
ptg18192217

ptg18192217

The Language
of SQL

Second Edition

Larry Rockoff

Hoboken, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg18192217

The Language of SQL, Second Edition
Copyright © 2017 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-13-465825-4

ISBN-10: 0-13-465825-6

Library of Congress Control Number: 2016945436

Printed in the United States of America

First Printing: August 2016

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. The publisher cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corpo-
rate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor
Mark Taber

Project and
Copy Editor
Dan Foster,
Scribe Tribe

Technical Editor
Siddhartha Singh

Designer
Chuti Prasertsith

Compositor
Danielle Foster,
Scribe Tribe

Indexer
Valerie Haynes
Perry

Proofreader
Scout Festa

ptg18192217

Contents at a Glance

Introduction xiii

1 Relational Databases and SQL 1

2 Basic Data Retrieval 11

3 Calculated Fields and Aliases 19

4 Using Functions 27

5 Sorting Data 41

6 Selection Criteria 49

7 Boolean Logic 61

8 Conditional Logic 73

9 Summarizing Data 81

10 Subtotals and Crosstabs 101

11 Inner Joins 115

12 Outer Joins 123

13 Self Joins and Views 135

14 Subqueries 143

15 Set Logic 155

16 Stored Procedures and Parameters 163

17 Modifying Data 171

18 Maintaining Tables 181

19 Principles of Database Design 189

20 Strategies for Displaying Data 199

A Getting Started with Microsoft SQL Server 209

B Getting Started with MySQL 211

C Getting Started with Oracle 215

Index 217

ptg18192217

Table of Contents

Introduction xiii

1 Relational Databases and SQL 1

What Is SQL? 2

Microsoft SQL Server, MySQL, and Oracle 3

Relational Databases 4

Primary and Foreign Keys 6

Datatypes 6

NULL Values 8

The Significance of SQL 8

Looking Ahead 9

2 Basic Data Retrieval 11

A Simple SELECT 11

Syntax Notes 12

Comments 13

Specifying Columns 14

Column Names with Embedded Spaces 15

Preview of the Full SELECT 16

Looking Ahead 17

3 Calculated Fields and Aliases 19

Literal Values 20

Arithmetic Calculations 21

Concatenating Fields 22

Column Aliases 23

Table Aliases 24

Looking Ahead 25

4 Using Functions 27

What Is a Function? 27

Character Functions 28

Composite Functions 32

Date/Time Functions 33

ptg18192217

vTable of Contents

Numeric Functions 35

Conversion Functions 36

Looking Ahead 39

5 Sorting Data 41

Sorting in Ascending Order 41

Sorting in Descending Order 43

Sorting by Multiple Columns 43

Sorting by a Calculated Field 44

Sort Sequences 45

Looking Ahead 47

6 Selection Criteria 49

Applying Selection Criteria 49

WHERE Clause Operators 50

Limiting Rows 51

Limiting Rows with a Sort 53

Pattern Matching 54

Wildcards 56

Looking Ahead 58

7 Boolean Logic 61

Complex Logical Conditions 61

The AND Operator 62

The OR Operator 62

Using Parentheses 63

Multiple Sets of Parentheses 65

The NOT Operator 66

The BETWEEN Operator 68

The IN Operator 69

Boolean Logic and NULL Values 70

Looking Ahead 72

8 Conditional Logic 73

The CASE Expression 73

The Simple CASE Format 74

The Searched CASE Format 76

ptg18192217

vi Table of Contents

Conditional Logic in ORDER BY Clauses 78

Conditional Logic in WHERE Clauses 79

Looking Ahead 80

9 Summarizing Data 81

Eliminating Duplicates 81

Aggregate Functions 83

The COUNT Function 84

Grouping Data 86

Multiple Columns and Sorting 87

Selection Criteria on Aggregates 89

Conditional Logic in GROUP BY Clauses 91

Conditional Logic in HAVING Clauses 92

Ranking Functions 93

Partitions 97

Looking Ahead 100

10 Subtotals and Crosstabs 101

Adding Subtotals with ROLLUP 102

Adding Subtotals with CUBE 106

Creating Crosstab Layouts 110

Looking Ahead 114

11 Inner Joins 115

Joining Two Tables 116

The Inner Join 118

Table Order in Inner Joins 119

An Alternate Specification of Inner Joins 119

Table Aliases Revisited 120

Looking Ahead 121

12 Outer Joins 123

The Outer Join 123

Left Joins 125

Testing for NULL Values 127

Right Joins 128

ptg18192217

viiTable of Contents

Table Order in Outer Joins 129

Full Joins 129

Cross Joins 131

Looking Ahead 134

13 Self Joins and Views 135

Self Joins 135

Creating Views 137

Referencing Views 139

Benefits of Views 140

Modifying and Deleting Views 141

Looking Ahead 142

14 Subqueries 143

Types of Subqueries 143

Using a Subquery as a Data Source 144

Using a Subquery in Selection Criteria 147

Correlated Subqueries 148

The EXISTS Operator 150

Using a Subquery as a Calculated Column 151

Common Table Expressions 152

Looking Ahead 153

15 Set Logic 155

Using the UNION Operator 156

Distinct and Non-Distinct Unions 158

Intersecting Queries 159

Looking Ahead 161

16 Stored Procedures and Parameters 163

Creating Stored Procedures 164

Parameters in Stored Procedures 165

Executing Stored Procedures 167

Modifying and Deleting Stored Procedures 167

Functions Revisited 168

Looking Ahead 169

ptg18192217

viii Table of Contents

17 Modifying Data 171

Modification Strategies 171

Inserting Data 172

Deleting Data 175

Updating Data 176

Correlated Subquery Updates 177

Looking Ahead 179

18 Maintaining Tables 181

Data Definition Language 181

Table Attributes 182

Table Columns 183

Primary Keys and Indexes 183

Foreign Keys 184

Creating Tables 185

Creating Indexes 187

Looking Ahead 187

19 Principles of Database Design 189

Goals of Normalization 190

How to Normalize Data 191

The Art of Database Design 195

Alternatives to Normalization 196

Looking Ahead 197

20 Strategies for Displaying Data 199

Crosstab Layouts Revisited 199

Excel and External Data 200

Excel Pivot Tables 203

Looking Ahead 207

A Getting Started with Microsoft SQL Server 209

Installing SQL Server 2016 Express 209

Installing SQL Server 2016 Management Studio Express 210

Using SQL Server 2016 Management Studio Express 210

ptg18192217

ixTable of Contents

B Getting Started with MySQL 211

Installing MySQL on Windows 211

Installing MySQL on a Mac 212

Using MySQL Workbench 213

C Getting Started with Oracle 215

Installing Oracle Database Express Edition 215

Using Oracle Database Express Edition 216

Index 217

ptg18192217

About the Author
Larry Rockoff has been involved with SQL and business intelligence development for many
years. His main area of interest is in using reporting tools to explore and analyze data in
complex databases. He holds an MBA from the University of Chicago, with a specialization
in management science. He currently works with data warehouse and reporting applications
for a major retail pharmacy.

Besides writing about SQL, he has also published books on Microsoft Access and Excel.

He also maintains a website that features book reviews on technology topics, focusing on
analytics and business intelligence as well as broader societal issues, at

larryrockoff.com

Please feel free to visit that site to contact the author with any comments or questions.
You are also encouraged to follow his Facebook author page or Twitter site at

facebook.com/larryrockoff
twitter.com/larryrockoff

ptg18192217

Acknowledgments
A huge thanks goes out to all at Pearson who assisted with this book. I’d like to specifically thank
Mark Taber, who was instrumental in bringing this book to Pearson from my previous publisher.
I’d also like to thank project editor and copy editor Dan Foster, as well as Danielle Foster,
who was responsible for the page layout. Siddhartha Singh did a superb job on the technical
review. Chuti Prasertsith provided a wonderfully vibrant cover design. Finally, I must mention
the generally thankless but essential tasks of the book’s indexer, Valerie Haynes Perry, and
proofreader, Scout Festa.

As this is a second edition, I’d also like to thank all readers of the first edition, and especially
those individuals who have contacted me at larryrockoff.com and offered gracious comments
as to the usefulness of the book in their personal lives. It’s both humbling and thrilling to
realize that your thoughts on a relatively mundane topic can assist someone halfway around
the world.

ptg18192217

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write directly to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your name and phone
number or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register

ptg18192217

Introduction

SQL, or Structured Query Language, is the primary language used to communicate with
relational databases. The goal of this book is to serve as a useful introductory guide to this
essential language.

In an alternate universe, the title of this book might have been The Logic of SQL. This is
because, like all computer languages, the language of SQL has much more to do with cold hard
logic than with English vocabulary. Nevertheless, the word language has been retained in the
title for a number of reasons. First, a certain language-based syntax in SQL distinguishes it from
other computer languages. Unlike other languages, SQL employs many ordinary words, such as
WHERE and FROM, as keywords in its syntax.

In the spirit of the language embedded in SQL, we’ve adopted an emphasis on language in our
sequence of topics. With this book, you’ll learn SQL as you would learn English. SQL keywords
are presented in a logical progression, from simple to more complex. In essence, this is an
attempt to deal with language and logic simultaneously.

To learn any language, one must begin by hearing and remembering the actual words that
form the basis of its utterance. At the same time, those words have a certain meaning that must
be understood. In the case of SQL, the meaning has a great deal to do with logic.

One final reason for persisting with the title The Language of SQL rather than The Logic of SQL
is that it simply sounds better. While there can be few literary pretensions in a computer-
language book, the hope is that the presence of the word language will generate some
additional enthusiasm for a subject that is, after all, quite interesting.

Topics and Features
Even if you’re not yet familiar with SQL, suffice it to say that it is a complex language with
many components and features. In this book, we’ll focus on one main topic:

• How to use SQL to retrieve data from a database

ptg18192217

xiv Introduction

To a lesser extent, we will also cover:

• How to update data in a database

• How to build and maintain databases

• How to design relational databases

• Strategies for displaying data after it has been retrieved

A number of features make this book unique among introductory SQL books:

• You will not be required to download software or sit with a computer as you read
the text.

Our intent is to provide examples of SQL usage that can be understood simply by reading
the book. The text includes small data samples that allow you to clearly see how SQL
statements work.

• A language-based approach is employed to enable you to learn SQL as you would
learn English.

Topics are organized in an intuitive and logical sequence. SQL keywords are introduced
one at a time, allowing you to build on your prior understanding as you encounter new
words and concepts.

• This book covers the syntax of three widely used databases: Microsoft SQL Server,
MySQL, and Oracle.

If there are any differences between these databases, the Microsoft SQL Server syntax is
shown in the main text. Special “Database Differences” sidebars show and explain any
variations in the syntax for MySQL or Oracle.

• An emphasis is given to relevant aspects of SQL for retrieving data.

This approach is useful for those who need only to use SQL in conjunction with a
reporting tool. In our final chapter, we’ll move beyond pure SQL to cover strategies for
displaying data after it has been retrieved, including ideas on how to use crosstab reports
and pivot tables. In the real world, these types of tools can substantially lessen the
burden on the SQL developer and provide greater flexibility for the end user.

Note
Visit our website and register this book at informit.com/register for convenient access to
downloads, updates, or errata that may be available for this book.

What’s New in the Second Edition
Here are some of the new features of this second edition:

• Coverage of the latest database versions

All syntax and examples have been taken from the latest versions of the three main
databases covered in this book: Microsoft SQL Server 2016, MySQL 5.7, and Oracle 12c.

ptg18192217

xvIntroduction

• Coverage of subtotals and crosstabs

We added a new chapter on subtotals and crosstabs to provide additional possibilities for
summarizing data. This material allows users to add subtotals and running totals to their
queries. Additionally, exposure to SQL crosstab queries allows for a greater appreciation
of the value of pivot tables, which are covered toward the end of the book.

• Coverage of ranking functions

We added new material on ranking functions. This important class of functions permits
users to produce row numbers and calculate percentiles. A related capability is the ability
to divide data into partitions prior to the application of ranking functions.

• Expanded coverage of conditional logic

Our first edition included some basic material on the CASE expression and conditional
logic. This topic is often excluded from introductory SQL books but nevertheless has
tremendous practical value for any SQL developer. This second edition adds a number of
new examples in Chapters 8 and 9 of how the CASE expression can be employed.

• New and more consistent datasets

As in the first edition, each chapter has its own small set of data for examples. However,
unlike before, this second edition now uses a consistent set of datasets for all chapters. A
Customers table referenced in one chapter will be the same as a Customers table in any
other chapter. If you wish to load sample data for testing, you can now run a single script
to load all data at once. The previous edition required separate scripts for each chapter.

• Other improvements

A few other noteworthy topics have been added, including common table expressions and
comments. Terminology throughout the book has been modified for greater consistency
and conformity with standard usage. Finally, an overview of the SELECT statement has
been added early in Chapter 2, to give you a better idea of the topics to come.

Plan of the Book
This book presents its topics in a unique sequence. The majority of SQL books run through
their topics as if you were a database administrator who needs to create and design a database
from scratch, then load the database with data, and then finally start to retrieve that data. In
this book, we start right off with data retrieval, and then come around to database design in the
final chapters. This is done as a motivational tactic, allowing you to quickly get into interesting
topics related to data retrieval before having to deal with the more arcane subjects of indexes
and foreign keys.

The 20 chapters in the book can be broken down into a number of broad sections:

• Chapter 1 presents introductory material about relational databases that is necessary to
understand before encountering the SELECT statement.

• Chapters 2 through 5 begin an exploration of the SELECT statement, covering the basics
of calculations, functions, and sorting.

ptg18192217

xvi Introduction

• Chapters 6 through 8 deal with selection criteria, from simple Boolean logic to
conditional logic.

• Chapters 9 and 10 explore ways to summarize data, from simple counts to more complex
aggregations and subtotals.

• Chapters 11 through 15 discuss ways to retrieve data from multiple tables via joins,
subqueries, views, and set logic.

• Chapters 16 through 18 move beyond the SELECT statement to focus on broader
topics associated with relational databases, such as stored procedures, updates, and
table maintenance.

• Finally, Chapters 19 and 20 bring us back to the basics of database design and then
to strategies for displaying data.

Appendixes A, B, and C provide information on how to get started with each of the three
databases covered in the book: Microsoft SQL Server, Oracle, and MySQL.

Companion Website
A listing of all SQL statements in this book can be found at this site:

• www.informit.com/store/language-of-sql-9780134658254

These three files are provided:

• SQL Statements for Microsoft SQL Server

• SQL Statements for MySQL

• SQL Statements for Oracle

These three files list all SQL statements in the book for each of these databases. Additionally,
these files contain a SQL script that allows you to create all the data used in the book. After
running the setup script, you can execute statements in the book and see the same output.

Instructions on how to execute the setup script are provided within each of the files.

http://www.informit.com/store/language-of-sql-9780134658254

ptg18192217

1
Relational Databases

and SQL

As mentioned in the Introduction, SQL is the most widely used software tool for
communicating with data residing in relational databases. In this endeavor, SQL utilizes
elements of both language and logic. As a language, SQL employs a unique syntax with many
English words, such as WHERE, FROM, and HAVING. As an expression of logic, it specifies the
details of how data in a relational database is to be retrieved or updated.

With this duality in mind, we attempt in this book to emphasize both language and logic
components as we present the topics that make up SQL. In all languages, whether they be
computer or spoken, there are actual words to be learned and remembered. As such, we will
present the various keywords present in SQL one at a time in a logical sequence. As we progress
through each chapter, you’ll build on your prior vocabulary to learn new keywords and
exciting possibilities for interactions with a database.

In addition to the words themselves, there is also logic to be considered. The words employed
by SQL have a distinct logical meaning and intent. The logic of SQL is just as important as
the language. As in all computer languages, there is frequently more than one way to specify
any desired objective. The nuances of what is possible encompass both the language and
logic involved.

Let’s start with the language. Once you become familiar with the syntax of SQL, you might find
yourself thinking of SQL commands as analogous to English sentences and having a certain
expressive meaning.

For example, compare this sentence:

I would like a hamburger and fries
from your value menu,
and make it to go.

with this SQL statement:

Select city, state
from Customers
order by state

ptg18192217

2 Chapter 1 Relational Databases and SQL

We’ll get into the details later, but this SQL statement means that we want the city and state
fields from a table named Customers in a database, and we want the results sorted by state.

In both cases, we’re specifying which items we want (hamburger/fries or city/state), where we
want it from (value menu or Customers table), and some extra instructions (make it to go, or
sort the results by state).

But before we get started, let’s address one minor point: how to pronounce the word SQL. It
turns out that there are two choices. One option is to simply to say it as individual letters, like
“S-Q-L.” Another possibility, preferred by the author, is to pronounce it as the word “sequel.”
This is one less syllable, and a little easier to say. However, there’s no real agreement on the
question. It’s basically a matter of personal preference.

As for what the letters S-Q-L mean, most agree that they stand for “Structured Query
Language.” However, even here, there is not total agreement. Some would argue that SQL
stands for nothing at all, since the language is derived from an old language from IBM called
sequel, which did not, in fact, stand for structured query language.

What Is SQL?
So what is SQL? In a nutshell, SQL is a standard computer language for maintaining and
utilizing data in relational databases. Put simply, SQL is a language that lets users interact with
relational databases. It has a long history of development by various organizations going back
to the 1970s. In 1986, the American National Standards Institute (ANSI) published its first set of
standards regarding the language, and it has gone through several revisions since that time.

Generally speaking, there are three major components of the SQL language. The first is called
DML, or Data Manipulation Language. This module of the language allows you to retrieve,
update, add, or delete data in a database. The second component is called DDL, or Data
Definition Language. DDL enables you to create and modify the database itself. For example,
DDL provides ALTER statements that let you modify the design of tables in a database.
Finally, the third component, DCL, or Data Control Language, maintains proper security for
the database.

Major software vendors, such as Microsoft and Oracle, have adapted the standard for their
own purposes and have added numerous extensions and modifications to the language. But
although each vendor has its own unique interpretation of SQL, there is still an underlying
base language, which is much the same for all vendors. That base language is what we’ll cover
in this book.

As a computer language, SQL is different from other languages you may be familiar with, such
as Visual Basic or C++. These languages tend to be procedural in nature, meaning that they allow
you to specify specific procedures to accomplish a desired task. SQL is more of a declarative
language. In SQL, the desired objective is often declared with a single statement. The simpler
structure of SQL is possible because it is concerned only with relational databases rather than
the entirety of computer systems.

ptg18192217

3Microsoft SQL Server, MySQL, and Oracle

One additional point of clarification about the SQL language is that it is sometimes confused
with specific SQL databases. Many software companies sell database management systems
(DBMS) software. In common usage, the databases in these types of software packages are often
referred to as SQL databases, because the SQL language is the primary means of managing and
accessing data in these databases. Some vendors even use the word SQL as part of the database
name. For example, Microsoft calls its latest database SQL Server 2016. But in fact, SQL is more
properly a language than a database. Our focus in this book is on the language of SQL rather
than on any particular database.

Microsoft SQL Server, MySQL, and Oracle
Although our aim is to cover the core language of SQL as it applies to all implementations,
we must ultimately also provide specific examples of SQL syntax. And because syntax does
vary somewhat among vendors, we’ve decided to focus on the SQL syntax utilized by these
three popular databases:

• Microsoft SQL Server

• MySQL

• Oracle

In most cases, these databases have the same syntax. However, there are occasional differences.
If there is any variance between these databases, the syntax for Microsoft SQL Server will be
presented in the main text of this book. Any differences for MySQL or Oracle will be indicated
in a sidebar titled “Database Differences,” as shown here:

Database Differences
A sidebar such as this will appear whenever there are syntax differences for MySQL or Oracle.
The syntax for Microsoft SQL Server will appear in the main text.

Microsoft SQL Server is available in several versions and editions. The most recent version
is called Microsoft SQL Server 2016. Available editions run from a basic Express edition to a
fully featured Enterprise edition. The Express edition is free but still has an abundance of
features that allow users to get started with full-fledged database development. The Enterprise
edition includes many sophisticated database management features, plus powerful business
intelligence components.

Although owned by Oracle, MySQL is an open-source database, which means that no single
organization controls its development. MySQL is available on numerous platforms other
than Windows, such as Mac OS X and Linux. MySQL offers its Community Edition as a free
download. The most recent version is MySQL 5.7.

The Oracle database is available in several editions. The most recent version is called Oracle
Database 12c. The free version of the database is called the Express edition.

ptg18192217

4 Chapter 1 Relational Databases and SQL

When starting out, it is sometimes useful to download the database of your choice, so you
have something to experiment with. However, this book does not require you to do that. The
material in this book has been written in such a way as to allow you to learn SQL simply by
reading through the text. We’ll provide enough data in the text so that you can understand
the results of various SQL statements without having to download software and type in
statements yourself.

Nevertheless, if you would like to download the free versions of any of these databases, we’ve
included three appendixes with useful instructions and tips on how to do that. Appendix A
has complete information on how to get started with Microsoft SQL Server. The instructions
include details on how to install the software and execute SQL commands. Similarly,
Appendixes B and C cover MySQL and Oracle.

As mentioned in the Introduction, our companion website provides supplemental material
that lists all the SQL statements shown in this book in all three databases. However, it’s likely
that you’ll find it unnecessary to download or view the additional material on the companion
website. The examples shown throughout this book are self-explanatory and don't require you
to do anything else in order to understand the material. However, if you are so inclined, feel
free to take advantage of these extra features.

It should also be mentioned that, in addition to SQL Server, MySQL, and Oracle, other popular
relational databases are worthy of consideration. For example:

• DB2, from IBM

• Informix, from IBM

• SQL Anywhere, from Sybase

• PostgreSQL, an open-source database

• Microsoft Access, from Microsoft

Of these databases, Microsoft Access is somewhat unique in that it has a graphical element. In
essence, Access is a graphical interface for relational databases. In other words, Access allows
you to create a query against a relational database entirely through graphical means. A useful
aspect of Access for beginners is that you can easily create a query in a visual way and then
switch to a SQL view to see the SQL statement you just created. Another distinction of Access is
that it is primarily a desktop database. As such, you can use it to create a database that resides
entirely in a single file on your PC, but it also allows you to connect to databases created with
other tools, such as Microsoft SQL Server.

Relational Databases
With these preliminaries out of the way, let’s now look at the basics of relational databases
to see how they work. A relational database is a collection of data, stored in any number of
tables. In common usage, the term relational can be taken to indicate that the tables are usually
related to each other in some manner. However, in more precise terms, relational refers to

ptg18192217

5Relational Databases

mathematical relation theory, and has to do with logical properties that govern the manner in
which tables are related.

As an example, let’s take the simple case of a database consisting of only two tables: Customers
and Orders. The Customers table contains one record for each customer who ever placed an
order. The Orders table has one record for each order. Each table can contain any number of
fields, which are used to store the various attributes associated with each record. For example,
a Customers table might contain fields such as FirstName and LastName.

At this point, it’s useful to visualize some tables and the data they contain. The common
custom is to display a table as a grid of rows and columns. Each row represents a record in the
table. Each column represents a field in the table. The top header row normally contains the
field names. The remaining rows show the actual data.

In SQL terminology, records and fields are referred to as rows and columns, corresponding to the
visual representation. So henceforth, we'll use the terms rows and columns rather than records
and fields to describe the design of tables in relational databases.

Let’s look at an example of the simplest possible relational database. This database includes
only two tables: Customers and Orders. This is what the Customers table might look like:

CustomerID FirstName LastName

1 Bob Davis
2 Natalie Lopez
3 Connie King

The Orders table might appear as:

OrderID CustomerID OrderAmount

1 1 50.00
2 1 60.00
3 2 33.50
4 3 20.00

In this example, the Customers table contains three columns: CustomerID, FirstName, and
LastName. There are currently three rows in the table, representing Bob Davis, Natalie Lopez,
and Connie King. Each row represents a different customer, and each column represents
a different piece of information about the customer. Similarly, the Orders table has three
columns and four rows. This indicates that there are four orders in the database and three
attributes for those orders.

Of course, this example is highly simplistic and only hints at the type of data that could
be stored in a real database. For example, a Customers table would normally contain many
additional columns describing other attributes of a customer, such as city, state, zip, and
phone number. Similarly, an Orders table would ordinarily have columns describing additional
attributes of the order, such as order date, sales tax, and the salesperson who took the order.

ptg18192217

6 Chapter 1 Relational Databases and SQL

Primary and Foreign Keys
Note the first column in each table: CustomerID in the Customers table, and OrderID in the
Orders table. These columns are commonly referred to as primary keys. Primary keys are useful
and necessary for two reasons. First, they enable us to uniquely identify a single row in a
table. For example, if we wanted to retrieve the row for Bob Davis, we could simply use the
CustomerID column to obtain the data. Primary keys also ensure uniqueness. Designating the
CustomerID column as a primary key guarantees that this column will have a unique value for
every row in the table. Even if we happened to have two different men both named Bob Davis
in our database, those rows would have different values in the CustomerID column.

In this example, the values in the primary key columns don’t have any particular meaning. In
the Customers table, the CustomerID column contains the values 1, 2, and 3 for the three rows
in the table. Database tables are often designed in such a way as to generate sequential numbers
automatically for the primary key column as new rows are added to the table. This design
feature is usually referred to as auto-increment.

A second reason for primary keys is that they allow us to easily relate one table to another. In
this example, the CustomerID column in the Orders table points to a corresponding row in the
Customers table. Looking at the fourth row of the Orders table, notice that the CustomerID
column has a value of 3. This means that this order is for the customer with a CustomerID of
3, who happens to be Connie King. The use of common columns among tables is an essential
design element in relational databases.

In addition to merely pointing to the Customers table, the CustomerID column in the Orders
table can be designated as something called a foreign key. We’ll cover foreign keys in detail in
Chapter 18, “Maintaining Tables,” but for now, just be aware that foreign keys can be defined
in order to ensure that the column has a valid value. As an example, you would not want the
CustomerID column in the Orders table to have a particular value unless that CustomerID
actually exists in the Customer table. The designation of a column as a foreign key can
accomplish that restriction.

Datatypes
Primary and foreign keys add structure to a database table. They ensure that all tables in a
database are accessible and properly related to each other. Another important attribute of every
column in a table is its datatype.

Datatypes are simply a way of defining the type of data that the column can contain. A
datatype must be specified for each column in every table. Unfortunately, there is a great deal
of variation between relational databases as to which datatypes are allowed and what they
mean. For example, Microsoft SQL Server, MySQL, and Oracle each have over 30 different
allowable datatypes.

ptg18192217

7Datatypes

It would be impossible to cover the details and nuances of every available datatype, even for
just these three databases. What we’ll do, however, is summarize the situation by discussing
the main categories of datatypes common to most databases. Once you understand the
important datatypes in these categories, you will have little trouble with other datatypes you
may encounter. Generally, there are three important kinds of datatypes: numeric, character,
and date/time.

Numeric datatypes come in a variety of flavors, including bits, integers, decimals, and real
numbers. Bits are numeric datatypes that allow for only two values: 0 and 1. Bit datatypes
are often used to define an attribute as having a simple true or false type of value. Integers
are numbers without decimal places. Decimal datatypes can contain decimal places. Unlike
bits, integers, and decimals, real numbers are those numbers whose exact value is only
approximately defined internally. The one distinguishing characteristic of all numeric datatypes
is that they can be included in arithmetic calculations. Here are a few representative examples
of numeric datatypes from Microsoft SQL Server, MySQL, and Oracle.

General Microsoft SQL
Description Server Datatype MySQL Datatype Oracle Datatype Example

bit bit bit (none) 1
integer int int number 43
decimal decimal decimal number 58.63
real float float number 80.62345

Character datatypes are sometimes referred to as string or character string datatypes. Unlike
numeric datatypes, character datatypes aren’t restricted to numbers. They can include any
alphabetic or numeric digit, and can even contain special characters, such as asterisks.
When providing a value for character datatypes in SQL statements, the value must always be
surrounded by single quotes. In contrast, numeric datatypes never use quotes. Here are a few
representative examples of character datatypes:

General Microsoft SQL
Description Server Datatype MySQL Datatype Oracle Datatype Example

variable length varchar varchar varchar2 'Walt Disney'
fixed length char char char '60601'

The second example (60601) is presumably a zip code. At first glance, this looks like it might be
a numeric datatype because it’s composed only of numbers. This is not an unusual situation.
Even though they contain only numbers, zip codes are usually defined as character datatypes
because there is never a need to perform arithmetic calculations with zip codes.

Date/time datatypes are used for the representation of dates and times. Like character
datatypes, date/time datatypes must be enclosed in single quotes. These datatypes allow for

ptg18192217

8 Chapter 1 Relational Databases and SQL

special calculations involving dates. For example, a special function can be used to calculate
the number of days between any two date/time dates. Here are a few examples of date/
time datatypes:

General Microsoft SQL MySQL Oracle
Description Server Datatype Datatype Datatype Example

date date date (none) '2017-02-15'
date and time datetime datetime date '2017-02-15 08:48:30'

NULL Values
Another important attribute of individual columns in a table is whether that column is
allowed to contain null values. A null value means that there is no data for that particular data
element. It literally contains no data. However, null values are not the same as spaces or blanks.
Logically, null values and empty spaces are treated differently. The nuances of retrieving data
that contains null values will be addressed in detail in Chapter 7, “Boolean Logic.”

Many databases will display the word NULL in all capital letters when displaying data with
null values. This is done so the user can tell that the data contains a null value and not simply
spaces. We will follow that convention and display the word NULL throughout this book to
emphasize that it represents that unique type of value.

Primary keys in a database can never contain NULL values. That is because primary keys, by
definition, must contain unique values.

The Significance of SQL
Before leaving the general subject of relational databases, let’s look at a brief historical
overview in order to provide an appreciation of the usefulness of relational databases and the
significance of SQL.

Back in the early days of computing in the 1960s, data was typically stored either on magnetic
tape or in files on disk drives. Computer programs, written in languages such as FORTRAN
and COBOL, typically read through input files and processed one record at a time, eventually
moving data to output files. Processing was necessarily complex because procedures needed to
be broken down into many individual steps involving temporary tables, sorting, and multiple
passes through data until the desired output could be produced.

In the 1970s, advances were made as hierarchical and network databases were invented and
utilized. These newer databases, through an elaborate system of internal pointers, made it easier
to read through data. For example, a program could read a record for a customer, automatically
be pointed to all orders for that customer, and then to all details for each order. But basically
that data still needed to be processed one record at a time.

ptg18192217

9Looking Ahead

The main problem with data storage prior to relational databases was not how the data was
stored, but how it was accessed. The real breakthrough with relational databases came when the
language of SQL was developed, because it allowed for an entirely new method of accessing data.

Unlike earlier data retrieval methods, SQL permitted the user to access a large set of data at
once. With a single statement, a SQL command could retrieve or update thousands of records
from multiple tables. This eliminated a great deal of complexity. Computer programs no
longer needed to read one record at a time in a special sequence, while deciding what to do
with each record. What used to require hundreds of lines of programming code could now be
accomplished with just a few lines of logic.

Looking Ahead
This first chapter provided some background information about relational databases, allowing
us to move on to the main topic of retrieving data from databases. We discussed a number
of important characteristics of relational databases, such as primary keys, foreign keys, and
datatypes. We also talked about the possible existence of NULL values in data. We’ll add to our
discussion of NULL values in Chapter 7, “Boolean Logic,” and return to the general topics of
database maintenance in Chapter 18, “Maintaining Tables,” and database design in Chapter 19,
“Principles of Database Design.”

Why is the important topic of database design postponed until much later in this book? In
short, this approach is taken so you can plunge into using SQL without having to worry about
the details of design at the beginning. In truth, database design is as much an art as it is a
science. The principles of database design will hopefully be much more meaningful after you’ve
become more aware of the details and nuances of retrieving some data via SQL. Therefore, we’ll
temporarily ignore the question of how to design a database and commence with data retrieval
in our next chapter.

ptg18192217

This page intentionally left blank

ptg18192217

2
Basic Data Retrieval

Keywords Introduced
SELECT • FROM

In this chapter, we’ll begin our exploration of the most important topic in SQL—namely, how
to retrieve data from a database. Regardless the size of your organization, the most common
request made of SQL developers is the request for a report. Of course, it’s a nontrivial exercise
to get data into a database, but once the data is there, the energies of business analysts turn
to the wealth of data at their disposal and the desire to extract useful information from
all that data.

The emphasis in this book on data retrieval corresponds to these real-world demands. Your
knowledge of SQL will go a long way toward helping your organization unlock the secrets
hidden in the data stored in your databases.

A Simple SELECT
The ability to retrieve data in SQL is accomplished through something called the SELECT
statement. Without any preliminary explanation, here is an example of the simplest possible
SELECT statement:

SELECT * FROM Customers

In the SQL language, as in all computer languages, certain words are keywords. These words
have special meanings and must be used in a particular way. In this statement, the words
SELECT and FROM are keywords. The SELECT keyword indicates the start of a SELECT
statement. The FROM keyword is used to designate the table from which data is to be retrieved.
The name of the table follows the FROM. In this case, the table name is Customers. The
asterisk (*) in this example is a special symbol that means “all columns.”

As is custom, we’ll print keywords in all capital letters. This is done to ensure that they are
noticeable. To sum up, this statement means: Select all columns from the Customers table.

ptg18192217

12 Chapter 2 Basic Data Retrieval

If the Customers table looks like this:

CustomerID FirstName LastName

1 Sara Davis
2 Rumi Shah
3 Paul Johnson
4 Samuel Martinez

then the SELECT will return the following data:

CustomerID FirstName LastName

1 Sara Davis
2 Rumi Shah
3 Paul Johnson
4 Samuel Martinez

In other words, it brings back everything in the table.

In the previous chapter, we mentioned that it’s a common practice to specify a primary key
for all tables. In this example, the CustomerID column is such a column. We also mentioned
that primary keys are sometimes set up to automatically generate sequential numbers in a
numeric sequence as rows are added to a table. That is the case in this example. In fact, most
of the sample data we’ll show throughout the book will include a similar column that is both
a primary key and defined as auto-increment. By convention, this is generally the first column
in a table.

Syntax Notes
Two points must be remembered when writing any SQL statement. First, the keywords in SQL
are not case sensitive. The word SELECT is treated identically to “select” or “Select.”

Second, a SQL statement can be written on any number of lines and with any number of spaces
between words. For example, the SQL statement:

SELECT * FROM Customers

is identical to:

SELECT *
FROM Customers

It’s usually a good idea to begin each important keyword on a separate line. When we get
to more complex SQL statements, this will make it easier to quickly grasp the meaning of
the statement.

ptg18192217

13Comments

Finally, as we present different SQL statements in this book, we’ll often show both a specific
example and a more general format. For instance, the general format of the previous statement
would be shown as:

SELECT *
FROM table

Italics are used to indicate a general expression. The italicized word table means that you can
substitute any table name in that spot. When you see italicized words in any SQL statement in
this book, that is simply a way of indicating that any valid word or phrase can be substituted
in that location.

Database Differences: MySQL and Oracle
Many SQL implementations require a semicolon at the end of every statement. This is true of
MySQL and Oracle, but not of Microsoft SQL Server. However, semicolons can be specified
in SQL Server if desired. For simplicity, we’ll show SQL statements without semicolons in
this book. If you’re using MySQL or Oracle, you’ll need to add a semicolon at the end of each
statement. The previous statement would appear as:
SELECT *
FROM Customers;

Comments
When writing SQL statements, it’s often desirable to insert comments within or around those
statements. There are two standard methods of writing comments in SQL. The first method,
referred to as the double dash, consists of two dashes placed anywhere on a line. All text that
follows two dashes on that line is ignored and is interpreted as comments. Here’s an example
of this format:

SELECT
-- this is the first comment
FirstName,
LastName -- this is a second comment
FROM Customers

The second format, borrowed from the C programming language, consists of text placed
between /* and */ characters. Comments between the /* and */ can be written on multiple lines.
Here’s an example:

SELECT
/* this is the first comment */
FirstName,
LastName /* this is a second comment
this is still part of the second comment
this is the end of the second comment */
FROM Customers

ptg18192217

14 Chapter 2 Basic Data Retrieval

Database Differences: MySQL
MySQL supports comments in both the double dash and the C programming format (/* and
*/), with one minor difference. When using the double dash format, MySQL requires a space or
special character such as a tab immediately after the second dash.

In addition, MySQL allows for a third method of inserting comments, similar to the double dash.
In MySQL, you can place a number sign (#) anywhere on a line to indicate comments. All text
after the # symbol on that line is taken as a comment. Here’s an example of this format:
SELECT FirstName
this is a comment
FROM Customers;

Specifying Columns
So far, we’ve done nothing more than simply display all the data in a table. But what if we
wanted to select only certain columns? Working from the same table, we might want to display
only the customer’s last name, for example. The SELECT statement would then look like:

SELECT LastName
FROM Customers

and the resulting data would be:

LastName

Davis
Shah
Johnson
Martinez

If we wanted to select more than one, but not all, columns, the SELECT might look like this:

SELECT
FirstName,
LastName
FROM Customers

and the output would appear as:

FirstName LastName

Sara Davis
Rumi Shah
Paul Johnson
Samuel Martinez

ptg18192217

15Column Names with Embedded Spaces

The general format of this statement is:

SELECT columnlist
FROM table

The important thing to remember is that if you need to specify more than one column in the
columnlist, then those columns must be separated by a comma. Also notice that we placed
each column (FirstName, LastName) in the columnlist on separate lines. This was done to
improve readability.

Column Names with Embedded Spaces
What if a column contains a space in its name? Say, for example, that the LastName column
was specified as Last Name (with a space between the two words). Clearly, the following would
not work:

SELECT
Last Name
FROM Customers

This statement would be considered invalid because Last and Name are not column names,
and even if they were proper column names, they would need to be separated by a comma.
The solution is to place special characters around any column name containing spaces. The
character to use differs, depending on which database you’re using. For Microsoft SQL Server,
the required characters are square brackets. The syntax is:

SELECT
[Last Name]
FROM Customers

One additional syntax note: Just as keywords are not case sensitive, it’s also true that table and
column names are not case sensitive. As such, the previous example is identical to:

select
[last name]
from customers

For clarity’s sake, we’ll print all keywords in caps, and we’ll also capitalize table and column
names in this book, but that is not truly necessary.

ptg18192217

16 Chapter 2 Basic Data Retrieval

Database Differences: MySQL and Oracle
For MySQL, the character to use around column names containing spaces is an accent grave
(`). The MySQL syntax for the above example is:
SELECT
`Last Name`
FROM Customers;

For Oracle, the character to use around column names containing spaces is the double quote.
The Oracle syntax for the example is:
SELECT
"Last Name"
FROM Customers;

Additionally, unlike Microsoft SQL Server and MySQL, column names in Oracle surrounded by
double quotes are case sensitive. This means that the previous statement is not equivalent to:
SELECT
"LAST NAME"
FROM Customers;

Preview of the Full SELECT
The bulk of this book has to do with the SELECT statement introduced in this chapter. In
Chapters 3 through 15, we’ll expand on this statement, introducing new features until the full
potential and capabilities of the SELECT are realized and understood. At this point, we have
only introduced this portion of the SELECT statement:

SELECT columnlist
FROM table

In the interest of removing any remaining suspense, let’s look at a preview of the full SELECT
statement and briefly comment on its various components. The full SELECT statement, with all
its clauses is:

SELECT columnlist
FROM tablelist
WHERE condition
GROUP BY columnlist
HAVING condition
ORDER BY columnlist

We’ve already been introduced to the SELECT and FROM clauses. Let’s expand a bit on those
clauses and talk about the others. The SELECT clause initiates the statement and lists any
columns that will be displayed. As will be seen in later chapters, the columnlist can include
not only actual columns from the specified tables, but also calculated columns, usually
derived from one or more columns in the tables. The columns in the columnlist can also
include functions, which represent a special way of adding commonly used methods for
transforming data.

ptg18192217

17Looking Ahead

The FROM clause specifies the data sources from which data will be drawn. In most cases, these
data sources will be tables. In later chapters, we’ll learn that these data sources can also be other
SELECT statements, which represent a type of virtual view of data. In this chapter, our tablelist
is a single table. One of the key features of SQL to be discussed in later chapters is the ability
to combine multiple tables together in a single SELECT statement through something called
the JOIN. Thus, we’ll see many examples where the tablelist in the FROM clause is composed
of multiple lines, indicating tables joined together.

The WHERE clause is used to indicate selection logic. This is where you can specify exactly
which rows of data are to be retrieved. The WHERE clause can utilize basic arithmetic operators
such as equals (=) and greater than (>), along with Boolean operators such as OR and AND.

The GROUP BY clause plays a key role in summarizing data. By organizing data into various
groups, the analyst has the ability to not only group data, but to summarize the data in each
group through the use of various statistics, such as a sum or count of the data.

When data has been grouped, selection criteria become somewhat more complex. One has to
ask whether the selection criteria apply to individual rows or to the entire group. For example,
when grouping customers by state, one may only want to see rows of individual customers
where the aggregate purchases of all customers in the state exceed a certain amount. This is
where the HAVING clause comes in. The HAVING clause is used to specify selection logic for
an entire group of data.

Finally, the ORDER BY clause is used to sort the data in an ascending or descending sequence.

As will be made clear in later chapters, the various clauses in a SELECT statement, if they exist,
must be specified in the same order shown in the previous general statement. For example, if
there is a GROUP BY clause in a SELECT statement, it must appear after a WHERE clause and
before a HAVING clause.

In addition to all of the aforementioned clauses, we will also talk about a number of additional
ways to organize the SELECT statement, including subqueries and set logic. Subqueries are a
way to insert an entire SELECT statement within another SELECT statement, and are often
useful for certain types of selection logic. Set logic is a way to combine multiple queries side
by side as a single query.

Looking Ahead
In this chapter, we began our exploration of how to use the SELECT statement to retrieve
data. We learned about basic syntax and have seen how to select specific columns. In reality,
however, this allows us to accomplish very little of a practical nature. Most significantly, we
have not yet learned how to apply any type of selection criteria to our data retrieval efforts.
For example, while we know how to select all customers, we don’t yet know how to select only
customers from the state of New York.

ptg18192217

18 Chapter 2 Basic Data Retrieval

As it happens, we won’t cover selection criteria until Chapter 6. What will we be doing until
then? In the next few chapters, we’ll build on what can be done with the columnlist component
of the SELECT statement. In the following chapter, we’ll move on to more variations on
column selection, allowing us to create complex calculations in a single column. We’ll also
talk about ways to rename columns to make them more descriptive. Chapters 4 and 5 will
then build on our ability to create even more complex and powerful columnlists, so when we
finally get to the topic of selection criteria in Chapter 6, we’ll have a full arsenal of techniques
available at our disposal.

ptg18192217

3
Calculated Fields

and Aliases

Keywords Introduced
AS

In the previous chapter, we talked about how to choose individual columns for inclusion in a
SELECT statement. We now want to introduce a way to perform calculations on the individual
data items retrieved from a database. This technique is referred to as calculated fields. Using this
approach, customer names can be formatted exactly as desired. Numeric calculations specific to
a business or organization can be formulated and presented. In short, SQL developers are often
required to customize the content of individual columns in order to successfully turn data into
more intelligent information. The inclusion of calculated fields is a useful device that helps to
accomplish that goal.

When selecting data from a table, you are not restricted to the columns that happen to be
in the table. The concept of calculated fields allows for a number of other possibilities. With
calculated fields, you can do the following:

• Display specific words or values

• Perform calculations on single or multiple columns

• Combine columns and specific words or values together

Let’s look at a few examples, all coming from this Sales table:

SalesID FirstName LastName QuantityPurchased PricePerItem

1 Andrew Li 4 2.50
2 Carol White 10 1.25
3 James Carpenter 5 4.00

ptg18192217

20 Chapter 3 Calculated Fields and Aliases

Literal Values
Our first example of a calculated field isn’t really a calculation at all. We’re going to select a
specific value as a column, even though the value has nothing to do with the data in the table.
This type of expression is called a literal value. Here’s an example:

SELECT
'First Name:',
FirstName
FROM Sales

This statement will return this data:

(no column name) FirstName

First Name: Andrew
First Name: Carol
First Name: James

In this statement, we are selecting two data items. The first is the literal value 'First Name: '.
Note that single quote marks are used to indicate that this is a literal with character data.
The second data item is the FirstName column.

Notice, first, that the literal value 'First Name:' is repeated on every row. Second, there is no
header information for the first column. When run in Microsoft SQL Server, the column header
displays “(no column name)”. The reason why there is no header is simply because this is
a calculated field. There is no column name that can be associated with this information.

Database Differences: MySQL and Oracle
Both MySQL and Oracle will return a value in the header row for literal values. In MySQL,
the header for the first column in the previous example will appear as:
First Name:

In Oracle, the header for the first column will appear as:
'FIRSTNAME:'

One question that might very well be asked is why the header row is important at all. If we’re
using the SELECT statement only to retrieve some data, then the header itself wouldn’t seem
to be significant. Only the data itself matters. However, if we’re using the SELECT statement
to obtain data for a report displayed to a user, either on paper or on a computer screen, then
the header might well be relevant. Column headers are normally displayed in a reporting
environment. When users look at a column of data in a report, they generally want to know
the meaning of the column, and look to the column header for that information. In the case of
a literal value, there really is no meaning to the column, so a header isn’t truly necessary. But
in other types of calculated fields, there may be a meaningful label that could be applied to the
column. Later in this chapter, we’ll discuss the concept of column aliases, which represent a
way of providing a header in this type of situation.

ptg18192217

21Arithmetic Calculations

One more point about literals. You might surmise from the previous example that all literals need
quotation marks, but that is not necessarily the case. For example, the following statement:

SELECT
5,
FirstName
FROM Sales

will return this data:

(no column name) FirstName

5 Andrew
5 Carol
5 James

The literal value 5 is a valid value, even if it’s completely meaningless. Because it doesn’t have
quote marks, the 5 is interpreted as a numeric value.

Arithmetic Calculations
Let’s move on to a more typical example of a calculated field. Arithmetic calculations allow us
to perform a calculation on one or more columns in a table. For example:

SELECT
SalesID,
QuantityPurchased,
PricePerItem,
QuantityPurchased * PricePerItem
FROM Sales

This statement will return this data:

SalesID QuantityPurchased PricePerItem (no column name)

1 4 2.50 10.00
2 10 1.25 12.50
3 5 4.00 20.00

As with literals, the fourth column has no header, due to the fact that it isn’t derived from a
single column. The first three columns of the above SELECT are nothing different from what’s
been seen previously. The fourth column is a calculated column with this arithmetic expression:

QuantityPurchased * PricePerItem

In this case, the asterisk symbol denotes multiplication. It doesn’t mean “all columns,” as was
seen in the previous chapter. In addition to the asterisk, several other arithmetic operators are
allowed in calculated fields. The most common are:

ptg18192217

22 Chapter 3 Calculated Fields and Aliases

Arithmetic Operator Meaning

+ addition
- subtraction
* multiplication
/ division

One commonly used arithmetic operator that isn’t available in Microsoft SQL Server or MySQL
is exponentiation. In order to utilize exponents in SQL, you must use the POWER function.
This will be demonstrated in the next chapter.

Database Differences: Oracle
Unlike SQL Server and MySQL, Oracle provides an arithmetic operator for exponentiation.
This is denoted by two asterisks (**).

Concatenating Fields
Concatenation is a fancy computer term that means to combine or join character data
together. Just as arithmetic operations can be performed on numeric data, character data can
be combined, or concatenated, together. The syntax for concatenation varies, depending on
the database you’re working with. Here’s an example from Microsoft SQL Server:

SELECT
SalesID,
FirstName,
LastName,
FirstName + ' ' + LastName
FROM Sales

The data retrieved is:

SalesID FirstName LastName (no column name)

1 Andrew Li Andrew Li
2 Carol White Carol White
3 James Carpenter James Carpenter

Again, the first three columns are nothing new. The fourth column is derived from this
expression in the SQL statement:

FirstName + ' ' + LastName

The plus sign denotes concatenation. Because the operation involves character rather than
numeric data, SQL is smart enough to know that the plus sign means concatenation and not
addition. In this case, the concatenation is composed of three terms: the FirstName column, a
literal space (' '), and the LastName column. The literal space is necessary so that William Smith
doesn’t display as WilliamSmith.

ptg18192217

23Column Aliases

Database Differences: MySQL and Oracle
MySQL doesn’t use a symbol, such as the plus (+) sign, to denote concatenation. Instead,
it requires you to use a function named CONCAT. We’ll cover functions in the next chapter,
but for now, here is a look at what the same statement looks like in MySQL:
SELECT
SalesID,
FirstName,
LastName,
CONCAT(FirstName, ' ', LastName)
FROM Sales;

In essence, the CONCAT specifies to combine the three mentioned terms within the
parentheses as a single expression.

Oracle uses two vertical bars (||) rather than a plus sign (+) to denote concatenation.
The equivalent statement in Oracle is:
SELECT
SalesID,
FirstName,
LastName,
FirstName || ' ' || LastName)
FROM Sales;

Column Aliases
In all the preceding examples in this chapter, calculated fields were displayed with a
nondescriptive (unlabeled) header. Microsoft SQL Server displays “(no column name)” when
it encounters a calculated field. We now want to address how a descriptive header can be
specified for these types of columns. In brief, the solution is to utilize a column alias. The term
alias means an alternate name. Here’s an example of how to specify a column alias for the
previous SELECT statement:

SELECT
SalesID,
FirstName,
LastName,
FirstName + ' ' + LastName AS 'Name'
FROM Sales

The keyword AS is used to indicate a column alias, which immediately follows the keyword.
Notice that the column alias is surrounded by single quotes. The output is:

SalesID FirstName LastName Name

1 Andrew Li Andrew Li
2 Carol White Carol White
3 James Carpenter James Carpenter

ptg18192217

24 Chapter 3 Calculated Fields and Aliases

The fourth column now has a header. In this example, we placed the column alias within
single quotes. These quotes are not strictly necessary, unless the column alias contains
embedded spaces. Additionally, the keyword AS isn’t necessary. However, we will persist
with using the AS keyword in this book to make clear that this is a column alias. Without
the single quotes or AS keyword, the previous SELECT statement would be written as follows,
with identical results:

SELECT
SalesID,
FirstName,
LastName,
FirstName + ' ' + LastName Name
FROM Sales

In addition to providing a header for a calculated field, column aliases are often useful when
a column in a table has a cryptic name that you’d like to change. For example, if a table has
a column with the name “Qty”, you could issue this statement to display the column as
“Quantity Purchased”:

SELECT
Qty AS 'Quantity Purchased'
FROM table

Database Differences: Oracle
Oracle uses double quotes to delineate column aliases. The previous statement would be
written as follows in Oracle:
SELECT
SalesID,
FirstName,
LastName,
FirstName || ' ' || LastName AS "Name"
FROM Sales;

Table Aliases
In addition to providing alternate names for columns, aliases can also be specified for tables,
using the same AS keyword. There are three general reasons for using table aliases. The first
reason relates to tables with obscure or complex names. For example, if a table is named
Sales123, you can use the following SELECT to give the table an alias of Sales.

SELECT,
LastName
FROM Sales123 AS Sales

ptg18192217

25Looking Ahead

As with column aliases, the AS keyword is optional. However, unlike column aliases, table
aliases are not enclosed within quotes. A second reason for using table aliases is to allow you
to use that alias name as a prefix for any selected column. For example, the above could also
be written as:

SELECT,
Sales.LastName
FROM Sales123 AS Sales

The word Sales has now been added as a prefix to the LastName column, using a period to
separate the prefix from the column name. In this situation, the use of the prefix was strictly
optional and somewhat redundant. Because there was only one table in this query, it wasn’t
necessary to include the table name as a prefix for the column. However, when data is selected
from multiple tables, the prefix is often helpful and will sometimes be required. When multiple
tables are involved, adding the table name as a prefix helps anyone viewing the query quickly
grasp which table each column is from. Furthermore, when a column is named the same in
multiple tables, then the use of a table alias is actually required. This usage of column aliases
will be illustrated in Chapter 11, “Inner Joins.”

A third reason for using table aliases has to do with the use of tables in subqueries. This will be
discussed in Chapter 14, “Subqueries.”

Database Differences: Oracle
Although the AS keyword can be used for column aliases, Oracle does not permit the AS
keyword to denote table aliases. The above SELECT would be written in Oracle as:
SELECT
Sales.LastName
FROM Sales123 Sales;

Looking Ahead
In this chapter, we discussed three general ways to create calculated fields in a SELECT
statement. First, literal values can be used to select specific words or values. Second arithmetic
calculations can be applied to one more columns in a single expression. Third, concatenation
can be used to combine columns and literal values together. We also discussed the related topic
of column aliases, which are often employed when using calculated fields. Finally, we offered a
preview of table aliases, a topic that will be covered in greater detail in later chapters.

In the next chapter, we’ll move on to the subject of functions, which provide more complex
and interesting ways to perform calculations. As mentioned before, we’re not quite at the point
where we can apply selection criteria to SQL statements. We’re still building on the basics
of what can be done with the columnlist in a SELECT. Your patience with this methodical
approach will reap rewards in Chapter 6, when we get to the topic of selection logic.

ptg18192217

This page intentionally left blank

ptg18192217

4
Using Functions

Keywords Introduced
LEFT • RIGHT • SUBSTRING • LTRIM • RTRIM • UPPER • LOWER • GETDATE •
DATEPART • DATEDIFF • ROUND • PI • POWER • ISNULL

Anyone familiar with Microsoft Excel is probably aware that functions provide a huge
amount of functionality for the typical spreadsheet user. Without the ability to use functions,
most of the data available in spreadsheets would be of limited value. The same is true in the
world of SQL. Familiarity with SQL functions will greatly enhance your ability to generate
dynamic results for anyone viewing data or reports generated from SQL.

This chapter covers a wide variety of some of the most commonly used functions in four
different categories: character functions, date/time functions, numeric functions, and
conversion functions. Additionally, we’ll talk about composite functions—a way of combining
multiple functions into a single expression.

What Is a Function?
Similar to the calculations covered in the previous chapter, functions provide another way to
manipulate data. As was seen, calculations can involve multiple fields, either with arithmetic
operators such as multiplication, or by concatenation. Similarly, functions can involve data
from multiple values, but the end result of a function is always a single value.

What is a function? A function is merely a rule for transforming any number of input values
into one output value. The rule is defined within the function and can’t be altered. However,
the user of a function is allowed to specify any desired value for the inputs to the function.
Some functions may allow some of the inputs to be optional. That means that the specification
of that particular input isn’t required. Functions can also be designed to have no inputs.
However, regardless of the type or number of input values, functions always return precisely
one output value when the function is invoked.

ptg18192217

28 Chapter 4 Using Functions

There are two types of functions: scalar and aggregate. The term scalar comes from mathematics
and refers to an operation that is done on a single number. In computer usage, it means that
the function is performed on data in a single row. For example, the LTRIM function removes
spaces from one specified value in one row of data.

In contrast, aggregate functions are meant to be performed on a larger set of data. For example,
the SUM function can be used to calculate the sum of all the values of a specified column.
Because aggregate functions apply to larger sets or groups of data, we will leave discussion
of this type of function to Chapter 9, “Summarizing Data.”

Every SQL database offers dozens of scalar functions. The actual functions vary widely between
databases, in terms of both their names and how they work. As a result, we will cover only a
few representative examples of some of the more useful functions.

The most common types of scalar functions can be classified under three categories: character,
date/time, and numeric. These are functions that allow you to manipulate character, date/time,
or numeric datatypes. In addition, we will talk about some useful conversion functions that can
be used to convert data from one datatype to another.

Character Functions
Character functions are those that enable you to manipulate character data. Just as character
datatypes are sometimes called string datatypes, character functions are sometimes called string
functions. We’ll cover these seven examples of character functions: LEFT, RIGHT, SUBSTRING,
LTRIM, RTRIM, UPPER, and LOWER.

In this chapter, rather than retrieving data from specific tables, we’ll simply use SELECT
statements with literal values in the columnlist. There will be no FROM clause to indicate a
table. Let’s start with an example for the LEFT function. When this SQL command is issued:

SELECT
LEFT('sunlight',3) AS 'The Answer'

this data is returned:

The Answer

sun

The inclusion of a column alias in this SQL statement allows the output to display “The
Answer” as a column header. Note that there is no FROM clause in the SELECT statement.
Instead of retrieving data from a table, we’re selecting data from a single literal value, namely
‘sunlight’. In many SQL implementations, including SQL Server and MySQL, a FROM clause
isn’t strictly necessary in a SELECT statement, although in practice one would seldom write
a SELECT statement like this. We’re using this format, without a FROM clause, only to more
easily illustrate how functions work.

ptg18192217

29Character Functions

Let’s now look at the format of this function in greater detail. The general format of the LEFT
function is:

LEFT(CharacterValue, NumberOfCharacters)

All functions have any number of arguments within the parentheses. For example, the LEFT
function has two arguments: CharacterValue and NumberOfCharacters. The term argument is a
commonly used mathematical term that describes a component of functions, and has nothing
to do with anything being disagreeable or unpleasant. The various arguments that are defined
for each function are what truly define the meaning of the function. In the case of the LEFT
function, the CharacterValue and NumberOfCharacters arguments are both needed to define what
will happen when the LEFT function is invoked.

The LEFT function has two arguments, and both are required. As mentioned, other functions
may have more or fewer arguments. Functions are even permitted to have no arguments. But
regardless of the number of arguments, even if zero, all functions have a set of parentheses
following the function name. The presence of the parentheses tells you that the expression is
a function and not something else.

The formula for the LEFT function says: Take the specified CharacterValue, look at the specified
NumberOfCharacters on the left, and bring back the result. In the previous example, it looks at
the CharacterValue ‘sunlight’ and brings back the left three characters. The result is “sun”.

The main point to remember is that for any function you want to use, you’ll need to look up
the function in the database’s reference guide and determine how many arguments are required
and what they mean.

The second character function we’ll cover is the RIGHT function. This is the same as the LEFT
function, except that characters are now specified for the right side of the input value. The
general format of the RIGHT function is:

RIGHT(CharacterValue, NumberOfCharacters)

As an example:

SELECT
RIGHT('sunlight',5) AS 'The Answer'

returns:

The Answer

light

In this case, the NumberOfCharacters argument needed to have a value of 5 in order to return
the value “light”. A value of 3 would have only returned “ght”.

ptg18192217

30 Chapter 4 Using Functions

One problem that often arises with the use of the RIGHT function is that character data often
contains spaces on the right-hand side. Let’s look at an example in which a table with only
one row of data contains a column named President, where the column is defined as being
20 characters long. The table looks like:

President

George Washington

If we issue this SELECT statement against the table:

SELECT
RIGHT(President,10) AS 'Last Name'
FROM table1

we get back this data:

Last Name

hington

We expected to get back “Washington” but only got “hington.” The problem is that the
entire column is 20 characters long. In this example, there are three spaces to the right of the
value “George Washington”. Therefore, when we ask for the rightmost 10 characters, SQL
will take the three spaces, plus another seven characters from the original expression. As will
soon be seen, the function RTRIM must be used to remove the ending spaces before using the
RIGHT function.

You might be wondering how to select data from the middle of an expression. This is
accomplished by using the SUBSTRING function. The general format of that function is:

SUBSTRING(CharacterValue, StartingPosition, NumberOfCharacters)

For example:

SELECT
SUBSTRING('thewhitegoat',4,5) AS 'The Answer'

returns this data:

The Answer

white

This function is saying to take five characters, starting with position 4. This results in the
display of the word “white”.

ptg18192217

31Character Functions

Database Differences: MySQL and Oracle
MySQL sometimes requires that there be no space between the function name and the left
parenthesis. It depends on the specific function used. For example, the previous statement in
MySQL must be written exactly as shown. Unlike in Microsoft SQL Server, you can’t type in an
extra space after SUBSTRING.

In Oracle, the equivalent of the SUBSTRING function is SUBSTR. One difference in the Oracle
version of SUBSTR is that the second argument (StartingPosition) can have a negative value.
A negative value for this argument means that you need to count that number of positions
backward from the right side of the column.

As mentioned, Oracle doesn’t permit you to write a SELECT statement without a FROM clause.
However, Oracle does provide a dummy table called DUAL for this type of situation. The Oracle
equivalent of the SELECT with a SUBSTRING function is:
SELECT
SUBSTR('thewhitegoat',4,5) AS "The Answer"
FROM DUAL;

Our next two character functions enable us to remove all spaces, either on the left or the right
side of an expression. The LTRIM function trims characters from the left side of a character
expression. For example:

SELECT
LTRIM(' the apple') AS 'The Answer'

returns this data:

The Answer

the apple

Note that LTRIM is smart enough not to eliminate spaces in the middle of a phrase. It only
removes the spaces to the very left of a character value.

Similar to LTRIM, the RTRIM function removes any spaces to the right of a character value.
An example of RTRIM will be given in the next section, on composite functions.

The final two character functions to be covered are UPPER and LOWER. These functions
convert any word or phrase to upper- or lowercase. The syntax is simple and straightforward.
Here’s an example that covers both functions:

SELECT
UPPER('Abraham Lincoln') AS 'Convert to Uppercase',
LOWER('ABRAHAM LINCOLN') AS 'Convert to Lowercase'

The output is:

Convert to Uppercase Convert to Lowercase

ABRAHAM LINCOLN abraham lincoln

ptg18192217

32 Chapter 4 Using Functions

Composite Functions
An important characteristic of functions, whether they are character, mathematical, or
date/time, is that two or more functions can be combined to create composite functions.
A composite function with two functions can be said to be a function of a function. Let’s go
back to the George Washington query to illustrate. Again, we’re working from this data:

President

George Washington

Remember that the President column is 20 characters long. In other words, there are three
spaces to the right of the value “George Washington”. In addition to illustrating composite
functions, this next example will also cover the RTRIM function mentioned in the previous
section. The statement:

SELECT
RIGHT(RTRIM (President),10) AS 'Last Name'
FROM table1

returns this data:

Last Name

Washington

Why does this now produce the correct value? Let’s examine how this composite function
works. There are two functions involved: RIGHT and RTRIM. When evaluating composite
functions, you always start from the inside and work your way out. In this example, the
innermost function is:

RTRIM(President)

This function takes the value in the President column and eliminates all spaces on the right. After
this is done, the RIGHT function is applied to the result to bring back the desired value. Because

RTRIM(President)

equals “George Washington”, we can say that:

SELECT
RIGHT(RTRIM (President), 10)

is the same as saying:

SELECT
RIGHT('George Washington', 10)

In other words, we can obtain the desired result by first applying the RTRIM function to the
input data and then adding the RIGHT function to the expression to produce the final results.

ptg18192217

33Date/Time Functions

Date/Time Functions
Date/Time functions allow for the manipulation of date and time values. The names of these
functions differ, depending on the database used. In Microsoft SQL Server, the functions we’ll
cover are called GETDATE, DATEPART, and DATEDIFF.

The simplest of the date/time functions is one that returns the current date and time.
In Microsoft SQL Server, the function is named GETDATE. This function has no arguments.
It merely returns the current date and time. For example:

SELECT GETDATE()

brings back an expression with the current date and time. Since the GETDATE function has no
arguments, there is nothing specified between the parentheses. Remember that a date/time field
is a special datatype that contains both a date and a time in a single field. An example of such
a value is:

2017-05-15 08:48:30

This value refers to the 15th of May 2017, at 48 minutes and 30 seconds past 8 am.

Database Differences: MySQL and Oracle
In MySQL, the equivalent of GETDATE is NOW. The above statement would be written as:
SELECT NOW()

The equivalent of GETDATE in Oracle is CURRENT_DATE. The statement is written as:
SELECT CURRENT_DATE

The next date/time function enables us to analyze any specified date and return a value to
represent such elements as the day or week of the date. Again, the name of this function
differs, depending on the database. In Microsoft SQL Server, this function is called DATEPART.
The general format is:

DATEPART(DatePart, DateValue)

The DateValue argument is any date. The DatePart argument can have many different values,
including year, quarter, month, dayofyear, day, week, weekday, hour, minute, and second.

The following chart shows how the DATEPART function evaluates the date '5/6/2017', with
different values for the DatePart argument:

DATEPART Function Expression Resulting Value

DATEPART(month, '5/6/2017') 5
DATEPART(day, '5/6/2017') 6
DATEPART(week, '5/6/2017') 18
DATEPART(weekday, '5/6/2017') 7

ptg18192217

34 Chapter 4 Using Functions

Looking at the values in the previous chart, you can see that the month of 5/6/2017 is 5 (May).
The day is 2 (Monday). The week is 18, because 5/6/2017 is in the 18th week of the year. The
weekday is 7 because 5/6/2017 falls on a Saturday, which is the seventh day of the week.

Database Differences: MySQL and Oracle
In MySQL, the equivalent of the DATEPART function is named DATE_FORMAT, and it utilizes
different values for the DateValue argument. For example, to return the day of the date
‘5/6/2017’, you would issue this SELECT in MySQL:
SELECT DATE_FORMAT('2017-05-06', '%d');

Oracle doesn’t have a function comparable to DATEPART.

The final date/time function we’ll cover, DATEDIFF, enables you to determine quantities such
as the number of days between any two dates. The general format is:

DATEDIFF (DatePart, StartDate, EndDate)

Valid values for the DatePart argument for this function include year, quarter, month,
dayofyear, day, month, hour, minute, and second. Here’s a chart that shows how the
DATEDIFF function evaluates the difference between the dates 7/8/2017 and 8/14/2017,
with different values for the DatePart argument:

DATEPART Function Expression Resulting Value

DATEDIFF(day, '7/8/2017', '8/14/2017’) 37
DATEDIFF(week, '7/8/2017', '8/14/2017’) 6
DATEDIFF(month, '7/8/2017', '8/14/2017’) 1
DATEDIFF(year, '7/8/2017', '8/14/2017’) 0

The above chart indicates that there are 37 days, or 6 weeks, or 1 month, or 0 years between
the two dates.

Database Differences: MySQL and Oracle
In MySQL, the DATEDIFF function only allows you to calculate the number of days between the
two dates, and the end date must be listed first to return a positive value. The general format is:
DATEDIFF(EndDate, StartDate)

Oracle doesn’t have a function comparable to DATEDIFF.

ptg18192217

35Numeric Functions

Numeric Functions
Numeric functions allow for manipulation of numeric values. Numeric functions are sometimes
called mathematical functions. The functions we’ll cover are ROUND, RAND, PI, and POWER.

The ROUND function allows you to round any numeric value. The general format is:

ROUND(NumericValue, DecimalPlaces)

The NumericValue argument can be any positive or negative number, with or without decimal
places, such as 712.863 or –42. The DecimalPlaces argument is trickier. It can contain a positive
or negative integer, or zero. If DecimalPlaces is a positive integer, it means to round to that
many decimal places. If DecimalPlaces is a negative integer, it means to round to that number
of positions to the left of the decimal place. The following chart shows how the number
712.863 is rounded, with different values for the DecimalPlaces argument.

ROUND Function Expression Resulting Value

ROUND(712.863, 3) 712.863
ROUND(712.863, 2) 712.860
ROUND(712.863, 1) 712.900
ROUND(712.863, 0) 713.000
ROUND(712.863, –1) 710.000
ROUND(712.863, –2) 700.000

The PI function merely returns the value of the mathematical number pi. As you may
remember from high school geometry, the number pi is an irrational number approximated
by the value 3.14. This function is seldom used, but nicely illustrates the point that numeric
functions need not have any arguments. For example, the statement:

SELECT PI()

returns the value 3.14159265358979. To take this example a little further, let’s say that we
want the value of pi rounded to two decimal places. This can be accomplished by creating a
composite function with the PI and ROUND functions. The PI function is used to get the initial
value, and the ROUND function is added to round it to two decimal places. The following
statement returns a value of 3.14:

SELECT ROUND(PI(),2)

Database Differences: Oracle
Unlike Microsoft SQL Server and MySQL, Oracle doesn’t have a PI function.

The final numeric function we’ll cover, which is much more commonly used than PI, is
POWER. The POWER function is used to specify a numeric value that includes exponents.
The general format of the function is:

POWER(NumericValue, Exponent)

ptg18192217

36 Chapter 4 Using Functions

Let’s start with an example that illustrates how to display the number 5 raised to the second
power. This is commonly referred to as “5 squared.” The SELECT statement:

SELECT POWER(5,2) AS '5 Squared'

returns this data:

5 Squared

25

In this example, 5 is the numeric value to be evaluated, and 2 is the value of the exponent.
Remembering that the square root of a number can be expressed as an exponent with a decimal
value less than 1, we can calculate the square root of 25 as follows. The statement:

SELECT POWER(25,.5) AS 'Square Root of 25'

returns this data:

Square Root of 25

5

In algebraic terms, the calculation takes 25 to the 1/2 (or .5) power. This is the same as taking
the square root of 25.

Conversion Functions
All of the aforementioned functions pertain to specific ways to manipulate character, date/time,
or numeric datatypes. We now want to address the need to convert data from one datatype to
another, or to convert NULL values to something meaningful. The remainder of this chapter
will cover two special functions that can be used in these situations.

The CAST function converts data from one datatype to another. The general format of the
function is:

CAST(Expression AS DataType)

The format of this function is slightly different from other functions previously seen, as it uses
the word AS to separate the two arguments, rather than a comma. Looking at the usage of the
function, it turns out that the CAST function is unnecessary in most situations. Let’s take the
situation where we want to execute this statement, where the Quantity column is defined as a
character datatype:

SELECT
2 * Quantity
FROM table

ptg18192217

37Conversion Functions

Your first impression might be that the statement would fail, due to the fact that Quantity is not
defined as a numeric column. However, most SQL databases are smart enough to automatically
convert the Quantity column to a numeric value so that it can be multiplied by 2.

Here’s an example where the CAST function becomes necessary. Let’s say we have dates stored
in a column with a character datatype. We’d like to convert those dates to a true date/time
column. This statement illustrates how the CAST function can handle that conversion:

SELECT
'2017-04-11' AS 'Original Date',
CAST('2017-04-11' AS DATETIME) AS 'Converted Date'

The output is:

Original Date Converted Date

2017-04-11 2017-04-11 00:00:00

The Original Date column looks like a date, but it is really just character data. In contrast,
the Converted Date column is a true date/time column, as evidenced by the time value
now shown.

A second useful conversion function is one that converts NULL values to a meaningful value.
In Microsoft SQL Server, the function is called ISNULL. As mentioned in Chapter 1, “Relational
Databases and SQL,” NULL values are those for which there is an absence of data. A NULL
value is not the same as a space or zero. Let’s say we have this table of products:

ProductID Description Weight

1 Printer A NULL
2 Printer B 0
3 Monitor C 2
4 Laptop D 4

Notice that Printer A has a value of NULL in the Weight column. This indicates that a weight
for this printer has not yet been provided. Let’s say we want to produce a list of all products.
When this SELECT is issued:

SELECT
Description,
Weight
FROM Products

ptg18192217

38 Chapter 4 Using Functions

It will show:

Description Weight

Printer A NULL
Printer B 0
Monitor C 2
Laptop D 4

There’s nothing inaccurate about this display. However, users may prefer to see something such
as “Unknown” rather than NULL for missing values. Here’s the solution:

SELECT
Description,
ISNULL(CAST(Weight AS VARCHAR),'Unknown') AS Weight
FROM Products

The following data is displayed:

Description Weight

Printer A Unknown
Printer B 0
Monitor C 2
Laptop D 4

Notice that the solution requires the use of both the ISNULL and CAST functions. The ISNULL
function handles the display of the weight as “Unknown” when NULL values are encountered.
Assuming the Weight column is defined as an integer, the CAST function is needed to convert
the weight to a Varchar datatype, so both integer and character values can be displayed in a
single column.

Database Differences: MySQL and Oracle
The ISNULL function is called IFNULL in MySQL. Furthermore, MySQL doesn’t require the use
of the CAST function in this example. The equivalent of the above statement in MySQL is:
SELECT
Description,
IFNULL(Weight,'Unknown') AS Weight
FROM Products;

The ISNULL function is called NVL (Null Value) in Oracle. The equivalent Oracle statement is:
SELECT
Description,
NVL(CAST(Weight AS CHAR),'Unknown') AS Weight
FROM Products;

Additionally, unlike Microsoft SQL Server and MySQL, Oracle displays a dash rather than the
word NULL when it encounters NULL values.

ptg18192217

39Looking Ahead

Looking Ahead
This chapter described a wide variety of functions. Functions are basically predefined rules for
transforming a set of values into another value. Just as spreadsheets provide built-in functions
for manipulating data, SQL provides similar capabilities. In addition to covering basic character,
date/time, numeric, and conversion functions, we also explained how to create composite
functions from two or more of these functions.

Because there are simply so many available functions with widely varying possibilities, it’s
impossible to discuss every nuance of every available function. The thing to remember is that
functions can be easily looked up in a database’s help system or reference guide when they
need to be used. Online reference material will provide details on exactly how each function
works and the proper syntax.

In our next chapter, we’ll take a break from columnlist issues and talk about something a
little more interesting: how to sort data. Sorts can serve lots of useful purposes and satisfy the
basic desire of users to view data in some type of order. With the sort, we will begin to think
of the entire way in which information is presented, rather than with just bits and pieces of
individual data items.

ptg18192217

This page intentionally left blank

ptg18192217

5
Sorting Data

Keywords Introduced
ORDER BY • ASC • DESC

The ability to present data in a sorted order is often essential to the task at hand. For example,
if an analyst is shown a large list of customers in a random order, they’d probably find it
difficult to locate one particular customer. However, if the same list is sorted alphabetically,
the desired customer can quickly be located.

The idea of sorting data applies to many situations, even when the data isn’t alphabetic in
nature. For example, orders can be sorted by order date, allowing one to rapidly find an order
taken at a particular date and time. Alternatively, orders can be sorted by the order amount,
allowing orders to be viewed from the smallest to largest. No matter what particular form a
sort takes, it can add a useful way of organizing the data being presented to an end user.

Sorting in Ascending Order
Up until now, data has not been returned in any particular order. When a SELECT is issued,
you never know which row will come first. If the query is executed from within a software
program, and no one ever sees the data at that point in time, then it really doesn’t matter. But
if the data is to be immediately displayed to a user, then the order of rows is often significant.
A sort can be easily added to a SELECT statement by using an ORDER BY clause.

Here’s the general format for a SELECT statement with an ORDER BY clause:

SELECT columnlist
FROM tablelist
ORDER BY columnlist

The ORDER BY clause is always placed after the FROM clause, which in turn always comes
after the SELECT keyword. The italicized columnlist for the SELECT and ORDER BY keywords
indicates that any number of columns can be listed. The columns in columnlist can be
individual columns or more complex expressions. Also, the columns specified after the SELECT
and ORDER BY keywords can be entirely different columns. The italicized tablelist indicates that

ptg18192217

42 Chapter 5 Sorting Data

any number of tables can be listed in the FROM clause. The syntax for listing multiple tables
will be introduced in Chapter 11, “Inner Joins,” and Chapter 12, “Outer Joins.”

For the following few examples on sorting, we’ll work from data in this Salespeople table:

SalespersonID FirstName LastName

1 Gregory Brown
2 Carla Brown
3 Natalie Lopez
4 Connie King

To sort data in an alphabetic order, with A coming before Z, we simply need to add an
ORDER BY clause to the SELECT statement. For example:

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY LastName

brings back this data:

FirstName LastName

Gregory Brown
Carla Brown
Natalie Lopez
Connie King

Because there are two Browns, Carla and Gregory, there’s no way to predict which one will be
listed first. This is because we are sorting only on LastName, and there are multiple rows with
that same last name.

Similarly, if we issue this SELECT:

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY FirstName

then this data is retrieved:

FirstName LastName

Carla Brown
Connie King
Gregory Brown
Natalie Lopez

ptg18192217

43Sorting by Multiple Columns

The order is now completely different, because the sort is by first name rather than last name.

SQL provides a special keyword named ASC, which stands for ascending. This keyword is
completely optional and largely unnecessary, because all sorts are assumed to be in ascending
order by default. The following SELECT, which uses the ASC keyword, returns the same data
shown previously.

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY FirstName ASC

In essence, the keyword ASC can be used to emphasize the fact that the sort is in ascending,
rather than descending, order.

Sorting in Descending Order
The DESC keyword sorts in an order opposite to ASC. Instead of ascending, the order in such
a sort is descending. For example:

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY FirstName DESC

retrieves:

FirstName LastName

Natalie Lopez
Gregory Brown
Connie King
Carla Brown

The first names are now in a Z-to-A order.

Sorting by Multiple Columns
We now return to the problem of what to do with the Browns. To sort by last name when there
is more than one person with the same last name, we must add a secondary sort by first name,
as follows:

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY LastName, FirstName

ptg18192217

44 Chapter 5 Sorting Data

This brings back:

FirstName LastName

Carla Brown
Gregory Brown
Connie King
Natalie Lopez

Because a second sort column is now specified, we can now be certain that Carla Brown will
appear before Gregory Brown. Note that LastName must be listed before FirstName in the
ORDER BY clause. The order of the columns is significant. The first column listed always has
the primary sort value. Any additional columns listed become secondary, tertiary, and so on.

Sorting by a Calculated Field
We’ll now apply our knowledge of calculated fields and aliases from Chapter 3 to illustrate
some further possibilities for sorts. This statement:

SELECT
LastName + ', ' + FirstName AS 'Name'
FROM Salespeople
ORDER BY Name

returns this data:

Name

Brown, Carla
Brown, Gregory
King, Connie
Lopez, Natalie

As seen, we utilized concatenation to create a calculated field with an alias of Name. We are able
to refer to that same column alias in the ORDER BY clause. This nicely illustrates another benefit
of using column aliases. Also, note the design of the calculated field itself. We inserted a column
and a space between the last name and first name columns to separate them, and to show the
name in a commonly used format. Conveniently, this format also works well for sorting. The
ability to display names in this format, with a comma separating the last and first name, is a
handy trick to keep in mind. Users very often want to see names arranged in this manner.

ptg18192217

45Sort Sequences

It’s also possible to put a calculated field in the ORDER BY clause without also using it as a
column alias. Similar to the above, we could also specify:

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY LastName + FirstName

This would display:

FirstName LastName

Carla Brown
Gregory Brown
Connie King
Natalie Lopez

The data is sorted the same as in the prior example. The only difference is that we’re now
specifying a calculated field in the ORDER BY clause without making use of column aliases.
This gives the same result as if LastName and FirstName were specified as the primary and
secondary sort columns.

Sort Sequences
In the previous examples, all of the data is character data, consisting of letters from A to Z.
There are no numbers or special characters. Additionally, there has been no consideration of
upper- and lowercase letters.

Every database lets users specify or customize collation settings that provide details on how
data is sorted. The settings vary among databases, but three facts are generally true. First, when
data is sorted in an ascending order, any data with NULL values appear first. As previously
discussed, NULL values are those where there is an absence of data. After any NULLs, numbers
will appear before characters. For data sorted in descending order, character data will display
first, then numbers, and then NULLs.

Second, for character data, there is usually no differentiation between upper- and lowercase. An
e is the treated the same as an E. Third, for character data, the individual characters that make
up the value are evaluated from left to right. If we’re talking about letters, then AB will come
before AC. Let’s look at an example, taken from this table, which we’ll refer to as TableForSort:

TableID CharacterData NumericData

1 23 23
2 5 5
3 Dog NULL
4 NULL –6

ptg18192217

46 Chapter 5 Sorting Data

In this table, the CharacterData column is defined as a character column, for example as
VARCHAR (a variable length datatype). Similarly, the NumericData column is defined as a
numeric column, such as INT (an integer datatype). Values with no data are displayed as NULL.
When this SELECT is issued against the TableForSort table:

SELECT
NumericData
FROM TableForSort
ORDER BY NumericData

it will display:

NumericData

NULL
–6
5
23

Notice that NULLs come first, then the numbers in numeric sequence. If we want the NULL
values to assume a default value of 0, we can use the ISNULL function discussed in the previous
chapter and issue this SELECT statement:

SELECT
ISNULL(NumericData,0) AS 'NumericData'
FROM TableForSort
ORDER BY ISNULL(NumericData,0)

The result is now:

NumericData

–6
0
5
23

The ISNULL function converted the NULL value to a 0, which results in a different sort order.

The decision as to whether to display NULL values as NULL or as 0 depends on the specific
circumstance. If the user thinks of NULL values as meaning 0, then they should be displayed as
0. However, if the user sees NULL values as an absence of data, then displaying the word NULL
is appropriate.

ptg18192217

47Looking Ahead

Turning to a different ORDER BY clause against the same table, if we issue this SELECT:

SELECT
CharacterData
FROM TableForSort
ORDER BY CharacterData

it will display:

CharacterData

NULL
23
5
Dog

As expected, NULLs come first, then values with numeric digits, and then values with
alphabetic characters. Notice that 23 comes before 5. This is because the 23 and 5 values are
being evaluated as characters, not as numbers. Because character data is evaluated from left to
right and 2 is lower than 5, 23 is displayed first.

Looking Ahead
In this chapter, we talked about the basic possibilities for sorting data in a specific order. We
illustrated how to sort by more than one column. We also discussed the use of calculated fields
in sorts. Finally, we covered some of the quirks of sorting, particularly when it comes to data
with NULL values and with numbers in character columns.

At the beginning of the chapter, we mentioned some of the general uses for sorts. Primary
among these is the ability to simply place data in an easily understood order, thus allowing
users to quickly locate a desired piece of information. People generally like to see data in some
kind of order, and sorts accomplish that goal. Another interesting use of sorts will be covered in
Chapter 6, “Selection Criteria.” In that chapter, we’ll introduce the keyword TOP and another
way to use sorts in conjunction with that keyword. This technique, commonly known as a
Top N sort, allows us to do such things as display customers with the five highest orders for
a given time period.

In our next chapter, we’ll move beyond our analysis of what can be done with columnlists and
discuss data selection. The ability to specify selection criteria in SELECT statements is critical to
most normal queries. In the real world, it would be very unusual to issue a SELECT statement
without some sort of selection criteria. The topics discussed in the next chapter address this
important topic.

ptg18192217

This page intentionally left blank

ptg18192217

6
Selection Criteria

Keywords Introduced
WHERE • TOP • LIKE

Up until this point, the SELECT statements we’ve seen have always brought back every row
in the table. This would rarely be the case in real-world situations. One is normally interested
only in retrieving data that meets certain criteria. For example, if you’re selecting orders, you
probably only want to see orders that meet certain conditions. When looking at products, you
ordinarily only want to view certain types of products. Rarely does someone want to simply see
everything. Your interest in data is typically directed toward a small subset of that data in order
to analyze or view one particular aspect.

Applying Selection Criteria
Selection criteria in SQL begins with the WHERE clause. The WHERE keyword accomplishes the
task of selecting a subset of rows. This is the general format of the SELECT statement, including
the WHERE clause and other clauses previously discussed:

SELECT columnlist
FROM tablelist
WHERE condition
ORDER BY columnlist

As can be seen, the WHERE clause must always come between the FROM and ORDER BY
clauses. In fact, if any clause is used, it must appear in the order shown above.

Let’s look at an example, taken from data in this Sales table:

SalesID FirstName LastName QuantityPurchased PricePerItem

1 Andrew Li 4 2.50
2 Carol White 10 1.25
3 James Carpenter 5 4.00

ptg18192217

50 Chapter 6 Selection Criteria

We’ll start with a statement with a simple WHERE clause:

SELECT
FirstName,
LastName,
QuantityPurchased
FROM Sales
WHERE LastName = 'Carpenter'

The output is:

FirstName LastName QuantityPurchased

James Carpenter 5

Because the WHERE clause stipulates to select only rows with a LastName equal to ‘Carpenter’,
only one of the three rows in the table is returned. Notice that the desired value of the LastName
column was enclosed in quotes, due to the fact that LastName is a character column. For numeric
fields, no quotes are necessary. For example, the following SELECT is equally valid and returns
the same data:

SELECT
FirstName,
LastName,
QuantityPurchased
FROM Sales
WHERE QuantityPurchased = 5

WHERE Clause Operators
In the previous statements, an equals sign (=) is used as the operator in the WHERE clause.
The equals sign indicates a test for equality. The general format shown above requires that a
condition follows the WHERE clause. This condition consists of an operator with expressions
on either side.

The following is a list of the basic operators that can be used in the WHERE clause:

WHERE Operator Meaning

= equals
<> does not equal
> is greater than
< is less than
>= is greater than or equal to
<= is less than or equal to

More advanced operators will be covered in the next chapter.

ptg18192217

51Limiting Rows

The meaning of the equals (=) and does not equal (<>) operators should be obvious. Here’s an
example of a WHERE clause with an “is greater than” operator, taken from the same Sales table:

SELECT
FirstName,
LastName,
QuantityPurchased
FROM Sales
WHERE QuantityPurchased > 6

The result is:

FirstName LastName QuantityPurchased

Carol White 10

In this example, only one row meets the condition that the QuantityPurchased column be
greater than 6. Although not as commonly used, it is also possible to use the “is greater than”
operator with a text column. This example:

SELECT
FirstName,
LastName
FROM Sales
WHERE LastName > 'K'

returns:

FirstName LastName

Andrew Li
Carol White

Because the test is for last names greater than K, it brings back only Li and White, but not
Carpenter. When applied to text fields, the greater than and less than operators indicate
selection by the alphabetic order of the values. In this case, Li and White are returned, since L
and W come after K in the alphabet.

Limiting Rows
We may sometimes want to select a small subset of the rows in a table, but don’t care which
rows are returned. Let’s say we have a table with 50,000 rows and want to see just a few rows of
data to see what it looks like. It wouldn’t make sense to use the WHERE clause for this purpose,
since we don’t care which particular rows are returned.

ptg18192217

52 Chapter 6 Selection Criteria

For this situation, the solution is to use a special keyword to specify a limit as to how many
rows are returned. This is another instance where syntax differs among databases. In Microsoft
SQL Server, the keyword that accomplishes this limit is TOP. The general format is:

SELECT
TOP number columnlist
FROM tablelist

Database Differences: MySQL and Oracle
MySQL uses the keyword LIMIT rather than TOP. The general format is:
SELECT columnlist
FROM tablelist
LIMIT number

Oracle uses the keyword ROWNUM rather than TOP. The ROWNUM keyword must be specified
in a WHERE clause, as follows:
SELECT columnlist
FROM tablelist
WHERE ROWNUM <= number

Let’s say that we want to see the first 10 rows from a table. The SELECT to accomplish this
looks like:

SELECT
TOP 10 *
FROM table

This statement returns all columns in the first 10 rows from the table. Like any SELECT
statement without an ORDER BY clause, there’s no way to predict which 10 rows will be
returned. It depends on how the data is physically stored in the table.

Similarly, we can list specific columns to return:

SELECT
TOP 10
column1,
column2
FROM table

In essence, the TOP keyword accomplishes something similar to the WHERE clause, as it
returns a small subset of rows in the specified table. However, keep in mind that rows returned
using the TOP keyword are not a true random sample, in a statistical sense. They’re only the
first rows that qualify, based on how the data is physically stored in the database.

ptg18192217

53Limiting Rows with a Sort

Limiting Rows with a Sort
Another use of the TOP keyword is to use it in combination with the ORDER BY clause to
obtain a designated number of rows with the highest values, based on specified criteria. This
type of data selection is commonly referred to as a Top N selection. Here’s an example, taken
from this Books table:

BookID Title Author CurrentMonthSales

1 Pride and Prejudice Austen 15
2 Animal Farm Orwell 7
3 Merchant of Venice Shakespeare 5
4 Romeo and Juliet Shakespeare 8
5 Oliver Twist Dickens 3
6 Candide Voltaire 9
7 The Scarlet Letter Hawthorne 12
8 Hamlet Shakespeare 2

Let’s say we want to see the three books that sold the most in the current month. The SELECT
that accomplishes this is:

SELECT
TOP 3
Title AS 'Book Title',
CurrentMonthSales AS 'Quantity Sold'
FROM Books
ORDER BY CurrentMonthSales DESC

The output is:

Book Title Quantity Sold

Pride and Prejudice 15
The Scarlet Letter 12
Candide 9

Let’s examine this statement in some detail. The TOP 3 in the second line indicates that only
three rows of data are to be returned. The main question to ask is how it determines which
three rows to display. The answer is found in the ORDER BY clause. If there were no ORDER BY
clause, then the SELECT would simply bring back any three rows of data. However, this is not
what we want. We’re looking for the three rows with the highest sales. To accomplish this, we
need to sort the rows by the CurrentMonthSales column in descending order. Why descending?
When data is sorted in descending order, the highest numbers appear first. If we had sorted in
an ascending order, we would get the books with the least number of sales, not the most.

ptg18192217

54 Chapter 6 Selection Criteria

Let’s now add one more twist to this scenario. Let’s say we only want to see which book by
Shakespeare has sold the most. In order to accomplish this, we need to add a WHERE clause,
as follows:

SELECT
TOP 1
Title AS 'Book Title',
CurrentMonthSales AS 'Quantity Sold'
FROM Books
WHERE Author = 'Shakespeare'
ORDER BY CurrentMonthSales DESC

This brings back this data:

Book Title Quantity Sold

Romeo and Juliet 8

The WHERE clause adds the qualification to look only at books by Shakespeare. We also revised
the TOP keyword to specify TOP 1, indicating that we want to see only one row of data.

Pattern Matching
We now want to turn to a situation in which the data to be retrieved is not precisely defined.
We often want to view data based on inexact matches with words or phrases. For example, you
might be interested in finding companies whose name contains the word “bank.” The selection
of data via inexact matches within phrases is often referred to as pattern matching. In SQL, the
LIKE operator is used in the WHERE clause to enable us to find matches against part of a column
value. The LIKE operator requires the use of special wildcard characters to specify exactly how the
match should work. Let’s start with an example from the following Movies table.

MovieID MovieTitle Rating

1 Love Actually R
2 North by Northwest Not Rated
3 Love and Death PG
4 The Truman Show PG
5 Everyone Says I Love You R
6 Down with Love PG-13
7 Finding Nemo G

Our first example with a LIKE operator is:

SELECT
MovieTitle AS 'Movie'
FROM Movies
WHERE MovieTitle LIKE '%LOVE%'

ptg18192217

55Pattern Matching

In this example, the percent (%) sign is used as a wildcard. The percent (%) wildcard means any
characters. Any characters includes the possibility of there being no characters. The percent (%)
before LOVE means that we will accept a phrase with any (or no) characters before LOVE.
Similarly, the percent (%) after LOVE means that we’ll accept a phrase with any (or no)
characters after LOVE. In other words, we’re looking for any movie title that contains the
word LOVE. Here is the data returned from the SELECT:

Movie

Love Actually
Love and Death
Everyone Says I Love You
Down with Love

Notice that LOVE appears as the first word, the last word, and sometimes in the middle of the
movie title.

Database Differences: Oracle
Unlike Microsoft SQL Server and MySQL, Oracle is case sensitive when determining matches
for literal values. In Oracle, LOVE is not the same as Love. An equivalent statement in Oracle
is:
SELECT
MovieTitle AS Movie
FROM Movies
WHERE MovieTitle LIKE '%LOVE%';

This would return no data, because no movie title contains the word LOVE in all uppercase. One
solution in Oracle is to use the UPPER function to convert your data to uppercase, as follows:
SELECT
MovieTitle AS Movie
FROM Movies
WHERE UPPER(MovieTitle) LIKE '%LOVE%';

Let’s now attempt to find only movies that begin with LOVE. If we issue:

SELECT
MovieTitle AS 'Movie'
FROM Movies
WHERE MovieTitle LIKE 'LOVE%'

we will retrieve only this data:

Movie

Love Actually
Love and Death

ptg18192217

56 Chapter 6 Selection Criteria

Because we’re now specifying the percent (%) wildcard only after the word LOVE, we get back
only movies that begin with LOVE. Similarly, if we issue:

SELECT
MovieTitle AS 'Movie'
FROM Movies
WHERE MovieTitle LIKE '%LOVE'

we get only this data:

Movie

Down with Love

This is because we have now specified that the phrase must end with the word LOVE.

One might ask how to arrange the wildcards to see only movies that contain the word LOVE
in the middle of the title, without seeing movies where LOVE is at the beginning or end. The
solution is to specify:

SELECT
MovieTitle AS 'Movie'
FROM Movies
WHERE MovieTitle LIKE '% LOVE %'

Notice that a space has been inserted between the word LOVE and the percent (%) wildcards
on either side. This ensures that there is at least one space on both sides of the word. The data
brought back from this statement is:

Movie

Everyone Says I Love You

Wildcards
The percent (%) sign is the most common wildcard used with the LIKE operator, but there are
a few other possibilities. These include the underscore character (_), a characterlist enclosed
in square brackets, and a caret symbol (^) plus a characterlist enclosed in square brackets. The
following table lists these wildcards and their meanings:

Wildcard Meaning

% any characters (can be zero characters)
_ exactly one character (can be any character)
[characterlist] exactly one character in the characterlist
[^characterlist] exactly one character not in the characterlist

ptg18192217

57Wildcards

We’ll use the following Actors table to illustrate statements for these wildcards.

ActorID FirstName LastName

1 Cary Grant
2 Mary Steenburgen
3 Jon Voight
4 Dustin Hoffman
5 John Wayne
6 Gary Cooper

Here’s an illustration of how the underscore (_) wildcard character can be used:

SELECT
FirstName,
LastName
FROM Actors
WHERE FirstName LIKE '_ARY'

The output of this SELECT is:

FirstName LastName

Cary Grant
Mary Steenburgen
Gary Cooper

This statement retrieves these three actors because all have a first name consisting of exactly
one character followed by the phrase ARY.

Likewise, if we issue this statement:

SELECT
FirstName,
LastName
FROM Actors
WHERE FirstName LIKE 'J_N'

it produces:

FirstName LastName

Jon Voight

The actor John Wayne is not selected since John doesn’t fit the J_N pattern. An underscore
stands for only one character.

ptg18192217

58 Chapter 6 Selection Criteria

The final wildcards we’ll discuss, [characterlist] and [^characterlist], enable you to specify
multiple wildcard values in a single position.

Database Differences: MySQL and Oracle
The [characterlist] and [^characterlist] wildcards are not available in MySQL or Oracle.

The following illustrates the [characterlist] wildcard:

SELECT
FirstName,
LastName
FROM Actors
WHERE FirstName LIKE '[CM]ARY'

This retrieves any rows where FirstName begins with a C or M and ends with ARY. The result is:

FirstName LastName

Cary Grant
Mary Steenburgen

The following illustrates the [^characterlist] wildcard:

SELECT
FirstName,
LastName
FROM Actors
WHERE FirstName LIKE '[^CM]ARY'

This selects any rows where FirstName does not begin with a C or M and ends with ARY.
The result is:

FirstName LastName

Gary Cooper

Looking Ahead
This chapter introduced the topic of how to apply selection criteria to queries. A number of
basic operators, such as equals and greater than, were introduced. The ability to specify these
types of basic selection criteria goes a long way toward making the SELECT statement truly
useful. We also covered the related topic of limiting the number of rows returned in a query.
The ability to limit rows in combination with an ORDER BY clause allows for a useful Top N
type of data selection.

ptg18192217

59Looking Ahead

We concluded the chapter with a study of matching words or phrases via a specified pattern.
Matching by patterns is a significant and widely used function of SQL. Any time you enter a
word in a search box and attempt to retrieve all entities containing that word, you are utilizing
pattern matching.

In our next chapter, “Boolean Logic,” we’ll greatly enhance our selection criteria capabilities
by introducing a number of new keywords that add sophisticated logic to the WHERE clause.
At present, we can do such things as select all customers from the state of New York. In the
real world, however, much more is typically required. Boolean logic will allow us to formulate
a query that will select customers who are in New York or California but not in Los Angeles
or Albuquerque.

ptg18192217

This page intentionally left blank

ptg18192217

7
Boolean Logic

Keywords Introduced
AND • OR • NOT • BETWEEN • IN • IS NULL

We introduced the concept of selection criteria in the previous chapter, but only in its simplest
form. We’ll now expand on that concept to greatly enhance our ability to specify the rows
returned from a SELECT. This is where the pure logic of SQL comes into play. In this chapter,
we’ll introduce a number of operators that will allow you to create complex logical expressions.

Given these new capabilities, if a user comes to you and requests a list of all female customers
who live in zip codes 60601 through 62999 but excluding anyone under the age of 30 or who
doesn’t have an email address, that will be something you can provide.

Complex Logical Conditions
The WHERE clause introduced in the previous chapter used only simple selection criteria.
We saw clauses such as:

WHERE QuantityPurchased = 5

The condition expressed in this WHERE clause is quite basic. It specifies merely to return all
rows where the QuantityPurchased column has a value of 5. In the real world, the selection of
data is often far from this straightforward. Accordingly, let’s now turn our attention to methods
of specifying some more complex logical conditions in selection criteria.

The ability to devise complex logical conditions is sometimes called Boolean logic. This term,
taken from mathematics, refers to the ability to formulate complex conditions that are evaluated
as either true or false. In the aforementioned example, the condition QuantityPurchased = 5 is
evaluated as either true or false for each row in the table. Obviously, we want to see only rows
where the condition is evaluated as true.

ptg18192217

62 Chapter 7 Boolean Logic

The principle keywords used to create complex Boolean logic are AND, OR, and NOT. These
three operators are used to provide additional functionality to the WHERE clause. In proper
combination, the AND, OR, and NOT operators, along with parentheses, can specify just about
any logical expression that can be imagined.

The AND Operator
The following examples will all be taken from this Purchases table:

PurchaseID CustomerName State QuantityPurchased PricePerItem

1 Andrew Li IL 4 2.50
2 Carol White CA 10 1.25
3 James Carpenter NY 5 4.00

Here’s an example of a WHERE clause that uses the AND operator:

SELECT
CustomerName,
QuantityPurchased
FROM Purchases
WHERE QuantityPurchased > 3
AND QuantityPurchased < 7

The AND clause means that all conditions must evaluate to true for the row to be selected. This
SELECT specifies that the only rows to be retrieved are those for which the QuantityPurchased
is both greater than 3 and less than 7. Therefore, only these two rows are returned:

CustomerName QuantityPurchased

Andrew Li 4
James Carpenter 5

Notice that the row for Carol White is not returned. Why? Carol purchased a quantity of 10,
which, in fact, does satisfy the first condition (QuantityPurchased > 3). However, the second
condition (QuantityPurchased < 7) is not satisfied and therefore is not true. When using the
AND operator, all conditions specified must be true for the row to be selected.

The OR Operator
Now let’s look at the OR operator. The AND operator meant that all conditions must evaluate
to true for the row to be selected. The OR operator means that the row will be selected if any of
the conditions are determined to be true.

ptg18192217

63Using Parentheses

Here’s an example, taken from the same table:

SELECT
CustomerName,
QuantityPurchased,
PricePerItem
FROM Purchases
WHERE QuantityPurchased > 8
OR PricePerItem > 3

This SELECT returns this data:

CustomerName QuantityPurchased PricePerItem

Carol White 10 1.25
James Carpenter 5 4.00

Why are the rows for Carol White and James Carpenter displayed, and not the row for Andrew
Li? The row for Carol White is selected because it meets the requirements of the first condition
(QuantityPurchased > 8). It doesn’t matter that the second condition (PricePerItem > 3) isn’t
true, because only one condition needs to be true for an OR condition.

Likewise, the row for James Carpenter is selected because the second condition (PricePerItem > 3)
is true for that row. The row for Andrew Li isn’t selected because it doesn’t satisfy either of the
two conditions.

Using Parentheses
Let’s say that we are interested only in orders from customers from either the state of Illinois or
the state of California. Additionally, we want to see orders only where the quantity purchased
is greater than 8. To attempt to satisfy this request, we might put together this SELECT
statement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE State = 'IL'
OR State = 'CA'
AND QuantityPurchased > 8

We would expect this statement to return only one row of data, for Carol White. Although we
have two rows for customers in Illinois or California (Li and White), only one of those (White)
has a quantity purchased greater than 8. However, when this statement is executed, we get:

CustomerName State QuantityPurchased

Andrew Li IL 4
Carol White CA 10

ptg18192217

64 Chapter 7 Boolean Logic

We see two rows instead of the expected one. What went wrong? The answer lies in how SQL
interprets the WHERE clause, which happens to contain both AND and OR operators. Like
other computer languages, SQL has a predetermined order of evaluation that specifies the order
in which various operators are interpreted. Unless told otherwise, SQL always processes the
AND operator before the OR operator. So, in the previous statement, it first looks at the AND,
and evaluates the condition:

State = 'CA'
AND QuantityPurchased > 8

The row that satisfies that condition is for Carol White. SQL then evaluates the OR operator,
which allows for rows where the State equals IL. That adds the row for Andrew Li. The result is
that SQL determines that both the Andrew Li and the Carol White rows meet the condition.

Obviously, this isn’t what was intended. This type of problem often comes up when AND and
OR operators are combined in a single WHERE clause. The way to resolve the ambiguity is to
use parentheses to specify the desired order of evaluation. Anything in parentheses is always
evaluated first.

Here’s how parentheses can be added to the previous SELECT to correct the situation:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE (State = 'IL'
OR State = 'CA')
AND QuantityPurchased > 8

When this is executed, we see this data:

CustomerName State QuantityPurchased

Carol White CA 10

The parentheses in the SELECT statement force the OR expression (State = 'IL' OR State = 'CA')
to be evaluated first. This produces the intended result.

ptg18192217

65Multiple Sets of Parentheses

Multiple Sets of Parentheses
Let’s say we want to select two different sets of rows from the Purchases table: first, rows for
customers in New York, and second, rows for customers in Illinois who have made a purchase
with a quantity between 3 and 10. The following SELECT accomplishes this requirement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE State = 'NY'
OR (State = 'IL'
AND (QuantityPurchased >= 3
AND QuantityPurchased <= 10))

The result is:

CustomerName State QuantityPurchased

Andrew Li IL 4
James Carpenter NY 5

Notice that there are two sets of parentheses in this statement, with one set inside the other.
This use of parentheses is analogous to the parentheses used in the composite functions seen
in Chapter 4. When there is more than one set of parentheses, the innermost set of functions
is always evaluated first. The same is true of parentheses used in Boolean expressions. In this
example, the innermost set of parentheses contains:

(QuantityPurchased >= 3
AND QuantityPurchased <= 10)

After this condition is evaluated for each row, the logic proceeds outward to the second set of
parentheses:

(State = 'IL'
AND (QuantityPurchased >= 3
AND QuantityPurchased <= 10))

Finally, the logic adds in the final line of the WHERE clause (not enclosed in any parentheses)
regarding the state of New York:

WHERE State = 'NY'
OR (State = 'IL'
AND (QuantityPurchased >= 3
AND QuantityPurchased <= 10))

In essence, SQL’s logic first evaluated expressions in the innermost set of parentheses, then the
outer set of parentheses, and then all remaining expressions.

ptg18192217

66 Chapter 7 Boolean Logic

The NOT Operator
In addition to the AND and OR operators, the NOT operator is often useful for expressing a
complex logical condition. The NOT expresses a negation, or opposite, of whatever follows the
NOT. Here’s a simple example:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE NOT State = 'NY'

The result is:

CustomerName State QuantityPurchased

Andrew Li IL 4
Carol White CA 10

This specifies a selection of rows for which the state is not equal to NY. In this simple case,
the NOT operator is not truly necessary. The logic of the previous statement can also be
accomplished via the following equivalent statement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE State <> 'NY'

Here, the not equals operator (<>) accomplishes the same thing as the NOT operator. Here’s a
more complex example with the NOT operator:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE NOT (State = 'IL'
OR State = 'NY')

The result is:

CustomerName State QuantityPurchased

Carol White CA 10

When the NOT operator is used before a set of parentheses, it negates everything in the
parentheses. In this example, we’re looking for all rows for which the state is not Illinois
or New York.

ptg18192217

67The NOT Operator

Again, note that the NOT operator is not strictly necessary in this example. The logic of the
previous query can also be accomplished with the following equivalent statement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE State <> 'IL'
AND State <> 'NY'

It might take a bit of reflection to understand why the preceding two statements are equivalent.
The first statement uses the NOT operator and a logical expression with an OR operator. The
second statement converts the logic into an expression with an AND operator.

Here’s a final example of how the NOT operator can be used in a complex statement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE NOT (State = 'IL'
AND QuantityPurchased > 3)

This query is saying to select customers where it’s not true that the state equals Illinois and has
a QuantityPurchased greater than 3. The NOT operator applies to the entire logical expression
that the state equals Illinois and has a QuantityPurchased greater than 3. The result is:

CustomerName State QuantityPurchased

Carol White CA 10
James Carpenter NY 5

These two rows were selected because the only customer in Illinois who also has a
QuantityPurchased greater than 3 is Andrew Li. Because we’re applying a NOT to this entire
logic, the end result is the display of the other two customers.

Once again, this query can be expressed in an alternate way without using the NOT:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE State <> 'IL'
OR QuantityPurchased <= 3

As seen in these examples, it may not be logically necessary to use the NOT operator in
complex expressions with arithmetic operators such as equals (=) or less than (<). However,
it’s often more straightforward to place a NOT in front of a logical expression rather than
attempting to convert that expression into one that doesn’t use the NOT. In other words, the
NOT operator can provide a convenient and useful way of expressing one’s logical thoughts.

ptg18192217

68 Chapter 7 Boolean Logic

The BETWEEN Operator
Let’s now turn to two special operators, BETWEEN and IN, that can simplify expressions
that would ordinarily require the OR or AND operators. The BETWEEN operator allows us to
abbreviate an AND expression with greater than or equal to (>=) and less than or equal to (<=)
operators in an expression with a single operator.

Here’s an example. Let’s say we want to select all rows with a quantity purchased from 5 to 20.
One way of accomplishing this is with the following SELECT statement:

SELECT
CustomerName,
QuantityPurchased
FROM Purchases
WHERE QuantityPurchased >= 5
AND QuantityPurchased <= 20

Using the BETWEEN operator, the equivalent statement is:

SELECT
CustomerName,
QuantityPurchased
FROM Purchases
WHERE QuantityPurchased BETWEEN 5 AND 20

In both cases, the SELECT returns this data:

CustomerName QuantityPurchased

Carol White 10
James Carpenter 5

The BETWEEN operator always requires a corresponding AND placed between the two numbers.

Note the relative simplicity of the BETWEEN operator. Also notice that the BETWEEN is
inclusive of the numbers specified. In this example, BETWEEN 5 AND 20 includes the numbers
5 and 20. Thus, the BETWEEN is equivalent only to the greater than or equal to (>=) and less
than or equal to (<=) operators. It can’t be used to express something simply greater than (>) or
less than (<) a range of numbers. The row for James Carpenter is selected because the quantity
purchased is equal to 5, and therefore is between 5 and 20.

The NOT operator can be used in conjunction with BETWEEN. For example, this SELECT:

SELECT
CustomerName,
QuantityPurchased
FROM Purchases
WHERE QuantityPurchased NOT BETWEEN 5 AND 20

ptg18192217

69The IN Operator

retrieves this data:

CustomerName QuantityPurchased

Andrew Li 4

The IN Operator
Just as BETWEEN represents a special case of the AND operator, the IN operator allows for a
special case of the OR operator. Let’s say we want to see rows where the state is Illinois or New
York. Without the IN operator, this can be accomplished with this statement:

SELECT
CustomerName,
State
FROM Purchases
WHERE State = 'IL'
OR State = 'NY'

Here is an equivalent statement using the IN operator:

SELECT
CustomerName,
State
FROM Purchases
WHERE State IN ('IL', 'NY')

In either case, the data retrieved is:

CustomerName State

Andrew Li IL
James Carpenter NY

The IN operator requires a subsequent listing of values enclosed within parentheses. Commas
must be used to separate all values.

The usefulness of the IN operator may not be obvious in this example, where only two states
are listed. However, the IN can just as easily be used in situations involving dozens of specific
values. This greatly reduces the amount of typing required for such a statement. Another
handy use for the IN operator comes in situations where values are obtained from an Excel
spreadsheet. To obtain multiple values from adjacent cells in a spreadsheet for a SQL statement,
you merely need to copy those values with a comma delimiter. The values can then be pasted
inside parentheses following the IN operator.

ptg18192217

70 Chapter 7 Boolean Logic

As with the BETWEEN operator, the NOT operator can be used with the IN operator, as shown
in this example:

SELECT
CustomerName,
State
FROM Purchases
WHERE State NOT IN ('IL', 'NY')

This retrieves this data:

CustomerName State

Carol White CA

One final note about the IN operator. There is a second way to use the IN operator that is
substantially different from the syntax just discussed. In the second format, an entire SELECT
statement is specified within parentheses, allowing the individual values to be created logically
when needed. This is called a subquery, which will be covered in detail in Chapter 14.

Boolean Logic and NULL Values
At the beginning of this chapter, we stated that the Boolean logic in SQL evaluates complex
expressions as either true or false. This assertion was not completely accurate. When evaluating
the conditions in a WHERE clause, there are actually three possibilities: true, false, and
unknown. The possibility of an unknown value derives from the fact that columns in SQL
databases are sometimes allowed to have a NULL value. As mentioned in Chapter 1, NULL
values are those for which there is an absence of data.

SQL provides a special keyword to test for the presence of NULL values for a column specified
in a WHERE clause. The keyword is IS NULL. Let’s look at an example taken from the Products
table seen previously:

ProductID Description Weight

1 Printer A NULL
2 Printer B 0
3 Monitor C 2
4 Laptop D 4

For this example, we’ll imagine that as rows are added to the Products table, they are initially
not given a weight. The Weight column is initially given a value of NULL, and a user later
assigns a weight to the product.

ptg18192217

71Boolean Logic and NULL Values

Let’s say that we attempt to use the following SELECT to find products missing a weight:

SELECT
Description,
Weight
FROM Products
WHERE Weight = 0

This would return:

Description Weight

Printer B 0

This is not quite what we want. A weight of zero is not the same as a weight with a NULL
value. To correct this, we need to issue:

SELECT
Description,
Weight
FROM Products
WHERE Weight = 0
OR Weight IS NULL

This returns:

Description Weight

Printer A NULL
Printer B 0

The IS NULL keyword can also be negated as IS NOT NULL, which allows for the retrieval of
rows that do not have NULL for the specified column.

Note that the ISNULL function, discussed in Chapter 4, can provide an alternative to the IS NULL
keyword. The equivalent of the previous SELECT statement, using the ISNULL function, is:

SELECT
Description,
Weight
FROM Products
WHERE ISNULL(Weight, 0) = 0

This SELECT retrieves the same two rows. The ISNULL function converts all values for the
Weight column with a value of NULL to 0. This produces the same result as the previous
statement, which tested for a value of 0 or NULL.

ptg18192217

72 Chapter 7 Boolean Logic

The ISNULL function and IS NULL keywords can also be used together, as in this statement:

SELECT
Description,
ISNULL(Weight, 0) AS 'Weight'
FROM Products
WHERE Weight = 0
OR Weight IS NULL

This produces this data:

Description Weight

Printer A 0
Printer B 0

Looking Ahead
This chapter covered the important topic of how to create complex expressions of selection
logic. The basic Boolean operators used in this endeavor were AND, OR, and NOT. We also
discussed the BETWEEN and IN operators, which allow for a more concise statement of
the AND and OR operators in certain situations. Parentheses are another essential tool in
the formulation of complex expressions. By using parentheses, you can create almost every
imaginable logical condition. Finally, we discussed how to deal with NULL values when
selecting data.

In our next chapter, we’ll revisit the columnlist and explore an important construct that will
allow us to inject logic into the individual columns in the columnlist. This is referred to as
conditional logic. By using the same Boolean logic operators discussed in this chapter, along
with a few additional keywords, we’ll be able to specify logic that determines how individual
columns in the columnlist are displayed.

ptg18192217

8
Conditional Logic

Keywords Introduced
CASE • WHEN • THEN • ELSE • END

The main topic of this chapter is conditional logic. This term refers to an ability to infuse logic
into the values that appear in specific columns in a columnlist or other expressions in a SQL
statement. Based on how the logic is evaluated when the SQL statement is executed, various
values can appear for a column. Thus, values that appear are conditional on the specified logic.
More specifically, conditional logic is indicated by an expression that begins with the CASE
keyword. This is often referred to as a CASE expression. In essence, CASE expressions allow you
to alter the output presented to a user, based on logical conditions, as applied to an evaluation
of specific columns or data elements. The use of the word CASE has nothing to do with
uppercase or lowercase. It’s used in the sense of specifying a particular case, or a set of logic,
in a conditional way.

As a beginning SQL developer, you should be aware that the CASE expression is a relatively
advanced concept. You can get by without ever using CASE expressions and still write some
very useful queries. Nevertheless, the ability to understand and use conditional logic can
transform rudimentary queries into something a bit more sublime. As such, this is one of those
topics that might merit an additional review after you’ve gone through the entire book, as
a reminder of some of the interesting things can be accomplished with this technique.

The CASE Expression
The CASE expression in SQL allows logic to be applied to a single element in a columnlist or
expression. As indicated in Chapter 2, the full format of the SELECT statement is:

SELECT columnlist
FROM tablelist
WHERE condition
GROUP BY columnlist
HAVING condition
ORDER BY columnlist

ptg18192217

74 Chapter 8 Conditional Logic

The CASE expression can appear in several areas of the SELECT statement. It can appear in the
columnlist immediately after the SELECT keyword or in the GROUP BY or ORDER BY clauses.
It can also appear as an element in a condition of the WHERE or HAVING clauses. In this
chapter, we’ll begin by illustrating the use of the CASE expression in a SELECT columnlist. This
is its most typical use. We’ll then follow up by also showing how it can be used in the WHERE
and ORDER BY clauses.

The CASE expression replaces any individual column in a columnlist or an expression referenced
in a condition in the WHERE or HAVING clause. Focusing on its use in a columnlist, a SELECT
statement that includes both columns and a CASE expression might look like this:

SELECT
column1,
column2,
CaseExpression
FROM table

The CASE expression itself contains logic embedded in a traditional IF-THEN-ELSE structure.
The term IF-THEN-ELSE refers to a commonly used logical construct employed by procedural
programming languages. In general terms, this type of logic looks like:

IF some condition is true
THEN do this
ELSE do that

The condition expressed in the IF-THEN-ELSE can contain the full range of Boolean logic
discussed in the previous chapter. Thus, the expression can include the AND, OR, NOT,
BETWEEN, and IN operators, as well as parentheses.

The Simple CASE Format
There are two basic formats for the CASE expression, generally referred to as the simple and the
searched. The simple format is:

CASE ColumnOrExpression
WHEN value1 THEN result1
WHEN value2 THEN result2
(repeat WHEN-THEN any number of times)
[ELSE DefaultResult]
END

As you can see, this CASE expression uses a number of keywords besides CASE; it also includes
WHEN, THEN, ELSE, and END. These additional keywords are needed to fully define the logic
of the CASE expression. The WHEN and THEN keywords define a condition that is evaluated.
If the value after the WHEN is true, then the result after THEN is used. The WHEN and THEN
keywords can be repeated any number of times. When there is a WHEN, there must also be a
corresponding THEN. The ELSE keyword is used to define a default value to be used if none
of the WHEN-THEN conditions is true. As indicated by the brackets, the ELSE keyword is
not required. However, it is usually a good idea to include the ELSE keyword in every CASE
expression to explicitly state a default value. The END keyword terminates the CASE expression.

ptg18192217

75The Simple CASE Format

Let’s look at a specific example, using this Groceries table:

GroceryID CategoryCode Description

1 F Apple
2 F Orange
3 S Mustard
4 V Carrot
5 B Water

In this data, the CategoryCode column is meant to have these meanings: F is fruit, S is spice,
V is vegetable, and B is beverage. A SELECT with a CASE expression for data in this table might
look like this:

SELECT
CASE CategoryCode
WHEN 'F' THEN 'Fruit'
WHEN 'V' THEN 'Vegetable'
ELSE 'Other'
END AS 'Category',
Description
FROM Groceries

and produces this output:

Category Description

Fruit Apple
Fruit Orange
Other Mustard
Vegetable Carrot
Other Water

Let’s examine the SELECT statement in some detail. The first line contains the SELECT
keyword. The second line, with the CASE keyword, specifies that the CategoryCode column is
to be analyzed. The third line introduces the first WHEN-THEN condition. This line says that
if the CategoryCode column equals F, then “Fruit” should be displayed. The next line says
that if the CategoryCode is V, then “Vegetable” should be displayed. The ELSE line provides
a default value of “Other” to use if the CategoryCode is not F or V. In other words, if the
category is not Fruit or Vegetable, then it can be classified as “Other”. The END line terminates
the CASE expression and also includes an AS keyword to assign a column alias. The next line,
Description, is merely another column and has nothing to do with the CASE expression.

As seen, the CASE expression is very useful for translating cryptic values into meaningful
descriptions. In this example, the CategoryCode column in the Groceries table contains only a
single character code to indicate the type of product. The CASE expression allows us to specify
the translation.

ptg18192217

76 Chapter 8 Conditional Logic

The Searched CASE Format
The general format for the searched CASE expression is:

CASE
WHEN condition1 THEN result1
WHEN condition2 THEN result2
(repeat WHEN-THEN any number of times)
[ELSE DefaultResult]
END

The equivalent of the preceding SELECT statement using this second format is:

SELECT
CASE
WHEN CategoryCode = 'F' THEN 'Fruit'
WHEN CategoryCode = 'V' THEN 'Vegetable'
ELSE 'Other'
END AS 'Category',
Description
FROM Groceries

The data retrieved from this statement is identical to the first simple CASE format. Notice the
subtle differences, however. In the simple format, the column name to be evaluated is placed
after the CASE keyword, and the expression following the WHEN is a simple literal value. In
the searched format, a column name to be evaluated is not placed next to the CASE keyword.
Instead, this format allows for a more complex conditional expression to be specified following
the WHEN keyword.

In the previous example, either format of the CASE clause can be used and will produce the
same result. Let’s now look at another example for which only the searched CASE format yields
the desired result. This example will be taken from this data:

GroceryID Fruit Vegetable Spice Beverage Description

1 X Apple
2 X Orange
3 X Mustard
4 X Carrot
5 X Water

In this situation, rather than containing a single CategoryCode column, the table has multiple
columns to indicate the type of product. For example, a value of X in the Fruit column is used
to indicate that the product is a fruit. As such, it would be impossible to use the simple format
of the CASE expression to evaluate this data. The simple format works only with an analysis of
a single column. Using the searched format, a CASE expression that handles this type of data is:

ptg18192217

77The Searched CASE Format

SELECT
CASE
WHEN Fruit = 'X' THEN 'Fruit'
WHEN Vegetable = 'X' THEN 'Vegetable'
ELSE 'Other'
END AS 'Category',
Description
FROM GroceryCategories

Once again, the result is:

Category Description

Fruit Apple
Fruit Orange
Other Mustard
Vegetable Carrot
Other Water

We have been able to use the searched format of the CASE expression to evaluate data in
multiple columns to produce a single result.

The CASE expression can be employed in many situations in the columnlist of a SELECT
statement. Another common example of the usefulness of the CASE expression is in situations
involving division by zero. When formulating a calculation that has the possibility of division
by zero, you must be careful to provide some alternative when the denominator equals zero.
Like all other computer languages, SQL produces an error when division by zero is attempted.
To resolve this issue, a CASE expression can be used, as in this general example:

SELECT
CASE
WHEN Denominator = 0 THEN 0
ELSE Numerator / Denominator
END
FROM table

In this example, we’re testing the denominator value to see if it equals zero. If it does, the result
of the calculation is set to zero. If not, the normal calculation is allowed to proceed. Thus, if
the denominator in the calculation happens to have a value of zero, we’ll bypass the “divide by
zero” error that would otherwise ensue.

ptg18192217

78 Chapter 8 Conditional Logic

Conditional Logic in ORDER BY Clauses
As mentioned at the beginning of this chapter, the CASE expression can be used in numerous
places in the SELECT statement. To illustrate its use in the ORDER BY clause, let’s imagine
that we have a table with cities from the US and Canada. In this scenario, there are separate
columns for US States and Canadian Provinces. This data might appear as the following:

CityID Country State Province City

1 US VT Burlington
2 CA QU Montreal
3 US CO Denver
4 US CO Boulder
5 CA AB Edmonton

The goal in this example is to sort data first by country, and then by either state or province,
and finally by city. A statement that accomplishes this is:

SELECT *
FROM NorthAmerica
ORDER BY
Country,
CASE Country
WHEN 'US' THEN State
WHEN 'CA' THEN Province
ELSE State
END,
City

The output from this statement is:

CityID Country State Province City

5 CA AB Edmonton
2 CA QU Montreal
4 US CO Boulder
3 US CO Denver
1 US VT Burlington

The CASE expression evaluates the Country column to determine whether it’s US or CA. If it’s
US data, then it uses the State column for the sort. If Canada, it uses Province. The result is that
this statement sorts by country, then by state or province, and finally by city.

ptg18192217

79Conditional Logic in WHERE Clauses

Conditional Logic in WHERE Clauses
Just as the CASE expression can be placed within a columnlist, it can also be placed within an
expression in a WHERE condition. In this example, we’ll assume that we have customer data
such as the following:

CustomerID Sex Age Income

1 M 55 80000
2 F 25 65000
3 M 35 40000
4 F 42 90000
5 F 27 25000

The goal is to select customers who meet a complex set of demographic and income
requirements. If they are male and at least 50 years old, they must have an income of 75000 to
qualify. If they are female and at least 35, they must have an income of 60000 to qualify. All
other people must have income of at least 50000 to qualify. The following is a statement that
specifies that criteria by using a CASE statement:

SELECT *
FROM CustomerList
WHERE Income >
CASE
WHEN Sex = 'M' AND Age >= 50 THEN 75000
WHEN Sex = 'F' AND Age >= 35 THEN 60000
ELSE 50000
END

Note that the entire CASE expression replaced just one part of the condition expressed in the
WHERE clause. In general form, the WHERE clause is:

WHERE Income > CASE_Expression

The CASE expression provides the value that is compared to Income in the selection logic.
When this statement is executed, the data retrieved is:

CustomerID Sex Age Income

1 M 55 80000
2 F 25 65000
4 F 42 90000

ptg18192217

80 Chapter 8 Conditional Logic

Looking Ahead
The CASE expression is a powerful tool that allows you to infuse logic into various elements in
a SQL statement. In this chapter, we saw the CASE expression used in the SELECT columnlist,
and also in the ORDER BY and WHERE clauses. In future chapters, we’ll illustrate the use of the
CASE expression in other areas, such as in the GROUP BY and HAVING clauses.

There are two basic variations of the CASE expression: the simple and the searched. A typical
use of the simple variation is to provide translations for data items with cryptic values. The
searched format allows for more complex statements of logic.

In our next chapter, “Summarizing Data,” we’ll turn our attention to methods of separating
data into groups and summarizing the values in those groups with various statistics. Back in
Chapter 4, “Using Functions,” we talked about scalar functions. The next chapter will introduce
another type of function, called aggregate functions. These aggregate functions allow us to
summarize data in many useful ways. For example, we’ll be able to look at any group of orders
and determine the number of orders, the total dollar amount of the orders, and the average
order size. These techniques will allow you to move beyond the presentation of detailed data
and begin to truly add value for your users as you deliver summarized information.

ptg18192217

9
Summarizing Data

Keywords Introduced
DISTINCT • SUM • AVG • MIN • MAX • COUNT • GROUP BY • HAVING • ROW_NUMBER •
RANK • DENSE RANK • NTILE • OVER • PARTITION BY

Up until now, all of the calculations, functions, and CASE expressions we’ve used have only
altered the values of individual columns. The rows we’ve retrieved have corresponded to rows
in tables in the underlying database. We now want to turn to various methods of summarizing
data, by combining values in multiple rows.

The computer term usually associated with this type of endeavor is aggregation, which means
“to combine into groups.” The ability to aggregate and summarize data is key to being able
to move beyond a mere display of data to something approaching real information. There’s a
bit of magic involved when users view summarized data in a report. The ability to summarize
offers the opportunity of extracting some real meaning from the mass of data in a database in
order to obtain a clearer picture of what it all means.

Eliminating Duplicates
Although it doesn’t provide true aggregation, the most elementary way to summarize data is to
eliminate duplicates. SQL’s DISTINCT keyword provides an easy method for removing duplicate
values from output. Here’s an example of the DISTINCT keyword, used with the following
SongTitles table:

SongID Artist Album Title

1 The Beatles Revolver Yellow Submarine
2 The Beatles Revolver Eleanor Rigby
3 The Beatles Abbey Road Here Comes the Sun
4 The Rolling Stones Beggars Banquet Sympathy for the Devil
5 The Rolling Stones Let It Bleed Gimme Shelter
6 Paul McCartney Ram Too Many People

ptg18192217

82 Chapter 9 Summarizing Data

Let’s say we want to see a list of artists in the table. This can be accomplished with:

SELECT
DISTINCT
Artist
FROM SongTitles
ORDER BY Artist

The result is:

Artist

Paul McCartney
The Beatles
The Rolling Stones

The DISTINCT keyword is always placed immediately after the SELECT keyword. The DISTINCT
keyword specifies that only unique values of the columnlist that follow are to be returned. In
this case, there are only three artists, so only three rows are returned. If we want to see unique
combinations of both artists and albums, we can issue:

SELECT
DISTINCT
Artist,
Album
FROM SongTitles
ORDER BY Artist, Album

and the result would be:

Artist Album

Paul McCartney Ram
The Beatles Abbey Road
The Beatles Revolver
The Rolling Stones Beggars Banquet
The Rolling Stones Let It Bleed

Notice that Revolver is listed only once, even though there are two songs from that album in
the table. This is because the DISTINCT keyword only considers values from the listed columns.

ptg18192217

83Aggregate Functions

Aggregate Functions
The functions discussed in Chapter 4, “Using Functions,” were all scalar functions. These
functions were all performed on a single number or value. In contrast, aggregate functions are
meant to be used with groups of data. The most widely used aggregate functions are COUNT,
SUM, AVG, MIN, and MAX. These functions provide counts, sums, averages, and minimum
and maximum values for groups of data.

All of our aggregate function examples will be taken from the following two tables with data
about student fees and grades. The Fees table contains:

FeeID Student FeeType Fee

1 Jose Gym 30
2 Jose Lunch 10
3 Jose Trip 8
4 Rama Gym 30
5 Julie Lunch 10

This is the Grades table:

GradeID Student GradeType Grade YearInSchool

1 Isabella Quiz 92 7
2 Isabella Quiz 95 7
3 Isabella Homework 84 7
4 Hailey Quiz 62 8
5 Hailey Quiz 81 8
6 Hailey Homework NULL 8
7 Peter Quiz 58 7
8 Peter Quiz 74 7
9 Peter Homework 88 7

Beginning with the SUM function, let’s say we want to see the total amount of gym fees paid
by all students. This can be accomplished with this statement:

SELECT
SUM(Fee) AS 'Total Gym Fees'
FROM Fees
WHERE FeeType = 'Gym'

The resulting data is:

Total Gym Fees

60

ptg18192217

84 Chapter 9 Summarizing Data

As you can see, the SUM function sums up the total values for the Fee column, subject to the
selection logic specified in the WHERE clause. Because the only expression in the columnlist
is an aggregate function, the query returns only one column and one row of data with the
aggregate amount.

The AVG, MIN, and MAX functions are quite similar to the SUM function. Here’s an example
of the AVG function. In this case, we’re seeking to obtain the average grade of all quizzes in the
Grades table:

SELECT
AVG(Grade) AS 'Average Quiz Score'
FROM Grades
WHERE GradeType = 'Quiz'

The result is:

Average Quiz Score

77

More than one aggregate function can be used in a single statement. Here’s a SELECT that
shows how to utilize AVG, MIN, and MAX in the same statement:

SELECT
AVG(Grade) AS 'Average Quiz Score',
MIN(Grade) AS 'Minimum Quiz Score',
MAX(Grade) AS 'Maximum Quiz Score'
FROM Grades
WHERE GradeType = 'Quiz'

The result is:

Average Quiz Score Minimum Quiz Score Maximum Quiz Score

77 58 95

The COUNT Function
The COUNT function is slightly more complex than the aggregate functions discussed
previously, in that it can be employed in three different ways. First, the COUNT function can
be used to return a count of all selected rows, regardless of the values in any particular column.
As an example, the following statement returns a count of all rows that have homework grades:

SELECT
COUNT(*) AS 'Count of Homework Rows'
FROM Grades
WHERE GradeType = 'Homework'

ptg18192217

85The COUNT Function

The result is:

Count of Homework Rows

3

The asterisk within parentheses means “all columns.” Behind the scenes, SQL actually retrieves
the data in all columns for the selected rows, and then returns a count of the number of rows.

In the second format of the COUNT function, a specific column is specified within the
parentheses. Here’s an example:

SELECT
COUNT(Grade) AS 'Count of Homework Scores'
FROM Grades
WHERE GradeType = 'Homework'

The result is:

Count of Homework Rows

2

Notice the subtle difference between the preceding two SELECT statements. In the first, we’re
merely counting rows where the GradeType equals Homework. There are three of those
rows. In the second statement, we’re counting occurrences of the Grade column where the
GradeType column has a value of Homework. In this case, one of the three rows has a value of
NULL in the Grade column, and SQL is smart enough not to count such a row. As mentioned
previously, NULL means that the data doesn’t exist.

The third variant of the COUNT function allows us to use the DISTINCT keyword in addition
to a column name. Here’s an example:

SELECT
COUNT(DISTINCT FeeType) AS 'Number of Fee Types'
FROM Fees

Note that the DISTINCT keyword is placed inside the parentheses. The DISTINCT keyword says
that we want to include only distinct values of FeeType. The outer COUNT function counts
those values. The result of this statement is:

Number of Fee Types

3

This means that there are three different values found in the FeeType column.

ptg18192217

86 Chapter 9 Summarizing Data

Grouping Data
The previous examples of aggregation functions are interesting but of somewhat limited value.
The real power of aggregation functions will become evident after we introduce the concept of
grouping data.

The GROUP BY keyword is used to separate the data returned from a SELECT statement into
any number of groups. For example, when looking at the Grades table, we may be interested in
analyzing test scores based on the grade type. In other words, we want to separate the data into
two separate groups: quizzes and homework. The value of the GradeType column can be used
to determine the group to which each row belongs. Once data has been separated into groups,
aggregation functions can be used so that summary statistics for each of the groups can be
calculated and compared.

Let’s proceed with an example that introduces the GROUP BY keyword:

SELECT
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade'
FROM Grades
GROUP BY GradeType
ORDER BY GradeType

The result of this statement is:

Grade Type Average Grade

Homework 86
Quiz 77

In this example, the GROUP BY keyword specifies that groups are to be created based on the
value of the GradeType column. The two columns in the SELECT columnlist are GradeType
and a calculated field that uses the AVG function. The GradeType column was included in the
columnlist because, when creating a group, it’s usually a good idea to include the column on
which the groups are based. The “Average Grade” calculated field aggregates values based on
the rows in each group.

Notice that the average homework grade has been computed as 86. As before, even though
there is one row with a NULL value for the Homework GradeType, SQL is smart enough to
ignore rows with NULL values when computing an average. If we had wanted the NULL value
to be counted as a 0, then the ISNULL function could be used to convert the NULL to a 0,
as follows:

AVG(ISNULL(Grade, 0)) AS 'Average Grade'

It’s important to note that when using a GROUP BY keyword, all columns in the columnlist
must either be listed as columns in the GROUP BY clause, or else be used in an aggregation

ptg18192217

87Multiple Columns and Sorting

function. Nothing else would make any sense. For example, the following SELECT would
produce a syntax error:

SELECT
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade',
Student AS 'Student'
FROM Grades
GROUP BY GradeType
ORDER BY GradeType

The problem with this statement is that the Student column is not in the GROUP BY, nor is it
aggregated in any way. Since everything is presented in summarized groups, SQL doesn’t know
what to do with the Student column in the above statement. As such, this statement cannot
be executed.

Database Differences: MySQL
Unlike Microsoft SQL Server and Oracle, the previous statement will not produce an error in
MySQL. Nevertheless, it will produce incorrect results.

Multiple Columns and Sorting
The concept of groups can be extended so that groups are based on more than one column.
Let’s go back to the last SELECT and add the Student column to both the GROUP BY clause
and the columnlist. It now looks like:

SELECT
GradeType AS 'Grade Type',
Student AS 'Student',
AVG(Grade) AS 'Average Grade'
FROM Grades
GROUP BY GradeType, Student
ORDER BY GradeType, Student

The resulting data is:

Grade Type Student Average Grade

Homework Hailey NULL
Homework Isabella 84
Homework Peter 88
Quiz Hailey 71.5
Quiz Isabella 93.5
Quiz Peter 66

We now see a breakdown not only of grade types but also of students. The average grades are
computed on each group. Note that the Homework row for Hailey shows a NULL value, since
she has only one homework row, and that row has a value of NULL for the grade.

ptg18192217

88 Chapter 9 Summarizing Data

The order in which the columns are listed in the GROUP BY clause has no significance.
The results would be the same if the clause were:

GROUP BY Student, GradeType

However, as always, the order in which columns are listed in the ORDER BY clause is
meaningful. If you switch the ORDER BY clause to:

ORDER BY Student, GradeType

The resulting data is:

GradeType Student AverageGrade

Homework Hailey NULL
Quiz Hailey 71.5
Homework Isabella 84
Quiz Isabella 93.5
Homework Peter 88
Quiz Peter 66

This looks a bit strange, because it’s difficult to determine at a glance that the data is really
sorted by Student and then by GradeType. As a general rule of thumb, it usually helps if
columns are listed from left to right in the same order in which columns are sorted. A more
understandable SELECT statement would be:

SELECT
Student AS 'Student',
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade'
FROM Grades
GROUP BY GradeType, Student
ORDER BY Student, GradeType

The data now looks like this:

Student Grade Type Average Grade

Hailey Homework NULL
Hailey Quiz 71.5
Isabella Homework 84
Isabella Quiz 93.5
Peter Homework 88
Peter Quiz 66

This is more comprehensible, because the column order corresponds to the sort order.

There’s sometimes some confusion as to the difference between the GROUP BY and ORDER BY
clauses. The main point to remember is that GROUP BY merely creates the groups. The ORDER
BY still must be used to list the rows in a meaningful sequence.

ptg18192217

89Selection Criteria on Aggregates

Selection Criteria on Aggregates
After data has been separated into groups via the GROUP BY clause, selection criteria become a
bit more complex. When applying any kind of selection criteria to a SELECT with a GROUP BY,
you must ask whether the criteria apply to individual rows or to the entire group. Whereas the
WHERE clause handles selection criteria for individual rows, SQL provides a keyword named
HAVING that allows selection logic to be applied at the group level.

Returning to the Grades table, let’s say we want to look only at grades on quizzes that are 70 or
higher. The grades we’d like to look at are individual grades, so the WHERE clause can be used,
as normal. Such a SELECT might look like this:

SELECT
Student AS 'Student',
GradeType AS 'Grade Type',
Grade AS 'Grade'
FROM Grades
WHERE GradeType = 'Quiz'
AND Grade >= 70
ORDER BY Student, Grade

The resulting data is:

Student Grade Type Grade

Hailey Quiz 81
Isabella Quiz 92
Isabella Quiz 95
Peter Quiz 74

Notice that quizzes with a score less than 70 aren’t shown. For example, we can see Peter’s quiz
score of 74, but not his quiz score of 58.

To introduce the use of the HAVING clause, let’s say we want to display data for students who
have an average quiz grade of 70 or more. In this situation, we want to select on an average, not
on individual rows. This is where the HAVING clause comes in. We need to first group grades
by student, and then apply selection criteria to an aggregate statistic based on the entire group.
The following statement produces the desired result:

SELECT
Student AS 'Student',
AVG(Grade) AS 'Average Quiz Grade'
FROM Grades
WHERE GradeType = 'Quiz'
GROUP BY Student
HAVING AVG(Grade) >= 70
ORDER BY Student

ptg18192217

90 Chapter 9 Summarizing Data

The output is:

Student Average Quiz Grade

Hailey 71.5
Isabella 93.5

This SELECT has both a WHERE and a HAVING clause. The WHERE ensures that we only select
rows with a GradeType of “Quiz”. The HAVING guarantees that we only select students with an
average score of at least 70.

To take this example a step further, what if we wanted to add a column with the GradeType
value? If we attempt to add GradeType to the SELECT columnlist, the statement will error. This
is because all columns must be either listed in the GROUP BY or involved in an aggregation.
Hence, if we want to show the GradeType column, it must be added to the GROUP BY clause,
as follows:

SELECT
Student AS 'Student',
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade'
FROM Grades
WHERE GradeType = 'Quiz'
GROUP BY Student, GradeType
HAVING AVG(Grade) >= 70
ORDER BY Student

The resulting data is:

Student Grade Type Average Grade

Hailey Quiz 71.5
Isabella Quiz 93.5

Now that we’ve added the HAVING clause to the mix, let’s recap the general format of the
SELECT statement with all the clauses used thus far:

SELECT columnlist
FROM tablelist
WHERE condition
GROUP BY columnlist
HAVING condition
ORDER BY columnlist

Remember that when employing any of the above keywords in a SELECT, they must be listed
in the order shown. For example, the HAVING keyword must always come after a GROUP BY
but before an ORDER BY.

ptg18192217

91Conditional Logic in GROUP BY Clauses

Conditional Logic in GROUP BY Clauses
In Chapter 8, “Conditional Logic,” we saw examples of the CASE expression in the columnlist of
a SELECT statement as well as in the ORDER BY and WHERE clauses. When a GROUP BY clause
is used in a statement, all expressions in the columnlist must either be present in the GROUP BY
or involve an aggregate function. This means that when a CASE expression is used in a GROUP
BY, the same exact expression must be used in the SELECT columnlist. To illustrate, let’s return
to the Groceries data seen in the previous chapter:

GroceryID CategoryCode Description

1 F Apple
2 F Orange
3 S Mustard
4 V Carrot
5 B Water

In this example, we want to group by the category computed by the CASE expression—namely,
Fruit, Vegetable, or Other. The objective is to produce a count of how many products are in
each category. Here’s the statement:

SELECT
CASE CategoryCode
WHEN 'F' THEN 'Fruit'
WHEN 'V' THEN 'Vegetable'
ELSE 'Other'
END AS 'Category',
COUNT(*) AS 'Count'
FROM Groceries
GROUP BY
CASE CategoryCode
WHEN 'F' THEN 'Fruit'
WHEN 'V' THEN 'Vegetable'
ELSE 'Other'
END

The output appears as:

Category Count

Fruit 2
Other 2
Vegetable 1

Notice that the same CASE statement is used in the SELECT columnlist and in the GROUP BY clause.

ptg18192217

92 Chapter 9 Summarizing Data

Conditional Logic in HAVING Clauses
To illustrate the use of conditional logic in HAVING clauses, let’s return to the HAVING clause
example from earlier in this chapter. In that situation, we displayed data for students who had
an average quiz grade of 70 or higher. The statement was:

SELECT
Student AS 'Student',
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade'
FROM Grades
WHERE GradeType = 'Quiz'
GROUP BY Student, GradeType
HAVING AVG(Grade) >= 70
ORDER BY Student

In this scenario, the WHERE clause selected quizzes. We declared a GROUP BY student and
grade type and then applied the aggregate selection logic in the HAVING clause to enforce the
restriction that we want only students with an average quiz of at least 70.

In this new example, we’ll use a column in the data that was previously ignored—namely,
the YearInSchool column. With this additional bit of information, we’ll alter the previous
statement to list students with an average grade of at least 70 if they’re a Year 7 student, or
an average grade of 75 if they’re a Year 8 student. If they’re not Year 7 or Year 8, we’ll accept
students with an average grade of 80. To accomplish this goal, we’ll need to place a CASE
expression in the HAVING clause. We’ll also display the YearInSchool column, as follows:

SELECT
Student AS 'Student',
YearInSchool AS 'Year in School',
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade',
FROM Grades
WHERE GradeType = 'Quiz'
GROUP BY Student, YearInSchool, GradeType
HAVING AVG(Grade) >=
CASE
WHEN YearInSchool = 7 THEN 70
WHEN YearInSchool = 8 THEN 75
ELSE 80
END
ORDER BY Student

The HAVING clause states that the average grade must be greater than the number returned
by the CASE expression. The CASE expression will provide a value of either 70, 75, or 80,
depending on the value of the YearInSchool column. The result is:

Student Year in School Grade Type Average Grade

Isabella 7 Quiz 93.5

Isabella is now the only student listed, because she is only person who satisfies the new criteria.

ptg18192217

93Ranking Functions

Ranking Functions
In addition to the grouping techniques discussed previously in this chapter, SQL provides a
number of special ranking functions that allow for the classification of rows by a method of
sequential classification. There are four basic ranking functions:

Row_Number
Rank
Dense_Rank
NTile

The ROW_NUMBER function creates row numbers based on a specified order of another
column or expression associated with the function. After the rows have been placed in the
specified order, the generated row numbers will start with 1 and increase sequentially to 2, 3, 4,
and so on. The ROW_NUMBER function requires no parameters.

The RANK function is the same as ROW_NUMBER except that if two or more rows have the same
value for the specified column or expression, they are both given the same number. For example,
if the second and third rows have the same value, the generated ranks will be 1, 2, 2, 4, and so
on. Because the two rows with a value of 2 have the same value, SQL skips the number 3.

The DENSE_RANK function is the same as the RANK function except that it does not skip any
numbers, even when there are duplicate values. In the preceding example, the dense rank
would be 1, 2, 2, 3, and so on. The number 3 is not skipped.

Finally, the NTILE function allows for the generation of a percentile or any other ntile, based
on the specified order of another column or expression. Unlike RANK, ROW_NUMBER, and
DENSE_RANK, NTILE requires a parameter. For example, the function NTILE(100) will assign
percentiles. Percentiles are a number from 1 to 100 that represents the relative rank of the
value. However, any other number can be used as the argument for the function. Thus, the
function NTILE(10) will create deciles, and NTILE(4) will produce quartiles.

Let’s illustrate ranking with a few examples, all based on the following table:

StockSymbol StockName Exchange PriceEarningsRatio

AAPL Apple Inc NASDAQ 14
AMZN Amazon.com Inc NASDAQ 489
DIS The Walt Disney Company NYSE 21
GE General Electric Company NYSE 18
GOOG Alphabet Inc NASDAQ 30
HSY The Hershey Company NYSE 26
KRFT Kraft Foods Inc NYSE 12
KO The Coca-Cola Company NYSE 21
MCD McDonalds Corporation NYSE 18
MMM 3M Company NYSE 20
MSFT Microsoft Corporation NASDAQ 15
ORCL Oracle Corporation NASDAQ 17
SBUX Starbucks Corporation NASDAQ 357
WBA Walgreens Boots Alliance Inc NYSE 24
WMT Wal-Mart Stores Inc NYSE 15

ptg18192217

94 Chapter 9 Summarizing Data

This table lists some stocks, showing their symbol, their name, the exchange they trade on, and
their price–earnings (PE) ratio. For example, Apple (AAPL) is traded on the NASDAQ and has a
PE ratio of 14.

In this first example, we’ll sort all the rows by PE ratio and use the ROW_NUMBER function to
generate a row number for each row. We want to sort the rows by PE from lowest to highest.
We’re displaying low PE’s first, since a low PE is generally better than a high PE. A statement
that accomplishes this is:

SELECT
ROW_NUMBER() OVER (ORDER BY PriceEarningsRatio) AS 'Row',
StockSymbol AS 'Symbol',
StockName AS 'Name',
Exchange AS 'Exchange',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY PriceEarningsRatio

The output of this statement is:

Row Symbol Name Exchange PE Ratio

1 KRFT Kraft Foods Inc NYSE 12
2 AAPL Apple Inc NASDAQ 14
3 MSFT Microsoft Corporation NASDAQ 15
4 WMT Wal-Mart Stores Inc NYSE 15
5 ORCL Oracle Corporation NASDAQ 17
6 GE General Electric Company NYSE 18
7 MCD McDonald’s Corporation NYSE 18
8 MMM 3M Company NYSE 20
9 DIS The Walt Disney Company NYSE 21
10 KO The Coca-Cola Company NYSE 21
11 WBA Walgreens Boots Alliance Inc NYSE 24
12 HSY The Hershey Company NYSE 26
13 GOOG Alphabet Inc NASDAQ 30
14 SBUX Starbucks Corporation NASDAQ 357
15 AMZN Amazon.com Inc NASDAQ 489

Let’s examine how this works. First, note that there are no selection criteria or grouping in
this statement. Besides the columnlist, there is only a FROM clause and an ORDER BY clause.
The ORDER BY clause (the last line of the statement) is necessary to list the rows in the
desired order, by PE ratio. The main bit of complexity in this statement is the first item in the
columnlist, which uses the ROW_NUMBER ranking function. Note that this value includes an
OVER keyword as well as another ORDER BY in parentheses. The general format for a columnlist
element that includes a ranking function is:

Rank_Function() OVER (ORDER BY expression [[ASC]|DESC])

ptg18192217

95Ranking Functions

The Rank_Function can be any of the four functions mentioned previously. The keyword OVER
is required. Its purpose is to designate how the rank function is to be applied. The expression
in the parentheses indicates the column or expression on which the ranking is to be applied.
The ORDER BY keyword indicates that this expression is to evaluated, in either an ascending or
descending order. If the order is to be ascending, then the ASC keyword isn’t necessary.

In our example, we’re assigning a row number based on an evaluation of the PriceEarningsRatio
column. The values of PriceEarningsRatio are evaluated in an ascending order. The first row,
for Kraft Foods, is given a row number of 1 because it is first in the sequence. Note that the
ROW_NUMBER function only assigns the row number. We still need the ORDER BY clause in
the SELECT statement to actually display the output in the desired sequence.

To illustrate the use of the RANK and DENSE_RANK functions, we’ll add them as columns to
the previous statement. We won’t bother to display the stock name or exchange. The new
statement is:

SELECT
ROW_NUMBER() OVER (ORDER BY PriceEarningsRatio) AS 'Row',
RANK() OVER (ORDER BY PriceEarningsRatio) AS 'Rank',
DENSE_RANK() OVER (ORDER BY PriceEarningsRatio) AS 'Dense Rank',
StockSymbol AS 'Symbol',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY PriceEarningsRatio

The output is:

Row Rank Dense Rank Symbol PE Ratio

1 1 1 KRFT 12
2 2 2 AAPL 14
3 3 3 MSFT 15
4 3 3 WMT 15
5 5 4 ORCL 17
6 6 5 GE 18
7 6 5 MCD 18
8 8 6 MMM 20
9 9 7 DIS 21
10 9 7 KO 21
11 11 8 WBA 24
12 12 9 HSY 26
13 13 10 GOOG 30
14 14 11 SBUX 357
15 15 12 AMZN 489

In this example, MSFT and WMT have the same PE. As a result, they are given the same value
for RANK and for DENSE_RANK. The difference is in the values assigned to subsequent rows.
For RANK, the next row after MSFT and WMT, ORCL, skips a number and is given a value of 5.
For DENSE_RANK, no numbers are skipped, and ORCL is given a value of 4.

ptg18192217

96 Chapter 9 Summarizing Data

Moving on to the NTILE function, we’ll offer examples of NTILE(4) and NTILE(10). As
mentioned, the NTILE ranks the rows in a specified sequence, and then assigns them to a group.
In the case of NTILE(4), the data is divided into four groups. This is commonly referred to as
quartiles. NTILE(10) divides the data into ten groups, otherwise known as deciles. To illustrate, the
following statement ranks the stocks by PE ratio and displays NTILE(4) and NTILE(10):

SELECT
NTILE(4) OVER (ORDER BY PriceEarningsRatio) AS 'Quartile',
NTILE(10) OVER (ORDER BY PriceEarningsRatio) AS 'Decile',
StockSymbol AS 'Symbol',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY PriceEarningsRatio

The resulting output is:

Quartile Decile Symbol PE Ratio

1 1 KRFT 12
1 1 AAPL 14
1 2 MSFT 15
1 2 WMT 15
2 3 ORCL 17
2 3 GE 18
2 4 MCD 18
2 4 MMM 20
3 5 DIS 21
3 5 KO 21
3 6 WBA 24
3 7 HSY 26
4 8 GOOG 30
4 9 SBUX 357
4 10 AMZN 489

The Quartile column divides the data into four groups, based on a ranking of the PE ratio. As
seen, rows 1 to 4 fall in the top quartile, rows 5 to 8 in the second quartile, and so on. The
Decile column divides the data into ten groups in a similar manner. With larger data sets, it
would be common to include an NTILE(100) function to divide the data into 100 groups. Each
of these 100 groups is commonly referred to as a percentile.

Database Differences: MySQL
Unlike Microsoft SQL Server and Oracle, MySQL doesn’t provide the OVER keyword or the
ranking functions discussed in this section. Likewise, it doesn’t provide the PARTITION BY
keyword discussed in the following section.

ptg18192217

97Partitions

Partitions
A useful variation on how the ranking functions discussed in the previous section can be used
is the ability to divide data into partitions prior to the application of the ranking function. We
indicated previously that the general format for a columnlist element that includes a ranking
function is:

Rank_Function() OVER (ORDER BY expression [[ASC]|DESC])

The partitioning of data involves the PARTITION BY keyword. With partitioning, the general
format for a columnlist element that includes a ranking function is:

Rank_Function() OVER (PARTITION BY expression_1
ORDER BY expression_2 [[ASC]|DESC])

In the previous examples, we had ignored the value of the Exchange column. With
partitioning, we have the ability to separate, or partition, our data into two separate groups,
based on the value of the Exchange column, which is either NYSE or NASDAQ. After the data is
separated, the ranking functions are applied as seen previously.

To illustrate, let’s revise the first query of the previous section that used the ROW_NUMBER
function to rank the data, assigning a row number to each row based on the PE ratio. The
original SQL statement was:

SELECT
ROW_NUMBER() OVER (ORDER BY PriceEarningsRatio) AS 'Row',
StockSymbol AS 'Symbol',
StockName AS 'Name',
Exchange AS 'Exchange',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY PriceEarningsRatio

In our revision, we’ll add the PARTITION BY keyword to the columnlist element with the
ROW_NUMBER function. We’ll also rearrange the order of the columns and the ORDER BY
clause so that the data appears in a more comprehensible layout. The new statement is:

SELECT
Exchange AS 'Exchange',
ROW_NUMBER() OVER (PARTITION BY Exchange ORDER BY PriceEarningsRatio)
AS 'Exchange Rank',
StockSymbol AS 'Symbol',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY Exchange, PriceEarningsRatio

ptg18192217

98 Chapter 9 Summarizing Data

The result is:

Exchange Exchange Rank Symbol PE Ratio

NASDAQ 1 AAPL 14
NASDAQ 2 MSFT 15
NASDAQ 3 ORCL 17
NASDAQ 4 GOOG 30
NASDAQ 5 SBUX 357
NASDAQ 6 AMZN 489
NYSE 1 KRFT 12
NYSE 2 WMT 15
NYSE 3 GE 18
NYSE 4 MCD 18
NYSE 5 MMM 20
NYSE 6 DIS 21
NYSE 7 KO 21
NYSE 8 WBA 24
NYSE 9 HSY 26

Notice that we also changed the column alias for the ROW_NUMBER function from “Row”
to “Exchange Rank”. This was done because we now have two sets of data. It wouldn’t make
sense to refer to this column as a row number, because we have two sequential sets of numbers.
Note that the ORDER BY clause must correspond to the PARTITION BY and RANKING BY
expressions in the ranking function. If the data is partitioned and ranked in one way and sorted
in another way, the results might be difficult to comprehend.

Remember that partitions are not the same as the GROUP BY clause seen earlier in this chapter.
The usual purpose of a GROUP BY clause is to group data and then to apply aggregation
functions to each of the groups. For example, one might wish to group by the Exchange
column and then obtain the average PE for each of the groups. This would provide the average
PE for both the NASDAQ and NYSE exchanges. In contrast, the concept of partitioning keeps
the detailed data intact. Partitions are created merely to apply a ranking to individual rows
within each partition. Although data is divided into groups for purposes of ranking, the details
are maintained, and there is no aggregation involved.

The preceding example illustrated the use of partitions with the ROW_NUMBER ranking
function. The application of partitions to the other three ranking functions works in an
identical manner. For example, if we wanted to partition the data based on the Exchange, and
then show the quartile for each partition, the statement would be:

SELECT
Exchange AS 'Exchange',
NTILE(4) OVER (PARTITION BY Exchange ORDER BY PriceEarningsRatio)
AS 'Quartile',
StockSymbol AS 'Symbol',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY Exchange, PriceEarningsRatio

ptg18192217

99Partitions

The output for this statement is:

Exchange Quartile Symbol PE Ratio

NASDAQ 1 AAPL 14
NASDAQ 1 MSFT 15
NASDAQ 2 ORCL 17
NASDAQ 2 GOOG 30
NASDAQ 3 SBUX 357
NASDAQ 4 AMZN 489
NYSE 1 KRFT 12
NYSE 1 WMT 15
NYSE 1 GE 18
NYSE 2 MCD 18
NYSE 2 MMM 20
NYSE 3 DIS 21
NYSE 3 KO 21
NYSE 4 WBA 24
NYSE 4 HSY 26

As expected, the data now shows a ranking of rows by quartile, for both NASDAQ and NYSE stocks.

The examples of ranking functions and partitions given thus far are interesting, but a much
more useful application of these techniques will be seen in Chapter 14, “Subqueries.” The
ability to divide data into partitions and then apply a ranking to each partition means that
we can specify a top n type of selection for each partition in a data set. For example, say that
we want to select the largest order for each customer. We can partition the data by customer
number, and then rank each row by the order amount. Ultimately, we want to select only one
order per customer. This can be done by including a line such as the following in the query:

ROW_NUMBER() OVER
(PARTITION BY CustomerNumber ORDER BY OrderAmount) AS TheRow

This would have the effect of creating a calculated field named TheRow that ranks the orders
for each customer by OrderAmount. The order with the highest value would be assigned a
value of 1. As you’ll see in Chapter 14, it is then possible to select from the results of the initial
query, selecting only those rows where TheRow equals 1. This would give us the largest order
for each customer. This technique can be applied in many similar situations. For example,
we might want to see the most recent order for each customer or perhaps the most profitable
customer in each city.

ptg18192217

100 Chapter 9 Summarizing Data

Looking Ahead
In this chapter, we covered several forms of aggregation, beginning with the simplest—that
of eliminating duplicates. We then introduced a number of aggregate functions, which are
a different class of functions from the scalar functions seen in Chapter 4. The real power of
aggregate functions becomes apparent when they are used in conjunction with the GROUP
BY keyword, which allows for the separation of data into groups. We also looked at the use
of the HAVING clause, which allows you to apply group-level selection criteria to values in
aggregate functions.

We closed this chapter with two additional topics related to summation. The use of CASE
expressions in the GROUP BY and HAVING clauses allows you to apply conditional logic
grouping and group selection criteria. Finally, we covered ranking functions and partitioning,
which are useful ways of organizing detailed data. Through the use of the PARTITION BY
keyword, data can be separated into groups in conjunction with the ranking functions.

Our next chapter, on subtotals and crosstabs, offers additional formatting options for
aggregated values. Subtotals allow you to add summarized information to a presentation
of detailed data. Crosstabs offer a new method of laying out data in a format that is more
conducive to a clear display of aggregated data.

ptg18192217

10
Subtotals and Crosstabs

Keywords Introduced
ROLLUP • GROUPING • CUBE • PIVOT • FOR

The previous chapter provided numerous ways to add aggregation to a query. We now want
to extend that discussion to cover the additional option of providing subtotals. When we
aggregate data, we’re also removing the detailed data that lies below the summarized totals.
The whole point of aggregation is to replace detailed data with a summarization. However,
users sometimes want to see the detailed data, along with an occasional summary. This is
where subtotals come in. Subtotals are typically provided via extra rows added in with the
detailed data that summarize key columns.

A second topic we’ll cover in this chapter has to do with how summarized data is displayed to
the user. In the previous chapter, data was grouped together and then displayed to the user.
Each row of data indicates the values being grouped, along with the summarized values. This
is usually an adequate way of displaying data. But sometimes users prefer data in a crosstab
format. The crosstab format is one in which groups are broken out into multiple columns. This
has the effect of reducing the number of rows a user needs to look through. Crosstab layouts
are typically employed by many reporting tools. A prime example of a crosstab layout is the
Excel pivot table, which allows you to lay out data in both rows and columns. In this chapter,
we’ll show how to create this effect with a SQL command.

ptg18192217

102 Chapter 10 Subtotals and Crosstabs

Adding Subtotals with ROLLUP
In the previous chapter, we showed how to use the GROUP BY clause to group data together.
Often when data is grouped together, some columns might be aggregated to provide a sum of
values in that column. To revisit this scenario, let’s begin with the following data that shows
the current inventory of a few products.

InventoryID Category Subcategory Product Quantity

1 Furniture Chair Red Armchair 3
2 Furniture Chair Green Armchair 2
3 Furniture Desk Blue Computer Desk 4
4 Paper Copy White Copy Paper 5
5 Paper Copy Pink Copy Paper 2
6 Paper Notebook White Notebook Paper 4

In this example, each product is broken down by category and subcategory. For example, the
Furniture category includes Chair and Desk subcategories. The following SELECT statement
groups this data by Category and Subcategory, and sums the quantity for each group.

SELECT
Category,
Subcategory,
SUM(Quantity) AS 'Quantity'
FROM Inventory
GROUP BY Category, Subcategory
ORDER BY Category, Subcategory

The resulting output is:

Category Subcategory Quantity

Furniture Chair 5
Furniture Desk 4
Paper Copy 7
Paper Notebook 4

So far, all is well. But what if we also want to see subtotals for each category and a final total at
the end? In other words, in addition to the grouped data, we would like a subtotal row every
time a category changes, and a final row at the end that sums all the quantities. This can be
accomplished by use of a ROLLUP keyword in the GROUP BY clause, as follows:

SELECT
Category,
Subcategory,
SUM(Quantity) AS 'Quantity'
FROM Inventory
GROUP BY ROLLUP(Category, Subcategory)

ptg18192217

103Adding Subtotals with ROLLUP

The keyword ROLLUP is an extension to the GROUP BY clause that creates subtotal and total
rows. The output of the above statement is:

Category Subcategory Quantity

Furniture Chair 5
Furniture Desk 4
Furniture NULL 9
Paper Copy 7
Paper Notebook 4
Paper NULL 11
NULL NULL 20

As seen, three subtotal and total rows have been added to the original four rows. These rows
have the keyword NULL in either the Category or Subcategory columns. The first subtotal row
is the third row, displaying a quantity of 9 for the Furniture category. The Subcategory is shown
as NULL because we are showing only a subtotal for the category. The second of the subtotal
rows is the sixth row, which summarizes the Paper category, indicating that there are 11 paper
items. The final row is a total column that sums all items in all categories, indicating that we
have 20 total items in inventory.

Note that the NULL that appears in the output is somewhat different from the NULL values
we’ve seen previously. In this case, the NULL is merely a placeholder that indicates that a
ROLLUP has been applied.

The previous statement did not include an ORDER BY clause. Without an ORDER BY, the
subtotal and total rows always appear after each category. Let’s now add an ORDER BY to
the statement to see the difference:

SELECT
Category,
Subcategory,
SUM(Quantity) AS 'Quantity'
FROM Inventory
GROUP BY ROLLUP(Category, Subcategory)
ORDER BY Category, Subcategory

The output is:

Category Subcategory Quantity

NULL NULL 20
Furniture NULL 9
Furniture Chair 5
Furniture Desk 4
Paper NULL 11
Paper Copy 7
Paper Notebook 4

ptg18192217

104 Chapter 10 Subtotals and Crosstabs

As you can see, the ORDER BY clause changes the location of the the subtotal and total rows.
They now appear before rather than after each category. This is because NULL values are the
lowest possible value, so they appear first in the sorted sequence.

It’s plain to see that the use of the NULL values in the above examples is somewhat obtuse and
difficult to interpret. We’ll now show how to convert those NULL values to something more
meaningful. This is accomplished via a function called GROUPING. This is a special aggregate
function that works in conjunction with the ROLLUP keyword. As will be seen in the next
section, GROUPING also works with the CUBE keyword. The following example adds two
columns that make use of the GROUPING function. To make things simpler, we’ll remove the
ORDER BY clause.

SELECT
Category,
Subcategory,
SUM(Quantity) AS 'Quantity',
GROUPING(Category) AS 'Category Grouping',
GROUPING(Subcategory) AS 'Subcategory Grouping'
FROM Inventory
GROUP BY ROLLUP(Category, Subcategory)

The output is:

Category Subcategory Quantity Category Grouping Subcategory Grouping

Furniture Chair 5 0 0
Furniture Desk 4 0 0
Furniture NULL 9 0 1
Paper Copy 7 0 0
Paper Notebook 4 0 0
Paper NULL 11 0 1
NULL NULL 20 1 1

Let’s examine the output to see what the GROUPING function accomplishes. This function
has a single argument, which is the name of the column to be examined, and it returns
either a 0 or a 1. A 1 means that this row contains a subtotal or total, as specified by the same
column in the ROLLUP in the GROUP BY clause. In this example, the ROLLUP is on Category
and Subcategory. So the Grouping function on Subcategory returns a 1 if this row provides a
subtotal for Subcategory. The function returns a 0 if it is not a subtotal row for the specified
column. As you can see, the third row in the preceding output has a NULL in the Subcategory
column, and a corresponding value of 1 in the Subcategory Grouping column.

Now that we’ve see what the GROUPING function does, let’s put it to good use. In the next
example, we’ll introduce a CASE statement to translate the result of the GROUPING function to
a more meaningful label.

ptg18192217

105Adding Subtotals with ROLLUP

SELECT
ISNULL(Category,'') AS 'Category',
ISNULL(Subcategory, '') AS 'Subcategory',
SUM(Quantity) AS 'Quantity',
CASE WHEN GROUPING(Category) = 1 then 'Grand Total'
WHEN GROUPING(Subcategory) = 1 then 'Subtotal'
ELSE ' ' END AS 'Subtotal/Total'
FROM Inventory
GROUP BY ROLLUP(Category, Subcategory)

This produces the following output:

Category Subcategory Quantity Subtotal/Total

Furniture Chair 5
Furniture Desk 4
Furniture 9 Subtotal
Paper Copy 7
Paper Notebook 4
Paper 11 Subtotal

20 Grand Total

The ISNULL function in the Category and Subcategory columns suppresses the printing of
the word NULL. The CASE statement in the new Subtotal/Total column uses the GROUPING
function to print either “Subtotal” or “Grand Total” in the column if the Quantity is a Subtotal
or Grand Total.

There’s still more that can be done to make the display a little more understandable. In the
following example, we’ve moved the CASE statement to the first column.

SELECT
CASE
WHEN GROUPING(Category) = 1 THEN 'GRAND TOTAL'
WHEN GROUPING(Subcategory) = 1 THEN 'SUBTOTAL'
ELSE ISNULL(Category,'') END AS 'Category',
ISNULL(Subcategory, '') AS 'Subcategory',
SUM(Quantity) AS 'Quantity'
FROM Inventory
GROUP BY ROLLUP(Category, Subcategory)

Now the output is:

Category Subcategory Quantity

Furniture Chair 5
Furniture Desk 4
SUBTOTAL 9
Paper Copy 7
Paper Notebook 4
SUBTOTAL 11
GRAND TOTAL 20

ptg18192217

106 Chapter 10 Subtotals and Crosstabs

As seen, the CASE statement under the Category column prints the words SUBTOTAL or
TOTAL, if the corresponding quantity is a subtotal or total. The GROUPING function is used to
make this determination.

Database Differences: MySQL
MySQL has a slightly different format for the ROLLUP keyword. The equivalent of this SQL
Server line:
GROUP BY ROLLUP(Category, Subcategory)

in MySQL is:
GROUP BY Category, Subcategory WITH ROLLUP

MySQL doesn’t allow an ORDER BY clause if WITH ROLLUP is used. Also, MySQL doesn’t
support the GROUPING function.

Adding Subtotals with CUBE
Rollups work well in situations where the data has a hierarchical structure. In the previous
example, there was a natural hierarchy from category to subcategory. As such, you can think of
drilling down from category to subcategory. The ROLLUP keyword provides subtotals on each
category and a total at the end.

However, there are other situations in which the data is not hierarchical, but where we still
want to add subtotal rows. To illustrate that scenario, let’s look at the following data.

SalesDate CustomerID State Channel SalesAmount

4/1/2017 101 NY Internet 50
4/1/2017 102 NY Retail 30
4/1/2017 103 VT Internet 120
4/2/2017 145 VT Retail 90
4/2/2017 180 NY Retail 300
4/2/2017 181 VT Internet 130
4/2/2017 182 NY Internet 520
4/2/2017 184 NY Retail 80

This data shows sales by customer and date, indicating the state and channel of the sale. In this
example, there are only two states, NY and VT, and two channels, Internet and retail. Let’s say
that we’re interested in learning total sales by state and channel. Even though we have sales
from multiple customers on multiple dates, we don’t have a need to aggregate by customer or
date at this moment. We can view total sales by state and channel with this statement:

ptg18192217

107Adding Subtotals with CUBE

SELECT
State,
Channel,
SUM(SalesAmount) AS 'Sales Amount'
FROM SalesSummary
GROUP BY State, Channel
ORDER BY State, Channel

The resulting output is:

State Channel Sales Amount

NY Internet 570
NY Retail 410
VT Internet 250
VT Retail 90

So far, we’ve applied only a simple GROUP BY to obtain the aggregated sales amounts for each
combination of state and channel. Now, let’s say that we want to see subtotal and total rows,
similar to what we did previously with the furniture inventory data. The problem we face is
that there isn’t a natural hierarchy between state and channel, as there was between category
and subcategory. If we’re using subtotals, there’s no obvious way to indicate how the subtotals
are to be calculated. In effect, we want to see subtotals for both state and channel, independent
of each other.

To accomplish this, we’ll use a new keyword, CUBE, similar to how we previously used
ROLLUP. The following statement produces the desired result:

SELECT
State,
Channel,
SUM(SalesAmount) AS 'Sales Amount'
FROM SalesSummary
GROUP BY CUBE(State, Channel)
ORDER BY State, Channel

The output is:

State Channel Sales Amount

NULL NULL 1320
NULL Internet 820
NULL Retail 500
NY NULL 980
NY Internet 570
NY Retail 410
VT NULL 340
VT Internet 250
VT Retail 90

ptg18192217

108 Chapter 10 Subtotals and Crosstabs

As with the previous example, the NULL values in the State and Channel columns indicate
a subtotal or a grand total. The first row, with NULL values in both State and Channel is a
grand total for all the data. The second and third rows, with NULL in the State column, show
subtotals for the Channel column. For example, the second row indicates that there was a total
of 820 in Internet sales. The fourth and seventh rows, with NULL in the Channel column, have
subtotals for the State column. As seen, NY had a total of 980 in sales, and VT had 340 in sales.

The use of the keyword CUBE is meant to express a multidimensional way of looking at the
data. Whereas the ROLLUP keyword lets you drill down through data in a hierarchical fashion,
the CUBE keyword allows for multiple dimensions. In this example, we can view subtotals by
State or by Column.

As before, identifying the subtotals and grand totals is tricky. Ideally, you want to eliminate all
of the NULL values and indicate more precisely which rows are subtotals and grand totals. As
with rollups, we can use the GROUPING function to determine which rows are subtotals. The
following query adds two columns with the GROUPING information.

SELECT
State,
Channel,
SUM(SalesAmount) AS 'Sales Amount',
GROUPING(State) AS 'State Grouping',
GROUPING(Channel) AS 'Channel Grouping'
FROM SalesSummary
GROUP BY CUBE(State, Channel)
ORDER BY State, Channel

The output of this is:

State Channel Sales Amount State Grouping Channel Grouping

NULL NULL 1320 1 1
NULL Internet 820 1 0
NULL Retail 500 1 0
NY NULL 980 0 1
NY Internet 570 0 0
NY Retail 410 0 0
VT NULL 340 0 1
VT Internet 250 0 0
VT Retail 90 0 0

We’re still not at a point where the output makes sense, but now we’re going to get clever
and use the GROUPING function, along with a few other tricks, to make this output more
presentable. We’ll execute the following statement, and then explain it after we’ve seen
the output.

ptg18192217

109Adding Subtotals with CUBE

SELECT
ISNULL(State,' ') AS 'State',
ISNULL(Channel, ' ') AS 'Channel',
SUM(SalesAmount) AS 'Sales Amount',
CASE WHEN GROUPING(State) = 1
AND GROUPING(Channel) = 1 THEN 'Grand Total'
WHEN GROUPING(State) = 1
AND GROUPING(Channel) = 0 THEN 'Channel Subtotal'
WHEN GROUPING(State) = 0
AND GROUPING(Channel) = 1 THEN 'State Subtotal'
ELSE ' ' END AS 'Subtotal/Total'
FROM SalesSummary
GROUP BY CUBE(State, Channel)
ORDER BY
CASE
WHEN GROUPING(State) = 0 AND GROUPING(Channel) = 0 THEN 1
WHEN GROUPING(State) = 0 AND GROUPING(Channel) = 1 THEN 2
WHEN GROUPING(State) = 1 AND GROUPING(Channel) = 0 THEN 3
ELSE 4
END

The output is:

State Channel Sales Amount Subtotal/Total

NY Retail 410
VT Retail 90
NY Internet 570
VT Internet 250
NY 980 State Subtotal
VT 340 State Subtotal

Internet 820 Channel Subtotal
Retail 500 Channel Subtotal

1320 Grand Total

Let’s pause now to discuss how this output was produced. The first column uses a CASE
statement to print the State label only if the row is not for a subtotal or grand total. Similarly,
the second column does the same for the Channel label. The third column uses a SUM
function to print the sales amount for that row. The fourth column uses a CASE statement to
produce the Subtotal/Total label. As you can see, the CASE uses the GROUPING function to
determine whether this is a State subtotal, a Channel subtotal, or a grand total. If it’s none of
those, SQL prints a blank in that column. The GROUP BY clause uses the CUBE keyword to
create subtotals for all of the combinations specified. Finally, we’ve used a CASE statement and
the GROUPING function in the ORDER BY clause to make sure that the subtotals appear after
the detail rows, and the grand total row appears at the very end.

Database Differences: MySQL
MySQL doesn’t support the CUBE keyword.

ptg18192217

110 Chapter 10 Subtotals and Crosstabs

Creating Crosstab Layouts
The subtotal rows added with the ROLLUP and CUBE keywords provide additional aggregation
possibilities for your queries. By displaying additional subtotal rows, we can view summary
information along with the details. We now want to turn our attention to the way that
summarized data is typically presented. We already encountered this statement that groups
data by state and channel to provide an aggregated summary:

SELECT
State,
Channel,
SUM(SalesAmount) AS 'Sales Amount'
FROM SalesSummary
GROUP BY State, Channel
ORDER BY State, Channel

The output is:

State Channel Sales Amount

NY Internet 570
NY Retail 410
VT Internet 250
VT Retail 90

This data is perfectly understandable. We have four rows of data, in which each row gives an
aggregated summary of a specific state and channel combination. For example, the first row
provides the sum of sales over the Internet in NY. This is all well and good, but we now want
to introduce an alternate way of displaying this same information. Using a new keyword called
PIVOT, it’s possible to display this data as it would appear in an Excel pivot table, in what is
commonly called a crosstab query. Using the PIVOT keyword, we can produce this output in the
following layout:

Channel NY VT

Internet 570 250
Retail 410 90

Instead of four rows of data, we now have only two. This was accomplished by breaking down
the state values into separate columns. This compact way of displaying data is referred to as
a crosstab. If you’re familiar with Microsoft Excel, this is similar to what is seen in Excel pivot
tables. We’ll discuss pivot tables in Chapter 20, but for now the main idea to remember is that
pivot tables divide columns into four distinct areas: rows, columns, filters, and values. If this
were a pivot table, we would have placed Channel in the rows area, State in the columns area,
and Sales Amount in the values area.

The virtue of the crosstab is that it is more compact and makes it easier to navigate through the
data. For example, if we’re interested in finding retail sales in VT, we simply locate the Retail

ptg18192217

111Creating Crosstab Layouts

row and VT column and then find the intersection. With the traditional aggregated summary,
we would need to scan the various rows until we locate the row with the desired Channel and
State values.

Let’s now see how the above crosstab output was accomplished. A query that creates this
output is:

SELECT * FROM
(SELECT Channel, State, SalesAmount FROM SalesSummary) AS mainquery
PIVOT (SUM(SalesAmount) FOR State IN ([NY], [VT])) AS pivotquery

This is quite a bit more complex than anything we’ve seen previously. In a way, this is like
combining two queries together—a topic that will be discussed in Chapters 13 and 14. In order
to decipher this, we’ll need to break down the statement into its components. The portion of
the second line of the query that’s within parentheses is:

SELECT
Channel,
State,
SalesAmount
FROM SalesSummary

This query selects all data for the three columns of interest in the SalesSummary table. The AS
keyword that follows is used to provide an alias for the entire query. In this case, we’re calling
it mainquery, which is an arbitrary name; we could have called it anything.

The third line introduces the PIVOT operator. This keyword indicates that we will pivot on the
data items that follow. This means that we want data to appear in a crosstab format. The first
item listed is always an aggregation function. In this example, it is:

SUM(SalesAmount)

This indicates that we want to sum values in the SalesAmount column. The FOR keyword that
follows separates the aggregation function from the field that we want to appear as separate
columns in the pivot table. In this example, we want values for State to appear as separate
columns. The IN keyword separates the column name from the values that we want to appear
as column headers. The PIVOT operator requires us to explicitly state the values we want as
column headers. In this example, those values are NY and VT. Note that SQL Server requires
that these enumerated values be enclosed in brackets rather than the normal single quotes.
Finally, we assign an alias to the entire PIVOT expression, which in this example is pivotquery.
Like the mainquery alias, this is an entirely arbitrary name.

To recap, we’ve seen that this statement has this general structure:

SELECT * FROM
(a SELECT query that produces the data) AS alias_for_source_query
PIVOT (aggregation_function(column)
FOR column_for_column_headers
IN pivot_column_values)
AS alias_for_pivot_table

It might first appear that this was a lot of unnecessary extra work to produce a result that’s not
significantly more useful than the original output. To better illustrate the value of the PIVOT

ptg18192217

112 Chapter 10 Subtotals and Crosstabs

operator, let’s now add another level of aggregation, the sales date, into the mix. Going back to
non-crosstab queries, we can run this variation of the original query:

SELECT
SalesDate,
State,
Channel,
SUM(SalesAmount) AS Total
FROM SalesSummary
GROUP BY SalesDate, State, Channel
ORDER BY SalesDate, State, Channel

As you can see, we have added SalesDate to the GROUP BY and ORDER BY clauses. The output is:

SalesDate State Channel Total

2017-04-01 NY Internet 50
2017-04-01 NY Retail 30
2017-04-01 VT Internet 120
2017-04-02 NY Internet 520
2017-04-02 NY Retail 380
2017-04-02 VT Internet 130
2017-04-02 VT Retail 90

With an increased number of rows, this is a bit more difficult to interpret. For example, if we
want to find the retail sales for NY on 4/2/2017, we’ll have to scan the rows until we find that
the fifth row provides this information. Moreover, if we want to find retail sales from VT on
4/1/2017, it might take some time to realize that there are no rows with that information. This
is because our underlying data had no retail sales from VT on 4/1/2017.

Using the PIVOT operator, we can produce this same data in a crosstab layout, making it easier
to locate the desired data points. Our objective is to produce the data in this format:

SalesDate Channel NY VT

2017-04-01 Internet 50 120
2017-04-01 Retail 30 NULL
2017-04-02 Internet 520 130
2017-04-02 Retail 380 90

This can be accomplished with the following PIVOT statement:

SELECT * FROM
(SELECT SalesDate, Channel, State, SalesAmount FROM SalesSummary)
AS mainquery
PIVOT (SUM(SalesAmount) FOR State IN ([NY], [VT])) AS pivotquery
ORDER BY SalesDate

We’ve made only two changes to the previous PIVOT statement. First, we added the SalesDate
as a selected column in the mainquery portion of the statement. Second, we added an ORDER
BY clause, which causes the rows to be sorted by date. Unlike before, we now have both the

ptg18192217

113Creating Crosstab Layouts

SalesDate and Channel fields in the rows area of the crosstab. The columns area still has the
state, with each state listed in a separate column.

Notice that we see a NULL value for retail sales for VT on 4/1/2017. This explicitly tells us that
we had no such sales. This is a vast improvement over the traditional display of data, where it
is more difficult to determine that fact.

Also note that the order of fields in the mainquery SELECT is significant. In the query, we
have SalesDate listed before Channel. This caused the SalesDate column to appear to the left
of the Channel column. We could have easily switched the order of those two columns, as in
the following:

SELECT * FROM
(SELECT Channel, SalesDate, State, SalesAmount FROM SalesSummary) AS mainquery
PIVOT (SUM(SalesAmount) FOR State IN ([NY], [VT])) AS pivotquery
ORDER BY Channel

We also modified the column specified in the ORDER BY clause. The resulting output is:

Channel SalesDate NY VT

Internet 2017-04-01 50 120
Internet 2017-04-02 520 130
Retail 2017-04-01 30 NULL
Retail 2017-04-02 380 90

As you can see, the resulting output is somewhat different but has the same information.

Once you have more than two data elements in a crosstab query, there are many ways to
arrange the data. For example, we could have have chosen to put the Channel in the columns
area rather than the State. This would look like:

SalesDate State Internet Retail

2017-04-01 NY 50 30
2017-04-01 VT 120 NULL
2017-04-02 NY 520 380
2017-04-02 VT 130 90

The statement that produces this layout is:

SELECT * FROM
(SELECT SalesDate, State, Channel, SalesAmount FROM SalesSummary) AS mainquery
PIVOT (SUM(SalesAmount) FOR Channel IN ([Internet], [Retail])) AS pivotquery
ORDER BY SalesDate

The main change in this query is that we’ve specified Channel values in the pivotquery portion
of the statement. This causes the Channel values, Internet and Retail, to be broken out as
separate columns in the display.

ptg18192217

114 Chapter 10 Subtotals and Crosstabs

Remember that one of the main difficulties with using the PIVOT command is that all column
values must be explicitly listed. If you’re querying data, you must know what these values are
in advance of writing the query. For small categorical data items, this may not be a problem.
But for data where there are many possible values that can change over time, this can be
problematic. In Chapter 20, “Strategies for Displaying Data,” we’ll discuss an alternative to
PIVOT crosstab queries—namely, Excel pivot tables. Unlike crosstab queries, pivot tables do
not require the user to know in advance what values will appear. Pivot tables display rows and
columns dynamically, as needed, based on the values that are present. Hence, it is often more
expedient to give the user raw data and let them create a crosstab layout via Excel pivot tables.

Database Differences: MySQL and Oracle
MySQL doesn’t support the PIVOT keyword.

Oracle uses slightly different syntax for the PIVOT keyword. The equivalent of this SQL
Server statement:
SELECT * FROM
(SELECT Channel, State, SalesAmount FROM SalesSummary) AS mainquery
PIVOT (SUM(SalesAmount) FOR State IN ([NY], [VT])) AS pivotquery

in Oracle is:
SELECT * FROM
(SELECT Channel, State, SalesAmount FROM SalesSummary)
PIVOT (SUM(SalesAmount) FOR State IN ('NY', 'VT'));

Unlike SQL Server, Oracle uses quotes rather than brackets for the enumerated values
and does not use aliases (mainquery and pivotquery in this example).

Looking Ahead
This chapter took a slight detour into matters concerning layout. The ROLLUP and CUBE
keywords allow the GROUPING clause to generate additional subtotal rows on any number
of columns. The ROLLUP keyword works best with data for which there is a clear hierarchy
among the columns. In our example, there was a hierarchical relationship between the
Category and Subcategory columns of the Inventory table. In contrast, the CUBE keyword
generates all combinations of subtotals for the specified columns. As with a cube structure,
subtotals can be viewed from any perspective. We also discussed the GROUPING function,
which provides a way to add clarity to subtotal displays.

Our second topic in this chapter, crosstabs, used the PIVOT operator to produce data in a useful
crosstab layout. Although PIVOT queries are somewhat cumbersome to create, they sometimes
serve a purpose in generating data in a comprehensible format for the end user. In Chapter 20, we’ll
discuss Excel pivot tables, which are usually an easier way to display data in a crosstab fashion.

In our next chapter, “Inner Joins,” we’ll return from this detour to rejoin the main focus of this
book. Up until now, all of our queries have involved retrieving data from one table at a time.
The next few chapters will explore methods of combining data from multiple tables at once.
In the real world of computing, required data seldom comes from a single table. Thus, it is
essential to learn how to relate and combine data from more than one table in a single query.

ptg18192217

11
Inner Joins

Keywords Introduced
INNER JOIN • ON

Back in Chapter 1, we talked about the huge advance of relational databases over their
predecessors. The significant achievement of relational databases was in their ability to allow
data to be organized in any number of tables that are related but at the same time independent
of each other. Prior to the advent of relational databases, traditional databases utilized a
chain of internal pointers to explicitly define the relationships between tables. For example,
you might start with a Customers table and then follow pointers to find the first order for a
particular customer, then the next order, and so on until all orders for the customer have been
retrieved. In contrast, relational databases allow relationships to be inferred by columns that
tables have in common. These relationships are sometimes formalized by the definition of
primary and foreign keys, but that isn’t always necessary.

With relational databases, it is the responsibility of the SQL developer to determine and define
the relationships between tables. This allows for great flexibility in how different data elements
can be combined. The great virtue of relational databases lies in the fact that someone can grab
data from a variety of tables in ways that serve the immediate business requirement.

Let’s start with a common example. Most organizations have a business entity known as a
customer. As such, a database typically contains a Customers table that defines each customer.
Such a table would normally include a primary key to uniquely identify each customer, and
any number of columns with attributes that further define the customer. Common attributes
might include phone number, address, city, state, and so on.

The main idea is that all information about the customer is stored in a single table and only
in that table. This simplifies the task of data updates. When a customer changes his phone
number, only one table needs to be updated. However, the downside to this setup is that
whenever someone needs any information about a customer, they must access the Customers
table to retrieve the data.

ptg18192217

116 Chapter 11 Inner Joins

This brings us to the concept of a join. Let’s say that someone is analyzing products that have
been purchased. Along with information about the products, it might be necessary to provide
information about the customers who purchased each product. For example, an analyst may
wish to obtain customer ZIP codes for a geographic analysis. Whereas product information
may be found in a Products table, the ZIP code is stored only in the Customers table. To get
information on both customers and products, the analyst must join both tables together in
such a way that the data matches correctly.

In essence, the promise of relational databases is fulfilled by the ability to join tables together
in any desired manner. This is the normal situation. With this chapter, we will leave behind
the somewhat artificial examples for which data is retrieved only from a single table and
encounter more realistic scenarios involving data in multiple tables.

Joining Two Tables
To begin our exploration of the join process, let’s revisit the Sales table that we encountered
previously in Chapters 3 and 6:

SalesID FirstName LastName QuantityPurchased PricePerItem

1 Andrew Li 4 2.50
2 Carol White 10 1.25
3 James Carpenter 5 4.00

To some extent, the use of this table in earlier chapters was somewhat misleading. In reality, a
competent database designer would seldom create a table such as this. The problem is that it
contains information about two separate entities, customers and orders. In the real world, this
information would be split into at least two separate tables. A Customers table might look like
the following table, seen previously in Chapter 2, “Basic Data Retrieval”:

CustomerID FirstName LastName

1 Sara Davis
2 Rumi Shah
3 Paul Johnson
4 Samuel Martinez

An Orders table might look like this:

OrderID CustomerID OrderDate OrderAmount

1 1 2016-09-01 10.00
2 2 2016-09-02 12.50
3 2 2016-09-03 18.00
4 3 2016-09-15 20.00

ptg18192217

117Joining Two Tables

In this Orders table, we’ve chosen to include OrderDate and OrderAmount columns, rather
than the QuantityPurchased and PricePerItem columns seen in the first Sales table. Notice that
the data that was in the Sales table has now been split into two separate tables. The Customers
table contains information only about customers. The Orders table contains information solely
about items purchased. The Orders table includes a CustomerID column to indicate which
customer placed the order. As you might remember from Chapter 1, “Relational Databases and
SQL,” this is referred to as a foreign key.

Even though the Customers and Orders tables both have four rows, this is something of a
coincidence. There is one customer in the Customers table who has not placed an order. As
you can see, CustomerID 4, Samuel Martinez, does not appear in the Orders table. On the other
hand, Rumi Shah has placed two different orders, as evidenced by the two rows in the Orders
table with an CustomerID of 2.

Even with these two tables, there is still much missing. For example, an Orders table would
typically include additional columns, such as information on the tax collected or the
salesperson’s name. Plus, the Orders table itself might in fact be split into more than one
table so that information about the entire order, such as the order date, could be stored
apart from information about each item that was ordered. In other words, this is still not a
completely realistic example. However, now that we’ve split our information into two separate
tables, we can address how to create a SELECT statement that can pull data from both tables
simultaneously.

Before we get to the SELECT statement itself, we need to address one additional concern, which
is how to visually represent the two tables and the implied relationship that exists between them.
Previously, we displayed each table with column names on the top row and corresponding data
on subsequent rows. Now that we have more than one table to deal with, we’ll introduce another
type of visual representation. Figure 11.1 shows a diagram with both tables, with the table name
on the top row and the column names in each subsequent row. This diagram is a simplified
version of what is commonly called an entity-relationship diagram. The term entity refers to the
tables, and relationship refers to the line drawn between the data elements in those tables. Rather
than showing detailed data, this diagram indicates the overall structure of the data.

Figure 11.1 Entity-relationship diagram

The important point to notice is that we’ve drawn a line from CustomerID in the Customers
table to the CustomerID in the Orders table. This indicates a relationship between these two
tables—namely, that both tables share values stored in the CustomerID column.

ptg18192217

118 Chapter 11 Inner Joins

The Inner Join
We are now ready to present a SELECT statement with what is called an inner join:

SELECT *
FROM Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID

Let’s examine this statement line by line. The SELECT keyword on the first line merely
states that we want all (*) columns from both tables. The second line, with the FROM clause,
indicates that the first table we want to specify is the Customers table. The third line introduces
the new INNER JOIN keyword. This keyword is used to specify an additional table that we want
to include in our query. In this case, we want to add the Orders table.

Finally, the fourth line introduces the ON keyword. This ON works in conjunction with the
INNER JOIN and specifies exactly how the two tables are to be joined. In this case, we are
connecting the CustomerID column of the Customers table (Customers.CustomerID) to the
CustomerID column of the Orders table (Orders.CustomerID). Because the CustomerID column
has the same name in both the Customers and Orders table, we need to specify the table name
as a prefix to the CustomerID column name. The prefix allows us to distinguish between these
columns in two separate tables.

The preceding SELECT statement produces this data:

CustomerID FirstName LastName OrderID CustomerID OrderDate OrderAmount

1 Sara Davis 1 1 2016-09-01 10.00
2 Rumi Shah 2 2 2016-09-02 12.50
2 Rumi Shah 3 2 2016-09-03 18.00
3 Paul Johnson 4 3 2016-09-15 20.00

Let’s analyze the results. Both the Customers table and the Orders table had four rows. Looking
at the OrderID column, you can tell that we have data from all four rows from the Orders table.
However, looking at the CustomerID column, you might notice that only three customers are
shown. Why is that? The answer is that the customer with a CustomerID of 4 doesn’t exist in
the Orders table. Because we’re joining the two tables together on the CustomerID field, we
have no rows in the Orders table that match the CustomerID of 4 in the Customers table.

This brings us to an important observation: An inner join only returns data for which there is
a match between both tables being joined. In the next chapter, we’ll talk about an alternative
method of joining tables that will allow the customer information for the CustomerID of 4 to
be shown, even if there are no orders for that customer.

Here’s a second important observation: Notice that the customer data for Rumi Shah is repeated
twice. She existed only once in the Customers table, so one might wonder why she appears
on two rows. The answer is that the INNER JOIN causes all possible matches to be shown.
Because Rumi has two rows in the Orders table, both of these rows match with her row in the
Customers table, resulting in her customer information being displayed twice.

ptg18192217

119An Alternate Specification of Inner Joins

Finally, you may be wondering why this join is referred to an inner join. There are, in fact, two
main variations of the join: the inner join and the outer join. Outer joins will be covered in the
next chapter.

Table Order in Inner Joins
An inner join brings back data where there is a match between the two specified tables. In the
previous SELECT, we specified the Customers table in the FROM clause and the Orders table
in the INNER JOIN clause. We might ask whether it matters which table is specified first. As
it turns out, for inner joins, the order in which the tables are listed can be reversed with no
difference in the results. The following two SELECT statements are logically identical and return
the same data:

SELECT *
FROM Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID

SELECT *
FROM Orders
INNER JOIN Customers
ON Orders.CustomerID = Customers.CustomerID

The only difference is that the first statement would display columns from the Customers
table first and the Orders table second. The second statement would display columns from
the Orders table first and the Customers table second. Despite the order of the columns, both
statements return identical data.

Remember that SQL is not a procedural language. It doesn’t specify how a task is to be
completed. SQL only indicates the desired logic, and leaves it to the internals of the database
to decide exactly how to perform the required task. As such, SQL doesn’t determine how the
database physically retrieves data. It doesn’t define which table to physically look at first.
Instead, the database software determines the optimal method of obtaining the data.

An Alternate Specification of Inner Joins
In the previous examples, we used the INNER JOIN and ON keywords to specify inner joins. It
is also possible to specify inner joins with just the FROM and WHERE clauses. We have already
seen this statement that joins the Customers and Orders tables:

SELECT *
FROM Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID

An alternate way of specifying the same inner join without the INNER JOIN and ON keywords is:

SELECT *
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID

ptg18192217

120 Chapter 11 Inner Joins

In this alternate specification, rather than using the INNER JOIN keyword to define the new
table to join to, we merely list all tables to be joined in the FROM clause. Instead of using
the ON clause to say how the tables are related, we use the WHERE clause to specify the
relationship between the tables.

Even though this alternate format works perfectly well and produces the same results, we
don’t recommend its use. The advantage of the INNER JOIN and ON keywords is that they
explicitly present the logic of the join. That is their only purpose. Although it is possible to
specify the relationship in a WHERE clause, the meaning of the SQL statement is less obvious
when the WHERE clause is used for selection criteria and also to indicate relationships between
multiple tables.

Table Aliases Revisited
Let’s now look at the columns that were returned from the previous SELECT statement. Because
we specified all (*) columns, we see all columns from both tables. The CustomerID column
appears twice because that column exists in both tables. In practice, however, we would not
want this data repeated. Here’s an alternate version of the SELECT, which now specifies only
the columns we want to see. In this variant, we employ table aliases, C for Customers and O for
Orders, which are placed immediately after the FROM and INNER JOIN keywords by inserting
the AS keyword. The statement looks like this:

SELECT
C.CustomerID AS 'Cust ID',
C.FirstName AS 'First Name',
C.LastName AS 'Last Name',
O.OrderID AS 'Order ID',
O.OrderDate AS 'Date',
O.OrderAmount AS 'Amount'
FROM Customers AS C
INNER JOIN Orders AS O
ON C.CustomerID = O.CustomerID

The results are:

Cust ID First Name Last Name Order ID Date Amount

1 Sara Davis 1 2016-09-01 10.00
2 Rumi Shah 2 2016-09-02 12.50
2 Rumi Shah 3 2016-09-03 18.00
3 Paul Johnson 4 2016-09-15 20.00

In this statement, we’re displaying only the CustomerID from the Customers table, and not
from the Orders table. Also notice that we’re using the AS keyword to specify both column and
table aliases. Note that the AS keyword is completely optional. All of the AS keywords can be
removed from this SELECT, and the statement would still be valid and return the same results.
However, we recommend using the AS keywords for the sake of clarity.

ptg18192217

121Looking Ahead

Database Differences: Oracle
As mentioned in Chapter 3, “Calculated Fields and Aliases,” table aliases are specified in
Oracle without the AS keyword. The syntax for the equivalent statement in Oracle is:
SELECT
C.CustomerID AS "Cust ID",
C.FirstName AS "First Name",
C.LastName AS "Last Name",
O.OrderID AS "Order ID",
O.OrderDate AS "Date",
O.OrderAmount AS "Amount"
FROM Customers C
INNER JOIN Orders O
ON C.CustomerID = O.CustomerID;

Although we see the AS keyword used for column aliases, the AS keyword is not used for table
aliases in Oracle.

Looking Ahead
The ability to join tables together in a query is an essential feature of SQL. Relational databases
would be of little use without joins. This chapter focused on the formulation of the inner join.
The inner join brings back data for which there is a match between both tables being joined.
We also talked about an alternate way of specifying the inner join, and the usefulness of using
table aliases.

In our next chapter, we will turn to another important type of join: the outer join. As
mentioned, inner joins only allow us to view data where there is a match between the
tables being joined. So, if you have a customer with no orders, you won’t see any customer
information when doing an inner join between a Customers table and an Orders table. The
outer join will allow you to view that customer information, even if there are no orders for the
customer. In other words, the outer join lets us see data that we would not otherwise be able
to obtain with an inner join. Additionally, the next chapter will begin introducing scenarios in
which more than two tables are joined.

ptg18192217

This page intentionally left blank

ptg18192217

12
Outer Joins

Keywords Introduced
LEFT JOIN • RIGHT JOIN • FULL JOIN • CROSS JOIN

We now advance from inner joins to outer joins. The main restriction of inner joins is
that they require a match in all tables being joined to show any results. If you’re joining a
Customers table to an Orders table, no data is shown for the customer if that customer hasn’t
yet placed an order. This may seem like a relatively unimportant problem, but it often becomes
significant with different types of data.

To use a different example, let’s say we have an Orders table and a Refunds table. The Refunds
table is related to the Orders table by OrderID. In other words, all refunds are tied to a specific
order. The refund can’t exist unless the order exists. The problem arises when we want to see
both orders and refunds in a single query. If we join these two tables with an inner join, we
won’t see any orders if no refunds were issued against that order. Presumably, this would be
the majority of the orders. The outer join allows us to view orders even if they don’t have a
matching refund, and is therefore an essential technique to understand and use.

The Outer Join
All the joins seen in the previous chapter were inner joins. Because inner joins are the most
common join type, SQL considers them the default join. You can specify an inner join using
only the keyword JOIN; it isn’t necessary to state INNER JOIN.

In contrast to inner joins, there are three types of outer joins: LEFT OUTER JOIN, RIGHT
OUTER JOIN, and FULL OUTER JOIN. These can be referred to as simply LEFT JOIN, RIGHT
JOIN, and FULL JOIN. In this case, the word OUTER isn’t necessary. To summarize, our
recommendation is to refer to the four join types as:

• INNER JOIN

• LEFT JOIN

• RIGHT JOIN

• FULL JOIN

ptg18192217

124 Chapter 12 Outer Joins

This keeps the syntax simple and consistent. At the end of this chapter, we’ll also briefly
illustrate something called the CROSS JOIN, but that join is neither an inner nor an outer join
and is seldom used.

We’ll use three tables in our examples of outer joins. The first will be a Customers table with
information about each customer. The second will be an Orders table with data on each order
placed. We’ll reference Customers and Orders tables with the same data seen in the previous
chapter. Finally, we’ll add a Refunds table with information about any refunds that have been
issued to customers.

Figure 12.1 shows how these three tables are related.

Figure 12.1 Entity-relationship diagram for three tables

In contrast to the figure seen in the previous chapter, the lines connecting the tables are now
shown as arrows. For example, the arrow drawn from the CustomerID field of the Customers
table to the CustomerID field of the Orders table indicates that the link between the Customers
and Orders table is possibly one-sided, in the sense that there may not be any orders for a given
customer. Additionally, there may be multiple orders for a single customer. Similarly, the arrow
drawn between the Orders and Refunds tables indicates that there may not be any refunds for a
given order, and that there may be multiple refunds for an order.

The line between the Customers and Orders table connects the CustomerID columns because
that is the common link between the two tables. Similarly, the line between the Orders and
Refunds tables is on the OrderID column because the OrderID is the common link between
those two tables.

In other words, the Orders table is related to the Customers table by customer. There must be a
customer for an order to exist. The Refunds table is related to the Orders table by the order. There
must be an order before a refund is issued. Note that the Refunds table is not directly related to
the Customers table; those two tables don’t share a common field. However, by joining all three
tables together, we will be able to determine which customer a given refund is for.

Let’s now examine the contents of each table. The Customers table has these values:

CustomerID FirstName LastName

1 Sara Davis
2 Rumi Shah
3 Paul Johnson
4 Samuel Martinez

ptg18192217

125Left Joins

The Orders table has these values:

OrderID CustomerID OrderDate OrderAmount

1 1 2016-09-01 10.00
2 2 2016-09-02 12.50
3 2 2016-09-03 18.00
4 3 2016-09-15 20.00

The Refunds table has these values:

RefundID OrderID RefundDate RefundAmount

1 1 2016-09-02 5.00
2 3 2016-09-18 18.00

Notice that only three out of the four customers have placed orders. Likewise, only two refunds
have been issued for the four orders placed.

Left Joins
Let’s now create a SELECT statement that joins all three tables together using a LEFT JOIN:

SELECT
Customers.FirstName AS 'First Name',
Customers.LastName AS 'Last Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt',
Refunds.RefundDate AS 'Refund Date',
Refunds.RefundAmount AS 'Refund Amt'
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID
ORDER BY Customers.LastName, Customers.FirstName, Orders.OrderDate

The resulting data looks like:

First Name Last Name Order Date Order Amt Refund Date Refund Amt

Sara Davis 2016-09-01 10.00 2016-09-02 5.00
Paul Johnson 2016-09-15 20.00 NULL NULL
Samuel Martinez NULL NULL NULL NULL
Rumi Shah 2016-09-02 12.50 NULL NULL
Rumi Shah 2016-09-03 18.00 2016-09-18 18.00

ptg18192217

126 Chapter 12 Outer Joins

Database Differences: Oracle
Unlike SQL Server and MySQL, Oracle typically displays dates in a DD-MMM-YY format. For
example, the date 2016-09-02 in the previous table will display as 02-SEP-16 in Oracle.
However, no matter which database you’re using, the exact format in which dates are displayed
will vary, depending on how your database was set up.

Before analyzing the previous SELECT statement, notice two interesting aspects of the data.
First, Samuel Martinez has no data shown other than his name. The reason for the lack of data
is that there are no rows in the Orders table associated with that customer. The power of the
outer join becomes evident from the fact that we can see some data for Samuel Martinez, even
if he has no orders. If we had specified an INNER JOIN rather than a LEFT JOIN, we would see
no rows at all for Samuel.

Similarly, there is no refund data for either the 9/2/2016 order from Rumi Shah or the order
from Paul Johnson. This is because there are no rows in the Refunds table associated with these
orders. If we had specified an INNER JOIN rather than a LEFT JOIN, we would have seen no
rows at all for those two orders.

Let’s now examine the SELECT statement itself. The first few lines that specify the columns are
nothing we haven’t seen before. Notice that rather than using table aliases, we’ve chosen to list
all the columns with their fully qualified names, including the table names as a prefix.

The first table listed is the Customers table. This table is shown after the FROM keyword.
The second table shown is the Orders table, which appears after the first LEFT JOIN
keyword. The subsequent ON clause specifies how the Orders table is linked to the Customers
table. The third table shown is the Refunds table, which appears after the second LEFT JOIN
keyword. The subsequent ON clause states how the Refunds table is joined to the Orders table.

It is critical to realize that the order in which tables are listed in reference to the LEFT JOIN
keyword is significant. When specifying a LEFT JOIN, the table to the left of LEFT JOIN is
always the primary table. The table to the right of LEFT JOIN is the secondary table. When
joining the secondary table to the primary table, we want all rows in the primary table, even if
there are no matches with any rows in the secondary table.

In the first specified LEFT JOIN, the Customers table is on the left and the Orders table is on
the right of the LEFT JOIN. This signifies that Customers is primary and Orders is secondary.
In other words, we want to see all selected data from the Customers table, even if there isn’t
a corresponding match in the secondary table for that row.

Similarly, in the second LEFT JOIN, the Orders table is to the left and the Refunds table is to
the right of the LEFT JOIN keyword. That means that we are specifying Orders as primary and
Refunds as secondary in this join. We want all orders, even if there are no matching refunds
for some orders.

ptg18192217

127Testing for NULL Values

Just as with inner joins, data from one table can be repeated if there is more than one
matching row between that table and the table to which it is joined. In this example, we have
more than one order for Rumi Shah, so the customer information for Rumi Shah is repeated on
two separate lines.

Finally, we included an ORDER BY clause. This was done merely to present the data in an
understandable order.

Testing for NULL Values
In the previous SELECT, we had one customer with no orders and two orders with no
associated refunds. Unlike the INNER JOIN, the LEFT JOIN allows these rows with missing
values to appear.

To test our understanding of the LEFT JOIN, let’s now look at how we would list only those
orders for which no refund was issued. The solution involves adding a WHERE clause that tests
for NULL values, as follows:

SELECT
Customers.FirstName AS 'First Name',
Customers.LastName AS 'Last Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt'
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID
WHERE Orders.OrderID IS NOT NULL
AND Refunds.RefundID IS NULL
ORDER BY Customers.LastName, Customers.FirstName, Orders.OrderDate

The resulting data is:

First Name Last Name Order Date Order Amt

Paul Johnson 2016-09-15 20.00
Rumi Shah 2016-09-02 12.50

The WHERE clause first tests Orders.OrderID to make sure that it isn’t NULL. Doing so ensures
that we don’t see customers who never placed an order. The second line of the WHERE clause
tests Refunds.RefundID to make sure that it is NULL. This guarantees that we only see orders
that don’t have a matching refund.

Notice that we didn’t bother to display the Refund Date or Refund Amount columns in this
SELECT. This is because we know those columns would always have NULL values, based on our
selection criteria.

ptg18192217

128 Chapter 12 Outer Joins

Right Joins
The previous SELECT statements utilized the LEFT JOIN keyword. The good news about right
joins is that they are identical in concept to the left join. The only difference between left and
right joins is the order in which the two tables in the join are listed.

In left joins, the primary table is listed to the left of the LEFT JOIN keyword. The secondary table,
which may or may not contain matching rows, is listed to the right of the LEFT JOIN keyword.

In right joins, the primary table is listed to the right of the RIGHT JOIN keyword. The
secondary table is listed to the left of the RIGHT JOIN keyword. That’s the only difference.

The FROM clause and joins in the previous SELECT statement were:

FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID

The equivalent logic, using RIGHT JOIN keywords is:

FROM Refunds
RIGHT JOIN Orders
ON Orders.OrderID = Refunds.OrderID
RIGHT JOIN Customers
ON Customers.CustomerID = Orders.CustomerID

Note that only the order in which tables are listed before and after the RIGHT JOIN matters.
The order in which columns are listed after the ON keyword has no significance. Thus, the
above is also equivalent to:

FROM Refunds
RIGHT JOIN Orders
ON Refunds.OrderID = Orders.OrderID
RIGHT JOIN Customers
ON Orders.CustomerID = Customers.CustomerID

In essence, if you’re comfortable with the LEFT JOIN, it’s completely unnecessary to ever use
the RIGHT JOIN keyword. Anything that can be specified with a RIGHT JOIN can be stated as
a LEFT JOIN. Our suggestion is therefore to stick with the LEFT JOIN, because it is usually more
intuitive. Because we read from left to right, it’s natural to think in terms of listing the more
important, or primary, tables first.

ptg18192217

129Full Joins

Table Order in Outer Joins
We noted previously that the order in which tables are specified in an inner join is not
significant. The same is not true of outer joins, because the order in which tables are listed in
a left or right join is significant. At the same time, there is some flexibility in listing the tables
in situations where there are three or more tables. The order of the LEFT (or RIGHT) JOIN
keywords can be switched around if desired.

Let’s look again at the original FROM clause and joins from the previous select:

FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID

We’ve already seen that the Refunds table can be listed first and the Customers table last, as
long as everything is converted to right joins, as in:

FROM Refunds
RIGHT JOIN Orders
ON Orders.OrderID = Refunds.OrderID
Right JOIN Customers
ON Customers.CustomerID = Orders.CustomerID

Is it possible to list the Customers table first, and then the Refunds table, followed by the
Orders table? Yes, as long as you’re willing to mix left and right joins together and also throw
in some parentheses. The following is equivalent to the above:

FROM Customers
LEFT JOIN (Refunds
RIGHT JOIN Orders
ON Orders.OrderID = Refunds.OrderID)
ON Customers.CustomerID = Orders.CustomerID

What was a fairly simple statement has now turned into something unnecessarily complex. We
only show this logic to indicate what not to do, and also because it’s something that you may
encounter when reviewing code. Our advice is to stick with the LEFT JOIN keyword and avoid
parentheses when devising complex FROM clauses with multiple tables.

Full Joins
In addition to left joins and right joins, there is one additional outer join type, referred to
as the full join. We’ve seen that in left and right joins, one table is primary and the other is
secondary. Alternatively, you can say that one table is required and one is optional, which
means that when matching two tables, rows in the secondary (or optional) table don’t
necessarily have to exist.

In the inner join, both tables are primary (or required). When matching two tables, there must
be a match between both tables for a row of data to be selected.

ptg18192217

130 Chapter 12 Outer Joins

In the full join, both tables are secondary (or optional). In this situation, if we’re matching rows
in Table A and Table B, then we display 1) all rows from Table A, even if there is no matching
row in Table B, and also 2) all rows from Table B, even if there is no matching row in Table A.

Database Differences: MySQL
Unlike SQL Server and Oracle, MySQL doesn’t allow for a full join.

Let’s look at an example in which we are matching rows from these two tables. First, we have
this Movies table:

MovieID MovieTitle Rating

1 Love Actually R
2 North by Northwest Not Rated
3 Love and Death PG
4 The Truman Show PG
5 Everyone Says I Love You R
6 Down with Love PG-13
7 Finding Nemo G

Second, here’s a Ratings table, with rating descriptions from the Motion Picture Association of
America (MPAA):

RatingID Rating RatingDescription

1 G General Audiences
2 PG Parental Guidance Suggested
3 PG-13 Parents Strongly Cautioned
4 R Restricted
5 NC-17 Under 17 Not Admitted

The Movies table has a list of movies in the database and includes the MPAA rating for each
movie. The Ratings table has a list of the ratings and their descriptions. Let’s say we want to
find all matches between these two tables. We’ll use a FULL JOIN to show all rows from the
Movies table as well as all rows from the Ratings table. The full join will display all rows, even
if a match from the other table isn’t found. The SELECT looks like this:

SELECT
RatingDescription AS 'Rating Description',
MovieTitle AS 'Movie'
FROM Movies
FULL JOIN Ratings
ON Movies.Rating = Ratings.Rating
ORDER BY RatingDescription, MovieTitle

ptg18192217

131Cross Joins

The output of this statement is:

Rating Description Movie

NULL North by Northwest
General Audiences Finding Nemo
Parental Guidance Suggested Love and Death
Parental Guidance Suggested The Truman Show
Parents Strongly Cautioned Down with Love
Restricted Everyone Says I Love You
Under 17 Not Admitted NULL

Notice that there are two NULL cells in the data, which is a direct result of having used a FULL
JOIN. In the first instance, there is no rating shown for North by Northwest because there was
no matching row in the Ratings table for that movie. In the second instance, there is no movie
shown for the “Under 17 Not Admitted” rating description because there were no matching
rows in the Movies table for that rating.

As a side note, observe that we chose not to use table aliases or specify table names in the
columnlist. For example, we listed the column MovieTitle as is, without the fully qualified
name (Movies.MovieTitle). This is because these columns exist only in one table, so there is no
confusion in specifying a column name without the table name.

The FULL JOIN is seldom used in practice for the simple reason that this type of relationship
between tables is relatively uncommon. In essence, the full join shows data where there are
nonmatches in both directions between two tables. We are normally interested only in data
where there is a complete match between two tables (the inner join) or perhaps a one-sided
match (the left or right join).

Cross Joins
The final join type to be discussed in this chapter, the cross join, is neither an inner join nor
an outer join. In essence, the cross join is a way of joining two tables without indicating any
relationship between the tables. Because no relationship is stated, the cross join produces every
combination of rows between the tables. In technical terms, this is referred to as the Cartesian
product. If one table has three rows and a second table has four rows, and those tables are cross
joined, the result will have 12 rows. Because of the esoteric nature of this join, it is seldom used
in practice.

ptg18192217

132 Chapter 12 Outer Joins

With that in mind, let’s look at two examples of the cross join. In this first example, we’ll
imagine that we’re a shirt maker, and we produce shirts in three sizes and in four colors.
A SizeInventory table holds the available sizes and looks like this:

SizeID Size

1 Small
2 Medium
3 Large

A ColorInventory table lists the available colors, and includes this data:

ColorID Color

1 Red
2 Blue
3 Green
4 Yellow

We want to determine all of the possible combinations of shirt sizes and colors that can be
produced. This can be accomplished by the following SELECT statement, using a cross join:

SELECT
Size,
Color
FROM SizeInventory
CROSS JOIN ColorInventory

The resulting output is:

Size Color

Small Red
Small Blue
Small Green
Small Yellow
Medium Red
Medium Blue
Medium Green
Medium Yellow
Large Red
Large Blue
Large Green
Large Yellow

ptg18192217

133Cross Joins

As you can see, the cross join produces every combination of rows from both tables. Notice that
there is no ON keyword in a cross join. This is because no relationship between the tables is
specified. The tables don’t have a column in common. The data in both tables is independent
of each other.

Interestingly, the cross join can also be specified in the “alternate” specification format
discussed in the previous chapter. That is, the cross join can be indicated by merely listing both
tables in the FROM clause, without the use of the CROSS JOIN keyword. The following SELECT
is the equivalent of the previous CROSS JOIN statement and produces the same output:

SELECT
Size,
Color
FROM SizeInventory, ColorInventory

The preceding cross join example represents a situation that’s not very realistic. However, this
second example indicates a somewhat more common use of the cross join. For this example,
we’ll imagine that we have a special table with only one row of data that contains certain key
pieces of information. Because that table has only one row of data, we can do a cross join to
the table without increasing the number of rows in the final result. To illustrate, we’ll use this
SpecialDates table that contains a number of dates relevant to the organization:

LastProcessDate CurrentFiscalYear CurrentFiscalQuarter

2016-09-15 2016 Q3

In this scenario, we want to select data from our Orders table. However, we only want to see
data for the LastProcessDate in the SpecialDates table. The LastProcessDate is a frequently
changing date that gives the date of the last group of data processed in the system. The
assumption is that there may be some sort of lag, so this may not be the current date. This
statement, utilizing a cross join, accomplishes that objective.

SELECT
OrderID AS 'Order ID',
OrderDate AS 'Date',
OrderAmount AS 'Amount'
FROM Orders
CROSS JOIN SpecialDates
WHERE OrderDate = LastProcessDate

The resulting output is:

Order ID Date Amount

4 2016-09-15 20.00

Only one row of data from the Orders table is shown. This is because we’ve used the
LastProcessDate of the SpecialDates table as part of the selection logic. Note that because the
SpecialDates table has only one row, there is no harm in doing a cross join to this table. It
doesn’t affect the number of rows displayed.

ptg18192217

134 Chapter 12 Outer Joins

Looking Ahead
This chapter extended our discussion of joins to outer joins. The left join enables the analyst
to join a primary and secondary table together, showing all rows in the primary table even if
there is no match in the secondary table. The right join is simply the reverse of the left join,
switching the order of the primary and secondary tables. Finally, the full join enables both
tables to be secondary tables. The full join displays all rows in either table, even if there is no
match in the other table. We also talked about the cross join, a seldom used join type that
shows all combinations of rows from both tables being joined. In a cross join, the relationship
between the tables, if one exists, is not stated.

In our next chapter, “Self Joins and Views,” we’ll take another slight detour to two related
topics. First, we’ll discuss self joins, which is a special technique that allows us to join a table
to itself. This creates a virtual view of the table, in the sense that we can now view this table
from two different perspectives. The second main topic of the following chapter will extend the
concept of self joins to a more general way of creating virtual views of multiple tables.

ptg18192217

13
Self Joins and Views

Keywords Introduced
CREATE VIEW • ALTER VIEW • DROP VIEW

The inner and outer joins of the previous two chapters dealt with various ways of combining
data from multiple tables. The assumption has always been that the data exists in physical
tables in a database. We’ll now turn to two techniques that will let us view data in a more
virtual way. The first technique, the self join, allows the analyst to join a table to itself,
referring to the same table twice, as if it were two separate tables. As such, the self join creates
a virtual view of a table, allowing it to be used more than once. Second, we’ll learn about
database views, which is a useful concept that enables us to create new virtual tables at will.

Self Joins
The self join lets you join a table to itself. The most common use of the self join is in dealing
with self-referencing tables. These are tables that include a column that refers to another
column in the same table. A common example of this type of relationship is a table that
contains information about employees.

In this next example, each row in a Personnel table has a column that points to another row
in the same table, representing the employee’s manager. In a way, this is similar to the concept
of foreign keys. The main difference is that, whereas foreign keys point to a column in another
table, we now have a situation where a column points to another column within the same table.

ptg18192217

136 Chapter 13 Self Joins and Views

Let’s look at the data in this Personnel table:

EmployeeID EmployeeName ManagerID

1 Susan Carter NULL
2 Li Wang 1
3 Robert Baker 1
4 Scott Fielding 1
5 Carla Bender 2
6 Janet Brown 2
7 Jules Moreau 3
8 Amy Adamson 4
9 Jaideep Singh 4
10 Amelia Williams 5

This table has one row per employee. The ManagerID column states which manager the
employee reports to. The ID number in that column corresponds to a value in the EmployeeID
column. For example, Li Wang has a ManagerID of 1. This indicates that Li’s manager is Susan
Carter, who has an EmployeeID of 1.

We can see that the three people who report to Susan Carter are Li Wang, Robert Baker, and
Scott Fielding. Notice that Susan Carter has no value in the ManagerID column. This indicates
that she is the head of the company and thus has no manager.

Now, let’s say that we want to list all employees and show the name of the manager to whom
each employee reports. To accomplish this, we’ll create a self-join of the Personnel table to
itself. A table alias must always be used with self joins so that we have a way of distinguishing
each instance of the table. We’ll give the first instance of the Personnel table a table alias of
Employees, and we’ll give the second instance a table alias of Managers. Here’s the statement:

SELECT
Employees.EmployeeName AS 'Employee Name',
Managers.EmployeeName AS 'Manager Name'
FROM Personnel AS Employees
INNER JOIN Personnel AS Managers
ON Employees.ManagerID = Managers.EmployeeID
ORDER BY Employees.EmployeeName

The resulting data is:

Employee Name Manager Name

Amelia Williams Carol Bender
Amy Adamson Scott Fielding
Carla Bender Li Wang
Jaideep Singh Scott Fielding
Janet Brown Li Wang
Jules Moreau Robert Baker
Li Wang Susan Carter
Robert Baker Susan Carter
Scott Fielding Susan Carter

ptg18192217

137Creating Views

The trickiest part of this SELECT is the ON clause in the join. To get the self join to work
correctly, we must use the ON to establish a relationship between the ManagerID column of
the Employees view of the Personnel table, and the EmployeeID column of the Managers view
of the table. In other words, the indicated manager is also an employee.

Notice that Susan Carter isn’t shown in the previous data as an employee. This is because we
used an inner join in the statement. Because Susan Carter has no manager, there is no match
to the Managers view of the table. If we want Susan Carter to be included, we merely need to
change the inner join to an outer join. The new statement is:

SELECT
Employees.EmployeeName AS 'Employee Name',
Managers.EmployeeName AS 'Manager Name'
FROM Personnel AS Employees
LEFT JOIN Personnel AS Managers
ON Employees.ManagerID = Managers.EmployeeID
ORDER BY Employees.EmployeeName

The data retrieved is then:

Employee Name Manager Name

Amelia Williams Carol Bender
Amy Adamson Scott Fielding
Carla Bender Li Wang
Jaideep Singh Scott Fielding
Janet Brown Li Wang
Jules Moreau Robert Baker
Li Wang Susan Carter
Robert Baker Susan Carter
Scott Fielding Susan Carter
Susan Carter NULL

Creating Views
The self join allows you to create multiple views of the same table. We’ll now extend this
concept, allowing us to create new views of any table or combination of tables.

Views are merely SELECT statements that have been saved in a database. Once saved, the view
can be referred to as if it were a table in the database. Database tables contain physical data;
views do not contain data but allow you to proceed as if a view were a real table with data.
Views can therefore be thought of as virtual tables. Additionally, views are permanent, not
temporary. Once created, a view continues to be referenced until the view itself is deleted.

You might ask why views are necessary. We’ll get into the benefits of views later in the chapter,
but in short, views provide added flexibility as to how data can be accessed. Whether a database
has been around for a few days or for years, the data in that database is stored in tables in a
very specific manner. As time progresses, requirements for accessing that data change, but it

ptg18192217

138 Chapter 13 Self Joins and Views

isn’t a trivial matter to reorganize the tables to meet new requirements. The great advantage
of views is that they allow the analyst to create new virtual views of the data already in a
database. Views allow you to create the equivalent of new tables without having to physically
rearrange data. As such, views add a dynamic element to a database design by keeping it fresh
and up to date.

How is a view stored in a database? All relational databases consist of a number of different
object types. The most important object type is the table. However, most database management
software allows users to save any number of other object types. The most common of these are
views and stored procedures. There are often many other object types in a database, such as
functions and triggers.

SQL provides the CREATE VIEW keyword to enable users to create new views. The general
syntax is as follows:

CREATE VIEW ViewName AS
SelectStatement

After the view is created, the ViewName is used to reference the data that would be returned
from the SelectStatement in the view. Here’s an example. In the previous chapter, we looked at
this SELECT statement:

SELECT
Customers.FirstName AS 'First Name',
Customers.LastName AS 'Last Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt',
Refunds.RefundDate AS 'Refund Date',
Refunds.RefundAmount AS 'Refund Amt'
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID
ORDER BY Customers.LastName, Customers.FirstName, Orders.OrderDate

This statement returned this data:

First Name Last Name Order Date Order Amt Refund Date Refund Amt

Sara Davis 2016-09-01 10.00 2016-09-02 5.00
Paul Johnson 2016-09-15 20.00 NULL NULL
Samuel Martinez NULL NULL NULL NULL
Rumi Shah 2016-09-02 12.50 NULL NULL
Rumi Shah 2016-09-03 18.00 2015-09-18 18.00

ptg18192217

139Referencing Views

To set up this SELECT statement as a view, we simply place the entire SELECT in a CREATE
VIEW statement, as follows:

CREATE VIEW CustomersOrdersRefunds AS
SELECT
Customers.FirstName AS 'First Name',
Customers.LastName AS 'Last Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt',
Refunds.RefundDate AS 'Refund Date',
Refunds.RefundAmount AS 'Refund Amt'
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID

The only item missing in the above CREATE VIEW is the ORDER BY clause of the original
SELECT statement. Because views aren’t stored as physical data, there is never a reason to
include an ORDER BY clause for a view.

Referencing Views
When we execute the above CREATE VIEW statement, it creates a view called CustomersOrdersRefunds.
Creating the view does not return any data. It merely defines the view for later use. To use the
view to bring back data as before, you would execute this SELECT statement:

SELECT *
FROM CustomersOrdersRefunds

This retrieves:

First Name Last Name Order Date Order Amt Refund Date Refund Amt

Sara Davis 2016-09-01 10.00 2016-09-02 5.00
Rumi Shah 2016-09-02 12.50 NULL NULL
Rumi Shah 2016-09-03 18.00 2015-09-18 18.00
Paul Johnson 2016-09-15 20.00 NULL NULL
Samuel Martinez NULL NULL NULL NULL

Notice that this data is displayed in a different row order than what was originally retrieved.
This is because the view does not contain an ORDER BY clause. As a result, the data is returned
in the order in which it is physically stored in the database. This is easily corrected by adding
an ORDER BY clause to the SELECT, as follows:

SELECT *
FROM CustomersOrdersRefunds
ORDER BY [Last Name], [First Name], [Order Date]

ptg18192217

140 Chapter 13 Self Joins and Views

This now returns the data in the expected order. Remember that columns in views must be
referenced by the column aliases specified when the view was created. We can no longer
reference the original column names. In this example, the CustomersOrdersRefunds view
applied a column alias of “Last Name” to the LastName column in the Customers table.
We therefore need to reference the column alias in the ORDER BY clause. As mentioned in
Chapter 2, we need to include brackets around each of these column names in the ORDER
BY clause to allow for correct interpretation of the embedded spaces.

Database Differences: MySQL and Oracle
MySQL and Oracle use different characters around columns containing spaces. MySQL uses
the accent grave (`). Oracle uses double quotes (").

Once a view is created, it can be referenced and utilized just like any other table. For example,
we might want to see only a few selected columns from the view and select only one specific
customer. To do that, we can issue a SELECT statement such as:

SELECT
[First Name],
[Last Name],
[Order Date]
FROM CustomersOrdersRefunds
WHERE [Last Name] = 'Shah'

The output is:

First Name Last Name Order Date

Rumi Shajh 2016-09-02
Rumi Shah 2016-09-03

As before, we need to place square brackets around each of the column names because they
contain embedded spaces.

Benefits of Views
The previous example illustrates one of the important benefits of using views. Once a view
is created, that view can be referenced just as if it were a table. Even if the view references
multiple tables joined together, it now appears, logically, to be just one table.

Let’s summarize the benefits of using views:

• Views can reduce complexity. First, views can simplify SELECT statements that are
particularly complex. For example, if you have a SELECT statement that joins six tables
together, it might be useful to create views with two or three tables each. You can then
reference those views in a SELECT statement that is less complex than the original.

ptg18192217

141Modifying and Deleting Views

• Views can increase reusability. In a situation where three tables are always joined together,
you can create a view with those three tables. Then, instead of always having to join those
three tables every time you query data, you can simply reference a predefined view.

• Views can properly format data. If columns are incorrectly formatted in the database,
you can use the CAST or other functions to format that column exactly as desired. For
example, you might have a date column stored as an integer datatype in the database, in
a YYYYMMDD format. It might be advantageous to view this data as a date/time column
so it can be presented and manipulated as a true date. To accomplish this, you can create
a view on the table that transforms the column to the proper format. All subsequent
references to that table can then reference the new view rather than the table.

• Views can create calculated columns. Suppose two columns in a table include Quantity
and PricePerItem. End users are usually interested in the total price, which is calculated
by multiplying the two columns together. You can create a view of the original table
with a new calculated column with this calculation. Users can then reference the view
and always have the calculation available.

• Views can be used to rename column names. If a database contains cryptic column
names, you can create views with column aliases to translate those names into something
more meaningful.

• Views can create a subset of data. Let’s say a database contains a table with all of your
customers. Most of your users need only to see customers who have placed an order
during the prior year. You can easily create a view of this table that includes this useful
subset of data.

• Views can be used to enforce security restrictions. Often you want certain users to be
able to access only certain columns in a given table. To accomplish this, you can create
a view of the table for those users. The security features of the database can then be used
to grant access to the new view for those users, while restricting them from accessing the
underlying table.

Modifying and Deleting Views
After a view is created, it can be easily modified using the ALTER VIEW statement. Here’s the
general syntax:

ALTER VIEW ViewName AS
SelectStatement

When altering a view, you must specify the entire SELECT statement contained in the view.
The original SELECT in the view gets replaced by the new SELECT. Let’s say we originally
created a view with this statement:

CREATE VIEW CustomersView AS
SELECT
FirstName AS 'First Name',
LastName as 'Last Name'
FROM Customers

ptg18192217

142 Chapter 13 Self Joins and Views

To add a new column to this view for a CustomerID, we would issue a statement such as:

ALTER VIEW CustomersView AS
SELECT
FirstName AS 'First Name',
LastName AS 'Last Name',
CustomerID AS 'Cust ID'
FROM Customers

Once again, creating or altering a view does not return any data. It merely creates or modifies
the definition of the view.

Database Differences: Oracle
Unlike SQL Server and MySQL, the ALTER VIEW command in Oracle is more restrictive.
To accomplish the previous ALTER VIEW in Oracle, you need to issue a DROP VIEW and
then a CREATE VIEW with the new definition.

The DROP VIEW statement is used to delete a previously created view. The syntax is:

DROP VIEW ViewName

To delete the CustomersView created earlier, we can issue this statement:

DROP VIEW CustomersView

Looking Ahead
Self joins and views are two different ways of viewing data in a virtual manner. The self join
allows the analyst to join a table to itself. Self joins are useful with self-referential data, where
one column in a table can be joined to another column in the same table.

Database views are much more flexible. Essentially, any SELECT statement can be saved as a
view, which can then be referenced as if it were a physical table. Unlike tables, views do not
contain any data. They merely define a new virtual view of data in existing tables. As such,
views serve a wide variety of functions, from reducing complexity to reformatting data. Once
created, views can be modified or deleted with the ALTER VIEW and DELETE VIEW statements.

In our next chapter, “Subqueries,” we’ll return to a topic more directly related to our previous
discussion of how to join tables together. Subqueries provide a method of relating tables to
each other without making explicit use of an inner or outer join. Because of the wide variety
of ways that subqueries can be structured and used, this is probably the most difficult subject
in this book. However, an understanding of subqueries can be tremendously rewarding. There’s
actually quite a bit of flexibility in how subqueries can be used. As such, this lends itself to a
certain amount of creativity in your query designs.

ptg18192217

14
Subqueries

Keywords Introduced
EXISTS • WITH

In Chapter 4, we talked about composite functions: functions that contained other functions.
Similarly, SQL queries can contain other queries. Queries contained within other queries are
called subqueries.

The topic of subqueries is somewhat complex, primarily because there are many different ways
in which they can be used. Subqueries can be found in many different parts of the SELECT
statement, each with different nuances and requirements. As a query contained within another
query, a subquery can be related to and dependent on the main query, or it can be completely
independent of the main query. Again, this distinction results in different requirements for
their usage.

No matter how subqueries are used, they add a great deal of flexibility to the ways in which
you can write SQL queries. Often, subqueries provide functionality that could be accomplished
by other means. In such instances, personal preference will come into play as you decide
whether or not to utilize the subquery solution. However, as you’ll see, in certain situations
subqueries are absolutely essential for the task at hand.

With that said, let’s begin our discussion with an outline of the basic types of subqueries.

Types of Subqueries
Subqueries can be used not only with SELECT statements but also with the INSERT, UPDATE,
and DELETE statements that will be covered in Chapter 17, “Modifying Data.” In this chapter,
however, we’ll restrict our discussion of subqueries to the SELECT statement.

ptg18192217

144 Chapter 14 Subqueries

Here’s the general SELECT statement we’ve seen previously:

SELECT columnlist
FROM tablelist
WHERE condition
GROUP BY columnlist
HAVING condition
ORDER BY columnlist

Subqueries can be inserted into virtually any of the clauses in the SELECT statement. However,
the way in which the subquery is stated and used varies slightly, depending on whether it is
used in a columnlist, tablelist, or condition.

But what exactly is a subquery? A subquery is merely a SELECT statement that has been
inserted inside another SQL statement. The results returned from the subquery are used within
the context of the overall SQL query. Additionally, there can be more than one subquery in a
SQL statement. To summarize, subqueries can be specified in three main ways:

• When a subquery is part of a tablelist, it specifies a data source. This applies to situations
where the subquery is part of a FROM clause.

• When a subquery is part of a condition, it becomes part of the selection criteria. This
applies to situations where the subquery is part of a WHERE or HAVING clause.

• When a subquery is part of a columnlist, it creates a single calculated column. This applies
to situations where the subquery is part of a SELECT, GROUP BY, or ORDER BY clause.

The remainder of this chapter explains each of these three scenarios in detail.

Using a Subquery as a Data Source
When a subquery is specified as part of the FROM clause, it instantly creates a new data source.
This is similar to the concept of creating a view and then referencing that view in a SELECT.
The only difference is that a view is permanently saved in a database. A subquery used as a data
source isn’t saved. It exists only temporarily, as part of the SELECT statement. Nevertheless, you
can think of a subquery in a FROM clause as a type of virtual view.

Let’s first consider an example that illustrates how subqueries can be used as a data source. Let’s
say we have this Users table:

UserID UserName

1 Cecilia Rodriguez
2 Elaine Bundy
3 Rakesh Gupta
4 April Waters

ptg18192217

145Using a Subquery as a Data Source

We also have this Transactions table:

TransactionID UserID TransactionAmount TransactionType

1 1 22.25 Cash
2 2 11.75 Credit
3 2 5.00 Credit
4 2 8.00 Cash
5 3 9.33 Credit
6 3 10.11 Credit

This data is actually quite similar to the Customers and Orders tables we’ve seen in previous
chapters. The Users table resembles the Customers table, except that we’ve combined the first
and last names into a single column. The Transactions table has entries similar to orders, except
that we’ve added a TransactionType column, indicating whether the transaction was cash or
credit. We’ve also dispensed with the date column that would normally be present.

We would like to see a list of users, along with a total sum of the cash transactions they have
placed. The following SELECT accomplishes that task:

SELECT
UserName AS 'User Name',
ISNULL(CashTransactions.TotalCash, 0) AS 'Total Cash'
FROM Users
LEFT JOIN

(SELECT
UserID,
SUM(TransactionAmount) AS 'TotalCash'
FROM Transactions
WHERE TransactionType = 'Cash'
GROUP BY UserID) AS CashTransactions

ON Users.UserID = CashTransactions.UserID
ORDER BY Users.UserID

Two blank lines were inserted to clearly separate the subquery from the rest of the statement.
The subquery is the middle section of the statement. The results are:

User Name Total Cash

Cecilia Rodriguez 22.25
Elaine Bundy 8.00
Rakesh Gupta 0
April Waters 0

April Waters shows no cash transactions, because she made no transactions at all. Although
Rakesh Gupta has two transactions, they were both credit transactions, so he also shows no
cash. Note that the ISNULL function converts the NULL values that would normally appear for
Rakesh and April to a 0.

ptg18192217

146 Chapter 14 Subqueries

Let’s now analyze how the subquery works. The subquery in the previous statement is:

SELECT
UserID,
SUM(TransactionAmount) AS 'TotalCash'
FROM Transactions
WHERE TransactionType = 'Cash'
GROUP BY UserID

In general form, the main SELECT statement in the above is:

SELECT
UserName AS 'User Name'
ISNULL(CashTransactions.TotalCash, 0) AS 'Total Cash'
FROM Users
LEFT JOIN (subquery) AS CashTransactions
ON Users.UserID = CashTransactions.UserID
ORDER BY Users.UserID

If the subquery were executed on its own, the results would be:

UserID TotalCash

1 22.25
2 8.00

We see data for only users 1 and 2. The WHERE clause in the subquery enforces the
requirement that we look only at cash orders.

The entire subquery is then referenced as if it were a separate table or view. Notice that the
subquery is given a table alias of CashTransactions. This allows the columns in the subquery
to be referenced in the main SELECT. As such, the following line in the main SELECT
references data in the subquery:

ISNULL(CashTransactions.TotalCash, 0) AS 'Total Cash'

CashTransactions.TotalCash is a column taken from the subquery.

You might ask whether it was truly necessary to use a subquery to obtain the desired data.
In this case, the answer is yes. We might have attempted to simply join the Users and
Transactions tables via a LEFT JOIN, as in the following:

SELECT
UserName AS 'User Name',
SUM(TransactionAmount) AS 'Total Cash Transactions'
FROM Users
LEFT JOIN Transactions
ON Users.UserID = Transactions.UserID
WHERE TransactionType = 'Cash'
GROUP BY Users.UserID, Users.UserName
ORDER BY Users.UserID

ptg18192217

147Using a Subquery in Selection Criteria

However, this statement yields the following data:

User Name Total Cash

Cecilia Rodriguez 22.25
Elaine Bundy 8.00

We no longer see any rows for Rakesh Gupta or April Waters, because the WHERE clause
exclusion for cash orders is now in the main query rather than in a subquery. As a result, we
don’t see any data for people who didn’t place cash orders.

Using a Subquery in Selection Criteria
In Chapter 7, we introduced the first format of the IN operator. The example we used was:

WHERE State IN ('IL', 'NY')

In this format, the IN operator merely lists a number of values in parentheses. There is
also a second format for the IN, in which an entire SELECT statement is inserted inside the
parentheses. For example, a list of states might be specified as:

WHERE State IN
(SELECT
States
FROM StateTable
WHERE Region = 'Midwest')

Rather than list individual states, this second format allows us to generate a dynamic list of
states through more complex logic.

Let’s illustrate with an example that uses the Users and Transactions tables. In this scenario,
we want to retrieve a list of users who have ever paid cash for any transaction. A SELECT that
accomplishes this is:

SELECT UserName AS 'User Name'
FROM Users
WHERE UserID IN
(SELECT UserID
FROM Transactions
WHERE TransactionType = 'Cash')

The resulting data is:

User Name

Cecilia Rodriguez
Elaine Bundy

ptg18192217

148 Chapter 14 Subqueries

Rakesh Gupta is not included in the list because, although he has transactions, none of them
were in cash. Notice that the subquery SELECT is placed entirely within the parentheses for
the IN keyword. There is only one column, UserID, in the columnlist of the subquery. This
is a requirement, because we want the subquery to produce the equivalent of a list of values
for only one column. Also note that the UserID column is used to connect the two queries.
Although we’re displaying UserName, we’re using UserID to define the relationship between
the Users and Transactions tables.

Once again, we can ask whether it’s necessary to use a subquery, and this time the answer is
no. Here is an equivalent query that returns the same data.

SELECT UserName AS 'User Name'
FROM Users
INNER JOIN Transactions
ON Users.UserID = Transactions.UserID
WHERE TransactionType = 'Cash'
GROUP BY Users.UserName

Without using a subquery, we can directly join the Users and Transactions tables. However,
a GROUP BY clause is now needed to ensure that we bring back only one row per user.

Correlated Subqueries
The subqueries we’ve seen so far have been uncorrelated subqueries. Generally speaking, all
subqueries can be classified as either uncorrelated or correlated. These terms describe whether the
subquery is related to the query in which it is contained. Uncorrelated subqueries are unrelated.
When a subquery is unrelated, that means it is completely independent of the outer query.
Uncorrelated subqueries are evaluated and executed only once as part of the entire SELECT
statement. Furthermore, uncorrelated subqueries can stand on their own. If you wanted to, you
could execute an uncorrelated subquery as a separate query.

In contrast, correlated subqueries are specifically related to the outer query. Because of this
explicit relationship, correlated subqueries must be evaluated for each row returned and can
produce different results each time the subquery is executed. Correlated subqueries can’t
be executed on their own, because some element in the query makes it dependent on the
outer query.

The best way to explain is with an example. Returning to the Users and Transactions tables,
let’s say we want to produce a list of users who have a total transaction amount less than
20 dollars. Here’s a statement that accomplishes that request:

SELECT
UserName AS 'User Name'
FROM Users
WHERE
(SELECT
SUM(TransactionAmount)
FROM Transactions
WHERE Users.UserID = Transactions.UserID)
< 20

ptg18192217

149Correlated Subqueries

The result is:

User Name

Rakesh Gupta

What makes this subquery correlated, as opposed to uncorrelated? The answer can be seen by
looking at the subquery itself:

SELECT
SUM(TransactionAmount)
FROM Transactions
WHERE Users.UserID = Transactions.UserID

This subquery is correlated because it cannot be executed on its own. If run by itself, this
subquery would produce an error because the Users.UserID column in the WHERE clause
doesn’t exist within the context of the subquery. To understand what's going on, it’s helpful
to look at the entire SELECT statement in a more general way:

SELECT
UserName AS 'User Name'
FROM Users
WHERE
SubqueryResult < 20

The subquery returns a columnlist with a single value, which we’re calling SubqueryResult. As
a correlated subquery, the subquery must be evaluated for each user. Also, note that this type
of subquery demands that it only returns a single row and a single value. The SubqueryResult
couldn’t be evaluated if there were more than one row or value involved.

As before, you might ask whether a subquery is necessary, and once again the answer is no.
Here’s an equivalent statement that produces the same result:

SELECT
UserName AS 'User Name'
FROM Users
LEFT JOIN Transactions
ON Users.UserID = Transactions.UserID
GROUP BY Users.UserID, Users.UserName
HAVING SUM(TransactionAmount) < 20

Notice, however, that without a subquery, the equivalent statement now requires GROUP BY
and HAVING clauses. The GROUP BY clause creates groups of users, and the HAVING clause
enforces the requirement that each group must have transacted less than 20 dollars.

ptg18192217

150 Chapter 14 Subqueries

The EXISTS Operator
An additional technique associated with correlated subqueries uses a special operator called
EXISTS. This operator allows you to determine whether data in a correlated subquery exists.
Let’s say that we want to discover which users have made any transactions. This can be
accomplished with the use of the EXISTS operator in this statement:

SELECT
UserName AS 'User Name'
FROM Users
WHERE EXISTS
(SELECT *
FROM Transactions
WHERE Users.UserID = Transactions.UserID)

This statement returns:

User Name

Cecilia Rodriguez
Elaine Bundy
Rakesh Gupta

This is a correlated subquery because it cannot be executed on its own without reference to
the main query. The EXISTS keyword in the above statement is evaluated as true if the SELECT
in the correlated subquery returns any data. Notice that the subquery selects all columns
(SELECT *). Because it doesn't matter which particular columns are selected in the subquery,
we use the asterisk to return all columns. We’re interested only in determining whether any
data exists in the subquery. The result is that the query returns all users except April Waters.
She doesn't appear because she has made no transactions.

As before, the logic in this statement can be expressed in other ways. Here’s a statement that
obtains the same results by using a subquery with the IN operator:

SELECT
UserName AS 'User Name'
FROM Users
WHERE UserID IN
(SELECT UserID
FROM Transactions)

This statement is probably easier to comprehend.

Here’s yet another statement that retrieves the same data without the use of a subquery:

SELECT
UserName AS 'User Name'
FROM Users
INNER JOIN Transactions
ON Users.UserID = Transactions.UserID
GROUP BY UserName

ptg18192217

151Using a Subquery as a Calculated Column

In this statement, the INNER JOIN enforces the requirement that the user must also exist in the
Transactions table. Also note that this query requires the use of a GROUP BY clause to avoid
returning more than one row per user.

Using a Subquery as a Calculated Column
The final general use of subqueries is as a calculated column. Suppose we would like to see a
list of users, along with a count of the number of transactions they have placed. This can be
accomplished without subqueries using this statement:

SELECT
UserName AS 'User Name',
COUNT(TransactionID) AS 'Number of Transactions'
FROM Users
LEFT JOIN Transactions
ON Users.UserID = Transactions.UserID
GROUP BY Users.UserID, Users.UserName
ORDER BY Users.UserID

The output is:

User Name Number of Transactions

Cecilia Rodriguez 1
Elaine Bundy 3
Rakesh Gupta 2
April Waters 0

Notice that we used a LEFT JOIN to accommodate users who may not have made any
transactions. The GROUP BY enforces the requirement that we end up with one row per user.
The COUNT function produces a count of the number of rows in the Transactions table.

Another way of obtaining the same result is to use a subquery as a calculated column. This
looks like the following:

SELECT
UserName AS 'User Name',
(SELECT
COUNT(TransactionID)
FROM Transactions
WHERE Users.UserID = Transactions.UserID)
AS 'Number of Transactions'
FROM Users
ORDER BY Users.UserID

ptg18192217

152 Chapter 14 Subqueries

In this example, the subquery is a correlated subquery. The subquery cannot be executed on its
own, because it references a column from the Users table in the WHERE clause. This subquery
returns a calculated column for the SELECT columnlist. In other words, after the subquery is
evaluated, it returns a single value, which is then included in the columnlist. Here’s the general
format of the previous statement:

SELECT
UserName AS 'User Name',
SubqueryResult AS 'Number of Transactions'
FROM Users
ORDER BY Users.UserID

As seen, the entire subquery returns a single value, which is used for the Number of
Transactions column.

Common Table Expressions
An alternate subquery syntax allows it to be defined explicitly prior to the execution of the
main query. This is known as a common table expression. In this syntax, the entire subquery is
removed from its normal location and stated at the top of the query. The WITH keyword is
used to indicate the presence of a common table expression. Although they may be used with
correlated subqueries, a common table expression is far more useful for uncorrelated subqueries.
To illustrate, let’s return to the first subquery presented in this chapter:

SELECT
UserName AS 'User Name',
ISNULL(CashTransactions.TotalCash, 0) AS 'Total Cash'
FROM Users
LEFT JOIN

(SELECT
UserID,
SUM(TransactionAmount) AS 'TotalCash'
FROM Transactions
WHERE TransactionType = 'Cash'
GROUP BY UserID) AS CashTransactions

ON Users.UserID = CashTransactions.UserID
ORDER BY Users.UserID

As seen, the subquery in the above statement is given an alias of CashTransactions, and is
joined to the Users table on the UserID column. The purpose of the subquery is to provide a
total of the cash transactions for each user. The output of this query is:

User Name Total Cash

Cecilia Rodriguez 22.25
Elaine Bundy 8.00
Rakesh Gupta 0
April Waters 0

ptg18192217

153Looking Ahead

We’ll now present an alternate way of expressing this same logic, using a common table
expression. The query looks like this:

WITH CashTransactions AS
(SELECT
UserID,
SUM(TransactionAmount) as TotalCash
FROM Transactions
WHERE TransactionType = 'Cash'
GROUP BY UserID)

SELECT
UserName AS 'User Name',
ISNULL(CashTransactions.TotalCash, 0) AS 'Total Cash'
FROM Users
LEFT JOIN CashTransactions
ON Users.UserID = CashTransactions.UserID
ORDER BY Users.UserID

In this alternative expression, the entire subquery has been moved to the top, prior to the main
SELECT query. The WITH keyword indicates that a common table expression follows. The first
line indicates that CashTransactions is an alias for the common table expression. The common
table expression follows the AS keyword and is enclosed within parentheses.

We’ve inserted a blank line to separate the common table expression from the primary query.
The following line in the main query:

LEFT JOIN CashTransactions

initiates the outer join to the common table expression, which is referenced via the
CashTransactions alias. The chief virtue of the common table expression is its simplicity. The
main query becomes easier to comprehend, because the details of the subquery now appear
as a separate entity before the main query. The output of this query with a common table
expression is identical to the original query with a subquery.

In short, it’s really a matter of personal preference as to whether you’d like to use common
table expressions in your queries. Whereas subqueries are embedded in a larger query, common
table expressions state the subqueries up front.

Database Differences: MySQL
Unlike SQL Server and Oracle, MySQL doesn’t support common table expressions.

Looking Ahead
In this chapter, we’ve seen subqueries used in three different ways: as a data source, in selection
criteria, and as a calculated column. Additionally, we’ve seen examples of both correlated and
uncorrelated subqueries. Finally, we briefly demonstrated the use of an alternate method of
expressing subqueries using the common table expression. As such, we’ve really only touched
on some of the uses of subqueries. What complicates the matter is that many subqueries can

ptg18192217

154 Chapter 14 Subqueries

be expressed in other ways. Whether or not you choose to use subqueries depends on your
personal taste and sometimes on the performance of the statement.

Through our use of joins and subqueries, we’ve explored numerous ways to select data
from multiple tables. In our next chapter, “Set Logic,” we’ll look at a method of combining
entire queries into a single SQL statement. This is a special type of logic that allows us to
merge multiple data sets into a single result. As you’ll see, set logic procedures are sometimes
necessary in order to display sets of data that are only partially related to each other. As with
subqueries, the techniques of set logic provide additional flexibility and logical possibilities for
your SQL statements.

ptg18192217

15
Set Logic

Keywords Introduced
UNION • UNION ALL • INTERSECT • EXCEPT

The various joins and subqueries of the previous few chapters have dealt with different ways
of combining data from multiple tables. The result, however, has always been a single SELECT
statement. Now we’ll extend the concept of combining data in multiple tables to the possibility
of combining data from multiple queries. In other words, we’ll look at a way to write a single
SQL statement that contains more than one SELECT to retrieve data.

The concept of combining queries is often referred to as set logic, a term taken from
mathematics. Each SELECT query can be referred to as a set of data. The set logic we’ll employ
and examine in this chapter will address four basic scenarios. Assuming that we have data in
SET A and in SET B, here are the four possibilities for retrieving data from the two sets:

• Data that is in SET A or in SET B

• Data that is in both SET A and SET B

• Data that is in SET A but not in SET B

• Data that is in SET B but not in SET A

We’ll start by looking at the first scenario, for which we want data included in SET A or in
SET B. As we’ll see, this is the most prevalent and important of the set logic possibilities.

ptg18192217

156 Chapter 15 Set Logic

Using the UNION Operator
The UNION operator in SQL is used to handle logic to select data in either SET A or SET B. This
is by far the most common situation. We’ll start with an example. Let’s say we have two tables
in our database. The first is an Orders table containing data on orders placed by customers.
We’ll use the same Orders table seen in the previous few chapters:

OrderID CustomerID OrderDate OrderAmount

1 1 2016-09-01 10.00
2 2 2016-09-02 12.50
3 2 2016-09-03 18.00
4 3 2016-09-15 20.00

The second table, named Returns, contains data on merchandise returned by customers.
It might look like this:

ReturnID CustomerID ReturnDate ReturnAmount

1 1 2016-09-10 2.00
2 2 2016-09-15 15.00
3 3 2016-09-28 3.00

Note that, unlike the Refunds table seen in Chapters 12 and 13, this Returns table is not directly
related to the Orders table. In other words, returns are not tied to a specific order. In this scenario,
a customer might return merchandise from multiple orders in a single refund transaction.

We want to create a report of all orders and returns from one particular customer. We would
like the results sorted either by the order date if it’s an order, or the return date if it’s a return.
Following is a statement that can accomplish this. We’ve inserted a few extra blank lines in this
statement to emphasize the fact that it contains two completely separate SELECTs, combined
by the UNION operator:

SELECT
OrderDate AS 'Date',
'Order' AS 'Type',
OrderAmount AS 'Amount'
FROM Orders
WHERE CustomerID = 2

UNION

SELECT
ReturnDate as 'Date',
'Return' AS 'Type',
ReturnAmount AS 'Amount'
FROM Returns
WHERE CustomerID = 2

ORDER BY Date

ptg18192217

157Using the UNION Operator

The resulting data is:

Date Type Amount

2016-09-02 Order 12.50
2016-09-03 Order 18.00
2016-09-15 Return 15.00

As you can see, the UNION operator separates two SELECT statements. Each of these SELECT
statements would be capable of being run on its own. There is also an ORDER BY clause at the
very end, which applies to the results of both SELECT statements. The general format for the
previous statement is:

SelectStatementOne
UNION
SelectStatementTwo
ORDER BY columnlist

In order for the UNION to work, three rules must be followed:

• All SELECT statements combined with a UNION must have the same number of columns
in the SELECT columnlist.

• All columns in each SELECT columnlist must be in the same order.

• All corresponding columns in each SELECT columnlist must have the same, or
compatible, datatypes.

With reference to these rules, notice that both SELECT statements in the query have three
columns. Each of the three columns has data in the same order and with the same datatype.

When using the UNION, you should use column aliases to give the same column name
to all corresponding columns. In our example, the first column of the first SELECT has an
original name of OrderDate. The first column of the second SELECT has an original name of
ReturnDate. To ensure that the first column in the final result has the desired name, both
OrderDate and ReturnDate are given a column alias of Date. This also allows the column to be
referenced in an ORDER BY columnlist.

Also notice that the second column of each SELECT uses literal values. We created a calculated
column named Type, which has a value of either Order or Return. This allows us to determine
which table each row comes from.

Finally, notice that the ORDER BY clause applies to the final results of both queries combined. This
is how it should be, because there would be no point in applying a sort to the individual queries.

At this point, it’s useful to step back and talk about why it was necessary to employ the UNION
operator rather than simply joining the Orders and Returns tables together in a single SELECT
statement. Because both tables have a CustomerID column, why didn’t we join the two tables
together on this column? The problem with that approach is that the two tables are really only
indirectly related to each other. Customers can place orders and customers can initiate returns,
but there is no direct connection between orders and returns.

ptg18192217

158 Chapter 15 Set Logic

Additionally, even if there were a direct connection between the two tables, a join would not
accomplish what is desired. With a proper join, related information can be placed together
on the same row. In this case, however, we are interested in showing orders and returns on
separate rows. The UNION operator must be used to display data in this manner.

In essence, the UNION allows us to retrieve unrelated or partially related data in a single statement.

Distinct and Non-Distinct Unions
There are actually two variations of the UNION operator: UNION and UNION ALL. There is
only a slight difference between the two. The UNION operator eliminates all duplicate rows.
The UNION ALL operator specifies that all rows will be included, even if they are duplicates.

The UNION operator eliminates duplicates in a manner similar to the DISTINCT keyword seen
previously. Whereas DISTINCT applies to a single SELECT, the UNION eliminates duplicates in
all SELECT statements combined via the UNION.

In the previous example with the Orders and Returns tables, there was no possibility of
duplication, so it didn’t matter which variation of the UNION was used. Here’s an example that
illustrates the difference. Let’s say that we were only interested in the dates on which any order
or return was issued. We don’t want to see multiple rows for the same date. The following
statement accomplishes this task.

SELECT
OrderDate AS 'Date'
FROM Orders
UNION
SELECT
ReturnDate as 'Date'
FROM Returns
ORDER BY Date

The resulting data is:

Date

2016-09-01
2016-09-02
2016-09-03
2016-09-10
2016-09-15
2016-09-28

Notice that there is only one row with the date 2016-09-15. Even though there is one row with
2016-09-15 in the Orders table and one row with 2016-09-15 in the Returns table, the UNION
operator ensures that the 2016-09-15 date is listed only once.

ptg18192217

159Intersecting Queries

If for some reason we wanted to see the date 2016-09-15 listed twice, we could employ the
UNION ALL operator to accomplish this:

SELECT
OrderDate AS 'Date'
FROM Orders
UNION ALL
SELECT
ReturnDate as 'Date'
FROM Returns
ORDER BY Date

The output is now:

Date

2016-09-01
2016-09-02
2016-09-03
2016-09-10
2016-09-15
2016-09-15
2016-09-28

As you can see, the UNION ALL operator allows duplicate rows to be displayed.

Intersecting Queries
The UNION and UNION ALL operators return data in either of the sets specified in the two
SELECT statements being combined. This is like using an OR operator to combine data from
two logical sets.

SQL provides an operator called INTERSECT that only pulls data that is in both of the two sets
being looked at. The INTERSECT is analogous to the AND operator and handles the second
scenario stated at the beginning of this chapter:

• Data that is in both SET A and SET B

Database Differences: MySQL
MySQL doesn't support the INTERSECT operator.

ptg18192217

160 Chapter 15 Set Logic

Using the same Orders and Returns tables, suppose we want to see dates on which there are
both orders and returns. A statement that accomplishes this is:

SELECT
OrderDate AS 'Date'
FROM Orders
INTERSECT
SELECT
ReturnDate as 'Date'
FROM Returns
ORDER BY Date

The result is:

Date

2016-09-15

Only one row is shown because this is the only date that appears in both the Orders and
Returns tables.

There is one additional variation on the INTERSECT operator, which is provided by the
EXCEPT operator. Whereas the INTERSECT returns data that is in both sets, the EXCEPT
returns data that is in one set but not the other. Accordingly, this handles the third and fourth
scenarios stated at the beginning of this chapter:

• Data that is in SET A but not in SET B

• Data that is in SET B but not in SET A

The general format of the EXCEPT is:

SelectStatementOne
EXCEPT
SelectStatementTwo
ORDER BY columnlist

This statement will show data that is in SelectStatementOne but not in SelectStatementTwo.
Here’s an example:

SELECT
OrderDate AS 'Date'
FROM Orders
EXCEPT
SELECT
ReturnDate as 'Date'
FROM Returns
ORDER BY Date

ptg18192217

161Looking Ahead

The result is:

Date

2016-09-01
2016-09-02
2016-09-03

This data shows dates on which orders were placed where no refunds were issued on that same
date. Notice that 2016-09-15 does not appear, because a refund was issued on that date.

Database Differences: MySQL and Oracle
MySQL doesn't support the EXCEPT operator.

The equivalent of the EXCEPT operator in Oracle is MINUS.

Looking Ahead
This chapter illustrated a variety of ways to use set logic to combine multiple sets of SELECT
statements into a single statement. The most commonly used operator is the UNION, which
allows you to combine data that is in either of two different sets. As such, the UNION is
analogous to the OR operator. The UNION ALL is a variant of the UNION that allows duplicate
rows to be shown. Similarly, the INTERCEPT operator allows data to be presented if it is in both
of the sets of data being combined. The INTERCEPT is analogous to the AND operator. Finally,
the EXCEPT operator allows for selection of data that is in one set but not in another.

Our next chapter, “Stored Procedures and Parameters,” will show how you can save multiple
SQL statements in a procedure and make use of parameters within those procedures to add a
degree of generality to SQL commands. We’ll also talk about the possibility of creating your
own custom functions, and explain how functions differ from stored procedures. Much like the
views discussed in Chapter 13, “Self Joins and Views,” stored procedures and custom functions
are useful objects that you can create and store in your database to provide some extra polish
and functionality.

ptg18192217

This page intentionally left blank

ptg18192217

16
Stored Procedures

and Parameters

Keywords Introduced
CREATE PROCEDURE • BEGIN • EXEC/CALL • ALTER PROCEDURE • DROP PROCEDURE

Up until this point, all of our data retrieval has been accomplished with a single SQL statement.
Even the set logic seen in the previous chapter involved combining multiple SELECTs into a
single statement. Now we’ll discuss a new scenario, in which multiple statements can be saved
into a single object known as a stored procedure.

In broad terms, there are two general reasons for using stored procedures:

• To save multiple SQL statements in a single procedure

• To use parameters in conjunction with SQL statements

Stored procedures can, in fact, consist of a single SQL statement and contain no parameters.
But the real value of stored procedures becomes evident when they contain multiple statements
or parameters.

The subject of stored procedures is quite complex. In this brief review of the topic, we’ll focus
on an overview of the second stated reason, that of using parameters. This relates directly to
the issue of how best to retrieve data from a database. As we’ll see, the ability to add parameters
to a SELECT statement turns out to be a very useful feature in everyday usage.

The use of stored procedures to contain multiple statements is beyond the scope of this book.
Basically, the ability to store multiple statements in a procedure means that you can create
complex logic and execute it all at once in a single transaction. For example, you might have
a business requirement to take an incoming order from a customer and quickly evaluate it
before allowing it to enter the system. This procedure might involve checking to make sure
that the items are in stock, verifying that the customer has a good credit rating, and getting an
initial estimate as to when the items can be shipped. This situation would require multiple SQL
statements with some added logic to determine what kind of message to return if all is not well

ptg18192217

164 Chapter 16 Stored Procedures and Parameters

with the order. All of that logic can be placed into a single stored procedure. This enhances the
modularity of the entire system. With everything in one procedure, that logic can be executed
from any calling program and return the same result.

Creating Stored Procedures
Before we get into the details of how to use stored procedures, let’s cover the mechanics of how
they are created and maintained. The syntax varies significantly among different databases. For
Microsoft SQL Server, the general format for creating a stored procedure is:

CREATE PROCEDURE ProcedureName
AS
OptionalParameterDeclarations
BEGIN
SQLStatements
END

The CREATE PROCEDURE keyword allows you to issue a single command that creates the
procedure. The procedure itself can contain any number of SQL statements and can also
contain parameter declarations. We'll discuss the parameter declaration syntax later. The SQL
statements are listed between the BEGIN and END keywords.

Database Differences: MySQL and Oracle
The general format for creating a stored procedure in MySQL is slightly more complex.
The MySQL format is:
DELIMITER $$
CREATE PROCEDURE ProcedureName ()
BEGIN
SQLStatements
END$$
DELIMITER ;

MySQL requires delimiters when executing multiple statements. The normal delimiter is a
semicolon. The first line in the above code temporarily changes the standard delimiter from
a semicolon to two dollar signs. Any needed parameters are specified between the parentheses
on the CREATE PROCEDURE line. Then each SQL statement listed between the BEGIN and END
keywords must have a semicolon at the end of the statement. The dollar signs are written after
the END keyword to denote that the CREATE PROCEDURE command is completed. Finally, another
DELIMITER statement is placed at the end to change the delimiter back to a semicolon.

The procedure for creating stored procedures in Oracle is quite a bit more involved and is
beyond the scope of this book. To create a stored procedure for a SELECT statement in
Oracle, you must first create an object called a package. The package will contain two basic
components: a specification and a body. The specification component specifies how to
communicate with the body component. The body component contains the SQL statements,
which are at the heart of the stored procedure. Consult Oracle’s online documentation for
further details.

ptg18192217

165Parameters in Stored Procedures

Here’s an example of how to create a stored procedure that can be used to execute this single
SELECT statement:

SELECT *
FROM Customers

The procedure will be named ProcedureOne. In Microsoft SQL Server, the statement to create
the procedure is:

CREATE PROCEDURE ProcedureOne
AS
BEGIN
SELECT *
FROM Customers
END

Database Differences: MySQL
In MySQL, the previous example would look like:
DELIMITER $$
CREATE PROCEDURE ProcedureName ()
BEGIN
SELECT *
FROM Customers;
END$$
DELIMITER ;

Remember that creating a stored procedure does not execute anything. It simply creates the
procedure so it can be executed later. Along with tables and views, the procedure will be visible
in your database management tool, allowing you to view its contents.

Parameters in Stored Procedures
All of the SELECT statements we have seen up until now have had a certain static quality
due to the fact that they were written to retrieve data in one specific way. The ability to add
parameters to SELECT statements provides the possibility of much greater flexibility.

The term parameter in SQL statements is similar to the term variable as it is used in other
computer languages. A parameter is basically a value passed to a SQL statement by the calling
program. It can have whatever value the user specifies at the time the call is made.

Starting with a simple example, let’s say we have a SELECT statement that retrieves data from
a Customers table. Rather than selecting all customers, we would like the SELECT to retrieve
data for only one specific CustomerID number. However, we don’t want to code the number
directly in the SELECT statement. We want the SELECT to be general enough that it can accept
any provided CustomerID number and then execute with that value. The SELECT statement
without any parameters is simply:

SELECT *
FROM Customers

ptg18192217

166 Chapter 16 Stored Procedures and Parameters

Our goal is to add a WHERE clause that allows us to select data for a particular customer. In a
general form, we’d like the SELECT statement to be:

SELECT *
FROM Customers
WHERE CustomerID = ParameterValue

In Microsoft SQL Server, the creation of such a stored procedure can be accomplished with this:

CREATE PROCEDURE CustomerProcedure
(@CustID INT)
AS
BEGIN
SELECT *
FROM Customers
WHERE CustomerID = @CustID
END

Notice the addition of the second line, which specifies the CustID parameter in the procedure.
In Microsoft SQL Server, the @ symbol is used to denote a parameter. The INT keyword is
placed after the parameter to indicate that this parameter will have an integer value. The same
parameter name is used in the WHERE clause.

Database Differences: MySQL
In MySQL, the command to create an equivalent stored procedure is:
DELIMITER $$
CREATE PROCEDURE CustomerProcedure
(CustID INT)
BEGIN
SELECT *
FROM Customers
WHERE CustomerID = CustID;
END$$
DELIMITER ;

Notice that MySQL doesn’t require the @ symbol to denote a parameter.

When a stored procedure is executed, the calling program passes a value for the parameter, and
the SQL statement is executed as if that value were part of the statement.

Also note that the parameters discussed previously are input parameters. As such, they contain
values that are passed into the stored procedure. Stored procedures can also include output
parameters, which can contain values passed back to the calling program. It’s beyond the scope
of this book to discuss the various nuances of how to specify both input and output parameters
in stored procedures.

ptg18192217

167Modifying and Deleting Stored Procedures

Executing Stored Procedures
After stored procedures are created, how are they executed? The syntax varies between
databases. Microsoft SQL Server provides the EXEC keyword to run stored procedures.

In Microsoft SQL Server, the following statement will execute the ProcedureOne procedure:

EXEC ProcedureOne

When this statement is executed, it returns the results of the SELECT statement contained in
the stored procedure.

The ProcedureOne parameter didn’t have any parameters, so the syntax is simple. To illustrate
running procedures with input parameters, the following executes the CustomerProcedure
procedure for a CustID value of 2:

EXEC CustomerProcedure
@CustID = 2

Database Differences: MySQL
Rather than using EXEC, MySQL uses a CALL keyword to execute stored procedures, and the
syntax for stored procedures with parameters is slightly different. The equivalent of the previous
two EXEC statements in MySQL is:
CALL ProcedureOne:
CALL CustomerProcedure (2);

Modifying and Deleting Stored Procedures
Once a stored procedure has been created, it can be modified. Just as the ALTER keyword
was used to modify views, the ALTER PROCEDURE keyword is used to modify stored
procedures. The syntax is identical to the CREATE PROCEDURE command, except that
ALTER is used in place of CREATE. Just as the CREATE PROCEDURE has a slightly different
syntax for each database, so does the ALTER PROCEDURE.

We’ve already seen this example of creating a stored procedure with Microsoft SQL Server:

CREATE PROCEDURE CustomerProcedure
(@CustID INT)
AS
BEGIN
SELECT *
FROM Customers
WHERE CustomerID = @CustID
END

ptg18192217

168 Chapter 16 Stored Procedures and Parameters

After this procedure is created, if you wanted to alter the procedure to select only the
CustomerID and LastName columns from the Customers table, the command to accomplish
that would be:

ALTER PROCEDURE CustomerProcedure
(@CustID INT)
AS
BEGIN
SELECT
CustomerID,
LastName
FROM Customers
WHERE CustomerID = @CustID
END

Database Differences: MySQL
MySQL provides an ALTER PROCEDURE command, but it has limited functionality. To alter the
content of a stored procedure in MySQL, you need to issue a DROP PROCEDURE and then a
CREATE PROCEDURE with the new content.

Deleting a stored procedure is even simpler. Just as the DROP VIEW deletes a view, the DROP
PROCEDURE statement deletes a procedure.

Here’s how the stored procedure named CustomerProcedure can be deleted:

DROP PROCEDURE CustomerProcedure

Functions Revisited
In Chapter 4, we talked about the built-in scalar functions available in SQL. For example, we
used character functions such as LEFT and mathematical functions like ROUND. In Chapter 9,
we discussed aggregate functions such as MAX.

In addition to the built-in functions in SQL, developers can create their own functions and
save them in a database. The procedure for creating functions is very similar to the procedure
for creating stored procedures. SQL provides the keywords CREATE FUNCTION, ALTER
FUNCTION, and DROP FUNCTION, which work very much like CREATE PROCEDURE, ALTER
PROCEDURE, and DROP PROCEDURE.

Due to the advanced nature of this topic, we won’t provide specific examples of this
functionality. However, we’ll spend a few moments explaining the differences between using
stored procedures and functions.

Both stored procedures and functions can be saved in a database. These entities are saved
as separate objects in a database, much like tables or views. The procedures for saving and
modifying stored procedures and functions are very similar. The same CREATE, ALTER, and
DROP commands for stored procedures can be used for functions.

ptg18192217

169Looking Ahead

The difference between the two lies in how they are used and in their capabilities. There are
two main distinctions between stored procedures and functions:

• Stored procedures can have any number of output parameters. They can even have
zero output parameters. In contrast, a function must always contain exactly one output
parameter. In other words, when you call a function, you always get back a single value.

• Stored procedures are executed by a calling program. The stored procedure cannot
be directly referenced in a SELECT statement. In contrast, functions can be referenced
within statements, as seen in Chapters 4 and 9. After a function is defined, that function
is referenced by the name specified when it was created.

Looking Ahead
In this chapter, we’ve seen that the use of parameters can add a great deal of flexibility to the
process of retrieving data. For example, parameters allow us to generalize SQL statements so
that values for selection criteria can be specified at the time the statement is executed. We also
learned about the basics of how to create and modify stored procedures. Finally, we explained
some of the differences between stored procedures and user-defined functions.

Although the examples in this chapter focused on data retrieval, stored procedures and
functions are also quite useful for applying data updates. Our next chapter, “Modifying
Data,” will take us completely out of the realm of data retrieval and move us squarely into
issues surrounding the need to update data. The business of maintaining data doesn’t present
the same analytic possibilities as data retrieval, but it is a necessary task for any enterprise.
Fortunately, most of the techniques we’ve learned with the SELECT statement apply equally
to the modification process discussed in the next chapter.

ptg18192217

This page intentionally left blank

ptg18192217

17
Modifying Data

Keywords Introduced
INSERT INTO • VALUES • DELETE • TRUNCATE TABLE • UPDATE • SET

Having exhausted our discussion of retrieving data from databases, we now move on to the
question of how to modify data in a database. There are three basic scenarios as to how data
can be modified:

• Inserting new rows into a table

• Deleting rows from a table

• Updating existing data in specific rows and columns in a table

As may be surmised, inserting and deleting rows is relatively straightforward. Updating existing
data, however, is a more complex endeavor, as it involves identifying the rows to be updated
and also the specific columns in those rows. We’ll begin with the inserts and deletes and then
move on to updates.

Modification Strategies
The mechanics of modifying data are fairly straightforward. However, the nature of the process
means that this is an area fraught with peril. Being human, mistakes can be made. With a
single command, you can easily delete thousands of rows in error or apply incorrect updates
that may be difficult to retract.

As a practical matter, various strategies can be employed to help prevent catastrophic blunders.
For example, when deleting rows from a table, you can employ a soft delete technique. This
means that instead of actually deleting rows, you denote a special column in a table that marks
each row as either active or inactive. Rather than deleting a row, you merely mark it as inactive.
That way, if a deletion is done in error, you can easily reverse it by changing the value of the
active/inactive status column.

ptg18192217

172 Chapter 17 Modifying Data

A similar technique can be used when doing inserts. When adding a row, you can mark the
exact date and time of the insert in a special column. If it is later determined that the row was
added in error, you can find all rows that were added within a specified time range and have
them deleted.

The problem is more complex when it comes to updating data. Generally, it’s advisable to
maintain a separate table that holds data on intended update transactions. If any kind of error
is made, you can go back to the transaction table to find the before and after values for data
that was modified and use that to reverse any earlier mistakes.

The aforementioned strategies are just a few of the many approaches you can take. This topic is
well beyond the scope of this book. The bottom line is to exercise caution when updating data.
Unlike many user-friendly desktop applications, SQL has no undo command.

Inserting Data
SQL provides an INSERT keyword for adding data into a table. There are two basic ways an
INSERT can be done:

• Insert specific data listed in an INSERT statement

• Insert data obtained from a SELECT statement

Let’s start with an example that shows how to insert data, where the data values are specified in
the INSERT statement. We’ll assume that we have a Clients table with this data already in it:

ClientID FirstName LastName State

1 Joyce Bentley TN
2 Miguel Ramirez PA
3 Ellen Baker OR

Let’s also assume that the first column, ClientID, is the primary key for the table. Back in
Chapters 1 and 2, we talked about the fact that primary keys enforce the requirement that
each row in a table be uniquely identifiable. We also mentioned that primary key columns are
often specified as auto-increment columns. This means that they are automatically assigned a
number as rows are added to the table.

Assuming that the ClientID is defined as an auto-increment column, this means that when we
add a row to the Clients table, we don’t need to specify a value for the ClientID column. It will
be automatically determined as each row is added to the table. We need only to specify values
for the other three columns.

ptg18192217

173Inserting Data

Let’s proceed with a procedure that adds two new customers to the table: Claudia Davis from
Ohio and Ingrid Krause from California. This statement performs the insert:

INSERT INTO Clients
(FirstName, LastName, State)
VALUES
('Claudia', 'Davis', 'OH'),
('Ingrid', 'Krause', 'CA')

After the insert, the table contains:

ClientID FirstName LastName State

1 Joyce Bentley TN
2 Miguel Ramirez PA
3 Ellen Baker OR
4 Claudia Davis OH
5 Ingrid Krause CA

A few words of explanation are in order. First, notice that the VALUES keyword is used as a
prefix to lists of values to be inserted into the table. The statement lists each row of data in a
separate set of parentheses. Claudia Davis of Ohio was in one set of parentheses; Ingrid Krause
was in another set. The two sets were separated by a comma. If we needed to add only one row,
then just one set of parentheses would be needed.

Database Differences: Oracle
Oracle doesn’t support auto-increment columns.

Also, Oracle doesn’t permit multiple rows to be specified after the VALUES keyword. The
previous example would need to be broken down into two statements, as follows:
INSERT INTO Clients
(FirstName, LastName, State)
VALUES
('Claudia', 'Davis', 'OH');

INSERT INTO Clients
(FirstName, LastName, State)
VALUES
('Ingrid', 'Krause', 'CA');

Also note that the order of the data elements after the VALUES keyword corresponds to the
order of columns listed in the columnlist after the INSERT INTO. The order in which the
columns themselves are listed does not have to be the same as in the database. In other words,
the above insert could have been accomplished just as easily with this statement:

INSERT INTO Clients
(State, LastName, FirstName)
VALUES
('OH', 'Davis', 'Claudia'),
('CA', 'Krause', 'Ingrid')

ptg18192217

174 Chapter 17 Modifying Data

In this INSERT, we listed the State column first instead of last. Again, the order in which
columns are listed doesn’t matter.

To sum up, the general format for the INSERT INTO statement is:

INSERT INTO table
(columnlist)
VALUES
(RowValues1),
(RowValues2)
[repeat any number of times]

The columns in the columnlist must correspond to the columns in RowValues.

Also, if all the columns in the columnlist are listed in the same order as they physically exist in
the database, and if there are no auto-increment columns in the table, then the INSERT INTO
statement can be executed without specifying the columnlist. However, this practice is strongly
discouraged because it is prone to error.

It’s also possible to use an INSERT statement without specifying all the columns. When that
occurs, columns not specified are given NULL values. For example, let’s say we want to insert
one additional row into the Clients table for a customer named Deepak Gupta. However, we
don’t know Deepak’s state. Here’s the INSERT:

INSERT INTO Clients
(FirstName, LastName)
VALUES
('Deepak', 'Gupta')

Afterward, his row in the table will appear as:

ClientID FirstName LastName State

6 Deepak Gupta NULL

Because we didn’t specify a value for the State column for this new row, it was given a
NULL value.

There are two variations of the INSERT INTO statement. The second format applies to situations
where you insert data obtained from a SELECT statement. This means that instead of listing
data elements after a VALUES keyword, you substitute a SELECT statement that obtains the
necessary values.

To illustrate, let’s say we have another table named NewClients, which holds data that we
would like to insert into the Clients table. The NewClients table might look like this:

State Name1 Name2

RI Roberto Harris
PA Beata Kowalski
RI Galina Melnyk

ptg18192217

175Deleting Data

If we would like to add all customers from the state of Rhode Island (RI) from the NewClients
table to the Clients table, the following would accomplish that objective:

INSERT INTO Clients
(FirstName, LastName, State)
SELECT
Name1,
Name2,
State
FROM NewClients
WHERE State = 'RI'

After this INSERT, the Clients table contains:

ClientID FirstName LastName State

1 Joyce Bentley TN
2 Miguel Ramirez PA
3 Ellen Baker OR
4 Claudia Davis OH
5 Ingrid Krause CA
6 Deepak Gupta NULL
7 Roberto Harris RI
8 Galina Melnyk RI

The above INSERT simply substitutes a SELECT statement for the VALUES clause. As would
be expected, Beata Kowalski didn’t get added to the Clients table because she is not in Rhode
Island. Also notice that the column names in the Clients and NewClients tables are not
identical. The column names don’t matter as long as the columns are listed in the correct
corresponding order.

Deleting Data
Deleting data is quite a bit simpler than adding it. The DELETE statement is used to handle
deletions. When a DELETE is executed, it removes entire rows, not individual columns in a
row. The general format is:

DELETE
FROM table
WHERE condition

Here’s a simple example. Let’s say we want to delete rows from the previously mentioned
Clients table if the customer is in Rhode Island. The statement to accomplish this is:

DELETE
FROM Clients
WHERE State = 'RI'

ptg18192217

176 Chapter 17 Modifying Data

That’s all there is to it. If you wanted to test the results of the previous DELETE before
executing it, you could simply substitute a SELECT for the DELETE, as follows:

SELECT
COUNT(*)
FROM Clients
WHERE State = 'RI'

This would provide a count of the rows about to be deleted, which supplies some level of
validation for the delete.

There is one other option for deleting data that is worth mentioning. If you want to delete
all the data in a single column, you can employ a TRUNCATE TABLE statement to delete
everything. The advantage of the TRUNCATE TABLE over the DELETE statement is that it
is much faster. Unlike the DELETE, the TRUNCATE TABLE doesn’t log the results of the
transaction. We haven’t talked about data log processes, but this is a function that most
databases provide that allows database administrators to recover databases in the event of
system crashes and other similar problems.

If you want to delete all rows in the Clients table, you can issue this statement:

TRUNCATE TABLE Clients

This has the same result as this statement:

DELETE
FROM Clients

One other slight difference between the DELETE and the TRUNCATE TABLE is that the
TRUNCATE TABLE resets the values used for auto-increment columns. The DELETE doesn’t
affect those values.

Updating Data
The procedure for updating data involves specifying which columns are to be updated, as well
as logic for selecting rows. The general format for an UPDATE statement is:

UPDATE table
SET Column1 = Expression1,
Column2 = Expression2
[repeat any number of times]
WHERE condition

This statement is similar to the basic SELECT, except that the SET keyword is used to assign
new values for specified columns. The WHERE condition specifies which rows are to be
updated, but the UPDATE statement can update multiple columns at the same time. If more
than one column is being updated, the SET keyword is listed only once, but a comma must
separate all update expressions.

ptg18192217

177Correlated Subquery Updates

Starting with a simple example, let’s say we want to change Joyce Bentley’s last name to
Barrow, and also change her state from Tennessee (TN) to Wisconsin (WI). Her row in the
Clients table currently looks like this:

ClientID FirstName LastName State

1 Joyce Bentley TN

The UPDATE statement to accomplish the modification is:

UPDATE Clients
SET LastName = 'Barrow',
State = 'WI'
WHERE ClientID = 1

After executing this statement, this row in the Clients table has been changed to:

ClientID FirstName LastName State

1 Joyce Barrow WI

Notice that the value of the FirstName column is unchanged because that column wasn’t
included in the UPDATE statement. Also note that the WHERE clause is essential. Without the
WHERE, this change would have been applied to every row in the table.

Correlated Subquery Updates
The previous UPDATE example is easy enough but not entirely realistic. A more common use of
an UPDATE involves situations in which you update data in one table based on data in another
table. Let’s say we have this Vendors table:

VendorID State Zip

1 NY 10605
2 FL 33431
3 CA 94704
4 CO 80302
5 WY 83001

This VendorTransactions table includes recent changes for existing vendors:

TransactionID VendorID State Zip

1 1 NJ 07030
2 2 FL 33139
3 5 OR 97401

ptg18192217

178 Chapter 17 Modifying Data

The Vendors table is the main source of data for vendors. To accomplish an update of the
Vendors table from the VendorTransactions table, we’ll need to use the subquery technique
discussed in Chapter 14. The correlated subquery is needed because the UPDATE statement can
only specify a single table to update. We can’t merely join multiple tables together and have it
work. We’ll need to use a correlated subquery after the SET keyword to indicate where the data
comes from.

The following statement can be used to update the State and Zip columns in the Vendors
table from the transactions in the VendorTransactions table. Because this statement is fairly
complex, we’ve inserted a few blank lines so we can subsequently discuss the four sections of
the statement.

UPDATE Vendors

SET Vendors.State =
(SELECT VendorTransactions.State
FROM VendorTransactions
WHERE Vendors.VendorID = VendorTransactions.VendorID),

Vendors.Zip =
(SELECT VendorTransactions.Zip
FROM VendorTransactions
WHERE Vendors.VendorID = VendorTransactions.VendorID)

WHERE EXISTS
(SELECT *
FROM VendorTransactions
WHERE Vendors.VendorID = VendorTransactions.VendorID)

Let’s analyze this UPDATE statement in some detail. The first section of the statement,
consisting of the first line, indicates that the update is to be done on the Vendors table.

The second section of the statement specifies how the State column is to be updated. The
update is based on this correlated subquery:

SELECT VendorTransactions.State
FROM VendorTransactions
WHERE Vendors.VendorID = VendorTransactions.VendorID

We can tell that this is a correlated subquery because it would produce an error if we attempted
to execute this SELECT on its own. The subquery is taking data from the VendorTransactions
table and matching between the two tables by VendorID.

The third section of the statement is identical to the second section, except that these lines are
concerned with updates to the Zip column. Also notice that the SET keyword only needed to be
specified once, in the second section. It isn’t needed in the third section.

The final section includes logic in a WHERE clause associated with the selection logic for the
entire UPDATE statement. The EXISTS operator is used along with another correlated subquery
to determine whether rows exist in the VendorTransactions table for each VendorID in the
Vendors table. Without this WHERE clause, the update would incorrectly change the State and
Zip columns for vendors 3 and 4 to NULL values, because those vendors do not have rows in

ptg18192217

179Looking Ahead

the VendorTransactions table. The correlated subquery in this WHERE clause makes certain that
we apply updates only for vendors who do, in fact, have data in the VendorTransactions table.

As you can infer, the subject of using correlated subqueries for updates is quite complex. As
such, the topic is generally beyond the scope of this book. We’ve included this example merely
to give an idea of some of the complexities involved in data updates. Additionally, note that
correlated subqueries are similarly useful with deletes.

Looking Ahead
This chapter presented an overview of the various methods of updating data. The mechanics
of executing simple inserts, deletes, and updates are relatively straightforward. However, the
correlated subquery technique, which is often necessary for real-world updates and deletes,
is not for the faint of heart. Additionally, the entire notion of applying updates to data is a
demanding exercise. With the power of SQL’s ability to update thousands of rows of data with
a single command comes an admonition to exercise caution when performing any type of
update. Procedures for reversing any updates should be carefully planned out before any data
modifications are applied.

Now that we’ve talked about modifying the data in tables, we progress next to a discussion of
the tables themselves. In our next chapter, “Maintaining Tables,” we’ll look at the mechanics
of creating tables, along with all the attributes needed to properly hold the data in those tables.
As such, we’ll be revisiting some of the topics touched upon in Chapter 1, such as primary and
foreign keys. Up until now, we’ve assumed that tables are simply available for our use. After
this examination, you’ll have a much better idea of how to create the tables that will hold
your data.

ptg18192217

This page intentionally left blank

ptg18192217

18
Maintaining Tables

Keywords Introduced
CREATE TABLE • DROP TABLE • CREATE INDEX • DROP INDEX

With this chapter, we change our focus from data retrieval and modification to design. Up until
now, we’ve assumed that tables simply exist and are available to any interested user. However,
in the normal course of events, someone must create tables before the data in them can be
accessed. We now turn to the question of how to create and maintain tables.

We previously touched on a few of the topics we’ll be addressing, such as primary and foreign
keys, but we now want to delve into these areas in greater detail, and also bring in the related
topic of table indexes.

Data Definition Language
Way back in Chapter 1, we mentioned the three main components of the SQL language: DML
(Data Manipulation Language), DDL (Data Definition Language), and DCL (Data Control
Language). Up until now, most of what we’ve talked about has been DML. DML statements
allow you to manipulate data in relational databases by retrieval, insertion, deletion, or
updating. This is handled by the SELECT, INSERT, DELETE, and UPDATE statements.

Although our focus has been on DML, we have already seen a few instances of DDL
(Data Definition Language). The CREATE VIEW and CREATE PROCEDURE statements we
encountered in Chapters 13 and 16 are DDL, as are the related ALTER and DROP versions
of those statements.

CREATE VIEW and CREATE PROCEDURE statements are DDL because they only allow you to
manipulate the structure of the database. They have nothing to do with the data in databases.

In this chapter, we’ll provide a brief overview of a few additional DDL statements that can be
used to create and modify tables and indexes.

ptg18192217

182 Chapter 18 Maintaining Tables

Each database has a different way of organizing its objects, and therefore has different available
DDL statements. For example, MySQL has 11 different CREATE statements for these types of
objects: Databases, Events, Functions, Indexes, Logfile Groups, Procedures, Servers, Tables,
TableSpaces, Triggers, and Views.

Oracle has more than 30 different CREATE commands for the object types in its database.
Microsoft SQL Server has more than 40 different CREATE commands for its object types.

In truth, most modifications to database objects, such as views and tables, can be accomplished
through the visual GUI (graphical user interface) that each software vendor provides to
administer their software. It is often not necessary to learn any DDL at all, because it can often
be handled with the software GUI.

However, it’s useful to be aware of at least the existence of a few key statements for
manipulating data objects. We’ve already seen some statements that allow us to modify views
and stored procedures. In this chapter, we’ll cover some of the possibilities for modifying tables
and indexes via DDL.

Table Attributes
In the first two chapters, we briefly discussed a few attributes of database tables, such as
primary keys, foreign keys, datatypes, and auto-increment columns. As mentioned, SQL DDL
provides CREATE statements for many types of database objects. In Chapters 13 and 16, we
talked about the CREATE PROCEDURE and CREATE VIEW statements that handle stored
procedures and views.

We’ll now bring our attention back to tables. Tables are perhaps the primary and most essential
object type in a database. Without tables, nothing else really matters. All the data in a database
is physically stored in tables. Most other object types relate to tables in one way or another.
Views provide a virtual view of tables. Stored procedures generally act upon data in tables.
Functions allow for special rules for the manipulation of data in tables.

We’ll focus here on how tables can be created initially. A large number of attributes can be
associated with table definitions. We’ll give an overview of some of the more important
attributes and discuss what they mean.

The subject of table attributes is also related to the larger topic of database design, which will
be addressed in the next chapter. For now, we want to focus on the mechanics of what can be
done with the tables themselves.

The specifics of how tables can be designed and altered varies widely among Microsoft SQL
Server, MySQL, and Oracle. We’ll talk primarily about those attributes common to tables in
all three databases.

ptg18192217

183Primary Keys and Indexes

Table Columns
Tables are defined as containing any number of columns. Each column has a variety of
attributes specific to that column. The first and most obvious attribute is the column name.
Each column must be given a name unique to that table.

A second attribute of columns is the datatype, a subject that was addressed in Chapter 1. We’ve
already described some notable datatypes in three main categories: numeric, character, and
date/time. The datatype is a key determinant of the type of data each column can contain.

A third attribute of columns is whether or not it can be defined as an auto-increment column.
We briefly introduced this attribute type in Chapters 1 and 2 and discussed it further in the
preceding chapter about modifying data. Basically, an auto-increment column means that the
column is automatically assigned a numeric value, in ascending sequence, as each row is added
to the table. Auto-increment columns are often used with primary keys but can also be assigned
to an ordinary column.

Note that the term auto-increment is specific to MySQL. Microsoft uses the term identity to refer
to the same type of attribute.

Database Differences: Oracle
Oracle doesn’t have an auto-increment type of attribute. Instead, Oracle requires you to define
a column as a sequence and then create a trigger to populate that column with sequential
values. This procedure is beyond the scope of this book.

A fourth column attribute is whether or not the column is allowed to contain NULL values.
The default is to allow NULL values. If you don’t want to allow a column to contain NULLs,
it is normally specified via a NOT NULL keyword applied to the column description.

The final column attribute we’ll mention is whether the column is assigned a default value.
A default value is automatically assigned to the column if no value for that column is provided
when a row is added. For example, if most of your customers are in the US, you may want to
specify that a column containing a country code be given a default value of US.

Primary Keys and Indexes
Let’s turn to the topic of primary keys and explain how that attribute relates to table indexes.

Indexes are a physical structure that can be added to any column in a database table. Indexes
serve the purpose of speeding up data retrieval when that column is involved in a SQL statement.
The actual data in the index is hidden, but basically the index involves a structure that maintains
information on the sort order of the column, thus allowing for quicker retrieval when specific
values are requested.

ptg18192217

184 Chapter 18 Maintaining Tables

One downside to indexing a column is that it requires more disk storage in the database. A
second negative is that indexes generally slow down data updates involving that column. This
happens because any time a row is inserted or modified, the index must recalculate the proper
sorted order for values in that column.

Any column can be indexed, but only one column can be designated as a primary key.
Specifying a column as a primary key means two things: The column will be indexed, and the
column will be guaranteed to contain unique values.

As discussed in Chapter 1, primary keys accomplish two main benefits for the database user.
They enable you to uniquely identify a single row in a table, and they allow you to easily relate
tables to one another. And now, a third benefit can be added—namely, that by being indexed,
the primary key enables faster data retrieval of rows involving that column.

The main reason for having primary keys is to guarantee unique values for all rows in a table.
There must always be a way of identifying single rows for updates or deletes, and the primary
key ensures that this can be done.

Moreover, a primary key can actually span more than one column and can consist of two
or three columns. If the primary key contains more than one column, it simply means that
all those columns together will contain a unique value. This type of primary key is normally
referred to as a composite primary key. As an example of when a composite primary key might
be used, let’s say that you have a Movies table. You’d like to have a key that uniquely identifies
each movie in the table. Rather than using a MovieID integer value as the key, you’d like to
use the movie title as the key. The problem, however, is that there might exist more than one
movie with the same title. To solve the problem, you might want to use two columns—the
movie title and the release date—to form a composite primary to uniquely define each movie.

Because primary keys must contain unique values, they are never allowed to contain NULL
values. Some value for the column must always be specified.

Finally, primary keys are often specified as auto-increment columns. By making a primary key
auto-increment, database developers don’t need to worry about assigning a unique value for the
column. The auto-increment feature takes care of that requirement.

Foreign Keys
SQL databases can also designate specific columns as a foreign key. A foreign key is simply
a reference from a column in one table to a column in a different table. When setting up a
foreign key, you will be asked to specify both columns. The foreign key in the table being
configured is often referred to as being in the child table. The referenced column in the other
table is referred to as being in the parent table.

For example, let’s say you have a Customers table with a CustomerID column set up as a
primary key. You also have an Orders table with an OrderID column set up as a primary key, as
well as a CustomerID column. In this scenario, you can set up the CustomerID column in the

ptg18192217

185Creating Tables

Orders table as a foreign key that references the CustomerID column in the Customers table.
In this situation, the Orders table is the child table and the Customers table is the parent table.
The idea of the foreign key is to ensure that the CustomerID in the Orders table points to an
existing customer in the Customers table, using the CustomerID column in both tables as the
common element.

When a foreign key is set up, some specific actions can be set up pertaining to updates and
deletes for rows in the parent table. The three most common actions are:

• No Action

• Cascade

• Set Null

These three actions can be specified for either updates or deletes. Continuing with the example
of the Customers and Orders tables, the most common action that might be specified is No
Action. This is normally the default action if none is specified. If the CustomerID column in
the Orders table is set to No Action for updates, that means that a check is made whenever an
update is attempted in the parent table on the CustomerID column. If SQL tries to perform an
update on the CustomerID that would result in any row in the child table pointing to a value
that no longer exists, it will prevent that action from occurring. The same would be true if No
Action is specified for deletes. This ensures that, when using the CustomerID column in either
table, all rows in the Orders table properly point to an existing row in the Customers table.

The second alternative for a specified action for foreign keys is Cascade. This means that when
a value in the parent table is updated, and that value affects rows in the child table, then SQL
will automatically update all rows in the child table to reflect the new value in the parent table.
Similarly, if a row in the parent table is deleted, and if that affects rows in the child table, SQL
will automatically delete affected rows in the child table.

The third alternative for a specified action for foreign keys is Set Null, which is sometimes used for
deletes. This means that when a value in the parent table is deleted, and if that value affects rows
in the child table, SQL will automatically update all affected rows in the child table to contain a
NULL value in the foreign key, indicating that a corresponding parent row doesn’t exist.

Creating Tables
The CREATE TABLE statement can be used to create new tables in a database. The syntax and
available features vary among databases. We’ll illustrate this with a simple example that creates
a table with these attributes:

• The table name is MyTable.

• The first column in the table is named ColumnOne and is defined as a primary
key. This column will be defined as an INT (integer) datatype and also as an
auto-increment column.

ptg18192217

186 Chapter 18 Maintaining Tables

• The second column in the table is named ColumnTwo and is defined as an INT datatype.
This column will not allow NULL values. This column will also be defined as a foreign
key, with Set Null specified for deletes, related to a column named FirstColumn in
another table called RelatedTable.

• The third column is named ColumnThree and is defined as a VARCHAR datatype with a
length of 25 characters. This column will allow NULL values.

• The fourth column is named ColumnFour, is defined as a FLOAT datatype, and will allow
NULL values. It will be given a default value of 10.

Here is the CREATE TABLE statement that will create such a table in Microsoft SQL Server:

CREATE TABLE MyTable
(ColumnOne INT IDENTITY(1,1) PRIMARY KEY NOT NULL,
ColumnTwo INT NULL
REFERENCES RelatedTable (FirstColumn)
ON DELETE SET NULL,
ColumnThree VARCHAR(25) NULL,
ColumnFour FLOAT NULL DEFAULT (10))

Database Differences: MySQL and Oracle
The same CREATE TABLE statement in MySQL looks like this:
CREATE TABLE MyTable
(ColumnOne INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
ColumnTwo INT NULL,
ColumnThree VARCHAR(25) NULL,
ColumnFour FLOAT NULL DEFAULT 10,
CONSTRAINT FOREIGN KEY(ColumnTwo)
REFERENCES RelatedTable (FirstColumn)
ON DELETE SET NULL);

The same statement in Oracle is:
CREATE TABLE MyTable
(ColumnOne INT PRIMARY KEY NOT NULL,
ColumnTwo INT NULL,
ColumnThree VARCHAR(25) NULL,
ColumnFour FLOAT DEFAULT 10 NULL,
CONSTRAINT "ForeignKey" FOREIGN KEY (ColumnTwo)
REFERENCES RelatedTable (FirstColumn)
ON DELETE SET NULL);

As previously mentioned, Oracle doesn’t allow for auto-increment columns.

After a table is created, an ALTER TABLE statement can be used to modify specific attributes
of the table. Due to its complexity and to the vast differences between databases for this
command, the syntax for the ALTER TABLE isn’t covered in this book.

As one example, the following statement could be used to modify MyTable to eliminate the
ColumnThree column from the table:

ALTER TABLE MyTable
DROP COLUMN ColumnThree

ptg18192217

187Looking Ahead

The syntax for deleting an entire table is simple. To delete MyTable, issue this statement:

DROP TABLE MyTable

Creating Indexes
SQL provides a CREATE INDEX statement for creating indexes after the table is created. You
can also use the ALTER TABLE statement to add or modify indexes.

To illustrate, the syntax in Microsoft SQL Server for adding a new index on ColumnFour in
MyTable is:

CREATE INDEX Index2
ON MyTable(ColumnFour)

This creates a new index named Index2. To delete an index, simply issue a DROP INDEX
statement such as:

DROP INDEX Index2
ON MyTable

Database Differences: Oracle
In Oracle, the equivalent DROP INDEX statement is:
DROP INDEX Index2;

Looking Ahead
The SQL statements for adding or modifying tables and indexes are complex but relatively
unimportant to learn in detail. Database software generally provides graphical tools for
modifying the structure of tables without having to resort to issuing SQL statements. The
important concepts to take from this chapter are a knowledge of the various table attributes,
including an understanding of how indexes and primary and foreign keys are related to
each other.

In our next chapter, “Principles of Database Design,” we move from the relatively mundane
task of creating tables to the much broader topic of database design. Just as tables must be
created before their data is accessed, the overall structure of databases is normally designed
before tables are created. So, in a sense, we’re moving in reverse through topics that are
normally introduced before retrieval of data is ever attempted. The specific design of your
database is, of course, an essential component of your ability to deliver quality results via SQL.
If a database is poorly designed, anyone accessing data in that database will be hindered in
their attempts to retrieve data. Basic knowledge of the database design principles discussed in
the next chapter can go a long way toward ensuring a quality data retrieval experience.

ptg18192217

This page intentionally left blank

ptg18192217

19
Principles of

Database Design

In our first chapter, we introduced the notion that relational databases are a collection of data,
stored in any number of tables. The tables are assumed to be related to each other in some
fashion. In the previous chapter, on maintaining tables, we made clear that database designers
can, if they choose, assign foreign keys to ensure that certain relationships between tables are
maintained properly.

However, even with our knowledge of primary and foreign keys, we still have not yet addressed
the basic issue of how to design a database in the first place. The main questions to address are
the following:

• How should data be organized into a set of related tables?

• What data elements should be placed in each table?

Once tables and their data elements are defined, then a database administrator can go about
the business of creating foreign keys, indexes, appropriate datatypes, and so on.

There will never be a single correct answer to the above two questions. Besides the fact that
every organization or business is unique, there is seldom a definitive solution for any given
situation. Much depends on how flexible a business wants its data design to be. Another factor
is the existence of current data and the need to maintain continuity with that data. Very
few organizations have the luxury of designing their databases in a vacuum, apart from what
already exists.

Despite these provisions, certain database design principles have evolved over time to guide
us in our quest for an optimal design structure. Many of these design principles stem from
the most influential architect of relational database design, E.F. Codd, who published his
groundbreaking article “A Relational Model of Data for Large Shared Data Banks” in 1979.
This article laid the foundation for what we now call the relational model and the concept
of normalization.

ptg18192217

190 Chapter 19 Principles of Database Design

Goals of Normalization
The term normalization refers to a specific process that allows database architects to turn
unstructured data into a properly designed set of tables and data elements.

The best way to understand normalization is to illustrate what it isn’t. To do this, we’ll start
with the presentation of a poorly designed table with a number of obvious problems. The
following is a table named Grades, which attempts to present information about all the grades
that students have received for the tests they’ve taken. Each row represents a grade for a
particular student.

Test Student Date TotalPoints Grade TestFormat Teacher Assistant

Pronoun Quiz Amy 2017-03-02 10 8 Multiple Choice Smith Collins

Pronoun Quiz Jon 2017-03-02 10 6 Multiple Choice Jones Brown

Solids Quiz Beth 2017-03-03 20 17 Multiple Choice Kaplan NULL

China Test Karen 2017-02-04 50 45 Essay Harris Taylor

China Test Alex 2017-03-04 50 38 Essay Harris Taylor

Grammar Test Karen 2017-03-05 100 88 Multiple Choice, Smith Collins

Essay

Let’s first briefly describe the information that each column in this table is meant to provide.
The columns are:

• Test: A description of the test or quiz given

• Student: The student who took the test

• Date: The date on which the test was taken

• TotalPoints: The total number of possible points for the test

• Grade: The number of points that the student received

• TestFormat: The format of the test: essay, multiple choice, or both

• Teacher: The teacher who gave the test

• Assistant: The person who is assigned to assist the teacher

We’ll assume that the primary key for this table is a composite primary key consisting of the
Test and Student columns. Each row in the table is meant to express a grade for a specific test
and student.

There are two obvious problems with this table. First, certain data is unnecessarily duplicated.
For example, we can see that the Pronoun Quiz, given on 2017-03-02, had a total of 10 points.
The problem is that this information must be repeated in every row for that quiz. It would be
better if we could simply view the total points for that particular quiz just once.

A second problem is that data is repeated within certain single cells. In the sixth row, the
TestFormat is both Multiple Choice and Essay. This scenario exists because this test had both
types of questions. This makes the data difficult to use. If we wanted to retrieve all tests with
essay questions, how could we do that?

ptg18192217

191How to Normalize Data

More generally, the main problem with this table is that it attempts to put all known
information into a single table. It would be much better to break down the information in this
table into separate entities, such as students, grades, and teachers, and represent each entity
as a separate table. The power of SQL can then be used to join tables together as needed to
retrieve any desired information.

With this discussion in mind, let’s now formalize what the process of normalization hopes to
accomplish. There are two main goals:

• Eliminate redundant data. The previous example clearly illustrates the issue of
redundant data. But why is this important? What exactly is the problem with listing
the same data on multiple rows? Well, besides the unnecessary duplication of effort,
redundancy reduces flexibility. When data is repeated, any changes to particular values
affect multiple rows rather than just one.

• Eliminate insert, delete, and update anomalies. The problem of redundant data also
relates to this second goal, which is to eliminate insert, delete, and update anomalies.
Suppose, for example, that a teacher gets married and changes her name. Because we
would like the data to reflect the new name, we must now update all rows that contain
her name. However, because the data is stored redundantly, we must update a large
amount of data, rather than just one row.

There are also insert and delete anomalies. For example, let’s say we just hired a new
teacher to teach music. We would like to record this information somewhere in the
database. However, because the teacher hasn’t yet given any tests, there is nowhere to
put this information, because we don’t have a table specific to the entity of teachers.

Similarly, a delete anomaly would occur if we wanted to delete a row, but by doing so
would eliminate some related piece of information. To use another example, if we had
a database of books and wanted to delete a row for a book by George Orwell, and if
that were the only book for Mr. Orwell in the database, then that row deletion would
eliminate not only the book, but also the fact that George Orwell is an author of other
books that might be acquired in the future.

How to Normalize Data
What, specifically, does normalization mean?

The term itself originates with E.F. Codd and refers to a series of recommended steps for
removing redundancy and updating anomalies from a database design. The steps involved in
the normalization process are commonly referred to as first normal form, second normal form,
third normal form, and so on. Although some individuals have described steps up to a sixth
normal form, the usual practice is to go through only the first, second, and third normal form.
When data is in third normal form, it is generally understood to be sufficiently normalized.

We won’t describe the entire set of rules and procedures for converting data into first, second,
and third normal form. Other texts elaborate on the process in great detail, showing how to
transform data into first normal form, then into second normal form, and finally into third
normal form.

ptg18192217

192 Chapter 19 Principles of Database Design

Instead, we’ll summarize the rules for getting data into third normal form. In practice, an
experienced database administrator can jump from unstructured data to third normal form
without having to follow every intermediate procedure. We’ll do the same here.

The three main rules for normalizing data are as follows:

• Eliminate repeating data. This rule means that no multivalued attributes are allowed.
In the previous example, we cannot allow a value such as “Multiple Choice, Essay” to
exist in a single data cell. The existence of multiple values in a single cell creates obvious
difficulties in retrieving data by any given specified value.

A corollary to this rule is that repeated columns are not allowed. In our example,
the database might have been designed so that, rather than a single column named
TestFormat, we had two separate columns named TestFormat1 and TestFormat2.
With this alternative approach, we might have placed the value “Multiple Choice” in
the TestFormat1 column and “Essay” in the TestFormat2 column. This would not be
permitted. We don’t want repeated data, whether it is represented as multiple values in
a single column or as multiple columns.

• Eliminate partial dependencies. This rule refers primarily to situations in which the
primary key for a table is a composite key, meaning a key composed of multiple columns.
The rule states that no column in a table can be related to only part of the primary key.

Let’s illustrate this with an example. As mentioned, the primary key in the Grades table
is a composite key consisting of the Student and Test columns. The problem occurs with
columns such as TotalPoints. The TotalPoints column is really an attribute of the test and
has nothing to do with students. This rule mandates that all non-key columns in a table
refer to the entire key and not just a part of the key. Essentially, partial dependencies
indicate that the data in the table relates to more than one entity.

• Eliminate transitive dependencies. This rule refers to situations in which a column in
the table refers not to the primary key, but to another non-key column in the same table.
In our example, the Assistant column is really an attribute of the Teacher column. The
fact that the assistant relates to the teacher and not to anything in the primary key (the
test or the student) indicates that the information doesn’t belong in this table.

We’ve now seen the problems and discussed rules for fixing the data, but how are proper
database design changes actually determined? This is where experience comes in. And there is
generally not a single solution to any given problem.

That said, the following is one solution to this design problem. In this new design, several
tables have been created from the one original table, and all data is now in normalized form.
Figure 19.1 uses an entity-relationship diagram to show the tables in the new design.

ptg18192217

193How to Normalize Data

Figure 19.1 Normalized design

As mentioned in Chapter 11, entity-relationship diagrams do not display detailed data. Instead,
they indicate the overall structure of the data. The primary keys in each table are shown in bold.
A number of ID columns with auto-increment values have been added to the tables, allowing
relationships between the tables to be defined. All other columns are the same as seen previously.

The main point to notice is that every entity discussed in this example has been broken out
into separate tables. The Students table includes information about each student. The only
attribute in this table is the student name.

The Grades table includes information about each grade. It has a composite primary key of
StudentID and TestID, because each grade is tied to a student and to a specific test.

The Tests table has information about each test, such as date, TeacherID, test description, and
the total points for the test.

The Formats table includes information about the test formats. Multiple rows are added to this
table for each test to indicate whether the test is multiple choice, essay, or both.

The Teachers table includes information about each teacher, including the teacher’s assistant,
if one exists.

Following is the data contained in these new tables, corresponding to the data in the original
Grades table.

Students table:

StudentID Student

1 Amy
2 Jon
3 Beth
4 Karen
5 Alex

ptg18192217

194 Chapter 19 Principles of Database Design

Teachers table:

TeacherID Teacher Assistant

1 Smith Collins
2 Jones Brown
3 Kaplan NULL
4 Harris Taylor

Tests table:

TestID TeacherID Test Date TotalPoints

1 1 Pronoun Quiz 2017-03-02 10
2 2 Pronoun Quiz 2017-03-02 10
3 3 Solids Quiz 2017-03-03 20
4 4 China Test 2017-03-04 50
5 1 Grammar Test 2017-03-05 100

Formats table:

TestID TestFormat

1 Multiple Choice
2 Multiple Choice
3 Multiple Choice
4 Essay
5 Multiple Choice
5 Essay

Grades table:

StudentID TestID Grade

1 1 8
2 2 6
3 3 17
4 4 45
5 4 38
5 5 88

Your first impression might be that we have unnecessarily complicated the situation, rather
than improving upon it. For example, the Grades table is now a mass of numbers, the meaning
of which is not completely obvious upon quick inspection.

ptg18192217

195The Art of Database Design

However, remembering SQL’s ability to easily join tables together, you can also see that there is
now much greater flexibility in this new design. Not only are we free to join only those tables
needed for any particular analysis, but we can now also add new columns to these tables much
more readily without affecting anything else.

Our information has become more modularized. Now if we decide that we want to capture
additional information about each student, such as address and phone number, we can simply
add new columns to the Students table. And, when we want to modify a student’s address or
phone number later, that change will affect only one row in the table.

The Art of Database Design
Ultimately, designing a database is much more than simply going through normalization
procedures. Database design is really more of an art than a science, and it requires asking and
thinking about relevant business issues.

In our grades example, we presented one possible database design as an illustration of how to
normalize data. In truth, many possibilities exist for designing this database. Much depends on
the realities of how the data will be accessed and modified. Numerous questions can be asked
to ascertain whether a design is as flexible and meaningful as it needs to be. For example:

• Are there other tables that need to be added to the database? One obvious choice
would be a Subjects table, which would allow for the selection of tests by subject, such
as English or Math. If a Subjects table were added, it could then be asked whether we’d
want to relate the subject to the test or to the teacher who administered the test.

• Is it possible for a grade to count in more than one subject? It might be that the
English and Social Studies teachers are doing a combined lesson and want certain tests
to count for both subjects. How would we account for that?

• What do we do if a child flunks a grade and is now taking the same tests a second
time? We would need to determine how we would differentiate the student’s grade for
each time he took the test.

• How do we allow for special rules that teachers might implement? For example,
a teacher might want to drop the lowest quiz score in a particular time period.

• Does the data have special analysis requirements? If there is more than one teacher for
the same subject, do we want to be able to compare the average grades for the students
of each teacher, to ensure that one teacher isn’t inflating grades?

The list of possible questions is almost endless. The point is that data doesn’t exist in a
vacuum. There is a necessary interaction between data design and real-world requirements.
Databases must be designed to allow for flexibility and ease of use. However, there is also a
danger that databases can be over-designed to a point where the data becomes unintelligible.
An overzealous data administrator might decide to create 20 tables to allow for every possible
situation. That, too, is inadvisable. Database design is something of a balancing act in the
search for a design that is sufficiently flexible but also intuitive and understandable by users
of the system.

ptg18192217

196 Chapter 19 Principles of Database Design

Alternatives to Normalization
We have emphasized that normalization is the overriding principle that should be followed in
designing a database. In certain situations, however, viable alternatives might make more sense.

For example, in the realm of data warehouse systems and software, many practitioners advocate
using a star schema design for databases rather than normalization. In a star schema, a certain
amount of redundancy is allowed and encouraged. The emphasis is on creating a data structure
that more intuitively reflects business realities, and also one that allows for quick processing of
data by special analytical software.

To give a brief overview of star schema design, the main idea is to create a central fact table,
which is related to any number of dimension tables. The fact table contains all the quantitative
numbers that are additive in nature. In our previous example, the Grade column is such a
number, because we can add up grades to obtain a meaningful total grade. The dimension
tables contain information on all the entities related to the central facts, such as subject,
time, teacher, student, and so on.

As an additional possibility, special analytical software can be employed that allows database
developers to create cubes from their star schema databases. These cubes extend analysis
capabilities, allowing users to drill down through predefined hierarchies in the various
dimensions. For example, a user of such a system would be able to drill down from viewing
a student’s entire semester grades to seeing grades in an individual week.

Figure 19.2 shows what a database with a star schema design might look like for our
grades example.

Figure 19.2 Star schema design

In this design, the Grades table is the central fact table. All other tables are dimension tables.

The first four columns in the Grades table (Date, TestID, StudentID, and TeacherID) allow
each row in the fact table to be related to the corresponding row in a dimension table. For
example, the StudentID column in the Grades table can be joined to a StudentID value in the
Students table. The other two columns in the Grades table have additive numeric quantities.
Notice that TotalPoints is now in the Grades table. In our normalized design, TotalPoints was

ptg18192217

197Looking Ahead

an attribute of the Tests table and the grade was in the Grades table. By putting both the Grade
and TotalPoints in a single table in this star schema design, we can more easily sum grades and
compute averages (Grade divided by the TotalPoints) for any set of data.

Certainly, this is only a brief introduction to the subject of designing databases for data
warehouse applications. However, it illustrates the point that there are many different ways
to design a database, and the best way often relates to the type of software that will be used
with the data.

Looking Ahead
This chapter covered the principles of database design. We discussed the basics of the
normalization process, showing how a database with a single table can be converted into
a more flexible structure with multiple tables, related by additional key columns. We
also emphasized that database design is not merely a technical exercise. Attention must
be paid to the organizational realities and to considerations as to how the data will be
accessed and utilized. Finally, we briefly described the star schema as an alternative to
conventional normalized design, in an effort to emphasize that there is often more than
one feasible approach.

In our final chapter, “Strategies for Displaying Data,” we’ll discuss some interesting possibilities
for using spreadsheets to complement our knowledge of SQL. In our quest to sharpen our SQL
skills, we must not forget that there is a world out there beyond SQL. We should not expend
efforts on SQL when the underlying objective can be accomplished more effectively through
other means.

ptg18192217

This page intentionally left blank

ptg18192217

20
Strategies for

Displaying Data

In this final chapter, we’ll return to the main theme of this book—namely, methods of
retrieving data from relational databases. In the previous few chapters, we took a detour
from data retrieval to the related topics of updating data, maintaining tables, and designing
databases. Now we want to focus again on the role of SQL in retrieving data. More specifically,
we’ll compare the capabilities of SQL to other reporting tools available to the end user and
discuss strategies for employing the most appropriate tool for the job at hand.

In the broad business and corporate world, Microsoft Excel is the most widely available and
pervasive reporting tool for the end user. One would be hard-pressed to find a business analyst
who doesn’t use or interact with Excel in some manner. In this chapter, we’ll examine how
Excel can be used to extend the data retrieval capabilities of SQL to further manipulate data
and present it in formats that aren’t easily accomplished in SQL.

Crosstab Layouts Revisited
Back in Chapter 10, we looked at using the PIVOT operator to create output in a crosstab
format. In that chapter, we began with the following data in this SalesSummary table:

SalesDate CustomerID State Channel SalesAmount

4/1/2017 101 NY Internet 50
4/1/2017 102 NY Retail 30
4/1/2017 103 VT Internet 120
4/2/2017 145 VT Retail 90
4/2/2017 180 NY Retail 300
4/2/2017 181 VT Internet 130
4/2/2017 182 NY Internet 520
4/2/2017 184 NY Retail 80

ptg18192217

200 Chapter 20 Strategies for Displaying Data

Using the PIVOT operator, we created output in this crosstab format:

SalesDate State Internet Retail

2017-04-01 NY 50 30
2017-04-01 VT 120 NULL
2017-04-02 NY 520 380
2017-04-02 VT 130 90

The key feature of this crosstab layout is the appearance of channel values in individual
columns. Although data is grouped by SalesDate, State, and Channel, we see only combinations
of SalesDate and State in the individual rows. We moved the two channel values to their own
columns, Internet and Retail.

This is all fine and good, except that there was an inherent difficulty in producing output in this
crosstab format. As seen in Chapter 10, the SQL statement that produced the above output was:

SELECT * FROM
(SELECT SalesDate, State, Channel, SalesAmount FROM SalesSummary) AS mainquery
PIVOT (SUM(SalesAmount) FOR Channel IN ([Internet], [Retail])) AS pivotquery
ORDER BY SalesDate

Notice that in this SQL statement we needed to specify the Channel column values, Internet
and Retail, in the statement. In other words, we were required to know in advance all the
possible values for the channels and put them in our statement so that columns could be
created for them. As a practical matter, this is a cumbersome solution. In this simple example,
with only two channel values, it doesn’t seem so difficult. But in the real world, we might
easily run into situations for which we might have dozens of potential values for columns, and
we wouldn’t know in advance what those values are.

For this reason, the PIVOT keyword is seldom used in practice. A much simpler and more
powerful solution is to rely on reporting software to automatically generate reports in a crosstab
format. The vast majority of reporting tools provide some sort of crosstab functionality. In
Microsoft Excel, this is accomplished with pivot tables. Other reporting tools offer similar
capabilities but with different names. For example, Microsoft Reporting Services provides a
Matrix Report that allows the user to lay out data in a crosstab format. In SAP Crystal Reports,
the crosstab report type is called a Cross-Tab.

Interestingly, the report layout in reporting tools such as Reporting Services is independent of
the underlying SQL query used to retrieve data. For example, in Reporting Services, you can
start with a simple SQL query without a GROUP BY clause and place that query in either a
Table Report or a Matrix Report. If placed in a Table Report, the output will be a simple list of
data. If placed in a Matrix Report, the data can be organized into rows and columns, and then
the report will automatically perform all required grouping and generate any needed columns.

Excel and External Data
In this chapter, we’ll focus on Microsoft Excel pivot tables, as this software is widely available
and produces results similar to Reporting Services and other specialized reporting tools.

ptg18192217

201Excel and External Data

However, before examining the capabilities of Excel pivot tables, we need to digress for a
moment into some of the possibilities for connecting to data in Excel. With its ubiquitous
presence in the business world, most query and reporting tools provide a mechanism for
exporting data from their tools directly into Excel. When working with SQL query tools, you
generally need only to use an Export to Excel option to move data into Excel.

There are also a variety of options when working within Excel to import data from external
sources. We’ll focus on obtaining data from relational databases, but we will also mention in
passing that Excel can also import data from text files and connect directly to OLAP databases.
Text files are generally imported directly into an Excel workbook via a wizard that lets the
user specify the layout of the text file, what type of delimiters are used, the properties of each
column, and so on. Excel also provides the ability to connect directly to OLAP databases,
sometimes referred to as cubes. When connecting to an OLAP cube, Excel uses its pivot table
interface to view data in the cube.

To obtain data from relational databases, one possibility is to connect to the database server
and then import data into Excel. This is generally initiated via a command under the Data tab
of the Ribbon called From Other Sources. Under this command are options such as:

• From SQL Server

• From Data Connection Wizard

• From Microsoft Query

The From Data Connection Wizard allows the user to connect to databases other than SQL
Server. However, we’ll begin by selecting the From SQL Server option. A connection wizard
appears that first asks for the database server name and logon credentials. After providing
that information, we’re asked to select the specific tables on that server that we would like to
import. The next pane of the wizard creates an Office Data Connection (ODC) file that stores
the information we specified, so that the data source can be connected to again in the future.
The final step in the wizard, shown in Figure 20.1, allows us to import the data in an Excel
Table, Pivot Table, or Pivot Chart.

Figure 20.1 Import Data options

ptg18192217

202 Chapter 20 Strategies for Displaying Data

When selecting more than one table from the relational database, the best choice is to import
the data into an Excel Table. This will import the data into Tables on multiple worksheets. If only
one table was selected, then the Pivot Table or Pivot Chart is often a better choice. Of course, you
can always import data into a Table and later create a Pivot Table or Chart from that Table.

The problem with this method of importing data is that it doesn’t allow us to join data from
multiple tables. The ability to combine data from multiple tables is easily handled in SQL, but
is not so readily accomplished in Excel. This leads us to a second possibility, which is to use
Microsoft Query. When selecting the From Microsoft Query option under the Data tab of the
Ribbon, we are presented with a series of panes, the first of which is shown in Figure 20.2.

Figure 20.2 Choose Data Source

After responding to create a new data source, the next pane asks us to name the source and
specify a connection driver. Behind the scenes, this connection data is saved as a Data Source
Name (DSN) file, which is slightly different than an ODC file. We then click a Connect
button and log in to the server. After selecting two tables from our database—for example, the
Customers table and the Orders tables—the Microsoft Query window appears as in Figure 20.3.

Figure 20.3 Microsoft Query

ptg18192217

203Excel Pivot Tables

Additionally, we must manually join the two tables on the CustomerID column that appears
in both tables. This is done by drawing a line to connect the columns. We also need to
double-click the line to allow us to edit and specify this as an outer join between the two
columns. The final step for moving this data into Excel is to select the Return Data to Microsoft
Excel command under the File menu of Microsoft Query. It then shows the same Import Data
options pane of Figure 20.1, allowing us to import the data into a Table, Pivot Table, or Pivot
Chart. If we choose to import into a Table, the data then appears as in Figure 20.4.

Figure 20.4 Excel table

We have now successfully used the Microsoft Query component of Excel to create a
rudimentary query that selects data from multiple tables in a relational database and moves
that data into an Excel Table. As mentioned, we can later take an additional step in Excel to
create a Pivot Table from the Table. This leads us to our next topic.

Excel Pivot Tables
Excel includes many features that overlap what can be done with SQL. For example, within
Excel you can sort and filter data, and apply a myriad of transformations with numerous
functions. Data can also be grouped and subtotaled. But one feature of Excel that’s difficult
to replicate with SQL is the pivot table. Excel provides the ability to select any range of data
on a worksheet and convert that data into a pivot table. Or, as discussed above, data can be
imported from an external database into a pivot table.

At a basic level, a pivot table is the equivalent of the crosstab format that we’ve already seen.
However, a key benefit of the pivot table is that it’s completely interactive and dynamic. Rather
than viewing a static crosstab report, you can easily modify the pivot table by rearranging data
elements into its four data areas: rows, columns, values, and filters.

To better understand the tremendous capabilities of pivot tables, let’s illustrate with an
example. We’ll start with a set of data residing in an Excel worksheet. We’ll assume that the
data was moved to the worksheet by utilizing a SQL statement that joined data in tables
describing customers, products, and sales. The data appears in Excel as in Figure 20.5.

ptg18192217

204 Chapter 20 Strategies for Displaying Data

Figure 20.5 Underlying data for a pivot table

In this data, rows with negative quantities and sales represent returns. There is one row per
order or return. The first step is to insert this data into a pivot table. This is accomplished by
selecting the Pivot Table command under the Insert tab of the Ribbon. Accepting the default
values on the Create PivotTable pane will create a pivot table as shown in Figure 20.6.

Figure 20.6 A pivot table with the PivotTable Fields list

ptg18192217

205Excel Pivot Tables

At this point, we see an empty pivot table and a PivotTable list showing the available fields that
can be moved into the pivot table. The easiest way to move data to the pivot table is to drag
fields from the list to one of the four areas of the pivot table on the Fields list: Filters, Rows,
Columns, or Values. Let’s begin by moving Customer State to the Filters area, Sales Month to
the Rows area, Product Category to the Columns area, and Total Sales to the Values area. The
results are shown in Figure 20.7.

Figure 20.7 A pivot table with fields in all four areas

Let’s examine what has happened to our data. Pivot tables sum all the detailed data to which
the pivot table is connected. The pivot table displays as many rows and columns as are
necessary to display that data. The data is displayed in a crosstab format, with fields in the
Rows or Columns areas, and quantitative values summed in the Values area. The Filter area
can be used to apply a filter to everything in the pivot table. In this example, we’ve placed
Customer State in the Filters area but haven’t yet applied any filters on the state.

When fields are moved to any of the four areas, the pivot table is instantly updated with
appropriate values corresponding to the new layout. It’s a highly interactive device that lets
you manipulate data at will.

Unlike with SQL statements, you never need to specify a grouping in pivot tables. Excel
assumes that you want grouping of any fields placed in the Rows or Columns area. In this
example, the pivot table has grouped all data by Sales Month and Product Category. We see,
therefore, that there was a total of 86 dollars of Tea sales in the month of February 2017. Grand
Total rows and columns have been added automatically, although those Grand Totals can just
as easily be turned off.

ptg18192217

206 Chapter 20 Strategies for Displaying Data

If we want to group data or modify the presentation in a slightly different manner, that
is easily accomplished. In this next iteration, we’ll move the Sales Month to the Columns
area, move the Product Category to the Rows, add Product to the Rows area, and adjust the
Customer State filter to select only data from Illinois (IL) and Tennessee (TN). The resulting
data is shown in Figure 20.8.

Figure 20.8 Rearranged pivot table with a filter applied

Notice that we now see a hierarchy of fields in the rows area. Within each product category, we
see the various products that belong to that category. Sales Month values are now broken down
into separate columns. Because we applied a filter by state, we now see a Grand Total of only
75 dollars in sales rather than the previous 321.

In addition to allowing summation of values, the pivot table allows other options, such as
count, average, and so on. However, understand that only summable quantitative values can
be placed in the Values area of the pivot table. In this sense, pivot tables are a close cousin of
the star schema dimensional design discussed in Chapter 19. Whereas dimensional data can be
placed in the Rows, Columns, or Filters areas, summable quantities belong in the Values area.
The Values area of the pivot table is analogous to data in a Fact table of a star schema design.

In addition to allowing you to move fields at will between the areas of the pivot table, Excel
also provides a few interesting Report Layout options. There are three basic layout options for
pivot tables:

• Compact Form

• Outline Form

• Tabular Form

When a pivot table is selected, these options appear under the Design tab of the Ribbon. The
layout in Figures 20.7 and 20.8 is Compact Form. After switching the layout of Figure 20.8 to
Outline Form, the pivot table appears as in Figure 20.9.

ptg18192217

207Looking Ahead

Figure 20.9 Pivot table in Outline Form

In the Outline Form, we now see the Product Category and Product in separate columns, with
labels for each field in the header area. This format clearly lists all field names in the display.

There are many other useful features of pivot tables, but one last benefit we’ll illustrate is the
ability to drill down from the summarized values on the pivot table back to the original data.
This is referred to as a drillthrough. In this example, we’ll double-click the cell with the value
of 40, shown as the Grand Total of sales for March 2017. When we do this, a new worksheet
appears that looks like Figure 20.10.

Figure 20.10 Drillthrough results

This table of data shows the detailed data used to calculate the value of 40 in the pivot table.
There are three rows shown, representing the three rows we saw previously in Figure 20.5. If
we sum the values in the Total Sales column, we can verify that Total Sales in March 2015 are
indeed 40.

Looking Ahead
This chapter examined a few ways in which reporting tools and pivot tables can be used to
summarize data in a manner that is difficult to present strictly through SQL statements. Pivot
tables in Excel use the basic concept of the crosstab report and extend it to provide additional

ptg18192217

208 Chapter 20 Strategies for Displaying Data

flexibility and functionality. By being aware of reporting and analytical tools available to
reformat data, SQL developers can focus their talents on retrieving data and let the reporting
tool or end user handle more complex display issues.

If you haven’t already done so, you may want to take a look at Appendixes A, B, and C for
some tips on how to get started with Microsoft SQL Server, MySQL, or Oracle. These appendixes
provide instructions on how to install the free versions of these databases and also provide
some basic information on how to use the software to execute SQL commands.

At the beginning of this book, we mentioned that SQL involves both logic and language. The
language component is fairly obvious. In each chapter, we stressed the keywords introduced
and the meaning behind those words. But now that you’ve completed the book, you will
hopefully better appreciate that the true power of SQL lies in the logic that it encompasses.

It is pure logic that allows you to take a bunch of values arranged in columns and rows and
transform them into something approaching meaningful information. The challenge in using
SQL is in determining how to apply logic to real-world data. This is where the theoretical
and practical meet. By using functions, aggregation, joins, subqueries, views, and the like, the
practitioner must grapple with the reality of raw data and learn how to manipulate it with a
few appropriate twists of logic.

But logic isn’t the end of the matter. The language of SQL plays an equally important role. In
a sense, the beauty of SQL lies in the fact that its language is quite sparse. It’s neither verbose
nor overly cryptic. Each keyword has a distinct purpose and specifies a particular bit of logic
and nothing more. We wouldn’t go as far as to say that SQL has poetic qualities, but within the
realm of computer languages, the language does carry a certain aesthetic appeal.

ptg18192217

A
Getting Started with
Microsoft SQL Server

The following describes the procedure for installing the free version of Microsoft SQL Server
on a computer running Windows. Note that the procedure may vary, depending on what is
already installed on your computer. There are two main steps:

1. Install SQL Server 2016 Express.

2. Install SQL Server 2016 Management Studio Express.

Microsoft SQL Server 2016 Express allows you to create databases. SQL Server 2016
Management Studio Express is a graphical interface that allows you to issue SQL commands
to interact with the server and any databases you create.

Installing SQL Server 2016 Express
The steps for installing SQL Server 2016 Express are as follows.

1. Go to microsoft.com/en-us/server-cloud/products/sql-server-editions.

2. Under EXPRESS, select DOWNLOAD.

3. Sign in to your Microsoft account. Create an account if you don’t have one.

4. Select your language, and then DOWNLOAD.

5. After the download completes, run the downloaded file. Accept the suggested download
location, and then click OK.

6. Select installation type BASIC.

7. Select ACCEPT to accept the license terms.

8. Accept the install location, and click NEXT.

9. When the download completes, installation will automatically begin.

10. After installation completes, select CLOSE.

After this has completed, you will have SQL Server 2016 Installation Center installed.

ptg18192217

210 Appendix A Getting Started with Microsoft SQL Server

Installing SQL Server 2016
Management Studio Express
The steps for installing SQL Server 2016 Management Studio Express are as follows:

1. Open the SQL SERVER 2016 INSTALLATION CENTER application that was installed with
SQL Server 2016 Express.

2. Select INSTALLATION on the left pane, then INSTALL SQL SERVER MANAGEMENT TOOLS.

3. Select DOWNLOAD SQL SERVER MANAGEMENT STUDIO (SSMS).

4. After the download completes, click RUN, then INSTALL.

5. When installation completes, click CLOSE.

After this has completed, you will have several new software apps installed, including SQL
Server 2016 Management Studio.

Using SQL Server 2016
Management Studio Express
When you open the SQL Server 2016 Management Studio application, you’ll first see a Connect
to Server window. This window allows you to establish a connection with the SQL Server 2016
Express instance that you already installed.

The Server Name will show the SQLEXPRESS instance you installed, and the Authentication
will show Windows Authentication. The Server Type is Database Engine.

Click the CONNECT button.

After connecting, you’ll need to create a database to work with. To do this, find the Object
Explorer pane on the left side of the window, right-click the DATABASES line, and then
select NEW DATABASE. In the New Database window, enter a name in the Database Name
box (for example, FirstDatabase). Click the OK button. You will now see your new database
under Databases.

To execute any desired SQL code, highlight your database and then click the NEW QUERY
button. A new query window will open. You can enter any SQL code and then click the
EXECUTE button. If you enter multiple SQL statements in the query window, you can
highlight any number of individual statements and execute only the highlighted portion. The
results of your query will be shown in either a Results pane or a Message pane after the query
is executed. If there is data to be displayed, it will appear in a Results pane; otherwise, a status
message will appear in a Message pane.

ptg18192217

B
Getting Started

with MySQL

The following describes the procedure for installing the free version of MySQL on a Windows
or Mac computer. Note that the procedure may vary, depending on what is already installed
on your computer. There are two main pieces of software to install:

1. Install MySQL Community Server.

2. Install MySQL Workbench, version 5.2 or higher.

MySQL Community Server allows you to create databases. The MySQL Workbench is a
graphical interface that allows you to issue SQL commands to interact with the server and any
databases you create. At the time of this writing, MySQL Community Server is at version 5.7.
MySQL Workbench is at version 6.3.

Installing MySQL on Windows
This procedure will install MySQL Community Server and MySQL Workbench on a
Windows computer.

The steps for installing are as follows:

1. Go to dev.mysql.com/downloads.

2. Under the MySQL Community Server heading, click DOWNLOAD.

3. Select the MICROSOFT WINDOWS platform, click the DOWNLOAD button next to
WINDOWS MYSQL INSTALLER MSI, and then click DOWNLOAD again.

4. If desired, log in to an Oracle web account, or create a new account. Otherwise, click
JUST START MY DOWNLOAD. After the download completes, select the RUN button.
The install setup wizard will start.

5. On the License Agreement pane, accept the terms and click NEXT.

6. On the Choosing a Setup Type pane, select the DEVELOPER DEFAULT option, and then
click NEXT. This will install both MySQL Server and MySQL Workbench. Click NEXT.

ptg18192217

212 Appendix B Getting Started with MySQL

7. If the Check Requirements pane appears, it may note additional installs necessary to
meet requirements. Click EXECUTE to install the missing software. When installation
of any missing software is complete, click NEXT.

8. On the Installation pane, click EXECUTE. When installation of all software completes,
click NEXT.

9. On the Product Configuration pane, click NEXT.

10. On the Type and Networking pane, accept all defaults and click NEXT.

11. On the Accounts and Roles pane, enter a password, and then click NEXT.

12. On the Windows Service pane, accept all defaults and click NEXT.

13. On the Plugins and Extensions pane, accept all defaults and click NEXT.

14. On the Apply Server Configuration pane, click EXECUTE, and then click FINISH
when done.

15. On the Product Configuration pane, click NEXT.

16. On the Connect to Server pane, click CHECK to verify the root user password, and then
click NEXT.

17. On the Apply Server Configuration pane, click EXECUTE. When configuration completes,
click FINISH.

18. On the Product Configuration pane, click NEXT.

19. On the Installation Complete pane, click FINISH.

After the above has completed, you will have MySQL Community Server and MySQL
Workbench installed.

Installing MySQL on a Mac
This procedure will install MySQL Community Server and MySQL Workbench on a Mac computer.

1. Go to dev.mysql.com/downloads.

2. Under the MySQL Community Server heading, click DOWNLOAD.

3. Select the MAC OS X platform, and then click the DOWNLOAD button next to the DMG
ARCHIVE file.

4. If desired, log in to an Oracle web account, or create a new account. Otherwise, click
JUST START MY DOWNLOAD. After the download completes, open the downloaded
DMG file, and then open the PKG file it creates. The install setup wizard for MySQL
Community Server will start. On the Introduction pane, click CONTINUE.

5. On the License pane, click CONTINUE, and then AGREE.

6. On the Installation Type pane, click INSTALL. Make note of any temporary passwords
you are given.

7. On the Summary pane, you’ll see a message that installation is complete. MySQL
Community Server has now been installed. Click Close. If desired, this service can
be stopped or restarted at any time by selecting the MySQL icon in the Mac System
Preferences app.

ptg18192217

213Using MySQL Workbench

8. Return to dev.mysql.com/downloads.

9. Under the MySQL Workbench heading, click DOWNLOAD.

10. Select the MAC OS X platform, and then click the DOWNLOAD button next to the DMG
ARCHIVE file. Click again to start the download. After the download completes, open
the downloaded DMG file. In the window that pops up, drag the MySQLWorkbench.app
icon to the Applications folder. Wait for the copy to complete.

11. Open the Mac Systems Preferences app and click the MySQL icon. Click the button to
start MySQL Server if it is not already running.

Using MySQL Workbench
When you first open MySQL Workbench after the initial install, you will need to establish a
connection to the MySQL Server instance that you already installed.

To create a connection, select Connect to Database under the Database menu. On the Stored
Connection dropdown, select the instance you installed, and then enter the password you
created previously for your user.

After creating the connection, you'll need to create a database to work with. To do this,
click the icon under the menu bar that says CREATE A NEW SCHEMA IN THE CONNECTED
SERVER. Enter a desired database name, and then click APPLY. This will generate a script to
create a new schema. Click APPLY to run the script. You will then see your new database under
the list of schemas in the Navigator pane. You should then return to Manage Connections
under the Database menu and enter the database you just created as the default schema.
You can then highlight that database and create a new query to run any desired SQL against
that database.

After entering a SQL statement in the Query pane, click the EXECUTE button, which looks
like a lightning bolt. If you enter multiple statements in the window, you can highlight one
individual statement and execute only the highlighted portion.

The results of your query will be shown under an Output or Result pane after the query is
executed. If there is data to be shown, it will appear in a Result pane; otherwise, a status
message will appear under an Output pane.

ptg18192217

This page intentionally left blank

ptg18192217

C
Getting Started

with Oracle

The following describes the procedure for installing the free version of Oracle on a computer
running Windows. In addition to Windows, this database is also available for Linux but not
for the Mac. Note that the procedure may vary, depending on what is already installed on your
computer. There is just one step for the install:

• Install Oracle Database Express Edition.

This installation will create a single database and provide a web-based graphical interface that
will allow you to execute SQL commands against the database.

Installing Oracle Database Express Edition
This procedure will install the Oracle Database Express Edition. The steps for installing are
as follows:

1. Go to oracle.com/database.

2. Under the DOWNLOADS tab, select Oracle Database 11g Express Edition.

3. Accept the license agreement, and then select the appropriate download for your
computer (e.g., Windows x64, Windows x32, or Linux x64).

4. Create an Oracle account or sign in with an existing account.

5. When the download completes, click OPEN to view the files.

6. Double-click the SETUP application to start the installation.

7. On the Welcome pane of the install wizard, click NEXT.

8. On the License Agreement pane, accept the terms, and then click NEXT.

9. On the Choose Destination Location pane, accept the default location and click NEXT.

10. On the Specify Database Passwords pane, enter a password, and then click NEXT.

11. On the Summary pane, click INSTALL.

12. When the install completes, click FINISH.

ptg18192217

216 Appendix C Getting Started with Oracle

After these steps have been completed, you will have software installed under the Oracle
Database 11g Express Edition directory in the Start menu for Windows, where the various
features are accessible via the Web-based interface. The primary application you’ll use in this
directory is Get Started.

Using Oracle Database Express Edition
To gain access to the Oracle database, run the GET STARTED program under the Oracle
Database 11g Express Edition directory in the Start menu. This will open a Web-based
application that will allow you to interface with the database. If you get an error message
saying the URL isn’t found, check the URL properties in the Get_Started file in the directory
where you installed Oracle, and go to that URL.

Click the APPLICATION EXPRESS button.

To sign on, enter a username of SYSTEM, enter the password you specified during the install,
and then click the LOGIN button.

On the CREATE APPLICATION EXPRESS WORKSPACE page, enter a database username and
password. The Application Express Username should be SYSTEM.

Then log in to the new workspace you created.

You will see four icons representing different functionalities: Application Builder, SQL Workshop,
Team Development, and Administration. To execute SQL, click the SQL Workshop icon.

You will then see five icons: Object Browser, SQL Commands, SQL Scripts, Query Builder,
and Utilities.

To execute a single SQL statement, you can use the SQL Commands icon. This will allow you
to execute a single command and see any results. If you enter multiple SQL statements, you can
highlight one individual statement and execute only the highlighted portion. To execute a SQL
statement in the SQL Commands window, click the RUN button.

If you want to execute multiple SQL statements but don't need to see the output, you can use
the SQL Scripts icon. After selecting this icon, you can either create a new script or edit an
existing script. To create a new script, click the CREATE button, and then name the script and
enter the statements you want in that script. To execute, click the RUN button. After you enter
the request, it will ask for a confirmation to run. Click the RUN button again. You can then see
a summary of your script execution by clicking the icon under the VIEW RESULTS column.

ptg18192217

Symbols
-- comments, using, 13

"
in Oracle, 24
using with column names, 16, 140

', using with literal values, 20–21
' ,' meaning of, 22
− operator, 22
/ operator, 22
/* */ comment format, 14
;, using with statements, 13
_ wildcard, effect of, 56–57
`, using with column names, 16, 140
|| in Oracle, 23
+ operator, 22
=, using with WHERE clause, 50
comment format, 14
% wildcard, effect of, 55–56
() used in Boolean logic, 63–65

*
meaning of, 11, 21–22
using with COUNT function, 84–85

** operator in Oracle, 22
[], using with wildcards, 56, 58
^ symbol, effect of, 56
< operator, using AND expression with, 68
< operator, using with WHERE clause, 50
<= operator, using with WHERE clause, 50
<>, using with WHERE clause, 50
> operator, using AND expression with, 68
> operator, using with WHERE clause, 50–51
>= operator, using with WHERE clause, 50

A
accent grave, using with column names, 16, 140
Access, 4
Actors table, wildcards examples, 57
adding subtotals

with CUBE keyword, 106–109
with ROLLUP keyword, 102–106

addition operator, 22

aggregate functions
explained, 28
selection criteria on, 89–90
using, 83–84

aliases, 23–25
alphabetic order, sorting data in, 42, 47
ALTER FUNCTION keyword, 168
ALTER PROCEDURE keyword, 167–168
ALTER TABLE statement, 186–187
ALTER VIEW statement, 141–142
AND expression and operator, 62, 68, 159
angle brackets, using with WHERE clause, 50
arguments

for functions, 29
separating, 36

arithmetic calculations, 21–22. See also
calculated fields

AS keyword
and column aliases, 121
for columns, 23–25
and crosstab layouts, 111
and table aliases, 120
for tables, 24–25
using to separate arguments, 36

ASC keyword, 43
ascending order, sorting in, 41–43, 45
asterisk

meaning of, 11, 21–22
using with COUNT function, 84–85

auto-increment, 6, 183
AVG function, 84

B
BEGIN keyword and stored procedures, 164
BETWEEN operator, 68–69
Boolean logic

explained, 61
NOT operator, 66–67
and NULL values, 70–72
AND operator, 62
OR operator, 62–63
BETWEEN operator, 68–69
IN operator, 69–70
parentheses, 63–65

Index

ptg18192217

218 C++, comparing to SQL

C
C++, comparing to SQL, 2
calculated columns

creating with views, 141
subqueries as, 151–152

calculated fields. See also arithmetic calculations
explained, 19
and literal values, 20
sorting by, 44–45

CALL keyword, 167
caret symbol, effect of, 56
Cascade foreign key, 185
CASE expression

effect of, 74
format of, 74–75
keywords, 74
placement of, 74
searched format, 76–77

CASE statement
and CUBE keyword, 109
and GROUPING function, 104–106
using with GROUP BY clause, 91

CAST function, effect of, 36–38
character data, joining, 22
character datatypes, 7
character functions

explained, 28
LEFT, 28–29
LOWER, 31
LTRIM, 31
RIGHT, 29–30
RTRIM, 31
sort sequence, 45
SUBSTRING, 30
UPPER, 31

[characterlist] wildcards, effects of, 56
collation settings, customizing, 45
ColorInventory table and CROSS JOINs, 132
column aliases, 23–24, 28
column names, lack of case sensitivity, 15
columns. See also rows; tables

adding indexes to, 183–184
designating as foreign keys, 184–185
explained, 5, 183
names with embedded spaces, 15–16
and PIVOT operator, 114
renaming, 141
sorting, 87–88
sorting by, 43–44
specifying, 14–15, 52
specifying values for, 184

comments, using with statements, 13–14
common table expressions, 152–153
Compact Form pivot tables, 206
composite functions, 32
computer languages, procedural, 2
concatenating fields, 22
concatenation, using with calculated fields, 44
conditional logic

CASE expression, 73–77
explained, 73
in GROUP BY clauses, 91
in HAVING clauses, 92
in ORDER BY clauses, 78
in WHERE clauses, 79

conversion functions, 36–38
correlated subqueries, 148–149

EXISTS operator, 150–151
updating, 177–179

COUNT function, 84–85, 151
CREATE FUNCTION keyword, 168
CREATE INDEX statement, 187
CREATE PROCEDURE keyword, 164, 167–168,

181
CREATE TABLE statement, 185–187
CREATE VIEW keyword, 138–139, 142, 181
cross joins, 131–133. See also joining
crosstab layouts, 110–114, 199–200
CUBE keyword, 106–109
CURRENT_DATE function, 33
Customers table

columns in, 5
in outer join examples, 124
SELECT statement, 12
values, 124

D
data. See also displaying data; sorting

creating subsets of, 141
deleting, 175–176
eliminating redundancies, 191–192
exporting to Excel, 201
formatting with views, 141
grouping, 86–88
inserting, 172–175
modification strategies, 171–172
normalizing, 191–195
obtaining from relational databases, 201
partitioning, 97–99
selecting from expressions, 30
summarizing, 17
updating, 176–177

data sources, subqueries as, 144–147

ptg18192217

219Grades table

database design
alternatives to normalization, 196–197
art of, 195
normalization, 190–195

datatypes
of columns, 6–8
converting, 36

DATE_FORMAT function, 34
DATEDIFF function, effect of, 34
DATEPART function, effect of, 33
date/time functions and datatypes, 7–8, 33–34
DBMS (database management systems), 3
DCL (Data Control Language), 2, 181
DDL (Data Definition Language), 2, 181–182
declarative language, explained, 2
delete anomalies, eliminating, 191
deleting

data, 175–176
rows, 171, 175–176
stored procedures, 167–168
views, 141–142

denominator value, testing, 77
DENSE_RANK function, 93, 95
dependencies, eliminating, 192
descending order, sorting in, 43
displaying data. See also data

crosstab layouts, 199–200
Excel and external data, 200–203
Excel pivot tables, 203–207

DISTINCT keyword, 85
division operator, 22
DML (Data Manipulation Language), 2, 181
does not equal operator, using with WHERE

clause, 50
double dash comments, using, 13
double quote, using with column names, 16, 140
drillthrough in pivot tables, explained, 207
DROP FUNCTION keyword, 168
DROP INDEX statement, 187
DROP PROCEDURE statement, 168
DROP VIEW statement, 142
duplicates, eliminating, 81–82, 190

E
ELSE keyword, using with CASE expression, 74–75
END keyword

and stored procedures, 164
using with CASE expression, 74–75

English sentences, comparing SQL syntax to, 1–2
entity-relationship diagram, explained, 117
equals sign, using with WHERE clause, 50

Excel
drillthrough in pivot tables, 207
DSN (Data Source Name) files, 202
exporting data to, 201
and external data, 200–203
From Data Connection Wizard, 201
Import Data options, 201
Microsoft Query window, 202–203
pivot tables, 203–207

EXCEPT operator, format of, 160–161
EXEC keyword and stored procedures, 167
EXISTS operator

and subqueries, 150–151
and updating data, 178

exponentiation operator, 22
exporting data to Excel, 201
expressions

selecting data from, 30
using italics with, 13

F
false condition, evaluating, 61
fields, concatenating, 22
first normal form, 191
FirstName, sorting by, 42–43
foreign keys

designating columns as, 184–185
and joining tables, 117
and primary keys, 6

Formats table, normalizing, 193–194
FROM clause

explained, 17
and ORDER BY clause, 41–42
specifying inner joins with, 119–120
and subqueries, 144
and table aliases, 120

full joins, 129–131. See also joining
functions

arguments for, 29
creating, 168–169
explained, 27–28
versus procedures, 169
saving, 168
scalar and aggregate, 28

G
GETDATE function, effect of, 33
Grades table

normalizing, 193–195
star schema, 196–197

ptg18192217

220 greater than operators

greater than operators
using AND expression with, 68
using with WHERE clause, 50–51

GROUP BY clause
and calculated columns, 151
and CASE statement, 91
conditional logic in, 91
and crosstab layouts, 112
explained, 17
versus ORDER BY, 88
versus partitions, 98
ROLLUP keyword in, 102–103
and subqueries, 149
using, 86–87

grouping data, 86–90
GROUPING function

and CUBE keyword, 109
effect of, 104, 108

H
HAVING clause

conditional logic in, 92
explained, 17
and subqueries, 149
using, 89–90
versus WHERE clause, 90

header row and literal values, 20

I
IFNULL function, 38
importing data into Excel, 201–202
IN operator, 69–70, 147, 150
indexes

adding and modifying, 187
creating, 187
and primary keys, 183–184

inner joins. See also joining
and ON, 120
alternate specification, 119–120
effect of, 118–119
versus LEFT JOIN, 126
and subqueries, 150–151
and table aliases, 120
table order, 119

insert anomalies, eliminating, 191
inserting data, 172–175
installing

MySQL on Macs, 212–213
MySQL on Windows, 211–212
Oracle Database Express Edition, 215–216
SQL Server 2016 Express, 209

SQL Server 2016 Management Studio
Express, 210

INTERSECT operator, 159–161
IS NOT NULL keyword, 71
IS NULL keyword, 71–72
ISNULL function, effect of, 37–38, 46, 71–72,

86, 105
italics, using with expressions, 13

J
JOIN keyword, effect of, 17, 116, 123
joining. See also cross joins; full joins; inner joins;

left joins; outer joins; right joins; self joins
character data, 22
tables, 116–117

K
keys. See foreign keys; primary keys
keywords

explained, 11
lack of case sensitivity, 15
treatment of, 15

L
languages

versus logic, 1
procedural versus declarative, 2

LastName, sorting by, 42–43
LEFT function

arguments, 29
effect of, 28
format of, 29
formula for, 29

left joins. See also joining
and calculated columns, 151
effect of, 125–127
versus INNER JOIN keyword, 126
versus RIGHT JOIN, 128
and subqueries, 146
switching with right joins, 129
testing for NULL values, 127

less than operators
using AND expression with, 68
using with WHERE clause, 50

LIKE operator
and percent wildcard, 56
using in WHERE clause, 54

LIMIT keyword, 52
literal space, indicating, 22

ptg18192217

221Oracle databases

literal values
and calculated fields, 20–21
header row, 20

logical conditions
explained, 61
NOT operator, 66–67
and NULL values, 70–72
AND operator, 62
OR operator, 62–63
BETWEEN operator, 68–69
IN operator, 69–70
parentheses, 63–65

LOWER function, effect of, 31
LTRIM function, effect of, 28, 31

M
Macs, installing MySQL on, 212–213
math calculations, 21–22. See also

calculated fields
MAX function, 84
Microsoft Access, 4
Microsoft Query window, 202–203
Microsoft SQL Server

concatenating fields, 22
datatypes, 7–8
downloading free versions, 4
versions and editions, 3

MIN function, 84
MINUS operator, 161
Movies table

and FULL JOINs, 130–131
pattern matching example, 54–56

multiplication operator, 22
MySQL open-source database

; used with statements, 13
` and column names, 16
ALTER PROCEDURE command, 168
CALL keyword, 167
comments, 14
CONCAT function, 23
CREATE statements, 182
CREATE TABLE statement, 186
datatypes, 7–8
DATE_FORMAT function, 34
DATEDIFF function, 34
downloading free versions, 4
IFNULL function, 38
installing, 211–213
LIMIT keyword, 52
literal values, 20
NOW function, 33
parameters in stored procedures, 166
platforms and editions, 3

ROLLUP keyword, 106
spaces and functions, 31
stored procedures, 164–165

MySQL Workbench, using, 213

N
No Action foreign key, 185
normalization

alternatives, 196–197
of data, 191–195
goals of, 190–191
grades example, 195

NOT NULL keyword, 183
NOT operator, 66–67
NOW function, 33
NTILE ranking function, 93, 96
NULL values

allowing, 183
and Boolean logic, 70–72
converting, 37–38
and crosstab layouts, 113
and CUBE keyword, 108
explained, 8
in Grade column, 85
for Homework GradeType, 86
in Homework row, 87
and ROLLUP keyword, 103–104
sort sequence, 45–47
testing in LEFT JOIN, 127

NULL word, suppressing printing of, 105
numeric datatypes, 7
numeric functions, 35–36
numeric values, sort sequence of, 47
NVL function, 38

O
ON clause, in self joins, 137
ON keyword and INNER JOIN, 120
OR expression and operator, 62–64, 68
Oracle databases

; used with statements, 13
" and column names, 16
case sensitivity, 55
column aliases, 24
columns as sequences, 183
concatenation, 23
CREATE commands, 182
CURRENT_DATE function, 33
datatypes, 7–8
date display format, 126
downloading free versions, 4
DROP INDEX statement, 187

ptg18192217

222 Oracle databases

Oracle databases (continued)
DROP VIEW, 142
editions, 3
exponentiation operator, 22
literal values, 20
MINUS operator, 161
NVL function, 38
PIVOT keyword, 114
ROWNUM keyword, 52
stored procedures, 164
SUBSTR function, 31
table aliases, 25, 121

Oracle Database Express Edition, installing and
using, 215–216

ORDER BY clause
conditional logic in, 78
and crosstab layouts, 112–113
and CUBE keyword, 109
effect of, 41, 43–44, 47
explained, 17
versus GROUP BY, 88
and ROLLUP keyword, 103–104
switching, 88
and TOP keyword, 53–54
and UNION operator, 157
and views, 139

Orders table
columns in, 5
INTERSECT operator, 160
joining, 116–117
in outer join examples, 124
UNION operator, 156
values, 125

outer joins, table order in, 129. See also joining
Outline Form pivot tables, 206–207
OVER keyword, using with ranking functions, 94–95

P
parameters in stored procedures, 165–166
parent table, explained, 184
parentheses used in Boolean logic, 63–65
partitions, 97–99
pattern matching, 54–56
PE Ratio column, 94–95
percent wildcard, effect of, 55–56
Personnel table and self joins, 136
PI function, effect of, 35
PIVOT operator, using with crosstab layouts,

111–112, 114, 200
pivot tables, using in Excel, 203–207
POWER function, effect of, 35–36

primary keys
contents, 8
and foreign keys, 6
and indexes, 183–184
and normalization, 190
specifying, 12

procedural language, explained, 2
procedures versus functions, 169
Products table, NULL and Boolean logic, 70–71
Purchases table

AND operator example, 62
OR operator example, 63

Q
Quartile column, 96
queries. See also subqueries

combining, 155
intersecting, 159–161

quotation mark ('), using with literal values, 20–21

R
RANK function, 93, 95
ranking functions, 93–99
records. See rows
Refunds table

in outer join examples, 124
values, 125

relating tables, 6
relational databases

availability, 4
features, 4–5
obtaining data from, 201

Returns table
INTERSECT operator, 160
UNION operator, 156

RIGHT function, 32
effect of, 29, 32
problem with spaces, 30

right joins, 128–129. See also joining
ROLLUP keyword, 102–108
ROUND function, effect of, 35
ROW_NUMBER ranking function, 93–94, 98
ROWNUM keyword, 52
rows. See also columns; tables

counting, 84–85
deleting, 175–176
deleting from tables, 171
explained, 5
identifying by primary keys, 6
inserting, 172
limiting with selection criteria, 51–52
limiting with sort, 53–54

ptg18192217

223stored procedures

selecting using parentheses, 65
using NOT operator with, 66

RTRIM function, 30–32

S
Sales table

calculated fields, 19
joining, 116–117

Salespeople table, sorting examples in, 42
saving stored procedures and functions, 168
scalar function, explained, 28
second normal form, 191
security restrictions, enforcing with views, 141
SELECT clause, explained, 16
SELECT mainquery, order of fields in, 113
SELECT queries and set logic, 155
SELECT statements

and ALTER VIEW, 141–142
with ASC keyword, 43
and Boolean logic, 63
and CASE expression, 75
format of, 73–74
and INNER JOIN, 118
introducing, 11
for joining tables, 117
with LEFT function, 28
and LEFT JOIN, 126
with LOWER function, 31
with ORDER BY clause, 41
parameters in stored procedures, 165–166
and parentheses, 65
with RIGHT function, 30, 32
with RTRIM function, 32
and self joins, 137
separating with UNION operator, 157
specifying clauses in, 17
specifying columns, 14–15
and stored procedures, 165
and subqueries, 144, 146
with SUBSTRING function, 30
FROM TableForSort, 46
with UPPER function, 31
using with Customers table, 12
as views, 139
views as, 137
with WHERE clause, 49

selection criteria
on aggregate functions, 89–90
applying, 49–50
limiting rows, 51–52
limiting rows with sort, 53–54
pattern matching, 54–56

subqueries in, 147–148
TOP keyword, 52

selection logic, indicating, 17
self joins, effect of, 135–137. See also

joining; views
semicolon (;), using with statements, 13
SET A and B, selecting data in, 156
SET keyword, using to update data, 176–178
set logic

distinct unions, 158–159
explained, 155
intersecting queries, 159–161
non-distinct unions, 158–159
UNION operator, 156–158

Set Null foreign key, 185
Shakespeare example, 53–54
soft delete technique, 171
sorting. See also data

in ascending order, 41–43
by calculated field, 44–45
by columns, 43–44
columns, 87–88
in descending order, 43
sequences, 45–47

spaces
including in columns, 15–16
problem in RIGHT function, 30

SQL (Structured Query Language)
components, 2
explained, 2
pronunciation, 2
significance, 8–9
versus Visual Basic and C++, 2

SQL database, explained, 3
SQL Server

concatenating fields, 22
datatypes, 7–8
downloading free versions, 4
versions and editions, 3

SQL Server 2016
Express installation, 209
Management Studio Express installation, 210

SQL statements, 13–14
SQL syntax

relating to English sentences, 1–3
for writing statements, 12–13

square brackets, using with wildcards, 56, 58
square root, determining, 36
star schema, 196–197
statements, 13–14
stored procedures

creating, 164–165, 167
deleting, 167–168

ptg18192217

224 stored procedures

stored procedures (continued)
executing, 167, 169
explained, 163–164
parameters, 169
parameters in, 165–166
saving, 168

string datatypes, 7
string functions. See character functions
Students table, normalizing, 193
subqueries. See also queries

analyzing, 146
as calculated columns, 151–152
correlated and uncorrelated, 148–151
as data sources, 144–147
EXISTS operator, 150–151
explained, 70, 143
in selection criteria, 147–148
specifying, 144
types of, 143–144

SUBSTR function, 31
SUBSTRING function, effect of, 30
subtotals

adding with CUBE keyword, 106–109
adding with ROLLUP, 102–106

subtraction operator, 22
SUM function

and CUBE keyword, 109
effect of, 28, 84

summarizing data, 17
summing values in pivot tables, 206
syntax

relating to English sentences, 1–3
for writing statements, 12–13

T
table aliases, 24–25
table expressions, 152–153
table names, lack of case sensitivity, 15
tables. See also columns; rows

attributes, 182
creating, 185–187
DDL (Data Definition Language), 181–182
displaying, 5
joining, 116–117, 125–127
order in INNER JOINs, 119
relating, 6

Tabular Form pivot tables, 206
Teachers table, normalizing, 193–194
Tests table, normalizing, 193–194
THEN keyword, using with CASE expression, 74
third normal form, 191
time. See date/time functions and datatypes
TOP keyword, effect of, 52–54

Transactions table, subqueries, 145, 147–149
true condition, evaluating, 61
TRUNCATE TABLE statement, 176

U
uncorrelated subqueries, 148–149
underscore wildcard, effect of, 56–57
UNION and UNION ALL, 156–159
uniqueness, ensuring with primary keys, 6
update anomalies, eliminating, 191
updating data, 176–179
UPPER function, effect of, 31
Users table, subqueries, 144–145, 147–149

V
values, summation in pivot tables, 206
VALUES keyword, 173–174
VARCHAR, effect of, 46
Vendors table, updating, 178
views. See also self joins

benefits, 140–141
creating, 137–139
modifying and deleting, 141–142
referencing, 139–140
as SELECT statements, 137, 139
storing, 138

Visual Basic, comparing to SQL, 2

W
WHEN keyword, using with CASE expression, 74–75
WHERE clause

AND operator, 62
applying selection criteria, 49–50
conditional logic in, 79
and correlated subqueries, 179
effect of, 17, 50
example, 58
versus HAVING clause, 90
interpreting in Boolean logic, 64
LEFT JOIN with NULL values, 127
LIKE operator, 54
operators, 50–51
parameters in stored procedures, 166
placement of, 49
sample output, 50
specifying inner joins with, 119–120
subqueries, 146
TOP keyword, 54

wildcards, arranging, 56–58
Windows, installing MySQL on, 211–212
WITH keyword, effect of, 152–153

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	1 Relational Databases and SQL
	What Is SQL?
	Microsoft SQL Server, MySQL, and Oracle
	Relational Databases
	Primary and Foreign Keys
	Datatypes
	NULL Values
	The Significance of SQL
	Looking Ahead

	2 Basic Data Retrieval
	A Simple SELECT
	Syntax Notes
	Comments
	Specifying Columns
	Column Names with Embedded Spaces
	Preview of the Full SELECT
	Looking Ahead

	3 Calculated Fields and Aliases
	Literal Values
	Arithmetic Calculations
	Concatenating Fields
	Column Aliases
	Table Aliases
	Looking Ahead

	4 Using Functions
	What Is a Function?
	Character Functions
	Composite Functions
	Date/Time Functions
	Numeric Functions
	Conversion Functions
	Looking Ahead

	5 Sorting Data
	Sorting in Ascending Order
	Sorting in Descending Order
	Sorting by Multiple Columns
	Sorting by a Calculated Field
	Sort Sequences
	Looking Ahead

	6 Selection Criteria
	Applying Selection Criteria
	WHERE Clause Operators
	Limiting Rows
	Limiting Rows with a Sort
	Pattern Matching
	Wildcards
	Looking Ahead

	7 Boolean Logic
	Complex Logical Conditions
	The AND Operator
	The OR Operator
	Using Parentheses
	Multiple Sets of Parentheses
	The NOT Operator
	The BETWEEN Operator
	The IN Operator
	Boolean Logic and NULL Values
	Looking Ahead

	8 Conditional Logic
	The CASE Expression
	The Simple CASE Format
	The Searched CASE Format
	Conditional Logic in ORDER BY Clauses
	Conditional Logic in WHERE Clauses
	Looking Ahead

	9 Summarizing Data
	Eliminating Duplicates
	Aggregate Functions
	The COUNT Function
	Grouping Data
	Multiple Columns and Sorting
	Selection Criteria on Aggregates
	Conditional Logic in GROUP BY Clauses
	Conditional Logic in HAVING Clauses
	Ranking Functions
	Partitions
	Looking Ahead

	10 Subtotals and Crosstabs
	Adding Subtotals with ROLLUP
	Adding Subtotals with CUBE
	Creating Crosstab Layouts
	Looking Ahead

	11 Inner Joins
	Joining Two Tables
	The Inner Join
	Table Order in Inner Joins
	An Alternate Specification of Inner Joins
	Table Aliases Revisited
	Looking Ahead

	12 Outer Joins
	The Outer Join
	Left Joins
	Testing for NULL Values
	Right Joins
	Table Order in Outer Joins
	Full Joins
	Cross Joins
	Looking Ahead

	13 Self Joins and Views
	Self Joins
	Creating Views
	Referencing Views
	Benefits of Views
	Modifying and Deleting Views
	Looking Ahead

	14 Subqueries
	Types of Subqueries
	Using a Subquery as a Data Source
	Using a Subquery in Selection Criteria
	Correlated Subqueries
	The EXISTS Operator
	Using a Subquery as a Calculated Column
	Common Table Expressions
	Looking Ahead

	15 Set Logic
	Using the UNION Operator
	Distinct and Non-Distinct Unions
	Intersecting Queries
	Looking Ahead

	16 Stored Procedures and Parameters
	Creating Stored Procedures
	Parameters in Stored Procedures
	Executing Stored Procedures
	Modifying and Deleting Stored Procedures
	Functions Revisited
	Looking Ahead

	17 Modifying Data
	Modification Strategies
	Inserting Data
	Deleting Data
	Updating Data
	Correlated Subquery Updates
	Looking Ahead

	18 Maintaining Tables
	Data Definition Language
	Table Attributes
	Table Columns
	Primary Keys and Indexes
	Foreign Keys
	Creating Tables
	Creating Indexes
	Looking Ahead

	19 Principles of Database Design
	Goals of Normalization
	How to Normalize Data
	The Art of Database Design
	Alternatives to Normalization
	Looking Ahead

	20 Strategies for Displaying Data
	Crosstab Layouts Revisited
	Excel and External Data
	Excel Pivot Tables
	Looking Ahead

	A: Getting Started with Microsoft SQL Server
	Installing SQL Server 2016 Express
	Installing SQL Server 2016 Management Studio Express
	Using SQL Server 2016 Management Studio Express

	B: Getting Started with MySQL
	Installing MySQL on Windows
	Installing MySQL on a Mac
	Using MySQL Workbench

	C: Getting Started with Oracle
	Installing Oracle Database Express Edition
	Using Oracle Database Express Edition

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

