

Praise for A Developer’s Guide to Data Modeling
for SQL Server

“Eric and Joshua do an excellent job explaining the importance of data modeling and how
to do it correctly. Rather than relying only on academic concepts, they use real-world ex-
amples to illustrate the important concepts that many database and application develop-
ers tend to ignore. The writing style is conversational and accessible to both database
design novices and seasoned pros alike. Readers who are responsible for designing, imple-
menting, and managing databases will benefit greatly from Joshua’s and Eric’s expertise.”

—Anil Desai, Consultant, Anil Desai, Inc.

“Almost every IT project involves data storage of some kind, and for most that means a
relational database management system (RDBMS). This book is written for a database-
centric audience (database modelers, architects, designers, developers, etc.). The authors
do a great job of showing us how to take a project from its initial stages of requirements
gathering all the way through to implementation. Along the way we learn how to handle
some of the real-world design issues that typically surface as we go through the process.

“The bottom line here is simple. This is the book you want to have just finished read-
ing when your boss says ‘We have a new project I would like your help with.’”

—Ronald Landers, Technical Consultant, IT Professionals, Inc.

“The Data Model is the foundation of the application. I’m pleased to see additional books
being written to address this critical phase. This book presents a balanced and pragmatic
view with the right priorities to get your SQL server project off to a great start and a long
life.”

—Paul Nielsen, SQL Server MVP, SQLServerBible.com

“This is a truly excellent introduction to the database design methodology that will work
for both novices and advanced designers. The authors do a good job at explaining the ba-
sics of relational database modeling and how they fit into modern business architecture.
This book teaches us how to identify the business problems that have to be satisfied by a
database and then proceeds to explain how to build a solid solution from scratch.”

—Alexzander N. Nepomnjashiy, Microsoft SQL Server DBA,
NeoSystems North-West, Inc.

“A Developer’s Guide to Data Modeling for SQL Server explains the concepts and prac-
tice of data modeling with a clarity that makes the technology accessible to anyone build-
ing databases and data-driven applications.

“Eric Johnson and Joshua Jones combine a deep understanding of the science of data
modeling with the art that comes with years of experience. If you’re new to data model-
ing, or find the need to brush up on its concepts, this book is for you.”

—Peter Varhol, Executive Editor, Redmond Magazine

This page intentionally left blank

A Developer’s Guide
to Data Modeling
for SQL Server

COVERING SQL SERVER

2005 AND 2008

This page intentionally left blank

A Developer’s Guide
to Data Modeling
for SQL Server

COVERING SQL SERVER

2005 AND 2008

Eric Johnson

Joshua Jones

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800)382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data

Johnson, Eric, 1978–
A developer’s guide to data modeling for SQL server : covering SQL server

2005 and 2008 / Eric Johnson and Joshua Jones. — 1st ed.
p. cm.

Includes index.
ISBN 978-0-321-49764-2 (pbk. : alk. paper)

1. SQL server. 2. Database design. 3. Data structures (Computer science)
I. Jones, Joshua, 1975- II. Title.

QA76.9.D26J65 2008
005.75'85—dc22 2008016668

Copyright © 2008 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-49764-2
ISBN-10: 0-321-49764-3
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, June 2008

For Michelle and Evan—Eric

To my wife and children; I have time to play now—Josh

This page intentionally left blank

ix

CONTENTS

Preface xv
Acknowledgments xvii
About the Authors xix

PART I Data Modeling Theory . 1

Chapter 1 Data Modeling Overview. 3

Databases . 4
Relational Database Management Systems. 5

Why a Sound Data Model Is Important . 6
Data Consistency . 6
Scalability . 8
Meeting Business Requirements. 10
Easy Data Retrieval . 10
Performance Tuning . 13

The Process of Data Modeling. 14
Modeling Theory. 15
Business Requirements . 16
Building the Logical Model . 18
Building the Physical Model . 19

Summary . 21

Chapter 2 Elements Used in Logical Data Models 23

Entities . 23
Attributes . 24

Data Types . 25
Primary and Foreign Keys . 30
Domains. 31
Single-Valued and Multivalued Attributes . 32

Referential Integrity . 32

Relationships . 35
Relationship Types . 35
Relationship Options . 40
Cardinality . 41

Using Subtypes and Supertypes . 42
Supertypes and Subtypes Defined . 42
When to Use Subtype Clusters . 44

Summary . 44

Chapter 3 Physical Elements of Data Models 45

Physical Storage . 45
Tables . 45
Views. 47
Data Types . 49

Referential Integrity . 59
Primary Keys . 59
Foreign Keys . 63
Constraints . 66
Implementing Referential Integrity . 68

Programming . 71
Stored Procedures . 71
User-Defined Functions. 72
Triggers . 73
CLR Integration . 75

Implementing Supertypes and Subtypes . 75
Supertype Table . 76
Subtype Tables . 77
Supertype and Subtype Tables . 78
Supertypes and Subtypes: A Final Word . 79

Summary . 79

Chapter 4 Normalizing a Data Model. 81

What Is Normalization? . 81
Normal Forms. 81

Determining Normal Forms . 90
Denormalization . 91
Summary . 94

x Contents

Contents xi

PART II Business Requirements . 95

Chapter 5 Requirements Gathering . 97

Requirements Gathering Overview . 98
Gathering Requirements Step by Step . 98

Conducting Interviews . 98
Observation . 101
Previous Processes and Systems . 103
Use Cases . 105

Business Needs . 111
Balancing Technical Limitations with Business Needs 112
Gathering Usage Data . 112

Reads versus Writes. 113
Data Storage Requirements. 114
Transaction Requirements . 115

Summary . 116

Chapter 6 Interpreting Requirements . 117

Mountain View Music . 117
Compiling Requirements Data . 119

Identifying Useful Information . 119
Identifying Superfluous Information . 120

Determining Model Requirements . 121
Interpreting User Interviews and Statements . 121
Interpreting Flowcharts . 127
Interpreting Legacy Systems . 130
Interpreting Use Cases . 132
Determining Attributes . 135

Determining Business Rules . 138
Determining the Business Rules . 138
Cardinality . 140
Data Requirements . 140

Requirements Documentation. 141
Entity List . 141
Attribute List . 142
Relationship List. 142
Business Rules List . 142

Looking Ahead: The Business Review . 143
Design Documentation . 143

Summary . 145

PART III Creating the Logical Model 147

Chapter 7 Creating the Logical Model. 149

Diagramming a Data Model . 149
Suggested Naming Guidelines . 149
Notations Standards . 153
Modeling Tool. 156

Using Requirements to Build the Model . 157
Entity List . 157
Attribute List . 161
Relationships Documentation . 162
Business Rules . 163

Building the Model . 164
Entities . 165
Primary Keys . 166
Relationships. 166
Domains. 168
Attributes . 169

Summary . 170

Chapter 8 Common Data Modeling Problems 171

Entity Problems . 171
Too Few Entities . 171
Too Many Entities . 174

Attribute Problems . 176
Single Attributes Contain Different Data . 176
Incorrect Data Types . 178

Relationship Problems . 182
One-to-One Relationships . 182
Many-to-Many Relationships . 184

Summary . 185

xii Contents

Contents xiii

PART IV Creating the Physical Model 187

Chapter 9 Creating the Physical Model with SQL Server 189

Naming Guidelines . 189
General Naming Guidelines. 191
Naming Tables . 193
Naming Columns . 195
Naming Views . 195
Naming Stored Procedures. 196
Naming User-Defined Functions . 196
Naming Triggers . 196
Naming Indexes . 196
Naming User-Defined Data Types . 197
Naming Primary Keys and Foreign Keys . 197
Naming Constraints. 197

Deriving the Physical Model . 198
Using Entities to Model Tables. 198
Using Relationships to Model Keys . 209
Using Attributes to Model Columns . 210

Implementing Business Rules in the Physical Model 211
Using Constraints to Implement Business Rules 211
Using Triggers to Implement Business Rules. 213
Implementing Advanced Cardinality . 217

Summary . 219

Chapter 10 Indexing Considerations . 221

Indexing Overview . 221
What Are Indexes? . 222
Types . 224

Database Usage Requirements . 230
Reads versus Writes . 230
Transaction Data . 232

Determining the Appropriate Indexes . 233
Reviewing Data Access Patterns . 233
Balancing Indexes . 233
Covering Indexes . 234

Index Statistics . 235
Index Maintenance Considerations . 235

Implementing Indexes in SQL Server . 236
Naming Guidelines . 236
Creating Indexes. 236
Filegroups . 237
Setting Up Index Maintenance . 238

Summary . 239

Chapter 11 Creating an Abstraction Layer in SQL Server 241

What Is an Abstraction Layer? . 241
Why Use an Abstraction Layer? . 242

Security . 242
Extensibility and Flexibility . 242

An Abstraction Layer’s Relationship to the Logical Model 245
An Abstraction Layer’s Relationship to Object-Oriented

Programming . 246
Implementing an Abstraction Layer . 247

Views. 248
Stored Procedures . 250
Other Components of an Abstraction Layer . 254

Summary . 254

Appendix A Sample Logical Model . 255

Appendix B Sample Physical Model . 261

Appendix C SQL Server 2008 Reserved Words 267

Appendix D Recommended Naming Standards 269

Index . 271

xiv Contents

PREFACE

As database professionals, we are frequently asked to come into existing
environments and “fix” existing databases. This is usually because of per-
formance problems that application developers and users have uncovered
over the lifetime of a given application. Inevitably, the expectation is that
we can work some magic database voodoo and the performance problems
will go away. Unfortunately, as most of you already know, the problem
often lies within the design of the database. We often spend hours in meet-
ings trying to justify the cost of redesigning an entire database in order to
support the actual requirements of the application as well as the perform-
ance needs of the business. We often find ourselves tempering good design
with real-world problems such as budget, resources, and business needs
that simply don’t allow for the time needed to completely resolve all the is-
sues in a poorly designed database.

What happens when you find yourself in the position of having to re-
design an existing database or, better yet, having to design a new database
from the ground up? You know there are rules to follow, along with best
practices that can help guide you to a scalable, functional design. If you
follow these rules you won’t leave database developers and DBAs curs-
ing your name three years from now (well, no more than necessary).
Additionally, with the advent of enterprise-level relational database man-
agement systems, it’s equally important to understand the ins and outs of
the database platform your design will be implemented on.

There were two reasons we decided to write this book, a reference for
everyone out there who needs to design or rework a data model that will
eventually sit on Microsoft SQL Server. First, even though there are
dozens of great books that cover relational database design from top to bot-
tom, and dozens of books on how to performance-tune and write T-SQL
for SQL Server, there wasn’t anything to help a developer or designer
cover the process from beginning to end with the right mix of theory and
practical experience. Second, we’d seen literally hundreds of poorly de-
signed databases left behind by people who had neither the background in

xv

database theory nor the experience with SQL Server to design an effective
data model. Sometimes, those databases were well designed for the tech-
nology they were implemented on; then they were simply copied and
pasted (for lack of a more accurate term) onto SQL Server, often with dis-
astrous results. We thought that a book that discussed design for SQL
Server would be helpful for those people redesigning an existing database
to be migrated from another platform to SQL Server.

We’ve all read that software design, and relational database design in
particular, should be platform agnostic. We do not necessarily disagree
with that outlook. However, it is important to understand which RDBMS
will be hosting your design, because that can affect the capabilities you can
plan for and the weaknesses you may need to account for in your design.
Additionally, with the introduction of SQL Server 2005, Microsoft has im-
plemented quite a bit of technology that extends the capabilities of SQL
Server beyond simple database hosting. Although we don’t cover every
piece of extended functionality (otherwise, you would need a crane to carry
this book), we reference it where appropriate to give you the opportunity
to learn how this functionality can help you.

Within the pages of this book, we hope you’ll find everything you need
to help you through the entire design and development process—every-
thing from talking to users, designing use cases, and developing your data
model to implementing that model and ensuring it has solid performance
characteristics. When possible, we’ve provided examples that we hope will
be useful and applicable to you in one way or another. After spending
hours developing the background and requirements for our fictitious com-
pany, we have been thinking about starting our own music business. And
let’s face it—reading line after line of text about the various uses for a var-
char data type can’t always be thrilling, so we’ve tried to add some anec-
dotes, a few jokes, and even a paraphrased movie quote or two to keep it
lively.

Writing this book has also been an adventure for both of us, in learn-
ing how the publishing process works, learning the finer details of writing
for a mass audience, and learning that even though we are our own worst
critics, it’s hard to hear criticism from your friends, even if they’re right;
but you’re always glad that they are.

xvi preface

ACKNOWLEDGMENTS

We have always enjoyed training and writing, and this book gave us the op-
portunity to do both at the same time. Many long nights and weekends
went into this book, and we hope all the hard work has created a great re-
source for you to use.

We cannot express enough thanks to our families—Michelle and Evan,
and Lisa, Braydon, and Sydney. They have been very supportive through-
out this process and put up with our not being around. We love you very
much.

We would also like to thank the team at Addison-Wesley, Joan Murray
and Kim Boedigheimer. We had not written a book before this one, and
Joan had enough faith in us to give us the opportunity. Thanks for guiding
us through the process and working with us even when things got tricky.

A big thanks goes out to Embarcadero (embarcadero.com) for setting
us up with copies of ERStudio for use in creating the models you will see
in this book.

We also want to thank Microsoft for creating SQL Server and provid-
ing the IT community with the ability to host databases on such a robust
platform.

Finally, we would be amiss if we didn’t thank you, the reader. Without
you there would be no book.

xvii

This page intentionally left blank

xix

ABOUT THE AUTHORS

Eric Johnson (Microsoft SQL MVP) is the co-founder of Consortio
Services and the primary database technologies consultant. His back-
ground in information technology is diverse, ranging from operating sys-
tems and hardware to specialized applications and development. He has
even done his fair share of work on networks. Because IT is a way to sup-
port business processes, Eric has also acquired an MBA. All in all, he has
ten years of experience with IT, much of it working with Microsoft SQL
Server. Eric has managed and designed databases of all shapes and sizes.
He has delivered numerous SQL Server training classes and Webcasts as
well as presentations at national technology conferences. Most recently, he
presented at TechMentor on SQL Server 2005 replication, reporting ser-
vices, and integration services. In addition, he is active in the local SQL
Server community, serving as the president of the Colorado Springs SQL
Server Users Group. He is also the co-host of CS Techcast, a weekly pod-
cast for IT professionals at www.cstechcast.com. You can find Eric’s blog at
www.consortioservices.com/blog.

Joshua Jones (MCTS, SQL Server 2005; MCITP, Database Adminis-
trator) is operating systems and database systems consultant with Consortio
Services in Colorado Springs. There he provides training, administration,
analysis, and design support for customers using SQL Server 2000 and
2005. In his seven years as an IT professional, he has worked in many areas
of information technology, including Windows desktop support, Windows
2000 and 2003 server infrastructure design and support (AD, DNS, MS
Exchange), telephony switch support, and network support. Josh has spoken
at various PASS sponsored events about SQL Server topics such as 64-bit
SQL Server implementation, reporting services administration, and per-
formance tuning. He is also a co-host of CS Techcast, a weekly podcast for
IT professionals at www.cstechcast.com.

www.cstechcast.com
www.consortioservices.com/blog
www.cstechcast.com

This page intentionally left blank

P A R T I

DATA MODELING
THEORY

■ Chapter 1 Data Modeling Overview

■ Chapter 2 Elements Used in Logical Data Models

■ Chapter 3 Physical Elements of Data Models

■ Chapter 4 Normalizing a Data Model

This page intentionally left blank

C H A P T E R 1

DATA MODELING OVERVIEW

What exactly is this thing called data modeling? Simply put, data model-
ing is the process of figuring out how to store digitized information in a
logically structured computer database. It may sound easy, but a lot goes
into the process of developing a sound data model. Data modeling is a
technical process that involves understanding and mapping business infor-
mation to logical objects that can eventually be stored in a database. This
means that a data modeler must wear many hats to do the job effectively.
You not only must understand the process by which the model is built, but
you also must be a data detective. You must be good at asking questions
and finding out what is really important to your customer.

In data modeling, as in many areas of information technology, cus-
tomers know what they want, but they don’t always know what they need.
It’s your job to figure out what they need. Suppose you’re dealing with
Tom, a project manager for an appliance distribution company. Tom un-
derstands that his company orders refrigerators, dishwashers, and the like
from the manufacturers and then takes orders and sells those appliances to
its customers (retail stores). What Tom doesn’t know is how to take that in-
formation, model it, and ultimately store it in a database so that it can be
leveraged to help the company make decisions or control a process.

In addition to finding out what information your customer cares about
and getting it into a database, you must find out how the customer intends
to use the information. Is it for historical purposes, or will the company use
the data in its daily operations? Will it be used only to produce reports, or
will an application need to manipulate the data regularly? As if that weren’t
enough, you eventually have to think about turning your data model into a
physical database.

There are many choices on the market when it comes to database man-
agement products. These products are similar in that they allow you to
store, secure, and use information in databases; however, each product im-
plements features in its own way, so you must also make the best use of

3

these features to provide a solution that best meets the needs of your
customer.

Our goal in this book is to give you the know-how and skills you need
to design and implement data models. There is plenty of information out
there on database theory, so that is not our focus; instead, we want to look
at real-world scenarios and focus your modeling efforts on optimizing your
design for Microsoft SQL Server 2008. The concepts and topics we discuss
are applicable to older versions of Microsoft SQL Server, but some fea-
tures are available only in SQL Server 2008. Where we encounter this
problem we will point out the key differences or at least let you know that
the topic applies only to SQL Server 2008.

Before we go much further, there are a few terms you should be fa-
miliar with. Many of these terms you probably already know, but we want
to make sure that we are all on the same page.

Databases

What is a database? The simple answer is that a database is anything that
contains information. A database can be either logical or physical (or both).
You will hear many companies refer to any internal information as the
company’s database. In fact, I once had a discussion with a manager of
mine as to whether a napkin could be a database. If you think about it, I
could indeed write something on a napkin and it could be a record.
Because it is storing data, you could call it a database. So why don’t we
store all of our important information on napkins? The main reason is that
we don’t want to lose a customer’s order in the washing machine.

Seriously, when we store data we need a database that can hold infor-
mation in a logical way and allow data retrieval. When you think of a data-
base, you should really think of something with tables that are made up of
rows and columns. Each table contains information pertaining to a single
“topic,” and each row contains data about a single instance of that topic.
Figure 1.1 shows a simple logical model containing information about em-
ployees and their computers.

4 Chapter 1 Data Modeling Overview

The Employee table holds all the pertinent data about employees, and
each row in it contains all the information for a single employee. Similarly,
columns hold the data of the same type for each row. For example, the
PhoneNumber column holds only phone numbers of employees. Many
databases contain other objects, such as views, stored procedures, func-
tions, and constraints, among others; we get into those details later.

Taking the definition one step further, we need to look at relational
databases. A relational database, the most common type of database in
use, is one in which the tables relate to one another in some way. Looking
at our Employee table, we might also want to track which computers we
give to which employees. In this case we would have a Computer table that
would relate to the Employee table, as in the statement, “An employee
owns or has a computer.” Once we start talking about relational databases,
we knock other databases off the list. Things like spreadsheets, text files, or
napkins inherently stand alone and cannot be related to other objects.
From this point forward, when we talk about databases, we are referring to
relational databases that contain collections of tables that can relate to one
another.

Relational Database Management Systems
A relational database management system (RDBMS) is a software
product that stores relational databases. In addition to storing databases,
RDBMSs provide many other functions. They give you a way to secure the
databases and manage user access. They also have functions that allow you
to manage your databases, functions such as backup and restore, index
management, data loading utilities, and even reporting.

Databases 5

FIGURE 1.1 A simple relational database containing employee and computer
information

A number of RDBMS products are available, ranging from freely avail-
able open source products such as MySQL to enterprise-level solutions
such as Oracle, Microsoft SQL Server, or IBM’s DB2. Which system you
use depends largely on your specific environment and requirements. This
book focuses on Microsoft SQL Server 2008. Although a data model can
be implemented on any system, it needs to be tweaked to fit that product.
If you know ahead of time that you will be deploying on SQL Server 2008,
you can start that tweaking from step 1 and end up with a database that will
take full advantage of the features that SQL Server offers.

Why a Sound Data Model Is Important

Data modeling is a long process, and doing it correctly requires many hours.
In fact, when a team sits down to start building an application, data model-
ing can easily be the single most time-consuming part. This large time
investment means that the process will be scrutinized by managers, appli-
cation developers, and the customer. The temptation is to cut the modeling
process short and move on to creating the database. All too often we have
seen applications built with a “We will build the database as we go” attitude.
This is the wrong way to go about building any solution that includes a data-
base. Data modeling is extremely important, and it is vital that you take the
time to do it correctly. Failure to do things right in the beginning will cause
you to revisit the database design many times over the course of a project.

Data modeling is the plan by which the database will eventually be built.
If the plan is flawed, it will be impossible to build a good database. Compare
it to building a house. You start with blueprints, which show how the house
will be built. If the blueprints are incorrect or incomplete, you wouldn’t ex-
pect to be able to build the house. Data modeling is the same. Given that
data modeling is important to the success of the database, it is equally im-
portant to do it correctly. Well-designed data models not only serve as your
blueprint but also help you avoid some common database problems. Let’s ex-
plore some of the benefits that a sound data model gives you.

Data Consistency
A solid data model provides data consistency. Without data consistency,
you could find that you have all the data you could ever want, but you can’t
garner helpful information from it. What do I mean by data consistency?

6 Chapter 1 Data Modeling Overview

Let’s assume that the company you work for stores all of its information in
spreadsheets. In a spreadsheet world, your data is only as good as the peo-
ple who record it.

What does that mean for data consistency? Suppose you store all your
customer information in a single workbook in your spreadsheet. You want
to know a few pieces of basic information about each customer: name, ad-
dress, phone number, and e-mail address. That seems easy enough, but
now let’s introduce the human element into the scenario. Your customer
service employees are required to add information to the workbook for
each new customer they work with. Because your customer service reps
are human, how they record the information will vary from person to per-
son. For example, a rep may record the customer’s information as shown
in row 1 of Table 1.1, and another may record the same customer’s infor-
mation a different way, as shown in row 2 of Table 1.1.

Table 1.1 The Same Customer’s Information as Entered
by Two Customer Service Reps

Name Address City State ZIP Phone Email

John Doe 123 Easy Street SF CA 94134 (415) 555-1956 jdoe@abcnetwork.com

J. Doe 123 Easy St. San Fran CA 94134 5551956 jdoe@abcnetwork.com

Why a Sound Data Model Is Important 7

These are subtle differences to be sure, but if you look closely you’ll see
some problems. First, if you want to run a report to count all of your San
Francisco-based customers, how would you go about it? Sure, a human can
tell that “SF” and “San Fran” are shorthand for San Francisco, but a com-
puter can’t make that assumption without help. To run your report, you
would need to look for all the possible ways that someone could key in San
Francisco, to include all the ways it can be misspelled. Next, let’s look at
the customer’s name. For starters, are we sure it’s the same person? “J.
Doe” could be Jane Doe or Javier Doe. Although the e-mail address is the
same on both records, I have seen my fair share of families with only one
shared e-mail address. Additionally, the second customer service repre-
sentative omitted the customer’s area code, and that means you must
spend time looking it up if you ever need to call the customer.

For data to be useful, it must be consistent; I cannot stress this enough.
This means that when you store a piece of data, it is stored in the same way
each and every time. The city is always stored as San Francisco, and the

phone number always has the area code. If your data isn’t consistent, you
(or the users of the system you design) will spend too much time trying to
figure it out and too little time leveraging it. Granted, you probably won’t
spend a lot of time modeling data to be stored in a spreadsheet, but these
same kinds of things can happen in a database.

Scalability
When all is said and done, you want to build a database that the customer
can use immediately and also for the foreseeable future. No matter how
good a job you do on the data model, things change and new data becomes
available. A sound data model will provide for scaling. This means that
customers can continue to add records to the database, and the model will
not run into problems. Similarly, adding new information to existing enti-
ties should be no harder than adding an attribute (discussed later in this
chapter). In contrast, a poorly modeled database will be difficult or even
impossible to alter. Take as an example the entity in Figure 1.2 (entities are
discussed later in this chapter). This entity holds the data relating to a cus-
tomer, including the customer’s address information.

8 Chapter 1 Data Modeling Overview

FIGURE 1.2 A simple customer entity containing address data

This design works well if each customer has only a single address. In
the real world, customers have multiple addresses for work, home, vaca-
tion homes, or Grandma’s house. How can we change this model to store
the extra addresses? Because of the way this model was built, the easiest
way to add the data is to add attributes (Address1, Address2, Address3), as
shown in Figure 1.3.

This method has several problems. We now have three sets of attri-
butes in the same entity that hold the same data. This is bad from a nor-
malization standpoint, and it is also confusing. We can’t tell which address
is the customer’s home or work address. We also don’t know why the cus-
tomer had these addresses on file in the first place. The model, as it exists
in Figure 1.3, is not very scalable, and this is the kind of problem that can
occur when you need to expand the model. An alternative, more scalable
model is shown in Figure 1.4.

Why a Sound Data Model Is Important 9

FIGURE 1.3 A simple customer entity expanded to support three addresses

FIGURE 1.4 An expanded customer model to include a separate address entity

As you can see, this model solves all our scalability problems. In fact,
this new model doesn’t need to be scaled. We can still enter one address
for each customer, but we can also easily enter more addresses when the
need arises. Additionally, each address can be labeled so that we can tell
what the address is for.

Meeting Business Requirements
Many big, expensive solutions have been implemented over the years that
serve no real purpose—IT only for the sake of IT. Some people thought that
if they bought the biggest and best computer system, all their problems would
be solved. Experience tells us that things just don’t work that way: Technology
is more successful when it’s deployed to solve a business problem.

With data modeling, it’s easy to fall into implementing something that
the business doesn’t need. To make your design work, you need to take a
big step back and try to figure out what the business is trying to accomplish
and then help it achieve its goals. You need to take the time to do data
modeling correctly, and really dig into the company’s requirements. Later,
we look specifically at how to get the requirements you need. For now, just
keep in mind that if you do your job as a data modeler correctly, you will
meet the needs, and not only the wants, of your customer.

Easy Data Retrieval
Once you have data stored in a database, it is useful only if users can retrieve
it. A database serves no purpose if it has a ton of great information but it’s
hard to retrieve it. In addition to thinking about how you will store data, it’s
crucial to design a model that lends itself to getting the data back out.

One of the worst databases I have ever seen, I designed. (Because this
book is written by two authors, I’m forced to acknowledge that the author
speaking here is Eric Johnson.) I am not proud of it, but it was a great
learning experience. Years before I was properly introduced to the world
of relational database management systems, I started, as many people do,
by playing with Microsoft Access to build a database for a small Visual
Basic application I was writing. I was working as a trainer and just starting
to take Microsoft certification exams to become a Microsoft Certified
Systems Engineer (MCSE).

As part of my job as a trainer, I had to find a way to test the students
to make sure they were learning the material. The first few classes got a

10 Chapter 1 Data Modeling Overview

typical multiple-choice test. This test was delivered on paper and graded
by hand. This was time consuming, and it wasn’t much fun. Because I was
a budding technology geek, I wanted a better way.

Enter my Visual Basic testing application, complete with the Access
back end, which in my mind would look similar to the Microsoft tests I my-
self had recently been taking. All the questions would be either multiple-
choice or true-false. At this point, I hadn’t done much with Access—or any
database application for that matter—so I just started doing what seemed
to work. I had a table that held student records, which was straightforward,
and a table that held information about the exams. These two tables were
just about perfect; they had a purpose, and all the information they con-
tained pertained to the entity the table represented. These two tables were
also the only two tables in the database that were easy to navigate and re-
trieve data from.

That brings me to the Question table, which, as the name suggests, stored
the questions for the exams. This table also stored the possible answers the
students could choose. As you can see in Figure 1.5, this table had problems.

Why a Sound Data Model Is Important 11

FIGURE 1.5 An example of a poorly designed Question table for a testing
application

Let’s take a look at what makes this a bad design and how that affects
data retrieval. The first four columns are OK; they store information about
the question, such as the test where it appears and the question’s category.
The problems start to become obvious in the next five columns. Columns
a, b, c, and d store the text that is displayed to the user for the multiple-
choice options. The Answer column contains the correct letter or letters
that make up the correct answer. How do you determine the correct an-
swer for the question? It’s not too hard for a human to figure out, but com-
puters have a hard time comparing rows to columns.

The other problem with this table is that there are only four options;
you simply cannot have a question with five options unless you add a col-
umn to the table. When delivering the test, instead of getting a nice neat
result set, I had to write code to walk the columns for each row to get the
options for each question. Data retrieval ease was not one of this table’s
strong suits.

It gets even better (or worse, depending on how you look at it); take a
look at Figure 1.6. This is the table that held the students’ responses to
the questions. When you are finished rolling on the floor laughing, we will
continue.

This table is an example of one of the worst data modeling traps you
can fall into: using columns when you should be using rows. It is similar to
the problem we saw earlier in Figure 1.3. This table not only contains the
answer the student provided (in a string format)—I was literally storing the
letters they picked—but it also has a column for each question. You can’t
see it in the figure, but this table goes all the way up to a column called
Ques61. In fact, my application dynamically added columns if you were
creating a test with more questions than the database could support.

To be honest, I don’t remember how I made any use of this data. The
application is a bunch of spaghetti code that I can’t even follow anymore.
That’s enough self-deprecation for now, but I wanted to show you how a
bad model can make data retrieval very difficult.

12 Chapter 1 Data Modeling Overview

Performance Tuning
In my experience, when a database performs poorly it seldom stems from
transaction load or limited hardware resources; often, it’s because of poor
database design. Another hallmark of the IT industry is to throw money at
a problem in the hope that things will improve. Sure, if you go out and buy
the most expensive server known to humans and load it up with gigs upon
gigs of RAM—and as many processors as you can without setting the thing
on fire—you will get your database to perform better. But many design

Why a Sound Data Model Is Important 13

FIGURE 1.6 An example of a poorly designed response table for a testing
application

decisions are about trade-offs: do you really want to spend hundreds or
thousands of dollars for a 10 percent performance boost?

In the long run, a better solution can be to redesign a poorly designed
database. The horrible testing database we discussed probably wouldn’t
have scaled very well. The application had to do many tricks in order to
save and retrieve the data. This created far more work than would have
been required in a well-designed system. Don’t get me wrong—I am not
saying that all performance problems stem from bad design, but often bad
design causes problems that can’t be corrected without a redesign. If the
data model is sound from the get-go, you can focus your energy on actu-
ally tuning the database using indexes, statistics, or even access methods.
Again, just like a house, a database that has a solid foundation lets you re-
pair the problems that occur.

The Process of Data Modeling

This book is written as a step-by-step, process-oriented look at data mod-
eling. You will walk through a real-world project from start to finish. Your
journey will follow Mountain View Music, a fictitious small online music
retailer that is in the process of redesigning its current system. You will
start with a little theory and work toward the final implementation of the
new database on Microsoft SQL Server 2008.

The main topic of this book is not data modeling theory, but we give
you enough information on theory to start constructing a sound model. We
focus on the things you need to be aware of when designing a model for
SQL Server.

This book is divided into four parts; each one builds on the preceding
one as we walk you through our retailer scenario. In the first four chapters
we look at theory, such as logical and physical elements and normalization.
In Part II, we explain how to gather and interpret the requirements of the
company. Part III finds us actually building the logical model. Finally, in
Part IV, we build the physical model and implement it on SQL Server.

Throughout this book we focus on the fact that we are designing this
data model to ultimately be implemented on SQL Server. For that reason,
we point out the correct decisions to make based on the capabilities of
SQL Server that will help to produce an efficient model for that platform.
We go through all this in detail throughout the book, but let’s take a brief
look at each area and see what lies ahead.

14 Chapter 1 Data Modeling Overview

Modeling Theory
Everything begins with a theory, and in IT, the theory is the way things
would be done in a perfect world. Unfortunately, we do not live in a per-
fect world, and things must be adapted for them to be successful. That
said, you still have to understand the theory so that you can come as close
as possible. There is always a reason behind a theory, and understanding
these underlying reasons will make you a better data modeler.

Data modeling is not a new idea, and there are many resources on
database design theory and methodology; a few titles focus on nothing
more than the symbols you can use to draw diagrams. That being the case,
we do not focus on the methodology and theory; instead we discuss the
most important components of the theory and focus on putting these the-
ories into practice.

Logical Elements
When you start modeling, you begin with the logical modeling. The logi-
cal model is a representation of the data in a way that can be presented to
the business as well as serve as a road map for the physical implantation.
The main elements of a logical model are entities, attributes, and relation-
ships. Entities are logical groupings of data, such as all the information
that describes a customer. Attributes are the pieces of information that
make up entities. For a customer, the attributes might be things like name,
address, or phone number. Relationships describe how one entity is re-
lated to another. For example, the relationship “customers place orders”
describes the fact that customers “own” the orders they place. We dive
deeper into logical elements and explain how they are used in Chapter 2,
Elements Used in Logical Data Models.

Physical Elements
Once the logical model is constructed you create the physical model. Like
the logical model, the physical model is made up of various elements.
Tables are where everything is stored. Tables have columns, which contain
the information about the data in the table rows. SQL Server also provides
primary and foreign keys (defined in Chapter 2), which allow you to define
the relationship between two tables.

At first glance, tables, columns, and keys might seem to be the same
as the logical elements, but there are important differences. Logical

The Process of Data Modeling 15

elements simply describe the groupings of data as they might exist in the
real world; in contrast, physical elements actually store the data in a data-
base. A single entity might be stored in only one table or in multiple tables.
In fact, sometimes more than one entity wind up being stored in one table.
The various physical elements and the ways they are used are the topics of
Chapter 3, Physical Elements of Data Models.

Normalization
A well-designed data model has some level of normalization. In short, nor-
malization is the process of separating data into logical groupings.
Normalization is divided into levels, and each successive level builds on
the preceding level.

First normal form, notated as 1NF, is the most basic form of nor-
malization. In essence, in 1NF the data is stored in a table and each col-
umn contains one type of data. This means that any given column in the
table stores the same piece of information, such as a phone number.
Additionally, 1NF requires that your data have a primary key. A primary
key is the column or columns that uniquely identify the row. Normaliza-
tion can go up to six levels; however, most well-built models conform to
third normal form.

Generally, in this book we talk about topics in linear order; you must
do the current one before the next one. Normalization is the exception to
this rule, because there is not really a specific time during modeling when
you sit down and normalize the model, nor are you concerned with the
level your model conforms to. For the most part, normalization takes place
throughout your modeling. When you start defining entities that your
model will have, you will have already started normalizing your model.
Sound transactional models are normalized, and normalization helps with
many of the other areas we have discussed. Normalized data is easier to re-
trieve, is consistent, is scalable, and so on. You must understand this con-
cept in order to build models, and we cover it in detail in Chapter 4,
Normalizing a Data Model.

Business Requirements
In Part II, we focus on gathering business requirements. I have said it be-
fore and you can be sure I will say it again: You are building a database for
a reason, and that reason should be to solve a business problem. To that
end, you must be able to extract the requirements from the company and

16 Chapter 1 Data Modeling Overview

turn those requirements into a usable database. We attack this topic in two
phases: requirements gathering and requirements interpretation. In this
part, we talk through the requirements of Mountain View Music and de-
scribe how we went about extracting them.

Requirements Gathering
In Chapter 5, Requirements Gathering, we look at methods for gathering
requirements and explain which sort of information is important. The tech-
niques range from interviewing the end users to reverse-engineering an ex-
isting application or system. No matter what methods you use, the goal is
the same: to determine what the business needs. It may sound easy, but I
have yet to sit down with a customer and have him tell me exactly what he
needs. He can answer questions about the company’s processes and busi-
ness, but you must drill down to the core of the problem.

In fact, a lot of the time, your job is to act like a three-year-old, con-
tinually asking, “Why?” For example, the customer will tell you he wants a
button; you ask why, and he will tell you it’s to open a door. Why must you
open a door? The door must open in order to get product out of the ware-
house. Why does the product need to leave the warehouse? We have to get
the product into the hands of our customers. The bottom line is that he
wants a button in order to sell products to the customer. This is the basic
need of the business, and it’s this information that is important. If you meet
this need, the customer won’t really care whether you did it with a button
or a switch or a magic password.

Often, it’s easy to focus our attention on making customers happy at
the cost of giving them what they really need. We simply give the customer
exactly what she asks for; in her mind, widget Z is what she needs, but in
reality widget Z may work beautifully as designed but not solve the actual
business problem. The worst feeling ever is at the end of a project when
the customer says, “It’s exactly what we asked for, but it’s not what we
need.” In Chapter 5 we go over several options for requirements gathering
so that you can avoid the problem of not meeting your customers’ needs.

Requirements Interpretation
Once you have the first cut of the requirements, you start turning them
into a data model. In Chapter 6, Interpreting Requirements, we look at
how you take the requirements, which are in human language, and turn
them into a data model. We look not only at extracting the information re-
quired for the model, but also at extracting business rules.

The Process of Data Modeling 17

Business rules are policies enforced by a company for its various busi-
ness processes. For example, the company might require that each pur-
chase be approved by three people holding specific titles (purchasing
agent, manager of accounts payable, project manager). Business rules may
or may not be implemented in your model, but they need to be docu-
mented because eventually you need to implement them somewhere.
Whether you implement them as a relationship in the model, use a trigger
in SQL Server, or even implement them through an application, it is im-
portant to understand them early, because the model design will be driven
by the business rules that it needs to support. In Chapter 6 we also look at
the iterative process of working with stakeholders in the company. They
not only have to sign off on the initial model, but both you (as the designer)
and they (as the customer) will have changes that need to be made as the
process moves forward.

Next, we discuss the business review of the model. It’s crucial to get
your customers’ buy in and sign-off of the logical model. Once the cus-
tomer has approved the model, you can document releases and work to-
ward the agreed-upon system.

We cannot reiterate this point enough: You cannot skip this step. It will
save you days of pain down the line if the company needs to make changes
to the requirements. If you have agreed-upon release cycles, then you can
simply add new changes at the expense of the project’s time line or of other
requirements. Without this agreement, you will be engaged in discussions,
even arguments, about the changes, and either your customer or your
modeling team will end up dissatisfied with the outcome.

Building the Logical Model
In Part III, we get to the actual building of the model. By this time, you
will have a grasp of the requirements and it will be time to translate them
into the model. We will walk you through the thought process you go
through when building a model and translate the requirements from
Mountain View Music.

Creating the Logical Model
The first step in building the logical model is to sit down and create the
model from the requirements. This is the bulk of the work of building the
logical model. In Chapter 7, Creating the Logical Model, we look at how

18 Chapter 1 Data Modeling Overview

you determine which entities your model will need and how these entities
are related. In addition we look at the attributes you need and explain how
to determine which type of data the attributes will store. We also go over
the diagramming method used in building the model. There are many
techniques for creating the data diagram, but we stick to one method
throughout this project.

Common Modeling Problems
In Chapter 8, Common Data Modeling Problems, we look at several com-
mon traps that are easy to fall into when you build your model. There are
many ways to build a logical model, and no single method is always the cor-
rect one. However, there are many practices that are always wrong, and
you can avoid them. Many aspects of data modeling are counterintuitive,
and following your intuition can lead to some of these problems. We go
through these problems and talk about why people fall into these traps,
how you can avoid them, and the appropriate ways to work around them.
Additionally, we look at a few things, such as subtype and supertype mod-
eling, that aren’t necessarily problems but can be tricky.

Building the Physical Model
Once you have the logical model hammered out, you translate it into a
physical model, and we turn to that topic in Part IV. A physical model is
made up of the tables and other physical objects of your RDBMS. Much
of the work of creating your database has been completed during the log-
ical modeling, but that doesn’t mean you should take the physical model
lightly. Logical models are meant to map to logical, real-world entities,
whereas the physical model defines how the data will be stored in the data-
base. At this point the focus is on ways to store data in the database to meet
the business requirements for data retrieval. This is where an intimate
knowledge of the specific RDBMS system is invaluable.

Creating the Physical Model
The first step is to create the model. In Chapter 9 we look at how you de-
termine which tables and keys you need based on your logical model. In
some cases you will end up with more than one table to represent a single
logical entity, whereas in other cases you will roll up multiple entities onto
a single table.

The Process of Data Modeling 19

Additionally, you will probably end up with tables that contain data not
represented in your logical model. We call these supporting tables. They
are used to support the use of the database but do not necessarily store
data that the business cares about. Supporting tables might be lookup ta-
bles or tables to support application code, or they might support business
rules. For example, suppose that the business requires that all users belong
to a group, and their group membership determines the access they have
in an application. This security model can be stored in tables and refer-
enced by the application.

Except for these differences, building the physical model is similar to
building the logical model. You still need to determine the needed tables,
columns, primary keys, and foreign keys, and diagram them in a model.

SQL Server has other objects in addition to tables. Objects such as
views, stored procedures, user-defined functions, user-defined data types,
constraints, and triggers can also be used in your physical model. We look
at these objects in detail in Chapter 3, and we describe how to build a
physical model in Chapter 9, Creating the Physical Model with SQL
Server.

Indexing
The next big part of implementing your database on SQL Server is index-
ing: Indexes are structures that are placed on tables in a physical database
to help enhance performance by giving the database engine reference
points to find the data on disk. Deciding what types of indexes to use and
where to use them is a bit of a black art, but it is a critical part of your data-
base. Index requirements are largely driven by business rules and usage in-
formation. What data does the business need to retrieve quickly? Will a
given table typically be written to or read from? Answering these questions
goes a long way toward determining your indexes. We look at indexes and
explore considerations for implementing them in Chapter 10, Indexing
Considerations.

Creating an Abstraction Layer
Another important, and often overlooked, part of database design is the ab-
straction layer. An abstraction layer provides a level of access to the data-
base without giving users direct access to the tables. To create an
abstraction layer, you create views, stored procedures, and functions to ac-
cess the data in the underlying tables.

20 Chapter 1 Data Modeling Overview

Abstraction layers are created for several reasons. The first is security.
If you have a good abstraction layer, you can more easily control who has
access to specific types of information. Another reason for an abstraction
layer is to shield users and applications from database changes. If you re-
arrange tables, as long as you update the abstraction layer to point at the
new table structure, your users and applications will never be the wiser.
This means less broken code and easier migration of code when changes
need to be made. We talk in great detail about the benefits of an abstrac-
tion layer and explain how to build one in Chapter 11, Creating an
Abstraction Layer in SQL Server.

Summary

Data modeling is one of the most important tasks in the process of
database-oriented application design. It’s no trivial task to design a logical
model and then create and implement a physical model. However, using a
straightforward, standardized approach will help ensure that the resulting
models are understandable, scalable, and accurate. Without a sound data
model that is rooted in practical business requirements, the implementa-
tion of a relational database can be clumsy, inefficient, and extremely dif-
ficult to maintain. This book provides you with the background, processes,
and guidance to effectively design and implement relational databases
using Microsoft SQL Server 2008.

Summary 21

This page intentionally left blank

C H A P T E R 2

ELEMENTS USED IN LOGICAL
DATA MODELS

Imagine, for a moment, that you’ve been asked to build a house. One of
the first questions you’d ask yourself is, “Do I have all the tools and mate-
rials I need?” To answer this question, you need a plan for building the
house. The plan, a construction blueprint, will provide the information on
the required tools and materials. So step 1 is to design a blueprint. If
you’ve never done this before, you’ll probably need to do some research to
make sure you understand the overall process of designing the blueprint.

Like a blueprint, the logical database model you build will be the
source for all the development of the physical database. Additionally, the
logical model provides the high-level view of the database that can be pre-
sented to the key project stakeholders. For these reasons, the logical model
is generally devoid of RDBMS specifics; instead it contains the key infor-
mation that defines how the model, and eventually the database, will meet
business requirements. But before you can begin to construct a logical
model, it’s important to understand all the tools that you will need.

In this chapter, we cover the objects and concepts related to the cre-
ation of a logical data model; you’ll use these objects in Chapter 7 to start
building the data model for Mountain View Music. For now, let’s talk about
entities and attributes and see how relationships are built between them.

Entities

Entities represent logical groupings of data and are the central concept
that defines how data will be stored in the database. Common examples of
entities are customers, orders, and products. Each entity, which should
represent a single type of information, contains a collection of occurrences,
or instances, of the entity. An instance of an entity is very similar to a

23

record in a table; you often see the terms instance, record, and row used
interchangeably in data modeling. For our purposes, an instance occurs in
an entity, and a row or record occurs in a physical table or view.

It is often tempting to think of entities as tables (there is often a one-
to-one relationship between entities and tables), but it’s important to re-
member that a logical entity may be represented by multiple physical
tables or a single table may represent multiple entities. The purpose of an
entity is to identify the various pieces of data whose attributes will be
stored in the database.

One way to identify what qualifies as an entity is to think of entities as
nouns. Entities tend to be objects that can be referenced as a noun; orders,
cars, trumpets, and telephones are all real-world objects, and therefore
they could be entities in a logical model. It’s crucial to accurately identify
the entities in your model, and it’s a large part of the early design effort.

When choosing entities, you should first concern yourself primarily
with the purpose of the entity and worry later about the attributes and
other details (we talk about attributes in the next section). As part of the
requirements gathering process (detailed in Chapter 5), interviews with
users and other key stakeholders will reveal the common nouns used
throughout the business, and therefore the key entities. Once you begin
designing the model, you will use your notes to identify the entities you will
need. You must take care to filter your notes and use only the information
that is relevant to the current project.

Attributes

For each entity, there are specific pieces of information that describe it.
These are the attributes of that entity. For example, suppose you need to
create an entity to store all the pertinent information about hats. You name
the entity Hats, and then you decide what information, or attributes, you
need to store about hats: color, manufacturer, style, material, and the like.
When you construct a model, you define a collection of attributes that
stores the data for each entity. The definition of an attribute is made up of
its name, description, purpose, and data type (which we talk about in the
next section).

Be wary of attaching attributes to one entity that actually belong to an-
other entity. One common mistake is to convert data from physical docu-
mentation (such as printed spreadsheets or manuals) into entities and

24 Chapter 2 Elements Used in Logical Data Models

attributes in a logical model. For example, it is common for customer in-
formation to be physically stored with order information. This practice
could lead to the belief that customer data, such as address or phone num-
ber, is an attribute of an order. However, customer is an entity in and of it-
self, as is an order. Storing the customer attributes with the order entity
would complicate storage and data retrieval and possibly lead to a design
that is difficult to scale.

To model the attributes of your entities, you need to understand a few
key concepts: data types, keys, domains, and values. In the next few sec-
tions we talk about these concepts in detail.

Data Types
In addition to the descriptive information, the definition of an attribute
contains its data type. The data type, as the name implies, defines the type
of information that is being stored in the attribute. For example, an attri-
bute might be a string, a number, or a representation of a true or false
condition.

In logical models, the specification of data types for attributes is not
strictly required. Because a data type is a specification of the physical stor-
age of data, sometimes you decide which data types to use when you cre-
ate the physical model. However, there are benefits to specifying the data
type during the logical modeling phase.

■ Developers will have a guide to follow when building the physical
model without having to research requirements (something that
would be a duplication of effort).

■ You will discover inconsistencies across multiple entities that con-
tain the same type of data (e.g., phone numbers) before you create
the physical model.

■ To help facilitate the creation of the physical database, you can spec-
ify types that are specific to your RDBMS. You do this only when
the target RDBMS is known before the data modeling process has
begun.

Most available data modeling software allows you to select from the
available data types of your RDBMS. Because we are working with
Microsoft SQL Server, we reference its known data types. Now let’s take a
look at the various data types used in logical data modeling.

Attributes 25

Alphanumeric
All data models contain alphanumeric data: any data in a string format,
whether it is alphabetic characters or numbers (as long as they do not par-
ticipate in mathematic operations). For example, names, addresses, and
phone numbers are all string, or alphanumeric, types of data. The actual
data types used for alphanumeric information are char, nchar, varchar, and
nvarchar. As you can probably tell from the names, all these char data
types store character data, such as letters, numbers, and special symbols.

For all these data types, you specify a length. Generally, the length is
the total number of characters that the specified attribute can contain. If
you are creating an attribute to contain abbreviations of U.S. state names,
for example, you might choose to specify that the attribute is a char(2).
This defines the attribute as an alphanumeric field that contains exactly
two characters; char data types store exactly as many characters as they are
defined to hold, no more and no less, no matter how much data is inserted.

You probably noticed that there are four kinds of char data types: two
with a prefix of var, and two with an n prefix (one of which contains both
prefixes). The var prefix means that a variable-length field is being speci-
fied. A variable-length field is defined as a field having no more than the
number of characters specified in the length designation. To contrast char
with varchar, specifying char(10) results in a field that contains ten charac-
ters, even if a specific instance of an entity has six characters in that spe-
cific attribute. The remaining four characters are padded. If the attribute
is defined as a varchar(10), then there will be only six actual characters
stored.

The n prefix specifies that the data is being stored in a Unicode format.
Unicode is an international, platform-agnostic specification for the storage
of character data. Using Unicode allows systems that work with characters
from multiple languages to have a common storage format that can be read
by any other system using the Unicode specification. If you need to store
anything beyond basic ASCII text, you will need to have a Unicode data type.

The primary difference between Unicode and non-Unicode systems is
that Unicode requires two bytes of physical storage for every character
stored; non-Unicode systems generally use only one byte (sometimes more
than one byte is needed when you start storing variable-length data). The
problem with using only one byte for character storage is that one byte
cannot adequately store certain character data, such as Japanese Kanji or
Korean Hangul characters. Obviously, there are storage and performance
trade-offs involved here, and they are covered in more depth in Chapter 3.

26 Chapter 2 Elements Used in Logical Data Models

For now, keep in mind that Unicode may be required based on the char-
acter data you are storing.

Numeric
Numeric data is any data that needs to be stored as numerals. You can per-
form calculations on all the numeric data types. The general types of nu-
meric data are integer, decimal, money, float, and real.

Integer data is stored as any whole number. It can store positive and
negative numbers and generally comes in different sizes to accommodate
the values needed. Decimals are numbers stored to the scale and preci-
sion specified. Scale in this case refers to the total number of numerals
that are stored in the field, and precision refers to the number of those
numerals stored to the right of the decimal point. Money is for the stor-
age of currency and is accurate to different degrees based on the RDBMS
being used. Float is an approximate number data type for use with floating-
point data values. This is generally stored in scientific notation, and a des-
ignator can be specified with this data type that describes the number of
bits that are used to store the number. Real is nearly identical to float;
however, float can hold larger values.

As with the alphanumeric data types, the specific information regard-
ing the physical storage of these data types is covered in Chapter 3.

Boolean
Boolean data types are data types that evaluate to TRUE, FALSE, or
NULL. This is a logic-based data type; although the data being stored may
be Boolean, the actual data type is bit. A bit data type stores a 1 or a 0 or
NULL. This translates to true, false, and nothing, respectively. Boolean
data types are used for logic-based evaluation of data and are often used as
switches or flags, such as a designator to describe whether a vehicle is in
or out of service.

BLOB and CLOB
Not all data stored in a database is in a human-readable format. For ex-
ample, a database that houses product information for an online retailer
not only holds the descriptive data about each product but may also store
pictures of those products. The binary data that makes up the information
about the image is not something that can be read as character data, but it

Attributes 27

can be stored in a database for retrieval by an application. This kind of data
is generally called binary large object (BLOB) data.

This information is usually stored in SQL Server in one of the follow-
ing data types: binary, varbinary, and image. As with the character data
types, the existence of the var prefix denotes that the given attribute has
variable-length values in the field. Therefore, binary defines a fixed-width
attribute containing binary data, and varbinary specifies the maximum
width of an attribute containing the binary data. The image data type sim-
ply specifies that the attribute contains variable-length binary data, similar
to varbinary but with much greater storage potential.

Character data can also come in forms much longer than the standard
alphanumeric data types described earlier. What if you need to store free-
form text in a single field, such as raw resume information? Two charac-
ter large object (CLOB) data types handle this information: text and
ntext. These two data types are designed to handle large amounts of char-
acter data in a single field. Again, as with the other character data types,
the n prefix indicates whether or not the data is being stored in the
Unicode format. Choose these data types when you will have very large
amounts of alphanumeric text stored as a single attribute in an entity.

Dates and Times
Nearly every data model in existence requires that some entities have at-
tributes that are related to dates and times. Date and time data can be used
to track the time a change was made to an order, the hire date for employ-
ees, or even the delivery time for products. Every RDBMS has its own im-
plementations of date and time data types that store this data. For SQL
Server 2008, there are now six data types for this purpose. This is an im-
provement over previous versions of SQL Server, which only had two data
types: datetime and smalldatetime. Each data type stores date-oriented in-
formation; the difference is in the precision of the data and in the range of
valid values.

First, let’s look at the old standards. Datetime stores date and time
data with 1 millisecond accuracy. For example, suppose you are inserting a
record into a table that has a datetime column and the value inserted is

12/01/2006 6:00PM

28 Chapter 2 Elements Used in Logical Data Models

The actual value that ends up in the database will be

12/01/2006 18:00:00.000

In contrast, smalldatetime would store the same value as

12/01/2006 18:00

Additionally, datetime stores any date between January 1, 1753, and
December 31, 9999, whereas smalldatetime stores only values ranging
from January 1, 1900, to June 6, 2079. It may seem strange that these date
ranges where chosen; the reason lies in the storage requirements at the
disk level and the way the actual data is manipulated internally in SQL
Server.

As we mentioned, SQL Server 2008 provides four new date and time
data types: date, time, datetime2, and datetimeoffset. These new data types
store date and time data in more flexible ways than their predecessors. The
date and time data types are the most straightforward; they store only the
date portion or only the time portion of a given value. The datetime2 data
type, which is not cleverly named, is just like datetime except that you can
specify a variable length for the precision of fractional seconds from 0 to 7.
The datetimeoffset data type is similar to datetime except that in addition
to the date and time, you specify an offset value. Your offset is not tied to any
particular time zone, such as Greenwich Mean; instead you have to know the
time zone you are using as the base from which to compare your values.

We have covered a lot of ground here, and again we refer you to
Chapter 3 for a longer discussion of the reasons these data types store data
the way they do.

It can be tempting, when you’re designing a logical model, to quickly
gloss over the chosen data types for each attribute. This practice can cause
a number of design problems later in development. For one thing, most
data modeling software can generate a physical design based on the logical
model, so choosing inappropriate data types in the logical model can lead
to confusion in the physical design, particularly when multiple developers
are involved. Be sure to refer frequently to the business requirements to
ensure that you are defining attributes based on the data that will be
stored. This practice will also help when you’re discussing the model with
nontechnical stakeholders.

Attributes 29

Primary and Foreign Keys
A primary key (PK) is an attribute or group of attributes that uniquely
identifies each instance in an entity. The PK must always contain data; it
cannot be null. Two examples of PKs are employee numbers and ISBNs.
These numbers identify a single employee or a single book, respectively.
When you’re modeling, nearly every entity in your logical model should
have a PK, even if you have to make one up using an arbitrary number.

If the data has no natural PK, it is often necessary to add a column for
the sole purpose of acting as a PK. These kinds of PKs are called surro-
gate keys. Usually, this practice leans toward the physical implementation
of a database instead of the logical model, but modeling a surrogate key
will help you build relationships based on PKs. Such keys are often built
on numbers that simply increase with each new record; in SQL Server
these numbers are called identities.

Another modeling rule is to avoid using meaningful attributes for PKs.
For example, social security numbers (SSNs) tend to be chosen as PKs for
entities such as Employee. This is a bad choice for a number of reasons.
First, SSNs are a poor choice because of privacy concerns. Many identity
thefts occur because the thief had access to the victim’s SSN. Second, al-
though it is assumed that SSNs are unique, occasionally SSNs are reissued,
so they are not always guaranteed to be unique.

Third, you may be dealing with international employees who have no
SSN. It can be tempting to create a fake SSN in this case; but what if an
international employee becomes a citizen and obtains a real SSN? If this
happens, records in dependent entities could be tied to either the real SSN
or the fake SSN. This not only complicates data retrieval but also could
leave you with orphaned records.

In general, PKs should

■ Be highly unlikely ever to change
■ Be composed of attributes that will never be null
■ Use meaningless data whenever possible

A close cousin to the PK is the foreign key (FK). FKs are attributes
in a given entity that are actually based on a key, usually the PK, of another
entity. Consider, for example, the Employee entity and a new entity called
Vehicle. To know which vehicle the employee has been assigned, you must
relate these two entities. In this case an FK exists on the Vehicle entity that
points to the PK on the Employee entity. Simply put, an attribute in the

30 Chapter 2 Elements Used in Logical Data Models

Vehicle table contains the Employee Number of the employee who has been
assigned any given Vehicle. The actual attributes in the referencing entity
can be either a key or a non-key attribute. That is, the FK in the referencing
entity could be composed of the same attributes as its PK, or they could be
a completely different set of attributes. This combination of PKs and FKs
helps ensure consistency in the logical relationships between entities.

Domains
As you begin building a model, you’ll likely notice that, within the context
of the data you are working with, several entities share similar attributes.
Often, application- or business-specific pieces of data must remain identi-
cal in all entities to ensure consistency. Status, Address, Phone Number,
and Email are all examples of attributes that are likely to be identical in
multiple entities. Rather than painstakingly create and maintain these at-
tributes in each individual entity, you can use domains.

A domain is a definition of an attribute that is maintained as part of
the logical model but outside a given entity. Whenever an attribute that is
part of a domain is used, that domain is added to the entity. Generally, a
data model does not provide a visual indication that a given attribute is ac-
tually part of a domain. Most data modeling tools provide a separate sec-
tion or document, such as a data dictionary, to store domain information.
Whenever there are changes to that domain, the related attributes in all
entities are updated, as is the documentation that stores the domain
information.

For example, consider the Phone Number attribute. Often, logical
models are designed with localized phone numbers in mind; in the United
States, this is generally notated with a three-digit area code, followed by a
three-digit prefix, followed by a four-digit suffix (XXX-XXX-XXXX). If later
in the design you decide to store international numbers as well, and if a
phone number attribute has been added to multiple entities, it may be nec-
essary to edit every entity to update the attribute. But if instead you create
a Phone Number domain and add it to every entity that stores phone num-
bers, then updating the Phone Number domain to the new international
format will update every entity in the model.

Thus, to reduce the chance that identical attributes will vary from en-
tity to entity in a logical design, it’s a good idea to use domains whenever
possible. This practice will help enforce consistency and save design time,
not only during the initial rollout but also throughout the lifetime of the
database.

Attributes 31

Single-Valued and Multivalued Attributes
All the attributes we’ve talked about thus far represent single-valued at-
tributes. That is, for each unique occurrence of an item in an entity, there
is only one value for each of the attributes. However, some attributes nat-
urally have more than one potential value—for example, of the entity.
These are known as multivalued attributes. Identifying them can be
tricky, but handling them is fairly simple.

One common example of a potentially multivalued attribute is Phone
Number. For example, when you’re storing customer information, it’s typ-
ical to store at least one phone number; however, customers often have
multiple phone numbers. Generally, you simply add multiple phone num-
ber fields to the Customer entity, labeling them based either on arbitrary
numbering (Phone1, Phone2, etc.), or on common usage (Home, Mobile,
Office). This is a fine solution, but what do you do if you need to store mul-
tiple office numbers for a single customer? This is a multivalued attribute:
for one customer, you have multiple values for exactly the same attribute.

You don’t want to store multiple records for a single customer merely
to account for a different phone number; that defeats the purpose of using
a relational database, because it introduces problems with data retrieval.
Instead, you can create a new entity that holds phone numbers, with a
relationship to the Customer entity (based on the primary key of the
Customer), that allows you to identify all phone numbers for a single cus-
tomer. The resultant entity might have multiple entries for each customer,
but it stores only a unique identifier—CustomerID—and of course the
phone number.

Using this kind of entity is the only way to resolve a true multivalued at-
tribute problem. In the end, the physical implementation will benefit from
this model, because it can take advantage of DBMS-specific search tech-
niques to search the dependent entity separately from the primary entity.

Referential Integrity

One core aspect of a relational database is that data in one entity can ref-
erence data in another entity. When this scenario occurs, there is almost al-
ways a requirement that the relationship be maintained; the data must be
consistent between the relevant entities. This concept, referred to as ref-
erential integrity (RI), is usually enforced in the physical implementa-

32 Chapter 2 Elements Used in Logical Data Models

tion using database objects such as constraints and keys. However, RI is
documented in the logical model to ensure that business rules (as well as
general data consistency) are followed within the database.

Suppose you are designing a database that stores information about the
inventory of a library. In the logical model, you might have an Author en-
tity, a Publisher entity, and a Title entity, among many others. Any given
author may have more than one title in the inventory; in contrast, a title
probably has been published by only one publisher, although one publisher
may have published many titles. If users need to remove an author, simply
deleting that author would leave at least one title orphaned. Similarly,
deleting a publisher would leave at least one title orphaned.

Thus, you need to create definitions of the actions that are enforced
when these updates occur. Referential integrity provides these definitions.
With RI in place, you can specify that when an author is deleted, all related
titles are also deleted. You could also specify that the addition of a title fails
when there is no corresponding author. These might not be the most real-
istic examples, but they clearly illustrate the need to handle the interrela-
tion between data in multiple entities.

You document referential integrity in the logical model via PK and FK
relationships. Because each entity should have a key attribute that
uniquely identifies each record the entity contains, you can relate key at-
tributes in parent and child entities based on those keys. For example, take
a look at Figure 2.1.

Referential Integrity 33

FIGURE 2.1 Primary key and foreign key

This example shows a basic relationship between two entities. After
creating the relationship, you specify in its definition any constraints on
data manipulation actions on the parent and child entities. For example,
you can specify that any INSERT into the child entity should fail if there
isn’t already a parent instance with a matching primary key value. Similarly,
you could specify that any DELETE statement against the parent entity

fails unless all matching child entries are removed first. Table 2.1 describes
the various options that can be set when an action takes place on a parent
or child entity.

Table 2.1 Referential Integrity Options for a Relationship

Entity Action Available Actions

Parent entity INSERT None: Inserting a new instance has no effect on the child entity.

UPDATE None: This does not affect any records in the child entity, nor does it
prevent updates that result in mismatched data between the parent and
child entities.

Restrict: Checks data in the primary key value of the parent entity
against the foreign key value of the child entity. If the value does not
match, prevents the update from taking place.

Cascade: Duplicates changes in the primary key value of the parent
entity to the foreign key value in the child entity.

Null (Set Null): Similar to Restrict; if the value does not match, sets
the child foreign key value to NULL and permits the update.

DELETE None: This does not affect any records in the child entity; it may result
in orphaned instances in the child entity.

Restrict: Checks data in the primary key value of the parent entity
against the foreign key value of the child entity. If the value does not
match, prevents the delete from taking place.

Cascade: Deletes all matching entries from the child entity (in addition
to the instance in the parent entity) based on the match of primary key
value and foreign key value between the entities.

Null (Set Null): Similar to Restrict; if the value does not match, sets
the child foreign key value to NULL (or a specified default value) and
permits the delete. This creates orphaned instances in the child entity.

Child entity INSERT None: Takes no action; enforces no restrictions.

Restrict: Checks data in the primary key value of the parent entity
against the foreign key value being inserted into the child entity. If the
value does not have a match, prevents the insert from taking place.

UPDATE None: Takes no action; enforces no restrictions.

Restrict: Checks data in the primary key value of the parent entity
against the foreign key value being updated in the child entity. If the
value does not have a match, prevents the update from taking place.

DELETE None: Allows any record to be deleted from the child entity.

34 Chapter 2 Elements Used in Logical Data Models

Relationships

The term relational database implies the use of relationships, right? If you
don’t know how data is related, using a relational database to simply store
information is no different from dumping all your receipts, paycheck stubs,
and financial statements into a large trash bag for storage. Tax season
would be a nightmare; sure, all the data is there, but how long would it take
you to sort out the relevant information and file your taxes?

The real power of a relational database lies in the efficient and flexible
storage and retrieval of data. Identifying and implementing the correct re-
lationships in a logical model are two of the most critical design steps. To
correctly identify relationships, it’s important to understand all the possi-
bilities, know how to recognize each one, and determine when each should
be used.

Relationship Types
Logically, there are three distinct types of relationships between entities:
one-to-one, one-to-many, and many-to-many. Each represents the way two
entities logically relate to each other. It is important to remember that
these relationships are logical; physical implementation is another step, as
discussed later in Chapter 9.

One-to-One Relationships
Simply put, a one-to-one relationship between two entities is, as the name
implies, a direct match between the entities. For each record in the first
entity, there is one matching record in the second entity, no more and no
less. For example, think of two people playing catch with a ball. There is
one thrower and one receiver. There cannot be more than one thrower,
and there cannot be more than one catcher (in terms of someone actually
catching the ball).

Why would you choose to create a one-to-one relationship? Moreover,
if there is only one matching record in each entity for a given piece of data,
why wouldn’t you combine the entities? Let’s take a look at Figure 2.2.

For any given school, there is only one dean, and for any given dean,
there is one school. In the example, all of the attributes of a Dean entity

Relationships 35

are stored in the Schools entity. Although this approach consolidates all in-
formation in a single entity, it is not the most flexible solution. Whenever
either a school or a dean is updated, the record must be retrieved and up-
dated. Additionally, having a school with no dean (or a dean with no school)
creates a half-empty record. Finally, it creates data retrieval problems.
What if you want to write a report to return information about deans? You
would have to retrieve school data as well. What if you want to track all the
employees who work for the dean? In this case, you would have to relate
the employees to the combined Deans/Schools entity instead of only to
deans. Now consider Figure 2.3.

36 Chapter 2 Elements Used in Logical Data Models

FIGURE 2.2 The Schools entity

FIGURE 2.3 The Schools and Deans entities

In this example, there are two entities: Schools and Deans. Each entity
has the attributes that are specific to those objects. Additionally, there is a
reference in the Deans entity that notes which school the selected dean
manages, and there is a reference in the Schools entity that notes the dean
for the selected school. This design helps with flexibility, because Deans
and Schools are managed separately. However, you can see that there is a
one-to-one relationship, and you can constrain the data appropriately to
avoid inconsistent or erroneous data.

One-to-Many Relationships
In one-to-many relationships, the most common type, a single record in
the first entity has zero or more matching records in the second entity.
There are numerous examples of this type of relationship, most notably in
the header-to-detail scenario. Often, for example, orders are stored with a
header record in one entity and a set of detail records in a second entity.
This arrangement allows one order to have many line items without stor-
ing multiple records containing the high-level information for that order
(such as order date, customer, etc.).

To continue our Schools and Deans scenario, what if a university de-
cides to implement a policy whereby each school has more than one dean?
This instantly creates a one-to-many relationship between Schools and
Deans, as shown in Figure 2.4.

Relationships 37

FIGURE 2.4 Schools and Deans entities, a one-to-many relationship

You can see that there is a relationship between the entities such that
you might have more than one dean for each school. This relationship is in-
herently scalable, because the separate entities can be updated and man-
aged independently.

Many-to-Many Relationships
Of the logical relationships, many-to-many relationships, also called non-
specific relationships, are the most difficult concept, and possibly the most
difficult to design. To simplify, in a many-to-many relationship the objects
in an entity can be related to more than one object in a secondary entity,
and the secondary objects can be related to more than one object in the
initial entity. Imagine auto parts, specifically something simple like seats.
Any given vehicle probably has more than one type of seat, perhaps two
bucket seats for the front passenger and driver and a single bench seat in
the rear. However, automakers almost always reuse seats in multiple mod-
els of vehicles. So, as entities, Seats can be in multiple Vehicles, and
Vehicles can have multiple Seats.

Back to our university. What if the decision is made that a single dean
can manage multiple schools or even that one school can have more than
one dean? In Figure 2.5, we’ve arranged the Schools and Deans entities so
that either entity can have multiple links to the other entity.

38 Chapter 2 Elements Used in Logical Data Models

FIGURE 2.5 The Schools and Deans entities, many-to-many relationship

From a conceptual standpoint, all relationships exist between exactly
two entities. Logically, we have a relationship between Schools and Deans.
Technically, you could leave the notation with these two entities showing
that there are two one-to-many relationships, one in each direction.
Alternatively, you can show a single relationship that shows a “many” at
both ends. However, from a practical standpoint, it may be easier to use a
third entity to show the relationship, as shown in Figure 2.6.

Relationships 39

FIGURE 2.6 The Schools and Deans entities, many-to-many relationship with
third entity

Arguably, this is a violation of the ideal that a logical model contain no
elements of physical implementation. The use of a third entity, whereby we
associate Deans and Schools by ID, duplicates the physical implementa-
tion method for many-to-many relationships. Physically, it is impossible to
model this relationship without using a third table, sometimes called a
junction or join table. So using it in the model may not conform to strict
logical modeling guidelines; however, adding it in the logical model can
help remind you why the relationship is there, as well as aid future model-
ers in understanding the relationship in the logical model.

Additionally, using the third entity can let you use additional attributes
that actually describe each instance of the relationship. For example, you
can use the Deans_Schools entity to note how long a specific dean has
been in charge of a given school. If you have multiple combinations, the

length of tenure for a dean at a given school may vary, so this attribute
could be very useful.

Many-to-many relationships are widely used, but you should approach
them with caution and carefully document them to ensure that there is no
confusion as you move forward with the physical implementation.

Relationship Options
Now that you know about the various types of relationships, we need to
cover some options that can vary from relationship to relationship within
each type. These options will help you further refine the behavior of each
relationship.

Identifying versus Non-Identifying Relationships
When the primary key of a child entity requires that the primary key of its
parent entity be included, then the relationship between the entities is said
to be identifying. This is because the child entity’s unique attribute relies
on the parent entity’s unique attribute to correctly identify the correspon-
ding instance. If this requirement is not in place, the relationship is defined
as non-identifying.

In an identifying relationship, the primary key from the parent entity
is literally one of the attributes in the child entity’s primary key. Therefore,
the foreign key in the child entity is actually also a part of, or the entirety
of, its primary key. In a non-identifying relationship, the primary key from
the parent entity is simply a non-key attribute in the child entity.

Few relationships are identifying relationships, because most child en-
tities can be referenced independently of the parent entity. Many-to-many
relationships often use identifying relationships, because the additional en-
tity ties together the primary key values of the parent and child entities. For
example, as shown earlier in Figure 2.6, the Deans_Schools entity shows
SchoolsObjectID and DeansObjectID as the attributes in its primary key.

Note that this is always the case with many-to-many relationships; the
join table’s primary key is made up of the other tables’ primary keys.
Because the primary key attributes from the parent and child primary keys
are present, you can tell visually that these are identifying relationships.

Non-identifying relationships, being far more prevalent, can be recog-
nized when the primary key attribute of the parent entity is a non-key at-
tribute in the child entity. Unless you have a specific requirement for an
identifying relationship, most of your relationships will be non-identifying.

40 Chapter 2 Elements Used in Logical Data Models

Optional versus Mandatory Relationships
Every relationship in a database needs to be defined as either optional or
mandatory. It helps to think of mandatory relationships as “must have” re-
lationships, and optional relationships as “may have” relationships. For ex-
ample, if you have an Employee entity and an Office entity, an employee
“must have” a home office. The relationship between these two entities
defines the home office for an employee. In this case, we have a non-
identifying relationship, and because we can’t have a null value for the
foreign key reference to the Office entity in the Employee entity, this re-
lationship is also described as being mandatory. The relationship defines that
every employee has a single home office, and although an employee may
work in other offices, only one office is considered his or her home office.

Now consider a business that assigns vehicles to some employees. That
business practice is reflected in the data model as an Employee entity and
a Vehicle entity, with a relationship between them. You can see that an
employee “may have” a vehicle, thus fitting our definition of an optional
relationship.

Cardinality
In every relationship we’ve discussed, we’ve specified only the general type
of relationship—one-to-one, one-to-many, and many-to-many. In each
case, the description of the relationship is a specification of the number of
records in a parent entity in relation to the number of records in a child en-
tity. To more clearly model the actual relation of the data, you can be more
specific when defining these relationships. What you are specifying is the
cardinality of the relationship.

With a one-to-one relationship, the cardinality is implied. You are
clearly stating that for every one record in the parent entity, there might be
one record in the child entity. It would be more specific to say that there
is “zero or one record in the child entity for every one record in the parent
entity.” But if you mean to say that there absolutely must be a record in
each entity, then the relationship’s cardinality would be “one record in the
child entity for every one record in the parent entity.” The cardinality of a
one-to-one relationship is notated as [1:1].

In a one-to-many relationship, notated as [1:M], the cardinality im-
plied is “one or more records in the child entity for every one record in the
parent entity.” But if the intent is that there doesn’t need to be a record in
the child entity, then the alternative definition is “zero or more records in

Relationships 41

the child entity for every one record in the parent entity.” In most rela-
tionships, the “zero or more to many” interpretation is correct, so be sure
to specify and document the alternative definition if it’s used in your
model.

A many-to-many relationship could be defined as “zero or more to zero
or more records.” In this case, the “zero or more to zero or more records”
cardinality is almost always implied, although you could specify that there
must be at least one record in each entity. In this case, show a many-to-
many as [M:M].

In some data modeling software, you can specify that there be an ex-
plicit cardinality, such as “eight records in the child entity for every one
record in the parent entity.” For example, you may want to model man-
agers to direct reports (business lingo for “people who report directly to
that manager”). The company may state that to be a manager you must
have at least four and no more than twenty direct reports. In this example,
the cardinality would be “at least four and no more than twenty to one.” Be
sure to document this type of cardinality if your business requirements dic-
tate it, because most people will assume the cardinality based on the defi-
nitions given here.

Using Subtypes and Supertypes

When you are determining the entities to be used in a data model, occa-
sionally you may discover a single entity that seems to consist of a number
of other complete entities. When this happens, it can be confusing when
you try to determine which attributes belong to which entities and how to
relate them. The answer to this dilemma is to use a supertype.

Supertypes and Subtypes Defined
A supertype is an entity that has multiple child entities, known as sub-
types, which describe variations of the same type of entity. A collection of
a supertype with its subtypes is sometimes referred to as a subtype clus-
ter. These most commonly occur when you’re dealing with categories of
specific things, as shown in the simple example in Figure 2.7.

Assume that we’re tracking information about broadband products. In
this example, BroadBand is an entity, with appropriate attributes and a pri-
mary key. However, we want to divide the types of broadband into their

42 Chapter 2 Elements Used in Logical Data Models

own entities, because we offer cable broadband to residential and com-
mercial customers, and we offer DSL only to residential customers. Both
cable and DSL could be stand-alone entities, but we wouldn’t be seeing
the entire relationship. There are attributes in the BroadBand entity that
we don’t track in each of the child entities, and attributes in the child en-
tities that we don’t track in the BroadBand entity. And we need to leave the
design open to add more broadband types in the future without having to
alter existing records.

To solve this problem, we designate BroadBand as a supertype, and the
Cable and DSL entities as subtypes. To do this, first we create the child en-
tities with their specific attributes, without a primary key. Then we create
a required identifying relationship between the parent entity and each
child entity; this relationship designates that the primary key from
BroadBand be the primary key for each child. Finally, we choose a dis-
criminator, which is an attribute in the parent entity whose value deter-
mines which subtype a given record belongs to; the discriminator can be a
key or non-key attribute. In this case, our discriminator is Type, which con-
tains a string value of either “DSL” or “Cable.”

If a subtype cluster contains all possible subtypes for the supertype for
which they are defined, the subtype cluster is said to be complete.
Alternatively, if it includes only some of the possible subtypes, the cluster
is incomplete. The designation is mostly a documentation concern, but as

Using Subtypes and Supertypes 43

FIGURE 2.7 Simple subtype cluster

with most design considerations, documenting the specifics can be helpful
in the future for other developers working from this model.

Generally, physical implementation of a subtype cluster must be de-
termined on a case-by-case basis. Subtype clusters can be implemented in
a one-to-one relationship of entities to tables, or some combination of ta-
bles and relationships. The most important aspects to remember are the
propagation of the primary key among all the entities, as well as constraints
on the discriminator to ensure that all the records end up in the correct
tables.

When to Use Subtype Clusters
Inevitably, every data model contains entities that contain attributes that
hold information about a small subset of the records in the entity.
Whenever you find this happening in a data model, investigate further to
see whether these attributes would be good candidates for a subtype clus-
ter. However, be careful not to try to force a supertype/subtype relation-
ship; doing so leads to a confusing data model that has more entities than
necessary. Additionally, the existence of superfluous subtype clusters can
lead to confusion in the physical implementation, often resulting in un-
necessary tables and constraints. This could ultimately lead to poor per-
formance and the inability to maintain the database efficiently.

Subtype clusters can be a very powerful tool to build flexibility into a
data model. Because modeling data in this type of generalized hierarchy
can allow future modifications without the need to change existing entities,
searching for logical relationships where you can use subtype clusters
should be considered time well spent.

Summary

In this chapter, we’ve covered the tools used to build a logical data model.
Every data model consists of the objects necessary to describe the data
being stored, definitions of how individual pieces of data are related to one
another, and any constraints that exist on that data.

Now that we’ve covered the building blocks of the logical data model,
Chapter 3 will help you bridge the gap between the logical objects and the
physical implementation. Later you will use this theory to build a data
model for the Mountain View Music company.

44 Chapter 2 Elements Used in Logical Data Models

C H A P T E R 3

PHYSICAL ELEMENTS
OF DATA MODELS

Now that you have a grasp of the logical elements used to construct a data
model, let’s look at the physical elements. These are the objects that you
use to build the database. Most of the objects you build into your physical
model are based on objects you created in the logical model. Many physi-
cal elements are the same no matter which RDBMS you are using, but we
look at all the elements available in SQL Server 2008. It is important to
know SQL Server’s capabilities so that you can build your model with them
in mind.

In this chapter, we cover all the physical SQL Server objects in detail
and walk you through how to use each type of object in your physical
model. You will use these elements later in Chapter 9.

Physical Storage

First, we’ll start with the objects that allow you to store data in your data-
base. You’ll build everything else on these objects. Specifically, these are
tables, views, and data types.

Tables
Tables are the building blocks on which relational databases are built.
Underneath everything else, all data in your database ends up in a table.
Tables are made up of rows and columns. Like a single instance in an en-
tity, each row stores information pertaining to a single record. For exam-
ple, in an employee table, each row would store the information for a
single employee.

The columns in the table store information about the rows in the table.
The FirstName column in the Employee table would store the first names

45

of all the employees. Columns map to attributes from your logical model,
and, like the logical model, each column has a data type assigned. Later in
this chapter we look at the SQL Server data types in detail.

When you add data to a table, each column must either contain data
(even if it is an empty string) or specify a NULL value, NULL being the
complete absence of data. Additionally, you can specify that each column
have a default value. The default value is used if you add data without
specifying a value for that column. A default can be a fixed value, such as
always setting a numeric column to the value of 12, or it can be a function
that returns a value of the appropriate data type. If you do not have a de-
fault value specified and you insert data without specifying a value for a
column, SQL Server attempts to insert a NULL value. If the column does
not allow NULL values, your insert will fail.

You can think of a table as a single spreadsheet in an application such
as Microsoft Excel. In fact, an Excel spreadsheet is a table, but Excel is not
a relational database management system. A database is really nothing
more than a collection of tables that store information. Sure, there are
many other objects in a database, but without tables you would not have
any data. Using Transact-SQL, also known as T-SQL, you can manipulate
the data in a table. The four basic Data Manipulation Language (DML)
statements are defined as follows:

■ SELECT: Allows users to retrieve data in a table or tables
■ INSERT: Allows users to add data to a table
■ UPDATE: Allows users to change data in a table
■ DELETE: Allows users to remove data from a table

How SQL Server Stores Tables
In addition to understanding what tables are, it’s important that you un-
derstand how SQL Server stores them; the type of data your columns store
will dictate how the table is stored on disk, and this can directly affect the
performance of your database. Everything in SQL Server is stored on
pages. Pages are 8K contiguous allocations of information on the disk, and
there are different kinds of pages depending on what is on the page. For
our purposes, we will focus on data pages: pages that store table data.
Each row you add to a table is stored on a page, and depending on the size
of the data in the row, the row can be stored either on a page with other
rows, or on its own page or pages.

46 Chapter 3 Physical Elements of Data Models

Before SQL Server 2005, data and overhead for a single row could not
exceed 8,060 bytes (8K). This was a hard limit that you had to account for
when designing tables. In SQL Server 2005, this limit has been overcome,
in a manner of speaking. Now, if your row exceeds 8,060 bytes, SQL Server
moves one or more of your variable-length columns onto a new page and
leaves a 24-byte pointer in its place. This does not mean that you have an
unlimited row size, nor should you make all your rows bigger than 8,060
bytes. Why not? First, notice that we said SQL Server will move variable-
length columns. This means that you are still limited to 8,060 bytes of
fixed-length columns. Additionally, you are still limited to 8K on your pri-
mary data page for the row. Remember the 24-byte pointer we mentioned?
In theory you are limited to around 335 pointers on the main page. As
ridiculous as a 336-column varchar(8000) table may sound, we have seen
far stranger.

If SQL Server manages all this behind the scenes, why should you
care? Here’s why. Although SQL Server moves the variable-length fields to
new pages after you exceed the 8K limit, the result is akin to a fragmented
hard drive. You now have chunks of data that need to be assembled when
accessed, and this adds processing time. As a data modeler you should al-
ways try to keep your rows smaller than the 8K limit for performance rea-
sons. There are a few exceptions to this rule, and we look at them more
closely later in this chapter when we discuss data types. Keep in mind that
there is a lot more complexity in the way SQL Server handles storage and
pages than we cover here, but your data model can’t affect the other vari-
ables as much as it can affect table size.

Views
Views are simply stored T-SQL that uses SELECT statements to display
data from one or more tables. The tables referenced by views are often re-
ferred to as the view’s base tables. Views, as the name implies, allow you
to create various pictures of the underlying information. You can reference
as many or as few columns from each base table as you need to make your
views. This capability allows you to slice up data and display only relevant
information.

You access views in almost the same way that you access tables. All the
basic DML statements work against views in the same way they do on tables,
with a few exceptions. If you have a view that references more than one base
table, you can use only INSERT, UPDATE, or DELETE statements that

Physical Storage 47

reference columns from one base table. For example, let’s assume that we
have a view that returns customer data from two tables. One table stores
the customer’s information, and the other holds the address data for that
customer. The definition of the customer_address view is as follows:

CREATE VIEW customer_address

AS

SELECT customer.first_name,

customer.last_name,

customer.phone,

address.address_line1,

address.city,

address.state,

address.zip

FROM customer

JOIN address

ON address.customer_id = customer.customer_id

WHERE address.type = 'home'

You can perform INSERT, UPDATE, and DELETE operations against
the customer_address view as long as you reference only the customer
table or the address table.

You may be asking yourself, “Why would I use a view instead of just
referencing the tables directly?” There are several reasons to use views in
your database. First, you can use a view to obscure the complexity of the
underlying tables. If you have a single view that displays customer and ad-
dress information, developers or end users can access the information they
need from the view instead of needing to go to both tables. This technique
eliminates the need for users to understand the entire database; they can
focus on a single object. You gain an exponential benefit when you start
working with many base tables in a single view.

Using views also allows you to change the tables or the location where
the data is stored without affecting users. In the end, as long as you update
the view definition so that it accommodates the table changes you made,
your users will never need to know that there was a change. You can also
use views to better manage security. If you have users who need to see
some employee data but not sensitive data such as social security numbers
or salary, you can build a view that displays only the information they need.

Finally, consider how using views can save you time when querying
your database. Every time you run T-SQL code, SQL Server must first

48 Chapter 3 Physical Elements of Data Models

compile the code. This transforms the human-readable SELECT state-
ment into a form that the SQL Server engine can understand, and the re-
sulting code is an execution plan. Execution plans for running views are
stored in SQL Server, and the T-SQL code behind them is compiled. This
process takes time, but with views, the compilation is done only when the
view is created. This saves you processing each time you call the view. The
first time a view is called, SQL Server figures out the best way to retrieve
the data from the base tables, given the table structure and the indexes in
place. This execution plan is cached and reused the next time the view is
called.

In our humble opinion, views are probably the most underused feature
in SQL Server. For some reason, people tend to avoid the use of views or
use them in inefficient ways. In Chapter 11 we look at some of the most
beneficial uses for views.

Data Types
As mentioned earlier, every column in each of your tables must be config-
ured to store a specific type of data. You do this by associating a data type
with the column. Data types are what you use to specify the type, length,
precision, and scale of data that can be stored in the column. SQL Server
2008 gives you several general categories of data types, with each category
containing specific data types. Many of these data types are similar to the
types we looked at in Chapter 2. In this section, we look at each of the SQL
Server data types and talk about how the SQL Server engine handles and
stores them.

When you build your model, it is important to understand how much
space each data type requires. The difference between a data type that
needs 2 bytes versus one that requires 4 bytes may seem insignificant, but
when you multiply the extra 2 bytes over millions or billions of rows, you
could end up needing tens or hundreds of gigabytes of additional storage.

SQL Server 2008 has functionality (parts of which were introduced in
SQL Server 2005 Service Pack 2) that allows the SQL Server storage en-
gine to compress data at the row and page levels. However, this function-
ality is limited to the Enterprise Edition and is, in general, more of an
administrative concern. Your estimate of data storage requirements, which
is based on the numbers we talk about here, should be limited to the un-
compressed storage requirements. Enabling data compression in a data-
base is something that a database administrator will work on with the

Physical Storage 49

database developer after the database has been built. With that said, let’s
look at the data types available in SQL Server 2008.

Numeric Data Types
Our databases need to store many kinds of numbers that we use day to day.
Each of these numbers is unique and requires us to store varying pieces of
data. These differences in numbers and requirements dictate that SQL
Server be able to support 11 numeric data types. Following is a review of
all the numeric data types available in SQL Server. Also, Table 3.1 shows
the specifications on each numeric data type.

Table 3.1 Numeric Data Type Specifications

Data Type Value Range Storage

bigint –9,223,372,036,854,775,808 through 9,223,372,036,854,775,807 8 bytes

bit 0 or 1 1 byte (minimum)

decimal Depends on precision and scale 5–17 bytes

float –1.79E+308 through –2.23E–308, 0, 4 or 8 bytes
and 2.23E–308 through 1.79E+308

int –2,147,483,648 to 2,147,483,647 4 bytes

money –922,337,203,685,477.5808 to 922,337,203,685,477.5807 8 bytes

numeric Depends on precision and scale 5–17 bytes

real –3.40E+38 to –1.18E–38, 0, and 1.18E–38 to 3.40E+38 4 bytes

smallint –32,768 to 32,767 2 bytes

smallmoney –214,748.3648 to 214,748.3647 4 bytes

tinyint 0 to 255 1 byte

Int
The int data type is used to store whole integer numbers. Int does not store
any detail to the right of the decimal point, and any number with decimal
data is rounded off to a whole number. Numbers stored in this type must
be in the range of –2,147,483,648 through 2,147,483,647, and each piece
of int data requires 4 bytes to store on disk.

Bigint
Bigint is just what it sounds like: a big integer number. When you need
larger numbers than supported by the int data type, you can use bigint.
Using bigint expands your range from the paltry 2 billion of an int and al-

50 Chapter 3 Physical Elements of Data Models

lows you to store numbers from approximately negative 9 quintillion all the
way to 9 quintillion. (A quintillion is a 1 followed by 18 zeros.) Bigger num-
bers require more storage; bigint data requires 8 bytes.

Smallint
On the other side of the int data type, we have smallint. Smallint can hold
numbers from –32,768 through 32,767 and requires only 2 bytes of storage.

Tinyint
Rounding out the int family of data types is the tinyint. Requiring only
1 byte of storage and capable of storing numbers from 0 through 255, tinyint
is perfect for status columns. Note that tinyint is the only int data type that
cannot store negative numbers.

Bit
The bit data type is the SQL Server equivalent of a flag or a Boolean. The
only valid values are 0, 1, or NULL, making the bit data type perfect for
storing on or off, yes or no, or true or false. Bit storage is a bit more com-
plex (pardon the pun). Storing a 1 or a 0 requires only 1 bit on disk, but the
minimum storage for bit data is 1 byte. For any given table, the bit columns
are lumped together for storage. This means that when you have 1-bit to
8-bit columns they collectively take up 1 byte. When you have 9- to 16-bit
columns, they take up 2 bytes, and so on. SQL Server implicitly converts
the strings TRUE and FALSE to bit data of 1 and 0, respectively.

Decimal and Numeric
In SQL Server 2008, the decimal and numeric data types are exactly the
same. Previous versions of SQL Server do not have a numeric data type; it
was added in SQL Server 2005 so that the terminology would fall in line
with other RDBMS software. Both these data types hold numbers com-
plete with detail to the right of the decimal. When using decimal or nu-
meric, you can specify a precision and a scale. Precision sets the total
number of digits that can be stored in the number. Precision can be set to
any value from 1 through 38, allowing decimal numbers to contain 1
through 38 digits. Scale specifies how many of the total digits can be stored
to the right of the decimal point. Scale can be any number from 0 to the
precision you have set. For example, the number 234.67 has a precision of
5 and a scale of 2. The storage requirements for decimal and numeric vary
depending on the precision. Table 3.2 shows the storage requirements
based on precision.

Physical Storage 51

Money and Smallmoney
Both the money and the smallmoney data types store monetary values to
four decimal places. The only difference in these two types is that money
can store values from about –922 trillion through 922 trillion and requires
8 bytes of storage, whereas smallmoney holds only values of –214,748.3648
through 214,748.3647 and requires only 4 bytes of storage. Functionally,
these types are similar to decimal and numeric, but money and smallmoney
also store a currency symbol such as $ (dollar), ¥ (yen), or £ (pound).

Float and Real
Both float and real fall into the category of approximate numbers. Each
holds values in scientific notation, which inherently causes data loss be-
cause of a lack of precision. If you don’t remember your high school chem-
istry class, we briefly explain scientific notation. You basically store a small
subset of the value, followed by a designation of how many decimal places
should precede or follow the value. So instead of storing 1,234,467,890 you
can store it as 1.23E+9. This says that the decimal in 1.23 should be moved
9 places to the right to determine the actual number. As you can see, you
lose a lot of detail when you store the number in this way. The original
number (1,234,467,890) becomes 1,230,000,000 when converted to scien-
tific notation and back.

Now back to the data types. Float and real store numbers in scientific
notation; the only difference is the range of values and storage require-
ments for each. See Table 3.1 for the range of values for these types. Real
requires 4 bytes of storage and has a fixed precision of 7. With float data,
you can specify the precision or the total number of digits, from 1 through
53. The storage requirement varies from 4 bytes (when the precision is less
than 25) to 8 bytes (when the precision is 25 through 53).

52 Chapter 3 Physical Elements of Data Models

Table 3.2 Decimal and Numeric Storage Requirements

Precision Storage

1 through 9 5 bytes

10 through 19 9 bytes

20 through 28 13 bytes

29 through 38 17 bytes

Date and Time Data Types
When you need to store a date or time value, SQL Server provides you
with six data types. Knowing which type to use is important, because each
date and time data type provides a slightly different level of accuracy, and
that can make a huge difference when you’re calculating exact times, as
well as durations. Let’s look at each in turn.

Datetime and Smalldatetime
The datetime and smalldatetime data types can store date and time data in
a variety of formats; the difference is the range of values that each can
store. Datetime can hold values from January 1, 1753, through December
31, 9999, and can be accurate to 3.33 milliseconds. In contrast, smalldate-
time can store dates only from January 01, 1900, through June 6, 2079, and
is accurate only to 1 minute. For storage, datetime requires 8 bytes, and
smalldatetime needs only 4 bytes.

Date and Time
New in SQL Server 2008 are data types that split out the date portion and
the time portion of a traditional date and time data type. Literally, as the
names imply, these two data types account for either the date portion
(month, day, and year), or the time portion (hours, minutes, seconds, and
nanoseconds). Thus, if needed, you can store only one portion or the other
in a column.

The range of valid values for the date data type are the same as for the
datetime data type, meaning that date can hold values from January 1,
1753, through December 31, 9999. From a storage standpoint, date re-
quires only 3 bytes of space, with a character length of 10.

The time data type holds values 00:00:00.0000000 through
23:59:59.9999999 and can hold from 8 characters (hh:mm:ss) to 16 char-
acters (hh:mm:ss:nnnnnnn), where n represents fractional seconds. For ex-
ample, 13:45:25.5 literally means that it is 1:45:25 and one-half second
p.m. You can specify the scale of the time data type from 0 to 7 to desig-
nate how many digits you can use for fractional seconds. At its maximum,
the time data type requires 5 bytes of storage.

Datetime2
Another new data type in SQL Server 2008 is the datetime2 data type. This
is very similar to the original datetime data type, except that datetime2 in-
corporates the precision and scale options of the time data type. You can

Physical Storage 53

specify the scale from 0 to 7, depending on how you want to divide and
store the seconds. Storage for this data type is fixed at 8 bytes, assuming a
precision of 7.

Datetimeoffset
The final SQL Server 2008 date and time data type addition is datetime-
offset. This is a standard date and time data type, similar to datetime2 (be-
cause it can store the precision). Additionally, datetimeoffset can store a
plus or minus 14-hour offset. It is useful in applications where you want to
store a date and a time along with a relative offset, such as when you’re
working with multiple time zones. The storage requirement for datetime-
offset is 10 bytes.

String Data Types
When it comes to storing string or character data, the choice and variations
are complex. Whether you need to store a single letter or the entire text of
War and Peace, SQL Server has a string data type for you. Fortunately,
once you understand the difference between the available string data
types, choosing the correct one is straightforward.

Char and Varchar
Char and varchar are probably the most used of the string data types. Each
stores standard, non-Unicode text data. The differences between the two
lie mostly in the storage of the data. In each case, you must specify a length
when defining a column as char or varchar. The length sets the limit on the
number of characters the column can hold.

Here’s the kicker: The char data type always requires the same num-
ber of bytes for storage as you have specified for the length. If you have a
char(20), it will always require 20 bytes of storage, even if you store only a
5-character word in the column. With a varchar, the storage is always the
actual number of characters you have stored plus 2 bytes. So a varchar(20)
with a 5-character word will take up 7 bytes, with the extra 2 bytes holding
a size reference for SQL Server. Each type can have a length of as many as
8,000 characters.

When do you use one over the other? The rule of thumb is to use char
when all the data will be close to the same length, and use varchar when
the data will vary a great deal. Following this rule should make for opti-
mum storage.

54 Chapter 3 Physical Elements of Data Models

Another tip is to avoid using varchar for short columns. We have seen
databases use varchar(2) columns, and the result is wasted space. Let’s as-
sume you have 100 rows in your table and the table contains a varchar(2)
column. Assuming all the columns are NULL, you still need to store the
2 bytes of overhead, so without storing any data you have already taken up
as much space as you would using char(2).

One other special function of varchar is the max length option. When
you specify max as the length, your varchar column can store as much as
2^31–1 bytes of data, which is about 2 trillion bytes, or approximately 2GB
of string data. If you don’t think that’s a lot, open your favorite text editor
and start typing until you reach a 2GB file. Go on, we’ll wait. It’s a lot of in-
formation to cram into a single column. Varchar(max) was added to SQL
Server in the 2005 release and was meant to replace the text data type from
previous versions of SQL Server.

Nchar and Nvarchar
The nchar and nvarchar data types work in much the same way as the char
and varchar data types, except that the n versions store Unicode data.
Unicode is most often used when you need to store non-English language
strings that require special characters such as the Greek letter beta (�).
Because Unicode data is a bit more complex, it requires 2 bytes for each
character, and thus an nchar requires double the length in bytes for stor-
age, and nvarchar requires double the actual number of characters plus the
obligatory 2 bytes of overhead.

From our earlier discussion, recall that SQL Server stores tables in
8,060-byte pages. Well, a single column cannot span a page, so some sim-
ple math tells us that when using these Unicode data types, you will reach
8,000 bytes when you have a length of 4,000. In fact, that is the limit for
the nchar and nvarchar data types. Again, you can specify nvarchar(max),
which in SQL Server 2005 replaced the old ntext data type.

Binary and Varbinary
Binary and varbinary function in exactly the same way as char and varchar.
The only difference is that these data types hold binary information such
as files or images. As before, varbinary(max) replaces the old image data
type. In addition, SQL Server 2008 allows you to specify the filestream at-
tribute of a varbinary(max) column, which switches the storage of the
BLOB. Instead of being stored as a separate file on the file system, it is
stored in SQL Server pages on disk.

Physical Storage 55

Text, Ntext, and Image
As mentioned earlier, the text, ntext, and image data types have been
replaced with the max length functionality of varchar, nvarchar, and
varbinary, respectively. However, if you are running on an older version or
upgrading to SQL Server 2005 or SQL Server 2008, you may still need
these data types. The text data type holds about 2GB of string data, and
ntext holds about 1GB of Unicode string data. Image is a variable-length
binary field and can hold any binary data, up to about 2GB. When using
these data types, you must use certain functions to write, update, and read
to the columns; you cannot just do a simple update. Keep in mind that
these three data types have been replaced, and Microsoft will likely re-
move them from future releases of SQL Server.

Other Data Types
In addition to the standard numeric and string data types, SQL Server
2008 provides several other useful data types. These additional types allow
you to store XML data, globally unique identifiers (GUIDs), hierarchical
identities, and spatial data types. There is also a new file storage data type
that we’ll talk about shortly.

Sql_variant
A column defined as sql_variant can store most any data that can be stored
in the other SQL Server data types. The only data you cannot put into a
sql_variant are text, ntext, image, xml, timestamp, or the max length data
types. Using sql_variant you can store various data types in the same col-
umn of a table. As you will read in Chapter 4, this is not the best practice
from a modeling standpoint. That said, there are some good uses for
sql_variant, such as building a staging table when you’re loading less-than-
perfect data from other sources. The storage requirement for a sql_variant
depends on the type of data you put in the column.

Timestamp
This data type has a somewhat misleading name. In fact timestamp does
not store any sort of time or date information. Instead, timestamp is a bi-
nary number that is automatically incremented each time an insert or up-
date happens to a table containing the timestamp column. The counter for
the timestamp column is stored for the entire database, and each table is
allowed to have only a single timestamp column. In this way, you can tell
in what order various operations have happened in your database, or you
can implement row versioning.

56 Chapter 3 Physical Elements of Data Models

We once used timestamp to archive a large database. Each night we
would run a job to grab all the rows from all the tables where the time-
stamp was greater than the last row copied the night before. Timestamps
require 8 bytes of storage, and remember, 8 bytes can add up fast if you
add timestamps to all your tables.

Uniqueidentifier
The uniqueidentifier data type is probably one of the most interesting data
types available, and it is the topic of much debate. Basically, a uniqueiden-
tifier column holds a GUID—a string of 32 random characters in blocks
separated by hyphens. For example, the following is a valid GUID:

45E8F437-670D-4409-93CB-F9424A40D6EE

Why would you use a uniqueidentifier column? First, when you gen-
erate a GUID, it will be a completely unique value and no other GUID in
the world will share the same string. This means that you can use GUIDs
as PKs on your tables if you will be moving data between databases. This
technique prevents duplicate PKs when you actually copy data.

When you’re using uniqueidentifier columns, keep in mind a couple of
things. First, they are pretty big, requiring 16 bytes of storage. Second, un-
like timestamps or identity columns (see the section on primary keys later
in this chapter), a uniqueidentifier does not automatically have a new
GUID assigned when data is inserted. You must use the NEWID function
to generate a new GUID when you insert data. You can also make the de-
fault value for the column NEWID(). In this way, you need not specify
anything for the uniqueidentifier column; SQL Server will insert the
GUID for you.

Xml
The xml data type is a bit outside the scope of this book, but we’ll say a few
words about it. Using the xml data type, SQL Server can hold Extensible
Markup Language (XML) data in a column. Additionally, you can bind an
XML schema to the column to constrain the XML data being stored. Like
the max data types, the xml data type is limited to 2GB of storage.

Table
A table data type can store the result set of T-SQL statements for process-
ing later. The data is stored in a similar fashion to the way an entire table
is stored. It is important to note that the table data type cannot be used on

Physical Storage 57

columns; it can be used only in variables in T-SQL code. Programming in
SQL Server is beyond the scope of this book, but the table data type plays
an important role in user-defined functions, which we discuss shortly.

Table variables behave in the same way as base tables. They contain
columns and can have check constraints, unique constraints, and primary
keys. As with base tables, a table variable can be used in SELECT, IN-
SERT, UPDATE, and DELETE statements. Like other local variables,
table variables exist in the scope of the calling function and are cleaned up
when the calling module finishes executing. To use table variables, you de-
clare them like any other variable and provide a standard table definition
to the declaration.

Hierarchyid
The hierarchyid data type is a system-provided data type that allows you to
store hierarchical data, such as organizational data, project tasks, or file sys-
tem–style data in a relational database table. Whenever you have self-
referencing data in a tiered format, hierarchyid allows you to store and
query the data more efficiently. The actual data in a hierarchyid is repre-
sented as a series of slashes and numerical designations. This is a special-
ized data type and is used only in very specific instances.

Spatial Data Types
SQL Server 2008 also introduces the spatial data types for relational stor-
age. The first of the two new data types is geometry, which allows you to
store planar data about physical locations (distances, vectors, etc.). The
other data type, geography, allows you to store round earth data such as lat-
itude and longitude coordinates. Although this is oversimplifying, these
data types allow you to store information that can help you determine the
distance between locations and ways to navigate between them.

User-Defined Data Types
In addition to the data types we have described, SQL Server allows you to
create user-defined data types. With user-defined data types, you can
create standard columns for use in your tables. When defining user-
defined data types, you still must use the standard data types that we have
described here as a base. A user-defined data type is really a fixed defini-
tion of a data type, complete with length, precision, or scale as applicable.

For example, if you need to store phone numbers in various tables in
your database, you can create a phone number data type. If you create the

58 Chapter 3 Physical Elements of Data Models

phone number data type as a varchar(25), then every column that you de-
fine as a phone number will be exactly the same, a varchar(25). As you re-
call from the discussion of domains in Chapter 2, user-defined data types
are the physical implementation of domains in SQL Server. We highly rec-
ommend using user-defined data types for consistency, both during the ini-
tial development and later during possible additions to your data model.

Referential Integrity

We discussed referential integrity (RI) in Chapter 2. Now we look specifi-
cally at how you implement referential integrity in a physical database.

In general, data integrity is the concept of keeping your data consistent
and helping to ensure that your data is an accurate representation of the
real world and that it is easy to retrieve. There are various kinds of in-
tegrity; referential integrity ensures that the relationships between tables
are adhered to when you insert or update data. For example, suppose you
have two tables: one called Employee and one called Vehicle. You require
that each vehicle be assigned to an employee; this is done via a relation-
ship, and the rule is maintained with RI. You physically implement this re-
lationship using primary and foreign keys.

Primary Keys
A primary key constraint in SQL Server works in the same way as a primary
key does in your logical model. A primary key is made up of the column or
columns that uniquely identify the row in any given table.

The first step in creating a PK is to identify the columns on which to
create the key; most of the time this is decided during logical modeling.
What makes a good primary key in SQL Server, and, more importantly,
what makes a poor key? Any column or combination of columns in your
table that can uniquely identify the row are known as candidate keys.
Often there are multiple candidate keys in a table. Our first tip for PK se-
lection is to avoid string columns. When you join two tables, SQL Server
must compare the data in the primary key to the data in the other table’s
foreign key. By their nature, strings take more time and processing power
to compare than do numeric data types.

That leaves us with numeric data. But what kind of numeric should you
use? Integers are always good candidates, so you could use any of the int

Referential Integrity 59

data types as long as they are large enough to be unique given the table’s
potential row count. Also, you can create a composite PK (a PK that uses
more than one column), but we do not recommend using composite PKs
if you can avoid it. The reason? If you have four columns in your PK, then
each table that references this table will require the same four columns.
Not only does it take longer to build a join on four columns, but also you
have a lot of duplicate data storage that would otherwise be avoided.

To recap, here are the rules you should follow when choosing a PK
from your candidate keys.

■ Avoid using string columns.
■ Use integer data when possible.
■ Avoid composite primary keys.

Given these rules, let’s look at a table and decide which columns to use
as our PK. Figure 3.1 shows a table called Products. This table has a cou-
ple of candidate keys, the first being the model number. However, model
numbers are unique only to a specific manufacturer. So the best option
here would be a composite key containing both Model Number and
Manufacturer. The other candidate key in this table is the SKU. An
SKU (stock-keeping unit) number is usually an internal number that can
uniquely identify any product a company buys and sells regardless of
manufacturer.

60 Chapter 3 Physical Elements of Data Models

FIGURE 3.1 A Products table in need of a primary key

Let’s look at each of the candidates and see whether it violates a rule.
The first candidate (Model Number and Manufacturer) violates all the
rules; the data is a string, and it would be a composite key. So that leaves
us with SKU, which is perfect; it identifies the row, it’s an integer, and it is
a single column.

Now that we have identified our PK, how do we go about configuring
it in SQL Server? There are several ways to make PKs, and the method you
use depends on the state of the table. First, let’s see how to do it at the
same time you create the table. Here is the script to create the table, com-
plete with the PK.

CREATE TABLE Products(

sku int NOT NULL PRIMARY KEY,

modelnumber varchar(25) NOT NULL,

name varchar(100) NOT NULL,

manufacturer varchar(25) NOT NULL,

description varchar(255) NOT NULL,

warrantydetails varchar(500) NOT NULL,

price money NOT NULL,

weight decimal(5, 2) NOT NULL,

shippingweight decimal(5, 2) NOT NULL,

height decimal(4, 2) NOT NULL,

width decimal(4, 2) NOT NULL,

depth decimal(4, 2) NOT NULL,

isserialized bit NOT NULL,

status tinyint NOT NULL

)

You will notice the PRIMARY KEY statement following the definition of
the sku column. That statement adds a PK to the table on the sku column,
something that is simple and quick.

However, this method has one inherent problem. When SQL Server
creates a PK in the database, every PK has a name associated with it. Using
this method, we don’t specify a name, so SQL Server makes one up. In this
case it was PK_Products_30242045. The name is based on the table name
and some random numbers. On the surface, this doesn’t seem to be a big
problem, but what if you later need to delete the PK from this table? If you
have proper change control in your environment, then you will create a
script to drop the key and you will drop the key from a quality assurance
server first. Once tests confirm that nothing else will break when this key

Referential Integrity 61

is dropped, you go ahead and run the script in production. The problem is
that if you create the table using the script shown here, the PK will have a
different name on each server and your script will fail.

How do you name the key when you create it? What you name your
keys is mostly up to you, but we provide some naming guidelines in
Chapter 7. In this case we use pk_product_sku as the name of our PK. As
a best practice, we suggest that you always explicitly name all your primary
keys in this manner. In the following script we removed the PRIMARY KEY
statement from the sku column definition and added a CONSTRAINT state-
ment at the end of the table definition.

CREATE TABLE Products(

sku int NOT NULL,

modelnumber varchar(25) NOT NULL,

name varchar(100) NOT NULL,

manufacturer varchar(25) NOT NULL,

description varchar(255) NOT NULL,

price money NOT NULL,

weight decimal(5, 2) NOT NULL,

shippingweight decimal(5, 2) NOT NULL,

height decimal(4, 2) NOT NULL,

width decimal(4, 2) NOT NULL,

depth decimal(4, 2) NOT NULL,

isserialized bit NOT NULL,

status tinyint NOT NULL,

CONSTRAINT pk_product_sku PRIMARY KEY (sku)

)

Last, but certainly not least, what if the table already exists and you
want to add a primary key? First, you must make sure that any data already
in the column conforms to the rules of a primary key. It cannot contain
NULLs, and each row must be unique. After that, another simple script
will do the trick.

ALTER TABLE Products

ADD CONSTRAINT pk_product_sku PRIMARY KEY (sku)

But wait—there’s more. Using the sku column as we have done here is
fine, but there are other PK options we need to discuss. If you were to go
through your entire database and define PKs as we have done on the
Products table, you would likely end up with a different column name in

62 Chapter 3 Physical Elements of Data Models

each table that holds the primary key. This is not necessarily a bad thing,
but it means that you must look up the data type and column name when-
ever you want to add another column with a foreign key or you need to
write a piece of code to join tables.

Wouldn’t it be nice if all your tables had their PKs in columns having
the same name? For example, every table in your database could be given
a column named objectid and that column could simply have an arbitrary
unique integer. In this case, you can use an identity column in SQL Server
to manage your integer PK value. An identity column is one that auto-
matically increments a number with each insert into the table. When you
make a column an identity, you specify a seed, or starting value, and an in-
crement, which is the number to add each time a new record is added.
Most commonly, the seed and increment are both set to 1, meaning that
each new row will be given an identity value that is 1 higher than the pre-
ceding row.

Another option for an arbitrary PK is a GUID. GUIDs are most often
used as PKs when you need to copy data between databases and you need
to be sure that data copied from another database does not conflict with
existing data. If you were instead to use identities, you would have to play
with the seed values to avoid conflicts; for example, the number 1,000,454
could easily have been used in two databases, creating a conflict when the
data is copied. The disadvantages of GUIDs are that they are larger than
integers and they are not easily readable for humans. Also, PKs are often
clustered, meaning that they are stored in order. Because GUIDs are ran-
dom, each time you add data it ends up getting inserted into the middle of
the PK, and this adds overhead to the operation. In Chapter 10 we talk
more about clustered versus nonclustered PKs.

Of all the PK options we have discussed, we most often use identity
columns. They are easy to set up and they provide consistency across ta-
bles. No matter what method you use, carefully consider the pros and cons.
Implementing a PK in the wrong way not only will make it difficult to write
code against your database but also could lead to degraded performance.

Foreign Keys
As with primary keys, foreign keys in SQL Server work in the same way as
they do in logical design. A foreign key is the column or columns that cor-
respond to a primary key and establish a relationship. Exactly the same
columns with the same data as the primary key exist in the foreign key. It

Referential Integrity 63

is for this reason that we strongly advise against using composite primary
keys; not only does it mean a lot of data duplication, but also it adds over-
head when you join tables. Going back to our employee and vehicle exam-
ple, take a look at Figure 3.2, which shows the tables with some sample
data.

64 Chapter 3 Physical Elements of Data Models

FIGURE 3.2 Data from the employee and vehicle tables showing the
relationship between the tables

As you can see, both tables have objid columns. These are identity
columns and serve as our primary key. Additionally, notice that the vehicle
table has an employee_objid column. This column holds the objid of the
employee to whom the car is assigned. In SQL Server, the foreign key is
set up on the vehicle table, and its job is to ensure that the value you enter
in the employee_objid column is in fact a valid value that has a correspon-
ding record in the employee table.

The following script creates the vehicle table. You will notice a few
things that are different from the earlier table creation script. First, when
we set up the objid column, we use the IDENTITY(1,1)statement to cre-
ate an identity, with a seed and increment of 1 on the column. Second, we
have a second CONSTRAINT statement to add the foreign key relationship.
When creating a foreign key, you specify the column or columns in the ref-
erencing table that contain the foreign key as well as the referenced table
and columns that contain the primary key.

CREATE TABLE dbo.vehicle(

objid int IDENTITY(1,1) NOT NULL,

make varchar(50) NOT NULL,

model varchar(50)NOT NULL,

year char(4) NOT NULL,

employee_objid int NOT NULL,

CONSTRAINT PK_vehicle PRIMARY KEY (objid),

CONSTRAINT FK_vehicle_employee
FOREIGN KEY(employee_objid)
REFERENCES employee (objid)

)

Once your primary keys are in place, the creation of the foreign keys is
academic. You simply create the appropriate columns on the referencing
table and add the foreign key. As stated in Chapter 2, if your design re-
quires it, the same column in a table can be in both the primary key and a
foreign key.

When you create foreign keys, you can also specify what to do if an up-
date or delete is issued on the parent table. By default, if you attempt to
delete a record in the parent table, the delete will fail because it would re-
sult in orphaned rows in the referencing table. An orphaned row is a row
that exists in a child table that has no corresponding parent. This can cause
problems in some data models. In our employee and vehicle tables, a
NULL in the vehicle table means that the vehicle has not been assigned to
an employee. However, consider a table that stores orders and order de-
tails; in this case, an orphaned record in the order detail table would be
useless. You would have no idea which order the detail line belonged to.

Instead of allowing a delete to fail, you have options. First, you can
have the delete operation cascade, meaning that SQL Server will delete
all the child rows along with the parent row you are deleting. Be very care-
ful when using this option. If you have several levels of relationships with
cascading delete enabled, you could wipe out a large chunk of data by is-
suing a delete on a single record.

Your second option is to have SQL Server set the foreign key column
to NULL in the referencing table. This option creates orphaned records,
as discussed. Third, you can have SQL Server set the foreign key column
back to the default value of the column, if it has one. Similar options are
also available if you try to update the primary key value itself. Again, SQL
Server can either (1) cascade the update so that the child rows still point to
the correct parent rows with the new key, (2) set the foreign key to NULL,
or (3) set the foreign key back to its default value.

Referential Integrity 65

Changing the values of primary keys isn’t something we recommend
you do often, but in some situations you may find yourself needing to do
just that. If you find yourself in that situation often, you might consider set-
ting up an update rule on your foreign keys.

Constraints
SQL Server contains several types of constraints to enforce data integrity.
Constraints, as the name implies, are used to constrain the values that can
be entered into columns. We have talked about two of the constraints in
SQL Server: primary keys and foreign keys. Primary keys constrain the
data so that duplicates and NULLs cannot exist in the columns, and for-
eign keys ensure that the entered value exists in the referenced table.
There are several other constraints you can implement to ensure data in-
tegrity or enforce business rules.

Unique Constraints
Unique constraints are similar to primary keys; they ensure that no du-
plicates exist in a column or collection of columns. They are configured on
columns that do not participate in the primary key. How does a unique con-
straint differ from a primary key? From a technical standpoint, the only dif-
ference is that a unique constraint allows you to enter NULL values;
however, because the values must be unique, you can enter only one NULL
value for the entire column. When we talked about identifying primary
keys, we talked about candidate keys. Because candidate keys should also
be able to uniquely identify the row, you should probably place unique con-
straints on your candidate keys. You add a unique constraint in much the
same way as you add a foreign key, using a constraint statement such as

CONSTRAINT UNQ_vehicle_vin UNIQUE NONCLUSTERED (vin_number)

Check Constraints
Check constraints limit the values that can be entered into a column by
using a logical expression. A logical expression is any SQL expression
that can evaluate to TRUE or FALSE. The expression can be any valid
SQL expression, from simple comparisons to something more complex
such as calling a function. For example, say we want to limit the values that
can be entered for salary in our employee table. The expression we would
use to evaluate the data would be something like this:

66 Chapter 3 Physical Elements of Data Models

salary >= 10000 and salary <=150000

This line rejects any value less than 10,000 or greater than 150,000.
Each column can have multiple check constraints, or you can refer-

ence multiple columns with a single check. When it comes to NULL val-
ues, check constraints can be overridden. When a check constraint does its
evaluation, it allows any value that does not evaluate to false. This means
that if your check evaluates to NULL, the value will be accepted. Thus, if
you enter NULL into the salary column, the check constraint returns un-
known and the value is inserted. This feature is by design, but it can lead
to unexpected results, so we want you to be aware of this.

Check constraints are created in much the same way as keys or unique
constraints; the only caveat is that they tend to contain a bit more meat.
That is, the expression used to evaluate the check can be lengthy and
therefore hard to read when viewed in T-SQL. We recommend you create
your tables first and then issue ALTER statements to add your check con-
straints. The following sample code adds a constraint to the Products table
to ensure that certain columns do not contain negative values.

ALTER TABLE dbo.Products

ADD CONSTRAINT chk_non_negative_values

CHECK

(

weight >= 0

AND (shippingweight >= 0 AND shippingweight >= weight)

AND height >= 0

AND width >= 0

AND depth >= 0

)

Because it doesn’t make sense for any of these columns to contain neg-
ative numbers (items cannot have negative weights or heights), we add this
constraint to ensure data integrity. Now when you attempt to insert data
with negative numbers, SQL Server simply returns the following error and
the insert is denied. This constraint also prevents a shipping weight from
being less than the product’s actual weight.

The INSERT statement conflicted with the CHECK constraint

"chk_non_negative_values"

As you can see, we created one constraint that looks at all the columns
that must contain non-negative values. The only downfall to this method is

Referential Integrity 67

that it can be hard to find the data that violated the constraint. In this case,
it’s pretty easy to spot a negative number, but imagine if the constraint were
more complex and contained more columns. You would know only that
some column in the constraint was in violation, and you would have to go
over your data to find the problem. On the other hand, we could have cre-
ated a constraint for each column, making it easier to track down problems.
Which method you use depends on complexity and personal preference.

Implementing Referential Integrity
Now that we have covered PKs, FKs, and constraints, the final thing we
need to discuss is how to use them to implement referential integrity.
Luckily it’s straightforward once you understand how to create each of the
objects we’ve discussed.

One-to-Many Relationships
One-to-many relationships are the most common kind of relationship you
will use in a database, and they are also what you get with very little addi-
tional work when you create a foreign key on a table. To make the rela-
tionship required, you must make sure that the column that contains your
foreign key is set to not allow NULLs. Not allowing NULLs requires that
a value be entered in the column, and adding the foreign key requires that
the value be in the related table’s primary key. This type of relationship im-
plements a cardinality of “one or more to one.” In other words, you can
have a single row but you are not limited to the total number of rows you
can have. (Later in this chapter we look at ways to implement advanced
cardinality.) Allowing NULL in the foreign key column makes the rela-
tionship optional—that is, the data is not required to be related to the
reference table. If you were tracking computers in a table and using
a relationship to define which person was using the computer, a NULL
in your foreign key would denote a computer that is not in use by an
employee.

One-to-One Relationships
One-to-one relationships are implemented in exactly the same way as one-
to-many relationships—sort of. You still create a primary key and a foreign
key; the problem is that at this point SQL Server still allows users to insert
many rows into the foreign key table that reference the primary key table.

68 Chapter 3 Physical Elements of Data Models

There is no way, by default, to constrain the data to one-to-one. To imple-
ment a one-to-one relationship that is enforced, you must get a little
creative.

The first option is to write a stored procedure (more on stored proce-
dures later in this chapter) to do all your inserting, and then add logic to
prevent a second row from being added to the table. This method works in
most cases, but what if you need to load data directly to tables without a
stored procedure? Another option to implement one-to-one relationships
is to use a trigger, which we also look at shortly. Basically, a trigger is a
piece of code that can be executed after or instead of the actual insert
statement. Using this method, you could roll back any insert that would vi-
olate the one-to-one relationship.

Additionally—and this is probably the easiest method—you can add a
unique constraint on the foreign key columns. This would mean that the
data in the foreign key would have to be a value from the primary key, and
each value could appear only once in the referencing table. This approach
effectively creates a one-to-one relationship that is managed and enforced
by SQL Server.

Many-to-Many Relationships
One of the most complex relationships when it comes to implementation
is the many-to-many relationship. Even though you can have a many-to-
many relationship between two entities, you cannot create a many-to-many
relationship between only two tables. To implement this relationship, you
must create a third table, called a junction table, and two one-to-many
relationships.

Let’s walk through an example to see how it works. You have two ta-
bles—one called Student and one called Class—and both contain an iden-
tity called objid as their PK. In this situation you need a many-to-many
relationship, because each student can be in more than one class and each
class will have more than one student. To implement the relationship, you
create a junction table that has only two columns: one containing the
student_objid, and the other containing the class_objid. You then create a
one-to-many relationship from this junction table to the Student table, and
another to the Class table. Figure 3.3 shows how this relationship looks.

You will notice a few things about this configuration. First, in addition
to being foreign keys, these columns are used together as the primary key
for the Student_Class junction table. How does this implement a many-to-
many relationship? The junction table can contain rows as long as they do

Referential Integrity 69

not violate the primary key. This means that you can relate each student to
all the classes he attends, and you can relate all the students in a particular
class to that class. This gives you a many-to-many relationship.

It may sound complex, but once you create a many-to-many relation-
ship and add some data to the tables, it becomes pretty clear. The best way
to really understand it is to do it. When we build our physical model in
Chapter 9, we look more closely at many-to-many relationships, including
ways to make them most useful.

Implementing Advanced Cardinality
In Chapter 2, we talk about cardinality. Cardinality simply describes the
number of rows in a table that can relate to rows in another table.
Cardinality is often derived from your customer’s business rules. As with
one-to-one relationships, SQL Server does not have a native method to
support advanced cardinality. Using primary and foreign keys, you can eas-
ily enforce one-or-more-to-many, zero-or-more-to-many, or one-to-one
cardinality as we have described previously.

What if you want to create a relationship whereby each parent can con-
tain only a limited number of child records? For example, using our em-
ployee and vehicle tables, you might want to limit your data so that each
employee can have no more than five cars assigned. Additionally, employ-
ees are not required to have a car at all. The cardinality of this relationship
is said to be zero-to-five-to-many. To enforce this requirement, you need
to be creative. In this scenario you could use a trigger that counts the num-
ber of cars assigned to an employee. If the additional car would put the
employee over five, the insert could be reversed or rolled back.

Each situation is unique. In some cases you might be able to use check
constraints or another combination of PKs, FKs, and constraints to imple-
ment your cardinality. You need to examine your requirements closely to
decide on the best approach.

70 Chapter 3 Physical Elements of Data Models

FIGURE 3.3 Many-to-many relationship between a Student and a Class table

Programming

In addition to the objects that are used to store data and implement data
integrity, SQL Server provides several objects that allow you to write code
to manipulate your data. These objects can be used to insert, update,
delete, or read data stored in your database, or to implement business rules
and advanced data integrity. You can even build “applications” completely
contained in SQL Server. Typically, these applications are very small and
usually manipulate the data in some way to serve a function or for some
larger application.

Stored Procedures
Most commonly, when working with code in SQL Server you will work
with a stored procedure (SP). SPs are simply compiled and stored T-SQL
code. SPs are similar to views in that they are compiled and they generate
an execution plan when called the first time. The difference is that SPs, in
addition to selecting data, can execute any T-SQL code and can work with
parameters. SPs are very similar to modules in other programming lan-
guages. You can call a procedure and allow it to perform its operation, or
you can pass parameters and get return parameters from the SP.

Like columns, parameters are configured to allow a specific data
type. All the same data types are used for parameters, and they limit the
kind of data you can pass to SPs. Parameters come in two types: input and
output. Input parameters provide data to the SP to use during their ex-
ecution, and output parameters return data to the calling process. In ad-
dition to retrieving data, output parameters can be used to provide data to
SPs. You might do this when an SP is designed to take employee data and
update a record if the employee exists or insert a new record if the em-
ployee does not exist. In this case, you might have an EmployeeID param-
eter that maps to the employee primary key. This parameter would accept
the ID of the employee you intend to update as well as return the new em-
ployee ID that is generated when you insert a new employee.

SPs also have a return value that can return an integer to the calling
process. Return values are often used to give the calling process infor-
mation about the success of the stored procedure. Return values differ
from output parameters in that return values do not have names and you
get only one per SP. Additionally, SPs always return an integer in the re-
turn value, even if you don’t specify that one be returned. By default, an
SP returns 0 (zero) unless you specify something else. For this reason, 0 is

Programming 71

often used to designate success and nonzero values specify return error
conditions.

SPs have many uses; the most common is to manage the input and re-
trieval of your data. Often SPs are mapped to the entities you are storing.
If you have student data in your database, you may well have SPs named
sp_add_student, sp_update_student, and sp_retrieve_student_data. These
SPs would have parameters allowing you to specify all the student data that
ultimately needs to be written to your tables.

Like views, SPs reduce your database’s complexity for users and are
more efficient than simply running T-SQL repeatedly. Again, SPs remove
the need to update application code if you need to change your database.
As long as the SP accepts the same parameters and returns the same data
after you make changes, your application code does not have to change. In
Chapter 11 we talk in great detail about using stored procedures.

User-Defined Functions
Like any programming language, T-SQL offers functions in the form of
user-defined functions (UDFs). UDFs take input parameters, perform
an action, and return the results to the calling process. Sound similar to a
stored procedure? They are, but there are some important differences.
The first thing you will notice is a difference in the way UDFs are called.
Take a look at the following code for calling an SP.

DECLARE @num_in_stock int

EXEC sp_check_product_stock @sku = 4587353,

@stock_level = @num_in_stock OUTPUT

PRINT @num_in_stock

You will notice a few things here. First, you must declare a variable to store
the return of the stored procedure. If you want to use this value later, you
need to use the variable; that’s pretty simple.

Now let’s look at calling a UDF that returns the same information.

DECLARE @num_in_stock int

SET @num_in_stock = dbo.CheckProductStock (4587353)

PRINT @num_in_stock

72 Chapter 3 Physical Elements of Data Models

The code looks similar, but the function is called more like a function call
in other programming languages. You are probably still asking yourself,
“What’s the difference?” Well, in addition to calling a function and putting
its return into a variable, you can call UDFs inline with other code.
Consider the following example of a UDF that returns a new employee ID.
This function is being called inline with the insert statement for the em-
ployee table. Calling UDFs in this way prevents you from writing extra
code to store a return variable for later use.

INSERT INTO employee (employeeid, firstname, lastname)

VALUES (dbo.GetNewEmployeeID(), 'Eric', 'Johnson')

The next big difference in UDFs is the type of data they return. UDFs
that can return single values are known as scalar functions. The data the
function returns can be defined as any data type except for text, ntext,
image, and timestamp. To this point, all the examples we have looked at
have been scalar values.

UDFs can also be defined as table-valued functions: functions that
return a table data type. Again, table-valued functions can be called inline
with other T-SQL code and can be treated just like tables. Using the fol-
lowing code, we can pass the employee ID into the function and treat the
return as a table.

SELECT * FROM dbo.EmployeeData(8765448)

You can also use table-valued functions in joins with other functions or
with base tables. UDFs are used primarily by developers who write T-SQL
code against your database, but you can use UDFs to implement business
rules in your model. UDFs also can be used in check constraints or trig-
gers to help you maintain data integrity.

Triggers
Triggers and constraints are the two most common ways to enforce data in-
tegrity and business rules in your physical database. Triggers are stored
T-SQL scripts, similar to stored procedures, that run when a DML state-
ment (other than SELECT) is issued against a table or view. There are two
types of DML triggers available in SQL Server.

With an AFTER trigger, which can exist only on tables, the DML
statement is processed, and after that operation completes, the trigger

Programming 73

code is run. For example, if a process issues an insert to add a new em-
ployee to a table, the insert triggers the trigger. The code in the trigger is
run after the insert as part of the same transaction that issued the insert.
Managing transactions is a bit beyond the scope of this book, but you
should know that because the trigger is run in the same context as the
DML statement, you can make changes to the affected data, up to and in-
cluding rolling back the statement. AFTER triggers are very useful for ver-
ifying business rules and then canceling the modification if the business
rule is not met.

During the execution of an AFTER trigger, you have access to two vir-
tual tables—one called Inserted and one called Deleted. The Deleted
table holds a copy of the modified row or rows as they existed before a
delete or update statement. The Inserted table has the same data as the
base table has after an insert or update. This arrangement allows you to
modify data in the base table while still having a reference to the data as it
looked before and after the DML statement.

These special temporary tables are available only during the execution
of the trigger code and only by the trigger’s process. When creating
AFTER triggers, you can have a single trigger fire on any combination of
insert, update, or delete. In other words, one trigger can be set up to run
on both insert and update, and a different trigger could be configured to
run on delete. Additionally, you can have multiple triggers fire on the same
statement; for example, two triggers can run on an update. If you have
multiple triggers for a single statement type, the ordering of such triggers
is limited. Using a system stored procedure, sp_settriggerorder, you can
specify which trigger fires first and which trigger fires last. Otherwise, they
are fired in the middle somewhere. In reality, this isn’t a big problem. We
have seen very few tables that had more than two triggers for any given
DML statement.

INSTEAD OF triggers are a whole different animal. These triggers
perform in the way you would expect: The code in an INSTEAD OF trigger
fires in place of the DML statement that caused the trigger to fire. Unlike
AFTER triggers, INSTEAD OF triggers can be defined on views as well as
tables. Using them, you can overcome the limitation of views that have mul-
tiple base tables. As mentioned earlier, you can update a view only if you
limit your update to affecting only a single base table. Using an INSTEAD
OF trigger, you can update all the columns of a view and use the trigger to
issue the appropriate update against the appropriate base table. You can also
use INSTEAD OF triggers to implement advanced data integrity or busi-
ness rules by completely changing the action of a DML statement.

74 Chapter 3 Physical Elements of Data Models

You can also control trigger nesting and recursion behavior. With
nested triggers turned on, one trigger firing can perform a DML and cause
another trigger to fire. For example, inserting a row into TableA causes
TableA’s insert trigger to fire. TableA’s insert trigger in turn updates a
record in TableB, causing TableB’s update trigger to fire. That is trigger
nesting—one trigger causing another to fire—and this is the default be-
havior. With nested triggers turned on, SQL Server allows as many as 32
triggers to be nested. The INSTEAD OF trigger can nest regardless of the
setting of the nested triggers option.

Server trigger recursion specifies whether or not a trigger can per-
form a DML statement that would cause the same trigger to fire again. For
example, an update trigger on TableA issues an additional update on
TableA. With recursive triggers turned on, it causes the same trigger to fire
again. This setting affects only direct recursion; that is, a trigger directly
causes itself to fire again. Even with recursion off, a trigger could cause an-
other trigger to fire, which in turn could cause the original trigger to fire
again. Be very careful when you use recursive triggers. They can run over
and over again, causing a performance hit to your server.

CLR Integration
As of SQL Server 2005, we gained the ability to integrate with the .NET
Framework Common Language Runtime (CLR). Simply put, CLR inte-
gration allows you to use .NET programming languages within SQL Server
objects. You can create stored procedures, user-defined functions, triggers,
and CLR user-defined types using the more advanced languages available
in Microsoft .NET. This level of programming is beyond the scope of this
book, but you need to be aware of SQL Server’s ability to use CLR. You
will likely run into developers who want to use CLR, or you may find your-
self needing to implement a complex business rule that cannot easily be
implemented using standard SQL Server objects and T-SQL. So if you are
code savvy or have a code-savvy friend, you can create functions using CLR
to enforce complex rules.

Implementing Supertypes and Subtypes

We discuss supertypes and subtypes in Chapter 2. These are entities
that have several kinds of real-world objects being modeled. For example,
we might have a supertype called phone with subtypes for corded and

Implementing Supertypes and Subtypes 75

cordless phones. We separate objects into a subtype cluster because even
though a phone is a phone, different types will require that we track dif-
ferent attributes. For example, on a cordless phone, you need to know the
working range of the handset and the frequency on which it operates, and
with a corded phone, you could track something like cord length. These
differences are tracked in the subtypes, and all the common attributes of
phones are held in the supertype.

How do you go about physically implementing a subtype cluster in
SQL Server? You have three options. The first is to create a single table
that represents the attributes of the supertype and also contains the attri-
butes of all the subtypes. Your second option is to create tables for each of
the subtypes, adding the supertype attributes to each of these subtype ta-
bles. Third, you can create the supertype table and the subtype tables, ef-
fectively implementing the subtype cluster in the same way it was logically
modeled.

To determine which method is correct, you must look closely at the
data being stored. We will walk through each of these options and look at
the reasons you would use them, along with the pros and cons of each.

Supertype Table
You would choose this option when the subtypes contain few or no differ-
ences from the data stored in the supertype. For example, let’s look at a
cluster that stores employee data. While building a model, you discover
that the company has salaried as well as hourly employees, and you decide
to model this difference using subtypes and supertypes. After hashing out
all the requirements, you determine that the only real difference between
these types is that you store the annual salary for the salaried employees
and you need to store the hourly rate and the number of hours for an
hourly employee.

In this example, the subtypes contain very subtle differences, so you
could build this subtype cluster by using only the supertype table. For this
situation, you would likely create a single employee table that contains all
the attributes for employees, including all three of the subtype attributes
for salary, hourly rate, and hours. Whenever you insert an hourly em-
ployee, you would require that data be in the hourly rate and hour columns
and that the salary column be left NULL. For salaried employees, you
would do the exact opposite.

76 Chapter 3 Physical Elements of Data Models

Implementing the types in this way makes it easy to find the employee
data because all of it is in the same place. The only drawback is that you
must implement some logic to look at the columns that are appropriate to
the type of employee you are working with. This supertype-only imple-
mentation works well only because there are very few additional attributes
from the subtype’s entities. If there were a lot of differences, you would
end up with many of the columns being NULL for any given row, and it
would take a great deal of logic to pull the data together in a meaningful
way.

Subtype Tables
When the data contained in the subtypes is dissimilar and the number of
common attributes from the supertype is small, you would most likely im-
plement the subtype tables by themselves. This is effectively the opposite
data layout that would prompt you to use the supertype-only model.

Suppose you’re creating a system for a retail store that sells camera
equipment. You could build a subtype cluster for the products that the
store sells, because the products fall into distinct categories. If you look
only at cameras, lenses, and tripods, you have three very different types of
product. For each one, you need to store the model number, stock num-
ber, and the product’s availability, but that is where the similarities end. For
cameras you need to know the maximum shutter speed, frames per second,
viewfinder size, battery type, and so on. Lenses have a different set of at-
tributes, such as the focal length, focus type, minimum distance to subject,
and minimum aperture. And tripods offer a new host of data; you need to
store the minimum and maximum height, the planes on which it can pivot,
and the type of head. Anyone who has ever bought photography equip-
ment knows that the differences listed here barely scratch the surface; you
would need many other attributes on each type to accurately describe all
the options.

The sheer number of attributes that are unique for each subtype, and
the fact that they have only a few in common, will push you toward imple-
menting only the subtype tables. When you do this, each subtype table will
end up storing the common data on its own. In other words, the camera,
lens, and tripod tables would have columns to store model numbers, SKU
numbers, and availability. When you’re querying for data implemented in
this way, the logic needs to support looking at the appropriate table for the
type of product you need to find.

Implementing Supertypes and Subtypes 77

Supertype and Subtype Tables
You have probably guessed this: When there are a good number of shared
attributes and a good number of differences in the subtypes, you will
probably implement both the supertype and the subtype tables. A good ex-
ample is a subtype cluster that stores payment information for your cus-
tomers. Whether your customer pays with an electronic check, credit card,
gift certificate, or cash, you need to know a few things. For any payment,
you need to know who made it, the time the payment was received, the
amount, and the status of the payment. But each of these payment types
also requires you to know the details of the payment. For credit cards, you
need the card number, card type, security code, and expiration date. For
an electronic check, you need the bank account number, routing number,
check number, and maybe even a driver’s license number. Gift cards are
simple; you need only the card number and the balance. As for cash, you
probably don’t need to store any additional data.

This situation calls for implementing both the supertype and the sub-
type tables. A Payment table could contain all the high-level detail, and
individually credit card, gift card, and check tables would hold the infor-
mation pertinent to each payment type. We do not have a cash table, be-
cause we do not need to store any additional data on cash payments beyond
what we have in the Payment table.

When implementing a subtype cluster in this way, you also need to
store the subtype discrimination, usually a short code or a number that is
stored as a column in the supertype table to designate the appropriate sub-
type table. We recommend using a single character when possible, because
they are small and offer more meaning to a person than a number does. In
this example, you would store CC for credit card, G for a gift card, E for
electronic check, and C for cash. (Notice that we used CC for a credit card
to distinguish it from cash.) When querying a payment, you can join to the
appropriate payment type based on this discriminator.

If you need data only from either the supertype or the subtype, this
method offers two benefits: you need go to only one table, and you don’t
retrieve extraneous data. However, the flip side is that you must determine
which subtype table you need to query and then join both tables if you
need data from both the supertype and a subtype table. Additionally, you
may find yourself needing information from the supertype and multiple
subtypes; this will add overhead to your queries because you must join
multiple tables.

78 Chapter 3 Physical Elements of Data Models

Supertypes and Subtypes: A Final Word
Implementing supertypes and subtypes can, at times, be tricky. If you take
the time to fully understand the data and look at the implications of split-
ting the data into multiple tables versus keeping it tighter, you should be
able to determine the best course of action. Don’t be afraid to generate
some test data and run various options through performance tests to make
sure you make the correct choice. When we get to building the physical
model, we look at using subtype clusters as well as other alternatives for es-
pecially complex situations.

Summary

In this chapter, we have looked at the available objects inside SQL Server
that you will use when implementing your physical model. It’s important to
understand these objects for many reasons. You must keep all this in mind
when you design your logical model so that you design with SQL Server in
mind. This also plays a large part later when you build and implement your
physical model. You will probably not use every object in SQL Server for
every database you build, but you need to know your options. Later, we
walk through creating your physical model, and at that time we go over the
various ways you can use these physical objects to solve problems.

In the next chapter, we talk about normalization, and then we move on
to the meat and potatoes of this book by getting into our sample project
and digging into a lot of real-world issues.

Summary 79

This page intentionally left blank

C H A P T E R 4

NORMALIZING A DATA MODEL

Data normalization is probably one of the most talked-about aspects of
database modeling. Before building your data model, you must answer a
few questions about normalization. These questions include whether or
not to use the formal normalization forms, which of these forms to use, and
when to denormalize.

To explain normalization, we share a little bit of history and outline the
most commonly used normal forms. We don’t dive very deeply into each
normal form; there are plenty of other texts that describe and examine
every detail of normalization. Instead, our purpose is to give you the tools
necessary to identify the current state of your data, set your goals, and nor-
malize (and denormalize) your data as needed.

What Is Normalization?

At its most basic level, normalization is the process of simplifying your data
into its most efficient form by eliminating redundant data. Understanding
the definition of the word efficient in relation to normalization is the key
concept. Efficiency, in this case, refers to reducing complexity from a log-
ical standpoint. Efficiency does not necessarily equal better performance,
nor does it necessarily equate to efficient query processing. This may seem
to contradict what you’ve heard about design, so first let’s walk through the
concepts in normalization, and then we’ll talk about some of the perform-
ance considerations.

Normal Forms
E. F. Codd, who was the IBM researcher credited with the creation and
evolution of the relational database, set forth a set of rules that define how
data should be organized in a relational database. Initially, he proposed
three sequential forms to classify data in a database: first normal form

81

(1NF), second normal form (2NF), and third normal form (3NF). After
these initial normal forms were developed, research indicated that they
could result in update anomalies, so three additional forms were developed
to deal with these issues: fourth normal form (4NF), fifth normal form
(5NF), and the Boyce-Codd normal form (BCNF). There has been re-
search into a sixth normal form (6NF); this normal form has to do with
temporal databases and is outside the scope of this book.

It’s important to note that the normal forms are nested. For example, if
a database meets 3NF, by definition it also meets 1NF and 2NF. Let’s take
a brief look at each of the normal forms and explain how to identify them.

First Normal Form (1NF)
In first normal form, every entity in the database has a primary key at-
tribute (or set of attributes). Each attribute must have only one value, and
not a set of values. For a database to be in 1NF it must not have any re-
peating groups. A repeating group is data in which a single instance may
have multiple values for a given attribute.

For example, consider a recording studio that stores data about all its
artists and their albums. Table 4.1 outlines an entity that stores some basic
data about the artists signed to the recording studio.

Table 4.1 Artists and Albums: Repeating Groups of Data

Album
Artist Name Genre Album Name Release Date

The Awkward Stage Rock Home 10/01/2006

Girth Metal On the Sea 5/25/1997

Wasabi Peanuts Adult Contemporary Rock Spicy Legumes 11/12/2005

The Bobby R&B Live! 7/27/1985
Jenkins Band Running the Game 10/30/1988

Juices of Brazil Latin Jazz Long Road 1/01/2003
White 6/10/2005

Notice that for the first artist, there is only one album and therefore
one release date. However, for the fourth and fifth artists, there are two al-
bums and two release dates. In practice, we cannot guarantee which re-
lease date belongs to which album. Sure, it’d be easy to assume that the
first release date belongs to the first album name, but how can we be sure

82 Chapter 4 Normalizing a Data Model

that album names and dates are always entered in order and not changed
afterward?

There are two ways to eliminate the problem of the repeating group.
First, we could add new attributes to handle the additional albums, as in
Table 4.2.

Table 4.2 Artists and Albums: Eliminate the Repeating Group, but at What Cost?

Artist Album Release Album Release
Name Genre Name 1 Date 1 Name 2 Date 2

The Awkward Rock Home 10/01/2006 NULL NULL
Stage

Girth Metal On the Sea 5/25/1997 NULL NULL

Wasabi Adult Spicy 11/12/2005 NULL NULL
Peanuts Contemporary Legumes

Rock

The Bobby R&B Running 7/27/1985 Live! 10/30/1988
Jenkins Band the Game

Juices of Brazil Latin Jazz Long Road 1/01/2003 White 6/10/2005

We’ve solved the problem of the repeating group, and because no at-
tribute contains more than one value, this table is in 1NF. However, we’ve
introduced a much bigger problem: what if an artist has more than two al-
bums? Do we keep adding two attributes for each album that any artist re-
leases? In addition to the obvious problem of adding attributes to the
entity, in the physical implementation we are wasting a great deal of space
for each artist who has only one album. Also, querying the resultant table
for album names would require searching every album name column,
something that is very inefficient.

If this is the wrong way, what’s the right way? Take a look at Tables 4.3
and 4.4.

Table 4.3 The Artists

ArtistName Genre

The Awkward Stage Rock

Girth Metal

Wasabi Peanuts Adult Contemporary Rock

The Bobby Jenkins Band R&B

Juices of Brazil Latin Jazz

What Is Normalization? 83

Table 4.4 The Albums

AlbumName ReleaseDate ArtistName

White 6/10/2005 Juices of Brazil

Home 10/01/2006 The Awkward Stage

On The Sea 5/25/1997 Girth

Spicy Legumes 11/12/2005 Wasabi Peanuts

Running the Game 7/27/1985 The Bobby Jenkins Band

Live! 10/30/1988 The Bobby Jenkins Band

Long Road 1/01/2003 Juices of Brazil

We’ve solved the problem by adding another entity that stores album
names as well the attribute that represents the relationship to the artist en-
tity. Neither of these entities has a repeating group, each attribute in both
entities holds a single value, and all of the previously mentioned query
problems have been eliminated. This database is now in 1NF and ready to
be deployed, right? Considering there are several other normal forms, we
think you know the answer.

Second Normal Form (2NF)
Second normal form (2NF) specifies that, in addition to meeting 1NF,
all non-key attributes have a functional dependency on the entire primary
key. A functional dependency is a one-way relationship between the pri-
mary key attribute (or attributes) and all other non-key attributes in the
same entity. Referring again to Table 4.3, if ArtistName is the primary key,
then all other attributes in the entity must be identified by ArtistName. So
we can say, “ArtistName determines ReleaseDate” for each instance in the
entity. Notice that the relationship does not necessarily hold in the reverse
direction; any genre may appear multiple times throughout this entity.
Nonetheless, for any given artist, there is one genre. But what if an artist
crosses over to another genre?

To answer that question, let’s compare 1NF to 2NF. In 1NF, we have
no repeating groups, and all attributes have a single value. However, in
1NF, if we have a composite primary key, it is possible that there are at-
tributes that rely on only one of the primary key attributes, and that can
lead to strange data manipulation anomalies. Take a look at Table 4.5, in

84 Chapter 4 Normalizing a Data Model

which we have solved the multiple genre problem. But we have added new
attributes, and that presents a new problem.

In this case, we have two attributes in the primary key: Artist Name
and Genre. If the studio decides to sell the Juices of Brazil albums in mul-
tiple genres to increase the band’s exposure, we end up with multiple in-
stances of the group in the entity, because one of the primary key attributes
has a different value. Also, we’ve started storing the name of each band’s
agent. The problem here is that the Agent attribute is an attribute of the
artist but not of the genre. So the Agent attribute is only partially depend-
ent on the entity’s primary key. If we need to update the Agent attribute
for a band that has multiple entries, we must update multiple records or
else risk having two different agent names listed for the same band. This
practice is inefficient and risky from a data integrity standpoint. It is this
type of problem that 2NF eliminates.

Tables 4.6 and 4.7 show one possible solution to our problem. In this
case, we can break the entity into two different entities. The original entity
still contains only information about our artists; the new entity contains in-
formation about agents and the bands they represent. This technique re-
moves the partial dependency of the Agent attribute from the original
entity, and it lets us store more information that is specific to the agent.

What Is Normalization? 85

Table 4.5 Artists: 1NF Is Met, but with Problems

Agent Agent
PK—Artist PK— Signed Primary Secondary
Name Genre Date Agent Phone Phone

The Awkward Stage Rock 9/01/2005 John Doe (777)555-1234 NULL

Girth Metal 10/31/1997 Sally Sixpack (777)555-6789 (777)555-0000

Wasabi Peanuts Adult 1/01/2005 John Doe (777)555-1234 NULL
Contempo-
rary Rock

The Bobby R&B 3/15/1985 Johnny (444)555-1111 NULL
Jenkins Band Jenkins

The Bobby Soul 3/15/1985 Johnny (444)555-1111 NULL
Jenkins Band Jenkins

Juices of Brazil Latin Jazz 6/01/2001 Jane Doe (777)555-4321 (777)555-9999

Juices of Brazil World Beat 6/01/2001 Jane Doe (777)555-4321 (777)555-9999

Table 4.6 Artists: 2NF Version of This Entity

PK—Artist Name PK—Genre SignedDate

The Awkward Stage Rock 9/01/2005

Girth Metal 10/31/1997

Wasabi Peanuts Adult Contemporary Rock 1/01/2005

The Bobby Jenkins Band R&B 3/15/1985

The Bobby Jenkins Band Soul 3/15/1985

Juices of Brazil Latin Jazz 6/01/2001

Juices of Brazil World Beat 6/01/2001

Table 4.7 Agents: An Additional Entity to Solve the Problem

Agent Agent
PK—Agent Name Artist Name PrimaryPhone SecondaryPhone

John Doe The Awkward Stage 555-1234 NULL

Sally Sixpack Girth (777)555-6789 (777)555-0000

Johnny Jenkins The Bobby Jenkins Band (444)555-1111 NULL

Jane Doe Juices of Brazil 555-4321 555-9999

Third Normal Form (3NF)
Third normal form is the form that most well-designed databases meet.
3NF extends 2NF to include the elimination of transitive dependencies.
Transitive dependencies are dependencies that arise from a non-key
attribute relying on another non-key attribute that relies on the primary
key. In other words, if there is an attribute that doesn’t rely on the primary
key but does rely on another attribute, then the first attribute has a transi-
tive dependency. As with 2NF, to resolve this issue we might simply move
the offending attribute to a new entity. Coincidentally, in solving the 2NF
problem in Table 4.7, we also created a 3NF entity. In this particular case,
AgentPrimaryPhone and AgentSecondaryPhone are not actually attributes
of an artist; they are attributes of an agent. Storing them in the Artists en-
tity created a transitive dependency, violating 3NF.

The differences between 2NF and 3NF are very subtle. 2NF deals
with partial dependency, and 3NF with transitive dependency. Basically, a

86 Chapter 4 Normalizing a Data Model

partial dependency means that attributes in the entity don’t rely entirely
on the primary key. Transitive dependency means that attributes in the
entity don’t rely on the primary key at all, but they do rely on another
non-key attribute in the table. In either case, removing the offending at-
tribute (and related attributes, in the 3NF case) to another entity solves the
problem.

One of the simplest ways to remember the basics of 3NF is the popu-
lar phrase, “The key, the whole key, and nothing but the key.” Because the
normal forms are nested, the phrase means that 1NF is met because there
is a primary key (“the key”), 2NF is met because all attributes in the table
rely on all the attributes in the primary key (“the whole key”), and 3NF is
met because none of the non-key attributes in the entity relies on any other
non-key attributes (“nothing but the key”). Often, people append the
phrase, “So help me Codd.” Whatever helps you keep it straight.

Boyce-Codd Normal Form (BCNF)
In certain situations, you may discover that an entity has more than one po-
tential, or candidate, primary key (single or composite). Boyce-Codd nor-
mal form simply adds a requirement, on top of 3NF, that states that if any
entity has more than one possible primary key, then the entity should be
split into multiple entities to separate the primary key attributes. For the
vast majority of databases, solving the problem of 3NF actually solves this
problem as well, because identifying the attribute that has a transitive de-
pendency also tends to reveal the candidate key for the new entity being
created. However, strictly speaking, the original 3NF definition did not
specify this requirement, so BCNF was added to the list of normal forms
to ensure that this was covered.

Fourth Normal Form (4NF) and Fifth Normal Form (5NF)
You’ve seen that 3NF generally solves most logical problems within data-
bases. However, there are more-complicated relationships that often ben-
efit from 4NF and 5NF. Consider Table 4.8, which describes an
alternative, expanded version of the Agents entity.

What Is Normalization? 87

Table 4.8 Agents: More Agent Information

PK— PK— PK—Artist Agent Agent
Agent Name Agency Name PrimaryPhone SecondaryPhone

John Doe AAA Talent The Awkward (777)555-1234 NULL
Stage

Sally Sixpack A Star Is Born Girth (777)555-6789 (777)555-0000
Agency

John Doe AAA Talent Wasabi Peanuts (777)555-1234 NULL

Johnny Jenkins Johnny The Bobby (444)555-1111 NULL
Jenkins Talent Jenkins Band

Jane Doe BBB Talent Juices of Brazil (777)555-4321 (777)555-9999

Specifically, this entity stores information that creates redundancy, be-
cause there is a multivalued dependency within the primary key. A multi-
valued dependency is a relationship in which a primary key attribute,
because of its relationship to another primary key attribute, creates multi-
ple tuples within an entity. In this case, John Doe represents multiple
artists. The primary key requires that the Agent Name, Agency, and Artist
Name uniquely define an agent; if you don’t know which agency an agent
works for and if an agent quits or moves to another agency, updating this
table will require multiple updates to the primary key attributes.

There’s a secondary problem as well: we have no way of knowing
whether the phone numbers are tied to the agent or tied to the agency. As
with 2NF and 3NF, the solution here is to break Agency out into its own
entity. 4NF specifies that there be no multivalued dependencies in an en-
tity. Consider Tables 4.9 and 4.10, which show a 4NF of these entities.

TABLE 4.9 Agent-Only Information

PK— Agent Agent
Agent Name PrimaryPhone SecondaryPhone Artist Name

John Doe (777)555-1234 NULL The Awkward Stage

Sally Sixpack (777)555-6789 (777)555-0000 Girth

John Doe (777)555-1234 NULL Wasabi Peanuts

Johnny Jenkins (444)555-1111 NULL The Bobby Jenkins Band

Jane Doe (777)555-4321 (777)555-9999 Juices of Brazil

88 Chapter 4 Normalizing a Data Model

Table 4.10 Agency Information

PK—Agency AgencyPrimaryPhone

AAA Talent (777)555-1234

A Star Is Born Agency (777)555-0000

AAA Talent (777)555-4455

Johnny Jenkins Talent (444)555-1100

BBB Talent (777)555-9999

Now we have a pair of entities that have relevant, unique attributes
that rely on their primary keys. We’ve also eliminated the confusion about
the phone numbers.

Often, databases that are being normalized with the target of 3NF end
up in 4NF, because this multivalued dependency problem is inherently ob-
vious when you properly identify primary keys. However, the 3NF version
of these entities would have worked, although it isn’t necessarily the most
efficient form.

Now that we have a number of 3NF and 4NF entities, we must relate
these entities to one another. The final normal form that we discuss is fifth
normal form (5NF). 5NF specifically deals with relationships among
three or more entities, often referred to as tertiary relationships. In 5NF,
the entities that have specified relationships must be able to stand alone as
individual entities without dependence on the other relationships.
However, because the entities relate to one another, 5NF usually requires
a physical entity that acts as a resolution entity to relate the other entities
to one another. This additional entity has three or more foreign keys (based
on the number of entities in the relationship) that specify how the entities
relate to one another. This is how many-to-many relationships (as defined
in Chapter 2) are actually implemented. Thus, if a many-to-many relation-
ship is properly implemented, the database is in 5NF.

Frequently, you can avoid the complexity of 5NF by properly imple-
menting foreign keys in the entities that relate to one another, so 4NF plus
these keys generally avoids the physical implementation of a 5NF data
model. However, because this alternative is not always realistic, 5NF is de-
fined to help formalize this scenario.

What Is Normalization? 89

Determining Normal Forms

As designers and developers, we are often tasked with creating a fresh data
model for use by a new application that is being developed for a specific
project. However, in many cases we are asked to review an existing model
or physical implementation to identify potential performance improve-
ments. Additionally, we are occasionally asked to solve logic problems in
the original design. Whether you are reviewing a current design you are
working on or evaluating another design that has already been imple-
mented, there are a few common steps that you must perform regardless
of the project or environment. One of the very first steps is to determine
the normal form of the existing database. This information helps you iden-
tify logical errors in the design as well as ways to improve performance.

To determine the normal form of an existing model, follow these steps.

1. Conduct requirements interviews.
As with the interviews you conduct when starting a fresh design, it
is important to talk with key stakeholders and end users who use
the application being supported by the database. There are two
key concepts to remember. First, do this work before reviewing
the design in depth. Although this may seem counterintuitive, it
helps prevent you from forming a prejudice regarding the existing
design when speaking with the various individuals involved in the
project. Second, generate as much documentation for this review
as you would for a new project. Skipping steps in this process will
lead to poor design decisions, just as it would during a new project.

2. Develop a basic model.
Based on the requirements and information you gathered from the
interviews, construct a basic logical model. You’ll identify key enti-
ties and their relationships, further solidifying your understanding
of the basic database design.

3. Find the normal form.
Compare your model to the existing model or database. Where are
the differences? Why do those differences exist? Remember not to
disregard the design decisions in the legacy database. It’s impor-
tant to focus on those differences, because they may stem from
specific denormalization steps taken during the initial design, or

90 Chapter 4 Normalizing a Data Model

they may exist because of information not available to the original
designer. Specifically, identify the key entities, foreign key rela-
tionships, and any entities and tables that exist only in the physical
model that are purely for relationship support (such as many-to-
many relationships). You can then review the key and non-key at-
tributes of every entity, evaluating for each normal form. Ask
yourself whether or not each entity and its attributes follow the
“The key, the whole key, and nothing but the key” ideal. For each
entity that seems to be in 3NF, evaluate for BCNF and 4NF. This
analysis will help you understand to what depth the original design
was originally done. If there are many-to-many relationships, en-
sure that 5NF is met unless there is a specific reason that 5NF is
not necessary.

Identifying the normal form of each entity in a database should be
fairly easy once you understand the normal forms. Make sure to consider
every attribute: does it depend entirely on the primary key? Does it de-
pend only on the primary key? Is there only one candidate primary key in
the entity? Whenever you find that the answer to these questions is no, be
sure to look at creating a separate entity from the existing entity. This prac-
tice helps reduce redundancy and moves data to each element that is spe-
cific only to the entity that contains it.

If you follow these basic steps, you’ll understand what forms the data-
base meets, and you can identify areas of improvement. This will help you
complete a thorough review—understanding where the existing design
came from, where it’s going, and how to get it there. As always, document
your work. After you have finished, future designers and developers will
thank you for leaving them a scalable, logical design.

Denormalization

Generally, most online transactional processing (OLTP) systems will
perform well if they’ve been normalized to either 3NF or BCNF. However,
certain conditions may require that data be intentionally duplicated or that
unrelated attributes be combined into single entities to expedite certain
operations. Additionally, online analytical processing (OLAP) systems,
because of the way they are used, quite often require that data be denor-
malized to increase performance. Denormalization, as the term implies,

Denormalization 91

is the process of reversing the steps taken to achieve a normal form. Often,
it becomes necessary to violate certain normalization rules to satisfy the
real-world requirements of specific queries. Let’s look at some examples.

In data models that have a completely normalized structure, there
tend to be a great many entities and relationships. To retrieve logical sets
of data, you often need a great many joins to retrieve all the pertinent in-
formation about a given object. Logically this is not a problem, but in the
physical implementation of a database, joins tend to incur overhead in
query processing time. For every table that is joined, there is usually a cost
to scan the indexes on that table and then retrieve the matching data from
each object, combine the resulting data, and deliver it to the end user (for
more on indexes and query optimization, see Chapter 10).

When millions of rows are being scanned and tens or hundreds of rows
are being returned, it is costly. In these situations, creating a denormalized
entity may offer a performance benefit, at the cost of violating one of the
normal forms. The trade-off is usually a matter of having redundant data,
because you are storing an additional physical table that duplicates data
being stored in other tables. To mitigate the storage effects of this tech-
nique, you can often store subsets of data in the duplicate table, clearing it
out and repopulating it based on the queries you know are running against
it. Additionally, this means that you have additional physical objects to
maintain if there are schema changes in the original tables. In this case, ac-
curate documentation and a managed change control process are the only
practices that can ensure that all the relevant denormalized objects stay in
sync.

Denormalization also can help when you’re working on reporting ap-
plications. In larger environments, it is often necessary to generate reports
based on application data. Reporting queries often return large historical
data sets, and when you join various types of data in a single report it in-
curs a lot of overhead on standard OLTP systems. Running these queries
on exactly the same databases that the applications are trying to use can re-
sult in an overloaded system, creating blocking situations and causing end
users to wait an unacceptable amount of time for the data. Additionally, it
means storing large amounts of historical data in the OLTP system, some-
thing that may have other adverse effects, both internally to the database
management system and to the physical server resources.

Denormalizing the data in the database to a set of tables (or even to a
different physical database) specifically used for reporting can alleviate the

92 Chapter 4 Normalizing a Data Model

pressure on the primary OLTP system while ensuring that the reporting
needs are being met. It allows you to customize the tables being used by
the reporting system to combine the data sets, thereby satisfying the
queries being run in the most efficient way possible. Again, this means in-
curring overhead to store data that is already being stored, but often the
trade-off is worthwhile in terms of performance both on the OLTP system
and the reporting system.

Now let’s look at OLAP systems, which are used primarily for decision
support and reporting. These types of systems are based on the concept of
providing a cube of data, whereby the dimensions of the cube are based
on fact tables provided by an OLTP system. These fact tables are derived
from the OLTP versions of data being stored in the relational database.
These tables are often denormalized versions, however, and they are opti-
mized for the OLAP system to retrieve the data that eventually is loaded
into the cube. Because OLAP is outside the scope of this book, it’s enough
for now to know that if you’re working on a system in which OLAP will be
used, you will probably go through the exercise of building fact tables that
are, in some respects, denormalized versions of your normalized tables.

When identifying entities that should be denormalized, you should rely
heavily on the actual queries that are being used to retrieve data from these
entities. You should evaluate all the existing join conditions and search ar-
guments, and you should look closely at the data retrieval needs of the end
users. Only after performing adequate analysis on these queries will you be
able to correctly identify the entities that need to be denormalized, as well
as the attributes that will be combined into the new entities. You’ll also
want to be very aware of the overhead the system will incur when you de-
normalize these objects. Remember that you will have to store not only the
rows of data but also (potentially) index data, and keep in mind that the
size of the data being backed up will increase.

Overall, denormalization could be considered the final step of the nor-
malization process. Some OLTP systems have denormalized entities to im-
prove the performance of very specific queries, but more than likely you
will be responsible for developing an additional data model outside the ac-
tual application, which may be used for reporting, or even OLAP. Either
way, understanding the normal forms, denormalization, and their implica-
tions for data storage and manipulation will help you design an efficient,
logical, and scalable data model.

Denormalization 93

Summary

Every relational database must be designed to meet data quality, perform-
ance, and scalability requirements. For a database to be efficient, the data
it contains must be maintained in a consistent and logical state.
Normalization helps reveal design requirements that remove potential
data manipulation anomalies.

However, strict normalization must often be balanced against special-
ized query needs and must be tested for performance. It may be necessary
to denormalize certain aspects of a database to ensure that queries return
in an acceptable time while still maintaining data integrity. Every design
you work on should include phases to identify normal forms and a phase to
identify denormalization needs. This practice will ensure that you’ve re-
moved data consistency flaws while preserving the elements of a high-
performance system.

This completes Part I, which has laid the foundation for building an ef-
fective data model. Part II begins with Chapter 5, Requirements Gather-
ing, which launches the overall business process of designing and
deploying a data model.

94 Chapter 4 Normalizing a Data Model

P A R T I I

BUSINESS
REQUIREMENTS

■ Chapter 5 Requirements Gathering

■ Chapter 6 Interpreting Requirements

This page intentionally left blank

C H A P T E R 5

REQUIREMENTS GATHERING

It’s likely that you are reading this book either because you’ve been given
a project that will make you responsible for building a data model, or you
would like to have the skills necessary to get a job doing this type of work.
(Or perhaps you are reading this book for its entertainment value, in which
case you should seriously consider seeking some sort of therapy.)

To explain the importance of bringing your customers into the design
process, we like to compare data model design to automobile engine de-
sign. Knowing how to design an automobile engine is not something that
many people take up as a passing fancy; if you learn how to design them,
it’s a good bet that you plan to make a career of it. There is a great deal of
focus on the technical details: how the engine must run, what parts are
necessary, and how to optimize the performance of the engine to meet the
demands that will be placed on it. However, there is no way to know what
those demands will be without knowing the type of automobile in which
the engine will be placed. This is also true of data models; although the log-
ical model revolves around the needs of the business, the database will be
largely dependent on the application (or applications) that will load, re-
trieve, and allow users to manipulate data.

When you’re gathering requirements, you must keep both of these fac-
tors in mind. When you’re building a new data model, the single most im-
portant thing to know is why, and for whom, you are designing the data
model. This requires extensive research with the users of the application that
will eventually be the interface to the database, as well as a review of any ex-
isting systems (whether they are manual processes or automated processes).

It’s also important to effectively document the information you’ve
gathered and turn it into a formal set of requirements for the data model.
In turn, you’ll need to present the information to the key project stake-
holders so that everyone can agree on the purpose, scope, and key deliver-
ables before design and development begin.

In this chapter, we discuss the key steps involved in gathering require-
ments for a project, as well as the kinds of data to look for and some

97

samples of the kinds of documentation you can use. Then, in Chapter 6, we
discuss the compilation and distillation of the required data into design
requirements.

Requirements Gathering Overview

The key to effectively gathering requirements that lead to good design is
to have a well-planned, detailed gathering process. You should be able to
develop and follow a methodology that includes repeatable processes and
standardized documents so that you can rely on the process no matter
which project you are working on. This approach allows you to focus on the
quality of the data being gathered while maintaining a high level of effi-
ciency. No one wants to pay a consultant or designer to relearn this phase
of design; you should be comfortable walking into any situation, knowing
that this step of the process will be smooth sailing. Because you’ll talk to a
number of the key stakeholders during this phase, they need to get a sense
of confidence in your process. This confidence will help them buy in to the
design you eventually present.

The next several sections outline the kinds of data you need to gather,
along with possible methods for gathering that data. We also present sam-
ple questions and forms that you can use to document the information you
gather from the users you talk with. In the end, you should be able to
choose many of these methods, forms, and questions to build your own
process, one you can reuse for your design projects.

Gathering Requirements Step by Step

There are four basic ways to collect requirements for a project: conduct-
ing user and stakeholder interviews, observing users, examining existing
processes, and building use cases. Each of these methods provides insight
into what is actually needed in the data model.

Conducting Interviews
Arguably the most used information gathering technique is the interview.
It’s natural; when you want to know something, usually you go ask the per-
son you think can answer the question. So, when designing a new applica-

98 Chapter 5 Requirements Gathering

tion, developers usually start with the individuals who use the current ap-
plication (or manual process). A developer can quickly gain valuable in-
sight into the existing processes as well as existing problems that the new
application may be able to solve. The same thing is true with data model-
ing; the only difference may be that you will likely develop the data model
in conjunction with an application, meaning that you will need to accom-
pany the application developers on interviews with business users. It’s also
very likely that you will need to conduct slightly more detailed technical in-
terviews with the application developer to identify the application’s needs
for data storage, manipulation, and retrieval.

Interviews should be conducted after the initial kickoff of the project,
before any design meetings take place. In fact, it’s a good idea to begin
gathering a list of the candidates to be interviewed at the project kickoff,
because that meeting will have a number of high-level managers who can
identify the people who can give you the necessary information.

Key Stakeholders
Often the process of selecting individuals to be interviewed is equal parts
political and technical. It’s important to identify the people who can have
the most insightful information on existing business processes, such as
frontline employees and first-level managers. Usually, these are the end
users of the application being built, and the primary source and destination
of the data from a usage standpoint.

Additionally, it’s a good idea to include other resources, such as ven-
dors, customers, or business analysts. These people can provide input on
how data is used by all facets of the business (incoming and outgoing) and
offer a perspective on the challenges faced by the business and the goals
being set for the proposed application.

Including people from all these groups will also help ensure that as
many types of users as possible have input into the design process, some-
thing that increases the likelihood that they will buy in to the application
design. Omitting any individual or group that is responsible for a signifi-
cant portion of the business can lead to objections being raised late in the
design process. This can have a derailing effect on the project, leaving
everyone feeling that the project is in trouble.

When you select a list of potential interviewees, be aware that your ini-
tial list will likely be missing key people. As part of the interviewing
process, it’s very likely that you’ll discover the other people who should be
interviewed to gain deeper insight into specific processes. Be prepared to

Gathering Requirements Step by Step 99

conduct multiple rounds of interviews to cover as much of the business as
possible.

Sample Questions and Forms
Every project varies in size, scope, requirements, and deliverables. For
small or medium-size projects, there may be four or five business users to
interview. In some situations, however, you may have an application that
has numerous facets or numerous phases, or you may need to design vari-
ous data models to support related applications. In this situation, there may
be dozens of people to interview, so it may be more efficient to draft a se-
ries of questionnaires that can help you gather a large portion of the data
you’ll need. You can then sort the responses, looking for individuals whom
you may need to schedule in-person interviews with, to seek clarification
or to determine whether there is more information to be shared.

Whether you use a questionnaire or conduct good old-fashioned in-
person interviews, you’ll need to build a list of questions to work from. To
get an idea of the type of questions that should be asked, look at Table 5.1.

Table 5.1 Sample Questions for Requirements Gathering
Interviews and Questionnaires

Question Purpose Candidate Type

What is your job role? Identify the perspective of the All
candidate.

How many orders do you process Gain an idea of the workload. Data entry personnel
daily/weekly/monthly?

How do customers place orders? Understand how data is input Customer service personnel
into the system.

What information do you need Understand any information users Fulfillment employees
that the current system does not are missing or may be gathering
provide? outside the existing process.

What works well in the current Gain insight into work-flow Employees, managers
system? What could be improved? enhancements.

Please explain your data entry Understand the existing process. Employees
process.

How do you distribute the Understand ancillary data needs. Managers
workload?

Notice that these questions tend to fall into one of two categories:
open-ended questions and closed-ended questions. Open-ended ques-

100 Chapter 5 Requirements Gathering

tions, such as, “What works well in the current system?” give the intervie-
wee room to provide all relevant information. Conversely, closed-ended
questions tend to provide process-oriented information. Both types of
questions provide relevant data. Both types should be included in in-
person interviews as well as questionnaires. However, there’s one thing to
remember when using a questionnaire: Interviewees have no one to ask for
clarification when filling out a questionnaire. Make your questions clear
and concise; this often means that you include more closed-ended ques-
tions. It may be necessary to revisit the respondents to ask the open-ended
questions and to obtain clarification on the questionnaires.

As interviews are conducted and questionnaires are returned, you
need to document and store the information for later use. You may be
gathering information from various types of sources (interviews, question-
naires, notes, etc.), so even if you don’t use a questionnaire, consider typ-
ing up a document that lists the questions you’ll be asking. This will help
ensure that you ask the same (or similar) questions of each interviewee. It
also means that when you start analyzing the responses, you’ll be able to
quickly evaluate each sheet for the pertinent information (in Chapter 6 we
discuss how to recognize the key data points). The benefit of this practice
is that if you need to switch from doing in-person interviews to using ques-
tionnaires, you’ll already have a standard format for the questions and
answers.

When you’re working in conjunction with application developers (un-
less of course you are the application developer), they will ask most of
these questions. However, as the data modeler you should be a part of this
process in order to gain an understanding of how the data will be used and
to have a better sense of what the underlying logical structure should look
like. If you aren’t conducting interviews (or if they’ve already taken place),
ask for copies of the original responses or notes. Then work with the ap-
plication developers to extract the information specific to the data model.

Observation
In addition to interviewing, observing the current system or processes may
be one of the most important requirements gathering activities. For any-
one involved in designing an application, it’s vital to understand the work
that must be accomplished and recognize how the organization is currently
doing that work (and whether or not workers are doing it efficiently). It’s
easy for members of an application design team to let their own ideas
of how the work “should” be done affect their ability to develop a useful

Gathering Requirements Step by Step 101

application. Observing the workers actually doing their work will give you
the necessary perspective on what must be done and how to improve the
lives of the employees, compared with using the coolest new technology or
technique simply because it’s available.

Often, observation can be included in the interview time; this helps
minimize disruption and gives workers the opportunity to step through
their processes, something that may lead to more thorough information in
the interview. However, it’s a good idea to conduct interviews before ob-
servation, because observation is a good way to evaluate the validity of the
information gathered during the interviews, and it may also clear up any
confusion you may have about a given process. Either way, there are a few
key questions you’ll need to answer for yourself during observation to help
ensure that you haven’t missed anything that is important to the design of
the data model.

■ What data is being collected or input?
■ Is there duplication of data? Are workers inputting the same data

multiple times in different fields?
■ Is any data being moved from one system to another (other than

manual input to an application)? For example, are workers copying
data from one application to another via cut and paste?

Each of these questions will help you gain insight into what the current
work flow is and where problems may exist in the process. For example, if
users frequently copy data from one application (or spreadsheet) to an-
other, there may be an opportunity to consolidate data sources. Or, in the
case of an existing database, there may be issues with relationships that re-
quire a single piece of data be put into multiple locations. This kind of ob-
servation will give you hints of aspects of the process that need more
investigation or ideas for designing a new process (supported by your data
model) that will reduce the workload on employees.

Finally, you should observe multiple users who have the same job func-
tion. People tend to behave differently when they are being watched than
when they are going about their business unsupervised. People tend to de-
velop shortcuts or work around certain business rules because they feel it
is more effective to do so. Understanding these shortcuts will help you un-
derstand what is wrong in the current process.

When you conduct an observation, interrupt as little as possible; it may
even be best to note any questions you have and do a post-observation in-

102 Chapter 5 Requirements Gathering

terview for clarification. In any case, be conscious that what you see may
not be what you get; if you find that observation data and interview data
conflict, more analysis and investigation are necessary.

Previous Processes and Systems
Frequently, when a developer has been engaged to create an application,
it is because either an existing manual process needs some degree of au-
tomation or an existing application no longer meets the needs of the busi-
ness. This means that in addition to the techniques we’ve talked about so
far, you need to evaluate the existing process to truly understand the di-
rection the new application should take. For the data modeler, it’s impor-
tant to see how the company’s data is being generated, used, and stored.
Additionally, you’ll want to understand the quality of the data and develop
ways to improve it.

Manual Systems
In a manual process or system (no computer applications being used), the
first order of business is to acquire copies of any and all business process
documents that may have been created. These include flowcharts, instruc-
tion sheets, and spreadsheets—any document that outlines how the man-
ual processes are conducted. Additionally, you need sample copies of all
forms, reports, invoices, and any other documents being used. You need to
analyze these forms to determine the kind of data they are collecting and
the ways they are being used. In addition to blank copies, it is helpful to
acquire copies of forms that contain actual data. Together, these docu-
ments should give you a comprehensive view of how the employees con-
duct business on a daily basis, at least on paper.

You should also work with employees and management during the in-
terview process to understand how the documents are generated, updated,
and stored. This practice will give you insight into which data is considered
long term and which is considered short term. You then need to compare
the documents against the information you received during interviews and
observation. If you find discrepancies between the forms and their use,
you’ll know that there is an opportunity to improve the work flow, and not
only automate it. Also, you may identify documents that are rarely (or
never) used, or documents that have information written in (because the
form contains no relevant data field); these are also clear indications of
problems with the existing process that you can solve in the new system.

Gathering Requirements Step by Step 103

Existing Applications
In many ways, redesigning (or replacing) an existing application can be more
difficult than building a new application to replace a manual process. This is
because there is an existing work flow built around the application, not to
mention the data that has already been stored. Often, the new system will
need to mimic certain behaviors of the existing system while changing the
actual work under the hood. Also, you need to understand the data being
stored and figure out a way to migrate the existing data to the new system.

In addition to formal applications, you should take this time to look for
spreadsheets or end user database solutions, such as Microsoft Access, that
may exist in the organization. Often, data stored on users’ computers is just
as important as something that makes it into an enterprise solution. These
“islands of information” exist in the users’ domain of control, and typically
this kind of information is hard to pry away from them without manage-
ment intervention.

To analyze and understand the existing application from a data model-
ing standpoint, you should acquire copies of any process flow documents,
data models, data dictionaries, and application documentation (everything
from the original requirements documents to training documents). If noth-
ing else, generate (or ask for) schema definitions for all existing physical
databases, including all tables, views, stored procedures, functions, and so
on. Try to gather screen captures of any application windows that require
user data input, as well as screens that output data to the user. Also, you’ll
need the actual code being used by the application as it pertains to data ac-
cess. All these documents will help you understand how the application is
manipulating data; in some cases, there may be specific logic embedded in
the application that can be handled in the database. Knowing this ahead of
time will help prevent confusion during application design.

In addition, you need to look at the application from a functionality
standpoint. Does it do what the customer wants it to do, or are there gaps
in its feature set? This review can be helpful in determining the processes
that you want to carry forward to the new system, processes that should be
dropped, and processes that may be missing from the current system and
need to be added. These existing applications may also provide you with
other system requirements that will be implemented outside the data
model, such as

■ Access control and security requirements
■ Data retention requirements
■ Process work flow

104 Chapter 5 Requirements Gathering

You also need to compare the interview and observation notes against
the use of the existing application. Are there manual processes that support
the application? In other words, do users have to take extra steps to
make the application function or to add or change data already stored in
the application? Certain user actions—such as formatting phone numbers
in a field that contains a series of numbers with no format—indicate prob-
lems in the existing system that could be fixed in the database itself.

Use Cases
If you’re familiar with common software engineering theory, you know the
concept of use cases. Use cases describe various scenarios that convey
how users (or other systems) will interact with the system that is being de-
signed to achieve specific goals or business functions. Generally, use cases
avoid highly technical language in favor of natural language explanations of
the various parts of the system in each scenario. This allows business ana-
lysts, management, and other nontechnical stakeholders to understand
what the system is doing and how it helps the business succeed.

From a design standpoint, the process of building use cases provides
deeper insight into what is required of the system. Use cases are logical
models in that they are concerned only with tasks that need to be com-
pleted and the order in which they must be done, without describing how
they are implemented in the system. To build effective use cases, it is es-
sential to work with various end users who will be interacting with the sys-
tem once it is built. They will help provide, via the techniques we’ve talked
about so far, low-level detail on the actual work that needs to be accom-
plished, without being distracted by technical implementation details.

To effectively present a new design, you often need to develop at least
two kinds of use cases: one for the existing process, and one for the new
process. This practice helps nontechnical stakeholders understand the dif-
ferences and reassures them that the value from the current system will be
carried forward to the new system.

A number of references are available that can give you detailed infor-
mation on developing use cases; for our purposes, we present a template
that covers most aspects of use case description, along with a simple use
case diagram. Feel free to use these in your project work.

Now let’s take a look at building a sample use case.

Gathering Requirements Step by Step 105

Use Case Descriptions
A use case description is the basic document that outlines, at a high
level, the process that the use case describes. From the description you can
build a use case diagram that lays out the entire process (or set of
processes) associated with a system. The use case description generally
consists of all the information needed to build the use case diagram, but in
a text-based format. See Figure 5.1 for a sample use case description of a
process involving an operator booking a conference call for a customer.

This document contains several types of information. Let’s break it
down into sections, field by field.

■ Overview information
The first six boxes describe what the use case documents, as well as
general administrative overhead for the document itself.
■ Use case name

This is the name of the specific use case being described. The
name should be the same on both the description document and
the use case diagram (which we discuss a bit later).

■ ID
This is a field that can be used to help correlate documents dur-
ing the design process.

■ Priority
In some scenarios, it may be necessary to prioritize use cases (and
their corresponding processes) to help determine the importance
of certain processes over others.

■ Principal
This is usually the trigger of the use case; it’s generally a customer
(internal or external), another process, or a business-driven deci-
sion. This is the thing that causes the process documented by this
use case to be executed. (In some references, the principal is
called an actor.)

■ Use case type
There are two types of use cases and two levels of use cases.
Overview use cases contain very high-level, basic information
about a process. In contrast, detailed use cases contain as much
information as possible about the process. You can also classify use
cases by the type of information they contain. Essential use cases
contain information about the general steps executed within the
process, and real use cases describe the specific implementation

106 Chapter 5 Requirements Gathering

Gathering Requirements Step by Step 107

Use case name: Make reservation ID: 11 Priority: High

laitnessE,deliateD:epytesacesUremotsuC:palicnirP

Stakeholders: Customer - Wants to make a reservation, or change an existing reservation

Reservationist - Wants to provide customer with service.

Description: This use case describes how the business makes a reservation for a conference call, as well as describing how the

business makes changes to an existing reservation.

Trigger: Customer calls into the reservations line and asks to make a reservation or change an existing reservation.

Type: External

Relationships:

 Include: Manage Bridge Lines

 Extend: Create Customer Record

esacesuesaB:noitazilareneG

Flow of Events:
1. Customer calls the reservations line.

2. Customer uses interactive voice response system to choose “Make or Change Reservation.”
3. Customer provides Reservationist with name, address, company name, and ID number.

 a. If no ID number, then Reservationist executes Create Customer Record use case.
4. Reservationist asks if Customer would like to make a new reservation, change an existing reservation, or cancel a reservation.

 a. If Customer wants to make a new reservation, then S-1; new reservation subflow is performed.
 b. If Customer wants to make a change to a reservation, then S-2; modify reservation subflow is performed.

 c. If Customer wants to cancel a reservation, then S-3; cancel reservation subflow is performed.
5. Reservationist provides confirmation of reservation or change to Customer.

Subflows:
S-1: New Reservation

 1. Reservationist asks for desired date, time, and number of participants for conference call.
 2. Reservationist executes Manage Bridge Lines use case. If no lines available found, suggest alternate availability.

 3. Reservationist books conference call after reaching agreement with Customer; gives Conference Call Number.
S-2: Modify Reservation

 1. Reservationist asks for Conference Call Number.
 2. Reservationist locates existing reservation.

 3. Reservationist performs S-1 if changing time; S-3 if canceling.
S-3: Cancel Reservation

 1. Reservationist asks for Conference Call Number.
 2. Reservationist locates existing reservation.

 3. Reservationist cancels conference using Manage Bridge Lines use case.

FIGURE 5.1 Use case description

details of each step. For example, an essential use case might doc-
ument that a rental car company employee “matches available cars
to a customer”; the corresponding real use case documents that
the employee “uses a third-party application to review available in-
ventory by model to determine the best available vehicle based on
the customer’s request.”

■ Stakeholders
These are the individuals who have a tangible, immediate inter-
est in the process. In our example, a customer wants to reserve a
conference call, and a reservationist assists customers. In this
context, stakeholders are not those individuals who benefit from
the process in an ancillary way (such as the employees’ manager).
This list always includes the principal.

■ Description
The purpose of the process documented in the use case is to meet
the needs of the principal; the brief description is usually a single
statement that describes the process and how it meets that need.

■ Trigger
The trigger is simply a statement describing what it is that sets
this process in motion.

■ Type
A trigger can be an external trigger, meaning it is set in motion
by an external event, such a customer call. Or a trigger can be
temporal, meaning it is enacted because of a timed event or be-
cause of the passage of time, such as an overdue movie rental.

■ Relationships
The relationships explain how this use case is related to other use
cases, as well as users. There are three basic types of relationships
for use cases: include, extend, and generalization.
■ Include

This relationship describes which other use cases must be exe-
cuted in order for this use case to complete. Using this relation-
ship, it is possible to break down complex systems into individual,
related use cases. After design begins, this relationship makes it
easy to break the workload into smaller pieces, enabling multiple
teams to work on a single system simultaneously.

108 Chapter 5 Requirements Gathering

■ Extend
Most processes have optional behavior that is outside the “nor-
mal” course of events for that process. In our example, creating a
customer record is a process that only occasionally needs to exe-
cute within the context of making or modifying a reservation. So
the use case “Create Customer Record” is listed as an extension
of the current use case.

■ Generalization
In some cases, certain use cases inherit properties of other use
cases, or are child use cases. Whenever there is a more general
use case whose children inherit properties, there is a generaliza-
tion relationship between the use cases. In our example, the use
case is the parent use case. We look at a sample child use case a
little later.

■ Flow of Events
This section deals with the actual events that occur in the process—
the meat and potatoes. Be sure to document the majority of the
steps necessary to complete the process.
■ Subflows

Here’s where you document any branches in the process, to ac-
count for various actions that need to take place. Depending on
the level of detail you are putting into the use case, this section
may become quite lengthy. Be careful to note any use cases
whose Subflows section becomes too long; this indicates that you
may need separate use cases to break down the process.

You can choose to add other types of information, from the execution
time of the process to lists of prerequisites for the use case to be activated.
It may also be worthwhile, in the case of detailed use cases, to document
the data inputs and outputs. This will be particularly important to you as a
data modeler so that you can associate data movement with the processes
that will be built on top of the database.

Use Case Diagrams
Now that you have documented the process as a use case, you have the
building blocks necessary to create a use case diagram. A use case diagram
is a visual representation of how a system functions. Each process, or use

Gathering Requirements Step by Step 109

case, is shown in the diagram in relation to all the other use cases that make
up the system. Additionally, the diagram shows every person (principal)
and trigger to show how each use case is initiated.

Remember that a use case (and a use case diagram) is a very basic doc-
umentation of a system and its processes. As such, a use case diagram is a
general-use document and can seem almost overly simplified in compari-
son with the actual system. Its usefulness comes from relating the proc-
esses to one another and from giving nontechnical as well as technical
personnel a way to communicate about the system.

To expand on our use case description example, take a look at Fig-
ure 5.2, which describes the conference call system. Note that this diagram
conforms to the Unified Modeling Language (UML) specifications for use
case diagrams.

110 Chapter 5 Requirements Gathering

<<include>><<extend>>

Customer

Make Reservation

Run ConferenceBill Customer

Create Customer Record

OperatorFinance Analyst

Manage Bridge Lines

11

11

1 1

FIGURE 5.2 Use case diagram for conference call system

Unified Modeling Language

UML is a standards specification established and maintained by the Object
Management Group (OMG). UML establishes a common language that can be
used to build a blueprint for software systems. More information can be found at
the OMG Web site at www.omg.org.

This diagram lays out the individual relationships between each use
case in the conference call system. The use case we documented, “Make
Reservation,” is a base use case that includes the “Manage Bridge Lines”
use case, and it is extended by the functionality in the “Create Customer
Record” use case. Additionally, you can see that both the “Run Confer-
ence” and “Bill Customer” use cases inherit properties from the “Make
Reservation” use case. And finally, you can see the principals (or actors)
that trigger the use cases. This diagram, when combined with the use case
descriptions for each use case, can help everyone involved in the project
talk through the entire system with a common reference in place.

Remember that most projects have a great many of these diagrams. As
a data modeler, you’re responsible for understanding most these diagrams,
because most of them either input data into the system or retrieve and up-
date data already in the system. Thus, it is important to attend the use case
modeling meetings and to make sure to include your input into how each
system interacts with the company’s data.

Business Needs

In case it hasn’t been said enough in this book so far, now is a good time to
remind you: Applications, and their databases, exist only to meet the needs
of an enterprise, whether it’s a business, a school, or a nonprofit venture.
This means that one of the most important aspects of application design,
and the design of the application’s supporting database, is to develop a
strong understanding of the organization’s needs and to figure out how
your design will meet those needs.

To identify the business needs, you usually meet with the key stake-
holders. Usually, the organization has already identified a business need (or
needs) before initiating a development project. It is your job, however, to
identify the specific needs that are being addressed by the application that

Business Needs 111

www.omg.org

your data model will support, and to determine how your data model helps
meet those needs. During the initial round of project meetings, as well as
during interviews, listen for key words such as response time, reporting,
improve work flow, cut costs, and so on. These words and phrases are key
indicators that you are talking about the needs to be addressed by the proj-
ect. From a data modeling perspective, you may be responsible for imple-
menting the business logic enforcing certain rules about the data, or you
may be responsible for helping to determine supporting data (and objects)
that may not be immediately evident.

It’s critical that all your design decisions align with the end goal of the
project. Often, this means knowing the limitations of your technology and
understanding how that technology relates to the business.

Balancing Technical Limitations with Business Needs

Now that you’ve identified all the areas where your design can help the or-
ganization, it’s time to temper ambition with a touch of pragmatism. As
information technology and information systems specialists, we tend to fol-
low the latest and greatest in hardware, software, and design and develop-
ment techniques. A large part of our careers is based on our ability to learn
new technology, and we like to incorporate everything we’ve learned into
our projects. Similarly, businesspeople (owners, analysts, users) want their
applications to do everything, be everything, and solve every problem,
without ever throwing an error. Unfortunately, the temptation to use
everything we know to meet the highest expectations can lead to almost
uncontrollable scope creep in a design project.

To balance what can be done against what needs to be done, you need
to engage in a little bit of prioritization. Once you have the list of require-
ments, the data from the interviews, and so on, you need to decide which
tasks are central to the project and determine the priority of each task.

Gathering Usage Data

Now it’s time to look at the performance-related data you need in order to
successfully design a functional, scalable data model. Although it’s not
technically a part of the core data model design, it’s worthwhile to begin

112 Chapter 5 Requirements Gathering

collecting and understanding information that relates to how a database, in
its physical implementation, will perform. Initially, you should note any in-
formation gathered during the observation, interview, and use case phases
to determine how much data will be created and manipulated and how that
data will be stored. Additionally, if you are replacing an existing online sys-
tem, you’ll get an idea of how the current system performs and how that
will translate into the new system.

Reads versus Writes
When you are conducting user interviews and observations, be sure to note
the kinds of data manipulation taking place. Are users primarily inputting
data, or are they retrieving and updating existing data? How many times
does the same record get touched? Knowing the answers to questions like
these can help you get an idea of how the eventual application will handle
the data in your database.

For example, consider a project to redesign a work-flow application for
high school teachers who need to track attendance and grades. During
multiple observations with the teachers and administrators, you see teach-
ers inputting attendance for each student every day, but they may enter
grades only once a week. In addition to gathering information about what
data is collected and how users enter that data (in terms of data types and
so on), you note that they update attendance records often but update
grades less often.

In another observation, you see a school administrator running reports
on student attendance based on multiple criteria: daily, monthly, per stu-
dent, per department, and so on. However, they’ve told you they access
grades only on a quarterly basis (semester quarters—every eight weeks—
and not calendar quarters). Similarly, you’ve noted that the grades call for
a moderate number of writes in the database (on a weekly basis) and an
even lower number of reads. You now know that the attendance records
have a high number of writes but a lower number of reads. Again, this in-
formation may not necessarily affect design, but it helps you leverage cer-
tain specific features of SQL Server 2008 in the physical implementation
phase. In Chapters 9 and 10 we go into detail; for now, it’s enough to know
that gathering this information during the requirements gathering phase of
design is important for future use.

Gathering Usage Data 113

Data Storage Requirements
As with gathering read and write data, compiling some data storage re-
quirements early in design will help smooth the physical implementation.
Even during the design phase, knowing ahead of time how much data
you’ll be storing can affect some design decisions.

Let’s go back to the work-flow application for those high school teach-
ers. Table 5.2 shows the sample data being input for those attendance
records; we’ll call this the Attendance entity.

Table 5.2 Sample Data Being Input for Attendance Records

Field Name Data Type Description

StudentID Int Student identifier

Date Datetime Date for attendance record

Class char(20) Name of the class attended (or not)

TeacherID Int Teacher identifier

Note char(200) Notes about the entry (e.g., “tardy due to weather”)

Obviously, there are some assumptions being made here concerning
StudentID and TeacherID (being foreign keys to other entities). For now,
let’s focus on the data types that were chosen. As discussed in Chapter 3,
we know the amount of bytes each record in the physical table will occupy.
Here, we have 8 bytes of int data, 220 bytes of char data, and 8 bytes from
the datetime field. Altogether, we have 236 bytes per record. If we have
1,200 students in the school, for each date we have about 283,200 bytes, or
276.56K. The average school year is about 180 days; this is roughly 48MB
of data for a school year. What does this mean to us? The attendance data,
in and of itself, is not likely to be a storage concern. Now, apply this exer-
cise quickly to every entity that you are working on, and you’ll find roughly
how much data you’ll be storing.

Although this knowledge has huge value during implementation, you
may wonder why we’re talking about it now. Suppose that, during the de-
sign phase, you are given a last-minute requirement to change the identity
fields because the new student identifiers require a much longer field.
Now the stakeholders want an alphanumeric ID (for now, we ignore the
merits of such a decision). Suddenly, we’re storing a 12-character char field

114 Chapter 5 Requirements Gathering

for both of those two int fields. Substituting the new values, we end up
with 52MB of data for the same entity and time period. Although in this
case the difference is negligible, in other entities it could have a huge im-
pact. Knowing what the impact will be on those larger entities may drive
you to review the decision to change a data type before committing to it,
because it could have a significant effect in the physical implementation.

Again, most of this information will be more useful later in the project.
Remembering to gather the data (and compile and recompile it during ini-
tial design) is the important thing for now.

Transaction Requirements
This might be the most important type of performance-related data to ob-
tain during requirements gathering. You need to forecast the kind of trans-
action load your data model will need to support. Although the pure logical
design will be completely independent of SQL Server’s performance, it’s
likely that you will be responsible for developing and implementing the
physical database as well (or at least asked to provide guidance to the de-
velopment team). And as we discussed in Chapter 4, the degree of nor-
malization, and the number of entities, can lead to bulky physical
databases, resulting in poor query performance.

As with the other types of data being gathered, you glean this infor-
mation primarily from interviews, observations, and review of the existing
system. Generally, to start identifying the transaction load on your model,
you must identify pieces of information that relate to both transaction
speed and transaction load. For example, whenever there is a process in
place that requires a user to wait for the retrieval of data—such as a cus-
tomer service operator bringing up a customer record—you’ll need to un-
derstand the overall goal for the expediency of that record retrieval. Is
there a hard-and-fast business rule in place? For example, a web applica-
tion might need to reduce the amount of time a web user must wait for a
page to return with data, and therefore it would restrict how much time a
database query can take. Similarly, you’ll want to take notes on how many
users are expected to hit the database built from your model at any given
time. Will there be internal and external users? How many on average, and
how many during peak times? What is the expected number of users a year
from now? The answers to these questions will give you insight into per-
formance expectations.

Gathering Usage Data 115

Again, consider the example of our teacher work-flow application.
What if, instead of being designed for one school, the school board decides
that this application should span all schools in the district so that it could
centralize reporting and maintenance? Suddenly, the model you were de-
veloping for 200 users at a school with 1,200 students may need to support
1,200 users managing records for 7,200 students. Before, the response
times were based on application servers in a school interacting with data-
base servers in the same room. Now, there may be application servers all
over, or possibly at the central administration offices, and there may be
only one database server to support them all. However, the organization
still expects the same response time even though the application (and data-
base) will have to handle an increased load and latency. You will need to
compile and review this information during design to ensure that your
model will scale well. Do you need any additional entities or relationships?
Are there new attributes to existing entities? And, when physically imple-
mented, will your data model support the new requirements?

Summary

Gathering requirements is daunting and sometimes tedious, but it is a cru-
cial step in the design phase of a functional data model. The key is to
gather as much data as possible; documents, screen captures, code, spread-
sheets, interviews, observations, and use cases are all things you can use to
figure out exactly what the new design will be. Here we’ve presented some
techniques for gathering data. In the next chapter, we look at how to take
the volumes of data we’ve gathered and turn it into requirements that will
guide the design and development process for our fictitious company,
Mountain View Music.

116 Chapter 5 Requirements Gathering

C H A P T E R 6

INTERPRETING REQUIREMENTS

In Chapter 5, we looked at gathering the requirements of the business.
This process is similar to the process you go through whether you are
building a house, developing an application, or trying to plan a birthday
party. Much of what we look at is theory and can be applied in any of these
scenarios. Sure, we looked at a few topics specific to database design, but
the overall process is generic.

In this chapter, we get at the heart of database design; we look at how
you begin to shape the business requirements into a database model, and
eventually a physical database. We also get into the specifics of our make-
believe customer, Mountain View Music, by taking a look at its require-
ments and exploring how to turn them into a model.

Mountain View Music

Before we go further, let’s get an overview of Mountain View Music. It is
important that you understand the company we will be working with and
know how it is laid out; it will help you better understand the require-
ments as we talk about them. Again, this is a company that we made up out
of thin air.

We’ve tried to keep the numbers and the details as realistic as possible.
In fact, at one point we both sat down and actually discussed the company’s
warehousing operation in detail. We figured out the likely busy times and
came up with a staffing schedule that would make sense to cover the ship-
ment demand. We wanted to figure out how big the company is to help us
determine the transaction load to expect on the database. The scenario is
as real as we can make it; don’t be surprised if we go into the Internet mu-
sical equipment business after this book is complete.

Mountain View Music was founded in 1991 in Manitou Springs,
Colorado. The founder, Bill Robertson, is a passionate music lover with a
keen business sense. All through high school and college he participated in

117

music programs. Not only was he a musician, but also he provided leader-
ship help where he could. Eventually, Bill ended up with an MBA from
Colorado University, thus cementing his career as a music entrepreneur.

After it opened, it didn’t take long for Mountain View Music to become
popular with the locals. Customers from Manitou Springs, Colorado
Springs, and the surrounding areas loved the small shop’s atmosphere, and
they all got along with Bill.

Mountain View offered competitive prices, and the company had a line
on some hard-to-find items. Because of this, Mountain View received sev-
eral calls a day from customers who wanted to order products and have
them shipped to other parts of the state. In 1995, Bill decided to expand
the business to include mail orders. This move required a substantial in-
vestment in new employees, along with a warehouse from which to ship
products. The warehouse is located near downtown Colorado Springs. Just
as hoped, the mail order arm of Mountain View music took off, and soon
the company was processing about 500 orders per week. This may not
sound like a lot, but considering the average order was about $350, the
mail order arm was pulling in a little more than $170,000 per week.

The next logical step for a successful mail order company in the late
nineties was the big move to e-commerce. Mountain View played with de-
signing its own Web site and started working with a small development
company to achieve a more professional look. By 1999, the site was in full
swing, serving 600 to 700 orders per week. Much to the disappointment of
the local music community, the storefront in Manitou Springs was shut
down in 2000 because it was not as profitable as the online music store.

Despite some bumps in the road after the dot-com bubble burst,
Mountain View Music came through and is still running. At this point,
Mountain View Music has the typical problem you will see in formerly
small companies: a disjointed use of IT. Because the company started as a
small retail location, it started with everything on pen and paper. Since its
beginnings, a few computers have been brought in, and some of the com-
pany’s information has slowly migrated to spreadsheets and a few third-
party applications. Much of this information is redundant, and keeping
everything straight has become a bit daunting.

This is where we come into the picture. Mountain View has brought in
an outside consulting firm to help it redesign its systems. We are that firm’s
database designers. The project is a complete redesign of the current order
management systems. Mountain View wants a single application with a sin-
gle database that can manage its business. Because all the financial and ac-

118 Chapter 6 Interpreting Requirements

counting work is done by a third-party company, the new system will not
need to handle any financials beyond the details of the orders and pur-
chases the company makes. For the rest of this book, we focus on the
process of building and implementing this new database. Along the way we
look at some application integration points, but our focus is on the database
design.

Compiling Requirements Data

The first thing you must do after you have all the requirements is to com-
pile them into a usable set of information. Step 1 is to determine which of
the data you’ve received is useful and which isn’t. This can be tricky, and
often it depends on the scope of the project. If you’re building a new data-
base and designing a new application for your customer, you may find a lot
more data that is useful, but not to the database design. For example, cus-
tomers may tell you that the current system needs more fields from which
data can be cut and pasted. Although this is helpful data, it’s something that
the application architects and developers need to know about, and not
something that concerns a database designer.

Hopefully, on joint projects, everyone with a role in the project can get
together and sort through the requirements together and separate the
good from the bad and the ugly. We focus on the information that you, as
the database designer, really need to do your job. The rest of the data can
be set aside or possibly given to a different team.

Identifying Useful Information
What makes information useful to a database designer? In short, it’s any-
thing and everything that tells you about data, how data relates to other
data, or how data is used. This may sound a little oversimplified, but it is
often overlooked. You need to consider any piece of data that could end up
in the database. This means that you can leave no stone unturned. Also,
you may end up with additional requirements from application developers,
or even your own requirements, such as those that will ensure referential
integrity. These too are important pieces of information that you will
receive.

Here are examples of useful information you may receive:

Compiling Requirements Data 119

■ Interview descriptions of processes
■ Diagrams of current systems or databases
■ Notes taken during observation sessions
■ Lists that describe data that is required to meet a regulation
■ Business reports
■ Number estimates, such as sales per day or shipments per hour
■ Use case diagrams

This list certainly isn’t exhaustive, but it gives you a good idea of what
to look for in the requirements. Keep in mind that some information that
you need to keep may not directly affect the database design, but instead
will be useful for the database implementation. For example, you need in-
formation about data usage, such as how many orders the company han-
dles per day, or how many customers the company has. This type of
information probably won’t influence your design, but it will greatly affect
how you pick indexes and plan for data storage.

Also, be on the lookout for irrelevant information; for example, some
information gathered during user interviews doesn’t offer any real value.
Not all users provide helpful details when they are asked. To illustrate this
point, here is a funny anecdote courtesy of one of our tech editors. While
working on redesigning an application for a small college, he kept asking,
“How long can a name be?” The reply he received was, “An address label
is four inches wide.” This answer is not wrong, of course, but it’s not very
useful. Be very clear with your customers, and guide them toward the an-
swer you need; in this case, ask them how many letters a name can have.

One last note: Keep your eyes open for conflicting data. If you ask
three people about the ordering process and you get three different an-
swers, you may have stumbled upon a process that users do not fully un-
derstand. When this happens, you may need to sit down with the users,
their supervisors, or even upper management and have them decide how
the process should work.

Identifying Superfluous Information
Superfluous information is, by definition, extra or redundant information.
We won’t go as far as to call it useless, because it may be useful to other
groups or during other phases of design. Here, you are looking for anything
that doesn’t help to further define the data requirements. Anything that
has nothing to do with data, its usage, or relationships can probably be ig-

120 Chapter 6 Interpreting Requirements

nored. Don’t destroy this data, but set it aside and do not use it as one of
your main sources of information.

Here are a few examples of superfluous information you may receive
from your customers:

■ Application usage reports
■ Employee staffing numbers
■ Diagrams of office layout
■ Company history
■ Organization charts

Much of this type of data may help you in your endeavors, but it isn’t
really linked to data. However, some of these items may provide you with
information you will need when implementing the database. For example,
an org chart may be handy when you’re figuring out security. Remember
that the focus here is to find the data you need in order to design the data-
base model. Also, keep in mind that requirements gathering is an iterative
process, so don’t be afraid to go back to users for clarification. A piece of
information that seems to be useless could prove to be invaluable with a
little more detail.

Determining Model Requirements

After you have sorted through the requirements, you can start to put to-
gether your conceptual model. The conceptual model is a very high-level
look at the entities, their attributes, and the relationships between the en-
tities. The most important components here are the entities and their at-
tributes. You still aren’t thinking in terms of tables; you just need to look at
entities. Although you will start to look at the attributes that are required
for each entity, it isn’t crucial at this point to have every attribute nailed
down. Later, when you finish the conceptual model, you can go back to the
company and make sure you have all the attributes you need in order to
store the required data.

Interpreting User Interviews and Statements
The first thing you need to do is make a high-level list of the entities that
you think the data model needs. The two main places you will look are the
user interviews and any current system documentation you have available.

Determining Model Requirements 121

Keep in mind that you can interview users or have them write an overview
of the process. In some cases you may do both, or you may come back after
the fact and interview a user about an unclear statement.

The following statement comes from the write-up that Bill Robertson,
Mountain View Music owner and CEO, gave us regarding the company’s
overall business process.

Customers log on to our Web site and place an order, or call an employee
who places the order on the customers’ behalf. All orders contain the
customer information, the order detail, which has information about the
products, the quantities that the customer purchased, and the payment
method. When we receive the order into the system, the customer infor-
mation has already been checked and crucial bits, such as the customer’s
address, have been verified by the site. The first thing we do is process
the order items. We make sure that the products being purchased are in
stock and we place a hold on those products. If a product is not in stock,
we place that item or the entire order on back order, depending on the
customer’s preference. Products that are in stock have a hold placed on
them. Once the products are on hold, we process the payment for the
order. By law, once we accept payment, we must ship within 30 days.
This is why we make sure the product is on hold before we process the
payment. For payment, we take credit cards, gift cards, and direct bank
draft via an electronic check. After the payment has been cleared, we
send the order to the warehouse where is it picked, packed, and shipped
by our employees. We do this for about 1,000 orders per week.

This very brief overview gives us a lot of details about the type of data
that the company needs to store as well as how it uses that data. From this
we can start to develop an entity list for our conceptual model. Notice that
this is a pretty typical explanation that a user might give regarding a
process. What we like to see are clear and concise explanations without a
lot of fluff. That is exactly what the CEO has provided us here.

Modeling Key Words
Certain words that you see in the information provided you by your cus-
tomers will help you figure out the kinds of objects you should include in
the data model. There are four things to look for when examining key
words: entities, attributes, relationships, and usage detail (if any). Let’s look
at the kinds of key words that would lead us to find the data diamonds in
the rough.

122 Chapter 6 Interpreting Requirements

Entities Key Words
We look for nouns to help us find entities. Nouns are people, places, and
things. Most entities represent a collection of things, specifically physical
things that we work with. It is for this reason that nouns are a great identi-
fier of entities. Let’s say a user tells you that the company has several sites
and each site has at least ten employees. You can use the nouns to start an
entity list; in this case, the nouns are site and employees. You have now de-
termined that you will need a Site and an Employee entity in the data model.

Attribute Key Words
Like entities, attributes are described as nouns, but the key difference is
that an attribute does not describe more than a single piece of data. For ex-
ample, if a customer describes a vehicle, you will likely want to know more
about the information he needs about the vehicle. When a customer de-
scribes the vehicle identification number (VIN) for a vehicle, there isn’t
much more detail to be had. Vehicle is an entity, and VIN is an attribute.

When we look for attributes, we also need to look for applied owner-
ship of information. Words like own, have, contain, or belong are your
biggest clues that you might have a few attributes being described.
Ownership can describe a relationship when it’s ownership between two
entities, so make sure you don’t turn entities into attributes and vice versa.
Phrases like “Students have a unique student ID number” indicate that
students own student IDs, and hence a student ID is one attribute of a stu-
dent. You also need to look for phrases like, “For customers we track x, y,
and z.” Tracking something about an entity is often a flag that the some-
thing is an attribute.

Relationship Key Words
The same kinds of key words you looked for to determine attributes can
also apply to relationships. The key difference is that relationships show
ownership of other relationships. How do you tell the difference between
an attribute and a relationship? That is where a little experience and trial
and error play a big role. If I say, “An order has an order date and order
details,” I am implying that an order owns both an order date and order de-
tails. In other words, the order date is a single piece of information,
whereas order details present more questions about the data required for
the details; but both are part of an order.

Additionally, verbs can describe relationships between entities. Saying
that an employee processes an order describes a relationship between your
employee and your order entity.

Determining Model Requirements 123

Key Words in Practice
Using these key word rules, let’s look again at the statement given us by
Mountain View’s CEO. We start by highlighting the nouns that will help us
establish our entity list. Before you read further, go back to the original
statement and come up with an entity list of your own; later you can com-
pare it to the list we came up with.

Customers log on to our Web site and place an order, or call an employee
who places the order on the customers’ behalf. All orders contain the cus-
tomer information, the order detail, which has information about the
products and quantities that the customer purchased, and the payment
method. When we receive the order into the system, the customer infor-
mation has already been checked and crucial bits, such as the customer’s
address, have been verified by the site. The first thing we do is process
the order items. We make sure that the products being purchased are in
stock and we place a hold on those products. If a product is not in stock,
we place that item or the entire order on back order, depending on the
customer’s preference. Products that are in stock have a hold placed on
them. Once the products are on hold, we process the payment for the
order. By law, once we accept payment, we must ship within 30 days.
This is why we make sure the product is on hold before we process the
payment. For payment, we take credit cards, gift cards, and direct bank
draft via an electronic check. After the payment has been cleared, we
send the order to the warehouse where is it picked, packed, and shipped
by our employees. We do this for about 1,000 orders per week.

You’ll notice that we highlighted the possible entity nouns each time
they occurred. This helps us determine the overall criticality of each possi-
ble entity. Here is the complete list of possible entities from the statement:

■ Customer
■ Order
■ Order Detail, Order Item
■ Product
■ Payment
■ Employee

Each of the entities in this list describes something that the business
works with and needs to store data about. Most of them are obvious, but
payment was a little harder to pick out. Initially when going through the

124 Chapter 6 Interpreting Requirements

statement, it may look as though a payment is simply an attribute of the
order, but that interpretation is mistaken. Later when the various payment
methods are described, we see that there is much more to payment meth-
ods than meets the eye. For this reason, we listed it as an entity, something
that may change as we gather more data. Also watch out for words or
phrases that could change the meaning of the data, such as usually, most
of the time, or almost always. If the customer says that orders are usually
paid for with one form of payment, you will want to clarify to make sure
that the database can handle the “usually” as well as the “rest of the time.”

Next, let’s go over the same statement for key words that may describe
attributes. At this early point, we wouldn’t expect to find all or even most
of our attributes. Once we have a complete list of entities we will return to
the organization and hammer out a complete list of the required attributes
that will be stored for each entity. Just the same, if you run through the
statement again, you should find a few attributes. Following is a new entity
list with the attributes we can glean from the statement:

■ Customer
Address

■ Order
■ Order Detail, Order Item

Quantity
■ Product
■ Payment

Credit Cards
Gift Cards
Electronic Check

■ Employee

We now know that we must track the customer’s address and the quan-
tity ordered for an order item. It’s not much, but it’s a start. We could prob-
ably expand Address into its component parts, such as city, state, ZIP, and
so on, but we need a little more detail before we make any assumptions.
Again, payment offers a bit more complexity. The only further details we
have about payment are the three payment methods mentioned: credit
cards, gift cards, and electronic checks. Each of these seems to have more
detail that we are missing, but we are reluctant to split them into separate
entities; it’s bad modeling design to have multiple entities that contain the

Determining Model Requirements 125

same data, or nearly the same type. Later we talk more about the difficulty
surrounding payments.

Last but not least, we need to determine the relationships that exist be-
tween our entities. Once more, we need to go through the statement to
look for ownership or action key words as they relate to entities. This time,
we create a list that describes the relationship in a natural language (in our
case, English), and later we translate it to an actual modeling relationship.
This step can be a bit trickier than determining entities and attributes, and
you have to do a little inferring to find all the detail about the relationships.
The following list shows all the relationships we can infer from the data; in
each case the suspected parent of the relationship is shown in italics.

■ Customers place Orders
■ Employees place Orders
■ Orders contain Order Details
■ Order Details have some quantity of Products
■ Orders contain Payments

Once we have the initial list, we can translate these relationships into
modeling terms. Then we will be ready to put together a high-level entity
relationship diagram (ERD). Much of the data you need is right here in
the CEO’s statement, but you may have to go back and ask some clarifying
questions to get everything correct.

Let’s look at the first relationship: Customers place Orders. In this
case, the Customer and the Order entity are related, because Mountain
View Music’s customers place orders via the Web or the phone. We can as-
sume that customers are allowed to have multiple orders and that each
order was placed by a single customer. This means that there exists a one-
to-many relationship between the Customer and Order entities.

Using this same logic, we can establish our relationship list using mod-
eling terms. The relationships as they exist so far are shown in the follow-
ing list:

■ Customer–1:M–Order
■ Employee–0:M–Order
■ Order–1:M–Order Detail
■ Products–1:M–Order Detail
■ Payments–1:M–Order

126 Chapter 6 Interpreting Requirements

We have almost everything we need in order to turn the information
into an ERD, but we have one last thing we need to talk about. We need
to develop our interpretation of payments and explore how they will be
modeled. We were told that Orders have Payments, and there are several
types of payments we can accept. To get our heads around this, we proba-
bly need to talk with the customer and find out what kind of data each pay-
ment method requires. Further discussion with the customer reveals that
each payment type has specific data that needs to be stored for that type,
as well as a small collection of data that is common to all the payment
methods.

When we listed our attributes, we listed credit card, gift card, and elec-
tronic check as attributes of the Payment entity. If you take a closer look,
you will see that these aren’t attributes; instead, they seem to be entities.
This is a common problem; orders need to be related to payment, but a
payment could be one of three types, each one slightly different from the
others. This is a situation that calls for the use of a subtype cluster. We will
model a supertype called Payment that has three subtypes, one for each
payment method.

Interpreting Flowcharts
During the requirements gathering phase, you may have used flowcharts
to help gather information about the processes the users follow. For
Mountain View Music, we created a flowchart to gain a better under-
standing of the warehouse processes. Sitting down with the warehouse
manager, Tim Jackson, after observing the warehouse employees for a day,
we came up with the flowchart shown in Figure 6.1.

Let’s walk through the life cycle of a product as determined by the
flowchart in Figure 6.1. First, an employee from the purchasing depart-
ment places a purchase order for products from one of Mountain View’s
suppliers or vendors. The vendor then ships the product to Mountain View,
where the warehouse employees receive the product. The product is then
placed into inventory, where it is available for purchase by a customer.
When a customer places an order, a packing slip is generated and auto-
matically printed for the warehouse. An employee picks and packs the
products that were ordered based on the detail on the packing slip. Packed
products are then shipped out the door by one of the carriers that
Mountain View uses for shipping.

Determining Model Requirements 127

In a nutshell, that is all there is to the warehouse. However, we are
lacking a few details—specifically, how the product is physically stored and
accounted for in the system. Going back to our warehouse manager, we re-
ceive the following explanation.

When product is received, it is counted and verified against the original
purchase order. Before the product is placed into inventory, it is left in a

128 Chapter 6 Interpreting Requirements

FIGURE 6.1 The work flow of the warehouse for Mountain View Music

staging area in the warehouse. The staging area is nothing more than a
space where product can be stacked until there is time to move it to the
shelves. The shelves in the warehouse are divided into bins, which specify
the row, column, and shelf on which the product is stored. Each bin is
given a unique identifying number that makes it easy for the warehouse
employees to locate. Additionally, a large bin may be made up of several
smaller bins to store small products.

Product is accounted for in one of two ways. First, generic products, such
as guitar picks or strings, are simply counted and that total is recorded.
Each time a generic, or nonserialized, part is sold, the system simply
needs to deduct one from inventory. Some larger, usually high-dollar
items are stored by serial number. These serialized parts must be tracked
individually. This means that if we receive 300 serialized flutes, we need
to know where all 300 are and which one we actually sold to a customer.

Using what we have in the flowchart and what we got from the ware-
house manager, we can again make some conclusions about entities, at-
tributes, and relationships. The process is much the same as before; you
comb the information for clues. The following is the entity list that we can
deduce from the given information about the warehouse:

■ Nonserialized Products
■ Serialized Products
■ Employee
■ Customer
■ Purchase Order
■ Purchase Order Detail
■ Bins
■ Vendors

This list contains some of the same entities that were in our first list:
products, employees, and customers. For now this isn’t a problem, but you
want to make sure you consolidate the list before you proceed to the mod-
eling phase. Also, we assumed an entity called purchase order detail,
making a purchase order similar to a customer order. We do not get very
much about attributes from the warehouse manager, but we can flesh it out
later. As far as relationships go, we can determine a few more things from
the data we now have. The following list shows the relationships we can
determine:

Determining Model Requirements 129

■ Employee places Purchase Order
■ Purchase Orders are placed with Vendors
■ Purchase Orders have Purchase Order Details
■ Purchase Orders Details have Products
■ Products are stored in Bins

Expressed in modeling terms, these relationships look like this:

■ Employee–1:M–Purchase Orders
■ Vendors–1:M–Purchase Orders
■ Purchase Orders–1:M–Purchase Order Details
■ Products–1:M–Purchase Order Details
■ Bins–1:M–Products

Interpreting Legacy Systems
When looking at previous systems, you should have tried to determine not
only the type of data stored (the data model) but also that system’s inputs
and outputs. Comparing the data that was stored in the new model is
straightforward. If your customer has kept track of all its products before,
it stands to reason that it will want to do so in the new system. This type of
data can be verified and mapped to the new model. What can be trickier
are the inputs and outputs.

When looking at the previous system, you may find forms or computer
screens that the Mountain View employees or customers were exposed to
during normal business. When you analyze this document, these forms will
offer you critical insight into the types of information that needs to be
stored and to business rules that need to be in place. Take a look at Fig-
ure 6.2, which shows the form that warehouse employees fill out when they
are performing an inventory count.

Looking at this form, we learn a few key pieces of information about
the Product entity. Some of this information agrees with what we found out
earlier from the warehouse manager. First, all products have an SKU num-
ber and a model number. The SKU number is an internal number that
Mountain View uses to keep track of products, and the model number is
unique to the product manufacturer.

Next, we see the format of the BIN Number where products are
stored. When building our model, we now know that the BIN Number
contains both letters and numbers, so we will want to store this data in a
varchar field. Finally, we see again that the products are tracked by serial

130 Chapter 6 Interpreting Requirements

number when needed. One such product is guitars; this means that each
guitar, in this case, will need to be stored as a distinct entry in our product
table. We were told that some products are not stored by serial number. In
this case, we simply need to store a single row for that product with a count
on hand. Because it’s not a good practice to break up similar data in a
model, we need to ensure that our model accounts for each of these pos-
sible scenarios.

Each form you look at should be examined for several things, because
each can provide you insight about the data and its uses. The following list
shows what you should look for and the types of information you can gar-
ner from each.

■ The data that the form contains
The data contained on the form gives you clues about what needs to
be stored. You can determine the data type, the format, and maybe
the length of the data to be stored. Seeing mixed alphanumeric data

Determining Model Requirements 131

FIGURE 6.2 A form that is filled out during inventory to ensure an accurate
count of the product on hand

would lead you to store the data in a varchar column. An SKU num-
ber that is solely numerals may point you toward an int.

■ The intended user of the form
The intended user can offer valuable insight into possible security
implications and work flow. Understanding who can place an order
will help you later when you need to add security to the database so
that only the appropriate people can see certain data. Additionally,
understanding how a user places an order or how an inventory count
is recorded can help you to better understand the work flow and
help you to design the model accordingly.

■ The restrictions placed on users
Restrictions that a form places on its user can be clues to data re-
quirements or business rules. If the customer information form asks
for three phone numbers (such as home, work, and mobile) but re-
quires only that one be filled in, you may have a business rule that
needs to be implemented. Additionally, a form may limit the cus-
tomer’s last name to 50 letters; this probably means that you can
limit the data type of last name to 50 characters.

Interpreting Use Cases
As we discussed in Chapter 5, use cases help define a process without all
the technical language of the process or system getting in the way. Because
you should have a basic understanding of use cases at this point, we next
talk about how you go about pulling data modeling requirements from a
use case. Take a look at the use case diagram in Figure 6.3 and the use case
documentation in Figure 6.4.

Let’s look at this use case in detail and extract the modeling require-
ment. We will look at the two principals in the use case: warehouse em-
ployees and customers. In terms of our data model, we already have an
employee and a customer entity, so it looks as if we have all the principals
in our model. Next, we look at the actual use cases, of which there are five:

■ Add Items to Web Site Cart
■ Checkout on Web Site
■ Print Packing Slip
■ Pack Order
■ Ship Order

132 Chapter 6 Interpreting Requirements

All but two of these cases have been covered in previous requirements,
but it’s good to see that things are in agreement with what we have already
discovered. The two new items deal with adding items to a shopping cart
and checking out via the company Web site. We don’t know much yet, ex-
cept that we have this new object, a shopping cart, so we are going to have
to talk to a few people. In talking with the project manager, we discover
that most of the shopping cart logic will be handled by the application’s
middle tier, but the application will require a place to store the shopping
cart if the user leaves the site and returns at a later date. To handle this, we
will need a shopping cart entity with a relationship to products. Additionally,

Determining Model Requirements 133

Customer

Checkout on Web Site

Print Packing Slip

Pack Order

Ship Order

Charge Customer

1

1

Warehouse
Employee

1

1

Add Items to Web Site Cart
1 1

1 1

FIGURE 6.3 A simple use case diagram for a customer placing an order on the Web site

134 Chapter 6 Interpreting Requirements

Use case name: Place Order on Web Site ID: 15 Priority: High

laitnessE,deliateD:epytesacesUremotsuC:palicnirP

Stakeholders: Customer - Wants to purchase products via the company Web Site
Warehouse Employee: - Wants to pick, pack, and ship customer orders.

Description: This use case describes how customers go about adding products to the cart, checkout, and how the order is
prepared for and shipped to the customer.

Trigger: Customer places products into shopping cart and checks out, thus completing an order.

Type: External

Relationships:

 Include: Checkout on Web Site, Charge Customer, Print Packing Slip, Pack Order, & Ship Order

Flow of Events:
1. Customer places products in shopping cart.
2. Customer chooses to check out and provides payment information.
3. The system charges the customer.
4. The system prints the packing slip to the warehouse.
5. A Warehouse Employee picks up the packing slips and uses them to find and pack the customer’s order.
6. A Warehouse Employee ships the order to the customer.

Subflows:

FIGURE 6.4 Use case documentation for a customer placing an order on the Web site

the cart will need to track the quantity and the status of these products.
The status of the product in the cart will help provide the functionality to
save an item in the cart and check out with other items. Based on this we
can update our entity list to contain a Shopping Cart entity.

This section only touches on interpreting use cases; there are volumes
of books dedicated to the topic if you want to learn more. The important
thing here is to look at the principals, the use cases, and the relationship
between the use cases for clues to help you build your data model.

Determining Attributes
After you have gone over all the documented requirements that were gath-
ered from the users, your data will likely still have a lot of gaps. The
sketchiest will be the attributes of the entities. People tend to explain
things at very high levels, except for the grandmother of one of your au-
thors, who explains things in excruciating detail. If she were our customer,
we can guarantee we would have all we need at this point, but she is not,
so we will have to do some digging.

What do we mean by detail? Most people would explain a process in a
generic way, such as, “Customers place orders for products.” They do not
say, “Customers, who have first names, last names, e-mail addresses, and
phone numbers, place orders for products based on height, SKU, weight,
color, and length.” It is this descriptive detail about each entity that we
need in order to build our logical model. At this point, if you don’t have
what you need, get in a room with your customers and ask them to help
you fill in the gaps.

Bring a complete list of entities to the meeting, and make sure you also
have the list of attributes you have so far for each entity; see Table 6.1 for
our final entity list.

You will notice that we have added an entity description to the list. This
tells us what the entity is for and helps us constrain the type of data that
will be stored in the entity.

Once this list is complete, you need to go through each and every en-
tity and ask the users what detailed data they need to store for that partic-
ular entity. Where applicable, you should try to ask about the possible
lengths of the data to be stored. For example, if you’re told that the data-
base needs to store a product description, ask them to specify the length of
the longest, average, and shortest description they might need. Take some
time to verify the attributes you identified from the requirements.

Determining Model Requirements 135

Let’s look at the process we would follow to fill in the entities for the
Customer entity. From our earlier data, we already know that the customer
entity will contain address data. To seek further clarification, we talk with
Bill, the CEO, and Robyn Miller, the customer service manager. There is
no one method you must follow in these conversations; you usually begin
by simply asking what kind of information needs to be tracked. As the dis-
cussion progresses, your job is to write down what is said—on a whiteboard
or easel if possible—and ask clarifying questions about anything you are

136 Chapter 6 Interpreting Requirements

Table 6.1 A Complete Entity List for Mountain View Music

Entity Name Description

Bins A representation of a physical location in the warehouse where products are
stored.

Customers Stores all information pertaining to a customer. In this case a customer is
anyone who has purchased or will purchase a product from Mountain View
Music.

Employees Contains all information for any employee who works for Mountain View Music.

Orders All data pertaining to a customer’s order.

Order Details Contains information pertaining to the product, number of the product, and
other product detail specific to the order.

Payments Contains all the information about a customer’s payment method. This is being
implemented as a subtype cluster containing three additional entities: credit
cards, gift cards, and electronic checks.

Credit Cards All data about a customer’s credit card so that it can be charged for orders.

Gift Cards Stores all the data pertaining to a customer’s gift card.

Electronic Checks Holds all the required data in order to draft an electronic check from a
customer’s bank account.

Products This entity contains all the information about the various products the company
sells.

Purchases Information related to purchases that have been made from vendors.

Purchase Details Contains the information about the specific products and quantities that were
purchased from vendors.

Shipments Detail about the shipments of products to fulfill customer orders.

Shipping Carriers A list of each of the shipping carriers that Mountain Views uses: FedEx, UPS,
USPS, etc.

Shipping Methods The methods for shipping available from the carriers: ground, overnight, two-
day, etc.

Shopping Cart An entity used to store a customer’s shopping cart on the Web site; this allows
them to leave the site and return later.

Vendors Companies that Mountain View orders products from for sale on the Web site.

unsure about. Remember, you are solving the customer’s problem, so your
job is to help people tell you what they know, and not to plant thoughts in
their heads or steer them.

Robyn tells us that when Mountain View tracks an address, it needs to
know the street address, city, state, and ZIP code. Occasionally, shipments
go to Canada, so it’s decided to track region instead of state. This decision
gives the system the flexibility to store data about countries that do not
have states. Additionally, we now need to track the country in which the
customer lives.

There are also a few other obvious pieces of data that we need to track.
First and last name, e-mail address, an internal customer ID, and the user’s
password for the site are the remaining attributes that Mountain View
tracks for its customers. You should also find out which pieces of data are
required and which could be left out. This will tell you whether the attri-
bute can allow null data.

Table 6.2 shows the complete list of attributes for the customer entity,
the data type, nullability, and a description of the attribute.

Table 6.2 A Complete List of Attributes for the Customer Entity

Attribute Data Type Nullability Description

CustomerID INT NOT NULL An internal number that is generated for
each customer for tracking purposes

EmailAddress VARCHAR(50) NULL The customer’s e-mail address

FirstName VARCHAR(15) NOT NULL The customer’s first name

LastName VARCHAR(50) NOT NULL The customer’s last name

HomePhone VARCHAR(15) NULL The customer’s home phone number

WorkPhone VARCHAR(15) NULL The customer’s work phone number

MobilePhone VARCHAR(15) NULL The customer’s cell phone number

AddressLine1 VARCHAR(50) NOT NULL Used to store the street address

AddressLine2 VARCHAR(50) NULL For extended address information such as
apartment or suite

City VARCHAR(30) NOT NULL The city the customer lives in

Region CHAR(2) NOT NULL The state, province, etc. of the customer;
used to accommodate countries outside the
United States

Country VARCHAR(30) NOT NULL The country the customer lives in

ZipCode VARCHAR(10) NOT NULL The customer’s postal code

WebLogonPassword VARCHAR(16) NULL For customers with a Web site account, a
field to hold the encrypted password

Determining Model Requirements 137

You will need to go through this clarification process for all the entities
you have determined up to this point. This information will be used in the
next phase, creating the logical model. There is no hard science behind this
process; you just keep working with the relevant people in the organization
until you all agree on what they need.

Determining Business Rules

We hear business rules talked about in IT circles all the time. What are
they? In short, business rules are requirements of the business that must
be adhered to in order for the business to function properly. For example,
a company might say that its customers need to provide it with a valid
e-mail address or that their bill is due on the first of each month.

These rules are often implemented in different places in an IT system.
They can be as simple as limiting the customers’ last names to 50 letters
when they enter them on a Web site, or as complex as a middle tier that
calculates the order total and searches for special discounts the customer
may be entitled to based on this or past purchases.

A debate rages in IT about the correct place to implement business
rules. Some people say it should be done by the front-end application, oth-
ers say everything should be passed to middleware, and still others claim
that the business rules should be handled by the database management
system. Because we don’t want a slew of nasty e-mails, we won’t say which
of these methods is correct. We will tell you, however, that your database
must implement any business rules that have to do with data integrity.

How do we determine which business rules need to be implemented,
and how do we enforce these rules in our model? This calls for a little black
magic, some pixie dust, and a bit of luck. Some rules are straightforward
and easy to implement, but others will leave you scratching your head and
writing a little T-SQL code. In this section we look at how to spot business
rules and the methods you can use to enforce them.

Determining the Business Rules
As we stated earlier, you need to enforce any business rules that have to do
with data integrity inside the database system. Some of these rules are in-
herently enforced in the logical model, and others require the advanced
features of SQL Server 2008. In either case, you should determine and

138 Chapter 6 Interpreting Requirements

document all these rules when you are interpreting the business require-
ments. Table 6.3 provides some of the types of business rules that you
should enforce and shows the method you will likely use to enforce them
using SQL Server.

Table 6.3 Business Rules You Should Enforce in Your Data Model or in SQL Server

Business Rule Enforcement Example

Data must be a certain Data Type Product SKU numbers are always whole
type. integers.

Information cannot exceed Data Type–Length Due to display limitations on the Web site, a
a given length. product description can contain no more than

500 characters.

Data must follow a specific Constraint An e-mail address must follow the convention
format. XXXX@XXXX.YYY, where X is some piece of

string data and YYY is a domain type such as
.COM, .NET, .GOV, etc.

Some items can exist only Primary Key–Foreign An order must be owned by customer.
as part of or when owned Key Relationship An order detail item must be part of an order.
by another item.

Information must contain Constraint For an address to be valid, it should contain at
some number of characters. least five characters. If it contains fewer than

five, the data is likely to be incomplete or
incorrect.

Given a set of similar data, Constraint When collecting a customer’s home, work, and
no one piece of informa- cell phone number, it is not required that they
tion is required, but at least provide all phone numbers but it is required
one of the set is required. that they provide at least one of the phone

numbers.

By no means does Table 6.3 provide a comprehensive list of the types
of rules you are likely to encounter, but it gives you an idea of what you can
and should do in your database. You will notice that several scenarios can
be handled in your data model only. It’s easy to handle data types, lengths,
and relationships when you build your logical model. Other business rules
are a bit more complex and need to be handled later when you implement
your physical model on SQL Server.

For now, as you are interpreting your requirements, be sure to use the
appropriate entity to document any rules that come along. Whenever you
are told that something needs to work a certain way or be stored a certain

Determining Business Rules 139

way, write it down. Later you will use this information to build your logi-
cal, and ultimately your physical, model.

Cardinality
As we discussed in Chapter 2, cardinality further defines a relationship.
When looking at the requirements you have gathered, you should keep a
keen eye out for anything that indicates cardinality. When talking with the
CEO, we were told the following:

Customers log on to our Web site and place an order, or call an employee
who places the order on the customers’ behalf.

You will recall that this helped us to define a 1:M relationship between
Customer and Order and a 0:M relationship between Order and
Employee. We didn’t talk about it in much detail at the time, but these re-
lationships also contain the implied cardinality from the CEO’s statement.
We can see that each Order must be owned by a customer; either the cus-
tomer placed the order, or an employee did. Therefore, each Order must
have one customer, no more and no less, but a customer can have many or-
ders. Now let’s look at the 0:M cardinality of Employee to Order. An order
does not have to be placed by an employee, but an employee can place
multiple orders. The cardinality helps to further refine the relationship.

Implementing cardinality in our model can be simple or complex. In
the example, the order table will contain a mandatory foreign key that
points to the PK in the customer table. Each time an order is entered, it
must be tied to a customer. Additionally, an optional foreign key will be
created in the order table pointing to the employee PK. Each order can
have an employee, but it is not required that there be one. You can imple-
ment more-complex cardinality, such as limiting an order to no more than
five detail items, by using constraints and triggers.

Data Requirements
Although not technically a modeling concern, data storage and data reten-
tion requirements are crucial to your physical implementation. Where fea-
sible, try to pull this information from the requirements you gather. These
pieces of information will aid you in determining the initial database size
and future growth trends. Without such information, you will be at best
taking a wild guess. Whenever you are given a number, such as orders

140 Chapter 6 Interpreting Requirements

taken per day or the total number of customers the company has, write it
down. Later you can use formulas to figure out table size, and ultimately
database size, based on the type of data stored.

Additionally, don’t be afraid to ask about retention of each of the enti-
ties. For example, how long do you keep order information or customer
data? If the company intends to purge all information older than seven
years, you can expect the database to grow for seven years and then level
off a bit. If the company intends to keep data forever, then you may need
to build some sort of archive to prevent the database from suffering per-
formance hits later in its life. In either case, the time to start probing for
this information is during the requirements phase. If, when you are inter-
preting the requirements, you don’t find any or all of this type of data, go
back to the customer and ask. If nothing else, this practice gets people
thinking about it and there are no surprises later when the database ad-
ministrators ask about data purging.

Requirements Documentation

Once you have completed the requirements evaluation, you should have
several pieces of documentation that you will need in the next phase, the
creation of the logical model. In this chapter we’ve talked about most of
this documentation, but we want to take this opportunity to review the
documents you should now have. The following is a list of each piece of
documentation you should have at this point.

Entity List
You should have a list of the entities that the requirements have dictated.
This list won’t likely be complete at this point; however, all the entities
that the business cares about should be on the list. Later you may find that
you will need other entities to support extended relationships or to hold
application-specific data. This list should include the following:

■ The name of the entity
■ A description of the entity
■ From which requirement the entity was discovered (e.g., interview

with CEO)

Requirements Documentation 141

Attribute List
Each item on your entity list should have a corresponding attribute list.
Again, this may not be a complete list because you may still discover new
information or need to rearrange things as you implement your model.
This list should contain these items:

■ The name of the attribute
■ The attribute’s data type and the data type length, precision, and

scale when applicable
■ The nullability of the attribute
■ A description of the data that will be stored in the attribute

Relationship List
You should also produce a relationship list that documents all the relation-
ships between all your entities. This list should include the following
information:

■ The parent entity of the relationship
■ The child entity of the relationship
■ The type of relationship (1:1, 1:M, M:M, etc.)
■ Any special cardinality rules
■ A description of the relationship

Business Rules List
Finally, you should include a list of the business rules you have determined
up to this point. As we discussed earlier, many of the business rules will be
implemented in the model, and some will be physically implemented only
in SQL Server 2008. This list should contain some notation as to whether
the business rule is a “modeling” rule. The list should contain these items:

■ The purpose of the business rule (e.g., encrypt credit card numbers)
■ A description of how the business rule will be implemented
■ An example of the business rule in practice
■ A flag as to whether the rule can be implemented in the model

142 Chapter 6 Interpreting Requirements

Looking Ahead: The Business Review

In addition to generating all the documentation you need to build your
data model, remember that you’ll need to present your data model, along
with supporting documentation, to all the stakeholders of the project. Let’s
look at some of the documentation you’ll need.

Design Documentation
Undoubtedly, one of the most tedious tasks for designers and developers is
generating documentation. Often, we have an extremely clear idea of what
we have done (or what we are doing), and generating documentation, par-
ticularly high-level overview documentation, can seem to take time away
from actual work. However, almost everyone who has ever had to design
anything has learned that without appropriate documentation, stakehold-
ers will be confused and you will likely experience delays in the project.

Even though there are a myriad of ways to document a data model,
there are a few key principles to keep in mind that will help you write clear,
concise documentation that can be read by a wide, nontechnical audience.

First, remember that not everyone understands the terms you use. You
need to generate a list of highly technical terms and their basic definitions,
up and including terms like entity, attribute, and record. Also, as we all
know, there are a lot of acronyms in the IT and IS industry. Try to avoid
using those acronyms in your documentation, or if you use them, be sure
to define them.

Second, create a data dictionary. A data dictionary is a document that
lists all the pieces of data held in a database, what they are, and how they
relate to the business. Recently it has become customary to label this in-
formation meta data, but data dictionary is the most familiar term.

Finally, make sure to work with application developers to create a com-
prehensive list of all the systems involved in the current project, and de-
scribe how this data model or database will relate to them. If your new
project will work with existing systems, it is often helpful to describe the
new project in terms of how it relates to the applications users are already
familiar with. This kind of document is helpful for technical and nontech-
nical people alike.

Looking Ahead: The Business Review 143

Using Appropriate Diagrams
Most people, including technical people such as programmers and system
administrators, find it easier to conceptualize complex topics if you use a
visual aid. How many times have you been having a discussion with some-
one and said, “I wish I had a whiteboard”? This is because we are often
talking about numerous systems, and we are also talking about data move-
ment through a given system. This is particularly true of data models and
databases; we need to visualize how data enters the system, what is done
to it, where it is stored, and how we can retrieve it.

To this end, it is often helpful to create a number of diagrams that look
at the data model you have created. Initially, if you used a modeling tool,
you can actually export an image file (jpeg, BMP, etc.) of the actual model.
You can create views of the model that show only the entities, or the enti-
ties and their attributes, or even all the entities, their attributes, and rela-
tionships. You can usually generate an image of the physical model or
database as well. Because of its portable format, this kind of file can be use-
ful when you’re posting documentation to a document management tool or
even a Web site. Unfortunately, without a technical person to explain the
data model, most nontechnical users can get very little actual information
out of the visual representation of the model.

For nontechnical folks, flowcharts are often the best way to represent
what is happening with the data. You can label the names of the entities as
objects inside the flowchart.

Using Report Examples
When you are discussing the proposed data model with various individuals,
one of the most helpful things you can do is deliver samples of what they
will actually see after the model is built. Often this means building mock-
ups of deliverables, such as application windows or reports. Reporting ex-
amples, in particular, provide a quick way for end users to understand the
kind of data that they will see in the end product. Because this is what they
are most concerned about, spend some quality time developing sample re-
ports to present when you meet with the nontechnical stakeholders.

Converting Tech to Business
Imagine, for a moment, that you have to take your car to a mechanic be-
cause it has a problem whose cause you cannot determine. All you know is
that the car makes a sound it hasn’t made before, and you know it can’t be

144 Chapter 6 Interpreting Requirements

good. When you go the mechanic, he’ll ask you a series of questions, writ-
ing down your answers as you talk. Then he takes that information and
physically inspects your vehicle, documenting the findings. Finally, if he
discovers the problem, he documents it and then researches and docu-
ments the solution. Before he implements the solution, he’ll want to talk to
you to explain the details of the work that needs to be completed, as well
as the cost. Generally, he tells you what the problem is, and its solution, in
the simplest terms possible. He uses simple language in an attempt to con-
vey the technical knowledge to you in a manner you’ll understand, because
he cannot assume that you have any knowledge about the inner workings
of an automobile.

When you are meeting with stakeholders, you are the mechanic. Just
like a mechanic, you’ll have to simplify the terms you’re using, while avoid-
ing making someone feel as though you are talking down to him. Most im-
portantly, you need to frame your entire explanation of the data model in
terms of the larger system, and in terms of the business. You need to relate
your entities, attributes, and relationships to familiar terms such as cus-
tomers and order processes. This practice not only helps the stakeholders
understand the model but also helps them see the value in the model as it
relates to their business.

Summary

This chapter has walked you through extracting useful information from
the business requirements you’ve gathered. We also discussed documenta-
tion that you should be generating along the way in order to help you gain
business buy in later in the project. You will use all this information as we
move forward with building our logical, and ultimately our physical, model.
Next up, in Chapter 7, we put the information we’ve gathered to use and
build Mountain View Music’s logical model.

Summary 145

This page intentionally left blank

P A R T I I I

CREATING THE
LOGICAL MODEL

■ Chapter 7 Creating the Logical Model

■ Chapter 8 Common Data Modeling Problems

This page intentionally left blank

C H A P T E R 7

CREATING THE LOGICAL MODEL

Everything you’ve read until now has been laying the foundation for build-
ing a data model. In this chapter, we finally start to use the concepts intro-
duced in the first six chapters. We begin by taking a look at the modeling
semantics, or notation standards, and discussing the features you’ll need in
a modeling tool. Then we work through the process of turning require-
ments into organized pieces of data, such as entity lists. Finally, after we
have created all the objects that our model needs, we build the model, de-
riving its form and content from all the pieces of information we’ve gath-
ered. So let’s dig in.

Diagramming a Data Model

Obviously, most of the concepts we’ve covered are just that—conceptual-
ized information about what a data model is and what it contains. Now we
need to put into practice some guidelines and standards about how the
model is built. We need to put names to entities, outline what those enti-
ties look like on paper (well, not necessarily paper, but you know what we
mean), determine how to name all the objects relating to those entities,
and finally, decide which tool we’ll use to create the model.

Suggested Naming Guidelines
If you’ve spent any time developing software, in any system, you’ve come
to understand that consistent naming standards throughout a system are a
must. How much time does a developer waste fixing broken code because
of a case-sensitive reference that uses a lowercase letter instead of an up-
percase letter? In database systems, how much time do developers waste
searching through the list of objects in a database manually because the
objects aren’t named according to type? Although the names you use in
your logical model don’t affect physical development, it’s just as important

149

to have a consistent naming convention. When you name your entity that
contains employee information, do you name it Employee or Employees?
What about sales info—Sale or Sales? Keeping a consistent naming con-
vention can help avoid confusion as well as ensure readability for future
design reviews.

We address physical naming conventions in Chapter 9, but at this point
you should understand that it is important to designate your naming con-
vention for the data model now, and ensure that it is not a mapping of the
physical naming convention. Because the physical implementation of a
data model usually requires that you create objects that don’t exist in the
data model, naming your tables exactly the same as your entities may cre-
ate confusion, because there will be tables that don’t map to entities.
Remember that the data model is the logical expression of the data that
will be stored.

The emphasis here is that you have a standard—any standard, as long
as it is consistent. Here, we offer the set of guidelines that we used to de-
velop the data model for Mountain View Music. Figure 7.1 shows each
type of object in the data model. We’ll talk about each object, how it’s
named, and why.

150 Chapter 7 Creating the Logical Model

FIGURE 7.1 The Products entity from the Mountain View Music data model

Entities
In Figure 7.1, you can see the Products entity. Notice that it is plural
(Products), and not singular (Product). Why? It is because the entity rep-
resents the kind of information that is being stored. It is a collection of
products—the description of information stored about our company’s
products. As a naming standard, we prefer to use plural entity names to re-
flect that the given entity describes all the attributes stored for a given sub-
ject: Employees, Customers, Orders.

It’s likely that your model will contain entities whose sole purpose is to
describe a complicated relationship and cardinality. We discuss these types
of entities in Chapter 2: subtypes and supertypes, along with many-to-
many relationships, where additional attributes are associated with the
joining entity. In the case of subtypes, the entity will still be named ac-
cording to the data being stored. When it comes to naming entities that
help model many-to-many relationships, the entity name describes what is
being modeled. For example, in Figure 7.2, you can see the entity we’ve
used to model the relationship between Products and Vendors.

Diagramming a Data Model 151

FIGURE 7.2 The Product Vendors entity from the Mountain View Music data model,
showing a M:M relationship

Notice that the entity name is simply a readable concatenation of the
names of the two entities being referenced. This is descriptive—allowing
us to know exactly what the purpose is—without being overly long.

Always keep in mind that your data model will be viewed by technical
and nontechnical personnel. That doesn’t mean you should sacrifice design
to make the data model accessible to those who aren’t IT or IS profession-
als, but using common English names for entities will make it easier to ex-
plain the model. Most people know what Product Vendors means, but
ProdVend may not make sense without explanation. Also, because case
sensitivity is not an issue in a logical model, using mixed-case names makes
perfect sense. In addition to being easier, it seems more professional to
business analysts, managers, and executives.

Attributes
In the Products entity, you can see the list of attributes. Because an attri-
bute is a single data point for the given entity, it is singular in nature. The
names of attributes can actually mean multiple instances of a given type of
data when used in plain English, so it is important to be specific about the
plurality of the attribute in a data model. For example, we could store mul-
tiple addresses for an employee in an Employees entity. But because we
can’t actually model multiple addresses stored by a single attribute, nam-
ing the attribute Addresses would be incorrect; it is simply Address. We
would use additional attributes to store multiple addresses, such as Home
Address versus Mailing Address.

Another aspect of naming attributes is the need to deal with fields that
designate identification of records. For example, in Figure 7.1 you can see
the ObjectID attribute. This attribute is simply intended to provide a sur-
rogate unique identifier for each record. For each product, we might say
that SKU, Name, and Model Number will uniquely identify a product;
however, we may run into problems if a new product with the same name
replaces an older product but uses a different SKU. Or the vendor might
change the model number of an existing product. To avoid having to up-
date key fields, and possibly lose historical visibility, we prefer to use an ob-
ject identifier. When deciding how to name this attribute, we know that
because it is an attribute of a specific entity, we simply name it ObjectID,
without being redundant and naming it EntityObjectID. By following this
standard throughout our model, we always know what the substitute
unique identifier is of any given entity; it is ObjectID.

152 Chapter 7 Creating the Logical Model

As with entity naming, you should be as conscious as possible of the
fact that nontechnical personnel will read through this design at least once.
Attribute names should be concise and unambiguous. And as with entity
naming, it’s good to use mixed-case attribute names unless there is a spe-
cific reason not to.

Notations Standards
Naming conventions used in your data model are based strictly on your
personal preference, or at least your professional preference, but there are
industry-standard specifications that outline how a data model should be
notated, or described. Although there is plenty of history surrounding the
various notation methods, we cover the notation method that is most pop-
ular and offer a basic history of where it came from and why to use it. So
get out your notebooks, spit out your gum, and pay attention. There will be
a quiz later.

IDEF
In the mid-1970s, the U.S. Air Force was in the midst of an initiative to de-
fine and update its computing infrastructure, specifically as related to man-
ufacturing. As part of that project, an initiative was launched called
Integrated Computer-Aided Manufacturing, or ICAM. Dennis E.
Wisnosky and Dan L. Shunk, who were running the project, eventually
concluded that manufacturing was in fact an integrated process, with sev-
eral components describing the whole. They needed to develop tools,
processes, and techniques to deal with all the various components; in ad-
dition, they understood inherently the data-centric nature of manufactur-
ing and the need to analyze and document which data existed and how it
moved from system to system.

Eventually, the two men created a standard for modeling data and
showing how it relates to itself and other systems, as well as modeling
process and business flow. These standards were initially known as the
ICAM definitions, or IDEFs. To this day, ICAM continues to refine and
define new standards based on the original IDEF, with an eye toward con-
tinuing to improve information technology and understanding how it re-
lates to real-world systems.

Here are the most commonly used IDEFs:

■ IDEF0: Function modeling
■ IDEF1: Information modeling

Diagramming a Data Model 153

■ IDEF1X: Data modeling
■ IDEF2: Simulation model design
■ IDEF3: Process description capture
■ IDEF4: Object-Oriented design
■ IDEF5: Ontology description capture

Feel free to explore the Internet for more information on each of these
specifications as they pertain to you in your professional life. For our pur-
poses, we are concerned primarily with IDEF1X. After all, it was designed
specifically for data modeling. However, our data model for Mountain
View Music is not notated using IDEF1X. We are using another standard
that is gaining ground specifically among users of proprietary data model-
ing tools: Information Engineering (IE) Crow’s Feet notation.

Figure 7.3 shows our Products and Vendors entities and relationships
notated using the IDEF1X standard.

The relationships are notated with a single solid line, and, in this case,
the child entity is notated with a solid circle at the connection point. The
solid circle indicates that this is the “many” side of a one-or-more-to-many
relationship. In IDEF1X, the solid circle can appear on either end of the

154 Chapter 7 Creating the Logical Model

FIGURE 7.3 The Product Vendors entity and its related entities, in the IDEF1X notation

connection, and that is how the cardinality is described; in the case of a
one-to- or zero-to- relationship, a text label “1” or “Z” is added. Addition-
ally, there is usually a text label on the connection that is a verb that de-
scribes the relationship.

Now, Figure 7.4 shows the same objects using the Crow’s Feet notation.

Diagramming a Data Model 155

FIGURE 7.4 The Product Vendors entity and its related entities, in the IE Crow’s Feet
notation

In this version, at the child entity connection you see a set of three
lines breaking from the main line. This denotes the cardinality of the rela-
tionship and also happens to look like a caveman drawing of a bird’s claw
(hence the name of the standard). In this notation, zero, one, and many
connections are labeled with “0,” “1,” or a crow’s foot, respectively. If there
is a zero-or-one-to- type of relationship, there will be a “01” on the line at
the appropriate end of the connection. Often, the zeros and ones look like
circles and lines and less like an actual numeral; this often depends on the
modeling tool being used.

Both the IE and the IDEF1X notation styles can be used for data mod-
eling, and both are descriptive enough for all modeling purposes. Which
one you choose is almost irrelevant; it’s more important to choose and

consistently use a notation standard, no matter which one you actually use.
In our case, the IE standard sufficed and, for us, was a quicker and easier-
to-read notation standard. Most data modeling tools allow you to switch
between notation standards, so once you have some entities and relation-
ships defined, you can try out different notations and see which ones you
like. No matter what you use, be sure that you understand how to read it
and, more importantly, how to describe the notation to others. More on
this later in this chapter.

Modeling Tool
Many data modeling tools are available, everything from industry-standard
tools (such as ERwin Data Modeler from Computer Associates or ER/
Studio from Embarcadero Technologies) to freeware tools. The features
and functionality you need in a modeling tool extend beyond which nota-
tion it supports. Although it’s not necessarily a part of the overall design
process for a data model, choosing a data modeling tool can determine
your level of success—and frustration—when it comes to creating a model.
Here, we present a list of features that you should keep an eye out for
when choosing a modeling tool. It is not meant to be an exhaustive list;
rather, it is the list of must-haves for any data modeler to get the job done.

Notation
This is a core requirement. All modeling tools have at least one notational
standard. Ideally, your choice will have more than one, because in some
projects you may find that specific notation standards have already been
implemented. In that case, if your chosen tool offers that standard, you
won’t need to purchase another tool. Also, be sure that the tool you choose
has at least IDEF1X, because it is an industry standard and is likely to be
used most often in existing models.

Import/Export
Unfortunately, most modeling tools use a proprietary format. However, the
tool you use should be able to export your models to images and, ideally,
to XML documents. This capability will make the tool interoperable with
a wide range of modeling software and will help you share your model with
other users. Finally, the tool should be able to export its metadata to as
many formats as possible, particularly those used by UML tools.

156 Chapter 7 Creating the Logical Model

It is also ideal to be able to import flat files, such as SQL scripts, to
generate (reverse-engineer) databases. Although you won’t use this feature
a lot to generate new models, it can be helpful to start with an existing
physical model in order to generate a new logical data model. If your tool
can import the schema of a physical database, it can be a real time-saver.

Physical Modeling
Several of the available data modeling tools can not only help you generate
the logical data model but also help create a physical model for use in the
SQL Server 2008 database you are deploying to. This feature can also be
a huge time-saver during the development phase and, when used with
proper change management and source code management, can even assist
in deploying databases and managing versions of databases that are de-
ployed. In our opinion, this capability is high on the list, particularly for
larger environments.

Most data modeling tools, particularly those that advertise themselves
as enterprise class, will offer far more features than these. However, these
are the primary pieces of functionality that any data modeling tool should
offer. To make sure it meets the needs of your project or job, be sure to
thoroughly review any modeling software before buying.

Using Requirements to Build the Model

So far, this book has been about setting the groundwork for building a data
model for a realistic scenario. We’ve covered everything from the basic
definition of a data model to the details of each type of data a company may
need to store. We now have all the tools necessary to begin building a data
model for Mountain View Music (we abbreviate the company name as
MVM throughout the remainder of this chapter). First, we lay out how our
various data points from the requirements gathering phase will map to the
objects we’ll create in a data model. We also discuss implementing busi-
ness rules in a data model.

Entity List
When the user interviews and surveys were conducted in the requirements
gathering phase, we made sure to take notes regarding certain key words,
usually nouns, which represented the types of data that the new model

Using Requirements to Build the Model 157

(and its eventual database) would have to support. We now need to narrow
that list to a final list of the most likely suspects.

For example, Table 7.1 shows the list of nouns gathered during re-
quirements gathering, along with a brief description of what the noun
refers to. You’ll recognize this is almost the same list from Chapter 6; how-
ever, we’ve added some entities, as we discuss in a moment.

This list of entities accounts for some specific issues that arise when
you try to relate these entities to one another, as well as issues created by
moving to an online system. Because the other entities have been dis-
cussed in detail, we’ll review the new ones and explain why they exist.

■ Lists and List Items
These entities account for a type of information that exists only to
support the system and is not accounted for in traditional require-
ments gathering. In this case, we realized that we would need to
track the status of shipments, and because items in a single order
can be shipped in separate shipments, we need to relate the status
of all order items and the shipment they are part of. Additionally, we
need a flexible list of status codes, because that kind of data can
change based on business rules. Finally, we realized that this subset
of information is not the only lookup-style information we might
need. In the future, there may be needs to create lists of information
based on status, product type, and so on. So we built a flexible solu-
tion by creating these generic Lists and List Items entities. Lists rep-
resents any list of information we might need—for example, the status
of an order. List Items is simply a lookup table of potential items for
the list—in this case, the status codes. With this solution, we can add
any type of list in the future without adding other entities.

■ Product Attributes
When addressing the existence of a product, you must account for
where that product comes from and how it is packaged and sold.
Additionally, for a company like MVM, it is necessary to deal with
the fact that different products have different kinds of attributes.
For example, a guitar does not have all the same physical attributes
as a saxophone (although there are some attributes in common). To
model this scenario correctly, it became necessary to create a
Product Attributes entity that represents various types of attributes
a product can have. So instead of including every possible attribute
for all products in the Product entity, we’ve essentially created an

158 Chapter 7 Creating the Logical Model

Using Requirements to Build the Model 159

Table 7.1 A New Entity List for Mountain View Music

Entity Name Description

Bank Accounts Holds all the required data to draft an electronic check from a customer’s bank
account.

Bins A representation of a physical location in the warehouse where products are
stored.

Credit Cards All data about a customer’s credit card so that it can be charged for orders.

Customers Stores all information pertaining to a customer. In this case a customer is
anyone who has purchased or will purchase a product from Mountain View
Music.

Employees Contains all information for any employee who works for Mountain View
Music.

Gift Cards Stores all the data pertaining to a customer’s gift card.

List Items* (See text.)

Lists* (See text.)

Order Details Contains information pertaining to the product, number of the product, and
other product details specific to the order.

Orders All data pertaining to a customer’s order.

Payments Contains all the information about a customer’s payment method. This is being
implemented as a subtype cluster containing three additional entities: Credit
Cards, Gift Cards, and Bank Accounts.

Product Attributes* This entity contains attributes specific to products that are not stored in the
Products entity.

Product Instance* This is an entity that facilitates a M:M relationship with the Products and Bins
entities.

Product Kits* Represents collections of products sold as a single product.

Product Vendors* Facilitates a M:M relationship with the Products and Vendors entities.

Products This entity contains all the basic information about the various products the
company sells.

Purchase Details Contains the information about the specific products and quantities that were
purchased from vendors.

Purchases Information related to purchases that have been made from vendors.

Shipments Details about the shipments of products to fulfill customer orders.

Shipping Carriers A list of each of the shipping carriers that Mountain Views uses: FedEx, UPS,
USPS, etc.

Shipping Methods The methods for shipping available from the carriers: ground, overnight, two-
day, etc.

Shopping Cart An entity used to store a customer’s shopping cart on the Web site; this allows
them to leave the site and return later.

Vendors Companies that Mountain View orders products from for sale on the Web site.

*New entity

entity that represents the attributes that are specific to any product.
We then have a relationship between Products and Product Attri-
butes that is a one-to-zero-or-more relationship (because a product
doesn’t necessarily have one of these custom attributes).

■ Product Instance
Another problem with products is that they must be stored some-
where. Because we have bins (represented by the Bins entity) that
hold products, we need to have a relationship between Bins and
Products. The problem is that some products are so small that they
are mixed within a bin, meaning that a single bin can hold different
types of products. Other products are large enough that they re-
quire dedicated bins, but a given bin may hold several packages con-
taining that product type. And in some cases a single product takes
an entire bin (for example, a large piano-style keyboard). Finally, we
may have a product, such as a drum set, that is composed of several
pieces, and the components may be stored in multiple bins. So we
have, in effect, a many-to-many relationship. To resolve this, we cre-
ated a Product Instance entity that allows us to relate multiple prod-
ucts to multiple bins as needed.

■ Product Kits
This entity addresses situations in which we have a product for sale
that is a grouping of products. For example, MVM may occasionally
run promotions to sell a guitar with an amplifier and an instrument
cable to connect them. Normally, these are individual products. We
could simply automatically generate an order that adds each item;
however, that creates problems with pricing differences (because
the point is to reduce the customer’s price) between the promo-
tional price and the standard price. Additionally, if we add each item
separately, we don’t have as much historical visibility into how many
of each item was sold as part of the promotion versus those sold
through a standard order. Although there are other possible solu-
tions, we chose to handle this through a separate entity that effec-
tively creates a new product composed of the promotional items.

■ Product Vendors
This entity solves a similar problem as Product Instance does.
Because MVM may purchase multiple products from a specific ven-
dor, or it may buy the same product from different vendors, we have
a many-to-many relationship; this entity facilitates that relationship.

160 Chapter 7 Creating the Logical Model

These new entities help us relate the important pieces of data to one
another. After the basic entity list is in place, it is a matter of analyzing the
existing entities and their relationships to evaluate where there are holes in
the logical flow and storage of data. When you’re trying to discover these
entities, it’s helpful to ask yourself the following questions.

1. For every entity, are there attributes that apply sometimes, but not
always, to that entity?
The answer to this question will help you discover situations where
an entity’s attributes are either too far reaching, or where you may
need to create a separate place to store the list of attributes that
may only occasionally apply to specific instances of the first entity.

2. For every entity, is there another entity that might have multiple
relationships to the entity being reviewed?
Obviously, this question helps you uncover many-to-many rela-
tionships.

3. For every entity, is there another type of data that should be stored
that isn’t listed as a current entity?
This is more of a process or commonsense question. For example,
with MVM, it was obvious that we needed to store Shipments.
However, when we started thinking about attributes of a shipment,
it occurred to us that MVM uses multiple shipment methods and
multiple carriers, even though no one explicitly mentioned that in
the interviews. So while we were accounting for shipments, we
hadn’t correctly identified all possible information relevant to that
process until we were reviewing our entity list.

We now have the complete list of entities for the MVM data model.
Next, we need to fill out the detailed information for each entity.

Attribute List
We now need to associate a list of attributes with every entity we’ve cre-
ated in order to define the data points that are being represented. This in-
cludes every attribute for all entities, with the exception of those that
define relationships; we cover those shortly.

As with the identification of the entities themselves, you extract the at-
tributes of each entity from the information you obtained during require-
ments gathering. You need to make sure that you have the definitive list of

Using Requirements to Build the Model 161

attributes for each entity, as described in Chapter 6; when you build the
model, you’ll enter each of these attributes—with its data types (including
precision and scale, when applicable) and nullability—into the entity ob-
ject in the model.

When compiling attribute lists for an entity, you need to conduct one
specific bit of analysis. You need to compare attribute lists between related
entities to be sure that any attributes being stored as a specific data type
and length are consistent with attributes of other entities storing the same
type of information. This is the perfect use of domains in your data model.
For example, if you define a first_name domain and use it everywhere you
need a first name, you will ensure that the types and lengths are consistent.
Here’s another example: If you are storing mobile phone numbers for ven-
dors and for customers, make sure you use the same format.

Although these two attributes are unrelated, it’s a good idea to be con-
sistent. In that way, when development of the physical model starts, as well
as application development, no one has to remember that the mobile
phone number format is different from table to table. Because the data
types used in the tables are based on the data types used in the data model,
it is the modeler’s responsibility to be as consistent as possible.

Relationships Documentation
Now that you know the entities you have created and their specific attri-
butes, it’s time to start listing the relationships between them. You need to
list the relationships for each entity; in this way, as you create the model
you are simply typing in the relationship parameters, without trying to dis-
cover and define relationships on the fly.

First, start with obvious relationships—Customers to Orders, Orders
to Order Details, and so on. For each relationship, note the parent/child,
the cardinality, and whether or not it is mandatory or identifying. After
those are defined, start working through defining relationships between
subtypes and supertypes, and many-to-many relationships using tertiary
entities.

Although listing every relationship between every entity in the MVM
model would be wasteful (you’ll find the complete model in Appendix B),
it’s important to give a sample. Table 7.2 outlines the relationship informa-
tion that you should document and list.

162 Chapter 7 Creating the Logical Model

Table 7.2 A Sample of the Relationship List for Mountain View Music

Parent Entity Child Entity Type Cardinality

Bank Accounts None N/A N/A

Bins Product Instances M, I One to zero or more

Credit Cards None N/A N/A

Customers Orders M One to zero or more

Shopping Cart M, I One to zero or more

Employees Orders M One to zero or more

Purchases M One to zero or more

Gift Cards None N/A N/A

Payments Bank Accounts S Exclusive

Credit Cards S Exclusive

Gift Cards S Exclusive

Type: M = Mandatory, I=Identifying, S=Subtype

Remember that this is a short list of relationships. The total list will be
large, because there will be an entry in the Parent Entity column for every
entity in the model. This comprehensive list serves as a single source of
information as you work through building your model in the modeling
software.

Business Rules
Business rules, as discussed in Chapter 6, can be implemented in various
ways throughout an IT system. Not all business rules will be implemented
in the data model and ultimately the physical database. Because we’re not
inviting debate on exactly where all business rules should go, we focus on
those that belong in the data model, usually because they specifically relate
to data integrity.

Types of Rules Implemented in a Logical Model
In general, all the relationships that dictate whether or not data can be
added, updated, or deleted from a database are types of business rules. For
example, if a company requires that a valid phone number be stored for a
customer—whether it is a cell phone, a home phone, or a work phone—
you can create a constraint to prevent the customer record from being
saved without at least one of those fields containing data.

Using Requirements to Build the Model 163

Two types of business rules are usually enforced in the data model.

■ Data format
This includes any requirements that a given type of data have a spe-
cific length, type of character, and specific order of characters.
Examples include date and time formats, user name and password
fields, and alphanumeric value constraints (e.g., no letters in a Social
Security Number field).

■ Data relationships and integrity
Relationships that require the association of data from one entity
with another are business rules in a data model. For example, all or-
ders must be associated with a customer, or all outgoing shipments
must have shipping details. Another example is the requirement
that multiple records be updated if a single piece of information is
changed—for example, updating the ship date of a shipment auto-
matically updates similar fields in order summary tables.

Other business rules can be implemented in the database, but that is
usually discussed on a per project basis and is always subject to the capa-
bilities of SQL Server. For our purposes, simple data integrity rules are
being implemented in MVM via relationships based on primary keys and
foreign keys.

Building the Model

At this point in the design process, we’ve evaluated existing systems, inter-
viewed employees, and compiled documentation on all the data relevant to
the system we are modeling. We’ve even generated lists of potential enti-
ties and their attributes, as well as the relationships between them. Now it’s
time to begin assembling the data model.

In this section, we start placing entities and their attributes in our dia-
gram and identifying and labeling our keys and relationships. We also re-
view the cardinality of those relationships and ensure that we’ve correctly
labeled them. We also document and label our domains and ensure that
our model is readable and accurate based on our requirements.

164 Chapter 7 Creating the Logical Model

Entities
In Chapter 6, we laid out all the entities that were derived from the infor-
mation we obtained during requirements gathering. At this point, we can
open our data modeling tool and begin adding entities. Figure 7.5 shows the
entire list of entities for MVM, entered as basic entities with no attributes.

Building the Model 165

FIGURE 7.5 The entities for Mountain View Music, in alphabetical order from left to right,
top to bottom, with no detail

It’s not very exciting at this point. However, as we add each layer of in-
formation in the following sections, it will get significantly more compli-
cated very quickly.

Primary Keys
Now that we have entities in the model, the very next thing that needs to
be added are the primary keys for every entity. This is because relation-
ships are based on the primary keys, so we can’t add the relationships until
all the primary keys are in place. Additionally, when you start creating
relationships between entities, you will add the parent’s attribute to the
child’s attribute list (most software does this for you when you add the
relationship).

For most entities in the MVM model, we are using a surrogate primary
key to represent the uniqueness of a record. In some cases, there is a com-
posite primary key in order to ensure data integrity; some entities have no
key except for the composite foreign key relationship between two other
entities in a many-to-many relationship. Figure 7.6 shows the entities with
their native primary keys, including the few that have no primary key.

This is slightly more interesting, although all we can see are the
ObjectID fields. However, that gives us enough structure to start adding
the relationships.

Relationships
At this point, we can start adding relationships based on our relationship
list. There is not necessarily a preferred order for adding relationships to
the model, but it’s safe to say that adding the simple, zero-or-one-to-many
relationships first will speed things up greatly.

Once you have added the easier, simpler relationships, you can begin
working with more-complicated relationships, such as the many-to-many
relationships and any subtype clusters you may have. Speaking of subtype
clusters, if you review Figure 7.7, you’ll see that MVM required one.

Notice that the attributes that previously had no primary key now do;
these keys are composite keys made up of the relationships to keys in the
related parent tables. At this point, we now have primary keys in every en-
tity in the model. Additionally, after you’ve added all the relationships,
you’ll have a nearly complete picture of the data model. However, we need
to ensure that our relationships visually annotate the desired cardinality.

166 Chapter 7 Creating the Logical Model

Modeling Cardinality
Recall that in Chapter 2 we discussed the cardinality of relationships. We
explained the differences between one-to-many and zero-or-one-to-many
relationships. As you add the relationships to your data model, you need to
specify exactly which cardinality each relationship has at a granular level.
In particular, you need to evaluate each relationship to determine its car-
dinality and notate it in the modeling software. If you omit the granular-
level definition, the software usually chooses a default for you, which, in

Building the Model 167

FIGURE 7.6 The entities for Mountain View Music, with primary keys

the case of applications that can generate physical models from the logical
model, may result in incorrect schema.

Domains
Now that our model has entities, primary keys, and relationships, it’s a good
time to review the domains we’re using. In truth, this is a review phase that
will help facilitate the addition of the full list of attributes for each entity.
But it also serves to facilitate the process of adding the attributes.

As described in earlier chapters, domains are definitions of attributes
that are universal to the model. For example, the system may require that
all employee identification numbers (EINs) be nine digits long, regardless
of leading zeros. Thus, we have chosen to model this using the char data
type, which will have a length of nine characters. The EIN may be an at-

168 Chapter 7 Creating the Logical Model

FIGURE 7.7 The entities for Mountain View Music, with primary keys and relationships
added

tribute of several entities. In this case, we should add the EIN domain to
the data model, specifying its name, its data type, and its length. Then, as
we begin adding attributes, we can usually drag and drop the domain onto
the attribute, and it will automatically configure the attribute appropriately.

Even if you aren’t using a data modeling tool that can store and add do-
mains with the click of a mouse, documenting your domains is important.
It will help when you’re adding attributes to multiple entities; you’ll al-
ready know what the specifications are, and you’ll have somewhere to look
for them if you forget.

Attributes
Finally, we are ready to add the list of attributes to the entities. We’ve al-
ready added several attributes when we added primary keys and then rela-
tionships. Now we are adding the attributes that are specific to each entity.

When adding attributes, you may need to be picky about the order in
which you enter them. For readability, it is important to order the attri-
butes in a way that makes sense for the entity. One common example is the
Employees entity, as shown in Figure 7.8.

Building the Model 169

FIGURE 7.8 The Employees entity for Mountain View Music, with primary keys
and all attributes added

You can see that the attributes are ordered in what we might consider
a common order: name, phone, address, and status. We could easily order
these in any way, but this order is closer to what most people think of as in-
formation about a person. It’s certainly not set in stone, nor is there a hard-
and-fast rule about attribute ordering. Just remember that you’ll be
explaining this model to nontechnical personnel, and they’ll be looking at
these attributes as simply labels of information. Ordering them can make
it easier to explain and easier for users to review on their own if necessary.
In any case, most modeling software allows you to rearrange the order of
attributes after they have been added, so you should be able to rearrange
these if the need arises.

As you add attributes, be sure to constantly review your domain list to
make sure you haven’t either (1) missed a domain that should have been
created or (2) missed using a domain in an entity. This is sometimes an it-
erative process, and you are likely to make changes here (as well as in the
rest of the model) when you review the model with the business stake-
holders.

We have completed our first version of the MVM data model. If all the
previous steps have been done correctly, then building the model is the
easiest step, because all we’re doing is creating a logical, visual representa-
tion of the information obtained and analyzed during requirements gath-
ering.

Summary

In this chapter, we’ve finally built our model by using techniques described
throughout the rest of the book. We’ve addressed specific issues regarding
entity lists, attribute lists, and the hows and whys of relationship modeling
in logical models. Next, in Chapter 8, we look at the various generic pitfalls
that most modelers run into and explore ways to avoid them.

170 Chapter 7 Creating the Logical Model

C H A P T E R 8

COMMON DATA
MODELING PROBLEMS

Perfecting a data model is no easy task. To do it correctly, you must balance
the physical limitations of SQL Server 2008 and simultaneously meet the
requirements of your customer’s business. Along the way, there are several
pitfalls you may encounter. Many of the problems you will face are quite
common, and you can avoid them by understanding them. In this chapter,
we discuss some of the more common modeling problems and explain how
to identify them, how to fix them if they occur, and how to avoid them
altogether.

Entity Problems

Data models are built around entities, so that is where we start when look-
ing for problems. Some entity problems are obvious, and others are a little
harder to pick up on and fix. We focus on problems surrounding the num-
ber of entities and attributes, and problems that can arise when you don’t
pair attributes with an appropriate entity.

Too Few Entities
In the name of a clean, simple, easy-to-use data model, many modelers
create fewer entities than are required. This practice can often lead to a
model that’s inflexible and difficult to use.

If you suspect that your model has too few entities, the first thing to
look for is having similar data in the same entity. For example, look at the
original Customers entity for Mountain View’s logical model, as shown in
Figure 8.1.

171

Notice the seemingly duplicate address data. In the strictest sense of
the word this data isn’t really duplicate data—it contains work information
versus home information—but the type of data is redundant. We were told
during requirements gathering that Mountain View needed to store at least
two addresses for each customer and that the home and the work addresses
were the most common addresses on file. Storing the data in the way that
we have in Figure 8.1 presents a few problems. The first problem is that
the model is not flexible. If we need to store additional addresses later, we
would not be able to do so without first modifying the entity to add
columns. Second, the data is difficult to retrieve in this state. Applications
would need to be written to understand the complexity and pull data from
the correct columns. This problem is compounded by the changes that
would need to be made to the application if we later add a third address.

This is a clear example of having too few entities, and we can tell that
by the duplication of information. The fix here is to give the duplicate data
its own entity and establish a relationship with the original entity. In Figure
8.2 we have split the address data into its own entity.

172 Chapter 8 Common Data Modeling Problems

FIGURE 8.1 The original Customers entity for Mountain View Music

As you can see, the new entity has each address attribute only once,
and we have added a new attribute called Description. The description al-
lows Mountain View to identify the address at the time of entry. Splitting
the address data out of the customer entity in this way allows for more flex-
ibility and eliminates the need to change the application or the data model
later. With this model, the company is no longer limited to only a home and
a work address; it can now enter as many as it likes. Maybe the customer
has two houses or wants to ship something as a gift. Either way, our new
model allows it.

This kind of thing can happen often when you are building a model.
You mistake what should be a second entity for attributes of the entity you
are building. This error isn’t limited to things like addresses, which are at-
tributes of customers. It can also happen with two completely different
items that end up in the same entity. For example, suppose we’re storing
data about classes at a local college. If we create a Class entity, we need to
track the professor for each class. The quick—and might we say, sloppy—
way is to add a few attributes to the Class entity to track the information
about the professor, as shown in Figure 8.3.

Entity Problems 173

FIGURE 8.2 The Customers entity with the address data correctly split out

FIGURE 8.3 A Class entity that also contains Professor information

By adding attributes for the professor’s name, phone number, and e-mail
address, we meet the requirements of the Class entity; that is, we are track-
ing the class’s professor. However, if you look below the surface, you should
see some glaring problems. The biggest problem is that this setup violates
the rules of first normal form and all that goes with it. We have not suc-
cessfully separated our entities into distinct groups of information. We are
storing both class and professor data in the same entity. In these situations,
you need to split the entity along 1NF guidelines. Figure 8.4 shows the ap-
propriate way to store this information.

174 Chapter 8 Common Data Modeling Problems

FIGURE 8.4 The Class entity with the professor information moved to a new
Professor entity

As you are building models or reviewing existing models, keep an eye
out for these types of situations. We all want our data models to be simple
and easy to understand, but don’t oversimplify. Remember that the things
you are modeling have some level of complexity, and as a rule your model
should not be less complex than real life. Having a lot of entities doesn’t
necessarily lead to a confusing model, so don’t be afraid to include all the
entities you need to build an accurate representation of real life.

Too Many Entities
As you might expect, if having too few entities can be a problem, then hav-
ing too many entities can also cause headaches. The usual trap here is try-
ing to overnormalize a database. Although normalization is a good thing,
overnormalization can cause performance problems and limit the model’s
flexibility. Adding extra entities in places that aren’t obvious can sometimes
be a good thing, but you must fully understand the data and its usage be-

fore you go over the top. Figure 8.5 shows an example of what is, in our
opinion, a model using too many entities.

Now, this is, in most cases, a perfect example of using too many enti-
ties. We have indeed followed normalization rules—each entity pertains to
only one grouping of data—but the performance implications of stitching
this data back together are enormous. Unless you have a compelling rea-
son to do something like this, such as building a data model for the post of-
fice, then we recommend that you avoid this tactic. That said, we have
worked with an application that implemented a version of this, but it was
only two tables. Street address information was stored in the Address en-
tity, and that contained a foreign key to an entity called ZipDetail. The
ZipDetail entity held the ZIP code, city, state, and country information.
This particular application stored a lot of address data, and breaking out

Entity Problems 175

FIGURE 8.5 An example of using too many entities to represent an address in a data
model

the street address from the rest of the detail provided a space savings be-
cause that information wasn’t ever repeated.

Having too many entities can slow the performance of the database
after it’s implemented. As good data modelers, not only should we care
about normalization and clever data storage, but also we need to be cog-
nizant of the performance implications of our decisions in the model.

Attribute Problems

The biggest hurdle you will encounter when working with attributes is
making sure that they are appropriate and store the correct data. Too
often, we put unneeded attributes in entities or we misuse the attributes
that are there. Remember your normalization rules: Each attribute should
hold only one kind of data. It is tempting to go the easy route and create
columns called attribute1 and attribute2, but that is a trap you want to
avoid. Let’s look at other common attribute problems so that you can avoid
them in your model.

Single Attributes Contain Different Data
When we say a single attribute with different data, we are referring to a
scenario in which you create attributes named attribute1, attribute2, at-
tribute3, and so on. That is, you add several columns with similar names
and data types in order to hold some nonspecific information. Mountain
View needs to store information about its products—musical instruments
and their related accoutrements. This presents a bit of a modeling prob-
lem. The products need to be stored in a Products table so that they can
be tied to orders and inventory can be tracked, but different types of in-
struments are very different. Clarinets do not have strings, and guitars
don’t have mouthpieces. This scenario leads us to create a products table
having the generic attribute columns shown in Figure 8.6.

This table was built this way so that each instrument could have at-
tributes that are unique to it. For example, a guitar needs to store the type
of wood for the neck, the type of wood for the body, the tuner style, the
number of strings, the metal the frets are constructed from, and the finish.
In contrast, for a saxophone we need to store the type of metal, the horn’s
key, the type of material used for the pads, the width of the bell, and the
type of finger pads.

176 Chapter 8 Common Data Modeling Problems

How do you store the different attributes of the instruments without
making your database look like an overgrown Excel spreadsheet? There
are a few options. You could make a different entity for each type of in-
strument, but this solution would be very inflexible. If the company de-
cides to carry a new type of instrument, you would need to add new
entities; if it decides to track something else about an instrument, you
would need to add attributes to an entity. To solve this problem for
Mountain View, we add another entity called Product Attributes, as shown
in Figure 8.7.

Setting up a two-table solution builds flexibility into the design and al-
lows for a more optimal use of storage. In this example, all the product at-
tributes are records of the Product Attributes entity, and anything that is
common to all products is stored in the Products entity. Using this model,
we can add products and product entities at will. However, more important
than the added flexibility, we got rid of that repeating attribute monstrosity.

Attribute Problems 177

FIGURE 8.6 A poor product entity design, supporting different attributes for
different products

Remember that everything comes with a cost; in this case, gaining flex-
ibility causes us to lose the structure offered by specifying the attributes in
columns. This could make it harder to compare two similar products. Each
situation is different, and there is no right or wrong answer here. You must
do what makes sense in your situation.

Incorrect Data Types
Choosing incorrect data types, either because you are being lazy or be-
cause of bad requirements gathering, can be a serious problem when it
comes time to implement. The most common thing we have run into is
creating entities that have a ton of varchar columns and nothing else. The
varchar columns can store everything from strings to numbers to dates and
are often also the PK or an FK.

Why is this bad? Shall we list the reasons?

178 Chapter 8 Common Data Modeling Problems

FIGURE 8.7 A two-table solution for storing product attributes

■ Extra unneeded storage overhead
■ No data integrity constraints
■ The need to convert the data to and from varchar
■ Slow join performance

Let’s take a closer look at each of these problems.

Extra Unneeded Storage Overhead
Depending on the type of data being stored, using the wrong data type can
add extra storage overhead. If you are holding phone numbers in the form
of 1235557890, it means that you save 10 characters each time a phone
number is stored. You have a few good data type choices when storing
phone numbers in this way; you could use a varchar, a char, or a bigint.
Recall from Chapter 3 that a bigint requires 8 bytes of storage, and the
storage for the char and varchar data types depends on the data being
stored. In this case, the 10-digit phone number would require 10 bytes of
storage if you use the char, and 12 bytes of storage if you use the varchar.

So just looking at the storage requirements dictates that we use a big-
int. There are other considerations, such as the possible length of the for-
matted number. If you want to store numbers in a different format, such
as (123) 555-7890, then you would need one of the string data types.
Additionally, if you might store international numbers, which tend to be
longer than 10 digits, you might consider using varchar. In that way, the
shorter number takes up less space on disk and you can still accommodate
longer numbers.

There are other things to consider, and each situation is unique. All we
want to illustrate here is the extra storage overhead you would incur by
using the string types.

A word of caution: Don’t go too far when streamlining your storage.
Although it is a good practice to avoid unneeded storage overhead, you
don’t want to repeat the mistake that made Y2K such a big deal. Rather
than store all four digits of the year when recording date information, pro-
grammers stored only the last two digits to conserve space. That worked
when the first two digits were always 19, but when the calendar pointed
to the need for four digits (2000), we all know what happened (in addition
to COBOL programmers getting rich): A lot of code had to be rewritten to
expand year storage. In the end, we are saying that you should eliminate
unneeded storage overhead, but don’t go to extremes.

Attribute Problems 179

No Data Integrity Constraints
If we use varchar for attributes without considering the actual data, we
could have data integrity problems. The main reason we use data types is
to enforce data integrity. If we are storing a date, the datetime data type
ensures that the entered information is a valid date. Storing a date in a var-
char could lead to problems. For example, what if the application code has
a glitch that omits the first “/” and writes the date as “35/2007”? You might
say, “So what? We can fix that with a script,” but can you really fix it? Take
the date January 13, 2005, as an example. If that gets stored as 113/2005,
you have a problem. It could be converted to 1/13/2005 or 11/3/2005. Had
we used the datetime data type from the start, we would have received an
error when the application wrote 113/2005, and the problem could have
been found and fixed. There are literally hundreds of examples, but we
think you get the point: Use the correct data type, and you are on your way
to having solid data integrity.

The Need to Convert Data
Data stored in varchar attributes is, not surprisingly, stored as a string. This
means that it is stored, referred to, sorted, and grouped as a string. Why is
this an issue? Let’s look at the problem you encounter when sorting. When
you sort strings, they sort alphabetically, and numbers sort numerically.
This can lead to very different results. To illustrate this, we created a table
called SortTest using the following code in SQL Server.

CREATE TABLE SortTest(

StringDate varchar(50),

RealDate datetime)

As you can see, we have two columns: one varchar and one datetime. Now
we insert all the dates for January 2007 in the format “1/1/2007” into this
table. Here are the insert statements we use.

INSERT INTO SortTest VALUES('1/1/2007' , '1/1/2007')

INSERT INTO SortTest VALUES('1/2/2007' , '1/2/2007')

INSERT INTO SortTest VALUES('1/3/2007' , '1/3/2007')

INSERT INTO SortTest VALUES('1/4/2007' , '1/4/2007')

...

INSERT INTO SortTest VALUES('1/31/2007' , '1/31/2007')

180 Chapter 8 Common Data Modeling Problems

Now let’s get down to the problem. We will select the data from the
table and sort the select by each of these columns. When we sort by the
RealDate column, we get 31 records, all in perfect date order from January
1 to January 31—no big surprise. Now let’s see what happens when we sort
by the StringDate column; the results of the select are shown in Table 8.1.

Table 8.1 The Results of Sorting by a Date Stored in a String Column

StringData RealDate

1/1/2007 2007-01-01 00:00:00.000
1/10/2007 2007-01-10 00:00:00.000
1/11/2007 2007-01-11 00:00:00.000
1/12/2007 2007-01-12 00:00:00.000
1/13/2007 2007-01-13 00:00:00.000
1/14/2007 2007-01-14 00:00:00.000
1/15/2007 2007-01-15 00:00:00.000
1/16/2007 2007-01-16 00:00:00.000
1/17/2007 2007-01-17 00:00:00.000
1/18/2007 2007-01-18 00:00:00.000
1/19/2007 2007-01-19 00:00:00.000
1/2/2007 2007-01-02 00:00:00.000
1/20/2007 2007-01-20 00:00:00.000
1/21/2007 2007-01-21 00:00:00.000
1/22/2007 2007-01-22 00:00:00.000
1/23/2007 2007-01-23 00:00:00.000
1/24/2007 2007-01-24 00:00:00.000
1/25/2007 2007-01-25 00:00:00.000
1/26/2007 2007-01-26 00:00:00.000
1/27/2007 2007-01-27 00:00:00.000
1/28/2007 2007-01-28 00:00:00.000
1/29/2007 2007-01-29 00:00:00.000
1/3/2007 2007-01-03 00:00:00.000
1/30/2007 2007-01-30 00:00:00.000
1/31/2007 2007-01-31 00:00:00.000
1/4/2007 2007-01-04 00:00:00.000
1/5/2007 2007-01-05 00:00:00.000
1/6/2007 2007-01-06 00:00:00.000
1/7/2007 2007-01-07 00:00:00.000
1/8/2007 2007-01-08 00:00:00.000
1/9/2007 2007-01-09 00:00:00.000

Attribute Problems 181

When you sort strings, the first letter is examined and sorted, then the
second letter, and then the third, and so on. This causes our date data to
get out of whack. After 1/1/2007, the next number in the alphanumeric sort
is 1/10/2007. This makes for an ugly result set.

To get around this problem now, you must convert the StringDate col-
umn during your select operation. We won’t go into the details of the query
engine, but suffice it to say, the conversion of a string into a date adds over-
head to the select query. Paraphrasing a saying from a wise, uh, man,
“Overhead leads to higher CPU utilization, higher CPU utilization leads to
poor performance, poor performance leads to suffering.” Again, had we
used the correct data type, we could have avoided the problem of needing
to convert the string and avoided the eventual suffering.

Slow Join Performance
When you need to join your foreign key tables to your primary key tables,
the slowest joins occur when you use strings. This is a generalization, but
it usually holds true. That being said, you want to avoid using strings as key
fields when possible. So using nothing but strings would obviously violate
this guideline. If you use the appropriate data types, you will reduce the
possibility of having a string in your key field.

Relationship Problems

One of the trickiest parts of building a data model is getting all your rela-
tionships correct. Assuming that you have created all the appropriate enti-
ties, you still have to build relationships between them. This quandary is
compounded by a couple of tricky relationship types, specifically one-to-
one and many-to-many relationships.

One-to-One Relationships
Although 1:1 relationships have their place, they often split an entity in two
that should in fact remain a single entity. A good 1:1 relationship is some-
thing like presidents to countries. Each country has only one president,
and each president is president of only one country. In this case, each
of these entities is different, but the relationship needs to be constrained
to 1:1.

182 Chapter 8 Common Data Modeling Problems

Now let’s look at a bad 1:1 that would probably mean you have too
many entities. In this example, we have a data model that stores informa-
tion about a small nonprofit organization consisting of only a board of di-
rectors and no other employees. You could model the board members as
shown in Figure 8.8.

Relationship Problems 183

FIGURE 8.8 Board of directors model for a small nonprofit organization

In this model, we have two entities—one for the board members and
one for the board members’ positions—and the relationship between them
is 1:1. We have to ask ourselves, “What does this buy us? Is there any value
in splitting this data into two entities versus adding a position attribute to
the employee table?” If the answer is that we are not adding value, then we
should collapse these two entities into one table. If the second table were
holding a lot of extra detail about the position and not every board mem-
ber had an assigned position, then we would be more willing to let the en-
tities exist as two. In our case, we would opt to combine the entities.

When examining 1:1 relationships you should ask yourself a couple of
questions.

1. Are the two entities truly distinct?
2. Are the values in one of the entities only attributes of the other

entities?

If you look at each 1:1 in this way, you will avoid potential problems that
can crop up later.

That said, if you have an entity and quite a few attributes are needed
only for a small minority of your records, you might consider splitting them
off with a one-to-one relationship. This is a rare case, but it can help keep
your model cleaner and simpler to use. For example, suppose you have
an entity that will contain as many as 10 million records, and it has 100

attributes. You find out that only 100,000 of the records will use attributes
20 through 100. In this case, 99 percent of the records will use only 20 per-
cent of the attributes, and the other 1 percent of the records will have all
the attributes. This might be a good time to split the entity to prevent hav-
ing a table that is mostly empty. It will also speed the retrieval of the
records that do use all the data, because you will have all that information
in a single, smaller table. As we said, this is a rare case, but you may run
into it when creating a model.

Many-to-Many Relationships
The next stop on our journey though the world of data modeling problems
is the big, bad many-to-many relationship. Once you have a handle on how
to physically implement a many-to-many relationship, working with them
isn’t very difficult.

What problems are there that you should be aware of when using
many-to-many relationships? Often, the fact that you have implemented a
pure many-to-many relationship is, in and of itself, the problem. When we
say “a pure many-to-many relationship,” we mean one in which the join
table is made up only of the foreign keys that point to the other tables. For
example, look at the many-to-many relationship shown in Figure 8.9.

184 Chapter 8 Common Data Modeling Problems

FIGURE 8.9 A “pure” many-to-many relationship

In this example, we have two tables—Tickets and Queue—with a
many-to-many relationship between them, implemented here using
TicketQueue as a join table. Not shown are the other attributes of these
three tables. Both Tickets and Queue contain other elements in addition to
their primary keys. In this case, the join table, TicketQueue, exists only to
define the relationship; it does not add any further information about tick-
ets or queues.

At first glance, you might think this relationship is just fine, but let’s
take a moment and think about what we are modeling. We are trying to

model a relationship whereby tickets are placed into work queues. Each
queue can have multiple tickets, and each ticket can be in multiple queues;
so far, our many-to-many is looking OK. What you have to ask yourself in
this situation is, “Are there any other attributes we should have in the join
table to complete the picture of what we are modeling?” In this example,
there indeed are other helpful attributes that we could add. For example,
we might add an InsertedTime column to the TicketQueue table to track
when the ticket was placed on the queue.

There are perfectly valid uses for many-to-many relationships, but if
you look closely at your model, you will find that there are other attributes
that you can add to the join tables. Don’t get us wrong; we are not saying
that many-to-many relationships are bad, but they do add the extra over-
head of having to bring a third table into a relationship. We are big fans of
reducing the number of tables to increase performance. Properly evalu-
ating your many-to-many relationships is a big step toward a clean, well-
performing database model.

Summary

In this short chapter, we’ve covered some of the common problems that
you may run into when building your data model. By making yourself
aware of these issues you should be able to plan accordingly and avoid
these mistakes. Once a data model has been completed—physically imple-
mented—and you start using the database in a production environment,
making changes is often difficult at best. We always want to build good,
sound models, but sometimes we fall into these simple traps. Hopefully,
you now have the tools you need to build models without building in these
little headaches.

Summary 185

This page intentionally left blank

P A R T I V

CREATING THE
PHYSICAL MODEL

■ Chapter 9 Creating the Physical Model
with SQL Server

■ Chapter 10 Indexing Considerations

■ Chapter 11 Creating an Abstraction Layer
in SQL Server

This page intentionally left blank

C H A P T E R 9

CREATING THE PHYSICAL MODEL
WITH SQL SERVER

We have come a long way since we started our discussion about data mod-
eling, but now we are on the downhill slide. You have done all the hard
work—gathering requirements, transforming them into a logical model,
and acquiring customer approval of that model. Throughout this process
you had to make sure to avoid common problems and keep everything nor-
malized to a reasonable level.

Now it’s time to use the logical model and the business requirements
to come up with your physical model. This physical model will become
your actual database in SQL Server. This chapter first covers the naming
guidelines we suggest for SQL Server objects, and then we talk about cre-
ating your physical model. So without further ado, let’s get right into cre-
ating our physical model in Microsoft SQL Server.

Naming Guidelines

Naming guidelines are extremely important when you create your physical
model. There are literally hundreds of naming standards out there, and
each has its pros and cons. At the end of the day, it doesn’t matter which
standard you use, as long as you use a standard.

Why is a naming standard so important? First, it provides a quick indi-
cator of the type of object you are working with. If all tables start with the
same prefix, such as “table” or “tbl,” and if all views start with “vw” or
“view,” then you will be able to tell at a glance where data is coming from.
This practice can save a lot of time and is especially helpful if you find
yourself looking at T-SQL code that is not performing well. Also, when
performance tuning, you will have different considerations for views than

189

you do for tables, so it’s helpful to know quickly which type of object you
are accessing.

Second, naming standards can prevent problems that can arise because
of your SQL Server configuration. This comes into play most often in case
sensitivity. If you name your objects in a standardized way, then your code
can be written in the same way. This match of code to object name is cru-
cial if you are going to host your database on a case-sensitive server. If you
refer to a table in code as Employee and the table is actually named em-
ployee, a case-sensitive server will tell you the table doesn’t exist.

“OK,” you might be saying, “I’ll just set up my SQL Server to be case
insensitive.” But what if that decision is taken away from you, now or five
years from now? There is nothing worse than going back over old code to
make sure that the case matches the table because your customer decided
it needed case sensitivity. Using good naming standards now prevents you
from having to do more work later.

Finally, naming standards can help force good standards on the data-
base developers. We have worked with some extremely talented develop-
ers, but talent in C# does not always translate to talent in T-SQL.
Developing for databases is a whole different animal, so anything you can
do to enforce better standards will be a big help.

As we said, there is no right or wrong method for your database nam-
ing standards. No matter which standard you implement, the point is that
you have one. To see whether your standard is a good one, ask yourself a
few questions.

■ Does the naming standard make sense to you?
You need to make sure that the standard makes sense to you and that
you will be able to follow it during your design. If the standard con-
tains hard-to-use or hard-to-remember elements, then you will likely
forget about them and end up deviating from your own standard.

■ Will others understand the standard?
Your standard must also make sense to others. If it doesn’t make
sense to the other people who will be using it, then they too may for-
get parts of the standard. Make sure you run your thinking by a col-
league before the standard gets etched in stone.

■ Does the standard lend itself to consistency?
Can you implement your standard the same way over and over
again? As we mentioned earlier, complex elements make for a
difficult-to-implement standard. Just remember to keep it simple.

190 Chapter 9 Creating the Physical Model

Now let’s look at the naming standard we are using in the model for
this book. Again, this standard is not the only way, and your standard may
be very different, but we want you to understand our thinking before we
get into building the physical model. If, however, you like the standard laid
out here, we highly recommend its use because we have had great success
with it.

General Naming Guidelines
Whether you are naming tables, stored procedures, columns, or any other
SQL Server object, there are a few rules that you should plan to follow.
These rules ensure that the names you use will not cause problems and will
prevent you from having to add extra code when referencing these obj-
ects. We look at the general rules now and get into the object-specific rules
a little later. Again, these are not hard-and-fast rules, but they are good
guidelines.

Never Use Spaces in Object Names
Although SQL Server will happily allow you to enter names that contain
spaces, don’t do it. A view name like “Orders by Customer” may seem like
a good idea (after all, it is descriptive), but you should avoid it at all costs.
Some applications are completely unable to deal with the space in an ob-
ject name, and your T-SQL code can deal with this name only if you en-
close it in square brackets, such as [Orders by Customer].

Never Use Hyphens in Object Names
Using hyphens (-), also commonly known as dashes, can cause a problem
similar to the one caused by using spaces. A hyphen in T-SQL is, among
other things, the minus operator. Using a hyphen in an object name not
only will confuse the compiler but also can lead to unexpected results.
Although a hyphen won’t cause as many problems as a space, it is still wise
to avoid its use.

Do Not Name Objects Using SQL Server Keywords
This one can be a real pain. Naming an object with a keyword can lead to
all kinds of problems. The list of SQL Server keywords is too long to in-
clude here, but you will know it’s a keyword if it turns blue in the SQL

Naming Guidelines 191

Server tools or in a T-SQL query or script. Keywords include, but are not
limited to, the following:

■ SELECT
■ INSERT
■ UPDATE
■ DELETE
■ DISK
■ BEGIN
■ END

There is really no good way to know all the keywords, although there
are some references on the Internet, so your best bet is to use the compiler
and a little common sense. If you have been around SQL Server for any
length of time, you will recognize many keywords. Just remember that if
it’s a command that can be used to do something in SQL Server, then it’s
probably a keyword. Additionally, you can find a complete list of in
Appendix C, “SQL Server 2008 Reserved Words.”

What’s the big deal? Why can’t you use keywords for object names?
First of all, it can confuse other people who are trying to read a script that
was written against the database. Second, and more importantly, it confuses
the T-SQL compiler. When SQL Server encounters a script like the one
that follows, it can’t make heads or tails of the syntax and throws an error.

SELECT where, and, name, date

FROM INSERT

WHERE and = 1

AND where = 'Omaha'

This is an extreme example, but you can see how SQL Server would
have no idea you have a table named INSERT with columns named
“where,” “and,” “name,” and “date.” You would receive a syntax error when
compiling this code, and you would need to surround all the keywords with
square brackets, as follows. This fixes the syntax problems but doesn’t
make it any easier for a person to read.

SELECT [where], [and], name, date

FROM [INSERT]

WHERE [and] = 1

AND [where] = 'Omaha'

192 Chapter 9 Creating the Physical Model

Keep the Names Short
In our opinion, too many people abuse the ability to give things longer
names these days. This isn’t limited to databases by any stretch. In
Windows, files can have extremely long names, and SQL Server is no dif-
ferent. A short but descriptive name is always a better alternative to a long,
more human-readable name. Long names don’t cause syntax problems, but
they cause frustration and can cause developers to write some ugly-looking
code. Imagine a database where stored procedures have names such as
proc_select_all_customer_data_by_company_grouped_by_month.
Although this doesn’t break any of our other rules—no spaces or dashes,
and no keywords—it is a little long to deal with. Imagine trying to type that
in each script you write. It would be time consuming, not to mention caus-
ing great difficulty in locating a typo if one should occur. Now imagine a
whole script filled with table and view names similar to this one. It is
always best to keep it short. In this case, a name like proc_monthly
_custdata_by_company, though still a little long, would be a much better
alternative.

In addition to being short, the name should be descriptive. Don’t go
too far to the other extreme and start calling views something like mtcusdat.
This name could mean almost anything. Make sure you follow both aspects
of this rule: short and simple, but long enough to have meaning.

Using Case in Your Names
Here is where we receive the fan mail and the hate mail all in one section
of the book. When it comes to using case, we feel that the best option is to
keep everything in your database in lowercase. This means it is more diffi-
cult to separate two words in an object, so we use underscore characters
between them.

Now, we agree that a name like TblActiveCustomers is a lot nicer to
look at than tbl_active_customers, but there is a specific reason we prefer
the latter. It all goes back to case sensitivity, as we mentioned earlier. If you
are enforcing good standards in your database and in your code, all refer-
ences to database objects should match the case of the object name. The
problem is that so many SQL Servers are set up to be case insensitive that
it makes it easy to get lazy. With a name like TblActiveCustomer, it’s too
easy to reference it in the code as tblActiveCustomer or tblactivecustomer.
This is all fine and good on a case-insensitive box, but if the database is
placed on a case-sensitive server then all the code will need to be fixed. If
everything is always in lowercase, it’s a lot easier to remember the standard.

Naming Guidelines 193

Remember that these are guidelines. You can implement however you
want, but in the long run, having everything in lowercase will cause you
fewer headaches.

Naming Tables
When we name our tables, we use a convention of prefacing the table with
“tbl_” followed by a meaningful name. We do this so that you can quickly
identify a table when looking at objects or queries. Some people would
argue that it is obvious which objects are tables, because they are listed as
tables in the SQL Server tools and they are always referenced in the same
places in T-SQL statements. We agree with the first argument, but as for
the second, it forgets about views. Views and tables are referenced in the
same way, and it is often helpful to be able to quickly identify whether a
view or table is being used when you’re looking at a T-SQL statement.
Additionally, you might need to look at documentation, such as a data dic-
tionary, offline. It is again helpful to be able to quickly identify your tables.

As for the actual name, we make sure it’s meaningful and we separate
words with underscore characters. One other important note: We never
pluralize the names of our tables. The table is named for the data it holds,
as in tbl_customer; even though it holds multiple customers, we do not
name the table tbl_customers. Here are some of the tables you will see in
the Mountain View Music database:

■ tbl_order
■ tbl_customer
■ tbl_product
■ tbl_employee

That convention handles 80 percent of the tables we will encounter in
our database, but there is always the other 20 percent to deal with. Some
tables serve a special purpose, such as join tables in many-to-many rela-
tionships. You may decide that you need to set up a M:M relationship be-
tween a customer table and an address table. If you think about it, this
makes sense; a customer can have many addresses, and more than one cus-
tomer can share an address. As we discussed in Chapter 3, you need to cre-
ate a third join table to set up this M:M relationship. In this case, we start
the table name with “tbl_” and then we use both of the other table names
in this new name. In the example of customers and addresses, we would
call the join table tbl_customer_address.

194 Chapter 9 Creating the Physical Model

Additionally, for lookup tables, some people like to add a prefix, such
as “lkup,” after “tbl_ .” This would give a table containing status codes a
name like tbl_lkup_status_code. Although we don’t think this is a bad idea,
it is not something we implement. The main reason we avoid this strategy
is that whoever ends being up the DBA for this database shouldn’t care
whether the table contains lookup data. To the DBA it is just another table
that the applications need to read, and possibly write to.

Naming Columns
Columns are not given prefixes, and they are the lone exception to our pre-
fix rules. When naming a column, just make sure you give it a descriptive
name. If you need a column to hold a customer’s first name, a column
called first_name or even firstname is just fine. Try to be consistent where
you place your underscores. Don’t name one column first_name and an-
other lastname; it will lead to confusion. Also, be extra careful with re-
served words in column names.

One last convention that has always been an area of debate is using
the table name in the column name as a prefix—for example, giving the
column that contains your customer’s phone number a name like
customer_phone. Although this does help to avoid ambiguous column ref-
erences in T-SQL, it can also add a lot of extra code that you just don’t need
in order to figure out which column you are talking about. Because you use
periods (.) to separate the portions of the object’s name in SQL Server, you
can reference the customer’s phone number as tbl_customer.phone, which
is less messy than the alternative tbl_customer.customer_phone. You
wouldn’t include the name of the database in the name of a table, so don’t
do it with columns.

Naming Views
Views are similar to tables, so their naming convention is similar. We
preface them with “vw_” and then add a descriptive name. Views tend to
have slightly longer names than tables do, because views often pull to-
gether data from multiple tables. A view that pulls together data from two
tables—tbl_address and tbl_customer—might be given a name like
vw_customer_addresses. In this case, we have tossed out the rule about
avoiding a plural name. That’s because for a view that contains multiple ad-
dresses for each customer, it is more appropriate to call it vw_customer
_addresses instead of vw_customer_address.

Naming Guidelines 195

Naming Stored Procedures
Naming stored procedures is simple; we preface them with “prc_” fol-
lowed by a descriptive name. Stored procedures can often update many ta-
bles in one shot, so again be careful not to let the name get too long. One
tip: If you don’t like our prefix “prc_” and you would rather use your own,
that is fine, but we caution against using “sp_.” That is the prefix that
Microsoft uses in SQL Server for system stored procedures, and using
“sp_” can lead to confusion.

Naming User-Defined Functions
User-defined functions are named in the same manner as stored proce-
dures. The prefix we use for UDFs is “udf_.” SQL Server has several built-
in functions that use “fn_” as the prefix, so you should avoid that as an
alternative.

Naming Triggers
Triggers present an interesting problem when it comes to naming. We still
use a prefix, in this case “trg_,” but triggers are also attached to a specific
table and tie to a specific statement or statements that run against that
table. Triggers can be configured to run after an insert, update, or delete
or instead of an insert, update or delete. You can even define a single trig-
ger to run on multiple conditions such as after an insert and after an up-
date on the same table. Although it would be nice to use a descriptive
name such as trg_upd_tbl_customer, it can get a little messy if the trigger
runs in response to more than one condition. Imagine the name for a
trigger that fires on delete, insert, and update on a table name that con-
tains customer history; it would be something like trg_ins_upd_del_tbl_
customer_history. That is just ridiculous.

How do we solve this problem? We name triggers in the same way we
name stored procedures: a “trg_” prefix followed by a descriptive name.
Beyond that, we are OK with looking up the detail on triggers when we are
working with them.

Naming Indexes
Indexes are named in a similar manner as the other objects. We start with
the prefix “idx_” and follow with a description of the index. For example,
an index on the customer table’s first_name and last_name columns could

196 Chapter 9 Creating the Physical Model

be called idx_customer_name. The idea is to provide enough detail about
the purpose of the index without the name getting out of hand. It is sim-
ple enough to use tools or queries to look up which columns are in the
index.

Naming User-Defined Data Types
User-defined data types (UDTs) can be quite useful when you’re trying to
enforce consistency in similar data across multiple objects. If you choose to
use UDTs, we suggest you name them in a way that makes sense to you—
no special prefix, only a good descriptive name. For example, you may have
multiple tables that contain an order number column. If you want to en-
sure that all of those columns have exactly the same format and type, you
could create a UDT called ordernum to enforce the required data type.

Naming Primary Keys and Foreign Keys
When we name our primary keys, we simply start with “PK_” and end with
the table name. For example, your customer table called tbl_customer
would contain a primary key called PK_tbl_customer. We keep the “tbl”
prefix in the name to avoid confusion.

Foreign keys are a little trickier because they commonly exist in one
table and reference another. As you may have guessed, we start foreign
keys with an “FK_” prefix. After that, the name has two parts: the first is
the referencing table, and the second is the referenced table. For example,
suppose we want to name the foreign key on the order detail table named
tbl_order_detail that references the order table tbl_order. We would name
it FK_tbl_order_detail_tbl_order. We again leave the “tbl_” prefixes in the
name of the foreign key. This helps to avoid confusion by offering a clear
separator for the referencing and the referenced table.

Naming Constraints
Defaults and constraints are straightforward. Defaults are named with a
“DF_” prefix followed by the table and then the column on which the de-
fault exists. For example, if the customer table has a column named status
with a default value, we name our default constraint DF_tbl_customer
status. For check constraints, we start with a “CK” prefix and follow with
a meaningful name. If you want to ensure that an entity contains at least
one phone number, you might write a check constraint. The name for this

Naming Guidelines 197

check constraint would be something like CK_ phone_number. Finally, for
unique constraints we use the prefix “UNQ_.”

Deriving the Physical Model

Until now, we have done a lot of work with entities and our logical model.
Now we walk through the process of building the physical model based on
the logical model. This process is often a matter of deciding what to call
your tables and creating one table per entity. On the other hand, it can be
a lot trickier. In some cases, you need more than one table to represent an
entity, and other times you use a single table to represent multiple entities.
Remember that entities are meant to model real-world objects, such as
customers or employees. When you create tables, they also need to model
real-world objects, but the other concern here is storing the data in a way
that makes sense in terms of a relational database. This is the reason we
don’t always see a one-to-one mapping of entities to tables.

To build our physical model, we start by creating one table per entity
and then split or combine tables on a case-by-case basis. Some people like
to do the splitting and combining in a second pass, and others do it as they
go through the model the first time. Ours is a hybrid method. We go
through once, putting things where they make the most sense, and then we
come back and look at what we have done to make sure it looks correct.

Using Entities to Model Tables
At this point in the process you should have a complete logical model set
up and documented in a data modeling tool. Depending on the tool, you
may have the ability to translate what you have in the logical model into a
physical model.

If your tool doesn’t have this option, you need to find another way to
document your physical model. You can model it directly in SQL Server by
using a database diagram, which would actually create the tables and other
objects, or you can set up another “logical” model but this time follow your
rules for physical modeling.

In our case, the tool supports both a physical and a logical model.
When we created our logical model, we used the tool to separate the enti-
ties into logical groupings called submodels. Submodels simplify working
with large data models, because they allow you to view a subset of entities
instead of 300 entities at once. The submodels we created are as follows.

198 Chapter 9 Creating the Physical Model

■ Products
This final submodel contains all the details about the products sold
and the product vendors.

■ Inventory
This submodel contains all the details about the company’s physical
inventory.

■ Orders
All entities related to orders, payments, and customers exist in this
submodel.

■ Web Session
These entities allow us to implement a Web shopping cart to save
orders in progress.

■ Lists
This small submodel contains the two entities used to implement a
lookup list.

As you can see in Figures 9.1 and 9.2, showing the complete logical
model versus a submodel, the smaller submodel makes it easier to view
and work with the entities.

Deriving the Physical Model 199

FIGURE 9.1 The complete Mountain View Music logical model

As we work toward our physical model, we will go through each of our
submodels one at a time. In this way, we can take small sections and build
the physical model in a logical manner rather than try to look at the entire
model at the same time.

In addition, as we go through, we will see that certain entities, such as
Employees, exist in multiple submodels. We will deal with these entities in
the model that they truly belong to. In other words, entities such as List
Items appear for lookup purposes in many of our submodels; however, be-
cause there is an entire submodel dedicated to lists, we will ignore the List
Items entity until we get to the Lists submodel. For this first pass, we con-
cern ourselves only with getting entities from our logical model and find-
ing a place for them in our physical model; we deal with columns and
relationships in the next section.

Products Submodel
The first submodel we need to work with for our physical database
contains the entities relating to the company’s products. This submodel
is shown in Figure 9.3, and the entities we will be working with are as
follows:

200 Chapter 9 Creating the Physical Model

FIGURE 9.2 The Inventory submodel from the Mountain View Music logical model

■ Products
■ Vendors
■ List Items
■ Product Vendors
■ Product Kits
■ Product Attributes

Deriving the Physical Model 201

FIGURE 9.3 The Products submodel from the Mountain View Music logical model

This first submodel is pretty simple. Because of the way we created our
logical model, we will use all these entities as is and create tables. For ex-
ample, consider the Product Vendors entity; it exists as a many-to-many
join between Products and Vendors, but it also contains the Cost attribute.
This attribute allows us to track the cost of a particular product from a par-
ticular vendor, and the many-to-many relationship allows Mountain View
Music to set up multiple relationships with vendors for each product.
Without the cost attribute, this might have been modeled as a many-to-
many relationship without the joining entity, in which case we would have
had to add the join table to the physical model. That’s only a brief aside to
let you know what to look for; in this case, however, we will make each en-
tity a table, so all that remains is to rename them in our physical model.
Figure 9.4 shows what the physical model looks like at this point, with only
tables and primary keys.

Notice that we have named the tables using the guideline we discussed
earlier. In addition, you can see the implementation of our surrogate
primary key, a column named objid in all tables. Tables such as tbl_
product_instance have a composite primary key that is made up of the pri-
mary keys from the two joined tables. As it happens, this is also how we
name the foreign key columns—the shortened table name (no “tbl_” pre-
fix) followed by “_objid.” We look at foreign keys in the next section.

Inventory Submodel
Next, we look at the entities in the Inventory submodel. This model is sim-
ilar to the Products submodel in that we don’t have a lot of work to do. The
entities we will work with are listed here and shown in Figure 9.5.

■ Products
■ Product Instance

202 Chapter 9 Creating the Physical Model

FIGURE 9.4 The beginning of the physical model for Mountain View Music’s
products

■ Bins
■ Purchases
■ Purchase Details
■ Vendors
■ Employees

Deriving the Physical Model 203

FIGURE 9.5 The Inventory submodel from the Mountain View Music logical model

Again, these entities make nice individual tables so we don’t have
much to do. Notice that Vendors and Products both appear again in this
submodel. We won’t need to make any further updates to these tables, and
if you are using a good modeling tool, the change you have already made
will be reflected in the new physical Inventory submodel. In Figure 9.6
you can see the physical model for the Inventory submodel.

Orders Submodel
The Orders submodel contains the most complicated set of entities in the
entire model. That’s fitting, because the database is centered on customer
orders via the Mountain View Music Web site. We have a few decisions to
make when building the physical model for these entities. First, let’s look
at the entities we are dealing with; they are shown next and in Figure 9.7.

■ Customers
■ Employees

204 Chapter 9 Creating the Physical Model

FIGURE 9.6 The beginning of the physical model for Mountain View Music’s
inventory

■ Orders
■ Order Details
■ Products
■ Shipments
■ ShippingCarriers
■ Shipping Methods
■ Payments
■ CreditCards
■ GiftCards
■ BankAccounts

Deriving the Physical Model 205

FIGURE 9.7 The Orders submodel from the Mountain View Music logical model

First, let’s look at the entities that can be made into tables as is. We
have already made tables out of the Products and Employees entities, so
those two are all set (with a single exception for tbl_employee, which we
look at shortly). Of the remaining entities, Shipments, ShippingMethods,
ShippingCarriers, and Order Details can all be made into tables without
any major modification other than their names. That leaves us with six en-
tities that still need some work: Orders, Customers, and the supertype

Payments, which includes the subtypes CreditCards, GiftCards, and
BankAccounts.

Let’s first look at Customers, which on the surface looks like an entity
that would work as a single table. In reality, the company wants to be able
to store multiple addresses for each customer. If you look at our model, we
can store only a single address for each customer. To remedy this, we cre-
ate a new table, named tbl_address, remove the address information from
tbl_customer, and set up a relationship between the two tables. The re-
sulting address and customer tables are shown in Figure 9.8.

206 Chapter 9 Creating the Physical Model

FIGURE 9.8 The newly added address table and the customer table with
address information removed

As you can see, we can now store multiple addresses for each customer
and keep track of them by providing an address label such as “Home” or
“Work.”

As it happens, the Orders entity has a similar address problem. If you
look at the Orders entity in the logical model, shown earlier in Figure 9.7,
you will see that we are storing another set of address information. This is
the address that the order will be shipped to. If all our customer addresses
are stored in the address table, then putting an additional address in our
order table will cause us to have duplicate data, and we would be violating
the rules of normalization. Now we can simply delete the address detail
from Orders and replace it with a relationship to the appropriate record in
the address table.

We have one last change as it relates to addresses: Our employee table
also contains address detail. Even though we said that the employee table

was ready to go, we need to make a little change for consistency’s sake.
Adding another relationship between tbl_address and tbl_employee allows
us to store employee addresses in tbl_address. Later, when we look at busi-
ness rules, we will reconcile the fact that we now have two optional rela-
tionships in tbl_address.

Last, but not least, we have the subtype construct we modeled for pay-
ments. As we discussed in Chapter 3, you have three options when you
physically implement subtypes.

■ Implement the supertype and all the subtypes in a single table.
■ Implement the subtypes as tables, and add the supertype data to

each of these subtype tables.
■ Implement the supertype as a table and all the subtypes as addi-

tional tables.

Which option you choose is dependent largely on the specific data you
are working with. In the case of Mountain View Music we will implement
a single payment table that will contain all the data from each of the sub-
types. This decision is often driven by the number of attributes in each en-
tity. Because the only attributes common to all payments are the account
holder and the payment type, we don’t want that to be in its own table.
Especially with our addition of an address table, that would leave a pay-
ments table with two columns.

We could implement each payment as its own table, but that would be
a relationship nightmare. It would leave us with three separate relation-
ships to order (depending on the payment type) and three relationships to
address (one for each type).

It is for these reasons that we decided to go with a single payment
table. This table will contain a relationship to address for the payment ad-
dress and all the detail from each of the subtypes. When you look at the
payments table in Figure 9.9, you will probably notice that many of the
columns are optional; that is, they allow NULL data. That could lead to
problems because we require certain pieces of information to, for example,
process a credit card. We will fix this problem a little later when we look at
implementing business rules.

With that, we have looked at all the tables that are related to order and
have created the foundation for the Orders submodel, as shown in Fig-
ure 9.10. These tables represent the bulk of the Mountain View Music
database and were also a bit trickier to derive from our logical model. We

Deriving the Physical Model 207

208 Chapter 9 Creating the Physical Model

FIGURE 9.9 The payment table implemented to model the Payments
supertype in the Mountain View Music logical model

FIGURE 9.10 The beginning of the physical model for Mountain View Music’s orders

still have a couple of submodels to look at, but our physical model is
quickly taking shape.

Web Session and Lists Submodel
Finally, we have two small submodels that we will look at together. The
Web Session submodel has only one new entity, Shopping Cart. This entity
acts as a join between Customers and Products so that customers can save
items in their shopping carts on the Web site for later purchase. This table
is simple. It holds the customer ID and the products that customers have
in their cart. In addition it tells us the quantity and the status of each prod-
uct. This entity is another simple table and is taken as is.

We also have the two tables used for lookup values: Lists and List
Items. These tables exist to provide the front-end application a place to
store related lists of data such as order status or various product attributes.
Again, these tables are physically modeled as is, with only name changes to
match our naming standards.

At this point we have looked at all the entities in the logical model and
found homes for them in the physical model. In the next section we look
at getting the relationships modeled in the physical world as well as getting
our primary keys in order and modeling columns based on the logical
attributes.

Using Relationships to Model Keys
While modeling our physical tables, we also took care of the primary keys
and the foreign keys. As you’ve seen, we named all the primary keys objid.
In the case of identifying relationships—those in which the primary key
columns on the table are also foreign keys—we name the columns after the
table they reference. Examples are the bin_objid and product_objid
columns in tbl_product_instance. Foreign keys, as you may have guessed,
are named in the same manner—the referenced table followed by “_objid,”
such as order_objid in tbl_order_details. This is a simple change; we go
through each table and rename these columns to match our standard.
Look at Figure 9.11 to see what the Orders submodel looks like with the
addition of the foreign keys columns. Each of the other submodels will
look similar after you finish renaming the columns.

The next thing we need to do is to ensure that the primary keys and
foreign keys conform to our naming standard. Now we are talking about
the actual constraints that will exist in SQL Server. Depending on your

Deriving the Physical Model 209

modeling software, this can be done right inside the model; otherwise, you
will need to make the changes to your scripts before you implement your
tables in SQL Server. Again, go though each table and set the name of the
primary key and the foreign keys.

Using Attributes to Model Columns
Finally, we are left with the attributes in each of our entities. Attributes are
usually pretty simple. Now that you have all your tables modeled, you need
to rename the attributes to match your physical naming standards and place
them in the correct table. If you split or combined some of your entities, the
bulk of the work comes in splitting or combining the attributes to the ap-
propriate table. One thing to be aware of during this process are your data
types. Hopefully, your modeling software understood SQL Server types
when you built your logical model, and hopefully you took our advice about
using the SQL Server types in your logical model. If these things are true,
then your attribute data types should just copy right into your tables.

Most of the work of creating your physical model is simple and
straightforward. Usually your data modeling software allows you to gener-

210 Chapter 9 Creating the Physical Model

FIGURE 9.11 The physical Orders submodel complete with the foreign key columns

ate a physical model based on your logical model. If this is the case, all you
have to do is work through any name changes required to match the stan-
dards. If your modeling software doesn’t support physical models, or if you
have been building your physical model right inside SQL Server, then you
have more work to do. It isn’t complicated; you just need to start from
scratch when it comes to creating your tables. All we can say is that, al-
though expensive, good modeling software is worth its weight in gold.

Implementing Business Rules in the Physical Model

One last thing we want to talk about is the business rules that need to be en-
forced in your model. Many business rules will be set up and managed in the
application or in a middle or business tier, but some rules can and should be
implemented in SQL Server. We do this for two reasons: First, it makes
sense to enforce some things, such as constraints on data, in SQL Server; and
second, as database developers, architects, and administrators, we don’t trust
applications. Is this just paranoia talking? Maybe, but it is still good practice
to implement as many business rules as possible in SQL Server.

To be fair, it isn’t only because we don’t trust applications; other factors
push us in this direction. For example, let’s say you have a perfect business
tier and all the data comes through without failure each and every time;
would it then be a good idea to remove all your PKs, FKs, and constraints
because the business tier is handling the relationships and data integrity?
Some people argue that it is, but we disagree. What happens if for some
reason you need to run a bulk import and you do it without the aid of the
business tier? You stand to create a lot of integrity problems because of a
lack of enforcement in SQL Server. Also, certain features of SQL Server,
such as transactional replication, require primary keys. We are firm believ-
ers in using any and all means in your power to maintain data integrity in-
side SQL Server databases. In this section, we look at how to implement
business rules using various features of SQL Server and we give examples
from the Mountain View Music database for each feature.

Using Constraints to Implement Business Rules
Constraints provide a mechanism inside SQL Server to control the data
that goes into tables. We look at three types of constraints: default, unique,
and check constraints. Default constraints provide a default value for a

Implementing Business Rules in the Physical Model 211

column in the event that a value is not explicitly specified. Unique con-
straints tell SQL Server that all the data in the column must be unique
and must contain no duplicates. Check constraints allow you to write a
small piece of T-SQL code to do custom data checking against one or more
columns. Let’s look at each of these a little closer and see how they can be
useful in implementing business rules.

Default Constraints
Default constraints are very simple. You provide a value for a column, and
when a new row is added to a table without specifying a value for that col-
umn, the default value is used. This can be as simple as stating that the sta-
tus column in tbl_employee should always be 1 unless otherwise stated; or
it can be more complicated, such as a function call to generate a new order
number. The following code adds a default constraint to the status column
in tbl_employee.

ALTER TABLE dbo.tbl_employee

ADD CONSTRAINT DF_status

DEFAULT 1 FOR status

If you want to call a function to generate your default data, that is done
as shown next. This piece of code adds a default constraint to tbl_order to
call a user-defined function to create a new order ID.

ALTER TABLE dbo.tbl_order

ADD CONSTRAINT [DF_ordernumber]

DEFAULT dbo.udf_new_orderid() FOR ordernumber

Default constraints are useful as long as you document them for the
developers who will be writing the T-SQL code. Their functionality can be
replaced within stored procedure code, so many people ask why we should
bother with default constraints. The answer, which is the answer we give
for any question involving the use of data integrity, is that you can’t always
rely on your stored procedures. What if you develop a SQL Server
Integration Services (SSIS) package that writes data in bulk to a table?
There will be no stored procedure there to protect you. Similarly, what if
a developer gets access to the tables and writes code to insert data directly?
This is a bad practice (we look at avoiding it in Chapter 11), but it can still

212 Chapter 9 Creating the Physical Model

happen, and your database needs to be prepared to stand on its own to
maintain data integrity.

Check Constraints
Check constraints are a wonderful tool to help you ensure that the data
being loaded into your database is what you expect and require. Using
some custom code, you can force data to conform to almost any pattern
your heart desires. To check data, you use an expression to look at the data
and compare it to some desired result. For example, to ensure that all val-
ues in a salary column are greater than or equal to the minimum wage
($5.85, in this example), your expression would be

salary >= 5.85

Let’s look at an example from the Mountain View Music database. As
you will recall, we created a table named tbl_customer that holds all the
data pertinent Mountain View’s customers. The table has three columns
for phone numbers called homephone, workphone, and mobilephone.
Each of these columns allows NULL values, and this means that a cus-
tomer could conceivably choose not to provide a phone number at all. The
company has decided that it needs to have at least one phone number that
it can use to call the customer in the event of a problem with an order. To
that end, you need to place a check constraint on tbl_customer to ensure
that at least one phone number is provided. Here is the simple expression
to check for this condition.

([homephone] IS NOT NULL

OR [workphone] IS NOT NULL

OR [mobilephone] IS NOT NULL)

This expression, when used in a check constraint, forces one of the
phone numbers to be supplied. Failure to supply at least one phone num-
ber causes your insert or update statement to fail. To add a constraint to
tbl_customer with the expression you use the following code.

ALTER TABLE dbo.tbl_customer WITH CHECK

ADD CONSTRAINT CK_phone_number

CHECK (([homephone] IS NOT NULL

OR [workphone] IS NOT NULL

OR [mobilephone] IS NOT NULL))

Implementing Business Rules in the Physical Model 213

Unique Constraints
Unique constraints are used to ensure that you have no duplicate values in
a column. Unique constraints can be attached to one or more columns de-
pending on your needs. If you attach a unique constraint to one column,
that single column can contain no duplicated data. If you attach it to mul-
tiple columns, then the combination of data between those columns can-
not be duplicated in another row. In other words, each column involved in
a multicolumn constraint can have duplicates, but when you look at all the
columns together you are not allowed to have repeats.

Unique constraints are used frequently in SQL Server. Mountain View
Music uses them to ensure that key pieces of data are unique—for exam-
ple, order ID. If two customers get the same order ID for different orders,
they might get the wrong product or no product at all. To avoid this, we
add a unique constraint to the ordernumber column in tbl_order.

ALTER TABLE dbo.tbl_order

ADD CONSTRAINT UNQ_ordernumber UNIQUE NONCLUSTERED

(ordernumber)

Often we see uniqueness in tables enforced only for the primary key.
Remember that when you selected your primary key, you evaluated all the
candidate keys in the table. Just because you didn’t use a candidate as the
primary key doesn’t mean it should be ignored; these columns are great
candidates to have unique constraints.

Using Triggers to Implement Business Rules
Constraints are great, and along with and primary and foreign keys, they go
a long way to enforce a lot of business rules on your data. But what if you
need to implement something a little more advanced, and constraints and
keys just aren’t getting the job done? That’s where triggers come into play.
Using triggers, you can write custom T-SQL code to run after something
has happened to a table. Triggers can be set up to run after an INSERT,
UPDATE, or DELETE or even instead of one of these actions. Really, the
sky is the limit when you use triggers; you can do almost anything, includ-
ing canceling the statement that fired the trigger.

Keep in mind, however, that triggers fire as part of the transaction that
started them, and they fire each time the action occurs. This means that if
you insert 100,000 rows into a table, an insert trigger would fire 100,000

214 Chapter 9 Creating the Physical Model

times. Be aware of what you are doing in your trigger, and try to keep the
code as quick and efficient as possible.

Where does Mountain View Music use triggers? One is on tbl_
payment to ensure that we get all the information we need based on the
payment type. You will remember we decided to implement payments in
a single table even though we can accept three payment methods: gift
cards, credit cards, and direct bank draft. To accommodate this, all the
columns in tbl_payment that don’t pertain to all payment types allow
NULL data. Obviously, if the customer pays with a credit card, we require
the credit card number, expiration date, type, and credit card verification
(CCV) code. To enforce the required data to be present, we use the fol-
lowing trigger.

CREATE TRIGGER trg_payment_data

ON dbo.tbl_payment

FOR INSERT, UPDATE

AS

DECLARE @payment_type tinyint

,@cc_type varchar(16)

,@cc_number bigint

,@cc_expire date

,@ccv_code smallint

,@gc_number bigint

,@account_number bigint

,@routing_number int

,@license_number varchar(20)

,@license_state char(10)

SELECT @payment_type = payment_type

,@cc_type = cc_type

,@cc_number = cc_number

,@cc_expire = cc_expire

,@ccv_code = ccv_code

,@gc_number = gc_number

,@account_number = account_number

,@routing_number = routing_number

,@license_number = license_number

,@license_state = license_state

FROM inserted

Implementing Business Rules in the Physical Model 215

IF @payment_type= 1 --Credit Card

BEGIN

IF @cc_type IS NULL

OR @cc_number IS NULL

OR @cc_expire IS NULL

OR @ccv_code IS NULL

BEGIN

RAISERROR ('Error: Credit Card Data is Missing.',11,1)

ROLLBACK

END

END

IF @payment_type = 2 --Gift Card

BEGIN

IF @gc_number IS NULL

BEGIN

RAISERROR ('Error: Gift Card Data is Missing.',11,1)

ROLLBACK

END

END

IF @payment_type = 3 --Bank Draft

BEGIN

IF @account_number IS NULL

OR @routing_number IS NULL

OR @license_number IS NULL

OR @license_state IS NULL

BEGIN

RAISERROR ('Error: Bank Account Data is

Missing.',11,1)

ROLLBACK

END

END

As you can see, the trigger looks at the new data and ensures that all
the required data is provided based on the payment type specified. If any-
thing is missing, an error is returned and the INSERT or UPDATE state-
ment is rolled back. Again, if you can write it in T-SQL you can manipulate
it in a trigger. In fact, you can write CLR triggers using .NET managed
code if you are using SQL Server 2005 or later. This really opens the door
to what you can do with your triggers and makes implementing business
rules for data integrity even more robust.

216 Chapter 9 Creating the Physical Model

Implementing Advanced Cardinality
Now let’s look at how you can implement advanced cardinality in SQL
Server. All relationships you create in SQL Server are one-to-many rela-
tionships; there is no such thing as one-to-one or many-to-many in the
physical world. We have talked about how you implement M:M relation-
ships in a physical model using two one-to-many relationships and a junc-
tion table, but how would you enforce a one-to-one, or even something
more advanced such as a one-to-two?

These situations can be tricky, but the good news is that we have al-
ready looked at the tools you will need to make this happen. Because the
Mountain View Music model doesn’t have any of these requirements, let’s
look at a sample data model for a university. Within a university you often
have several colleges; in this case, we have the college of business, the col-
lege of science, and the college of engineering. Each of these colleges has
one dean, and the university has decided that no one can be dean of more
than one college. This requires a one-to-one relationship between college
and dean. Figure 9.12 shows what the tables look like when they are set up
in SQL Server.

Implementing Business Rules in the Physical Model 217

FIGURE 9.12 Tables to hold information about colleges and their deans

As you can see, there is a one-to-many relationship between these ta-
bles, but how do we enforce this relationship as one-to-one in SQL Server?
For starters, the fact that the dean_id column in tbl_college is required
means that we are enforcing the rule that there be at least one dean.
Additionally, because the dean_id column exists in tbl_college, each col-
lege can have only one dean. But what about the other half of the one-to-
one? Remember that each person can be dean of only one college. We can
enforce this using a trigger such as the one shown next.

ALTER TRIGGER trg_one_dean_per_college

ON tbl_college

FOR INSERT, UPDATE

AS

DECLARE @college_count int

SELECT @college_count = COUNT(tbl_college.id)

FROM tbl_college

JOIN tbl_faculty

ON tbl_college.dean_id = tbl_faculty.id

WHERE tbl_faculty.id = (SELECT dean_id FROM INSERTED)

IF @college_count > 1

BEGIN

RAISERROR('This faculty member is dean of another

college',11,1)

ROLLBACK

END

As you can see, this code evaluates the number of colleges the faculty
member is dean over, and if that number is more than 1, the transaction is
canceled.

This trigger evaluates the number of colleges after the actual insert has
occurred on tbl_college, so there could be a lot of performance overhead
if this were a larger table. To save on this overhead, we could have used an
INSTEAD OF trigger to accomplish the same thing. The difference is that
we would be able to evaluate the change before the insert occurs, and that
would prevent the unnecessary insert if the transaction is rolled back. You
can have only one INSTEAD OF trigger in a table for each action, so this
may or may not be an option for you.

You see how easy it is to add code using triggers to help implement ad-
vanced business rules. Now for a word of caution. Triggers can be great
tools, but overuse can cause poor database performance. Although you can
implement advanced cardinality using tools inside SQL Server, you need
to consider your options carefully. Will the data be unusable if these rules
are not followed? The answer is, probably not. Unlike missing credit card
data, having too many deans is an easy thing to fix. If you have a real need
to conform to some set of cardinality rules, then by all means go ahead and
do it, but be careful. In a perfect world, a well-constructed business rules
layer in your application will always outperform database triggers. If your
application has that functionality, take advantage of it.

218 Chapter 9 Creating the Physical Model

Summary

Chapter 9 has included a whirlwind of information, and we’ve covered a lot
of ground. You should now have a handle on naming and creating objects
in SQL Server, and you should feel comfortable with creating a physical
model given a logical model and some business requirements. At this stage
of the game, Mountain View Music has a database, and the only thing left
to do is to make sure that it performs up to standards and that our devel-
opers have a way to access the information that will be stored in the data-
base. In the final two chapters we talk about just that. First, we look at
indexing in SQL Server and then we delve into the creation of an abstrac-
tion layer.

Summary 219

This page intentionally left blank

C H A P T E R 1 0

INDEXING CONSIDERATIONS

When you hear the phrase “database performance,” what do you think it
means? Most of us think of how fast a database returns a query. We want
to be able to send a query, and, no matter how much data it is returning,
we want that query to run instantaneously. Unfortunately, as most of us
know, that just doesn’t happen. However, performance can be tuned to re-
trieve data sets in the most efficient way possible. Whether that means get-
ting one row back in less than a second or trying to retrieve 50,000 filtered
rows in less than an hour, it can almost always be accomplished. One of the
primary ways of speeding access to the data is by using an index.

In this chapter, we discuss what indexes are, how to determine which
indexes you need, and how to implement them. We also talk about how in-
formation you gathered as far back as the logical modeling step will help
shape the indexes you implement in your physical database. Note that all
this information is specific to Microsoft SQL Server; however, most of the
concepts have parallels in all the other major RDBMSs.

Indexing Overview

Before we can discuss indexes, it is important to have a cursory under-
standing of how SQL Server 2008 stores its data on disk. We won’t go very
deep, but we cover enough that you should be able to explain at a high
level how data is stored and retrieved. If you are interested in a deeper
level of knowledge on this subject, there are numerous books, articles,
white papers, and classes on SQL Server internals and data access. For our
purposes, we’ll take the 15-minute approach.

Because SQL Server runs on Microsoft Windows, all its data is stored
in files in the file system of Windows. Every database has at least two files:
a file that contains the actual data (known as the data file), and a file that
contains information about the transactions that have occurred involving
that data (known as the transaction log file). A database can have more

221

than one of each of these files, but it has at least one of each when it is cre-
ated. For the purpose of our discussion on indexes, we are particularly con-
cerned with the data file.

Inside the data file is a collection of objects known as extents, which
are also collections of objects known as pages. Pages are small (8K) allo-
cations of disk space that contain row data. Extents are collections of eight
pages. Each page generally contains its own identifier, along with rows of
data in the order they were inserted into the database. Every table in the
database is composed of these pages and extents. Another way to look at it
is that tables are designations of extents (and therefore pages) that contain
rows of data. It is this basic structure that we are concerned with when dis-
cussing indexes.

What Are Indexes?
By default, when you create a new table in a SQL Server database, the
server assigns a starting number of extents to that table. When you start in-
serting data, it adds rows of data to the pages inside the extents. Once a
page is full, it begins inserting data into the next available page in that ex-
tent. Once an extent is full, it assigns the next available extent to that table
and begins inserting data into the first page in the new extent.

Again, by default and without any extra design on your part, the server
sorts the rows on the pages in a first-come, first-served manner. This
means that unless you tell it otherwise, your data will be sorted based on
when it was inserted, period. A table that has been built this way is known
as a heap. You can think of it as being similar to a pile of laundry; every-
thing has been piled in heap. For a very small table, this might not be a
problem (it’s easy to find one pair of jeans in a pile of 8 pairs). But for any-
thing with more than a few rows, it can start to be difficult to work with
(imagine finding that one pair in 64 piles of 8 jeans each!).

This is where indexes come in. Simply put, an index is a referencing
set of pointers to rows of data. Additionally, depending on the type of
index, it may actually sort the data, giving you faster access to the rows.
Indexes physically exist on disk, and thus they take up disk space separately
from, and in addition to, your actual table data. There are even special
types of pages that exist to manage indexes. We don’t cover exactly how in-
dexes are managed on disk; just remember that you’ll need to account for
them in the overall size of your database. We discuss that basic math for
calculating index sizes when we outline the types of indexes.

222 Chapter 10 Indexing Considerations

To understand the performance implications of an index, it is useful to
understand how indexes are logically structured. In SQL Server 2008,
there are a number of types of indexes based on the types of data each can
hold; however, we are concerned primarily with the indexes on the most
commonly used types of data, such as strings, numeric data, and so on.

These indexes use a basic structure known as a B-tree. A B-tree is a
data structure that uses a tree analogy for storing data in parent and child
nodes. Figure 10.1 shows a basic B-tree.

Indexing Overview 223

FIGURE 10.1 A basic B-tree structure

Simple, yes? This basic structure can be applied to the very familiar
concept of a book index. As you walk through this, it may be useful to ac-
tually grab a book with an index (you may in fact be holding a book with an
index right now). Flip to any page in the index. Look for a top-level word;
often these are in boldface and are left-aligned with the column on the
page. These are the root, or parent node, of the index. The entries be-
neath the word are indented. For each lower-level entry, the index either
gives you a pointer, which is the page number, or more entries even lower
in the index. The page number points you to the information you are look-
ing for—the data.

For each word, there can be any number of entries and subentries. For
human readability, we rarely see more than three or four levels in a book
index. However, in the context of an index on a table, SQL Server can han-
dle reading quite a few levels of an index and can split and manage the
index nodes based on the volume of data and the information you’ve given
to it (how you have defined the index). But basically, the index serves the
same purpose to the SQL Server query engine that a book index serves for

a human; the index helps SQL Server find the data faster than just reading
the pages until it finds the information it’s looking for.

When you create an index, you define a key value, or a set of key val-
ues, that define how the data is separated. For example, when looking at
the index in the back of the book, you are looking through the data alpha-
betically, by the first letters of the highest-level node. In this case, the key
value is the highest-level word, which is sometimes derived from the head-
ings and subheadings used in the book. Similarly, when an index is defined
on a table, the index must be based on one (or more) columns that tell the
index how to arrange the lookups of the data. Unlike a book, a table can
have multiple indexes defined to satisfy different types of queries. This al-
lows us to define indexes in order to manage queries from different sys-
tems, or wildly different queries against the same data from the same system.

Types
Now that you’ve seen the very basic structure SQL Server uses for indexes,
let’s get some context surrounding the kinds of indexes you will actually use
in your database. The two basic index types are clustered and nonclustered
indexes. All indexes that you define on your tables will be one of these two
types. Let’s take a closer look.

Clustered Indexes
Clustered indexes actually restructure the data on disk. That is, if you de-
fine a clustered index on a table, that table is no longer a heap, because it
is actually sorted by the key value you’ve given it. For example, let’s look at
the Mountain View Music Customers table, as shown in Figure 10.2.

224 Chapter 10 Indexing Considerations

FIGURE 10.2 Customers table for Mountain View Music

One of the queries we can imagine being fairly popular for this table
would involve finding a customer record based on a customer’s last name.
If we don’t define any index on this table, the records will be inserted first-
come, because this table will be a heap. The B-tree structure for this table
will be very flat, because we’re storing data in no particular order. Fig-
ure 10.3 shows the basic structure of this table.

Indexing Overview 225

FIGURE 10.3 B-tree for a heap

The index allocation map (IAM) page is simply the “management”
page for the heap. Each of the child nodes represents pages on disk.
There’s a simple header that identifies the page (what extent, and object, it
belongs to). Then each page stores data as it has been inserted. So if we’re
looking for a customer with the last name Johnson, we’ll start with the first
row on the first page in the first extent that was ever allocated to the table.
We’ll check the last name value for that row. If it is not a match, we’ll look
at the next one. If it is a match, we’ll return that row and then move on to
the next row. This process is known as a table scan. We’ll do this for the
entire contents of the table. If there are 100 customers, the scan will go
fairly quickly. If there are 100,000 customers, then, as you can imagine, it’ll
be fairly slow.

Now let’s assume we don’t want this query to take forever, and we
know that the vast majority of queries will involve searching for the last
name field. It might be useful to store the data, on disk, in an order that fa-
cilitates these lookups. Enter the clustered index.

If we define a clustered index on this table, we might define it so that
LastName is the only key value. However, we know that the last names
may not be unique; there are lots of Joneses and Johnsons and Smiths out

there. So we know that we will likely be looking at the first name as well.
So we may want to define the clustered index key as LastName,
FirstName. The order of the columns is important, because it tells the
index to order the data first by last name and then by first name.

When we apply this index, SQL Server will actually reorder the rows
of data (if any exist) to list the data in order alphabetically by last name,
and, within each unique last name value, it will order the rows alphabeti-
cally by first name. Figure 10.4 shows the B-tree structure of the table
after the clustered index has been applied.

226 Chapter 10 Indexing Considerations

IAM
Page

Index Rows

Link List

Actual Rows
A–J

Link List

Actual Rows
K–R

Link List

Actual Rows
S–Z

FIGURE 10.4 Representation of a clustered index B-tree

The pages now contain the rows ordered by last name alphabetically.
Notice the words “Link List.” These pages, unlike the pages in the heap
structure, actually contain pointers to the previous and next pages in order
by the index. This is because the B-tree can expand to include intermedi-
ate levels of pages, which store pointers to the other pages based on values
in the key.

For example, if our Customers table has hundreds of thousands of
records, the index may need to break down the values by the first few char-
acters, and not only the first character, of each last name–first name
combo. Additionally, as data is added, the pages must be reordered to ac-
count for values that fall somewhere in the middle of the range of each
page. And because the initial management page is an 8K page like all the
others, it won’t be able to hold all the pointers to the relevant pages in one
place. So, as the data grows, SQL Server splits, adds, and rearranges pages
as needed. It uses the link list to make sure that it keeps the pages in order.

Because of the nature of a clustered index, there can be only one clus-
tered index defined on a table. As you can imagine, there is a cost to doing

this business. We talk about that in a minute, but first we need to discuss
the other major type of index.

Nonclustered Indexes
A nonclustered index is one that simply stores pointers to the pages that
contain the rows of data you are looking for. If table is a heap—that is, if it
has no clustered index—then these pointers include the page number and
the row identifier for the rows that contain the key value being searched
for. If the table has a clustered index, then the nonclustered index has a
pointer to the clustered index key for the rows. To put it in a slightly sim-
pler way, a nonclustered index points to the row (for a heap) or to the clus-
tered index key.

One way to remember the difference between a clustered index and a
nonclustered index is that a clustered index includes the data pages, and
a nonclustered index only points to the data pages. In our book example, a
nonclustered index is like the book’s index; you find what you are looking
for in the index, and it points you to the information somewhere in the
book. If the book were a clustered index, all the information in the book
would be reordered, as with a dictionary. Remember that a clustered index
actually orders the rows on disk according to the key value. A nonclustered
index doesn’t manage the data; it simply tells you where the data happens
to be.

A nonclustered index can be very useful when your data is already or-
dered—because of either a business rule or a clustered index—but the
query being issued doesn’t necessarily require the ordered data value. Take
a look at Figure 10.5, which shows a simple B-tree, and we’ll talk about
when you would use a nonclustered index.

Indexing Overview 227

IAM
Page

Index Rows

Link List

Pointer Rows
A–J

Link List

Pointer Rows
K–R

Link List

Pointer Rows
S–Z

FIGURE 10.5 Representation of a nonclustered index B-tree

In contrast to a clustered index, the B-tree in Figure 10.5 doesn’t in-
clude the actual data rows. These pages are filled with pointers to the lo-
cation of the actual rows. Again, for a heap, that is a simple identifier that
points to the page number and rows identifier; for a clustered index, the
pointer goes to the clustered index key for values that fall in the range of
the query.

Why would you want to use a nonclustered index? For the Customers
table, you might want a nonclustered index on the EmailAddress field. The
data is already ordered by LastName, FirstName, so if you have query that
is looking only for the e-mail address, that clustered index may not help
(because e-mail addresses don’t have to look like a person’s name). So we
could add a nonclustered index to help those queries look for e-mail ad-
dresses by searching ranges of values instead of looking through the entire
table. It works by helping break the e-mail address values into specific
ranges so that we can scan a smaller number of values to find the match-
ing rows. It also assists in queries to retrieve the last name, first name, and
e-mail address of the customer. In more-complex systems, you might see a
clustered index accompanied by several nonclustered indexes that help sat-
isfy various types of queries.

Often, indexes are created to handle specific queries; these are called
covering indexes, because they cover all the fields being referenced by
that query. In the next section we talk more about the considerations for
using indexes.

Other Index Types
Now that you have a basic understanding of indexes and what they are for,
let’s take a brief look at some other types of indexes you can use in SQL
Server 2008.

Unique
Unique indexes are indexes that specify that the index key be a unique
value (or set of values) in the table. Both clustered and nonclustered in-
dexes can be unique; primary keys are always a type of unique index.

Indexes with Included Columns
Starting in SQL Server 2005, designers can specify a new clause when cre-
ating their indexes. INCLUDE allows you to specify additional columns in
a nonclustered index. This action adds the columns only to the final level
of the index; there is no reference to the column in the intermediate or

228 Chapter 10 Indexing Considerations

root levels. This technique helps minimize the size of the index, while still
allowing the query engine to reference those columns when searching
data. Consider using this feature when you’re building indexes to satisfy
very specific queries and the index has gotten too large.

XML Indexes
Because SQL Server supports XML as a data type, it is necessary to in-
clude a special type of index that can assist with query performance when
you’re searching large XML values. These indexes are fairly complicated,
allowing for multiple levels of indexing, but it is enough to know that they
assist in shredding (the process of taking data from an XML format to a re-
lational format) the XML binary large object (BLOB) by storing rows of
data in special storage structures that match each node in the BLOB. In
this way, the query engine can reference these special structures to look for
the disk location of specific pieces of the XML BLOB, thereby eliminating
a full scan of the BLOB and improving query performance.

Spatial
The spatial data types are new to SQL Server 2008, and the introduction
of the new data types required the addition of a new kind of index. Spatial
indexes are built on B-trees, but their purpose is to break down the data
into a two-dimensional space, allowing the data points to be indexed and
searched efficiently.

Full-Text Indexes
SQL Server provides a special type of index for the full-text engine (FTE)
that is built in to SQL Server. (If you’re curious, its full name is Microsoft
Full-Text Engine for SQL Server [MSFTESQL].) A full-text index pro-
vides support for the highly specialized and sophisticated word searches in-
side character data that FTE is designed for. These indexes are actually
built on a token-based structure as opposed to a B-tree; they are beyond
the scope of our discussion. Just be aware that if you decide to use FTE,
you’ll need to do some extra research on full-text indexes.

Indexed Views
Technically, an indexed view is not a type of index but an on-disk struc-
ture. However, in the context of understanding indexes, this is as good a
time as any to discuss it. Although views are compiled queries that simply
retrieve data sets, the intent is for them to behave like tables. For this
reason, SQL Server lets you place an index on them to enhance search

Indexing Overview 229

performance. When you index a view, you must use a clustered index,
which means that the view is materialized. This means that the underlying
query is first executed, and then the index is applied to the result set, and
the result set is then stored on disk. Therefore, an indexed view is actually
a copy of the data from the underlying tables. Keep this in mind when you
index views, because you are actually increasing the amount of data being
stored on disk, not only because of the index overhead but also because
you are duplicating data.

Database Usage Requirements

Once you understand the types of indexes available, you can begin to de-
termine exactly which indexes to use. This means going back to your re-
quirements and looking at your notes about how the database will be used.
The key to understanding indexes is to understand the queries that will be
run against the data. This means you’ll need to talk, probably at length,
with the application developer to understand how the application will in-
teract with the data. Additionally, you’ll need to account for the other uses
of the database: ad hoc queries, reporting, and the like. Knowing the pri-
mary use of the database (versus secondary uses) will also help you deter-
mine where to cluster your indexes and where to create covering indexes.

Reads versus Writes
Earlier we mentioned that there is a cost of doing all this index business.
Here’s where it comes into play. When you have a heap, inserting rows into
a table is a matter of appending the new row of data to the end of the most
recently allocated page. Updating an existing row is a matter of updating
the value being changed, something that happens in place on the page
where the row exists. And deleting a row means removing the row from the
page (there are internal processes for cleaning up the unused space, but we
won’t go there).

Suppose you’ve put a nonclustered index on a heap. Now you have a
separate object that constantly needs to be aware of where the rows are.
Every time a new row is inserted, the nodes of the B-tree in the referen-
cing index must be updated to reflect the existence, and location, of the
new row. If a row is updated, the index needs to be updated only if there
was a change in the value of the index key field of the given row. Finally, if

230 Chapter 10 Indexing Considerations

a row is deleted, the index needs to know that, too. So for every row in a
table that has a nonclustered index, some internal processing must occur
whenever the data changes.

Now let’s look at the case of a clustered index. Once a clustered index
has been placed on a table, the data in that table has been physically or-
dered on its pages on disk to meet the clustering key requirements. In our
Customers example, this means that the data has been ordered alphabeti-
cally by last name. If a new record is added, that record must be inserted
into the correct place on disk, according to the value of the last name.

What if the page that contains the rows immediately before and after
the new row is full? We now must move the data to keep it in order, cor-
rect? Not quite (that would be very inefficient), but there is some process-
ing involved. When this situation occurs, SQL Server allocates a new page
to the object (hopefully from the same extent, if possible) and adjusts the
link list accordingly. This process takes some resources, however, and is not
to be taken lightly. When updates occur, as with a nonclustered index, this
processing overhead is incurred only if the update applies to an index key
value. Finally, deletions don’t incur much overhead that isn’t incurred by
the heap or nonclustered index.

You can see now that creating and maintaining indexes on a table are
not free operations. So even though indexes give you a tremendous per-
formance benefit on your data retrieval queries, you pay the price when in-
serting or updating the data. The thing to keep in mind is how the database
is used. SQL Server has highly efficient index maintenance processes, so
inserting records one or two at a time to a table that has an index is usually
efficient enough that the benefit of having the index for queries outweighs
the cost of maintaining the index.

For operational databases, such as the one we built for Mountain View
Music, having the indexes in place will give us a huge performance bene-
fit. The indexes will help the front-end application search for existing cus-
tomer records, search and display product listings, and generate billing
notices. This is because the database has a balanced read versus write
usage. We are regularly adding one or two rows to each table, and regularly
retrieving one or two rows from each table. It is conceivable that someone
would occasionally run a large query, such as to view a comprehensive list
of customers, but those queries would be rare, and a covering index would
likely ensure adequate performance of that query.

However, not all databases have the same usage. If your database is
write-heavy, you will need to carefully consider your index scheme. When

Database Usage Requirements 231

a database has data being written to it at very high rates, be sure to include
only the indexes that you must include to satisfy the most-used queries. In
contrast, if data is added to your database very infrequently but is con-
stantly queried, you can be more liberal with the number of indexes you
apply. Remember, though, that there is such a thing as too much of a good
thing.

If you find that your database has periods that are write-intensive fol-
lowed by periods that are read-intensive, such as an OLAP database, you
may find yourself actually creating and dropping indexes based on data
loading processes. As with anything else, your mileage may vary, but it is
often useful to drop your indexes when large data loads are occurring and
then re-create them when the data load is finished so that queries can use
them to retrieve data. On the flip side of that coin, re-creating the index
takes resources. So you must trade off the speed of the load versus the
speed of re-creating the index. Sometimes, it is better to leave the indexes
in place during the load.

Transaction Data
Way back during the requirements gathering phase, you should have been
taking note of general metrics for the system. For example, about how
many orders per day are processed? How many employees use the system
concurrently? What is the duration of the data that must be kept online—
six months? Two years? Knowing these bits of information can help deter-
mine what the usage of your database will be. The usage will help further
define the types of indexes you place on your database.

For example, in the Mountain View Music database, if we know that
90 percent of the customers use the Web interface and 70 percent of those
are returning customers, then we need to make sure that the log-in infor-
mation lookup is a speedy process. It would be unacceptable for the cus-
tomer to have to wait 90 seconds for the log-in to complete. Therefore, we
can place a priority on the indexing scheme to make sure that this query is
fast. In contrast, if we know that once a month the customer service man-
ager will pull a report of all customers who’ve placed an order in the past
30 days, we can place a lower priority on creating a covering index for that
report (if it performs poorly without any help). Knowing these statistics
about the usage of your database will greatly increase your ability to index
it correctly.

232 Chapter 10 Indexing Considerations

Determining the Appropriate Indexes

After you’ve built your database and have gathered all the notes about its
usage, it’s time to start creating indexes. In this section, we cover the key
things to think about when you create indexes for each table.

Reviewing Data Access Patterns
As we’ve discussed, it’s crucial to know how your database is being used.
Specifically, you need to know how much time is spent writing new data to
the database and updating existing data. You also need to know how much
data is being removed from the database, and about how much of the data
will be kept online at any given time. Then you need to know how much
data retrieval there will be. How much data will be queried by the appli-
cations versus ad hoc queries? Will there even be any ad hoc queries? How
often? These answers will help you produce a logical, efficient index
scheme.

From a procedural standpoint, it’s a good idea to go through the data-
base table by table—often referencing the data model (for logical refer-
ence to the entities)—and ask questions of the users and application
designers about the various ways the data is used. Document their re-
sponses, and keep those notes handy when you start indexing your tables.
Be sure to include both the frequency of the queries being run and an es-
timate of how much data will be retrieved for each query.

Balancing Indexes
As we’ve mentioned, there is overhead in maintaining indexes. But the key
is to know how many indexes you actually need. Make sure to create in-
dexes in situations where searching and returning the data is painfully slow
or needs to be extremely quick. For example, there is no need to create an
index on a lookup table of states in the United States. The table will have
fewer than 60 records (counting states, D.C., and territories), and the en-
tire table can be searched in subseconds, no matter what. But if the lookup
table is states, counties, and cities, it might be worth creating indexes (as-
suming you don’t normalize the table). Remember that no matter what the
usage is, you should create only the indexes you absolutely need so that you
can minimize index maintenance.

Determining the Appropriate Indexes 233

One other thing to keep in mind is the balance between the clustered
index and nonclustered indexes on your table. For most operational data-
bases, each table will have a single clustered index on the primary key
(whether it is a surrogate or a natural key). This means that the data will be
sorted on disk according to its primary usage. Even though you could in-
clude non-key columns in the clustered index, it is usually pointless be-
cause the lowest level of the index is already the data page; the entire row
is actually found when you search the index, regardless of the other values
in the query. Thus, the nonclustered indexes are there to satisfy those
queries that search the data in a different order from its natural order, or
when the clustered key value is not used in the query at all.

In the Customers table from Mountain View Music, we could use a
nonclustered index to satisfy the e-mail lookup. Maintaining this nonclus-
tered index is simple, and it can very easily improve the performance of the
query. We might also consider nonclustered indexes for the phone num-
bers. Additionally, we might consider including the phone number fields in
either the clustered index (not a great idea) or the e-mail nonclustered
index (better). If we create an index with the e-mail, home phone, work
phone, and mobile phone, we are creating a wider index, but we are cre-
ating a single index that SQL Server can use to search for any of those
pieces of data. This is because SQL Server is smart enough to use an index
even if the data it’s looking for is in a secondary column of the index. The
index is still pointing to the data, regardless of the order of the columns de-
fined in the index, so it may still be faster than just scanning the table.
What we’ve created then is a covering index of sorts.

Covering Indexes
By definition, a covering index specifically includes columns from a given
query in order to satisfy that specific query. However, in certain situations,
such as the Customers table we’ve just discussed, you can create an index
of the columns not included in the clustered index because they might sat-
isfy 85 percent or more of the unknown, or ad hoc, queries. Usually these
indexes are created after a database has been in use for some time and a
DBA has identified a number of varying queries that could use a common
index. However, if you can identify a table that will be the target of these
types of queries (based on your notes), then you might consider creating a
covering index right out of the gate. Fortunately, indexes can be modified,
created, and destroyed after the initial design phase, so this may be a trial-
and-error process.

234 Chapter 10 Indexing Considerations

Index Statistics
One often overlooked component of indexes is its statistics. Statistics are
the pieces of information stored by SQL Server that help it determine
whether a given index will be useful and what access method to use to get
to the data being requested by any given query. Specifically, SQL Server
needs to know the distribution of values in every column and the occur-
rences of each step in the distribution. In fact, you can keep statistics for
any column or group of columns on a table without even creating an index.
This capability is helpful when there is no natural index, such as in highly
denormalized tables.

Unfortunately, gathering exhaustive statistics on every value in every
column could be cumbersome on larger systems, so SQL Server can cal-
culate the statistics based on a sampling of the data. To make sure that the
query optimizer has as much information as possible, we can manually
force the creation of and updating of statistics on columns. When indexes
are created, statistics are automatically created to go along with that index.
SQL Server then tries to maintain these statistics (or optionally can be left
outdated, in rare circumstances). Most of the time, the statistics on a table
are adequately maintained if the indexes are adequately maintained.

Index Maintenance Considerations
We’ve mentioned repeatedly that indexes must be maintained. What does
this mean? Basically, indexes must be occasionally reordered, or defrag-
mented, because they’ve been updated or changed and SQL Server hasn’t
been able to keep up with the changes. This includes statistical information
being updated. So DBAs must periodically execute some basic mainte-
nance on the indexes (we discuss the specifics later this chapter). What you
need to keep in mind when designing indexes is the frequency of changes
to the data, and therefore to the indexes. If you’ve created a clustered
index and several nonclustered indexes, you need to take another look at
your usage information to determine how often the indexes may need to
be maintained.

If you have an extremely volatile database, wherein hundreds of thou-
sands of rows are changing or being inserted daily, you need to work with
the DBA to make sure to maintain the indexes quite often. However, if
your traffic is primarily read-intensive or if the system just isn’t taxed (think
fewer than 10,000 updates per day), you may need to have maintenance
run on the indexes only weekly. Again, your mileage will vary, but be sure

Determining the Appropriate Indexes 235

to account for maintenance when the database is deployed. Staying on top
of index maintenance from day one will prevent emergency situations later,
when the database is huge and query performance has ground to a halt.

Implementing Indexes in SQL Server

Now it’s time to start creating some indexes. Although indexes, in some
form or another, exist in all of the major RDBMSs, SQL Server has spe-
cific syntax and capabilities that are important to know. In this section, we
explain how to create indexes on our tables, discuss things to keep in mind,
and describe the basic maintenance that must be performed.

Naming Guidelines
As with most objects in the database, a good naming guideline is very im-
portant. It helps not only you as the designer/developer but also others
downstream. As a basic guideline, establish a naming scheme wherein you
can visually identify the index as being clustered or nonclustered and de-
termine the columns it may include. We typically use a combination of a
prefix, the table name, and the column name.

For example, on the Customers table, we might have an index named

idx_Customer_LastName_FirstName

In this case, the idx tells us it’s an index, and then it’s followed by the
table name and column names. You could also use ixc to denote a clus-
tered index, if the primary key of the table isn’t also the clustered index. As
with any of the naming standards, the specifics aren’t as important as hav-
ing the standard in the first place.

Creating Indexes
When you create an index on a table, you can specify it either in the cre-
ate statement for the table (only if it is the primary key or a unique index),
or after the table is created using the CREATE INDEX statement. Following
is a simple create statement showing the most commonly used options
(SQL Server 2008 Books Online has an exhaustive reference on the syntax
of this statement).

236 Chapter 10 Indexing Considerations

CREATE NONCLUSTERED INDEX idx_Customer_LastName_FirstName

ON Customer (LastName ASC, FirstName ASC)

WITH (FILLFACTOR = 70,

SORT_IN_TEMPDB = ON,

ONLINE = ON)

N IndexFileGroup

This statement creates our index on the Customer table, sorting by last
name in ascending alphabetical order and then by first name in ascending
alphabetical order. The fillfactor, which specifies the amount of page space
to fill with the index information, is set to 70. This means that for all the
index pages created to hold the index data, each page will be filled no more
than 70 percent. This specification allows for some growth in the pages. By
doing this, we leave room for the insertion of rows that will fall in the mid-
dle of the ranges of each page. It lowers the overhead of maintaining the
index, because we should have fewer pages being rearranged to handle the
new rows as they come in.

We then tell SQL Server to do all the sorting of the data for the new
index in the tempdb. This moves the processing of the data, which requires
temporary physical storage, to the temp database, keeping it out of the ac-
tual user database that the index is being created in. Then we tell it to leave
the underlying tables online during the index creation process. By default,
the underlying tables would be offline, preventing anyone from reading or
writing to the tables while the index was being created. Note that this op-
tion is available only in SQL Server 2008 Enterprise Edition, so don’t try it
otherwise. Finally, we specify the filegroup on which to place this index.

Filegroups
Filegroups are a method of storing database data files in a separated fash-
ion. By default, every new SQL Server database has a single filegroup,
called Primary, where the first data file lives. Users can create additional
files and filegroups and create objects in those files and filegroups. We’ve
specified that there be a user-defined filegroup called IndexFileGroup and
that we want the index created there (and not in the same filegroup as the
underlying table).

One of the primary reasons to do something like this is to both man-
age disk space and improve performance. If we separate our indexes from
our source tables, we can add disk spindles to satisfy the query, thereby not
tying up the same set of spindles to search for the data and retrieve the

Implementing Indexes in SQL Server 237

data. In addition, we can keep an eye on our disk space usage at a more
granular level.

Setting Up Index Maintenance
Finally we arrive at the last piece of the index puzzle: maintenance. We’ve
discussed why you need to perform maintenance but haven’t said very
much about what it is and when you need to do it. As mentioned before,
index maintenance is primarily in the realm of the DBA, but if you can pro-
vide guidance about the frequency and type of maintenance that is likely
to be needed, the DBA will be grateful. Here are the things you need to
know.

Indexes, because of the insertion and deletion of data, can become
very fragmented. That is, to perform as fast as possible, SQL Server exe-
cutes these changes in a very efficient manner. Whenever changes are
made that require index pages to be split or allocated, SQL Server grabs
the quickest available page and allocates it to the index in question. Over
time, this means that the index information is scattered throughout the
database, in terms of physical location on disk. This in turn has a negative
effect on performance. When we refer to performing maintenance on an
index, we are referring to fixing this problem.

Rebuilds versus Reorganization
There are two ways to remedy the fragmentation that occurs with indexes:
rebuilding the index and reorganizing the index. Rebuilding the index
means literally that—dropping and re-creating the index. It can be a dis-
ruptive process, because it literally drops the existing index and re-creates
it, allocating all new, contiguous pages to the new version of the index. This
process, however, completely removes fragmentation. In Enterprise
Edition, you can execute this online, lowering the impact on users who
may be trying to access the table while the index is being rebuilt. However,
it can cause the rebuild to take a very long time, so when possible, you
should execute it offline.

Alternatively, you can reorganize an index. Reorganization simply re-
arranges the information on the index pages, using only the pages already
allocated to the index. Although this doesn’t solve the problem of the pages
being discontinuous on the disk, it does speed the scanning of the nodes of
the index, because they are in order even if they aren’t physically next to

238 Chapter 10 Indexing Considerations

each other. Reorganization is an online operation by default, regardless of
the edition, and thus you can execute it with greater confidence that per-
formance and usability won’t be significantly affected during the process.

When should you rebuild versus reorganize? Microsoft, in SQL Server
Books Online, recommends that if fragmentation of the index is less than
30 percent, then reorganization will likely suffice. If it is greater than 30
percent, then a rebuild will be required to effectively regain the perform-
ance boost of the index. In practice, these numbers hold up for most sys-
tems, although it is usually good to rebuild indexes regularly, regardless of
fragmentation, to help prevent them from becoming fragmented at an in-
convenient time.

Finally, these processes, however they have been set up, should be run
on a frequent enough basis that fragmentation never becomes a major
problem. It is possible for indexes on very large tables to become so frag-
mented that it takes 24 hours or longer to rebuild them. In this case, it may
be necessary to execute maintenance of different indexes on the same
table on different days. However, this situation may indicate the need to
remove or archive data from the table; use your judgment when these sit-
uations arise. For now, from a development standpoint, just be aware that
taking maintenance into account will help you decide how many indexes to
implement and balance the pros of the query performance gain against the
cons of the maintenance requirements.

Summary

In this chapter, we’ve taken a high-level overview of using indexes in SQL
Server. We’ve looked at the basic structure of an index and at the various
options available to us as developers to help enhance query performance.
Remember that usage information gathered early in the project can be a
huge help in determining the indexes that should be implemented on your
tables. We’ve also covered the maintenance aspects of indexes. With this
insight into the cost of using indexes, you can deliver a well-designed data-
base that performs well under the load it has been designed to handle. In
the next, and final, chapter, we discuss some enhanced design techniques
you can use to make your database more flexible and easier to maintain.

Summary 239

This page intentionally left blank

C H A P T E R 1 1

CREATING AN ABSTRACTION LAYER
IN SQL SERVER

Our journey has brought us a long way, and now we’re near the end. At this
point you should have a fully working physical database complete with all
the appropriate indexes. This is the time when many database modelers
stop their work and toss the database over the wall for the DBAs to imple-
ment and manage. If you choose that course, you may be just fine, but you
might also be setting yourself up for failure. In its current state, access to
the database will be pieced together by the application developers, and
trust us when we tell you that most application developers do not under-
stand how to access a database in the best way.

No, to be complete you have one more step, one last thing to build and
that is the topic of this chapter. We look at how you should go about build-
ing an abstraction layer on top of your database in SQL Server.

What Is an Abstraction Layer?

Before we get too far along, you need to understand what an abstraction
layer is. In general terms, an abstraction layer is a way of hiding the com-
plex details about the functionality of a process. It could be thought of as a
user interface, although in this case the user doesn’t have to be a person.
Let’s look at a car as an analogy. Your car has an engine, and that engine
does many complicated things to make your car move. Do you understand
everything that the engine does? For many of us, the engine is just the big
apparatus under the hood. The only thing most of us know how to do is
look at it and pretend we know what we are looking at. For the common
folk, we know that if we put the car in gear and step on the gas, the car will
go. That system of the gear shift and the gas pedal is an abstraction layer;
it allows us access to the underlying complexity of the engine’s function
without our needing to know a thing about it.

241

In computer terms, abstraction layers are often implemented as layers
of software that the user or other applications access. Some common ab-
straction layers include the Windows Hardware Abstraction Layer (HAL),
the Open Systems Interconnection (OSI) model, and the Open Graphics
Library (OpenGL). All these provide access to the functionality of the un-
derlying objects without providing direct access to the objects.

Now let’s look at what an abstraction layer is in terms of our SQL
Server database. The complexity we are trying to hide is the schema,
which includes all the tables, relationships, indexes, columns, data types,
and so on. Why we want to hide this complexity is covered in the next sec-
tion. Our abstraction layer in SQL Server is made up of views, stored pro-
cedures, user-defined functions, and a few other SQL Server objects. In a
perfect world with a perfect abstraction layer, neither a single piece of code
nor a user would have any permission to access a physical table; everything
would be handled via an abstraction layer.

Why Use an Abstraction Layer?

Now that you know what an abstraction layer is, it’s our job to explain why
you would want to use one. Our hope is to make a good enough case that
the whole world will understand that a database without an abstraction
layer is a problem. As we have discussed, an abstraction layer masks the
complexity of the underlying database structure. This is crucial for several
reasons. First, it provides a means to manage security without compromis-
ing the data in your database. Second, it creates a database that it extensi-
ble. Finally, it allows you much greater flexibility than would otherwise be
possible. Let’s look at each of these in a little more detail.

Security
First and foremost, a correctly designed abstraction layer provides you
with more options for the security of your database. By not allowing direct
table access, you avoid the pitfalls that come with data changes or over-
permissions. To illustrate this let’s look at a single table in our database,
tbl_customer, as shown in Figure 11.1.

This table contains sensitive data; not only do privacy laws and regula-
tions abound that could create problems if a person’s information is com-

242 Chapter 11 Creating an Abstraction Layer

promised, but also this table contains the passwords customers use when
they log on to the Mountain View Music Web site. For these reasons we
need tight controls that limit who and what can access this table.

For example, let’s say that all the customer service employees need to
be able to read and write to tbl_customer. If you grant them all read and
write access to the table, they will be able to read and write all the data in
the table. This means that they can see the password, even if it’s encrypted.
Why let them see it and have the opportunity to change it and affect your
customers?

We know what you might be thinking: Permissions can be applied on
a column basis, and thus you could prevent them from seeing this infor-
mation. Although that is true, have you ever tried to manage security to this
level? It can be a pain to keep track of who has access to what. Instead, you
can create a view as follows.

CREATE VIEW vw_customer_detail

AS

SELECT email

,customer_id

,firstname

,lastname

,homephone

,workphone

,mobilephone

FROM tbl_customer

Why Use an Abstraction Layer? 243

FIGURE 11.1 The customer table from the Mountain View Music database

This allows your customer service employees to see the data they are
meant to see.

In addition, what if you need to add a sensitive piece of information to
a table that not everyone needs to see? For example, suppose you need to
start storing all your customers’ social security numbers; you add a new col-
umn to tbl_customer called SSN. Any users who currently have read ac-
cess to the table can now see this new SSN column, whether or not you
want them to have that access. Extra steps need to be taken to prevent
them from seeing the new data.

But when you use an abstraction layer, this problem ceases to exist.
Adding a column to a table does not automatically add it to your view, pro-
vided you didn’t create your view using the SELECT * syntax. Now the
extra steps would be required to expose the data, and not to hide it. To ex-
pose the information, you would need to modify any views you want this
new column to appear in, or create new views.

Extensibility and Flexibility
Extensibility refers to the ease with which you can modify your data
model as your future needs change. By “change,” we mean adding columns
to hold new pieces of information, modifying existing columns to change
the way data is stored, or even adding or removing whole tables. It’s hard
to predict what our future needs will be, so it is our job to make the data-
base as extensible as possible so that we can react to future needs as they
arise.

We also want our models to be flexible. Although it’s similar to exten-
sibility, flexibility refers to how much of your model you can change with-
out causing significant or any impact. It is true that flexible models will
likely also be extensible, but this isn’t always the case. In either event, an
abstraction layer is your best friend when it comes to extensibility.

Your abstraction layer allows you to make almost any change you can
imagine to the physical tables and not affect a single piece of application
code. If all your applications and users are reading data from views and ma-
nipulating data using stored procedures, you simply need to update these
items as appropriate to prevent problems. How many times have you
wanted to make a change to a database, such as splitting one table into two
tables, but have not been able to because it would require code to be re-
viewed, changed, and recompiled? We have been in this boat more times
than we care to remember. The problem stems from the lack of an ab-

244 Chapter 11 Creating an Abstraction Layer

straction layer. In the example of splitting one table (TableA) into two ta-
bles (TableA and TableB), any code that selects, inserts, updates, or deletes
from TableA must be changed to perform its action on both tables. If we
have an abstraction layer, we need only modify a few stored procedures
and views to accommodate the new structure.

You are probably thinking, “Code will need to be modified either way,
so what’s the difference?” Although it is true that in either case you need
to make a change, the difference is huge. For starters, unlike code in a
.NET application, code on SQL Server is not compiled; therefore, if the
procedure takes the same inputs and returns the same outputs, you can
alter that procedure in the middle of the day while users are online and no
one will know the difference. Granted, there are other considerations
based on what else you have to change in the database, but we are talking
about the transparency of the stored procedure change. The second, and
probably the more important, difference in modifying stored procedure
code over application code is that there is only one database. If you change
application code, you often need to recompile and then have all your users
update or reinstall the client application.

Abstraction layers give you the flexibility to make changes for per-
formance reasons, for normalization, and for reasons of extensibility.
Future growth and changes are always similar with an abstraction layer.

An Abstraction Layer’s Relationship
to the Logical Model

When it’s time to build your abstraction layer, you should find that it more
closely ties to the logical model than to the physical model. You should
work back toward your entities if you want things to make the most sense
and provide the most benefit. This practice allows applications and users
to work with your database in terms that make sense to them. Remember
that your logical model is more user friendly than your physical model,
which is set up to store data in a SQL Server friendly manner. This means
that you should avoid the convention of creating four stored procedures for
each table: one for insert, one for update, one for select, and one for
delete. You may laugh, but we have seen this done. If you go this route, all
you have done is to add an extra layer to a DML statement. Instead, you
should look to create procedures for saving a customer entity, procedures

An Abstraction Layer’s Relationship to the Logical Model 245

that can insert or update and that are aware that the customer entity is
stored in more than one table.

SQL Server, especially SQL Server 2008, offers us functionality to sim-
plify the logic in these procedures. We look at this functionality in detail in
the section “Implementing an Abstraction Layer.” For now, the most im-
portant thing to keep in mind is that your abstraction layer should abstract
the complexity of the underlying tables, and this usually means that it con-
tains structures that are more closely tied to entities.

An Abstraction Layer’s Relationship
to Object-Oriented Programming

As you can guess by the name, object-oriented programming is a kind
of programming that uses objects. Objects are representations of real-
world items, and in that way they are similar to our concept of entities.
When programming an order management system, you will likely have ob-
jects that represent orders, order items, and customers. The objects have
properties, which are similar to attributes. Finally, objects also have
methods, or actions that the objects can perform. This is a very basic look
at objects—we could go on forever about the details—but the goal here is
to show the relationship between abstraction layers and object-oriented
programming.

Because objects closely resemble entities, the ties are there in plain
sight, as is the relationship between object properties and entity attributes.
Table 11.1 shows the properties of an Order object as it might exist in an
object-oriented programming language, and the corresponding attributes
that exist in our Order entity.

Right away you can see the clear relationship between an object and an
entity, but what about an object’s methods?

Methods are actions that an object can perform. An Order object
might have methods to save the order, ship the order, cancel the order, add
a line item to the order, and so on, and some of these methods have direct
ties back to the database. For example, the method Order.Save may need
to insert the order and its related data into our SQL Server database.
These methods can be calls to a data layer, or a middle tier, but ultimately
a call to a stored procedure in SQL Server will probably be made. This can

246 Chapter 11 Creating an Abstraction Layer

also apply to canceling an order; a stored procedure gets called, and it
changes the order’s status and maybe triggers a customer refund.

The possibilities are endless, and when you are building your database,
you should take them into account. If your database is tightly integrated
with an application development project, you may find that an object
model exists. We recommend that you use this model as a guide to help
you build your abstraction layer. After all, the application will ultimately
use the database directly, so the two should be tightly coupled.

Implementing an Abstraction Layer

Implementing an abstraction layer consists of creating objects in the data-
base that act as intermediaries between application code and underlying
core database objects. You can use views, stored procedures, and functions
to create easily accessible entry points for applications to use.

Implementing an Abstraction Layer 247

Table 11.1 Properties of the Order Object and the Related Attribute
from the Orders Entity

Property Attribute

Order_Number OrderNumber

Date OrderDate

SubTot SubTotal

SH ShippingHandling

Tax Tax

Order Total Total

Address 1 AddressLine1

Address 2 AddressLine2

City City

State Region

Country Country

Zip ZipCode

Split IsSplitShip

EmployeeID EmployeeObjectID

CustomerID CustomerObjectID

Shipping_Method ShippingMethodsObjectID

Views
When you create views, your goal is to display the entity to the end user in
a way that makes sense based on the user’s requirements. This might mean
joining several tables to provide your output, or it might mean querying a
single table but not displaying all the rows. A view that returns all the in-
formation about a customer is great, but if you also join to the address
table, you could receive multiple addresses for that customer and hence
receive multiple rows in your view per customer. This isn’t necessarily a
problem, but the consumers of the view need to understand what they are
receiving.

Also, it’s a good idea to create views that shortcut application logic. In
other words, if the application often pulls a list of all the past orders of a
customer to output an account summary page, then a view that joins the
customer table to the order table might save time and prevent the appli-
cation from making two trips to the database and then combining the
record sets locally.

Also, avoid using SELECT * syntax or INSERT syntax without a list of
values. In fact, avoid may be the wrong term; just don’t use this syntax.
Doing so creates problems and reduces the usefulness of your abstraction
layer if changes are made. Either form of this syntax relies on the data
being in a particular order. When the application performs a SELECT *, it
might be expecting 15 columns of specific data. If you now add a new col-
umn before column 5, the application will still get 16 columns, but begin-
ning at column 5 the data will be different from last time.

This kind of unexpected result can trigger a simple problem such as
data being labeled incorrectly, or it can create bigger problems, such as ap-
plication crashes due to incorrect data types, divide by zero errors, item
not found in collection errors, and the list goes on. If you select data by col-
umn name, the worst the application will do is ignore the new column until
you modify the view definition.

Let’s look at the views we will need to view our customer data.
Remember that the customer entity is made up of both tbl_customer and
tbl_address, so we must decide how to return this data. In this case, we will
use two views: one for all the customer information except for address
data, and the other for address detail. Had we decided to use only one
view, we would end up repeating all the customer data for each address in
the database. Although this isn’t really a problem, it is often easier to re-
duce the duplication in the view rather than rely on the application to take
care of it. For view 1, we use the code shown next.

248 Chapter 11 Creating an Abstraction Layer

CREATE VIEW vw_customers

AS

SELECT

objid

,email

,customer_id

,firstname

,lastname

,homephone

,workphone

,mobilephone

FROM tbl_customer

Notice that the customer view is very simple and returns most of the
data from tbl_customer. The only thing left out is web_password, because
it was determined that this is a special column and needs to be seen only
in rare instances. Next, let’s look at the code for the customer addresses
view.

CREATE VIEW vw_customer_addresses

AS

SELECT

address_objid = objid

,address_label

,addressline1

,addressline2

,city

,region

,zipcode

,customer_objid

FROM tbl_address

WHERE customer_objid IS NOT NULL

This view will be similar to vw_customer, which we created earlier, but
there are a few key differences. Because vw_customer_addresses returns
multiple columns containing objid data from what amounts to the data
from different tables, we alias the objid column from tbl_address to address_
objid. In this way, there is no confusion about which objid we are talking
about.

Second, because tbl_address can hold addresses for either a customer
or an employee, we select only rows in which the customer_objid does not

Implementing an Abstraction Layer 249

contain a NULL value. We select data only from tbl_address in this view.
However, in some instances you may find yourself needing to display
more customer data in addition to the address data—for example, the
customer_id column. If this is the case, you need to join the two tables.

In this instance we have no need for additional information, so we
forgo the join and save a little on resources. Because we have these two
views, the application developers can decide which one they need to ref-
erence in different places in their application and retrieve only the data
they absolutely need.

Stored Procedures
The same rule goes for stored procedures as for views. When you create
stored procedures, think in terms of the entities they are meant to affect.
Doing so will help you avoid the pitfalls we discussed earlier around writ-
ing stored procedures to simply insert, update, or delete data. Consider
creating standards that govern how and why stored procedures are created,
what entities are being affected, and what the potential data manipula-
tions are.

How do you correctly implement stored procedures in your abstrac-
tion layer? There are a great many correct answers to this question, be-
cause it depends on the environment and on your preferences. We look at
some of your options here, but remember that this is not the absolute cor-
rect answer in every situation.

A commonly used option is to create a single stored procedure for each
entity; the procedure will update or insert data in all the associated tables.
This is usually the least confusing option, but it can make for some tricky
code. First, let’s walk through the logical steps that a stored procedure
must perform to save changes to a Customer entity in the Mountain View
Music database, and then we will look at some code. When the stored pro-
cedure runs, it must first determine whether or not a record already exists.
Luckily, you followed good modeling guidelines, so each and every table
has a primary key defined, and that makes this step easy. If the record ex-
ists it should be updated; otherwise, it should be inserted. In addition, the
stored procedure should return any information about what it did and
which record was updated.

Sound simple? It can be if you do your job correctly. The following is
an example of a stored procedure that performs the process we just dis-

250 Chapter 11 Creating an Abstraction Layer

cussed for our Customer entity. It writes to both the tbl_customer and the
tbl_address table in our database.

ALTER PROCEDURE prc_save_customer

@email varchar(50)

,@customer_id char(10)

,@firstname varchar(50)

,@lastname varchar(50)

,@homephone varchar(15)

,@workphone varchar(15)

,@mobilephone varchar(15)

,@addresses CustomerAddress ReadOnly

,@customer_objid int OUTPUT

AS

MERGE tbl_customer AS pri_customer

USING

(

SELECT customer_id = @customer_id

)

AS source_customer(customer_id)

ON

(

pri_customer.customer_id =

source_customer.customer_id

)

WHEN NOT MATCHED THEN

INSERT (email,

customer_id,

firstname,

lastname,

homephone,

workphone,

mobilephone)

VALUES (@email,

@customer_id,

@firstname,

@lastname,

@homephone,

@workphone,

@mobilephone)

Implementing an Abstraction Layer 251

WHEN MATCHED THEN

UPDATE

SET email=@email,

firstname=@firstname,

lastname=@lastname,

homephone=@homephone,

workphone=@workphone,

mobilephone=@mobilephone;

SELECT @customer_objid = objid

FROM tbl_customer

WHERE customer_id = @customer_id;

MERGE tbl_address AS current_addresses

USING

(

SELECT customer_objid = @customer_objid,

address_label,

addressline1,

addressline2,

city,

region,

country,

zipcode,

is_deleted

FROM @addresses

)

AS source_addresses(customer_objid,

address_label,

addressline1,

addressline2,

city,

region,

country,

zipcode,

is_deleted)

ON

(

current_addresses.address_label =

source_addresses.address_label

AND

current_addresses.customer_objid =

252 Chapter 11 Creating an Abstraction Layer

source_addresses.customer_objid

)

WHEN NOT MATCHED THEN

INSERT (address_label,

addressline1,

addressline2,

city,

region,

country,

zipcode,

customer_objid)

VALUES (source_addresses.address_label,

source_addresses.addressline1,

source_addresses.addressline2,

source_addresses.city,

source_addresses.region,

source_addresses.country,

source_addresses.zipcode,

@customer_objid)

WHEN MATCHED AND source_addresses.is_deleted = 1

THEN DELETE

WHEN MATCHED THEN

UPDATE

SET address_label=source_addresses.address_label,

addressline1=source_addresses.addressline1,

addressline2=source_addresses.addressline2,

city=source_addresses.city,

region=source_addresses.region,

country=source_addresses.country,

zipcode=source_addresses.zipcode;

This stored procedure may look a little complex, but it is really simple.
Using the MERGE statement, which is new in SQL Server 2008, we can
write a single statement for each table. MERGE evaluates the tables based
on the provided values to determine whether the record in question is new
and needs to be inserted, or whether it is an existing record that needs to
be updated. Also notice that one of the parameters being passed is called
CustomerAddress. This is a user-defined table data type being passed to
the procedure as a table-valued parameter. Table-valued parameters, also
new to SQL Server 2008, allow us to pass multiple addresses for a cus-
tomer using a single parameter.

Implementing an Abstraction Layer 253

The really cool thing is that the MERGE syntax works with single or
multiple rows of source data, so our single MERGE statement can insert,
update, or even delete address records from the address table for the spec-
ified customer. Again, we are not saying that you have to use MERGE; you
can build all the logic in separate steps, but a single T-SQL statement is
likely to be more efficient than anything you can write. We highly recom-
mend that you look at MERGE in further detail.

Other Components of an Abstraction Layer
Although views and stored procedures will make up the bulk of your ex-
posed abstraction layer, you will use many other SQL Server objects in
your unexposed abstraction layer. First, let’s define exposed versus unex-
posed portions of your abstraction layer. Simply put, anything that is meant
to be consumed by your users or an application is exposed; anything con-
sumed only by other elements of your abstraction layer is unexposed.

For example, user-defined functions are extremely useful in a SQL
Server database, but they typically perform small tasks as part of a larger
process. Therefore, UDFs are generally called by stored procedures or
used in a view and are not usually exposed to users or applications directly.
As you build your abstraction layer you may find that a UDF or a trigger is
appropriate for handling a task, and in these situations you should take full
advantage of these objects. Just keep in mind that they will probably be
called by another object and not the user.

Summary

If you take nothing else away from this book, remember that abstraction
layers are extremely important. They provide extensibility and flexibility
unrivaled by databases that lack abstraction layers. In addition, abstraction
layers provide you with an extra layer of security and are handy during your
next Sarbanes-Oxley audit.

At this point, we should have a complete database solution and our
customer should be ready to begin using the database. We hope that if you
follow the guidelines we have laid out in this book, you will be able to de-
sign and implement successful databases. Remember that there are many
ways to accomplish the same goals, so take what you have learned here and
incorporate it into your own practices and techniques.

254 Chapter 11 Creating an Abstraction Layer

A P P E N D I X A

SAMPLE LOGICAL MODEL

255

Logical Orders Submodel

256 Appendix A Sample Logical Model

Logical Inventory Submodel

Logical Inventory Submodel 257

Logical Product Submodel

258 Appendix A Sample Logical Model

Logical Web Session Submodel

Logical Lists Submodel 259

Logical Lists Submodel

This page intentionally left blank

A P P E N D I X B

SAMPLE PHYSICAL MODEL

261

Physical Orders Submodel

262 Appendix B Sample Physical Model

Physical Inventory Submodel

Physical Inventory Submodel 263

Physical Product Submodel

264 Appendix B Sample Physical Model

Physical Web Session Submodel

Physical Lists Submodel 265

Physical Lists Submodel

This page intentionally left blank

A P P E N D I X C

SQL SERVER 2008
RESERVED WORDS

Use of the following keywords should be avoided in any code, column
names, or object names. These terms are keywords for the SQL Server en-
gine, and their use could confuse the engine. For more keywords, includ-
ing ODBC reserved words and a list of possible future keywords, see SQL
Server Books Online.

267

ADD

ALL

ALTER

AND

ANY

AS

ASC

AUTHORIZATION

BACKUP

BEGIN

BETWEEN

BREAK

BROWSE

BULK

BY

CASCADE

CASE

CHECK

CHECKPOINT

CLOSE

CLUSTERED

COALESCE

COLLATE

COLUMN

COMMIT

COMPUTE

CONSTRAINT

CONTAINS

CONTAINSTABLE

CONTINUE

CONVERT

CREATE

CROSS

CURRENT

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_USER

CURSOR

DATABASE

DBCC

DEALLOCATE

DECLARE

DEFAULT

DELETE

DENY

DESC

DISK

DISTINCT

DISTRIBUTED

DOUBLE

DROP

DUMP

ELSE

END

ERRLVL

ESCAPE

EXCEPT

EXEC

EXECUTE

EXISTS

EXIT

EXTERNAL

FETCH

FILE

FILLFACTOR

(continued)

268 Appendix C SQL Server 2008 Reserved Words

FOR

FOREIGN

FREETEXT

FREETEXTTABLE

FROM

FULL

FUNCTION

GOTO

GRANT

GROUP

HAVING

HOLDLOCK

IDENTITY

IDENTITY_INSERT

IDENTITYCOL

IF

IN

INDEX

INNER

INSERT

INTERSECT

INTO

IS

JOIN

KEY

KILL

LEFT

LIKE

LINENO

LOAD

NATIONAL

NOCHECK

NONCLUSTERED

NOT

NULL

NULLIF

OF

OFF

OFFSETS

ON

OPEN

OPENDATASOURCE

OPENQUERY

OPENROWSET

OPENXML

OPTION

OR

ORDER

OUTER

OVER

PERCENT

PIVOT

PLAN

PRECISION

PRIMARY

PRINT

PROC

PROCEDURE

PUBLIC

RAISERROR

READ

READTEXT

RECONFIGURE

REFERENCES

REPLICATION

RESTORE

RESTRICT

RETURN

REVERT

REVOKE

RIGHT

ROLLBACK

ROWCOUNT

ROWGUIDCOL

RULE

SAVE

SCHEMA

SECURITYAUDIT

SELECT

SESSION_USER

SET

SETUSER

SHUTDOWN

SOME

STATISTICS

SYSTEM_USER

TABLE

TABLESAMPLE

TEXTSIZE

THEN

TO

TOP

TRAN

TRANSACTION

TRIGGER

TRUNCATE

TSEQUAL

UNION

UNIQUE

UNPIVOT

UPDATE

UPDATETEXT

USE

USER

VALUES

VARYING

VIEW

WAITFOR

WHEN

WHERE

WHILE

WITH

WRITETEXT

(Continued)

A P P E N D I X D

RECOMMENDED NAMING
STANDARDS

Object Type Prefix Example

Table tbl_ tbl_customer

View vw_ vw_open_orders

Stored Procedure prc_ prc_save_order_detail

User-Defined Functions udf_ udf_new_orderid

Triggers trg_ trg_new_order

Index idx_ idx_customer_name

Primary Keys pk_<table name> pk_tbl_address

Foreign Keys fk_<foreign key table> fk_tbl_address_tbl_customer
_<primary key table>

Default Constraint df_ df_customer_status

Check Constraints ck_ ck_customer_phone_number

Unique Constraints unq_ unq_customer_email

269

This page intentionally left blank

INDEX

271

A
abstraction layers, 20–21

defined, 241
examples of, 242
exposed and unexposed, 254
extensibility and flexibility of,

244–245
implementation of, 242,

247–254
related to logical model,

245–246
related to object-oriented

programming, 246–247
and security, 21, 242–244
uses of, 242–245

Access (Microsoft), 10–11
advanced cardinality, 70,

217–218
AFTER trigger, 73–74
alphanumeric data types,

26–27, 54–55
length of, 26

ALTER statement, 67
ASCII, 26
attribute key words, 123
attributes, 24–25

defined, 15
determining, 135–138
flexibility vs. structure in,

176–178
incorrect data types for,

178–182
listing, 142, 161–162,

169–170
modeling columns using,

210–211

naming, 152–153, 210
mutivalued, 32
problems involving, 176–182
single-valued, 32

B
B-tree structure, 223
bigint data type, 50
binary data type, 28, 55–56
bit data type, 27, 50, 51
BLOB (binary large object

data), 27, 28
Boolean data types, 27
Boyce-Codd normal form

(BCNF), 82
described, 87

business requirements
balancing with technical

issues, 112
gathering, 17, 97–115
interpreting, 17–18
meeting, 10, 16–17

business review
for customers, 144–145
design documentation,

143–144
diagrams in, 144
report examples in, 144

business rules, 18
determining, 138–140
implementation of, 138
listing, 142
in logical model, 163–164
in physical model, 211–218
using constraints to model,

211–214

using triggers to model,
214–216

C
candidate keys, 59, 60–61
cardinality, 41–42

advanced, 70, 217–218
implementing, 140
modeling, 167–168

cascading, 65
case, upper and lower, 193–194
char data type, 26, 54
check constraints, 66–67, 212

naming of, 197, 269
uses of, 213

child use cases, 109
CLOB (character large object

data), 27, 28
CLR (Common Language

Runtime), 75
CLR trigger, 216
clustered indexes, 224–227

advantages of, 231, 234
Codd, E. F., 81
columns, 5, 15, 20, 45–46

default value of, 46
modeling of, 210–211
naming of, 195

conceptual model, 121
consistency, in data modeling,

6–8
CONSTRAINT statement, 62,

64
constraints, 20

check, 66–67, 212, 213
default, 211–213

constraints (cont.)
defined, 66
distinguished from primary

keys, 66
to implement business

model, 211–214
naming of, 197, 269
unique, 66, 197, 212, 214

covering indexes, 228, 234
CREATE INDEX statement,

236
Crow’s Feet notation, 154–156
cubes, data, 93
customers

needs of, 97
interviewing, 99–101

D
data access patterns, 113

and indexing, 230–232, 233
data dictionary, 31, 143
data file, 221
data format, 164
data integrity, 164
Data Manipulation Language

(DML), 46
data modeling

common problems in, 19,
170–186

consistency in, 6–8
creation of, 149
defined, 3
facets of, 3
IDEF, 154
importance of, 6
logical. See logical model
to meet business require-

ments, 10
physical. See physical model
scalability in, 8–10
theory behind, 15–16

data normalization. See nor-
malization

data pages, 46
data relationships, 164
data retrieval, ease of, 10–12

272 Index

data storage
mechanism of, 221–222
requirements, 113–114,

140–141
data types, 25

categories of, 49
choice of, 178–182
specifying, 25
types of, 26–29, 50–59
user-defined, 20, 58–59

database
components of, 4–5, 221
ease of data retrieval in,

10–12
defined, 4
design of, xiii, 97
indexing of, 20
performance tuning of,

13–14, 221
relational, 5, 35
usage requirements of,

230–232
date data type, 29, 53
datetime data type, 28–29, 53
datetime2 data type, 29, 53–54
datetimeoffset data type, 29, 54
decimal data type, 27, 50, 51,

52
default constraints, 211–212

naming of, 197, 269
uses of, 212–213

defaults, 46
naming of, 197

DELETE statement, 33, 46,
47, 48

denormalization, 91
implementation of, 93
uses of, 92

dependency
functional, 84
multi-valued, 88
partial, 87
transitive, 86

description, of process, 108
design documentation,

143–144

diagrams in, 144
report examples in, 144

detail records, 37
discrimination, subtype, 78
discriminators, 43
documentation

design, 143–144
of referential integrity, 33
of requirements gathering,

97
of requirements interpreta-

tion, 141–145
domains, 31, 168–169

E
efficiency, data normalization

and, 81
Embarcadero, 156
entities, 23

attributes of, 24–25
defined, 15
distinguished from tables, 24
listing, 136–137, 141,

158–161, 165
modeling tables using,

198–209
naming, 151–152
problems involving, 171–176
too few, 171–174
too many, 174–176

entities key words, 123
ERD (entity relationship dia-

gram), 126–127
ERwin Data Modeler

(Computer Associates),
156

Excel (Microsoft), 46
execution plan, 49
existing applications, assessing,

104–105
exposed abstraction layer, 254
extend relationship, 109
extensibility, defined, 244
Extensible Markup Language

(XML) data, storage of,
56, 57

extents, 222
external trigger, 108

F
fact tables, 93
fifth normal form (5NF), 82, 87

avoiding use of, 89
described, 89

file storage data type, 56
filegroups, 237–238
first normal form (1NF), 16, 81

described, 82
and repeating groups, 83–84

fixed-length columns, storage
of, 47

flexibility, defined, 244
float data type, 27, 50, 52
flow of events, of process, 109
flowcharts, interpreting,

127–130
foreign keys (FKs), 20

characteristics of, 30–31
naming of, 197, 209, 269
and referential integrity, 33,

63–65
relation to primary keys,

65–66
format, data, 164
fourth normal form (4NF), 82

described, 87–89
full-text indexes, 229
function modeling, 153
functional dependency, 84
functions, user-defined, 20,

196, 254, 269

G
generalization relationship, 109
geography data type, 58
geometry data type, 58
GUIDs (globally unique identi-

fiers)
as primary keys, 63
storage of, 56, 57

Index 273

H
header records, 37
heap, defined, 222
hierarchical entities, storage of,

56, 58
hierarchyid data type, 58
hyphens, avoiding in names,

191

I
ICAM (Integrated Computer-

Aided Manufacturing),
153

IDEF (ICAM definitions),
153–154

IDEFIX, 154–156
identifying relationships, 40
identities, 30
identity columns, 63
IDENTITY statement, 64
image data type, 28, 56
import/export, modeling tool

capabilities of, 156–157
include relationship, 108
increments, 63
index allocation map (IAM),

225
index statistics, 235
indexed views, 229–230
indexes, 20

balancing of, 233–234
clustered, 224–227, 231, 234
covering, 228, 234
creating, 236–237
defined, 222
full-text, 229
implementation of, 236–237
with included columns,

228–229
maintenance of, 235–236,

238–239
naming of, 196–197, 236,

269
nonclustered, 227–228, 234
read/write ratio and,

230–232

rebuilding of, 238, 239
reorganization of, 238, 239
spatial, 229
structure of, 223–224
tradeoffs involving, 231
unique, 228
XML, 229
and usage requirements,

230–232
Information Engineering (IE)

Crow’s Feet notation,
154–156

information modeling, 153
input parameters, 71
INSERT statement, 33, 46, 47,

48
improper use of, 248

Inserted table, 74
instances, of entities, 23
INSTEAD OF trigger, 74, 218
int (integer) data type, 27, 50
integrity, data, 164
interpreting requirements,

17–18
compiling data, 119–121
determining attributes,

135–138
determining business rules,

138–140
documentation of, 141–145
evaluating information,

119–121
key words in, 122–123
legacy systems, 130–132
model requirements,

121–138
use cases, 132–135

interviews, 98
interpreting, 121–127
of key stakeholders, 99–100
sample questions for, 100

J
join table, 39
junction tables, 39, 69–70

K
key words, 122

attribute, 123
entities, 123
relationship, 123

keys, 15
modeling of, 209–210
See also foreign keys; pri-

mary keys

L
legacy systems, interpreting,

130–132
length, of field, 26
List items, 158
Lists, 158
logical elements, defined, 16
logical model, 15, 18–19

abstraction layer and,
245–246

building, 164–170
creating, 18
defined, 15
defining data types in, 25
modeling tools for, 156–157
naming guidelines in,

149–153
notation standards for,

153–156
problems in, 19
sample of, 255–260
using requirements to build,

157–164

M
mandatory relationships, 41
manual systems, assessing,

103–104
many-to-many relationships,

38–40
cardinality of, 42
problems with, 184–185
referential integrity in,

69–70
max length option, 55

274 Index

MERGE statement, 253
methods, of objects, 246
modeling theory, 15–16
modeling tools

import/export formats of,
156–156

notation capabilities in, 156
physical model generation

by, 157
money data type, 27, 50, 52
Mountain View Music case

study, 14
abstraction layers in, 244
background, 117–118
cardinality, 167–168
constraints in, 214
determining attributes,

135–138, 169–170
domains, 168–169
entity list, 136, 158–161, 165
implementing cardinality,

140
indexes in, 225–228, 231
inventory submodel of,

202–203, 257, 263
legacy systems in, 130–132
lists submodel of, 209, 259,

265
logical model of, 164–170,

199
naming, 150–153
orders submodel of,

204–209, 256, 262
physical model of, 201–211
primary keys, 166, 167
products submodel of,

200–202, 258, 264
relationships in, 162–163,

166–167, 168
requirements gathering, 122
requirements interpretation,

124–127
use cases, 132–135
warehouse flowchart,

127–130

web session submodel of,
209, 259, 265

multi-valued dependency, 88
mutivalued attributes, 32

N
naming

brevity of, 193
case use in, 193–194
of columns, 195
of constraints, 197–198, 269
of indexes, 196–197, 236,

269
of keys, 197, 269
for logical model, 149–153
for physical model, 189–194
standards for, 269
of stored procedures, 196,

269
of tables, 194–195
of triggers, 196, 269
of user-defined data types,

197
of user-defined functions,

196, 269
of views, 195, 269

nchar data type, 26, 55
nested triggers, 75
NEWID function, 57
nonclustered indexes, 227–228

advantages of, 234
non-identifying relationships,

40–41
normal forms, 81–82

1NF, 16, 82–84
2NF, 84–86
3NF, 86–87
4NF, 87–89
5NF, 87, 89
BCNF, 87
determining, 90–91

normalization, 91–93
defined, 16
described, 81
normal forms, 82–91

notation
in modeling tool, 156
IDEF standards for,

153–156
IE Crow’s Feet, 154–156

ntext data type, 28, 56
NULL value, 46

in one-to-many relationships,
68

numeric data type, 50, 51, 52
numeric data types, 27, 50–53
nvarchar data type, 26, 55, 56

O
object-oriented design, 154
object-oriented programming,

246
objects, defined, 246
observation, 101–102

in interview setting, 102
tips for, 102–103

one-to-many relationships,
37–38

cardinality of, 41–42
referential integrity in, 68

one-to-one relationships,
35–37

cardinality of, 41
enforcing, 69
problems with, 182–184
referential integrity in,

68–69
online analytical processing

(OLAP), 91, 93
online transactional processing

(OLTP), 91, 92–93
ontology description capture,

154
Open Graphics Library

(OpenGL), 242
Open Systems Interconnection

(OSI) model, 242
open-ended questions,

100–101
optional relationships, 41

Index 275

orphaned rows, 65
output parameters, 71

P
pages, 46, 222
parameters, in stored proce-

dures, 71
parent node, 223
physical elements, defined, 16
physical model, 15–16, 19–21

creating, 19–20
deriving, 198–211
implementing of business

rules in, 211–218
modeling tools to generate,

157
naming guidelines for,

189–194
sample, 261–265

physical storage. See data
types; tables; views

precision, defined, 27
previous processes, and

requirements gathering,
103–105

PRIMARY KEY statement, 62
primary keys (PKs), 16, 20,

166, 167
changing values of, 66
characteristics of, 30
distinguished from con-

straints, 66
naming of, 62, 197, 209, 269
and referential integrity, 33,

59–63
rules for, 63
tips for using, 63
types of, 30

process description capture, 154

Q
questions, interview

closed-ended, 101
open-ended, 100–101
samples of, 100

R
real data type, 27, 50, 52
rebuilding, of index, 238, 239
records, in databases, 24
recursion, trigger, 75
referential integrity, 32–34

building blocks of, 59–68
documentation of, 33
implementation of, 68–70

relational database manage-
ment system (RDMS), 5

commercial products, 6
relational databases, 5

strengths of, 35
relationship key words, 123
relationships

cardinality of, 41–42, 166–168
data, 164
defined, 15
identifying, 40
listing, 142, 162–163, 168
logical, 35–40
mandatory, 41
modeling keys using,

209–210
non-identifying, 40–41
optional, 41
problems with, 182–185

reorganization, of index, 238,
239

repeating groups, 82
elimination of, 83–84

requirements gathering, 17
customer concerns in, 97,

111–112
of data storage require-

ments, 113–114
described, 98
documentation of, 97
interviews in, 98–101
observation in, 101–103
of reads and writes, 113, 233
technical concerns in, 97
of transaction requirements,

115–116

requirements gathering (cont.)
of usage data, 112–116
use cases in, 105–111

reserved words, in SQL Server,
191–193, 267–268

return values, 71–72
root, defined, 223
rows, in databases, 4, 24, 45

orphaned, 65
size of, 47
storage of, 46

S
Safari Bookshelf, iv
scalability, 8–10
scalar functions, 73
scale, defined, 27
schema, defined, 242
second normal form (2NF), 82

described, 84–86
security, abstraction layers and,

21, 242–244
seeds, 63
SELECT statement, 46, 47

improper use of, 248
server trigger recursion, 75
single-valued attributes, 32
sixth normal form (6NF), 82
smalldatetime data type, 29, 53
smallint data type, 50, 51
smallmoney data type, 50, 52
spaces, avoiding in names, 191
spatial data types, storage of,

56, 58
spatial indexes, 229
SQL Server (Microsoft), 6

keywords in, 191–193,
267–268

objects in, 20
programming in, 71–75
versions of, 4

SQL Server 2008 (Microsoft),
4, 6

data compression in, 49
sql-variant data type, 56
stakeholder, in process, 108

276 Index

statistics, defined, 235
stored procedures, 20, 71–72

in abstraction layer, 250–253
naming of, 196, 269

string data types, 26, 54–55
subflows, of process, 109
submodels, 198

examples of, 198–209
subtype clusters, 42

completeness of, 43
physical implementation of,

44, 76–79
use of, 44

subtype tables, 77
implementation of, 78–79

subtypes, 42
supertype tables, 76–77

implementation of, 78–79
supertypes, 42
supporting tables, 20
surrogate keys, 30
switches, 27

T
table data type, 57–58
table scan, 225
tables, 4, 15, 20

distinguished from entities,
24

modeling of, 198–209
naming of, 194–195, 269
storage of, 46–47
structure of, 45–46

table-valued functions, 73
temporal trigger, 108
tertiary relationships, 89
text data type, 28, 56
third normal form (3NF), 82

described, 86
distinguished from 2NF,

86–87
time data type, 29, 53
timestamp data type, 56–57
tinyint data type, 50, 51
Transact-SQL (T-SQL), 46
transaction log file, 221

transaction requirements,
115–116

transitive dependency, 86
triggers, 20, 73

AFTER, 73–74
INSTEAD OF, 74, 218
naming of, 196, 269
nested, 75
of process, 108
use of, 214–216

U
UML (Unified Modeling

Language), 111
unexposed abstraction layer, 254
Unicode, 26–27
unique constraints, 66, 212

naming of, 197, 269
uses of, 214

unique indexes, 228
uniqueidentifier data type, 57
UPDATE statement, 33, 46,

47, 48
use case descriptions, 106, 107
use case diagrams, 106,

109–111
sample, 110, 133

use cases, 105
child, 109
detailed, 106
essential, 106
interpreting, 132–135
overview, 106
real, 106–107
relationships in, 108–109

user-defined data types, 20,
58–59

naming of, 197
user-defined functions, 20,

72–73
naming of, 196, 269
in abstraction layer, 254

V
varbinary data type, 28, 55–56
varchar data type, 26, 54–55, 56

variable-length field, 26
storage of, 47

views, 20
in abstraction layer, 248–250
defined, 47
indexed, 229–230

Index 277

naming of, 196, 269
use of, 48–49

W
Windows Hardware Abstraction

Layer (HAL), 242

X
xml data type, 57
XML indexes, 229

This page intentionally left blank

	A developer’s guide to data modeling for SQL server
	Preface
	Acknowledgments
	About the Authors
	PART I: Data Modeling Theory
	Chapter 1 Data Modeling Overview
	Databases
	Why a Sound Data Model Is Important
	The Process of Data Modeling
	Summary

	Chapter 2 Elements Used in Logical Data Models
	Entities
	Attributes
	Referential Integrity
	Relationships
	Using Subtypes and Supertypes
	Summary

	Chapter 3 Physical Elements of Data Models
	Physical Storage
	Referential Integrity
	Programming
	Implementing Supertypes and Subtypes
	Summary

	Chapter 4 Normalizing a Data Model
	What Is Normalization?
	Determining Normal Forms
	Denormalization
	Summary

	PART II: Business Requirements
	Chapter 5 Requirements Gathering
	Requirements Gathering Overview
	Gathering Requirements Step by Step
	Business Needs
	Balancing Technical Limitations with Business Needs
	Gathering Usage Data
	Summary

	Chapter 6 Interpreting Requirements
	Mountain View Music
	Compiling Requirements Data
	Determining Model Requirements
	Determining Business Rules
	Requirements Documentation
	Looking Ahead: The Business Review
	Summary

	PART III: Creating the Logical Model
	Chapter 7 Creating the Logical Model
	Diagramming a Data Model
	Using Requirements to Build the Model
	Building the Model
	Summary

	Chapter 8 Common Data Modeling Problems
	Entity Problems
	Attribute Problems
	Relationship Problems
	Summary

	PART IV: Creating the Physical Model
	Chapter 9 Creating the Physical Model with SQL Server
	Naming Guidelines
	Deriving the Physical Model
	Implementing Business Rules in the Physical Model
	Summary

	Chapter 10 Indexing Considerations
	Indexing Overview
	Database Usage Requirements
	Determining the Appropriate Indexes
	Implementing Indexes in SQL Server
	Summary

	Chapter 11 Creating an Abstraction Layer in SQL Server
	What Is an Abstraction Layer?
	Why Use an Abstraction Layer?
	An Abstraction Layer’s Relationship to the Logical Model
	An Abstraction Layer’s Relationship to Object-Oriented Programming
	Implementing an Abstraction Layer
	Summary

	Appendix A: Sample Logical Model
	Appendix B: Sample Physical Model
	Appendix C: SQL Server 2008 Reserved Words
	Appendix D: Recommended Naming Standards
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

