does not. | placed the call to Sleep after the first critical section is
entered in order to allow the second thread function to start up and allocate the
second critical section before Thread 1 can enter it. Once Sleep expires, Thread 1
then tries to enter the second critical section but is blocked by Thread 2. Thread 2,
on the other hand, is waiting on critical section 1, which Thread 1 already owns. So,
each thread waits indefinitely on resources the other has locked, constituting a
classic deadlock scenario.

The moral of the story is this: Always request resources in a consistent order in
multithreaded applications. This is a good design practice regardless of whether you
are working with user mode or kernel objects.

Synchronization Using Kernel Objects

As I've mentioned, synchronizing threads via user mode objects is faster than
synchronizing them using kernel mode objects, but there are trade-offs. User mode
objects can't be used to synchronize multiple processes, nor can you use the Win32
wait functions to wait on them. Because you can't specify a timeout value when
waiting on user mode objects such as critical sections, it's easier to block other
threads and to get into deadlock situations. On the other hand, each transition to
kernel mode costs you about a thousand x86 clock cycles (and this doesn't include
the actual execution of the kernel mode code that implements the function you're
calling), so there are definitely performance considerations when trying to decide
whether to perform thread synchronization using kernel objects. As with many
things, the key here is to use the right tool for the job.



Signaling

Kernel mode objects can typically be in one of two states: signaled or unsignaled.
You can think of this as a flag that gets raised when the object is signaled and
lowered when it isn't. Signaling an object allows you to notify other threads (in the
current process or outside it) that you are ready for them to do something or that
you have finished a task. For example, you might have a background thread signal
an object when it has finished making a backup copy of the file being currently
edited in your custom programmer's editor. Your background thread saves the file,
then "raises a flag" (it sighals an object) to let your foreground thread know that it's
done.

Kernel mode objects such as events, mutexes, waitable timers, and semaphores
exist to be used for thread synchronization and resource protection through
signaling. In themselves, they do nothing. They exist solely to assist with resource
protection and management@especially in multithreaded applications@by being
signalable in different ways. Processes, threads, jobs, events, semaphores, mutexes,
waitable timers, files, console input, and file change notifications can all be signaled
or unsignaled.

Some kernel objects, such as event objects, can be reset to an unsignaled state after
having been signaled, but some can't. For example, neither a process nor a thread
object can be unsignaled once it has been signaled. This is because for either of
these objects to be signaled, they have to terminate. You cannot resume a
terminated process or thread.

Wait Functions

I've mentioned the Win32 wait functions in some of the examples we've looked at
thus far, and now we'll delve into them a bit. The wait functions allow a thread to
suspend itself until another object (or objects) becomes signaled. The most popular
Win32 wait function is WaitForSingleObject. It takes two parameters: the handle of
the object on which to wait, and the number of milliseconds to wait. You can pass in
the INFINITE constant (OXFFFFFFFF, or -1) to wait indefinitely.

As the name suggests, WaitForMultipleObjects can wait for multiple objects (up to
64) to be signaled. Rather than passing in a single handle for its first parameter, you
pass in an array containing the handles of the objects to wait for.
WaitForMultipleObjects can wait for all objects to be signaled or just one of them.
When a single object causes WaitForMultipleObjects to return, its return value
indicates which object was signaled. This value will be somewhere between
WAIT_OBJECT_0 and WAIT_OBJECT 0 + NumberOfHandles € 1. If you wish to call the
function again with the same handle array, you'll need to first remove the signaled
object or the function will return immediately without waiting.

If a wait function times out while waiting on an object, it will return WAIT_TIMEOUT.
You can use this ability to implement a type of spinlock that waits for a short period
of time, times out, carries out some work, then waits again on the desired resource.
This keeps the thread from being completely unschedulable while it waits on a
required resource and gives you a finer granularity of control over the blocking
behavior of your threads.



There are several other wait functions (e.g., MsgWaitForSingleObject,
MsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx, WaitForMultipleObjectsEx,
WaitForSingleObjectEx, SignalObjectAndWait, and so on) that | won't go into here.
You can consult the Windows Platform SDK reference for details about these
functions. They are mostly variations of either WaitForSingleObject or
WaitForMultipleObjects.

Events

Event objects are exactly what they sound like: objects that allow threads to signal
to one another that something has occurred. They are commonly used to perform

work in steps. One thread performs the first step or two of a task and then signals

another thread via an event to carry out the remainder of the task.

Events come in two varieties: manual-reset events and auto-reset events. You call
SetEvent to signal an event and ResetEvent to unsignal it. Auto-reset events are
automatically unsignaled as soon as a single thread successfully waits on them; a
manual-reset event must be reset through a call to ResetEvent. When multiple
threads are waiting on an auto-reset event that gets sighaled, only one of the
threads gets scheduled. When multiple threads are waiting on a manual-reset event
that gets signaled, all waiters become schedulable.

You call the CreateEvent API function to create a new event. Other threads can
access the event by calling CreateEvent, DuplicateHandle, or OpenEvent.

Waitable Timers

Waitable timers are objects that signal themselves at a specified time or at regular
intervals. You create a waitable timer with CreateWaitableTimer and configure it with
SetWaitableTimer. You can pass in an absolute or relative time (pass a negative
DueDate parameter to indicate a relative time in the future) or an interval at which
the timer is supposed to signal. Once the interval or time passes, the timer signals
and optionally queues an APC routine. If you created the timer as a manual-reset
timer, it remains signaled until you call SetWaitableTimer again. If you created it as
an auto-reset timer, it resets as soon as a thread successfully waits on it.

As the name suggests, you can cancel a waitable timer using the
CancelWaitableTimer function. Once a manual-reset timer is signaled, there's no
need to cancel it; you can simply close its handle.

As | mentioned, a waitable timer can optionally queue an APC routine. You won't
likely use this facility much because you can always just wait on the timer to be
signaled, then execute whatever code you want. In the event that you do decide to
use an APC routine, keep in mind that it's pointless for a thread to wait on a timer's
handle and wait on the timer alertably at the same time. Once the timer becomes
signaled, the thread wakes (which takes it out of the alertable state), causing the
APC routine not to be called.

If you've built many apps for Windows, you're probably familiar with Windows' user
timer object. This is a different beast than a kernel mode waitable timer. The biggest
difference between them is that user timers require a user interface harness in your



app, making them relatively resource consumptive. Also, as with the other kernel
mode objects we've been discussing, waitable timers can be shared by multiple
threads and can be secured.

Windows' user timer object generates WM_TIMER messages that come back either to
the thread that called SetTimer or to the thread that created the window. This means
that only one thread is notified when the timer goes off. Conversely, a waitable timer
can signal multiple threads at once, even across processes.

The decision of whether to use a waitable timer object or a user timer should come
down to whether you're doing very much user interface manipulation in response to
the timer. If so, a user timer is probably a better choice since you will have to wait on
both the object and window messages that might occur if you use a waitable timer. If
you end up using a waitable timer in a GUI app and need the thread that's waiting

on the timer to respond to messages while it waits, you can use
MsgWaitForMultipleObjects to wait on the object and messages simultaneously.

Semaphores

Typically, a kernel semaphore object is used to limit the number of threads that may
access a resource at once. While a mutex, by definition, allows just one thread at a
time to access a protected resource, a semaphore can be used to allow multiple
threads to access a resource simultaneously and to set the maximum number of
simultaneous accessors. You specify the maximum number of simultaneous
accessors when you create the semaphore, and Windows ensures that this limit is
enforced.

When you first create a semaphore object, you specify not only the maximum value
for the semaphore but also its starting value. As long as its value remains greater
than 0, the semaphore is signaled, and any thread that attempts to wait on it will
return immediately, decrementing the semaphore as it returns. Say, for example,
that you want a maximum of five threads (out of a pool of ten) to access a particular
resource simultaneously. You would create the semaphore with a maximum value of
5, then as each thread needed access to the resource, it would call one of the wait
functions to wait on the semaphore. The first five would return immediately from the
wait function, and each successful wait would decrement the semaphore's value by
1. When the sixth thread began waiting on the semaphore, it would be blocked until
one of the first five released the semaphore. If, say, Thread 5 then called
ReleaseSemaphore, Thread 6 would return immediately from its wait state. All the
while, the number of threads with simultaneous access to the resource would never
exceed five.

Mutexes

Mutexes are among the most useful and widely used of the Windows kernel objects.
They have many practical uses€from serializing access to critical resources to
making code thread-safe€and they are often found in abundance in sophisticated
multithreaded Windows apps.

Mutexes are very similar to critical sections except, of course, that they're kernel
objects. This means that accessing them can be slower, but they are generally more



functional than critical sections because they can be shared across processes and
because you can use the wait functions to wait on them with a specified timeout.

Mutexes are unusual in that they are the only kernel object that supports the notion

of thread ownership. Each mutex kernel object has a field that contains the thread ID
of the owning thread. If the thread ID is 0, the mutex is not owned and is signaled. If
the thread ID is other than 0, a thread owns the mutex, and the mutex is unsignaled.

Unlike all other kernel objects, a thread that owns a mutex can wait on it multiple
times without releasing it and without waiting. Each time a thread successfully waits
on a mutex, it becomes its owner (its thread ID is stored in the mutex's kernel
object), and the object's recursion counter is incremented. This means that you must
release the mutex (using ReleaseMutex) the same number of times that you waited
on it in order for it to become signaled, thus allowing other threads to take
ownership of it.

Windows also makes sure that a mutex isn't abandoned by a terminated thread,
potentially blocking other threads infinitely. If a thread that owns a mutex terminates
without releasing it, Windows automatically resets the mutex object's thread ID and
recursion counter to 0 (which signals the object). If another thread is waiting on the
mutex, the system gives it ownership of the mutex by setting the mutex's thread ID
to reference the waiting thread and sets its recursion counter to 0. The wait function
itself will return WAIT_ ABANDONED so that the waiter can determine how it came to
own the mutex.

As I've mentioned, suspending or terminating or a thread can cause a mutex to be
held indefinitely or even abandoned. It's always better to let a thread's entry-point
function return normally when possible.

I/0 Completion Ports

An I/O completion port allows multiple threads conducting asynchronous I/O
operations to be synchronized through a single object. You associate file handles
with an I/O completion port through the Win32 API function CreatelOCompletionPort.
When an asynchronous I/O operation that was started on a file associated with an
I/0 completion port finishes, an I/O completion packet is queued to the port.

A thread can wait on the port by calling the GetQueuedCompletionStatus function. If
no I/O completion packet is ready, the thread will go into a wait state. When a packet
is queued to the port, the function will return immediately.

Note that you can use I/O completion ports to synchronize operations besides those
involving asynchronous I/0. Using the PostQueuedCompletionStatus API function in
tandem with GetQueuedCompletionStatus, you can create a multithread signhaling
mechanism that is more scalable than the SetEvent/WaitForMultipleObjects
approach. This is due to the fact that WaitForMultipleObjects is limited to waiting on
a maximum of 64 worker threads. Using an I/O completion port, you can create a
synchronization system that can wait on as many threads as the process can create.
Here's an example of how you could implement a mechanism that could wait on
more than 64 threads simultaneously.

1. The main thread of your process creates an I/O completion port that is not
associated with a particular file or files by passing NULL for its FileHandle



parameter.

2. The main thread creates as many threads as your process requires@let's say it
starts with a pool of 100 worker threads.

3. Once all the threads are created, the main thread calls
GetQueuedCompletionStatus to wait on the 1/O completion port.

4. Whenever a worker thread has finished its work and wants to signal the main
thread, it calls PostQueuedCompletionStatus to post an I/O completion packet
to the port. For example, it might do this before returning from its entry-point
function or before going to sleep while it waits on, say, a global event
associated with the main thread. In order to let the main thread know which
thread completed its work, the worker thread could pass its thread ID into
PostQueuedCompletionStatus.

5. The main thread returns from its call to GetQueuedCompletionStatus when it
sees the packet.

6. Because the main thread knows how many threads it created, it calls
GetQueuedCompletionStatus again, looping repeatedly until all the worker
threads have indicated that they have completed their work.

Because a thread need not terminate to be signaled and because the main thread
(or any thread) can wait on as many other threads as it wants, an I/O completion
port provides a nicely scalable alternative to waiting on multiple threads using
WaitForMultipleObjects or a similar API call.

Exercises

In this next exercise, you'll experiment with an application that is intentionally not
thread-safe. You'll get to see firsthand what happens when an application does not
synchronize access to shared resources. This should give you a greater appreciation
for the lengths SQL Server must go to in order to ensure that its worker threads can
access shared resources in a manner that is both safe and fast.

In the final exercise in this chapter, you'll learn to implement a spinlock based on a
kernel mutex object. SQL Server uses spinlocks to guard access to shared resources
within the server; understanding how they work will give you greater insight into
how SQL Server works.

Exercise 3.9 What Happens When Threads Aren't Synchronized?

The following C++ application demonstrates three methods for accessing a shared
resource (in this case, a global variable) from multiple resources. You can find it in
the CHO3\thread_sync subfolder on the CD accompanying this book. Load the
application into the Visual C++ development environment and compile and run it in
order to work through the exercise.

The app creates 50 threads that check the value of a global variable and, if it's less
than 50, increment it. The end result of this should be a value of 50 in the global
variable once all the threads have terminated, but that's not always the case. Let's
looks at the code (Listing_3.5).



Listing 3.5 Thread Synchronization Options

// thread sync.cpp : Defines the entry point for the
// console application.
//

#include "stdafx.h"
#include "windows.h"

#define MAXTHREADS 50
//#define THREADSAFE
//#define CRITSEC
//#define MUTEX

long g ifoo=0;
HANDLE g hStartEvent;

#ifdef CRITSEC
CRITICAL SECTION g cs;
#endif

#ifdef MUTEX
HANDLE hMutex;
#endif

DWORD WINAPI StartThrd(LPVOID lpParameter)

WaitForSingleObject(g hStartEvent, INFINITE);
#ifdef CRITSEC
EnterCriticalSection(&g cs);
#endif
#ifdef MUTEX
WaitForSingleObject (hMutex, INFINITE);
#endif
#ifdef THREADSAFE
if (g _ifoo<50) InterlockedIncrement(&g ifoo);
#else
if (g _ifoo<50) g ifoo++;
#endif
#ifdef CRITSEC
LeaveCriticalSection(&g cs);
#endif
#ifdef MUTEX
ReleaseMutex (hMutex) ;
#endif
return 0;

}
int main(int argc, char* argv[])

DWORD dwThreadID;
HANDLE hThreads[MAXTHREADS];
#ifdef CRITSEC



InitializeCriticalSection(&g cs);
#endif
#ifdef MUTEX
hMutex=CreateMutex (NULL, FALSE,NULL) ;
#endif
g hStartEvent=CreateEvent(NULL,true,false,NULL);
for (int i=0; i<MAXTHREADS; i++) {
hThreads[i]=CreateThread (NULL,
0,
(LPTHREAD START ROUTINE)StartThrd,
0,
0,
(LPDWORD) &dwThreadID) ;
};
SetEvent(g hStartEvent);
WaitForMultipleObjects(i,hThreads,true, INFINITE);

printf("g ifoo=%d\n",g ifoo);
#ifdef CRITSEC
DeleteCriticalSection(&g cs);
#endif
#ifdef MUTEX
CloseHandle(hMutex) ;
#endif
return 0;

}

Three #define constants control how (and whether) the program synchronizes
access to the global variable. By default, THREADSAFE, CRITSEC, and MUTEX are
undefined, so access to the global variable is not synchronized. If you run the
program on a multiprocessor machine enough times, you will eventually see a
situation where g_ifoo does not end up with a value of 50. This is because access to
the variable was not synchronized, and there was an overlap between the time one
thread retrieved the value and another incremented it, as illustrated by the scenario
outlined in Table 3.17.

Because of the overlap, two threads set g_ifoo to the same value, causing g_ifoo to
end up with a value less than 50 because there are only 50 worker threads.

If you then uncomment the //#define THREADSAFE line and recompile, this overlap
should be impossible. This is because the code then uses Interlockedlncrement to
ensure atomicity of the increment operation. In the scenario shown in Table 3.17,
this means that steps 3, 5, and 7 are performed as a single operation, as are steps 4,
6, and 8. Since Thread 10 completes its increment operation before Thread 11 is
allowed to do so, Thread 11 sees 11, not 10, as the current value of g_ifoo when it
performs its increment.

You can take this a step further by commenting out the #define for THREADSAFE
and uncommenting CRITSEC. Access to the global variable is then synchronized with
a critical section.

You can provide the ultimate in multithread synchronization by commenting out
CRITSEC and uncommenting MUTEX. The code will then use a mutex kernel object to
serialize access to the global variable.



Experiment with all four techniques and see what results you get. Generally
speaking, when building applications, you should choose from among them in the
order in which I've presented them here: If you don't need thread synchronization,
don't code for it. If you do, try to use the interlocked functions. If they don't meet
your needs, perhaps a critical section will do the job. If a critical section doesn't work
for you (perhaps because you need to allow for a timeout on the wait or you need to
synchronize multiple processes), move up to a kernel object such as a mutex.

Table 3.17. An Example of Unsynchronized Resource Access by
Multiple Threads

Step Action

1 Thread 10: Is g_ifoo < 509 Yes

2 Thread 11: Is g_ifoo < 509 Yes

3 Thread 10: Get g_ifoo's value® currently 10
a4 Thread 11: Get g _ifoo's value® currently 10
5 Thread 10: Increment it (to 11)

6 Thread 11: Increment it (to 11)

7 Thread 10: Move the new value back to g_ifoo
8 Thread 11: Move the new value back to g _ifoo

Exercise 3.10 Implementing a Kernel Mode Spinlock by Using a Mutex

Earlier in the chapter, | showed an example of the traditional implementation of a
spinlock€a user mode construct that uses one of the interlocked functions to ensure
atomic access to the lock variable. You can also set up spinlocks that are based on
kernel mode objects. That may seem like a strange thing to do, but one very natural



use of a kernel spinlock is to execute other code on a thread while you wait on a
kernel object. You basically code the spinlock to time out on a fairly short interval,

execute whatever code you're wanting to execute while you wait, then return to the

wait loop. This keeps the thread semi-busy while it waits on a resource, which you
may find preferable to simply having it go to sleep until the resource is available.

The example below demonstrates a kernel object@based spinlock. You can find it in
the CHO3\kernel_spinlock subfolder on the CD accompanying this book. Load it into

the Visual C++ development environment, then compile and run it. Listing_3.6
shows the code.

Listing 3.6 A Kernel Object@Based Spinlock Implementation

// kernel spinlock.cpp : Defines the entry point for the
// console application.
//

#include "stdafx.h"
#include "windows.h"

#define MAXTHREADS 2
#define SPINWAIT 1000

HANDLE g hWorkEvent;

class CSpinLock {

public:

static void GetLock(HANDLE hEvent);
};

void CSpinLock::GetLock(HANDLE hEvent) {
int i=0;
while (WAIT TIMEOUT==WaitForSingleObject(hEvent, SPINWAIT)) {
printf("Spinning count=%d for thread 0x%08x\n",++1i,
GetCurrentThreadId());
//Put other code here to execute while we wait on the resource
}
}

DWORD WINAPI StartThrd(LPVOID lpParameter)
{
printf("Inside thread function for thread 0x%08x\n",
GetCurrentThreadId());
CSpinLock: :GetLock(g hWorkEvent);
printf("Acquired spinlock for thread 0x%08x\n",
GetCurrentThreadId());
Sleep(5000);
SetEvent (g hWorkEvent);
return 0;

}

int main(int argc, char* argv[])



DWORD dwThreadID;
HANDLE hThreads[MAXTHREADS];

g hWorkEvent=CreateEvent(NULL, false,true,NULL);

for (int i=0; i<MAXTHREADS; i++) {
hThreads[i]=CreateThread (NULL,
0,
(LPTHREAD START ROUTINE)StartThrd,
0,
0,
(LPDWORD) &dwThreadID) ;

};
WaitForMultipleObjects(i,hThreads,true, INFINITE);

return 0;

}

In this example, the spinlock is implemented in its own class and exposed via a
static method. (The static method allows you to avoid having to create an instance
of the CSpinLock class in order to use it.) You could pass any kernel object into the
spinlock; in this example we use an event object.

The main function creates two threads that acquire the spinlock, sleep for five
seconds, then release the spinlock by signaling the event. Since only one of the
threads can acquire the spinlock at a time, the second thread to start waits on the
first one to complete by spinning for as many one-second durations as it takes until
the spinlock is released (i.e., the event is signaled).

Since the event is an auto-reset event, it immediately resets to unsignaled once a
thread successfully waits on it. So, when GetLock successfully waits on the event
object for the first thread, the event is immediately set back to unsignaled, and the
second thread must wait for the first thread to signal it before proceeding. Given
that the thread function sleeps for five seconds, this will be at least five seconds
after the first thread acquires the spinlock.

Compile and run the code, experimenting with different sleep times for the thread
function and different numbers of threads. You should see output like the following
when you run the application:

Inside thread function for thread 0x00000d00
Acquired spinlock for thread 0x00000d00
Inside thread function for thread 0x00000f20
Spinning count=1 for thread 0x00000f20
Spinning count=2 for thread 0x00000f20
Spinning count=3 for thread 0x00000f20
Spinning count=4 for thread 0x00000f20
Spinning count=5 for thread 0x00000f20
Acquired spinlock for thread 0x00000f20

Thread Synchronization Recap



Windows provides a rich suite of thread synchronization functions. Thread
synchronization comes in two basic varieties: user mode synchronization and kernel
mode synchronization. User mode synchronization usually involves spinlocks, critical
sections, and interlocked functions. Kernel mode synchronization involves kernel
objects such as mutexes, semaphores, events, threads, processes, and waitable
timers.

SQL Server makes use of both types of synchronization. Its UMS component spends
a fair amount of time waiting on kernel mode synchronization objects, but it also

implements a variety of spinlocks and does its best to avoid switching a thread into
kernel mode unless absolutely necessary.

The key to successful thread synchronization is ensuring atomic access to resources.
Modifying the same resource from multiple threads simultaneously is a recipe for
disaster. Effective thread synchronization prevents this.

Thread Synchronization Knowledge Measure
1. True or false: T_he single most important element of thread synchronization is
ensuring atomic access to resources.
. Give two examples of user mode synchronization objects or constructs.
. What happens when a thread successfully waits on an auto-reset event?
. What happens when a thread successfully waits on a semaphore?
. What happens when a thread successfully waits on a mutex?

. What is the only kernel object that supports the concept of a thread owner?

N O u A W N

. If you want to protect a routine in a DLL shared by several processes from
being executed by more than one process at a time, what type of
synchronization object should you use?

8. If you are building a windows GUI and want to update the GUI at certain
regular intervals, should you use a waitable timer object or a Windows user
timer?

9. What API function is used to set the signal frequency for a waitable timer
object?

10. True or false: A spinlock is a kernel mode object that spins (loops) until it
acquires a lock on a resource.

11. Explain the function of the InterlockedExchange API function.

12. True or false: You cannot specify a timeout value when waiting on a critical
section object.

13. What action does the system take when a thread that owns a mutex
terminates?



14.

15.
16.

17.

18.
19.
20.

21.
22.

23.

24,

25.

What is the maximum number of objects that WaitForMultipleObjects can wait
on simultaneously?

What type of message does a Windows user timer object produce?

True or false: Generally speaking, you should avoid techniques and design
elements that continuously poll for resource availability.

True or false: Windows detects thread deadlocks, selects one of the
participating threads as the deadlock victim, and terminates it.

What API routine does a thread use to acquire a critical section object?
What API routine does a thread use to release a critical section object?

Name a mechanism discussed in this chapter for waiting on more objects than
the maximum supported by WaitForMultipleObjects.

True or false: A spinlock consumes no CPU resources while it waits.

True or false: A process object is the only type of kernel object that cannot be
signaled.

True or false: The order in which you access kernel resources has no bearing on
thread deadlocks because they are kernel resources.

True or false: Synchronizing threads using kernel mode objects is generally
faster than synchronizing them via user objects.

When a semaphore's value reaches 0, is it signaled or unsignaled?
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Chapter 4. Memory Fundamentals

You must lay aside all prejudice on both sides, and neither believe nor reject
anything, because any other persons, or descriptions of persons, have rejected
or believed it. Your own reason is the only oracle given you by heaven, and you
are answerable, not for the rightness, but the uprightness of the decision.

©Thomas Jefferson2!

(1] Jefferson, Thomas. Letter to nephew, Peter Carr, from Paris. August 10, 1787; Reprinted in Thomas Jefferson: Writings, ed.
Merrill D. Peterson. New York: Library of America, 1994, pp. 900€906.

Understanding an operating system's memory architecture is probably the single
most important thing you can do to understand how the operating system itself
works. Like all operating systems, Windows has its own methods of managing
memory resources and providing memory-related services to applications. We'll
delve into how Windows manages memory and how applications typically make use
of Windows' memory management features in this chapter. We'll also talk about the
different types of Windows memory: virtual memory, heaps, and shared memory.
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Memory Basics

Memory access is so integral to application architecture and performance that a
considerable portion of the Windows infrastructure is devoted to managing it and
making it accessible to applications. Effective memory management is key to
achieving application performance that is both acceptable and consistent. Despite
the relatively low prices of today's RAM modules, memory is still a finite resource
and is probably the single most important factor affecting application performance
and overall system throughput. In many instances, you'll get a better performance
boost from adding RAM to a machine than you will by upgrading to a faster CPU.

Key Memory Terms and Concepts

v Process address space® the 4GB address space for an application.
Addresses in Win32 applications are limited to 4GB because 4,294,967,296

(232) is the largest integer value a 32-bit pointer can store. Of these 4GB, 2GB
are reserved by default for the kernel and 2GB are set aside for user mode
access. On some editions of Windows, the user mode address space can be
increased to 3GB (at the expense of kernel mode space) via the /3GB BOOT.INI
switch for applications that are configured to take advantage of it. All memory
allocated by an application comes from this space.

v Virtual memory® the facility by which a memory manager provides more
memory than physically exists in a machine. The Windows virtual memory
manager makes it appear to applications as though 4GB of memory exists in
the machine, regardless of how much physical memory there actually is.
Windows virtual memory is implemented primarily through the system paging
file.

v Page size® the memory page size that a given processor architecture
requires. On the x86, this is 4K. All Windows memory allocations must occur in
multiples of the system page size.



v Allocation granularity® the boundary at which virtual memory reservations
must be made under Windows. On all current versions of Windows, this is 64K,
so user mode virtual memory reservations must be made at 64K boundaries
within the process address space.

v System paging file® the file (or files) that Windows uses to provide physical
storage for virtual memory. Windows uses the paging file to swap physical
memory pages to and from disk in a manner that is transparent to the
application. The total physical memory storage on a given machine is equal to
the size of the physical memory plus the size of all the paging files combined.

v Address translation® the process of translating a virtual memory address
into a physical one.

v Page fault® a condition raised by the memory management unit (MMU) of a
processor that causes the Windows fault-handling code to load a page from the
system paging file into physical memory if it can be located.

v Thrashing® a condition that occurs when the system is pressured for
physical memory and continually swaps pages to and from the system paging
file, often preventing applications from running in a timely fashion.



v NULL pointer assignment partition® the first 64K of the user mode address
space; it's marked off limits in order to make NULL pointer references easier to
detect.

v Large-address-aware application€+ an application whose executable has
the IMAGE_FILE_LARGE_ADDRESS_AWARE flag set in its header. An application
that is large address aware will receive a 3GB user mode address space when
executed on an appropriate version of Windows that has been booted with the
/3GB option.

v AWF€ Address Windowing Extensions, the facility Windows provides for
accessing physical memory above 4GB.

v Application memory tuning® the facility whereby a large-address-aware
application can use up to 3GB of the process address space.

Key Memory APIs

Table 4.1. Key Memory-Related Win32 API Functions

Function Description

GetSysteminfo Gets system-level information about machine resources
such as processors and memory




Function Description

VirtualAlloc Reserves, commits, and resets virtual memory

AllocateUserPhysicalPages Allocates physical memory for use with Windows' AWE
facility

MapUserPhysicalPages Maps a portion of the AWE physical memory into a virtual
memory buffer set aside by VirtualAlloc

ReadProcessMemory Allows one process to read memory belonging to another

WriteProcessMemory Allows one process to write memory belonging to another

Key Memory Tools

The best all around tool for monitoring Windows memory statistics and performance
is Perfmon. Task Manager is also surprisingly helpful. Keep in mind that Task
Manager's Mem Usage column lists each process's working set size, not its total
virtual memory usage. Since this column includes shared pages, you can't total it to
get the total physical memory used by all processes. Also, Task Manager's VM Size
column actually lists a process's private bytes (its private committed pages), not its
total virtual memory size.

Table 4.2. Key Memory-Monitoring Tools

Reserved Virtual Paging Page Working Paged Nonpaged
Memory File Size Faults Set Size Pool Pool
Perfmon v v v v v v
Pstat v v v v v v
Pview J/ v v v J'
pmon v v v v




Reserved Virtual Paging Page Working Paged Nonpaged
Memory File Size Faults Set Size Pool Pool
TaskMgr v v v v v
TList v v

Key Perfmon Counters

Table 4.3. Key Memory-Related Perfmon Counters

Counter Description

Memory:Committed The committed private address space (in both the paging file
Bytes and physical memory)

Memory:Commit Limit The amount of memory that can be committed without
causing the system paging file to grow

Memory:% Committed Memory:Committed Bytes divided by Memory:Commit Limit
Bytes In Use

Process:Virtual Bytes The total size of the process address space (shared and
private pages)

Process:Private Bytes The size of the nonshared committed address space

Process:Page File Same as Process:Private Bytes
Bytes

Process:Page File Peak The peak value of the Process:Page File Bytes counter

Addresses



Because Windows is a 32-bit operating system, all user processes have a flat 4GB
address space. This space is limited to 4GB because a 32-bit pointer can have one of

4,294,967,296 (232) values. This means that pointer values in Windows applications
can range from 0x00000000 to OXFFFFFFFF.

On 64-bit Windows, processes have a flat 16EB (exabyte) address space. A 64-bit

pointer can have one of 18,446,744,073,709,551,616 (264) values, ranging from
0x0000000000000000 to OXFFFFFFFFFFFFFFFF.

The fact that user processes are limited to 4GB of address space on 32-bit Windows
doesn't mean that apps can't access more than 4GB of physical memory. As you're
probably aware, it's not unusual for server machines to have more than 4GB of RAM
installed. Windows' AWE facility allows applications to fully utilize the physical
memory available in their host machines. We'll discuss AWE in more detail later in
the chapter. For now, just keep in mind that it allows an application to access
physical memory beyond 4GB. Windows 2000 Professional and Windows 2000 Server
both support up to 4GB of physical memory. Windows 2000 Advanced Server
supports up to 8GB, and Windows 2000 Data Center supports up to 64GB. Through
AWE, an application can make use of as much physical memory as the operating
system supports.

Keep in mind that the 4GB that a 32-bit process has to work with is virtual address
space, not physical storage. By virtual, | mean that the address space is simply a

range of memory addresses. Physical storage must be mapped to portions of this
space before an application can make use of it without causing an access violation.

Basic Memory Management Services

In its bare essence, Windows memory management consists of implementing virtual
memory and managing the interchange between virtual memory and physical
memory. This involves a couple of fundamental tasks:

1. Mapping the virtual space for a process into physical memory

2. Paging memory to and from disk when process threads attempt to use more
physical memory than is currently available

Beyond the virtual memory management services it provides, the memory manager
also provides core services to Windows' environment subsystems. These include the
following:

® Memory-mapped files
® Support for apps using sparsely populated address spaces

® Copy-on-write memory

Granularities



All processor chips define a fixed page size for working with memory. The page size
on the x86 family of processors is 4K. Any allocation request an application makes is
rounded up to the nearest page boundary. This means, for example, that a 5K
allocation request will actually require 8K of memory.

Like most operating systems, 32-bit Windows has a fixed allocation granularity@a
boundary on which all application memory reservations must occur. The boundary
will always be a multiple of the system page size. In the case of 32-bit Windows, this
boundary is 64K, so when an application requests a memory reservation, that
reservation must begin on a 64K boundary in the process address space. Though
many apps let Windows decide the precise location of the buffers they allocate,
some make allocations at specific addresses. For those that do, they must pass a
starting reservation address into Windows that aligns with a 64K boundary in the
process address space. Windows will round down any starting reservation address
that does not correctly align with the allocation granularity.

An app that's not mindful of the system's 64K allocation granularity can cause
address space to be wasted. If an application reserves a virtual memory region less
than 64K in size, the remainder of the 64K region is unusable by the application
thanks to the system-enforced allocation granularity. Because an app cannot then
specify a reservation that occupies the remainder of the region without having the
system automatically round it down to the start of the 64K region, the unused
address space is essentially wasted. So, it's possible to exhaust the address space
for a process without actually reserving or allocating much memory. We'll talk more
about memory reservation and commitment in the Virtual Memory section below.

You can retrieve both the system allocation granularity and the system page size via
the Win32 GetSysteminfo API function. It's conceivable that both of these could vary
in future versions of Windows, so it's wise not to hard-code references to them. See
Exercise 4.4 later in the chapter for an example of how to use GetSysteminfo in a
SQL Server extended procedure.

Process Memory Protection

Windows isolates processes from one another such that no user process can corrupt
the address space of another process or of the OS itself. This makes Windows more
robust and protects applications from one another. There are four fundamental
aspects of this protection.

1. All processor chips supported by Windows provide some form of hardware-
based memory protection.

2. System-wide data structures and memory areas used by kernel mode
components are accessible only while in kernel mode@user mode code can't
touch them.

3. Windows provides each process a private address space. Threads belonging to
other processes are prohibited from accessing it.

4. Shared memory sections have standard Access Control Lists (ACLs) that are
checked when processes access them.



These four aspects of the Windows memory management architecture make the
operating system far more robust than it otherwise would be. They help prevent
intentional and unintentional corruption of one process's address space by another,
and they help make Windows itself resilient in the face of catastrophic application
errors.

NOTE: As I've mentioned earlier, Windows does provide API functions such as
ReadProcessMemory and WriteProcessMemory that allow one process to access
another's address space. That said, using these functions requires specific access
rights; you cannot accidentally read or modify memory belonging to another
process. Typically (but not always), these functions are used by a debugger to
access the memory of a process being debugged. Also note that, by default, when
one process spawns another via a call to CreateProcess, the parent process has the
access permissions required to access the child process's virtual memory. Again, this
is typically used to facilitate debugging.

Partitions

At a high level, the 4GB process address space is organized as shown in Table 4.4.

Table 4.4. The Process Address Space and What It Contains

Address Range Description

0x0000000090x7FFFFFFF Application and DLL code, global variables, thread
stacks€user mode memory

0x8000000090xBFFFFFFF Kernel and executive, HAL, boot drivers
0xC0000000€0xCO7FFFFF Process page tables, hyperspace

0xC080000090xFFFFFFFF System cache, paged pool, nonpaged pool




Unless the /3GB boot option has been enabled, the user mode portion of this space
takes up the first 2GB, and the kernel occupies the remaining 2GB. If /3GB has been
enabled, the user mode portion occupies the first 3GB (0x00000000€0xBFFFFFFF)
and the kernel is squeezed into the remaining 1GB. See the subsection titled
Application Memory Tuning on page 122 for more information on this option. For
purposes of this discussion, we'll assume that /3GB is not enabled.

Within the user mode portion, there are several smaller partitions (Table 4.5). The
following subsections briefly discuss these partitions.

NULL Pointer Assignment Partition

Have you ever wondered why NULL (address 0x00000000) can't be used by an
application? After all, isn't it just another address within the process address space
(the first address, in fact) just like any other address? No, it isn't. And the reason it
isn't is because, in the interest of helping programmers catch NULL pointer
assignments, Windows has marked the first 64K of the process address space as off
limits.

Table 4.5. Partitions in the User Mode Portion of a Process's
Address Space

Address Range Size Description

0x00000000€0x0000FFFF 64K Off-limits region (prevents NULL pointer
assignments).

0x0001000090x7FFEFFFF 2GB€9~192K Private process address space.

Ox7FFDEO0O€0x7FFDEFFF 4K TEB for the process's main thread. TEBs for
other threads reside at the previous page
(Ox7FFDDO000) and working backward.

Ox7FFDF000€0x7FFDFFFF 4K The process's PEB.
Ox7FFEO000€0x7FFEOFFF aK Shared user data page.
Ox7FFE1000€90x7FFEFFFF 60K Off-limits region (remainder of 64K

containing shared user data page).




Address Range Size Description

Ox7FFFO0004€0x7FFFFFFF 64K Off-limits region (prevents buffers from
straddling the user mode/kernel mode
boundary).

The NULL pointer assignment partition is a very simple yet surprisingly useful
feature in the operating system that helps programs catch failed allocations. For
example, consider the following C code.

char *pszLastName = (char *)malloc(LAST NAME SIZE);
strcpy(pszLastName, "Smith");

This code performs no error checking. If malloc is unable to allocate a buffer of the
requested size, it returns NULL. Because Windows has marked the entirety of the
first 64K of the process's address space as off limits (including address
0x00000000€NULL), any attempt to access a NULL pointer will result in an access
violation. In the code above, if the call to malloc returns NULL, the call to strcpy will
cause an access violation to be raised. This isn't because Windows checks every
pointer reference to make sure that it doesn't equal NULL; it's because no address
within the first 64K of the user mode space€0x00000000 or otherwise®may be
used.

Does this mean that the operating system wastes 64K of the memory in your
system? No, not at all. Remember: A process's address space is virtual®those
sections marked off limits by the operating system are not backed by physical
memory. For such a useful feature as the NULL pointer assignment partition, you
give up only a 64K range of memory addresses€no physical memory is wasted.

Why is the NULL assignment partition 64K in size? Why not just make the NULL
address, 0x00000000, off limits, or, at most, a single 4K page? Windows makes the
entire 64K off limits for two reasons.

1. Reservations by user mode apps are required to be on allocation granularity
(64K) boundaries. So, even if only the first 4K page was marked off limits, you
still couldn't reserve memory in the remaining 60K of the first 64K of address
space.

2. NULL pointer references are often buried in pointer arithmetic where a NULL
memory address is not actually referenced, but one based on NULL plus an
offset of some kind is. This means that your NULL pointer reference may
actually end up causing your app to reference a memory location other than
0x00000000. Marking the entire 64K region off limits helps catch many of
these situations.

This is best explained by way of example. Exercises 4.1 through 4.3 later in this

chapter walk you through building a few test applications that demonstrate NULL
pointer references and how Windows helps you detect them.

Process Private Address Space Partition



A process's private address space is where an application's executable and DLLs are
loaded. All private memory allocations come from this region, and memory-mapped
files are mapped here as well. It's the space within which an application operates.

Kernel Mode Partition

The kernel mode partition is where the code for file system support, thread
management, memory management, networking support, and all device drivers
resides. Everything residing in the kernel mode partition is shared among all
processes.

You may be wondering whether the kernel really needs the top half of the process
address space. Unfortunately, the answer is yes, it does. The kernel needs this space
for OS code, device I/O cache buffers, process page tables, device driver code, and
so forth. To be sure, the kernel could really make good use of much more space. It
finally gets all the space it needs in 64-bit Windows.

One thing to keep in mind about kernel mode space: If you boot with the /3GB option
(discussed below), the kernel space is reduced to just 1GB. This, in turn, limits the
sizes of some of the data structures typically stored in the kernel mode space. For
example, when /3GB is enabled, you may access only 16GB of total system memory
because the size of the process page table is constricted by the limited kernel mode
space.

PEB and TEB Regions

The PEB and TEB areas aren't regions that you'll make direct use of much, but it's
instructive to know about them and what they are. As | mentioned in Chapter 3,
each process has a process environment block (PEB) that's allocated in the user
mode space. As Table 4.5 indicates, the precise address of a process's PEB is
Ox7FFDF000. This means that you can dump this region of memory from under a
debugger in order to view the PEB for a process. WinDbg has a special command for
doing exactly this, !peb. The next time you attach to SQL Server with WinDbg, try
the 'peb command. You'll see that it returns a number of interesting pieces of data
including the modules currently loaded within the process, the command line passed
into the process, the address of the default heap, and many others.

As | said in Chapter 3, every thread has an associated thread environment block
(TEB). The user mode address space contains a TEB for each thread owned by the
process. As with the PEB, these blocks are stored in the user mode space in order to
allow the system to access them without having to switch to kernel mode.

As shown in Table 4.5, the address of the TEB for a process's main thread is at
Ox7FFDEOOQO. You can list the contents of a TEB using the WinDbg !teb command. If
you execute !teb without any parameters, you get the TEB for the current thread. If
you pass an address into !teb, you'll get the TEB at that address if there is one.

TEBs for the worker threads in a multithreaded application are stored on the page at
address Ox7FFDDO000 and the pages immediately preceding it in memory (e.qg.,
Ox7FFDCO000, 0Ox7FFDB00O, and so on).



Shared User Data Page

The memory page at Ox7FFEO000 is known as the shared user data page. It contains
global items such as the clock tick count, the system time, the version number, and
various other system-level data elements. It is read-only and is backed by a memory
page that actually resides in the kernel address space. It exists in the user mode
space in order to allow API routines to access key system data without having to
switch to kernel mode.

Boundary Partitions

The last two regions of the user mode address space are off limits to applications.
The first is the remainder of the 64K region containing the shared user data page.
This 60K region is marked off limits by the operating system; any attempt to access
it will result in an access violation. The fact that the remainder of the 64K region
containing the shared user data page is marked off limits doesn't really affect user
mode applications because that region would be inaccessible to them anyway given
that user mode reservations must begin on an allocation granularity boundary.

The second region is the last 64K of the user mode address space. Windows marks it
off limits in order to prevent an application from accessing a region of virtual
memory that straddles the boundary between user mode and kernel mode. Because
routines such as WriteProcessMemory are actually validated by kernel mode code,
they can access address regions normally off limits to user mode code. By marking
the last 64K of user mode space off limits, Windows protects against memory access
that starts in the user mode space and extends into the kernel mode space.

The System Paging File

In order to implement virtual memory®that is, in order to allow applications to
access more memory than physically exists in the machine@the Windows memory
manager transparently copies pages to and from disk as necessary. The file it uses
to store these pages is called the system paging file.

From an application standpoint, the system paging file increases the amount of
memory available for use. It makes the system appear to have much more physical
memory than it actually does. This is why a machine with, say, 1GB of physical
memory cah run many apps simultaneously, each having a 4GB process address
space that is, perhaps, 50% backed by physical storage.

Conceptually, it's helpful to think of the physical storage behind virtual memory as
the system paging file. Even though pages are constantly being copied in and out of
physical RAM, the vast majority of the physical storage behind the virtual memory in
the system is typically in the system paging file.

Although it is possible to run Windows without a paging file, this isn't usually
recommended. In a typical configuration, the system paging file is considerably
larger than the physical memory in the machine and provides apps with an efficient
mechanism for accessing more memory than the machine actually has.



The paging file size is the most important variable affecting how much storage is
available to an application. The amount of RAM has very little impact on the physical
storage available to an app, but it does, of course, affect performance very
significantly. When physical RAM is too low, the system will constantly copy data
pages to and from the paging file (a condition known as thrashing), and, of course,
performance will suffer commensurately.

Address Windowing Extensions

Windows' AWE facility exists to allow applications to access more than 4GB of
physical memory. As | mentioned earlier, a 32-bit pointer is an integer that is limited
to storing values of OXFFFFFFFF or less@that is, to references within a 4GB memory
address space. AWE allows an application to circumvent this limitation and access all
the memory supported by the operating system.

At a conceptual level, AWE is nothing new€operating systems and applications have
been using similar mechanisms to get around pointer limitations practically since the
dawn of computers. For example, back in the DOS days, 32-bit extenders (e.g., Phar
Lap, Plink, and others) were commonly used to allow 16-bit apps to access memory
outside their normal address space. Special-purpose managers and APIs for
extended and expanded memory were common; you may even remember products
such as Quarterdeck's QEMM-386 product, which was commonly used for this sort of
thing way back when.

Typically, mechanisms that allow a pointer to access memory at locations beyond its
direct reach (i.e., at addresses too large to store in the pointer itself) pull off their
magic by providing a window or region within the accessible address space that is
used to transfer memory to and from the inaccessible region. This is how AWE
works: You provide a region in the process address space®a window®to serve as a
kind of staging area for transfers to and from memory above the 4GB mark.

In order to use AWE, an application follows these steps.

1. Allocate the physical memory to be accessed using the Win32
AllocateUserPhysicalPages API function. This function requires that the caller
have the Lock Pages in Memory permission.

2. Create a region in the process address space to serve as a window for mapping
views of this physical memory using the VirtualAlloc API function. We'll discuss
VirtualAlloc further in just a moment.

3. Map a view of the physical memory into the virtual memory window using the
MapUserPhysicalPages or MapUserPhysicalPagesScatter Win32 API functions.

While AWE exists on all editions of Windows 2000 and later and can be used even on
systems with less than 2GB of physical RAM, it's most typically used on systems with
2GB or more of memory because it's the only way a 32-bit process can access
memory beyond 3GB, as | mentioned earlier in the chapter. If you enable AWE
support in SQL Server on a system with less than 3GB of physical memory, the
system ignores the option and uses conventional virtual memory management
instead.



One interesting characteristic of AWE memory is that it is never swapped to disk.
You'll notice that the AWE-specific API routines refer to the memory they access as
physical memory. This is exactly what AWE memory is: physical memory outside the
control of the Windows virtual memory manager.

The virtual memory window used to buffer the physical memory provided by AWE
requires read-write access. Hence, the only protection attribute that can be passed
into VirtualAlloc when you set up this window is PAGE_READWRITE. Not surprisingly,
this also means that you can't use VirtualProtect to protect pages within this region
from modification or access.

Application Memory Tuning

The /3GB boot option is available on the Advanced Server and Data Center editions
of Windows 2000 (and later). It allows a process's user mode address space to be
expanded from 2GB to 3GB at the expense of the kernel mode address space (which
is reduced from 2GB to 1GB). In Windows parlance, this facility is known as
application memory tuning or 4GB tuning (4GT).

You enable application memory tuning by adding "/3GB" (without the quotes) to the
appropriate line in the [operating systems] section of your BOOT.INI. It's common for
people to configure their systems to be bootable with and without /3GB by setting
up the entries in the [operating systems] section of BOOT.INI such that they can
choose either option at startup.

WARNING: You can also boot Windows 2000 Professional, Windows 2000 Server,
and Windows XP with the /3GB switch. However, this has the negative consequence
of reducing kernel mode space to 1GB without increasing user mode space. In other
words, you gain nothing for the kernel mode space you give up.

NOTE: Windows Server 2003 introduced a new boot option to set the user mode
process space, /USERVA. You add /USERVA to your BOOT.INI just as you would /3GB.
The advantage of /USERVA over /3GB is that it gives you a finer level of control over
exactly how much address space to set aside for user mode use versus kernel mode
use. For example, /JUSERVA=2560 configures 2.5GB for user mode space and leaves
the remaining 1.5GB for the kernel. The caveats that apply to the /3GB switch apply
here as well.



Large-Address-Aware Executables

Before support for /3GB was added to Windows, an application could never access a
pointer with the high bit set. Only addresses that could be represented by the first
31 bits of a 32-bit pointer could be accessed by user mode applications. This left 1
bit unused, so some developers, being the clever coders they were and not wanting
to waste so much as a bit in the process address space, made use of it for other
purposes (e.g., to flag a pointer as referencing a particular type of application-
specific allocation). This caused a conundrum when /3GB was introduced because
these types of apps would not be able to easily distinguish a legitimate pointer that
happened to reference memory above the 2GB boundary from a pointer that
referenced memory below 2GB but had its high bit set for other reasons. Basically,
booting a machine with /3GB would likely have broken such apps.

To deal with this, Microsoft added support for a new bit flag in the Characteristics
field of the Win32 Portable Executable (PE) file format (the format that defines the
layout of executable files@EXEs and DLLs€@under Windows) that indicates whether
an application is large address aware. When this flag
(IMAGE_FILE_LARGE_ADDRESS_AWARE) is enabled, bit 32 in the Characteristics field
in an executable file's header will be set. By having this flag set in its executable
header, an application indicates to Windows that it can correctly handle pointers
with the high bit set@that it doesn't do anything exotic with this bit. When this flag
is set and the appropriate version of Windows has been booted with the /3GB option,
the system will provide the process with a 3GB private user mode address space.
You can check whether an executable has this flag enabled by using utilities such as
DumpBin and ImageCfg that can dump the header of an executable file.

Visual C++ exposes IMAGE_FILE_LARGE_ADDRESS_AWARE via its
/LARGEADDRESSAWARE linker switch. (You can also change this flag in an existing
executable using ImageCfqg.) SQL Server has this flag enabled, so if you boot with
the /3GB switch on the appropriate version of Windows, the system will set the size
of SQL Server's private process address space to 3GB.

NOTE: The IMAGE_FILE_LARGE_ADDRESS_AWARE flag is checked at process startup
and is ignored for DLLs. DLLs must always behave appropriately when presented
with a pointer whose high bit is set.



/3GB vs. AWE

The ability to increase the private process address space by 50% is certainly a handy
and welcome enhancement to Windows' memory management facilities; however,
Windows' AWE facility is far more flexible and scalable. As | said earlier, when you
increase the private process address space by a gigabyte, that gigabyte comes from
the kernel mode address space, which shrinks from 2GB to 1GB. Since the kernel
mode code is already cramped for space even when it has the full 2GB to work with,
shrinking this space means that certain internal kernel structures must also shrink.
Chief among these is the table Windows uses to manage the physical memory in the
machine. When you shrink the kernel mode partition to 1GB, you limit the size of this
table such that it can manage a maximum of only 16GB of physical memory. For
example, if you're running under Windows 2000 Data Center on a machine with
64GB of physical memory and you boot with the /3GB option, you'll be able to
access only 25% of the machine's RAM@the remaining 48GB will not be usable by
the operating system or applications.

AWE also allows you to access far more memory than /3GB does. Obviously, you get
just one additional gigabyte of private process space via /3GB. This additional space
is made available to apps that are large address aware automatically and
transparently, but it is limited to just 1GB. AWE, by contrast, can make the entirety
of the physical RAM that's available to the operating system available to an
application provided it has been coded to make use of the AWE Win32 API functions.
So, while AWE is more trouble to use and access, it's far more flexible and open
ended.

Address Translation

Address translation refers to the process of translating a virtual address into a
physical RAM address. This occurs each time a process attempts to access a block of
data using its virtual address. Each time a process tries to access a data block by
address, three things can happen.

1. The address will be valid and the page will already reside in physical memory.

2. The address will be valid and the page will be stored in the system paging file.
In this case, the data will be paged into physical memory so that it can be
accessed. This is known as a page fault. (You can track the page faults for a
process via Perfmon's Process:Page Faults/sec counter and via Task Manager's
Page Faults column.)

3. The address will be invalid and the system will raise an access violation
exception (user mode) or blue screen (kernel mode).

Virtual addresses aren't mapped directly to physical addresses. Instead, each virtual
address is composed of three elements: the page directory index, the page table
index, and the byte index. These elements establish the mapping between the
virtual address and the physical RAM it references.

For each process, the Windows memory manager creates a page directory that it
uses to map all the page tables for the process. Windows stores the physical address
of this page directory in each process's KPROCESS block (the kernel process block



stored within the EPROCESS block mentioned in Chapter 3) and maps it to address
0xC0300000 in the process address space.

The CPU keeps track of the address of a process's page directory table via a special
register (CR3, or Control Register 3, on x86; the PDR, or Page Directory Register, on
Alpha). Each time a context switch occurs wherein a thread from a different process
is scheduled on the CPU, this register is loaded from the KPROCESS block so that the
CPU's MMU can determine where the page directory table resides. Context switches
among threads in the same process do not require the register to be reloaded
because all threads in a process share the same address space.

This special register serves as a bootstrap for the system's memory management
facilities. Without it, a process's page directory cannot be located. Without the page
directory, the process address space itself cannot be accessed. The register provides
the entry point for the CPU's memory management hardware to access an individual
process's address space.

Each page directory consists of a series of page directory entries. The first 10 bits of
a 32-bit virtual address store a page directory entry (PDE) index that tells Windows
which page table to use to locate the physical memory associated with the address.

Each page table consists of series of page table entries. The second 10 bits of a 32-
bit virtual address provide an index into this table and indicate which page table
entry (PTE) contains the address of the page in physical memory to which the virtual
address is mapped.

On x86 processors, the last 12 bits of a 32-bit virtual address contain the byte offset
on the physical memory page to which the virtual address refers. The system page
size determines the number of bits required to store the offset. Since the system
page size on x86 processors is 4K, 12 bits are required to store a page offset (4,096
=212),

When an address is translated, the following events occur.

1. The CPU's MMU locates the page directory for the process using the special
register mentioned above.

2. The page directory index (from the first 10 bits of the virtual address) is used
to locate the PDE that identifies the page table needed to map the virtual
address to a physical one.

3. The page table index (from the second 10 bits of the virtual address) is used to
locate the PTE that maps the physical location of the virtual memory page
referenced by the address.

4. The PTE is used to locate the physical page. If the virtual page is mapped to a
page that is already in physical memory, the PTE will contain the page frame
number (PFN) of the page in physical memory that contains the data in
guestion. (Processors reference memory locations by PFN.) If the page is not in
physical memory, the MMU raises a page fault, and the Windows page
fault@handling code attempts to locate the page in the system paging file. If
the page can be located, it is loaded into physical memory, and the PTE is
updated to reflect its location. If it cannot be located and the translation is a
user mode translation, an access violation occurs because the virtual address



references an invalid physical address. If the page cannot be located and the
translation is occurring in kernel mode, a bug check (also called a blue screen)
occurs.

The four-step process required to resolve a virtual address to a physical one may
seem inefficient at first glance. It may seem that it would be far simpler and more
efficient to compose a virtual address of two basic components: (1) a PTE that stores
the reference to the page in physical storage to which the virtual address maps and
(2) a page offset that pinpoints the precise data location of the data block
referenced by the address. However, the x86 and Alpha processors take the four-
step approach they do in order to conserve memory. If we simplify this process into a
basic one-step translation where each virtual address is composed of only two
components as I've just described, we end up consuming far more memory to
manage this table than we do in the four-step process, especially on systems where
the majority of the address space is unallocated. We would need 1,048,576 PTEs to
map a 4GB address space (4GB + 4K page size = 1,048,576). With each PTE
requiring a 32-bit pointer, we would need 4MB of physical memory to map the
address space for each process (1,048,576 x 4 bytes = 4MB). Using the four-step
process that x86 and Alpha processors employ, only the page directory must be fully
defined@®@memory for the page directory can be allocated as necessary. Given that
the address space for many processes is mostly unallocated, the physical memory
this approach saves is significant.

That said, if this process occurred with every memory access, performance would
likely be very poor, so the x86 and Alpha processors cache virtual-to-physical
address translation pairs. The cache memory set aside for storing these address
pairs is known as a Translation Buffer (TB) or Translation Look-aside Buffer (TLB).
When the MMU is presented with a virtual address, it takes the virtual page number
and compares it with the virtual page number of every entry in the cache. If it finds
a match, it bypasses the four-step process and simply locates the PFN in physical
memory from the cache entry. A downside of the Windows scheduler switching from
one process to another is that cache entries associated with the process being taken
off the scheduler must be cleared. The four-step process then fills the cache with
entries from the new process.

Physical Address Extension

Intel processors starting with the Pentium Pro and later include support for a
memory-mapping model called Physical Address Extension (PAE). PAE can provide
access for up to 64GB of physical memory. In PAE mode, the MMU still implements
page directories and page tables, but a new level exists above them: the page
directory pointer table. Also, in PAE mode, PDEs and PTEs are 64 bits wide (rather
than the standard 32 bits.) The system can address more memory than the standard
translation because PDEs and PTEs are twice their standard width, not because of
the page directory pointer table. The page directory pointer table is needed to
manage these high-capacity tables and the indexes into them.

A special version of the Windows kernel is required to use PAE mode. This kernel
ships with every version of Windows 2000 and later and resides in Ntkrnlpa.exe for
uniprocessor machines and in Ntkrnlpamp for multiprocessor machines. You enable
PAE use by adding the /PAE switch to your BOOT.INI file, just as you might add /3GB
or /USERVA.



Exercises

Earlier in the chapter we discussed NULL pointer references and how Windows helps
applications detect them (though it cannot completely prevent them). The next
three exercises take you through some sample code that exhibits different types of
NULL pointer references and shows how Windows handles each type.

Exercise 4.1 NULL Pointer References

1. Create a console app based on Listing 4.1 by loading and compiling the Visual
Studio project in the CHO4\memexamp0O0 subfolder on the CD accompanying
this book . I'm assuming that you're working with Visual Studio C++ (VC++)
version 6.0 or later in the steps that follow.

Listing 4.1 A NULL Pointer Reference

// memexamp0O.cpp : NULL pointer reference example.
//

#include "stdafx.h"
#include "stdlib.h"
#include "string.h"

#define LAST NAME SIZE 2147483647

int main(int argc, char* argv[])

{
char *pszLastName = (char *)malloc(LAST NAME SIZE);
strcpy(pszLastName, "Smith");
return 0;

}

2. Set a breakpoint on the strcpy line and run the app.

3. When the app stops at the strcpy, place your mouse over pszLastName in the
VC++ editor window. A tool-tip hint should display indicating that pszLastName
has a value of 0x00000000. Why is this? The pointer is NULL because we
requested a larger memory allocation (2GB) than Windows could satisfy.

Because the code does no error checking, strcpy will attempt to copy the string
"Smith" into this invalid address.

4. Hit F10 to execute the strcpy line. You should now see an access violation.
Windows has intercepted the attempted access of memory address
0x00000000 (NULL) and raised the error you see. Press Shift+F5 to stop
debugging.

Exercise 4.2 An Obscured NULL Pointer Reference

Now let's modify the app to cause a NULL pointer reference that is not so obvious.



1. Change your code to look like Listing 4.2 (or load memexamp01 from the CD).
Listing 4.2 A Less Obvious NULL Pointer Reference

// memexampOl.cpp : NULL pointer reference example.
//

#include "stdafx.h"
#include "stdlib.h"
#include "string.h"

#define LAST NAME SIZE 2147483647
char szLastName[]="Smith";

int main(int argc, char* argv[])

{
char *pszLastName = (char *)malloc(LAST NAME SIZE);
*(pszLastName+strlen(szLastName)+1)="'\0";
strncpy(pszLastName,szLastName,strlen(szLastName));
return 0;

}

2. In this code, we use strncpy rather than strcpy to fill the address referenced by
pszLastName with data. strncpy is often preferred over strcpy because it helps
prevent buffer overruns@you can control the number of characters copied.
Because we've used strncpy, we have to take care of terminating the string
referenced by pszLastName, so we begin by placing an ASCII 0 character at the
end of the target buffer for szLastName. To compute the target address for the
string terminator, we simply take the string length of szLastName, add it to the
address contained in pszLastName, and add 1.

3. Unfortunately, this code also assumes that the malloc call won't fail. When
malloc fails, it returns NULL into pszLastName. This address is then used when
we compute where to put the string terminator. Since it's 0, we're effectively
attempting to place an ASCIl 0 at a memory address that's equivalent to the
length of the string referenced by szLast Name plus 1. So, rather than a plain
NULL reference, we are referring to address 0x00000006495 (the length of
"Smith") + 1.

4. This is easy to see by looking at the disassembly for our app.

13: char *pszLastName = (char *)malloc(LAST NAME SIZE);
00401028  push 7FFFFFFFh

00401020  call malloc (00401220)

00401032 add esp,4

00401035 mov dword ptr [ebp-4],eax

14: *(pszLastName+strlen(szLastName)+1)="'\0";

00401038  push offset szLastName (00421a30)

0040103D call strlen (004011a0)

00401042 add esp,4

00401045 mov ecx,dword ptr [ebp-4]

00401048 mov byte ptr [ecx+eax+1l],0



a. The call to malloc (Line 13) begins by pushing Ox7FFFFFFF onto the stack.
This is the value of our LAST NAME_SIZE constant: 2,147,483,647, or 2GB
minus 1.

b. Register eax contains the return value from malloc. Because we know the
call will fail, we know that this value is NULL or 0x00000000. This value is
moved into pszLastName immediately before our attempt to set up the
string terminator.

c. Line 14 computes the string length of szLastName, adds that value to the
previous value stored in pszLastName plus 1, and attempts to treat this
new value as an address (to dereference it) so that it can assign the
string terminator. The actual dereference (and the cause of the ensuing
access violation) appears in bold type in Listing 4.2.

5. Because address 0x00000006 is within the first 64K of the process address
space, an access violation is raised when we attempt to dereference it.

In the next exercise, we'll cause a NULL pointer reference by overwriting a pointer
value. This is a common problem in applications, especially those that feature
pointers prominently such as C and C++.

Exercise 4.3 A NULL Pointer Reference Due to a Memory Overwrite

Here's a fairly contrived example that demonstrates, once again, the usefulness of
the NULL pointer access partition.

1. Load the app shown in Listing 4.3 from the CD (CHO4\memexamp02) and
compile it.

Listing 4.3 A NULL Pointer Reference Caused by Pointer
Corruption

// memexamp02.cpp : NULL pointer reference caused by pointer
// corruption.
//

#include "stdafx.h"
#include "stdlib.h"
#include "string.h"

#define MAX_FIRST NAME SIZE 10
#define MAX LAST NAME SIZE 30

#pragma pack(1l)

struct NAME

{
char szFirstName[MAX FIRST NAME SIZE];
char *pszLastName;

} nmEmployee;



int main(int argc, char* argv[])

{
int dwFirstNameLen=_ min(strlen(argv([1]),MAX FIRST NAME SIZE);
int dwLastNameLen=_min(strlen(argv([2]),MAX LAST NAME SIZE);

nmEmployee.pszLastName=(char *)malloc(dwLastNameLen);

strncpy(nmEmployee.szFirstName,argv[1l],dwFirstNamelLen);
strncpy(nmEmployee.pszLastName,argv([2],dwLastNamelLen);

nmEmployee.szFirstName[dwFirstNameLen+2]="'\0";
nmEmployee.pszLastName[dwLastNameLen+2]="'\0";

strupr(nmEmployee.pszLastName);

printf("First Name=%s Last
Name=%s\n",nmEmployee.szFirstName,nmEmployee.pszLastName) ;
return 0;

}

This code will work fine so long as the first argument passed into it is 8
characters or less. Thanks to the faulty pointer arithmetic used throughout the
app, but especially when the name strings are terminated, a first name that's
longer than 8 characters will cause the pszLastName pointer to be overwritten
with an ASCII 0.

. To see how this works, set the command line parameters (Alt+F7 | Debug |
Program arguments) to "Wolfgangus Mozart" (without quotes).

. Set a breakpoint at the line that assigns the string terminator for szFirstName:
nmEmployee.szFirstName[dwFirstNameLen+2]="'\0";

. Now, run the app from inside the VC++ IDE. When the debugger stops at your
breakpoint, add nmEmployee to your Watch window, then expand it so that
you can see its members as you step through the code.

. Press F10 to step over the breakpoint line. You should notice in the Watch
window that not only was szFirstName changed by the line just executed but
pszLastName was changed as well (both members should appear red in the
Watch window). This is because the ASCII 0 assigned to the end of szFirstName
was actually written 3 bytes past the end of the string. Because szFirstName is
10 characters wide and because arrays in C++ are always zero-based, the
valid indexes for szFirstName are 0€9. However, dwFirstNameLen equals 10.
Assigning ASCII 0 to szFirstName[dwFirstNameLen] would have also
overwritten pszLastName but would have gotten only the first byte of the four-
byte pointer. Adding 2 to this offset pushes us into the third byte of the
pszLastName pointer. By zeroing this byte, we change the address to one that
happens to be in the first 64K of the process address space.

. Now attempt to step over the next line. Because the previous line corrupted
the pszLastName pointer, you should see an access violation. The specific
reason for the access violation is that you are referencing an address in the



first 64K of memory, and Windows' NULL pointer access partition protection
has caught that invalid reference.

I mentioned earlier in the chapter that you can retrieve the system's page size and
allocation granularity through a call to the GetSystemInfo Win32 API function. In this
next exercise, you'll build and run a SQL Server extended procedure that returns this
same information.

Exercise 4.4 A GetSysteminfo Extended Stored Procedure

1. Copy the xp_sysinfo project from the CHO4\xp_sysinfo subfolder on the book's
CD onto your hard drive and load it into Visual C++. For curious readers,
Listing 4.4 shows the complete source code of the xp_sysinfo extended
procedure.

Listing 4.4 An Extended Procedure That Returns System
Memory Information

RETCODE  declspec(dllexport) xp sysinfo(SRV PROC *srvproc)
{

DBCHAR colname[MAXCOLNAME] ;

DBCHAR szProcType[MAX PATH];
DBCHAR szMinAddress[MAXCOLNAME];
DBCHAR szMaxAddress[MAXCOLNAME];
DBCHAR szAffinityMask[MAXCOLNAME];
SYSTEM INFO si;

GetSystemInfo(&si);

//Set up the column names

wsprintf(colname, "PageSize");

srv_describe(srvproc, 1, colname, SRV _NULLTERM, SRVINT4,
sizeof (DBINT), SRVINT4, sizeof(DBINT), &si.dwPageSize);

wsprintf(colname, "AllocationGranularity");

srv_describe(srvproc, 2, colname, SRV _NULLTERM, SRVINT4,
sizeof (DBINT), SRVINT4, sizeof(DBINT),
&si.dwAllocationGranularity);

wsprintf(colname, "NumberOfProcessors");

srv_describe(srvproc, 3, colname, SRV _NULLTERM, SRVINT4,
sizeof (DBINT), SRVINT4, sizeof(DBINT),
&si.dwNumberOfProcessors);

wsprintf(colname, "ProcessorType");
switch (si.wProcessorArchitecture)
{
case PROCESSOR ARCHITECTURE INTEL :
{
strcpy(szProcType, "Intel ");
switch (si.wProcessorlLevel)



{

case 3 :
{
strcat(szProcType, "386");
break;
}
case 4 :
{
strcat(szProcType, "486");
break;
}
case 5 :
{
strcat(szProcType, "Pentium");
break;
}
case 6 :
{
strcat(szProcType, "Pentium II or Pentium Pro or later");
break;
}
case 7 :
{
strcat(szProcType, "Pentium III");
break;
}
case 8 :
{
strcat(szProcType, "Pentium 4");
break;
}
default :
{
strcat(szProcType, "Unknown") ;
break;

}
}

break;

}
case PROCESSOR ARCHITECTURE_MIPS :
{
strcpy(szProcType, "MIPS ");
switch (si.wProcessorlLevel)
{
case 4:
{
strcat(szProcType, "R4000");
break;
}
default:
{
strcat(szProcType, "Unknown") ;
break;



}
}
break;

}

case PROCESSOR ARCHITECTURE ALPHA :
{
strcpy(szProcType, "Alpha ");
switch (si.wProcessorlLevel)

{
case 21064:
{
strcat(szProcType, "21064");
break;
}
case 21066:
{
strcat(szProcType, "21066");
break;

}
case 21164:
{
strcat(szProcType, "21164");
break;
}
default:
{
strcat(szProcType, "Unknown") ;
break;
}
}
break;
}
case PROCESSOR ARCHITECTURE_PPC :
{
strcpy(szProcType, "PPC ");
switch (si.wProcessorlLevel)

{

case 1:
{
strcpy(szProcType, "601");
break;
}
case 3:
{
strcpy(szProcType, "603");
break;
}
case 4:
{
strcpy(szProcType, "604");
break;
}

case 6:

{



strcpy(szProcType, "603+");
break;
}
case 9:
{
strcpy(szProcType, "604+");
break;
}
case 20:
{
strcpy(szProcType, "620");
break;
}
default:
{
strcat(szProcType, "Unknown") ;
break;
}
}
break;
¥
default :
{
strcpy(szProcType, "Unknown ");
break;

}

}

srv_describe(srvproc, 4, colname, SRV _NULLTERM, SRVCHAR,
strlen(szProcType), SRVCHAR, strlen(szProcType),
&szProcType) ;

wsprintf(colname, "ProcessorAffinityMask");

wsprintf(szAffinityMask, "0x%08X",si.dwActiveProcessorMask);

srv_describe(srvproc, 5, colname, SRV _NULLTERM, SRVCHAR,
strlen(szAffinityMask), SRVCHAR, strlen(szAffinityMask),
&szAffinityMask) ;

wsprintf(colname, "MinimumAppAddress");

wsprintf(szMinAddress, "0x%08X",si. lpMinimumApplicationAddress);

srv_describe(srvproc, 6, colname, SRV _NULLTERM, SRVCHAR,
strlen(szMinAddress), SRVCHAR, strlen(szMinAddress),
&szMinAddress) ;

wsprintf(colname, "MaximumAppAddress");

wsprintf(szMaxAddress, "0x%08X",si. lpMaximumApplicationAddress);

srv_describe(srvproc, 7, colname, SRV _NULLTERM, SRVCHAR,
strlen(szMaxAddress), SRVCHAR, strlen(szMaxAddress),
&szMaxAddress) ;

wsprintf(colname, "UserModeAddressSpace");
DWORD dwUserModeSpace = ((DWORD)si.lpMaximumApplicationAddress -
(DWORD)si.lpMinimumApplicationAddress);
srv_describe(srvproc, 8, colname, SRV _NULLTERM, SRVINT4,
sizeof (DBINT), SRVINT4, sizeof(DBINT), &dwUserModeSpace);



srv_sendrow(srvproc);

// Now return the number of rows processed
srv_senddone(srvproc, SRV _DONE MORE | SRV _DONE_ COUNT,
(DBUSMALLINT)O0, 1);

return XP_NOERROR;

}

2. Compile the project. This should produce a DLL named xp_sysinfo.dll in the
Release subfolder under your root xp_sysinfo folder.

3. Copy xp_sysinfo.dll to the binn folder under your SQL Server installation's root
folder. If you've worked through the exercises in previous chapters, you may be
asked whether to replace the existing xp_sysinfo. Answer Yes to this prompt.

4. Add the xproc to the master database with this command:
sp_addextendedproc 'xp sysinfo', 'xp sysinfo.dll'

5. Run xp_sysinfo from Query Analyzer. You should see output something like this
(results abridged):

PageSize AllocGranularity Processors ProcessorType AffinityM

4096 65536 2 Intel Pentium... 0x0000000

As you can see, the system page size is 4K and the allocation granularity is
64K. Note that these numbers may differ on other processors or in future
versions of Windows.

Note also the UserModeSpace column. On this machine, the maximum user mode
space is roughly 2GB. This tells us that the /3GB boot option was not successfully
enabled. Since SQL Server is a large-address-aware application, it would reflect a
user mode address space of roughly 3GB if it were running on an appropriate version
of Windows and the system had been booted with /3GB.

Memory Basics Recap

Windows provides a rich set of facilities for making memory available to
applications. Even though a machine may have a relatively small amount of physical
RAM installed, Windows provides each process a 4GB virtual address space in which
to run and transparently handles swapping physical memory to and from disk as
necessary.

The x86 family of processors has a memory page size of 4K. This means that all
memory allocations under Windows are actually carried out in multiples of 4K. For
example, a 5K allocation request actually requires 8K of memory.

AWE and /3GB provide applications mechanisms for accessing memory beyond the
standard 2GB user mode partition. The /3GB option actually limits the total amount



of physical memory that Windows can manage, so it is generally not recommended.
AWE is the more flexible of the two and can make all the physical memory that's
visible to the operating system available to applications.

Memory Basics Knowledge Measure

10.

11.

12.

13.

14.
15.

16.

17.

. What is the system page size on the x86 family of processors?
. What is the allocation granularity size on 32-bit Windows?

. True or false: A page fault causes an exception to be raised that will crash an

application if the application does not trap it with structured exception-
handling (SEH) code.

. If you enable the /3GB option on Windows 2000 Professional, how much user

mode address space will SQL Server be allotted when it starts up?

. True or false: Address translation refers to the two-step process in which the

two components of a virtual address, the page table index and the page offset,
are used to translate a virtual address into a physical one.

. True or false: Thrashing is the condition in which physical memory pages are

continually swapped to and from the system paging file, often preventing
applications from running in a timely fashion.

. What address region is set aside by Windows to help applications detect NULL

pointer assignments?

. How large is the default user mode space in a 32-bit Windows process?

. How much total physical memory can Windows 2000 Data Center manage?

True or false: Using the AWE functions causes the kernel mode space to be so
compressed that only 16GB of total physical memory can be accessed by
Windows.

What VC++ linker switch enables an executable to be large address aware?

Before support for the /3GB boot option was added to Windows, how many bits
in a virtual address could a user mode application use to reference virtual
memory directly?

True or false: The system paging file can actually consist of several physical
files that may reside on different disk drives.

What does Task Manager's Mem Usage column indicate for a process?

When an address translation is attempted on an invalid user mode address,
what happens?

What Windows API function covered in this chapter will return both the system
page size and the system allocation granularity?



18.

19.

20.

21.
22.
23.

24,

25.

26.

27.

28.
29.

30.

True or false: The PEB is not allocated at a specific address in a process's
virtual address space, and its location will almost always vary between
processes.

True or false: All processor chips supported by Windows have some form of
built-in memory protection.

What's the typical difference between Perfmon's Process:Private Bytes and
Process:Page File Bytes counters?

True or false: Because Windows is a 32-bit operating system, all user processes
have a flat 4GB address space.

What is the WinDbg command for displaying a process's PEB?
What does Task Manager's VM Size column indicate for a process?

What Win32 API function covered in this chapter can you use to deduce
whether a process has an oversized user mode address space?

True or false: Because the largest integer a 32-bit pointer can store is 232, the
maximum memory that a user mode application may access is 4GB.

True or false: The majority of the physical storage used to implement virtual
memory comes from the physical RAM installed in the machine.

What special-purpose register is used to store the location of the page
directory on x86 processors?

True or false: If a process needs more than the standard 2GB of virtual memory
space, AWE is generally preferred over the /3GB option.

What is a Translation Look-aside Buffer (TLB)?

True or false: The shared user data page is actually backed by a page in kernel
mode memory.

True or false: Although an application can specify the size of a memory
allocation it wants to make, it cannot specify the precise location for the
allocation.
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Virtual Memory

Windows offers three distinct types of memory to applications: virtual memory,
heaps, and shared memory. Virtual memory is best used for managing large arrays
or collections of objects or structures of varying sizes. It is the primary mechanism
by which SQL Server allocates memory and is the focus of this section.

You allocate virtual memory using the VirtualAlloc and VirtualAllocEx API functions.
VirtualAlloc allocates memory only in the calling process's address space;
VirtualAllocEx can allocate memory in another process's address space. VirtualAlloc
is by far the more commonly used of the two, and it's the one we'll use throughout
this chapter.

Pages in virtual memory are always in one of three states: free, reserved, or
committed. You use VirtualAlloc to reserve and/or commit virtual memory, and you
use VirtualFree to decommit and/or release allocated memory. Released memory is
not reserved or committed@it's free.

Key Virtual Memory Terms and Concepts

v’ Page size® the memory page size that a given processor architecture
requires. On the x86, this is 4K. All Windows memory allocations must occur in
multiples of the system page size.

v Allocation granularity® the boundary at which virtual memory reservations
must be made under Windows. On all current versions of Windows, this is 64K,
so user mode virtual memory reservations must be made at 64K boundaries
within the process address space.

v Reserved memory® a region of virtual memory addresses that has been set
aside for use by a process. A reserved region does not require physical storage.
Memory reservations should always be made on allocation granularity
boundaries. Reserved memory cannot be accessed until it is committed.



v Committed memory® a region of virtual memory that is backed by physical
storage.

v Copy-on-write® a Windows facility in which an attempted modification of a
page causes the page to be duplicated and the new page modified instead.
This mechanism is used, for example, when multiple instances of an
application are running and one of them makes a change to one of its data
pages (e.g., by changing a global variable).

v Guard page® a page that has been flagged with the PAGE_GUARD page
protection attribute. The first time a process attempts to access the guard
page, Windows fails the operation and either raises a STATUS_GUARD_PAGE
exception or returns a last error code of STATUS_GUARD_PAGE_VIOLATION. This
also resets the page's guard status, so the next attempt to access it succeeds.

Key Virtual Memory APIs

Table 4.6. Key Virtual Memory€@Related API Functions

Function Description

VirtualAlloc Reserves, commits, and resets virtual memory

VirtualFree Decommits and releases virtual memory




Function Description

VirtualProtect Changes the page protection attributes for a range of
virtual memory pages

VirtualLock/VirtualUnlock Locks/unlocks virtual memory pages in physical memory

VirtualQuery(Ex) Returns system-level information about a virtual memory
region
SetWorkingSetSize Sets the number of virtual memory pages a process may

lock in physical memory

GetSysteminfo Gets system-level information about machine resources
such as processors and memory

Page Protection Attributes

When an application allocates virtual memory using VirtualAlloc, Windows permits
the allocating process to specify protection attributes for the range of pages
allocated. These attributes are passed on to the system's memory management
hardware, which helps implement them. In Visual C++, these attributes are specified
by combining the various PAGE_ constants. Table 4.7 lists each attribute constant
and its purpose.

Table 4.7. Page Protection Attributes

Protection Attribute Purpose

PAGE_GUARD Accessing this page causes a STATUS_GUARD_PAGE
exception to be raised (or a STATUS _
GUARD_PAGE_VIOLATION error to be returned) and
resets the guard page protection. Cannot be combined

with PAGE_NOACCESS.

PAGE_EXECUTE Prevents writing to the page.

PAGE_EXECUTE_READ Prevents writing to the page.




Protection Attribute

Purpose

PAGE_NOACCESS

PAGE_NOCACHE

PAGE_READONLY

PAGE_READWRITE

PAGE_WRITECOMBINE

PAGE_WRITECOPY

PAGE_EXECUTE_READ_WRITE Permits any attempted access.

PAGE_EXECUTE_WRITECOPY Writing to the page causes the system to copy the

page and give the process the new copy. Execution of
the page is permitted.

Prevents any attempted access.

Prevents the page from being cached. Not
recommended for general use. Used mostly by device
drivers.

Prevents writing to the page.

Permits any attempted access.

Causes multiple writes to a single device to be
combined into a single operation in order to improve
performance. Used mostly by device drivers.

Writing to the page causes the system to copy the
page and give the process the new copy. Execution of
the page is not permitted.

NOTE: Execute-only access is not supported by the x86 family of processors. As far
as the x86 family is concerned, if a page is readable, it is also executable. This
means, for example, that the PAGE_EXECUTE and PAGE_ READONLY protection
attributes are functionally equivalent when Windows is running on an x86 processor.

It's not uncommon for memory allocation routines to make use of the PAGE_GUARD
protection attribute to detect buffer overruns. The way this works is that, for every
allocation it makes, the routine will allocate a page with the PAGE_GUARD attribute
set (a guard page) just after the newly allocated region. If a memory access then




attempts to write past the end of the allocated region, a STATUS GUARD_PAGE
exception is raised and the access fails.

When a process is started, Windows protects the executable's code pages with the
PAGE_EXECUTE_READ attribute. This allows multiple copies of the same executable
to share the same physical storage. For example, if you run multiple instances of
Explorer, only one copy of explorer.exe is physically mapped into memory.

Copy-On-Write

Knowing that multiple instances of an application share the same physical storage
for the executable's code pages, you may be wondering about its data pages. If all
instances of an executable are mapped to the same physical storage, how can one
instance change, say, a global variable without affecting the others? The answer lies
in understanding the PAGE_WRITECOPY page protection attribute. When a process
starts, Windows protects its data pages with the PAGE_WRITECOPY attribute. When a
process modifies one of its data pages, it gets a private copy of that page. This
functionality is known as copy-on-write and conserves physical storage while still
allowing instances of an executable to make changes to global data without
affecting other instances.

The Windows NT family of operating systems (Windows NT, Windows 2000, Windows
XP, and Windows Server 2003) has always supported copy-on-write functionality.
Most flavors of UNIX also support some type of copy-on-write functionality. However,
some operating systems (such as Windows 9x and OpenVMS) do not. In operating
systems that do not offer copy-on-write functionality, the standard practice is to
make a private copy of all of an executable's data pages when a process first starts.
Obviously, the approach taken in the Windows NT family is much more efficient.

In the Windows NT family, the system always allocates space in the system paging
file to accommodate an executable's data pages. However, the storage set aside for
each data page is not actually used until the page is written to. This conserves
physical storage while still guaranteeing that an application will be able to write to
its data pages when it needs to.

WARNING: Don't pass the PAGE_WRITECOPY or PAGE_EXECUTE_WRITECOPY
attributes when calling VirtualAlloc to reserve or commit memory. If you do, the
allocation will fail with an ERROR_INVALID PARAMETER error. These page protection
attributes are reserved for system use only.

Reserving Memory



Windows allows a process to reserve memory address space without actually
consuming any committed pages or affecting the process's page file quota (which is
not necessarily page file space but rather limits the number of committed pages a
process can consume). A virtual memory reservation simply sets aside a contiguous
block of process address space; it does not actually make any new memory available
to the application for use. The application must commit the memory in order to use
it.

Most developers aren't accustomed to being able to set the exact address where a
region of memory will be reserved. Generally, memory allocation facilities such as
malloc and the C++ new operator do not permit an application to specify where
memory will be allocated®they only allow the application to control the size of the
allocation. Windows, however, gives the developer control over both aspects of an
allocation, which can have important implications for how an application is coded, as
you'll see in just a moment.

As far as Windows is concerned, reserving memory is relatively inexpensive because
all that happens when memory is reserved is that the relatively small virtual address
descriptors (VADs) for the process are updated. The operation is normally speedy
because no physical memory is actually being committed and the process page
guota isn't impacted.

Windows' two-step approach to allocating virtual memory is used by the operating
system itself. One prime example is the way in which the stack space for a thread is
allocated. When it creates a thread, Windows reserves a region of virtual memory to
store the thread's stack. This region is 1MB by default; you can override it for an
individual thread by specifying a different stack size in the call to CreateThread, or
for all threads via the /STACK linker flag (for Visual C++; most other compilers
support a similar option) or by using tools such as ImageCfg that can edit an
executable file's header.

Even though it has reserved the full stack space for the thread, Windows waits to
commit pages within that region until they're needed. It begins by committing just
one page in the reserved region and flags the page just beyond it as a guard page.
When the system attempts to expand a thread's stack into the guard page, Windows
traps the STATUS_GUARD _ PAGE exception that results and expands the stack by
committing the guard page (the page's guard status was already reset by the
attempted access). It then flags the next page following the newly committed page
as a guard page, and the thread is allowed to continue to execute. This process
continues until the end of the region originally reserved for the thread's stack is
reached. In this way, we're able to ensure that the address area used by the thread
stack is contiguous, but we don't use physical storage until we absolutely have to.

As I've mentioned, the allocation granularity on 32-bit Windows is 64K. You should
always reserve memory in allocation granularity®sized chunks because the
unreserved address space that's left when you reserve only part of a 64K region is
inaccessible to user mode allocation requests. Given that the starting address of
each reservation request you make is rounded down to the nearest allocation
boundary, there's no way for an application to force Windows to reserve the
orphaned address space. Over time, this can lead to the process running out of
address space even if there's plenty of physical storage available, which can cause
catastrophic problems for an application. For example, getting down to less than
1MB of contiguous address space will prevent most applications from creating new
threads since the default thread stack size is 1MB. (For SQL Server, the default



thread stack size has been reduced to .5MB, but it is still quite possible to exhaust
the virtual memory address space to the point that new worker threads cannot be
created.)

Even though Windows requires user mode allocation requests to begin on an
allocation granularity boundary, kernel mode allocations are not thus restricted. It's
common and normal for system allocations such as the region that stores a
process's PEB and TEBs to begin on a non-64K boundary.

Committing Memory

You must commit virtual memory before you can use it. Attempting to access
memory that has only been reserved will cause an access violation. Committing a
region of virtual memory is as simple as calling VirtualAlloc with the MEM_COMMIT
flag. You can commit at the same time you reserve, or you can use a separate call to
VirtualAlloc. If you want to reserve and commit simultaneously, you use a bitwise OR
operator to combine the MEM_RESERVE and MEM_COMMIT flags, like this:

pBuf=(Buf *)VirtualAlloc(NULL, 65536, MEM RESERVE|MEM COMMIT,
PAGE_READWRITE) ;

If you commit the pages in a reserved region in a separate operation, you're not
required to commit all of them at once. You can select individual pages within the
region to commit. This allows you to easily set up sparsely populated data structures
that combine the benefits of contiguous address blocks with the efficiency of
allocating physical storage only when needed. SQL Server's buffer pool is a good
example of this type of sparse data structure. It is reserved in its entirety at process
startup, and individual pages are committed within it as needed.

The size of any commit request you issue will be rounded up to the nearest page
boundary. For example, if you attempt to commit a 10K region, your request will be
rounded up to 12K. Here's an example of a virtual memory commit request.

//Begin by reserving a 64K buffer
pBuf=(Buf *)VirtualAlloc(NULL, 65536, MEM RESERVE,
PAGE READWRITE) ;

//Commit the second page of the previously reserved buffer
VirtualAlloc((void *) (pBuf+4096), 4096, MEM COMMIT,
PAGE READWRITE) ;

Initializing and Modifying Pages

If a committed page is private and has never been accessed, it is created the first
time it's accessed as a zero-initialized page (also known as a demand zero page).
This means that each virtual memory page starts out filled with zeros.

Windows automatically writes a private committed page that has been modified to
disk as demands on system memory resources require. Windows writes committed



pages to disk through the normal modified page writing process, which moves pages
from the system working set to the modified list and then to disk. You can cause
mapped file pages to be written immediately to disk by calling the Win32
FlushViewOfFile API function. Of course, Windows will automatically reload a page
from disk into physical memory as necessary.

If you've modified a page but want Windows to treat it as though it was not modified
so that it will not be paged to disk when system memory demands dictate, you can
call VirtualAlloc with the MEM_RESET flag. This tells Windows that you don't want the
data on the page preserved if the system determines that it needs the physical
memory the page occupies to satisfy other memory requests. If you reset the
contents of a page currently in the system paging file, the page will be discarded. If
the page is in physical memory, it will be marked as not modified so that the system
can simply overwrite it if it needs that particular memory page. The next time the
page is accessed, it will be filled with zeros, as it was when it was first accessed.
Properly structured, your code can use the knowledge that a page is zeroed when
reset to detect when it needs to reload the data for the page.

Resetting unneeded pages can improve application performance because it
alleviates the need to write modified pages to the system paging file unnecessarily.
Of course, you could also just decommit the page or pages, which would have the
same effect. By resetting rather than decommitting you avoid the overhead
associated with committing a new page. The page remains committed but is zero-
filled on your next access.

Note that VirtualAlloc rounds the base address and allocation size differently when
you pass the MEM_RESET flag. Normally, it rounds the base address down to the
nearest page or allocation granularity boundary and rounds the allocation size up to
the nearest integral number of pages. However, when you pass MEM_RESET into
VirtualAlloc, it rounds the base address up to the nearest page boundary and rounds
the allocation size down to the nearest page boundary. This is done in order to keep
you from resetting a page by accident. If you want to reset a page, it must be
completely encompassed within the region you supply to VirtualAlloc@pages not
wholly contained within the region will not be reset.

Freeing Memory

Committed pages are either private (not shareable) or mapped to shared memory.
Once a page has been committed, an application is free to access it. It can call
VirtualProtect to change the protection attributes on the page, VirtualLock to lock
the page in physical memory, and VirtualFree to release the page.

You can call VirtualFree to release the storage that's been committed for an address
block without releasing its reservation. This is called decommitting. When you
decommit, you can specify how much of the committed region to free up. You can
also free up the address range associated with an allocation. This is called releasing.
When you release a block of virtual memory addresses, you may not specify how
much of the region to release@either the entire region is released or none of it is.
Here are some examples.

//Begin by reserving a 64K buffer
pBuf=(Buf *)VirtualAlloc(NULL, 65536, MEM RESERVE,



PAGE_READWRITE) ;

//Commit the second page of the previously reserved buffer
VirtualAlloc((void *) (pBuf+4096), 4096, MEM COMMIT,
PAGE READWRITE) ;

//Decommit the page just committed
VirtualFree((void *)(pBuf+4096), 4096, MEM DECOMMIT);

//Release the entirety of the previous reservation
VirtualFree((void *)(pBuf),0,MEM RELEASE);

When you decommit a region of memory, you can do so without having to be
concerned about which pages within the region are actually committed versus only
reserved. Decommitting an uncommitted page does not raise an error.

Locking Pages in Memory

By default, a process is limited to locking a maximum of 30 pages in memory. If an
app wants to lock more pages than this in physical memory, it must first call the
SetWorkingSetSize API in order to increase the size of the process's working set. This
is the API that SQL Server calls when you enable the set working set size advanced
configuration option. An app calls VirtualUnlock to unlock a page that has been
locked in physical memory.

Note that pages locked into physical memory using VirtualLock can still be paged to
disk in some circumstances. If all the threads in a process are in a wait state,
Windows is free to prune such pages from the system working set, which would
ultimately result in their being written to disk if they have been modified.

Exercises

In this next exercise, you'll explore what transpires when an application reserves
virtual memory. You'll learn about the way in which VirtualAlloc rounds allocation
requests to page boundaries, and you'll see how the system allocation granularity
affects virtual memory reservations.

Exercise 4.5 Exploring the Process of Reserving Virtual Memory

1. Copy the vm_reserve project from the CHO4\vm_reserve subfolder on the
book's CD to your local hard drive and load it into the VC++ development
environment. Alternatively, you can copy the executable from the Release
subfolder and run it separately if you aren't interested in building it from
VC++.



. Let's begin by looking at the source code for vm_reserve (Listing 4.5).
Listing 4.5 A Simple App That Reserves a Region of Memory

int main(int argc, char* argv[])

{

void *pv=VirtualAlloc(
(void *)Ox7FF01000,
4096,
MEM RESERVE,
PAGE READWRITE) ;

if (pv) A
MEMORY_ BASIC INFORMATION mbi;
DWORD dwLen=sizeof (MEMORY BASIC INFORMATION);

VirtualQueryEx(GetCurrentProcess(),pv,&mbi,dwLen);
printf("%d bytes reserved at 0x%08X.\n",
mbi.RegionSize,pv);

else printf("Error reserving mem %d.\n",
GetLastError());

return 0;

}

. This app begins by calling VirtualAlloc to reserve a 4K buffer at a particular
memory address. The notion of reserving or committing memory at a specific
address is foreign to most new Windows developers but is something Win32
has always supported. If the address requested is not on a page boundary (4K
on x86) or is not on an allocation granularity boundary (64K on 32-bit
Windows), the system will round the address as necessary to make sure it is
properly aligned.

. The app next calls VirtualQueryEx to retrieve the size of the newly reserved
region, which it then displays. We use VirtualQueryEx rather than VirtualQuery
because there are situations where VirtualQuery can return inaccurate
information on systems with huge amounts of memory.

. Run the app and compare its output to the original VirtualAlloc request. Two
elements in the output should stand out. Your output should look something
like the following:

8192 bytes reserved at Ox7FF00000.

. First, notice that we reserved 8192 bytes rather than 4096. Why is that? It's
because the starting address and allocation size we specified caused the
reservation to span two pages in the virtual memory address space. As |
mentioned earlier, if you specify a starting address for a reservation, it is
always rounded down to the nearest allocation granularity boundary. If the size
of the reservation causes it to span a page, the reservation is rounded up to



the next page boundary. Hence, in this case, we end up reserving two pages
instead of one.

7. Second, notice the starting address of the reservation. It differs from the one
we specified. As I've mentioned, the Windows memory manager will round
down a specified starting address so that it properly aligns with the system
page size and allocation granularity. Since this is a reservation, the starting
address is rounded down to the nearest allocation granularity. If this were
instead a commit request, it would be rounded down to the nearest page
boundary.

8. Last, take note of the region size returned by VirtualQueryEx. Even though the
system allocation granularity is 64K, we reserve only 8K. This means that the
remaining virtual memory addresses between the end of the reservation and
the next allocation granularity boundary (the 56K of address space between
Ox7FF02000 and Ox7FFOFFFF) are wasted. They're not accessible because any
attempted reservation within this area will be rounded down to start at
0Ox7FF00000. As a rule, you should never reserve less than 64K of virtual
memory space. Doing so wastes address space without really providing any
upside. It doesn't conserve memory because you're not actually allocating
memory when you reserve it€@you're merely flagging a range of addresses as
in use by the application. You can always commit individual pages within a
reserved range, so it's not as though reserving 64K means you have to also
commit 64K worth of physical storage. And keep in mind that if you run a
process out of address space (regardless of the amount of available physical
storage), your app will likely go down in flames€any new reservation request
for your process (including system-initiated reservations, such as one to
reserve a new thread stack) will fail.

In this next exercise, you'll walk through the process of reserving a region of
memory, then committing and releasing individual pages within that region. After
each step, we'll print out the status of each page in the region to verify that what we
think is happening actually is.

Exercise 4.6 Reserving, Committing, and Releasing Virtual Memory

1. Copy the vm_release sample project from the CHO4\vm_release subfolder on
the book's CD to your hard drive, and load it into the VC++ development
environment. Then compile and run it. Alternatively, you can copy the
executable from the Release subfolder and run it outside Visual Studio if you
are not interested in compiling it first.

2. The app begins by allocating a 64K region of address space. It then commits
the second page in this space. It then decommits this page and finishes up by
releasing the entire 64K region.

3. At each step, we call a routine named DumpRegionMemoryStatus that iterates
through the pages in a region and lists the status@reserved, committed, or
free@of each one. Listing 4.6 shows the source code for vm_release.

Listing 4.6 A Sample App That Takes Virtual Memory through
Its Paces



// vm_release.cpp : Reserve, commit, decommit, and release

// sample app.
//

#include "stdafx.h"
#include "conio.h"
#include "windows.h"

void DumpRegionMemoryStatus(char *szMsg, char * pV, DWORD
dwRegionSize)
{

//Display title message
printf("\n%s\n",szMsq);

//Get system page size
SYSTEM INFO si;
GetSystemInfo(&si);

MEMORY BASIC INFORMATION mbi;
DWORD dwLen=sizeof (mbi);

char * pCur=pV;
while ((DWORD)pCur < ((DWORD)pV + dwRegionSize)) {
VirtualQueryEx(GetCurrentProcess(),pCur,&mbi,dwLen);

printf("Page at 0x%08x is %s\n",pCur,
MEM COMMIT==mbi.State?"Committed":
MEM RESERVE==mbi.State?"Reserved":"Free");
pCur+=si.dwPageSize;
}
}

#define REGIONSIZE 65536

int main(int argc, char* argv[])

{
char *pv=(char *)VirtualAlloc((void *)Ox7FF00000,
REGIONSIZE,
MEM RESERVE,
PAGE_READWRITE) ;
if (pv) A

DumpRegionMemoryStatus("Memory status after reserving the
region",pv,REGIONSIZE);

VirtualAlloc((void *) (pv+4096),4096,
MEM COMMIT,PAGE READWRITE) ;
DumpRegionMemoryStatus("Memory status after committing a
page",pv,REGIONSIZE);

VirtualFree((void *)(pv+4096),4096,MEM DECOMMIT);
DumpRegionMemoryStatus("Memory status after decommitting a



page",pv,REGIONSIZE);

region",pv,REGIONSIZE);

VirtualFree((void *)pv,0,MEM RELEASE); .
DumpRegionMemoryStatus("Memory status after releasing the

else printf("Error reserving mem %d.\n",GetLastError());

return 0;

}

4. Run the app and study the output. Your output should look something like this:

Memory status after reserving the region
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Page
Page
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0x7ff00000
0x7ff01000
0x71f02000
0x7ff03000
0x71f04000
0x7ff05000
0x7ff06000
0x7ff07000
0x7ff08000
0x71f09000
0x7ff0a000
Ox7ffObOOO
0x7ff0cO00
0x7ff0dO00
0x7ff0e000
Ox7ffOTO00

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
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Reserved
Reserved
Reserved
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Reserved
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Reserved
Reserved

Memory status after committing
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0x7ff00000
0x7ff01000
0x71f02000
0x7ff03000
0x71f04000
0x7ff05000
0x7ff06000
0x7ff07000
0x7ff08000
0x71f09000
0x7ff0a000
Ox7ffObOOO
0x7ff0cO00
0x7ff0dO00
0x7ff0e000
Ox7ffOTO00
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Reserved
Committed
Reserved
Reserved
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Reserved
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Reserved
Reserved
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a page

Memory status after decommitting a page
Page at Ox7ff00000
Page at Ox7ff01000
Page at 0x7ff02000
Page at Ox7ff03000

is
is
is
is

Reserved
Reserved
Reserved
Reserved



Page at Ox7ff04000 is Reserved
Page at Ox7ff05000 is Reserved
Page at Ox7ff06000 is Reserved
Page at Ox7ff07000 is Reserved
Page at Ox7ff08000 is Reserved
Page at Ox7ff09000 is Reserved
Page at Ox7ff0a@00 is Reserved
Page at Ox7ffOb00OO is Reserved
Page at Ox7ff0c000 is Reserved
Page at Ox7ff0de0O is Reserved
Page at Ox7ff0e@00 is Reserved
Page at Ox7ffOfe00 is Reserved

Memory status after releasing the region
Page at Ox7ff00000 is Free
Page at Ox7ff01000 is Free
Page at Ox7ff02000 is Free
Page at Ox7ff03000 is Free
Page at Ox7ff04000 is Free
Page at Ox7ff05000 is Free
Page at Ox7ff06000 is Free
Page at Ox7ff07000 is Free
Page at Ox7ff08000 is Free
Page at Ox7ff09000 is Free
Page at Ox7ff0a@00 is Free
Page at Ox7ffOb00OO is Free
Page at Ox7ff0c000 is Free
Page at Ox7ff0de0O is Free
Page at Ox7ff0e@00 is Free
Page at Ox7ffOfe00 is Free

As you can see, committing an individual page within a reserved region is fairly
trivial. Decommitting is equally simple, as is releasing the entire region.

In this next exercise, you'll learn how the PAGE_GUARD page protection attribute
works. You'll allocate a memory buffer that's initially guarded, then turn off the guard
attribute for one of its pages by attempting to lock it in memory.

Exercise 4.7 Guarding Memory with the PAGE_GUARD Attribute

1. Let's start with the source code to vm_guard, the sample app we'll use to
investigate how PAGE_GUARD works. Take a quick look at the code in Listing
4.7 and see whether you can understand how it works on first glance. I'll go
through it step-by-step in just a moment.

Listing 4.7 A PAGE_GUARD Sample App

// vm _guard.cpp : Example that demonstrates how PAGE GUARD works.
//

#include "stdafx.h"
#include "conio.h"



#include "windows.h"
#define REGIONSIZE 65536

int main(int argc, char* argv[])

{
char *pv=(char *)VirtualAlloc(NULL,
REGIONSIZE,
MEM RESERVE | MEM COMMIT,
PAGE_READWRITE | PAGE GUARD);
if (pv) A
//Attempt to lock a page % will fail because of PAGE GUARD
bool bLocked=VirtuallLock((void *)pv,4096);
if (!bLocked) {
printf("First VirtualLock failed for 0x%08X, Last error =
0x%08X\n", pv, GetLastError());
} else printf("First VirtualLock succeeded for 0x%08X\n",
pv);
//Retry page lock 8 will succeed since PAGE GUARD was reset
bLocked=VirtualLock((void *)pv,4096);
if (!bLocked) {
printf("Second VirtualLock failed for 0x%08X, Last error
= 0x%08X\n", pv, GetLastError());
} else printf("Second VirtualLock succeeded for 0x%08X\n",
pv);
VirtualFree((void *)pv,0,MEM RELEASE);
else printf("Error reserving/committing memory. Last error=
%d.\n",GetLastError());
return 0;
}

2. Load this code from the CHO4\vm_guard subfolder on the CD and compile and
run it. Your output should look like this:

First VirtuallLock failed for 0x00440000, Last error = 0x80000001
Second VirtualLock succeeded for 0x00440000

3. This code begins by allocating a virtual memory block that it protects with the
PAGE_GUARD attribute. The entirety of the block is off limits to access because
of PAGE_GUARD.

4. It then attempts to lock the first page of the block into physical memory using
VirtualLock. (I've hard-coded the page size for simplicity's sake; you should
always use GetSysteminfo to retrieve the system page size at runtime in your
own code.)



5. This first VirtualLock call has two results: it fails, and it resets the PAGE_GUARD
attribute for the first page in the region.

6. You'll note that the GetLastError output from the failed call is 0x80000001,
which is equivalent to the STATUS_GUARD_PAGE_VIOLATION return code |
mentioned earlier in the chapter.

7. Because it resets the PAGE_GUARD status for the first page of the region, the
second attempt to lock this page succeeds. This is how PAGE_GUARD works:
You get a one-shot failure mechanism that can help you detect invalid page
accesses.

NOTE: Note that VirtualQuery(Ex) always reports the page protection attributes of a
page as it was originally allocated®neither changes made with VirtualProtect nor
those made as a result of the PAGE_GUARD attribute being reset are reflected in the
output from VirtualQuery(Ex). | was surprised when | initially discovered this, but it /s
consistent with the Platform SDK documentation.

Another interesting use of VirtualQuery is in inspecting SQL Server's memory.
Because you can create and run extended procedures, you have the ability to load a
DLL within the SQL Server process space and run the code it contains as though it
were part of SQL Server itself. You can use this ability to inspect various internal
structures within the server, including the server's own memory allocations. In this
next exercise, we'll build an extended procedure that details SQL Server's virtual
memory allocations.

Exercise 4.8 Inspecting SQL Server Memory Allocations with
VirtualQuery

Let's begin with the source code to the xproc. Based on what you've learned thus far
about virtual memory, take a quick look through the code in Listing_ 4.8 and see if
you can figure out how it works. I'll go through it step-by-step in just a moment.

Listing 4.8 The Source Code for xp_vmquery

#include <stdafx.h>

#define XP_NOERROR 0
#define XP_ERROR 1
#define MAXADDRLEN 12
#define MAXSIZELEN 12

#define MAXPROTLEN 128



#define MAXSTATELEN 20
#define MAXTYPELEN 20

#ifdef  cplusplus
extern "C" {
#endif

RETCODE _ declspec(dllexport) xp vmquery(SRV_PROC *srvproc);

#ifdef _ cplusplus

}
#endif

RETCODE _ declspec(dllexport) xp_vmquery(SRV_PROC *srvproc)
{

bool bByPage=false;
DWORD dwParams=srv_rpcparams(srvproc);

if (1l==dwParams) {

BYTE bType;

ULONG cbMaxLen;
ULONG cbActuallLen;
char szByPage[2];
BOOL fNull;

srv_paraminfo(srvproc, 1, &bType, &cbMaxLen, &cbActuallen,

(BYTE *)&szByPage, &fNull);

//Enable Page mode if "P" passed in
bByPage=(!stricmp("P",szByPage));
}

//Set up the column names
char szColName[129];

wsprintf(szColName, "Address");
srv_describe(srvproc, 1, szColName, SRV _NULLTERM, SRVCHAR,
MAXADDRLEN, SRVCHAR, 0, NULL);

wsprintf(szColName, "Size");
srv_describe(srvproc, 2, szColName, SRV _NULLTERM, SRVCHAR,
MAXSIZELEN, SRVCHAR, 0, NULL);

wsprintf(szColName, "Protection");
srv_describe(srvproc, 3, szColName, SRV _NULLTERM, SRVCHAR,
MAXPROTLEN, SRVCHAR, 0, NULL);

wsprintf(szColName, "State");
srv_describe(srvproc, 4, szColName, SRV _NULLTERM, SRVCHAR,
MAXSTATELEN, SRVCHAR, 0, NULL);

wsprintf(szColName, "Type");



srv_describe(srvproc, 5, szColName, SRV _NULLTERM, SRVCHAR,
MAXTYPELEN, SRVCHAR, 0, NULL);

//Get user mode address info

SYSTEM INFO si;

GetSystemInfo(&si);

char * pszStart=(char *)si.lpMinimumApplicationAddress;

char szProt[256];
char szState[256];
char szType[256];
char szBase[12];
char szSize[12];

//Set the column data bindings

srv_setcoldata(srvproc, 1, szBase);
srv_setcoldata(srvproc, 2, szSize);
srv_setcoldata(srvproc, 3, szProt);
srv_setcoldata(srvproc, 4, szState);
srv_setcoldata(srvproc, 5, szType);

MEMORY BASIC INFORMATION mbi;

int i=0;

while ((pszStart) &&
(pszStart<si.lpMaximumApplicationAddress)) {

//Get info for the current memory block
VirtualQuery(pszStart,&mbi,sizeof(mbi));

//Set up the Address column
wsprintf(szBase, "0x%lp",mbi.BaseAddress);

//Set up the Size column
wsprintf(szSize,"%010d",mbi.RegionSize);

//Set up the Protection column

szProt[0]='\0";

if (mbi.Protect & PAGE READONLY) strcat(szProt, "READONLY ");

if (mbi.Protect & PAGE READWRITE) strcat(szProt,"READWRITE ");

if (mbi.Protect & PAGE WRITECOPY) strcat(szProt,"WRITECOPY ");

if (mbi.Protect & PAGE EXECUTE) strcat(szProt,"EXECUTE ");

if (mbi.Protect & PAGE EXECUTE_ READ)
strcat(szProt, "EXECUTE READ ");

if (mbi.Protect & PAGE EXECUTE READWRITE)
strcat(szProt, "EXECUTE READWRITE ");

if (mbi.Protect & PAGE EXECUTE WRITECOPY)
strcat(szProt, "EXECUTE WRITECOPY ");

if (mbi.Protect & PAGE GUARD) strcat(szProt, "GUARD ");

if (mbi.Protect & PAGE NOACCESS) strcat(szProt, "NOACCESS ");

if (mbi.Protect & PAGE NOCACHE) strcat(szProt, "NOCACHE ");

//Get rid of trailing space
if (szProt[0]) szProt[strlen(szProt)-1]1='\0";
else strcpy(szProt, "UNKNOWN") ;



//Set up the State column

szState[0]="'\0";

if (mbi.State & MEM FREE) strcat(szState, "Free ");

else {
if (mbi.State & MEM RESERVE) strcat(szState, "Reserved ");
if (mbi.State & MEM COMMIT) strcat(szState, "Commit ");

}

//Get rid of trailing space
if (szState[0]) szState[strlen(szState)-1]1='\0";

//Set up the Type column

szType[0]="'\0";

if (mbi.Type & MEM IMAGE) strcat(szType,"Image ");

else if (mbi.Type & MEM MAPPED) strcat(szType, "Mapped ");
else if (mbi.Type & MEM PRIVATE) strcat(szType,"Private ");

if (szTypel[Q]) szType[strlen(szType)-1]='\0";
else strcpy(szType, "Unknown");

//Set current column lengths
srv_setcollen(srvproc, 1, strlen(szBase));
srv_setcollen(srvproc, 2, strlen(szSize));
srv_setcollen(srvproc, 3, strlen(szProt));
srv_setcollen(srvproc, 4, strlen(szState));
srv_setcollen(srvproc, 5, strlen(szType));

OrWNERE

//Send the row to the client
srv_sendrow(srvproc);

i++;

//Move to the next page or region

if (bByPage) pszStart+=si.dwPageSize;
else pszStart+=mbi.RegionSize;

return XP_NOERROR ;
}

1. Copy the binary for this xproc from CHO4\xp_vmaquery on the CD to the binn
folder under your SQL Server installation.

2. Install it into the master database by running this command in Query Analyzer:
sp_addextendedproc 'xp vmquery', 'xp vmquery.dll'

3. Run it from Query Analyzer like this:
Xp_vmquery

4. You should see output like this:



Address Size Protection State Type
0x00010000 0000004096  READWRITE Committed Private
0x00011000 0000061440  NOACCESS Free Unknown
0x00020000 0000004096  READWRITE Committed Private
0x00021000 0000061440  NOACCESS Free Unknown
0x00030000 0000454656 UNKNOWN Reserved Private
0x0009FO0O0 0000004096  READWRITE GUARD Committed Private
OXxO000A0000 0000065536 READWRITE Committed Private
0x000BOOOO 0000282624  READWRITE Committed Private
OXO000F5000 0000061440 UNKNOWN Reserved Private
0x00104000 0000004096 READWRITE Committed Private
0x00105000 0000700416 UNKNOWN Reserved Private
0x001BOOOO 0000004096  READWRITE Committed Mapped
0x001B1000 0000061440  UNKNOWN Reserved Mapped
0x001CO000 0000090112 READONLY Committed Mapped
0x001D6000 0000040960  NOACCESS Free Unknown
OX001EQO00 0000192512 READONLY Committed Mapped
0x0020FO00 0000004096  NOACCESS Free Unknown

5. As with the vm_release example, this extended procedure uses VirtualQuery to
walk through the SQL Server process space and report on each region of
allocated memory. Using this procedure, you can quickly tally up how much
reserved versus committed memory is allocated within the process and how
much virtual memory remains unused (free). You can tell which pages are
private pages (normal allocations), image pages (those belonging to EXEs and
DLLs), and mapped pages (pages from memory-mapped files).

6. Use OSQL to run xp_vmaquery with its 'P' option (page mode) in order to view
the allocation information for every page in the SQL Server process (as
opposed to each region, as in step 4). | suggest you run this via OSQL in order
to avoid running out of virtual memory in Query Analyzer as xp_vmaquery will
return hundreds of thousands of rows when executed in page mode.

Virtual Memory Recap

Windows' virtual memory management is among its more powerful facilities. By
providing a vast process address space that can be committed to physical storage in
piecemeal fashion, the operating system provides applications with the simplicity of
contiguous addressing combined with the efficiency and paucity of sparse resource
consumption.

Every page in virtual memory is in one of three states: reserved, committed, or free.
An application can allocate specific pages in memory or can allow Windows to
choose the precise location of the pages allocated to fulfill an allocation request.

An application can reserve and commit memory as separate operations or
simultaneously, and it can commit individual reserved pages. Pages within a
reservation can and frequently do have different protection attributes. These
protection attributes can be assigned during the reservation or commit operation or
by calling VirtualProtect after the fact.



VirtualFree can be used to decommit committed pages as well as to release reserved
pages. VirtualLock can be used to lock pages in physical memory; VirtualUnlock can
be used to unlock them.

The physical storage behind virtual memory is often the system paging file, though,
of course, some pages will be backed by physical memory. Virtual memory can also
be backed by a file on disk. Windows uses this ability to share an application's
executable code between multiple instances of it. The physical storage behind the
virtual memory set aside in each process to store the application's code and data is
the EXE or DLL file itself. When an application attempts to change one of its data
pages, Windows' copy-on-write facility makes a copy of the page and instructs the
modifying process to use it instead of the original. This way, multiple instances share
as many pages as possible of the underlying executable's code and data as long as
possible.

Virtual Memory Knowledge Measure

1. True or false: Even if | reserve only a 32K virtual memory address range,
Windows still reserves a 64K range because of the system allocation
granularity.

2. What page protection attribute does Windows use to mark the end of the
committed range of a thread stack?

3. True or false: Even though a page has been locked in physical memory via a
call to VirtualLock, it can still be paged to disk if memory demands dictate.

4. What happens when a process attempts to modify a page that has been
flagged with the PAGE_WRITECOPY protection attribute?

5. True or false: SQL Server makes the majority of its memory allocations via the
system heap.

6. What is SQL Server's default thread stack size?

7. Is it possible to reserve and commit memory in a single call to VirtualAlloc, or
must an application make separate calls to reserve and commit memory?

8. True or false: All virtual memory requests@regardless of whether they are user
mode or kernel mode requests@are subject to the system allocation
granularity.

9. What type of application most typically uses the PAGE_WRITECOMBINE page
protection attribute?

10. True or false: An application can use the PAGE_EXECUTE_WRITECOPY
protection attribute to implement Windows' write copy functionality for
committed pages in the user mode address space.

11. What Win32 API function is used to release a reserved region of virtual memory
addresses?

12.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

True or false: The PAGE_EXECUTE and PAGE_READONLY attributes are
functionally equivalent on x86 processors.

True or false: An application can specify the size of a virtual memory allocation
but not the exact location@the Windows memory manager decides the precise
memory location of an allocation.

What flag can you pass into VirtualAlloc to tell it to reset a region of committed
memory in order to prevent that memory from being swapped to disk if
memory demands dictate?

True or false: You call the VirtualReserve function to reserve a region of virtual
memory addresses that you do not yet wish to commit.

True or false: The VirtualRelease function can release a region of reserved
virtual memory without first decommitting it.

What VC++ linker switch can an application developer use to adjust the
default stack size?

True or false: You can cause mapped file pages to be written immediately to
disk by calling the Win32 FlushViewOfFile API function.

True or false: Attempting to access a page with the PAGE_GUARD protection
attribute causes a STATUS _GUARD_PAGE exception to be raised and resets the
guard page protection.

True or false: Virtual memory that has been decommitted is still reserved until
you release it.

What Windows API function does SQL Server call when the set working set size
option has been enabled?

Is it possible to alter the amount of virtual memory reserved for a new thread's
stack via the call to CreateThread?

By default, how many virtual memory pages can a process lock in physical
memory?

True or false: The VirtualDecommit API function can be used to decommit
previously committed virtual memory pages that span allocation granularity
boundaries.

True or false: When committing a region of reserved memory, Windows will
round the commit request to the nearest allocation granularity boundary.



Heaps

A heap is a memory region consisting of one or more pages of reserved space that
can be suballocated into smaller pieces by the heap manager. Heaps are most useful
for allocating large numbers of similarly sized, relatively small objects and
structures. You should not use heaps for blocks of 1MB or more; use VirtualAlloc and
company for large allocations such as this.

On the plus side, heaps allow you to ignore the system's allocation granularity and
page size boundaries. On the negative side, heaps are a bit slower to access and
don't provide the same level of control that the virtual memory APIs do. For example,
you can't reserve a heap region without also committing it@VirtualAlloc is the only
Win32 allocation function that separates these two functions.

The exact algorithms used by the heap manager to commit and decommit physical
storage for heaps are undocumented and have changed between releases of
Windows. If you need precise information about and/or control over the process the
heap manager uses to manage the physical storage behind heaps, don't use heaps
in the first place®use virtual memory instead.

Key Heap Terms and Concepts

v Default heap® the built-in heap that Windows provides every process by
default. The default process heap has a base size of 1MB, but this can be
changed via a linker switch.

v Private (or custom) heap® a heap created by a process for its own private
use that is separate from the default process heap.

v’ Heap serialization® the facility whereby the Windows heap manager
ensures that multiple threads do not corrupt a heap through simultaneous
access.



Key Heap APIs

Table 4.8. Key Heap-Related APl Functions

Function Description
HeapCreate Creates a private heap
HeapAlloc Allocates memory from a heap
HeapFree Frees a block of memory allocated from a heap
HeapDestroy Destroys (releases) a private heap
GetProcessHeap Returns a handle to a process's default heap

The Default Heap

Windows provides every process with a default heap. Applications use the default
heap to service allocation facilities such as malloc and the C++ new operator.
Several Win32 API functions also make use of the default heap, including the old 16-
bit LocalAlloc and GlobalAlloc functions.

A process's heap is 1MB in size by default but can be changed via the /HEAP linker
switch (in Visual C++; most other compilers provide a similar option) or with utilities
that can edit an executable's file header. This small size is why heaps aren't ideal for
large allocations. You should leave those to virtual memory.

By default, Windows serializes access to the process heap. This means that only one
thread at a time can access the default heap. This prevents multithreaded heap
synchronization errors and protects the heap from corruption. Note that you can
disable this synchronization for individual allocations from the heap, but this is not
generally recommended.

You cannot destroy the default process heap with a call to HeapDestroy. If you pass
the handle of the default heap into HeapDestroy, the system ignores the call. If you
want to limit the physical size of the default heap, use the /HEAP linker option.

Allocating Heap Memory



You use the HeapAlloc and HeapFree routines to allocate and deallocate memory
from a heap. Both of these functions require a handle to the heap from which you
want to allocate or deallocate memory. This handle can be one returned either from
a call to HeapCreate or from the GetProcessHeap function (if you want to work with
memory from the default heap).

In order to allocate memory from a heap, HeapAlloc must perform the following
steps.

1. Scan the linked list of allocated and freed blocks for the first free block that is
large enough to satisfy the request.

2. Allocate the block by marking the free block as allocated.
3. Add the new block to the linked list managed by the heap manager.

HeapAlloc supports three flags: HEAP_ZERO_MEMORY, HEAP_
GENERATE_EXCEPTIONS, and HEAP_NO_SERIALIZE. You can combine these by using
a bitwise OR operator to pass them into HeapAlloc's second parameter.

As its name suggests, the HEAP_ZERO_MEMORY flag causes each block of allocated
memory to be zero-filled just as virtual memory pages are zero-filled on their first
access. This can be handy for tracking down uninitialized buffer errors.

HEAP_GENERATE_EXCEPTIONS causes HeapAlloc to throw exceptions when an error
occurs rather than return NULL. When this happens, one of two exceptions will be
raised: STATUS NO_MEMORY (indicating an out-of-memory condition) or

STATUS ACCESS VIOLATION, indicating heap corruption or improper function
parameters.

HEAP_NO_SERIALIZE disables any thread synchronization that would normally occur
when accessing the heap. As | mentioned, the default system heap is always created
with serialization enabled by default. You can also create custom heaps with
serialization enabled. You can disable this serialization for a specific allocation by
passing HEAP_NO_SERIALIZE into HeapAlloc.

HeapRealloc allows a block to be resized. If you are suballocating your block, be
careful with this because increasing the size of a block can cause it to be moved
within the heap. If a block moves, any pointers that reference it would obviously
need to be changed as well. You can keep the block from moving by passing in the
HEAP_REALLOC IN_PLACE_ONLY flag. This causes the reallocation to fail if the block
needs to grow in size and would need to be moved in order to do so.

Custom Heaps

An application can create a custom heap by calling the HeapCreate function. There
are several good reasons for creating your own custom heap, including the following.

e Component isolation® by placing components in their own heap, you prevent
errant modifications to one component from corrupting other components.



e Efficient memory management® by allocating your own heap, you can size it

so that it stores a given number of evenly sized objects as efficiently as
possible.

® Proximity allocations€ by allocating things close to each other, you lower the
possibility that the system will thrash when iterating through a list of memory
objects.

® Avoidance of the overhead of thread synchronization® if you know that you do
not need thread synchronization (e.qg., your app is single threaded), you can do
away with the overhead of synchronizing heap access by creating your own
heap.

® Fast and easy deallocation® regardless of the number of individual allocations

you've made from a custom heap using HeapAlloc, you can free all of them at
once by destroying the heap through a call to HeapDestroy.

When you create a custom heap, you can specify the HEAP_NO_SERIALIZE or
HEAP_GENERATE_EXCEPTIONS flags or a combination of the two. As | mentioned
earlier, HEAP_NO_SERIALIZE disables serialized access to the heap. Thread
serialization is enabled by default. I'll cover this more below, but, generally
speaking, you should not use this option unless you're absolutely sure you do not
need thread synchronization when accessing your heap.

Also, as with HeapAlloc, passing the HEAP_GENERATE_EXCEPTIONS flag into
HeapCreate causes the system to throw an exception when an attempt to allocate
(or reallocate) a heap memory block fails. Normally, a failed allocation results in the
return of a NULL pointer. You can use this flag to tell the heap manager to throw an
exception instead.

The second parameter to HeapCreate specifies the number of bytes initially
committed to the heap. HeapCreate rounds this up to a multiple of the CPU's page
size as necessary.

The third parameter to HeapCreate specifies the heap's maximum size. Specify 0 if
you want to create a heap with no fixed size limit.

You can use HeapDestroy to destroy a custom heap. If you fail to destroy a custom
heap, it remains in memory until the process terminates.

Heap Serialization

When you create a custom heap, the HEAP_NO_SERIALIZE flag controls whether
access to the heap is automatically serialized. When an app has more than one
thread accessing a heap whose synchronization has been disabled, multiple threads
can simultaneously grab the same memory block, and you have a veritable time
bomb waiting to go off at the most inopportune moment. The fact that you've got
such a serious bug may not be immediately evident. For example, you may not see a
problem until your app is executed on a multiprocessor machine or on a machine
with a much faster processor than your development machine. Thread
synchronization errors are notoriously difficult to track down because they are



almost always timing related. The very act of stepping through your code under a
debugger can make them seem to go away.

Potential multithreaded heap synchronization problems include those listed below.

® The heap's linked list of blocks becomes corrupted.
® Multiple threads end up sharing the same memory block.

® One thread might free a block that other threads are still using. These threads
then overwrite unallocated memory, which, in turn, corrupts the heap.

Generally speaking, you really shouldn't use HEAP_NO_SERIALIZE unless you're
absolutely sure that you don't need heap serialization. Specifically, you shouldn't use
it unless one of the following conditions is true.

® Your process is single threaded.
® Your process has multiple threads, but only one of them accesses the heap.

® Your process is multithreaded and multiple threads access the heap, but your
app handles serializing their heap access itself.

Exercises

You can override the C++4 new and delete operators in order to allocate objects from
custom heaps. When a C++ compiler encounters a call to new, it checks to see
whether the class has overloaded the new operator. If it has, the compiler generates
a call to that function rather than generating code that allocates the object on the
default heap. You can use operator overloading to cause new to use any memory
allocation facility you choose. The code in the exercise below overloads new and
delete to allocate objects on a custom heap.

Exercise 4.9 Overloading New and Delete to Allocate Memory from
a Custom Heap

1. Load the code shown in Listing_4.9 from the CHO4\heapnew subfolder on the
book's CD or type it into the VC++ environment, then compile and run it.

Listing 4.9 Overloading New and Delete to Use a Custom
Allocation Facility

// heapnew.cpp : Overload new and delete to use a custom heap
//

#include "stdafx.h"



#include "windows.h"

class CMemObj {

public:
static HANDLE s hPrivateHeap;
static DWORD s dwBlocks;
void* operator new (size t size);
void operator delete(void *p);

};

HANDLE CMemObj::s hPrivateHeap=NULL;
DWORD CMemObj::s dwBlocks=0;

void* CMemObj::operator new (size t size) {

//Create the private heap if it does not exist

if (NULL==s hPrivateHeap) {
s _hPrivateHeap=HeapCreate(HEAP NO SERIALIZE,0,0);
if (NULL==s hPrivateHeap) return NULL;

}

//Allocate the memory
void* p=HeapAlloc(s hPrivateHeap,0,size);

//Increment the block count
if (p) s _dwBlocks++;
return p;

}
void CMemObj::operator delete(void *p) {

//Deallocate the memory
if (HeapFree(s hPrivateHeap,0,p)) {

//Decrement the block count
s _dwBlocks--;

//If all blocks have been freed, release the heap
if (0==s _dwBlocks)
if (HeapDestroy(s hPrivateHeap))
s _hPrivateHeap=NULL;
}
}

int main(int argc, char* argv[])

{

//Allocate an object on the private heap

CMemObj *pMO = new CMemObj();

printf("Custom heap after first new: %d block(s),
handle=0x%08x\n",CMemObj::s dwBlocks,
CMemObj::s hPrivateHeap);



//Allocate a second object on the private heap
CMemObj *pM02 = new CMemObj();
printf("Custom heap after second new: %d block(s),
handle=0x%08x\n",CMemObj::s dwBlocks,
CMemObj::s hPrivateHeap);

//Delete the second object from the heap

delete pM02;

printf("Custom heap after first delete: %d block(s),
handle=0x%08x\n",CMemObj::s dwBlocks,
CMemObj::s hPrivateHeap);

//Delete the first object from the heap (this causes the heap
//to be released)
delete pMO;
printf("Custom heap after second delete: %d block(s),
handle=0x%08x\n",CMemObj::s dwBlocks,
CMemObj::s hPrivateHeap);

return 1;

}

. Run this application and observe its output. Your output should look something
like this:

Custom heap after first new: 1 block(s), handle=0x00440000
Custom heap after second new: 2 block(s), handle=0x00440000
Custom heap after first delete: 1 block(s), handle=0x00440000
Custom heap after second delete: 0 block(s), handle=0x00000000

. In this code, we automatically allocate and deallocate the private heap as
needed. CMemObj uses a static member, s_hPrivateHeap, to store the pointer
to our private heap. It's initialized to NULL at program startup. If a call is made
to CMemObj's new operator, we check s_hPrivateHeap to see whether it's
NULL. If so, we create a new heap using HeapCreate and assign it to
s_hPrivateHeap. We then allocate a memory block from s_hPrivateHeap to
satisfy the allocation request. If we're successful, we increment another static
member, s_dwBlocks, that we use to keep track of the number of blocks
allocated in the heap.

. When CMemObj's delete operator is called, we begin by deallocating the block
in question using HeapFree. If successful, we decrement s_dwBlocks to indicate
that the heap has one less block allocated within it. If s_dwBlocks reaches 0,
we release the heap itself by calling HeapDestroy. This keeps us from wasting
the memory resources required to maintain the heap if it isn't being used.
Because we assign NULL to s_hPrivateHeap when we destroy it, we allow for
the possibility that another code line might call CMemObj's new operator after
we've destroyed the private heap. If that happens, the private heap is simply
recreated.

. You may be wondering why the code uses static members for the private heap
handle and the block counter. The reason for this is that we want all instances
of CMemObj to share the same private heap. If these members were not
declared as static, each CMemObj would get its own private heap€not only
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wasteful but also illogical. The whole point of the design is to allocate
CMemObj instances from a common private heap. Because all the objects will
be the same size and are relatively small, this is an efficient and logical use of
a heap.

You may also be wondering why the code uses a separate member variable to
track the number of allocations from the private heap. After all, couldn't we get
this same information from the HeapWalk API function without requiring a
separate member variable? Yes, we certainly could; however, this would be
terribly inefficient. For every allocation or deallocation, we'd have to walk the
entirety of the heap and count up the blocks that make it up, being careful to
skip those allocations that are for maintenance of the heap itself (the heap's
overhead). In an app that made a large number of allocations, this would
negatively affect performance and would likely have a detrimental impact on
CPU use.

In this next exercise, you'll use an extended procedure to allocate custom heaps
within SQL Server. You'll store some data in these heaps, then return it via a query.
Because you will be attaching with a debugger, you should work through this
exercise only on a test or development machine, and, ideally, you should be its only

user.

Exercise 4.10 Allocating Heaps within SQL Server

1.

Begin by copying xp_array.dll from the CHO4\xp_array\release subfolder on the
CD accompanying this book into the binn subfolder under your SQL Server
main installation folder.

. Register the extended procedures contained in xp_array with SQL Server by

opening and running xp_array.sql from the CHO4\xp_array subfolder on the CD.

. Attach to SQL Server with WinDbg. When the WinDbg command prompt

displays, type 'heap to display a list of the heaps currently allocated by the
process. You will likely see quite a few entries in this list, perhaps as many as
20 or 30. Take note of the exact number, then type g and hit Enter to allow SQL
Server to continue running.

. Now load arrays.sql from the CD's CHO4\xp_array subfolder into Query

Analyzer and run it. This will install a number of user-defined functions that
make calling the xprocs you've just installed very easy.

. Next, load leapheap.sql from CHO4\xp_array and run it. leapheap.sql will create

a heap-based array using the xprocs you installed earlier and will then load
into it a couple of columns from the Northwind..Orders table.

. Return to the debugger and press Ctrl+Break to stop execution, then type

'heap at the command prompt to again list the heaps that have been allocated
within the SQL Server process. This list should match the one you saw earlier
because, by default, the xp_array code makes its allocations from the default
process heap®it doesn't create a private heap.

. Type g and hit Enter to allow SQL Server to continue running.

. Return to Query Analyzer and edit leapheap.sql, changing
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15.

SET @hdl=fn createarray (1000, 0)
to
SET @hdl=fn createarray (1000, 1)

This will cause the xp_array code to allocate its own heap when fn_createarray
is first called. Note: You should never use this option when calling the xp_array
code from multiple connections. Always use the default system heap when
there is a possibility that multiple worker threads may call into xp_array
simultaneously.

. Use the mouse to select the entirety of the script text in Query Analyzer up to

(but not including) the call to fn_destroyarray, then press F5 to run it. By not
including the call to fn_destroyarray in the call to the server, we'll leave the
array and its heap in memory for now. Congratulations, you've just created
your own private heap within the SQL Server process space!

Return to the debugger, press Ctrl+Break, and run 'heap again in the
command window. You should see that a new heap has shown up in the list.

Next, run 'heap 0 to list segment information for each heap. A heap can
consist of up to 64 separate segments. Each time Windows needs to grow a
heap, it will allocate a new segment for it. The last heap in the list@the one
you just created€®should have just one segment.

To verify that this is our heap, let's search for some of its data. The segment
information for your new heap should list its starting and ending addresses. It
should look something like this:

23: 10010000
Segment at 10010000 to 10020000 (00008000 bytes committed)

The numbers set in bold are the segment's starting and ending addresses.

Use the starting and ending addresses to search for the entry in the array
corresponding to Northwind Customerld "TOMSP", like this:

S -a 10010000 10020000 ‘'TOMSP'

The WinDbg s command searches a region of memory for a data value. Its -a
parameter tells it to search for an ANSI string. The two memory addresses
indicate the beginning and ending of the search range, and, of course, the
character string in single quotes specifies the value we want to search for.
Once you run this, you should see displayed the memory address at which this
value resides in your heap. Though this isn't conclusive, it's a pretty good
indication that this is the heap our xprocs used. Type g and press Enter to allow
SQL Server to continue to run.

Return to Query Analyzer and load leakheaps.sql from the CHO4\xp_ array
subfolder on the CD and run it. This will cause 128 new heaps to be created
within the SQL Server process.

Return to WinDbg and press Ctrl+Break to stop the SQL Server process. Run
'heap again at the command prompt. You should see your new heaps in the



heap list.

There is no functional limit to the number of heaps you can allocate within a
process. | can't think of a practical reason to allocate as many as we've
allocated in this exercise, but be aware that it is technically possible. When you
need to dig into what heaps have been allocated within a process and what
they contain, WinDbg's 'heap is a good way to start.

16. Type g and press Enter to stop debugging SQL Server, then exit the debugger.

17. Restart SQL Server as necessary.

Heap Recap

A heap is a block of memory that's made up of one or more pages of reserved space
that is suballocated by the heap manager. A heap is most useful for allocating
similarly sized, relatively small objects and structures. A heap should not be used to
allocate blocks of 1MB or more in size; virtual memory functions such as VirtualAlloc
should be used instead.

An application can create custom heaps as necessary. One key decision in creating a
custom heap is whether to have the heap manager serialize access to the heap. If
an app has multiple threads and these threads make their own allocations from the
heap, access to it must be serialized in order to prevent the heap from becoming
corrupted. If an app is single-threaded or provides its own thread synchronization
mechanisms, it may be able to safely disable heap serialization on custom heaps.

Heap Knowledge Measure

1. What Win32 API function allocates a block from a heap?

2. True or false: Before destroying a heap with HeapDestroy, a process should use
HeapFree to free any allocations it has made from it.

3. Are allocations from a heap subject to the limitations imposed by the system
page size and the system allocation granularity?

4. True or false: An application can improve its performance by omitting the
HEAP_NO_SERIALIZE flag when it creates a private heap.

5. True or false: When an application allocates memory from a heap, it can
reserve memory without committing it by specifying the correct parameters to
HeapAlloc.

6. What is the default size of the default process heap?
7. True or false: Because pointers may already reference a block of heap memory

allocated via HeapAlloc, the heap manager will not move a heap block once it
has been allocated.
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18.
19.

What maximum size should you specify to HeapCreate if you want to create a
heap that automatically grows as allocations are made from it?

. What Win32 API function returns a handle to the default process heap?

True or false: Several Win32 API functions make use of the default process
heap.

What flag should you pass into HeapAlloc if you want it to zero-fill a newly
allocated page?

True or false: If you fail to destroy a custom heap, it remains in memory until
the process terminates.

Is it possible to disable heap serialization for individual allocations from a
serialized heap?

True or false: Attempting to destroy the default process heap will cause an
access violation.

What types of allocations are best suited for heaps?

True or false: By default, Windows does not serialize access to the default
process heap, but you can create a private heap and enable serialization if
your app requires it.

When the HEAP_GENERATE_EXCEPTIONS flag is passed into HeapAlloc, how
does it change the behavior of the heap manager?

Can the Perfmon tool monitor the system paging file size?

True or false: STATUS NO_MEMORY is an exception that the heap manager may
raise in certain circumstances.



Shared Memory

In this section, we'll discuss Windows' shared memory facilities. Shared memory is
memory that is visible to multiple processes or that is present in the virtual address
space of multiple processes. It's the tool of choice when you need to rapidly
exchange data between multiple processes. Because data is exchanged via shared
virtual memory pages, each process that accesses it must already know how to
interpret it and how to work with it. Unlike data that comes in over a TCP/IP socket
or, say, through a Windows message, data accessed via shared memory consists of
committed pages within a process's address space. The process must know
something about what these pages should contain in order to make use of their
data.

Key Shared Memory Terms and Concepts

v Shared memory€ memory that is visible to multiple processes or that is
present in the virtual address space of multiple processes.

v Memory-mapped file® a file on disk that has been mapped into virtual
memory such that it serves as the physical storage for the virtual memory.

v’ Section object® the kernel object responsible for implementing shared
memory and memory-mapped files.

Key Shared Memory APIs

Table 4.9. Key Shared Memory@Related API Functions



Function Description

CreateFileMapping Creates a file-mapping object (a section object) for use with
shared memory or a memory-mapped file.

MapViewOfFile Maps a view of a file into memory such that the file serves as the
physical storage for the memory. The file can be a file on disk or
the system paging file.

FlushViewOfFile = Writes the modified pages in a mapped file view to disk.

SQL Server and Shared Memory

Shared memory is used in a number of places within SQL Server. A prime example of
this is the shared memory Net-Library. When a client application resides on the same
machine as SQL Server, it can connect to the server using the shared memory Net-
Library, for example, by specifying the server name as . (a period) or (local) or by
prefixing the servern\instance name with Ipc:. This means that, rather than
communicating using a protocol such as TCP/IP or Named Pipes and the full network
stack, the client and server use a simple shared memory buffer to exchange data.
Because both processes are running on the same machine, this is not only sensible
but also far more efficient than using the network stack.

You may be wondering how access to this shared memory area is coordinated@that
is, how can we keep the server from reading client-side data before it's ready and
vice versa? This is handled using a named event object. Think back to our discussion
of event objects in Chapter 3. In order to synchronize access to the memory area
used by the shared memory Net-Library, the client and server signal an event object
to tell the other party when it can safely access the buffer. So, the server enters a
wait state by calling WaitForSingleObject on this event object, and the client signals
the event when it's ready for the server to access the buffer. The client then calls
WaitForSingleObject and waits on the event object itself. When the server finishes its
work in the buffer, it signals the event, and the client takes over again. This process
continues as long as the client remains connected to the server.

Section Objects

The fundamental kernel object used to implement shared memory is known as a
section object. In Win32 API parlance, a section object is known as a file-mapping
object. File mapping amounts to associating the contents of a file with a range of
virtual memory addresses by having the file serve as the physical storage for the
range. The file can be a file on disk or the system paging file. Regardless of the
physical storage behind a file mapping, the shared memory it provides can be
accessed by multiple processes.




Because it can be opened by one process or by multiple processes, a section object
doesn't necessarily equate to shared memory. Though it is used to implement
shared memory, a section object can also be used by just one process to map a file
into virtual memory.

You can connect a section object to an open disk file to create a mapped file or to
committed virtual memory in order to set up shared memory. A section object that is
committed to virtual memory is considered "paging file backed" because its pages
can be written to the system paging file as necessary. Keep in mind that because
Windows can run without a paging file, these pages might instead be backed by
physical memory.

Identically to a private committed page, a shared committed page is always zero-
filled the first time a process accesses it. A shared page is zero-filled only once,
regardless of how many processes access it.

Memory-Mapped Files

Windows provides a set of API functions that support mapping a file to a region of
virtual addresses. An application can use these functions to conveniently perform file
I/0 by making a file appear in the virtual address space as memory. To manipulate
the file, the application simply reads and writes the virtual memory associated with
it.

To set up a memory-mapped file, an application follows these steps.
1. Call CreateFile to create a process-local handle for the file on disk.
2. Call CreateFileMapping to create a file-mapping object for the file.

3. Call MapViewOfFile to map the file into the process's address space. The
pointer returned by MapViewOfFile is the starting address of the memory
region that's mapped to the file.

If the application doesn't want to map a file on disk in order to perform 1/O on it but
is interested only in setting up a shared memory region, the app follows just two
required steps.

1. Call CreateFileMapping to create a file-mapping object. Pass
INVALID_HANDLE_VALUE as the file handle. This will cause the shared memory
region to be backed by the system paging file. When the system paging file
backs a shared memory region, you must tell CreateFileMapping how large to
make the area. (When mapping a disk file, omitting the file size parameters
causes CreateFileMapping to create a mapping object based on the physical
size of the file.)

2. Call MapViewOfFile to retrieve a pointer to the shared memory region.

Image File Mappings



At process startup, Windows opens the application's executable file and determines
the size of its code and data. Windows then reserves a region of the process address
space large enough to cover the executable's code and data and sets the physical
storage for these addresses as the executable file itself. As mentioned in the Virtual
Memory section, executable pages are marked with the PAGE_EXECUTE attribute;
data pages are marked with the PAGE_WRITECOPY attribute. All instances of a given
executable share the same physical storage: the executable file itself. When a
process makes a change to one of its data pages (e.g., it assigns a value to a global
variable), Windows makes a copy of the data page and tells the process to use the
new page instead of the old one. This copy-on-write functionality keeps address
space usage to a minimum while still allowing applications to change their data
pages whenever they need to.

An executable image (an EXE or DLL file) that serves as the physical storage for a
region of virtual addresses is a type of memory-mapped file. Just as an application
can connect a region of addresses with a file on disk, Windows uses its own file-
mapping facility to make executable images easy to load and process.

Note that some types of media require Windows to copy the entirety of an
executable image into virtual memory rather than allowing it to reside on disk. An
image that's loaded from a floppy disk will be copied in its entirety into virtual
memory. This is done so that setup programs loaded from floppy can continue to run
even after the floppy has been swapped for another during the setup process.
Loading an image from other types of removable media such as a CD-ROM or
network drive does not cause Windows to copy the image into virtual memory unless
it was linked with the /SWAPRUN:CD or /SWAPRUN:NET switches.

Exercises

In the next exercise, we'll use shared memory to share data between multiple
processes, and we'll use a synchronization object to make access to this data thread-
safe. You'll create a single application, then spawn multiple instances of it to see how
processes can share data between them by using shared memory.

Exercise 4.11 Using Shared Memory to Share Data between
Processes

1. Copy the sharedmem_client example app from the CHO4\sharedmem_ client
subfolder on the CD to your hard drive, and load it into the VC+4 development
environment (MSDEV). Compile and link the application so that
sharedmem_client.exe is written to the Release subfolder. Alternatively, you
can just copy the executable from the CD if you aren't interested in compiling it
first.

2. Start Explorer and change to the Release subfolder containing
sharedmem_client.exe. Double-click the executable to start it.

3. Type Y a few times to allow the app to continue its modification loop. You'll see
that it retrieves an integer from shared memory, then increments and assigns
it back to shared memory.



After a few iterations of this, leave sharedmem_client.exe running and return to
Explorer. Double-click sharedmem_client.exe a second time in Explorer to start
a second instance of it. You'll notice that it appears to hang.

. Return to the first instance of the app and type Y to allow it to continue. It will
now appear to hang.

. Return to the second instance and you'll see that it finally began to run. What's
happening here is that the app uses a named event object to synchronize
access to the shared memory area. This means that only one instance of the
app can modify it at a time. When one app has control of the shared memory
area, the other must wait for it to complete before continuing. You'll notice that
each execution of the modification loop, regardless of which process it is,
increments the integer by 1.

. You can start as many instances of sharedmem_client.exe as you want. The
effect will be the same: Only one of them at a time will be allowed to read or
write the shared memory.

. Type N in each of the sharedmem_client.exe instances you've started to shut
them down.

For curious readers, Listing 4.10 shows the code for sharedmem_client.exe.

Listing 4.10 A Shared Memory Client App That Synchronizes
by Using an Event Object

// sharedmem client.cpp : Uses shared memory to share data between
// processes and synchronizes access to the data using a named

// event object

//

#include "stdafx.h"
#include "windows.h"
#include "conio.h"

#define SHARED MEM NAME "GGSharedMem"
#define EVENT NAME "GGSharedMemEvent"

int main(int argc, char* argv[])

{

//Create the event to synchronize access to the shared mem
HANDLE hEvent=CreateEvent(NULL, false,true,EVENT NAME);

if (INVALID HANDLE VALUE==hEvent) return 0;

LPVOID lpSharedMemory;
DWORD dwValue;

HANDLE hMapFile;

//Create a file mapping based on the system paging file



hMapFile = CreateFileMapping(INVALID HANDLE VALUE,

NULL,
PAGE_READWRITE,
0,

0x1000,
SHARED MEM NAME) ;

if (NULL == hMapFile)
{

}

printf("Could not create file mapping object.

Last error=%s\n",GetLastError());

return 1;

//Get a pointer to the shared memory
lpSharedMemory = MapViewOfFile

(hMapFile, FILE MAP_ALL ACCESS, 0, 0, 0);

if (NULL == 1pSharedMemory)
{

}

{

printf("Could not map view of file.

Last error=%s\n",GetLastError());

return 1;

try
char ch='N";

do {

//Wait on the object to be signaled
//Since it's an auto-reset event, this also resets it
WaitForSingleObject(hEvent, INFINITE);

//Read a value from the shared memory area

dwValue = *((LPDWORD) 1lpSharedMemory);

printf("\n\ndwValue READ = %d for process 0x%08x\n",
dwValue,GetCurrentProcessId());

//Increment the private copy of the data
dwValue++;

//Assign the private value back to the shared memory

*((LPDWORD) 1pSharedMemory) = dwValue;

printf("dwValue WRITE = %d for process 0x%08x\n",
dwValue,GetCurrentProcessId());

printf("Continue? ");
ch=getche();

//Signal the event (another client can now access)
SetEvent (hEvent);
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} while ('Y'==toupper(ch));
}

//Make sure cleanup code runs
finally
{
//Undo the file mapping view
if (!'UnmapViewOfFile(lpSharedMemory))
{
printf("Could not unmap view of file.
Last error=%d\n",GetLastError());
}

//Close the handle for synchronization event
CloseHandle(hEvent);
}

return 0;

}

. In this code, we begin by creating a named event object. Whenever a process

attempts to create a named object that already exists, it receives a process-
local handle to the existing object. This means that all instances of
sharedmem_client.exe will use the same event object to synchronize access to
the shared memory area.

We next create a named file-mapping object that's backed by the system
paging file. As with the event object, every process that attempts to create this
named object will get a handle to the same kernel object if it already exists.
This means that multiple instances of this executable will refer to the same file-
mapping object and will thus use the same shared memory area.

Once we've created the file-mapping object, we set up the shared memory
itself through the call to MapViewOfFile. The pointer returned by this function is
the start of the shared memory area.

We then call WaitForSingleObject to wait on the event. Since the event was
created in a signaled state (see the third parameter to CreateEvent),
WaitForSingleObject will return immediately when it is called by the first
instance of sharedmem_client.exe. Because the event was created as an auto-
reset event (see CreateEvent's second parameter), the event will immediately
return to a nonsignaled state as soon as WaitForSingleObject successfully waits
on it. This keeps multiple instances of the process from gaining access to the
shared memory region simultaneously. Each instance must wait until the first
one to successfully wait on the event signals it.

We next retrieve the value from shared memory by simply dereferencing and
casting the first DWORD in the buffer. We then increment the private copy of
the integer and assign it back to the shared memory buffer.

We finish up by asking the user whether we should continue in the update
loop. If the user types Y, we attempt to go through another round of



incrementing and printing the first DWORD in the shared memory area. Once
the user responds, we immediately signal the event, regardless of the
response. If another instance of the app is waiting on the event, it will be
allowed to run before we can cycle back through the loop. We will then wait
until it finishes with the shared memory area and signals the event. This
continues perpetually until all client instances have been terminated.

NOTE: | wouldn't normally recommend that you code apps so that they hang on to a
kernel object while they wait on user input because this could block other apps
needing access to the object indefinitely. I've coded this example to do so in order to
make the progression of events easier to follow.

In this last exercise, we'll create a shared memory object that will be accessed by a
couple of processes, then we'll view this object using WinObj, a tool from the
Platform SDK.

Exercise 4.12 Using WinObj to View Named Shared Memory
Objects

The app we'll be using to create a shared memory object we can inspect with WinObj
is called SuperRecorder. It is an app | originally wrote about ten years ago and have
enhanced a few times since then. To understand how and why it uses shared
memory, let me give you some of its history and discuss how it evolved over time.

Some of you old-timers may remember the Windows 3.x Recorder accessory.
Recorder allowed you to record mouse and keyboard events as a macro and play
back that macro in any app with a keystroke combination. The ability to record both
keyboard and mouse events was unusual at the time, and, being the keyboard-
centric guy that | am, | used the tool very heavily and had numerous macros defined
on my Win 3.x systems.

Sometime around 1992, it occurred to me that having Recorder's functionality in a
component of some type that | could drop into an app and instantly provide
programmable keyboard/mouse macros facilities would be quite powerful. | looked
around at the various resources then available and didn't find anything in existence
like this for Windows, so | decided to build it myself.

| had built several programmer's editors in the 1980s that included macro
functionality of varying levels of sophistication (e.g., Cheetah, TurboEdit, TEdit, and
so on), so | had a pretty good idea of what | wanted to do and how | would handle
the mechanics of storing lists of input events. The question was how to do it within
the Windows environment.



| began researching this and found that recording and playing back Windows
messages, as I'd originally thought | might do, would not work reliably. Posting a
WM_KEYDOWN for VK_SHIFT followed by VK_A didn't necessarily result in a capital A
being typed into the current app. This was before tools like VB's SendKeys function
existed (and that's a keyboard-only mechanism anyway), so | was left to find another
way.

| finally discovered how Recorder itself had pulled off its magic€it was using a
combination of global system hooks (to trap keyboard and mouse events) and the
journal record/playback API functions. The global system hooks allowed it to capture
keyboard and mouse events in a manner similar to an interrupt service routine in
DOS that some of my programmer's editors had used. The journaling API functions
allowed Recorder to reliably record and play back both mouse and keyboard events.
| decided to take this same approach in my component. | began by building a DLL
(system hooks require a DLL to host their callback function), then wrapped the
functions exposed by the DLL in a component.

I called this library/component combo WinMacro and sold it for a few years over
CompuServe and other venues before the World Wide Web really took off. It allowed
a Windows developer to drop a component into an app and instantly have all the
functionality of the Recorder accessory programmatically available in the app. The
app could start or stop recording, record mouse as well as keyboard events, and play
them back based on a mouse/keyboard event or through an API call. | used the
facility in several of my own apps (e.g., the DB-Library and ODBC versions of my
Sequin SQL Editor for Windows app) and even gave a talk at a developer conference
on how I'd built the library and how it worked internally. Life was good.

Then came 32-bit Windows. On testing the WinMacro demo app I'd built,
SuperRecorder, on the first version of Windows NT (Windows NT 3.1), | discovered
that, while macros recorded in a process would play back in that process, other
processes were completely unaware of them. One of the niftier features of WinMacro
was that you could record a macro in, say, Notepad, then go to Word and play it
back. This allowed you to create global, system-wide macros that had the same
hotkeys and played back the same regardless of the app. The same functionality had
been available in the original Recorder accessory. However, try as | might, | could
not get it to work in my initial tests on the pubescent Windows NT.

| looked into this a bit and discovered why WinMacro macros recorded in one process
would not play back in another. Win32's process isolation was preventing the linked
list of macros I'd recorded in one process from being visible to other processes. | had
designed the original WinMacro to depend on the inherent process memory sharing
in Windows 3.x, which was, by design, no longer there in 32-bit Windows.

(1 also discovered that the Recorder accessory had vanished in 32-bit Windows®@it

was nowhere to be found. | have always suspected that this was because it worked
the same way SuperRecorder did and would have required a rewrite in order to run
on 32-bit Windows.)

Clearly, the design I'd used for 16-bit Windows wasn't going to work on Win32, so, in
about 1994, | set out to rewrite WinMacro for Win32. | called the new version
WinMac32.

For WinMac32, the fundamental problem | had to solve was how to make linked lists
that may have been allocated in one process visible to other processes. | soon



discovered Win32's shared memory facilities and designed WinMac32 to use shared
memory to store its linked list of macros and keyboard/mouse events. This, coupled
with system hooks and DLL injection, allowed me to provide the same functionality
to Win32 apps that I'd originally provided Win 3.x apps. WinMac32 has shipped on
the CD with a couple of my other books, and the full source to it (along with the old
Win 3.x source) is included on the CD accompanying this book. The library's
SendKeys and AppActivate routines, which do not actually use the engine itself, have
been shipped with Borland's Delphi product since version 4.0.

For purposes of this exercise, we'll start the WinMac32 demo app, SuperRecorder,
and record a macro, then we'll go to Notepad and play that macro back. While the
two apps are running, we'll check for the named WinMac32 shared memory object
using WinObj.

1. Begin by starting SuperRecorder. It's in the CH04\WinMac32 subfolder on the
CD accompanying this book and is named srecorder.exe. You can use
SuperRecorder's Options menu to configure it before you start recording.

2. Tab to the Scratch Area, then press Ctrl+Alt+Shift+F11 to start recording.

3. Type anything you want in the scratch area. Feel free to use the mouse to
select some of the text you type, then cut, copy, and paste it.

4. When you're done, press Ctrl+Alt+Shift+F11 a second time to stop recording.
You'll be prompted for a keyboard/mouse combo to associate with the macro.
Hit the backquote key (", the unshifted character on the tilde key on most
keyboards) to assign the macro to the backquote key. Name the macro Shared
Memory Test and click OK.

5. Now, start Notepad and press the backquote key. You should see your keyboard
and mouse events played back.

6. Start WinObj (from the Platform SDK) and click the node in the tree labeled
BaseNamedObjects.

7. Scroll the list of named objects to the right until you find an object named
WinMac32SharedData. Double-click this object to display its properties. You'll
see that, among other things, WinObj knows that it's a section (shared
memory) object. This is the shared memory object that WinMac32 uses to store
its shared data structures and is the means by which memory allocations made
by one process (macro recordings) can be accessed by another.

8. While we're at it, you can use the TList utility to check out the DLL injection
technique that WinMac32 uses to insert itself into processes as you type or use
the mouse. Given that it has to set system hooks (using the
SetWindowsHookEx API) to grab both the keyboard and mouse events before a
process sees them, WinMac32 will actually cause itself to be loaded into every
process in which you type or use the mouse. While SuperRecorder and
Notepad are still running, run TList from the command prompt to list the
process IDs for all processes.

9. Take the IDs returned for SuperRecorder and Notepad and pass each of them
into TList separately to list the modules loaded into each process. You'll notice
that WinMac32 is loaded into the SuperRecorder process space. This is no big
surprise given that SuperRecorder is a demo app for the library. But you'll also



notice that WinMac32 is loaded into Notepad's process space. Now, we know
that Notepad didn't explicitly load WinMac32 or reference it via an implicit
import, so how did WinMac32 get loaded into the process? Through DLL
injection. Because the hooks that WinMac32 sets are system-wide and because
the callback code to service those hooks lives in WinMac32.DLL itself, Windows
loads the DLL into every process where the hook code will need to
execute@that is, into every process where you type or use the mouse. In fact,
if you use TList to check the module list for the WinObj tool you were just
running, you'll find WinMac32.DLL loaded there as well because you've typed
or used the mouse in it since SuperRecorder was started.

10. If you now close the SuperRecorder application, you'll see that not only does
this behavior stop (you won't see WinMac32.DLL injected into any new
processes) but WinMac32.DLL is also unloaded from all existing processes. |
coded it this way so that you could easily turn off the macro facility by closing
the recorder app. Although, technically, you can record in any app and play
back in any other, | coded the demo app so that closing it turns off the macro
engine and unloads it across the system. If | hadn't done this, you'd have had
to close every process in which WinMac32.DLL had been injected in order to
unload it completely from memory. DLL injection has its pros and cons. One of
the cons is that it can spread like a plague throughout a system, and | didn't
believe that users would want to have to forcibly eradicate it from all running
processes in order to disable it.

WinMac32 makes use of several Win32 API functions that you may want to explore
further. It sets four system-wide hooks using SetWindowsHookEx (a keyboard hook, a
mouse hook, a journal record hook, and a journal playback hook). It installs a
message handler for interprocess communication (with CreateWindow) and a shared
memory area backed by the system paging file using the CreateMappedFile and
MapViewOfFile API functions.

The journaling API functions are how we trap keyboard and mouse events in a
process and play them back reliably. They necessarily interact at a very low level
with the Windows input subsystems, and I've seen them cause blue screens on
systems with faulty keyboard or mouse drivers.

Other than the occasional recompile, | haven't upgraded WinMac32 in years, and |
noticed that it became somewhat unstable with the advent of Service Pack 3 for
Windows NT 4. | haven't taken the time to investigate what changed in this service
pack and may not do so anytime soon given that | no longer sell WinMac32. One of
the advantages of giving away software free of charge is that you can decide how
much time you have to spend supporting it. | haven't really had time to support any
of my freeware in years, and | doubt that will change anytime in the near future.

Because WinMac32 is freeware, | don't recommend you use it in production. Study
the code and learn about Windows and the Windows API functions, but don't rely too
heavily on the tool itself.

If you want to compile WinMac32 yourself, you'll need Delphi 2.0 or later. To compile
WinMacro (the Windows 3.x version), you'll need Delphi 1.0. For the embedded
assembly language, you'll need an assembler compatible with TASM 1.5 or later
(MASM will probably do). For more recent versions of Delphi, you can just use the
embedded assembler€no need for separate assembly.



Note that you can also view section objects using WinDbg's 'handle command. To do
so, follow these steps.

1. Execute 'handle at the WinDbg command prompt to get a list of all the
process-local handles in the process's handle table. Running 'handle without
parameters causes it to list every handle (and its object type) in the process's
handle table.

2. Find the handles in the list identified as section objects. Run 'handle again, this
time specifying the handle number of each section object handle you want to
view. You can also pass an option mask to 'handle that tells it what information
you'd like listed for the handle. For example, say that you're wanting to list
information for handle number a3c, a section object. You could do something
like this:

'handle a3c 4

In this example, a3c is the handle number, and 4 is the option mask. Passing 4 to
IThandle tells it to list the name of the object if there is one.

Shared Memory Recap

Windows provides a rich set of facilities for allocating and working with shared
memory. Shared memory and memory-mapped files are used throughout the
operating system itself; using them is as easy as using any other type of memory.
Sharing data between processes or mapping a file into virtual memory is relatively
painless and quite powerful.

Shared Memory Knowledge Measure

1. In Win32 API parlance, what is a section object?

2. True or false: The system paging file can be used as the physical storage for
shared memory.

3. Does Windows zero-fill shared memory pages on first access in the same way
that it zero-fills private committed pages?

4. When a client connects to SQL Server using shared memory, what type of
kernel object do SQL Server and the client use to coordinate access to the
shared memory area?

5. What Win32 API function is used to write the modified pages in a mapped file
immediately to disk?

6. What value must an application pass to CreateFileMapping to instruct it to use
the system paging file to back the shared memory it is setting up?

7. True or false: When Windows loads an executable into virtual memory from a
hard drive, it uses the system paging file to provide the physical storage for
the executable's code and data.



10.

11.

12.

13.

14.

. What Windows API function actually provides the pointer to a shared memory

area?

. True or false: Though shared memory is slower than exchanging data using the

network stack, it is still the tool of choice when you want to exchange data
reliably.

True or false: Ithough it is used to implement shared memory, a section object
does not necessarily equate to shared memory because it can also be used by
a single process to map a file into virtual memory.

True or false: In order to initialize a shared memory area for use, an application
must first call the Win32 API function AllocateUserPhysicalPages, then call
MapUserPhysicalPages to map a view of the shared memory into the virtual
address space.

What kernel object is responsible for implementing shared memory and
memory-mapped files?

What WinDbg command can you use to display information about a kernel
object that corresponds to a shared memory region?

Assume that I'm connecting to a SQL Server named khen\ss2k_sp4 via an
instance of Query Analyzer that's running on the same machine as the server.
What four-character prefix can | use with my server name to force Query
Analyzer to attempt to connect using the shared memory Net-Library?
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Chapter 5. I/0 Fundamentals

Free thought is the repudiation of all coercion of authority or tradition in
philosophy, theology, and ideology. It is the commitment to the theory that the
power of cultural institutions can be morally exercised only when that power is
limited by guaranteed and protected civil liberties possessed equally by all
citizens.

©Richard Bozarth!2!

(1] Bozarth, Richard. "Free Thought." Truth Seeker, 119(1):15, 1987.

| have always believed that the best way to learn about a technology is to use it to
build things. Every computer technology I've ever learned€®from hardware to
operating systems to programming languages to applications and tools€l've learned
by getting my hands dirty. There is no substitute for practical experience; there's no
better way to get your mind around how something works than to see it for yourself.

| still remember the first time | experienced the wonderment that comes from
experimenting with computing technology and seeing it come to life before your
very eyes. It was a Saturday afternoon, and | had sat down at a computer terminal
with the goal of learning my first programming language. After about five minutes of
reading through syntax diagrams and some exceedingly dull prose in the language
manual, | decided just to build an application myself and see what would happen. It
would be my very first program.

Most people build something along the lines of a "Hello World" app their first time
out with a new language. Not me. For me, the power of the computer was in its
ability to do repetitive tasks extremely fast, not in its ability to produce output.
Humans can produce output€@carbon dioxide, cave drawings, the Mona Lisa, this
book®and they don't need computers to do it. For me, the most intriguing aspect of
the computer was its ability to carry out logic-based tasks faster and more precisely
than | or any other human could ever hope to. For me, the most useful innovation in
computing was the concept of the /ogical loop®it was to computing what the
invention of the wheel had been to mankind. | could see all sorts of seemingly
complex problems suddenly becoming readily solvable because of the computer's
ability to precisely repeat a given task over and over until a logical condition became
true or some type of resolution was reached.

So, my first program was an app that accepted as input an integer and produced the
factors of the number as output. The eureka feeling | experienced when | hit the
submit key and watched the output of my app appear magically on the CRT is almost
beyond description, and it is still vivid in my mind to this day. This has been my
standard approach to learning new technologies for over two decades now, and |
never grow tired of the profound satisfaction that comes from seeing my handiwork
take flight with the press of a key or the click of a mouse.

In this chapter, we'll investigate Windows' I/O facilities using this hands-on approach.
We'll talk about conceptual definitions and how things work architecturally, then
we'll dive in and write some code. Before we're done, you'll have a good grasp of
how Windows 1I/O facilities work and how applications such as SQL Server can make
use of them.






1/0 Basics

We'll begin our exploration of Windows 1I/0O with the basics. We'll talk about key 1/0
terms and concepts, then delve into how Windows I/O works from an architectural
standpoint.

Key I/0 Terms and Concepts

v File system® the overall structure in which files are named, stored, and
organized in an operating system. File systems consist of drives, files,
directories, and the metadata needed to locate and access them. A file system
is not only the logical representation of the machine's secondary storage but
also the part of the operating system responsible for translating application file
operation requests into low-level, sector-oriented calls into the device drivers
that control the disk drives.

A file system's format defines the way in which file data is stored and directly
affects the file system's features. For example, a format that doesn't allow files
to be larger than 2GB obviously limits the file sizes the file system can support.

The Windows NT family supports several file systems (e.g., FAT16, FAT32, NTFS,
and so on), but NTFS is its native file system. NTFS provides more features and
performs more efficiently than any other file system Windows supports. Cluster
indexes are 64 bits wide in NTFS, so it can theoretically address up to 16EB (16
exabytes€16 billion GB) of disk space. However, since Windows limits NTFS
volume sizes so that they remain addressable with 32-bit cluster indexes, the
largest an NTFS volume can be is 128TB (using 64K clusters).

v File object® the kernel object used to access files and devices under
Windows. Like other types of kernel objects, file objects are system resources
that multiple processes can share, that can be named, that support
synchronization (i.e., the notion of being signaled or unsignaled), and that can
be protected by object-based security.



v Synchronous I/O€ causes a thread to pause until a pending 1/0 operation
completes.

v" Asynchronous I/0® allows a thread that initiates an 1/O operation to
continue executing without waiting on the operation to complete. The thread
can check the status of its pending I/O operation through a variety of means
which we'll discuss shortly.

Key I/O APIs

Table 5.1. Key 1/0-Related API Functions

Function Description
CreateFile Creates or opens a file; can also be used to create or open other types
of objects
ReadFile Reads a buffer from a file into memory
WriteFile Writes a buffer from memory to disk

CloseHandle Closes the handle associated with a kernel object (e.g., a file)

Key 1/0 Tools

Table 5.2. Key 1/0 Monitoring Tools




% % Average
Bytes Disk Disk Disk Disk Disk
Written Read Write Queue Reads/sec Writes/sec
Time Time Length

Bytes
Reads Read Writes

Perfmon v v v v v v v v
pmon v v J v

TaskMgr ¢ v v v

Key Perfmon Counters

Perfmon is the undisputed king of I/O-related information under Windows. There are
too many counters to go into here®just understand that you can retrieve a veritable
treasure trove of I/0-related information from Perfmon. Table 5.3 lists a few of the
more useful I/O-related performance counters.

Table 5.3. Key I/O-Related Perfmon Counters

Counter Description
Physical Disk:Disk The rate of read operations on a disk
reads/sec
Physical Disk:Disk The rate of write operations on a disk
writes/sec

Physical Disk:% Disk The percentage of elapsed time spent servicing read
Read Time requests

Physical Disk:% Disk The percentage of elapsed time spent servicing write
Write Time requests

Physical Disk:Avg. Disk The average number of read and write requests queued to
Queue Length the disk during a sample interval




Counter Description

Cache:Lazy Write The rate at which the lazywriter thread is flushing data to
Flushes/sec disk

Cache:Lazy Write The rate at which the lazywriter thread is writing pages to
Pages/sec disk

Overview

In Windows, you perform most I/O operations via kernel file objects. File objects are
unusual in that they are not strictly memory constructs. They are memory objects
that provide access to the actual resource, which is on disk. Unlike events,
semaphores, and other types of kernel objects, file objects do not manage resources
that reside only in memory@they provide a means of interacting with resources that
reside primarily outside of memory.

If you've done any Windows programming, you may have noticed that the SDK
documentation recommends that you use CreateFile rather than OpenFile when
opening a file. (OpenFile has been deprecated and is for backward compatibility with
16-bit apps only.) Why is this? Does it not seem a little counterintuitive to have to
create something when you only want to open it? What if the file already exists?
Would this overwrite it? No, it wouldn't@not if you call it properly. Here's why: You
use CreateFile rather than OpenFile to open a file because you are creating a kernel
object, not because you are (necessarily) creating a file on disk. What you're
creating is a kernel object that will allow you to read from or write to the file using
other Win32 API functions. CreateFile creates a kernel file object and returns a
process-local handle to it. Whether it attempts to create a physical file on disk
depends entirely on the parameters you pass into it. It can open an existing file, or it
can create a new one®it all depends on how you call it.

Because it's not the actual resource it manages but only an in-memory
representation of it, a file object contains only data that is specific to a particular
object handle. The file itself contains the shareable data. When a thread opens a file
handle, Windows creates a new file object with its own set of handle-based
attributes. So, even though multiple file objects may reference the same file, each
one contains data that is specific to its handle (e.g., the current offset in the file
where the next 1/O operation will occur).

Each file object is process-unique unless a process duplicates a file handle in another
process via a call to the DuplicateHandle API function. In other words, even though,
as with other kernel objects, file objects can obviously have names, two processes
that open a file object with the same name will get two different objects. This differs
from other types of kernel objects and is the result of the resource itself residing on
disk rather than in memory.

Even though a file handle is process-local, the file itself isn't; therefore, threads must
synchronize their access to it, just as they must for any other shared resource. We



wouldn't want one thread writing to a file while another is trying to read it, for
example. A thread that intends to write to a file should either open the file with
exclusive write access or use the LockFile Win32 API function to block other threads
from accessing it while the writes are occurring.

Synchronous I/0

Most application I/O operations are synchronous. This means that the calling thread
waits on the operation to complete before proceeding. Windows' synchronous I/O
facility mirrors the 1/O facilities found in other operating systems and programming
environments, and it's semantically familiar to most developers.

Applications perform synchronous 1/O by calling the basic Win32 I/O functions and
waiting on them to complete. If a file isn't explicitly opened for asynchronous 1/0,
threads will wait on I/O operations against it to complete before proceeding. Let's
look at some code.

Exercise

The app below dumps the end of a text file to the console. There are various
versions of tail utilities out there; this is just a simple one to demonstrate
synchronous file I/O using the Win32 I/O functions. You can specify both the file to
dump and an optional offset from the end of the file at which to begin listing file
contents. If you don't specify an offset, the utility will either dump the last 1K of the
file or its last one-fourth, whichever is smaller.

Exercise 5.1 A Simple Utility That Demonstrates Synchronous 1/0

1. Load and compile the app shown in Listing 5.1 from the CHO5\tail subfolder on
the book's CD.

Listing 5.1 A Simple Tail Utility

// tail.cpp : A utility to dump the end of a file to the console
//

#include "stdafx.h"
#include "windows.h"
#include "stdlib.h"

int main(int argc, char* argvl[])
{
if (argc<2) {
printf("Usage is: tail filename [number of bytes]\n");
return 1;
}
HANDLE hFile=CreateFile(argv[1],
GENERIC READ,



FILE SHARE_READ,

NULL,

OPEN_EXISTING,

FILE ATTRIBUTE_NORMAL,
NULL) ;

if (INVALID HANDLE VALUE==hFile) {
printf("Unable to open file %s. Last error=%d\n",
argv[1l],GetLastError());
return 1;

}

DWORD dwFileOfs=1024;
if (argc>=3)
dwFileOfs=atoi(argv[2]);

DWORD dwFileSizeHigh;
DWORD dwFileSizelow;
dwFileSizelLow=GetFileSize(hFile,&dwFileSizeHigh);

if ((-1==dwFileSizelow) &&
(NO_ERROR!=(dwError=GetLastError()))) {
printf("Unable to get the size of file %s. Last error=%d\n",
argv[1l],GetLastError());
return 1;

}

DWORDLONG dwlFileSize=(dwFileSizeHigh * MAXDWORD) +
dwFileSizelLow;

DWORDLONG dwl0fs = dwlFileSize / 4;
if (dwlOfs<dwFileOfs)
dwFileOfs = dwlOfs;

DWORD dwNewPos=SetFilePointer(hFile,dwFileOfs * -1,0,FILE END);

char *pszTail = (char *)HeapAlloc(GetProcessHeap(),
HEAP_ZERO MEMORY,
dwFileOfs+1);

DWORD dwBytesRead;

ReadFile(hFile,pszTail,dwFileOfs,&dwBytesRead,NULL);

printf("%s\n",pszTail);

HeapFree(GetProcessHeap(),0,pszTail);
CloseHandle(hFile);

return 0;

}

2. Run the app either from the VC++ development environment or from the
command prompt and pass in the name of a text file for which you want to list
the final 1K.



3. As you can see, this app takes a file name as an input and lists the last n bytes
of it. This is handy for large files where you're only interested in the end of the
file and don't want to have to list or search the entire file to reach the end.

4. The app begins by calling CreateFile. The CreateFile call stipulates that the file
must exist (OPEN_EXISTING) or the function will fail. By not passing the
FILE_FLAG_OVERLAPPED flag into CreateFile, the app is indicating that it wants
to perform 1/O against the file in a synchronous manner.

5. Once the file is open, we compute the offset at which to begin listing file
contents. This defaults to the last 1K of the file but can also be specified on the
command line to the utility.

6. We next call SetFilePointer, the Win32 API responsible for adjusting the current
file offset. SetFilePointer moves the file pointer to a relative position based on
the beginning of the file, the current file position, or the end of the file.
Because we pass in FILE_END, we're specifying that we want to move relative
to the end of the file. In order to move the file pointer backward, you must
specify a negative file offset, so we multiply the previously computed file offset
by €1 as we pass it into SetFilePointer. Given that we opened the file in
synchronous I/O mode, the process's main thread will block while the file
pointer is moved.

SetFilePointer can fail, but since we have computed the offset in a manner that
should be foolproof, I've omitted error-checking code for simplicity's sake.

7. We next allocate a buffer from the process heap to hold the section of the file
that we'll read and display. We allocate the buffer using the
HEAP_ZERO_MEMORY switch. Given that we are going to overwrite all but the
last character in the buffer when we read the file, it would actually have been
more efficient to have set only the final character in our buffer to 0, but I am
lazy, so I'll let the heap manager zero the entire buffer for me. Notice that we
set the size of this buffer to be one character larger than the size of the region
we'll read from the end of the file. We do this in order to ensure that the buffer
will end with an ASCII 0 so that we can safely write the buffer to the console
using printf.

8. We next call the Win32 ReadFile API function in order to read the end of the file
into memory. ReadFile can also fail and can return fewer bytes than were
requested. However, for simplicity's sake, I've omitted any error-handling code
and assumed that we'll get a valid buffer back from ReadFile.

9. Because the file is opened for synchronous I/O, we pass NULL into ReadFile for
the OVERLAPPED structure parameter. For asynchronous I/O, we'd pass a
pointer to a valid structure. Given that we're doing synchronous 1/O, ReadFile
will block until the read operation completes.

10. We finish up by writing the buffer we've just read to the console, then we free
the buffer and close the file handle. You call the Win32 API function
CloseHandle to close a file when you're done processing it.

So, that's synchronous I/O in a nutshell. It's very similar to the I/O mechanisms you'll
find in other operating systems and programming environments: You open a file, you
read or write to it, then you close it€not terribly complicated.



1/0 Basics Recap

Windows provides a rich set of 1/O-related facilities. We've touched on a few of them
here; we'll explore the rest in the remainder of the chapter.

Most I/0 in Windows occurs via a file handle. You use CreateFile rather than OpenfFile
to open an existing file because you're creating a kernel file object. Whether the
system creates a new disk file for you or opens an existing one depends on the
parameters you pass into the CreatefFile call.

A kernel file object is different from other kernel objects in that it does not actually
contain the resource it manages. The resource resides on disk@it's the file itself. If
multiple threads need to make changes to the same file simultaneously, you'll
obviously have to synchronize their access to it, just as you would any other shared
resource.

Synchronous I/O is probably the most common type of I/O used by applications. A
synchronous I/O operation blocks the calling thread until it completes. This type of
I/0 is common in applications and operating systems and is the most basic type of
file 1/0 supported by Windows.

Windows provides a standard set of API functions that make performing synchronous
I/0 as easy as possible in a Windows app. You open a file for synchronous 1/O just as
you do for any other type of I/O: by calling CreateFile. You read the file with ReadFile
and write to it using WriteFile. When you're finished, you close your file handle by
calling the CloseHandle API function.

1/0 Basics Knowledge Measure

1. When opening an existing file, which Win32 API should you call, OpenFile or
CreatefFile?

2. True or false: Regardless of whether you're initiating a synchronous or
asynchronous I/O operation, you must pass a pointer to a valid OVERLAPPED
structure into ReadFile and WriteFile.

3. True or false: When you're finished with a file you've opened, you should
always close it via the CloseFile Win32 API function.

4. Which Windows API function can you call to move the current file pointer?

5. If you instruct Windows to open an existing file but the file does not actually
exist, what handle value is returned to your application?

6. True or false: By not passing the FILE_FLAG_OVERLAPPED flag when it opens a
file, an app indicates to Windows that it wants to perform I/O against the file in
a synchronous manner.

7. What is the largest NTFS volume size supported by Windows?

8. True or false: A thread can call the LockFile API function to lock part of a file
and prevent other threads from accessing it while it writes to the file.



9. Can the SetFilePointer Win32 API function fail?

10. In contrast to other types of kernel objects, where does the actual resource
managed by a file object reside?



Asynchronous and Nonbuffered 1/0

In this section, we'll continue the discussion of Windows' I/O facilities and delve into
asynchronous and nonbuffered I/O. If you haven't yet read the first part of this
chapter, you should probably take a quick read through it before continuing.

Key Asynchronous and Nonbuffered I/O Terms and
Concepts

v’ Sector® a hardware-addressable block on a storage medium such as a hard
disk. The sector size for hard disks on x86 computers is almost always 512
bytes. This means that if Windows wants to write to byte 11 or 27, it must
write to the first sector of the disk; if it wants to write to byte 1961, it must
write to the fourth sector of the disk. You can retrieve the sector size for a disk
via the GetDiskFreeSpace Win32 API function.

v Cluster® an addressable block of sectors that many file systems use. A
cluster is the smallest unit of storage for a file. A cluster is usually larger than a
sector and is always a multiple of the sector size. Clusters are used by file
systems to manage disk space more efficiently than would be possible with
individual sectors. By encompassing multiple sectors, a cluster helps divide a
disk into more manageable pieces. The downsides are that large cluster sizes
may waste disk space or result in fragmentation since file sizes aren't usually
exact multiples of the cluster size. You can retrieve the cluster size of a disk via
the GetDiskFreeSpace Win32 API function.

v Asynchronous I/O€ allows a thread that initiates an 1/0 operation to
continue executing without waiting on the operation to complete. The thread
can check the status of its pending I/O operation through a variety of means,
which we'll discuss shortly.



v Overlapped I/O€ a synonym for asynchronous 1/O.

v Nonbuffered I/0€ allows Windows to open a file without intermediate
buffering or caching. When combined with asynchronous 1/O, nonbuffered I/O
gives the best overall asynchronous performance because operations are not
slowed down by the synchronous operations of the memory manager. That
said, some operations will actually be slower because data cannot be loaded
from the cache. SQL Server uses nonbuffered 1/O to eliminate the latency
between logical disk writes and the data being physically written to disk.

v APC® asynchronous procedure call, a special type of callback function that
executes in an asynchronous fashion in the context of a given thread. Each
thread has its own APC queue. There are two types of APCs@kernel mode APCs
and user mode APCs. When a kernel mode APC is queued to a thread, the APC
will execute the next time the thread is scheduled. When a user mode APC is
queued to a thread, the APC will execute the next time the thread enters an
alertable state. A thread enters an alertable state when it calls a wait function
that supports alerting. Examples of alertable wait functions include
WaitForSingleObjectEx, WaitForMultipleObjectsEx, and SleepEx.

The ReadFileEx and WriteFileEx asynchronous I/O routines will cause a user
mode APC to be queued when an asynchronous operation completes. An
application can also queue its own APC via the Win32 QueueUserAPC function

Key Asynchronous and Nonbuffered 1/0 APIs

Table 5.4. Key Asynchronous I/O€@Related API Functions

Function Description




Function Description

ReadFileEx Reads a buffer asynchronously from a file into memory

WriteFileEx Writes a buffer asynchronously from memory to disk

GetOverlappedResult Retrieves the result of an overlapped (asynchronous)
I/0O operation, optionally waiting on the operation to
complete

HasOverlappedloCompleted Returns a Boolean indicating whether an asynchronous
operation has completed

GetDiskFreeSpace Returns system information for a drive including its
sector and cluster sizes

WaitForSingleObjectEx Waits for an object to be signaled in an optionally
alertable state

Overview

As | mentioned earlier, Windows' asynchronous I/O facility allows an application to
initiate an 1/O operation and continue running while the operation completes.
Naturally, this can improve the performance of an application because it allows the
application to do multiple things at once. In the same way that multithreading can
improve overall application throughput, asynchronous I/O can help an app
accomplish more work more quickly because it allows the application to perform
other tasks while the 1/O operation proceeds.

For the most part, you use the same basic Win32 file I/O API functions to carry out
asynchronous I/0O that you use to perform synchronous I/O; you just pass different
parameters. (Although ReadFileEx and WriteFileEx are used exclusively for
asynchronous I/O operations, ReadFile and WriteFile can be used for either type.) In
order to set up a file for asynchronous 1/O processing, you must pass the
FILE_FLAG_OVERLAPPED switch into CreateFile. When you then call
ReadFile/ReadFileEx or WriteFile/WriteFileEx, you pass a pointer to an OVERLAPPED
structure that specifies the starting position for the operation (and is also used by
Windows for managing the asynchronous operation).

You can check the status of a pending asynchronous operation via the
HasOverlappedloCompleted and GetOverlappedResult Win32 API functions. If you
want to wait on an asynchronous operation to complete before proceeding, you have
several options.



® You can call one of the Win32 wait functions (e.g., WaitForSingleObject) and
pass in either the optional event you associated with the OVERLAPPED
structure or the handle of the file object itself. If specified, this event should be
a manual-reset event, not an auto-reset event. Windows will signal the event
associated with the OVERLAPPED structure once an asynchronous operation
that was initiated with ReadFile or WriteFile (but not ReadFileEx or WriteFileEx)
has completed. It will also signal the file on which the operation has
completed, however, if you have several concurrent asynchronous operations
on the file in progress, you won't be able to tell from this alone which one of
them has completed, so you have to be careful if you decide to wait on the file
object itself.

® You can tell GetOverlappedResult to wait until the operation completes before
returning by specifying TRUE for its bWait parameter. If you want to use
GetOverlappedResult to wait on an asynchronous operation to complete and
multiple asynchronous operations are occurring simultaneously on the
specified file, you must create an event object and assign it to the hEvent
member of the OVERLAPPED structure passed into ReadFile/WriteFile and
GetOverlappedResult. If you don't associate an event object with the
OVERLAPPED structure and you specify a value of TRUE for
GetOverlappedResult's bWait parameter, the function will wait on the specified
file object to be signaled. As | mentioned in the previous bullet point, this isn't
reliable when multiple asynchronous operations are occurring concurrently, so
you must provide an event via the OVERLAPPED structure instead. When the
OVERLAPPED structure contains a reference to an event object,
GetOverlappedResult waits on it, rather than the file, to be signaled. Since
each asynchronous operation must have its own OVERLAPPED structure, this is
a reliable way to determine the status of a pending I/O request. See the fstring
sample application later in the chapter for an example of this technique.

® You can wait on some other object using an alertable wait function and allow
the APC function passed into ReadFileEx or WriteFileEx to cause the wait
function to return when an asynchronous operation completes. See the
unicode_convert sample application later in this chapter for an example of this
technique.

® You can use an I/O completion port to manage the process of waiting on
asynchronous 1/0. See the I/O Completion Ports section later in the chapter for
details.

You will likely need to synchronize access to files opened for asynchronous writes. If
multiple asynchronous write operations are taking place concurrently, you will
naturally need to ensure that the file does not become corrupted due to thread
synchronization issues. You can use GetOverlappedResult and the Win32 wait
functions to help ensure that only one asynchronous write operation transpires at a
time.

Regardless of whether you specify synchronous or asynchronous I/O processing from
an application standpoint, most I/O requests are carried out internally by Windows
using asynchronous I/O. That is, once Windows' I/O subsystem has initiated an 1/O
request on a device, the device driver usually returns immediately. Whether or not
the I/0 subsystem then returns immediately to your application depends on whether



you created the file object with the FILE_FLAG_OVERLAPPED switch, whether you've
passed a valid OVERLAPPED structure pointer into the API function responsible for
carrying out the operation, and various other factors.

I should stop here and point out something that may not be immediately obvious.
You can create a file object with the FILE_FLAG_OVERLAPPED switch and pass a valid
OVERLAPPED structure pointer into ReadFile or WriteFile and still not initiate an
asynchronous I/O operation. With ReadFile and WriteFile, Windows makes the final
decision as to whether the operation is carried out synchronously or asynchronously.
Although you may call these routines with the expectation that an operation will be
carried out asynchronously, you have to code for the possibility that it might not be.
ReadFile will return TRUE when it carries out an operation synchronously. It will
return false and GetLastError will return ERROR_I0_PENDING when it has queued an
operation to be carried out asynchronously. Examples of when a ReadFile/WriteFile
operation that was initiated as an asynchronous operation runs synchronously
include the following.

® The file being processed is compressed with NTFS compression. This is yet

another good reason not to compress files that SQL Server makes use of,
especially data and log files.

® The requested operation is increasing the size of the file (e.g., a WriteFile
operation to the end of a file that causes the file to grow in size).

® The operation can be completed immediately because it is working with
cached data. Many 1/O drivers are coded such that if an operation can be
completed immediately against a data cache (this can be a read or a write of
the data in the cache), it occurs synchronously.

® The operation is against a buffered (cached) file, but the cache manager and
memory manager are saturated. This is more likely if an application makes a
large number of I/O requests for data that is not in the cache. By making use of
nonbuffered I/O on its data and log files, SQL Server avoids this issue
altogether. We'll talk more about nonbuffered 1/O later in the chapter.

The best way to ensure that an I/O operation is carried out asynchronously is to use
ReadFileEx and WriteFileEx rather than ReadFile and WriteFile. ReadFileEx and
WriteFileEx always run asynchronously, regardless of other activity on the system. In
fact, unlike ReadFile and WriteFile, ReadFileEx and WriteFileEx don't even accept a
counter to return the number of bytes processed as a parameter because they are
not designed to be used by themselves to process file /O€@you retrieve the bytes
processed from the APC function they cause to be queued when an I/O operation
completes.

Exercise

Let's take a look at some code. In this sample application, we'll explore a utility that
converts the text in a UNICODE file to a different code page (e.g., ANSI). The tool
works similarly to Notepad's Save As command in that it allows you to write a
UNICODE text file in a different file format.



Exercise 5.2 A Utility That Converts a UNICODE Text File by Using
Asynchronous 1/O0

1. Load the sample application shown in Listing 5.2 from the
CHO5\unicode_convert subfolder on the book's CD into the Visual Studio
development environment (MSDEV).

Listing 5.2 A UNICODE File Converter

// unicode convert.cpp : Converts a UNICODE file to a different
// code page
//

#include "stdafx.h"
#include "windows.h"
#include "stdlib.h"
#define INPUT BUFFER SIZE 0x1000

//Allow for a 4x size increase during conversion
#define OUTPUT BUFFER SIZE (INPUT BUFFER SIZE * 4)

DWORD dwBytesWritten=0;
DWORD dwTotalBytesWritten=0;

VOID CALLBACK WriteCompleted(

DWORD dwErrorCode, // completion code
DWORD dwNumberOfBytesTransfered, // number of bytes transferred
LPOVERLAPPED 1pOverlapped // I/0 information buffer

)
{
printf("Async operation completed. Transferred %d bytes.
Error code=%d.\n",dwNumberOfBytesTransfered,dwErrorCode);
dwBytesWritten=dwNumberOfBytesTransfered;

dwTotalBytesWritten+=dwBytesWritten;
}

int main(int argc, char* argv[])
{
if (argc<3) {
printf("Usage is: unicode convert inputfilename
outputfilename [codepage]\n");
return 1;

}

DWORD dwCodePage=CP_ACP;
if (4==argc)
dwCodePage=atoi(argv[3]);

HANDLE hInputFile=CreateFile(argv[1],
GENERIC READ,



FILE SHARE READ,

NULL,

OPEN_EXISTING,

FILE ATTRIBUTE_NORMAL,
NULL) ;

if (INVALID HANDLE VALUE==hInputFile) {
printf("Unable to open file %s. Last error=%d\n",argv[l],
GetLastError());
return 1;

}

HANDLE hOutputFile=CreateFile(argv([2],
GENERIC WRITE,
0,
NULL,
CREATE_ALWAYS,
FILE ATTRIBUTE NORMAL |
FILE FLAG OVERLAPPED,

NULL) ;

if (INVALID HANDLE VALUE==hOutputFile) {
printf("Unable to open file %s. Last error=%d\n",argv[2],
GetLastError());
return 1;

}

wchar t *pwszBuffer = (wchar t *)HeapAlloc(GetProcessHeap(),
HEAP_ ZERO MEMORY,

INPUT BUFFER SIZE * sizeof(wchar t));

char *pszBuffer = (char *)HeapAlloc(GetProcessHeap(),
HEAP_ ZERO MEMORY,

OUTPUT BUFFER SIZE);

OVERLAPPED 01I0;
ZeroMemory (&o1I0,sizeof(olI0));

DWORD dwBytesRead;
DWORD dwTotalBytesRead=0;

while ((ReadFile(hInputFile,
pwszBuffer,
INPUT BUFFER SIZE * sizeof(wchar_t),
&dwBytesRead,NULL))
&& (dwBytesRead)) {

if (dwTotalBytesRead) {

WaitForSingleObjectEx(GetCurrentProcess(),INFINITE, true);
if ((MAXDWORD - olIO.O0ffset) < dwBytesWritten) {



olI0.0ffsetHigh++;
olIO0.O0ffset=(MAXDWORD - olIO.Offset);

}
else olI0.0ffset+=dwBytesWritten;
}

DWORD dwBytesConverted=
WideCharToMultiByte(dwCodePage,
0,
pwszBuffer,
dwBytesRead / sizeof(wchar t),
pszBuffer,
OUTPUT BUFFER SIZE,
NULL,
NULL) ;

if (!dwBytesConverted) {
printf("Error converting file %s near offset %d. Last
error=%d\n",argv[1l],dwTotalBytesRead,GetLastError());

return 1;
}
WriteFileEx(hOutputFile,
pszBuffer,
dwBytesConverted,

&1I0,&8WriteCompleted);

dwTotalBytesRead+=dwBytesRead;

}
WaitForSingleObjectEx(GetCurrentProcess(),INFINITE, true);

printf("Converted %s to %s using code page %s. Read %d bytes,
Wrote %d bytes\n", argv[l], argv[2], argv[3],
dwTotalBytesRead, dwTotalBytesWritten);

HeapFree(GetProcessHeap(),0,pwszBuffer);
HeapFree(GetProcessHeap(),0,pszBuffer);

CloseHandle(hInputFile);
CloseHandle(hOutputFile);

return 0;

}

2. Run the utility from MSDEV, passing in the name of a UNICODE file as the first
parameter and the target name for the output file to create as the second
parameter. (Press Alt+F7 in Visual Studio 6.0 and select the Debug tab to set
the command line parameters.) If you don't have a UNICODE file handy, there's
one on the CD named "UNICODE.TXT."

3. You can specify an optional code page number as the utility's third parameter.
(See Table 5.5 for a list of common code pages and their corresponding integer



values.) If you don't specify a third parameter, the ANSI code page is used by
default.

. The unicode_convert app begins by opening both files. It opens the input file in
synchronous mode. Since we are converting the contents of the input file,
there isn't a lot we can do until each I/O request against it has completed.
There's therefore no reason to attempt to read it asynchronously.

. We do, however, open the output file in asynchronous mode. The thinking is
this: By not waiting on a write to the output file to complete before reading the
next buffer from the input file, we allow the application to read the input and
write the output simultaneously. As each new buffer is read from the input file,
we are writing the previous buffer to the output file.

Table 5.5. Popular Code Pages and
Their Win32 API Constant Values

Win32 API Function

Cde Page Integer Value
ANSI 0
OEM 1
MAC 2

The current thread's 3
code page

Symbol 4?2




Win32 API Function

Cde Page Integer Value

UTF-7 65000

UTF-8 65001

6. Whenever a Windows application wishes to process input or output
asynchronously, it must not only open the file with the
FILE_FLAG_OVERLAPPED switch but also pass in a pointer to an OVERLAPPED
structure to the ReadFile/ReadFileEx or WriteFile/WriteFileEx call that it uses to
transfer data between the file on disk and memory. Before passing in the
pointer to an OVERLAPPED structure, the app must initialize the structure with
the offset at which to begin reading or writing. That's why we pass our
structure into ZeroMemory before we enter the processing loop. It is also the
reason that we increment the file offset stored in the OVERLAPPED structure
after each write. The Offset and OffsetHigh fields of the OVERLAPPED structure
tell the system at what file offset an asynchronous operation is to begin. Since
we're writing the file asynchronously, failing to do this would cause us to write
each converted text buffer to the same offset in the file@the zero offset@not a
pretty sight.

7. The actual work of converting the input text from one code page to another is
done by the Win32 WideCharToMultiByte function. We loop through the input
file, convert each buffer we read using WideCharToMultiByte, then call
WriteFileEx to write each converted buffer to the output file.

We use WriteFileEx rather than WriteFile to ensure that the operation is
processed asynchronously. You'll recall that | mentioned earlier that WriteFile
will run synchronously when you are increasing the size of its target file. Since
we're creating a new file here, that's exactly what we're doing. By calling
WriteFileEx rather than WriteFile, we force the operation to be processed
asynchronously in spite of this.

8. We pass a pointer to our OVERLAPPED structure as well as the address of an
APC function into WriteFileEx. Windows signals that the requested
asynchronous operation has completed by calling the specified APC function. In
this case, this is our global WriteCompleted function.

9. In order to ensure that we've written each converted text buffer to disk before
altering it through another call to WideCharToMultiByte, we use
WaitForSingleObjectEx to pause execution of the calling thread until the
previously initiated asynchronous write operation has completed. When we call
WaitForSingleObjectEx, we pass in the handle to the current process. This



10.

11.

object is actually not used by WriteFileEx and will not be signaled by the
asynchronous operation (in fact, it won't be signaled until the process exits).
We use it here as a kind of placeholder object so that we can be notified when
the write operation began by WriteFileEx completes. In order for the APC
routine we passed into WriteFileEx to be called, we have to enter an alertable
state. We do that by calling one of the Win32 wait functions that support being
alerted while they wait and passing TRUE for its bAlertable parameter. So,
while WaitForSingleObjectEx waits indefinitely on our process object, the
asynchronous write operation we initiated via the WriteFileEx call will complete
and cause the wait function to return because we have specified that it is
alertable.

You may be wondering why we don't just wait on the file object itself using
WaitForSingleObjectEx rather than intentionally waiting on an object that will
never be signaled as long as the process is running. The reason we do this is
that an alertable wait on an object for which an asynchronous I/O operation is
under way will not allow the specified APC function to run once the operation
completes. Windows will signal the object and cause the wait function to return
immediately without executing the APC. If you initiate an alertable wait on a
different object, however, Windows will interrupt it with an alert when the
asynchronous operation completes and will cause the APC function to execute
within the context of the thread that initiated the operation.

Another way to cause thread execution to pause until the write operation
completes is to call the GetOverlappedResult Win32 API function and set its
bWait parameter to TRUE. This would cause the calling thread to wait until the
pending asynchronous I/O on the specified file (and referenced by the supplied
OVERLAPPED structure) had completed.

In addition to using it to tally the total number of bytes read, we use the
dwTotalBytesRead counter as a flag to allow us to determine whether we're in
the first iteration of the loop. The counter will be 0 the first time through the
loop because we have not yet reached its increment instruction at the bottom
of the loop. The reason we don't want to wait on the write operation the first
time through the loop is that we've not yet initiated it. If we call
WaitForSingleObjectEx and begin waiting to be alerted before the
asynchronous operation has even been started, we'll effectively hang the
calling thread.

The reason we pause the calling thread until the previously initiated
asynchronous operation has completed is twofold: (1) we don't want to alter
the buffer WriteFileEx is writing to disk by initiating another call to the
WideCharToMultiByte function before it completes, and (2) we don't want to
initiate another asynchronous write operation before the one pending has
completed. This is what | was referring to when | said that an app must provide
for thread synchronization when performing asynchronous writes. In this case,
we keep things pretty basic and simply prevent multiple asynchronous writes
from occurring simultaneously. In a more complex app, you would likely have
several overlapped I/O operations occurring at once, and you might use one of
the multiobject wait functions (e.g., WaitForMultipleObjectsEx) to wait on all of
them at once (or use a more complex I/O mechanism such as an 1/O
completion port).



We loop until we've processed the entire input file. Once ReadFile either
returns FALSE or we see 0 bytes read from the input file, we exit the loop. Note
the final call to WaitForSingleObjectEx. This is necessary to ensure that the last
file write request has completed before we print our conversion tallies and
close the files. Again, we block on this call until the asynchronous operation
has completed.

12. It would probably be instructive to step through the app under the Visual C++
debugger. Begin by stepping through the main processing loop and the APC
function. Pay special attention to the dwBytesRead and dwBytesWritten
counters@they're the best indicators of how far along ReadFile and WriteFileEx
are at any given point in time.

So, that's how asynchronous I/O works in Windows. You create the file object using
the FILE_FLAG_OVERLAPPED flag, then pass a pointer to an OVERLAPPED structure
into ReadFile/ReadFileEx or WriteFile/WriteFileEx to initiate the asynchronous
operation. You then use either GetOverlappedResult or one of the Win32 wait
functions to synchronize access to the file and check the progress of the
asynchronous operation.

Nonbuffered 1/0

As | mentioned earlier, nonbuffered 1/O allows an application to bypass the Windows
cache manager and read and write a file directly with no intermediate buffer or
cache. This can provide better performance, especially when performing
asynchronous I/O, because it prevents the synchronous operation of the cache
manager from becoming an /O bottleneck. Some operations may be slower,
however, when using nonbuffered I/O because they cannot benefit from being able
to read data from the cache.

One thing worth mentioning about nonbuffered I/0 is that it alleviates the problem |
mentioned earlier in which Windows may decide to carry out an asynchronous I/O
request synchronously because of memory manager or cache manager saturation.
By bypassing the system cache, you avoid that possibility altogether.

SQL Server uses nonbuffered I/O extensively. By circumventing the system cache
(and performing its own internal cache management), SQL Server has greater
control over whether operations are carried out asynchronously or synchronously
and can ensure better data integrity because it does not have to be concerned with
disk writes appearing to be complete but not actually being written to the physical
media until the cache manager decides to write them.

To open a file without buffering, pass the FILE_FLAG_NO_BUFFERING flag into
CreateFile. Certain requirements must be met in order for a thread to open a file with
FILE_FLAG_NO_BUFFERING.

1. Access to the file must begin at byte offsets that are evenly divisible by the
disk's sector size.

2. File reads and writes must be for numbers of bytes that are evenly divisible by
the disk's sector size. Assuming a default sector size of 512 bytes, an
application can read and write buffers of 1,024 and 8,192 bytes, but not 1,025
or 10,000 bytes.



3. The buffers used for reads and writes must be aligned on memory addresses
that are evenly divisible by the disk's sector size. This means that 0x7FF01000
is a valid buffer start address, but 0Ox7FF01001 is not.

A good way to ensure that the last requirement is met is to allocate the memory
used for nonbuffered 1/0 using VirtualAlloc. As | mentioned in Chapter 4, VirtualAlloc
allocates memory on system page size boundaries. Since the system page size and
a disk's sector size are both expressed as powers of 2, allocating a buffer with
VirtualAlloc ensures that it will be aligned on sector size boundaries.

The next exercise is the first of several in this book that will take you through the
process of building a sample application that searches a text file for a specified
string. Each sample app uses a different type of Windows file I/O or uses it in a
different way than the others. By exploring each type of I/O using a common
metaphor, you should be able to compare and contrast the types of 1/O facilities that
Windows offers user mode applications and ascertain the strengths and weaknesses
of each one compared with the others. We'll start with simple apps, then gradually
increase their complexity as we go€the hope being that you'll add an understanding
of the unique characteristics of each new sample app to what you learned about the
previous ones.

Exercise

Exercise 5.3 takes you through an application that makes use of nonbuffered 1/0O. It
opens each file that matches a given file mask in both nonbuffered and overlapped
(asynchronous) mode and searches it for a string. It uses multiple worker threads to
search through the file in parallel, keeps a tally of the number of matches it finds,
and prints out each line containing a match.

Exercise 5.3 A String Search Utility That Uses Nonbuffered
Asynchronous 1/0

1. Load the fstring sample app from the CHO5\fstring subfolder on the book's CD
into the Visual C++ development environment. Compile and run it, specifying
a text file and search string to search for as parameters. If you don't have a file
handy that you'd like to search, the CD includes a file named INPUT.TXT. It
contains a few instances of the string "ABCDEF" that you can search for.

2. Find the CreateFile call for the input file in fstring.cpp. You'll find that it passes
both the FILE_FLAG_NO_BUFFERING and FILE_FLAG_ OVERLAPPED switches.
This causes the file to be processed without using the system cache and in
asynchronous mode when possible.

3. The fstring app consists of two main source code modules: fstring.cpp and
bufsrch.cpp. fstring.cpp contains the program's entry point function and the
parts of the code that invoke a search against each file matching the specified
file mask. bufsrch.cpp implements the code necessary to search a given buffer
for a specified string, count the number of matches, and output matches to the
console. This is best explored by going through the code itself. Let's start with
fstring.cpp (Listing_5.3).



Listing 5.3 fstring.cpp, the Main Source Code Module for the
fstring Utility

// fstring.cpp : Multithreaded file search that uses
// nonbuffered I/0

#include "stdafx.h"
#include "windows.h"
#include "stdlib.h"
#include "process.h"
#include "bufsrch.h"

#define I0 STREAMS PER PROCESSOR 6

//Entry point routine for the worker threads
unsigned  stdcall StartSearch(LPVOID lpParameter)
{

//Cast the parameter supplied to beginthreadex
//as a CBufSearch * and call its Search method

return ((CBufSearch*)lpParameter)->Search();

}

//Search a specified file for a given search string
//using nonbuffered, asynchronous I/0
DWORD SearchFile(DWORD dwClusterSize,
DWORD dwNumStreams,
LPCRITICAL SECTION pcsOutput,
char *szPath,
char *szFileName,
char *szSearchStr)

char szFullPathName[MAX PATH+1];
DWORD dwNumThreads;

HANDLE hPrivHeap;

HANDLE *hThreads;

HANDLE *hEvents;

strcpy(szFullPathName, szPath);
strcat(szFullPathName,szFileName) ;

//0pen the file for both nonbuffered and
//overlapped (asynchronous) I/0
HANDLE hFile=CreateFile(szFullPathName,
GENERIC READ,FILE SHARE READ,
NULL,
OPEN EXISTING,
FILE ATTRIBUTE NORMAL
| FILE FLAG OVERLAPPED
| FILE FLAG NO BUFFERING



,NULL) ;

if (INVALID HANDLE VALUE==hFile) {
printf("Error opening file. Last error=%d\n",
GetLastError());
return 1;

}

DWORD dwFileSizeHigh;

DWORD dwFileSizelLow=GetFileSize(hFile,&dwFileSizeHigh);
DWORD dwlFileSize=(dwFileSizeHigh*MAXDWORD)+dwFileSizelow;

DWORD dwNumClusts=dwlFileSize / dwClusterSize;
if (dwNumClusts<l) dwNumClusts=1;

//1f file is less than 4GB and we have more requested
//streams (IO threads) than clusters, set the # of
//threads = to the # of clusters
if ((dwlFileSize<OxFFFFFFFF) && (dwNumStreams>dwNumClusts))
dwNumThreads=dwNumClusts;
else
dwNumThreads=dwNumStreams;

//Create a private heap so that we can free all
//allocations at once
hPrivHeap=HeapCreate(0,0,0);

//Create the thread and synchronization event arrays
hThreads=(HANDLE *)HeapAlloc(hPrivHeap,
HEAP ZERO MEMORY,
dwNumThreads*sizeof (HANDLE) ) ;
if (NULL==hThreads) {
printf("Error allocating worker thread array. Aborting.\n");
return 1;

}

hEvents=(HANDLE *)HeapAlloc(hPrivHeap,
HEAP ZERO MEMORY,
dwNumThreads*sizeof (HANDLE));
if (NULL==hEvents) {
printf("Error allocating event array. Aborting.\n");
return 1;

}

//Create the worker threads and the
//CBufSearch instance for each thread
CBufSearch *pbFirst=NULL;

unsigned uThreadId;

for (DWORD i=0; i<dwNumThreads; i++) {



hEvents[i]=CreateEvent (NULL, false,false,NULL);

pbFirst=new CBufSearch(pbFirst,
pcsOutput,
szFileName,
hFile,
dwClusterSize,
szSearchStr,
hEvents[i]);

hThreads[i]= (HANDLE) beginthreadex(NULL,
0,
&StartSearch,
pbFirst,
0,
&uThreadId);

if (!'hThreads[i]) {
printf("Error creating thread. Aborting.\n");
return -1;
}
}

//Wait for all threads to signal that they've started
WaitForMultipleObjects(dwNumThreads, hEvents, true, INFINITE);

//Main loop -- loop through the file, reading it in
//dwClusterSize chunks and starting dwNumThreads, searching it
//concurrently

DWORDLONG dwlFilePos=0;
do {
for (CBufSearch *pbCurrent=pbFirst;
NULL!=pbCurrent;
pbCurrent=pbCurrent->m pbNext) {

pbCurrent->m OverlappedIO.O0ffset=
(DWORD) (dwlFilePos / MAXDWORD) ;

pbCurrent->m OverlappedIO.O0ffset=
(DWORD) (dwlFilePos % MAXDWORD) ;

//Zero-fill the read buffer so that we don't
//get search hits at the end of a partially
//filled buffer (from previous contents)
ZeroMemory (pbCurrent->m szBuf,dwClusterSize+1);

//Read a buffer full of data from the file

//using asynchronous I/0 if possible

if ('ReadFile(hFile,pbCurrent->m szBuf,
dwClusterSize,
&pbCurrent->m_dwBytesRead,
&pbCurrent->m OverlappedIO)) {

DWORD dwLastErr=GetLastError();



if (ERROR_IO PENDING'!=dwLastErr) {

//Terminate the thread's main loop
//on any error except ERROR IO PENDING
//including EOF

pbCurrent->m bTerminated=true;

//Abort if the error isn't an EOF
if (ERROR HANDLE EOF!=dwLastErr) {
printf("Error reading file. Last
error=%d",dwLastErr);
throw -1;
}
}
else {
//We have an asynchronous operation
pbCurrent->m _bOverlapped=true;

}
}
else {
//ReadFile returned true; the operation
//1s synchronous
pbCurrent->m bOverlapped=false;

}

//Signal the worker thread to begin searching
SetEvent (pbCurrent->m hMainEvent);

dwlFilePos+=dwClusterSize;

}

//Wait on all the worker threads to finish searching their
//buffers. Each one will signal the event we provided it
//when it's ready for another buffer.
WaitForMultipleObjects(dwNumThreads, hEvents, true, INFINITE);

} while (dwlFilePos<dwlFileSize);

//Get total tally and destroy search objects

DWORD dwFindCount=0;

CBufSearch *pbNext;

for (; NULL'=pbFirst; pbFirst=pbNext) {
pbFirst->m bTerminated=true;
dwFindCount+=pbFirst->m dwFindCount;
pbNext=pbFirst->m pbNext;
delete pbFirst;

}

//Close the thread and event handles

for (i=0; i<dwNumThreads; i++) {
CloseHandle(hThreads[i]);
CloseHandle(hEvents[i]);

}



CloseHandle(hFile);

//Free all of our previous heap allocations
//by destroying the private heap we created
HeapDestroy(hPrivHeap);

//Return the find count for the specified file
return dwFindCount;

}

//Search the files matching a given mask for a
//specified string
bool SearchFiles(char *szFileMask, char *szSearchStr)

{
char szPath[MAX PATH+1];

//Extract the file path from the specified mask
char *p=strrchr(szFileMask, '\\"');
if (p) |
strncpy(szPath,szFileMask, (p-szFileMask)+1);
szPath[(p-szFileMask)+1]='\0";
}
else
//If no path was specified, use the current
//folder
GetCurrentDirectory(MAX PATH,szPath);

//Add a trailing backslash as necessary
if ('\\'!=szPath[strlen(szPath)-1])
strcat(szPath,"\\");

printf("Searching for %s in %s\n\n",szSearchStr,szFileMask);

//Loop through all the files matching the mask
//and search each one for the string

WIN32 FIND DATA fdFiles;

HANDLE hFind=FindFirstFile(szFileMask,&fdFiles);

if (INVALID HANDLE VALUE == hFind) {
printf("No files match the specified mask\n");
return false;

}

//Get the number of processors
//for the current systenm.
//This will be used to compute
//the number of I/0 streams
//to use to search each file
SYSTEM INFO si;
GetSystemInfo(&si);

//Get the cluster size from the drive
//This will always be a multiple of the



//sector size, so it is a good choice for

//use with nonbuffered I/0

DWORD dwSectorsPerCluster;

DWORD dwBytesPerSector;

DWORD dwNumberOfFreeClusters;

DWORD dwTotalNumberOfClusters;

GetDiskFreeSpace(NULL,&dwSectorsPerCluster,&dwBytesPerSector,
&dwNumberOfFreeClusters, &dwTotalNumberOfClusters);

DWORD dwClusterSize=(dwSectorsPerCluster * dwBytesPerSector);

CRITICAL SECTION csOutput;
InitializeCriticalSection(&csOutput);

DWORD dwFindCount=0;
do {
dwFindCount+=SearchFile(dwClusterSize,

si.dwNumberOfProcessors*I0 STREAMS PER PROCESSOR,
&csOutput,
szPath, fdFiles.cFileName,
szSearchStr);

} while (FindNextFile(hFind,&fdFiles));

FindClose(hFind);
DeleteCriticalSection(&csOutput);

printf("\nTotal hits for %s in %s:\t%d\n",6szSearchStr,
szFileMask,dwFindCount) ;
return true;

}

int main(int argc, char* argv[])
{
if (argc<3) {
printf("Usage is: fstring filemask searchstring\n");
return 1;

}

try
{
return (!SearchFiles(argv[1l], argv([2]));
}
catch (...)
{
printf("Error reading file\n");
return 1;
}
}

4. Let's start with the main function. It takes the parameters passed into it and
calls the global SearchFiles function. SearchFiles accepts a file mask and a
search string, then locates each file matching the mask using the FindFirstFile
and FindNextFile Win32 API functions.
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11.

12.

13.

14.

. SearchFiles creates a critical section which will be used to synchronize access

to the console, which it then passes into the routine responsible for searching
each file, SearchFile. I'll explain why we use a critical section in a moment.

. SearchFiles also computes the cluster size for the current drive by calling the

GetDiskFreeSpace function. We need to compute the cluster size on the drive
because we intend to process files using nonbuffered 1/O and Windows requires
that 1/O requests against nonbuffered files be aligned on disk sector
boundaries. Since a disk's cluster size is always a multiple of its sector size,
setting our read buffer to match the cluster size is a reasonable way to meet
Windows' requirements.

. SearchFiles retrieves the number of processors installed on the system and

uses it to specify a requested number of I/O streams when it calls SearchFile.
The number of I/O streams specifies the number of threads to use to search a
file. We use a multiple of the processors on the system because each thread
will spend a certain amount of time waiting on I/O and we want to keep the
CPU(s) as busy as possible.

. SearchFiles then calls the global SearchFile function to search each file for the

string.

. SearchFile begins by opening the specified file using CreateFile and passing in

the FILE_FLAG_NO_BUFFERING and FILE_FLAG_OVERLAPPED switches. It then
computes the size of the file and makes certain that it does not have more 1/O
streams than clusters in the file since we are reading the input file in cluster-
sized chunks.

SearchFile next creates a private heap that it will use to store the two arrays of
handles that it will need, the worker thread handle array and the event
synchronization array. It then uses this private heap to allocate these two
arrays. Because these are both allocated from a private heap, SearchFile can
easily free them by simply destroying the heap prior to exiting. You may recall
that | mentioned this technique in Chapter 4.

SearchFile next enters a loop wherein it allocates a CBufSearch object for each
I/O stream and creates a worker thread for each CBuf Search instance. The
entry point for each worker thread is the global function StartSearch, which
casts the user parameter that was passed into _beginthreadex as a CBufSearch
pointer and uses it to call the CBufSearch::Search method. We'll talk more
about CBufSearch in just a moment.

Once the search objects and worker threads have been created, SearchFile
waits on the worker threads to signal it (via the event synchronization array)
that they're ready to begin processing data.

Once the worker threads signal that they're ready, SearchFile enters a loop
wherein it iterates through the CBufSearch objects and reads a cluster from the
file asynchronously for each one. Once it has read a cluster for each
CBufSearch object, it signals the object to begin processing the buffer. After a
search has been queued for each of the CBufSearch objects, SearchFile waits
on them all to finish before queuing more requests. This process continues
until the entire file has been searched.



15.

16.

17.

SearchFile checks the return value of ReadFile so that it can provide for the
possibility that Windows might decide to process the read synchronously even
though we've opened the file with the FILE_FLAG_OVERLAPPED switch and
passed in a valid OVERLAPPED structure. As | mentioned earlier, there are
situations in which Windows will process an asynchronous 1I/O request
synchronously, and you have to code for that possibility. Here, we set a
member in the CBufSearch object (m_bOverlapped) to indicate whether an
asynchronous I/O operation was successfully initiated. CBufSearch needs to
know whether the read was initiated asynchronously so that it can determine
whether to call GetOverlappedResult to wait on the pending operation before
attempting to search the read buffer.

To see how this works, set a breakpoint in SearchFile on each line that assigns
m_bOverlapped, then run fstring under the Visual C++ debugger. If you pass in
INPUT.TXT as the file mask, you should see that it reads this file
asynchronously. Now, stop the debugger, open Explorer, bring up the file
properties for INPUT.TXT and flag it as a compressed file, then rerun your test.
You should see that the file is now read synchronously. As | mentioned earlier,
one sure way to defeat Windows' ability to read or write a file asynchronously
is to compress it with NTFS file compression.

Once the file is completely read and searched, SearchFile closes the input file,
frees up the resources it allocated, and returns a match count tally to
SearchFiles.

The real work of searching each file is done by the CBufSearch class. Let's have
a closer look at it (Listing_5.4).

Listing 5.4 bufsrch.cpp, the Source Code Module for the
CBufSearch Class

//bufsrch.cpp -- a utility class that we use to search
//a buffer for a string

#include "bufsrch.h"

//Ctor
CBufSearch: :CBufSearch(CBufSearch *pbNext, LPCRITICAL SECTION
pcsOutput, char *szFileName, HANDLE hFile, DWORD dwClusterSize,
char *szSearchStr, HANDLE hSearchEvent)
{
//Initialize the OVERLAPPED structure
ZeroMemory (&m OverlappedIO, sizeof(m OverlappedIO));
m_OverlappedIO.hEvent=CreateEvent(NULL,true,false,NULL);

//Cache constructor parameters for later use
m_pbNext=pbNext;

m szFileName=szFileName;

m_hFile=hFile;

m_pcsOutput=pcsOutput;
m_szSearchStr=szSearchStr;

m dwClusterSize=dwClusterSize;



}

m_hSearchEvent=hSearchEvent;

//Create the event the main thread

//will signal when it's ready for

//a worker thread to begin processing a buffer
m_hMainEvent=CreateEvent (NULL, false,false,NULL);

//Allocate the read buffer.

//Use VirtualAlloc so that we can ensure that

//the buffer is aligned on a page size

//boundary. This will also ensure that it's

//aligned on a sector size boundary since both

//are expressed as a power of 2. In order to

//perform nonbuffered I/0, the read or write

//buffer must be aligned on an even multiple of

//the disk's sector size.

//Allocate one more byte than the cluster size

//(which will result in an additional page of

//virtual memory being committed and reserved)

//so that we don't have to worry about strstr

//running off the end of our buffer looking

//for a null terminator.

m_szBuf=(char *)VirtualAlloc(NULL,m dwClusterSize+1,
MEM RESERVE | MEM COMMIT,
PAGE_READWRITE) ;

//Initialize the remaining member variables
m_bTerminated=false;

m_bOverlapped=true;

m_dwFindCount=0;

//Dtor
CBufSearch: :~CBufSearch()

{

}

//Close the event handles we created
//in the constructor

CloseHandle(m OverlappedIO.hEvent);
CloseHandle(m hMainEvent);

//Decommit and release the memory for
//the read buffer
VirtualFree(m szBuf,®,MEM RELEASE);

//From an offset in a buffer, find the start of the line
char *CBufSearch::FindLineStart(char *szStartPos)

{

char *szStart;

for (szStart=szStartPos; ((szStart>m szBuf) &&
(cLINE DELIM!=*(szStart-1))); szStart--);

return szStart;



}

//From an offset in a buffer, find the end of the line
// -- assumes null-termination
char *CBufSearch::FindLineEnd(char *szStartPos)

{

}

//Search the read buffer for

//every line containing a previously
//specified search string

bool CBufSearch::Search()

{

return strchr(szStartPos,cLINE DELIM);

char *szBol;

char *szEol;

char *szStringPos;
DWORD dwNumChars;
char *szStartPos;
bool bRes=false;

char szFmt[32];
DWORDLONG dwlFilePos;

//Signal to the main thread that we're
//ready for processing
SetEvent(m_hSearchEvent);

//Main thread sets m bTerminated
//to false at EOF or in the case
//0f an error reading the file
while (!m bTerminated) {

//Wait for the main thread to signal
//that it's OK to process the read buffer
WaitForSingleObject(m hMainEvent, INFINITE);

//1If the terminate member was set while
//we were asleep, exit the loop
if (m bTerminated) break;

//We start the search at the beginning
//o0f the read buffer
szStartPos=m_szBuf;

//The current file position (which we'll need
//later to indicate where we found the string)
//can be extracted from the OVERLAPPED structure
//used by the read operation.

dwlFilePos=(m OverlappedIO.O0ffsetHigh*MAXDWORD)
+m _OverlappedIO.Offset;

//1If we have an overlapped (asynchronous)
//operation, use GetOverlappedResult to
//wait on it to complete



if (m _bOverlapped) {
if ((!'GetOverlappedResult(m hFile,&m OverlappedIO,
&m dwBytesRead,true)) ||
(!'m dwBytesRead)) {
printf("Error getting pending I0. Last error=
%d\n",GetLastError());
break;
}
}

_try
{
//Loop while our search start marker is not NULL,
//1is within our read buffer,
//and strstr continues to find the search string
while ((szStartPos) &&
(szStartPos<(m _szBuf+m dwBytesRead)-1) &&
(NULL'!'=(szStringPos=
strstr(szStartPos,m szSearchStr)))) {

//1If we get in here, we have a search hit
m_dwFindCount++;

//Compute the line start and end so that we
//can write it to the console
szBol=FindLineStart(szStringPos);
szEol=FindLineEnd(szStringPos);

//Compute the number of characters to output
//We'll use this later to build a printf
//format string
if (szEol) {
dwNumChars=szEol-szBol;
if (szEol<(m szBuf+m dwBytesRead)-1)
szStartPos=szEol+1;
else szStartPos=NULL;
}
else {
dwNumChars=MAXLINE LEN;
szStartPos=NULL;

}

EnterCriticalSection(m pcsOutput);

#if(_DEBUG)
printf("Thread %08d: Offset: %010I64d %s ",
GetCurrentThreadId(),dwlFilePos+
(szStringPos-m szBuf),m szFileName);
#else
printf("Offset: %010I64d %s ",dwlFilePos+
(szStringPos-m szBuf),m szFileName);
#endif
//Build format string that limits output to



//current line
strcpy(szFmt,"%.");
sprintf(szFmt+2, "%ds\n",dwNumChars) ;

//0utput current line
printf(szFmt,szBol);

LeaveCriticalSection(m pcsOutput);

bRes=true;
}
}
__except (EXCEPTION EXECUTE HANDLER)
{
//Eat the exception -- should never get here

//given that the read buffer is guaranteed to
//be null-terminated.
#if(_DEBUG)

//Assumes we got an access violation from going
//past the end of the read buffer -- could actually
//be some other type of error
printf("Thread %08d reached end of buffer\n",
GetCurrentThreadId());

#endif

}

//Signal to the main thread that we're done
//with this buffer
SetEvent(m_hSearchEvent);

}

//1f we exit the loop abnormally, be sure
//to signal our event to prevent an infinite
//wait by the main thread
SetEvent(m_hSearchEvent);
return bRes;

}

18. The CBufSearch constructor begins by zeroing the class's OVERLAPPED
structure and creating an event to associate with it. As | mentioned earlier in
the chapter, an event object is required if you intend to use
GetOverlappedResult to wait on an asynchronous operation to complete and
have multiple asynchronous operations running concurrently for a given file.
Although, technically speaking, creating the event is optional,
GetOverlappedResult will not work reliably without it if multiple asynchronous
operations are executing concurrently against the specified file. The telltale
sign that this is an issue is when GetOverlappedResult returns FALSE but
GetLastError returns 0.

19. The CBufSearch constructor next creates an event that the main thread will
use to signal a worker thread that it can process the read buffer.
Synchronization between the main thread and the worker threads is
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26.

accomplished by using two event objects for each worker thread. The first
event@the one created by CBufSearch's constructor®is used to signal the
worker thread that it's safe to process the read buffer. The second®the one
created by the main thread€@is used to signal the main thread that the worker
thread is done processing its buffer and is ready for another.

The CBufSearch constructor next allocates the memory for the read buffer. It
uses VirtualAlloc to do this so that we can guarantee that the buffer will be
aligned on a sector size boundary in memory, a requirement of Windows'
nonbuffered 1/O facility. As | mentioned earlier, because VirtualAlloc always
allocates memory on page boundaries, and because the system page size and
the sector size of a disk are always expressed as powers of 2, we can be
certain that any buffer allocated with VirtualAlloc will be properly aligned for
use with nonbuffered 1/0.

Note the fact that we size the VirtualAlloc allocation to 1 byte greater than the
cluster size. This is so that we can be sure that the search buffer will be null-
terminated. We always zero-fill the read buffer between reads, so the buffer
will always end with a 0, even after a read has completed, because the read
buffer is larger than the read size specified in the ReadFile call. We need to
ensure that the buffer is always null-terminated because we use C/C++ RTL
functions such as strstr and strchr to search the buffer for matching strings and
characters. There are no memstr or strnstr functions in the RTL, so we rely on
null-termination to mark the end of the search buffer. Another way to handle
this situation is to allocate a guard or no access page beyond the read buffer
and simply trap the exception that will be generated when strstr attempts to
traverse memory beyond our read buffer. You'll see a variation on this
technique employed in the Memory-Mapped File 1/O section later in the
chapter.

The actual work of searching each read buffer is carried out by the
CBufSearch::Search method. Once a worker thread is started, it calls this
method and never exits it until the end of the input file is reached.

CBufSearch::Search begins by signaling the main thread that it has started up
and is ready for a buffer to search. Just after creating the worker threads, the
main thread passes the event array into WaitForMultipleObjects in order to wait
on all the worker threads to start up and enter CBufSearch::Search before it
begins to read the input file. Once each of them signals that it's ready, the
main thread begins processing the file.

CBufSearch::Search next enters a loop controlled by the m_bTerminated
member. It will stay in this loop until a catastrophic error occurs that forces it
to exit or the main thread sets the member to FALSE because the end of the
input file has been reached.

Next, Search checks to see whether we have a pending asynchronous I/O
operation by inspecting the m_bOverlapped member. If an asynchronous I/O is
pending, Search calls GetOverlappedResult to wait on it to complete. This
causes GetOverlappedResult to wait on the event we associated with the
OVERLAPPED structure to be signaled. Once it is, execution continues.

After acquiring a valid read buffer, Search loops through it, scanning for each
occurrence of the search string. When it finds a match, it outputs the line on



which the match occurs and moves to the next line to continue searching. This
means that each line in the input file will register at most one match,
regardless of how many times the search string occurs on the line.

27. When it finds a match and prepares to output a line to the console, Search
enters the critical section originally created in the SearchFiles routine in order
to prevent other worker threads from writing to the console simultaneously.
This is necessary because we use two printfs to write the output to the
console: one to indicate the file name and the offset at which we found the
string, another to output the matching line itself. If not for the critical section,
another thread could send output to the console in between the two printfs,
making the output difficult to interpret. We use two printfs so that we can
avoid copying the matching line into a second buffer before writing it to the
console. Instead, we compute the start and end of the line in the read buffer
itself, then use a printf format string to print the string starting at the matching
line's beginning and continuing for the number of characters between the
beginning of the line and the end of the line. This allows us to avoid first
copying the matching line to a secondary buffer because we output directly
from the read buffer itself. As you'll see in the sample apps later in the chapter,
there's a simple modification we could make to the code here that would
alleviate the need for the two separate printf calls and the use of the critical
section. | took the approach I did in this app to demonstrate the conventional
use of a critical section@to prevent multiple threads from executing a block of
code simultaneously.

28. Once Search has processed its read buffer, it signals the main thread that it's
ready for another buffer and waits on the main thread to signal it that a new
read buffer is ready for processing. If the end of the input file is reached while
Search waits on the main thread, CBufSearch's m_bTerminated member will be
set to TRUE when Search exits WaitForSingleObject and will cause it to
immediately exit its main loop. This, in turn, will cause the thread to exit. As |
mentioned in Chapter 3, it's always preferable to allow a thread to shut down
normally rather than forcing it to terminate by calling TerminateThread or
ExitThread.

So, that's the fstring sample app from start to finish. As you can see, nonbuffered
and asynchronous I/O can be combined to carry out some very useful tasks in an
efficient manner.

You may have noticed that fstring can't detect search string matches that straddle
buffer boundaries. Assuming we have a cluster size of, say, 4K, a string match that
straddles the 4K boundary will not be detected by fstring. This is a limitation of
page-oriented searching algorithms, which we will address in the Memory-Mapped
File I/O section later in the chapter. As designed, fstring is only intended to
demonstrate how asynchronous, nonbuffered I/O can be used by a multithreaded
program to scan a file in parallel@it's not intended to be a general-purpose text
search tool. There are, however, plenty of uses for page-oriented search tools. As
long as your data is organized such that it does not span buffer boundaries (as it
might be in a database program, for example), a page-oriented search algorithm can
be used to search it.

Another point worth making about fstring is that, because it is multithreaded, the
string matches it reports may not be listed in order. There's no guarantee that
matches found early in a file will be listed before those found later. Multiple threads



are being used to scan the input file(s) simultaneously, so the exact timing of when
a particular match is found and written to the console is not predictable and will
likely vary from run to run of the application. You could resolve this by writing the
matches to memory and sorting them before writing them to the console, but this
might require huge amounts of virtual memory and slow down the app considerably.
You could change the search algorithm so that you don't search individual files in
parallel but instead align the worker threads along file boundaries so that each file is
searched by its own thread. This would resolve the issue, but it might not fully utilize
your system resources (especially if you have a multiprocessor machine) if you were
searching only a single file. If you were searching only one file, regardless of how
large the file was, you'd have to wait while a single thread scanned through it in a
synchronous fashion. A better solution is to use the SORT filter. Windows provides
several filters you can make use of to filter or process the output from console
applications and OS commands. You can use SORT to order fstring's output such that
all the match lines for each file are written to the console in offset order. Here's the
syntax:

fstring INPUT.TXT ABCDEF | SORT

I intentionally formatted the output lines so that they could be reordered using SORT.
That's why the offset is zero-padded and the text on each match line has a uniform
length up to the point where the file name starts.

Asynchronous and Nonbuffered 1/0 Recap

Asynchronous I/O allows a thread to continue to run while an I/O operation
completes. In order to initiate an asynchronous operation, you must create the file
object with the appropriate bit flags and must pass a valid OVERLAPPED structure
into the Win32 function you use to read or write the file. Even though you may
instruct Windows to initiate an I/O operation asynchronously, it may decide to
process it synchronously in certain circumstances.

A thread can call GetOverlappedResult to wait on a pending asynchronous 1/O
request. It can also wait on the event associated with the OVERLAPPED structure or
on the file object itself. Moreover, Win32 functions such as ReadFileEx and
WriteFileEx can queue an APC function to notify a thread that an asynchronous
operation has completed. An I/O completion port is yet another mechanism that can
be used to notify a thread that an asynchronous operation has finished.

Nonbuffered I/O allows a thread to circumvent the system cache as it performs 1/O
operations on a file. It has a set of requirements that a thread must meet to make
use of it. In order for a file to be processed with nonbuffered 1/O, the file object must
be created with the FILE_FLAG_NO_BUFFERING switch. Access to the file must begin
on even multiples of the disk's sector size. File reads and writes must be for a
number of bytes that is also an even multiple of the disk's sector size. Finally, the
buffer used in a nonbuffered read or write operation must be aligned on a memory
address that is an even multiple of the disk's sector size. One sure way to guarantee
this is to use VirtualAlloc to allocate the buffer. Since VirtualAlloc always allocates
memory on system page size boundaries, and since disk sector sizes and the system
page size are always expressed as a power of 2, a buffer allocated using VirtualAlloc
will always be aligned on a sector size boundary.



Using nonbuffered I/O helps ensure the best performance when using asynchronous
I/0. It is also a good way to help direct Windows to process an asynchronous I/0
operation asynchronously since it bypasses the system cache, a potential cause of
synchronous processing of asynchronous operations.

SQL Server uses nonbuffered and asynchronous 1/0 extensively. All writes to SQL
Server data or log files are nonbuffered and asynchronous.

Asynchronous and Nonbuffered 1/0 Knowledge
Measure

10.

11.

12.
13.
14.

. Is it true that a sector can actually be larger than a cluster on a hard disk?
. What sector size is by far the most prevalent on x86 computers?

. True or false: Passing in the FILE_FLAG_OVERLAPPED and

FILE_ FLAG_NO_BUFFERING switches to CreateFile will guarantee that Windows
will not process I/0 requests against the file synchronously.

. What memory allocation function can you use to ensure that the read or write

buffer for a nonbuffered I/O operation is aligned on a disk sector boundary?

. What Win32 API function returns the sector and cluster size of a disk?

. True or false: Passing the FILE_FLAG_NO_BUFFERING switch into CreateFile

instructs Windows to circumvent the system cache when processing I/O
requests for the specified file.

. What type of callback routine do the ReadFileEx and WriteFileEx routines cause

to be queued when an asynchronous I/O operation completes?

. True or false: One of the circumstances in which Windows will process an

asynchronous I/0 request synchronously is when the file being read or written
is on a network drive.

. In what situation is the event handle that can be optionally associated with an

OVERLAPPED structure required in order for GetOverlappedResult to function
properly?

If an application is executing a loop that reads through a file using ReadFileEXx,
is it necessary to adjust the OVERLAPPED structure that is passed into
ReadFileEx between calls to the function?

True or false: You can retrieve the number of bytes processed by an
asynchronous I/O operation initiated by WriteFileEx by passing in a DWORD by
reference for WriteFileEx's dwBytesTransferred parameter.

What Win32 APl can be used to queue an APC?
What must a thread do in order to allow an APC to run?

What two types of APCs does Windows support?



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

What is the typical use of a critical section?

Assuming an event object has been associated with the OVERLAPPED structure
you're using for asynchronous 1/O, when an operation initiated with ReadFileEx
completes, will the event be signaled?

Explain the use of the Offset and OffsetHigh members of the OVERLAPPED
structure in relation to asynchronous 1/O.

True or false: An application can call the Win32 HasOverlappedloCompleted
function to determine whether a pending asynchronous I/O operation has
completed.

Explain why you should not initiate an alertable wait against a file object that
has a pending asynchronous 1I/O operation initiated by WriteFileEx.

True or false: SQL Server avoids using nonbuffered I/O because it leverages the
Windows' lazywriter facility in order to achieve maximum I/O performance.

Can you specify parameters to GetOverlappedResult such that it waits on a
pending asynchronous operation to complete before returning?

When ReadFile successfully initiates an asynchronous I/O operation, what value
does GetLastError return?

True or false: Compressing a file with NTFS compression will prevent it from
being processed asynchronously by ReadFile and WriteFile.

What's another term for overlapped 1/0?
True or false: One of the requirements for initiating a nonbuffered 1/O operation

against a file is that access to the file must begin at byte offsets that are
evenly divisible by the disk's sector size.
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/] bufsrch.cpp -- a utility class that we

// use to search a buffer for a string

#include "bufsrch.h"

//Ctor

CBufSearch::CBufSearch(CBufSearch
*pbNext, char *szFileName, HANDLE hFile,
DWORD dwClusterSize, int ilndex, char
*szBuf, char *szSearchStr, HANDLE
hSearchEvent, OVERLAPPED
*pOverlappedlO) {

//Cache constructor parameters for later
use m_pbNext=pbNext;

m_szFileName=szFileName;
m_hFile=hFile;



m_szSearchStr=szSearchStr;
m_dwClusterSize=dwClusterSize;
m_hSearchEvent=hSearchEvent;
m_pOverlappedlO=pOverlappedIO;
m_ilndex=ilndex;

//Create the event the main thread //will
signal when it's ready for //a worker thread
to begin processing a buffer
m_hMainEvent=CreateEvent(NULL,false,fa
Ise,NULL);

m_szBuf=szBuf;

//Initialize the remaining member
variables m_bTerminated=false;

m_bOverlapped=true;

m_dwFindCount=0;



//Dtor
CBufSearch::~CBufSearch()
{

//Close the event handles we created //in
the constructor

CloseHandle(m_hMainEvent);

}

//[From an offset in a buffer, find the start
of the line char
*CBufSearch::FindLineStart(char
*szStartPos) {

char *szStart;



for (szStart=szStartPos:
((szStart>m_szBuf) && (cLINE_DELIM!=*
(szStart-1))); szStart--);

return szStart;

}

//From an offset in a buffer, find the end of
the line // -- assumes null-termination

char *CBufSearch::FindLineEnd(char
*szStartPos) {

return strchr(szStartPos,cLINE_DELIM); }

//Search the read buffer for
//levery line containing a previously
//specified search string

bool CBufSearch::Search()



char *szBol;

char *szEol;

char *szStringPos;
DWORD dwNumChars;
char *szStartPos;

bool bRes=false;

char szFmt[32];

char szOffsetOutput[255];
DWORDLONG dwlFilePos;

//Signal to the main thread that we're
//ready for processing

SetEvent(m_hSearchEvent);



//Main thread sets m_bTerminated //to
false at EOF or in the case //of an error
reading the file while (!m_bTerminated) {

//Wait for the main thread to signal //that
it's OK to process the read buffer
WaitForSingleObject(m_hMainEvent,INFINI
TE);

//If the terminate member was set while
//[we were asleep, exit the loop if
(m_bTerminated) break;

//We start the search at the beginning
//of the read buffer

szStartPos=m_szBuf;

//The current file position (which we'll
need //later to indicate where we found
the string) //can be extracted from the
OVERLAPPED structure //used by the read
operation.



dwlFilePos=

(m_pOverlappedlO-
>0OffsetHigh*MAXDWORD)+

m_pOverlappedlO->0Offset+
(m_ilndex*m_dwClusterSize);

//If we have an overlapped
(asynchronous) //operation, use
GetOverlappedResult to //wait on it to
complete if (m_bOverlapped) {

if
(('GetOverlappedResult(m_hFile,m_pOverl
appedlO, &m_dwBytesRead, true)) ||

(!m_dwBytesRead)) {

printf("Error getting pending IO. Last
error=%d\n", GetLastError());

break;

}
}



try

{

//Loop while our search start marker is
not NULL

//and is within our read buffer //and strstr
continues to find the search string //in our
read buffer

while ((szStartPos) &&
(szStartPos<(m_szBuf+m_dwBytesRead)-1
) && (NULL!=(szStringPos=

strstr(szStartPos,m_szSearchStr)))) {

//If we get in here, we have a search hit
m_dwFindCount++;



//Compute the line start and end so that
we //can write it to the console
szBol=FindLineStart(szStringPos);
szEol=FindLineEnd(szStringPos);

//Compute the number of characters to
output //We'll use this later to build a
printf //format string

If (szEol) {

dwNumChars=szEol-szBol; if
(szEol<(m_szBuf+m_dwBytesRead)-1)
szStartPos=szEol+1;

else szStartPos=NULL;
}
else {

dwNumChars=MAXLINE LEN;
szStartPos=NULL;

}



#if( DEBUG)

sprintf(szOffsetOutput, "Thread %08d:
Offset: %010164d %s ",
GetCurrentThreadld(),dwlFilePos+

(szStringPos-m_szBuf),m_szFileName);
#else

sprintf(szOffsetOutput, "Offset:
%010164d %s ",dwlFilePos+

(szStringPos-m_szBuf),m_szFileName);
#endif

//Build format string that limits output to
current line strcpy(szFmt,"%s %.");

sprintf(szFmt+5,"%ds\n",dwNumChars);
//Output current line
printf(szFmt,szOffsetOutput,szBol);

bRes=true:



}

}

__except(EXCEPTION_EXECUTE _HANDLER
) {

//Eat the exception -- should never get
here //given that the read buffer is
guaranteed to //be null-terminated.

#if( DEBUG)

//Assumes we got an access violation
from going //past the end of the read
buffer -- could actually //be some other
type of error printf("Thread %08d reached
end of buffer\n", GetCurrentThreadld());

#endif
}



//Signal to the main thread that we're
done //with this buffer

SetEvent(m_hSearchEvent); }

//If we exit the loop abnormally, be sure
//to signal our event to prevent an infinite
//wait by the main thread
SetEvent(m_hSearchEvent);

return bRes;
}
/] fstring_scatter.cpp : A multithreaded file

/] search utility that uses scatter-gather
/O

//

#include "stdafx.h"



#include "windows.h"
#include "stdlib.h"
#include "process.h"

#include "bufsrch.h"

#define |0 STREAMS PER PROCESSOR 6

//Entry point routine for the worker
threads

unsigned  stdcall StartSearch(LPVOID
I[pParameter) {

//Cast the parameter supplied to
_beginthreadex //as a CBufSearch * and
call its Search method



return ((CBufSearch*)IpParameter)-
>Search();

}

//Search a specified file for a given search
string //using scatter-gather 1/O

DWORD SearchFile(DWORD dwClusterSize,
DWORD dwNumStreams,
char *szPath,
char *szFileName,

char *szSearchStr)

{

char szFullPathName[MAX PATH+1];
DWORD dwNumThreads;

HANDLE hPrivHeap;



HANDLE *hThreads;
HANDLE *hEvents;
FILE SEGMENT_ELEMENT *pSegments;

strcpy(szFullPathName,szPath);
strcat(szFullPathName,szFileName);

//Open the file for both nonbuffered and
//overlapped (asynchronous) I/O

HANDLE
hFile=CreateFile(szFullPathName,
GENERIC _READ,FILE SHARE READ, NULL,

OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL

| FILE_FLAG_OVERLAPPED

| FILE_FLAG_NO_BUFFERING
NULL):;



If (INVALID HANDLE VALUE==hFile) {

printf("Error opening file. Last
error=%d\n", GetLastError());

return 1;

}

DWORD dwtFileSizeHigh;

DWORD
dwFileSizeLow=GetFileSize(hFile,&dwFileSi
zeHigh);

DWORD dwlFileSize=

(dwFileSizeHigh*MAXDWORD)+dwkFileSiz
elLow;

DWORD dwNumClusts=dwlFileSize /
dwClusterSize: if (dwNumClusts<1)
dwNumClusts=1;



//If file is less than 4GB and we have
more requested //streams (IO threads)
than clusters, set the # of //threads = to
the # of clusters if
((dwlFileSize<OxFFFFFFFF) &&
(dwNumStreams>dwNumClusts))
dwNumThreads=dwNumClusts; else

dwNumThreads=dwNumStreams:

//Create a private heap so that we can
free all //allocations at once

hPrivHeap=HeapCreate(0,0,0);

//Create the thread and synchronization
event arrays hThreads=(HANDLE
*)HeapAlloc(hPrivHeap,

HEAP ZERO_MEMORY,

dwNumThreads*sizeof(HANDLE)): if
(NULL==hThreads) {

printf("Error allocating worker thread
array. Aborting.\n"); return -1;

}



hEvents=(HANDLE
*)HeapAlloc(hPrivHeap,
HEAP_ZERO MEMORY,

dwNumThreads*sizeof(HANDLE)): if
(NULL==hEvents) {

printf("Error allocating event array.
Aborting.\n"); return -1;

}

//Create the array of file segment
//lelement pointers to be used with
//ReadFileScatter

//This is sized at one more than the //# of
threads because the last //element must
be NULL

pSegments=(FILE SEGMENT _ELEMENT
*)HeapAlloc(hPrivHeap,
HEAP ZERO_MEMORY,



(dwNumThreads+1)*

sizeof(FILE SEGMENT ELEMENT)); if
(NULL==pSegments) {

printf("Error allocating segment array.
Aborting.\n"); return -1;

}

//Set up the OVERLAPPED structure //that
ReadFileScatter requires //and that all the
worker threads //will use

OVERLAPPED OverlappedIO;
ZeroMemory(&OverlappedlO,sizeof(Overla
ppedlO));
OverlappedlO.hEvent=CreateEvent(NULL,t
rue,false,NULL);

//Create the worker threads and the
//CBufSearch instance for each thread
CBufSearch *pbFirst=NULL; unsigned
uThreadld;



//Loop backward so that the CBufSearch
linked list //entries will have the correct
ordinal index value //which they use to
compute their offset in the file for (int
iI=dwNumThreads-1; i>=0; i--) {

hEvents[i]=CreateEvent(NULL, false,false,
NULL);

//Allocate the read buffer.

//Use VirtualAlloc so that we can ensure
that //the buffer is aligned on a page size
//boundary. This will also ensure that it's
//aligned on a sector size boundary since
both //are expressed as a power of 2. In
order to //perform scatter-gather I/O, the
read or write //buffer must be aligned on
an even multiple of //the disk's sector size.



//Allocate one more byte than the cluster
size //(which will result in an additional
page of //virtual memory being committed
and reserved) //so that we don't have to
worry about strstr //running off the end of
our buffer looking //for a null terminator.

pSegments[i].Buffer=

(PVOID64)VirtualAlloc(NULL,dwClusterSiz
e+1, MEM RESERVE | MEM_COMMIT,
PAGE_READWRITE);

pbFirst=new CBufSearch(pbFirst,
szFileName,

hFile,

dwClusterSize,

l,

(char *)pSegmentsli].Buffer, szSearchStr,

hEvents]i],



&OverlappedlO);

hThreads[i]=
(HANDLE) beginthreadex(NULL,



0,
&StartSearch,

pbFirst,



0,
&uThreadld);

If (!hThreadsli]) {

printf("Error creating thread.
Aborting.\n"); return -1;

}
}

//Wait for all threads to signal that
they've started
WaitForMultipleObjects(dwNumThreads,hE
vents,true,INFINITE);

bool bTerminated=false; bool
bOverlapped;



//Main loop -- loop through the file,
reading it in //chunks of dwClusterSize *
dwNumThreads size. Each //time we fill a
set of scatter buffers, signal the //worker
threads to search them DWORDLONG
dwlFilePos=0; do {

bOverlapped=true;

OverlappedlO.Offset=

(DWORD)(dwlIFilePos / MAXDWORD);
OverlappedlO.Offset=

(DWORD)(dwlFilePos % MAXDWORD);

//Zero-fill the read buffers so that we
don't //get search hits at the end of a
partially //filled buffer (from previous
contents) for (DWORD j=0;
j<dwNumThreads; j++)
ZeroMemory(pSegments]j].Buffer,dwClust
erSize+1);



//Fill the scatter buffers using
//asynchronous I/O if possible if
('ReadFileScatter(hFile,pSegments,
dwClusterSize*dwNumThreads, NULL,

&OverlappedlO)) {

DWORD dwLastErr=GetLastError(); if
(ERROR_IO PENDING!=dwLastErr) {

/[Terminate the thread's main loop //on
any error except ERROR 10 _PENDING

//including EOF

bTerminated=true;

//Abort if the error isn't an EOF
if (ERROR_HANDLE EOF!=dwLastErr) {



printf("Error reading file. Last error=%d",
dwlLastErr);

return -1;

}
}

else {

//We have an asynchronous operation
Overlapped=true;

}
}

else {

//ReadFile returned true; the operation
//is synchronous

bOverlapped=false;
}



for (CBufSearch *pbCurrent=pbFirst;
NULL!=pbCurrent;

pbCurrent=pbCurrent->m_pbNext) {

pbCurrent-
>m_bTlerminated=bTerminated,;
pbCurrent-
>m_bOverlapped=bOverlapped,;

//Signal the worker thread to begin
searching SetEvent(pbCurrent-
>m_hMainEvent); }

//Wait on all the worker threads to finish
searching their //buffers. Each one will
signal the event we provided it //when it's
ready for another buffer.

WaitForMultipleObjects(dwNumThreads,h
Events,true,INFINITE);



dwlFilePos+=dwClusterSize*dwNumThre
ads;

} while (dwlFilePos<dwlFileSize);

//Get total tally and destroy search
objects DWORD dwFindCount=0;

CBufSearch *pbNext;
for (; NULL!=pDbFirst; pbFirst=pbNext) {

pbFirst->m_bTlerminated=true;
dwFindCount+=pbFirst->m_dwFindCount;
pbNext=pbFirst->m_pbNext; delete
pbFirst;

}

//Close the file, thread, and event
handles for (i=0; i<dwNumThreads:; i++)

{

CloseHandle(hThreadsl[i]);
CloseHandle(hEvents]i]); }



CloseHandle(hFile);
CloseHandle(OverlappedlO.hEvent);

//Free the scatter buffers for (DWORD
j=0; j<dwNumThreads; j++)
VirtualFree(pSegments|j].Buffer,0,MEM_RE
LEASE);

//Free all of our previous heap allocations
//by destroying the private heap we
created HeapDestroy(hPrivHeap);

//Return the find count for the specified
file return dwFindCount;

}

//Search the files matching a given mask
for a //specified string

bool SearchFiles(char *szFileMask, char
*szSearchStr) {



char szPath[MAX PATH+1];

//Extract the file path from the specified
mask char *p=strrchr(szFileMask,"\\'); if (p)

{

strncpy(szPath,szFileMask, (p-
szFileMask)+1); szPath[(p-
szFileMask)+1]="0"; }

else

//If no path was specified, use the current
//folder

GetCurrentDirectory(MAX PATH,szPath);

//Add a trailing backslash as necessary if
("\\'!'=szPath[strlen(szPath)-1])
strcat(szPath,"\\");

printf("Searching for %s in
%s\n\n",szSearchStr,szFileMask);



//Loop through all the files matching the
mask //and search each one for the string
WIN32 FIND DATA fdFiles; HANDLE
hFind=FindFirstFile(szFileMask,&fdFiles);

If (INVALID HANDLE VALUE == hFind) {

printf("No files match the specified
mask\n"); return false;

}

//Get the number of processors //for the
current system.

//This will be used to compute //the
number of I/O streams //to use to search
each file SYSTEM INFO si;

GetSysteminfo(&si);

//Get the cluster size from the drive //This
will always be a multiple of the //sector
size, so it is a good choice for //use with
scatter-gather I/O



DWORD dwSectorsPerCluster; DWORD
dwBytesPerSector; DWORD
dwNumberOfFreeClusters; DWORD
dwTotalNumberOfClusters;
GetDiskFreeSpace(NULL,&dwSectorsPerCl
uster, &dwBytesPerSector,

&dwNumberOfFreeClusters,
&dwTotalNumberOfClusters):

DWORD dwClusterSize=
(dwSectorsPerCluster *
dwBytesPerSector);

DWORD dwFindCount=0:
do {

dwFindCount+=SearchFile(dwClusterSize
, Si.dwNumberOfProcessors*

IO STREAMS PER PROCESSOR, szPath,
fdFiles.cFileName,

szSearchStr);



} while (FindNextFile(hFind,&fdFiles));
FindClose(hFind);

printf("\nTotal hits for %s in %s:\t%d\n",
szSearchStr,szFileMask, dwFindCount);

return true;

}

Int main(int argc, char* argv[])
{
if (argc<3) {

printf("Usage is: fstring_scatter filemask
searchstring\n"); return 1;

}



try

{
return (!SearchFiles(argv[1], argv[2])); }

catch (...)
{

printf("Error reading file\n"); return 1;

}
}

Note that, as with the other asynchronous
I/O examples in this book, we have to
code for the possibility that Windows may
decide to process our I/O operation
synchronously. If that happens, we set
each CBufSearch's m_bOverlapped
member to FALSE so that it will not
attempt to wait on the operation to
complete using GetOverlappedResult.



We assign each CBufSearch instance an
ordinal index number so that it can use
this index to compute the file offset it is
processing. It needs this offset so that it
can accurately list the location in the input
file for each match it finds. In the fstring
sample app, we retrieved the starting
offset from the OVERLAPPED structure
that was specific to each CBufSearch
object. In this sample, we use a single
OVERLAPPED structure for all CBufSearch
objects because only one asynchronous
operation is occurring at any given time
given that ReadFileScatter can fill multiple
read buffers with a single call. Because
the OVERLAPPED structure now reflects
the starting position of the entire scatter-
gather operation and not an individual
asynchronous operation, we need another
method of computing the exact file offset
for each match we find. That's what we
use CBufSearch's m_ilndex member for. It
Is set by the class constructor using the
index value that was passed in during



object creation. This member reflects the
object's ordinal position in the CBufSearch
linked list. We iterate backward through
the loop that creates the linked list of
CBufSearch objects because we always
add new objects to the head of the list.
Since this results in the last object added
becoming the head of the list, the index
numbers would be reversed if we iterated
through the loop in a forward direction. It's
iImportant that we keep the ordinal index
values and the linked list properly
sequenced because ReadFileScatter
places data into the read buffers in
sequential order. That is, the first buffer
gets the first chunk read from the file, the
second buffer gets the second one, and so
forth, until all the buffers have been filled.

Note that the pSegments array is sized
one element larger than the number of
worker threads. This is a requirement of
the scatter-gather functions: The last
element in the buffer array must be a



NULL pointer. Given that we zero-fill the
array when we allocate it and never touch
the array's last element thereafter, this
will always be the case.

A pointer to each CBufSearch object's read
buffer is passed in when the object is first
created. This is the same buffer that
ReadFileScatter will fill directly with
data€@because ReadFileScatter can scatter
file data it reads into multiple buffers,
there's no need to fill the buffers one by
one or to use an intermediate contiguous
buffer.

Once ReadFileScatter returns, SearchFile
signals each of the worker threads to
begin processing their output buffers. If
the operation was initiated
asynchronously, each CBufSearch object
will call GetOverlappedResult to wait on
the operation to complete. Because they



all share the same OVERLAPPED structure
that was initialized and passed in from
SearchFile, they all effectively wait on the
same event object that was originally
associated with the OVERLAPPED
structure. This is one reason why it's
Important that the event be a manual-
reset event. If it were created as an auto-
reset event, only one waiter thread would
be awakened when the event was
signaled because it would immediately be
reset to nonsignaled as a side effect of the
successful wait.

So, that's scatter-gather I/O in a nutshell.
Study the app further, stepping through it
under the Visual C++ debugger. Pay
special attention to whether the 1/O
operation is carried out synchronously or
asynchronously and how the app handles
each situation.

Scatter-Gather 1/0 Recap

Using scatter-gather I/O allows a thread to
fill multiple noncontiguous buffers with



data from a contiguous region of a file and
to write the contents of multiple
noncontiguous memory buffers to a
contiguous file region. Before the advent
of scatter-gather, an app that wanted to
write several noncontiguous buffers to
disk had to either write them separately or
copy them to an intermediate contiguous
buffer before writing them. Neither
alternative is very efficient, so scatter-
gather |/O support was added at the
operating system level to allow programs
like SQL Server to perform this type of 1/O
more efficiently.

The requirements for performing scatter-
gather I/O are a combination of those for
asynchronous and nonbuffered I/O. This is
because scatter-gather 1/O is nonbuffered
and executes asynchronously by default.

SQL Server makes extensive use of
scatter-gather I/O when it reads and writes
the database and log files associated with
databases. Because the buffers it needs to
load data into or write it out of may be



stored at noncontiguous locations in the

buffer pool, scatter-gather 1/O allows SQL
Server to read and write buffer pool data
in a high-performance manner.

Scatter-Gather 1/0 Knowledge
Measure

1. True or false: The buffers allocated for
use with scatter-gather I/O must be
contiguous in memory.

2. Can a thread call GetOverlappedResult
to wait on a scatter-gather I/O
operation?

3. True or false: When a scatter operation
fills a set of memory buffers with data
from a file, it fills them in reverse order
(the last buffer in the array gets the
first chunk of the disk file, the second-
to-last gets the second chunk, and so
forth).

4. What Win32 API function can a thread
call to return a disk's sector size?



. True or false: In order for a file to be
used in scatter-gather I/O operations,
its file object must be created with the
FILE FLAG_SCATTER_GATHER switch
set.

. What Win32 API function is used to
gather buffers from memory and write
them to a contiguous file region?

. True or false: Unlike other types of
asynchronous 1/O, a scatter-gather 1/O
operation will never be processed
synchronously by Windows.

. Does an application that is looping
through a file with ReadFileScatter need
to adjust the members of the
OVERLAPPED structure it passes into
the function between reads? Why or
why not?

. Can a thread use scatter-gather 1/O to

write to noncontiguous regions of a file
If the file has been opened for random
access?



.0. True or false: By default, Windows
bypasses the system cache when

performing scatter-gather 1/O
operations.
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/] fstring _io_comp.cpp : Multithreaded file
// search that uses an I/O completion port

/]

#define WIN32 WINNT 0x500

#include "stdafx.h"
#include "windows.h"
#include "stdlib.h"
#include "process.h"
#include "bufsrch.h"

#include "iobuf.n"

#define |IO_STREAMS PER PROCESSOR 2



//Entry point routine for the worker
threads

unsigned  stdcall StartSearch(LPVOID
I[pParameter) {

//Cast the parameter supplied to

_beginthreadex //as a CBufSearch * and
call its Search method

return ((CBufSearch*)IpParameter)-
>Search();

}

void _ stdcall DisplayOutput(DWORD
dwParam)

{



char *pszMsg=(char *)dwParam;
printf(pszMsq);

}

//Search a specified file for a given search
string //using nonbuffered, asynchronous
/O

DWORD SearchFile(DWORD dwClusterSize,
DWORD dwNumStreams,
char *szPath,
char *szFileName,
char *szSearchStr,
HANDLE hMainThread)

{

char szFullPathName[MAX PATH+1];
DWORD dwNumThreads;



HANDLE hPrivHeap;
HANDLE *hThreads:

strcpy(szFullPathName,szPath);
strcat(szFullPathName,szFileName);

//Open the file for both nonbuffered and
//overlapped (asynchronous) I/O

HANDLE
hFile=CreateFile(szFullPathName,
GENERIC _READ,FILE SHARE READ, NULL,

OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL

| FILE_FLAG_OVERLAPPED

| FILE_FLAG_NO_BUFFERING
NULL):;



If (INVALID HANDLE VALUE==hFile) {

printf("Error opening file. Last
error=%d\n", GetLastError());

return -1;

}

DWORD dwtFileSizeHigh;

DWORD
dwFileSizeLow=GetFileSize(hFile,&dwFileSi
zeHigh);

DWORD dwlFileSize=
(dwFileSizeHigh*MAXDWORD)+

dwFileSizeLow:



DWORD dwNumClusts=dwlFileSize /
dwClusterSize: if (dwNumClusts<1)
dwNumClusts=1;

//If file is less than 4GB and we have
more requested //streams (IO threads)
than clusters, set the # of //threads = to
the # of clusters if
((dwlFileSize<OXxFFFFFFFF) &&
(dwNumStreams>dwNumClusts))
dwNumThreads=dwNumClusts; else

dwNumThreads=dwNumStreams:
#if( DEBUG)

printf("Using %d
threads\n\n",dwNumThreads); #endif

//Create a private heap so that we can
free all //allocations at once

hPrivHeap=HeapCreate(0,0,0);



//Create the thread array hThreads=
(HANDLE *)HeapAlloc(hPrivHeap,
HEAP ZERO_ MEMORY,

dwNumThreads*sizeof(HANDLE)): if
(NULL==hThreads) {

printf("Error allocating worker thread
array. Aborting.\n"); return -1;

}

//Create the I/O completion port HANDLE
hPort=CreateloCompletionPort(hFile,NULL,
0,0); if (INVALID HANDLE VALUE==hPort)

{
printf(

"Error creating IO completion port. Last
error=%d\n", GetLastError());

return -1;

}



//Create the worker threads and the
//CBufSearch and CloBuf objects
CBufSearch *pbFirst=NULL; CloBuf
*ploFirst=NULL;

unsigned uThreadld;

for (DWORD i=0; ixdwNumThreads; i++)
{

ploFirst=new
CloBuf(ploFirst,hPort,dwClusterSize+1);

pbFirst=new CBufSearch(pbFirst,
szFileName,

szSearchStr,
&DisplayOutput,
hMainThread);



hThreads|i]=
(HANDLE) beginthreadex(NULL,



0,
&StartSearch,
pbFirst,
CREATE _SUSPENDED,
&uThreadld);

If (!hThreadsli]) {

printf("Error creating thread.
Aborting.\n"); return -1;

}
}

//Set the CBufSearch objects'

//pointer to the head of the //CloBuf list



pbFirst->s_ploFirst=ploFirst;

//Set the CloBuf objects’

//pointer to the head of the //CloBuf list
ploFirst->s_ploFirst=ploFirst;

//Set statics so that multiple //file
searches work

ploFirst->s bTerminated=false; ploFirst-
>s bOverlapped=true;

//Once the static members are set, //start
the worker threads for (i=0;
I<dwNumThreads; i++)
ResumeThread(hThreads|i]);

//Main loop -- loop through the file,
reading it in //dwClusterSize chunks

DWORDLONG dwlFilePos=0;
do {



for (CBufSearch *pbCurrent=pbFirst;
NULL!=pbCurrent;

pbCurrent=pbCurrent->m_pbNext) {

CloBuf *ploBuf=

ploFirst-
>SpinToFindBuf(BUF_STATE INACTIVE,
BUF STATE READING);

//Set the starting offset for the next read
ploBuf->m_OverlappedlO.OffsetHigh=

(DWORD)(dwlIFilePos / MAXDWORD);
ploBuf->m_OverlappedlO.Offset=

(DWORD)(dwlFilePos % MAXDWORD);

/[Zero-fill the read buffer so that we don't
//get search hits at the end of a partially
//filled buffer (from previous contents)



ZeroMemory(ploBuf-
>m_szBuf,dwClusterSize+1);

//Read a buffer full of data from the file
//using asynchronous 1I/O if possible if
('ReadFile(hFile,ploBuf->m_szBuf,
dwClusterSize,

&ploBuf->m_dwBytesRead, &ploBuf-
>m_OverlappedlO)) {

DWORD dwLastErr=GetLastError(); if
(ERROR_IO PENDING!=dwLastErr) {

/[Terminate the thread's main loop //on
any error except ERROR |10 _PENDING

//including EOF
InterlockedExchange(

(LPLONG)&ploBuf->s _bTerminated,
(long)true);



//Abort if the error isn't an EOF
if (ERROR_HANDLE EOF!=dwLastErr) {

printf(

"Error reading file. Last error=%d",
dwLastErr);

return -1;

}

break;

}

else {

//We have an asynchronous operation
InterlockedExchange(

(LPLONG)&ploBuf->s bOverlapped,
(long)true);



}
}

else {

//ReadFile returned true; the operation
//is synchronous

InterlockedExchange(

(LPLONG)&ploBuf->s bOverlapped,
(long)false);

ploBuf->SetState(BUF _STATE_READY);

}

dwlFilePos+=dwClusterSize; }

} while ((dwlFilePos<dwlFileSize) &&
(!'ploFirst->s _bTerminated));



//Signal that we're done reading the file
InterlockedExchange(

(LPLONG)&ploFirst->s bTerminated,
(long)true);

//Wait on all the worker threads to finish

WaitForMultipleObjects(dwNumThreads,hT
hreads, true,

INFINITE);

//Dequeue any output that was queued
//via APC calls

while
(WAIT_10_COMPLETION==SleepEx(0,true))

’

//Get total tally and destroy search
objects DWORD dwFindCount=0;

CBufSearch *pbNext;



for (; NULL!'=pbFirst; pbFirst=pbNext) {

dwFindCount+=pbFirst-
>m_dwFindCount; pbNext=pbFirst-
>m_pbNext; delete pbFirst;

}

//Delete the buf objects CloBuf *ploNext;
for (; NULL!=ploFirst; ploFirst=ploNext) {

ploNext=ploFirst->m_ploBufNext; delete
ploFirst;

}

//Close the I/O completion port
CloseHandle(hPort);



//Close the thread handles for (i=0;
i<dwNumThreads; i++) {

CloseHandle(hThreadsli]); }

CloseHandle(hFile):

//Free all of our previous heap allocations
//by destroying the private heap we
created HeapDestroy(hPrivHeap);

//Return the find count for the specified
file return dwFindCount;

}

//Search the files matching a given mask
for a



//specified string

bool SearchFiles(char *szFileMask, char
*szSearchStr) {

char szPath[MAX PATH+1];

//Extract the file path from the specified
mask char *p=strrchr(szFileMask,'\\'); if (p)

{

strncpy(szPath,szFileMask, (p-
szFileMask)+1); szPath[(p-
szFileMask)+1]="0"; }

else

//If no path was specified, use the current
//folder

GetCurrentDirectory(MAX _PATH,szPath);

//Add a trailing backslash as necessary if
("\\'!'=szPath[strlen(szPath)-1])
strcat(szPath,"\\");



printf("Searching for %s in
%s\n\n",szSearchStr, szFileMask);

HANDLE hMainThread=
OpenThread(THREAD ALL ACCESS,



0,

GetCurrentThreadld());

//Loop through all the files matching the
mask //and search each one for the string
WIN32 FIND_ DATA fdFiles; HANDLE
hFind=FindFirstFile(szFileMask,&fdFiles);

If (INVALID_HANDLE_VALUE == hFind) {

printf("No files match the specified
mask\n"); return false;

}

//Get the number of processors //for the
current system.

//This will be used to compute //the
number of 1/O streams //to use to search
each file SYSTEM INFO si;



GetSysteminfo(&si);

//Get the cluster size from the drive //This
will always be a multiple of the //sector
size, so it is a good choice for //use with
nonbuffered I/O

DWORD dwSectorsPerCluster; DWORD
dwBytesPerSector;

DWORD dwNumberOfFreeClusters;
DWORD dwTotalNumberOfClusters;
GetDiskFreeSpace(NULL,&dwSectorsPerCl
uster, &dwBytesPerSector,

&dwNumberOfFreeClusters,
&dwTotalNumberOfClusters):

DWORD dwClusterSize=
(dwSectorsPerCluster *
dwBytesPerSector);

DWORD dwFindCount=0:
do {



dwFindCount+=

SearchFile( dwClusterSize,
si.dwNumberOfProcessors*

|IO_STREAMS PER PROCESSOR, szPath,
fdFiles.cFileName,
szSearchStr,

hMainThread):;

} while (FindNextFile(hFind,&fdFiles));
FindClose(hFind);

printf("\nTotal hits for %s in %s:\t%d\n",
szSearchStr,szFileMask,dwFindCount);

CloseHandle(hMainThread);

return true;



int main(int argc, char* argvl])
{

if (argc<3) {

printf(

"Usage is: fstring io_comp filemask
searchstring\n"); return 1;

}

try
{

return (!'SearchFiles(argv[l], argv([2])); }
catch (...)

{



printf("Error reading file. Last
error=%d\n", GetLastError());

return 1;

}

}
//bufsrch.cpp -- a utility class that

//we use to search a buffer for a string

#include "bufsrch.h"

CloBuf *CBufSearch::s ploFirst=NULL;

//Ctor

CBufSearch::CBufSearch(CBufSearch
*pbNext,



char *szFileName,
char *szSearchStr,

PAPCFUNC pOutputCallback, HANDLE
hMainThread)

{

//Cache constructor parameters for later
use m_pbNext=pbNext;

m_szFileName=szFileName;
m_szSearchStr=szSearchStr;
m_pOutputCallback=pOutputCallback;
m_hMainThread=hMainThread;

//Initialize the remaining member
variables m_dwFindCount=0;

//Create the private heap that we'll use
for output



m_hOutputHeap=HeapCreate(HEAP_NO S
ERIALIZE,0x1000,0);

}

CBufSearch::~CBufSearch()

{

//Destroy the private output heap
HeapDestroy(m_hOutputHeap); }

//From an offset in a buffer, find the start
of the line char
*CBufSearch::FindLineStart(char
*szStartPos) {

char *szStart;

for (szStart=szStartPos;
((szStart>m_ploCurrent->m_szBuf) &&
(CLINE_DELIM!=*(szStart-1))); szStart--);
return szStart;



//From an offset in a buffer, find the end of
the line // -- assumes null-termination

char *CBufSearch::FindLineEnd(char
*szStartPos) {

return strchr(szStartPos,cLINE _DELIM); }

//Search the read buffer for
//every line containing a previously
//specified search string
bool CBufSearch::Search()
{

char *szBol;

char *szEol:



char *szStringPos;
DWORD dwNumChars;
char *szStartPos;

bool bRes=false;

char szFmt[32];

char szOffsetOutput[255]; DWORDLONG
dwlFilePos;

char szMsg[10241];

while (1) {

try

{



//Spin until we find a buffer to search if
((NULL==(m_ploCurrent=

S _ploFirst-
>SpinToFindBuf(BUF_STATE READY,
BUF STATE SEARCHING))) && (s_ploFirst-
>s bTerminated)) break;

//We start the search at the beginning
//of the read buffer

szStartPos=m_ploCurrent->m_szBuf;

//Get the starting file offset from //the buf
object for display later
dwlFilePos=m_ploCurrent->FilePos();

//Loop while the search start marker is
not NULL

//and is within the read buffer //and strstr
continues to find the search string //in the
read buffer



while ((szStartPos) &&
(szStartPos<(m_ploCurrent->m_szBuf+

m_ploCurrent->m_dwBytesRead)-1) &&
(NULL!'=(szStringPos=

strstr(szStartPos,m_szSearchStr)))) {

//If we get in here, we have a search hit
m_dwFindCount++;

//Compute the line start and end so that
we //can write it to the console
szBol=FindLineStart(szStringPos);
szEol=FindLineEnd(szStringPos);

//Compute the number of characters to
output //We'll use this later to build a
printf //format string

If (szEol) {

dwNumChars=szEol-szBol;



If (szEol<(m_ploCurrent->m_szBuf+

m_ploCurrent->m_dwBytesRead)-1)
szStartPos=szEol+1;

else szStartPos=NULL;

}

else {
dwNumChars=MAXLINE LEN;
szStartPos=NULL;

}

#if( DEBUG)
sprintf(szOffsetOutput,

"Thread %08d: Offset: %010164d %s "
GetCurrentThreadld(),

dwlFilePos+



(szStringPos-m_ploCurrent->m_szBuf),
m_szFileName);

#else
sprintf(szOffsetOutput,
"Offset: %010164d %s ",
dwlFilePos+

(szStringPos-m_ploCurrent->m_szBuf),
m_szFileName);

#endif

//Build format string that limits output to
current line strcpy(szFmt,"%s %.");

sprintf(szFmt+5,"%ds\n",dwNumChars);
//Output current line
sprintf(szMsg,szFmt,

szOffsetOutput,



szBol);

char *pszMsg=(char
*)HeapAlloc(m_hOutputHeap,



0,

strlen(szMsqg)+1);

strcpy(pszMsg,szMsq);

If (IQueueUserAPC(m_pOutputCallback,
m_hMainThread,

(DWORD)pszMsg))
printf("Error queuing output\n");

bRes=true:

}

}

__except(EXCEPTION_EXECUTE_HANDLER
) {



//Eat the exception -- should never get
here //given that the read buffer is
guaranteed to //be null-terminated.

#if( DEBUG)

//Assumes we got an access violation
from going //past the end of the read
buffer -- could actually //be some other
type of error printf("Thread %08d reached
end of buffer\n", GetCurrentThreadld());

#endif
}

m_ploCurrent-
>SetState(BUF _STATE_INACTIVE);

}



return bRes;
}
//iobuf.cpp -- implements a simple
//buffer manager for asynchronous

//file reads

#include "iobuf.h"

bool CloBuf::s bOverlapped=true;

bool CloBuf::s bTerminated=false;

CloBuf *CloBuf::s_ploFirst=NULL,;

//Ctor
CloBuf::CloBuf(CloBuf * ploBufNext,



HANDLE hPort,
DWORD dwBufSize)
{
m_dwState=BUF STATE_ INACTIVE;
m_dwBufSize=dwBufSize;

m_szBuf=(char *)VirtualAlloc(NULL,
m_dwBufSize,

MEM_ RESERVE
| MEM_COMMIT,
PAGE_READWRITE);

m_ploBufNext=ploBufNext;
m_hPort=hPort;

ZeroMemory(&m_OverlappedIO,
sizeof(m_OverlappedlO));
m_OverlappedlO.hEvent=



CreateEvent(NULL,true,false,NULL); }

//Dtor
CloBuf::~CloBuf()

{

VirtualFree(m_szBuf,0,MEM_ RELEASE);
CloseHandle(m_OverlappedIO.hEvent); }

//Spin until we locate a buffer
//with a state of dwOldState,
//atomically set it to dwNewState,
//and return it to the caller

CloBuf *CloBuf::SpinToFindBuf(DWORD
dwOldState, DWORD dwNewState)

{



bool bWasTerminated:
do {

//Check for and process new |/O
completion packets
CheckForloPacketAndSetState(BUF _STATE
READY);

//Save off termination status before
//lentering the search loop
bWasTerminated=s bTerminated;

//Ilterate through the buf list //If we find
one with the desired state, //set it to the
new state and return it for (CloBuf
*ploCurrent=this; NULL!=ploCurrent;

ploCurrent=ploCurrent->m_ploBufNext)

{
if (dwOldState==

(DWORD)InterlockedCompareExchange(

(volatile long *)&ploCurrent->m_dwState,
dwNewState,



dwOldState))

return ploCurrent;

}

//If termination was signaled //before we
began the loop //and we didn't find any
//matching buffers, exit } while
('bWasTerminated); return NULL;

}

//Atomically set the buffer state

void CloBuf::SetState(DWORD
dwNewState)

{

InterlockedExchange((long
*)&m_dwState,dwNewState); }



//Return the buffer state
DWORD CloBuf::GetState()
{

return m_dwState;

}

//Calc the current file position
//using the OVERLAPPED member
DWORDLONG CloBuf::FilePos()

{

return

(m_OverlappedlO.OffsetHigh*MAXDWORD)
+

m_OverlappedlO.Offset;



//Check for pending I/O completion
packets

//If we get one, match its OVERLAPPED
structure //pointer with one in the buffer
list and set

//the matching buffer's bytesread and
state members //appropriately

void
CloBuf::CheckForloPacketAndSetState(DW
ORD dwNewState) {

If (Is_ploFirst->s bOverlapped) return;
DWORD dwKey;

DWORD dwBytesRead;

LPOVERLAPPED pOverlappedlO; if
(GetQueuedCompletionStatus(m_hPort,
&dwBytesRead,



&dwKey,
&pOverlappedlO,
1))

{

for (CloBuf *ploCurr=s_ploFirst;
NULL!=ploCurr;

ploCurr=ploCurr->m_ploBufNext) {

it (&ploCurr-
>m_OverlappedlO==pOverlappedlO) {

InterlockedExchange(

(long *)&ploCurr->m_dwBytesRead,
dwBytesRead);

ploCurr->SetState(dwNewState); return;
}
}



//Should never get here

assert(false):

}

}
//bufsrch.cpp -- a utility class that

//we use to search a buffer for a string

#include "bufsrch.h"

CloBuf *CBufSearch::s_ploFirst=NULL,;

//Ctor



CBufSearch::CBufSearch(CBufSearch
*pbNext,

char *szFileName,

char *szSearchStr)

{

//Cache constructor parameters for later
use m_pbNext=pbNext;

m_szFileName=szFileName;
m_szSearchStr=szSearchStr;

//Initialize the remaining member
variables m_dwFindCount=0;

//Create the private heap that we'll use
for output
m_hOutputHeap=HeapCreate(HEAP_NO S
ERIALIZE,0x1000,0);



//Create the I/O completion port that we'll
use for //queuing output

m_hOutputloCompletionPort=

CreateloCompletionPort(INVALID HANDL
E_ VALUE,NULL,O0,0);

}

CBufSearch::~CBufSearch()
{

//Dequeue the I/O completion packets
//from the output queue and print //the
output

DWORD dwLineCount=0;
DWORD dwBytesWritten;

DWORD dwKey;



OUTPUT _OVERLAPPED
*pOutputOverlapped; while
(dwLineCount<m_dwFindCount) {

GetQueuedCompletionStatus(m_hOutputl
oCompletionPort, &dwBytesWritten,

&dwKey,
(OVERLAPPED *¥*)

&pOutputOverlapped,INFINITE);
printf(pOutputOverlapped->pszMsq);
dwLineCount++;

}

//Destroy the private output heap
HeapDestroy(m hOutputHeap);

//Close the output I/O completion port
CloseHandle(m_hOutputloCompletionPort)

’ }



//From an offset in a buffer, find the start
of the line char

*CBufSearch::FindLineStart(char
*szStartPos) {

char *szStart;

for (szStart=szStartPos;
((szStart>m_ploCurrent->m_szBuf) &&
(CLINE DELIM!=*(szStart-1))); szStart--);
return szStart;

}

//From an offset in a buffer, find the end of
the line // -- assumes null-termination

char *CBufSearch::FindLineEnd(char
*szStartPos) {

return strchr(szStartPos,cLINE _DELIM); }

//Search the read buffer for



//levery line containing a previously
//specified search string
bool CBufSearch::Search()
{

char *szBol,;

char *szEol;

char *szStringPos;

DWORD dwNumChars;

char *szStartPos;

bool bRes=false;

char szFmt[32];

char szOffsetOutput[255]; DWORDLONG
dwlFilePos;

char szMsg[10241];



while (1) {

try

//Spin until we find a buffer to search if
((NULL==(m_ploCurrent=

S _ploFirst-
>SpinToFindBuf(BUF_STATE READY,
BUF STATE SEARCHING))) && (s_ploFirst-
>s bTerminated)) break;

//We start the search at the beginning
//of the read buffer

szStartPos=m_ploCurrent->m_szBuf;

//Get the starting file offset from //the buf
object for display later



dwlFilePos=m_ploCurrent->FilePos();

//Loop while the search start marker is
not NULL

//and is within the read buffer //and strstr
continues to find the search string //in the
read buffer

while ((szStartPos) &&
(szStartPos<(m_ploCurrent->m_szBuf+

m_ploCurrent->m_dwBytesRead)-1) &&
(NULL!=(szStringPos=

strstr(szStartPos,m_szSearchStr)))) {

//If we get in here, we have a search hit
m_dwFindCount++;

//Compute the line start and end so that
we //can write it to the console



szBol=FindLineStart(szStringPos);
szEol=FindLineEnd(szStringPos);

//Compute the number of characters to
output //We'll use this later to build a
printf //format string

if (szEol) {
dwNumChars=szEol-szBol;
If (szEol<(m_ploCurrent->m_szBuf+

m_ploCurrent->m_dwBytesRead)-1)
szStartPos=szEol+1;

else szStartPos=NULL;

}

else {
dwNumChars=MAXLINE LEN;

szStartPos=NULL;
}



#if( DEBUG)

sprintf(szOffsetOutput,"Thread %08d:
Offset: %010164d %s ",
GetCurrentThreadld(),

dwlFilePos+(szStringPos-m_ploCurrent-
>m_szBuf), m_szFileName);

#else

sprintf(szOffsetOutput,"Offset: %010164d
%s ", dwlFilePos+(szStringPos-
m_ploCurrent->m_szBuf), m_szFileName);

#endif

//Build format string that limits output to
current line strcpy(szFmt,"%s %.");

sprintf(szFmt+5,"%ds\n",dwNumChars);
//Build the output line

sprintf(szMsg,szFmt,



szOffsetOutput,

szBol);

//Allocate a structure to serve as an
output packet OUTPUT OVERLAPPED
*pOutputOverlapped=

(OUTPUT_OVERLAPPED *)

HeapAlloc(m_hOutputHeap,



0,
sizeof(OUTPUT _OVERLAPPED));

//Allocate memory for the message string
within //the output packet structure
pOutputOverlapped->pszMsg=

(char *)HeapAlloc(m_hOutputHeap,



0,

strlen(szMsqg)+1);

//Copy the output message to the output
packet strcpy(pOutputOverlapped-
>pszMsg,szMsq);

//Queue the output packet
PostQueuedCompletionStatus(

m_hOutputloCompletionPort,



0,
0,(OVERLAPPED *)pOutputOverlapped);

bRes=true;

}

}

__except(EXCEPTION_EXECUTE _HANDLER
) {

//Eat the exception -- should never get
here //given that the read buffer is
guaranteed to //be null-terminated.

#if( DEBUG)

//Assumes we got an access violation
from going //past the end of the read
buffer -- could actually //be some other



type of error printf("Thread %08d reached
end of buffer\n", GetCurrentThreadld());

#endif
}

m_ploCurrent-
>SetState(BUF_STATE_INACTIVE);

}

return bRes:

}

struct OUTPUT_OVERLAPPED :
OVERLAPPED

{

char *pszMsg;



};

This means that it includes all the
members of the OVERLAPPED structure,
and, in addition, includes a single string
pointer. Because we've derived it from
OVERLAPPED, we can pass it into
functions that require a pointer to an
OVERLAPPED structure, such as
PostQueuedCompletionStatus and
GetQueuedCompletionStatus. When these
routines internally cast the pointer they
receive to an OVERLAPPED structure
pointer and dereference it, they'll still be
able to access the fields they expect to
find in the locations where they expect to
find them. Here, we use the technique to
allow us to send some additional data
along with the OVERLAPPED structure so
that we can later retrieve it.

OUTPUT OVERLAPPED encapsulates an
output packet. It allows us to queue
CBufSearch output while a worker thread
Is searching and defer our console I/O until
later.



Once we've allocated the
OUTPUT_OVERLAPPED structure and
copied the output line to it, we post it to
our output completion port using
PostQueuedCompletionStatus. You may
recall that PostQueuedCompletionStatus
can be used by an application to post its
own special-purpose I/O completion
packets. That's exactly what we're doing
here. We're posting output to the
completion port that we will later retrieve
using GetQueuedCompletionStatus.

Let's finish up by having a look at the
destructor, ~CBufSearch. It's responsible
for writing all the output from the output
queue to the console and ultimately
freeing up the resources allocated by the
object, including the private heap
containing its output. It begins by entering
a loop in which it repeatedly calls
GetQueuedCompletionStatus to dequeue



/O completion packets. Each time it
dequeues a packet, it takes the
OVERLAPPED structure pointer it receives
from the call, casts it as an

OUTPUT _OVERLAPPED structure, and
writes the output line it contains to the
console. Because there should be one line
of output for every string match, it
continues this until the number of
retrieved I/O completion packets equals
the number of string matches.

You may be wondering why we don't open
a handle to the console using the

FILE FLAG_OVERLAPPED switch and
simply write to it asynchronously from
CBufSearch::Search. The reason we don't
Is that all console output is synchronized.
An application cannot write to the console
asynchronously. Although you can
certainly open a new file handle for
console output (using the special string
CONOUTS$ as the file name), any writes to
it will be processed synchronously. In fact,
an attempt to write to the console with
WriteFileEx will fail, and GetLastError will



report that the file handle is invalid. (The
file handle isn't actually invalid, but it is
invalid for use with asynchronous 1/0.) In
order to make multithreaded apps easier
to write, Windows synchronizes all console
/0, so writing our output (directly) to the
console asynchronously is not an option.
That's why we've explored using an APC
function and an |I/O completion port to
keep worker threads from waiting on 1/O
while they're searching.

You've now worked through two real-world
applications that use I/O completion ports
to control concurrency, assist with thread
synchronization, and serve as queuing
mechanisms. There are a fair number of
these types of problems for which an I/O
completion port can provide a ready
solution. SQL Server makes use of I/O
completion ports as well, so it's important
to understand how they work and how
they can be used.

1/0 Completion Port Recap



An I/O completion port provides an
efficient mechanism for allowing multiple
threads to wait on asynchronous I/O and
can be used as a general-purpose
signaling mechanism independent of files
and file 1/O. The real power of I/O
completion ports is that they can help
manage the concurrency in an app,
actively assisting the app with keeping the
CPUs as busy as possible running
application code rather than context
switching.

1/0 Completion Port Knowledge
Measure

1. By default, how does an I/O completion
port decide how many threads should
be allowed to actively process I/O
completion packets?

2. True or false: A characteristic of a high-
performance server application is that
it attempts to minimize context
switches among worker threads as



much as possible while still maintaining
a sufficient degree of parallelism.

. In what state must a thread be in order
for a user mode APC to execute?

. What happens if you specify a timeout
value of 0 when you call
GetQueuedCompletionStatus and
there's no pending I/O completion
packet?

. What is the maximum number of
completion ports with which a thread
can be associated at one time?

. True or false: Packets are dequeued
from an I/O completion port in FIFO
(first in, first out) order.

. What API function is used to create an
/O completion port?

. Is it possible to create an I/O
completion port that is not associated
with a file?



. True or false: In order to wait on a
completion packet to be queued to an
/O completion port, a thread calls one
of the Win32 wait functions and passes
it the handle of the I/O completion port.

. What does the OVERLAPPED structure
pointer that's returned by
GetQueuedCompletionStatus refer to?

. How can an application determine the
number of bytes transferred by an
asynchronous I/O operation that was
initiated via a ReadFile call against a
file associated with an I/O completion
port?

. True or false: SQL Server's User Mode
Scheduler attempts to maximize
processor utilization by avoiding
context switches as much as possible.

. Describe the purpose of the
InterlockedExchange Win32 API
function.



. True or false: When working with 1/O
completion ports, it is generally
preferable to decouple work requests
from worker threads in such a manner
that any thread can process any work
request.

. What common condition often exists in
applications where too many worker
threads are allowed to run
concurrently?

. What Win32 API can be used to post a
special-purpose I/O completion packet
to an I/O completion port?

. True or false: If possible, threads that
are actively processing I/O completion
packets should avoid operations that
cause them to be blocked.

. Can SleepEx be used to dequeue an
APC in the same way that
WaitForSingleObjectEx can?



0.

1.

2.

3.

4.

True or false: Once the concurrency
value for an I/O completion port has
been set, the system ensures that the
number of threads actively processing
/O completion packets never exceeds
the value specified.

What Win32 API function can a thread
call to explicitly queue an APC to a
thread?

True or false: Calling
GetQueuedCompletionStatus has the
effect of associating a thread with an
/O completion port.

What does the
InterlockedCompareExchange Win32
API function do?

Is it possible for an asynchronous 1/O
request on a file that's associated with
an I/O completion port to be processed
synchronously by Windows?



5.

Describe a potential fallacy of the
software design approach that sets a
hard limit for the number of worker
threads in an app equal to the number
of processors in the system.

What type of object does ReadFileEx
cause to be queued when an
asynchronous operation it has initiated
completes?



Memory-Mapped File 1/0

This section concludes our discussion of Windows' I/O facilities. We'll finish up by
discussing how to process files using memory-mapped file I/0. We'll construct a
couple of sample apps that build on what we've done earlier in the chapter and use
memory-mapped file I/O to scan a text file for a string. This section will leverage the
things we've covered earlier in the chapter and in the rest of the book. If you haven't
yet read the first part of the chapter, please work through it before continuing. You
will probably also want to read Chapter 4 if you haven't already done so.

Key Memory-Mapped File 1/0 Terms and Concepts

v Shared memory€ memory that is visible to multiple processes or that is
present in the virtual address space of multiple processes.

v Memory-mapped file® a file on disk that has been mapped into virtual
memory such that it serves as the physical storage for the virtual memory.

v’ Section object® the kernel object responsible for implementing shared
memory and memory-mapped files.

Key Memory-Mapped File 1/0 APIs

Table 5.9. Key Win32 APIs for Working with Memory-Mapped Files

Function Description




Function Description

CreateFileMapping Creates a file-mapping object (a section object) for use with
shared memory or a memory-mapped file.

MapViewOfFile Maps a view of a file into memory such that the file serves as the
physical storage for the memory. The file can be a file on disk or
the system paging file.

FlushViewOfFile = Writes the modified pages in a mapped file view to disk.

Overview

As | mentioned in Chapter 4, Windows' memory-mapped file 1/O facility allows I/O to
be performed on a file as though it were memory. Rather than backing a range of
virtual memory addresses with the physical storage in the system page file, the file
itself is the physical storage behind the virtual memory used by a memory-mapped
file.

Threads that access the file simply access memory as though it were one large,
contiguous array. As the memory is accessed, the Windows memory manager
handles paging the file in and out of physical memory behind the scenes. If a thread
makes changes to this memory, the memory manager writes the changes to the file
as part of the normal paging process.

Windows' mapped file I/O facility is produced jointly by the I/O system and the
memory manager. It's an important part of the I/O subsystem and is used
throughout the OS. The system cache manager, for example, uses mapped file I/O to
map files into virtual memory and provide better response time for 1/0-bound
applications. While most caching systems allocate a fixed amount of memory for
caching files, Windows' use of mapped file I/O for this purpose means that the
amount of physical memory set aside for caching files can vary based on what else
is going on in the system. If a lot of physical memory is being consumed, the buffer
shrinks to accommodate this consumption. If physical memory is relatively unused,
the cache can be quite large and can provide excellent performance even with very
large files.

Another way in which Windows makes use of its own mapped file 1/0 facility is with
image file activation. When an executable or DLL is brought into a process's address
space, it is loaded as a mapped file. As Windows needs to access a particular code
or data page within the binary, it's automatically loaded into physical memory via
the normal paging process. In this case, the range of virtual memory addresses
occupied by the binary is backed by the executable or DLL file itself rather than the
system paging file.

To map a file into virtual memory, an application follows these steps.

1. Open the file through a call to CreateFile.



2. Create a file-mapping object (a section object, in kernel parlance) through a
call to CreateFileMapping.

3. Pass the handle to the file-mapping object into MapViewOfFile. MapViewOfFile
is responsible for actually mapping the file into virtual memory and returns a
pointer to the starting virtual address where the mapping begins.

Once a file has been mapped into virtual memory, it can be accessed as though it
had actually been copied from disk into memory. The advantage of mapping the file
into memory versus actually copying it from disk is that because the file is never
copied from its original location into the system paging file, the "load" is extremely
fast and doesn't waste physical storage that might be used for other purposes.

Note that because a mapped file resides in the virtual memory address space, it's
subject to the same limitations as any other virtual memory allocation. If there's
insufficient contiguous address space to create the specified mapping, it will fail, just
as virtual memory reservation that's too large might. Also, given that the entire user
mode address space is at most 3GB, you can't map a file entirely into memory that's
larger than 3GB. You might be able to map a smaller segment of it, but you won't be
able to access the entire file as one large sequential memory buffer.

Exercises

Let's examine memory-mapped file I/O up close by building an app that uses it. The
following exercise presents an app that uses mapped file I/O to search a text file.

Exercise 5.7 Using Memory-Mapped File I/O to Perform a File
Search

This exercise takes you through a sample app that uses memory-mapped file I/0 to
search the files matching a given mask for a specified string. It is a variation on the
sample app presented earlier in this chapter that used nonbuffered, asynchronous
I/0 to perform a similar search.

1. Load the fndstr sample app from the CHO5\fndstr subfolder on the book's CD
into Visual Studio and compile it.

2. Run the app under the VC++ debugger, passing it a text file to search and a
string to locate. If you don't have a text file handy, the CD includes a file
named INPUT.TXT that you can use for testing. It contains several instances of
the string "ABCDEF."

3. If you step through the code, you'll notice that the actual process of searching
a given file is carried out by a single call to the strstr C/C++ RTL function.
Because the entirety of the file appears to be loaded into a contiguous memory
buffer, we can easily search it using strstr. There's no need to process the file
in buffer-sized chunks, nor do we need to be concerned with search string
matches that happen to span a buffer boundary. Unlike some of the other I/O
sample apps, fndstr will locate every occurrence of the search string within a
file, regardless of where it physically resides.



Note that, because we're mapping the file into virtual memory, we are subject
to the limitations of the virtual memory address space. To begin with, if the
system is unable to find a contiguous region of virtual memory addresses
that's large enough to map the entire file, the code below will fail. This could
occur if the user mode address space is fragmented by other allocations or file
mappings. Moreover, if the file is larger than the user mode space (either 2GB
or 3GB on 32-bit Windows), the mapping will also fail. So, this technique isn't
suitable for processing extremely large files or for processing even moderate-
sized files in situations where virtual memory may be heavily fragmented.

. As with most of the other sample applications in this book, the best way to
understand how they work is to walk through the code itself. Listing 5.11 shows
fndstr.cpp, the main source code file for the fndstr sample app.

Listing 5.11 fndstr.cpp, the Main Source Code Module for the
fndstr Utility

// fndstr.cpp : A file search utility that uses
// memory-mapped file I/0 to read each file
//

#include "stdafx.h"
#include "windows.h"
#include "stdlib.h"

#define MAXLINE LEN 0x1000
const char cLINE DELIM='\n';

//From an offset in a buffer, find the start of the line
char *FindLineStart(char *szStartPos, char *szFileStart)
{

char *szStart;

for (szStart=szStartPos;

((szStart>szFileStart) && (cLINE DELIM!=*(szStart-1)));
szStart--)
return szStart;

}

//From an offset in a buffer, find the end of the line
// -- assumes null-termination
char *FindLineEnd(char *szStartPos)
{
return strchr(szStartPos,cLINE DELIM);
}

//Search a buffer for a specified string

DWORD Search(char *szStart, char *szEnd, char *szSearchStr,
char *szFileName)

{

DWORD dwFindCount=0;



char *szBol;

char *szEol;

char *szStringPos;

DWORD dwNumChars;

char *szStartPos=szStart;
char szFmt[32];

_try

while ((szStartPos) &&
(szStartPos<szEnd) &&
(NULL'=(szStringPos=strstr(szStartPos,szSearchStr)))) {

dwFindCount++;

szBol=FindLineStart(szStringPos, szStart);
szEol=FindLineEnd(szStringPos);

if (szEol) {
dwNumChars=szEol-szBol;
if (szEol<szEnd) szStartPos=szEol+1;
else szStartPos=NULL;

}

else {
dwNumChars=MAXLINE LEN;
szStartPos=NULL;

}

printf("%s Offset: %010d ",szFileName,
szStringPos-szStart);

//Build format string that limits output
//to current line

strcpy(szFmt,"%.");
sprintf(szFmt+2, "%ds\n",dwNumChars) ;

//0utput current line
printf(szFmt,szBol);

}

}
__except (EXCEPTION EXECUTE_HANDLER)

//Eat the exception
#if(_DEBUG)

printf("Scanned past end of buffer\n");
#endif

}

if (!'dwFindCount)
printf("Not found\n");
return dwFindCount;

}



//Scan a single file for the search string
DWORD SearchFile(char *szPath, char *szFileName,

{

char *szSearchStr)

char *szFileData;
char szFullPathName[MAX PATH+1];
DWORD dwFindCount;

strcpy(szFullPathName, szPath);
strcat(szFullPathName,szFileName) ;

//0pen the file
HANDLE hFile=CreateFile(szFullPathName,
GENERIC READ,
FILE SHARE READ,
NULL,
OPEN EXISTING,
FILE ATTRIBUTE NORMAL,
NULL) ;

//Create a file-mapping object for the file
HANDLE hMappingObject=
CreateFileMapping(hFile,

NULL,

PAGE_READONLY,

0,

0,

NULL) ;

//Retrieve a pointer to the file data
//by mapping it into virtual memory
szFileData=
(char *)MapViewOfFile(hMappingObject,
FILE MAP READ,
0,
0,
0);

//Get the size of the mapped area
//using VirtualQueryEx
//so that we'll know the boundaries
//0f our search area
MEMORY BASIC INFORMATION mbi;
VirtualQueryEx(GetCurrentProcess(),
szFileData,
&mbi,
sizeof(mbi));

//Search the file
dwFindCount=Search(szFileData,
szFileData+mbi.RegionSize,
szSearchStr,
szFileName) ;



//Unmap the file
UnmapViewOfFile(szFileData);

//Close the mapping object and file handles
CloseHandle (hMappingObject);
CloseHandle(hFile);

return dwFindCount;

}

//Search the files matching a given mask
//for a specified string
bool SearchFiles(char *szFileMask, char *szSearchStr)

{
char szPath[MAX PATH+1];

char *p=strrchrTstileMask,'\\');

if (p) |
strncpy(szPath,szFileMask, (p-szFileMask)+1);
szPath[(p-szFileMask)+1]='\0";

}

else
GetCurrentDirectory(MAX PATH,szPath);

if ('\\'!=szPath[strlen(szPath)-1])
strcat(szPath,"\\");

printf("Searching for %s in %s\n\n",szSearchStr,szFileMask);

WIN32 FIND DATA fdFiles;
HANDLE hFind=FindFirstFile(szFileMask,&fdFiles);

if (INVALID HANDLE VALUE == hFind) {
printf("No files match the specified mask\n");
return false;

}

DWORD dwFindCount=0;
do {
dwFindCount+=
SearchFile(szPath, fdFiles.cFileName, szSearchStr);
} while (FindNextFile(hFind,&fdFiles));

FindClose(hFind);

printf("\nTotal hits for %s in %s:\t%d\n",6szSearchStr,
szFileMask,dwFindCount) ;
return true;

}

int main(int argc, char* argv[])
{
if (argc<3) {
printf("Usage is: fndstr filemask searchstring\n");



return 1;

}

return (!SearchFiles(argv[1l], argv([2]));

}

6. The basic plumbing for iterating through the files matching a particular mask
and calling a search function is the same in this and the other file search
sample apps in this book, so | won't put you through the tedium of walking
back through it. If you want specifics on how the SearchFiles routine works, see
the Asynchronous and Nonbuffered I/O section earlier in the chapter where we
originally introduced the SearchFiles function and examined the routine in
detail. For the adventurous, it wouldn't be a lot of work to take the search
algorithms in the 1/0 samples in this book (implemented via the SearchFile
function in each sample app) and encapsulate them such that they
implemented the Strategy design pattern (as outlined in the book Design
Patterns by Erich Gamma and company?! ) and were interchangeable. Time
and topical constraints do not permit me to do so here, but it would be an
interesting exercise for the curious.

(2] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley, 1995.

7. Let's begin by examining the global Search function. It's fairly simple in
construction. It receives a starting pointer and an ending pointer and finds
every occurrence of the search string between them. The mechanics of
actually locating each string occurrence are handled by the strstr C/C++ RTL
function. Once we find a match, we output the line on which it occurs,
reposition the search start just beyond the end of the line, and continue
looking. Once we've searched the whole buffer, we return a find count to the
caller.

8. Note the exception-handling code we use to trap situations where strstr may
scan past the end of our buffer in search of a null-terminator. Because we can't
pad the file as it appears in virtual memory without physically changing it, it's
possible that we'll read past the end of the buffer if the file happens to end on
an exact system page boundary. So, assuming a system page size of 4K, if a
file is exactly 4K in size and does not happen to end with a null-terminator,
strstr will scan past the end of it while looking for the end of the string. Given
that we can't commit an extra page past the end of the mapped region, this
possibility is, unfortunately, unavoidable with the memory-mapped file
technique. If the end of the file does not fall on a page boundary, we can rest
assured that the remainder of its final page will be zero-filled on its first access,
so strstr will find its null-terminator regardless of the file contents. However, if
that's not the case and strstr attempts to access uncommitted address space,
an access violation will be raised. When that happens, our structured
exception-handling code will discard the exception and allow the program to
continue searching other files. If compiled as a debug build, fndstr will note
that the end of the buffer was likely passed by printing a message to the
console. The fndstr app ignores the exception based on the assumption that an
access violation due to strstr going past the end of the mapped file memory is
the only type of exception we should see in our main search loop. Although
other types of obscure exceptions could be raised, this is a fairly safe
assumption.



9. Now let's have a look at the SearchFile routine itself. It begins by opening the
file and creating a file-mapping object for it, a requirement of memory-mapped
file 1/0O. It next calls the MapViewOfFile Win32 function to map the file into a
contiguous range of virtual memory addresses and return a pointer to the start
of this range. We use the pointer returned by MapViewOfFile as the access
point into the file. Our search routines will use it as their starting address.

10. SearchFile next calls VirtualQueryEx to retrieve the size of the region set aside
for the file mapping. This should be the file size rounded up to the next page
boundary. We use this to compute the end of the search buffer. Since the
system zero-fills a committed virtual memory page the first time it's accessed,
we can be sure that search routines based on strstr will not find false matches
past the end of the file due to data remnants that may have been left in
memory from previous operations.

So, that's the fndstr sample app from beginning to end. Thanks to memory-mapped
file 1/0, the app itself is fairly simple and doesn't have to be concerned much with
searching multiple buffers and the idiosyncrasies of searching for a string that may
straddle a buffer boundary.

Given that the nonbuffered, asynchronous sample app fstring (introduced earlier in
the chapter) was multithreaded, you may be wondering why we don't scan the
mapped file in parallel. After all, searching the file is simply a matter of scanning
memory, and we can do that for the most part without having to be concerned about
synchronizing simultaneous access by multiple threads because we are reading, not
writing, the memory.

In the next sample app, we'll explore that very possibility. Because we will be
logically dividing the file into multiple pieces in order to scan it with multiple threads,
we will again face the possibility that a match string could straddle a buffer
boundary. However, because the entirety of the file has been mapped into memory
and appears as one contiguous buffer of address space, we can solve the problem in
a novel way without giving up the ability to scan the file with multiple threads.

Exercise 5.8 A Multithreaded File Scanner That Uses Mapped File
1/0

1. Load the findstring sample app from the CHO5\findstring subfolder on the CD
into Visual Studio and compile it.

2. Findstring consists of two main source code modules: findstring.cpp and
rngsrch.cpp. Findstring.cpp implements the plumbing necessary to iterate
through the files matching a specified mask and call a search routine to scan
each one for a given string. Its main function, SearchFiles, is similar enough to
the other samples in this chapter that | won't go back through it here. If you'd
like specifics on SearchFiles, consult the discussion of the fstring sample app
earlier in the chapter where | discuss it in detail.

3. The SearchFile function is responsible for searching each file. It opens each one
with CreateFile, creates a file-mapping object for it, then maps it into memory
using MapViewOfFile. As with the previous exercise, we use the pointer
returned by MapViewOfFile as the starting point for the search operation.



One of the parameters passed into SearchFile is the number of processors on
the system. The SearchFiles routine computes this at program startup and
passes it into SearchFile. SearchFile then creates a worker thread for each
processor on the system. If you have a two-processor system, you'll see two
worker threads created. If you have a four-processor system, you'll see four
worker threads created. Because the search is done entirely in virtual memory,
there's little benefit in creating more threads than processors.

5. Note the way in which SearchFile checks the number of pages in the file and
lowers the number of threads it will use if the file has fewer pages than there
are processors on the system. This way we can be sure that each thread gets
at least one memory page to search.

6. SearchFile next creates a linked list of CRangeSearch objects and a suspended
worker thread to correspond to each instance. When it creates a worker thread,
SearchFile passes a pointer to a CRangeSearch object as the user-defined void
pointer parameter to _beginthreadex. The thread entry-point function,
StartSearch, then casts this parameter back to a CRangeSearch pointer and
calls its Search method. Once Search has been called, it never exits until the
thread is ready to shut down. We'll discuss CRangeSearch (implemented in
rngsrch.cpp) in detail in just a moment.

7. Each CRangeSearch object is passed a starting and ending offset to search. So,
by virtue of the fact that the file is mapped into a range of contiguous virtual
memory addresses, we only need to compute offset pairs in order to scan it
with multiple threads. If you have two worker threads, each thread will scan
approximately half of the file.

8. Once all the worker threads have been created, SearchFile starts them running
by calling ResumeThread. We initially create the worker threads in a suspended
state so that each CRangeSearch object can recompute the end of its search
range before the actual search process begins. As | mentioned earlier, because
we are dividing the virtual memory region into which the file has been mapped
into multiple logical pieces so that we can scan them in parallel, we again face
the situation where a search match may span a buffer boundary. To handle
this, as we create each CRangeSearch object, we adjust its ending scan offset
such that it coincides with the last complete text line in the region. In other
words, if the last character in the buffer is not an end-of-line marker, we move
the end of the buffer backward until we find the last end-of-line marker in the
buffer. This prevents a search match from spanning a buffer boundary. It also
necessitates that the next CRangeSearch object start its search just after this
final end-of-line marker in the buffer, so CRangeSearch's RecalcEnd method
returns the new starting offset, and this is passed into the next CRangeSearch
object's constructor so that it can set its starting position accordingly.

9. Once all the threads are started, we call WaitForMultipleObjects to wait on
them to complete. Once they complete, we tally up the results, release the
resources we've allocated, and return a find count to SearchFiles.

10. This procedure is best understood by looking at the code itself. Listing 5.12
shows findstring.cpp.




Listing 5.12 findstring.cpp, the Main Source Code Module for
the findstring Utility

// findstring.cpp : Multithreaded file search
// using memory-mapped file I/0
//

#include "stdafx.h"
#include "windows.h"
#include "stdlib.h"
#include "process.h"
#include "rngsrch.h"

//Thread entry-point function
unsigned  stdcall StartSearch(LPVOID lpParameter)
{

return ((CRangeSearch*)lpParameter)->Search();

}

//Search a file for a specified string
DWORD SearchFile(DWORD dwPageSize,
DWORD dwNumProcessors,
char *szPath,
char *szFileName,
char *szSearchStr)

char *szFileData;
char szFullPathName[MAX PATH+1];

strcpy(szFullPathName, szPath);
strcat(szFullPathName,szFileName) ;

//0pen the file
HANDLE hFile=
CreateFile(szFullPathName,
GENERIC READ,
FILE SHARE READ,
NULL,
OPEN EXISTING,
FILE ATTRIBUTE NORMAL,
NULL) ;

//Create the file-mapping object
HANDLE hMappingObject=
CreateFileMapping(hFile,
NULL,
PAGE READONLY,
0,
0,
NULL) ;

//Map the file into memory and return



//a pointer to the start of the memory
szFileData=
(char *)MapViewOfFile(hMappingObject,
FILE MAP READ,
0,
0,
0);

//Get the size of the mapped region

MEMORY BASIC INFORMATION mbi;

VirtualQueryEx(GetCurrentProcess(),
szFileData,
&mbi,
sizeof(mbi));

//Make sure we don't have more threads

//than pages

DWORD dwNumThreads;

DWORD dwNumPages=(mbi.RegionSize / dwPageSize);

if (dwNumProcessors>dwNumPages)
dwNumThreads=dwNumPages;

else
dwNumThreads=dwNumProcessors;

//Compute the number of pages
//each thread will scan
DWORD dwPagesPerThread=dwNumPages / dwNumThreads;

//Allocate the thread handle array
HANDLE *hThreads=
(HANDLE *)HeapAlloc(GetProcessHeap(),
0,
dwNumThreads*sizeof (HANDLE)) ;
if (NULL==hThreads) {
printf("Error allocating worker thread array. Aborting.\n");
return 1;

}

CRangeSearch *prsFirst=NULL;
char *szNextStartOfs=szFileData;
char *szEndOfs=szFileData;
unsigned uThreadId;

//Allocate the CRangeSearch objects
//and create the worker threads
for (DWORD i=0; i<dwNumThreads; i++) {

if (i<dwNumThreads-1) {
szEndOfs+=(dwPagesPerThread*dwPageSize)-1;

else szEndOfs=szFileData+mbi.RegionSize-1;

prsFirst = new CRangeSearch(prsFirst,



szFileName,
szFileData,
szNextStartOfs,
szEndOfs,
szSearchStr);

if (i<dwNumThreads-1)
szNextStartOfs=prsFirst->RecalcEnd()+1;

hThreads[i]=

(HANDLE) beginthreadex(NULL,
0,
&StartSearch,
prsFirst,
CREATE_SUSPENDED,
&uThreadId);

}

//0nce all CRangeSearch objects have

//been created, start the threads up

for (i=0; i<dwNumThreads; i++)
ResumeThread (hThreads[i]);

//Wait for the threads to finish searching the file
WaitForMultipleObjects(dwNumThreads,hThreads,true, INFINITE);

//Get total tally and destroy search objects

DWORD dwFindCount=0;

CRangeSearch *prsNext;

for (; NULL'!'=prsFirst; prsFirst=prsNext) {
dwFindCount+=prsFirst->m dwFindCount;
prsNext=prsFirst->m prsNext;
delete prsFirst;

}

//Free the thread handles
for (i=0; i<dwNumThreads; i++)
CloseHandle(hThreads[i]);

//Free the thread handle array
HeapFree(GetProcessHeap(),0,hThreads);

//Unmap the file and close

//the mapping object and file handles
UnmapViewOfFile(szFileData);
CloseHandle (hMappingObject);
CloseHandle(hFile);

return dwFindCount;

}

bool SearchFiles(char *szFileMask, char *szSearchStr)

{



char szPath[MAX PATH+1];

char *p=strrchr(szFileMask, '\\"');

if (p) |
strncpy(szPath,szFileMask, (p-szFileMask)+1);
szPath[(p-szFileMask)+1]='\0";

}

else
GetCurrentDirectory(MAX PATH,szPath);

if ('\\'!=szPath[strlen(szPath)-1])
strcat(szPath,"\\");

printf("Searching for %s in %s\n\n",6szSearchStr,szFileMask);

WIN32 FIND DATA fdFiles;
HANDLE hFind=FindFirstFile(szFileMask,&fdFiles);

if (INVALID HANDLE VALUE == hFind) {
printf("No files match the specified mask\n");
return false;

}

SYSTEM INFO si;
GetSystemInfo(&si);

DWORD dwFindCount=0;
do {
dwFindCount+=
SearchFile(si.dwPageSize,

si.dwNumberOfProcessors,
szPath,
fdFiles.cFileName,
szSearchStr);

} while (FindNextFile(hFind,&fdFiles));
FindClose(hFind);

printf("\nTotal hits for %s in %s:\t%d\n",6szSearchStr,
szFileMask,dwFindCount);
return true;

}

int main(int argc, char* argv[])
{
if (argc<3) {
printf("Usage is: findstring filemask searchstring\n");
return 1;

}

return (!SearchFiles(argv[1l], argv([2]));

}



11. The work of actually searching each logical piece of the file is done by the
CRangeSearch class. It's implemented in rngsrch.cpp. Listing 5.13 provides
that code.

Listing 5.13 rngsrch.cpp, the Source Code Module for the
CRangeSearch Class

// rngsrch.cpp -- utility class for
// searching a range of virtual memory
// for a given string

#include "rngsrch.h"

//Ctor
CRangeSearch: :CRangeSearch(CRangeSearch *prsNext,
char *szFileName, char *szFileData, char *szStart, char *szEnd,
char* szSearchStr)
{

//Cache ctor params for later use

m prsNext=prsNext;

m_szFileName=szFileName;

m szFileData=szFileData;

m szStart=szStart;

m_szEnd=szEnd;

m szSearchStr=szSearchStr;

m_dwFindCount=0;
}

//Recompute the end of a
//search buffer so that a line
//does not straddle two buffers
char *CRangeSearch: :RecalcEnd()
{
m_szEnd=FindLineStart(m szEnd);
if (m_szEnd) m szEnd--;
return m_szEnd;

}

//From an offset in a buffer, find the start of the line
char *CRangeSearch::FindLineStart(char *szStartPos)
{
char *szStart;
for (szStart=szStartPos;
((szStart>m szStart) && (cLINE DELIM!=*(szStart-1)));
szStart--);
return szStart;
}

//From an offset in a buffer, find the end of the line

// -- assumes null-termination
char *CRangeSearch::FindLineEnd(char *szStartPos)



{
return strchr(szStartPos,cLINE DELIM);

}

//Continuously search a given buffer
//for a specified string
bool CRangeSearch::Search()
{
char *szBol;
char *szEol;
char *szStringPos;
DWORD dwNumChars;
char *szStartPos=m szStart;
bool bRes=false;
char szFmt[32];
char szO0ffsetMsg[255];

__try

while ((szStartPos) &&
(szStartPos<m szEnd) &&
(NULL!=(szStringPos=strstr(szStartPos,m szSearchStr)))) {

m_dwFindCount++;

szBol=FindLineStart(szStringPos);
szEol=FindLineEnd(szStringPos);

if (szEol) {
dwNumChars=szEol-szBol;
if (szEol<m szEnd) szStartPos=szEol+1;
else szStartPos=NULL;

}

else {
dwNumChars=MAXLINE LEN;
szStartPos=NULL;

}

#if(_DEBUG)
sprintf(sz0ffsetMsg,"Thread %08d: Offset: %010d %s ",
GetCurrentThreadId(),
szStringPos-m _szFileData,m szFileName);
#else
sprintf(sz0ffsetMsg,"0ffset: %010d %s ",
szStringPos-m _szFileData,m szFileName);
#endif

//Build format string that limits output to current line
strcpy(szFmt,"%s %.");
sprintf(szFmt+5, "%ds\n",dwNumChars) ;

//0utput current line
printf(szFmt,sz0ffsetMsg,szBol);



bRes=true;
}}
__except (EXCEPTION EXECUTE HANDLER)
{
//Eat the exception
#if(_DEBUG)
printf("Thread %08d reached end of buffer\n",
GetCurrentThreadId());

#endif
}

if (!bRes)
printf("Not found\n");
return bRes;

}

12. The key method in the CRangeSearch class is its Search method. As |
mentioned earlier, once a worker thread enters this method, it never exits until
the thread has finished scanning the range of memory for which it's
responsible.

13. The Search method uses a simple loop based on calls to the strstr C/C++ RTL
function to find the matches in its buffer. For each match, it outputs the line
containing the match, then repeats the scan beginning with the end of the
current line. When it runs out of matches, the thread is done and exits
normally.

14. As with the previous sample app, the possibility remains that strstr could scan
past the end of the virtual address range into which the file has been mapped
while looking for a null-terminator. This is much more likely if the file happens
to end on an exact page boundary. If strstr runs past the end of the mapped
region, an access violation may be raised, so we trap and eat any exceptions
raised by the search loop. Again, we're doing this based on the assumption
that an access violation caused by strstr running off the end of the mapped file
area is the only likely cause of an exception from this routine even though
there remains the possibility that some other obscure condition could raise an
exception within the loop. The code isn't intended to demonstrate exhaustive
or even robust exception handling; the idea is to keep it as simple as possible
while remaining functional enough that you get a sense of some of the
practical uses of memory-mapped file 1/0.

You should now have an understanding of some of the things you can do with
mapped file I/O and multithreading. SQL Server uses memory-mapped files in
several places itself, so understanding the basics of how mapped file I/O can be put
to work by an application will give you some insight into how SQL Server makes use
of it.

Memory-Mapped File 1/0 Recap



In addition to using Windows' shared memory facilities to share data between
processes, you can use it to map files into virtual memory for easy access. A
memory-mapped file becomes the physical storage for the range of virtual
addresses into which it has been mapped, so the file need not be copied from disk
into the system paging file. Reading the file is as simple as reading memory. Writing
it is as simple as changing memory. Because the file appears to be loaded into a
single, contiguous buffer, you have options for processing it that would otherwise
not be available or that would be much more difficult. An example of this type of
functionality is demonstrated in the RecalcEnd method in the findstring sample.

Memory-Mapped File 1/0 Knowledge Measure

10.
11.

12.

13.
14.

. Which Win32 API function is responsible for mapping a file into memory and

returning a pointer to its starting address?

. True or false: Windows will relocate DLLs and other images that have been

mapped into a process's address space to make room for a file you are
attempting to map into memory.

. What's the simplest way for an application to change the contents of a file

that's been mapped into memory?

. True or false: In order for a file to be mapped into memory, its file object must

have been created with the FILE_FLAG_MAPPED switch.

. What Win32 API function is used to create a file-mapping object?

. True or false: Because a memory-mapped file is subject to the same limitations

as virtual memory itself, you cannot map an entire file into virtual memory
whose size exceeds 3GB on 32-bit Windows.

. True or false: Windows' mapped file I/O facility is produced jointly by the I/O

system and the memory manager.

. When a file is mapped into virtual memory, at what point does Windows copy it

to the system paging file?

. What Win32 API can a thread call to flush the modified pages in a memory-

mapped file immediately to disk?
What kernel object is responsible for implementing shared memory?

What Win32 API function did we use in this chapter to get the exact size of the
memory region into which a file is mapped?

True or false: Although a file that has been mapped into virtual memory serves
as the physical storage for the memory, it takes longer to map a file into
memory than to allocate a memory buffer and copy the file from disk because
the Windows memory manager almost always processes /O synchronously.

What Win32 API function do we call to undo a file mappi